
X1 User Manual

August 17, 1995

Contents

1 Requirements 1

2 \What's this?" 1

3 \How-to-use" (command-line format and review of commands

and options) 1

3.1 Command-line format : 2

3.2 Command-line syntax rules : 2

3.2.1 Commands : 3

3.2.2 Options : 9

4 Environment variables 14

5 Formats and compression methods (user level) 15

5.1 About the ARJ module : 15

5.2 About the ZIP module : 15

5.3 About the LHA module : 16

5.4 About the ZOO module : 16

5.5 About the HA module : 16

5.6 About the TGZ module : 17

5.7 About the X module : 17

6 Temporary �le names 18

7 Exit return codes 18

1 Requirements

CPU 386sx or better

RAM a minimum of 4Mb memory is strongly recommended

OS

DOS 3.3 (or later)

OS/2 (32-bit)

Get speci�c program versions for each OS.

Be aware that the memory reported by the archiver is the memory indirectly

reported by DPMI - which is the memory actually \visible". Depending on the

memory manager (DOS. . . OS/2. . .), disk-mapped memory could be used and

the reported value may exceed the physically installed amount of memory. But

it matters less for the program how memory is managed. It is more important,

how much is allowed to be used (by the memory manager).

2 \What's this?"

This is an archiver. It compresses several �les into a single �le. It is entirely

command-line driven. Compression and uncompression are combined into this

single executable program. It has a speed-tightness-memory trade o� that favors

tightness and tries to make full use of the resources (memory) on the platform

it is running on.

Most dominating features are:

1

� Introducing .x format archives

� Compatibility with ARJ, (PK)ZIP, LHA(RC), ZOO, HA

� Multi-lingual interface

� Contains \experimental" methods as a consequence of the exploration of

hi-performance algorithms. \experimental" does not indicate instability

- but rather that the method may not be supported backwards in every

single future version.

The command-line interface is similar to that of ZOO and HA. But the

option characters are more related to ARJ and LHA. The interface has little in

common with PKZIP. With a little knowledge of common archivers, it should

be possible to skip parts of this documentation.

3 \How-to-use" (command-line format and re-

view of commands and options)

This is the speci�cation for the program. If the program acts di�erently, then

it is either caused by an error - or failure to properly implement the function

according to this speci�cation.

Using the description \archiver" for a program will produce a number of

expectations - based on the abilities of other archivers. Consequently it becomes

important to note not only what has - but also to some degree what hasn't

actually been implemented.

If things mentioned in the text are not implemented, then a message \Not

implemented" will precede the section. Further work should allow a reduction

of the number of such messages.

3.1 Command-line format

X1 command[<options>..] <archive> [<filemask>..]

De�nition:

command[<options>..] only one command allowed (�rst single character) fol-

lowed by a sequence of options - with no spacing between command and

options - or among options

<archive> is the archive name, with a default extension of .ZIP

<filemask> are the �les to archive, defaulting to all �les if none are speci�ed.

Wildcards *, ? can be used. Filenames are speci�ed in normal extension

of the path.

3.2 Command-line syntax rules

Command and option(s) can be speci�ed in either upper or lower case.

Be aware that x1 has two path exclude options instead of normally one. This

is a consequence of rule 1 and 2.

2

1. (path included)

By default, all paths mentioned on the command-line are added to the

archive - unless exclusion option X is enabled.

2. (path included)

By default, all paths encountered during recursive search (R option en-

abled) are added to the archive - unless exclusion option E is enabled.

This is somewhat di�erent from most other archivers.

3. (several �lemasks relating to same dir)

Filemask with no path speci�cation assumes path of previous �lemask.

Explained in more detail:

Assume x1 a test <arg[1]> .. <arg[i]> <arg[i+1]>... If

<arg[i+1]> does not contain `n' (`/') or `:' then it is assumed to

work under the same pathname as <arg_i> (which may work under

the same pathname as <arg[i-1]>. . . etc.). What does this mean? It

means that: x1 a test \dir1\dir2*.c *.h actually produces the

same result as x1 a test \dir1\dir2*.c \dir1\dir2*.h. What

does it not mean? Well, x1 a test dir1*.c dir2*.h does not work

as x1 a test dir1*.c dir1\dir2*.h because dir2*.h contains \.

Nor does x1 a test dir1 *.c work as x1 a test dir1*.* dir1*.c,

which would actually be meaningless.

The justi�cation for this convention is entirely saved typing (notice how

you did not need to repeat \dir1\dir2\ on the command line in the �rst

example).

Side-e�ects/drawbacks? If you want �les from the current directory, you

have to specify them all before listing individual directories. . . Still, this

is just a convention, and should not restrict the user in any way.

4. (dir recorded in archive)

Specifying a directory name on the command-line implies compression

of all �les in that directory. Notice that x1 a test \dir1\dir2

produces the same result as x1 a test \dir1\dir2\ or

x1 a test \dir1\dir2*.*. And if recursive option is enabled,

then all �les higher in \dir1\dir2\.. are also processed.

