
1

Version 1, January 22, 1996

As taken from Netscape Corporation’s World Wide Web Site

 2

Table of Contents
JavaScript Working Document…4

The Mother of all Disclaimers …5
Learning JavaScript…5

JavaScript and Java…5
JavaScript Authoring…6
Using JavaScript in HTML…7

Some Introductory Examples…8
JavaScript Values, Names, and Literals…12

Values…12
Datatype Conversion…12
Variable Names…13
Literals…14

JavaScript Expressions and Operators…16
Expressions…16
Conditional Expressions…16
Assignment Operators (=, +=, -=, *=, /=)…17
Operators…17
Arithmetic Operators…17
Bitwise Operators…19

The JavaScript Object Model…23
Objects and Properties…23
Functions and Methods…24
Creating New Objects…25

Using Built-in Objects and Functions…29
Using the String Object…29
Using the Math Object…29
Using the Date Object…30
Using the eval function …31

Overview of JavaScript Statements…33
Authoring with JavaScript…34

Using JavaScript in HTML …34
Scripting Event Handlers …34
Tips and Techniques …36

Navigator Objects…39
Using Navigator Objects…39
Navigator Object Hierarchy…40
JavaScript and HTML Layout…41
Key Navigator Objects…41

Objects…44
anchor object (client)…44
button object (client)…45
checkbox object (client)…46
Date object (common)…47
document object (client)…49
form object (client)…51
frame object (client)…52
history object (client)…53
link object (client)…54
location object (client)…55
Math object (common)…56
navigator object (client)…58
password object (client)…58
radio object (client)…60
reset object (client)…61
select object (client)…62
string object (common)…64
submit object (client)…65
text object (client)…66
textarea object (client)…67
window object (client)…69

Methods and Functions…71
abs method…71
acos method…72
alert method…72
anchor method…73
asin method…74
atan method…74
back method…75
big method…76
blink method…76
blur method…77
bold method…78
ceil method…79
charAt method…79
clear method…80
clearTimeout method…81
click method…81
close method (document object)…82
close method (window object)…83
confirm method…83
cos method…84
escape function…85
eval function…85
exp method…86
fixed method…86
floor method…87
focus method…88
fontcolor method…89
fontsize method…90
forward method…90
getDate method…91
getDay method…92
getHours method…92
getMinutes method…93
getMonth method…94
getSeconds method…94
getTime method…95
getYear method…96
go method…97
indexOf method…97
italics method…98
lastIndexOf method…99
link method…100
log method…101
max method…102
min method…102
open method (document object)…103
open method (window object)…104
parse method…106
parseFloat function…107
parseInt function…107
pow method…108
prompt method…109
random method…109
round method…110
select method…111
setDate method…111
setHours method…112
setMinutes method…113
setMonth method…113
setSeconds method…114

3

setTime method…114
setTimeout method…115
setYear method…116
sin method…117
small method…118
sqrt method…118
strike method…119
sub method…120
submit method…121
substring method…121
sup method…122
tan method…123
toGMTString method…123
toLocaleString method…124
toLowerCase method…125
toString method…125
toUpperCase method…126
unEscape function…126
UTC method…127
write method…128
writeln method…129

Properties…130
action property…130
alinkColor property…131
anchors property…131
appName property…132
appVersion property…132
appCodeName property…133
checked property…134
cookie property…135
defaultChecked property…136
defaultSelected property…136
defaultStatus property…137
defaultValue property…137
E property…138
elements property…138
fgColor property…139
forms property…140
frames property…141
hash property…141
host property…142
hostname property…142
href property…143
index property…143
lastModified property…144
length property…144
linkColor property…145
links property…146
LN2 property…146
LN10 property…147
location property…147
method property…148
name property…148
options property…149
parent property…150
pathname property…150
PI property…151
port property…151
protocol property…152
referrer property…152
search property…153
selected property…153
selectedIndex property…154
self property…154
SQRT1_2 property…155
SQRT2 property…156

status property…156
target property…157
text property…158
title property…158
top property…158
userAgent property…159
value property…159
vlinkColor property…160
window property…161
Event handlers…163
onBlur event handler…163
onChange event handler…163
onClick event handler…164
onFocus event handler…165
onLoad event handler…165
onMouseOver event handler…166
onSelect event handler…166
onSubmit event handler…166
onUnload event handler…167

Statements…169
break statement…169
comment statement…169
continue statement…170
for statement…170
for...in statement…171
function statement…172
if...else statement…172
return statement…173
var statement…173
while statement…173
with statement…174

Reserved words…175
Color values…176

 4

This document was prepared by Aj Brown of IPST from the original JavaScript Authoring Guide from
Netscape’s World Wide Web site : http://home.netscape.com

You may reach me at any of the following email addresses :

ajbrown@ajbrown.com
ajbrown@ipst.com
ajbrown@shore.net
webmaster@ipst.com
Compuserve : 102636,362
http://www.ipst.com

I encourage any and all comments, suggestions, or code snippets that we could include in this working
document to help fellow developers explore and take advantage of JavaScript.

If you have a code snippet you feel would be of value, please email it to me, and I will include it in the
next version.

I’ll try to keep it updated every two weeks or so.

JavaScript Working Document
Current Version : Version 1, dated January 22, 1996

5

The Mother of all Disclaimers

 JavaScript and its documentation are currently under development. Some of the language is not yet
implemented. That which is implemented is subject to change. Information provided at this time is incom-

plete and should not be considered a language specification. JavaScript is a work in progress whose
potential we'd like to share with you, the beta users, in this developmental form.

Learning JavaScript
JavaScript is a compact, object-based scripting language for developing client and server Internet applica-
tions. Netscape Navigator 2.0 interprets JavaScript statements embedded directly in an HTML page, and
LiveWire enables you to create server-based applications similar to common gateway interface (CGI)
programs.

In a client application for Navigator, JavaScript statements embedded in an HTML page can recognize
and respond to user events such as mouse clicks, form input, and page navigation.

For example, you can write a JavaScript function to verify that users enter valid information into a form
requesting a telephone number or zip code. Without any network transmission, an HTML page with
embedded JavaScript can interpret the entered text and alert the user with a message dialog if the input is
invalid. Or you can use JavaScript to perform an action (such as play an audio file, execute an applet, or
communicate with a plug-in) in response to the user opening or exiting a page.

JavaScript and Java

The JavaScript language resembles Java, but without Java's static typing and strong type checking.
JavaScript supports most of Java's expression syntax and basic control flow constructs. In contrast to
Java's compile-time system of classes built by declarations, JavaScript supports a run-time system based
on a small number of data types representing numeric, Boolean, and string values. JavaScript has a simple
instance-based object model that still provides significant capabilities.

JavaScript also supports functions, again without any special declarative requirements. Functions can be
properties of objects, executing as loosely typed methods.

JavaScript complements Java by exposing useful properties of Java applets to script authors. JavaScript
statements can get and set exposed properties to query the state or alter the performance of an applet or
plug-in.

Java is an extension language designed, in particular, for fast execution and type safety. Type safety is
reflected by being unable to cast a Java int into an object reference or to get at private memory by corrupt-
ing Java bytecodes.

Java programs consist exclusively of classes and their methods. Java's requirements for declaring classes,
writing methods, and ensuring type safety make programming more complex than JavaScript authoring.
Java's inheritance and strong typing also tend to require tightly coupled object hierarchies.

 6

In contrast, JavaScript descends in spirit from a line of smaller, dynamically typed languages like
HyperTalk and dBASE. These scripting languages offer programming tools to a much wider audience
because of their easier syntax, specialized built-in functionality, and minimal requirements for object
creation.

The following table compares and contrasts JavaScript and Java.

JavaScript Java

Interpreted by client - not compiled
Compiled on server before execution on
client.

Object-based. No classes or inheritance; built-
in, extensible objects

Object-orientated. Programs consist of object
classes, with inheritance, etc.

Integrated with / embedded in HTML
Applets distinct from HTML (accessed from
HTML pages)

Do not declare variables' datatypes (loose
typing)

Must delcare variables' datatypes (strong
typing)

Dynamic binding; object references checked
at run-time

Static binding; object references must exist at
compile-time

Secure: cannot write to hard disk Secure: cannot write to hard disk

JavaScript Authoring
A script author is not required to extend, instantiate, or know about classes. Instead, the author acquires
finished components exposing high-level properties such as "visible" and "color", then gets and sets the
properties to cause desired effects.

As an example, suppose you want to design an HTML page that contains some catalog text, a picture of a
shirt available in several colors, a form for ordering the shirt, and a color selector tool that's visually
integrated with the form. You could write a Java applet that draws the whole page, but you'd face compli-
cated source encoding and forgo the simplicity of HTML page authoring.

A better route would use Java's strengths by implementing only the shirt viewer and color picker as
applets, and using HTML for the framework and order form. A script that runs when a color is picked
could set the shirt applet's color property to the picked color. With the availability of general-purpose
components like a color picker or image viewer, a page author would not be required to learn or write
Java. Components used by the script would be reusable by other scripts on pages throughout the catalog.

7

Using JavaScript in HTML

Embedding JavaScript in documents

A script is embedded in HTML within a SCRIPT tag.

<SCRIPT>...</SCRIPT>

 The text of a script is inserted between SCRIPT and its end tag.

Attributes within the SCRIPT tag can be specified as follows:

<SCRIPT LANGUAGE="JavaScript">...</SCRIPT>

 The LANGUAGE attribute is mandatory unless the SRC attribute is present and specifies the scripting
 language.

<SCRIPT SRC="http://myscript.js">...</SCRIPT>

 The SRC attribute is optional and, if given, specifies a URL that loads the text of a script.
 NOTE: Not yet implemented for Beta4 release.

<SCRIPT LANGUAGE="language" SRC=url>...</SCRIPT>

 Both attributes may be present. NOTE: Not yet implemented for Beta4 release.

Usage Notes

• Scripts placed within SCRIPT tags are evaluated after the page loads. Functions are stored, but
not executed. Functions are executed by events in the page.

• SRC URL information is read in and evaluated as script container content. SRC script is evalu-
ated before in-page script.

• The SRC URL should use the .js suffix.
• A named SCRIPT tag may contain a function body that can be called in an onChange or other

event-handler attribute.
• Scripts may be placed inside comment fields to ensure that the script is not displayed when the

page's HTML is viewed with a browser unaware of the SCRIPT tag. The entire script is encased
by HTML comment tags:

<!-- Begin to hide script contents from old browsers.

// End the hiding here. -->

• Like Java, JavaScript is case-sensitive.
• Use single quotes (') to delimit string literals so that scripts can be distinguished from attribute

values enclosed in double quotes. Example:

<INPUT TYPE="button" VALUE="Press Me" onClick="myfunc('astring')">

 8

Some Introductory Examples

Example 1: A Simple Script.

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

document.write("Hello net.")

</SCRIPT>

</HEAD>
<BODY>

That's all, folks.

</BODY>
</HTML>

Example 1 page display.

Hello net. That's all folks.

Example 2, a script with a function and comments.

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- to hide script contents from old browsers

 function square(i) {

 document.write("The call passed ", i ," to the function.","
")

 return i * i

 }

 document.write("The function returned ",square(5),".")

// end hiding contents from old browsers -->

</SCRIPT>
</HEAD>
<BODY>

All done.

</BODY>
</HTML>

9

Example 2 page display.

We passed 5 to the function.
The function returned 25.
All done.

Example 3, a script with a form and an event handler attribute.

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function compute(form) {

 if (confirm("Are you sure?"))

 form.result.value = eval(form.expr.value)

 else

 alert("Please come back again.")

}

</SCRIPT>
</HEAD>
<BODY>
<FORM>

Enter an expression:

<INPUT TYPE="text" NAME="expr" SIZE=15 >

<INPUT TYPE="button" VALUE="Calculate" ONCLICK="compute(this.form)">

Result:

<INPUT TYPE="text" NAME="result" SIZE=15 >

</FORM>
</BODY>
</HTML>

Example 3 page display.

Enter an expression: 9 + 5

Result: 14

 10

Example 4, a script with a form and event handler attribute within a BODY tag.

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function checkNum(str, min, max) {

 if (str == "") {

 alert("Enter a number in the field, please.")

 return false

 }

 for (var i = 0; i < str.length; i++) {

 var ch = str.substring(i, i + 1)

 if (ch < "0" || ch > "9") {

 alert("Try a number, please.")

 return false

 }

 }

 var num = 0 + str

 if (num < min || num > max) {

 alert("Try a number from 1 to 10.")

 return false

 }

 return true

}

function thanks() {

 alert("Thanks for your input.")

}

</SCRIPT>
</HEAD>

<BODY>
<FORM>

11

Please enter a small number:

<INPUT NAME="num"

 ONCHANGE="if (!checkNum(this.value, 1, 10))

 {this.focus();this.select();} else {thanks()}"

 VALUE="0">

</FORM>

<SCRIPT LANGUAGE="JavaScript">

document.write("<PRE>")

document.writeln("Field name: " + document.forms[0].num.name)

document.writeln("Field value: " + document.forms[0].num.value)

document.write("</PRE>")

</SCRIPT>

</BODY>
</HTML>

Example 4 page display.

Please enter a small number: 7
Field name: num
Field value: 7

 12

JavaScript Values, Names, and Literals
• Values
• Variable Names
• Literals

Values

JavaScript recognizes the following types of values:

• numbers, such as 42 or 3.14159
• logical (Boolean) values, either true or false
• strings, such as "Howdy!"
• null, a special keyword denoting a null value

This relatively small set of types of values, or data types, enables you to perform useful functions with
your applications.Notice that there is no explicit distinction between integer and real-valued numbers. Nor
is there an explicit date data type. However, the date object and related built-in functions enable you to
handle dates.

Objects and functions are the other fundamental elements in the language. You can think of objects as
named containers for values, and functions as procedures that your application can perform.

Datatype Conversion

JavaScript is a loosely typed language. That means that you do not have to specify the datatype of a
variable when you declare it, and datatypes are converted automatically as needed during the course of
script execution.

JavaScript will attempt to convert an expression to the datatype of the left-hand operand. Expressions are
always evaluated from left to right, so JavaScript applies this rule at each step in the evaluation of a
complex expression.

For example, suppose you define the following variables

var astring = "7"

var anumber = 42

Then consider the following statements:

x = astring + anumber

y = anumber + astring

13

The first statement will convert anumber to a string value, because the left-hand operand, astring, is a
string. The statement will then concatenate the two strings, so x will have a value of "742".

Conversely, the second statement will convert astring to a numeric value, because the left-hand operand,
anumber, is a number. The statement then adds the two numbers, so y will have a value of 49.

JavaScript cannot convert some strings to numbers. For example, the statements

var anumber = 42

var astring = "Phil"

y = anumber + astring

will generate an error, becuase "Phil" cannot be converted to a number.

The following table summarizes conversion between data types.

NOTE: Much of the functionality specified in this table is not implemented as of Navigator beta4.

D ata type Fun ction O bject N umb er Boo lean Strin g

Fun ction - function error error decompile

O bject

N ull Object

error
funobj OK

-
error
0

true
false

toString
"null"

N umb er (non-zero)

0
Error (N aN)

+ infinity
-infinity

error

Number
null
Number
Number
Number

-

true
false
false
true
true

toString
"0"
"NaN"
"+Infinity"
"-Infinity"

Boo lean: false
true

error Boolean
0
1

-
"false"
"true"

Strin g (non-nu ll)

N ull String

funstr OK
error

String
numstr OK
error

true
false

-

Variable Names

You use variables to hold values in your application. You give these variables names by which you
reference them, and there are certain rules to which the names must conform.

A JavaScript identifier or name must start with a letter or underscore ("_"); subsequent characters can also

Converted to data type :

 14

be digits (0-9). Letters include the characters "A" through "Z" (uppercase) and the characters "a" through
"z" (lowercase). JavaScript is case-sensitive.
Some examples of legal names are:

• Number_hits
• temp99
• _name

Literals

Literals are the way you represent values in JavaScript. These are fixed values that you literally provide in
your application source, and are not variables. Examples of literals include:

• 42
• 3.14159
• "To be or not to be"

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8) format. A decimal
integer literal consists of a sequence of digits (optionally suffixed as described below) without a leading 0
(zero).

An integer can be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an integer
literal means it is in octal; a leading 0x (or 0X) means hexadecimal. Hexadecimal integers can include
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits 0-7.

Floating Point Literals

A floating point literal can have the following parts: a decimal integer, a decimal point ("."), a fraction
(another decimal number), an exponent, and a type suffix. The exponent part is an "e" or "E" followed by
an integer, which can be signed (preceded by a "+" or "-"). A floating point literal must have at least one
digit, plus either a decimal point or "e" (or "E"). Some examples of floating point literals are:

• 3.1415 • -3.1E12
• .1e12 • 2E-12

Boolean Literals

The boolean type has two literal values: true and false.

String Literals

A string literal is zero or more characters enclosed in double (") or single (') quotes. A string must be
delimited by quotes of the same type; that is, either both single quotes or double quotes. The following are
examples of string literals:

15

• "blah" • 'blah'
• "1234" • "one line \n another line"

Special Characters

You can use the following special characters in JavaScript string literals:

• \b indicates a backspace.
• \f indicates a a form feed.
• \n indicates a new line character.
• \r indicates a carriage return.
• \t indicates a tab character.

 16

JavaScript Expressions and Operators
• Expressions
• Operators

• Arithmetic Operators
• Bitwise Operators
• Logical Operators
• Comparison Operators
• String Operators
• Operator Precedence

Expressions

An expression is any valid set of literals, variables, operators, and expressions that evaluates to a single
value. The value may be a number, a string, or a logical value. Conceptually, there are two types of
expressions: those that assign a value to a variable, and those that simply have a value. For example, the
expression

x = 7

is an expression that assigns x the value 7. This expression itself evaluates to 7. Such expressions use
assignment operators. On the other hand, the expression

3 + 4

simply evaluates to 7; it does not perform an assignment. The operators used in such expressions are
referred to simply as operators.

JavaScript has the following kinds of expressions:

• Arithmetic: evaluates to a number, for example
• String: evaluates to a character string, for example "Fred" or "234"
• Logical: evaluates to true or false

The special keyword null denotes a null value. In contrast, variables that have not been assigned a value
are undefined, and cannot be used without a run-time error.

Conditional Expressions

A conditional expression can have one of two values based on a condition. The syntax is

(condition) ? val1 : val2

If condition is true, the expression has the value of val1, Otherwise it has the value of val2. You can use a
conditional expression anywhere you would use a standard expression.

For example,

status = (age >= 18) ? "adult" : "minor"

17

This statement assigns the value "adult" to the variable status if age is eighteen or greater. Otherwise, it
assigns the value "minor" to status.

Assignment Operators (=, +=, -=, *=, /=)

An assignment operator assigns a value to its left operand based on the value of its right operand. The
basic assignment operator is equal (=), which assigns the value of its right operand to its left operand.
That is, x = y assigns the value of y to x.

The other operators are shorthand for standard arithmetic operations as follows:

• x += y means x = x + y
• x -= y means x = x - y
• x *= y means x = x * y
• x /= y means x = x / y
• x %= y means x = x % y

There are additional assignment operators for bitwise operations:

• x <<= y means x = x << y
• x >>= y means x = x >> y
• x >>>= means x = x >>> y
• x &= means x = x & y
• x ^= means x = x ^ y
• x |= means x = x | y

Operators

LiveScript has arithmetic, string, and logical operators. There are both binary and unary operators. A
binary operator requires two operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3 + 4 or x * y

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example x++ or ++x.

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their operands and return a

 18

single numerical value.
Standard Arithmetic Operators

The standard arthmetic operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work in the standard way.

Modulus (%)

The modulus operator is used as follows:
var1 % var2

The modulus operator returns the first operand modulo the second operand, that is, var1 modulo var2, in
the statement above, where var1 and var2 are variables. The modulo function is the remainder of inte-
grally dividing var1 by var2. For
example, 12 % 5 returns 2.

