Upgrader 1.2.3 & ModifierTool 1.2.3
Technical Guide

®

Document Version 1.4 - December 5, 1998

Contents

Chapter 1 Introduction
W AN o o] U1 A 1 o o | =V L1 o P 1
Upgrader Application File.......ccccoiiiiiiiiiii e 3
SYSTEM REQUITEMENTS....iiiiiiii it e e e e e e e e e 3
PartitioN SIZE.....iiiiiiiii e 4
Upgrader PlUgG-iN FIleS. ..o 4
Upgrader Data File.....oooooiiii e e 4
Locating the Data File......ccccoiiiiiiiiiii e 4
Choosing an Editing TOOl......ccccuiiiiiiiiice e 5
ADOUt MOIFIEITOOL. ..ot e 5
USING ThiS DOCUMEBNT.....ciiiiiiiiiiii ittt e e e e e e e e e e e 5
Chapter 2 Editing Upgrader Plug-ins
USING MOAIIErTOOl. ..o et 6
Creating and Opening a Data File.......cccooiiiiiii e 7
Using the Main Data File WINAOW...........c..oooiiiiiiiiiiiiiiieee e 7
Using the Plug-in INTO WINAOW. ... 10
Using the File Reference WiNOOW.........ccoooiiiiiiiiiiiiiiiiiieee e 11
Using the Text Editor WIiNOOW........cccooiiiiiiiiiiiiiiiiii e 12
Data File ReEFEIENCE. et 13
R B S DU S . ittt et et 13
The Sequence RESOUICE (MTSOC')..cciiii ittt e e 13
The File Reference Resource (FIFf). ..o 15
The Resource List Resource ("RESH')......ccooiiiiiiie e 16
The Data File Format Resource ("dfmt").......cccooiiiiiiiiiiiiiii e, 17
Chapter 3 Environment Filter Plug-in
About the Environment Filter PIUG-iN........ccoiiio e 18
Editing the Environment Filter PIUQ-iN......ccoooiiiiiiiii e 18
Environmental Filter Plug-in ReferencCe.......cccooiiviiiiiiiiii e 21
R B S OUI S, .ttt ettt et 21
The Environmental Filter Plug-in Preference Resource (‘efpr)....ccccccvivevinnenne 21
Chapter 4 Welcome Plug-in
About the Welcome PlUQ-iN.....cccoo 23
Editing the Welcome PlUug-iN.......cooooi s 24
Welcome Plug-in ReFEIENCE. 25
R B S DU S . ittt et et 25
Welcome Plug-in Preference Resource ("WPPI")....coooovuiieiiiiieeiiiiiee e 25
Chapter 5 Target Selection Plug-in

About the Target Selection PlUQ-iN......cccoiiiiiiiie e 27
Editing the Target Selection PlUQ-iN......ccccciiiiiiiiii e 28

Target Selection Plug-in RefErENCE.........ccoiiiiiiii e 30

GlODAI DALA....ciiiiii i e e e 30
Target Selection Plug-in Global Data.............ccooociiiiiiiiiiii e, 30
R B S OUI S . .ttt ettt 31
Target Selection Plug-in Preference Resource (‘tSPr)......ccccccevviieeniinesiieneninnnn. 31

Chapter 6 Read Me Plug-in
About the Read Me PlUG-iN. ... 34
Editing the Read Me PlUgQ-iN........coiiiiiiiiiiiiiiii 34
Read Me Plug-iN REFEIENCE.oiiiiiiiiiiiiieeiee e 36
R B S DU S . ettt e ettt 36
Read Me Plug-in Preference ResSOUICe ("MMPI)....cciiiiiiiiiiiiiiiiieeiiie e 36
Chapter 7 Software License Plug-in
About the Software LiCENSE PlUG-iN......cccccciiiiiiiiiiicc e 37
Editing the Software License PlUG-iN.........co e 38
Software License Plug-in RefErenCe......cccoiiiiiiiiiiii e 41
R B S DU S, it 41
Software License Plug-in Preference Resource ('SWPIr').....cccccovveevvieeiiinesinnennnn. 41
Chapter 8 Installation Plug-in

About the Installation PIUQ-IN.........iii s 44
Multiple COMPONENT MOE.......uuiiiiiiiiiiiiiiiiiiiiibi bbb bbeebeeeeeeee 45
Easy Installation Panel...........oooiiiiiii e 45
Custom Installation Panel...........ccccooiiiiiiiiii 45
Single Installer SCript MOAE.........ouuiiiiiiiiii 46
USEE INTeITaACE. ... e 46

O Y= g O] o] £ [o] o - TP TP UPPTTT 47
DiSK CheCKING....oouiiii e 48
Updating Hard Disk DIiVers.......ccccooiiiiiiiiiiiiiiiiiii s 48
INSTAllAtiON REPOITS. .o e e 48
Installation Progress Dialog..........iiiiiiiiiiiiiii e 49
Canceling or Stopping the Installation...........ccccooiiiiiiies 49
Presenting BillDOards............cooiiiiiiiiiii 49
Time Remaining EStiMation...............iiiiiiiiiii 49
AdMINIStrator CUSTOMIZAtION.cvviiiiiiiiii s 50
Add/Delete/Modify PanelS.......ooooiiiiiiiiiiii e 51
Add/Delete Software Component Installers..........ccoooviiiiiiiiiieen, 51
Creating and Using Selection SetS.........ccuiiiiiiiiiiiiiiiiiiiiiicee e 51
Performing Remote Installations Using Network Assistant............c.ccccccevieenne 52

= oo 1T o =T PPN 53
INStAllEr ENQINE. oot e e 54
ApPpPle SOftWare RESTOIE.......ccoiiiiiiiiii e 54
MiIndVision Installer.........oooo 54
Other APPIICALIONS. e 54
DEVEIOPMENT T OPICS. ittt e ettt e e e et e e e aaaeae 54
USING P alaSITS. et ittt et e e 54
Calculating Installation SIZeS...........oiiiiiiiiiiiii e 55
Extending the Installation PlUug-iN............oooiiiiiiiiiiiiiiiiii e 55
Creating a Preflight FUNCLION..........uuiiiiiiiiiii 55

Creating a Cleanup APPHCatioN. ...ttt 56

Editing the Installation PlUg-iN.....cccoooiiioiiii e 57

Installation Plug-in RefEIrENCE......ccoii i i 65
GlODAI DAL ...t 65
Installation Plug-in Global Data.......ccccccoiiiiiiiiiiiiiiii e 65

RS OUICES. .. ettt 66
Installation Plug-in Preference Resource ('IPPr')..ccccccceiiiiiireeniiienee e 66
Billboard ReSOUICE (PAUS") . ciiiiiiiiiiiiiiiiees e 72

Chapter 9 Conclusion Plug-in

About the Conclusion PIUQ-iN.. ... e 74
Editing the Conclusion PlUG-iN....... s 74
Conclusion Plug-in REFEIENCE.......ooiiiiiiiii e 75
(€1 o] oF: LI B - | £- PP 75
Conclusion Plug-in Global Data..........cccccoeaiiiiiiiiiiiiiiiieeeeee e 75

R B S DU S . ettt e ettt 75
Conclusion Plug-in Preference ReSOUICe ('CCPI)..cciuiiiiiiiriiiieiiiieeiiieeeiiiee e 75

Chapter 10 Writing Upgrader Plug-ins

About the Upgrader PIUQ-iN.........oiiiiii e e e e e e e e e e e e aeaaeas 77
Human Interface GUIAEIINES........cciiiiiiiiii e 77
Data File RESOUICES......ciiiiiiiiiiiiii 78
The PIUG-IN File. e e e e 78
LI LI o [0 To F o T = 0[] PR 79

g o [=Tot A=Y o 1 Vo 79
PrOJECt FIlES. it e 81
1Y/ E=T 0 aToT AN Y/ - g - Vo =T o 0= o 1 o 82
Plug-in Memory AlOCation.............ccciiiiiiiiii 83
Preventing MemoOry LEaKS........uuiiiiiiiiieiie it 83

UsiNg the Upgrader APl e e e e e e e e e aae e 83
Setting Up Plug-in-Defined ROULINES........cccviiiiiiiiiiiiccc e 83
Managing Panels. ..o 84
Managing Panel CONTENTS...........uuuiiiiiiiiiiiiiii e a e e e e e e e e e e e aeeeees 85
Using the DOCUMENT VIBWEN........cooiiii ittt et et e e e e e e 87
LI LY 0 = X o 89
Managing the Help WINAOW......cccooiiiiiiiiii e 92
Exchanging Data with other PlUg-ins.........ccoiiiii e 92
RefErEeNCING FileS. .. i e e 92
DiSPlaYiNg Al S oo 93

Displaying Upgrader-Defined Error Alerts........cccovvcviieeiiiiiiiiiiiniee e, 93
Displaying Plug-in-Defined Errors........cccccciiiiii 94
Supporting Multiple SOUFce DiSKS..........oooiiiiiiiiiiiiiiiciccece e 95

Upgrader APl RE EIENCE ... e e e e 95

Plug-in-Defined ROULINES......oooiiiiiii i 95
INitializePluginModUule. ... i 96
HandleEventForPluginModule.............cccooiiiiiiiiiii e 96
TerminatePluginModuUule...........cooiiii i 97

S T=] (0T o = Yo 10 1 4] o =R 97
BN P UGIN. e 97
E XTI P IUGIN e e 97
SETUP P UGN e e 98
PSRegIStErHANAIEK ... i e 99

Panel Handling ROULINES..........uvuuiiiiiiii it e e e e e e e 100
PSSEtUPNEWPANEL.o e 100

PSNEWCUSTOMPANEL.....oeeiiii e 100

Chapter 11

PSUPAAtEPANEL. . .ceee i 101

PSACHIVAtEPANEL. ... o 102
PSDISPOSEPANEL. ..o it 102
PSSNOWPRANEL. ... 103
PSHIAEPANEL. ... i 103
PSGetPanelltemMHIt.........oiii i 103

P S S B P RETC ON. .ttt 104

P S G EtPRETCON. .. i 104
PSSetPanellteMACTION. 104
Panel Content ROULINES.......cccoiiiiiiiiiiiiee st e e e e e e e e e e e 105
PSS P AN M. e 105

P S G tPaAN el ITEM .. et i 106
PSNeWStYledStringltem. 107
PSNeEWSTYIedT eXtItemM .. o e 107

] A=YV A E - g I T o o 108
DocumeNnt VIEeWEE ROULINES.....cccooiiiiiii et 109
PSNEWDOCV IBWET TEEIM ... ittt e e e 109
PSHaNAIEDOCSCIOI ... i 109

P S S VDI OC. . ittt 110

L] 1 11 T o 111

N VAT T U Lol o T = Lo 10 1 A1 o =T 111
PSGOtOPreVIOUSPIUGIN. ... cooiii e 111
PSGOtONEXTPIUGIN. ... e e e e 112
PSOQUITSNEI .. oeeie 113
Help WINAOW ROULINES. ...ttt a e 113
PSSEtUPHEIPWINAOW.....ooiiiiiii e e e e 113
PSDIisSplayHEIPWINOOW........iiiiiicce e e e 114
PSCIOSEHEIPWINAOW. . .c.iiicii e e e s 115
PSHandleHelpWIiNdOWEVENT..........ooiiiii e e 115
Global Data ROULINES.....coiiiiiiii i e e e e e e eaane 116
PSSEtGIODAIDALA.t i 116
PSGetGlobalDataA. iiie e 116
Error AlLErt ROULINES......oeiiiiii e e e e e e e e e 117
] = o 7 AN =1 o PN 117
AN -1 o 118

L 8 Y 0 TU 1 1T 118
PSCheCKENVITONMENT. ...t e e e e aaes 119
PSReadFONtINTO. ... 119
PSLAUNCRFIIE. ... e 120
PSPSMakeFSSpecFromFileRefID........coiiiiii e 121
[T 0 - o 121
e L A= UL (U 1] o) P 121
(S (0] o VAV V1 (O U1 =0 I 122
2T LU o 122
The Error Mapping ReSOUICE ('NEIS") ..t e e e e 122
The Plug-in Format Resource (‘PfMt)....cccccviiiiiii e 122
Summary of the Upgrader APl 123
L0] 5] = 1 1 123
= = N Y2 013 126
Plug-in-Defined ROULINES......oooiiiiiii i 126
Upgrader Plug-in ROULINES........cooiiiiii e 126
=TT U A O o Yo [P 129

Writing ModifierTool Editors

About ModifierTOOl EditOrS.......c.uuuiiiiiiiiiiiiiiii e 132
Writing a ModifierTOOl EditOr... ... 132
Editor ENTry POINT....cooo e 132

Updating PlUgQ-IN RESOUICES.coiiiiiiiiiiiieeiiiiiei e 133

RemMOVING PlUG-IN RESOUICES.......cviiiiiiiiiiriieitee e 134
Appendix A Adding Pictures to SimpleText Documents
WIFITE TNE T XL e i e et e e e 135
DraW the PiCTUIES. ... it e 136
AdAING The PICTUIES...eeiiiii i 136
Edit the Text to Make It Look Pretty With the Pictures.........ccccooociiiiiiiiiiiniinnnnn. 137
Making the File Read-Only........oooiii e 137

A Few Hints On Creating Good Documents With Pictures..........cccccoviviiiiiiniiinene 137

Introduction

The Upgrader application provides a programming environment for creating assistant-like programs to
guide users through the on-screen panels necessary to complete an installation or setup task. Each panel
is a window that prompts the user to perform one step of the task. The panels are implemented by plug-
ins, which are individual files containing code written by a developer that can be assembled together
into a single user experience. To control the order of the plug-ins and provide the information required
by each plug-in, the developer creates a data file. The Upgrader application, plug-in files and data
file are collected together by a developer into a group of files referred to as an Upgrader-based
program. One example of a shipping Upgrader-based program is the Install Mac OS 8.5 program used to
install Apple’s Mac OS 8.5 system software.

The companion application, ModifierTool, allows modifications of an existing data file or creation of a
new one. ModifierTool enables administrators and developers to leverage from existing Upgrader-
based programs to create customized solutions, such as tailoring the Install Mac OS 8.5 program for a
organization’s internal needs.

We begin our discussion with a brief overview of the Upgrader and ModifierTool applications, then
present a road map to help readers decide which parts of this documentation are pertinent to their
needs.

About Upgrader

Programs created using the Upgrader application as their foundation will normally be a collection of
many files, all working together to present a single, cohesive user experience. This type of modularity
enables new programs to be created more quickly and existing programs, such as the Install Mac OS 8.5
program, to more easily be modified for future requirements. Not only does the modularity of an
Upgrader-based program make later modifications easier, but it also enables complex disk layouts,
such as those required on floppies or multiple CD-ROMs.

Chapter 1: Introduction 1

An Upgrader-based program is normally assembled from four types of files:

Upgrader application - the icon the user double-clicks to start the program.

&

FMaz 0S5 Install

Upgrader data file - contains information defining the behavior of the program.

In=tall Fac 05 2.5

Upgrader plug-in files - implements the user experience of each panel.

A . - A_B A A_B A A_B
IncornpatHy “Welcorne TgtSelect lmfa SWwlicenzse Integrated Installation Conclusion

Application helper files - programs that perform specific tasks required by a plug-in.

] B

LF & Server Crive Setup Installer Engine

g5

From this collection of files the users see a simple series of panels, which guides them through a series
of steps. Figure 1-1 shows the panels a user sees when upgrading to Mac OS 8.5.

Chapter 1: Introduction

Figure 1-1 The Install Mac OS 8.5 program panels

Welrams i e bisr &0 A0% inaial isen pragrar Tils prag ram will
T il il gl R T S g el Y T) Ml L RS

[, Selerma nemisanes gk
F medimperisstisfamatiae
F. B s ae 89 e Staare liobase sreeies
4§, Iesiuliafears
ChrE CaEHAER 1 brgen ha frit it

Deaiinaiiamaic] sy oplinh =0

By vk awPormr swresily il e
Poraall'ir dewd . HE
drprrommim ik g o T el 138 HE

Tids gt gl g o gy gt i,

 + e ——— [LT T L e | -] Bl + Frrrrr—— [LT T L e |
E‘hd:. iplect Dot patian | m-mm |
| Thaase skt Bend 14w nmffarars oy, Lt e Suu. | [. E

Incrtaling kac OF 8.3

Thiz docrors st desrr b bow o iwoal] Wi 05 1% K ircledss corrquatibdliiy
inbrrrask pe rebnuctiors Far e lerall Bise OF spplestics. program, med bane
il iz roubleckeaing

For rrome deiskd iebrraion, so e M OF roislléce resesl

Exicew pau rrslail

D R L e e e R e | =

e | e |

| e | | Priea_ | | GaBack | | fawiinas

§oftasrs Liceran A reameat | baglnh ll I_ﬂ
'ﬁ'"':’“'l:‘. g s

wemth = Sofrwa Lrwme ARremene

FLEATE FEAD THEID ECFTWAME LICFH XX &0 FETHFNT TLICFEEe -
CAREFLILLY, THEH CLICL CONTINUE. (H THE BALDDY o4 THAT

AFFEARE CLICK EITHER AQREE OF THEWTEEE. BF OLIE R0 *hEtE,

U AHE ATHEEIND T B8 BOIWE BT THE TREFE OF THIF LIDEHIE. IF
1 B0 HOYT &S EE 70 THE TESHSE OF THIT LRSI, SLICE "LElannEE”

D (0 ARG AR LR RETU R THE SOFTWARSR TO Bl PLACT SR
ol GEEIRER 1T RO & EEFTEE

B3z

I lirems The s greer dorresrroasrd s b aes amenneg Do sbndenn
LR, s Sl ST S, i i WO il 1 L P L I | P SO
ot P i A o, Koo o0 g ol alabbianr @ty A Vs Eve e ks
ol P g S i ol R e e T L)) sl 9 W B
Fn The dppir T frarsae in e oo bige el sweroop £k S Laee s o e demy e
il e b b ek Lo i -

¢ b A o bl ke O AL e vk Hill®

| e | | Prima_ | | GaBack | | fawiioas J

[Cumivrmies | [Coptlanc_ | [GaBack || dnen]

For the most basic Upgrader-based program, you’ll need to understand the purpose of three file types:

the Upgrader application file, plug-in files, and the data file.

Upgrader Application File

The Upgrader application file provides a set of services for implementing panels. Plug-ins use the
Upgrader API to help handle user interaction through routines to receive user events, control panel

navigation, display text and dialogs, and more. The file also contains resources that are needed by all

the plug-ins, such as 'DLOG' resources, help icon 'PICT's and other common resources.

The user will double-click the Upgrader application to start an Upgrader-based program. The
Upgrader application file is often referred to as the “shell” because it manages the relationship

between all plug-in files and the data file.

System Requirements

The Upgrader application is designed to run on 68020-based and newer machines running system

Chapter 1: Introduction

software version 7.0 or later. Apple’s primary testing has been performed on PowerPC machines running
7.1.2 or later, so developers wishing to support earlier versions are encouraged to perform additional
testing on older configurations.

Partition Size

The Upgrader application is shipped with a partition of 1300K, but some plug-ins may required a
larger partition to work correctly. Use the following equation to help you determine the appropriate
partition size:

Partition size = plug-in memory requirements + size of preloaded resources + 300K

Calculate the “plug-in memory requirements” value by choosing the plug-in with the highest memory
requirements. The plug-in documentation should provide the memory requirements of the plug-in. If
none is provided, use 200K.

If your Upgrader-based program spans multiple source disks, then you’ll need to add the “size of
preloaded resources” by using the Memory Required by Preloaded Resources value displayed in the
main data file window of ModifierTool.

Upgrader Plug-in Files

A plug-in implements the actual code to draw the panels and interact with the user. Each plug-in file
usually manages one or more panels, but it may also operate without any user interaction. Since only one
plug-in runs at a time, it controls the Upgrader-based program until it relinquishes control to another
plug-in.

A plug-in file normally contains a code resource and various resources needed by the plug-in. The plug-in
might also depend on information stored outside the plug-in file, such as shared resources stored in the
Upgrader application file, administrator-controlled resources in the data file, and possibly other
helper applications that are run either in the background or foreground to support the plug-in.

Upgrader Data File

The Upgrader data file contains information read by the shell and plug-ins to present the panels in the
correct order and display the panel contents. The developer of a new Upgrader-based program creates a
data file containing the information needed by the plug-in contained in the program. After the release
of the developer’s Upgrader-based program, clients (such as an administrators) can augment the
information in the data file to adapt the program to their needs.

Each plug-in usually requires one “preference” resource in the data file, which may reference many
other resources contained in the data file. To help manipulate these many resources, editing tools are
normally provided by the developer.

Locating the Data File

When the user double-clicks the Upgrader application icon, the Upgrader searches for a single data
file in the same folder as the application. An alert allows the user to choose a data file if none or more
than one is found.

The developer should always lay out the CD-ROM or floppy to encourage the user to double-click the
Upgrader application, instead of the data file. This lessens the chance of another — perhaps
incompatible — version of the Upgrader application being launched by the Finder. We suggest hiding
the data file outside of the disk or folder’s window border.

Chapter 1: Introduction 4

Choosing an Editing Tool

To create and/or modify the resources in the data file, developers and administrators have three
options: use a Rez complier in concert with the UpgraderTypes.r file (in addition to a resource
definition file provided by each plug-in developer), use Resorcerer and our template file, or use the
ModifierTool application. All the necessary files are included on the SDK.

Each editing method has its own benefits, but Apple recommends using ModifierTool, since this
application makes it easier to maintain the integrity of complex data files. This document will focus on
the ModifierTool approach to editing data files, but you’ll find a description of the actual shell and
plug-in resources in their respective reference sections.