But watch out! If �lenames are identical to pathnames, it may not always

be obvious what the end-result will be. . .

3.2.1 Commands

� ? command (display help comments)

This command is only used in the context x1 ?. It will display a brief

review of the commands and options. The page shown is not the same

page as shown when executing the program without parameters. If no

parameters are speci�ed, then only commands are listed (among them is

\?").

3

If the information is displayed too fast, it is recommended to direct it into

a �le (x1 ? >archive.lst), which can subsequently be viewed by your

favorite browser (Norton-Commander-F3) or in your favorite editor..

Many languages are supported. However, some languages were more dif-

�cult to understand than others. So it cannot be guaranteed that the

meaning of the messages are always crystal clear. In case of doubt, then

the english, danish, french, german, spanish pages should be consulted (in

that priority order!).

(On PC) If your codepage settings are bad, then the result will be missing

characters. So please use the little time to get a proper codepage setting.

� A command (add �les to archive)

Valid options: $,A,C,E,F,I,K,L,M,N,O,R,S,T,U,V,X,Y,Z

This command has two modes of operation:

{ create archive and add �les. . .

{ update (re-open) archive and add �les. . .

But basically it compresses and adds speci�ed �les to an archive. If the

named archive does not exist, then one is created with the speci�ed name.

If it does exist, then it is updated. This means, that new �les with the

same pathnames as old archive entries will overwrite these old entries. A

few exceptions exist (when compressing to solid modules) - but this is

outside the scope right now.

If a base directory is omitted, the default directory is assumed to be the

current directory.

If there are no �les speci�ed on the command-line, then all �les (in the

default directory) are added. This means that x1 a test.x compresses

everything in the current directory.

At no point is it possible to compress an archive being updated into the

archive itself.

If the extension of the target archive is not speci�ed, then a default ex-

tension of ZIP is selected. If you wish to compress in another format,

then it is necessary to specify the target archive with that format exten-

sion (ARJ, LZH, . . .). It is not possible to compress to archives with

completely arbitrary extensions.

Filenames can be excluded from addition to the archive by use of the \Z"

option.

Example (compressing to standard format): x1 a archive.x my_file.doc

Example (compressing to ZIP format): x1 a archive.zip my_file.doc

� C command (add comments to archive)

Not implemented

Valid options: I,C

This command adds comments to an archive. Comments are possible in

ARj, ZIP, ZOO, X - but not in LHA, HA formats. Reasons are di�erences

in header structures.

4

� D command (delete �les from archive)

Valid options: I,S,Z

In order to be deleted, the pathname entry in the archive has to match an

argument on the command-line (upper- and lower-case is unimportant).

If a �lemask contains no path, then it takes e�ect on all entries in the

archive, regardless of their paths. This means that x1 d test.x *.pas

will even delete entries dir1/dir2/*.pas in the archive (if available).

However, x1 d test.x /dir1/dir2/*.paswill only delete the latter type

of �les - not *.pas �les with no pathname.

If all �les are requested to be deleted, then the entire archive is removed

(deleted).

Filenames can be excluded from deletion by use of the Z option.

Example (deleting multiple entries): x1 d archive.x *.pas *.doc

Example (deleting entire archive): x1 d archive *.*

� E command (extracting �les without path)

Valid options: $,A,F,I,N,O,T,W,Y,Z

This command is identical to the X command with the E option. It is only

provided because of the general consensus among archivers (to support

this command).

During extraction, the date/time stamps for the original �les are restored

together with the �le contents. A crc check is performed in order to verify

that the operation was successful. However, the �le is veri�ed before

writing to disk, rather than by a read-veri�cation check.

Files can be extracted to a user speci�ed directory on a user speci�ed

drive | but by default, �les are extracted into the current directory. All

extractions are done without paths (into a single directory).

When extracting to a speci�c directory, the directory name should end

with / or \ as in the example x1 e test.x c:\dir\. Not terminating

the directory name with such a character as in x1 e test.x c:\dir will

cause the program to assume, that a �le is attempted to be extracted from

the archive.

When extracting to a non-existing (command-line speci�ed) directory, the

user will be warned about the incident and consulted before further ac-

tions. The warning prompt presents several di�erent solutions | from

(y)es (create directory this time only) to n(e)ver (create at no time).

The user answers by typing the letter in brackets. The actual words and

letters can change for di�erent language modules. It is possible to override

the default question by activating one of the options Y or N.

When extracting to a speci�ed drive, it is allowed to let the drive spec-

i�cation end with : as illustrated by the example x1 e test.x a:.

This is because no valid �lename is assumed to end with that charac-

ter. If several destination drives/directories are speci�ed (as in example

x1 e test.x a: b: c:) then the last speci�ed drive/directory will be

used for actual extraction (c:).

5

If trying to extract a �le with the same name as an existing directory, then

the extracted �le will be skipped (unless smart overwriting is chosen with

option W).

