
Event Handling Multilingual Text Editor

Section 3 - Event Handling

In this section you will learn about some of the MLTE API that greatly
simplify the event processing in your application.

Purpose

Upon completion of this session, you will be able to do the following:Objective

• Use the following eleven MLTE event related API:

TXNGetSleepTicks, TXNTSMCheck, TXNAdjustCursor,
TXNIdle, TXNClick, TXNGrowWindow, TXNZoomWindow,
TXNKeyDown, TXNUpdate, TXNActivate and TXNFocus

Apple Worldwide Developer Technical Support Page 11

Event Handling Multilingual Text Editor

In a cooperative processing environment, one of the decisions an
application must make is how long to give to background processes.

MLTE provides a function to determine an appropriate sleep time to pass
to WaitNextEvent.

Sleep time
for your
event loop

EXTERN_API(UInt32)TXNGetSleepTicks(TXNObject iTXNObject);

The return value of TXNGetSleepTicks holds the appropriate sleep
time.

Our sample's WaitNextEvent calls our function GetSleep(). At the Step
6 tag, call TXNGetSleepTicks in that function and return the result to
WaitNextEvent. Your code might look something like this:

TXNObject object = NULL;

window = FrontWindow();
if (IsAppWindow(window)) // if the front window is ours
{

GetWindowProperty(window, 'GRIT', 'tObj', sizeof(TXNObject), NULL, &object);
sleep = TXNGetSleepTicks(object); // get appropriate sleep time

}
else

sleep = GetCaretTime(); // use some other value
return sleep;

You will want your application to also give time to any input methods
that the user may have activated, to ensure they can be reasonably
responsive. MLTE provides a method, TXNTSMCheck , that you can
call when WaitNextEvent returns false or there is no active TXNObject.

Time for
Input
Methods

EXTERN_API(Boolean)TXNTSMCheck(TXNObject iTXNObject, EventRecord *iEvent);

The TXNObject parameter can be NULL, allowing an application to call
this function at any time. (You no longer need to call this function if you
are a Carbon application.)

Our sample's WaitNextEvent loop has a call to DoIdle if the event is a
NULL event. Place a call to TXNTSMCheck so that it is called along
with DoIdle. This is Step 7.

Notes

Apple Worldwide Developer Technical Support Page 12

Event Handling Multilingual Text Editor

Cursor
adjustment

Another task an application must take on is to determine the correct
cursor to display depending on the mouse location. MLTE provides
TXNAdjustCursor, which sets the cursor to the i-beam if the mouse is
over a text area, and sets the cursor to an arrow if the mouse is over
graphics, a sound, a movie, a scroll bar, or outside of the window.

EXTERN_API(void)TXNAdjustCursor(TXNObject iTXNObject, RgnHandle ioCursorRgn);

Our sample calls its own function AdjustCursor when appropriate. At
Step 8, implement an appropriate call to TXNAdjustCursor, e.g.:

TXNObject object = NULL;

if (IsAppWindow(window))
{

GetWindowProperty(window, 'GRIT', 'tObj', sizeof(TXNObject), NULL, &object);
TXNAdjustCursor(object, region);

}

MLTE also helps with any necessary Idle time processing with the
TXNIdle function. One thing TXNIdle will also so is, if a Text Service
Manager document is active, it will pass a NULL event to the Text
Service Manager.

Idle time

EXTERN_API(void)TXNIdle(TXNObject iTXNObject);

Our sample calls its own function DoIdle when appropriate. As you have
done in Steps 7 and 8, check that the front window belongs to your app
and, if so, call TXNIdle. This is Step 9.

Notes

Apple Worldwide Developer Technical Support Page 13

Event Handling Multilingual Text Editor

Mouse
downs

MLTE helps with the processing of mouse-down events in a window’s
content region via the TXNClick function. This function takes care of
scrolling, selecting text, playing sound and movies, handling drag–and-
drop operations, and responding to double-clicks.(You no longer need to
call this function if you are a Carbon application.)

EXTERN_API(void)TXNClick(TXNObject iTXNObject,const EventRecord *iEvent);

Our sample calls its own function DoContentClick when appropriate. As
you have done earlier, check that the window belongs to your app and, if
so, call TXNClick. This is Step 10. (You don't have to check if the
window is the front window since this was already done by DoEvent in
its "case inContent:" switch.)

If the application has requested a grow region, and if the TXNObject is
contained in a window and not a subframe of that window, as ours is,
then you can call TXNGrowWindow to track the cursor and grow the
TXNObject's view rectangle.