Apple encourages developers who write their own plug-ins to also write a ModifierTool editor so
administrators, present and future, can easily modify the plug-in’s functionally.

About ModifierTool

Most developers and administrators will use ModifierTool to create and change the information in
their Upgrader data file. The architecture of ModifierTool application and its editor files has been
designed to match the modular design of Upgrader and its plug-in files. ModifierTool contains a built-
in editor for the information the Upgrader application uses to load and run each plug-in in the desired
order.

Using This Document

Chapter 1:

Since not all readers of this document will have the same goals, we present several strategies based on
how you may need to interact with the Upgrader and ModifierTool applications.

If you just need to make changes to the Install Mac OS 8.5 program or a program created by someone else,
read:

= the “Editing Upgrader Plug-ins” chapter.
= the chapters for the plug-ins you are editing.
If you need to create a new Upgrader-based program using existing plug-ins, read:
= the first section of the “Editing Upgrader Plug-ins” chapter
= any documentation that came with the plug-ins you wish to use.
If you need to write a new plug-in, read:
= the chapter “Writing Upgrader Plug-ins”

= the chapter “Writing ModifierTool Editors”, if you want to make it easy for administrators to
modify your plug-in.

Introduction 5

Editing Upgrader Plug-ins

This chapter describes how to edit an Upgrader data file using the ModifierTool application.

Using ModifierTool

To use ModifierTool, you must have at least the following minimum configuration:
= PowerPC-based computer
= Mac OS 7.1.2 or later
= 2 MB of available memory

Before you begin, make sure all the editors you’ll need are in the same folder as the ModifierTool
application. Figure 2-1 shows the typical layout of the ModifierTool application and its editor files.

Figure 2-1 ModifierTool application and editor files

Swilicense Integrated Installation Conclusion SelectLaunch

We’ll use the Install Mac OS 8.5 program in most of our examples as we take the reader through the
editing tasks necessary to create and modify the Upgrader application-owned resources in the data
file.

Chapter 2: Editing Upgrader Plug-ins

Creating and Opening a Data File

To create a new data file, launch ModifierTool and choose New from the File menu. You will be you
asked to name the data file and choose a location to save it. Once ModifierTool creates the sequence
resource and default settings, the main data file window will open (see Figure 2-2), ready for you to
begin defining the plug-ins that will make up your Upgrader-based program.

If you need to edit an existing data file, launch ModifierTool and choose Open from the File menu then
select the desired data file. You may also drop the data file icon on the ModifierTool icon to open the
file.

NOTE

ModifierTool cannot open a data file that is on locked media or is already open for
modification by another application.

Since only one data file can be open at a time, you will need to close the currently open data file by
choosing Close from the File menu before choosing New or Open.

Using the Main Data File Window

The main data file window provides the user with access to the individual plug-in editors, as well as
Upgrader application preferences that control attributes such as the order of the plug-ins, the splash
screen picture, the default help text, and control over preloaded resources. This window is always
present as long as the data file is open. If you close this window, the data file will be closed. If changes
were made in this window (including adding or removing plug-ins), you will be asked if you wish to
save your changes before closing the window or quitting the ModifierTool application.

Figure 2-2 Main data file window

[m] Instal Mac 05 S =]

r FHT-
| | trmcarg it a

AR
|| rmes

| | wLinsmn
| | reterms

S —— ;
Y | LS —
| e W] et] |

. 4

P S8 D Sl m— .
[sspgeei wakipht dwarce dids |

Mywary Fypdesd b Frobssinl Becarees [l

The items in the main data file window are explained in detail below.

Plug-in Sequence:

Plug-in List Shows the current list of plug-ins in the default order they will
be presented to the user. Click on the name of a plug-in to select
it.

Edit Plug-in... Opens the editing window for the selected plug-in. This

Chapter 2: Editing Upgrader Plug-ins 7

Plug-in Info...

New Plug-in...

Up

Down

Default Help Window:
Help Window Title

First PICT ID

Edit Text...

Splash Screen PICT IDs:

Black & White

Chapter 2: Editing Upgrader Plug-ins

window is implemented by an editor file with the same name
as the plug-in file and in the same folder as the ModifierTool
application. If an editor cannot be found, the plug-in info
window is opened instead.

Double-clicking on a plug-in name is a shortcut for opening a
plug-in’s editor. If no editor exists, the plug-in info window is
opened instead.

Shows the plug-in info window for the selected plug-in so
attributes of the plug-in can be changed. See the section “Using
the Plug-in Info Window” for more information about this
window.

Shows an empty plug-in info window. If the user clicks OK in
the plug-in info window, the new plug-in entry will added to
the plug-in list. If a plug-in is selected in the list when clicking
New Plug-in, the new plug-in will be inserted before the
selected plug-in; otherwise, it will be added to the end of the
list.

NOTE

After creating a new plug-in entry, you must
open the plug-in editor and click Save before
attempting to use the data file. Otherwise, the
plug-in’s preference resource will not be written
to the data file and the plug-in will return an
error.

Moves the selected plug-in one entry closer to the beginning of
the plug-in list.

Moves the selected plug-in one entry closer to the end of the
plug-in list.

The window title of the help window if the plug-in does not set
the help window’s name upon entry.

The 'PICT' resource ID of the first picture to be displayed in the
help text. See the section “Using the text editor window” in
this chapter for more information about adding pictures to your
text.

Opens the text editor window, so the text can be changed. See
the section “Using the text editor window” for more information
about editing text.

NOTE

Make sure to save the data file if you clicked
Remove in the file reference window.

Resource ID for your black and white splash screen PICT
resource. This is a B&W version of the splash screen for
monitors showing less than 256 colors. Enter 0 if you do not wish
to provide a separate B&W picture.

8-bit Color

Multiple Source Disk Support

Resource ID for your 8-bit color splash screen PICT resource.
This is a color version of the splash screen for monitors showing
256 colors or more.

The default splash screen provided with Mac OS 8 data file
can be replaced, if necessary. Two 'PICT' resources should be
created, a color version and a B&W version. The dimension of
your splash screen picture should be no larger than 320 pixels in
height by 500 pixels in width. The Upgrader application will
automatically resize the window based on the size of the
picture.

Once you have created your two new 'PICT' resources follow
these instructions to replace the default splash screen resources.

Use a resource editing program, such as ResEdit or Resorcerer, to
open the data file.

1. Remove the existing splash screen 'PICT' resources of IDs
138 and 147.

2. Paste your new color splash screen 'PICT' resource into the
data file and renumber its ID to 147.

3. Paste your new B&W splash screen 'PICT' resource into the
data file and renumber its ID to 138.

4. Quit the resource editing program and open the Upgrader
application to verify that your splash screen is displayed.

If you choose to use different IDs for your splash screen 'PICT'
resources make sure to change the IDs in this window.

When your Upgrader-based program spans multiple disks, it
will be important to instruct Upgrader to preload resources to
reduce disk swaps by selecting the Support multiple source
disks checkbox. If your first floppy/CD-ROM is also bootable,
then you’ll also need to specify the System file resources to
preload in order to allow the boot disk run off line.

Support multiple source disks checkbox

Edit System Preload List...

Chapter 2: Editing Upgrader Plug-ins

Causes ModifierTool to create ‘RES#’ resources in your data file
so Upgrader can preloaded the appropriate resources for each
plug-in to allow the volume containing the data file to be
ejected.

NOTE

After checking or unchecking this option, you
must open and save each plug-in to resync the
‘RES# resource for each plug-in.

Opens the resource preload editor window so the list of System
resources to be preloaded at launch time can be modified. You’ll
only need to worry about this list if you ship a floppy/CD-
ROM disk set which allows the user to boot from the first
floppy disk. If you do, then you may need to add System
resources to this list that plug-ins or helper applications
require during their operation. If you fail to add these

additional resources to this list, extra disk swaps back to the
System disk will be required, which can degrade the user
experience of your Upgrader-based program.

Memory Required by Preloaded Resources value
Displays the calculated size of all data file resources that will
be preloaded by Upgrader. You may need to increase the
memory partition of the Upgrader application if this value is
large. See the section “Partition Size” in the first chapter for
more information.

Using the Plug-in Info Window

The Upgrader needs to know basic information about each plug-in, such as the plug-in’s name and where
to find the plug-in file. The plug-in info window allows the user to edit this information (see Figure 2-
3).

Figure 2-3 Plug-in info window

Flung-in Info

D Nors Trry ik T e ppee b T Bgok ™ loihin plrinl

Fam-in Rpra e e i
O

1 PR B F P L B Rt e .

| Lt ; Switebrd Bita L U s P e e

The items in the plug-in info window are explained in detail below.

Run Once checkbox Prevents the user from going back to this plug-in. The Go Back
button in the Upgrader-based program will automatically be
dimmed if the preceding plug-ins are set to run once.

The Environmental Filter plug-in included with the Install
Mac OS 8.5 program uses this feature, since the user’s machine
only needs to be checked once at the beginning.

Plug-in Name Any name that describes the plug-in. Some plug-ins may
require the name of another plug-in to jump to during their
execution. Use the name entered when referring to this plug-in.

Pref. Rsrc. ID A 4-byte value passed to the plug-in upon initialization. Most
plug-ins will want to use the low-word of this value to store the
resource ID of its preference resource. This allows for a single
plug-in file to be used for multiple plug-ins, each with a
different resource ID.

NOTE

Don’t change the preference resource ID once
you’ve created a new plug-in entry. If you do,
ModifierTool will lose track of the existing
preference resource (including the data you’ve
entered) and a new preference resource will be
created the next time you open the plug-in’s

Chapter 2: Editing Upgrader Plug-ins 10

editor.

Cancel Ignores any changes made in the plug-in info window.
OK Keeps any changes made in the plug-in info window.
Plug-in Location:

Edit... Opens the file reference editing window to edit the location of
the plug-in file. ModifierTool uses the name of the selected
plug-in file as it appears on the disk to locate the proper
editor.

NOTE

Make sure to click OK and then save the data
file if you clicked Remove in the file reference
window.

Using the File Reference Window

The modular nature of an Upgrader-based program requires references to numerous files. Windows that
contain fields referencing a file usually have an Edit button which presents the file reference window
(see Figure 2-4). From here the user can fill in the details required to locate the file during the
operation of the Upgrader-based program.

Figure 2-4 File reference window

e Referenoe

Fidess: [Tqresed I
Tap+]
Craater bk

i Fir L ey

PPl T b pry Iyl Fery Lpge gder Filey

Seiect., | [Emmove | | Cescel | |! T !

The items in the file reference window are explained in detail below.
File Name Name of the file. Limited to 31 characters.

Type Four character “type” of the file. Leave this field empty (no
characters, not even spaces) to cause Upgrader to ignore the
file’s type when locating the file.

Creator Four character “creator” of the file. Leave this field empty (no
characters, not even spaces) to cause Upgrader to ignore the
file’s creator when locating the file.

Select... Opens the standard Get File dialog for choosing a file. After

Chapter 2: Editing Upgrader Plug-ins 11

File Location:

Media Type

Path

clicking OK in the Get File dialog, ModifierTool enters
information about the chosen file, overwriting the current
contents of the fields.

Make sure to select the desired media from the Media Type
pop-up menu before clicking the Select button to have
ModifierTool generate the appropriate path. To generate a
correct relative path, place the data file you are editing in its
actual location on your source disk before clicking Select.

The setting of this pop-up menu tells the Upgrader application
how to find the specified file. If media type is set to “Relative
to Document”, then the Upgrader-based program expects a
relative path from the folder that contains the Upgrader
application. If media type is set to “Full Path to Floppy” or
“Full Path to CD-ROM?” then the path is assumed to be a full
path beginning with the name of the floppy or CD-ROM disk.

To support creating a net install from a set of CD-ROM or
floppy disks, the Upgrader-based program will first look in
the folder containing the data file to find a folder with the
same name as the CD-ROM of floppy disk before asking the
user to insert the disk.

Changing the Media Type pop-up menu does not automatically
modify the contents of the Path field.

This should be a relative path from the folder containing the
data file or a full path beginning with the name of the floppy
or CD-ROM disk. Use of a full or relative path depends on the
media type. See the “Media Type” field description for more
information.

If the path is relative, then it should start with a colon. A full
path should start with the name of the floppy of CD-ROM
disk, instead of a colon.

Using the Text Editor Window

Most text stored in the data file can be updated using the text editor window.

NOTE

Since the text editor window has no controls for changing the font, font size, font style or
any other text-related attribute, we suggest that you store your text in a separate
document using your favorite word processor. To change the text, copy the text from your
word processor, then paste the text into the text editor window.

Upgrader’s text display engine supports pictures embedded within the text that is compatible with
SimpleText documents. The text display engine uses a special character (usually Option-space, but it
can be set by the plug-in) to define where the top of the picture should be drawn. See Appendix A for
more information on embedding pictures in text displayed in an Upgrader panel.

Chapter 2: Editing Upgrader Plug-ins

12

Figure 2-5 Text editor window

Text Editesr

o b pis i bkl fur Bl s paed

=%

The items in the text editor window are explained in detail below.

Remove Deletes the text resource (type: "TEXT' & 'styl') from the data
file and closes the text editor window.

NOTE

Make sure to click Save in the window from
which you opened the text editor window to
correctly update the data file.

Cancel Closes the text editor window without changing the text
resource.

Save Updates the text resource in the data file with the contents of
the window.

Data File Reference

Resources

These resources are contained in the data file.

The Sequence Resource (‘tsqc’)

The sequence resource is the single most important resource used by the Upgrader. It contains the default
sequence of plug-ins, specific flags for each plug-in, the IDs of the resources used to find plug-ins, the
IDs of resources which are used to preload plug-in resources and other data which isn’t directly used by
the plug-ins, such as the IDs of splash screen 'PICT's, etc.

#define ShellFlags \
fill bit[16] [* Reserved */
type kSequenceResourceType {
switch {
case format2:
key integer = 2; /I Format version
ShellFlags; Il Flags
integer BWSplashPict; /I B&W splash screen picture - 'PICT' Rsrc ID
integer ColorSplashPict; /1 8-bit color splash screen picture - 'PICT'ID
integer systemResListID; /I System file preload list - 'RES# ID

Chapter 2: Editing Upgrader Plug-ins 13

integer helpPanelResID;

/I Dialog ID of help window - 'DITL' Rsrc ID

integer defaultHelpTitleStrResID;// Help window title - 'STR ' Rsrc ID

integer defaultHelpTextResID;

/I Default help text - TEXT' Rsrc ID

integer defaultHelpBasePICTResID;// First picture in help text - 'PICT' Rsrc ID

pstring;
align word;

/I First plug-in name

unsigned integer = $$CountOf(pluginList);

wide array pluginList {

unsigned longint onlyRunOnce =1; // Plug-in flags

pstring;

align word;
pstring;

align word;
unsigned longint;
unsigned integer;
unsigned integer;

2

Field descriptions
B&W Splash 'PICT' ID

Color Splash 'PICT' ID

System Preload List

Default Help Panel Dialog ID

Default Help Window Title Ref.

Default Help Window Text Ref.

Default Help Window First Pict.

First Plug-in Name

onlyRunOnce Flag

Chapter 2: Editing Upgrader Plug-ins

/I Plug-in name
/I Default next plug-in name

/I RefCon value
/I Plug-in file location - 'firfRsrc ID
/I Data file preload list - ' RES#Rsrc ID

The ID of a 'PICT' resource to be displayed when the main
monitor has a color depth of less than 256 colors. Use 0 if you do
not wish to provide a separate B&W picture.

The dimension of your splash screen picture should be no larger
than 320 pixels in height by 500 pixels in width. The Upgrader
application will automatically resize the window based on the
size of the picture.

The ID of a 'PICT' resource to be displayed when the main
monitor has a color depth of 256 or more colors.

The ID of a 'RES#' resource containing a list of the resources
that must be preloaded and marked as non-purgeable when the
System file is on ejectable media, such as a floppy disk. You’ll
only need to worry about this list if you ship a floppy disk set
which allows the user to boot from the first floppy disk. If you
do, then you may need to add System resources to this list that
plug-ins or helper applications require during their operation.
If you fail to add these additional resources to this list, extra
disk swaps back to the System floppy disk will be required,
which can degrade the user experience of your Upgrader-based
program.

The ID of the 'DITL' resource of the default help window. This
value should be 1050.

The ID of a 'STR ' resource containing the title of the default
help window.

The ID of 'TEXT' (and optional 'styl") resource containing the
default help text for plug-ins which do not provide their own
text.

The ID of a 'PICT' resource of the first resource to be displayed
in the default help text panel.

The name of the plug-in that is to be called first.

Use the onlyRunOnce flag if the user should be prevented from
going back to this plug-in. The Go Back button in the Upgrader-

14

Plug-in Name

Next Plug-in Name

RefCon Value

Plug-in File Ref.

System Preload List ID

based program will automatically be dimmed if the preceding
plug-ins are set to run once.

The Environmental Filter plug-in included with the Install
Mac OS 8 program uses this feature, since the user’s machine
only needs to be checked once during the launch of the program.

The name of the plug-in to be added to the list.

The name of the default next plug-in that the Upgrader is to
look for once this plug-in is finished.

A 4-byte value passed to the plug-in upon initialization. Most
plug-ins will want to use the low-word of this value to store the
resource ID of its preference resource. This allows for a single
plug-in file to be used for multiple plug-ins, each with a
different resource ID.

The ID of an 'flrf' resource which defines the location of the
plug-in. Integer values 1 and 0 are reserved for use by the
Upgrader.

The ID of a 'RES#' resource, which contains the types and IDs
of all the specific plug-in resources contained within the data
file which are to be preloaded. You’ll only need to worry about
this list if you ship a floppy disk set which allows the user to
boot from the first floppy disk. If you do, then you may need to
add System resources to this list that plug-ins or helper
applications require during their operation. If you fail to add
these additional resources to this list, extra disk swaps back to
the System floppy disk will be required, which can degrade
the user experience of your Upgrader-based program.

The File Reference Resource (‘flrf)

The file reference resource is the standard method of defining the location of a file on your source disks.
Plug-in writers will need to create one of these for their plug-in and add it to the data file. The ID of
the resource will then need to be added to that plug-in’s information in the Sequence resource so that
the Upgrader can find the 'fIrf' resource and use it to locate the plug-in.

Plug-ins can also use the file reference resource to specify applications, documents and other files that
the plug-in uses. Use the routine PSMakeFSSpecFromFileRefID to convert a file reference ID into an

FSSpec.

#define kUnknownMedia

#define kFloppyDiskMedia 1

#define kCDROMDiskMedia

#define FileRefFlags
fill bit[16]

type firf {
switch {
case formatO:

key integer = 0;
FileRefFlags;
literal longint;
literal longint;
longint;
pstring;

Chapter 2: Editing Upgrader Plug-ins

/I Net install setup on CD-ROM. Use relative path.
/I Multiple floppy disk set. Use full path.
/I Multiple CD-ROM disk set. Use full path.

\
/* Reserved */

/I Format version
/I Flags
/I File Type
// File Creator
/I File Creation Date (optional)
/I File Path

15

align word;
pstring; I/ File Name
align word;

Field descriptions

Media Type This value tells the Upgrader application how to find the
specified file. If media type is kUnknownMedia, then the
Upgrader-based program expects a relative path from the
folder that contains the Upgrader application. If media type is
kFloppyDiskMedia or KCDROMDiskMedia then the path is
assumed to be a full path beginning with the name of the
floppy or CD-ROM disk.

To support creating a net install from a set of CD-ROM or
floppy disks, the Upgrader-based program will first look in
the folder containing the data file to find a folder with the
same name as the CD-ROM or floppy disk before asking the
user to insert the disk.

File Type The four character “type” of the file. Use 0 to cause Upgrader to
ignore the file’s type when locating the file.

File Creator The four character “creator” of the file. Use 0 to cause Upgrader
to ignore the file’s creator when locating the file.

File Creation Date The creation date of the file in seconds. Use 0 to cause Upgrader
to ignore the file’s creation date when locating the file.

File Path This should be a relative path from the folder containing the
data file or a full path beginning with the name of the floppy
or CD-ROM disk. Use of a full or relative path depends on the
media type. See the “Media Type” field description for more
information.

If the path is relative, then it should start with a colon. A full
path should start with the name of the floppy or CD-ROM
disk, instead of a colon.

File Name Name of the file. Limited to 31 characters.

The Resource List Resource ((RES#)

The resource list resource contains a list of resource type and ID pairs for holding the list of resources to
preload. This resource is referenced from the sequence resource to hold the resources to preload from the
System file and data file

Plug-in writers can also use a 'RES#' resource located in the plug-in file to preload resources stored in
the plug-in file by passing the ID to the PSCollect routine.

type 'RES# {
integer = $$CountOf(ResArray);
array ResArray {
literal longint; /I Resource type to preload
integer; /I Resource ID to preload
¥
¥

Chapter 2: Editing Upgrader Plug-ins 16

The Data File Format Resource (‘dfmt’)

The data file format resource defines the version of the data file, so Upgrader can determine if it can

read the data file or not. The user will receive a message if Upgrader cannot open data file because the
format resource is incompatible or missing.

type ‘cfmt’ {
byte DataFileMajorRevisionNumber; /I The major version number
byte DataFileMinorRevisionNumber; /I The minor version number
¥

Upgrader application versions and the data file versions they support:

Upgrader Versions Data File Versions Supported
1.1 0.3
1.11-1.23 0.4

Chapter 2: Editing Upgrader Plug-ins 17

Environmental Filter Plug-in

This chapter describes the environmental filter plug-in.

About the Environment Filter Plug-in

The environment filter plug-in alerts the user if the computer model is not supported or the version of
system software running is too old. For either case, the user is presented with the alert in Figure 3-1.