Increment (++)

The increment operator is used as follows:
var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used postfix, with operator after
operand (for example x++), then it returns the value before incrementing. If used prefix with operator
before operand (for example, ++x), then it returns the value after incrementing.

For example, if x is 3, then the statement

y = x++

increments x to 4 and sets y to 3.

If x is 3, then the statement

y = ++x

increments x to 4 and sets y to 4.

Decrement (--)

The decrement operator is used as follows:

var-- or --var

This operator decrements (subtracts one from) its operand and returns a value. If used postfix (for ex-
ample x--) then it returns the value before decrementing. If used prefix (for example, --x), then it returns
the value after decrementing.

For example, if x is 3, then the statement
y = x--

19

decrements x to 2 and sets y to 3.
If x is 3, then the statement

y = --x

decrements x to 2 and sets y to 2.

Unary negation (-)

The unary negation operator must precede its operand. It negates its operand. For example,

x = -x

negates the value of x; that is if x were 3, it would become -3.

Bitwise Operators

Bitwise operators treat their operands as a set of bits (zeros and ones), rather than as decimal, hexadeci-
mal, or octal numbers. For example, the decimal number 9 has a binary representation of 101. Bitwise
operators perform their operations on such binary representations, but they return standard JavaScript
numerical values.

Bitwise Logical Operators

The bitwise operators are:

• Bitwise AND &. Returns a one if both operands are ones.
• Bitwise OR |. Returns a one if either operand is one.
• Bitwise XOR ^. Returns a one if one but not both operands are one.

The bitwise logical operators work conceptually as follows:

• The operands are converted to 32-bit integers, and expressed a series of bits (zeros and ones).
• Each bit in the first operand is paired with the corresponding bit in the second operand: first bit

to first bit, second bit to second bit, and so on.
• The operator is applied to each pair of bits, and the result is constructed bitwise.

Bitwise Shift Operators

The bitwise shift operators are:

• Left Shift (<<)
• Sign-propagating Right Shift (>>)
• Zero-fill Right shift (>>>)

The shift operators take two operands: the first is a quantity to be shifted, and the second specifies the
number of bit positions by which the first operand is to be shifted. The direction of the shift operation is

 20

controlled by the operator used.
Shift operators convert their operands to 32-bit integers, and return a result of the same type as the left
operator.

Left Shift (<<)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the
left are discarded.
Zero bits are shifted in from the right.

Example TBD.

Sign-propagating Right Shift (>>)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the
right are discarded.
Copies of the leftmost bit are shifted in from the left.

Example TBD.

Zero-fill right shift (>>>)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the
right are discarded.
Zero bits are shifted in from the left.

Example TBD.

Logical Operators

Logical operators take logical (Boolean) values as operands. They return a logical value. Logical values
are true and false.

And (&&)

Usage: expr1 && expr2

The logical "and" operator returns true if both logical expressions expr1 and expr2 are true. Otherwise, it
returns false.

Or (||)

Usage: expr1 || expr2

The logical "or" operator returns true if either logical expression expr1 or expr2 is true. If both expr1 and
expr2 are false, then it returns false.

Not (!)

21

Usage: !expr

The logical "not" operator is a unary operator that negates its operand expression expr. That is, if expr is
true, it returns false, and if expr is false, then it returns true.

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible "short circuit" evaluation
using the following rule:

• false && anything is short-circuit evaluated to false.
• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations will always be correct. Note that the anything part of
the above expressions is not evaluated, so any side effects of doing so do not take effect.

Comparison Operators (= =, >, >=, <, <=, !=)

A comparison operator compares its operands and returns a logical value based on whether the compari-
son is true or not. The operands may be numerical or string values. When used on string values, the
comparisons are based on the standard lexicographical ordering.

The operators are:

• Equal (= =): returns true if the operands are equal.
• Not equal (!=): returns true if the operands are not equal.
• Greater than (>): returns true if left operand is greater than right operand. Example: x > y returns

true if x is greater than y.
• Greater than or equal to (>=): returns true if left operand is greater than or equal to right operand.

Example: x >= y returns true if x is greater than or equal to y.
• Less than (<): returns true if left operand is less than right operand. Example: x < y returns true if

x is less than y.
• Less than or equal to (<=): returns true if left operand is less than or equal to right operand.

Example: x <= y returns true if x is less than or equal to y.

String Operators

In addition to the comparison operators, which may be used on string values, the concatenation operator
(+) concatenates two string values together, returning another string that is the union of the two operand
strings. For example,

"my " + "string"

returns the string

"my string"

The shorthand assignment operator += can also be used to concatenate strings. For example, if the vari-
able mystring is a string that has the value "alpha", then the expression

mystring += "bet"

 22

evaluates to "alphabet" and assigns this value to mystring.

Operator Precedence

The precedence of operators determines the order they are applied when evaluating an expression. You
can override operator precedence by using parentheses.

The precedence of operators, from lowest to highest is as follows:

comma ,
assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=
conditional ?:
logical-or ||
logical-and &&
bitwise-or |
bitwise-xor ^
bitwise-and &
equality == !=
relational < <= > >=
shift << >> >>>
addition/subtraction + -
multiply/divide * / %
negation/increment ! ~ - ++ --
call, member () [] .

23

The JavaScript Object Model
JavaScript is based on a simple object-oriented paradigm. An object is a construct with properties that are
JavaScript variables. Properties can be other objects. Functions associated with an object are known as the
object's methods.

In addition to objects that are built into the Navigator client and the LiveWire server, you can define your
own objects.

• Objects and Properties
• Functions and Methods
• Creating New Objects

Objects and Properties

A JavaScript object has properties associated with it. You access the properties of an object with a simple
notation:

objectName.propertyName

You define a property by assigning it a value. For example, suppose there is an object named myCar (we'll
discuss how to create objects later-for now, just assume the object already exists). You can give it proper-
ties named make, model, and year as follows:

myCar.make = "Ford"

myCar.model = "Mustang"

myCar.year = 69;

An array is an ordered set of values associated with a single variable name. Properties and arrays in
JavaScript are intimately related; in fact, they are different interfaces to the same data structure. So, for
example, you could access the properties of the myCar object described above as follows:

myCar["make"] = "Ford"

myCar["model"] = "Mustang"

myCar["year"] = 67;

Equivalently, each of these elements can be accessed by its index, as follows:

myCar[0] = "Ford"

myCar[1] = "Mustang"

myCar[2] = 67;

This type of an array is known as an associative array, because each index element is also associated with a
string value. To illustrate how this works, the following function displays the properties of the object, when
you pass the object and the object's name as arguments to the function:

 24

function show_props(obj, obj_name) {

 var result = ""
 for (var i in obj)

 result += obj_name + "." + i + " = " + obj[i] + "\n"
 return result;
}

So, the function call show_props(myCar, "car") would return the following:

myCar.make = Ford

myCar.model = Mustang

myCar.year = 67

Functions and Methods

Functions are one of the fundamental building blocks in JavaScript. A function is a JavaScript procedure-
a set of statments that performs a specific task--that you can then call anywhere in the current application.
In a Navigator application, you can use any functions defined in the current page. You use the function
statement to define a function. It is generally a good idea to define all your functions in the HEAD of a
page. When a user loads the page, the functions will then be loaded first.

A function definition consists of the function keyword, followed by

• the name of the function
• a list of parameters to the function, enclosed in parentheses, and separated by commas
• the JavaScript statements that define the function, enclosed in curly braces, {...}

For example, here is the definition of a simple function named pretty_print:

function pretty_print(string) {

 document.write("<HR><P>" + string)

}

This function takes a string as its argument, adds some HTML tags to it using the concatenation operator
(+), then displays the result to the current document.

Defining a function does not execute it. You have to call the function for it to do its work. For example,
you could call the pretty_print function as follows:

<SCRIPT>

pretty_print("This is some text to display")

</SCRIPT>

The parameters of a function are not limited to just strings and numbers. You can pass whole objects to a
function, too.

25

Methods

A method is a function associated with an object. You define a method in the same way as you define a
standard function. Then, use the following syntax to associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning to the method, and
function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

Using this for Object References

JavaScript has a special keyword, this, that you can use to refer to the current object. For example, sup-
pose you have a function called validate that validates an object's value property, given the object, and the
high and low values:

function validate(obj, lowval, hival) {

 if ((obj.value < lowval) || (obj.value > hival))

 alert("Invalid Value!")

}

Then, you could call validate in each form element's onChange event handler, using this to pass it the
form element, as in the following example:

<INPUT TYPE = "text" NAME = "age" SIZE = 3 onChange="validate(this, 18, 99)">

In general, in a method this refers to the calling object.

Creating New Objects

Both client and server JavaScript have a number of predefined objects. In addition, you can create your
own objects. Creating your own object requires two steps:

• Define the object type by writing a function.
• Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name, and its properties and
methods. For example, suppose you want to create an object type for cars. You want this type of object to
be called car, and you want it to have properties for make, model, year, and color. To do this, you would
write the following function:

 26

function car(make, model, year) {

 this.make = make;

 this.model = model;

 this.year = year;
}

Notice the use of this to assign values to the object's properties based on the values passed to the function.

Now you can create an object called mycar as follows:

car1 = new car("Eagle", "Talon TSi", 1993);

This statement creates mycar and assigns it the specified values for its properties. Then the value of
car1.make is the string "Eagle", car1.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

car2 = new car("Nissan", "300ZX", 1992)

An object can have a property that is itself another object. For example, suppose I define an object called
person as follows:

function person(name, age, sex) {

 this.name = name;

 this.age = age;

 this.sex = sex;
}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")

ken = new person("Ken Jones", 39, "M")

Then we can rewrite the definition of car to include an owner property that takes a person object, as
follows:

function car(make, model, year, owner) {

 this.make = make;

 this.model = model;

 this.year = year;

 this.owner = owner;

27

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);

car2 = new car("Nissan", "300ZX", 1992, ken)

Then if you want to find out the name of the owner of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object. For example, the statement:

car1.color = "black"

adds a property color to car1, and assigns it a value of "black". However, this does not affect any other
objects. To add the new property to all objects of the same type, you have to add the property to the
definition of the car object type.

Defining Methods

You can define methods for an object type by including a method defnition in the object type definition.
For example, suppose you have a set of image GIF files, and you want to define a method that displays
the information for the cars, along with the corresponding image. You could define a function such as:

function displayCar() {

 var result = "A Beautiful " + this.year

 + " " + this.make + " " + this.model;

 pretty_print(result)
}

where pretty_print is the previously defined function to display a string. Notice the use of this to refer to
the object to which the method belongs.
You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like:

function car(make, model, year, owner) {

 this.make = make;

 this.model = model;

 this.year = year;

 this.owner = owner;

 this.displayCar = displayCar;

 28

}

Then you can call this new method as follows:

car1.displayCar()

car2.displayCar()

This will produce output like this:

A Beautiful 1993 Eagle Talon TSi

A Beautiful 1992 Nissan 300ZX

29

Using Built-in Objects and Functions
The JavaScript Language contains the following built-in objects and functions:

• String object
• Math object
• Date object
• eval function

These objects and their properties and methods are built into the language. You can use these objects in
both client applications with Netscape Navigator and server applications with LiveWire.

Using the String Object

Whenever you assign a string value to a variable or property, you create a string object. String literals are
also string objects. For example, the statement

mystring = "Hello, World!"

creates a string object called mystring. The literal "blah" is also a string object.

The string object has methods that return:

• a variation on the string itself, such as substring and toUpperCase.
• methods that return the string, with HTML formatting, such as bold and link.

For example, given the above object, mystring.toUpperCase() returns "HELLO, WORLD!", and so
does "hello, world!".toUpperCase().

More introductory and overview information TBD.

Using the Math Object

The built-in Math object has properties and methods for mathematical constants and functions. For ex-
ample, the Math object's PI property has the value of pi, which you would use in an application as

Math.PI

Similarly, standard mathematical functions are methods of Math. These include trigonometric, logarith-
mic, exponential, and
other functions. For example, if you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of math take arguments in radians.

It is often convenient to use the with statement when a section of code uses several math constants and
methods, so you don't have to type "Math" repeatedly. For example,

 30

with (Math) {

 a = PI * r*r;

 y = r*sin(theta)

 x = r*cos(theta)

}

Using the Date Object

JavaScript does not have a date data type. However, the date object and its methods enable you to work
with dates and times in your applications. The date object has a large number of methods for setting,
getting, and manipulating dates. It does not have any properties.

JavaScript handles dates very similarly to Java. The two languages have many of the same date methods,
and both languages store dates as the number of milliseconds since January 1, 1970 00:00:00.

NOTE: You cannot currently work with dates prior to 1/1/70.

To create a date object:

varName = new Date(parameters)

where varName is a JavaScript variable name for the date object being created; it can be a new object or a
property of an existing object.

The parameters for the Date constructor can be any of the following:

• Nothing: creates today's date and time. For example, today = new Date()

• A string representing a date in the following form: "Month day, year hours:minutes:seconds".
For example, Xmas95= new Date("December 25, 1995 13:30:00") If you omit hours,
minutes, or seconds, the value will be set to zero.

• A set of integer values for year, month, and day. For example, Xmas95 = new Date(95,11,25)

• A set of values for year, month, day, hour, minute, and seconds For example, Xmas95 = new

Date(95,11,25,9,30,0)

The Date object has a large number of methods for handling dates and times. The methods fall into these
broad categories:

• "set" methods, for setting date and time values in date objects
• "get" methods, for getting date and time values from date objects
• "to" methods, for returning string values from date objects.
• parse and UTC methods, for parsing date strings.

The "get" and "set" methods enable you to get and set seconds, minutes, hours, day of the month, day of
the week, months, and years separately. There is a getDay method that returns the day of the week, but no
corresponding setDay method, because the day of the week is set automatically. These methods use
integers to represent these values as follows:

31

• seconds and minutes: 0 to 59
• hours: 0 to 23
• day: 0 to 6 (day of the week)
• date: 1 to 31 (day of the month)
• months: 0 (January) to 11 (December)
• year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")

Then Xmas95.getMonth() returns 11, and Xmas95.getYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The getTime method returns the
number of milliseconds since the epoch for a date object.

For example, the following code displays the number of shopping days left until Christmas:

today = new Date()

nextXmas = new Date("December 25, 1990")

nextXmas.setYear(today.getYear())

msPerDay = 24 * 60 * 60 * 1000 ; // Number of milliseconds per day

daysLeft = (nextXmas.getTime() - today.getTime()) / msPerDay;

daysLeft = Math.round(daysLeft);

document.write("Number of Shopping Days until Christmas: " + daysLeft);

This example creates a date object named today that contains today's date. It then creates a date object
named nextXmas, and sets the year to the current year. Then, using the number of milliseconds per day, it
computes the number of days between today and nextXmas, using getTime, and rounding to a whole
number of days.

The parse method is useful for assigning values from date strings to existing date objects. For example,
the following code uses parse and setTime to assign a date to the IPOdate object.

IPOdate = new Date()

IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using the eval function

The special built-in function eval takes an expression as its argument, evaluates the expression, and
returns the value.

This function is useful for evaluating a string representing a numerical expression to a number. For ex-
ample, input from a form element is always in a string, but you might want to convert it to a numerical
value.

 32

The following example takes input in a text field, applies the eval function and displays the result in
another text field. If you type a numerical expression in the first field, and click on the button, the expres-
sion will be evaluted. For example, enter "(666 * 777) / 3", and click on the button to see the result.

<SCRIPT>

function compute(obj) {

 obj.result.value = eval(obj.expr.value)

}

</SCRIPT>

<FORM NAME="evalform">

Enter an expression: <INPUT TYPE=text NAME="expr" SIZE=20 >

Result: <INPUT TYPE=text NAME="result" SIZE=20 >

<INPUT TYPE="button" VALUE="Click Me" onClick="compute(this.form)">

</FORM>

33

Overview of JavaScript Statements
JavaScript supports a compact set of statements that nevertheless enables you to incorporate a great deal
of interactivity in web pages.

• Variable Declaration / Assignment
• Function Definition
• Conditionals
• Loops

• for loop
• while loop
• for...in loop
• break and continue statements

• with statement
• Comments

Further overview information TBD. Refer to statements reference for specific information.

 34

Authoring with JavaScript
• Using JavaScript in HTML
• Scripting Event Handlers
• Tips and Techniques

Using JavaScript in HTML

There are two ways to embed JavaScript in an HTML document:

• with the SCRIPT tag. This is the way you define functions and perform statements within a
page.

• as event handlers in HTML tags. Scripting event handlers is discussed in the next section.

SCRIPT is an HTML tag that enables you to include any JavaScript statements in a document. The tag,
<SCRIPT>, and its closing counterpart, </SCRIPT> may enclose any number of JavaScript statements. It
is a good idea to enclose the SCRIPT tag in HTML comments to hide the script from old browsers that do
not recognize JavaScript. That way, your JavaScript code won't appear as a bunch of unformatted gobble-
dygook to users with old browsers.

It is important to understand the difference between defining a function and calling the function. Defining
the function simply names the function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.

Generally, it is good practice to define the functions for a page in the HEAD portion of a document. Since
the HEAD is loaded first, this practice guarantees that the functions will be loaded before the user has a
chance to do anything that might call a function. For example:

<HEAD>
<SCRIPT>
<!--- hide script from old browsers
function bar() {
 document.write("<HR>")
}
function output(head, level, string) {
 document.write("<H" + level + ">" + head + "</H" + level + "><P>" + string)
}
// end hiding from old browsers -->
</SCRIPT>
</HEAD>

This part of a document HEAD defines two simple functions: bar, that displays an HTML horizontal rule,
and output, that displays a string as an HTML paragraph with a heading of the specified level.

Scripting Event Handlers

JavaScript applications in the Navigator are largely event-driven. Events are actions that occur, usually as
a result of something the user does. For example, a button click is an event, as is giving focus to a form
element. There is a specific set of events that Navigator recognizes. You can define Event handlers,
scripts that are automatically executed when an event occurs.

35

Event handlers are embedded in documents as attributes of HTML tags to which you assign JavaScript
code to execute. The general syntax is

<TAG eventHandler="JavaScript Code">

where TAG is some HTML tag and eventHandler is the name of the event handler.

For example, suppose you have created a JavaScript function called compute. You can cause Navigator to
perform this function when the user clicks on a button by assigning the function call to the button's
onClick event handler:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

You can put any JavaScript statements inside the quotes following onClick. These statements get executed
when the user clicks on the button. If you want to include more than one statement, separate statements
with a semicolon (;).

In general, it is a good idea to define functions for your event handlers because:

• it makes your code modular-you can use the same function as an event handler for many differ-
ent items.

• it makes your code easier to read.

Notice in this example the use of this.form to refer to the current form. The keyword this refers to the
current object-in the above example, the button object. The construct this.form then refers to the form
containing the button. In the above example, the onClick event handler is a call to the compute() function,
with this.form, the current form, as the parameter to the function.

Events apply to HTML tags as follows:

• Focus, Blur, Change events: text fields, textareas, and selections
• Click events: buttons, radio buttons, checkboxes, submit buttons, reset buttons, links
• Select events: text fields, textareas
• MouseOver event: links

If an event applies to an HTML tag, then you can define an event handler for it. In general, an event
handler has the name of the event, preceded by "on." For example, the event handler for the Focus event is
onFocus.

Many objects also have methods that emulate events. For example, button has a click method that emu-
lates the button being clicked. Note: The event-emulation methods do not trigger event-handlers. So, for
example, the click method does not trigger an onClick event-handler. However, you can always call an
event-handler directly (for example, you can call onClick explicitly in a script).