If trying to extract a �le to a �lename already used, the user will be

warned about the incident and consulted before further actions. Only

exception is 0 length �les. They are not considered to contain any valuable

information - and are overwritten without warnings. The warning prompt

allows several di�erent answers - from (y)es (overwrite this time only) to

n(e)ver (overwrite at no time). The user answers by typing the letter in

brackets. The actual words and letters can change for di�erent language

modules.

Example (extract �le): x1 e archive.x file_id.diz

� F command (refresh �les already in archive)

Not implemented

Valid options: E,F,I,X

This command replaces entries in an archive with newer �les, where pos-

sible. This means that the names and total number of �les in the archive

will remain constant. Only the contents of the archived �les may change.

Only �les date/time stamps are checked, when searching for newer �les.

If �les are older | or have same date/time stamps (but possible di�erent

size), then the �les are skipped.

Potential con
icts occur in the situation, where the archive contains entries

with paths in their pathnames. Should it be necessary to specify these

entries speci�cly? The answer chosen here is: no! Instead it is necessary

to exclude them with the E option | if for some reason they are not to

be refreshed as other �les.

Similar to the A command, if there are no �les speci�ed on the

command-line, all �les in the archive are attempted to be re-

freshed. This means that x1 f test.x attempts to refresh all

�les in test.x | while x1 f test.x *.pas only attempts to re-

fresh *.pas �les (including possibly dir1/dir2/*.pas �les). Only

x1 fz test.x *.pas dir1/dir2/*.pas makes sure that the latter �les

are excluded from the freshing process.

Example (freshen all �les): x1 f test.x

� L command (lists contents of the archive)

Valid options: E,I,O,Z

This command lists standard information about �le entries in the archiver.

This includes:

{ full pathname

{ compressed and uncompressed �le size

{ compression ratio (% compressed/uncompressed)

{ date (in year-month-day format)

{ time (in hour-minute-second format)

6

{ CRC (16/32 bit)

{ DOS style �le attributes

{ compression method (identi�ed by number rather than by name).

A character * appended at the end of the �lename indicates that the �le

is encrypted and consequently cannot be extracted.

Dynamically \�tting" of �lepath names is attempted. If there is room

enough for large names, then they are listed on the same line as the ad-

ditional info. Otherwise, the �lename is put on a line for itself | and

additional info is moved onto the next line.

It is possible to list all archives of speci�c formats (x1 l *.lzh) or all

archives recognized by the archiver (x1 l *) | which only actually checks

�les with a recognizable extension (.arj, .zip, . . .). It is possible to

only check for speci�c �les (x1 l *.zip file_id.diz) or multiple �les

(x1 l *.zip *.nfo *.diz).

If the information is displayed too fast, it is recommended to direct it into

a �le (x1 l *.zip >archive.lst), which can subsequently be viewed by

your favorite browser (Norton-Commander-F3) or in your favorite editor..

Example (listing all *.arj, *.zip, . . .): x1 l *

� T command (test integrity of archive contents)

Valid options: E,F,I,O,Z

This command really has two causes (modes of operation):

{ verify that the archiver have not made errors during compression

{ check for errors in
icted on the archive during transmission (storage

media or hardware transmission channel faults)

The �rst error is by far the most alarming. This is why it is also usually

the error being tested for. Consequently the archiver is normally required

to unpack the data (in memory).

To ensure success of possible extraction, a validity function is provided in

the shape of a CRC (cyclic-redundancy-checksum) check. Even though

the process is not 100for most practical purposes.

It is possible to test entire contents of several archives (x1 t *.zip), in-

dividual �le occurrences in a group of archives (x1 t *.zip *.doc) or

individual �les in individual archives (x1 t archive.x readme.doc).

If the archiver can be assumed to have done its job properly, then a simpler

and faster CRC check can be made. This check is activated by using

option F. How to know if the archiver has done its job properly? Well, try

a traditional crc check once (immediately after compression). If the result

is OK, then only subsequent transmission CRC errors can be expected.

The user are informed about mismatches between the recorded CRC and

the actually found CRC value. In the event of errors, it is very unlikely

that data can be recovered | unless some form of ECC (error-correcting-

code) has been activated. Updating �les with CRC errors is often possible,

but cannot be recommended.

7

If solid archives are involved, then CRC checks can take additional time.

This is caused by the fact that extraction may presuppose the extraction

of another �le. In solid mode, data is compressed together in a longer

stream, and this reduces accessibility.

Example (test all �les): x1 t test.x

� P command (protect archive against errors)

Valid options: I,L

This command will cause error-correcting-code (ECC) to be appended

to the archive | which should protect the archive to some extent from

subsequent media or transmissions errors.

Actually appending ECC more than once is prevented. Rather than us-

ing a simple methods more than once, it is recommended to use a more

sophisticated method involving greater overhead.

Just as there is a di�erence in the performance of compression methods on

data | error correcting methods have to be optimized for speci�c types

of errors. Unless this is done, the result will be increased overhead with

low e�ect. Consequently more methods will be made available later.