Plug-in file name: IncompatHW

Figure 3-1 Incompatible environment alert

This prograim Co st fes on your £ oimpubes.
Sl Uil (i el L8 0 11 B A P
T TR

No alert is presented if the environment is sufficient.

Editing the Environment Filter Plug-in

The environment filter editor is shown in Figure 3-2. This editor allows the developer or administrator

to change on which computer models and system software versions the Upgrader-based program will
run.

Chapter 3: Environment Filter Plug-in 18

Figure 3-2 Environmental Filter plug-in editor

Environment Filter Plug-in

Minirmum Released Systern Software Yersion: . |I| .

r Machine ID List

12 ﬂ Machines in List Are:
9 =
20 = @ Supported
41 O Mot Supported
4z
47 : .
55 Machine I0v: EI
57 |
S5 - <4 Add I
fosemite, 1 =1 Machine Name:
 Code Resource
D Run Code Rsro Code Rsro
Run Excluzively Code Rsre D
Remove Cancel Save

The items in the environment filter plug-in editor window are explained in detail below.

Minimum Released System...

Machine ldentifier Lists:

Machines in List Are:

Machine ID

Remove

Chapter 3: Environment Filter Plug-in

Enter the minimum Mac OS system version on which your
Upgrader-based program should be run. Since the Upgrader
application requires at least system 7.0, enter a version of 7.0.0
or higher.

These are lists of the computer models supported/not supported
(see “Machines in List Are:” below) by your Upgrader-based
program. Each computer model is identified by its gestalt
'mach’ ID, or its model name, found in the Name Registry. You
can add IDs to or remove IDs from this list. See the “Gestalt.h”
file on the most recent ETO CD for a list of current gestalt
‘mach’ IDs.

These radio buttons specify whether or not the computer models
in the machine Identifier Lists (see above) are supported for
installation.

IMPORTANT

There is only ONE 'mach' ID list and ONE
machine name list — selecting a different radio
button does not give you different lists. You
must decide whether to specify either
supported machines or unsupported machines.

Enter a new machine ID number you wish to add to the ID list.
If you enter an ID number that is not in the list, the “<< Add”
button will be enabled.

Removes the selected ID from list.

19

<< Add

Machine Name

Remove

<< Add

Code Resource:

Run Code Rsrc:

Run Exclusively

Remove

Cancel

Save

Chapter 3: Environment Filter Plug-in

Adds the ID in the “Machine ID” field to the list if it doesn’t
already exist.

Enter a new machine name you wish to add to the name list. If
you enter an name that is not in the list, the “<< Add” button
will be enabled.

Removes the selected name from list.

Adds the name in the “Machine Name” field to the list if it
doesn’t already exist.

NOTE

For installations that should only be installed
on computers with certain configurations, Apple
recommends that the install determines that
the needed features are present, rather than
making the determiniation on the class of the
computer.

With Upgrader, we recommend that you write
a code resource to make this determination,
rather than using the 'mach’ ID and Machine
Name lists.

The IncompatHW plugin can run code resources, to allow the
plugin to perform additional checks, that are not built into the
plugin itself.

Tells the IncompatHW plugin to run the code resource with
type specified in the Code Rsrc field and with ID specified in
the Code Rsrc ID field.

With this checkbox checked, the code resource is run, but the
checks for minimum system software and machine name and ID
are not run.

Deletes the environment filter plug-in resources from the data
file and closes the editor window.

Closes the editor window without updating the environment
filter plug-in resources.

Updates the environment filter plug-in resources in the data
file with the contents of the window.

20

Environmental Filter Plug-in Reference

Resources

The Environmental Filter Plug-in Preference Resource (‘efpr’)

#define EFPPrefFormatThreeFlags

boolean kMachineListNotSupported, kMachinListSupported; \
boolean kDontUseCodeRsrc, kUseCodeRsrc; \
boolean kDontRunCodeRsrcExclusively, kRunCodeRsrcExclusively \

fill bit[13]

type ‘efpr' {
switch {
case format3:
key integer = 3;

EFPPrefFormatThreeFlags;

integer;
integer
ResType;
integer;

[* Format version */
[* Flags */
/* Minimum release SSW version */
[*‘STR# resource ID for machine names */
* Code Resource type */
/* Code Resource ID */

integer = $$CountOf(MachIDArray);

array MachlIDArray {
integer;

)3

/* Machine Gestalt ID */

kMachineListNotSupported/kMachinListSupported flag

Use the kMachineListNotSupported flag if the machine IDs
and machine names listed are not supported by this Upgrader-
based program, and therefore should alert the user. Use the
kMachinListSupported flag if the machine IDs and machine
names listed are the only computer models that are supported
by this Upgrader-based program.

kDontUseCodeRsrc/kUseCodeRsrc flag

Use the kUseCodeRsrc flag to run a code resource specified in
the ‘efpr’ to determine if this computer is supported by this
Upgrader-based program.

kDontRunCodeRsrcExclusively/kRunCodeRsrcExclusively flag

Minimum Released System...

Chapter 3: Environment Filter Plug-in

Use the kRunCodeRsrcExclusively flag to only run the code
resource, and skip the built in hardware and system software
checks, to determine if this computer is supported by this
Upgrader-based program. Use the
kDontRunCodeRsrcExclusively flag to run the code resource in
addition to the built-in checks. The The IncompatHW plugin
will allow the program to run, if all of the checks, including
the code resource, state that the program can run on the
computer.

The minimum Mac OS system version on which your Upgrader-
based program should run. The value is in BCD format. For
example, version 7.1.2 would be specified in hex as 0x0712.
Since the Upgrader application requires at least system 7.0, the

21

Machine Name String Rsrc 1D

Code Rsrc Type

Code Rsrc ID

Gestalt Machine ID

Chapter 3: Environment Filter Plug-in

value must be 0x0700 or higher.

The ID of the ‘STR#’ resource that contains the list of
supported/unsupported computer names. 0 if there is no list of
names.

The type of the code resource to be run to perform additional
checks. The description of the interface is in the file
“IncompatHWEXxt.h”.

The ID of the code resource to be run to perform additional
checks. The description of the interface is in the file
“IncompatHWEXxt.h”.

A Gestalt machine ID. See the “Gestalt.h” file on the most
recent ETO CD for a list of current gestalt 'mach’ IDs.

22

Welcome Plug-in

This chapter describes the welcome plug-in.

About the Welcome Plug-in

The welcome plug-in presents a single panel for displaying a combined graphic and text message that
describes the rest of the user experience. Figure 4-1 shows the Welcome plug-in panel in the Install
Mac OS 8.5 program.

Plug-in file name: Welcome

Figure 4-1 Welcome plug-in panel

Bnbal bac 05 B =

O
X Wkt nine “:,"_g

Welcome to fhe Fac 05 1.5 insiallatien pragrass. This program il
e vasn Hhargempl tive: Tour shegs me e sary in mctall s 05 55,

1 Seiecta destinatses disk
2 Bmad smpartant informaties
-::f B gl D8 el 588w Brd || Clecke Agraemant
. Install sofware
ek Contese te begin the Srst step,

The Install Mac OS 8.5 welcome plug-in uses text superimposed on top of a graphic (smiling Mac OS
dude with the numbers 1 through 4).

Most plug-ins contain a help window (Figure 4-2), which is accessible via the Help icon button(-ﬂ).

Chapter 4: Welcome Plug-in 23

Figure 4-2 Help window

(| Help

Welcome Io Har 05 &0
Thiy progrars rabdb Fleo 07 B3 gy ooerpter i fegr sy gy, Pl by

Esl=m

apregs roirgcbicar. W aeorssd blp, olirk Heg Help bartioas ingach wirdoes. Tor
ey wbareptica wrd brosblyshactirg Hpa, ey fra irgld e el

Tgulem reguinerards

To ¥ HFigo 35 B, ger margier reoi vy ¢ Poser FU reirsprongarer ad
Tt 161 ot A (ZD M8 rerrararabiad]l W e omputer by Topn Hega 20MHE
o i i P T, o oyl g i b T rsgergny P n 000y boerg Hinplly boer o
cirbulmarary whar g ratdl# 1

o et e e ol ok P00 Pl o dpee we ek ol § e bend ek Daereding
ol Mok Tl it it e Brial, i iny whed dgairanddy ree . The
Bt el e o e T e e e el end i e

e ik begia
Tarn wiT ol cheady aaitesrd, eokaling i Dt
i -t e e L B

| 5am,,

i

The content of the help window is defined by the developer or administrator. If the user leaves the
help window open while moving to another plug-in, the content will automatically be updated with

the next plug-in’s help text.

Editing the Welcome Plug-in

The welcome editor is shown in Figure 4-3. This editor allows the developer or client to change panel’s

text, graphic, and help text.

Figure 4-3 Welcome editor window

Werlome Fisg-in

FaaiTil I“"""‘""

ivis Teard

ol Bprbogrmumd TICT " BB 1 W 4 1)

[—

Ha'lp ‘wiraboeer Tyt

i
W Dracadiid Tt
L BT o

o) (o) o)

The items in the welcome plug-in editor window are explained in detail below.

Panel Title

Color Background 'PICT' ID

Chapter 4: Welcome Plug-in

Enter the name that shows at the top of the panel.

Enter the ID of the 'PICT' resource that you wish displayed in
the background of the window. To support displaying a B&W
picture when the monitor is displaying less than 256
colors/grays, also add a 'PICT' resource with an ID of 1 plus the
ID entered in this field.

The picture must be exactly 205 pixels in height by 506 pixels in
width; otherwise, the picture will be scaled to fit the panel.
ModifierTool does not provide a facility for adding, removing
or changing 'PICT' resources inside the data file. Use your
favorite resource editing program, such as ResEdit or
Resorcerer, to add your pictures to the data file.

24

Main Text:
Edit Main Text... Opens the text editor window so the main text can be changed.
Help Window Text:

Text Location: Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Edit Help Text/File Ref... Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

First Picture ID Enter the ID of the first 'PICT' resource embedded in the text.

Remove Deletes the welcome plug-in resources from the data file and
closes the editor window.

Cancel Closes the editor window without updating the welcome plug-
in resources.

Save Updates the welcome plug-in resources in the data file with
the contents of the window.

Welcome Plug-in Reference

Resources

Welcome Plug-in Preference Resource (‘wppr')

#define WPPrefFlags \
boolean kReservedl, kReserved2; /* Ignored. */\
boolean kHelpTextinRsrc, kHelpTextinFile; [* Location of help text. */ \
fill bit[14] I* Reserved */
type ‘wppr'{
switch {
case format2:
key integer=2; /* Format version */
WPPrefFlags; * Flags */
integer; f* Main Text - 'firf or TEXT' Rsrc ID */
integer; [* Help text - 'firf or TEXT' Rsrc ID */
integer; [* First help text picture - 'PICT" Rsrc ID */
integer; [* Background color picture (B&W: ID + 1) - 'PICT' Rsrc ID */
integer; F* Plug-in string list Rsrc ID (STR#) - 'STR# Rsrc ID */
¥
3

kHelpTextinRsrc, kHelpTextIinFile flag
Use kHelpTextInRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'fIrf'
resource.

Chapter 4: Welcome Plug-in 25

Main Text Reference ID

Help Text Reference ID

Help Text First Picture ID

Color Background 'PICT' ID

Plug-in string list Rsrc ID

Chapter 4: Welcome Plug-in

The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of a 'flrf' resource if stored in a separate text
file.

The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of a 'flrf' resource if stored in a separate text
file.

The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

The ID of a 'PICT' resource that you wish to be displayed in the
background of the window. To support displaying a B&W
picture when the monitor is displaying less than 256
colors/grays, also add a 'PICT' resource with an ID of 1 plus the
ID entered in this field. The picture must be exactly 205 pixels
in height by 506 pixels in width; otherwise, the picture will be
scaled to fit the panel.

The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Panel title name

2. Help window title

26

Target Selection Plug-in

This chapter describes the target selection plug-in.

About the Target Selection Plug-in

The target selection plug-in presents a single panel so users can choose the destination disk. Figure 5-1
shows the target selection plug-in panel in the Install Mac OS 8.5 program.

Plug-in file name: TgtSelect

Figure 5-1 Target selection plug-in panel

(] Instal biar 05 LS =

+
I“ Al dplec Destisstion bl |

Choose o Sk b install thie £t Fe o, D CRCK Sl

Destinaties Msk: | Aiacidnss K 8|

S whn et oo T iy e e Hare incisied
b Wil TS porle 1 DT Pl
dpprwarira by vk ppace rppred B i robdliice 1TErMA

Thin dink: by yuoagh opsem Fee g bpyie il Bpkica

[Gomsck || sewct |

The target selection plug-in recommends the hard drive on which the user is most likely to install. The
search for a valid destination disk occurs in the following order:

1. Selected device in the Startup Device control panel, and we can install onto it.
2. Select the boot volume, if we can install onto it and it’s not ejectable.
3. Select any volume connected SCSI hard disk, and finally any writable device.

If an acceptable destination disk is not found, the disk information is hidden, the Select button is
disabled, and instructions of how to proceed are displayed in the message area.

Chapter 5: Target Selection Plug-in 27

Disk information is displayed for the selected destination disk. If the blessed System Folder exists on
the disk, its version number is displayed; otherwise, the text “None Installed” is displayed. In
addition to the disk’s available space, the estimated disk space required for the recommend
installation provided by the developer or administrator is displayed.

If the installation will install an entire System Folder, then the clean install option is available to the
user so a new System Folder can be created, instead of upgrading the existing System Folder on the
chosen destination disk. If the user chooses to install into an already upgraded System Folder, then an
alert allows the user to skip directly to the custom installation panel (see Figure 5-2), bypassing the

important information and software license panels. The reinstall alert will not be shown if the user has
selected the clean install option.

Figure 5-2 Reinstall alert

F E Thi & elected St nate disk sy b
| Wobiet 005 BS i Callir . Dy whmd Tt

& FeaE LR AL 05 B
= Add g remove software tesdures

| Cances | | Reinstall | |i AR N O H

Editing the Target Selection Plug-in

The target selection editor is shown in Figure 5-3. This editor allows the developer or administrator to
change the following items in the target selection plug-in panel:

= panel title name

panel prompt string

whether a clean install is allowed.

approximate disk space required by a recommended installation

reinstall alert version number and text

help window text

Figure 5-3 Target selection editor window

Target Selection Plug-in

: ISe'lect Destination r Reinstall or ddd/Remave Alert:

o i mb Tl dhn me ke A [Branch based on Mac 05 version on destination disk

BAL L ey PR gy B g B e |
Pac 05 Yersion: 8], |5]. 0]

Rl Shevr Clezn Install Option
124 Show Clean Ingtall Option

i-iessage: |The selected destination disk already has Mac 05
O pefault to Slean Instan File Forks: 2148

8.5 installed. Do you want to:
Required Disk Space for Initially Selected [tems: 157756 (K ® Reinztall Mac 05 8.5

Help window Text: —‘ ® Add or remove software features

|'Text Location: Edit Help Text/File Rer... |
| al Embedded Text
| (2 Separate File | First Picture I2: |0 |
e — —_—

Reinstall Flug-in: [1infe

Add /Remove Plug-in: ! InstallMad

 Required Mac 0 version message

D Require target S5% to be within specified range.

Mezzage:

Lovwest required Mac 05 Version

Highest required Mac 05 Version

D g nuen] [e T r—
REmave §

Chapter 5: Target Selection Plug-in 28

The items in the target selection plug-in editor window are explained in detail below.

Panel Title

Panel Prompt

Show Clean Install Option

Default to Clean Install

Required Disk Space

File Forks

Help Window Text:

Text Location:

Edit Help Text/File Ref...

First Picture ID

Reinstall or Add/Remove Alert:

Branch based on Mac OS version...

Mac OS Version

Message

Reinstall Plug-in

Chapter 5: Target Selection Plug-in

Enter the name that shows at the top of the panel.

Enter the text that prompts the user to perform the action of
selecting an appropriate destination disk.

Select this option if the recommended installation can create a
valid new System Folder, and the user is allowed to modify
this setting.

Select this option if the recommended installation can create a
valid new System Folder, and a clean install is to be selected by
default.

Enter the raw number of kilobytes (1 kilobyte = 1024 bytes) in
the files being copied for the recommended installation. The
plug-in will approximate that amount space required by adding
this value to the number of file forks multiplied by half the
block size of the selected destination disk.

See information about “Count The Forks” in the Installation
Plug-in chapter to help you determine this value.

The number of file forks being copied for the recommended
installation. Most Macintosh files have either a data fork,
resource fork, or both. The plug-in uses this value to better
estimate the required disk space by calculating the extra space
beyond the size of the files needed on the destination due to its
block size.

See information about “Count The Forks” in the Installation
Plug-in chapter to help you determine this value.

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Select this option to present the reinstall alert so the user can
jump directly to the custom installation panel when the version
of the system software on the destination disk matches.

Enter the version of system software on the chosen destination
disk that will trigger the reinstall alert. This should normally
be the same version as the system software being installed.

Enter the text to be displayed in the reinstall alert.

Enter the name of the plug-in to advance to when the Reinstall
button is clicked by the user.

29

Add/Remove Plug-in

Required Mac OS Version Message:

Required target SSW version...

Lowest Mac OS Version

Highest Mac OS Version

Message

Remove

Cancel

Save

Enter the name of the plug-in to advance to when the
Add/Remove button is clicked by the user.

Select this option to prevent the user from continuing if the
version of the system software on the chosen destination disk is
not within the specified range. This option is most often used
for installations that only upgrade specific versions of Mac OS.

Enter the minimal required version of system software on the
chosen destination.

Enter the maximum required version of system software on the
chosen destination disk. This should normally be the same
version as the system software being installed.

Enter the text to be displayed in the message area of the target
selection panel.

Deletes the target selection plug-in resources from the data file
and closes the editor window.

Closes the editor window without updating the target selection
plug-in resources.

Updates the target selection plug-in resources in the data file
with the contents of the window.

Target Selection Plug-in Reference

Global Data

Target Selection Plug-in Global Data

Data types read and set:

Destination Disk

Clean Install Flag

Data types set only:

Goto Custom Installation Flag

Chapter 5: Target Selection Plug-in

The volume refnum of the currently chosen destination disk.
(Type: 'trgt’, Data: 2-byte signed integer)

A flag designating whether the clean install option has been
selected by the user.
(Type: ‘clin', Data: 1-byte Boolean)

A flag set to true if the user clicks the Add/Remove button in
the reinstall alert; otherwise, it is set to false.
(Type: 'incu', Data: 1-byte Boolean)

30

Resources

Target Selection Plug-in Preference Resource (‘tspr’)

#define TSPPrefFlags

boolean kHelpTextinRsrc, kHelpTextinFile; * Location of help text. */ \
boolean kDontCheckSystemVersion, kCheckSystemVersion; \
boolean kDontShowCleaninstall, kShowCleaninstall; \
boolean kDontRequire TargetSysVersion, kRequireTargetSysVersion; \
boolean kDefaultDirtyInstall, kDefaultCleanInstall \
fill bit[11] * Reserved */
type ‘tspr'{
switch {
case format4:
key integer =4; /* Format version */
TSPPrefFlags; * Preference Flags */
longint; /* Actual Kbytes copied for recommended installation */
integer; [* System software version being installed, if any */
integer; f* Minimum Required System software version */
integer; /¥ Maximum Required System software version */
integer; * Plug-in reference ID if reinstall - 'STR ' Rsrc ID */
integer; * Plug-in reference ID if add/remove - 'STR ' Rsrc ID */
integer; * Help text - 'firf or TEXT' Rsrc ID */
integer; [* First help text picture - 'PICT Rsrc ID */
integer; [* Plug-in string list - 'STR# Rsrc ID */
longint; /¥ Number of file forks created during installation. */

kHelpTextInRsrc/kHelpTextInFile flag

Use kHelpTextInRsrc to specify that the Main Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Main Text Reference ID field points to a 'flrf'
resource.

kDontCheckSystemVersion/kCheckSystemVersion flag

Use kDontCheckSystemVersion to prevent the display of the
reinstall alert. Use kCheckSystemVersion to display the
reinstall alert if the version of the system software on the
chosen destination disk matches the version in the “System
software version installed” field.

kDontShowCleanlnstall/kShowCleanlnstall flag

Use kDontShowCleanlnstall to prevent the user from
modifying the a clean install setting. This would be the case if
your recommended installation does not install an entire System
Folder, and kDefaultDirtylInstall has been set. This would also
be the case where a clean install is wanted to be performed by
default, and this option should not be modified. Use
kShowCleanlInstall to allow the user to modify the clean

install option.

kDontRequireTargetSysVersion/kRequireTargetSysVersion flag

Chapter 5: Target Selection Plug-in

Use kDontRequireTargetSysVersion to ignore the version of the
system software on the chosen destination disk. Use
kRequireTargetSysVersion to prevent the user from continuing
if the version of the system software on the chosen destination
disk is not within the range specified in the “Minimum

31

Required SSW version” and “Maximum Required SSW version”
fields.

kDefaultDirtylnstall/kDefaultCleanlInstall

Actual Kbytes copied

System software version installed

Minimum Required SSW version

Maximum Required SSW version

Plug-in reference ID if reinstall

Plug-in reference ID if add/remove

Help Text Reference ID

Help Text First Picture ID

Plug-in string list Rsrc ID

Chapter 5: Target Selection Plug-in

Use kDefaultCleanlnstall to have the clean install option
selected by default.

The raw number of Kbytes in the files being copied for the
recommended installation. The plug-in will approximate that
amount space required by adding this value to the number of
file forks multiplied by half the block size of the selected
destination disk.

See information about “Count The Forks” in the Installation
Plug-in chapter to help you determine this value.

