

C H A P T E R 1

Contents

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Speech Recognition Manager
About the Speech Recognition Manager 1-5
Speech Objects 1-8

Object References 1-9
Object Properties 1-10

Language Models 1-11
Feedback Services 1-13

Using the Speech Recognition Manager 1-17
Checking for Speech Recognition Capabilities 1-17
Opening Recognition Systems and Recognizers 1-18
Building a Language Model 1-21
Setting the Language Model 1-25
Setting the Rejection Word 1-25
Starting and Stopping Speech Recognition 1-27
Handling Recognition Notifications 1-27

Using Apple Events 1-28
Using Callback Routines 1-30

Interpreting Recognition Results 1-33
Saving and Loading Language Objects 1-37

Speech Recognition Manager Reference 1-38
Constants 1-39

Gestalt Selectors and Response Values 1-39
Recognition System IDs 1-40
Recognition System Properties 1-40
Apple Event Selectors 1-42
Recognizer Properties 1-43
Search Status Flags 1-47
Notification Flags 1-48
1-1

C H A P T E R 1

Listen Key Modes 1-49
Recognition Result Properties 1-49
Language Object Properties 1-51
Language Object Types 1-53

Data Structures 1-53
Speech Recognition CallBack Structure 1-53
Callback Routine Parameter Structure 1-55

Speech Recognition Manager Routines 1-55
Opening and Closing Recognition Systems 1-56
Creating and Manipulating Recognizers 1-57
Managing Speech Objects 1-62
Creating Language Objects 1-66
Manipulating Language Objects 1-70
Traversing Speech Objects 1-75
Reading and Writing Language Objects 1-78
Using the System Feedback Window 1-82

Application-Defined Routines 1-89
Speech Recognition Callback Routines 1-89

Summary of the Speech Recognition Manager 1-91
C Summary 1-91

Constants 1-91
Data Types 1-95
Speech Recognition Manager Routines 1-96
Application-Defined Routines 1-100

Pascal Summary 1-100
Constants 1-100
Data Types 1-103
Speech Recognition Manager Routines 1-104
Application-Defined Routines 1-107

Result Codes 1-108
1-2 Contents

C H A P T E R 1

Contents 1-3

ð

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, and
Macintosh, are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.

FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES

RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Speech Recognition Manager 1

This chapter describes the Speech Recognition Manager, the part of the
Macintosh system software that your application can use to respond to speech.
You use the Speech Recognition Manager to define the words and phrases you
want to listen for and to control other aspects of recognizing speech and
reacting to successful recognitions.

To use this chapter, you should be familiar with the Apple Event Manager, as
described in Inside Macintosh: Interapplication Communication. You need to know
how to receive and process Apple events if you rely on the default behavior for
being notified about the words and phrases recognized by the Speech
Recognition Manager.

This chapter begins by describing the basic capabilities of the Speech
Recognition Manager. Then it shows how to use some of those capabilities to
recognize speech and to react to that speech. The section “Speech Recognition
Manager Reference,” beginning on page 1-38, provides a complete reference to
the constants, data structures, and functions provided by the Speech
Recognition Manager.

Note
This chapter describes the application programming
interfaces supported by version 1.5 and later of the Speech
Recognition Manager. ◆

About the Speech Recognition Manager 1

The Speech Recognition Manager provides speech recognition services for
Macintosh computers. Speech recognition is the process of listening to and
recognizing spoken utterances. The main functional parts of the Speech
Recognition Manager and its connection to your application are illustrated in
Figure 1-1 on page 1-6.

The Speech Recognition Manager is part of the PlainTalk software package.
PlainTalk is a collection of operating system software that enables Macintosh
computers to speak written text and to respond to spoken commands. The
PlainTalk package includes the Speech Recognition Manager and the Speech
Synthesis Manager.
About the Speech Recognition Manager 1-5

C H A P T E R 1

Speech Recognition Manager

Note
The Speech Synthesis Manager was formerly called the
Speech Manager. Its name has been changed to distinguish
it from the Speech Recognition Manager and to describe its
operation more clearly. ◆

Figure 1-1 The parts of the Speech Recognition Manager

To use the Speech Recognition Manager, you must first open a recognition
system that defines certain global characteristics of the speech recognition
process. Typically, you create a recognition system when your application starts
up and later close it when your application exits. A recognition system
determines, for example, whether the feedback window is displayed. (See
“Feedback Services” on page 1-13 for information about the feedback window.)

You define the words and phrases you want to listen for by creating a language
model. For example, if you wanted to allow the user to select an animal from
among ten whose pictures are displayed in a window, you could build a
language model containing ten phrases, the names of those ten animals. Your
application can create several language models and set one of them as the
active language model. This is useful if the words or phrases for which you are

Recognition system

Active language model

Recognizer

Speech source

Application

Feedback window

Telephone

AIFF file

Microphone

More language models pascal OSErr MyAEHandler (…)

 {

	

...

}

Apple event handler
1-6 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager

listening can change according to context (for instance, according to what’s
displayed in a window). Similarly, your application can create language
models that contain other language models, and you can change parts of
language models dynamically according to context.

Your language model is associated with a recognizer, which performs the work
of recognizing utterances and reporting its results to your application.
A recognizer communicates with your application by sending it a recognition
notification, which specifies the event that prompted the notification and other
information about that event. For example, when a recognizer recognizes an
utterance described in your active language model, the recognizer informs
your application that it has recognized something by sending it a recognition
notification that contains a recognition result describing the recognized
utterance.

You can receive recognition notifications in one of two ways. By default, the
Speech Recognition Manager sends recognition notifications to your
application’s Apple event handler. If your application already handles Apple
events, you simply need to add code to handle the events in the Apple event
speech class. If you’re not writing an application and your code cannot receive
Apple events, you can instruct the Speech Recognition Manager to send
recognition notifications to an application-defined speech recognition callback
routine.

Your application can inspect a recognition result to determine what was said
and how to react to that utterance. In the example described earlier, where the
user can utter an animal’s name, you might respond by playing a recorded
sound from that animal or by displaying its name. A recognition result contains
the text of the recognized utterance together with other information that makes
it easy for your application to interpret the result. (See “Recognition Result
Properties” on page 1-49 for a complete description of the information
contained in a recognition result.)

You can use the Speech Recognition Manager to recognize continuous speech
from any human speaker, subject to these limitations:

■ The Speech Recognition Manager is supported only on PowerPC-based
Macintosh computers.

■ The Speech Recognition Manager is designed to recognize speech from adult
speakers of North American English. It doesn’t work well for children, and it
isn’t yet localized for other regions.
About the Speech Recognition Manager 1-7

C H A P T E R 1

Speech Recognition Manager

■ The Speech Recognition Manager works best with language models that are
relatively small. You can obtain maximum recognition accuracy by limiting
the active language model to a few distinct words or phrases at any one
time. The current system can recognize a few dozen phrases fairly well.

Speech Objects 1

The Speech Recognition Manager is object oriented in the sense that many of its
capabilities are accessed by creating and manipulating speech objects. A speech
object is an instance of a speech class, which defines a set of properties for
objects in the class. The behavior of a speech object is determined by the set of
properties associated with the object’s class. Here are the basic type definitions
for speech objects:

typedef struct OpaqueSRSpeechObject *SRSpeechObject;

typedef SRSpeechObject SRRecognitionSystem;
typedef SRSpeechObject SRRecognizer;
typedef SRSpeechObject SRSpeechSource;
typedef SRSpeechObject SRLanguageObject;

typedef SRSpeechSource SRRecognitionResult;

As these definitions make clear, all speech classes are arranged in the speech
class hierarchy, a hierarchical structure that provides for inheritance and
overriding of class data and methods. Figure 1-2 shows the speech class
hierarchy.
1-8 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager

Figure 1-2 The speech class hierarchy

As you can see, words, phrases, paths, and language models are all subclasses
of the language object class. In addition, language objects, recognition systems,
recognizers, and recognition results are all subclasses of the speech object class.

This hierarchy is useful for determining which Speech Recognition Manager
routines operate on which types of objects. A function that takes a parameter of
type SRSpeechObject can operate on an object located anywhere in this
hierarchy, because all speech classes are derived from the SRSpeechObject class.
(So, for example, you can use the SRGetProperty function to get a property of a
recognizer, a recognition system, a word, a phrase, and so on.) A function that
takes a parameter of type SRLanguageObject can operate on any language object.

Object References 1

You access a speech object by using an object reference (or, more briefly, a
reference). You obtain a reference whenever you create an object (for instance,
by calling the SRNewWord function) or whenever you retrieve an object (for
instance, by calling the SRGetIndexedItem function). A reference is essentially a
tag for some private information maintained internally by the Speech
Recognition Manager. The Speech Recognition Manager allocates space
(usually in the system heap) for that information when you first create an
object and returns a reference for that object to your application. You can
dispose of that memory only indirectly, by calling SRReleaseObject to release an
object.

Recognition system

Recognizer

Speech source Recognition result
Speech object

Language object

Phrase

Language model

Word

Path
About the Speech Recognition Manager 1-9

C H A P T E R 1

Speech Recognition Manager

It’s possible to have more than one reference to a speech object. (For example, if
you call the SRGetIndexedItem routine twice on the same speech object with the
same index, you’ll be given two different references to the same speech object.)
For each speech object, the Speech Recognition Manager maintains a reference
count (that is, the number of references that exist to that object).

Certain operations on a speech object increase its reference count, and other
operations decrease it. When you first create a speech object (by calling a
function beginning SRNew), its reference count is set to 1. When you retrieve an
object (by calling a function beginning SRGet), the object’s reference count is
incremented by 1. When you release an object, the object’s reference count is
decremented by 1. If the reference count of an object becomes 0, the memory
occupied by that object is disposed of.

IMPORTANT

You must balance every function call that creates an object
reference with a call to the SRReleaseObject function when
you are finished using that reference. Failure to do so will
result in a memory leak. Every call to a function of the
form SRNewObject or SRGetObject that successfully returns
an object reference must be balanced by a call to
SRReleaseObject. ▲

Object Properties 1

Each type of speech object has one or more properties associated with it that
control some of the object’s behavior. For instance, a word has a spelling
property that indicates how the word is spelled. A property is just an item of
data associated with an object; this item of data has both a property type and a
property value.

The property types associated with an object depend on the location of that
object in the speech class hierarchy. Every language object (that is, every
instance of any subclass of the SRLanguageObject class) shares a number of
properties, including properties that determine the spelling of the object, an
application-defined reference constant for the object, and whether the object
can meaningfully be repeated by the user. By contrast, a recognition system is
not a language object and hence has no spelling property. Instead, recognition
systems have other properties (for instance, the feedback and listening modes
property mentioned later in the next section).
1-10 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager

You can get or set a specific property of an object by calling the SRGetProperty
and SRSetProperty functions. You indicate the object for which you want to get
or set a property by passing an object reference. You indicate the property of
that object you want to get or set by passing a property selector. For instance,
the following lines of code set a word’s reference constant property to a
specified value.

/* suppose that the word myWord has already been created */
unsigned long myVal;
OSErr myErr;

myVal = 3;
myErr = SRSetProperty(myWord, kSRRefCon, &myVal, sizeof(myVal));

The constant kSRRefCon is a property selector for the reference constant
property of a language object. As shown later (in “Building a Language Model”
on page 1-21 and “Interpreting Recognition Results” on page 1-33), you’ll
probably use a language object’s reference constant property to help you
interpret the data passed to you in a recognition result. In general, all
properties of an object have reasonable default values.

See “Recognition System Properties” on page 1-40, “Recognizer Properties” on
page 1-43, “Recognition Result Properties” on page 1-49, and “Language Object
Properties” on page 1-51 for a description of the properties defined by the
Speech Recognition Manager.

Language Models 1

You specify the words and phrases for which you want the Speech Recognition
Manager to listen by defining a language model, which is a list of zero or more
words, phrases, or paths. For example, suppose that you want the user to be
able to utter commands like “call Arlo” and “schedule a lunch with Brent next
Tuesday” (perhaps with other names and days as well). A standard method of
specifying language models like this is to display the model in Backus-Naur
Form (BNF). Listing 1-1 is a BNF description of a relatively simple language
model.
About the Speech Recognition Manager 1-11

C H A P T E R 1

Speech Recognition Manager

Listing 1-1 A BNF description of the language model <TopLM>

<TopLM>= <call> <person> | schedule meeting with <person> |view today’s
schedule;
<call>= call | phone| dial;
<person>= Arlo | Brent | Matt | my wife;

A language model is built using four kinds of objects, collectively called
language objects: words, phrases, paths, and language models. A word
represents a single speakable word (for example, “dial” in the BNF
description). A phrase is a sequence of zero or more words (for example, “view
today’s schedule” in the BNF description). A path is a sequence of zero or more
words, phrases, or language models (for example, “<call> <person>” in the BNF
description). Finally, a language model is a list of zero or more words, phrases,
or paths (for example, “call | phone | dial” in the BNF description).

By convention, the name of a language model is enclosed in the characters “<”
and “>”. As you can see, the terms on the left sides of the “=” characters in the
BNF description are names of language models. Some of those language
models are used in paths that define other language models. The right side of
each line in a BNF description is a set of one or more paths. When more than
one path occurs, the character “|” (which you can read “or”) separates the
paths.

Figure 1-3 provides another way, using a hierarchical decomposition, of
illustrating the structure of the language model <TopLM> described in
Listing 1-1. As you can see, the language model <TopLM> can be decomposed
into three component parts: two paths (of type SRPath) and a phrase (of type
SRPhrase). The path “<call> <person>” is decomposed into two language
models (each of type SRLanguageModel), and the language model <call> is
decomposed into three words (of type SRWord).

Note
In Figure 1-3, some language objects are depicted more
than once in the decomposition of the language model
<TopLM>. For example, the language model <person>
appears twice in the hierarchy. When stored in memory,
a language object appears only once, and multiple
occurrences of the language object are handled using an
object reference, See “Object References” on page 1-9 for
complete details. ◆
1-12 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Figure 1-3 Structure of the language model <TopLM>

A language model that does not occur in the definition of any other language
model is a top-level language model. A language model that does occur in the
definition of some other language model is an embedded language model. In
the BNF description given earlier, the language model <TopLM> is a top-level
language model and the language model <person> is an embedded language
model.

Note
See “Building a Language Model,” beginning on page 1-21
for sample code that builds a language model. ◆

Feedback Services 1

The Speech Recognition Manager includes a set of feedback services that
provide important cues and responses to the user. As you will see, it is very

"<TopLM>"

SRLanguageModel

"<call><person>"

SRPath

"<call>"

SRLanguageModel

"<person>"

SRLanguageModel

"<person>"

SRLanguageModel

"view"

SRWord

"today’s"

SRWord

"schedule"

SRWord

"schedule meeting with"

SRPhrase

"dial"

SRWord

"call"

SRWord

"phone"

SRWord

"Arlo"

SRWord

"Matt"

SRWord

"Brent"

SRWord

"my wife"

SRPhrase

"meeting"

SRWord

"schedule"

SRWord

"with"

SRWord

"Arlo"

SRWord

"Matt"

SRWord

"Brent"

SRWord

"my wife"

SRPhrase

"view today’s schedule"

SRLanguageModel

"schedule meeting with <person>"

SRPath
About the Speech Recognition Manager 1-13

C H A P T E R 1

Speech Recognition Manager
easy to obtain the default feedback behavior by setting the
kSRFeedbackAndListeningModes property of your recognition system (see
Listing 1-3 on page 1-19). The services consist of a floating feedback window
that is normally visible when a recognizer is active and a set of functions that
you can use to modify the operation of the feedback window. Because users
typically have difficulty using speech recognition systems without some kind
of audio or visual feedback, you should use these feedback services unless you
have reasons to provide your own method of eliciting utterances from the user
and providing responses to the user.

IMPORTANT

In general, you should use the Speech Recognition
Manger’s feedback services unless your application
cannot. For example, under System 7.5, if your application
doesn’t call WaitNextEvent or is not high-level event aware,
then it should not use the feedback services. By using these
services, you are guaranteed to conform to the standard
speech recognition interface. In addition, you will
automatically benefit from future enhancements to the
feedback services. ▲

A feedback window (shown in Figure 1-4) appears on the screen whenever a
recognizer is active (unless the recognizer is configured to display no feedback
window). The feedback window consists of two panes: a status pane on the left
and a transcript pane on the right.

Figure 1-4 A feedback window

Note
The appearance of the feedback window may change in
future versions of the Speech Recognition Manager. ◆

The status pane contains a feedback character (usually a head) whose
expressions help indicate which state the recognizer is in. For instance, if the
1-14 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
recognizer is awaiting an utterance, the eyes of the feedback character shown
in Figure 1-4 will look straight at the user. The status pane also contains a
listening mode indicator, a word or phrase that indicates which keyword must
be uttered or which key must be held down in order for a recognizer to start
listening. In Figure 1-4, the listening mode indicator is the word “Esc”, which
indicates that the user must hold down the Escape key while uttering a
command. (This is the push-to-talk listening mode.)

The transcript pane contains a readable transcript of the few most recent
recognized utterances and feedback. There are two kinds of text in the
transcript pane: recognized text and output text. Recognized text is text drawn
into the transcript pane that represents a recognized utterance from the user.
Output text is text drawn into the transcript pane that represents a response to
a recognized utterance. For example, in Figure 1-4, the sentence “Is file sharing
on” is recognized text, and the response “File sharing is off” is output text. Any
application can request that a string be spoken or displayed in the feedback
window.

The user can control several aspects of the feedback window using the
Feedback option in the Speech control panel (shown in Figure 1-5). As you can
see, a user can select the feedback character and the sound that is played
whenever an utterance is recognized. The user can also determine whether any
output text is to be read aloud to the user.

Figure 1-5 The Feedback option of the Speech control panel
About the Speech Recognition Manager 1-15

C H A P T E R 1

Speech Recognition Manager
The user can control the listening mode of a recognizer using the Listening
option in the Speech control panel (shown in Figure 1-6).

Figure 1-6 The Listening option of the Speech control panel

Whether the feedback window appears when a recognizer is active and
whether the recognizer uses the listening modes selected by the user in the
Speech control panel depend on the feedback and listening modes of the
recognition system associated with that recognizer. When you create a
recognition system, you should explicitly set the desired feedback and listening
modes. In general, you should set the feedback and listening modes to
kSRHasFeedbackHasListenModes, so that the user has the same speech input and
feedback experience provided by other applications using speech recognition.
See “Recognition System Properties” on page 1-40 for a complete description of
the available feedback and listening modes.

Note
To use the feedback services, your application must able to
handle Apple events (as indicated by its 'SIZE' resource).
Other code using the feedback services must be running in
the layer of an application that is able to handle Apple
events. ◆

You can use Speech Recognition Manager functions to control certain aspects of
the feedback window. For instance, you can draw output text in the feedback
window, and you can have the feedback character speak text (complete with lip
1-16 About the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
synchronization). See “Using the System Feedback Window” on page 1-82 for a
description of these functions.