Growing the
window

EXTERN_API(void)TXNGrowWindow(TXNObject iTXNObject, const EventRecord *iEvent);

Our sample calls its own function DoGrowWindow when appropriate.
As you have done earlier, check that the window belongs to your app
and, if so, call TXNGrowWindow. This is Step 11. (You don't have to
check if the window is the front window.)

If the application has requested a zoom box, and if the TXNObject is
contained in a window and not a subframe of that window, as ours is,
then you can call TXNZoomWindow to handle mouse-down events in
the zoom box.

Zooming the
window

EXTERN_API(void)TXNZoomWindow(TXNObject iTXNObject, short iPart);

Our sample calls its own function DoZoomWindow when appropriate.
As you have done earlier, check that the window belongs to your app
and, if so, call TXNZoomWindow. This is Step 12. (You don't have to
check if the window is the front window.)

Notes

Apple Worldwide Developer Technical Support Page 14

Event Handling Multilingual Text Editor

Key downs Applications need to process keydown events. MLTE provides a
function, TXNKeyDown , to facilitate this processing. When
TXNKeyDown is called, if any Chinese-Japanese-Korean (CJK) script
is installed and the current font is CJK inline, input will take place. This
is always the case unless the application has requested the bottomline
window or has turned off TSM (as with an initialization option).

EXTERN_API(void)TXNKeyDown(TXNObject iTXNObject,const EventRecord *iEvent);

Our sample calls its own function DoKeyDown when appropriate. As
you have done earlier, check that the window belongs to your app and, if
so, call TXNKeyDown. This is Step 13. (You don't have to check if the
window is the front window.)

Applications also need to handle update events (i.e. draw everything in a
frame.) MLTE provides the function TXNUpdate, which itself calls the
Toolbox BeginUpdate - EndUpdate functions for the window that was
passed to TXNNewObject. This makes it inappropriate for windows that
contain something else besides the TXNObject. In that case, applications
should use TXNDraw to update TXNObjects.

Update
Events

EXTERN_API(void)TXNUpdate(TXNObject iTXNObject);

Our sample calls its own function DoUpdate when appropriate. As you
have done earlier, check that the window belongs to your app and, if so,
call TXNUpdate. This is Step 14. (You don't have to check if the
window is the front window, but you do have be sure the port is set to
your window.)

Notes

Apple Worldwide Developer Technical Support Page 15

Event Handling Multilingual Text Editor

Activate
events

At the time of activation we want to make the TXNObject active in the
sense that it can be scrolled if it has scroll bars by calling TXNActivate.
If the TXNScrollBarState parameter is true, then the scroll bars will be
active even when the TXNObject is not focused (i.e., the insertion point
is not active). This function can also be used if you have multiple
TXNObjects in a window, and you want them all to be scrollable even
though only one at a time can have the keyboard focus.

EXTERN_API(OSStatus)TXNActivate(TXNObject iTXNObject, TXNFrameID iTXNFrameID,
TXNScrollBarState iActiveState);

In addition to activating the window, you may want to "focus" the
TXNObject by calling TXNFocus. When focus is given to a particular
TXNObject, then scroll bars and the insertion caret are made active, and
inactive otherwise. However, in conjunction with TXNActivate, scroll
bars can remain active even though text input is not focused. This is
handy for windows containing multiple text areas that are scrollable.

EXTERN_API(void)TXNFocus(TXNObject iTXNObject, Boolean iBecomingFocused);

Our sample calls its own function DoActivate when appropriate. As you
have done earlier, check that the window belongs to your app and, if so,
call TXNActivate and TXNFocus. This is Step 15. Note that
TXNActivate takes a TXNFrameID parameter as well as a TXNObject
parameter. You code may look something like this:

TXNObject object = NULL;
TXNFrameID frameID = 0;

if (IsAppWindow(window))
{

GetWindowProperty(window, 'GRIT', 'tFrm', sizeof(TXNFrameID), NULL, &frameID);
GetWindowProperty(window, 'GRIT', 'tObj', sizeof(TXNObject), NULL, &object);

if (becomingActive)
{

TXNActivate(object, frameID, becomingActive);
AdjustMenus();

}
else

TXNActivate(object, frameID, becomingActive);
}
TXNFocus(object, becomingActive);

Build and run the MLTESampleShell application. Note that the events
that we have just implemented are indeed handled. In particular, note how
the cursor is adjusted based on the mouse location, the grow and zoom
box behavior, the behavior of scroll bars, and the results of keyhits
(especially if an input method is activated).

Apple Worldwide Developer Technical Support Page 16