Default protection method used is \Level-1 ECC".

Level-1 ECC: This type of ECC code is aimed at the casual user, who

wants (low) safety with only a minimum of extra data overhead. The

method is specialized to compensate for disk media errors. It can com-

pensate for only one(!) lost sector. The sector size is con�gurable. Default

is 512 bytes. If wanting to compensate for more than one sector of errors,

higher levels of ECC protection should be used. If protecting a (N) byte

long sector, then the additional data overhead will be (N+48) bytes. The

48 bytes covers a header including a crc for the header, a crc for the total

�le and test-vectors used to locate errors faster. The ECC data will be

located in a continuous block at the beginning of the �le.

Level-2 ECC: Still awaits implementation.

WARNING: Error-correcting methods only corrects a limited number

of errors. A method will only correct errors according to its speci�ca-

tion. Therefore: read the speci�cation | and do not expect correction

of errors beyond it!!! Error-correction only gives a limited security. It is

consequently important not to have blind faith in the methods.

Example: To protect against a single lost 512 byte sector (
oppy disk),

then the command used is x1 p test.zip or x1 pm1 test.zip. To add

1024 byte/sector ECC1 protection (which is 2x512 byte sectors, thus m2),

then following command is used is x1 pm2 test.zip.

� R command (repair archive for possible errors)

Valid options: I

This command has two intentions (modes of operation):

1. To actually repair errors in the archive

8

2. Only to verify that the archive is free from errors. A crc check only

investigates compressed �le entries in the archive | not possibly cor-

rupted error-correcting-code (ECC). Obviously the \extended test"

can (should) only be performed if there is actual ECC code to check.

Repairing archive with ECC protection: This command removes errors |

either in the ECC data itself | or in the actual data, it should protect. If

the errors are irrecoverable, then a warning will state this, and no further

actions are taken. If the errors are recoverable, then they will be corrected,

and a message will explain that the process was successful.

Repairing archive with no ECC protection: This has never been the in-

tention of this command. In this archiver, there is no general \repair"

function for damaged archives. Instead the user is urged to attempt ex-

traction of the archive | and re-archive the data again. The problems

with providing a general \repair" function are well known from the pro-

gram PKZipFix provided with the archiver PKZIP. The repair program

just updates the archive header structure - without checking the integrity

of individual �les. Files can then be appended to the archive. However,

without an integrity test, there is no way of knowing if the archive con-

tains additional errors. Not checking for this possibility, may cause a false

feeling of security. It appears much better to only allow extraction from

the archive - allowing the user to directly verify the number of errors. If

archives are stored within archives, then there exist dangerous possibilities

for mistakes. In such cases, it is best that the user tries to evaluate the

situation. If somehow people would be interested (and willing to pay!),

then an advanced error-recovery program may be constructed for some/all

of the many di�erent formats. But it would not change the fact, that most

errors normally are irrecoverable.

Example: x1 r test.x

� U command (unprotect archive | removing error-correcting-code)

Valid options: I

This command retraces the action taken by the P command. Removal

will be attempted on any available error-correcting-code (ECC). Failure

to locate ECC code may be caused by two reasons: no ECC code there

in the �rst place | or errors blocking the detection of the ECC code

(header). In the latter case it should be recommended to attempt removal

of errors.

It is recommended to check for possible errors before removing the ECC

code. Even though the process may manage to locate the ECC code |

then the archive can still contain errors at other positions in the �le. No

checks for errors are done when actually removing ECC code (in order to

speed up the process).

� X command (extracting �les with full pathnames)

Valid options: $,A,E,F,I,N,O,T,W,Y,Z

Main di�erence from the E command is that �les are extracted with path-

names (as recorded in archive). The pathnames can be viewed before

extraction with the L command.

9

Files can be extracted to a user speci�ed directory on a user speci�ed drive

| but by default, �les are extracted into the current directory, and possi-

ble paths are built from the current directory. Some paths cannot be used

as extension of the current directory. That is paths which contain drive

names or specify speci�c root directories. Such paths will be positioned

on the disk according to their absolute speci�cations.

When extracting to a speci�ed directory or drive, paths will be built from

the speci�ed position. For example x1 x test.x a: will try to extract all

�les to a: (while building paths from the current directory on that drive).

When �le extraction requires a non-existing path on the disk, the situation

is treated as when extracting to a non-existing (command-line specifed)

directory. The user will be warned about the incident and consulted before

further actions.

3.2.2 Options

� \$ option (add/extract disk volume label)

Not implemented

Compression: Adds the disk label (for the �rst speci�ed �lemask) to the

archive. In the example x1 a text.x *.* a:*.* b:*.* c:*.* the disk

label for the current drive is added to the archive | because default drive

was used in the �rst �lemask. x1 a text.x a:*.* b:*.* c:*.* causes

recording of disk label for drive a:.