Using the Speech Recognition Manager 1

This section illustrates basic ways of using the Speech Recognition Manager.
In particular, it provides source code examples that show how you can

■ determine whether the Speech Recognition Manager is available

■ open a recognition system and a recognizer

■ build a language model to define the words and phrases your application
wants to listen for

■ set that model as the active language model

■ start and stop listening

■ handle recognition results using an Apple event handler or a speech
recognition callback routine

■ interpret the data passed to your application in a recognition result

■ save a language model (or other language object) into a resource or data file,
and read that object from that file

Note
The code examples shown in this section provide only
very rudimentary error handling. ◆

Checking for Speech Recognition Capabilities 1

Before calling any speech recognition routines, you need to verify that the
Speech Recognition Manager is available in the current operating environment
and that it has the capabilities you need. You can verify that the Speech
Recognition Manager is available by calling the Gestalt function with the
gestaltSpeechRecognitionVersion selector. Gestalt returns a long word whose
value indicates the version of the Speech Recognition Manager.
Using the Speech Recognition Manager 1-17

C H A P T E R 1

Speech Recognition Manager
IMPORTANT

You should ensure that the value returned in the response
parameter is greater than or equal to 0x0150 before using
the programming interfaces described in this chapter. ▲

Listing 1-2 illustrates how to determine whether the Speech Recognition
Manager is available.

Listing 1-2 Checking for the availability of the Speech Recognition Manager

Boolean MyHasSpeechRecognitionMgr (void)
{

OSErr myErr;
long mySRVersion;
Boolean myHasSRMgr = FALSE;

myErr = Gestalt (gestaltSpeechRecognitionVersion, &mySRVersion);
if (!myErr)

if (mySRVersion >= 0x0150)
myHasSRMgr = TRUE;

return myHasSRMgr;
}

Note
For more information on the Gestalt function, see Inside
Macintosh: Operating System Utilities. ◆

The Speech Recognition Manager also defines a speech attributes selector for
Gestalt. You can use this selector to get information about the available speech
sources. See “Gestalt Selectors and Response Values” on page 1-39 for complete
details.

Opening Recognition Systems and Recognizers 1

Before calling any other Speech Recognition Manager routines, you need to call
the SROpenRecognitionSystem function to open a recognition system. Listing 1-3
shows how to initialize speech recognition for your application.
1-18 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Listing 1-3 Initializing speech recognition

SRRecognitionSystem gRecSystem = NULL; /* our recognition system */
SRRecognizer gRecognizer = NULL; /* our recognizer */

SRRecognitionSystem MyInitSpeechRecognition (void)
{

OSErr myErr;
SRRecognitionSystem mySystem = NULL;

/* Ensure that the Speech Recognition Manager is available. */
if (MyHasSpeechRecognitionMgr()) {

/* Open the default recognition system. */
myErr = SROpenRecognitionSystem(&mySystem, kSRDefaultRecognitionSystemID);

if (!myErr) {
/* Use standard feedback window and listening modes. */
short myModes = kSRHasFeedbackHasListenModes;
myErr = SRSetProperty(mySystem, kSRFeedbackAndListeningModes,

&myModes, sizeof(myModes));
}

/* Set reference constant of rejected word. */
if (!myErr)

myErr = MySetRejectedWordRefCon(mySystem);
}

return (mySystem);
}

Note that the MyInitSpeechRecognition function defined in Listing 1-3 explicitly
sets the feedback and listening modes property of the recognition system to the
value kSRHasFeedbackHasListenModes immediately after it calls the
SROpenRecognitionSystem function. This instructs the recognition system to use
the standard feedback and listening behavior for any recognizers associated
with it, which helps ensure that the user has a consistent experience when
using any applications that use the Speech Recognition Manager. In general,
you should use other feedback and listening modes values only if your
application provides its own feedback mechanism.
Using the Speech Recognition Manager 1-19

C H A P T E R 1

Speech Recognition Manager
MyInitSpeechRecognition also calls MySetRejectedWordRefCon (shown in
Listing 1-8 on page 1-26) to simplify the processing of recognition results.

Once you’ve opened a recognition system, you need to call SRNewRecognizer to
create a recognizer associated with that recognition system, as follows:

gRecSystem = MyInitSpeechRecognition();
if (gRecSystem != NULL)

myErr = SRNewRecognizer(gRecSystem, &gRecognizer, kSRDefaultSpeechSource);

SRNewRecognizer takes a reference to an existing recognition system and a
speech source ID, which specifies a speech source. SRNewRecognizer returns a
reference to the new recognizer through its second parameter (here,
gRecognizer).

You can terminate your connection to the Speech Recognition Manager by
calling SRReleaseObject to dispose of your recognizer and then
SRCloseRecognitionSystem to close your recognition system, as illustrated in
Listing 1-4.

Listing 1-4 Ending speech recognition

OSErr MyTerminateSpeechRecognition (void)
{

OSErr myErr;

/* Stop processing any incoming sound. */
myErr = SRStopListening(gRecognizer);

/* Balance call to SRNewRecognizer in MyInitSpeechRecognition. */
myErr = SRReleaseObject(gRecognizer);

/* Balance call to SROpenRecognitionSystem in MyInitSpeechRecognition. */
myErr = SRCloseRecognitionSystem(gRecSystem);

return(myErr);
}

1-20 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Building a Language Model 1

You specify the words and phrases you want recognized by assigning a
language model to a recognizer. Listing 1-5 illustrates one way to construct a
language model. It calls the SRNewLanguageModel function to create a new empty
language model and then calls other routines to add words and phrases to that
model. The function MyBuildLanguageModel defined in Listing 1-5 constructs a
language model for the BNF diagram shown on page 1-12 (and listed in the
comments at the beginning of the listing).

IMPORTANT

There are many other ways to create language models. For
example, you might read the basic words and phrases
from resources of type 'STR#', or you might read language
objects from a resource or data file using the functions
SRNewLanguageObjectFromHandle or
SRNewLanguageObjectFromDataFile (as shown later, in
“Saving and Loading Language Objects” on page 1-37).
The techniques used in Listing 1-5 are intended only to
illustrate one way of building embedded language models
and a top-level language model. ▲

The function MyBuildLanguageModel takes an existing recognition system as a
parameter. See “Opening Recognition Systems and Recognizers” on page 1-18
for information on opening recognition systems.

Listing 1-5 Creating a language model

SRLanguageModel MyBuildLanguageModel (SRRecognitionSystem mySystem);

/* creates language model for the following BNF:
<TopLM> = <call> <person> | schedule meeting with <person> | view today's schedule;
<call> = call | phone | dial;
<person> = Arlo | Matt | Brent | my wife;
*/

const long kTopLMRefCon = 'top ';
const long kCallPersonRefCon = 'call';

const char kCallLMName[] = "<call>";
Using the Speech Recognition Manager 1-21

C H A P T E R 1

Speech Recognition Manager
const char * kCallSynonyms[] = {"call", "phone", "dial", NULL};

const char kPersonLMName[] = "<person>";
const char * kPersonNames[] = {"Arlo", "Matt", "Brent", "my wife", NULL};

const char kTopLMName[] = "<TopLM>";
const char kScheduleMeetingWith[] = "schedule meeting with";
const char kViewTodaysSchedule[] = "view today's schedule";

SRLanguageModel MyBuildLanguageModel (SRRecognitionSystem mySystem)
{

OSErr myErr = noErr;
SRLanguageModel myCallLM = 0, myPersonLM = 0, myTopLM = 0;
SRPath myPath;
char ** myStringArray;
char * myCurrString;

// create an embedded language model named "<call>"
myErr = SRNewLanguageModel(mySystem, &myCallLM, kCallLMName, strlen(kCallLMName));
if (!myErr) {

SRPhrase myPhrase;

myStringArray = (char **) kCallSynonyms;
while ((myCurrString = *myStringArray) != NULL) {

/* Note that we call SRNewPhrase instead of SRNewWord */
/* so that we don't have to know if any of the synonyms */
/* is more than one word. */
myErr = SRNewPhrase(mySystem, &myPhrase, myCurrString,

strlen(myCurrString));
if (!myErr) {

myErr = SRAddLanguageObject(myCallLM, myPhrase);
SRReleaseObject(myPhrase); /* balances SRNewPhrase */

}
myStringArray++;

}
}

/* Create an embedded language model named "<person>". */
/* Note that this code uses SRAddText, a useful shortcut */
/* which calls SRNewPhrase internally. */
if (!myErr)
1-22 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
myErr = SRNewLanguageModel(mySystem, &myPersonLM, kPersonLMName,
strlen(kPersonLMName));

if (!myErr) {
long myRefCon = 0;

myStringArray = (char **) kPersonNames;
while ((myCurrString = *myStringArray) != NULL) {

myErr = SRAddText(myPersonLM, myCurrString, strlen(myCurrString),
myRefCon++);

/* Note that we set the refcon in the SRAddText call, so */
/* we can use it later when processing the search result. */
myStringArray++;

}
}

/* Create a top-level language model named "<TopLM>". */
if (!myErr)

myErr = SRNewLanguageModel(mySystem, &myTopLM, kTopLMName, strlen(kTopLMName));

/* We set the refcon of the top-level language model, */
/* so that we can identify it in the search result. */
if (!myErr)

myErr = SRSetProperty(myTopLM, kSRRefCon, &kTopLMRefCon, sizeof(kTopLMRefCon));

/* Create a path for "<call> <person>" and add to "<TopLM>". */
if (!myErr) myErr = SRNewPath(mySystem, &myPath);
if (!myErr) {

if (!myErr) myErr = SRAddLanguageObject(myPath, myCallLM);
if (!myErr) myErr = SRAddLanguageObject(myPath, myPersonLM);
if (!myErr) myErr = SRAddLanguageObject(myTopLM, myPath);

/* We set the refcon of the path, so that we can identify */
/* it in the search result. */
if (!myErr)

myErr = SRSetProperty(myPath, kSRRefCon, &kCallPersonRefCon,
sizeof(kCallPersonRefCon));

SRReleaseObject(myPath); /* balances SRNewPath */
}

/* Create a path for "schedule meeting with <person>" and add to "<TopLM>". */
if (!myErr) myErr = SRNewPath(mySystem, &myPath);
Using the Speech Recognition Manager 1-23

C H A P T E R 1

Speech Recognition Manager
if (!myErr) {
if (!myErr) myErr = SRAddText(myPath, kScheduleMeetingWith,

strlen(kScheduleMeetingWith), 0);
if (!myErr) myErr = SRAddLanguageObject(myPath, myPersonLM);
if (!myErr) myErr = SRAddLanguageObject(myTopLM, myPath);
SRReleaseObject(myPath); /* balances SRNewPath */

}

/* Add "view today's schedule" to "<TopLM>". */
if (!myErr)

myErr = SRAddText(myTopLM, kViewTodaysSchedule,
strlen(kViewTodaysSchedule), 0);

if (myCallLM)
SRReleaseObject(myCallLM); /* balances SRNewLanguageModel */

if (myPersonLM)
SRReleaseObject(myPersonLM); /* balances SRNewLanguageModel */

return myTopLM;
}

The MyBuildLanguageModel function creates the embedded language models
used in the example language model and then adds them to the top-level
language model myTopLM. As you can see, you can add a word or a phrase to a
language model in several ways. You can use the sequence of functions
SRNewPhrase, SRAddLanguageObject, and SRReleaseObject. Alternatively, you can
use the function SRAddText, which adds some text directly to a language model
without having you explicitly create objects for that text.

Also, notice that calls to SRNewObject are balanced with calls to SRReleaseObject
for any object reference that won’t be needed outside the routine (namely, all
objects except myTopLM, which is returned at the end of the routine).

Note particularly that the MyBuildLanguageModel function defined in Listing 1-5
sets the kSRRefCon property of the various language objects it creates to known
values. For example, MyBuildLanguageModel sets the kSRRefCon property of a
name to an index into the array of names, like this:

myErr = SRAddText(myPersonLM, myCurrString,
strlen(myCurrString), myRefCon++);
1-24 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Later, when interpreting recognition results, you can read a language object’s
kSRRefCon property to determine what the user said. See “Interpreting
Recognition Results,” beginning on page 1-33 for details.

Often, you’ll want to designate certain words or phrases as optional. For
example, you might wish to let the user say “meeting with Arlo” in addition to
“schedule meeting with Arlo” (that is, making the word “schedule” optional).
You can designate any language object as optional by setting its optional
property, as illustrated in Listing 1-6.

Listing 1-6 Making a word optional

/* suppose that the word myWord has already been created */
Boolean myVal = TRUE;

myErr = SRSetProperty(myWord, kSROptional, &myVal, sizeof(myVal));

Setting the Language Model 1

To use a language model for recognition, you must attach it to a recognizer. You
can attach a language model to a recognizer by calling the SRSetLanguageModel
function, as shown in Listing 1-7.

Listing 1-7 Setting the active language model

myErr = SRSetLanguageModel(gRecognizer, myTopLM);

The recognizer maintains its own reference to the active language model, so
you can (if you wish) release your reference to the active language model
immediately after the SRSetLanguageModel call. If you later need a reference to
the active language model, you can call the SRGetLanguageModel function.

Setting the Rejection Word 1

Sometimes the recognizer can determine that the user has spoken but cannot
identify the spoken utterance as matching any phrase in the active language
model. In this case, the recognizer may indicate it has rejected the utterance by
Using the Speech Recognition Manager 1-25

C H A P T E R 1

Speech Recognition Manager
returning a special language model object in the recognition result’s
kSRLanguageModelFormat property. (For complete details, see “Recognition
Result Properties” on page 1-49.)

By default, the returned object is a word (of type SRWord) whose spelling is
“???”. Listing 1-8 shows how your application can set the rejection word’s
kSRRefCon value to a unique value. Your application can use this value when
processing recognition results (as in Listing 1-17 on page 1-35) to determine
that an utterance has been rejected.

Listing 1-8 Setting the rejection word’s reference constant value

const long kRejectedWordRefCon = 'rejc';

OSErr MySetRejectedWordRefCon (SRRecognitionSystem mySystem)
{

OSErr myErr = noErr;
SRWord myRejectedWord = 0;
Size myLen = sizeof(myRejectedWord);

/* Get a reference to the rejected word. */
myErr = SRGetProperty(mySystem, kSRRejectedWord, &myRejectedWord, &myLen);

/* Set the refcon of the rejected word, so we can */
/* use it later when processing the search result. */
if (!myErr)

myErr = SRSetProperty(myRejectedWord, kSRRefCon,
&kRejectedWordRefCon, sizeof(kRejectedWordRefCon));

if (myRejectedWord)
SRReleaseObject(myRejectedWord); /* balance SRGetProperty */

return myErr;
}

1-26 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Starting and Stopping Speech Recognition 1

Once you’ve assigned a language model to a recognizer, you can have the
recognizer start processing sound and recognizing utterances by calling the
SRStartListening function:

myErr = SRStartListening(gRecognizer);

After you’ve called SRStartListening, the recognizer listens for utterances and
reports its results to your application by sending it recognition notifications.
See the next section for information on processing these notifications.

You can stop a recognizer from listening and reporting results to your
application by calling the SRStopListening function:

myErr = SRStopListening(gRecognizer);

You can resume listening by calling the SRStartListening function.

Handling Recognition Notifications 1

By default, a recognizer sends recognition notifications to your application’s
Apple event handler. If you wish, you can instruct a recognizer to send
notifications to a speech recognition callback routine. See “Using Callback
Routines” on page 1-30 for information on using callback routines.

IMPORTANT

You should use an Apple event handler to receive and
process recognition notifications, unless your software is
not an application (for example, a control panel or other
software that cannot easily accept Apple events). You
cannot process recognition results from within a callback
handler, but you can do so from within an Apple event
handler. ▲

You need to specify to the recognizer what events you want to be notified
about. By default, your application is notified when the recognizer has finished
recognizing an utterance. You can also be notified when the recognizer begins
the process of recognizing an utterance (that is, when the user begins
speaking). You do this by setting the notification property of a recognizer, as
shown in Listing 1-9.
Using the Speech Recognition Manager 1-27

C H A P T E R 1

Speech Recognition Manager
Listing 1-9 Requesting notification of a recognition beginning

unsigned long myFlags;

myFlags = kSRNotifyRecognitionBeginning | kSRNotifyRecognitionDone;
myErr = SRSetProperty(gRecognizer, kSRNotificationParam,

&myFlags, sizeof(myFlags));

IMPORTANT

If you enable recognizer notification for the beginning of a
recognition, then each time your application receives a
recognition notification, you must call either
SRContinueRecognition or SRCancelRecognition before
speech recognition can continue. Otherwise, the recognizer
will suspend its operations while waiting for you to call
one of these functions. ▲

In general, you need to receive kSRNotifyRecognitionBeginning notifications
only if you want to update or modify the active language model according to
context at the start of each utterance.

Using Apple Events 1

By default, the Speech Recognition Manager uses Apple events to inform your
application of recognizer events. To receive notifications through Apple events,
you need to install Apple event handlers for the events in the speech class
during application startup, as illustrated in Listing 1-10.

Listing 1-10 Installing an Apple event handler for speech events

myErr = AEInstallEventHandler(kAESpeechSuite, kAESpeechDetected,
NewAEEventHandlerProc(MyHandleSpeechDetected), 0, FALSE);

if (!myErr)
myErr = AEInstallEventHandler(kAESpeechSuite, kAESpeechDone,

NewAEEventHandlerProc(MyHandleSpeechDone), 0, FALSE);

Listing 1-11 illustrates how to respond to a recognizer notification of type
kSRNotifyRecognitionDone sent to an Apple event handler.
1-28 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Listing 1-11 Handling recognition done notifications with an Apple event handler

pascal OSErr MyHandleSpeechDone (AppleEvent *theAEevt, AppleEvent *reply, long refcon)
{

long actualSize;
DescType actualType;
OSErr recStatus = noErr, myErr = noErr
SRRecognitionResult recResult;
SRRecognizer myRec;

/* Get recognition result status and recognizer. */
myErr = AEGetParamPtr(theAEevt, keySRSpeechStatus, typeShortInteger,

&actualType, (Ptr)&recStatus, sizeof(recStatus), &actualSize);
if (!myErr)

myErr = recStatus;

if (!myErr) {
myErr = AEGetParamPtr(theAEevt, keySRRecognizer, typeSRRecognizer,

&actualType, (Ptr)&myRec, sizeof(myRec), &actualSize);

if (!myErr) {
myErr = AEGetParamPtr(theAEevt, keySRSpeechResult, typeSRSpeechResult,

&actualType, (Ptr)&recResult, sizeof(recResult), &actualSize);
if (!myErr) {

/* Process the recognition result here.*/
MyProcessRecognitionResult(recResult);

/* Release the processed result. */
SRReleaseObject(recResult);

}
}

}

return(myErr);
}

(The function MyProcessRecognitionResult is shown on page 1-35.) Listing 1-12
illustrates how to respond to a recognition notification of type
kSRNotifyRecognitionBeginning sent to an Apple event handler.
Using the Speech Recognition Manager 1-29

C H A P T E R 1

Speech Recognition Manager
Listing 1-12 Handling recognition beginning notifications with an Apple event handler

pascal OSErr MyHandleSpeechDetected (AppleEvent *theAEevt,
AppleEvent *reply, long refcon)

{
OSErr myErr = noErr, recStatus = 0;
DescType actualType;
long actualSize;
SRRecognizer myRec;

/* Get status and recognizer. */
myErr = AEGetParamPtr(theAEevt, keySRSpeechStatus, typeShortInteger,

&actualType, (Ptr)&recStatus, sizeof(recStatus), &actualSize);
if (!myErr)

myErr = recStatus;

if (!myErr) {
myErr = AEGetParamPtr(theAEevt, keySRRecognizer, typeSRRecognizer,

&actualType, (Ptr)&myRec, sizeof(myRec), &actualSize);
if (!myErr) {

/* The user has started speaking. We can adjust the language model */
/* to reflect the current context. Then we must call either */
/* SRContinueRecognition or SRCancelRecognition. */

myErr = SRContinueRecognition(myRec);
}

}

return(myErr);
}

Using Callback Routines 1

To instruct a recognizer to send notifications using a speech recognition
callback routine instead of using Apple events, you set the kSRCallBackParam
property of the recognizer to the address of a callback routine parameter
structure, which specifies the address of your callback routine, as shown in
Listing 1-13.
1-30 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
IMPORTANT

You should use an Apple event handler to receive and
process recognition notifications, unless your software
cannot easily accept Apple events. ▲

Listing 1-13 Installing a speech recognition callback routine

pascal OSErr MyInstallNotificationCallBack (SRRecognizer recognizer)
{

SRCallBackParam myCallBackPB;

myCallBackPB.callBack = NewSRCallBackProc(MyNotificationCallBack);

return SRSetProperty(recognizer, kSRCallBackParam,
&myCallBackPB, sizeof (myCallBackPB));

}

Note
See page 1-55 for details on the callback routine parameter
structure (of type SRCallBackParam). ◆

You can remove a speech recognition callback routine, as shown in Listing 1-14.

