Event Handling Multilingual Text Editor

Section 3 - Event Handling

Purpose In this section you will learn about some of the MLTE API that gresatly
simplify the event processing in your application.

Objective Upon completion of this session, you will be able to do the following:

» Usethefollowing eleven MLTE event related API:

TXNGetSleegpTicks, TXNTSMCheck, TXNAdjustCursor,
TXNIdle, TXNClick, TXNGrowWindow, TXNZoomWindow,
TXNKeyDown, TXNUpdate, TXNActivate and TXNFocus

Apple Worldwide Developer Technical Support Page 11

Event Handling Multilingual Text Editor

fSl eep time In & cooperative processing environment, one of the decisions an
e?,remlf (r) op application must make is how long to give to background processes.

MLTE provides afunction to determine an appropriate sleep time to pass
to WaitNextEvent.

EXTERN_API(UINt32)TXNGetSleepTicks(TXNObject iTXNObject);

Thereturn value of TXNGetSleepTicks holds the appropriate sleep
time.

JEj Our sample's WaitNextEvent calls our function GetSleep(). At the Step
6 tag, cal TXNGetSeepTicksin that function and return the result to
WaitNextEvent. Y our code might look something like this:

TXNObject object = NULL;

window = FrontWindow();
ifT (IsAppWindow(window)) // if the front window is ours

{
GetWindowProperty(window, "GRIT", "tObj", sizeof(TXNObject), NULL, &object);
sleep = TXNGetSleepTicks(object); // get appropriate sleep time

}

else
sleep = GetCaretTime(); // use some other value
return sleep;

Time for
Input , — o ,
Methods Y ou will want your application to also give time to any input methods

that the user may have activated, to ensure they can be reasonably
responsive. MLTE provides amethod, TXNT SM Check, that you can
call when WaitNextEvent returns false or there is no active TXNObject.

EXTERN_API(Boolean) TXNTSMCheck(TXNObject iTXNObject, EventRecord *iEvent);

The TXNObject parameter can be NULL, alowing an application to call
thisfunction at any time. (Y ou no longer need to call thisfunction if you
are a Carbon application.)

JE| Our sample's WaitNextEvent loop hasacal to Doldleif theeventisa
NULL event. Placeacall to TXNTSMCheck so that it iscalled along
with Doldle. ThisisStep 7.

Notes

Apple Worldwide Developer Technical Support Page 12

Event Handling Multilingual Text Editor

Cursor Another task an application must take on is to determine the correct

adjustment cursor to display depending on the mouse location. MLTE provides
TXNAdjustCur sor, which sets the cursor to the i-beam if the mouseis
over atext area, and setsthe cursor to an arrow if the mouse is over
graphics, a sound, amovie, ascroll bar, or outside of the window.

EXTERN_API(void)TXNAdjustCursor(TXNObject iTXNObject, RgnHandle ioCursorRgn);

JEj Our sample calls its own function AdjustCursor when appropriate. At
Step 8, implement an appropriate cal to TXNAdjustCursor, e.g.:

TXNObject object = NULL;
if (IsAppWindow(window))

GetWindowProperty(window, "GRIT", "tObj", sizeof(TXNObject), NULL, &object);
TXNAdjustCursor(object, region);
b

Idle time
MLTE also helps with any necessary Idle time processing with the

TXNIdle function. Onething TXNIdlewill dso sois, if aText Service
Manager document is active, it will passaNULL event to the Text
Service Manager.

EXTERN_API(void)TXNIdle(TXNObject iTXNObject);

JEi Our sample callsits own function Doldle when appropriate. As you have
donein Steps 7 and 8, check that the front window belongs to your app
and, if so, call TXNIdle. Thisis Step 9.

Notes

Apple Worldwide Developer Technical Support Page 13

Event Handling Multilingual Text Editor

(';/' g’vl; rS{ Se MLTE helps with the processing of mouse-down eventsin awindow’s
content region viathe TXNCIick function. This function takes care of
scrolling, selecting text, playing sound and movies, handling drag—and-
drop operations, and responding to double-clicks.(Y ou no longer need to
call thisfunction if you are a Carbon application.)

EXTERN_API(void)TXNClick(TXNObject iTXNObject,const EventRecord *iEvent);

JEj Our sample calls its own function DoContentClick when appropriate. As
you have done earlier, check that the window belongs to your app and, if
so, cal TXNClick. Thisis Step 10. (Y ou don't have to check if the
window is the front window since this was aready done by DoEvent in
its "case inContent:" switch.)

Growing the o) _ o
window If the application has requested agrow region, and if the TXNObject is

contained in awindow and not a subframe of that window, asoursis,
then you can call TXNGrowW indow to track the cursor and grow the
TXNObject'sview rectangle.