The version of system software on the chosen destination disk
that will trigger the reinstall alert. This should normally be
the same version as system software being installed. The value
is in BCD format. For example, version 8.0.1 would specified in
hex as 0x0801.

When using the kRequireTargetSysVersion flag, the minimum
version of system software allowed on the chosen destination
disk. A version lower than this value will prevent the user
from continuing. The value is in BCD format. For example,
version 8.0.1 would specified in hex as 0x0801.

When using the kRequireTargetSysVersion flag, the maximum
version of system software allowed on the chosen destination
disk. A version higher than this value will prevent the user
from continuing. Most of the time, the value will be the same
version of system software being installed. Enter a value of 0
(zero) to not constrain the maximum version. The value is in
BCD format. For example, version 8.0.1 would specified in hex
as 0x0801.

The ID of a'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Reinstall button in the
reinstall alert.

The ID of a'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Add/Remove button in the

reinstall alert. Certain global data values are set to notify the

plug-in that the user chosen this option.

The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

The ID of a 'PICT" resource containing the first picture to be
embedded in the help text.

The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Panel title name
2. Panel prompt text

3. Destination disk pop-up menu title

32

Number of file forks copied

Chapter 5: Target Selection Plug-in

4. Help window title
5. Reinstall alert message text

The number of file forks being copied for the recommended
installation. Most Macintosh files have either a data fork,
resource fork, or both. The plug-in uses this value to better
estimate the required disk space by calculating the extra space
beyond the size of the files needed on the destination due to its
block size.

See information about “Count The Forks” in the Installation
Plug-in chapter to help you determine this value.

33

Read Me Plug-in

This chapter describes the Read Me Plug-in.

About the Read Me Plug-in

The read me plug-in provides a scrollable text message area for presenting important information for
the user. Figure 6-1 shows the read me plug-in panel in the Install Mac OS 8 program.

Plug-in file name: linfo

The Save and Print buttons are enabled if the user can save and print the text. When saving, a
SimpleText document is created.

Figure 6-1 Read Me plug-in panel

O Bmstal Mar 05 B35

;‘ @ | 0 LEE |10 Fin G e “'L

Instaling Mac OF 8.5

Thiz decumert describes bow b install bae OFF 3.5 Binciudes compatibility
infzrmation, metructions for the Irstd] Mac C8 appheaticn propram, and basic
irgiallation treubleshoesting

Fot: mete detaikad iformation, e the bac OF eiallstion mmusl

Bafore sow smstall

e Toaae T ran e amtin e Pem v 1l s ran Feaen cvaitn Il cov e iia A ceraivi g

T . L............JL.EE.".....J

Editing the Read Me Plug-in

The read me editor is shown in Figure 6-2. This editor allows the developer or administrator to change
the panel’s title, text, and help text.

Chapter 6: Read Me Plug-in 34

Figure 6-2

Read Me editor window

Resd ki Flug-m

Faral TH: [agorise] bfervatio

- Fin Ty}

= Tobiat Lt m
'.‘-ini-ﬂ.—u Tt
b S Pl teirceem: [T

- Heg Wi Teard

[Towsck Lcartian | n.-Erw-.-'mm |
g ddnd Tysd
Firak Pk i D

i Saperitn Py

(e |

The items in the Read Me plug-in editor window are explained in detail below.

Panel Title
Main Text:

Text Location:

Edit Main Text/File Ref...

First Picture ID
Help Window Text:

Text Location:

Edit Help Text/File Ref...

First Picture ID

Remove

Cancel

Save

Chapter 6: Read Me Plug-in

Enter the name that shows at the top of the panel.

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Deletes the read me plug-in resources from the data file and
closes the editor window.

Closes the editor window without updating the read me plug-in
resources.

Updates the read me plug-in resources in the data file with the
contents of the window.

35

Read Me Plug-in Reference

Resources

Read Me Plug-in Preference Resource (‘'rmpr')

#define RMPPrefFlags

boolean kMainTextlnRsrc, kMainTextInFile; /* Help text location */
boolean kHelpTextinRsrc, kHelpTextInFile; /* Main text location */ \
fill bit[14] [* Reserved */
type 'rmpr’ {
switch {
case format1:
key integer = 1; [* Format version */
RMPPrefFlags; [* Flags */
integer; * Main Text - 'firf or TEXT' Rsrc ID */
integer; * First main text picture - 'PICT' Rsrc ID */
integer; * Help text - 'firf or TEXT' Rsrc ID */
integer; [* First help text picture - 'PICT Rsrc ID */
integer; f* Plug-in string list - 'STR# Rsrc ID */
¥
¥

kMainTextinRsrc/kMainTextInFile flag

Use kMainTextInRsrc to specify that the Main Text Reference
ID field points to a "TEXT' resource. Use kMainTextInFile to
specify that the Main Text Reference ID field points to a 'flrf'
resource.

kHelpTextinRsrc, kHelpTextIinFile flag

Main Text Reference ID

Main Text First Picture ID

Help Text Reference ID

Help Text First Picture ID

Plug-in string list Rsrc ID

Use kHelpTextlnRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

The ID of a "'TEXT' resource if the text is stored in the data file;
otherwise, ID of 'flrf' resource if stored in a separate text file.

The ID of a 'PICT' resource containing the first picture to be
embedded in the main text.

The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Panel title name

2. Help window title

Software License Plug-in

This chapter describes the Software License Plug-in.

About the Software License Plug-in

The software license plug-in presents a single panel to allow the user to read and agree to the software
license before proceeding. As an option, multiple language versions of the text can be provided to

address certain multi-country legal requirements. Figure 7-1 shows the software license plug-in panel in
the Install Mac OS 8 program.

Plug-in file name: SWLicense

Figure 7-1 Software license plug-in panel

B bl kac 05 RS =]
a}i:z fofcsare L anse Agrenimest Al
PR
AFFE Coxprexz, [oo E
Harimizyh Hyres Snlresss Lirsere Spreepeni E

FLEATE BREAD THLY JOFTWARE LIJEHEE AFREEMERT "LIJEREE"

ADF ACDEEING TO HE BASIMD BT THE TEUEE OF THIT LTSN I |¥
I BT HIE "Dl 5 FEE™
AHD TP m‘llﬂ'ﬁﬁll H'I“JE" Tl'lﬂ WFTW*.EH T"':l"l'l'll FLAGE FHERE

I ETAIHED IT A REFITHI

i Lhsspaw The sofroes, dooumenmios ol axvioes sonomgenving s Lioesss wheler o
ek, 5 el oy -'rm',- OB W O Wl O T DT KTt AR ST e
mrmnmhx.ﬁgk wipaer, 10, o 9 bl su ke, 1 el :.mr':- Foayoren te pedi
on WA O A ST b peanded VoAl ki DDl 8 Loenaash paskn o0 1 O AJRE
vy Thet KpRE ﬁ:-lnwr 1 prackoepe el s e which whis Liceass mabirizes i

W B AF TN Ilrl

P L...............JL..*'.E'.’L.....J

A pop-up menu appears in the top-right corner of the panel when multiple language versions of the
license are available. Upgrader will hide certain languages from the pop-up menu when the language
cannot be displayed appropriately. The following region codes will only appear if their respective
script is the primary system script: verJapan, verTaiwan, verKorea,verArabic, verGreece,verThailand,
verChina, verRussia, verUkrania, 72 (Bulgaria), and verlsrael. For example, Japanese will only show

in the pop-up menu when running an actual Japanese system, not just a U.S. system with the Japanese
Language Kit installed.

When the user clicks Continue, the Agree/Disagree alert is presented (see Figure 7-2) to force the user to

Chapter 7: Software License Plug-in 37

explicitly denote his or her acceptance or non-acceptance to the license.

Figure 7-2 Agree/Disagree alert

EB Tn conissee with ssadalling the softsare you
. must spree by e barms of the software
licemse sprepment,

OBk g Fee to Cantue, oF ook DiagFes to
el] T i L T

Oisagrae | | Spes |

If the user clicks Agree in the Agree/Disagree alert, the user advances to the next panel. If the user
clicks Disagree, then the user goes to a panel defined by the developer. In the case of the Install
Mac OS 8 program, then user is taken back to the Welcome panel.

Editing the Software License Plug-in

he software license editor is shown in Figure 7-3. This editor allows the developer or administrator to
change the license text and add/subtract the provided languages of the license text.

Figure 7-3 Software license editor window

Safwrare Lscenye Pheg-in

- L e i
(151]
Eepatal
D
Fruai

s (Boctoper.)

dlp

PHAH Ll
Wl

Lria® Larapage inabi D

— Ha'lp wirdore Tt

Texi Loaulics | [“"E TashiTdy Py, I
W Draceded Teod
13 Srparah FTie repPE e i]

The items in the software license plug-in editor window are explained in detail below.

Languages:

Edit Language...

New Language...

Up

Chapter 7: Software License Plug-in

Shows the language editor window for the selected language, so
attributes of the language can be changed.

Double-clicking on a language name is a shortcut for clicking
the Edit Language button.

Shows an empty language editor window. If the user clicks OK
the new language entry will added to the languages list. If a
language is selected in the list when clicking New Language,
the new language will be inserted before the selected language;
otherwise, it will be added to the end of the list.

Moves the selected entry one position closer to the beginning of

38

Down

Default Language Index

Help Window Text:

Text Location:

Edit Help Text/File Ref...

First Picture ID

Remove

Cancel

Save

the languages list.

Moves the selected entry one position closer to the end of the
languages list.

The language entry index (starting with 1) which will be used
as the default language if the running system’s primary
language 1D does not match a language ID contained in the
language list.

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Deletes the software license plug-in resources from the data
file and closes the editor window.

Closes the editor window without updating the software
license plug-in resources.

Updates the software license plug-in resources in the data file
with the contents of the window.

Figure 7-4 Language editor window

Lannuane E&snr
Liarad Tat
Tk Lo fimrs

A Ewpgddnd Tys)

e I:I
Pyyisrs [- D'l-\-- Eate Lesgme
Farel TEl 5.@.-1-\.;-1"@.. g mymrard
Largpiage Hared: Waotinh
Fardiragy Besdier Elh

G Back Bwihol: |00 Bk
By By [awe
Frin Bt ion s

g e Al
Ak Btten: gy |
Piragraw Bation: [ricsgres |
At P Py =t mhyBeg fa mibagrs

P ek pram ke by ey of fra
puttepry B ggrimrsged

Dok o Dbiagrde - [tglomrny

|
(o)

The items in the language editor window are explained in detail below.

License Text:

Chapter 7: Software License Plug-in

39

Text Location:

Edit Main Text/File Ref...

First Picture ID

Region ID

Two-Byte Language

Panel Title

Language Name

Continue Button
Go Back Button
Save Button

Print Button

Agree/Disagree Alert:

Agree Button
Disagree Button
Message

Goto on Disagree

Remove

Cancel

OK

Chapter 7: Software License Plug-in

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Enter the region code of the language. This allows the software
license plug-in to default to the appropriate language version
of the text based on the primary language of the running system.

See the “Script.h” file on the most recent ETO CD for a list of
the current language codes.

Select this option if the language defined requires a two-byte
script system, such as Japanese or Chinese. This allows the
software license panel to disable the language name in the pop-
up menu if the system software is incapable of correctly
displaying the text.

Enter the name that shows at the top of the panel.

Enter the name of the language. If possible, we suggest that you
use the name as written in its native language. Exceptions to
this guideline are two-byte languages, which may be
displayed as garbage unless written in the localized language
of the program.

Enter the name of the Continue button.
Enter the name of the Go Back button.
Enter the name of the Save button.

Enter the name of the Print button.

Enter the name of the Agree button.
Enter the name of the Disagree button.
Enter the text to be displayed in the Agree/Disagree alert.

Enter the name of the plug-in to go back to when the user clicks
Disagree.

Deletes the language entry.

Closes the language editor window without updating the
language entry.

Updates the language entry with the contents of the window.

40

Software License Plug-in Reference

Resources

Software License Plug-in Preference Resource (‘swpr’)

#define LVPPrefFlags

boolean kHelpTextinRsrc, kHelpTextIinFile;

fill bit[15]

#define LangEntryFlags

boolean kOneByte, KTwoByte;
boolean kTextInRsrc, KTextlnFile;

fill bit[14]
type 'swpr'{

switch {
case format4:

key integer = 4;
LVPPrefFlags;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;

* Help text location */ \
* Reserved */

[* Language character length */ \
* License text location */ \
* Reserved */

/* Format version */

[* Flags */

* Help text ref - 'firf or TEXT' Rsrc ID */

* First help text picture - 'PICT' Rsrc ID */

* Plug-in string list ref - 'STR# Rsrc ID */

[* Disagree plug-in name ref - 'STR ' Rsrc ID */

[* Panel title string list ref - 'STR# Rsrc ID */

[* Language name string list ref - 'STR# Rsrc ID */
¥ Continue button string list ref - 'STR#' Rsrc ID */
[* Save button string list ref - 'STR# Rsrc ID */

* Print button string list ref - 'STR# Rsrc ID */

/¥ Go Back button string list ref - 'STR# Rsrc ID */
[* Agree button string list ref - 'STR# Rsrc ID */

[* Disagree button string list ref - 'STR# Rsrc ID */
* Agree/Disagree dialog text ref - 'STR# Rsrc ID */
* Default language index */

integer = $$CountOf (LanguageArray);

array LanguageArray

LangEntryFlags;
integer;
integer;
integer;

k

[* Language flags */

/* Region Code (from Script.h) */
[* License text ref - firf or TEXT' Rsrc ID */
[* First license text picture - 'PICT' Rsrc ID */

kHelpTextinRsrc, kHelpTextIinFile flag

Help Text Reference ID

Help Text First Picture ID

Chapter 7: Software License Plug-in

Use kHelpTextIinRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

The ID of a "TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

The ID of a 'PICT' resource containing the first picture to be

41

Plug-in string list ref

Disagree plug-in name ref

Panel title string list ref

Language name list ref

Continue button name list ref

Save button name list ref

Print button name list ref

Go Back button name list ref

Agree button name list ref

embedded in the help text.

The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Help window title

The ID of a'STR ' resource containing the name of the plug-in to
go back to when the user clicks Disagree in the Agree/Disagree
alert.

The ID of a 'STR#' resource containing the panel title for each
language entry in the order listed.

The ID of a 'STR#' resource containing the language names
appearing in the pop-up menu for each language entry in the
order listed.

The ID of a 'STR# resource containing the Continue button
names for each language entry in the order listed.

The ID of a 'STR# resource containing the Save button names
for each language entry in the order listed.

The ID of a 'STR#' resource containing the Print button names
for each language entry in the order listed.

The ID of a 'STR#' resource containing the Go Back button names
for each language entry in the order listed.

The ID of a 'STR#' resource containing the Agree button names
for each language entry in the order listed.

Agree/Disagree dialog text list ref The ID of a 'STR#' resource containing the text to be displayed

in the Agree/Disagree alert for each language entry in the
order listed.

Disagree button name string list ref The ID of a 'STR#' resource containing the Disagree button

Default language index

Language Entry:
kOneByte/kTwoByte flag

kTextInRsrc, kTextInFile flag

Region Code

Chapter 7: Software License Plug-in

names for each language entry in the order listed.

The language entry index (starting with 1) which will be used
as the default language if the running system’s primary
language 1D does not match a language ID contained in the
language list.

Use kOneByte if the language only uses one byte to define its
characters. Use kTwoByte if the language only uses two bytes to
define its characters, such as Japanese or Chinese.

Use kTextInRsrc to specify that the License Text Reference ID
field points to a "'TEXT' resource. Use kTextInFile to specify
that the License Text Reference ID field points to a 'firf'
resource.

The region code of the language. This allows the software
license plug-in to default to the appropriate language version
of the text based on the primary language of the system
software.

42

License Text Reference ID

License Text First Picture ID

Chapter 7: Software License Plug-in

See the “Script.h” file on the most recent ETO CD for a list of
the current region codes.

The ID of a 'TEXT' resource if the text is stored in the data file;
otherwise, ID of 'fIrf' resource if stored in a separate text file.

The ID of a 'PICT' resource containing the first picture to be
embedded in the main text.

43

Installation Plug-in

This chapter describes the installation plug-in.

About the Installation Plug-in

The installation plug-in manages the sequential installation of one or more software components via
installation engine applications, such as Apple’s Installer Engine, Apple Software Restore, and limited
support for MindVison’s Installer. Actually, any application can be run by the installation plug-in as
part of an installation, but for those fully supported engines , the user is presented with a unified
progress dialog, installation report, and error handling. As with other plug-ins, the developer or
administrator specifies the software components available to the user in the data file.

In addition to the multiple software component installation used to install Mac OS 8.5, the installation
plug-in is designed to replace the old Installer 4.0.X application by providing a user experience more
tailored for a single Installer script. The installation plug-in automatically chooses either the
multiple component mode or the single Installer script mode depending on the software components
specified.

The installation plug-in also includes features that enable both developers and administrators provide
an easy-to-use installation environment tailored for their users. Here is a summary of the features:

= Parasites - an installation program invisibly connected to user-visible software component, which
can be used to enhance or patch an existing installation program.

= Installation reports - a SimpleText document left on the destination disk that contains a listing of
the actions performed during the installation.

= Disk Checking - the user’s destination disk can optionally be verified and fixed before your
software is installed.

= Add/Delete Installers - administrators can add third-party or in-house installation programs to an
existing Upgrader data file.

= Selection Set Files - administrators can easily redefine the default installation so users install only
what is necessary.

= Remote Installation - in conjunction with Apple’s Network Assistant program, administrators can
remotely update computers via the network from a centralized computer.

= Billboards - users can be informed and entertained by pictures (supplied by developers) in the
progress dialog during the installation.

Plug-in file name: Integrated Installation

Chapter 8: Installation Plug-in 44

Multiple Component Mode

Complex installations using several installation programs will normally use the multiple component
mode. The standard approach is to provide both an easy installation panel and a custom installation
panel, although in unique situations it is possible to present only one of the panels.

Easy Installation Panel

The easy installation panel prompts the user to click the Start button to begin the developer- or
administrator-defined default installation. The prompt should encourage the casual user to accept the
default installation.

The prompt area can accommodate styled or unstyled text superimposed on a graphic. See Figure 8-1 for
an example of the Mac OS 8.5 easy installation panel.

Figure 8-1 Easy Installation panel

O Imxtall biar 05 B =

-\‘# insgall Snfrawars (2]

Dlick Staert i mocbal blsr O 5% gm “Felar inbacsh HDL"

| Cwshgmsire || Opdinny. | | Go Bk I St i

The additional options available to the user depend on the developer. The Customize button takes the
user to the custom installation panel, and the Options button opens the options dialog.

Custom Installation Panel

The custom installation panel allows the user to determine which software components are installed,
and depending on they engine used to install the component, further customize the installation or
perform a removal. Figure 8-2 shows the custom installation panel in the Mac OS 8.5 installation
program.

Chapter 8: Installation Plug-in 45

Figure 8-2

Custom Installation panel

O

Bsbal bar 05 B3

Faftepry qurpparardy

‘t CusTam Installatee and Besssval

Ok Mart e launch sebecbesd spftoane mutaliers,

e bl L s

B rtac 04 ns :Wumum :I | &
B Intarmet Accoan Bsaranardd it 8] @
EIS——— B
B Barsesnsl Web Sharing [Prerrartad batduten | ¥ @
= Qe bl e 300 [P ol Inilaten | 0] (D
B TaxD=bi=igiin [Frerrrtad katauten | ¥ @
= hac 05 Restiime bee lava [| @
|_De=t Cwstemsize | | dmtions.. | | ook || stet |

When using Apple’s Installer Engine to perform the installation for the component, the developer can

write the Installer script in a way that provides further selection of component features. When the user

selects either Customized Installation or Customized Removal from the pop-up menu, the custom

selection dialog is show (see Figure 8-3).

Figure 8-3 Custom Selection Dialog
Sedesct bar O B% features be insdall,
Skt | Custom =]

Faghry Sy
iwdwraam i ra- ue) oggpated canmpabi i Ea G |a
[l maptern Eatberprg for Wi roarger 7 @ R
Bl ot mgtien Sufiwnrs i35 3

b (= trirtres B @
b Eoorpuimin are 3]
B [Ericeiin 5, 5
- [=ridiaedin i% a5 3
[e rrimpte v @
A gl i Flag e T @ [+
Falschud yicn: 59 K | camce | |! L) I

From within the custom selection dialog, the user checks the features to be installed or removed. The
contents of the list is entirely defined by the component’s Installer script.

Single Installer Script Mode

The single Installer script mode is used when a developer has implemented the software component’s
installation using one host Apple Installer script. Even though only one visible Installer script can be
specified, any number of parasites can be used in addition to the Installer script.

User Interface

The user is presented with one installation panel that allows the user to select predefined easy feature

sets and provides access to the custom selection dialog for customizing an installation or removal.
Figure 8-4 shows an example single Installer script mode installation panel.

Chapter 8: Installation Plug-in

46

Figure 8-4 Installation panel using single Installer script mode

(| Single Scripd Dats Flle Exasspls =

-\'i: Install/Resssve Software |

xkalation Type: | Refammended Ictalation & |

1l ST U ik D2 el o ool i & T P Bl WS Dk HDE.

Como))

The installation panel will default to the recommended installation, if one is provided; otherwise, the
user will be asked to select the features to install. The prompt text will change depending on the menu
item selected. Most developers will want to provide several easy features sets to allow casual users at
least some control over the software features installed. Figure 8-5 shows a installation type pop-up
menu that attempts to address both casual and power users.

Figure 8-5 Installation type pop-up menu with additional easy feature sets

+ Recommended Installation
Full Installation
minimai instaliation

Customized Installation...

Customized Remowval...