Listing 1-14 Removing a speech recognition callback routine

pascal void MyRemoveNotificationCallBack (void)
{

SRCallBackParam myCallBackPB;
SRCallBackUPP mySavedCallBack;
Size myLen;
OSErr myErr = noErr;

myLen = sizeof(myCallBackPB);
myErr = SRGetProperty(gRecognizer, kSRCallBackParam, &myCallBackPB, &myLen);
if (myErr == noErr) {

if (myCallBackPB.callBack != nil) {
mySavedCallBack = myCallBackPB.callBack;
myCallBackPB.callBack = nil;
myErr = SRSetProperty(gRecognizer, kSRCallBackParam, &myCallBackPB,
Using the Speech Recognition Manager 1-31

C H A P T E R 1

Speech Recognition Manager
sizeof(myCallBackPB));
DisposeRoutineDescriptor(mySavedCallBack);

}
}

}

IMPORTANT

You should not call any Speech Recognition Manager
routines other than SRContinueRecognition or
SRCancelRecognition in your speech recognition callback
routine. Usually, your callback routine should simply
queue the notification it receives for later processing by
your software (for instance, when you receive background
processing time). ▲

You can queue the notification by setting a global flag that indicates the
recognition result to process, as shown in Listing 1-15.

Listing 1-15 Handling notifications with a callback routine

/* last recognition result received */
SRRecognitionResult gLastRecResult;

pascal void MyNotificationCallBack (SRCallBackStruct * param)
{

OSErr myErr = param->status;

if (!myErr) {
/* Handle recognition beginning event. */
/* Here we just continue speech recognition. */
if ((param->what) & kSRNotifyRecognitionBeginning) {

SRRecognizer myRec = (SRRecognizer) (param->instance);
myErr = SRContinueRecognition(myRec);

}

/* Handle recognition done event. */
/* Here we save the rec result in gLastRecResult. */
/* At idle time in our event loop, if gLastRecResult != NULL, */
/* we call MyProcessRecognitionResult(gLastRecResult) */
else if (param->what & kSRNotifyRecognitionDone) {
1-32 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
SRRecognitionResult myRecResult =
(SRRecognitionResult) (param->message);

if (myRecResult)
gLastRecResult = myRecResult;
/* We might get more than one result before we get to */
/* our idle check, so we should really be putting */
/* this in a queue. */

}
}

}

The MyNotificationCallBack function simply determines what event prompted
the recognition notification and sets a global flag to signal the application to do
the correct thing (for example, process the recognition result). Your application
needs to examine that flag periodically to determine whether to handle the
result. Listing 1-16 shows an example of a routine that does this.

Listing 1-16 Checking whether a recognition result needs processing

pascal void MyIdleCheckForSpeechResult (void)
{

if (gLastRecResult != NULL)
MyProcessRecognitionResult(gLastRecResult);

gLastRecResult = NULL;
}

If a recognition result is pending, the application calls its routine to handle
recognition results, MyProcessRecognitionResult (defined in the next section).

IMPORTANT

See “Speech Recognition Callback Routines” on page 1-89
for a complete description of the limitations of using
callback routines. ▲

Interpreting Recognition Results 1

A recognition result contains information about a recognized utterance. The
standard way to determine what the user said is to read the language model
Using the Speech Recognition Manager 1-33

C H A P T E R 1

Speech Recognition Manager
format property of the recognition result. The value of this property is a
language model that contains a copy of each word, phrase, path, and language
model used in the recognized utterance. You can inspect that language model
to determine precisely what the user said and then respond accordingly. To
retrieve this language model, call SRGetProperty, as follows:

SRLanguageModel myResultLM;
Size myLen;

myLen = sizeof(myResultLM);
myErr = SRGetProperty(recResult, kSRLanguageModelFormat,

&myResultLM, &myLen);

The language model returned by SRGetProperty is a subset of the complete
active language model. For instance, the language model returned for the
utterance “schedule meeting with Arlo” has the structure shown in Figure 1-7.
This is a subset of the language model shown in Figure 1-3 on page 1-13.

Figure 1-7 A language model for a recognized utterance

You can traverse this language model starting from its root by calling
SRCountItems and SRGetIndexedItem. Then, for any item returned, you can
inspect its type and reference constant to identify it. The
MyProcessRecognitionResult function defined in Listing 1-17 shows how to
process recognition results for the sample language model built in Listing 1-5
on page 1-21.

"<TopLM>"

SRLanguageModel

"<person>"

SRLanguageModel

"schedule meeting with"

SRPhrase

"meeting"

SRWord

"schedule"

SRWord

"with"

SRWord

"Arlo"

SRWord

"schedule meeting with <person>"

SRPath
1-34 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Listing 1-17 Handling a recognition result

void MyProcessRecognitionResult (SRRecognitionResult recResult)
{

OSErr myErr = noErr;

if (recResult) {
SRLanguageModel myResultLM;
Size myLen;

myLen = sizeof(myResultLM);
myErr = SRGetProperty(recResult, kSRLanguageModelFormat, &myResultLM, &myLen);

if (!myErr) {
long myRefCon;
SRLanguageObject mySubElement;

myLen = sizeof(myRefCon);
myErr = SRGetProperty(myResultLM, kSRRefCon, &myRefCon, &myLen);

/* if it's a valid result from our top-level LM, */
/* then parse and process its elements */
if (!myErr) {

switch (myRefCon) {
case kRejectedWordRefCon:

/* do nothing, if utterance was rejected */
break;

case kTopLMRefCon:
/* parse and process element of top-level LM */
/* get the first sub-element (here there is only one) */
myErr = SRGetIndexedItem(myResultLM, &mySubElement, 0);
if (!myErr) {

myLen = sizeof(myRefCon);
myErr = SRGetProperty(mySubElement, kSRRefCon, &myRefCon,

&myLen);
/* Call a subroutine to process the subelement */
if (!myErr) switch (myRefCon) {

case kCallPersonRefCon:
myErr = MyCallPersonInPath((SRPath) mySubElement);
break;

/* ...process "schedule meeting with <person>" */
Using the Speech Recognition Manager 1-35

C H A P T E R 1

Speech Recognition Manager
/* ...process "view today's schedule" */

default:
break;

}
}
/* release subelement when done with it */
myErr = SRReleaseObject(mySubElement);
break;

}
}

/* Release myResultLM fetched above when done with it. */
myErr = SRReleaseObject(myResultLM);

}

/* Release SRRecognitionResult because we are done with it. */
myErr = SRReleaseObject(recResult);

}
}

When MyProcessRecognitionResult determines that the first item in the
language model is an object whose reference constant is kCallPersonRefCon, it
dispatches to the application-defined function MyCallPersonInPath, defined in
Listing 1-18, which continues parsing the language model to determine whom
to call.

Listing 1-18 Calling a name in a path

const char * kPhoneNumbers[] =
{"555-4567", "555-4568", "555-4569", "(123) 456-7890", NULL};

OSErr MyCallPersonInPath (SRPath recognizedPath)
{

OSErr myErr = noErr;
SRLanguageObject myPersonLM;

/* recognizedPath has two sub-elements: */
/* "<call>" (SRLanguageModel) and "<person>" (SRLanguageModel) */
1-36 Using the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
/* Here we get the second sub-element. */
myErr = SRGetIndexedItem(recognizedPath, &myPersonLM, 1);
if (!myErr) {

SRLanguageObject myPhraseSpoken;

/* myPersonLM has one sub-element, the name (a phrase) */
myErr = SRGetIndexedItem(myPersonLM, &myPhraseSpoken, 0);
if (!myErr) {

long myRefCon;
Size myLen = sizeof(myRefCon);

/* When we built the language model, we set the refcon to the index */
/* of names in a list. The phone numbers in kPhoneNumbers correspond */
/* to those names */
myErr = SRGetProperty(myPhraseSpoken, kSRRefCon, &myRefCon, &myLen);
if (!myErr) {

short myArrayIndex = myRefCon;

printf("Now calling %s. Dialing %s.\n",
kPersonNames[myArrayIndex], kPhoneNumbers[myArrayIndex]);

}

/* release myPhraseSpoken when done with it */
myErr = SRReleaseObject(myPhraseSpoken);

}

/* release myPersonLM when done with it */
myErr = SRReleaseObject(myPersonLM);

}

return myErr;
}

Note that both MyProcessRecognitionResult and MyCallPersonInPath are careful
to release any language object references when they are no longer needed.

Saving and Loading Language Objects 1

The Speech Recognition Manager provides several functions that you can use
to put a language object into the data or resource fork of a file and to load a
Using the Speech Recognition Manager 1-37

C H A P T E R 1

Speech Recognition Manager
saved language object from a file. For example, you can save a language model
in a resource by calling the SRPutLanguageObjectIntoHandle function. This
function creates a description of the language model and puts it into a block of
memory you’ve already allocated, resizing the handle as necessary and
overwriting any existing contents. You call SRPutLanguageObjectIntoHandle like
this:

myErr = SRPutLanguageObjectIntoHandle(myLModel, myHandle);

If SRPutLanguageObjectIntoHandle returns successfully, you can then use
standard Resource Manager routines (for example, AddResource) to add the
data in the handle to a file’s resource fork. The resource type and ID of the new
resource are specified by your application.

You can read a saved language object from a resource by loading the resource
using Resource Manager functions (for example, GetResource) and then
converting the resource data into a language object by calling the
SRNewLanguageObjectFromHandle function, like this:

myErr = SRNewLanguageObjectFromHandle(mySys, myLModel, myHandle);

The format of the language object data stored in a handle (or data file) is
private. You should always use the supplied Speech Recognition Manager
functions to read and write language object data.

Speech Recognition Manager Reference 1

This section describes the constants, data structures, and routines provided by
the Speech Recognition Manager.

Note
This chapter describes the application programming
interfaces supported by version 1.5 and later of the Speech
Recognition Manager. ◆
1-38 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
Constants 1

This section describes the constants provided by the Speech Recognition
Manager.

Gestalt Selectors and Response Values 1

You can pass the gestaltSpeechRecognitionVersion selector to the Gestalt
function to determine the version of the Speech Recognition Manager installed
on a computer.

enum {
gestaltSpeechRecognitionVersion = 'srtb',
gestaltSpeechRecognitionAttr = 'srta'

};

Gestalt returns a long word in the response parameter that is the current
version number of the Speech Recognition Manager. If the value of the
response parameter is 0x00000000 (or if Gestalt returns an error), the Speech
Recognition Manager is not available on the target computer.

You can pass the gestaltSpeechRecognitionAttr selector to the Gestalt function
to get the attributes of the Speech Recognition Manager. Gestalt returns
information to you by returning a long word in the response parameter. The
returned values are defined by constants:

enum {
gestaltDesktopSpeechRecognition = 1L<<0,
gestaltTelephoneSpeechRecognition = 1L<<1

};

Constant descriptions

gestaltDesktopSpeechRecognition
If this bit is set, the Speech Recognition Manager supports
the desktop microphone.

gestaltTelephoneSpeechRecognition
If this bit is set, the Speech Recognition Manager supports
telephone input. In versions 1.5 and earlier, this bit is
always 0.
Speech Recognition Manager Reference 1-39

C H A P T E R 1

Speech Recognition Manager
Recognition System IDs 1

When you call SROpenRecognitionSystem to open a recognition system, you
indicate the system to open by passing a recognition system ID. The Speech
Recognition Manager defines this constant for recognition system IDs:

enum {
kSRDefaultRecognitionSystemID = 0

};

Constant descriptions

kSRDefaultRecognitionSystemID
The default speech recognition system.

Recognition System Properties 1

A recognition system (that is, an instance of the SRRecognitionSystem class) has
a set of properties that you can inspect and change by calling the SRGetProperty
and SRSetProperty routines. You specify a property by passing a property
selector to those functions. The Speech Recognition Manager defines these
property selectors for recognition systems:

enum {
kSRFeedbackAndListeningModes = 'fbwn',
kSRRejectedWord = 'rejq',
kSRCleanupOnClientExit = 'clup'

};

Constant descriptions

kSRFeedbackAndListeningModes
The feedback and listening modes of the recognition
system. The value of this property is an integer that
determines some of the features of a recognizer
subsequently created by your application. The available
values are described below. The default value for version
1.5 is kSRNoFeedbackNoListenModes, but most applications
should set this to kSRHasFeedbackHasListenModes.
1-40 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
enum {
kSRNoFeedbackNoListenModes = 0,
kSRHasFeedbackHasListenModes = 1,
kSRNoFeedbackHasListenModes = 2

};

If the feedback and listening modes value of a recognition
system is set to kSRNoFeedbackNoListenModes, the next
created recognizer has no feedback window and doesn’t
use the listening modes selected by the user in the Speech
control panel. (For example, push-to-talk is a listening
mode.) If the feedback and listening modes value of a
recognition system is set to kSRHasFeedbackHasListenModes,
the next created recognizer opens a feedback window that
uses the listening modes selected by the user in the Speech
control panel. If the feedback and listening modes value of
a recognition system is set to kSRNoFeedbackHasListenModes,
the next created recognizer has no feedback window but
does use the listening modes selected by the user in the
Speech control panel.

kSRRejectedWord The rejected word of the recognition system. The value of
this property is a value of type SRWord that will be returned
in a recognition result object when a recognizer encounters
an unrecognizable utterance. For example, if an utterance
is rejected, the kSRLanguageModelFormat property of the
recognition result is the rejected word. By default, a
recognition system’s rejected word is spelled “???” and has
a reference constant of 0. (For complete details, see
“Recognition Result Properties” on page 1-49.)

kSRCleanupOnClientExit
The cleanup mode of the recognition system. Applications
should never change the value of this property from its
default value TRUE. If, however, you write some code other
than an application that doesn’t have a process ID (as
issued by the Process Manager), you should set this
property to FALSE so that speech objects you allocate will
not be associated with any other process. By default, the
value of a recognition system’s cleanup mode is TRUE.
Speech Recognition Manager Reference 1-41

C H A P T E R 1

Speech Recognition Manager
Apple Event Selectors 1

The Speech Recognition Manager defines a number of selectors that you can
use to handle recognition notifications in your Apple events handler.

enum {
kAESpeechSuite = 'sprc'

};

Constant descriptions

kAESpeechSuite The Apple event class for speech recognition events.

enum {
kAESpeechDetected = 'srbd',
kAESpeechDone = 'srsd'

};

Constant descriptions

kAESpeechDetected The event ID for a speech-detected event.
kAESpeechDone The event ID for a speech-done event.

enum {
keySRRecognizer = 'krec',
keySRSpeechResult = 'kspr',
keySRSpeechStatus = 'ksst'

};

Constant descriptions

keySRRecognizer The keyword for the recognizer parameter.
keySRSpeechResult The keyword for the recognition result parameter.
keySRSpeechStatus The keyword for the speech status parameter, which is of

type typeShortInteger.

enum {
typeSRRecognizer = 'trec',
typeSRSpeechResult = 'tspr'

};

Constant descriptions

typeSRRecognizer The type for the recognizer parameter.
1-42 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
typeSRSpeechResult The type for the recognition result parameter.