 36

Event Occurs when ... Event Handler

blur User removes input focus from form element onBlur

click User clicks on form element or link onClick

change User changes value of text, textarea, or select element onChange

focus User gives form element input focus onFocus

load User loads the page in the Navigator onLoad

mouseover User moves mouse pointer over a link or anchor onMouseOver

select User selects form element's input field onSelect

submit User submits a form onSubmit

unload User exits the page onUnload

Tips and Techniques

This section describes various useful scripting techniques.

Caveats:

JavaScript in Navigator generates its results from the top of the page down. Once something has been
formatted, you can't change it without reloading the page. Currently, you cannot update a particular part of
a page without updating the entire page. However, you can update a "sub-window" in a frame separately.

You cannot currently print output created with JavaScript. For example, if you had the following in a
page:

<P>This is some text.
<SCRIPT>document.write("<P>And some generated text")</SCRIPT>

And you printed it, you would get only "This is some text", even though you would see both lines on-
screen.

Using Quotes

Be sure to alternate double quotes with single quotes. Since event handlers in HTML must be enclosed in
quotes, you must use single quotes to delimit arguments. For example

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
onClick="window.open('stmtsov.html', 'newWin', 'toolbar=no,directories=no')">
</FORM>

Defining Functions

It is always a good idea to define all of your functions in the HEAD of your HTML page. This way, all
functions will be defined before any content is displayed. Otherwise, the user might perform some action
while the page is still loading that triggers an event handler and calls an undefined function, leading to an

37

error.

Creating Functions with Optional Arguments

To process extra arguments beyond the ones declared by the formal parameter names in the function
definition, you refer to a property of the function named "arguments", as if the function were an object:

function foo(x) {
 var argv = foo.arguments;

 print("foo.caller is " + foo.caller);
 print("foo.arguments.length is " + foo.arguments.length);
 print("formal x is " + foo.x);
 for (var i = 0; i < argv.length; i++)
 print("argument " + i + " is " + argv[i]);
}

function bar(x,y,z) {
 foo(x,y,z)
}
foo(1, "two", 3);
bar(1, "two", 3);

As this example shows, there is also a "caller" property. Both of these properties are non-null only within
the function; if evaluated from some other context (top-level or another function), they're null.

The arguments property is like a real JavaScript array: it has a length property that tells how many actual
arguments were passed. Actuals are indexed starting from 0 up to and including (arguments.length-1).

Creating Arrays

An array is an ordered set of values that you reference through an array name and an index. For example,
you could have an array called emp, that contains employees' names indexed by their employee number.
So emp[1] would be employee number one, emp[2] employee number two, and so on.

JavaScript does not have an explicit array data type, but because of the intimate relationship between
arrays and object properties (see JavaScript Object Model), it is easy to create arrays in JavaScript. You
can define an array object type, as follows:

function MakeArray(n) {
 this.length = n;
 for (var i = 1; i <= n; i++) {
 this[i] = 0 }
 return this
 }
}

This defines an array such that the first property, length, (with index of zero), represents the number of
elements in the array. The remaining properties have an integer index of one or greater, and are initialized
to zero.

You can then create an array by a call to new with the array name, specifying the number of elements it
has. For example:

 38

emp = new MakeArray(20);

This creates an array called emp with 20 elements, and initializes the elements to zero.

Populating an Array

You can populate an array by simply assigning values to its elements. For example:

emp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
emp[3] = "August West"

and so on.

You can also create arrays of objects. For example, suppose you define an object type named Employees,
as follows:

function Employee(empno, name, dept) {
 this.empno = empno;
 this.name = name;
 this.dept = dept;
}

Then the following statements define an array of these objects:

emp = new MakeArray(3)
emp[1] = new Employee(1, "Casey Jones", "Engineering")
emp[2] = new Employee(2, "Phil Lesh", "Music")
emp[3] = new Employee(3, "August West", "Admin")

Then you can easily display the objects in this array using the show_props function (defined in the section
on the JavaScript Object Model) as follows:

for (var n =1; n <= 3; n++) {
 document.write(show_props(emp[n], "emp") + "");
}

More information in this section TBD.

39

Navigator Objects
• Using Navigator Objects
• Navigator Object Hierarchy
• JavaScript and HTML Layout
• Key Navigator Objects

Using Navigator Objects

When you load a page in Navigator, it creates a number of objects corresponding to the page, its contents,
and other pertinent information.

Every page always has the following objects:

• window: the top-level object; contains properties that apply to the entire window. There is also a
window object for each "child window" in a frames document.

• location: contains properties on the current URL
• history: contains properties representing URLs the user has previously visited
• document: contains properties for content in the current document, such as title, background

color, and forms

The properties of the document object are largely content-dependent. That is, they are created based on
the content that you put in the document. For example, the document object has a property for each form
and each anchor in the document.

For example, suppose you create a page named simple.html that contains the following HTML:

<TITLE>A Simple Document</TITLE>
<BODY><FORM NAME="myform" ACTION="FormProc()" METHOD="get" >Enter a value: <INPUT
TYPE=text NAME="text1" VALUE="blahblah" SIZE=20 >
Check if you want:
<INPUT TYPE="checkbox" NAME="Check1" CHECKED onClick="update(this.form)"> Option
#1
<P>
<INPUT TYPE="button" NAME="Button1" VALUE="Press Me" onClick="update(this.form)">
</FORM></BODY>

As always, there would be window, location, history, and document objects. These would have properties
such as:

• location.href = "http://www.terrapin.com/samples/vsimple.html"
• document.title = "A Simple Document"
• document.fgColor = #000000
• document.bgColor = #ffffff
• history.length = 7

 40

These are just some example values. In practice, these values would be based on the document's actual
location, its title, foreground and background colors, and so on.
Navigator would also create the following objects based on the contents of the page:

• document.myform
• document.myform.Check1
• document.myform.Button1

These would have properties such as:

• document.myform.action = http://terrapin/mocha/formproc()
• document.myform.method = get
• document.myform.length = 5
• document.myform.Button1.value = Press Me
• document.myform.Button1.name = Button1
• document.myform.text1.value = blahblah
• document.myform.text1.name = text1
• document.myform.Check1.defaultChecked = true
• document.myform.Check1.value = on
• document.myform.Check1.name = Check1

Notice that each of the property references above starts with "document," followed by the name of the
form, "myform," and then the property name (for form properties) or the name of the form element. This
sequence follows the Navigator's object hierarchy, discussed in the next section.

Navigator Object Hierarchy

The objects in Navigator exist in a hierarchy that reflects the hierarchical structure of the HTML page
itself. Although you cannot derive object classes from these objects, as you can in languages such as Java,
it is useful to understand the Navigator's JavaScript object hierarchy. In the strict object-oriented sense,
this type of hierarchy is known as an instance hierarchy, since it concerns specific instances of objects
rather than object classes.

In this hierarchy, an object's "descendants" are properties of the object. For example, a form named
"form1" is an object, but is also a property of document, and is referred to as "document.form1". The
Navigator object hierarchy is illustrated below:

navigator
window
 |
 +--parent, frames, self, top
 |
 +--location
 |
 +--history
 |
 +--document
 |
 +--forms
 | |
 | elements (text fields, textarea, checkbox, password
 | radio, select, button, submit, reset)

41

 +--links
 |
 +--anchors

To refer to specific properties of these objects, you must specify the object name and all its ancestors.
Exception: You are not required to include the window object.

JavaScript and HTML Layout

To use JavaScript properly in the Navigator, it is important to have a basic understanding of how the
Navigator performs layout. Layout refers to transforming the plain text directives of HTML into graphical
display on your computer. Generally speaking, layout happens sequentially in the Navigator. That is, the
Navigator starts from the top of the HTML file and works its way down, figuring out how to display
output to the screen as it goes. So, it starts with the HEAD of an HTML document, then starts at the top of
the BODY and works its way down.

Because of this "top-down" behavior, JavaScript only reflects HTML that it has encountered. For ex-
ample, suppose you define a form with a couple of text input elments:

<FORM NAME="statform">
<input type = "text" name = "username" size = 20>
<input type = "text" name = "userage" size = 3>

Then these form elements are reflected as JavaScript objects document.statform.username and
document.statform.userage, that you can use anywhere after the form is defined. However, you could not
use these objects before the form is defined. So, for example, you could display the value of these objects
in a script after the form definition:

<SCRIPT>
document.write(document.statform.username.value)
document.write(document.statform.userage.value)
</SCRIPT>

However, if you tried to do this before the form definition (i.e. above it in the HTML page), you would
get an error, since the objects don't exist yet in the Navigator.

Likewise, once layout has occurred, setting a property value does not affect its value or its appearance.
For example, suppose you have a document title defined as follows:

<TITLE>My JavaScript Page</TITLE>

This is reflected in JavaScript as the value of document.title. Once the Navigator has displayed this in
layout (in this case, in the title bar of the Navigator window), you cannot change the value in JavaScript.
So, if later in the page, you have the following script:

document.title = "The New Improved JavaScript Page"

it will not change the value of document.title nor affect the appearance of the page, nor will it generate an
error.

Key Navigator Objects

 42

Some of the most useful Navigator objects include document, form, and window.

Using the document Object

One of the most useful Navigator objects is the document object, because its write and writeln methods
can generate HTML. These methods are the way that you display JavaScript expressions to the user. The
only difference between write and writeln is that writeln adds a carriage return at the end of the line.
However, since HTML ignores carriage returns, this will only affect preformatted text, such as that inside
a PRE tag.

The document object also has onLoad and onUnload event-handlers to perform functions when a user first
loads a page and when a user exits a page.

There is only one document object for a page, and it is the ancestor for all the form, link, and anchor
objects in the page.

Using the form Object

Navigator creates a form object for each form in a document. You can name a form with the NAME
attribute, as in this example:

<FORM NAME="myform">
<INPUT TYPE="text" NAME="quantity" onChange="...">
...
</FORM>

There would be a JavaScript object named myform based on this form. The form would have a property
corresponding to the text object, that you would refer to as

document.myform.quantity

You would refer to the value property of this object as

document.myform.quantity.value

The forms in a document are stored in an array called forms. The first (topmost in the page) form is
forms[0], the second forms[1], and so on. So the above references could also be:

document.forms[0].quantity
document.forms[0].quantity.value

Likewise, the elements in a form, such as text fields, radio buttons, and so on, are stored in an elements
array.

Using the window Object

The window object is the "parent" object for all other objects in Navigator. You can always omit the
object name in references to window properties and methods.

Window has several very useful methods that create new windows and pop-up dialog boxes:

43

• open and close: Opens and closes a browser window
• alert: Pops up an alert dialog box
• confirm: Pops up a confirmation dialog box

The window object has properties for all the frames in a frameset. The frames are stored in the frames
array. The frames array contains an entry for each child frame in a window. For example, if a window
contains three child frames, these frames are reflected as window.frames[0], window.frames[1], and
window.frames[2].

The status property enables you to set the message in the status bar at the bottom of the client window.

 44

Objects
The following objects are available in JavaScript:

• anchor • navigator
• button • password
• checkbox • radio
• Date • reset
• document • select
• form • string
• frame • submit
• history • text
• link • textarea
• location • window
• Math

NOTE: Each object topic indicates whether the object is part of the client (in Navigator), server (in
LiveWire), or is common (built-in to JavaScript). Server objects are not included in this version of the
documentation.

anchor object (client)

An anchor is a piece of text identified as the target of a hypertext link.

Syntax

To define an anchor, use standard HTML syntax:

 [HREF=locationOrURL]
 anchorText

NAME specifies a tag that becomes an available hypertext target within the current document.
HREF identifies a destination anchor or URL.
anchorText specifies the text to display at the anchor.

To use an anchor's properties and methods:

xxx to be supplied

Description

You can reference the anchor objects in your code by using the anchors property of the document object.
The anchors property is an array that contains an entry for each anchor in a document.

Properties
xxx to be supplied

45

Methods

 xxx to be supplied

Event handlers

None.

Examples

<H2>Welcome to JavaScript</H2>

See also

• link object
• anchors property

button object (client)

A button object is a pushbutton on an HTML form.

Syntax

To define a button:

<INPUT
 TYPE="button"
 NAME="buttonName"
 VALUE="buttonText"
 [onClick="handlerText"]>

NAME specifies the name of the button object as a property of the enclosing form object and can be
accessed using the name property.
VALUE specifies the label to display on the button face and can be accessed using the value property.

To use a button's properties and methods:

1. buttonName.propertyName
2. buttonName.methodName(parameters)

buttonName is the value of the NAME attribute of a button object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The button object is a custom button that you can use to perform an action you define.

 46

Properties

• name
• value

Methods

• click

Event handlers

• onClick

Examples

A custom button does not necessarily load a new page into the client; it merely executes the script speci-
fied by the onClick event handler. In the following example, myfunction() is a JavaScript function.

 <INPUT TYPE="button" VALUE="Calculate" NAME="calc_button"
 onClick="myfunction(this.form)">

See also

• form, reset, and submit objects

checkbox object (client)

A checkbox object is a checkbox on an HTML form. A checkbox is a toggle switch that lets the user set a
value on or off.

Syntax

To define a checkbox, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 TYPE="checkbox"
 NAME="checkboxName"
 [CHECKED]
 [onClick="handlerText"]>
 textToDisplay

To use a checkbox object's properties and methods:

1. checkboxName.propertyName
2. checkboxName.methodName(parameters)

checkboxName is the value of the NAME attribute of a checkbox object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

47

Description

Use the checked property to specify whether the checkbox is currently checked. Use the defaultChecked
property to specify whether the checkbox is checked when the form is loaded.

Properties

• checked
• defaultChecked
• name
• value

Methods

• click

Event handlers

• onClick

Examples

Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age

See also

• form object

Date object (common)

The Date object lets you work with dates and times.

Syntax

To create a Date object:

1. dateObjectName = new Date()
2. dateObjectName = new Date("month day, year hours:minutes:seconds")
3. dateObjectName = new Date(year, month, day)
4. dateObjectName = new Date(year, month, day, hours, minutes, seconds)

dateObjectName is either the name of a new object or a property of an existing object.
month, day, year, hours, minutes, and seconds are string values for form 2 of the syntax. For forms 3 and
4, they are integer values.

 48

To use Date methods:

dateObjectName.methodName(parameters)

dateObjectName is the value of the NAME attribute of a Date object.

Exceptions: The Date object's parse and UTC methods are static methods that you use as follows:

Date.UTC(parameters)
Date.parse(parameters)

Description

Form 1 of the syntax creates today's date and time. If you omit hours, minutes, or seconds from form 2 or
4 of the syntax, the value will be set to zero.

JavaScript handles dates very similar to the way Java handles dates: both languages have many of the
same date methods, and both store dates internally as the number of milliseconds since January 1, 1970
00:00:00.

JavaScript does not have a date data type, but you can use the Date object and its methods to work with
dates and times in your applications. The Date object has many methods for setting, getting, and manipu-
lating dates.

Properties

None.

Methods

• getDate • setDate • UTC
• getDay • setHours
• getHours • setMinutes
• getMinutes • setMonth
• getMonth • setSeconds
• getSeconds • setTime
• getTime • setYear
• getTimeZoneoffset • toGMTString
• getYear • toLocaleString
• parse • toString

49

Event handlers

None. Built-in objects do not have event handlers.

Examples

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,12,17)
birthday = new Date(95,12,17,3,24,0)

See also

xxx to be supplied

document object (client)

The document object contains information on the current document.

Syntax

To define a document object, use standard HTML syntax with the addition of the onLoad and onUnLoad
event handlers:

<BODY
 BACKGROUND="backgroundImage"
 BGCOLOR="#backgroundColor"
 FGCOLOR="#foregroundColor"
 LINK="#unfollowedLinkColor"
 ALINK="#activatedLinkColor"
 VLINK="#followedLinkColor"
 [onLoad="handlerText"]
 [onUnLoad="handlerText"]>
</BODY>

BGCOLOR, FGCOLOR, LINK, ALINK, and VLINK are color specifications expressed as a hexadecimal
RGB triplet (in
the format "#rrggbb") or as one of the string literals listed in the Color Appendix.

To use the current document's properties and methods:

1. document. propertyName
2. document. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

 50

Description

The <BODY>...</BODY> tag encloses an entire document, which is defined by the current URL. The
entire body of the document (all other HTML elements for the document) goes within the <BODY>...</
BODY> tag.

You can reference the anchors, forms, and links of a document by using the anchors, forms, and links
properties. These properties are arrays that contain an entry for each anchor, form, or link in a document.

The document object's title property reflects the contents of <TITLE>...</TITLE>. Other properties reflect
the contents of the document; for example, bgColor reflects the background color, and lastModified
reflects the time last modified. Some of the properties are reflections from HTML attributes; for example,
the links property is a reflection of all the links in the document, and the forms property is a reflection of
all the forms in the document.

Properties

• alinkColor
• anchors
• bgColor
• cookie
• fgColor
• forms
• lastModified
• linkColor
• links
• location
• referrer
• title
• vlinkColor

Methods

• clear
• close
• open
• write
• writeln

Event handlers

None.

Examples

xxx to be supplied

See also

• frame and window objects

51

form object (client)

A form lets users input text and make choices from form objects such as checkboxes, radio buttons, and
selection lists. You can also use a form to post data to or retrieve data from a server.

Syntax

To define a form, use standard HTML syntax with the addition of the onSubmit event handler:

<FORM
 NAME="formName
 TARGET="windowName"
 ACTION="serverURL"
 METHOD=GET | POST
 [onSubmit="handlerText"]>
</FORM>

TARGET specifies the window that form responses go to. When you submit a form with a TARGET
attribute, instead of seeing the server's responses in the same window that contains the form, you see them
in a (possibly) new window. The windowName may be an existing window created by previous targetted
form submits or link clicks; it may also refer to named frames in a <FRAMESET> tag; it may also be
_top, _parent, _self, or _blank.

ACTION secifies the URL of the server to which form field input information is sent.

METHOD specifies how information is sent to the server specified by ACTION. GET (the default) ap-
pends the input information to the URL which on most receiving systems becomes the value of the envi-
ronment variable QUERY_STRING. POST sends the input information in a data body which is available
on stdin with the data length set in the environment variable CONTENT_LENGTH.

To use a form's properties and methods:

1. formName.propertyName
2. formName.methodName (parameters)
3. forms[index]. propertyName
4. forms[index]. methodName(parameters)

formName is the value of the NAME attribute of a form object.
index is an integer representing a form object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

Each form in a document corresponds to a distinct object.

You can reference the form objects in your code by using the forms property of the document object. The
forms property is an array that contains an entry for each form in a document.

You can reference a form's elements in your code by using the elements property. The elements property
is an array that contains an entry for each element (such as a checkbox, radio, or text object) in a form.

 52

Properties

• action
• elements
• method
• name
• target

Methods

• submit

Event handlers

• onSubmit

Examples

xxx to be supplied

See also

• elements and forms properties

frame object (client)

A frame is a sub-HTML document; a series of frames makes up the page.

Syntax

<FRAMESET
 ROWS="number"
 COLS="number">
 textToDisplay
 [<FRAME SRC="locationOrURL" NAME="frameName">]
</FRAMESET>

ROWS is an integer specifying the row-height of the frame. An optional suffix defines the units. Default
units are pixels.
COLS is an integer specifying the column-width of the frame. An optional suffix defines the units. Default
units are pixels.
textToDisplay specifies the text to display in the frame.
FRAME defines a frame.
SRC specifies the URL of the document to be displayed in the frame.
NAME specifies a name to be used as a target of hyperlinks.

To use a frame's properties and methods:

xxx to be supplied

53

Description

The <FRAMESET> tag is used in an HTML document whose sole purpose is to define the layout of the
sub-HTML documents, or frames, that make up the page.

xxx to be supplied

Properties

xxx to be supplied

Methods

xxx to be supplied

Event handlers

None.

Examples

xxx to be supplied

See also

• document and window objects
• frames property

history object (client)

The history object contains information on the URLs that the client has visited. This information is stored
in a history list, and is accessible through the Navigator's Go menu.