User Options

Depending on the settings in the data file, the developer can provide the user with control over three
possible options: disk checking, hard disk drivers updating, and installation report generation.
Upgrader adapts the options dialog to show only those checkboxes modifiable by the user for the given
data file settings. Figure 8-6 shows the three possible versions of the options dialog.

Chapter 8: Installation Plug-in 47

Figure 8-6 Three faces of the options dialog

[Vit [stin ot Disk [Update Ajple Herd DNsk Devsirs
ek T dretaation i for prabbiec brfons waiating Foard prabbine =il The irariadier Tk B hird drer Rovatie aiih dppde dak sty aitews
e rpaled o pa Koy F Meed, & updob ek dreet b e e sk . Dvieie ferwaiisl

with & ik utiithy wiher Than Aph ' FF e updaiel 5 el

[Update Apple Herd ek Deders [Cridte Installae Figs
Tre incisdie ook for hand drmer foawatinl with Agpd dit aiihey aaftess CHe MR b rrpat Trad Bl i Ter edil, rnaeanl, o ohpleced dering
¥ ey o e, updib b dreeer i T e ek - e v el . Tre rageai il i ol bk iciimsiion dink & bk sl Loge
with 6 ik ity aihe Tran Al 's 57 ek upedsiel @ Wil Fdder, wiwr e il & gy
[Crieate Installateees Regset | Cancad | | ok |

G MRE PRt Tl Feie i Tee ediH, reraaHl, 5t leed daring
mrinutien. The rapee] ol i 2 Uk etaatios d W by B Loge
i, Wiwe e il 2 eagHs

[Criestin Inatall ot fege

I Lancd ! I UK] Chrer eer b rrpart T b e Tier eddil, rHneenl, ond nHpeced dering
it . Tre reper] will ol ek o tisstion gk, ek Boah Lot
Fdder, witer e il lotien & cangies

| Cancad | | ok |

Disk Checking

When the disk checking option is selected, version 1.0.1 or later of the DFA Server application is
launched and run. DFA Server returns one of a number of error values to the installation plug-in, which
it converts into an error message. If the disk was okay, no message alert is displayed. If the disk was
fully repaired, an alert tells the user there were problems but they were fixed. If the check or repair
can proceed if all other applications are quit, the user will be asked if they wish to have applications
quit first.

NOTE

The user is never prevented from continuing with the installation if problems could not
be fixed.

Updating Hard Disk Drivers

The installation plug-in runs version 1.5.1 or later of the Drive Setup application to update Apple
brand hard disks. Drive Setup will skip any non-Apple brand hard drive or an Apple brand hard drive
that has been formatted with a non-Apple driver. When the update cannot occur, the disks that were
not updated are listed for the user with encouragement to contact the vendor.

NOTE

The user can continue with the installation even if some hard disk driver could not be
updated.

Installation Reports

When installation reports are enabled, one or more SimpleText documents describing the actions and
error messages are created inside a folder with the name of the product inside the Installer Logs folder
on the selected destination disk. The amount of detail depends on the engine used to install the
software component. At present, only Installer Engine provides a list of detailed file actions.

Chapter 8: Installation Plug-in 48

Installation Progress Dialog

A single progress dialog is presented while the various engines perform the actual installation. The
user can halt the installation by clicking the Cancel/Stop button, developers can provide billboards to
amuse and educate the user during the process. The estimated time remaining is also provided.

Figure 8-7 Progress dialog with billboards

Installing biac 05 0.5 anbe “Aeacestnss HiF

= (B

Crtirp i Tire Narngining: dbms 5] mirg by

Canceling or Stopping the Installation

Either a Cancel button or a Stop button is available for the user to click at any time. When the button
text is “Cancel”, the user can halt the installation process and her hard disk is restored to its original
state. When the button text is “Stop”, the user can halt the installation process but the installation is
not complete and the installation product may or may not be usable.

If the user stops an installation after at least one component has been installed, the user will be asked if
she wishes to stop, skip the component that was installing, or try installing the component again. If
the user stops the installation then starts the installation again without exiting the installation plug,
then installation will pick up again with the unfinished component.

Presenting Billboards

Developers can inform and educate their users via pictures displayed in the progress dialog during the
installation. Any number of pictures can be attached to each software component. The actual ‘PICT’
resources are stored in the data file.

NOTE

If you supply a large number of pictures or the pictures you supply are very large, make
the ‘PICT’ resources purgeable so Upgrader will not run out of memory.

Time Remaining Estimation

The installation plug-in calculates the time remaining for the entire installation using several
parameters, such as the speed of the source and target disk, but the estimation is only that, an
estimation. Since we use a calculated average engine speed, which may differ greatly between engines,
we allow the developer fine-tune time each component installation using a progress time multiplier
value.

The progress time multiplier value can be a number from 1 to 200. The value is a percentage of an

Chapter 8: Installation Plug-in 49

average Installer Engine-based installation. For example, a value from 101 though 200 lengthens the
estimated time shown in the progress dialog to account for an installer that takes longer than the
average Installer Engine-based installation.

Administrator Customization

Upgrader contains specific functionality for making the administrator’s job easier. This functionality
falls into the following categories:

= Adapt an Upgrader-based program user interface to your organization. This is accomplished by
adding, deleting, or modifying the panels in order to present different information or perform
unique tasks.

= Addition or deletion of software components. You can add your own software installers to those
supplied by the developer of the Upgrader-based program. And if careful, delete software
components inappropriate for your situation.

« Redefinition of the default installation. Whether or not you add or delete software components,
you may wish to define your own customized installation and select a level security necessary to
limit user deviation from your default installation.

= Perform remote installations using Apple’s Network Assistant. Most Upgrader-based programs are
easily configured to perform installations to networked computers from a centralized location using
Network Assistant.

Most of these customizations can be mixed and matched depending on the desired result. You’ll first
need to decide who will be performing the installation. Use the following descriptions to guide your
decision:

User-Initiated: The user starts and uses the Upgrader-based program without aid from the
administrator. Most likely the installation is performed over the network.

1. Decide if you need to change any of the text presented in the informative panels, such as the
welcome panel or the read me panel. ModifierTool gives you access to the displayed text for each
panel.

2. Decide if additional tasks must be performed before the installation begins. For example, you
might require that user run a virus checker or some in-house application before installing. A simple
application launcher plug-in is provided on the Installer SDK that can easily be dropped into an
existing Upgrader-based program using ModifierTool. Those of you with programming skills and
greater demands can use these plug-in examples as a starting place for your own customized panels.

3. Add or delete software component installers. If your organization requires additional software be
installed with the product, then write an installer for it using one of the supported engines and add
it to the list of software components using ModifierTool.

4. Redefine the default installation by creating a selection set file containing the selections and
options you want your users to use. You have a choice whether to allow your users to further
customize your default installation, or to force them to only install your default installation.

5. Set up your installation with the selection set file in the same folder as the data file, then test and
deploy.

Administrator Performed: The administrator walks from computer to computer, performing the
installation themselves.

1. Add or delete software component installers.
2. Redefine the default installation by creating a selection set file.
3. Copy the selection set file to the same folder as the data file, then test and deploy.
Remote Installed: The administrator sets up and initiates a Network Assistant-based installation.

Chapter 8: Installation Plug-in 50

1. Add or delete software component installers.

2. Redefine the default installation by creating a selection set file.
3. Set up files for remote installation.

4. Test and deploy.

Now that you’ve decided how to install the product, read the pertinent sections below.

Add/Delete/Modify Panels

The modular design of Upgrader-based programs make if safe and easy to delete or modify the
standard panels, or even add your own panels to enable your users to perform such tasks as run a virus
checker or in-house application. Your requirements and skills will determine how much change is
appropriate.

To begin analyzing what might be appropriate, read the editing instructions for each plug-in. This
will let you know what’s possible so you can prioritize what’s important in your situation.

Add/Delete Software Component Installers

More than likely you already know what additional software should be installed with the product.
The next step is to determine the best method of choosing an engine to install the other software. If the
other software is already installed by one of the supported engines, then integration should be easy.

If you’re starting from scratch with a bunch of in-house applications or files, investigate using Apple
Software Restore first. All you really need to do is create a disk image with the files in the locations
you want them installed. Documentation and examples using Apple Software Restore (ASR) is
available on the Installer SDK.

Creating and Using Selection Sets

Selection set files contain a customized default installation for a particular Upgrader data file. Once
you’ve finished your changes to the data file, run the Upgrader-based program and choose the
selections and options you want the user to use, then select Save Selection Set from the Special menu. A
Save dialog box will appear.

Figure 8-8 Special menu and Selection Set Save dialog box.

& File

(B e 008 B3 sl % |

Help PP
Save Selection Set... = Installndc 0585

Load Selection Set... Adar 0% Bust

] Somméare Installers

Seve Selechipn Sed Tl Ay

[Disat allowe user b casiomize

Selecting the Don’t allow user to customize checkbox at the bottom of the Save dialog will hide the
Customize button and prevent the from installing anything but the default installation.

Since a selection set file automatically loads when found in the same folder as the data file, an
administrator can further guarantee the user will perform the default installation by checking the

Chapter 8: Installation Plug-in 51

Require Selection Set File checkbox in the installation plug-in’s ModifierTool editing window. When
this option is selected and the selection set file is missing, an alert is displayed and the Upgrader-
based program quits.

Performing Remote Installations Using Network Assistant

If you have Apple’s Network Assistant installed on the workstations on your network, you can use it to
install a product on those workstations. To do this, you configure and set up files on a guest access server
volume, then use Network Assistant to initiate the installation onto the selected workstations.

Before you start, be sure the Network Assistant workstation software is installed on all the
workstations on which you want to install the product.

Configuring and setting up a remote installation

To configure your Upgrader-based program to remotely install using Network Assistant, follow these
steps:

1. If the Upgrader-based program comes on a CD-ROM, you can just share the CD-ROM with guest
access privileges from a computer; otherwise, copy the product folder onto a server volume that has
read-only guest access.

2. Create a folder on a server volume that has read-only guest access. You can name this folder
whatever you would like, but for the purpose of this example, we’ll name this folder “Remote
Install”.

3. Copy the files “Start Remote Install” and “ Convert Data File” to the “Remote Install” folder.
You'll find these files on the Installer SDK.

4. Copy the data file from the product folder to the “Remote Install” folder. For Mac OS 8.5, this file
is named “Install Mac OS 8.5”.

5. If you need to add additional software installers to the product’s installation, drop the data file in
the “Remote Install” folder onto Modifier Tool and follow the directions in the section
“Add/Delete Software Component Installers” and the chapter on the Integration Installation plug-
in. NOTE: If you perform a clean install of system software, you will need to add the installation
of the Network Assistant workstation files to enable you to connect with the workstations after
restarting the the new system software.

6. If you wish to redefine the default installation, follow the directions in the section “Creating and
Using Selection Sets” to create a selection set file. Place the newly created selection set file in the
“Remote Install” folder.

7. Convert the data file by dropping the file onto the Convert Data File application. If you have
created your Upgrader-based program using different plug-ins, or the order of the plug-ins is
different than the Mac OS 8.5 data file, you may need to convert your data file manually. A data
file prepared for use with Network Assistant will have the following plug-ins: IncompatHW
(optional), Integrated Installation, and Conclusion. The converted data file must also include an
‘auin’ resource. The easiest way to create this resource is to convert the “Install Mac OS 8.5” data
file using the Convert Data File application, then copy the ‘auin’ to your data file using ResEdit or
Resorcerer.

8. Log on to your guest access server volume(s) from another computer and create two aliases: one to the
Upgrader application in the product folder/shared CD-ROM (this application is named “Mac OS
Install” for Apple’s Mac OS 8.5 release), and an alias to the “Start Remote Install” in the “Remote
Install” folder. Copy these two aliases on a floppy or server volume to facilitate copying these
files back to your read-only guest access volume. Place the data file alias on the root level of the
server’s boot volume. Place the Upgrader application alias in the “Remote Install” folder. Your
“Remote Install” folder should look similar to this:

Chapter 8: Installation Plug-in 52

9.

L
.
&
5
L=
Ll

s 1 fnsts il
== r——

install Mac 05 8.5 Selection Set File

Start Re majce I nstall

e
: -\.-é;

Conwvert Data File

i » |z

Before testing your configuration using Network Assistant, you can start the installation manually
from a workstation by double-clicking the “Start Remote Install” application. The installation
will begin automatically upon opening the “Start Remote Install” application. You can click
Cancel to stop the installation.

Installing the product using Network Assistant

1. Open the Network Assistant program and select the workstations in the Workstations list on
which you want to install the product.

2. Choose Copy Item from the Manage menu.

3. In the dialog box that appears, find the alias to “Start Remote Install” file on your administration
workstation.

4. Select the alias in the list and click the “Copy and Open” button.

5. Network Assistant copies the alias to all the workstations and opens the alias, which
automatically starts the installation of the software you selected. The product will be installed
onto the current boot volume of workstation. While the product is installing, the name of the
Upgrader application will appear in the status column.

6. If the product requires a restart, the workstation will automatically be restarted after the
installation has completed successfully. If an error occurred during installation, the workstation
will stay in the Upgrader application with an alert displayed on the workstation describing the
problem .

7. When the workstations have restarted, select them in the Workstations list and choose Software
Search from the Reports menu.

8. Use the dialog box that appears to search for the alias to “Start Remote Install” file.

9. In the report that appears, select all the copies of the alias, click the delete button in the report
window, and click Delete in the dialog box that appears.

Engines

The installation plug-in contains support for Installer Engine and Apple Software Restore with partial

support for MindVision’s Installer.

Chapter 8: Installation Plug-in

53

Installer Engine

Apple’s Installer Engine is a background-only version of the Installer 4.0.X used by Apple. Installer
Engine implements a full-featured public Apple event suite, enabling developers and administrators to
create solutions using Installer Engine.

To use Installer Engine, a developer writes an Installer script, which contains the necessary decision
making code and actions to perform the installation. Since Installer Engine can execute Installer scripts
written for Installers as old as version 3.3 , migrating your older Installer scripts to Upgrader is very
easy. You’'ll find documentation, examples, and tools on the Installer SDK to help you write Installer
scripts, or command Installer Engine via Apple events.

Apple Software Restore

The Apple Software Restore (ASR) application installs the files from disk images created by Apple’s
Disk Copy application. ASR has been used in the past to restore an entire user’s hard disk, hence the
name, but changes in version 1.3.2 enable it to be driven via Apple events by the installation plug-in.

You’ll find documentation and examples for using ASR on the Installer SDK.

MindVision Installer

The installation plug-in contains limited support for running MindVision’s installer via Apple events.
The installation type is limited to an easy installation only, and the MindVision installer’s progress
dialog is shown in front of Upgrader’s progress window due to the design of the MindVision Apple event
suite.

Contact MindVision at www.mindvision.com for information about licensing the MindVision installer.

Other Applications

Most any application can be specified to be launched by the installation plug-in to perform the
installation tasks for a software component. The application will be launched by the installation plug-
in with an 'oapp’ Apple event if no document is specified, or an ‘odoc’ Apple event if a document is
specified. The installation plug-in waits for the application has quit before it launches the next
software component.

If the application being launched will force other applications to be quit or will force a restart when it
completes, then it must be the last software component in the list.

Development Topics

Using Parasites

Parasites are software installers used to fix or enhance the actions of the previous installer, but are
hidden from the user. One or more parasite software installers can follow a visible software component
installer (host), and are run if the software component is installed. If the user stops the installation of
a parasite, a stern warning is displayed urging the user to continue. The parasite installer can be any
application, but if it is an Installer Engine-based installer it must provide a recommended installation.

A parasite can be conditionally run based on the features selected in the host when the host is a
Installer Engine-based installer. See the description of the host feature ID list for more information

Chapter 8: Installation Plug-in 54

Calculating Installation Sizes

Several fields in the installation and target selection plug-ins require data about the size of the
recommended installation and the number of file forks created. The “Count The Forks” tool supplied on
Installer SDK helps automate this process.

Follow these steps to calculate the installation sizes:

1.

Place the Count The Forks application file in the same folder as your data file and the Upgrader
application.

. If your product can be installed onto an empty disk, erase the destination disk. Otherwise, double-

click the Count The Forks application, select the destination disk in the list and click the Select
“<volume name>" button.

. Start Upgrader, select the destination disk, then proceed to the installation plug-in. If you allow

customization, click the Customize button and select all software components.

. Start the installation and allow it to complete.

. Find and open the file name “Number of Forks” on the root of the destination disk. An entry for

each selected software component will have been added automatically by the installation plug-in
as it ran. Each entry contains four numbers. The first two numbers are the accumulated size and
number of forks after the installation of the component completed. The next two numbers are the
bytes and forks added to the disk by the component.

. For each software component (including parasites) enter the size and number forks for that

component. Make sure to use the “new” values from the “Number of Forks” for each component.

. To determine the size and number forks to be entered into the preference resource of the target

selection plug-in, find the entry of the last software component installed as part of the default
installation. Enter the accumulated bytes and forks from this entry into the fields if you erased the
destination disk before you started. If you ran Count The Forks manually once before starting the
installation because you couldn’t install onto an empty disk, subtract the values in the first entry
from the entry of the last software component installed as part of the default installation and enter
the result in the fields.

Extending the Installation Plug-in

Creating a Preflight Function

A preflight function attached to a software component can determine if the component should be hidden
or checked at runtime, overriding the default attributes specified in the data file. This might be
necessary if a specific installer program is designed to work on a subset of the environments the
Upgrader-based program supports.

Developers can perform the following runtime decisions:

= Show or hide the software component in the easy installation panel, custom installation panel, or

both panels. This allows one or more installers to be used to install a single product, each designed
for a particular environment. To handle this case, the developer just needs to write a preflight
function to show the appropriate one. The installation plug-in already uses this strategy for
implementing its built-in support for running the correct Apple Installer script based on the
processor type (68K or PPC) using the two document fields provided for each software component.

= Check or uncheck a software component based on an environmental factor. For example, the Install

Mac OS 8 Upgrader-based program initially selects the Apple Location Manager item when
running on PowerBooks.

Routine Definition:

Chapter 8: Installation Plug-in 55

/I Result definition

enum {
kNoError =0,
kinternalError =-1

h

typedef SInt32 SoftwarelnstallerPreflightResult;

/I Parameter block definition
struct SoftwarelnstallerPreflightPBRec {

/I Fields set on entry

SInt16 fDestinationVRefNum;
SInt32 fRefCon;
Boolean fDoingCleaninstall;

/I Fields set by you on exit

Boolean fSkipOnEasy;

Boolean fSkipOnCustom;

Boolean fOverrideDefaultSelection;
Boolean fSelectlfOverridden;

|

typedef struct SoftwarelnstallerPreflightPBRec SoftwarelnstallerPreflightPBRec,
*SoftwarelnstallerPreflightPBPtr;

Field Descriptions:

fDestinationVRefNum Volume RefNum of selected destination disk.

fRefCon 32-bit value passed to the code resource from data file.
fDoingCleanlnstall True if user has specified a clean install.

fSkipOnEasy If true, forces the software installer to be hidden and skipped

when running in Easy HI mode.

fSkipOnCustom If true, forces software installer to be hidden and skipped when
running in Custom HI mode.

fOverrideDefaultSelection If true, forces initial selection state of software installer
checkbox to that specified in the fSelectIfOverridden field.

fSelectlfOverridden Selection state of software installer checkbox if
fOverrideDefaultSelection field is true.

Creating a Cleanup Application

The cleanup application is run after any successful installation to perform post-installation disk
modifications. It’s best to perform all cleanup operations within the software installers themselves, but
sometimes you may not have control over the actions of the installers and will need a way to clean up
the disk after the installation. Since the cleanup application is given no indication of which installers
were run, your cleanup tasks must handle all possible installation combinations.

The cleanup application is launched with two additional parameters in the ‘oapp' or ‘odoc’ Apple
event — the selected destination disk and the process serial number of the Upgrader application. After
being launched, the cleanup application should perform its tasks, then send a conclusion Apple event
back to the installation plug-in before quitting.

The following parameters are included by the installation plug-in with the 'oapp' or ‘odoc' Apple
event upon launch of the cleanup application:

Chapter 8: Installation Plug-in 56

Target volume

Upgrader process serial number

The vRefNum of the selected destination disk.
Parameter keyword: ' vtgt'
Data type: typeShortinteger

The process serial number of the Upgrader application, so you
can send the conclusion Apple event back to the Upgrader
application. This parameter is included because the address
you receive in the keyAddressAttr or keyOriginal AddressAttr
parameters will always be the Finder.

Parameter keyword: 'spsn’

Data type: typeProcessSerialNumber

A conclusion Apple event that must be sent to the installation plug-in (using the Upgrader’s address) by
the cleanup application before the cleanup application quits:

Event class: 'pma!’; Event ID: 'revl’. No additional parameters are necessary.

Editing the Installation Plug-in

The installation editor is shown in Figure 8-9. This editor allows the developer or administrator to
change the presentation and functionality of the installation plug-in panels:

Figure 8-9

Installation editor window

Intalatinn Flun-=

- Sedtawrn [

i a5 [K] =
- Hp P e]]
rdaw daere (K]

hpgle Brrwte hoadan [4]
Prrecad W'vk- Sroring [E]
QL B[]

Teosi- -Gz [3]

s O i R oo]

Lol o 4
Db e 4

| ()

prehirm B Lind
= | Lerspgesridd D

Eappor-bd K

Corboan Prarepd
Chak S b Lty de letted daite s
[

Targei Srimciion Fhag-in e
| |

o]
Pefa® Cobor BBk B[|

W Uy Taed

- Dy ede Proang & Bkraaed

Ttk et bn i el 1 Hen 058 Boa =0

Tyt T

Lei® W Diieand Parbas D ||:. |
A ispaire Swieciion Swi Ml

| mtore dgtions. | | BEemove |

Gk Ratlig

B Egcbopeara Ficlyrs B

Flobwe D E
E]

The items in the installation plug-in editor window are explained in detail below.