Recognizer Properties 1

Every recognizer has a set of properties that you can inspect and change by
calling the SRGetProperty and SRSetProperty routines. You specify a property
by passing a property selector to those functions. The Speech Recognition
Manager defines these property selectors for recognizers:

enum {
kSRNotificationParam = 'noti',
kSRCallBackParam = 'call',
kSRSearchStatusParam = 'stat',
kSRForegroundOnly = 'fgon',
kSRBlockBackground = 'blbg',
kSRBlockModally = 'blmd',
kSRWantsResultTextDrawn = 'txfb',
kSRWantsAutoFBGestures = 'dfbr',
kSRSoundInVolume = 'volu',
kSRReadAudioFSSpec = 'aurd',
kSRCancelOnSoundOut = 'caso',
kSRListenKeyMode = 'lkmd',
kSRListenKeyCombo = 'lkey',
kSRListenKeyName = 'lnam',
kSRKeyWord = 'kwrd',
kSRKeyExpected = 'kexp'

};

Note
The listen key properties (that is, kSRListenKeyMode
through kSRKeyExpected) are provided for use by
applications that want to provide their own visual
feedback. If your application uses the default feedback
mechanisms, you do not need to access those properties. ◆

Constant descriptions

kSRNotificationParam
The notification property. The value of this property is a
4-byte unsigned integer whose bits encode the kinds of
events of which the recognizer will notify your
Speech Recognition Manager Reference 1-43

C H A P T E R 1

Speech Recognition Manager
application. See the section “Notification Flags” on
page 1-48 for the bit masks that are defined for this
property. By default, the value of a recognizer’s
notification property is kSRNotifyRecognitionDone.

kSRCallBackParam The callback property. The value of this property is of type
SRCallBackParam that determines whether recognition
notifications are sent to your application via Apple events
or via an application-defined callback routine. To specify a
callback routine, set the value of this property to the
address of a callback routine parameter structure. By
default, the value of a recognizer’s callback property is
NULL, indicating that Apple events are to be used to report
recognizer events.

kSRSearchStatusParam
The search status. The value of this property is a 4-byte
unsigned integer whose bits indicate the current state of
the recognizer. See the section “Search Status Flags” on
page 1-47 for the bit masks that are defined for this
property. This property is read-only; you cannot set it.

kSRForegroundOnly The foreground-only flag. The value of this property is a
Boolean value that indicates whether the recognizer is
enabled only when your application is the foreground
application (TRUE) or not (FALSE). By default, the value of a
recognizer’s foreground-only flag is TRUE.

kSRBlockBackground
The background-blocking flag. The value of this property
is a Boolean value that indicates whether all recognizers
owned by other applications are automatically disabled
whenever your application is the foreground application
(TRUE) or are not automatically disabled (FALSE). By default,
the value of a recognizer’s background-blocking flag is
FALSE.

kSRBlockModally The modal-blocking flag. The value of this property is a
Boolean value that indicates whether the language model
associated with this recognizer is the only active language
model (TRUE) or not (FALSE). When this flag is TRUE, your
application’s recognizer blocks those of other applications
even when it isn’t the foreground application; in addition,
the feedback window is hidden if you’re not using it.
Setting this property to TRUE prevents speech recognition
1-44 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
from working for other applications, so you want to use
this property only if your application is taking over the
computer (like some games) or briefly attempting to
constrain the language model severely. By default, the
value of a recognizer’s modal-blocking flag is FALSE.

kSRWantsResultTextDrawn
The text feedback flag. The value of this property is a
Boolean value that indicates whether the results of a search
are to be automatically displayed as text in the feedback
window (TRUE) or not (FALSE). If you set the value of this
property to FALSE, you should call SRDrawRecognizedText
with a string representing what the user said. By default,
the value of a recognizer’s text feedback flag is TRUE.

kSRWantsAutoFBGestures
The automatic feedback gestures flag. The value of this
property is a Boolean value that determines whether the
feedback gestures are automatically drawn (TRUE) or not
(FALSE). If you want more control over feedback behavior,
you should set this property to FALSE; then call
SRProcessBegin when you want to begin responding to a
spoken request and SRProcessEnd when you are finished.
During that time, the feedback character displays
appropriate animated gestures to indicate that it’s busy
performing the task. By default, the value of a recognizer’s
automatic feedback gestures flag is TRUE.

kSRSoundInVolume The sound input volume. The value of this property is a
2-byte unsigned integer between 0 and 100, inclusive, that
indicates the current sound input volume. This property is
read-only; you cannot set it.

kSRReadAudioFSSpec
The audio file property. You can use this property to
perform speech recognition from an audio file. The value
of this property is a pointer to a file system specification (a
structure of type FSSpec). The file system specification
indicates an AIFF file that contains raw audio data (16-bit
audio data sampled at 22.050 kHz). After you create a new
recognizer using the speech source ID
kSRCanned22kHzSpeechSource, you must set this recognizer
property to perform recognition from an audio file. Setting
the audio source to a file also allows the Speech
Speech Recognition Manager Reference 1-45

C H A P T E R 1

Speech Recognition Manager
Recognition Manager to process sound data at system
background time rather than at interrupt time or deferred
task time.

kSRCancelOnSoundOut
The cancel during sound output flag. The value of this
property is a Boolean value that indicates whether speech
recognition is canceled whenever any sound is output by
the computer during an utterance (TRUE) or whether speech
recognition continues (FALSE). By default, the value of a
recognizer’s cancel during sound output flag is TRUE.

kSRListenKeyMode The listen key mode. The value of this property is a 2-byte
unsigned integer that indicates whether the listen key
operates in push-to-talk or toggle-listening mode. See
page 1-49 for a description of the available listen key
modes. The value of a recognizer’s listen key mode is
whatever the user has selected in the Speech control panel.
This property is read-only; you cannot set it.

kSRListenKeyCombo The listen key combination property. The value of this
property is a 2-byte unsigned integer that specifies the key
combination the user must press for the listen key. The
high-order byte of this value has the same format as the
high-order byte of the modifiers field of an event record.
The low-order byte of this value has the same format as
the key code contained in the message field of an event
record. (See Inside Macintosh: Macintosh Toolbox Essentials
for complete information about event records.) The value
of a recognizer’s listen key combination property is
whatever the user has selected in the Speech control panel.
This property is read-only; you cannot set it.

kSRListenKeyName The listen key name property. The value of this property is
a string (of type Str63) that represents the listen key
combination specified by the kSRListenKeyCombo property.
The value of a recognizer’s listen key name property is
whatever the user has selected in the Speech control panel.
This property is read-only; you cannot set it.

kSRKeyWord The key word property. The value of this property is a
string (of type Str255) that represents the key word that
must precede utterances when the recognizer is in
toggle-listen mode. The value of a recognizer’s key word
1-46 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
property is whatever the user has selected in the Speech
control panel. This property is read-only; you cannot set it.

kSRKeyExpected The key expected flag. The value of this property is a
Boolean value that indicates whether the recognizer
expects the user to hold down a key or to utter the key
word in order to have the recognizer begin listening (TRUE)
or not (FALSE). The value of a recognizer’s key expected
flag is a function of the user’s Speech control panel
selections. This property is TRUE whenever text is visible
below the feedback character in the lower-left corner of the
feedback window. This property is read-only; you cannot
set it.

Search Status Flags 1

You can determine the current status of a recognizer search by getting the
recognizer’s search status, which is a property of type kSRSearchStatusParam.
That property’s value is a 4-byte unsigned integer. The Speech Recognition
Manager defines the following masks for bits in that value:

enum {
kSRIdleRecognizer = 1L<<0,
kSRSearchInProgress = 1L<<1,
kSRSearchWaitForAllClients = 1L<<2,
kSRMustCancelSearch = 1L<<3,
kSRPendingSearch = 1L<<4

};

Constant descriptions

kSRIdleRecognizer If this bit is set, the search engine is not active and the user
is able to make a new utterance.

kSRSearchInProgress
If this bit is set, a search is currently in progress.

kSRSearchWaitForAllClients
If this bit is set, a search is not currently in progress, but
will begin as soon as every recognizer using the speech
source used by this recognizer has called
SRContinueRecognition to indicate that the search should
begin.
Speech Recognition Manager Reference 1-47

C H A P T E R 1

Speech Recognition Manager
kSRMustCancelSearch
If this bit is set, a search is about to be canceled (for
example, because the recognizer determined a sound to be
non-speech).

kSRPendingSearch If this bit is set, a search is about to begin.

Notification Flags 1

You can indicate which recognizer events you want your application to be
notified of by setting the recognizer’s notification property, which is a property
of type kSRNotificationParam. That property’s value is a 4-byte unsigned
integer. The Speech Recognition Manager defines the following masks for bits
in that value:

enum {
kSRNotifyRecognitionBeginning = 1L<<0,
kSRNotifyRecognitionDone = 1L<<1

};

Constant descriptions

kSRNotifyRecognitionBeginning
If this bit is set, your application will be notified when the
user starts speaking and recognition is ready to begin.
When your application gets this notification, it must call
either SRContinueRecognition or SRCancelRecognition in
order for recognition either to continue or be canceled. If
you do not call one of these functions, the recognizer will
simply wait until you do (and hence appear to have quit
working). Note that calling SRCancelRecognition cancels a
recognition only for the application that requested it, not
for all applications.

kSRNotifyRecognitionDone
If this bit is set, your application will be notified when
recognition is finished and the result (if any) of that
recognition is available. See the example on page 1-29.
1-48 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
Listen Key Modes 1

You can get (but not set) a recognizer’s listen key mode by accessing its
property of type kSRListenKeyMode. That property’s value is a 2-byte unsigned
integer that determines whether the listen key operates in push-to-talk or
toggle-listening mode. The Speech Recognition Manager defines these
constants for listen key modes:

enum {
kSRUseToggleListen = 0,
kSRUsePushToTalk = 1

};

Constant descriptions

kSRUseToggleListen The recognizer interprets presses on the listen key as a
toggle to turn listening on or off.

kSRUsePushToTalk The recognizer listens only when the listen key is held
down.

Recognition Result Properties 1

Every recognition result object has a set of properties that you can inspect by
calling the SRGetProperty routine. You specify a property by passing a property
selector to those functions. The Speech Recognition Manager defines these
property selectors for recognition results:

IMPORTANT

SRGetProperty returns an object reference as the value of a
recognition result’s kSRPhraseFormat, kSRPathFormat, or
kSRLanguageModelFormat property. You must make sure to
release that object reference (by calling SRReleaseObject)
when you are finished using it. ▲

enum {
kSRLanguageModelFormat = 'lmfm',
kSRPathFormat = 'lmpt',
kSRPhraseFormat = 'lmph',
kSRTEXTFormat = 'TEXT'

};
Speech Recognition Manager Reference 1-49

C H A P T E R 1

Speech Recognition Manager
Constant descriptions

kSRLanguageModelFormat
The language model format. The value of this property is a
language model that contains a copy of each word, phrase,
path, and language model used in the recognized
utterance. If the utterance was rejected, the value of this
property is the rejected word (that is, the kSRRejectedWord
property of the recognition system). The name and
reference constant of this language model are the same as
the name and reference constant of the active language
model, and each subitem in the language model retains its
own reference constant property value. See “Interpreting
Recognition Results,” beginning on page 1-33 for
information on how to use this language model to
interpret results quickly.

kSRPathFormat The path format. The value of this property is a path that
contains a sequence of words (of type SRWord) and phrases
(of type SRPhrase) representing the text of the recognized
utterance. If the utterance was rejected, this path or phrase
contains one object, the rejected word. The reference
constant value of the path is always 0, but each word or
phrase in the path retains its own reference constant
property value from the original active language model.

kSRPhraseFormat The phrase format. The value of this property is a phrase
that contains one word (of type SRWord) for each word in
the recognized utterance. If the utterance was rejected, this
phrase contains one object, the rejected word. The
reference constant value of the phrase is always 0, but each
word in the phrase retains its own reference constant
property value.

kSRTEXTFormat The text format. The value of this property is a
variable-length string of characters that is the text of the
recognized utterance. If the utterance was rejected, this text
is the spelling of the rejected word. The string value does
not include either a length byte (as in Pascal strings) or a
null terminating character (as in C strings).
1-50 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
Language Object Properties 1

Every language object (that is, any instance of a subclass of the
SRLanguageObject class) has a set of properties that you can inspect and change
by calling the SRGetProperty and SRSetProperty routines. You specify a
property by passing a property selector to those functions. The Speech
Recognition Manager defines these property selectors for language objects:

enum {
kSRSpelling = 'spel',
kSRLMObjType = 'lmtp',
kSRRefCon = 'refc',
kSROptional = 'optl',
kSREnabled = 'enbl',
kSRRepeatable = 'rptb',
kSRRejectable = 'rjbl',
kSRRejectionLevel = 'rjct'

};

Constant descriptions

kSRSpelling The spelling of a language object. The value of this
property is a variable-length string of characters. For an
object of type SRWord, the value is the spelled word. For an
object of type SRPhrase, the value is the concatenation of
the spellings of each word in the phrase, separated by a
language-dependent separation character (for example, by
a space character). For an object of type SRPath, the value is
the concatenation of the spellings of each word and
language model name in the path. For an object of type
SRLanguageModel, the value is the name of the language
model. For any object, the string value does not include
either a length byte (as in Pascal strings) or a null
terminating character (as in C strings).

kSRLMObjType The type of a language object. The value of this property is
a four-character constant of type OSType; see the section
“Language Object Types” on page 1-53 for the values that
are defined for this property. You cannot set it.

kSRRefCon The reference constant. The value of this property is a
4-byte value specified by your application. By default, the
value of a reference constant property is zero (0).
Speech Recognition Manager Reference 1-51

C H A P T E R 1

Speech Recognition Manager
kSROptional The optional flag. The value of this property is a Boolean
value that indicates whether speaking the words, phrases,
paths, and language models represented by the object is
optional (TRUE) or required (FALSE). A user is not required
to utter optional words, phrases, or language models. By
default, the value of an object’s optional flag is FALSE.

kSREnabled The enabled flag. The value of this property is a Boolean
value that indicates whether the object is enabled (TRUE) or
disabled (FALSE). Disabled objects are ignored during
speech recognition. By default, the value of an object’s
enabled flag is TRUE.

kSRRepeatable The repeatable flag. The value of this property is a Boolean
value that indicates whether the object is repeatable (TRUE)
or not (FALSE). A user can utter a repeatable object more
than once. By default, the value of an object’s repeatable
flag is FALSE.

kSRRejectable The rejectable flag. The value of this property is a Boolean
value that indicates whether the object is rejectable (TRUE)
or not (FALSE). An object is rejectable if a recognition
system can return the rejected word instead of that object.
(The rejected word is the value of the kSRRejectedWord
property of the recognition system.) By default, the value
of an object’s rejectable flag is FALSE. However, if an entire
utterance is rejected, you can still get the rejected word.
See “Recognition Result Properties” on page 1-49.

kSRRejectionLevel The rejection level. The value of this property is a 2-byte
unsigned integer of type SRRejectionLevel between 0 and
100, inclusive, that determines how likely a recognizer is to
reject a language object whose kSRRejectable property is
TRUE. If an object’s rejection level is close to 0, the
recognizer is less likely to reject utterances (and hence
more likely to return a result with phrases from the current
language model, whether or not the user actually said
something in that language model); if an object’s rejection
level is close to 100, the recognizer is more likely to reject
utterances. You can set an object’s rejection flag to TRUE and
its rejection level to some appropriate value to reduce the
likelihood that a recognizer will mistakenly recognize a
random user utterance as part of the active language
1-52 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
model. By default, the value of an object’s rejection level is
50.

Language Object Types 1

The Speech Recognition Manager defines constants for the four subclasses of
the SRLanguageObject class. You can use these constants, for instance, to help
interpret the value of a language object’s kSRLMObjType property.

enum {
kSRLanguageModelType = 'lmob',
kSRPathType = 'path',
kSRPhraseType = 'phra',
kSRWordType = 'word'

};

Constant descriptions

kSRLanguageModelType
A language model (that is, an object of type
SRLanguageModel).

kSRPathType A path (that is, an object of type SRPath).
kSRPhraseType A phrase (that is, an object of type SRPhrase).
kSRWordType A word (that is, an object of type SRWord).

Data Structures 1

This section describes the data structures provided by the Speech Recognition
Manager.

Speech Recognition CallBack Structure 1

When you receive a notification of recognition results through an
application-defined callback routine (instead of using an Apple event handler),
the Speech Recognition Manager sends your callback routine a pointer to a
speech recognition callback structure, defined by the SRCallBackStruct data
type.
Speech Recognition Manager Reference 1-53

C H A P T E R 1

Speech Recognition Manager
Note
For information on writing a speech recognition callback
routine, see “Speech Recognition Callback Routines” on
page 1-89. ◆

struct SRCallBackStruct {
long what;
long message;
SRRecognizer instance;
OSErr status;
short flags;
long refcon;

};
typedef struct SRCallBackStruct SRCallBackStruct;

Field descriptions
what A notification flag that indicates the kind of event that

caused this notification to be issued. This field contains
either kSRNotifyRecognitionBeginning or
kSRNotifyRecognitionDone. See “Notification Flags” on
page 1-48 for complete details on the available notification
flags.

message If the value of the status field is noErr and the value of the
what field is kSRNotifyRecognitionDone, this field contains a
reference to a recognition result. Your callback routine can
inspect the properties of this recognition result to
determine what the user said.

IMPORTANT

Note that your callback routine must release this reference
(by calling SRReleaseObject) when it is finished using it. If
the value of the status field is not noErr, the value of this
field is undefined. ▲

instance A reference to the recognizer that issued this notification.
You should not call SRReleaseObject on this recognizer
reference in response to a recognition notification.

status An error code indicating the status of the recognition. If
the value of this field is noErr, the message field contains a
reference to a recognition result. If the value of this field is
kSRRecognitionDone and the value of the what field is
1-54 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
kSRNotifyRecognitionDone, the recognizer finished without
error but nothing belonging to that recognizer was
recognized; in this case, the message field does not contain
a reference to a recognition result. If the value of this field
is any other value, some other error occurred.

flags Reserved.
refcon An application-defined reference constant. The value in

this field is the value you passed in the refcon field of a
callback routine parameter structure (of type
SRCallBackParam).

Callback Routine Parameter Structure 1

If you want to receive recognition notifications using a speech recognition
callback routine instead of an Apple event handler, you must change the value
of the kSRCallBackParam property of the current recognizer. The value of the
kSRCallBackParam property is the address of a callback routine parameter
structure, defined by the SRCallBackParam data type.

struct SRCallBackParam {
SRCallBackUPP callBack;
long refcon;

};
typedef struct SRCallBackParam SRCallBackParam;

Field descriptions
callBack A routine descriptor for a speech recognition callback

routine. You can use the macro NewSRCallBackProc (defined
in SpeechRecognition.h) to create this routine descriptor.

refcon An application-defined reference constant. This value is
passed to your callback routine in the refcon field of a
speech recognition callback structure. You can pass any
4-byte value you wish.

Speech Recognition Manager Routines 1

This section describes the routines provided by the Speech Recognition
Manager.
Speech Recognition Manager Reference 1-55

C H A P T E R 1

Speech Recognition Manager
Opening and Closing Recognition Systems 1

The Speech Recognition Manager provides routines for opening and closing
recognition systems. You open a single recognition system when your
application starts up and close it before your application exits.

Note
See “Recognition System Properties” on page 1-40 for a
description of the available recognition system
properties. ◆

SROpenRecognitionSystem 1

You can use the SROpenRecognitionSystem function to open a recognition system.

pascal OSErr SROpenRecognitionSystem (
SRRecognitionSystem *system,
OSType systemID);

system On exit, a reference to the recognition system having the
specified system ID.

systemID A recognition system ID. See “Recognition System IDs” on
page 1-40 for the available system IDs.

DESCRIPTION

The SROpenRecognitionSystem function returns, in the system parameter, a
reference to the recognition system specified by the systemID parameter.

SPECIAL CONSIDERATIONS

You should open a single recognition system when your application starts up
and close it (by calling the function SRCloseRecognitionSystem) before your
application exits.
1-56 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRCloseRecognitionSystem 1

You should use the SRCloseRecognitionSystem function to close a recognition
system when your application is finished using it (for example, just before your
application quits).

pascal OSErr SRCloseRecognitionSystem (SRRecognitionSystem system);

system A recognition system.

DESCRIPTION

The SRCloseRecognitionSystem function closes the recognition system specified
by the system parameter. If any speech objects are still attached to that
recognition system, they are disposed of and any references you have to those
objects are thereby rendered invalid.

Creating and Manipulating Recognizers 1

The Speech Recognition Manager provides routines that you can use to create
and manage recognizers.

Note
See “Recognizer Properties” on page 1-43 for a description
of the available recognizer properties. ◆

SRNewRecognizer 1

You can use the SRNewRecognizer function to create a new recognizer.

pascal OSErr SRNewRecognizer (
SRRecognitionSystem system,
SRRecognizer *recognizer,
OSType sourceID);

system A recognition system.
Speech Recognition Manager Reference 1-57

C H A P T E R 1

Speech Recognition Manager
recognizer On exit, a reference to a new recognizer associated with the
specified recognition system and using the specified speech
source.

sourceID A speech source ID.

DESCRIPTION

The SRNewRecognizer function returns, in the recognizer parameter, a reference
to a new recognizer that is associated with the recognition system specified by
the system parameter and that uses the speech source specified by the sourceID
parameter. The Speech Recognition Manager supports several speech sources,
which you can specify using these constants:

enum {
kSRDefaultSpeechSource = 0,
kSRLiveDesktopSpeechSource = 'dklv',
kSRCanned22kHzSpeechSource = 'ca22'

};

In version 1.5, the default speech source is kSRLiveDesktopSpeechSource.
SRNewRecognizer may need to load substantial amounts of data from disk into
memory. As a result, you might want to change the cursor to the watch cursor
before you call SRNewRecognizer.

SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the object reference
returned by SRNewRecognizer when you’re done using it.