Syntax

To use a history object:

1. history. propertyName
2. history. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The history object is a linked list of URLs the user has visited, as shown in the Navigator's Go menu.

 54

Properties

• length

Methods

• back
• forward
• go

Event handlers

None.

Examples

The following example goes to the URL the user visited three clicks ago.

history.go(-3)

See also

• location object

link object (client)

A link is a piece of text identified as a hypertext link. When the user clicks the link text, the link hypertext
reference is loaded into its target window.

Syntax

To define a link, use standard HTML syntax with the addition of the onClick and onMouseOver event
handlers:

<A [NAME="anchorName"]
 HREF=locationOrURL
 TARGET="windowName"
 [onClick="handlerText"]
 [onMouseOver="handlerText"]>
 linkText

NAME specifies a tag that becomes an available hypertext target within the current document.
HREF identifies a destination anchor or URL.
TARGET specifies the window that the link is loaded into.
linkText is rendered as a hypertext link to the URL.

55

To use a link's properties and methods:

xxx to be supplied

Description

Each link object is a location object.

You can reference the link objects in your code by using the links property of the document object. The
links property is an array that contains an entry for each link in a document.

Properties

• target

Methods

 xxx to be supplied

Event handlers

• onClick
• onMouseOver

Examples

The following example creates a hypertext link to an anchor named javascript_intro.

Introduction to JavaScript

The following example creates a hypertext link to a URL.

Netscape Home Page

See also

• anchor object
• links property

location object (client)

The location object contains information on the current URL.

Syntax

To use a location object:

 56

1. location. propertyName
2. location. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

xxx to be supplied

Properties

• hash
• host
• hostname
• href
• pathname
• port
• protocol
• search

Methods

• assign
• toString

Event handlers

None.

Examples

xxx to be supplied

See also

• history object

Math object (common)

The built-in Math object has properties and methods for mathematical constants and functions. For ex-
ample, the Math object's PI property has the value of pi.

Syntax

To use a Math object:

57

1. Math. propertyName
2. Math. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

You reference the constant PI as Math.PI . Constants are defined with the full precision of real numbers in
JavaScript.

Similarly, you reference Math functions as methods. For example, the sine function is
Math.sin(argument)

, where argument is the argument.

It is often convenient to use the with statement when a section of code uses several Math constants and
methods, so you don't have to type "Math" repeatedly. For example,

with (Math) {
 a = PI * r*r;
 y = r*sin(theta)
 x = r*cos(theta)
}

Properties

• E
• LN10
• LN2
• PI
• SQRT1_2
• SQRT2

Methods

• abs • max
• acos • min
• asin • pow
• atan • random
• ceil • round
• cos • sin
• exp • sqrt
• floor • tan

Event handlers

None. Built-in objects do not have event handlers.

Examples

xxx to be supplied

 58

See also

 xxx to be supplied

navigator object (client)

xxx description to be supplied

Syntax

xxx to be supplied

Description

xxx to be supplied

Properties

• appName
• appVersion
• appCodeName
• userAgent

Methods

 xxx to be supplied

Event handlers

None.

Examples

<H2>Welcome to JavaScript</H2>

See also

• link object
• anchors property

password object (client)

A password object is a text field on an HTML form. When the user enters text into the field, asterisks (*)
hide anything entered from view.

59

Syntax

To define a password object, use standard HTML syntax:

 <INPUT
 TYPE="password"
 NAME="passwordName"
 [VALUE="textValue"]
 SIZE=integer>

To use a password object's properties and methods:

1. passwordName.propertyName
2. passwordName.methodName (parameters)

passwordName is the value of the NAME attribute of a password object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

xxx to be supplied

Properties

• defaultValue
• name
• value

Methods

• focus
• blur
• select

Event handlers

None.

Examples

Password: <INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>

See also

• form and text objects

 60

radio object (client)

A radio object is a set of radio buttons on an HTML form. A set of radio buttons lets the user choose one
item from a list.

Syntax

To define a set of radio buttons, use standard HTML syntax with the addition of the onClick event han-
dler:

<INPUT
 TYPE="radio"
 NAME="radioName"
 VALUE="buttonValue"
 [CHECKED]
 [onClick="handlerText"]>
 textToDisplay

NAME should contain the same value for all radio buttons in a group.

To use a radio button's properties and methods:

1. radioName [index]. propertyName
2. radioName [index]. methodName(parameters)

radioName is the value of the NAME attribute of a radio object.
index is an integer representing a radio button in a radio object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

All radio buttons in a radio button group use the same name property. To access the individual radio
buttons in your code, follow the object name with an index starting from zero, one for each button the
same way you would for an array such as forms: document.forms[0].radioName[0] is the first,
document.forms[0].radioName[1] is the second, etc.

Properties

• checked
• defaultChecked
• index
• length
• name
• value

Methods

• click

Event handlers

61

• onClick
Examples

The following example defines a radio button group to choose among three music catalogs. Each radio
button is given the same name, NAME="musicChoice", forming a group of buttons for which only one
choice can be selected. The example also defines a text field that defaults to what was chosen via the radio
buttons but that allows the user to type a nonstandard catalog name as well. JavaScript automatically sets
the catalog name input field based on the radio buttons.

<INPUT TYPE="text" NAME="catalog" SIZE="20">
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
 onClick="musicForm.catalog.value = 'soul-and-r&b'"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
 onClick="musicForm.catalog.value = 'jazz'"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
 onClick="musicForm.catalog.value = 'classical'"> Classical

See also

• form and select objects

reset object (client)

A reset object is a reset button on an HTML form.

Syntax

To define a reset button, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 [NAME="resetName"]
 TYPE="reset"
 VALUE="buttonText"
 [onClick="handlerText"]>

VALUE specifies the text to display on the button face and can be accessed using the value property.

To use a reset button's properties and methods:

1. resetName . propertyName
2. resetName . methodName(parameters)

resetName is the value of the NAME attribute of a reset object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A reset button resets all elements in a form to their defaults.

 62

Properties

• name
• value

Methods

• click

Event handlers

• onClick

Examples

The following example displays a text object containing "CA". If the user types a different state abbrevia-
tion in the text object and then clicks the Clear Form button, the original value of "CA" is restored.

State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">

See also

• button, form, and submit objects

select object (client)

A select object is a selection list or scrolling list on an HTML form. A selection list lets the user choose
one item from a list. A scrolling list lets the user choose one or more items from a list.

Syntax

To define a select object, use standard HTML syntax with the addition of the onBlur, onChange, and
onFocus event handlers:

<SELECT
 NAME="selectName"
 [SIZE="value"]
 [MULTIPLE]
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]>
 <OPTION [SELECTED]> textToDisplay [... <OPTION> textToDisplay]
</SELECT>

SIZE specifies the number of options visible when the form is displayed.

63

To use a select object's properties and methods:

1. selectName.propertyName
2. selectName.methodName (parameters)

selectName is the value of the NAME attribute of a select object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

To use a select object's option's properties:

selectName.options[index].propertyName

selectName is the value of the NAME attribute of a select object.
index is an integer representing an option in a select object.
propertyName is one of the properties listed below.

Description

You can reference the options of a select object in your code by using the options property. The options
property is an array that contains an entry for each option in a select object: selectName.options[0] is the
first, selectName.options[1] is the second, etc. Each option has the properties listed below.

The options on select objects can be updated dynamically. xxx NYI.

Properties

The select object has the following properties:
• options
• selectedIndex

The options property has the following properties:
• defaultSelected
• index
• selected
• text
• value

Methods

None.

Event handlers

• onBlur
• onChange
• onFocus

 64

Examples

The following example displays a selection list.

Choose the music type for your free CD:
<SELECT NAME="music_type_single">
 <OPTION SELECTED> R&B <OPTION> Jazz <OPTION> Blues <OPTION> New Age</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi" MULTIPLE>
 <OPTION SELECTED> R&B <OPTION> Jazz <OPTION> Blues <OPTION> New Age</SELECT>

See also

• form and radio objects
• options property

string object (common)

A string object consists of a series of characters.

Syntax

To use a string object:

1. stringName . propertyName
2. stringName.methodName (parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A string can be represented as a literal enclosed by single or double quotes; for example, "Netscape" or
'Netscape'.

Properties

• length

Methods

• anchor • fontsize • sub
• big • indexOf • substring
• blink • italics • sup
• bold • lastIndexOf • toLowerCase
• charAt • link • toUpperCase

65

• fixed • small
• fontcolor • strike

Event handlers

None. Built-in objects do not have event handlers.

Examples

The following statement creates a string variable.

var last_name = "Schaefer"

last_name.length is 8.
last_name.toUpperCase() is "SCHAEFER".
last_name.toLowerCase() is "schaefer".

See also

• text and textarea objects

submit object (client)

A submit object is a submit button on an HTML form.

Syntax

To define a submit button, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 TYPE="submit"
 NAME="submitName"
 VALUE="buttonText"
 [onClick="handlerText"]>

VALUE specifies the text to display on the button face and can be accessed using the value property.

To use a submit button's properties and methods:

1. submitName.propertyName
2. submitName.methodName (parameters)

submitName is the value of the NAME attribute of a submit object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A submit button causes a form to be submitted.

Clicking a submit button submits a form to the program specified by the form's action property. This

 66

action always loads a new page into the client; it may be the same as the current page, if the action so
specifies or is not specified.
Properties

• name
• value

Methods

• click

Event handlers

• onClick

Examples

<INPUT TYPE="submit" NAME="submit_button" VALUE="Done">

See also

• button, form, and reset objects
• submit method

text object (client)

A text object is a text input field on an HTML form. A text field lets the user enter a word, phrase, or
series of numbers.

Syntax

To define a text object, use standard HTML syntax with the addition of the onBlur, on Change, onFocus,
and onSelect event handlers:

<INPUT
 TYPE="text"
 NAME="textName"
 VALUE="textValue"
 SIZE=integer
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]
 [onSelect="handlerText"]>

To use a text object's properties and methods:

1. textName.propertyName
2. textName.methodName (parameters)

textName is the value of the NAME attribute of a text object.

67

propertyName is one of the properties listed below.
methodName is one of the methods listed below.
Description

text objects can be updated (redrawn) dynamically by setting the value property (this.value).

xxx to be supplied

Properties

• defaultValue
• name
• value

Methods

• focus
• blur
• select

Event handlers

• onBlur
• onChange
• onFocus
• onSelect

Examples

Last name: <INPUT TYPE="text" NAME="last_name" VALUE="" SIZE=25>

See also

• form, password, string, and textarea objects

textarea object (client)

A textarea object is a multiline input field on an HTML form. A textarea field lets the user enter words,
phrases, or numbers.

Syntax

To define a text area, use standard HTML syntax with the addition of the onBlur, onChange, onFocus, and
onSelect event handlers:

<TEXTAREA
 NAME="textareaName"
 ROWS="integer"

 68

 COLS="integer"
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]
 [onSelect="handlerText"]>
 textToDisplay
</TEXTAREA>

textToDisplay allows only ASCII text, and new lines are respected.
ROWS and COLS define the physical size of the displayed input field in numbers of characters.

To use a textarea object's properties and methods:

1. textareaName.propertyName
2. textareaName.methodName (parameters)

textareaName is the value of the NAME attribute of a textarea object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

textarea objects can be updated (redrawn) dynamically by setting the value property (this.value).

Properties

• defaultValue
• name
• value

Methods

• focus
• blur
• select

Event handlers

• onBlur
• onChange
• onFocus
• onSelect

Examples

Description:

<TEXTAREA NAME="item_description" ROWS=6 COLS=55>
Our storage ottoman provides an attractive way to
store lots of CDs and videos--and it's versatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 videos

69

in the drawer below.
</TEXTAREA>

See also

• form, password, string, and text objects

window object (client)

A window object is the top-level object for each document, location, and history object group.

Syntax

To define a window:

windowName = window.open()

windowName is the name of a new window.

To use a window's properties and methods:

1. window. propertyName
2. window. methodName
3. self. propertyName
4. self. methodName
5. windowName.propertyName
6. windowName.methodName

windowName is the value of the NAME attribute of a window object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The window object is the top-level object in the JavaScript client hierarchy. Because the existence of the
current window is assumed, you don't have to reference the name of the window when you call its meth-
ods and assign its properties. For example, status="Jump to a new location" is a valid property
assignment, and close() is a valid method call.

The self and window properties are synonyms for the current window, and you can optionally use them to
refer to the current window. For example, you can close the current window by calling either
window.close() or self.close() . You can use these properties to make your code more readable, or to
disambiguate the property reference self.status from a form called status .

See the properties and methods listed below for more examples.

You can reference a window's frame objects in your code by using the frames property. The frames
property is an array that contains an entry for each frame in a window.

 70

Properties

• frames
• parent
• self
• top
• status
• defaultStatus
• window

Methods

• alert
• close
• confirm
• open
• prompt
• setTimeout
• clearTimeout

Event handlers

• onLoad
• onUnload

Examples

xxx to be supplied

See also

• document and frame objects
• frames property

71

Methods and Functions
The following methods and functions are available in JavaScript:

• abs • close • getSeconds • parseInt • sqrt
• acos • confirm • getTime • pow • strike
• alert • cos • getTimeZoneoffset • prompt • sub
• anchor • escape • getYear • random • submit
• asin • eval • go • round • substring
• atan • exp • indexOf • select • sup
• back • fixed • italics • setDate • tan
• big • floor • lastIndexOf • setHours • toGMTString
• blink • focus • link • setMinutes • toLocaleString
• blur • fontcolor • log • setMonth • toLowerCase
• bold • fontsize • max • setSeconds • toString
• ceil • forward • min • setTimeout • toUpperCase
• charAt • getDate • open (document) • setTime • unEscape
• clear • getDay • open (window) • setYear • UTC
• clearTimeout • getHours • parse • sin • write
• click • getMinutes • parseFloat • small • writeln
• close (document) • getMonth

abs method

Returns the absolute value of its argument.

Syntax

Math.abs(number)

number is any numeric expression.

Applies to

Math

Examples

In the following example, the user enters a number in the first text box and presses the Calculate button to
display the absolute value of the number.

<FORM>
<P>Enter a number:
<INPUT TYPE="text" NAME="absEntry">
<P>The absolute value is:
<INPUT TYPE="text" NAME="result">
<P>
<INPUT TYPE="button" VALUE="Calculate" onClick="form.result.value =
Math.abs(form.absEntry.value)">
</FORM>

 72

acos method

Returns the arc cosine (in radians) of its argument.

Syntax

Math.acos(number)

number should be a numeric expression between -1 and 1. The acos method returns a numeric value
between 0 and pi radians. If the value of number is outside the suggested range, the return value is always
0.

Applies to

Math

Examples

// Displays the value 0
document.write("The arc cosine of 1 is " + Math.acos(1))

// Displays the value 3.141592653589793
document.write("<P>The arc cosine of -1 is " + Math.acos(-1))

// Displays the value 0
document.write("<P>The arc cosine of 2 is " + Math.acos(2))

See also

• asin, atan, cos, sin, tan methods

alert method

Displays an Alert dialog box with a message and an OK button.

Syntax

alert("message")

message is any string.

Description

Use the alert method to display a message that does not require a user decision. The message argument
specifies a message that the dialog box contains.

Applies to
• window

73

Examples

In the following example, the testValue function checks the name entered by a user in the text element of
a form to make sure that it is no more than eight characters in length. This example uses the alert method
to prompt the user of an application to enter a valid value.

function testValue(textElement) {
 if (textElement.length > 8) {
 alert("Please enter a name that is 8 characters or less")
 }
}

You can call the testValue function in the onBlur event handler of a form's text element, as shown in the
following example:

Name: <INPUT TYPE="text" NAME="userName" onBlur="testValue(userName.value)">

See also

• confirm, prompt methods

anchor method

Creates an HTML anchor that is used as a hypertext target.

Syntax

text.anchor(nameAttribute)

text is any string.
nameAttribute is any string.

Description

Use the anchor method with the write or writeln methods to programatically create and display an anchor
in a document. Create the anchor with the anchor method, then call write or writeln to display the anchor
in a document.

In the syntax, the text string represents the literal text that you want the user to see. The nameAttribute
string represents the NAME attribute of the HTML A tag.

Applies to

string

Examples

The following example opens the msgWindow window and creates an anchor for the Table of Contents:

 74

 var myString="Table of Contents"

 msgWindow=window.open("","displayWindow");
 msgWindow.document.writeln(myString.anchor("contents_anchor"));
 msgWindow.document.close();

The previous example produces the same output as the following HTML:

Table of Contents

See also

• link method

asin method

Returns the arc sine (in radians) of its argument.

Syntax

Math.asin(number)

number should be a numeric expression between -1 and 1. The asin method returns a numeric value
between -pi/2 and pi/2 radians. If the value of number is outside the suggested range, the return value is
always 0.

Applies to

Math

Examples

// Displays the value 1.570796326794897 (pi/2)
document.write("The arc sine of 1 is " + Math.asin(1))

// Displays the value -1.570796326794897 (-pi/2)
document.write("<P>The arc sine of -1 is " + Math.asin(-1))

// Displays the value 0 because the argument is out of range
document.write("<P>The arc sine of 2 is " + Math.asin(2))

See also

• acos, atan, cos, sin, tan methods

atan method

Returns the arc tangent (in radians) of its argument.

75

Syntax

Math.atan(number)

number is a numeric expression representing the tangent of an angle. The atan method returns a numeric
value between -pi/2 and pi/2 radians.

Applies to

Math

Examples

// Displays the value 0.7853981633974483
document.write("The arc tangent of 1 is " + Math.atan(1))

// Displays the value -0.7853981633974483
document.write("<P>The arc tangent of -1 is " + Math.atan(-1))

// Displays the value 0.4636476090008061
document.write("<P>The arc tangent of .5 is " + Math.atan(.5))

See also

• acos, asin, cos, sin, tan methods

back method

Loads the previous URL in the history list.

Syntax

history.back()

Description

This method performs the same action as a user choosing the Back button in the Navigator. The back
method is the same as history.go(-1).

Applies to

history

Examples

The following custom buttons perform the same operations as the Navigator Back and Forward buttons:

<P><INPUT TYPE="button" VALUE="< Back" onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Forward" onClick="history.forward()">

 76

See also

• forward, go methods

big method

Causes the calling string object to be displayed in a big font by surrounding it with the HTML font tags
<BIG> and </BIG> .

Syntax

stringName.big()

stringName is the name of any string variable.

Description

Use the big method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• fontsize, small methods

blink method

Causes the calling string object to blink by surrounding it with the HTML tags <BLINK> and </BLINK> .

77

Syntax

stringName.blink()

stringName is the name of any string variable.

Description

Use the blink method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• bold, italics, strike methods

blur method

Removes focus from the specified object.

Syntax

1. passwordName.blur()
2. textName.blur()
3. textareaName.blur()

passwordName is the value of the NAME attribute of a password object.
textName is the value of the NAME attribute of a text object.
textareaName is the value of the NAME attribute of a textarea object.

 78

Description

Use the blur method to remove focus from a specific form element.

Applies to

password, text, textarea

Examples

The following example removes focus from the password element userPass:

userPass.blur()

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• focus, select methods

bold method

Causes the calling string object to be displayed as bold by surrounding it with the HTML tags and
 .

Syntax

stringName.bold()

stringName is the name of any string variable.

Description

Use the bold method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())

79

document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, italics, strike methods

ceil method

Returns the least integer greater than or equal to its argument.

Syntax

Math.ceil(number)

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 46
document.write("The ceil of 45.95 is " + Math.ceil(45.95))

//Displays the value -45
document.write("<P>The ceil of -45.95 is " + Math.ceil(-45.95))

See also

• floor method

charAt method

Returns the character at the specified index.

Syntax

stringName.charAt(index)

 80

stringName is the name of any string variable or string object.
index is any integer from 0 to stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of
the last character is stringName.length - 1.