Software Components List

Edit Item...

New Item...

Chapter 8: Installation Plug-in

Shows the software component window for the selected item.
Double-clicking on a software component name is a shortcut for
clicking the Edit Item button.

Shows an empty software component window. If the user clicks
OK, the new component entry will added to the software
components list. If a component is selected in the list when
clicking New Item, the new component will be inserted before

57

Up

Down

the selected component; otherwise, it will be added to the end
of the list.

Moves the selected component one entry closer to the beginning
of the software components list. If the software component has
parasites, you must move them up or down separately.

WARNING

Take care when reordering the software
components. The order may be important for
creating the proper installation result.

Moves the selected item one entry closer to the end of the
software components list.

Remapped Machine ID List (Installer Engine only)

Unsupported ID

Supported ID

Remove

<< Add

Easy Mode Prompt & Background
Unstyled Text

Styled Text

Color Background Picture ID

Chapter 8: Installation Plug-in

The Remapped Machine ID list only applies to Installer
Engine-based software components.

The gestalt ID of a machine that one or more of the specified
Apple Installer Engine-based Installer scripts were not
designed to install on. See the “Gestalt.h” file on the most
recent ETO CD for a list of current gestalt ‘mach' IDs. The Add
button is enabled if the value entered is not already in the list.

The gestalt ID of a machine that the unsupported machine ID
should be remapped to. If a listed unsupported ID matches the
ID of the machine, then its remapped ID is passed to the Apple
Installer Engine application upon launch of each Installer
script. The Installer script will then make decisions as if it is
actually running on the older machine. See the document
Installer Script Guide for more information about the
remapping functionality.

Removes the selected ID entry from list.

Adds the unsupported/supported ID pair to the remapped
machine ID list. The list is automatically sorted by the
unsupported ID value.

Select this option to display the entered prompt text in the
easy mode panel when running in multi-component mode. The
text is limited to 255 characters and will be drawn in the
system’s font.

You can have Upgrader insert the name of the selected
destination disk into your prompt string by using “~0”.

Select this option to display styled text in the easy mode panel
when running in multi-component mode. Click the Edit Text
button to change the styled text.

Unfortunately, the selected destination disk name cannot be
inserted into the styled text.

Enter the ID of the 'PICT" resource that you wish displayed in

58

BW Background Picture ID

Custom Prompt

Target Selection plug-in name

Text Encoding Value:

the background of the window. This picture will be displayed
when the monitor is displaying 256 or more colors/grays.

The picture must be exactly 205 pixels in height by 506 pixels in
width; otherwise, the picture will be scaled to fit the panel.
ModifierTool does not provide a facility for adding, removing
or changing 'PICT' resources inside the data file. Use your
favorite resource editing program, such as ResEdit or
Resorcerer, to add your pictures to the data file.

Enter the ID of the 'PICT' resource that you wish displayed in
the background of the window. This picture will be displayed
when the monitor is displaying less than 256 colors/grays.

Enter the prompt text displayed in the customize mode panel.
Since the prompt is limited to two lines, please verify that
your text fits in the actual panel.

You can have Upgrader insert the name of the selected
destination disk into your prompt string by using “~0”.

The name of the plug-in to go back to if the destination disk
unexpectedly disappears. This will usually be the target
selection plug-in name.

The text encoding value for the localized language of the files
being installed by the software component installers. See the
“TextCommon.h” interface file included with MPW and
Metrowerks for the appropriate text encoding value of the
language being installed. Installer scripts that do not specify
their own code in the ‘inpr’ will use this value. (Installer
Engine only)

Default Color Billboard Picture ID Enter the ID of the 'PICT' resource that you wish displayed in

Default BW Billboard Picture 1D

the progress window when the software component does not
specify it’s own. This picture will be displayed when the
monitor is displaying 256 or more colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

Enter the ID of the 'PICT' resource that you wish displayed in
the progress window when the software component does not
specify it’s own. This picture will be displayed when the
monitor is displaying less than 256 colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

Require Selection Set File checkbox Select this option to require a selection set file be present in the

Chapter 8: Installation Plug-in

same folder as the data file. This option allows an
administrator to force the user to perform a custom tailored
default installation, instead of the default installation the
developer specified. Developers should never ship their data
file with this option selected.

See “About Selection Sets” earlier in this chapter for more
information about selection sets.

59

Remove

Cancel

Save

Deletes the installation plug-in resources from the data file
and closes the editor window.

Closes the editor window without updating the installation
plug-in resources.

Updates the installation plug-in resources in the data file with
the contents of the window.

Figure 8-10 More installation plug-in options window

bgre Instalation Flun-as fpiges

e Tace Dypiiene Hlp: Wiwdee Texd

Q Exlh mpiaBlicn pesvly
20 By il s pearl
1) Catimrs inarindlotien pare ol

Tynh Lo gbime
A g dided Tynd
L g Fily

ST Y A
Ors chang dgdasis

e Bt

[L]

- Drih: Crec iy

[Al Birk Ciebaking

|I| Switwis Bt L b Pl OF & fwvw

[deesw b T Crimadie Bk Ciebaking

liar

B il Evive Ly

- Bl et Brpaic

[Al il it i Figeor i B tria® dedin

Fredect Awrs Mo Brialetion Prpaic Folder b'lp- [53

The items in the more installation plug-in options window are explained in detail below.

Interface Options:

Both installation panels

Easy installation panel only

Custom installation panel only

Cleanup Application:

Run Cleanup Application

Edit...
Disk Checking:
Allow Disk Checking

Run Cleanup Application

Chapter 8: Installation Plug-in

Select this option to show both the easy and custom
installation panels.

Select this option to show the easy installation panel only. In
this case, the Customize button will be hidden.

Select this option to show the custom installation panel only. In
this case, the Don’t Customize button will be hidden.

Select this option to run the clean up application following the
successful completion any installation.

Click to define the file location of the clean up application.

Select this option to run the disk checking application before
starting the actual installation.

Select this option to enable the user to turn off the disk
checking operation from within the options dialog.

60

Edit...

Driver Updating:
Allow Drive Updating

Edit...

Installation Reports:

Allow Installation Reports

Default to On

Product Name

Help Window Text:

Text Location:

Edit Help Text/File Ref...

First Picture ID

Cancel

OK

Chapter 8: Installation Plug-in

Click to define the file location of Apple’s “DFAServer”
application. Currently, “DFAServer” version 1.0 is the only
supported application for this option.

Select this option to run the driver updating application before
starting the actual installation.

Click to define the file location of Apple’s “Drive Setup”
application. Currently, “Drive Setup” version 1.3 or later is the
only supported application for this option.

Select this option to show the installation reports checkbox
inside the options dialog.

Select this option to select the installation reports checkbox
inside the options dialog by default.

Enter the name of the product being installed. A folder with
this name will be created inside the Installer Logs folder on
root-level of the selected destination disk.

Select Embedded Text to store the text inside the data file;
otherwise, select Separate File to store the text in a text
document. If you change the text location after defining the
text or a file reference, this data will be deleted when saving
the window, since only the text or a file reference is saved, not
both.

Opens the text editor window if the text is stored in the data
file; otherwise, opens the file reference window if stored in a
separate text file.

Enter the ID of the first 'PICT' resource embedded in the text.

Closes the more installation plug-in options window,
discarding any changes made in the window.

Records the changes made in the window.

61

Figure 8-11 Software component window

Saftwrare Component
Marme | g 08 B3 |
= krdurfym Dplmra - Hear P DL L iy D oy) —
B mecksbsd b cdefia® i labion (3o aikinly ariscied @ maion nedsl =] Feswr D
e scie ia preceniieg rert R
[J e restare ez (raisdisr Epine snbgl
B Farct retiat Mier recaaetided wria i
[0 gt iy e ot e i wrehg © i Eragiies odlg =
- bl Wi Thper Wi Pl offe F s | s’y =——————————————— _ F{ira i
E”h,mmipdpm I:Il.l|- Fraftight Coay Bapmeron D"-’thl: pird] Harwagh phtarel
Il Eigine anki Gt Bz T Rt s daisn® biloswrd ploiers
B e coptorn wartpdig i Gody Ry X R
Bil-a-'\- cuplern rgwaes P o [= D
Lol P
~ [aprriplios Tael Flgter for Bee il D
Pkt o bt [mrETE
Fregract Tine inaltiphsr D
Jpa bzt Sl e IehaBry Upgr i Pl Tor Eacgrm =lera
It 2Ll Suitert Biialrd Sy oban. S S el Gy eben
L L =
T

The items in the software component window are explained in detail below.

Name Enter the name of the software component as you wish it to
appear to the user in the software component list.

Interface Options:

Included in default installation Select this option to make this software component part of the
recommended installation. The software component will
appear initially selected in the customize mode panel.

Parasite to preceding Select this option to signify that the software component is a
parasite of the preceding software component. Parasites will be
hidden from the user and run whenever the software component
preceding it (either another parasite or a host) successfully
completes. This feature enables a developer to patch the
actions of previous software component. The first software
component cannot be a parasite.

Show feature sets Select this option when the Installer script provides multiple
feature sets. (Installer Engine only)

Force restart after recommended installation
Select this option to require the computer be restarted after
performing a recommended installation of the software
component onto the currently booted volume.

Support dynamic custom hierarchy Select this option to support an Installer Engine-based Installer
script which has a dynamic custom hierarchy. See the
document Installer Script Guide for more information about
using a dynamic custom hierarchy to provide up-front custom
selection. (Installer Engine only)

Preflight Function:
Code Rsrc Type The resource type of the preflight code resource.

Code Rsrc ID The resource ID of the preflight code resource.

Chapter 8: Installation Plug-in 62

Code Rsrc RefCon

Installation Type:

Allow recommended installation

Allow customized installation

Allow customized removal

Billboards

A 4-byte value passed to the preflight code resource.

Always select this option, except when you are using single
Installer script mode and the the Installer script does not
implement a recommended installation.

Select this option when an Installer script provides a customize
option. (Installer Engine only)

Select this option when an Installer script provides a removal
option. (Installer Engine only)

Billboards are pictures presented while the software
component is installing. The actual ‘PICT’ resources are stored
in the data file. If you supply a large number of pictures or the
pictures you supply are very large, make the ‘PICT’ resource
purgeable so Upgrader will not run out of memory.

Continue looping through pictures checkbox

Stop on default billboard picture

Min. Seconds

Color PICT ID:

BW PICT ID

<< Add

Remove

Host Feature ID List

Chapter 8: Installation Plug-in

Select this option to continue looping through the specified
pictures while the software component is installing/removing,
presenting each picture for the number seconds specified.
Otherwise, the pictures are spread across the duration of the
installation.

When not looping through pictures, select this option to stop on
the default billboard picture. Otherwise, Upgrader stops on
the last specified billboard.

The minimum number of seconds this picture should be display.
This ensures the picture is displayed long enough for the user to
read the picture.

Enter the ID of the 'PICT' resource that you wish displayed in
the progress window while this software component is running.
This picture will be displayed when the monitor is displaying
256 or more colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

Enter the ID of the 'PICT' resource that you wish displayed in
the progress window while this software component is running.
This picture will be displayed when the monitor is displaying
less than 256 colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

Adds a new billboard picture entry to the list.

Removes the selected billboard picture entry from list.

This list is only used when this component is a parasite and the
host is an Installer Engine-based Installer script.

63

Feature ID

<< Add

Remove

Edit Description Text...

KBytes for Rec. Install

Forks for Rec. Install

Progress Time Multiplier

Application

Chapter 8: Installation Plug-in

Enter the ID of a feature in the custom hierarchy of host

software component, which if installed will also cause this
parasite to be installed. This effectively allows a parasite
installer to be connected to one or more individual features.

NOTE

If the feature is nested inside the custom
hierarchy, you must also include all parent IDs
of the feature.

Adds a new billboard picture entry to the list.

Removes the selected billboard picture entry from list.

Click to add or change the text displayed in the software
component’s information window. When text has been entered,
an information button will appear on the software component’s
line.

Enter the raw number of kilobytes (1 kilobyte = 1024 bytes) in
the files being copied for this software component’s
recommended installation. The plug-in will approximate that
amount space required by adding this value to the number of
file forks multiplied by half the block size of the selected
destination disk.

See “Calculating Installation Sizes” later in this chapter to
help you determine this value.

The number of file forks being copied for this software
component’s recommended installation. Most Macintosh files
have either a data fork, resource fork, or both. The plug-in uses
this value to better estimate the required disk space by
calculating the extra space beyond the size of the files needed
on the destination given its block size.

See the section “Calculating Installation Sizes” to help you
determine this value.

Enter a number from 1 to 200 to adjust the estimated time
calculation relative to the other software components. The
value is a percentage of an average Installer Engine-based
installation. A value from 101 though 200 lengthens the
estimated time shown in the progress dialog to account for an
installer that takes longer than the average Installer Engine-
based installation.

Click Edit to define the file location of the installer program.
This can be any application, but the installation plug-in
contains special handlers for the following applications:
Apple’s Installer Engine, Apple Software Restore, and
MindVision’s Installer.

For more information about supported installers, see the section
“Engines”.

64

Document

Aux Doc

Remove

Cancel

OK

Installation Plug-in Reference

Click Edit to define the file location of a document required by
the installer program.

This field is used as follows:

- Installer Engine: an Installer script document that supports
68K- or PPC-based computers. If no file is defined for this field,
but the aux. document field has been defined, then the
installation plug-in automatically hides this software
component when running on a 68K-based computer.

- Apple Software Restore: a disk image file.

- MindVision Installer: not used.

Click Edit to define the file location of an aux. document
This field is used as follows:

- Installer Engine: an Installer script document to use when
running on a PowerPC-based computer. If both document fields
are defined, then the installation plug-in automatically selects
the document based on the processor type.

- Apple Software Restore: a preference file.

- MindVision Installer: not used.

Deletes the software component entry.

Closes the software component window without updating the
software installer item.

Updates the software component with the contents of the
window.

Global Data

Installation Plug-in Global Data

Data types read:

Destination disk

Clean install flag

Goto custom installation flag

Data types set:

Chapter 8: Installation Plug-in

The volume refnum of the currently chosen destination disk.
(Type: 'trgt', Data: 2-byte signed integer)

If true, tells the Apple Installer (first software component
only) that a clean install has been requested by the user.
(Type: ‘clin', Data: 1-byte Boolean)

If true, the installation plug-in goes straight to the custom
installation panel.
(Type: 'incu', Data: 1-byte Boolean)

65

Restart required flag A flag designating whether a forced restart is required or not.
(Type: 'rsrq', Data: 1-byte Boolean)

Resources

Installation Plug-in Preference Resource ('ippr’)

#define IPPrefFlags \
boolean kDontRunCleanupApp, kRunCleanupApp; \
boolean kDontAllowEasyUpgradeMode, kAllowEasyUpgradeMode; \
boolean kDontAllowCustomUpgradeMode, kAllowCustomUpgradeMode;
boolean kHelpTextinRsrc, kHelpTextInFile; \
boolean kDontUpdateDrivers, kUpdateDrivers; \
boolean kDontCheckDisk, kCheckDisk; \
boolean kDontAllowUserToTurnOffCheckDisk, kAllowUserToTurnOffCheckDisk; \
boolean kDontRequireSelectionSetFile, kRequireSelectionSetFile; \
boolean kDontAllowReports, kAllowReports; \
boolean kDontlInitiallySelectReporting, kinitiallySelectReporting; \
fill bit[6] [* Reserved */

#define TaskFlags \
boolean kOptionalSubTask, kRequiredSubTask; \
boolean kDontSelectlnitially, kSelectlnitially; \
boolean kStandAlonelnstallerScript, kForcelnstallWithPriorinstallerScript; \
boolean kReservedl, kReserved?; \
boolean kNoEasylnstallModeAvailable, kEasylnstallModeAvailable; \
boolean kNoCustominstallModeAvailable, kCustominstallModeAvailable; \
boolean kNoCustomRemoveModeAvailable, kCustomRemoveModeAvailable; \
boolean kDontShowFeatureSetsinCustomList, kShowFeatureSetsInCustomList; \
boolean kDontUseCompFeatureLookup, kUseCompFeatureLookup; \
boolean kDontRequireRestartForEasy, kRequireRestartForEasy; \

fill bit[6] /* Reserved */

type ‘ippr'{
switch {
case format3:
key integer = 3; * Format version */
IPPrefFlags; [* Flags */
longint; /* Revision Number */
integer; /* General Strings STR# Rsrc ID */
integer; [* Target selection plug-in name - 'STR ' Rsrc ID */
integer; [* Software component names list - STR# Rsrc ID */
integer; [* DFA Server application ref - 'firf Rsrc ID*/
integer; * Drive Setup application ref - 'firf Rsrc ID */
integer; * Cleanup application ref - 'firf Rsrc ID */
integer; [* Cleanup application document ref - 'firf’ Rsrc ID */
integer; f* Help text - 'firf or TEXT' Rsrc ID */
integer; [* First help text picture - 'PICT Rsrc ID */
integer; * Default color billboard picture - 'PICT' Rsrc ID */
integer; * Default BW billboard picture - 'PICT" Rsrc ID */
integer; /* Easy Panel Styled Text - TEXT' Rsrc ID */
integer; /* Background color panel - 'PICT' Rsrc ID */
integer; [* Background BW panel - 'PICT" Rsrc ID */
longint; [* Text Encoding value. */
integer = $$CountOf (RemaplIDPairs);
wide array RemaplDPairs{
integer; /* Unsupported machine ID */
integer; /* Supported machine ID */
¥

Chapter 8: Installation Plug-in 66

integer = $$CountOf (SubTask);

wide array SubTask{
TaskFlags; [* Software Component Flags */
integer; [* Installer application ref - 'firf Rsrc ID */
integer; [* Installer document ref - 'firf Rsrc ID */
integer; [* Installer aux.document ref - 'firf Rsrc ID */
literal longint; * Preflight code resource type */
integer; I* Preflight code resource ID - 'pffn' Rsrc ID */
longint; * Preflight code resource refcon */
integer; /* Billboard Rsrc ID - 'pdgs' Rsrc ID */
longint; [* Actual Kbytes copied for Easy Install */
longint; F* Number of file forks for Easy Install */
integer; * Progress Time Multiplier */
integer; ¥ Component Info - TEXT' Rsrc ID */

integer = $$CountOf (HostFeaturelDs); /* For parasite use only */
wide array HostFeaturelDs{
integer; /*Host Feature ID */

kDontRunCleanupApp/kRunCleanupApp flag
Use kDontRunCleanupApp to not run the clean up application.
Use kRunCleanupApp to run the application specified in the
Cleanup application ref field after any installations are
complete.

kDontAllowEasyUpgradeMode/kAllowEasyUpgradeMode flag
Use kDontAllowEasyUpgradeMode to hide the easy
installation panel. Use kAllowEasyUpgradeMode to allow the
user to see the easy installation panel.

kDontAllowCustomUpgradeMode/kAllowCustomUpgradeMode flag
Use kDontAllowCustomUpgradeMode to hide the custom
installation panel. Use kAllowCustomUpgradeMode to allow
the user to see the custom installation panel.

kHelpTextinRsrc, kHelpTextIinFile flag
Use kHelpTextlnRsrc to specify that the Help Text Reference
ID field points to a 'TEXT' resource. Use kHelpTextInFile to
specify that the Help Text Reference ID field points to a 'flrf'
resource.

kDontUpdateDrivers/kUpdateDrivers flag
Use kDontUpdateDrivers to not run the driver updating
program. Use kUpdateDrivers to run the application specified
in the Drive Setup application ref field after the user clicks
Start in the installation panel.

kDontCheckDisk/kCheckDisk flag
Use kDontCheckDisk to not run the disk checking program. Use
kCheckDisk to run the application specified in the DFAServer
application ref field after the user clicks Start in the
installation panel.

kDontAllowUserToTurnOffCheckDisk/kAllowUserToTurnOffCheckDisk flag
Use kDontAllowUserToTurnOffCheckDisk to hide the disk
checking checkbox in the options dialog, thereby forcing the
user to check the disk before each installation. Use
kAllowUserToTurnOffCheckDisk to show the disk checking
checkbox in the options dialog.

Chapter 8: Installation Plug-in 67

kDontRequireSelectionSetFile/kRequireSelectionSetFile flag

Use kDontRequireSelectionSetFile to not require a selection set
file to run. Use kRequireSelectionSetFile to require a selection
set file be present in the same folder as the data file. This
option allows an administrator to force the user to perform a
custom tailored default installation, instead of the default
installation the developer specified. Developers should never
ship their data file with this option selected.

kDontAllowReports/kAllowReports flag

Use kDontAllowReports to hide the installation reports
checkbox that would otherwise show in the options dialog. Use
kAllowReports to show the installation reports checkbox
inside the options dialog. When enabling reports, make sure to
fill in the product name contained in the string list resource
referenced by the plug-in string list ID field.

kDontlnitiallySelectReporting/klnitiallySelectReporting flag

Revision Number

Plug-in string list Rsrc ID

Target selection plug-in ref ID

Use kDontlnitiallySelectReporting to not select the
installation reports checkbox inside the options dialog by
default. Use klinitiallySelectReporting to select the
installation reports checkbox inside the options dialog by
default.

A reference count maintained by the ModifierTool to ensure a
selection set file for a particular revision of the preference
resource. When a selection set is created, this revision number
is stored in the selection set file. If upon loading a selection set
the revision number in the selection set file does not match the
number in the ‘ippr’ resource, the installation plug-in will
refuse to load the selection set.