SRStartListening 1

You can use the SRStartListening function to start a recognizer listening and
reporting results to your application.

pascal OSErr SRStartListening (SRRecognizer recognizer);

recognizer A recognizer.
1-58 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
DESCRIPTION

The SRStartListening function instructs the recognizer specified by the
recognizer parameter to begin processing sound from its speech source and
reporting its results to your application (either using Apple events or through a
speech recognition callback routine).

SPECIAL CONSIDERATIONS

You must already have built a language model and attached it to the recognizer
(by calling the SRSetLanguageModel function) before you call SRStartListening.

SRStopListening 1

You can use the SRStopListening function to stop a recognizer listening and
reporting results to your application.

pascal OSErr SRStopListening (SRRecognizer recognizer);

recognizer A recognizer.

DESCRIPTION

The SRStopListening function instructs the recognizer specified by the
recognizer parameter to stop processing sound from its speech source and
reporting its results to your application.

SRGetLanguageModel 1

You can use the SRGetLanguageModel function to get a recognizer’s active
language model.

pascal OSErr SRGetLanguageModel (
SRRecognizer recognizer,
SRLanguageModel *languageModel);

recognizer A recognizer.
Speech Recognition Manager Reference 1-59

C H A P T E R 1

Speech Recognition Manager
languageModel On exit, a reference to the language model currently active for
the specified recognizer.

DESCRIPTION

The SRGetLanguageModel function returns, in the languageModel parameter, a
reference to the language model that is currently associated with the recognizer
specified by the recognizer parameter.

SPECIAL CONSIDERATIONS

SRGetLanguageModel increases the reference count of the specified language
model. You should call the SRReleaseObject function to release the language
model reference returned by SRGetLanguageModel when you’re done using it.

SRSetLanguageModel 1

You can use the SRSetLanguageModel function to set a recognizer’s active
language model.

pascal OSErr SRSetLanguageModel (
SRRecognizer recognizer,
SRLanguageModel languageModel);

recognizer A recognizer.

languageModel A language model.

DESCRIPTION

The SRSetLanguageModel function sets the active language model for the
recognizer specified by the recognizer parameter to the model specified by the
languageModel parameter. See “Creating Language Objects,” beginning on
page 1-66 for routines you can use to build a language model.

If no other references exist to the language model currently in use by the
specified recognizer, calling SRSetLanguageModel with a different language
model causes the current one to be released.
1-60 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRContinueRecognition 1

You can use the SRContinueRecognition function to have a recognizer continue
recognizing speech.

pascal OSErr SRContinueRecognition (SRRecognizer recognizer);

recognizer A recognizer.

DESCRIPTION

The SRContinueRecognition function instructs the recognizer specified by the
recognizer parameter to continue recognizing speech. You need to call either
SRContinueRecognition or SRCancelRecognition each time your application is
notified that the user has started speaking (using Apple events or through an
application-defined callback routine). See Listing 1-9 on page 1-28 for
information on how to request such a notification.

SRCancelRecognition 1

You can use the SRCancelRecognition function to have a recognizer cancel the
attempt to recognize the current utterance.

pascal OSErr SRCancelRecognition (SRRecognizer recognizer);

recognizer A recognizer.

DESCRIPTION

The SRCancelRecognition function instructs the recognizer specified by the
recognizer parameter to stop recognizing speech. You need to call either
SRContinueRecognition or SRCancelRecognition each time your application is
notified that the user has started speaking (using Apple events or through an
application-defined callback routine). See Listing 1-9 on page 1-28 for
information on how to request such a notification.
Speech Recognition Manager Reference 1-61

C H A P T E R 1

Speech Recognition Manager
SRIdle 1

You can use the SRIdle function to grant processing time to the Speech
Recognition Manager if your application does not call WaitNextEvent frequently.

pascal OSErr SRIdle (void);

DESCRIPTION

The SRIdle function grants processing time to the Speech Recognition Manager,
thereby allowing it to process incoming sound and send recognition results.

SPECIAL CONSIDERATIONS

Most applications do not need to call the SRIdle function. You need to call it
only if your application does a significant amount of processing without
periodically calling WaitNextEvent. If you do use the SRIdle function, you
should call it often enough that the Speech Recognition Manager can perform
its work.

Note, however, that if you call SRIdle and not WaitNextEvent, you give time to
the recognizer but not to the feedback window. You must call WaitNextEvent
periodically to have the feedback animations work correctly if your recognizer
is using the standard feedback window.

Managing Speech Objects 1

The Speech Recognition Manager provides routines that operate on any speech
object. You can use these routines to get and set the properties of speech
objects, to get a reference to a speech object, and to release speech objects.
1-62 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRGetProperty 1

You can use the SRGetProperty function to get the current value of a property of
a speech object.

pascal OSErr SRGetProperty (
SRSpeechObject srObject,
OSType selector,
void *property,
Size *propertyLen);

srObject A speech object.

selector A property selector. See “Recognition System Properties” on
page 1-40, “Recognizer Properties” on page 1-43, and
“Language Object Properties,” beginning on page 1-51 for lists
of the available property selectors.

property The address of a buffer into which the value of the specified
property is to be copied.

propertyLen On entry, the address of a variable of type Size that contains the
length, in bytes, of the specified buffer. On exit, if the buffer is
large enough to hold the returned property value and no error
occurs, SRGetProperty sets propertyLen to the total number of
bytes in the value of the specified property.

DESCRIPTION

The SRGetProperty function returns, through the property parameter, the value
of the property of the speech object specified by the srObject parameter whose
type is specified by the selector parameter.

The propertyLen parameter is a pointer to the length of the buffer into which
the property value is to be copied. If the value is of a fixed size, then
propertyLen should point to a variable of type Size that specifies that size. If the
size of the value can vary (for example, if the value is a string), then
propertyLen should point to a variable of type Size that specifies the number of
bytes in the buffer pointed to by the property parameter. If that buffer is not
large enough to hold the returned property value, SRGetProperty returns the
result code kSRBufferTooSmall as its function result.
Speech Recognition Manager Reference 1-63

C H A P T E R 1

Speech Recognition Manager
Not all selectors are valid for all types of speech objects. If the selector you
specify does not specify a property of the specified speech object,
SRGetProperty returns the result code kSRCantGetProperty or kSRBadSelector.

SPECIAL CONSIDERATIONS

If SRGetProperty returns an object reference, you must make sure to release that
object reference (by calling SRReleaseObject) when you are finished using it.
Most selectors do not cause SRGetProperty to return object references. For
example, passing the selector kSRSpelling causes SRGetProperty to return a
buffer of text, not an object reference.

SRSetProperty 1

You can use the SRSetProperty function to set the value of a property of a
speech object.

pascal OSErr SRSetProperty (
SRSpeechObject srObject,
OSType selector,
const void *property,
Size propertyLen);

srObject A speech object.

selector A property selector. See “Recognition System Properties” on
page 1-40, “Recognition Result Properties” on page 1-49,
“Recognizer Properties” on page 1-43, and “Language Object
Properties,” beginning on page 1-51 for lists of the available
property selectors.

property The address of a buffer containing the value to which the
specified property is to be set.

propertyLen The length, in bytes, of the specified buffer.

DESCRIPTION

The SRSetProperty function sets the value of the property of the speech object
specified by the srObject parameter to the value specified through the property
1-64 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
parameter. The selector parameter specifies which property is to be set and the
propertyLen parameter specifies it size, in bytes.

Not all properties can be set. If you attempt to set a property that cannot be set,
SRSetProperty returns the result code kSRCantSetProperty or kSRBadSelector as
its function result.

SRGetReference 1

You can use the SRGetReference function to obtain an extra reference to a
speech object.

pascal OSErr SRGetReference (
SRSpeechObject srObject,
SRSpeechObject *newObjectRef);

srObject A speech object.

newObjectRef On exit, a new reference to the specified speech object.

DESCRIPTION

The SRGetReference function returns, in the newObjectRef parameter, a new
reference to the speech object specified by the srObject parameter.

SPECIAL CONSIDERATIONS

SRGetReference increases the reference count of the specified speech object. You
should call the SRReleaseObject function to release the object reference returned
by SRGetReference when you’re done using it.

SRReleaseObject 1

You can use the SRReleaseObject function to release a speech object.

pascal OSErr SRReleaseObject (SRSpeechObject srObject);
Speech Recognition Manager Reference 1-65

C H A P T E R 1

Speech Recognition Manager
srObject A speech object.

DESCRIPTION

The SRReleaseObject function releases the object reference specified by the
srObject parameter. If there are no other remaining references to that object,
SRReleaseObject disposes of the memory occupied by the object.

SPECIAL CONSIDERATIONS

Your application should balance every function call that returns an object
reference with a call to SRReleaseObject. This means that every call to a
function whose name begins with SRNew or SRGet that successfully returns an
object reference must be balanced with a call to SRReleaseObject.

In addition, you should call SRReleaseObject to release references to
SRSearchResult objects that are passed to your application (via an Apple event
handler or a callback routine).

SEE ALSO

For more information on creating and releasing object references, see “Object
References” on page 1-9.

Creating Language Objects 1

The Speech Recognition Manager provides routines that you can use to create
language objects, which you use to define the recognizable utterances for a
recognizer. You can create words, phrases, paths, and language models. See
“Manipulating Language Objects” on page 1-70 for routines you can use to
configure a language model. Once you’ve created and configured a language
model, you can use the SRSetLanguageModel function (described on page 1-60)
to set a recognizer’s active language model.

Note
See “Language Object Properties” on page 1-51 for a
description of the available language model properties. ◆
1-66 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRNewWord 1

You can use the SRNewWord function to create a new word.

pascal OSErr SRNewWord (
SRRecognitionSystem system,
SRWord *word,
const void *text,
Size textLength);

system A recognition system.

word On exit, a reference to a new word associated with the specified
recognition system.

text The address of a buffer that contains the characters that
comprise the word.

textLength The size, in bytes, of the specified text.

DESCRIPTION

The SRNewWord function returns, in the word parameter, a reference to a new
word associated with the recognition system specified by the system parameter.
The word’s spelling is specified by the text and textLength parameters.

SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the word reference
returned by SRNewWord when you’re done using it.
Speech Recognition Manager Reference 1-67

C H A P T E R 1

Speech Recognition Manager
SRNewPhrase 1

You can use the SRNewPhrase function to create a new phrase.

pascal OSErr SRNewPhrase (
SRRecognitionSystem system,
SRPhrase *phrase,
const void *text,
Size textLength);

system A recognition system.

phrase On exit, a reference to a new phrase associated with the
specified recognition system.

text The address of a buffer that contains the words that comprise
the phrase.

textLength The size, in bytes, of the specified text.

DESCRIPTION

The SRNewPhrase function returns, in the phrase parameter, a reference to a new
phrase associated with the recognition system specified by the system
parameter. The phrase’s contents (that is, the words that comprise the phrase)
is specified by the text and textLength parameters. You can, if you wish, create
a new empty phrase and then add words to it by calling the SRAddText or
SRAddLanguageObject functions.

SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the phrase reference
returned by SRNewPhrase when you’re done using it.

SRNewPath 1

You can use the SRNewPath function to create a new path.

pascal OSErr SRNewPath (SRRecognitionSystem system, SRPath *path);
1-68 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
system A recognition system.

path On exit, a reference to a new empty path associated with the
specified recognition system.

DESCRIPTION

The SRNewPath function returns, in the path parameter, a reference to a new
empty path associated with the recognition system specified by the system
parameter. You can then add objects to a path by calling the SRAddText or
SRAddLanguageObject functions.

SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the path reference
returned by SRNewPath when you’re done using it.

SRNewLanguageModel 1

You can use the SRNewLanguageModel function to create a new language model.

pascal OSErr SRNewLanguageModel (
SRRecognitionSystem system,
SRLanguageModel *model,
const void *name,
Size nameLength);

system A recognition system.

model On exit, a reference to a new empty language model associated
with the specified recognition system.

name The address of a buffer that contains the name of the language
model. By convention, this name should begin with the
character “<” and end with the character “>”.

nameLength The size, in bytes, of the specified name.
Speech Recognition Manager Reference 1-69

C H A P T E R 1

Speech Recognition Manager
DESCRIPTION

The SRNewLanguageModel function returns, in the model parameter, a reference to
a new language model associated with the recognition system specified by the
system parameter. The new language model is initially empty and has the name
specified by the name and nameLength parameters. The name of the language
model should be unique among all the language models your application
creates, and it should be comprehensible to users. (For example, a language
model that defined a list of names might be called “<Names>”).

Note
The convention that language model names begin with the
character “<” and end with the character “>” is adopted to
support future utilities that display the names of language
models to the user (perhaps as part of showing the user
what he or she can say). ◆

You can add language objects (that is, words, phrases, paths, and other
language models) to a language model by calling the SRAddText and
SRAddLanguageObject functions.

SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the language model
reference returned by SRNewLanguageModel when you’re done using it.

SEE ALSO

You can get or set the name of an existing language model by calling the
SRGetProperty or SRSetProperty functions with the kSRSpelling property
selector.

Manipulating Language Objects 1

The Speech Recognition Manager provides routines that you can use to
manipulate language objects. You can use these routines to alter the contents of
a language object. See “Creating Language Objects” on page 1-66 for the
routines you can use to create language objects.
1-70 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRAddText 1

You can use the SRAddText function to add text to the contents of a language
object.

pascal OSErr SRAddText (
SRLanguageObject base,
const void *text,
Size textLength,
long refCon);

base A language object.

text The address of a buffer that contains the words or phrase to add
to the contents of the specified language object.

textLength The size, in bytes, of the specified text.

refCon An application-defined reference constant. The value of the
reference constant property of the new word or phrase
representing the specified text is set to this value.

DESCRIPTION

The SRAddText function adds objects representing the text specified by the text
and textLength parameters to the contents of the language object specified by
the base parameter. In addition, the value of the reference constant property of
the added objects is set to the value specified by the refCon parameter.

The SRAddText function is useful for phrases, paths, and language models. If the
base parameter specifies a path or language model, SRAddText is equivalent to
calling SRNewPhrase, SRAddLanguageObject, and SRReleaseObject for the phrase
specified by the text parameter and calling SRSetProperty to set the value of
the reference constant property of the new phrase.

If the base parameter specifies a phrase, SRAddText is equivalent to calling
SRNewWord, SRAddLanguageObject, and SRReleaseObject for each distinguishable
word in the text parameter and calling SRSetProperty to set the value of the
reference constant property of the new words.
Speech Recognition Manager Reference 1-71

C H A P T E R 1

Speech Recognition Manager
SPECIAL CONSIDERATIONS

SRAddLanguageObject does not alter the value of the reference constant property
of the language object specified by the base parameter.

SRAddLanguageObject 1

You can use the SRAddLanguageObject function to add a language object to some
other language object.

pascal OSErr SRAddLanguageObject (
SRLanguageObject base,
SRLanguageObject addon);

base A language object.

addon A language object.

DESCRIPTION

The SRAddLanguageObject function adds the language object specified by the
addon parameter to the language object specified by the base parameter. For
example, if addon specifies a word and base specifies a phrase, then
SRAddLanguageObject appends that word to the end of that phrase.

The SRAddLanguageObject function is useful for adding language objects to
phrases, paths, and language models. For a phrase or a path,
SRAddLanguageObject appends the specified object to the end of the phrase or
path. For a language model, SRAddLanguageObject adds the specified object to
the list of alternative recognizable utterances.

The language object to which you add an object acquires a new reference to the
added object. Accordingly, any changes you subsequently make to the added
object are reflected in any object to which you added it. The base object releases
its reference to the added object when the base object is disposed of.

SEE ALSO

See SRAddText (page 1-71) for a useful shortcut function.
1-72 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SREmptyLanguageObject 1

You can use the SREmptyLanguageObject function to empty the contents of a
language object.

pascal OSErr SREmptyLanguageObject (SRLanguageObject languageObject);

languageObject
A language object.

DESCRIPTION

The SREmptyLanguageObject function empties the contents of the language
object specified by the languageObject parameter. (For example, if
languageObject specifies a phrase containing two words, calling
SREmptyLanguageObject would result in a phrase that contains no words.) Any
properties of that object that are not related to its contents are unchanged. In
particular, SREmptyLanguageObject does not alter the value of the reference
constant property of that language object.

If there are no other references to the words, phrases, paths, and embedded
language objects that were contained in the language object, calling
SREmptyLanguageObject causes them to be disposed of.

SRChangeLanguageObject 1

You can use the SRChangeLanguageObject function to change the contents of a
language object.

pascal OSErr SRChangeLanguageObject (
SRLanguageObject languageObject,
const void *text,
Size textLength);

languageObject
A language object.
Speech Recognition Manager Reference 1-73

C H A P T E R 1

Speech Recognition Manager
text The address of a buffer that contains the words or phrase to
which the contents of the specified language object are to be
changed.

textLength The size, in bytes, of the specified text.

DESCRIPTION

The SRChangeLanguageObject function changes the contents of the language
object specified by the languageObject parameter to the data specified by the
text and textLength parameters. SRChangeLanguageObject is a convenient
shortcut for calling SREmptyLanguageObject and then SRAddText.

SRChangeLanguageObject does not alter the value of the reference constant
property of the language object specified by the languageObject parameter.

If there are no other references to the words, phrases, paths, and embedded
language objects that were contained in the language object, calling
SRChangeLanguageObject causes them to be disposed of.

SPECIAL CONSIDERATIONS

If you want to swap rapidly among several language models, you could use
the SRSetLanguageObject function instead of SRChangeLanguageObject. Or, you
could use the kSREnabled property to rapidly enable and disable parts of the
current language model to reflect the current context.

SRRemoveLanguageObject 1

You can use the SRRemoveLanguageObject function to remove a language object
from another language object that contains it.

pascal OSErr SRRemoveLanguageObject (
SRLanguageObject base,
SRLanguageObject toRemove);

base A language object.

toRemove A language object.
1-74 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
DESCRIPTION

The SRRemoveLanguageObject function removes the language object specified by
the toRemove parameter from the language object specified by the base
parameter. The object specified by the base parameter should be a container
one of whose subitems is the object specified by the toRemove parameter.

Calling SRRemoveLanguageObject never disposes of the memory associated with
the removed item, because the reference that your application passes in the
toRemove parameter continues to be valid after the call (until your application
calls SRReleaseObject to release that reference). Note, however, that the base
parameter no longer has its own additional reference to the removed object
after SRRemoveLanguageObject completes successfully.

Traversing Speech Objects 1

The Speech Recognition Manager provides routines that you can use to
traverse and manipulate speech objects that contain other objects. For instance,
you can use these routines to determine how many words are contained in a
phrase.

Note
In Speech Recognition Manager version 1.5, these routines
are useful only for operating on language objects (of type
SRLanguageObject), although they are defined for all speech
objects. ◆

SRCountItems 1

You can use the SRCountItems function to determine the number of subitems in
a container object.

pascal OSErr SRCountItems (SRSpeechObject container, long *count);

container A speech object.

count On exit, the number of subitems in the specified speech object.
Speech Recognition Manager Reference 1-75

C H A P T E R 1

Speech Recognition Manager
DESCRIPTION

The SRCountItems function returns, in the count parameter, the number of
subitems contained in the speech object specified by the container parameter.
This function is useful only for speech objects that have distinguishable
subitems, such as phrases (which contain words), paths (which contain words,
phrases, and language models), and language models (which contain words,
phrases, paths, and possibly other language models).