Applies to

string

Examples

The following example displays characters at different locations in the string "Brave new world".

var anyString="Brave new world"

document.write("The character at index 0 is " + anyString.charAt(0))
document.write("The character at index 1 is " + anyString.charAt(1))
document.write("The character at index 2 is " + anyString.charAt(2))
document.write("The character at index 3 is " + anyString.charAt(3))
document.write("The character at index 4 is " + anyString.charAt(4))

See also

• indexOf, lastIndexOf methods

clear method

Clears the window.

Syntax

document.clear()

Description

The clear method empties the content of a window, regardless of how the content of the window has been
painted.

Applies to

document

Examples

When the following function is called, the clear method empties the contents of the msgWindow window:

81

function windowCleaner() {
 msgWindow.document.clear();
 msgWindow.document.close();
}

See also

• close, open, write, writeln methods

clearTimeout method

Cancels a timeout that was set with the setTimeout method.

Syntax

clearTimeout(timeoutID)

timeoutID is a timeout setting that was returned by a previous call to the setTimeout method.

Description

See the description for the setTimeout method.

Applies to

window

Examples

See the examples for the setTimeout method.

See also

• setTimeout method

click method
Simulates a mouse click on the calling form element.

Syntax

1. buttonName.click()
2. radioName.click()
3. checkboxName.click()

buttonName is the value of the NAME attribute of a button, reset, or submit object.
radioName is the name of an element in a radio array.
checkboxName is the value of the NAME attribute of a checkbox object.

 82

Description

The effect of the click method varies according to the calling element:
• For button, reset, and submit, performs the same action as clicking the button.
• For a radio, selects a radio button.
• For a checkbox, checks the check box and sets its value to on.

Applies to

button, checkbox, radio, reset, submit

Examples

The following example toggles the selection status of the first element in the musicType radio group on
the musicForm form:

document.musicForm.musicType[0].click()

The following example toggles the selection status of the newAge checkbox on the musicForm form:

document.musicForm.newAge.click()

close method (document object)

Closes an output stream and forces data sent to layout to display.

Syntax

document.close()

Description

The close method closes a stream opened with the document.open() method. If the stream was opened to
layout, the close method forces the content of the stream to display. Font style tags, such as <BIG> and
<CENTER>, automatically close a layout stream without calling the close method.

The close method also stops the "meteor shower" in the Netscape icon and displays "Document: Done" in
the status bar.

Applies to

document

Examples

The following function calls document.close() to close a stream that was opened with document.open().
The document.close() method forces the content of the stream to display in the window.

83

function windowWriter1() {
 var myString = "Hello, world!";
 msgWindow.document.open();
 msgWindow.document.write("<P>" + myString);
 msgWindow.document.close();
}

See also

• clear, open, write, writeln methods

close method (window object)

Closes the window.

Syntax

window.close()

Description

The close method closes the current window.

Applies to

window

Examples

Any of the following examples close the current window:

window.close()
self.close()
close()

See also

• open method

confirm method

Displays a Confirm dialog box with the specified message and OK and Cancel buttons.

Syntax

confirm("message")

message is any string.

 84

Description

Use the confirm method to ask the user to make a decision that requires either an OK or a Cancel. The
message argument specifies a message that prompts the user for the decison. The confirm method returns
true if the user chooses OK and false if the user chooses Cancel.

Applies to

window

Examples

This example uses the confirm method in the confirmCleanUp function to confirm that the user of an
application really wants to quit. If the user chooses OK, the custom cleanUp() function closes the applica-
tion.

function confirmCleanUp() {
 if (confirm("Are you sure you want to quit this application?")) {
 cleanUp()
 }
}

You can call the confirmCleanUp function in the onClick event handler of a form's pushbutton, as shown
in the following example:

<INPUT TYPE="button" VALUE="Quit" onClick="confirmCleanUp()">

See also

• alert, prompt methods

cos method

Returns the cosine of its argument.

Syntax

Math.cos(number)

number is a numeric expression representing the size of an angle in radians. The cos method returns a
numeric value between -1 and 1, which represents the cosine of the angle.

Applies to

Math

85

Examples

 //Displays the value 6.123031769111886e-017
document.write("The cosine of PI/2 radians is " + Math.cos(Math.PI/2))

//Displays the value -1
document.write("<P>The cosine of PI radians is " + Math.cos(Math.PI))

//Displays the value 1
document.write("<P>The cosine of 0 radians is " + Math.cos(0))

See also

• acos, asin, atan, sin, tan methods

escape function

Returns the ASCII encoding of its argument in the ISO Latin-1 character set.

Syntax

escape(char)

char is a non-alphanumeric character in the ISO Latin-1 character set.

Description

The escape function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself. The value it returns is a string of the form "%xx", where xx is the ASCII encod-
ing of the argument.

Examples

The following returns "%26"

escape("&")

See also

• unEscape function

eval function

The eval function takes a JavaScript arithmetic expression as its argument and returns the value of the
argument as a number.

Syntax

 86

eval(expression)

expression is any expression or sequence of statements.

Description

The eval function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself.

Example

In the following example, both uses of eval assign the value 42 to the variable result.

x = 6
result = eval((3+3)*7)
result = eval(x*7)

exp method

Returns e to the power of its argument, i.e. ex, where x is the argument, and e is Euler's constant, the base
of the natural logarithms.

Syntax

Math.exp(number)

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 2.718281828459045
document.write("The value of e¹ is " + Math.exp(1))

See also

• log, pow methods

fixed method

Causes the calling string object to be displayed in fixed-pitch font by surrounding it with the HTML tags
<TT> and </TT> .

87

Syntax

stringName.fixed()

stringName is the name of any string variable.

Description

Use the fixed method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses the fixed method to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

floor method

Returns the greatest integer less than or equal to its argument.

Syntax

Math.floor(number)

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 45
document.write("<P>The floor of 45.95 is " + Math.floor(45.95))

//Displays the value -46
document.write("<P>The floor of -45.95 is " + Math.floor(-45.95))

 88

See also

• ceil method

focus method

Gives focus to the specified object.

Syntax

1. passwordName.focus()
2. textName.focus()
3. textareaName.focus()

passwordName is the value of the NAME attribute of a password object.
textName is the value of the NAME attribute of a text object.
textareaName is the value of the NAME attribute of a textarea object.

Description

Use the focus method to navigate to a specific form element and give it focus. You can then either
programatically enter a value in the element or let the user enter a value.

Applies to

password, text, textarea

Examples

In the following example, the checkPassword function confirms that a user has entered a valid password.
If the password is not valid, the focus method returns focus to the password field and the select method
highlights it so the user can re-enter the password.

function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• blur, select methods

89

fontcolor method

Causes the calling string object to be displayed in the specified color by surrounding it with the HTML
tags and .

Syntax

stringName.fontcolor(color)

stringName is the name of any string variable.
color is a string expressing the color as a hexadecimal RGB triplet or as one of the string literals listed in
the Color Appendix.

Description

Use the fontcolor method with the write or writeln methods to format and display a string in a document.

If you express color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

string

Examples

The following example uses the fontcolor method to change the color of a string

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") + " is maroon in this line")
document.write("<P>" + worldString.fontcolor("salmon") + " is salmon in this
line")
document.write("<P>" + worldString.fontcolor("red") + " is red in this line")

document.write("<P>" + worldString.fontcolor("8000") + " is maroon in hexadecimal
in this line")
document.write("<P>" + worldString.fontcolor("FA8072") + " is salmon in
hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FF00") + " is red in hexadecimal in
this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world is maroon in hexadecimal in this line
<P>Hello, world is salmon in hexadecimal in this line
<P>Hello, world is red in hexadecimal in this line

 90

fontsize method

Causes the calling string object to be displayed in the specified font size by surrounding it with the HTML
font size tags <FONTSIZE=size> ... </FONTSIZE> .

Syntax

stringName.fontsize(size)

stringName is the name of any string variable.
size is an integer between one and seven, or a string representing a signed integer between 1 and 7.

Description

Use the fontsize method with the write or writeln methods to format and display a string in a document.
When you specify size as an integer, you set the size of stringName to one of the seven defined sizes.
When you specify size as a string such as "-2", you adjust the font size of stringName relative to the size
set in the BASEFONT tag.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• big, small methods

forward method

Loads the next URL in the history list.

Syntax
history.forward()

91

Description

This method performs the same action as a user choosing the Forward button in the Navigator. The for-
ward method is the same as history.go(1) .

Applies to

history

Examples

The following custom buttons perform the same operations as the Navigator Back and Forward buttons:

<P><INPUT TYPE="button" VALUE="< Back" onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Forward" onClick="history.forward()">

See also

• back, go methods

getDate method

Returns the day of the month for a date object.

Syntax

dateObjectName.getDate()

dateObjectName is the name of a date object.

Description

The value returned by getDate is an integer between 1 and 31.

Applies to

Date

Examples

The second statement below assigns the value 25 to the variable day, based on the value of the date object
Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

 92

See also

• setDate method

getDay method

Returns the day of the week for a date object.

Syntax

dateObjectName.getDay()

dateObjectName is the name of a date object.

Description

The value returned by getDay is an integer corresponding to the day of the week: zero for Sunday, one for
Monday, two for Tuesday, and so on.

Applies to

Date

Examples

The second statement below assigns the value 1 to weekday, based on the value of the date object
Xmas95. This is because December 25, 1995 is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

getHours method

Returns the hour for a date object.

Syntax

dateObjectName.getHours()

dateObjectName is the name of a date object.

Description

The value returned by getHours is an integer between 0 and 23.

Applies to

93

Date

Examples

The second statement below assigns the value 23 to the variable hours, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also

• setHours method

getMinutes method

Returns the minutes in a date object.

Syntax

dateObjectName.getMinutes()

dateObjectName is the name of a date object.

Description

The value returned by getMinutes is an integer between 0 and 59.

Applies to

Date

Examples

The second statement below assigns the value 15 to the variable minutes, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also

• setMinutes method

 94

getMonth method

Returns the month in a date object.

Syntax

dateObjectName.getMonth()

dateObjectName is the name of a date object.

Description

The value returned by getMonth is an integer between zero and eleven. Zero corresponds to January, one
to Februrary, and so on.

Applies to

Date

Examples

The second statement below assigns the value 11 to the variable month, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getDate()

See also

• setMonth method

getSeconds method

Returns the seconds in the current time.

Syntax

dateObjectName.getSeconds()

dateObjectName is the name of a date object.

Description

The value returned by getSeconds is an integer between 0 and 59.

Applies to

95

Date

Examples

The second statement below assigns the value 30 to the variable secs, based on the value of the date object
Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also

• setSeconds method

getTime method

Returns the numeric value corresponding to the time for a date object.

Syntax

dateObjectName.getTime()

dateObjectName is the name of a date object.

Description

The value returned by the getTime method is the number of milliseconds since the epoch (1 January 1970
00:00:00). You can use this method to help assign a date and time to another date object.

Applies to

Date

Examples

The following example assigns the date value of theBigDay to sameAsBigDay.

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date();
sameAsBigDay.setTime(theBigDay.getTime())

See also

• setTime method

getTimezoneOffset method

 96

Returns the time zone offset in minutes for the current locale.

Syntax

dateObjectName.getTimezoneOffset()

dateObjectName is the name of a date object.

Description

The time zone offset is the difference between local time and GMT. This value would be a constant
except for daylight savings time.

Applies to

Date

Examples

x = new Date();
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60;

getYear method

Returns the year in the date object.

Syntax

dateObjectName.getYear()

dateObjectName is the name of a date object.

Description

The value returned by getYear is the year less 1900. For example, if the year is 1976, the value returned is
76.

Applies to

Date

Examples

The second statement below assigns the value 95 to the variable year, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")

97

year = Xmas95.getYear()

See also

• setYear method

go method

Loads a URL in the history list.

Syntax

history.go(delta | "location")

delta is an integer representing a relative position in the history list.
location is a string representing all or part of a URL in the history list.

Description

The go method navigates to the location in the history list determined by the argument that you specify.

The delta argument is a positive or negative integer. If delta is greater than zero, the go method loads the
URL that is that number of entries forward in the history list; otherwise, it loads the URL that is that
number of entries backward in the history list.

The location argument is a string. Use location to load the nearest history entry whose URL contains
location as a substring. The location to URL matching is case-insensitive

Applies to

history

Examples

The following button navigates to the nearest history entry that contains the string "home.netscape.com":

<P><INPUT TYPE="button" VALUE="Go" onClick="history.go('home.netscape.com')">

The following button navigates to the URL that is three entries backward in the history list:

<P><INPUT TYPE="button" VALUE="Go" onClick="history.go(-3)">

See also

• back, forward methods

indexOf method

 98

Returns the index within the calling string object of the first occurrence of the specified character, starting
the search at fromIndex.

Syntax

stringName.indexOf(character, [fromIndex])

stringName is the name of any string variable or string object.
character is a string representing the character to search for.
fromIndex is the location within the calling string to start the search from, any integer from 0 to
stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of
the last character is stringName.length - 1.

If you do not specify a value for fromIndex, JavaScript assumes 0 by default.

Applies to

string

Examples

The following example uses indexOf and lastIndexOf to locate a character in the string "Brave new
world".

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +
anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
anyString.indexOf("w"))

See also

• charAt, lastIndexOf methods

italics method

Causes the calling string object to be italicized by surrounding it with the HTML tags <I> and </I>.

Syntax

stringName.italics()

99

stringName is the name of any string variable.

Description

Use the italics method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, bold, strike methods

lastIndexOf method

Returns the index within the calling string object of the last occurrence of the specified character. The
calling string is searched backwards, starting at fromIndex.

Syntax

stringName.lastIndexOf(character, [fromIndex])

stringName is the name of any string variable or string object.
character is a string representing the character to search for.
fromIndex is the location within the calling string to start the search from, any integer from 0 to
stringName.length() - 1.

Description

 100

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of
the last character is stringName.length - 1.

If you do not specify a value for fromIndex, JavaScript assumes stringName.length() - 1 (the end of the
string) by default.

Applies to

string

Examples

The following example uses indexOf and lastIndexOf to locate a character in the string "Brave new
world".

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +
anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
anyString.indexOf("w"))

See also

• charAt, indexOf methods

link method

Creates an HTML hypertext link that jumps to another URL.

Syntax

linkName.link(hrefAttribute)

linkName is any string.
hrefAttribute is any string.

Description

Use the link method with the write or writeln methods to programatically create and display a hypertext
link in a document. Create the link with the link method, then call write or writeln to display the link in a
document.

In the syntax, the linkName string represents the literal text that you want the user to see. The
hrefAttribute string represents the HREF attribute of the HTML A tag, and it should be a valid URL.
Applies to

101

string

Examples

The following example displays the word "Netscape" as a hypertext link that returns the user to the
Netscape home page:

var hotText="Netscape"
var URL="http://www.netscape.com"

document.open()
document.write("Click to return to " + hotText.link(URL));
document.close();

The previous example produces the same output as the following HTML:

Click to return to Netscape

See also

• anchor method

log method

Returns the natural logarithm (base e) of its argument.

Syntax

Math.log(number)

number is any positive numeric expression. If the value of number is outside the suggested range, the
return value is always -1.797693134862316e+308.

Applies to

Math

Examples

//Displays the value 2.302585092994046
document.write("The natural log of 10 is " + Math.log(10))

//Displays the value 0
document.write("<P>The natural log of 1 is " + Math.log(1))

//Displays the value -1.797693134862316e+308 because the argument is out of range
document.write("<P>The natural log of 0 is " + Math.log(0))

See also

 102

• exp, pow methods

max method

Returns the greater of its two arguments.

Syntax

max(number1, number2)

number1 and number2 are any numeric arguments.

Applies to

Math

Examples

//Displays the value 20
document.write("The maximum value is " + Math.max(10,20))

//Displays the value -10
document.write("<P>The maximum value is " + Math.max(-10,-20))

See also

• min method

min method

Returns the lesser of its two arguments.

Syntax

min(number1, number2)

number1 and number2 are any numeric arguments.

Applies to

Math

Examples

103

//Displays the value 10
document.write("
The minimum value is " + Math.min(10,20))

//Displays the value -20
document.write("<P>The minimum value is " + Math.min(-10,-20))

See also

• max method

open method (document object)

Opens a stream to collect the output of write or writeln methods.

Syntax

document.open(["mimeType"])

mimeType specifies any of the following document types:

 text/html
 text/plain
 image/gif
 image/jpeg
 image/xbm
 x-world/plugIn

plugIn is any plug-in MIME type that Netscape supports.

Description

The open method opens a stream to collect the output of write or writeln methods. If the mimeType is text
or image, the stream is opened to layout; otherwise, the stream is opened to a plug-in. If a document exists
in the target window, the open method clears it.

End the stream by using the document.close() method. The close method causes text or images that were
sent to layout to display. After using document.close(), issue document.open() again when you want to
begin another output stream.

mimeType is an optional argument that specifies the type of document to which you are writing. If you do
not specify a mimeType, the open method assumes text/html by default.

Following is a description of mimeType:
• text/html specifies a document containing ASCII text with HTML formatting.
• text/plain specifies a document containing plain ASCII text with end-of-line characters to delimit
 displayed lines.
• image/gif specifies a document with encoded bytes constituting a GIF header and pixel data.
• image/jpeg specifies a document with encoded bytes constituting a JPEG header and pixel data.
• image/xbm specifies a document with encoded bytes constituting a XBM header and pixel data.

 104

• x-world/plugIn loads the specified plug-in and uses it as the destination for write and writeln
 methods. For example, x-world/vrml loads the VR Scout VRML plug-in from Chaco Communi
 cations.

Applies to

document

Examples

The following function calls document.open() to open a stream before issuing a write method:

function windowWriter1() {
 var myString = "Hello, world!";
 msgWindow.document.open();
 msgWindow.document.write("<P>" + myString);
 msgWindow.document.close();
}

See also

• clear, close, write, writeln methods

open method (window object)

Opens a new web browser window.

Syntax

window.open("URL", "windowName", ["windowFeatures"])

URL specifies the URL to open in the new window.
windowName specifies a name for the window object being opened.
windowFeatures is a comma-separated list of any of the following options and values:

 toolbar[=yes|no]|[=1|0]
 location[=yes|no]|[=1|0]
 directories[=yes|no]|[=1|0]
 status[=yes|no]|[=1|0]
 menubar[=yes|no]|[=1|0]
 scrollbars[=yes|no]|[=1|0]
 resizable[=yes|no]|[=1|0]
 width=pixels
 height=pixels

You may use any subset of these options. Separate options with a comma. Do not put spaces between the
options.

pixels is a positive integer specifying the dimension in pixels.

105

Description

The open method opens a new web browser window on the client, similar to choosing File|New Web
Browser from the menu of the Navigator. The URL argument specifies the URL contained by the new
window. If URL is an empty string, a new, empty window is created.

In event handlers, you must specify window.open() instead of simply using open(). Due to the scoping of
static objects in JavaScript, a call to open() without specifying an object name is equivalent to
document.open().

windowFeatures is an optional, comma-separated list of options for the new window. The boolean
windowFeatures options are set to true if they are specified without values, or as yes or 1. For example,
open("", "messageWindow", "toolbar") and open("", "messageWindow", "toolbar=1") both set
the toolbar option to true. If windowName does not specify an existing window and you do not specify
windowFeatures, all boolean windowFeatures are true by default.