If you don’t use ModifierTool to create and modify the ‘ippr’
resource, make sure to increment this value for each revision of
your ‘ippr’. You can start with any value you wish.

The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Easy installation panel prompt
2. Custom installation panel prompt
3. Product name given to the installation report folder

The ID of a 'STR ' resource containing the name of the Target
Selection plug-in to go back to if the destination disk
unexpectedly disappears.

Software component names list ref ID

DFAServer application ref

Drive Setup application ref

Chapter 8: Installation Plug-in

The ID of a 'STR#' resource containing names of the software
components as they are displayed to the user. Each name
occupies a separate index, corresponding to the order in which
the software components are list.

The ID of a 'flrf' resource containing the file location of Apple's
“DFAServer” application.

The ID of a 'flrf' resource containing the file location of Apple's
“Drive Setup” application.

68

Cleanup application ref

Cleanup application document ref

Help Text Reference ID

Help Text First Picture ID

Default Color Billboard Picture 1D

Default BW Billboard Picture 1D

Easy Panel Styled Text

Color Background Picture ID

BW Background Picture ID

Text Encoding Value:

Chapter 8: Installation Plug-in

The ID of a 'flrf' resource containing the file location of an
application to be run after any successful installation to perform
clean up-type operations. It's normally best to perform all clean
up operations within the software installers themselves,
instead of referencing a separate application here.

The ID of a 'fIrf' resource containing the file location of a
document to be opened by the cleanup application. Use 0 if no
document is necessary.

The ID of a "TEXT' resource if the text is stored in the data file;
otherwise, the ID of 'flrf' resource if stored in a separate text
file.

The ID of a 'PICT' resource containing the first picture to be
embedded in the help text.

The ID of the 'PICT" resource that you wish displayed in the
progress window when the software component does not specify
it’s own. This picture will be displayed when the monitor is
displaying 256 or more colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

The ID of the 'PICT' resource that you wish displayed in the
progress window when the software component does not specify
it’'s own. This picture will be displayed when the monitor is
displaying less than 256 colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

The ID of a "'TEXT' resource containing the text you wish
displayed in the easy installation panel. A non-zero value in
this field overrides the easy installation prompt text contained
in the string list resource referenced by the plug-in string list ID
field.

NOTE

Unlike the unstyled easy installation prompt
string stored in the string list, the destination
disk cannot be inserted into the text referenced
by this field.

The ID of the 'PICT' resource that you wish displayed in the
background of the window. This picture will be displayed
when the monitor is displaying 256 or more colors/grays.

The picture must be exactly 205 pixels in height by 506 pixels in
width; otherwise, the picture will be scaled to fit the panel.
ModifierTool does not provide a facility for adding, removing
or changing 'PICT' resources inside the data file. Use your
favorite resource editing program, such as ResEdit or
Resorcerer, to add your pictures to the data file.

The ID of the 'PICT' resource that you wish displayed in the
background of the window. This picture will be displayed
when the monitor is displaying less than 256 colors/grays.

The text encoding value for the localized language of the files

69

being installed by the software component installers. See the
“TextCommon.h” interface file included with MPW and
Metrowerks for the appropriate text encoding value of the
language being installed. Installer scripts that do not specify
their own code in the ‘inpr’ will use this value. (Installer
Engine only)

Remap Entry:

Unsupported machine ID The gestalt ID of a machine that one or more of the specified
Apple Installer-based Installer scripts were not designed to
install on. (See the “Gestalt.h” file on the most recent ETO CD
for a list of current gestalt 'mach’ IDs.)

Supported machine ID The gestalt ID of a machine that the unsupported machine ID
should be remapped to. If a listed unsupported ID matches the
ID of the machine, then its remapped ID is passed to the Apple
Installer upon launch of each Installer script. The Installer
script will then make decisions as if it is actually running on
the older machine. See the document Installer 4.0.7 Technical
Guide for more information about the remapping functionality.

Software Component:

kOptionalSubTask/kRequiredSubTask flag
Use kOptionalSubTask to not make this software component
part of the default installation. Use kRequiredSubTask to
make this software component part of the default installation.

kDontSelectlnitially/kSelectlnitially flag
Use kDontSelectlnitially to have the software component
default to unchecked in the custom installation panel. Use
kSelectlnitially to have the software component initially
selected in the custom installation panel.

kStandAlonelnstallerScript/kForcelnstallWithPriorinstallerScript flag
Use kStandAlonelnstallerScript for standard, non parasite
software installers. Use kStandAlonelnstallerScript to signify
that the component is a parasite of the preceding item.
Parasites will be hidden from the user and run whenever the
software installer preceding it (another parasite or a host)
successfully completes. This feature enables a developer to
patch an installer. The first software component cannot be a
parasite.

kNoEasylnstallModeAvailable/kEasylnstallModeAvailable flag
Use kNoEasylnstallModeAvailable when an Installer Engine-
based Installer script does not provide a recommended
installation. Use kEasylnstallModeAvailable for all other
types of installer applications and Installer Engine-based
Installer script provides a recommended installation.

kNoCustomlInstallModeAvailable/kCustominstallModeAvailable flag (Installer Engine only)
Use kNoCustomlinstallModeAvailable when an Installer script
does not provide a customize option. Use
kCustominstallModeAvailable to when an Installer script
provides a customize option.

kNoCustomRemoveModeAvailable/kCustomRemoveModeAvailable flag (Installer Engine only)
Use kNoCustomRemoveModeAvailable when an Installer
script does not provide a removal option. Use

Chapter 8: Installation Plug-in 70

kCustomRemoveModeAvailable when an Installer script
provides a removal option.

kDontShowFeatureSetsinCustomList/kShowFeatureSetsinCustomList flag (Installer Engine only)

Use kDontShowFeatureSetsinCustomList to not show easy
feature sets. Use kShowFeatureSetsinCustomList to show easy
feature sets when the Installer script supports multiple feature
sets. See the document Installer Script Guide for more
information about a easy feature sets.

kDontUseCompFeatureLookup/kUseCompFeatureLookup flag (Installer Engine only)

Use kDontUseCompFeatureLookup when the Installer script
doesn’t have a dynamic custom hierarchy. Use
kUseCompFeatureLookup to support an Installer Engine-based
Installer script which has a dynamic custom hierarchy. See
the document Installer Script Guide for more information about
using dynamic custom hierarchy to provide up-front custom
selection.

kDontRequireRestartForEasy/kRequireRestartForEasy flag

Installer application ref

Installer document ref

Installer aux. document ref

Preflight code resource type
Preflight code resource ID

Billboard resource ID

Chapter 8: Installation Plug-in

Use kDontRequireRestartForEasy if the recommended
installation does not require a restart. Use
kRequireRestartForEasy to require the computer be restarted
after performing a recommended installation of the software
component onto the currently booted volume..

The ID of a 'flrf' resource containing the file location of the
installer program. For more information about supported
installers, see the section “Engines”.

The ID of a 'flrf' resource containing the file location of the
installer document.

This field is used as follows:

- Installer Engine: an Installer script document that supports
68K- or PPC-based computers. If no file is defined for this field,
but the aux. document field has been defined, then the
installation plug-in automatically hides this software
component when running on a 68K-based computer.

- Apple Software Restore: a disk image file.
- MindVision Installer: not used.

The ID of a 'flrf’ resource containing the file location of the
auxiliary installer document.

This field is used as follows:

- Installer Engine: an Installer script document to use when
running on a PowerPC-based computer. If both document fields
are defined, then the installation plug-in automatically selects
the document based on the processor type.

- Apple Software Restore: a preference file.

- MindVision Installer: not used.

The resource type of the preflight code resource.

The resource ID of the preflight code resource.

The ID of a ‘pdgs’ resource containing a definition of the

71

pictures to display in the progress dialog during installation.

KBytes for Rec. Install The raw number of kilobytes (1 kilobyte = 1024 bytes) in the
files being copied for this software component’s recommended
installation. The plug-in will approximate that amount space
required by adding this value to the number of file forks
multiplied by half the block size of the selected destination
disk.

See the section “Calculating Installation Sizes” to help you
determine this value.

Number of File Forks for Rec. Install
The number of file forks being copied for this software
component’s recommended installation. Most Macintosh files
have either a data fork, resource fork, or both. The plug-in uses
this value to better estimate the required disk space by
calculating the extra space beyond the size of the files needed
on the destination given its block size.

See the section “Calculating Installation Sizes” to help you
determine this value.

Progress Time Multiplier A number from 1 to 200 to adjust the estimated time calculation
relative to the other software components. The value is a
percentage of an average Installer Engine-based installation. A
value from 101 though 200 lengthens the estimated time shown
in the progress dialog to account for an installer that takes
longer than the average Installer Engine-based installation.

Component Info. The ID of a "TEXT' resource containing the text you wish
displayed in component information window. Use zero if you
don’t want to provide informational text.

Host Feature ID List:

Feature 1D The ID of a feature in the custom hierarchy of host software
component, which if installed will also cause this parasite to
be installed. This effectively allows a parasite installer to be
connected to one or more individual features.

NOTE

If the feature is nested inside the custom
hierarchy, you must also include all parent IDs
of the feature.

Billboard Resource ('pdgs’)

#define billboardPictureFlags \
boolean kDoNotLoop, kLoop; \
boolean kStopOnLast, kStopOnDefault; \

fill bit[14]

type ‘pdgs’{
switch {
case formatO:
key integer = 0; * Format version */
switch {

Chapter 8: Installation Plug-in 72

case simplePictureDisplay:

key literal longint = 'PICT", * Picture billboard type */

billboardPictureFlags;

[* Flags */

integer = $$CountOf (pictureList);

wide array pictureList {

integer; f* Minimum seconds to display */
integer; * Color billboard picture - ‘PICT’ ID */
integer; I+ B&W billboard picture - ‘PICT’ ID */
integer; /* Optional File Ref. - firf ID */

kDoNotLoop/kLoop

kStopOnLast/kStopOnDefault

Minimum seconds to display

Color billboard picture

BW billboard picture

Optional File Ref

Chapter 8: Installation Plug-in

Use kDoNotLoop to spread the pictures across the duration of
the installation. Use kLoop to continue looping through the
specified pictures while the software component is
installing/removing, presenting each picture for the number
seconds specified.

Use kStopOnLast when not looping through pictures to stop on
the last billboard picture. Use kStopOnDefault when not
looping through pictures to stop on the default billboard
picture.

The minimum number of seconds this picture should be display.
This ensures the picture is displayed long enough for the user to
read the picture.

The ID of the 'PICT' resource that you wish displayed in the
progress window while this software component is running.
This picture will be displayed when the monitor is displaying
256 or more colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

The ID of the 'PICT' resource that you wish displayed in the
progress window while this software component is running.
This picture will be displayed when the monitor is displaying
less than 256 colors/grays.

The picture can be up to 190 pixels in height by 470 pixels in
width.

Not supported.

73

Conclusion Plug-in

This chapter describes the Conclusion Plug-in.

About the Conclusion Plug-in

The conclusion plug-in displays an alert informing the user that the process is complete, but gives the
user the option to go back and perform steps again, if necessary. Figures 9-1 and 9-2 show the conclusion
plug-in alerts in the Install Mac OS 8 program.

Plug-in file name: Conclusion

Figure 9-1 Conclusion plug-in alert with default quit message

F E This ik Callation grocess has Mnissed
|

Clerk Guit te leave dhis program.
ck Caadinue toinstall ather softwrare,

[Contees | [e ||

Figure 9-2 Conclusion plug-in alert with default restart message

The installation process has finished.

Click Restart to use your new software.
Click Continue to install other software.

[Continue][[Restart]]

Editing the Conclusion Plug-in

The conclusion editor is shown in Figure 9-3. This editor allows the developer or administrator to

change the message shown in the conclusion alert and the plug-in to go back to when the user clicks
Continue.

Chapter 9: Conclusion Plug-in 74

Figure 9-3 Conclusion editor window

Copmr | 5ipe Plwg-n

[e oo ridciage

Dt i

[e g

Gk i |H|u|-|..g |

The items in the conclusion plug-in editor window are explained in detail below.

Use Custom Message Select this option to override the default text and use the text
provided in the Quit Message and Restart Message field in the
alert. You may want to provide you own custom messages if the
default messages not appropriate in the context of your
Upgrader-based program.

uit Message Enter the custom message that will show in the quit alert.
g g q
The default quit message is:

“The installation process has finished.
Click Quit to leave this program.
Click Continue to install other software.”

Restart Message Enter the custom message that will show in the restart alert.
The default restart message is:

“The installation process has finished.
Click Restart to use your new software.
Click Continue to install other software.”

Goto on continue The name of the plug-in to go back to when the user clicks
Continue in the conclusion alert. This will usually be the
preceding plug-in.

Remove Deletes the conclusion plug-in resources from the data file and
closes the editor window.

Cancel Closes the editor window without updating the conclusion plug-
in resources.

Save Updates the conclusion plug-in resources in the data file with
the contents of the window.

Chapter 9: Conclusion Plug-in 75

Conclusion Plug-in Reference

Global Data

Conclusion Plug-in Global Data

Data types read:

Restart required flag A flag designating whether a forced restart is required or not. If
this type is not defined, the conclusions plug-in uses the quit
alert.

Conclusion Plug-in Preference Resource (‘ccpr’)

Resources

Conclusion Plug-in Preference Resource (‘ccpr’)

#define CCPPrefFlags \
boolean kDefaultMessage, kCustomMessageProvide; \
fill bit[15] * Reserved */
type ‘ccpr' {
switch {
case formatl:
key integer = 1; [* Format version */
CCPPrefFlags; [* Flags */
integer; [* Plug-in ref when continuing - 'STR ' Rsrc ID */
integer; * Plug-in string list - 'STR# Rsrc ID */
¥
¥

kDefaultMessage/kCustomMessageProvide flag
Use kDefaultMessage to use the built-in restart and quit alert
text. Use kCustomMessageProvide to override the default text
and use the text provided in the data file.

Plug-in reference when continuing The ID of a 'STR ' resource containing the name of the plug-in to
advance to when the user clicks the Continue button in the
conclusion alert. This will usually be the preceding plug-in.

Plug-in string list Rsrc ID The ID of a 'STR#' resource containing text strings required by
the plug-in.

'STR#' resource string index definitions:
1. Custom restart message text

2. Custom quit message text

Chapter 9: Conclusion Plug-in 76

Writing Upgrader Plug-ins

About the Upgrader Plug-in

Existing Upgrader-based programs can be extended and new Upgrader-based programs can be created by
writing new plug-in files. Programmers familiar with writing applications using the Macintosh
Toolbox in order to display dialogs and interact with users should feel very comfortable writing new
plug-ins. The Upgrader API extends and simplifies the common panel management tasks that most
plug-in writers will need to perform.

An Upgrader plug-in is a file that the Upgrader application loads and executes in the order specified
by the data file. Most plug-in developers will find that they need to accomplish the following tasks:

1. Design the visual appearance of your plug-in.
. Define the information to be stored in the data file.
. Create a new plug-in project or duplicate an existing project.

2
3
4. Create the resources specific to your plug-in (making sure to include the plug-in format resource).
5. Write and compile your plug-in code.

6

. Write a ModifierTool Editor and resource definition files so others can easily edit your data file
resources.

Human Interface Guidelines

Your plug-in will be more easily integrated into existing Upgrader-based programs or mixed with other
plug-ins if your panels follow some basic design guidelines. The Upgrader panel-based human interface
shares characteristics with other assistant-type programs developed by Apple and others. An
assistant gains its ease of use from proper division of a larger task into steps that are manageable by a
wide range of audiences.

A few fundamental rules govern the Upgrader-based programs developed so far:

= Use of a non-resizable window that fits all monitors shipped by Apple.

= Panels are divided into three areas: top header contains graphic and panel title, bottom footer
contains navigation buttons and content area is specific to the task step.

= Each panel has common navigation buttons, although the Continue button can be renamed to denote
the action to be performed.

Chapter 10: Writing Upgrader Plug-ins 77

= If a panel performs an action, then it automatically continues to the next panel. Otherwise, the user
should be notified the action failed and possibly be given the option to skip this step.

In addition to deciding how many panels a single plug-in should use, you may need to split an overly
complex plug-in into multiple plug-ins. This approach gives administrators an easier way to address a
wider range of specialized purposes.

Data File Resources

Administrators will be able to reuse your plug-in more easily if you carefully divide your resources
between the data file and the plug-in file. The easiest way to help make this decision is to place
yourself in the administrator’s position.

Most plug-ins store the following information in the data file:
« All file references

= Any text that might need to be tailored to the context of a different Upgrader-based program or a
specific use of the original program

= Values that are compared to environmental parameters to make decisions (such as a machine 1D or
system version)

= Any name of other plug-ins used in branching

Always supply a resource definition file containing definitions of new resources that you store in the
data file. This will be required by administrators using the Rez MPW tool. To make the information
stored in the data file modifiable by the widest number of administrators, we suggest that you create a
ModifierTool Editor. As an alternate, supply a template file for use with Resorcerer.

The Plug-in File

When the Upgrader application locates the plug-in file, it looks for two resources: the plug-in file
format resource ('‘pfmt' ID=1) and the 68K code resource to execute (PLUG' ID=0). The file will contain
other resources required by the plug-in itself.

The Upgrader application uses the plug-in file format resource to ensure the plug-in is compatible with
the version of Upgrader before trying to run it. Figure 10-1 shows the alerts you will receive from the
Upgrader application upon loading a plug-in file with a missing or incorrect format resource.

Figure 10-1 Alert presented when format of plug-in is not found or is incorrect

@ There is a problem with a program file. The

@ There is a problem with a program file. format of the Welcome plugin is

Could not find the format resource for the incompatible with the version of this
Welcome plugin. program.

Make sure you are using the original CD or Make sure you are using the original CD or
floppy disks. floppy disks.

You can create the format resource using Resorcerer or a resource compiler. Constants in the
UpgraderPluginTypes.r file define the version number compatible with the latest version of the
Upgrader application.

Chapter 10: Writing Upgrader Plug-ins 78

Upgrader application versions and the plug-in versions they support:

Upgrader Versions Plug-in File Versions Supported
11-121 0.2

Listing 10-1 shows the plug-in file format resource for use with a resource compiler.

Listing 10-1 Plug-in format resource using resource compiler

#include "UpgraderPluginTypes.r"

resource (‘pfmt, 1) {
kLatestPluginFileFormatVersion;

}

After the plug-in file has been verified as compatible, the Upgrader application looks for the code
resource to execute. The current version of the Upgrader application requires that the code resource be
created using a development environment that supports A4-based globals. Since Apple’s MPW
development tools do not, we have adopted the Metrowerks CodeWarrior development environment to
present our examples.

The Plug-in Project

Your plug-in project will usually contain everything necessary to build your plug-in, so once it is set up,
you can concentrate on writing the code that will implement your panels. While it’s easier to start from
the example Metrowerks projects provided in the Upgrader SDK, we describe the creation a of new
project here in case you do not have access to the SDK.

NOTE

The example projects discussed here are based on release 10 of the Metrowerks
CodeWarrior development tools. The latest release will most likely work with minor
modifications to your project, but the screen shots provided may look different than the
version you are using.

Project Settings

After you have created a new project, choose Project Settings from the Edit menu to display the Project
Settings window. Specific settings are required in order to build the plug-in file, so please follow these
instructions:

Click “Target” to show the preference panel in Figure 10-2.

Chapter 10: Writing Upgrader Plug-ins 79

Figure 10-2 Target options in the Project Settings window.

Project Settings
- Editor Target: [_Macintosh 68K B
Custorn Keywords [| : . =
< Projunt Post Linker: (Abas B
EBK Project . . A]
hscess Paths Filetype Extension @ ﬁ? o Cornpiler
EBuild Extras APFL W
Target Appl P
= Language Settings MMLE Library Importer
C/T++ Language MPLF Library Importer
C/C++ Warnings MWL ¥ A
Rez
=7 Code Generation ;
&8K Processor File Type: | | [Choose. ..]
68K Disassembler
= Linker Extension: I:I Flags:
68K Linker
CFMBEK Compiler: =3 2]

In the Target preference panel, make these changes:

1. Select Macintosh 68K from the Target pop-up menu

Click “68K Project” to show the preference panel in Figure 10-3.

Figure 10-3 68K Projects options in the Project Settings window.

Project Settings
7 Editor Project Type: [Code Resource =)
Custorn Keywords [|
- Project Code Resource |nfo:
Access Paths File Name
Euild Extras
Target Fym Name | |
7 Language Settings Resource Mame |We]come |
C/AC++ Language
E:EH Warnings Creator Type ResType ReslD SeqType
= Code Generation |ch3k | | plug | | PLUG | | a | | |
68K Processor
.68K Dizassembler [misplay Dialog Resource Flags
¥ L‘;g(rLinker [Extended Resource Header T
CFMESK Ll | O Merge ToFile eader Type: | Standard &

In the 68K Project preference panel, make these changes:

. Select “Code Resource” from the Project Type pop-up menu .
. Set Creator to “chsk”.

. Set Type to “plug”.

. Set ResType to “PLUG”.

. Set ResID to “0”.

o 01 A WN

. Select Extended Resource option.

Click “68K Processor” to show the preference panel in Figure 10-4.

Chapter 10: Writing Upgrader Plug-ins

Figure 10-4 68K Processor options in the Project Settings window

7 ProjectSettings oaoFcF"—7—7———————

= Editor
Custom Keywords

= Project
6Bk Project
Access Paths
Build Extras
Target

= Language Settings
C/C++ Language
C/C++ Warnings
Rez

= Code Generation
58K or
68K Disassembler

= Linker
68K Linker
CFMESK

1

r Processor Info:

Code Model:

Struct Alignment:

[] 68020 Codegen
[65881 Codegen

] Peephale Optimizer
] csE Dptimizer
[Optimize For Size

[PC- Relative Strings
[Generate Profiler Calls

Large

65K

[4-EBuyte Ints
[&-Buyte Doubles

[Far Data
[Far Method Tables
[Far String Constants

[0 MPw C Calling Conventions

[FactoruSettings] [Revert Panel]

[Cancel]” 0k]l

In the 68K Processor preference panel, make these changes:

1. Select Large from the Code Model pop-up menu.

2. Select the 4-Byte Ints option.

Click “68K Linker” to show the preference panel in Figure 10-5.