SRGetIndexedItem 1

You can use the SRGetIndexedItem function to get a subitem in a container
object.

pascal OSErr SRGetIndexedItem (
SRSpeechObject container,
SRSpeechObject *item,
long index);

container A speech object.

item On exit, a reference to the subitem in the specified speech object
that has the specified index.

index An integer ranging from 0 to one less than the number of
subitems in the specified speech object.

DESCRIPTION

The SRGetIndexedItem function returns, in the item parameter, a reference to the
subitem (in the speech object specified by the container parameter) at the index
specified by the index parameter. This function is useful for iterating through
all subitems in a container object (such as each path in a language model or
each word in a phrase).

The value passed in the index parameter must be greater than or equal to 0 and
less than the number of subitems in the specified container object. (You can call
the SRCountItems function to determine the number of subitems contained in a
speech object.) If the index you specify is not in this range, SRGetIndexedItem
returns the result code kSRParamOutOfRange.
1-76 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SPECIAL CONSIDERATIONS

SRGetIndexedItem increases the reference count of the specified speech object.
You should call the SRReleaseObject function to release the object reference
returned by SRGetIndexedItem when you’re done using it. For example, you can
get a reference to the third word in a phrase by executing this code:

myErr = SRGetIndexedItem(myPhrase, &myWord, 2);

Then, when you are finished using the word, you should execute this code:

myErr = SRReleaseObject(myWord);

SRSetIndexedItem 1

You can use the SRSetIndexedItem function to replace a subitem in a container
object with some other object.

pascal OSErr SRSetIndexedItem (
SRSpeechObject container,
SRSpeechObject item,
long index);

container A speech object.

item A speech object.

index An integer ranging from 0 to one less than the number of
subitems in the specified speech object.

DESCRIPTION

The SRSetIndexedItem function replaces the subitem having the index specified
by the index parameter in the container object specified by the container
parameter with the speech object specified by the item parameter. A reference
to the replacement item is maintained separately by the container; as a result,
you can release any reference to that item if you no longer need it. The
reference to the replaced item is removed from the container; if that reference
was the last remaining reference to the object, the object is released.
Speech Recognition Manager Reference 1-77

C H A P T E R 1

Speech Recognition Manager
SRRemoveIndexedItem 1

You can use the SRRemoveIndexedItem function to remove a subitem from a
container object.

pascal OSErr SRRemoveIndexedItem (SRSpeechObject container, long index);

container A speech object.

index An integer ranging from 0 to one less than the number of
subitems in the specified speech object.

DESCRIPTION

The SRRemoveIndexedItem function removes from the speech object specified by
the container parameter the subitem located at the position specified by the
index parameter. If SRRemoveIndexedItem completes successfully, the number of
subitems in the container object is reduced by 1, and the index of each subitem
that follows the removed item is reduced by 1.

The value passed in the index parameter must be greater than or equal to 0 and
less than the number of subitems in the specified container object. (You can call
the SRCountItems function to determine the number of subitems contained in a
speech object.) If the index you specify is not in this range, SRRemoveIndexedItem
returns the result code kSRParamOutOfRange.

If there are no other references to the removed item, the memory associated
with it is disposed of.

Reading and Writing Language Objects 1

The Speech Recognition Manager provides routines that you can use to save
and load language objects to and from files.
1-78 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRPutLanguageObjectIntoHandle 1

You can use the SRPutLanguageObjectIntoHandle function to put a language
object (and any embedded languages objects it contains) into a handle.

pascal OSErr SRPutLanguageObjectIntoHandle (
SRLanguageObject languageObject,
Handle lobjHandle);

languageObject
A language object.

lobjHandle A handle to a block of memory into which the data describing
the specified language object is to be put. On entry, this handle
can have a length of 0.

DESCRIPTION

The SRPutLanguageObjectIntoHandle function puts a description of the language
object specified by the languageObject parameter into the block of memory
specified by the lobjHandle parameter. This replaces the data in the handle and
resizes the handle if necessary.

You can use Resource Manager routines (such as AddResource) to store language
objects into resources.

SRPutLanguageObjectIntoDataFile 1

You can use the SRPutLanguageObjectIntoDataFile function to put a language
object (and any embedded languages objects it contains) into a data file.

pascal OSErr SRPutLanguageObjectIntoDataFile (
SRLanguageObject languageObject,
short fRefNum)

languageObject
A language object.

fRefNum A file reference number of an open data file into which the data
describing the specified language object is to be put.
Speech Recognition Manager Reference 1-79

C H A P T E R 1

Speech Recognition Manager
DESCRIPTION

The SRPutLanguageObjectIntoDataFile function puts a description of the
language object specified by the languageObject parameter into the data file
specified by the fRefNum parameter. Data are written starting at the current file
mark, and the file mark is moved to the end of the written data.

SRNewLanguageObjectFromHandle 1

You can use the SRNewLanguageObjectFromHandle function to create a language
object from the handle previously created by the
SRPutLanguageObjectIntoHandle function.

pascal OSErr SRNewLanguageObjectFromHandle (
SRRecognitionSystem system,
SRLanguageObject *languageObject,
Handle lobjHandle);

system A recognition system.

languageObject
On exit, a reference to a new language object.

lobjHandle A handle to a language object.

DESCRIPTION

The SRNewLanguageObjectFromHandle function returns, in the languageObject
parameter, a reference to a new language object created and initialized using
the private data to which the lobjHandle parameter is a handle. The data
specified by lobjHandle should have been created by a previous call to the
SRPutLanguageObjectIntoHandle function; if that data is not appropriately
formatted, SRNewLanguageObjectFromHandle returns the result code
kSRCantReadLanguageObject as its function result.

You can use this routine to load language objects from resources (for example,
by using the Resource Manager function GetResource).
1-80 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the language object
reference returned by SRNewLanguageObjectFromHandle when you’re done using
it.

SRNewLanguageObjectFromDataFile 1

You can use the SRNewLanguageObjectFromDataFile function to read a language
object from a data file.

pascal OSErr SRNewLanguageObjectFromDataFile (
SRRecognitionSystem system,
SRLanguageObject *languageObject,
short fRefNum);

system A recognition system.

languageObject
On exit, a reference to a new language object.

fRefNum A file reference number of an open data file.

DESCRIPTION

The SRNewLanguageObjectFromDataFile function returns, in the languageObject
parameter, a reference to a language object whose description is stored in the
open data file that has the file reference number specified by the fRefNum
parameter. SRNewLanguageObjectFromDataFile reads data beginning at the
current file mark.

If the language object is successfully created and initialized, the file mark is left
at the byte immediately following the language object description. Otherwise,
if the language object data is not appropriately formatted,
SRNewLanguageObjectFromDataFile returns the result code
kSRCantReadLanguageObject as its function result and the file mark is not moved.
Speech Recognition Manager Reference 1-81

C H A P T E R 1

Speech Recognition Manager
SPECIAL CONSIDERATIONS

You should call the SRReleaseObject function to release the language object
reference returned by SRNewLanguageObjectFromDataFile when you’re done
using it.

Using the System Feedback Window 1

The Speech Recognition Manager provides routines that you can use to control
some aspects of the system feedback window.

SRDrawText 1

You can use the SRDrawText function to draw output text in the feedback
window.

pascal OSErr SRDrawText (
SRRecognizer recognizer,
const void *dispText,
Size dispLength);

recognizer A recognizer.

dispText The address of a buffer that contains the text to be drawn.

dispLength The size, in bytes, of the specified text.

DESCRIPTION

The SRDrawText function draws the text specified by the dispText and
dispLength parameters in the transcript portion of the feedback window
associated with the recognizer specified by the recognizer parameter. The text
is drawn in the style characteristic of all output text.
1-82 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRDrawRecognizedText 1

You can use the SRDrawRecognizedText function to draw recognized text in the
feedback window.

pascal OSErr SRDrawRecognizedText (
SRRecognizer recognizer,
const void *dispText,
Size dispLength);

recognizer A recognizer.

dispText The address of a buffer that contains the text to be drawn.

dispLength The size, in bytes, of the specified text.

DESCRIPTION

The SRDrawRecognizedText function draws the text specified by the dispText
and dispLength parameters in the transcript portion of the feedback window
associated with the recognizer specified by the recognizer parameter. The text
is drawn in the style characteristic of all recognized text. You might want to use
this function to display a recognized phrase using a different spelling than the
one used in the language model.

SPECIAL CONSIDERATIONS

If the value of the kSRWantsResultTextDrawn property of the specified recognizer
is TRUE (which is the default value), a transcript of the text of a recognition
result is automatically sent directly to the feedback window. As a result, you
should call SRDrawRecognizedText only when the value of the recognizer’s
kSRWantsResultTextDrawn property is FALSE.
Speech Recognition Manager Reference 1-83

C H A P T E R 1

Speech Recognition Manager
SRSpeakText 1

You can use the SRSpeakText function to have the feedback character in the
feedback window speak a text string.

pascal OSErr SRSpeakText (
SRRecognizer recognizer,
const void *speakText,
Size speakLength);

recognizer A recognizer.

speakText The address of a buffer that contains the text to be spoken.

speakLength The size, in bytes, of the specified text.

DESCRIPTION

The SRSpeakText function causes the feedback character in the feedback
window associated with the recognizer specified by the recognizer parameter
to speak the text specified by the speakText and speakLength parameters. While
speaking, the feedback character lip-synchs the spoken string using the Speech
Synthesis Manager’s phoneme callback routines. SRSpeakText uses the default
voice and rate selected in the Speech control panel.

The text pointed to by the speakText parameter can contain embedded speech
commands to enhance the prosody of the spoken string. See the chapter
“Speech Manager” in Inside Macintosh: Sound for a complete discussion of
embedded speech commands.

Note
The Speech Synthesis Manager was formerly called the
Speech Manager. Its name has been changed to distinguish
it from the Speech Recognition Manager and to describe its
operation more clearly. ◆

SPECIAL CONSIDERATIONS

You can use the SRSpeechBusy function to determine whether the feedback
character is already speaking. If it is, you can call the SRStopSpeech function to
stop that speaking immediately.
1-84 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SEE ALSO

The SRSpeakText function speaks the specified text but doesn’t display it. Use
the SRSpeakAndDrawText function if you want to speak and display the text.

SRSpeakAndDrawText 1

You can use the SRSpeakAndDrawText function to draw output text in the
feedback window and to have the feedback character in the feedback window
speak that text.

pascal OSErr SRSpeakAndDrawText (
SRRecognizer recognizer,
const void *text,
Size textLength);

recognizer A recognizer.

text The address of a buffer that contains the text to be drawn and
spoken.

textLength The size, in bytes, of the specified text.

DESCRIPTION

The SRSpeakAndDrawText function draws the text specified by the text and
textLength parameters in the transcript portion of the feedback window
associated with the recognizer specified by the recognizer parameter. The text
is drawn in the style characteristic of all output text. SRSpeakAndDrawText also
causes the feedback character in the feedback window to speak that text.
SRSpeakAndDrawText is simply a convenient shortcut for SRSpeakText and
SRDrawText.
Speech Recognition Manager Reference 1-85

C H A P T E R 1

Speech Recognition Manager
SRStopSpeech 1

You can use the SRStopSpeech function to terminate speech by the feedback
character in a feedback window.

pascal OSErr SRStopSpeech (SRRecognizer recognizer);

recognizer A recognizer.

DESCRIPTION

The SRStopSpeech function immediately terminates any speaking by the
feedback character in the feedback window associated with the recognizer
specified by the recognizer parameter.

SRSpeechBusy 1

You can use the SRSpeechBusy function to determine if the feedback character in
a feedback window is currently speaking.

pascal Boolean SRSpeechBusy (SRRecognizer recognizer);

recognizer A recognizer.

DESCRIPTION

The SRSpeechBusy function returns, as its function result, the value TRUE if the
feedback character in the feedback window associated with the recognizer
specified by the recognizer parameter is currently speaking. Otherwise,
SRSpeechBusy returns the value FALSE.
1-86 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
SRProcessBegin 1

You can use the SRProcessBegin function to indicate that a recognition result is
being processed.

pascal OSErr SRProcessBegin (SRRecognizer recognizer, Boolean failed);

recognizer A recognizer.

failed A Boolean value that determines how the feedback gestures are
to be altered and whether the response sound is to be played
(FALSE) or not (TRUE).

DESCRIPTION

The SRProcessBegin function causes the Speech Recognition Manager to
provide the relevant feedback (in the feedback window associated with the
recognizer specified by the recognizer parameter) indicating that the
application is in the process of responding to a spoken command. Currently,
the gestures of the feedback character are changed to indicate that processing is
occurring.

If you set the value of the recognizer’s kSRWantsAutoFBGestures property to
FALSE, you should call SRProcessBegin at the beginning of your response to a
recognition result and SRProcessEnd at the end of your response. During the
interval separating the two calls, the feedback character displays an
appropriate set of gestures showing the user that the task is being processed. If
you pass the value TRUE in the failed parameter (indicating that the recognition
result cannot successfully be processed), the feedback character displays
frowns, shrugs, or other appropriate gestures. In addition, when failed is TRUE,
you do not need to call SRProcessEnd to end the processing. If you pass the
value FALSE in the failed parameter but determine subsequently that the
recognition result cannot successfully be processed, you should call
SRProcessEnd with the failed parameter set to TRUE.

SPECIAL CONSIDERATIONS

If the value of the kSRWantsAutoFBGestures property of the specified recognizer
is TRUE, the Speech Recognition Manager calls SRProcessBegin internally before
notifying your application of a recognition result, and it calls SRProcessEnd
internally after your application is notified. As a result, you should call
Speech Recognition Manager Reference 1-87

C H A P T E R 1

Speech Recognition Manager
SRProcessBegin or SRProcessEnd only when the value of the recognizer’s
kSRWantsAutoFBGestures property is FALSE.

Because the default value of the kSRWantsAutoFBGestures property is TRUE, most
applications don’t need to call SRProcessBegin. Calling SRProcessBegin is useful,
however, when you know the resulting action might take a significant amount
of time.

SRProcessEnd 1

You can use the SRProcessEnd function to indicate that a recognition result is
done being processed.

pascal OSErr SRProcessEnd (SRRecognizer recognizer, Boolean failed);

recognizer A recognizer.

failed A Boolean value that determines how the feedback gestures are
to be altered (FALSE) or not (TRUE).

DESCRIPTION

The SRProcessEnd function causes the Speech Recognition Manager to provide
the relevant feedback (in the feedback window associated with the recognizer
specified by the recognizer parameter) indicating that a recognition result is
done being processed. Currently, the gestures of the feedback character are
changed and a response sound is played.

If you pass the value FALSE for the failed parameter, the feedback character
returns to its idle state, ready for the next utterance. If you pass the value TRUE
for the failed parameter, the feedback character responds appropriately (for
example, by shrugging briefly before returning to its idle state).

SPECIAL CONSIDERATIONS

If the value of the kSRWantsAutoFBGestures property of the specified recognizer
is TRUE (the default value), the Speech Recognition Manager calls
SRProcessBegin internally before notifying your application of a recognition
result, and it calls SRProcessEnd internally after your application is notified. As
a result, you should call SRProcessBegin or SRProcessEnd only if you have
1-88 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
changed the value of the recognizer’s kSRWantsAutoFBGestures property to
FALSE.

Because the default value of the kSRWantsAutoFBGestures property is TRUE, most
applications don’t need to call SRProcessBegin or SRProcessEnd. Calling
SRProcessBegin and SRProcessEnd is useful, however, when you know the
resulting action might take a significant amount of time.

Application-Defined Routines 1

This section describes the routines your application or other software
component might need to define when using the Speech Recognition Manager.

Speech Recognition Callback Routines 1

You can receive notification of recognizer events either by installing an Apple
event handler or by installing a speech recognition callback routine. In general,
you should use an Apple event handler to process recognition notifications.
You should use callback routines only for executable code that cannot easily
receive Apple events.

MySRCallBack 1

You can define a speech recognition callback routine to handle recognition
notifications.

pascal void MySRCallBack (SRCallBackStruct *param);

param A pointer to a speech recognition callback structure. See
“Speech Recognition CallBack Structure” on page 1-53 for a
description of this structure.

DESCRIPTION

Your speech recognition callback routine is called whenever the recognizer
encounters one of the events specified in its kSRNotificationParam property.
You can determine what event caused your routine to be called by inspecting
Speech Recognition Manager Reference 1-89

C H A P T E R 1

Speech Recognition Manager
the what field of the speech recognition callback structure specified by the param
parameter.

Because the Speech Recognition Manager is not fully reentrant, you should not
call any of its routines other than SRContinueRecognition or
SRCancelRecognition from within your speech recognition callback routine.
Accordingly, your callback routine should simply queue the notification for
later processing by your software (for instance, when it receives background
processing time).

IMPORTANT

If the event is of type kSRNotifyRecognitionBeginning
(which occurs only if you request recognition-beginning
notifications, described on page 1-48), you must call either
SRContinueRecognition or SRCancelRecognition before
speech recognition can continue. A recognizer that has
issued a recognition notification suspends activity until
you call one of these two functions. ▲

In general, when your speech recognition callback routine receives the
kSRNotifyRecognitionBeginning notification, it should queue an indication for
your main code both to adjust the current language model (if necessary) and to
call the SRContinueRecognition function. When your callback routine receives
the kSRNotifyRecognitionDone notification, it should queue an indication for
your main code to handle the recognition result passed in the message field of
the speech recognition callback structure specified by the param parameter. You
should make sure, however, that the message field contains a valid reference to
a recognition result by inspecting the status field of that structure; if status
contains any value other than noErr, the contents of the message field are
undefined.

SPECIAL CONSIDERATIONS

When your callback routine is executed, your application is not the current
process. As a result, some restrictions apply; for example, the current resource
chain might not be that of your application.