Extraction: Restores disk label (if present) from the archive to the disk,

where �les are extracted. Because only one disk label is allowed in the

archive, no confuson should be possible.

� A option (attributes store/restore)

Not implemented

General note: this option was mainly intended for \special attributes"

such as extended attributes in OS/2. Simple attributes as those found in

DOS are always restored.

Compression: Then the function is to save all attributes (possibly ex-

tended) in the archive.

Extraction: Then the function is to restore the (possibly extended) at-

tributes. Operating system (OS) dependant attributes can only be re-

stored under the same OS. In case of OS con
ict, the attributes are either

not restored | or a suitable (simple) replacement is chosen.

� C option (fetch comment from a �le)

Not implemented

Used with C command only. There are two ways to add comments to an

archive:

{ type it in from the keyboard

{ insert characters from a �le

10

If the comment is to be typed in by keyboard, then option C is not acti-

vated. If comments come from a �le, then the option should be used.

� E option (exclude path from �lenames)

Compression: The function is to exclude paths found during a possible

recursive search for �les. Unless activated, all paths are included in the

archiver by default.

Extraction: The function is to make sure that all �les are extracted into

the same directory - regardless of the paths recorded in the archive.

File refreshing: The function is to avoid refreshing �les with paths in the

archive. Otherwise, all �les are refreshed regardless of path by default.

� F option (force �le movement in/out of archive)

Not implemented

Compression: The function is to delete �les from disk as soon as they have

all been compressed and the entire operation looks successful. This is to

ensure extra safety | so if the operation is prematurely aborted, then it

should not result in lost data.

Extraction: Then the function is to reduce the size of the archive | by

deleting the entries of the extracted �les.

� I option (quiet mode)

Not implemented

This option suppresses all output to the screen. This include the standard

header and pieces of software to shell out and let the archiver process data

| without having the screen messed up with irrelevant symbols.

� K option (overwrite existing archive)

Not implemented

Compression: Then the function is to cause overwriting of a possibly

already existing archive. Otherwise the archive would have been updated

| and new entries added to existing.

� L<number> option (level of compression)

Compression: Then option speci�ed a more detailed level of compression.

This may mean use of more memory | or degraded/faster compression

| all depending on the selected compression method.

.x method 4: then valid levels are 0,1,2,3. Each level determines a di�erent

memory model.

other methods: no e�ect

� M<method> option (method of compression)

Compression: Speci�es the compression method to be used. Method is

speci�ed as a number 0..256. If the number cannot be associated with a

valid compression method, then an error message is displayed.

11

� N option (\NO" assumed at all enquiries)

Extraction: Option N is complementary to option Y. Option N causes all

potential questions to be answered with a \NO". This will avoid any at-

tempts to halt the process and ask the user for advice. It mainly a�ects

possible overwriting of �les, creation of directories etc.

� O option (order �les according to name, size, date, etc.)

Not implemented

There should always be two 'O' characters in the option string on the

command-line. Between the O...O will be sort sub-options | which de-

�nes the sort keys | and their priority. However, if no other options is to

succeed the 'O' option then the last 'O' can be left out.

Supported sort sub-options are:

{ N: name

{ S: size

{ D: date

{ T: time

{ (b: best compression)

So for example, OSNO mean: �rst sort according to size | and if two �les

have same size, then sort according to name.

Compression: If compressing to a new archive, then �les are inserted into

the archive in the order speci�ed by the sorting keys. If updating an

archive, then existing entries will be updated in their current order | but

new entries will be sorted according to the options.

Extraction: Then �les are extracted in the order speci�ed by the options.

Example: Sorting compressed �les according to (1) date (2) size and (3)

name: x1 aodsno test.x *.*

� R option (recursive search through subdirectories)

Compression: Without this option, only the �les in the command-line

speci�ed directories will be processed. Where no directories are explicitly

de�ned, here the current directory is assumed. But activating the option

will result in additional processing of all �les in subsequent subdirecto-

ries. Subdirectories are visited recursively in the order they are found on

the disk. The directory paths recorded in the archive are extended ac-

cording to the subdirectories visited | unless option E is activated. Files

are visited twice: �rst during an initial scan | and later when actually

processing the �le as an archive entry. The initial scan is performed in

order to allow an overall progress-indicator | and allow size-estimation

for solid headers (with several �le entries).

� S option (change archive date/time to newest entry in archive)

Not implemented

Compression: Three practical possibilities seem possible when setting the

date/time mark according to the newest �le:

12

{ selecting the newest date/time among the entries added to an up-

dated archive

{ selecting the newest date/time among the entries already present in

an archive | before starting to update it

{ select the newest date/time among all �les after all updating is done.

But in the current implementation, only the last approach has been im-

plemented.

An easy way to set the date/time tag, when not wishing to add extra

�les is by x1 lis test.x, which causes listing (but not displaying) of the

contents - and setting the date/time tag in the process.

� T option (set �le(s) date/time tag according to current time)

Not implemented

Compression: The option sets date/time tag for �les added to the archive

to the current date/time. The original date/time for the �les are ignored.