Following is a description of the windowFeatures:
• toolbar creates the standard Navigator toolbar, with buttons such as "Back" and "Forward", if

true
• location creates a Location entry field, if true
• directories creates the standard Navigator directory buttons, such as "What's New" and "What's

Cool", if true
• status creates the status bar at the bottom of the window, if true
• menubar creates the menu at the top of the window, if true
• scrollbars creates horizontal and vertical scrollbars when the document grows larger than the

window dimensions, if true
• resizable allows a user to resize the window, if true
• copyhistory gives the new window the same session history as the current window, if true
• width specifies the width of the window in pixels
• height specifies the height of the window in pixels

Applies to

window

Examples

In the following example, the windowOpener function opens a window and uses write methods to display
a message:

function windowOpener() {
 msgWindow=window.open("","Display
window","toolbar=no,directories=no,menubar=no");
 msgWindow.document.write("<HEAD><TITLE>Message window</TITLE></HEAD>");
 msgWindow.document.write("<CENTER><BIG>Hello, world!</BIG></CENTER>");
}

The following is an onClick event handler that opens a new client window displaying the content speci
fied in the file sesame.html. It opens it with the specified option settings and names the corre
sponding window object newWin.

 106

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
onClick="window.open('sesame.html', 'newWin',
'toolbar=no,directories=no,menubar=no,status=yes,width=300,height=300')">
</form>

Notice the use of single quotes (') inside the onClick event handler.

See also

• close method

parse method

Returns the number of milliseconds in a date string since January 1, 1970 00:00:00, local time.

Syntax

Date.parse(dateString)

dateString is a string representing a date.

Description

The parse method takes a date string (such as "Dec 25, 1995"), and returns the number of milliseconds
since January 1, 1970 00:00:00 (local time). This function is useful for setting date values based on string
values, for example in conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the IETF standard date syntax:
"Mon, 25 Dec 1995 13:30:00 GMT". It understands the continental US time zone abbreviations, but for
general use, use a time zone offset, for example "Mon, 25 Dec 1995 13:30:00 GMT+0430" (4 hours, 30
minutes west of the Greenwich meridian). If you do not specify a time zone, the local time zone is as-
sumed. GMT and UTC are considered equivalent.

Because the parse function is a static method of Date, you always use it as Date.parse() , rather than as a
method of a date object you created.

Applies to

Date

Examples

If IPOdate is an existing date object, then

IPOdate.setTime(Date.parse("Aug 9, 1995"))

107

See also

• UTC method

parseFloat function

Parses a string argument and returns a floating point number.

Syntax

parseFloat(string)

string is a string that represents the value you want to parse.

Description

The parseFloat function is a built-in JavaScript function. It is not a method associated with any object, but
is part of the language itself.

ParseFloat parses its argument, a string, and attempts to return a floating point number. If it encounters a
character other than a sign (+ or -), numeral (0-9), a decimal point, or an exponent, then it returns the
value up to that point and ignores that character and all succeeding characters. If the first character cannot
be converted to a number, it returns zero.

Examples

The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns 0:

parseFloat("FF2")

See also

• parseInt function

parseInt function

Parses a string argument and returns an integer of the specified radix or base.
Syntax

 108

parseInt(string, radix)

string is a string that represents the value you want to parse.
radix is an integer that represents the radix of the return value.

Description

The parseInt function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself.

The parseInt function parses its first argument, a string, and attempts to return an integer of the specified
radix (base). For example, a radix of 10 indicates to convert to a decimal number, 8 octal, 16 hexadecimal,
and so on. For radixes above 10, the letters of the alphabet indicate numerals greater than 9. For example,
for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix, it ignores it and all succeed-
ing characters and returns the integer value parsed up to that point. If the first character cannot be con-
verted to a number in the specified radix, it returns zero. ParseInt truncates numbers to integer values.

Examples

The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return zero:

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

See also

• parseFloat function

pow method

Returns base to the exponent power, that is, baseexponent.

Syntax

pow(base, exponent)

109

base is any numeric expression.
exponent is any numeric expression.

Applies to

Math

Examples

//Displays the value 49
document.write("7 to the power of 2 is " + Math.pow(7,2))

//Displays the value 1024
document.write("<P>2 to the power of 10 is " + Math.pow(2,10))

See also

• exp, log methods

prompt method

Displays a Prompt dialog box with a message and an input field.

Syntax

prompt(message, [inputDefault])

message is a string that is displayed as the message.
inputDefault is a string or integer that represents the default value of the input field.

Description

Use the prompt method to display a dialog box that receives user input. If you do not specify an initial
value for inputDefault, the dialog box displays the value <undefined>.

Applies to

window

Examples

prompt("Enter the number of cookies you want to order:", 12)

See also

• alert, confirm methods

random method

 110

Returns a pseudo-random number between zero and one. This method is available on X-platforms only.

Syntax

Math.random()

Applies to

Math

Examples

//Displays a random number between 0 and 1
document.write("The random number is " + Math.random())

round method

Returns the value of the argument rounded to the nearest integer. If the decimal portion of the argument is
.5 or greater, the argument is rounded to the next highest integer. If the decimal portion of the argument is
less than .5, the argument is rounded to the next lowest integer.

Syntax

round(number)

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 20
document.write("The rounded value is " + Math.round(20.49))

//Displays the value 21
document.write("<P>The rounded value is " + Math.round(20.5))

//Displays the value -20
document.write("<P>The rounded value is " + Math.round(-20.5))

//Displays the value -21
document.write("<P>The rounded value is " + Math.round(-20.51))

111

select method

Selects the input area of the specified object.

Syntax

1. passwordName.select()
2. textName.select()
3. textareaName.select()

passwordName is the value of the NAME attribute of a password object.
textName is the value of the NAME attribute of a text object.
textareaName is the value of the NAME attribute of a textarea object.

Description

Use the select method to highlight the input area of a form element. You can use the select method with
the focus method to highlight a field and position the cursor for a user response.

Applies to

password, text, textarea

Examples

In the following example, the checkPassword function confirms that a user has entered a valid password.
If the password is not valid, the select method highlights the password field and focus method returns
focus to it so the user can re-enter the password.

function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• blur, focus methods

setDate method

Sets the day of the month for a date object.

 112

Syntax

dateObjectName.setDate(dayValue)

dateObjectName is the name of a date object.
dayValue is an integer from 1 to 31 representing the day of the month.

Applies to

Date

Examples

The second statement below changes the day for theBigDay to the 24th of July from its original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also

• getDate method

setHours method

Sets the hours in the current time.

Syntax

dateObjectName.setHours(hoursValue)

dateObjectName is the name of a date object.
hoursValue is an integer between 0 and 23 representing the hour.

Applies to

Date

Examples

theBigDay.setHours(7)

See also

• getHours method

113

setMinutes method

Sets the minutes in the current time.

Syntax

dateObjectName.setMinutes(minutesValue)

dateObjectName is the name of a date object.
minutesValue is an integer between 0 and 59 representing the minutes.

Applies to

Date

Examples

theBigDay.setMinutes(45)

See also

• getMinutes method

setMonth method

Sets the month in the current date.

Syntax

dateObjectName.setMonth(monthValue)

dateObjectName is the name of a date object.
monthValue is an integer between 0 and 11 representing the month.

Applies to

Date

Examples

theBigDay.setMonth(6)

See also

• getMonth method

 114

setSeconds method

Sets the seconds in the current time.

Syntax

dateObjectName.setSeconds(secondsValue)

dateObjectName is the name of a date object.
secondsValue is an integer between 0 and 59.

Applies to

Date

Examples

theBigDay.setSeconds(30)

See also

• getSeconds method

setTime method

Sets the value of a date object.

Syntax

dateObjectName.setTime(timevalue)

dateObjectName is the name of a date object.
timevalue is an integer representing the number of milliseconds since the epoch (1 January 1970
00:00:00).

Description

Use the setTime method to help assign a date and time to another date object.

Applies to

Date

Examples

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date();

115

sameAsBigDay.setTime(theBigDay.getTime())

See also

• getTime method

setTimeout method

Evaluates an expression after a specified number of milliseconds have elapsed.

Syntax

timeoutID=setTimeout(expression, msec)

timeoutID is an identifier that is used only to cancel the evaluation with the clearTimeout method.
expression is a string expression.
msec is a numeric value or numeric string in millisecond units.

Description

The setTimeout method evaluates an expression after a specified amount of time. It does not evaluate the
expression repeatedly. For example, if a setTimeout method specifies 5 seconds, the expression is evalu-
ated after 5 seconds, not every 5 seconds.

Applies to

window

Examples

The following example displays an alert message 5 seconds (5,000 milliseconds) after the user clicks a
button. If the user clicks the second button before the alert message is displayed, the timeout is cancelled
and the alert does not display.

<SCRIPT LANGUAGE="JavaScript">
function displayAlert()
{
 alert("5 seconds have elapsed since the button was clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds;
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder" NAME="remind_button"
 onClick="timerID=setTimeout('displayAlert()',5000)">
<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
 NAME="remind_disable_button"

 116

 onClick="clearTimeout(timerID)">
</FORM>
</BODY>

The following example displays the current time in a text object. The showtime() function, which is called
recursively, uses the setTimeout method update the time every second.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null;
var timerRunning = false;
function stopclock(){
 // cannot directly test timerID on DEC OSF/1 in beta 4.
 if(timerRunning)
 clearTimeout(timerID);
 timerRunning = false;
}
function startclock(){
 // Make sure the clock is stopped
 stopclock();
 showtime();
}
function showtime(){
 var now = new Date();
 var hours = now.getHours()
 var minutes = now.getMinutes()
 var seconds = now.getSeconds()
 var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
 timeValue += ((minutes < 10) ? ":0" : ":") + minutes
 timeValue += ((seconds < 10) ? ":0" : ":") + seconds
 timeValue += (hours >= 12) ? " P.M." : " A.M."
 document.clock.face.value = timeValue ;
 timerID = setTimeout("showtime()",1000);
 timerRunning = true;
}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">
 <INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also

• clearTimeout method

setYear method

Sets the year in the current date.

117

Syntax

dateObjectName.setYear(yearValue)

dateObjectName is the name of a date object.
yearValue is an integer greater than 1900.

Applies to

Date

Examples

theBigDay.setYear(96)

See also

• getYear method

sin method

Returns the sine of its argument.

Syntax

Math.sin(number)

number is a numeric expression representing the size of an angle in radians. The sin method returns a
numeric value between -1 and 1, which represents the sine of the angle.

Applies to

Math

Examples

//Displays the value 1
document.write("The sine of pi/2 radians is " + Math.sin(Math.PI/2))

//Displays the value 1.224606353822377e-016
document.write("<P>The sine of pi radians is " + Math.sin(Math.PI))

//Displays the value 0
document.write("<P>The sine of 0 radians is " + Math.sin(0))

See also

• acos, asin, atan, cos, tan methods

 118

small method

Causes the calling string object to be displayed in a small font by surrounding it with the HTML font tags
<SMALL>...</SMALL>.

Syntax

stringName.small()

stringName is the name of any string variable.

Description

Use the small method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• big, fontsize methods

sqrt method

Returns the square root of its argument.

Syntax

Math.sqrt(number)

number is any non-negative numeric expression. If the value of number is outside the suggested range, the

119

return value is always 0.

Applies to

Math

Examples

//Displays the value 3
document.write("The square root of 9 is " + Math.sqrt(9))

//Displays the value 1.414213562373095
document.write("<P>The square root of 2 is " + Math.sqrt(2))

//Displays the value 0 because the argument is out of range
document.write("<P>The square root of -1 is " + Math.sqrt(-1))

strike method

Causes the calling string object to be displayed as struck out text by surrounding it with the HTML tags
<STRIKE> and </STRIKE> .

Syntax

stringName.strike()

stringName is the name of any string variable.

Description

Use the strike method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>

 120

<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, bold, italics methods

sub method

Causes the calling string object to be displayed as a subscript by surrounding it with the HTML tags
_{and}.

Syntax

stringName.sub()

stringName is the name of any string variable.

Description

Use the sub method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks

See also

• sup method
like.

121

submit method

Submits a form.

Syntax

formName.submit()

formName is the name of any form or an element in the forms array.

Description

The submit method submits the specified form. It performs the same action as a submit button.

Applies to

form

Examples

The following example submits a form called musicChoice:

document.musicChoice.submit()

If musicChoice is the first form created, you also can submit it as follows:

document.forms[0].submit()

See also

• submit object

substring method

The substring method returns a subset of a string object.

Syntax

stringName.substring(indexA, indexB)

stringName is the name of any string variable or string object.
indexA is any integer from 0 to stringName.length() - 1.
indexB is any integer from 0 to stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of

 122

the last character is stringName.length - 1.

If indexA is less than indexB, the substring method returns the subset starting with the character at indexA
and ending with the character before indexB. If indexA is greater than indexB, the substring method
returns the subset starting with the character at indexB and ending with the character before indexA. If
indexA is equal to indexB, the substring method returns the empty string.

Applies to

string

Examples

The following example uses substring to display characters from the string "Netscape".

var anyString="Netscape"

//Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))

sup method

Causes the calling string object to be displayed as a superscript by surrounding it with the HTML tags
^{and}.

Syntax

stringName.sup()

stringName is the name of any string variable.

Description

Use the sup method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

123

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also

• sub method

tan method

Returns the tangent of its argument.

Syntax

Math.tan(number)

number is a numeric expression representing the size of an angle in radians. The tan method returns a
numeric which represents the tangent of the angle.

Applies to

Math

Examples

//Displays the value 0.9999999999999999
document.write("The tangent of pi/4 radians is " + Math.tan(Math.PI/4))

//Displays the value 0
document.write("<P>The tangent of 0 radians is " + Math.tan(0))

See also

• acos, asin, atan, cos, sin methods

toGMTString method

Converts a date to a string, using the Internet GMT conventions.

Syntax

dateObjectName.toGMTString()

 124

dateObjectName is the name of a date object.

Applies to

Date

Examples

In the following example, today is a date object:

today.toGMTString()

In this example, toGMTString converts the date to GMT (UTC) using the operating system's time zone
offset and returns a string value in the following form:

Mon, 18 Dec 1995 17:28:35 GMT

See also

• toLocaleString method

toLocaleString method

Converts a date to a string, using the locale conventions.

Syntax

dateObjectName.toLocaleString()

dateObjectName is the name of a date object.

Applies to

Date

Examples

In the following example, today is a date object:

today.toLocaleString()

In this example, toLocaleString returns a string value in the following form:

12/18/95 17:28:35

See also

• toGMTString method

125

toLowerCase method

Converts the calling string to lower case.

Syntax

stringName.toLowerCase()

stringName is the name of any string variable or string object.

Applies to

string

Examples

The following examples both yield "alphabet".

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

"ALPHABET".toLowerCase

See also

• toUpperCase method

toString method

Converts the value of a Date object or the current location object to a string.

Syntax

1. dateObjectName.getDate()

dateObjectName is the name of a date object.

2. location.toString()

Description

The value returned by the method location.toString() is the same as the value of the property location.href.

Applies to

Date, location objects

 126

Examples

The following example converts the Date object theBigDay to a string:

theBigDay.toString()

The following example displays the value of the current location:

document.write("The value of location.toString() is "+ location.toString())

toUpperCase method

Converts the calling string to upper case.

Syntax

stringName.toUpperCase()

stringName is the name of any string variable or string object.

Applies to

string

Examples

The following examples both yield "ALPHABET".

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

"alphabet".toUpperCase

See also

• toLowerCase method

unEscape function

Returns the ASCII character for the specified value.

Syntax

unescape(string)

string is a string of the form "%xx", where xx is a number between 0 and 255 (decimal) or 0x0 and 0xFF
(hexadecimal).

127

Description

The escape function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself.

The string it returns is a non-alphanumeric character in the ISO Latin-1 character set.

Examples

The following returns "&"

unescape("%26")

See also

• escape function

UTC method

Returns the number of milliseconds in a date object since January 1, 1970 00:00:00, Universal Coordi-
nated Time (GMT).

Syntax

Date.UTC(year, month, day [, hrs] [, min] [, sec])

year is a year after 1900.
month is a month between 0-11.
date is a day of the month between 1-31.
hrs is hours between 0-23.
min is minutes between 0-59.
sec is seconds between 0-59.

Description

UTC takes comma-delimited date parameters and returns the number of milliseconds since January 1,
1970 00:00:00, Universal Coordinated Time (GMT).

Because UTC is a static method of Date, you always use it as Date.UTC() , rather than as a method of a
date object you created.

Applies to

Date

Examples

 128

The following statement creates a date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also

• parse method

write method

Writes one or more HTML expressions to a document in the specified window.

Syntax

write(expression1 [,expression2], ...[,expressionN])

expression1 through expressionN are any JavaScript expressions.

Description

The write method displays any number of expressions in a document window. You can specify any
JavaScript expression with the write method, including numerics, strings, or logicals.

The write method is the same as the writeln method, except the write method does not append a newline
character to the end of the output.

Use the write method within any <SCRIPT> tag or within an event handler. Event handlers execute after
the original document closes, so the write method will implicitly open a new document of mimeType
text/html if you do not explicitly issue a document.open() method in the event handler.

Applies to

document

Examples

In the following example, the write method takes several arguments, including strings, a numeric, and a
variable:

var mystery = "world"
// Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)

In the following example, the write method takes two arguments. The first argument is an assignment
expression, and the second argument is a string literal.

//Displays Hello world...
msgWindow.document.write(mystr = "Hello "+ "world...")

129

In the following example, the write method takes a single argument that is a conditional expression. If the
value of the variable age is less than 18, the method displays "Minor". If the value of age is greater than or
equal to 18, the method displays "Adult".

msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")

See also

• close, clear, open, writeln methods

writeln method

Writes one or more HTML expressions to a document in the specified window and follows them with a
newline character.

Syntax

writeln(expression1 [,expression2], ...[,expressionN])

expression1 through expressionN are any JavaScript expressions.

Description

The writeln method displays any number of expressions in a document window. You can specify any
JavaScript expression, including numerics, strings, or logicals.

The writeln method is the same as the write method, except the writeln method appends a newline charac-
ter to the end of the output.

Use the writeln method within any <SCRIPT> tag or within an event handler. Event handlers execute after
the original document closes, so the writeln method will implicitly open a new document of mimeType
text/html if you do not explicitly issue a document.open() method in the event handler.

Applies to

document

Examples

All the examples used for the write method are also valid with the writeln method.

See also

• close, clear, open, write methods

 130

Properties
The following properties are available in JavaScript:

• action • E • links • selected
• alinkColor • elements • LN2 • selectedIndex
• anchors • fgColor • LN10 • self
• appName • forms • location • SQRT1_2
• appVersion • frames • method • SQRT2
• appCodeName • hash • name • status
• bgColor • host • options • target
• checked • hostname • parent • text
• cookie • href • pathname • title
• defaultChecked • index • PI • top
• defaultSelected • lastModified • port • userAgent
• defaultStatus • length • protocol • value
• defaultValue • linkColor • referrer • vlinkColor

• search • window

action property

A string specifying the URL of the server to which form field input information is sent.

Syntax

formName.action

formName is the name of any form or an element in the forms array.

Description

The action property is a reflection of the ACTION attribute of the HTML FORM tag. You cannot set this
property after the Navigator has laid out the HTML source.

Applies to

form

Examples

The following example sets the action property to the value of the variable urlName:

forms[0].action=urlName

See also
• method, target properties

131

alinkColor property

xxx

Syntax

xxx

Description

The color of an active link (after mouse-button down, but before mouse-button up), expressed as a hexa-
decimal RGB triplet or as one of the string literals listed in the Color Appendix. This property is the
JavaScript reflection of the ALINK attribute of the HTML BODY tag.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

document

Examples

The following example sets the color of active links to aqua using a string literal:

document.alinkColor="aqua"

The following example sets the color of active links to aqua using a hexadecimal triplet:

document.alinkColor="00FFFF"

See also

• bgColor, fgColor, linkColor, and vlinkColor properties

anchors property

xxx

Syntax

xxx

Description

Array of objects corresponding to named anchors (tags) in source order.

 132

The anchors array contains an entry for each anchor in a document. For example, if a document contains
three anchors, these anchors are reflected as document.anchors[0], document.anchors[1], and
document.anchors[2].

To obtain the number of anchors in a document, use the length property: document.anchors.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• links, length properties

appName property

xxx

Syntax

xxx

Description

xxx Description to be supplied

Applies to

navigator

Examples

xxx Examples to be supplied.