SEE ALSO

See “Using Callback Routines” on page 1-30 for a sample speech recognition
callback routine.
1-90 Speech Recognition Manager Reference

C H A P T E R 1

Speech Recognition Manager
Summary of the Speech Recognition Manager 1

C Summary 1

Constants 1

Gestalt Selectors and Response Values

enum {
gestaltSpeechRecognitionVersion = 'srtb',
gestaltSpeechRecognitionAttr = 'srta'

};

enum {
gestaltDesktopSpeechRecognition = 1L<<0,
gestaltTelephoneSpeechRecognition = 1L<<1

};

Recognition System IDs

enum {
kSRDefaultRecognitionSystemID = 0

};

Recognition System Properties

enum {
kSRFeedbackAndListeningModes = 'fbwn',
kSRRejectedWord = 'rejq',
kSRCleanupOnClientExit = 'clup'

};
Summary of the Speech Recognition Manager 1-91

C H A P T E R 1

Speech Recognition Manager
enum {
kSRNoFeedbackNoListenModes = 0,
kSRHasFeedbackHasListenModes = 1,
kSRNoFeedbackHasListenModes = 2

};

Speech Source IDs

enum {
kSRDefaultSpeechSource = 0,
kSRLiveDesktopSpeechSource = 'dklv',
kSRCanned22kHzSpeechSource = 'ca22'

};

Apple Event Selectors

/* Apple event message class */
enum {

kAESpeechSuite = 'sprc'
};

/* Apple event message event IDs */
enum {

kAESpeechDetected = 'srbd',
kAESpeechDone = 'srsd'

};

/* Apple event parameter keywords */
enum {

keySRRecognizer = 'krec',
keySRSpeechResult = 'kspr',
keySRSpeechStatus = 'ksst'

};

/* Apple event parameter types */
enum {

typeSRRecognizer = 'trec',
typeSRSpeechResult = 'tspr'

};
1-92 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Recognizer Properties

enum {
kSRNotificationParam = 'noti',
kSRCallBackParam = 'call',
kSRSearchStatusParam = 'stat',
kSRForegroundOnly = 'fgon',
kSRBlockBackground = 'blbg',
kSRBlockModally = 'blmd',
kSRWantsResultTextDrawn = 'txfb',
kSRWantsAutoFBGestures = 'dfbr',
kSRSoundInVolume = 'volu',
kSRReadAudioFSSpec = 'aurd',
kSRCancelOnSoundOut = 'caso',
kSRListenKeyMode = 'lkmd',
kSRListenKeyCombo = 'lkey',
kSRListenKeyName = 'lnam',
kSRKeyWord = 'kwrd',
kSRKeyExpected = 'kexp'

};

Search Status Flags

enum {
kSRIdleRecognizer = 1L<<0,
kSRSearchInProgress = 1L<<1,
kSRSearchWaitForAllClients = 1L<<2,
kSRMustCancelSearch = 1L<<3,
kSRPendingSearch = 1L<<4

};

Notification Flags

enum {
kSRNotifyRecognitionBeginning = 1L<<0,
kSRNotifyRecognitionDone = 1L<<1

};
Summary of the Speech Recognition Manager 1-93

C H A P T E R 1

Speech Recognition Manager
Listen Key Modes

enum {
kSRUseToggleListen = 0,
kSRUsePushToTalk = 1

};

Recognition Result Properties

enum {
kSRLanguageModelFormat = 'lmfm',
kSRPathFormat = 'lmpt',
kSRPhraseFormat = 'lmph',
kSRTEXTFormat = 'TEXT'

};

Language Object Properties

enum {
kSRSpelling = 'spel',
kSRLMObjType = 'lmtp',
kSRRefCon = 'refc',
kSROptional = 'optl',
kSREnabled = 'enbl',
kSRRepeatable = 'rptb',
kSRRejectable = 'rjbl',
kSRRejectionLevel = 'rjct'

};

Language Object Types

enum {
kSRLanguageModelType = 'lmob',
kSRPathType = 'path',
kSRPhraseType = 'phra',
kSRWordType = 'word'

};
1-94 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Procedure Information

enum {
uppSRCallBackProcInfo = kPascalStackBased |

STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(SRCallBackStruct*)))
};

Default Rejection Level

enum {
kSRDefaultRejectionLevel = 50

};

Data Types 1

Speech Objects

typedef struct OpaqueSRSpeechObject *SRSpeechObject;

typedef SRSpeechObject SRRecognitionSystem;
typedef SRSpeechObject SRRecognizer;
typedef SRSpeechObject SRSpeechSource;
typedef SRSpeechObject SRLanguageObject;

typedef SRSpeechSource SRRecognitionResult;

Language Objects

typedef SRLanguageObject SRLanguageModel;
typedef SRLanguageObject SRPath;
typedef SRLanguageObject SRPhrase;
typedef SRLanguageObject SRWord;

CallBack Structure

struct SRCallBackStruct {
long what;
long message;
SRRecognizer instance;
OSErr status;
Summary of the Speech Recognition Manager 1-95

C H A P T E R 1

Speech Recognition Manager
short flags;
long refcon;

};
typedef struct SRCallBackStruct SRCallBackStruct;

Callback Routine Type

#if GENERATINGCFM
typedef UniversalProcPtr SRCallBackUPP;
#else
typedef SRCallBackProcPtr SRCallBackUPP;
#endif

Callback Routine Parameter Structure

struct SRCallBackParam {
SRCallBackUPP callBack;
long refcon;

};
typedef struct SRCallBackParam SRCallBackParam;

Other Types

typedef unsigned short SRRejectionLevel;

Speech Recognition Manager Routines 1

Opening and Closing Recognition Systems
pascal OSErr SROpenRecognitionSystem (

SRRecognitionSystem *system,
OSType systemID);

pascal OSErr SRCloseRecognitionSystem (
SRRecognitionSystem system);
1-96 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Creating and Manipulating Recognizers
pascal OSErr SRNewRecognizer (SRRecognitionSystem system,

SRRecognizer *recognizer,
OSType sourceID);

pascal OSErr SRStartListening (SRRecognizer recognizer);

pascal OSErr SRStopListening (SRRecognizer recognizer);

pascal OSErr SRGetLanguageModel (SRRecognizer recognizer,
SRLanguageModel *languageModel);

pascal OSErr SRSetLanguageModel (SRRecognizer recognizer,
SRLanguageModel languageModel);

pascal OSErr SRContinueRecognition(SRRecognizer recognizer);

pascal OSErr SRCancelRecognition (SRRecognizer recognizer);

pascal OSErr SRIdle (void);

Managing Speech Objects
pascal OSErr SRGetProperty (SRSpeechObject srObject,

OSType selector,
void *property,
Size *propertyLen);

pascal OSErr SRSetProperty (SRSpeechObject srObject,
OSType selector,
const void *property,
Size propertyLen);

pascal OSErr SRGetReference (SRSpeechObject srObject,
SRSpeechObject *newObjectRef);

pascal OSErr SRReleaseObject (SRSpeechObject srObject);

Creating Language Objects
pascal OSErr SRNewWord (SRRecognitionSystem system,

SRWord *word,
const void *text,
Size textLength);
Summary of the Speech Recognition Manager 1-97

C H A P T E R 1

Speech Recognition Manager
pascal OSErr SRNewPhrase (SRRecognitionSystem system,
SRPhrase *phrase,
const void *text,
Size textLength);

pascal OSErr SRNewPath (SRRecognitionSystem system, SRPath *path);

pascal OSErr SRNewLanguageModel (SRRecognitionSystem system,
SRLanguageModel *model,
const void *name,
Size nameLength);

Manipulating Language Objects
pascal OSErr SRAddText (SRLanguageObject base,

const void *text,
Size textLength,
long refCon);

pascal OSErr SRAddLanguageObject (SRLanguageObject base, SRLanguageObject addon);

pascal OSErr SREmptyLanguageObject(SRLanguageObject languageObject);

pascal OSErr SRChangeLanguageObject (
SRLanguageObject languageObject,
const void *text,
Size textLength);

pascal OSErr SRRemoveLanguageObject (
SRLanguageObject base, SRLanguageObject toRemove);

Traversing Speech Objects
pascal OSErr SRCountItems (SRSpeechObject container, long *count);

pascal OSErr SRGetIndexedItem (SRSpeechObject container,
SRSpeechObject *item,
long index);

pascal OSErr SRSetIndexedItem (SRSpeechObject container,
SRSpeechObject item,
long index);

pascal OSErr SRRemoveIndexedItem (SRSpeechObject container, long index);
1-98 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Reading and Writing Language Objects
pascal OSErr SRPutLanguageObjectIntoHandle (

SRLanguageObject languageObject, Handle lobjHandle);

pascal OSErr SRPutLanguageObjectIntoDataFile (
SRLanguageObject languageObject, short fRefNum);

pascal OSErr SRNewLanguageObjectFromHandle (
SRRecognitionSystem system,
SRLanguageObject *languageObject,
Handle lobjHandle);

pascal OSErr SRNewLanguageObjectFromDataFile (
SRRecognitionSystem system,
SRLanguageObject *languageObject,
short fRefNum);

Using the System Feedback Window
pascal OSErr SRDrawText (SRRecognizer recognizer,

const void *dispText,
Size dispLength);

pascal OSErr SRDrawRecognizedText (SRRecognizer recognizer,
const void *dispText,
Size dispLength);

pascal OSErr SRSpeakText (SRRecognizer recognizer,
const void *speakText,
Size speakLength);

pascal OSErr SRSpeakAndDrawText (SRRecognizer recognizer,
const void *text,
Size textLength);

pascal OSErr SRStopSpeech (SRRecognizer recognizer);

pascal Boolean SRSpeechBusy (SRRecognizer recognizer);

pascal OSErr SRProcessBegin (SRRecognizer recognizer, Boolean failed);

pascal OSErr SRProcessEnd (SRRecognizer recognizer, Boolean failed);
Summary of the Speech Recognition Manager 1-99

C H A P T E R 1

Speech Recognition Manager
Application-Defined Routines 1

Callback Routines
pascal void MySRCallBack (SRCallBackStruct *param);

Pascal Summary 1

Constants 1

Gestalt Selectors and Response Values

CONST
gestaltSpeechRecognitionVersion = 'srtb';
gestaltSpeechRecognitionAttr = 'srta';

gestaltDesktopSpeechRecognition = $00000001;
gestaltTelephoneSpeechRecognition = $00000002;

Recognition System IDs

kSRDefaultRecognitionSystemID = 0;

Recognition System Properties

kSRFeedbackAndListeningModes = 'fbwn';
kSRRejectedWord = 'rejq';
kSRCleanupOnClientExit = 'clup';

kSRNoFeedbackNoListenModes = 0;
kSRHasFeedbackHasListenModes = 1;
kSRNoFeedbackHasListenModes = 2;
1-100 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Speech Source IDs

kSRDefaultSpeechSource = 0;
kSRLiveDesktopSpeechSource = 'dklv';
kSRCanned22kHzSpeechSource = 'ca22';

Apple Event Selectors

{Apple event message class}
kAESpeechSuite = 'sprc';

{Apple event message event IDs}
kAESpeechDetected = 'srbd';
kAESpeechDone = 'srsd';

{Apple event parameter keywords}
keySRRecognizer = 'krec';
keySRSpeechResult = 'kspr';
keySRSpeechStatus = 'ksst';

{Apple event parameter types}
typeSRRecognizer = 'trec';
typeSRSpeechResult = 'tspr';

Recognizer Properties

kSRNotificationParam = 'noti';
kSRCallBackParam = 'call';
kSRSearchStatusParam = 'stat';
kSRForegroundOnly = 'fgon';
kSRBlockBackground = 'blbg';
kSRBlockModally = 'blmd';
kSRWantsResultTextDrawn = 'txfb';
kSRWantsAutoFBGestures = 'dfbr';
kSRSoundInVolume = 'volu';
kSRReadAudioFSSpec = 'aurd';
kSRCancelOnSoundOut = 'caso';
kSRListenKeyMode = 'lkmd';
kSRListenKeyCombo = 'lkey';
kSRListenKeyName = 'lnam';
kSRKeyWord = 'kwrd';
kSRKeyExpected = 'kexp';
Summary of the Speech Recognition Manager 1-101

C H A P T E R 1

Speech Recognition Manager
Search Status Flags

kSRIdleRecognizer = $00000001;
kSRSearchInProgress = $00000002;
kSRSearchWaitForAllClients = $00000004;
kSRMustCancelSearch = $00000008;
kSRPendingSearch = $00000010;

Notification Flags

kSRNotifyRecognitionBeginning = $00000001;
kSRNotifyRecognitionDone = $00000002;

Recognition Result Properties

kSRLanguageModelFormat = 'lmfm';
kSRPathFormat = 'lmpt';
kSRPhraseFormat = 'lmph';
kSRTEXTFormat = 'TEXT';

Language Object Properties

kSRSpelling = 'spel';
kSRLMObjType = 'lmtp';
kSRRefCon = 'refc';
kSROptional = 'optl';
kSREnabled = 'enbl';
kSRRepeatable = 'rptb';
kSRRejectable = 'rjbl';
kSRRejectionLevel = 'rjct';

Language Object Types

kSRLanguageModelType = 'lmob';
kSRPathType = 'path';
kSRPhraseType = 'phra';
kSRWordType = 'word';

Default Rejection Level

kSRDefaultRejectionLevel = 50;
1-102 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Data Types 1

Speech Objects

TYPE
SRSpeechObject = ^LongInt;

SRRecognitionSystem = SRSpeechObject;
SRRecognizer = SRSpeechObject;
SRSpeechSource = SRSpeechObject;
SRLanguageObject = SRSpeechObject;

SRRecognitionResult = SRSpeechSource;

Language Objects

SRLanguageModel = SRLanguageObject;
SRPath = SRLanguageObject;
SRPhrase = SRLanguageObject;
SRWord = SRLanguageObject;

CallBack Structure

SRCallBackStruct =
RECORD

what: LongInt;
message: LongInt;
instance: SRRecognizer;
status: OSErr;
flags: Integer;
refcon: LongInt;

END;
SRCallBackStructPtr = ^SRCallBackStruct;
SRCallBackStructHandle = ^SRCallBackStructPtr;

Callback Routine Type

SRCallBackProcPtr = ProcPtr;
SRCallBackUPP = SRCallBackProcPtr;
Summary of the Speech Recognition Manager 1-103

C H A P T E R 1

Speech Recognition Manager
Callback Routine Parameter Structure

SRCallBackParam =
RECORD

callBack: SRCallBackUPP;
refcon: LongInt;

END;
SRCallBackParamPtr = ^SRCallBackParam;
SRCallBackParamHandle = ^SRCallBackParamPtr;

Other Types

SRRejectionLevel = Integer;

Speech Recognition Manager Routines 1

Opening and Closing Recognition Systems
FUNCTION SROpenRecognitionSystem (VAR system: SRRecognitionSystem;

systemID: OSType): OSErr;

FUNCTION SRCloseRecognitionSystem (system: SRRecognitionSystem): OSErr;

Creating and Manipulating Recognizers
FUNCTION SRNewRecognizer (system: SRRecognitionSystem;

VAR recognizer: SRRecognizer;
sourceID: OSType): OSErr;

FUNCTION SRStartListening (recognizer: SRRecognizer): OSErr;

FUNCTION SRStopListening (recognizer: SRRecognizer): OSErr;

FUNCTION SRGetLanguageModel (recognizer: SRRecognizer;
VAR languageModel: SRLanguageModel): OSErr;

FUNCTION SRSetLanguageModel (recognizer: SRRecognizer;
languageModel: SRLanguageModel): OSErr;

FUNCTION SRContinueRecognition (recognizer: SRRecognizer): OSErr;

FUNCTION SRCancelRecognition (recognizer: SRRecognizer): OSErr;

FUNCTION SRIdle : OSErr;
1-104 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Managing Speech Objects
FUNCTION SRGetProperty (srObject: SRSpeechObject;

selector: OSType;
property: UNIV Ptr;
VAR propertyLen: Size): OSErr;

FUNCTION SRSetProperty (srObject: SRSpeechObject;
selector: OSType;
property: UNIV Ptr;
propertyLen: Size): OSErr;

FUNCTION SRGetReference (srObject: SRSpeechObject;
VAR newObjectRef: SRSpeechObject): OSErr;

FUNCTION SRReleaseObject (srObject: SRSpeechObject): OSErr;

Creating Language Objects
FUNCTION SRNewWord (system: SRRecognitionSystem;

VAR word: SRWord;
text: UNIV Ptr;
textLength: Size): OSErr;

FUNCTION SRNewPhrase (system: SRRecognitionSystem;
VAR phrase: SRPhrase;
text: UNIV Ptr;
textLength: Size): OSErr;

FUNCTION SRNewPath (system: SRRecognitionSystem; VAR path: SRPath):
OSErr;

FUNCTION SRNewLanguageModel (system: SRRecognitionSystem;
VAR model: SRLanguageModel;
name: UNIV Ptr;
nameLength: Size): OSErr;

Manipulating Language Objects
FUNCTION SRAddText (base: SRLanguageObject;

text: UNIV Ptr;
textLength: Size;
refCon: LongInt): OSErr;

FUNCTION SRAddLanguageObject (base: SRLanguageObject; addon: SRLanguageObject):
OSErr;
Summary of the Speech Recognition Manager 1-105

C H A P T E R 1

Speech Recognition Manager
FUNCTION SREmptyLanguageObject (languageObject: SRLanguageObject): OSErr;

FUNCTION SRChangeLanguageObject (languageObject: SRLanguageObject;
text: UNIV Ptr;
textLength: Size): OSErr;

FUNCTION SRRemoveLanguageObject (base: SRLanguageObject;
toRemove: SRLanguageObject): OSErr;

Traversing Speech Objects
FUNCTION SRCountItems (container: SRSpeechObject; VAR count: LongInt):

OSErr;

FUNCTION SRGetIndexedItem (container: SRSpeechObject;
VAR item: SRSpeechObject;
index: LongInt): OSErr;

FUNCTION SRSetIndexedItem (container: SRSpeechObject;
item: SRSpeechObject;
index: LongInt): OSErr;

FUNCTION SRRemoveIndexedItem (container: SRSpeechObject; index: LongInt): OSErr;

Reading and Writing Language Objects
FUNCTION SRPutLanguageObjectIntoHandle (

languageObject: SRLanguageObject;
lobjHandle: Handle): OSErr;

FUNCTION SRPutLanguageObjectIntoDataFile (
languageObject: SRLanguageObject;
fRefNum: Integer): OSErr;

FUNCTION SRNewLanguageObjectFromHandle (
system: SRRecognitionSystem;
VAR languageObject: SRLanguageObject;
lobjHandle: Handle): OSErr;

FUNCTION SRNewLanguageObjectFromDataFile (
system: SRRecognitionSystem;
VAR languageObject: SRLanguageObject;
fRefNum: Integer): OSErr;
1-106 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
Using the System Feedback Window
FUNCTION SRDrawText (recognizer: SRRecognizer;

dispText: UNIV Ptr;
dispLength; Size): OSErr;

FUNCTION SRDrawRecognizedText (recognizer: SRRecognizer;
dispText: UNIV Ptr;
dispLength; Size): OSErr;

FUNCTION SRSpeakText (recognizer: SRRecognizer;
speakText: UNIV Ptr;
speakLength: Size): OSErr;

FUNCTION SRSpeakAndDrawText (recognizer: SRRecognizer;
text: UNIV Ptr;
textLength: Size): OSErr;

FUNCTION SRStopSpeech (recognizer: SRRecognizer): OSErr;

FUNCTION SRSpeechBusy (recognizer: SRRecognizer): Boolean;

FUNCTION SRProcessBegin (recognizer: SRRecognizer; failed: Boolean): OSErr;

FUNCTION SRProcessEnd (recognizer: SRRecognizer; failed: Boolean): OSErr;

Application-Defined Routines 1

Callback Routines
PROCEDURE MyCallBackProc (param: SRCallBackStructPtr);
Summary of the Speech Recognition Manager 1-107

C H A P T E R 1

Speech Recognition Manager
Result Codes 1

kSRNotAvailable –5100 Requested service not available or applicable
kSRInternalError –5101 Internal system or hardware error condition
kSRComponentNotFound –5102 Required component cannot be located
kSROutOfMemory –5103 Not enough memory available
kSRNotASpeechObject –5104 Object is not valid
kSRBadParameter –5105 Invalid parameter specified
kSRParamOutOfRange –5106 Parameter is out of valid range
kSRBadSelector –5107 Unrecognized selector specified
kSRBufferTooSmall –5108 Buffer is too small
kSRNotARecSystem –5109 Specified object is not a recognition system
kSRFeedbackNotAvail –5110 No feedback window associated with

recognizer
kSRCantSetProperty –5111 Cannot set the specified property
kSRCantGetProperty –5112 Cannot get the specified property
kSRCantSetDuringRecognition –5113 Cannot set property during recognition
kSRAlreadyListening –5114 System is already listening
kSRNotListeningState –5115 System is not listening
kSRModelMismatch –5116 No acoustical models available to match

request
kSRNoClientLanguageModel –5117 Cannot access specified language model
kSRNoPendingUtterances –5118 No utterances to search
kSRRecognitionCanceled –5119 Search was canceled
kSRRecognitionDone –5120 Search has finished, but nothing was

recognized
kSROtherRecAlreadyModal –5121 Another recognizer is already operating

modally
kSRHasNoSubItems –5122 Specified object has no subitems
kSRSubItemNotFound –5123 Specified subitem cannot be located
kSRLanguageModelTooBig –5124 Language model too big to be built
kSRAlreadyReleased –5125 Specified object has already been released
kSRAlreadyFinished –5126 Specified language model has already been

finished
kSRWordNotFound –5127 Spelling could not be found
kSRNotFinishedWithRejection –5128 Language model not finished with rejection
kSRExpansionTooDeep –5129 Language model is left recursive or is

embedded too many levels
kSRTooManyElements –5130 Too many elements added to phrase, path, or

other language object
kSRCantAdd –5131 Can't add specified type of object to the base

language object
1-108 Summary of the Speech Recognition Manager

C H A P T E R 1

Speech Recognition Manager
kSRSndInSourceDisconnected –5132 Sound input source is disconnected
kSRCantReadLanguageObject –5133 Cannot create language object from file or

pointer
kSRNotImplementedYet –5199 Feature is not yet implemented
Summary of the Speech Recognition Manager 1-109

C H A P T E R 1

Speech Recognition Manager
1-110 Summary of the Speech Recognition Manager

Glossary
active language model The language
model that is currently associated with a
recognizer. You can call the
SRSetLanguageModel function to set the
active language model.