Extraction: Brands the extracted �le with the current time | rather than

the time recorded in the archiver.

Note: all �les in one process will receive the same date/time tag. Even

though �les may be processed with a few seconds di�erence, then they

will all receive the time, when the process was started.

� U option (solid compression mode)

Compression: If only one �le is to be compressed, then the option will

have no e�ect. But if more than one �le are compressed | then they are

compressed in \solid mode". This means, that �les are compressed as a

continuous data stream (as if they were concatenated) | which for related

�les should result in increased compression tightness.

For optimal compression, �les should be grouped intelligently, so that most

related �les are placed closest together. However, this is not automaticly

attempted in the current implementation.

� V<size> option (multivolume processing)

Not implemented

Compression: If the size is not speci�ed, then compression will be done to a

(multi-volume) archive limited in upper size by the currently available disk

space. After each volume, a promt will appear (unless option Y activated)

| which in case of a removable disk drive will allow insertion of a new

disk. When allowed, the compression will continue with another archive

part. If size is speci�ed, then compression is done to a (multi-volume)

archive limited in upper size by the speci�ed value. In any case, the

end result should be a sequence of archives with identical names - and

changing extentions \x00", \x01",... where \x00" contains the �rst data

compressed. It is not possible to update a multi-volume archive in multi-

volume mode. But it is possible to update a multi-volume archive with

additional ordinary entries - or update a non-volume archive with multi-

volume entries.

13

Extraction: Here size has no relevance. Extraction should only be at-

tempted on a complete sequence of multi-volume archives. Attempting

to extract an individual multi-volume part is possible - but will only be

successfull for non-continous �le entries, not spanning over more than one

volume. Prompting for each volume part is done unless option Y is acti-

vated.

� W option (overwrite extracted smartly)

Not implemented

Extraction: This option attempts to intelligently resolve situations, where

extracted �les risk overwriting already existing �les. Traditionally the

situations would be resolved by asking the user if overwriting was allowed

| and avoiding extraction if not. But a third possibility is possible by

extracting the �les to slightly changed �lenames. Filename extensions

00X, 01X, . . . (not to be confused with actual .x type archives) are used

for collision-resolved extraction.

� X option (exclude path in �lenames on command-line)

Compression: By default, all paths written on the command-linewill be in-

cluded in pathnames (for �les added to the archive). If a directory is spec-

i�ed with x1 a test.x dir*.* then pathnames dir\file1, dir\file2,

. . . are recorded in the archive. Option X avoids the default recording of

paths on the command-line. x1 ax test.x dir*.* will record previous

�le entries as file1, file2, Please notice, that the option does not

a�ect pathnames recorded during recursive search on a disk (option R).

To eliminate paths in those cases, option E is required.

Extraction: Then the option will have no e�ect | only option E should

be used to exclude full paths from �les to be extracted.

� Y option (\YES" assumed at all enquiries)

Extraction: Option Y is complementary to option N. Option Y causes all

potential questions to be answered with a \YES". This will avoid any

attempts to halt the process and ask the user for advice. It mainly a�ects

possible overwriting of �les, creation of directories etc.

� Z<number> option (exclude �les otherwise archived)

Compression: When the option is not used, all �lemasks on the command-

line speci�e �les to be included in the archive. When the option is used,

but not succeeded by a number (as speci�ed), then that number de-

faults to 1. The number speci�es how many of the last �lemasks on the

command-line speci�eexcluded �les. This convention does not allow mix-

ing of include-masks and exclude-masks. All(!) exclude-masks have to be

speci�ed together | and at the end of the command-line. In the exam-

ple x1 az3 test.x test1.* test2.* *.bak *.swp *.tmp the number

3 follows option Z and tells that the last 3 �lemasks *.bak *.swp *.tmp

mark �les, which should not(!) be added to the archive. The number

counts backward from the end of the command-line and are consequently

not a�ected by the number of include-masks.

14

In case the exclude option number equals or exceeds the total number of

�lemasks on the command-line, then by default the �les *.* are assumed

to be included | and all speci�ed �les excluded.

4 Environment variables

At present, only one environment variable is supported. This is COUNTRY, which

is used for language/character-set selection.

In DOS, the environment variable COUNTRY can be used to specify the

currently active country and character set. Special language-dependant charac-

ters are supported in the upper ASCII character set (o�sets 128 to 255) | and

may change with the con�guration. Depending on character set, the language-

dependant characters may occur at di�erent o�sets in the extended ASCII table

| if available at all. When needing such characters, it becomes important �rst

to identify the character set.

For example, the con�guration for an US keyboard could be:

COUNTRY=001,437

The 001 speci�es US language, while 437 speci�es codepage 437 (US character

set). Consult you DOS manuals for a detailed list of numbers and association.

For x1, 001 should cause messages to be displayed in english. The 437 causes

possible extended characters to be located at o�sets corresponding to codepage

437.