See also

• appVersion, appCodeName, userAgent properties

appVersion property

xxx

133

Syntax

xxx

Description

xxx Description to be supplied

Applies to

navigator

Examples

xxx Examples to be supplied.

See also

• appName, appCodeName, userAgent properties

appCodeName property

xxx

Syntax

xxx

Description

xxx Description to be supplied

Applies to

navigator

Examples

xxx Examples to be supplied.

See also

• appName, appVersion, userAgent properties

 134

bgColor property

xxx

Syntax

xxx

Description

The color of the document background, expressed as a hexadecimal RGB triplet or as one of the string
literals listed in the Color Appendix. This property is the JavaScript reflection of the BGCOLOR attribute
of the HTML BODY tag.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

document

Examples

The following example sets the color of the document background to aqua using a string literal:

document.bgColor="aqua"

The following example sets the color of the document background to aqua using a hexadecimal triplet:

document.bgColor="00FFFF"

See also

• alinkColor, fgColor, linkColor, and vlinkColor properties

checked property

xxx

Syntax

xxx

Description

135

For checkbox, Boolean, false if not checked, true if checked. For radio, Boolean, false if not pressed, true
if pressed.

Applies to

checkbox, radio

Examples

xxx To be supplied.

See also

• defaultChecked property

cookie property

xxx

Syntax

xxx

Description

String value of a cookie, which is a small piece of information stored by the Navigator in the cookies.txt
file. Use string methods such as substring, charAt, indexOf, and lastIndexOf to determine the value stored
in the cookie. See the Netscape cookie specification for a complete specification of the cookie syntax.

Applies to

document

Examples

The following function uses the cookie property to record a reminder for users of an application. The
"expires=" component sets an expiration date for the cookie, so it persists beyond the current browser
session.

 function RecordReminder(time, expression) {
 // record a cookie of the form "@<T>=<E>" to map from <T> in milliseconds
 // since the epoch, returned by Date.getTime(), onto an encoded expression,
 // <E> (encoded to contain no white space, semicolon, or comma characters)
 document.cookie = "@" + time + "=" + expression + ";"
 // set the cookie expiration time to one day beyond the reminder time
 document.cookie += "expires=" + Date(time + 24*60*60*1000)
}

 136

When the user loads the page that contains this function, another function uses indexOf("@") and
indexOf("=") to determine the date and time stored in the cookie.

defaultChecked property

xxx

Syntax

xxx

Description

For checkbox, Boolean property that indicates if the element is selected by default, by the CHECKED
attribute. For radio, Boolean property that indicates if the element is selected by default, by the
CHECKED attribute.

Applies to

checkbox, radio

Examples

xxx Examples to be supplied.

See also

 checked property

defaultSelected property

xxx

Syntax

xxx

Description

Boolean property that indicates if the option is selected by default, by the presence of the SELECTED
attribute in the HTML OPTION tag.

Applies to

select

137

Examples

xxx Examples to be supplied.

See also

• selected property

defaultStatus property

xxx

Syntax

xxx

Description

For a window, the defaultStatus property reflects the default message displayed in the status bar at the
bottom of the window. Do not confuse defaultStatus with status. The status property reflects a priority or
transient message in the status bar, such as the message that appears when a mouseOver event occurs over
an anchor.

Applies to

window

Examples

xxx Examples to be supplied.

See also

• status property

defaultValue property

xxx

Syntax

xxx

Description

 138

For password, text, and textarea, string, the initial contents of the field.

Applies to

password, text, textarea

Examples

xxx Examples to be supplied.

See also

• value property

E property

xxx

Syntax

xxx

Description

E is Euler's constant, the base of natural logarithms, roughly 2.718.

Applies to

Math

Examples

xxx Examples to be supplied.

See also

• LN2, LN10, PI, SQRT1_2, SQRT2 properties

elements property

xxx

Syntax

xxx

139

Description

Array of objects corresponding to form elements (such as checkbox, radio, and text objects) in source
order.

The elements array contains an entry for each object in a form. For example, if a form has a text field, a
radio button group, and a checkbox, these elements are reflected as formName.elements[0],

formName.elements[1] , and
formName.elements[2].

Applies to

form

Examples

xxx Examples to be supplied.

fgColor property

xxx

Syntax

xxx

Description

The color of the document foreground text, expressed as a hexadecimal RGB triplet or as one of the string
literals listed in the Color Appendix. This property is the JavaScript reflection of the FGCOLOR attribute
of the HTML BODY tag.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

document

Examples

The following example sets the color of the foreground to aqua using a string literal:

document.fgColor="aqua"

The following example sets the color of the foreground to aqua using a hexadecimal triplet:

 140

document.fgColor="00FFFF"

See also

• alinkColor, bgColor, linkColor, and vlinkColor properties

forms property

xxx

Syntax

xxx

Description

Array of objects corresponding to named forms (<FORM NAME=""> tags) in source order.

The forms array contains an entry for each form object in a document. For example, if a document con-
tains three forms, these forms are reflected as document.forms[0], document.forms[1] , and
document.forms[2] .

You can refer to a form's elements by using the forms array. For example, you would refer to a text object
named quantity in the second form as:

document.forms[1].quantity

You would refer to the value property of this text object as:

document.forms[1].quantity.value

To obtain the number of forms in a document, use the length property: document.forms.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• length property

141

frames property

xxx

Syntax

xxx

Description

Array of objects corresponding to child frame windows (<FRAMESET> tag) in source order.

The frames array contains an entry for each child frame in a window. For example, if a window contains
three child frames, these frames are reflected as window.frames[0], window.frames[1] , and
window.frames[2] .

To obtain the number of number of child frames in a window, use the length property:
window.frames.length.

Applies to

window

Examples

xxx Examples to be supplied.

See also

• length property

hash property

xxx

Syntax

xxx

Description

The anchor name following the # symbol.

Applies to

location

 142

Examples

xxx Examples to be supplied.

See also

• host, hostname, href, pathname, port, protocol, search properties

host property

xxx

Syntax

xxx

Description

The hostname:port part of the location or URL.

Applies to

location

Examples

xxx Examples to be supplied.

See also

• hash, hostname, href, pathname, port, protocol, search properties

hostname property

xxx

Syntax

xxx

Description

The hostname part of the location or URL.

143

Applies to

location

Examples

xxx Examples to be supplied.

See also

• hash, host, href, pathname, port, protocol, search properties

href property

xxx

Syntax

xxx

Description

The entire URL as a JavaScript string.

Applies to

location

Examples

xxx Examples to be supplied.

See also

• hash, host, hostname, pathname, port, protocol, search properties

index property

xxx

Syntax

xxx

Description

 144

For radio, number, the ordinal number of the radio field, 0-based. For a select object option, the number
identifying the position of the option in the selection, starting from zero.

Applies to

radio, select

Examples

xxx Examples to be supplied.

See also

For select:
• selectedIndex property

lastModified property

xxx

Syntax

xxx

Description

A string containing the last-modified date.

Applies to

document

Examples

xxx Examples to be supplied.

length property

xxx

Syntax

xxx

Description

145

For a history object, the length of the history list. For a string object, the integer length of the string. For a
radio object, the number of radio buttons in the object. For an anchors, forms, frames, links, or options
array, the number of elements in the array.

For a null string, length is zero.

Applies to
 history, radio, string objects
 anchors, forms, frames, links, options properties

Examples

xxx Example with history to be supplied.

If the string object mystring is "netscape", then mystring.length returns the integer 8.

If the current document contains five forms, then document.forms.length returns the integer 5.

linkColor property

xxx

Syntax

xxx

Description

The color of the document hyperlinks, expressed as a hexadecimal RGB triplet or as one of the string
literals listed in the Color Appendix.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

document

Examples

The following example sets the color of document links to aqua using a string literal:

document.linkColor="aqua"

The following example sets the color of document links to aqua using a hexadecimal triplet:

document.linkColor="00FFFF"

 146

See also

• alinkColor, bgColor, fgColor, and vlinkColor properties

links property

xxx

Syntax

xxx

Description

Array of objects corresponding to link objects (tags) in source order.

The links array contains an entry for each link object in a document. For example, if a document contains
three link objects, these links are reflected as document.links[0], document.links[1] , and
document.links[2].

To obtain the number of links in a document, use the length property: document.links.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• anchors, length properties

LN2 property

xxx

Syntax

xxx

Description

LN2 is the natural logarithm of two, roughly 0.693.

147

Applies to

Math

Examples

xxx Examples to be supplied.

See also

• E, LN10, PI, SQRT1_2, SQRT2 properties

LN10 property

xxx

Syntax

xxx

Description

LN10 is the natural logarithm of ten, roughly 2.302.

Applies to

Math

Examples

xxx Examples to be supplied.

See also

• E, LN2, PI, SQRT1_2, SQRT2 properties

location property

xxx

Syntax

xxx

 148

Description

The full URL of the document.

Applies to

document

Examples

xxx Examples to be supplied.

method property

A string specifying how form field input information is sent to the server.

Syntax

formName.method

formName is the name of any form or an element in the forms array.

Description

The method property is a reflection of the METHOD attribute of the HTML FORM tag. You cannot set
this property after the Navigator has laid out the HTML source. The method property can evaluate to
either "get" or "post". See the form object for more information.

Applies to

form

Examples

The following example sets the method property of the musicInfo form to "post":

musicInfo.method="post"

See also

• action, target properties

name property

xxx

149

Syntax

xxx

Description

A string whose value is the same as the NAME attribute of the object. Note that for button, reset, and
submit objects, this is the internal name for the button, not the label that appears onscreen.

Applies to

button, checkbox, form, password, radio, reset, submit, text, textarea

Examples

xxx Examples to be supplied.

See also

For form:
 • action, elements, method, target properties

For button:
 • value property

options property

xxx

Syntax

xxx

Description

Array of objects corresponding to options in a select object (<OPTION> tags) in source order.

The options array contains an entry for each option in a select object. For example, if a select object
named musicStyle contains three options, these options are reflected as musicStyle.options[0],

musicStyle.options[1] , and musicStyle.options[2].

To obtain the number of options in a select object, use the length property:
objectName.options.length.

Applies to

select

 150

Examples

xxx Examples to be supplied.

See also

• length property

parent property

xxx

Syntax

xxx

Description

In a <FRAMESET> and <FRAME> relationship, the <FRAMESET> window.

Applies to

window

Examples

xxx Examples to be supplied.

pathname property

xxx

Syntax

xxx

Description

The file or object path name following the third slash.

Applies to

location

Examples

151

xxx Examples to be supplied.

See also

• hash, host, hostname, href, port, protocol, search properties

PI property

xxx

Syntax

xxx

Description

Pi is the ratio of the circumference of a circle to its diameter, roughly 3.1415.

Applies to

Math

Examples

xxx Examples to be supplied.

See also

• E, LN2, LN10, SQRT1_2, SQRT2 properties

port property

xxx

Syntax

xxx

Description

The port number in a URL, if any; otherwise "".

Applies to

 152

location

Examples

xxx Examples to be supplied.

See also

• hash, host, hostname, href, pathname, protocol, search properties

protocol property

xxx

Syntax

xxx

Description

The initial substring up to and including the first colon, which indicates the URL's access method.

Applies to

location

Examples

xxx Examples to be supplied.

See also

• hash, host, hostname, href, pathname, port, search properties

referrer property

xxx

Syntax

xxx

Description

xxx Description to be supplied.

153

Applies to

document

Examples

xxx Examples to be supplied.

search property

xxx

Syntax

xxx

Description

Any query string or form data after ?.

Applies to

location

Examples

xxx Examples to be supplied.

See also

• hash, host, hostname, href, pathname, port, protocol properties

selected property

xxx

Syntax

xxx

Description

Boolean property that indicates the current selected state of an option in a select object.

 154

Applies to

select

Examples

xxx Examples to be supplied.

See also

• defaultSelected property

selectedIndex property

xxx

Syntax

xxx

Description

xxx to be described

Applies to

select

Examples

xxx Examples to be supplied.

See also

• index property

self property

xxx

Syntax

xxx

Description

155

The self property refers to the current window. Use the self property to disambiguate a window property
from a form of the same name. You can also use the self property to make your code more readable.

Applies to

window

Examples

In the following example, self.status is used to set the status property. This usage disambiguate the status
property of a window from a form called "status".

<A HREF=""
 onClick="this.href=pickRandomURL();"
 onMouseOver="self.status='Pick a random URL' ; return true">
Go!

See also

• window property

SQRT1_2 property

xxx

Syntax

xxx

Description

SQRT1_2 is the square root of one-half; equivalently, one over the square root of two, roughly 0.707.

Applies to

Math

Examples

xxx Examples to be supplied.

See also

• E, LN2, LN10, PI, SQRT2 properties

 156

SQRT2 property

xxx

Syntax

xxx

Description

SQRT2 is the square root of two, roughly 1.414.

Applies to

Math

Examples

xxx Examples to be supplied.

See also

 • E, LN2, LN10, PI, SQRT1_2 properties

status property

xxx

Syntax

xxx

Description

For a window, the status property reflects a priority or transient message in the status bar at the bottom of
the window, such as the message that appears when a mouseOver event occurs over an anchor. Do not
confuse status with defaultStatus. The defaultStatus property reflects the default message displayed in the
status bar.

Applies to

window

Examples

Suppose you have created a JavaScript function called pickRandomURL() that lets you select a URL at

157

random. You can use the onClick event handler of an anchor to specify a value for the HREF attribute of
the anchor dynamically, and the onMouseOver event handler to specify a custom message for the window
in the status property:

<A HREF=""
 onClick="this.href=pickRandomURL();"
 onMouseOver="self.status='Pick a random URL'; return true">
Go!

In the above example, the status property of the window is assigned to the window's self property, as
self.status. As this example shows, you must return true to set the status property in the onMouseOver
event handler.

See also

 • defaultStatus property

target property

A string specifying the name of the window that responses go to after a form has been submitted.

Syntax

formName.target

formName is the name of any form or an element in the forms array.

Description

The target property is a reflection of the TARGET attribute of the HTML FORM tag. You cannot set this
property after the Navigator has laid out the HTML source.

Applies to

form, link

Examples

The following example specifies that responses to the musicInfo form are displayed in the "msgWindow"
window:

musicInfo.target="msgWindow"

See also

For form:
 • action, method properties

 158

text property

xxx

Syntax

xxx

Description

String, reflection of the text after the <OPTION> tag.

Applies to

select

Examples

xxx Examples to be supplied.

title property

xxx

Syntax

xxx

Description

Current document title.

Applies to

document

Examples

xxx Examples to be supplied.

top property

xxx

Syntax

159

xxx

Description

The top-most ancestor window, which is its own parent.

Applies to

window

Examples

xxx Examples to be supplied.

userAgent property

xxx

Syntax

xxx

Description

xxx Description to be supplied

Applies to

navigator

Examples

xxx Examples to be supplied.

See also

• appName, appVersion, appCodeName properties

value property

xxx

Syntax

xxx

 160

Description

For button, reset, and submit objects, a string that is the same as the VALUE attribute (this is the label
that appears onscreen, not the internal name for the button). For checkbox, a string, "on" if item is
checked; "off" otherwise. For radio, a string, reflection of the VALUE attribute. For select objects, reflec-
tion of VALUE attribute, sent to server on submit. For text and textarea, string, the contents of the field.

If you change the value property of a text or textArea object, the object on the form is updated dynami-
cally. If you change the value property of any other type of object, the object on the form is not updated.

Applies to

button, checkbox, password, radio, reset, select, submit, text, textarea

Examples

xxx Examples to be supplied.

See also

For password, text, and textarea:
 • defaultValue property

vlinkColor property

xxx

Syntax

xxx

Description

The color of visited links, expressed as a hexadecimal RGB triplet or as one of the string literals listed in
the Color Appendix. This property is the JavaScript reflection of the VLINK attribute of the HTML
BODY tag.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

document

Examples

161

The following example sets the color of visited links to aqua using a string literal:

document.vlinkColor="aqua"

The following example sets the color of active links to aqua using a hexadecimal triplet:

document.vlinkColor="00FFFF"

See also

• alinkColor, bgColor, fgColor, and linkColor properties

window property

xxx

Syntax

xxx

Description

The window property refers to the current window. Use the window property to disambiguate a property
of the window object from a form of the same name. You can also use the window property to make your
code more readable.

Applies to

window

Examples

In the following example, window.status is used to set the status property. This usage disambiguate the
status property of a window from a form called "status".

<A HREF=""
 onClick="this.href=pickRandomURL();"
 onMouseOver="window.status='Pick a random URL' ; return true">
Go!

See also

 self property

 162

163

Event handlers

The following event handlers are available in JavaScript:

• onBlur
• onChange
• onClick
• onFocus
• onLoad
• onMouseOver
• onSelect

 • onSubmit
• onUnload

onBlur event handler

A blur event occurs when a select, text, or textarea field on a form loses focus. The onBlur event handler
executes JavaScript code when a blur event occurs.

See the relevant objects for the onBlur syntax.

Applies to

select, text, textarea

Examples

In the following example, userName is a required text field. When a user attempts to leave the field, the
onBlur event handler calls the required() function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName" onBlur="required(this.value)">

See also

• onChange , onFocus event handlers

onChange event handler

A change event occurs when a select, text, or textarea field loses focus and its value has been modified.
The onChange event handler executes JavaScript code when a change event occurs.

Use the onChange event handler to validate data after it is modified by a user.

See the relevant objects for the onChange syntax.

 164

Applies to

select, text, textarea

Examples

In the following example, userName is a text field. When a user attempts to leave the field, the onBlur
event handler calls the checkValue() function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName" onBlur="checkValue(this.value)">

See also

• onBlur , onFocus event handlers

onClick event handler

A click event occurs when an object on a form is clicked. The onClick event handler executes JavaScript
code when a click event occurs.

See the relevant objects for the onClick syntax.

Applies to

button, checkbox, radio, link, reset, submit

Examples

For example, suppose you have created a JavaScript function called compute(). You can execute the
compute() function when the user clicks a button by calling the function in the onClick event handler, as
follows:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

In the above example, the keyword this refers to the current object; in this case, the Calculate button. The
construct this.form refers to the form containing the button.

For another example, suppose you have created a JavaScript function called pickRandomURL() that lets
you select a URL at random. You can use the onClick event handler of an anchor to dynamically specify a
value for the HREF attribute of the anchor, as shown in the following example:

<A HREF=""
 onClick="this.href=pickRandomURL();"
 onMouseOver="window.status='Pick a random URL'; return true">
Go!

In the above example, the onMouseOver event handler specifies a custom message for the Navigator
status bar when the user places the mouse pointer over the Go! anchor. As this example shows, you must

165

return true to set the window.status property in the onMouseOver event handler.

onFocus event handler

A focus event occurs when a field receives input focus by tabbing or clicking with the mouse. Selecting
within a field results in a select event, not a focus event. The onFocus event handler executes JavaScript
code when a focus event occurs.

See the relevant objects for the onFocus syntax.

Applies to

select, text, textarea

Examples

The following example uses an onFocus handler in the valueField textarea object to call the valueCheck()
function.

<INPUT TYPE="textarea" VALUE="" NAME="valueField" onFocus="valueCheck()">

See also

• onBlur , onChange event handlers

onLoad event handler

A load event occurs when Navigator finishes loading a window or all frames within a <FRAMESET>.
The onLoad event handler executes JavaScript code when a load event occurs.

Use the onLoad event handler within either the <BODY> or the <FRAMESET> tag, for example, <BODY

onLoad="...">.

Applies to

window

Examples

In the following example, the onLoad event handler displays a greeting message after a web page is
loaded.

<BODY onLoad="window.alert("Welcome to the Brave New World home page!")>

See also
• onUnload event handler

 166

onMouseOver event handler

A mouseOver event occurs when the mouse pointer is over an object. The onMouseOver event handler
executes JavaScript code when a mouseOver event occurs.