Apple event A high-level event that
adheres to the Apple Event Interprocess
Messaging Protocol. An Apple event
consists of attributes (including the event
class and event ID, which identify the event
and its task) and, usually, parameters
(which contain data used by the target
application for the event).

Apple event handler An
application-defined function that extracts
pertinent data from an Apple event,
performs the action requested by the Apple
event, and returns a result.

Apple Event Manager The collection of
routines that allows client applications to
send Apple events to server applications for
the purpose of requesting services or
information.

Backus-Naur Form (BNF) A standard
form for representing formal grammars or
other language models.

BNF See Backus-Naur Form.

callback routine See speech recognition
callback routine.

callback routine parameter structure A
data structure that contains information
about a speech recognition callback routine.
A callback routine parameter structure is
defined by the SRCallBackParam data type.

cleanup mode A property of a recognition
system that determines whether the
recognition system and all other objects it
has created are disposed of when your code
exits.

container See container object.

container object Any speech object that
contains distinguishable subitems. For
example, a phrase may contain
distinguishable words.

embedded language model A language
model that occurs in the path or set of paths
that define some other language model.
Compare top-level language model.

embedded speech command In a buffer
of input text, a sequence of characters
enclosed by command delimiters that
provides instructions to a speech
synthesizer.

feedback and listening modes A
property of a recognition system that
determines whether a feedback window is
displayed for any recognizer associated
with that system and whether the
recognizer uses the listening modes selected
by the user in the Speech control panel.
GL-1

G L O S S A R Y
feedback character The picture (often of a
head) displayed in a feedback window.

feedback services A feature of the Speech
Recognition Manager that provides a
standard set of cues and responses during
speech recognition and the ability for your
application to alter those cues and
responses.

feedback window A floating window
that provides audiovisual cues and
responses to a PlainTalk user. A feedback
window is divided into a status pane and a
transcript pane. See also feedback
character, output text, recognized text.

key word The word that must precede
utterances when the recognizer is in
toggle-listen mode.

key word mode See toggle-listen mode.

language model A language object that
represents a list of zero or more words,
phrases, or paths. A language model is
defined by the SRLanguageModel data type.
See also embedded language model,
top-level language model.

language object Any speech object that
belongs to a subclass of the
SRLanguageObject class. See also language
model, path, phrase, word.

listening mode indicator A word or
phrase that indicates which keyword must
be uttered or which key must be held down
in order for a recognizer to start listening.
The current listening mode indicator
appears at the bottom of the status pane in a
feedback window.

listen key The key (or key combination)
that either must be held down in order for a
recognizer to start listening or that, when
pressed, toggles listening on and off.

listen key mode A recognizer property
that determines whether the listen key
operates in push-to-talk or toggle-listening
mode.

notification See recognition notification.

object See speech object.

object reference See reference.

output text Any text drawn into the
feedback window that represents a
response to a recognized utterance.
Compare recognized text.

path A language object that represents a
sequence of zero or more words, phrases, or
embedded language models. A path is
defined by the SRPath data type.

phrase A language object that represents a
sequence of zero or more words. A phrase is
defined by the SRPhrase data type.

PlainTalk A collection of operating
system managers, control panels, and other
software that enables Macintosh computers
to speak written text and to respond to
spoken commands. See also Speech
Recognition Manager, Speech Synthesis
Manager.

property An item of data associated with
an object. Properties control some of the
object’s behavior.

property selector A 4-byte value passed
to SRGetProperty or SRSetProperty that
specifies which property of an object to get
or set.
GL-2

G L O S S A R Y
property type The type of a property.
A property type is specified by a property
selector.

property value The value of a property.

push-to-talk mode A listening mode that
requires a key to be held down in order for
a recognizer to start listening. Compare
toggle-listening mode.

recognition notification A message sent
to your application by a recognizer when
certain events occur in the recognizer.

recognition result A speech object that
describes a recognized utterance. A
recognition result is defined by the
SRRecognitionResult data type.

recognition system A speech object that
defines certain global characteristics of the
speech recognition process. A recognition
system is defined by the
SRRecognitionSystem data type.

recognition system ID A value passed to
the SROpenRecognitionSystem function that
specifies a recognition system.

recognized speech The product of
converting speech into digitally-stored
words or phonemes or into computer
actions. See also Speech Recognition
Manager, synthesized speech.

recognized text Any text drawn into the
feedback window that represents a
recognized utterance of the user. Compare
output text.

recognizer A speech object that
recognizes utterances and sends recognition
results to your application. A recognizer is
defined by the SRRecognizer data type.

reference A 4-byte value associated with a
speech object.

reference constant A 4-byte value defined
by your application that can be associated
with a language object as the value of its
kSRRefCon property.

reference count The number of references
an application has to a speech object.

reject To deem an utterance
unrecognizable.

rejectable Said of an object if a
recognition system can return the value
kSRRejectedWord instead of that object.

rejected word A word that is passed to
your application in a recognition result
whenever a recognizer hears some sound
but cannot recognize it.

separation character A character used to
separate the words in a phrase. By default, a
recognition system’s separation character is
the character “ “.

speech The process or product of
speaking.

speech class A structure for the data that
characterize speech objects, together with a
set of properties for those objects. Compare
speech object.

speech class hierarchy The hierarchical
arrangement of speech object classes.

speech command See embedded speech
command.

Speech Manager See Speech Synthesis
Manager.

speech object Any instance of a speech
class.
GL-3

G L O S S A R Y
speech recognition The process of
listening to and interpreting spoken
utterances. The Speech Recognition
Manager provides speech recognition
services for Macintosh computers.

speech recognition callback routine An
application-defined routine called by the
Speech Recognition Manager when certain
recognizer events occur (for instance, when
the recognizer has recognized an utterance).

speech recognition callback structure A
data structure that contains information
about a recognition result. A speech
recognition callback structure is defined by
the SRCallBackStruct data type.

Speech Recognition Manager The part of
the Macintosh system software that
provides a standardized method for
Macintosh applications to recognize speech.
Compare Speech Synthesis Manager.

Speech Synthesis Manager The part of
the Macintosh system software that
provides a standardized method for
Macintosh applications to generate
synthesized speech. Previously called the
Speech Manager. Compare Speech
Recognition Manager.

status pane The portion of a feedback
window that provides information about
the status of a recognizer. The status pane
includes the feedback character and the
listening mode indicator. Compare
transcript pane.

subitem An item in a container.

synthesized speech The product of
converting nonaural tokens (such as written
or digitally-stored words or phonemes) into
speech. See also recognized speech, Speech
Synthesis Manager.

text-to-speech See synthesized speech.

toggle-listening mode A listening mode
that interprets presses on the listen key as a
toggle to turn listening on or off. Compare
push-to-talk mode.

top-level language model A language
model that does not occur in the path or set
of paths that define any other language
model. Compare embedded language
model.

transcript pane The portion of a feedback
window that contains a readable transcript
of the few most recent recognized
utterances and feedback. Compare status
pane. See also output text, recognized text.

value See property value.

voice recognition See speech recognition.

word A language object that represents a
single spoken word. A word is defined by
the SRWord data type. The properties of a
word include its spelling, its pronunciation,
and its reference constant.
GL-4

Index
Symbols

< 1-12
> 1-12
| 1-12

A

active language model 1-7
Apple event handlers

introduced 1-7
processing notifications with 1-28 to 1-30

Apple event selectors 1-42 to 1-43
audio file property 1-45
automatic feedback gestures flag 1-45

B

background-blocking property 1-44
Backus-Naur Form 1-12
BNF. See Backus-Naur Form

C

callback property 1-44
callback routine parameter structures 1-30, 1-55
callback routines. See speech recognition callback

routines
cancel during sound output flag 1-46
cleanup mode 1-41
container objects

counting items in 1-75
getting an indexed item in 1-76
removing an indexed item from 1-78

setting an indexed item in 1-77
containers. See container objects

D

data files
getting language objects from 1-38
putting language objects into 1-37

E

embedded language models 1-13
embedded speech commands 1-84
enabled flag, of language objects 1-52

F

feedback and listening modes 1-16, 1-40 to 1-41
feedback characters 1-15

determining if speaking 1-86
terminating speech by 1-86

feedback services
defined 1-13 to 1-17
routines for 1-82 to 1-89

feedback window 1-14
foreground-only property 1-44

G

Gestalt function
and Speech Recognition Manager 1-17 to 1-18,

1-39
IN-1

I N D E X
H

handles
getting language objects from 1-38
putting language objects into 1-37

K

key expected flag 1-47
key word mode. See toggle-listen mode
key word property 1-46

L

language models
See also language objects
active 1-7
building 1-21 to 1-25
counting subitems in 1-75
creating 1-69
defined 1-11 to 1-13
embedded 1-13
introduced 1-6
top-level 1-13

language objects
See also speech objects
adding language objects to 1-72
adding text to 1-71
changing 1-73
emptying 1-73
getting from a data file 1-38, 1-81
getting from a handle 1-38, 1-80
getting from a resource 1-38
introduced 1-12
properties of 1-51 to 1-53
putting into a data file 1-37, 1-79
putting into a handle 1-37, 1-79
putting into a resource 1-37
removing language objects from 1-74
routines for 1-66 to 1-82
spelling of 1-51

types of 1-51, 1-53
listening mode indicators 1-15
listen key combination property 1-46
listen key mode 1-46
listen key modes 1-49
listen key name property 1-46

M

microphone speech source 1-39
modal-blocking flag 1-44
MySRCallBack callback routine 1-89

N

notification flags 1-48
notification property 1-27, 1-43
notifications. See recognition notifications

O

object references. See references
objects. See speech objects
optional flag, of languyage objects 1-52
optional language objects 1-25
output text

drawing 1-82
introduced 1-15
speaking and drawing 1-85

P

paths
See also language objects
counting subitems in 1-75
creating 1-68
introduced 1-12

phrases
IN-2

I N D E X
See also language objects
counting words in 1-75
creating 1-68
introduced 1-12

PlainTalk 1-5
properties

introduced 1-10 to 1-11
routines for manipulating 1-63 to 1-65

property selectors
for language objects 1-51 to 1-53
for recognition results 1-49 to 1-50
for recognition systems 1-40 to 1-41
for recognizers 1-43 to 1-47
introduced 1-11

property types 1-10
property values

getting 1-63
introduced 1-10
setting 1-64

push-to-talk mode 1-15

R

recognition notifications
constants for 1-48
handling 1-27 to 1-33, 1-89 to 1-90
introduced 1-7

recognition results
introduced 1-7
properties of 1-49 to 1-50

recognition system IDs 1-40
recognition systems

introduced 1-6
opening 1-18 to 1-19, 1-56
properties of 1-40 to 1-41
routines for 1-56 to 1-57

recognized text
drawing 1-83
introduced 1-15

recognizer properties 1-43 to 1-47
recognizers

canceling recognition 1-61
continuing recognition 1-61

creating 1-20, 1-57
getting language model 1-59
granting time to 1-62
introduced 1-7
routines for 1-57 to 1-62
setting language model 1-25, 1-60
starting listening 1-27, 1-58
stopping feedback speech 1-86
stopping listening 1-27, 1-59

reference constants 1-11, 1-51
reference counts 1-10
references 1-9 to 1-10
rejectable 1-52
rejectable flag, of language objects 1-52
rejected words 1-41
rejection levels 1-52
repeatable flag, of language objects 1-52
resources

getting language objects from 1-38
resources, putting language objects into 1-37
result codes 1-108

S

sample routines
MyBuildLanguageModel 1-21
MyCallPersonInPath 1-36
MyHandleSpeechDetected 1-30
MyHandleSpeechDone 1-29
MyHasSpeechRecognitionMgr 1-18
MyIdleCheckForSpeechResult 1-33
MyInitSpeechRecognition 1-19
MyInstallNotificationCallBack 1-31
MyNotificationCallBack 1-32
MyProcessRecognitionResult 1-35
MyRemoveNotificationCallBack 1-31
MySetRejectedWordRefCon 1-26
MyTerminateSpeechRecognition 1-20

search status 1-44
search status flags 1-47 to 1-48
sound input volume 1-45
speech classes 1-8
speech class hierarchy 1-8
IN-3

I N D E X
speech commands. See embedded speech
commands

Speech control panel 1-15
Speech Manager. See Speech Synthesis Manager
speech objects

getting new references to 1-65
getting properties of 1-63
introduced 1-8 to 1-9
releasing 1-65
routines for 1-62 to 1-78
setting properties of 1-64

speech recognition 1-5
speech recognition callback routines 1-7, 1-30 to

1-33, 1-89 to 1-90
speech recognition callback structures 1-53 to

1-55
Speech Recognition Manager 1-5 to 1-109

application-defined routines in 1-89 to 1-90
checking for features of 1-17
constants for 1-39 to 1-53
data structures for 1-53 to 1-55
defined 1-5
limitations of 1-7
result codes 1-108
routines in 1-55 to 1-89
sample code for 1-17 to 1-33

speech source IDs 1-20
Speech Synthesis Manager 1-5, 1-6, 1-84
SRAddLMObject function 1-72
SRAddText function 1-71
SRCallBackParam data type 1-55
SRCallBackStruct data type 1-53 to 1-55
SRCancelRecognition function 1-28, 1-61
SRChangeLMObject function 1-73
SRCloseRecognitionSystem function 1-57
SRContinueRecognition function 1-28, 1-61
SRCountItems function 1-75
SRDrawRecognizedText function 1-83
SRDrawText function 1-82
SREmptyLMObject function 1-73
SRGetIndexedItem function 1-76
SRGetLanguageModel function 1-59
SRGetProperty function 1-63
SRGetReference function 1-65
SRIdle function 1-62

SRLanguageObject data type 1-8
SRLoadLMObject function 1-81
SRNewLanguageModel function 1-69
SRNewLanguageObjectFromHandle function 1-80
SRNewPath function 1-68
SRNewPhrase function 1-68
SRNewRecognizer function 1-57
SRNewWord function 1-67
SROpenRecognitionSystem function 1-56
SRProcessBegin function 1-87
SRProcessEnd function 1-88
SRPutLanguageObjectIntoDataFile

function 1-79
SRPutLanguageObjectIntoHandle function 1-79
SRRecognitionResult data type 1-8
SRRecognitionSystem data type 1-8, 1-19
SRRecognizer data type 1-8
SRReleaseObject function 1-9, 1-65
SRRemoveIndexedItem function 1-78
SRRemoveLMObject function 1-74
SRSetIndexedItem function 1-77
SRSetLanguageModel function 1-60
SRSetProperty function 1-64
SRSpeakAndDrawText function 1-85
SRSpeakText function 1-84
SRSpeechBusy function 1-86
SRSpeechObject data type 1-8, 1-9
SRSpeechSource data type 1-8
SRStartListening function 1-27, 1-58
SRStopListening function 1-27, 1-59
SRStopSpeech function 1-86
status pane 1-15
subitems

counting 1-75
getting by index 1-76
removing by index 1-78
setting by index 1-77

T

telephone speech source 1-39
text, speaking 1-84
text feedback flag 1-45
IN-4

I N D E X
text-to-speech. See synthesized speech
top-level language models 1-13
transcript pane 1-15

V

values. See property values
voice recognition. See speech recognition

W

WaitNextEvent function, and SRIdle 1-62
words

See also language objects
counting in a phrase 1-75
creating 1-67
introduced 1-12
IN-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an Agfa Large-Format
Imagesetter. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Tim Monroe

ILLUSTRATOR
Sandee Karr

PROJECT MANAGER
Patricia Eastman

Special thanks to Eric “Braz” Ford,
Matt Pallakoff, Arlo Reeves, and
Brent Schorsch.

Acknowledgments to Tavares Ford.

	Speech Recognition Manager
	About the Speech Recognition Manager
	Speech Objects
	Object References
	Object Properties

	Language Models
	Feedback Services

	Using the Speech Recognition Manager
	Checking for Speech Recognition Capabilities
	Opening Recognition Systems and Recognizers
	Building a Language Model
	Setting the Language Model
	Setting the Rejection Word
	Starting and Stopping Speech Recognition
	Handling Recognition Notifications
	Using Apple Events
	Using Callback Routines

	Interpreting Recognition Results
	Saving and Loading Language Objects

	Speech Recognition Manager Reference
	Constants
	Gestalt Selectors and Response Values
	Recognition System IDs
	Recognition System Properties
	Apple Event Selectors
	Recognizer Properties
	Search Status Flags
	Notification Flags
	Listen Key Modes
	Recognition Result Properties
	Language Object Properties
	Language Object Types

	Data Structures
	Speech Recognition CallBack Structure
	Callback Routine Parameter Structure

	Speech Recognition Manager Routines
	Opening and Closing Recognition Systems
	Creating and Manipulating Recognizers
	Managing Speech Objects
	Creating Language Objects
	Manipulating Language Objects
	Traversing Speech Objects
	Reading and Writing Language Objects
	Using the System Feedback Window

	Application-Defined Routines
	Speech Recognition Callback Routines

	Summary of the Speech Recognition Manager
	C Summary
	Constants
	Data Types
	Speech Recognition Manager Routines
	Application-Defined Routines

	Pascal Summary
	Constants
	Data Types
	Speech Recognition Manager Routines
	Application-Defined Routines

	Result Codes

	Glossary
	Index