EXTERN_API(void)TXNGrowWindow(TXNObject iTXNObject, const EventRecord *iEvent);

U’Ej Our sample calls its own function DoGrowWindow when appropriate.
Asyou have done earlier, check that the window belongs to your app
and, if so, call TXNGrowWindow. Thisis Step 11. (You don't haveto
check if the window isthe front window.)

Zooming the If the application has requested a zoom box, and if the TXNObject is

window
contained in awindow and not a subframe of that window, asoursis,
then you can call TXNZoomWindow to handle mouse-down eventsin
the zoom box.

EXTERN_API(void)TXNZoomWindow(TXNObject iTXNObject, short iPart);

JEj Our sample callsits own function DoZoomWindow when appropriate.
Asyou have done earlier, check that the window belongs to your app
and, if so, call TXNZoomWindow. Thisis Step 12. (You don't haveto
check if the window is the front window.)

Notes

Apple Worldwide Developer Technical Support Page 14

Event Handling Multilingual Text Editor

Key downs Applications need to process keydown events. MLTE providesa
function, TXNK eyDown, to facilitate this processing. When
TXNKeyDown iscalled, if any Chinese-Japanese-Korean (CJK) script
isinstalled and the current font is CIK inline, input will take place. This
is dways the case unless the application has requested the bottomline
window or hasturned off TSM (aswith an initialization option).

EXTERN_API(void)TXNKeyDown(TXNObject iTXNObject,const EventRecord *iEvent);

JE] Our sample callsits own function DoKeyDown when appropriate. As
you have done earlier, check that the window belongs to your app and, if
so, call TXNKeyDown. Thisis Step 13. (Y ou don't have to check if the
window isthe front window.)

E\I? g r?tt _S Applications also need to handle update events (i.e. draw everythingin a
frame.) MLTE providesthe function TXNUpdate, which itsaf callsthe
Toolbox BeginUpdate - EndUpdate functions for the window that was
passed to TXNNewObject. This makes it inappropriate for windows that
contain something else besides the TXNObject. In that case, applications
should use TXNDraw to update TXNODbjects.

EXTERN_API(void)TXNUpdate(TXNObject iTXNObject);

JEj Our sample callsits own function DoUpdate when appropriate. As you
have done earlier, check that the window belongs to your app and, if so,
cal TXNUpdate. Thisis Step 14. (Y ou don't have to check if the
window is the front window, but you do have be sure the port is set to
your window.)

Notes

Apple Worldwide Developer Technical Support Page 15

Event Handling Multilingual Text Editor

Activate At the time of activation we want to make the TXNObject active in the

events sensethat it can be scrolled if it has scroll bars by calling TXNActivate.
If the TXNScrollBarState parameter is true, then the scroll barswill be
active even when the TXNObject is not focused (i.e., the insertion point
isnot active). This function can also be used if you have multiple
TXNObjectsin awindow, and you want them all to be scrollable even
though only one at atime can have the keyboard focus.

EXTERN_API1 (OSStatus)TXNActivate(TXNObject iTXNObject, TXNFramelD iTXNFramelD,
TXNScrollBarState iActiveState);

In addition to activating the window, you may want to "focus' the
TXNObject by calling TXNFocus. When focusis given to aparticular
TXNODbject, then scroll bars and the insertion caret are made active, and
inactive otherwise. However, in conjunction with TXNActivate, scroll
bars can remain active even though text input is not focused. Thisis
handy for windows containing multiple text areas that are scrollable.

EXTERN_API(void)TXNFocus(TXNObject iTXNObject, Boolean iBecomingFocused);

Our sample calsits own function DoActivate when appropriate. Asyou

-JE| have done earlier, check that the window belongs to your app and, if so,
cal TXNActivate and TXNFocus. Thisis Step 15. Note that
TXNActivate takesa TXNFramel D parameter aswell asa TXNODbject
parameter. Y ou code may |ook something like this:

TXNObject object = NULL;
TXNFramelD framelD = 0;

it (IsAppWindow(window))

{
GetWindowProperty(window, “GRIT", “"tFrm", sizeof(TXNFramelD), NULL, &framelD);

GetWindowProperty(window, "GRIT", "tObj", sizeof(TXNObject), NULL, &object);

ifT (becomingActive)

{
TXNActivate(object, framelD, becomingActive);

AdjustMenus();
}

else
TXNActivate(object, framelD, becomingActive);

}
TXNFocus(object, becomingActive);

“H Build and run the ML TESampleShell application. Note that the events
that we have just implemented are indeed handled. In particular, note how
the cursor is adjusted based on the mouse location, the grow and zoom
box behavior, the behavior of scroll bars, and the results of keyhits
(especidly if aninput method is activated).

Apple Worldwide Developer Technical Support Page 16