If for some reason the environment variable COUNTRY is preferred not used

| then the other variable LANGUAGE can be used instead. Same syntax is

required.

Notice, that if for some reason, a sentence is not supported in the current

language, then the original english message will be displayed (in lack of a better

choice).

Other environment variables are not supported at this current point.

5 Formats and compression methods (user level)

First an overview of the header formats and methods supported.

x1 archiver as of version 0.94a (\+" indicates support and \{" indicates lack

of support):

5.1 About the ARJ module

An example in compressing to the ARJ header format could be:

x1 a test.arj *.*

This will cause all �les in the current directory to be compressed to the archive

test.arj (by default with method 1). Store �les with: x1 am0 test.arj *.*

Please notice that ARJ multivolumes are not (yet) supported.

15

archiver capable of listing

name | capable of unpacking

| | capable of packing

| | | compressing methods supported

| | | | uncompressing methods supported

| | | | | comments

| | | | | |

arj + + + 0,1 0,1,2,3,4 1,..,4 are basicly identical

zip + + + 0,1,8 0,1,7,8 1:shrink,7:implode,8:de
ate

lzh/lha + + + 0,5 0,1,5 no AMIGA{LHA support (no Amiga!)

zoo + + + 0,2 0,2

ha + + + 0,1,2 0,1,2

tar + { { { {

tgz + + + 8 8 requires gzip'ed TAR headers

rar + { (+) 0 0

arc + { { { {

pak + { { { {

sqz + { (+) 0 0

arx + { (+) 0 0,1 (5) algorithms as LHA1.13

put + + + 0,5 0,5 algorithms as LHA2.x

x + + + 0,1,.. 0,1,..

(+) means that storing only is not much fun... :{)

5.2 About the ZIP module

An example in compressing to the ZIP header format could be:

x1 a test.zip *.*

This will cause all �les to be compressed | by default with the ZIP \de
ate"

method known from ZIP versions 2.x. If backward compatibility is an issue,

then it is also possible to compress with an older method:

x1 am1 test.zip *.*

This applies the method \shrink" from ZIP versions 0.9 and 1.1. This old

method is not intended for any serious use. It dates back to my �rst humble

experiments with the ZIP format in 1991. . . . Testing archive integrity (after

compression) is done with:

x1 t test.x

or

x1 t test.x *.*

5.3 About the LHA module

An example in compressing to the LHA header format could be:

x1 a test.lha *.*

or

16

x1 a test.lzh *.*

The extensions .lha and .lzh are supported on equal terms (both caught if

listing x1 l *). Method 5 is default.

5.4 About the ZOO module

An example in compressing to the ZOO header format could be:

x1 a test.zoo *.*

WARNING: the zoo format speci�es two header types and only one is currently

supported by x1 (the all-dominating type 2). This may cause problems, when

x1 updates old zoo-created archives (header type 1?). Maybe I am too cautious

| cannot tell. . . . E-mail me some examples with old headers!!!

5.5 About the HA module

An example in compressing to the HA header format could be:

x1 a test.ha *.*

This causes all �les in current directory to be archived (by default with method

1..ASC). If requesting tighter compression by a 4th order PPM, then it would

be more appropriate to use (HSC):

x1 am2 test.ha *.*

Letting the computer try both methods and automaticly choose the best is done

with: x1 am# test.ha *.*

5.6 About the TGZ module

An example in compressing to the TAR+GZIP header format could be:

x1 a test.tgz *.*

This causes all �les to be wrapped in TAR headers and consequently compressed

into GZIP format. On platforms supporting longer �lenames, the more appro-

priate �lename extension should be .tar.gz. When listing the contents of such

a �le, total decompression (in memory) is necessary - so a little extra patience

may be required.

x1 l test.x

Currently, it is not possible to extract the contents of a GZIP �le as a single

�le.

17

5.7 About the X module

A thing that not directly relates to any compression method | but di�erentiat-

ess the X header format from most other archives | is the double-crc recording

(ability of fast CRC check). CRC is calculated for both uncompressed and com-

pressed data. When just wanting to check for transmission errors, checking the

latter CRC �eld will be su�cient.

Because the size of the compressed data are usually smaller than the original

size, the work involved with the extra crc-calculation are usually insigni�cant.

It does not slow down any process in a signi�cant way.

Furthermore, notice that .x archives may contain more than one �le with

exactly the same pathname. This cannot be avoided when solid entries are

involved. If the solid entry with the duplicate �lename(s) is deleted | then

other �les are deleted (compressed together) | which will result in lost data.

This problem could be avoided by \pretending" that a duplicate �lename just

ain't there (not showing it, as in UC2 or HPACK). But it seemed reasonable,

that when it is actually there, the user should see it. . . A convention!