You must return true if you want to set the window.status property with the onMouseOver event handler.

See the relevant objects for the onMouseOver syntax.

Applies to

link

Examples

By default, the HREF value of an anchor displays in the status bar at the bottom of the Navigator when a
user places the mouse pointer over the anchor. In the following example, the onMouseOver event handler
provides the custom message "Click this if you dare."

<A HREF="http://home.netscape.com/"
 onMouseOver="window.status='Click this if you dare!'; return true">
Click me

See onClick for an example of using onMouseOver when the anchor HREF attribute is set dynamically.

onSelect event handler

A select event occurs when a user selects some of the text within a text or textarea field. The onSelect
event handler executes JavaScript code when a select event occurs.

See the relevant objects for the onSelect syntax.

Applies to

text, textarea

Examples

The following example uses an onSelect handler in the valueField text object to call the selectState()
function.

<INPUT TYPE="text" VALUE="" NAME="valueField" onFocus="selectState()">

onSubmit event handler

A submit event occurs when a user submits a form. The onSubmit event handler executes JavaScript code

167

when a submit event occurs.

You must return true in the event handler to allow the form to be submitted; return false to prevent the
form from being submitted.

See the relevant objects for the onSubmit syntax.

Applies to

form

Examples

In the following example, the onSubmit event handler evaluates the data being submitted to test if it is
legal. If the data is legal, the form is submitted; otherwise, the form is not submitted.

form.onSubmit=
"if badFormData(this.form) {
 return false;
} else {
 return true;
}"

onUnload event handler

An unload event occurs when you exit a document. The onUnload event handler executes JavaScript code
when an unload event occurs.

Use the onLoad event handler within either the <BODY> or the <FRAMESET> tag, for example, <BODY

onLoad="...">.

Applies to

window

Examples

In the following example, the onUnload event handler calls the cleanUp() function to perform some shut
down processing when the user exits a web page:

<BODY onUnload="cleanUp()">

See also

• onLoad event handler

 168

169

Statements
JavaScript statements consist of keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement is separated by a semi-
colon.

Syntax conventions: All keywords in syntax statements are in bold. Words in italics represent user-
defined names or statements. Any portions enclosed in square brackets, i.e. [and], are optional.
{statements } indicates a block of statements, which can consist of a single statement or multiple state-
ments delimited by a curly braces.

The following statements are available in JavaScript:
• break • if...else
• comment • return
• continue • var
• for • while
• for...in • with
• function

break statement

The break statement terminates the current while or for loop and transfers program control to the state-
ment following the terminated loop.

Syntax

break

Examples

The following function has a break statement that terminates the while loop when i is 3, and then returns
the value 3 * x.

function func(x) {
 var i = 0;
 while (i < 6) {
 if (i == 3)
 break;
 i++;
 }
 return i*x;
}

comment statement

Comments are notations by the author to explain what the script does, and they are ignored by the inter-
preter. JavaScript supports Java-style comments:

 170

• Comments on a single line are preceded by a double-slash (//).
• Comments that span multiple lines are preceded by a /* and followed by a */.

Syntax

1. // comment text
2. /* multiple line comment text */

Examples

// This is a single-line comment.

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

continue statement

The continue statement terminates execution of the block of statements in a while or for loop, and contin-
ues execution of the loop with the next iteration. In contrast to the break statement, it does not terminate
the execution of the loop entirely: instead,

 In a while loop it jumps back to the condition.
 In a for loop it jumps to the update expression.

Syntax

continue

Examples

The following example shows a while loop that has a continue statement that executes when the value of i
is 3. Thus, n takes on the values 1, 3, 7, and 12.

i = 0;
n = 0;
while (i < 5) {
 i++;
 if (i == 3)
 continue;
 n += i;
}

for statement

A for loop consists of three optional expressions, enclosed in parentheses and separated by semicolons,
followed by a block of statements executed in the loop. The parts of the for statement are:

• The initial expression, generally used to initialize a counter variable. This statement may option

171

ally declare new variables with the var keyword. This expression is optional.
• The condition that is is evaluated on each pass through the loop. If this condition is true, the

statements in the succeeding block are performed. This conditional test is optional. If omitted,
then the condition always evaluates to true.

• An update expression generally used to update or increment the counter variable. This expres
sion is optional.

• A block of statements that are executed as long as the condition is true. This can be a single
statement or multiple statements. Although not required, it is good practice to indent these
statements four spaces from the beginning of the for statement.

Syntax

for ([initial expression]; [condition]; [update expression]) {
 statements
}
initial expression = statement | variable declartion

Examples

This simple for statement starts by declaring the variable i and initializing it to zero. It checks that i is less
than nine, and performs the two succeeding statements, and increments i by one after each pass through
the loop.

for (var i = 0; i < 9; i++) {
 n += i;
 myfunc(n);
}

for...in statement

The for statement iterates variable var over all the properties of object obj. For each distinct property, it
executes the statements in statements.

Syntax

for (var in obj) {
 statements }

Examples

The following function takes as its argument an object and the object's name. It then iterates over all the
object's properties and returns a string that lists the property names and their values.

function dump_props(obj, obj_name) {
 var result = "", i = "";
 for (i in obj)
 result += obj_name + "." + i + " = " + obj[i] + "\n";
 return result;
}

 172

function statement

The function statement declares a JavaScript function name with the specified parameters param. To
return a value, the function must have a return statement that specifies the value to return. You cannot
nest a function statement in another
statement or in itself.

All parameters are passed to functions, by value. In other words, the value is passed to the function, but if
the function changes the value of the parameter, this change is not reflected globally or in the calling
function.

Syntax

function name([param] [, param] [..., param]) {
 statements }

Examples

//This function returns the total dollar amount of sales, when
//given the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {
 return units_a*79 + units_b*129 + units_c*699
}

if...else statement

The if...else statement is a conditional statement that executes the statements in statements if condition is
true. In the optional else clause, it executes the statements in else statements if condition is false. These
may be any JavaScript statements, including further nested if statements.

Syntax

if (condition) {
 statements
} [else {
 else statements
}]

Examples

if (cipher_char == from_char) {
 result = result + to_char;
 x++
} else
 result = result + clear_char;

173

return statement

The return statement specifies the value to be returned by a function.

Syntax

return expression;

Examples

The following simple function returns the square of its argument, x, where x is an number.

function square(x) {
 return x * x;
}

var statement

The var statement declares a variable varname, optionally initializing it to have value. The variable name
varname can be any legal identifier, and value can be any legal expression. The scope of a variable is the
current function or, for variables declared outside a function, the current application.

Using var outside a function is optional; you can declare a variable by simply assigning it a value. How-
ever, it is good style to use var, and it is neccessary in functions if there is a global variable of the same
name. So, in general, it is a good idea to always use var, but you should definitely use it when declaring a
local variable in a function, to ensure that any global variable of the same name does not override it.

Syntax

var varname [= value] [..., varname [= value]]

Examples

var num_hits = 0, cust_no = 0

while statement

The while statement is a loop that evaluates the expression condition, and if it is true, executes statements.
It then repeats this process, as long as condition is true. When condition evaluates to false, execution
continues with the next statement following the statements.

Although not required, it is good practice to indent the statements a while loop four spaces from the
beginning of the for statement.

Syntax

 174

while (condition) {
 statements
}

Examples

The following simple while loop iterates as long as n is less than three. Each iteration, it increments n and
adds it to x. Therefore, x and n take on the following values

• After first pass: x = 1 and n = 1
• After second pass: x = 2 and n = 3
• After third pass: x = 3 and n = 6

After completing the third pass, the condition n < 3 is no longer true, so the loop terminates.

n = 0;
x = 0;
while(n < 3) {
 n ++; x += n;
}

with statement

The with statement establishes object as the default object for the statements. Any property references
without an object are then assumed to be for object. Note that the parentheses are required around object.

Syntax

with (object){
 statements
}

Examples

with (Math) {
 a = PI * r*r
 x = r * cos(theta)
 y = r * sin(theta)
}

175

Reserved words
The reserved words in this list cannot be used as JavaScript variables, functions, methods, or object
names. Some of these words are keywords used in JavaScript; others are reserved for future use.

• abstract • extends • int • super
• boolean • false • interface • switch
• break • final • long • synchronized
• byte • finally • native • this
• case • float • new • throw
• catch • for • null • throws
• char • function • package • transient
• class • goto • private • true
• const • if • protected • try
• continue • implements • public • var
• default • import • return • void
• do • in • short • while
• double • instanceof • static • with
• else

 176

Color values
The string literals in this table can be used to specify colors in the JavaScript alinkColor, bgColor,
fgColor, linkColor, and vlinkColor properties and the fontcolor method.

You can also use these string literals to set the color in the HTML reflections of these properties, for
example <BODY BGCOLOR="bisque"> , and to set the COLOR attribute of the FONT tag, for example,
color .

The following red, green, and blue values are in Decimal and Hexidecimal.

Decimal Hexidecimal
Color Red Green Blue Red Green Blue
aliceblue 240 248 255 F0 F8 FF
antiquewhite 250 235 215 FA EB D7
aqua 0 255 255 00 FF FF
aquamarine 127 255 212 7F FF D4
azure 240 255 255 F0 FF FF
beige 245 245 220 F5 F5 DC
bisque 255 228 196 FF E4 C4
black 0 0 0 00 00 00
blanchedalmond 255 235 205 FF EB CD
blue 0 0 255 00 00 FF
blueviolet 138 43 226 8A 2B E2
brown 165 42 42 A5 2A 2A
burlywood 222 184 135 DE B8 87
cadetblue 95 158 160 5F 9E A0
chartreuse 127 255 0 7F FF 00
chocolate 210 105 30 D2 69 1E
coral 255 127 80 FF 7F 50
cornflowerblue 100 149 237 64 95 ED
cornsilk 255 248 220 FF F8 DC
crimson 220 20 60 DC 14 3C
cyan 0 255 255 00 FF FF
darkblue 0 0 139 00 00 8B
darkcyan 0 139 139 00 8B 8B
darkgoldenrod 184 134 11 B8 86 0B
darkgray 169 169 169 A9 A9 A9
darkgreen 0 100 0 00 64 00
darkkhaki 189 183 107 BD B7 6B
darkmagenta 139 0 139 8B 00 8B
darkolivegreen 85 107 47 55 6B 2F
darkorange 255 140 0 FF 8C 00
darkorchid 153 50 204 99 32 CC
darkred 139 0 0 8B 00 00
darksalmon 233 150 122 E9 96 7A
darkseagreen 143 188 143 8F BC 8F
darkslateblue 72 61 139 48 3D 8B
darkslategray 47 79 79 2F 4F 4F
darkturquoise 0 206 209 00 CE D1

177

darkviolet 148 0 211 94 00 D3
deeppink 255 20 147 FF 14 93
deepskyblue 0 191 255 00 BF FF
dimgray 105 105 105 69 69 69
dodgerblue 30 144 255 1E 90 FF
firebrick 178 34 34 B2 22 22
floralwhite 255 250 240 FF FA F0
forestgreen 34 139 34 22 8B 22
fuchsia 255 0 255 FF 00 FF
gainsboro 220 220 220 DC DC DC
ghostwhite 248 248 255 F8 F8 FF
gold 255 215 0 FF D7 00
goldenrod 218 165 32 DA A5 20
gray 128 128 128 80 80 80
green 0 128 0 00 80 00
greenyellow 173 255 47 AD FF 2F
honeydew 240 255 240 F0 FF F0
hotpink 255 105 180 FF 69 B4
indianred 205 92 92 CD 5C 5C
indigo 75 0 130 4B 00 82
ivory 255 255 240 FF FF F0
khaki 240 230 140 F0 E6 8C
lavender 230 230 250 E6 E6 FA
lavenderblush 255 240 245 FF F0 F5
lawngreen 124 252 0 7C FC 00
lemonchiffon 255 250 205 FF FA CD
lightblue 173 216 230 AD D8 E6
lightcoral 240 128 128 F0 80 80
lightcyan 224 255 255 E0 FF FF
lightgoldenrodyellow 250 250 210 FA FA D2
lightgreen 144 238 144 90 EE 90
lightgrey 211 211 211 D3 D3 D3
lightpink 255 182 193 FF B6 C1
lightsalmon 255 160 122 FF A0 7A
lightseagreen 32 178 170 20 B2 AA
lightskyblue 135 206 250 87 CE FA
lightslategray 119 136 153 77 88 99
lightsteelblue 176 196 222 B0 C4 DE
lightyellow 255 255 224 FF FF E0
lime 0 255 0 00 FF 00
limegreen 50 205 50 32 CD 32
linen 250 240 230 FA F0 E6
magenta 255 0 255 FF 00 FF
maroon 128 0 0 80 00 00
mediumaquamarine 102 205 170 66 CD AA
mediumblue 0 0 205 00 00 CD
mediumorchid 186 85 211 BA 55 D3
mediumpurple 147 112 219 93 70 DB
mediumseagreen 60 179 113 3C B3 71
mediumslateblue 123 104 238 7B 68 EE
mediumspringgreen 0 250 154 00 FA 9A
mediumturquoise 72 209 204 48 D1 CC

Decimal Hexidecimal
Color Red Green Blue Red Green Blue

 178

mediumvioletred 199 21 133 C7 15 85
midnightblue 25 25 112 19 19 70
mintcream 245 255 250 F5 FF FA
mistyrose 255 228 225 FF E4 E1
moccasin 255 228 181 FF E4 B5
navajowhite 255 222 173 FF DE AD
navy 0 0 128 00 00 80
oldlace 253 245 230 FD F5 E6
olive 128 128 0 80 80 00
olivedrab 107 142 35 6B 8E 23
orange 255 165 0 FF A5 00
orangered 255 69 0 FF 45 00
orchid 218 112 214 DA 70 D6
palegoldenrod 238 232 170 EE E8 AA
palegreen 152 251 152 98 FB 98
paleturquoise 175 238 238 AF EE EE
palevioletred 219 112 147 DB 70 93
papayawhip 255 239 213 FF EF D5
peachpuff 255 218 185 FF DA B9
peru 205 133 63 CD 85 3F
pink 255 192 203 FF C0 CB
plum 221 160 221 DD A0 DD
powderblue 176 224 230 B0 E0 E6
purple 128 0 128 80 00 80
red 255 0 0 FF 00 00
rosybrown 188 143 143 BC 8F 8F
royalblue 65 105 225 41 69 E1
saddlebrown 139 69 19 8B 45 13
salmon 250 128 114 FA 80 72
sandybrown 244 164 96 F4 A4 60
seagreen 46 139 87 2E 8B 57
seashell 255 245 238 FF F5 EE
sienna 160 82 45 A0 52 2D
silver 192 192 192 C0 C0 C0
skyblue 135 206 235 87 CE EB
slateblue 106 90 205 6A 5A CD
slategray 112 128 144 70 80 90
snow 255 250 250 FF FA FA
springgreen 0 255 127 00 FF 7F
steelblue 70 130 180 46 82 B4
tan 210 180 140 D2 B4 8C
teal 0 128 128 00 80 80
thistle 216 191 216 D8 BF D8
tomato 255 99 71 FF 63 47
turquoise 64 224 208 40 E0 D0
violet 238 130 238 EE 82 EE
wheat 245 222 179 F5 DE B3
white 255 255 255 FF FF FF
whitesmoke 245 245 245 F5 F5 F5
yellow 255 255 0 FF FF 00
yellowgreen 154 205 50 9A CD 32

Decimal Hexidecimal
Color Red Green Blue Red Green Blue

179

 180

	Table of Contents
	JavaScript Working Document…
	The Mother of all Disclaimers …
	Learning JavaScript…
	JavaScript and Java…
	JavaScript Authoring…
	Using JavaScript in HTML…
	Some Introductory Examples…
	JavaScript Values, Names, and Literals…
	Values…
	Datatype Conversion…
	Variable Names…
	Literals…
	JavaScript Expressions and Operators…
	Expressions…
	Conditional Expressions…
	Assignment Operators (=, +=, -=, *=, /=)…
	Operators…
	Arithmetic Operators…
	Bitwise Operators…
	The JavaScript Object Model…
	Objects and Properties…
	Functions and Methods…
	Creating New Objects…
	Using Built-in Objects and Functions…
	Using the String Object…
	Using the Math Object…
	Using the Date Object…
	Using the eval function …
	Overview of JavaScript Statements…
	Authoring with JavaScript…
	Using JavaScript in HTML …
	Scripting Event Handlers …
	Tips and Techniques …
	Navigator Objects…
	Using Navigator Objects…
	Navigator Object Hierarchy…
	JavaScript and HTML Layout…
	Key Navigator Objects…
	Objects…
	anchor object (client)…
	button object (client)…
	checkbox object (client)…
	Date object (common)…
	document object (client)…
	form object (client)…
	frame object (client)…
	history object (client)…
	link object (client)…
	location object (client)…
	Math object (common)…
	navigator object (client)…
	password object (client)…
	radio object (client)…
	reset object (client)…
	select object (client)…
	string object (common)…
	submit object (client)…
	text object (client)…
	textarea object (client)…
	window object (client)…
	Methods and Functions…
	abs method…
	acos method…
	alert method…
	anchor method…
	asin method…
	atan method…
	back method…
	big method…
	blink method…
	blur method…
	bold method…
	ceil method…
	charAt method…
	clear method…
	clearTimeout method…
	click method…
	close method (document object)…
	close method (window object)…
	confirm method…
	cos method…
	escape function…
	eval function…
	exp method…
	fixed method…
	floor method…
	focus method…
	fontcolor method…
	fontsize method…
	forward method…
	getDate method…
	getDay method…
	getHours method…
	getMinutes method…
	getMonth method…
	getSeconds method…
	getTime method…
	getYear method…
	go method…
	indexOf method…
	italics method…
	lastIndexOf method…
	link method…
	log method…
	max method…
	min method…
	open method (document object)…
	open method (window object)…
	parse method…
	parseFloat function…
	parseInt function…
	pow method…
	prompt method…
	random method…
	round method…
	select method…
	setDate method…
	setHours method…
	setMinutes method…
	setMonth method…
	setSeconds method…
	setTime method…
	setTimeout method…
	setYear method…
	sin method…
	small method…
	sqrt method…
	strike method…
	sub method…
	submit method…
	substring method…
	sup method…
	tan method…
	toGMTString method…
	toLocaleString method…
	toLowerCase method…
	toString method…
	toUpperCase method…
	unEscape function…
	UTC method…
	write method…
	writeln method…
	Properties…
	action property…
	alinkColor property…
	anchors property…
	appName property…
	appVersion property…
	appCodeName property…
	checked property…
	cookie property…
	defaultChecked property…
	defaultSelected property…
	defaultStatus property…
	defaultValue property…
	E property…
	elements property…
	fgColor property…
	forms property…
	frames property…
	hash property…
	host property…
	hostname property…
	href property…
	index property…
	lastModified property…
	length property…
	linkColor property…
	links property…
	LN2 property…
	LN10 property…
	location property…
	method property…
	name property…
	options property…
	parent property…
	pathname property…
	PI property…
	port property…
	protocol property…
	referrer property…
	search property…
	selected property…
	selectedIndex property…
	self property…
	SQRT1_2 property…
	SQRT2 property…
	status property…
	target property…
	text property…
	title property…
	top property…
	userAgent property…
	value property…
	vlinkColor property…
	window property…
	Event handlers…
	onBlur event handler…
	onChange event handler…
	onClick event handler…
	onFocus event handler…
	onLoad event handler…
	onMouseOver event handler…
	onSelect event handler…
	onSubmit event handler…
	onUnload event handler…
	Statements…
	break statement…
	comment statement…
	continue statement…
	for statement…
	for...in statement…
	function statement…
	if...else statement…
	return statement…
	var statement…
	while statement…
	with statement…
	Reserved words…
	Color values…