Method

number Name Packing example Comments

1 XLZ x1 am1 test.x *.* 64k window LZ77

2 XSC x1 am2 test.x *.* requires DOS mem. (640k)

3 XXSC x1 am3 test.x *.*

4 XXC x1 am4 test.x *.* Variable memory selection possible

5 LZP x1 am5 test.x *.*

best method - x1 am# test.x *.*

NOTE: best method will �rst try method 3, then 1. The method �nally

accepted will be the one o�ering the tightest result.

WARNING: method 4 is currently target for additional work... Expect no

backward/forward compatibility here!!!!

The X module supports solid format. An example while compressing in

solid format could be: x1 aum1 test.x *.* An archive can contain several

independent solid entries | and solid entries can be freely mixed with normal

single-�le entries. Once created, a solid entry cannot be updated.

To verify compressed �le by integrity-checking ability to uncompress:

x1 t test.x *.*

To verify compressed �le by checking for transmission errors:

x1 tf test.x *.*

Yes, this gives the F option (\force" �le in/out) another meaning (\faster" CRC

check), when validating �les. But this does not restrict the use of the option in

the original meaning, because it would make no sense to \force" �les out of an

archive during a test process.

Attempting to \fast"-CRC check other formats, which do not support double

CRC will just result in a normal CRC check.

A brief word on method 4: It works with the \compression level" option l

in the way that:

18

x1 am4l2 test.x *.*

. . . actually means compression on level 2 (<4Mb memory).

Level Memory Comment

0 640kb memory manager may require min. 1Mb

1 3Mb -

2 7Mb -

3 16Mb could not test it - no 16Mb RAM

Be warned, that the method may change again!

6 Temporary �le names

While compressing, the program uses a temporary �le X???????.SWP (where

??..?? are randomly chosen). It contains the new archive being built. If the

entire operation seems successful, the �le is renamed to the requested name.

While decompressing, an extracted archive entry may be requested to over-

write the archive itself. In that case, the original archive is temporarily renamed

to a neutral name (X???????.SWP) | and deleted, once all requested entries

are extracted.

At no point is more than 3 �les opened (when updating an old archive).

Once started, the program will use maximum one temporary �le | and only

one name for it (X???????.SWP).

The extension may appear a bit misguiding. The temporary �le is not a

swap�le. The �le is renamed at the end | contents is not copied elsewhere.

But the �lename extension should give associations to other programs (Borland

compilers..), which may cause less hesitations, when the user considers deleting

a �le.

Because swap �les are not really necessary, no special work directories are

supported. For optimal speed, the compression process should take place on

a virtual (RAM) drive | and the resulting �le(s) subsequently copied to the

desired destination.

7 Exit return codes

19

Internal reference Value Comment

EXIT OK 0 No error

EXIT INT ERR 1 Internal error (?)

EXIT NO MEM 2 Out of memory

EXIT NO DISK 3 Out of disk space

EXIT NO OPEN 4 Cannot open archive �le

EXIT NO TMP 5 Cannot open temporary �le

EXIT NO FOUND 6 Cannot �nd matching archive(s)

EXIT NO PATH 7 Cannot �nd path

EXIT NO BASE 8 Cannot access base directory

EXIT NO MKDIR 9 Cannot create directory

EXIT BREAK 10 User interrupt

EXIT FILE ERR 11 Unknown �le error - cannot read from �le

EXIT BAD HDR 12 Archive directory (partly) corrupted

EXIT BAD EXT 13 Contents of archive does not correspond to extension

EXIT BAD ARC 14 An archive at all?

EXIT LONG NO 15 Unsupported long arg.format - or too many arg.

EXIT LONG PATH 16 Path too long

EXIT NO OVERRIDE 17 Cannot override base path

EXIT NEST 18 Dir's nested too deeply

EXIT SCRIPT ERR 19 Error(s) in script �le

EXIT NOTHING 20 Nothing to do

EXIT UNSP 21 Method not supported in this version..

EXIT COM 22 Unknown command

EXIT OPT 23 Unknown option

EXIT OPT DIR 24 Unknown option

EXIT OPT WR 25 Unknown option

EXIT OPT VIEW 26 Unknown option

EXIT WC FORM 27 Wildcard inappropriate use

EXIT WC NAME 28 Wildcard inappropriate use

EXIT WC COMPL 29 Wildcard inappropriate use

EXIT CHG WRPROT 30 Bad attempt to change (write protected) archive

EXIT CHG DEL 31 Bad attempt to change (deleted) archive

EXIT CHG UNI 32 Bad attempt to change (block compress) archive

EXIT CHG MULTI 33 Bad attempt to change (multivol) archive

EXIT CHG CR 34 Bad attempt to change (encrypted) archive

EXIT CHG UNCR 35 Bad attempt to change (unencrypted) archive

EXIT BAD KEYFILE 36 Bad key�le (cryptation)

EXIT PASS NO 37 no valid (user)ID (cryptation)

EXIT PASS DIFF 38 Password veri�cation failed (cryptation)

EXIT SECURITY 39 General secur/encryp error (cryptation)

EXIT NOCRYPT 40 Cannot handle encryp.archive (cryptation)

20