Figure 10-5 68K Linker options in the Project Settings window

= Projectsettings =——————

Custorn Keywords

F Project
BEK Project
Access Paths
Euild Extras
Target

7 Language Settings
C/C++ Language
C/C++ Warnings
Pascal Language
Fascal Warnings
Fez

7 Code Generation
EEK Processar
EEK Disassemnbler

7 Links
E2K Linker
CFMESE

r Debugger Infa:
MacsBug Symbols:

[<] Generate S File

[Generate Link Map

B Full Path in S¥M Files

[<] Generate 46 Stack Frames

r Linker Infa:

[<] Fast Link
[<] Link Single Segment

[Merge Compiler Glue into Seqment 1
[<] Dead-strip Static Initialization Code

[J Suppress Wwarning Messages

[Factary Settings] [Revert Panel]

)

In the 68K Linker preference panel, make these changes:

1. Select the Link Single Segment option.

You may also need to add additional paths in the Access Path preference panel depending on where you
place the interface and library files provided in the SDK.

Project Files

A new project starts empty, so you’ll need to add files to the project. For a small plug-in project, you
might need a single code file, a single resource file, and three or more library files.

Figure 10-6 shows the project window of a small plug-in project

Chapter 10: Writing Upgrader Plug-ins 81

Figure 10-6 Project window

EM=————= DocriewerPlugin.p =———-—"F7
B File Code | Data| 3
- & 1K s =L
1394 Si o« @[
ke 1] [1] =
nfal nda 5]
- 64K &K =
PiuginStubLib iTOz: 148 O]
Mac0S Tib 20728 0 (o
ANSI (2i) C.A4.68K.Lib 53555 6800 B |
5 file(s) 65K 6K]E

The files have been grouped into three segments to make organization easier: a segment for the source
files, a segment for the resource files, and a segment for libraries.

The source files can be C-based, C++-based or a combination. If you allocate objects in C++ using the new
operator, please read the section “Memory Issues”. You'll need to include the file “UpgraderPlugin.h”
in order to call Upgrader-provided routines.

The resource files can be either “.r” files that must be compiled when your project is built or precompiled
resource files that will be copied directly into the plug-in file. If you use “.r” files, then you’ll need to
include the file “UpgraderPluginTypes.r” from within your “.r” file to have access to the plug-in
format resource definition. If you use Resorcerer to create your resource file then you’ll want to use the
private template file provided in the SDK.

NOTE

Resources stored in the plug-in file should have IDs between 2,000 and 10,000 to avoid
conflicts with IDs of resources of the same type stored in the data file.

The library files will be a combination of libraries that come with the Metrowerks development kit
and the “PluginStubLib” library file provided in the Upgrader SDK. Make sure to use the libraries
that support A4-based globals when given a choice.

Files provided in the SDK that must be included in your project:

File Name File Description
UpgraderPlugin.h A header file to be included by your “.c” or “.cp” files to have

access to the Upgrader API routines, error definitions and
various enumerations, constants and structures. This file may
also be included by “.r” files to gain access to certain constants.
The information contained in this file is detailed in the section
“Upgrader API Reference”.

UpgraderPluginTypes.r A resource description file to be included by “.r” files which
need the plug-in format resource definition.

PluginStubLib A library file to be added to the project that implements the
Upgrader APIs routines.

Memory Management

When the plug-in code resource is loaded and executed, your code is essentially running as if it’s part of
the Upgrader application. Memory allocations that you make will, by default, be allocated from the
Upgrader’s heap. Special care must be taken to allow the Upgrader’s memory management strategy to
coexist with that of your plug-in.

We explore two important areas of memory management to keep in mind while writing your plug-in:
ensuring enough memory is available and preventing memory leaks.

Chapter 10: Writing Upgrader Plug-ins 82

Plug-in Memory Allocation

The Upgrader application is shipped with a partition of 750K. This should handle most plug-ins, but
you may need to instruct another developer or administrator using your plug-in to increase the Upgrader
application’s partition size based on two main factors: memory needs of the plug-in requiring the most
heap space, and the size of data file resources preloaded to support ejectable media. The preloaded
resources are the responsibility of the person creating the data file, but the memory required by the
plug-in while it is running is the responsibility of the plug-in developer. See the section “Partition
Size” in chapter 2 for the equation the developer should use to calculate the appropriate partition.

You should calculate the amount of memory your plug-in requires for all modes of operation, then check
that this amount of memory is available within your initialization routine. If you don’t have enough
memory to continue, tell the user to increase the partition size and then call PSQuitShell. As a general
rule, you should leave at least 50K free at all times to enable the Upgrader application to handle your
API calls. Make sure to add this 50K to your free memory check during you initialization routine. If your
plug-in sets more than 1K of global data then add this amount to the other memory requirements of your

plug-in.

You should document the total memory requirements of your plug-in so other developers and
administrators using your plug-in can calculate an appropriate partition size.

Preventing Memory Leaks

When the Upgrader calls your termination routine, you must deallocate any memory that was
allocated either directly or indirectly by you during the run of your plug-in. The easiest way to
determine if your plug-in is leaking memory during invocation is to use a heap inspector, such as the
“HT” command in MacsBug or a separate application like Zone Ranger. If the number of handles and
pointers increase after each run of your plug-in, then you know something is not being deallocated and
further investigation is required.

One common, and frustrating, memory leak is the memory pools allocated by the new operator. If you
are allocating objects in C++ using the default new operator, you will need to compile and link with
modified versions of the memory allocation routines and explicitly dispose of this memory from within
your termination routine. You can find additional information on this subject on the CodeWarrior CD.

Using the Upgrader API

As a plug-in developer, you will implement plug-in-defined routines and call Upgrader-provided
routines to present panels and handle interaction with the user.

NOTE

At the present time, the Upgrader API is only callable from 68K code and must be
compiled and linked using a development environment that support A4-based globals.
Unfortunately, this means that the APIs are not compatible with the standard MPW
compiler.

Setting Up Plug-in-Defined Routines

The Upgrader expects three routines to be defined by your plug-in, which the Upgrader application
will call at specific times. An initialization routine, InitializePluginModule , is assumed to be the
entry point into the code resource and should be your main routine. A termination routine,
TerminatePluginModule , is called whenever the plug-in gives up control to another plug-in, or the
Upgrader quits. An event handler, HandleEventForPluginModule , is called for each user event.

Chapter 10: Writing Upgrader Plug-ins 83

You’ll need to register your event handler and termination routines using the PSRegisterHandler
routine from within your initialization routine. Listing 10-2 presents an example of how the
InitializePluginModule routine should begin (the error checking after the call to
PSRegisterHandler is omitted for clarity).

Listing 10-2 Registering plug-in-defined routines

void InitializePluginModule (void *NnPSTable,
SInt32 inRefCon,
Boolean inEnterAtBeginning)
{
#pragma unused (inRefCon, inEnterAtBeginning) /I these parameters are never used
EnterPlugin();
SetupPlugin(inPSTable);

(void) PSRegisterHandler(kEventHandlerID,
(UniveralProcPtr)HandleEventForPluginModule);

(void) PSRegisterHandler(kTerminationHandlerID,
(UniveralProcPtr) TerminatePluginModule);

/I ... etc.

ExitPlugin();
}

In order to allow the plug-in access to its A4-based global variables, two routines are provided:
EnterPlugin and ExitPlugin . These routines must bracket any code inside a routine called from the
Upgrader application or system that accesses a plug-in global variable.

Listing 10-3 shows how to use EnterPlugin ~ and ExitPlugin routines.

Listing 10-3 Ensuring access to global variables using EnterPlugin ~ and EXxitPlugin routines

Chapter 10: Writing Upgrader Plug-ins

Boolean HandleEventForPluginModule (EventRecord *inEvent)
{ Boolean wasHandled;

EnterPlugin();

Il ... etc.

ExitPlugin();

return wasHandled;

Managing Panels

The term panels in Upgrader is taken to mean the various windows that plug-ins display. Help
windows are also implemented as panels, but are set up, shown and hidden with a different set of
routines. Panels are described in plug-ins as '‘DITL' resources in the plug-in (corresponding 'DLOG'
resources are not required).

84

There are two types of Upgrader panel, global panels and custom panels. The Global panel is the panel
which is shared among all plug-ins. The motivation for sharing a common panel is that when a new
plug-in is loaded, rather than completely removing the previous panel and drawing a new panel, one
panel can be used and the 'DITL' can simply be swapped, making for a faster and cleaner transition
between plug-ins. Custom panels are specific to one plug-in and are only displayed while that plug-in is
running and then removed when the Upgrader moves on to the next plug-in.

The Global panel is created with a call to PSSetupNewPanel , and the custom panel is created with a
call to PSNewCustomPanel . PSSetupNewPanel will check first to see if the Global panel has already
been created and if so, only changes the panel's contents. If the Global panel is not currently being
displayed, a new Global panel is created. PSNewCustomPanel creates a new panel each time it is
called.

WARNING

Never use Upgrader routines to manage the content of a window that you have created
using GetNewDialog , NewDialog or any other Dialog Manager routine.

Managing Panel Contents

The following routines are available to plug-in writers for creating panel items; PSSetPanelltem
PSGetPanelltem , PSNewStyledStringltem , PSNewStyledTextltem and PSNewUserltem . See
the section “Using the Document Viewer” for information about the PSNewDocViewerltem routine and
creating a DocViewer item in a panel.

Items which can be placed on the panel include:

« Standard dialog items - All standard dialog items, i.e. anything which can be placed on a 'DITL'
can also be used on an Upgrader panel. The two exceptions to this are static text items and edit text
items.

= Custom panel items - Upgrader predefined “custom” panel items are created using standard user
items and provided routines (see SetPanelltem |, etc.). The two custom panel items are DocViewer
items and static text items. The plug-in writer may also create his/her own custom item using a user
item and writing routines to handle it.

Items which are automatically handled by the shell include the default button, the Continue button
and the Go Back button (see the description of PSSetPanelltemAction for information on how the
plug-in writer can instruct the shell to handle these). The Help button is not automatically handled by
the shell, the plug-in writer must handle this.

Figure 10-7 shows an example 'DITL' set up with a collection of items.

Chapter 10: Writing Upgrader Plug-ins 85

Figure 10-7 Example 'DITL' defining a panel’s contents

Item Number

1

© 00 N o o B~ W DN

L o e =
A W N L, O

15

Control item - Continue button (default button)
Control item - Go Back button

Control item - Print button

Control item - Save button

User item (used for a DocViewer item)

PICT (used for a Help button)

Control item - pop-up menu

User item - used for static text

User item - used for static text

User item - depends on value of pop-up menu
User item - used for static text

Control item - checkbox

PICT (used for the title bar)

PICT (used for the button bar)

PICT (background PICT)

The global panel provided with the shell may have one or a combination of the following targetable

panel items:

= User items (e.g. item numbers 5, 8, 9, 10, 11)

< PICTs (e.g. item numbers 6, 13, 14, 15)

= Controls (e.g. item numbers 1, 2, 3,4, 7, 12)

Note that the shell handles setting the window title. PICTs are handled offscreen in Upgrader, so the
plug-in writer has the choice of an item appearing transparently over a picture (e.g. item numbers 6, 8,
9, 10, 11) or opaquely (e.g. item number 5, the DocViewer item). See PSNewUserltem below for further

information on how this can be done.

Figure 10-8 shows the resultant panel.

Chapter 10: Writing Upgrader Plug-ins

86

Figure 10-8 Example panel as displayed to the user

S Tille

Sample Panel |‘3

Please read the instructions carefully, then choose a disk to install on

About this installation

This installation will install software on your machine.

Destination Disk: [Macintosh HD ¥ | Currently installed : 7.6.1

[Perform Clean Install

[save..] [Print. | [GoBack] [continue |

Using the Document Viewer

A DocViewer item is used to view text and/or pictures in an Upgrader panel. The plug-in writer can
create a DocViewer item with a user item, and the DocViewer library routines can then be used to
handle the item. Upgrader takes care of adding a vertical scroll bar for the DocViewer and resizing the
DocViewer item and its contents if the panel is resizable (for example, the help panel supplied with
Upgrader has a size box). The shell also handles activate, deactivate and update events for the
DocViewer. Plug-in writers simply need to place user items on the panels they are creating and specify
the location of any text and/or pictures to be placed in the DocViewer item, via the DocViewer routines
detailed below.

Figure 10-9 shows a panel with a DocViewer item.

Figure 10-9 Panel with DocViewer item

Thiz iz a DocWiewer item

Four Upgrader routines allow the plug-in writer to interact with the DocViewer item:
PSNewDocViewerltem , PSHandleDocScroll , PSSaveDoc and PSPrintDoc . PSNewDocViewerltem
is used to create the a DocViewer item on a panel. PSSaveDoc is used to save the DocViewer’s contents
(if the standard file package is available). PSPrintDoc is used to print the DocViewer’s contents (if a
printer is available). And PSHandleDocScroll is used to handle mouse clicks in the DocViewer item,
including its scroll bar.

A DocViewer item expects to find a 'STR#' resource of ID 1000 in the plug-in file. See Listing 10-4 for an
example of this resource.

Chapter 10: Writing Upgrader Plug-ins 87

Listing 10-4 'STR# resource required in the plug-in file when using DocViewer items

resource 'STR#' (1000) {

{
$'CA", /I non-breaking space, used as the PICT delimiters
/I (unused but must be present)
"untitled", /I default "Save As" field in standard Save dialog

}

J

Listing 10-5 presents the code for setting up a DocViewer item (error-checking is omitted for clarity):

Listing 10-5 Code for setting up a DocViewer item

ShellErr theErr = noErr;
DocInfoHandle docViewerHandle;
DocViewerType docType;

Handle itemHandle;
Rect itemRect;
PanelitemType itemType;
short prefsFlags, prefsTextlD, prefsPICTBaseResID;
F
do first:

read prefsFlags, prefsTextlD, prefsBasePICTResID from wherever
they should be read (e.g. plug-in resource fork/data file)
*

(void) PSGetPanelltem(gMyPluginPanel, kDocViewerltemNumber,
&itemType, &itemHandle, &itemRect);

if ((prefsFlags & kMainTextInFile) == kMainTextInFile)
docType = kDocFileType;

else
docType = kDocResType;

docViewerHandle = PSNewDocViewerltem(gMyPluginPanel, &itemRect,
docType, prefsTextID, prefsPICTBaseResID);
if (docViewerHandle '= NULL)
(void) PSSetPanelltem(gMyPluginPanel, kDocViewerltemNumber,
docType, (Handle) docViewerHandle, &itemRect);
else
theErr = kCannotLoadNeededResourceErr;

Listing 10-6 shows code for handling scrolling in a DocViewer item. This is generally called from
HandleEventForPluginModule (error-checking is omitted for clarity):

Chapter 10: Writing Upgrader Plug-ins

88

Listing 10-6 Code for handling DocViewer item events

WindowPtr whichWindow;

short windowPart;

Point localPt = inEvent->where;
PanelltemType itemType;

Handle itemHandle;

Rect itemRect;

Boolean wasHandled = false;

windowPart = FindWindow(localPt, &whichWindow);
if (whichwindow == gMyPluginPanel) {
switch (windowPart) {
case inContent:
PSGetPanelltem(gMyPluginPanel, kDocViewerltem, &itemType, &itemHandle, &itemRect);

GlobalToLocal(&localPt);

if (PtinRect(localPt, &itemRect)) {
(void) PSHandleDocScroll(gMyPluginPanel, localPt, kDocViewerltem);
wasHandled = true;

}
else {
[*do:
deal with mouseclicks elsewhere on the panel
*
}
break;
Il ... etc.
}
}
Navigation

Upgrader will usually have several plug-ins; to navigate between them Upgrader provides routines
that allow the user to proceed to the next or return to the previous plug-in. The default plug-in sequence
is defined in the sequence resource. See the description of the PSGoToNextPlugin routine for
information on how this default sequence may be overridden.

Upgrader uses an internal plug-in history stack to determine the previous plug-in. This stack ensures
the plug-in always returns to the most recently visited plug-in. This stack-based approach to
determining the previous plug-in is used instead of simply examining the sequence resource and finding
the default previous plug-in, since in the case where Upgrader has overridden the default plug-in
sequence, the default previous plug-in will not be the one most recently visited.

NOTE

Normally when the user uses PSGoToNextPlugin to proceed to the next plug-in the
details of the new plug-in are added in to the internal Upgrader plug-in history stack.
But in the case where the plug-in that Upgrader is moving on to is one which has
already been visited (i.e. Upgrader finds an earlier reference to the plug-in in the
history stack), Upgrader will instead use the reference to the plug-in already
contained in the history stack and discard all references to plug-ins after this point in
the history stack.

Using this method is less disorientating to the Upgrader user than the simpler
alternative where the history stack could grow to a large size if the default plug-in
sequence is overridden a number of times.

Chapter 10: Writing Upgrader Plug-ins 89

Here’s an example to help clarify how the history list works. The following is the default plug-in
sequence:

1 -> 2 -> 3 -> 4 -> 5

For this example plug-in 4 will not always be a necessary step, it could be a license agreement that
plug-in 3 could decide doesn’t need to be shown to the user.

If plug-in 4 is in fact skipped and Upgrader moves straight on to plug-in 5, the history stack would look
like the following:

1 -> 2 -> 3 -> 5

So in this example if PSGoToPreviousPlugin is called from plug-in 5, Upgrader will return to plug-in
3.

Following on with the same example, if plug-in 5 has an option where it is necessary to go to another
plug-in, for example if the plug-in wants the user to go back to plug-in 2 to perhaps reset the destination
disk. In this case the stack will not grow as follows:

1 -> 2 -> 3 -> 5 -> 2 (will not happen)

What will occur, is the stack gets unrolled back to the first instance of plug-in 2 and so the stack will
simply look as follows:

1 -> 2

NOTE

There will be cases where the plug-in writer does not want a plug-in added to the plug-
in history list since it may only need to be run once. An example would be a plug-in
which checks that the machine on which Upgrader is running is capable of running the
software that is to be installed. To indicate to Upgrader that a plug-in is of this type,
use the onlyRunOnce plug-in flag when filling-in details of the plug-in to the sequence
resource.

Managing the Help Window

Support for help panels is supplied in Upgrader to allow for the easy inclusion of simple, standard help
windows in a plug-in. The help API calls provided with Upgrader do not have to be used. Similarly,
the default help panel (‘'DLOG'/'DITL' ID of 1050) provided with the Shell doesn’t have to be used,
however if plug-in writers wish to design their own panels, the following item numbers must be used:

enum{
kHelpPrintButton = 1, I/ Print Button item number
kHelpSaveButton, /I Save Button item number
kHelpDocltem /I User item number for DocViewer
%

The help panel provided with the shell has the following targetable panel items:

= User item (for the DocViewer item, i.e. the help panel contents)
= Print button (see PSCheckEnvironment for more details)

= Save button (see PSCheckEnvironment for more details)

Chapter 10: Writing Upgrader Plug-ins 90

Figure 10-10 Help window in Resorcerer and as shown to the user

= iteqmhre —mm—ou Ei————Help

Software Installation Help

[c>

Thiz is placeholder text. In general, Help Windows will provide the following
types of i nformation:

13 Purpose of window where Help was requested.
2} Description of window-specific functionality.
3) Suporting information to aid users in achiewing the task at hand
Examnple: to determine which files you may think about removing to free
up dizk space,
look at the file Last Modified dates in Yiew by name.

Uszer item

(for DocYiewer) Help content will be determined by | nstructional Products.

Save and Print button items

=

(PieT—D [Sa... 1 0 prid.. | [save..] [Print.. |

[&]

See the section “Using the Document Viewer” for further information on where DocViewer items are
read from, stored, etc.

Four help routines are available to plug-in writers to setup the help window, display it, close it and
handle events for it: PSSetupHelpWindow , PSDisplayHelpWindow , PSCloseHelpWindow , and
PSHandleHelpWindowEvent

Listing 10-7 demonstrates calling PSHandleHelpWindowEvent from inside
HandleEventForPluginModule (error-checking is omitted for clarity):

Listing 10-7 Example code for handling help window events

Boolean HandleEventForPluginModule(EventRecord *inEvent)
{

Boolean wasHandled = false;

WindowPtr theWindow;

EnterPlugin();

switch (inEvent->what) {
f*do:
handle any other plug-in-specific cases in here
¥

case mouseDown:
(void) FindWindow(inEvent->where, &theWindow);
if (theWindow == gMyPluginHelpPanel)
wasHandled = PSHandleHelpWindowEvent(gMyPluginHelpPanel, inEvent);
break;

case OsEvt:
/I - this deals with resume events only
if((unsigned long) inEvent->message >> 24) == suspendResumeMessage){
if (iInEvent->message & resumeFlag) '=0) {
Il - if there is a print button on the current panel, use this code

ControlHandle printButtonControl;
EnvironmentType environmentFlags;

short printButtonHilite = 255;
GrafPtr savedPort;
PanellitemType userltemType;

Rect itemRect;
GetPort(&savedPort);

SetPort(gMyPluginPanel);

Chapter 10: Writing Upgrader Plug-ins 91

(void) PSCheckEnvironment(&environmentFlags);
(void) PSGetPanellitem(gMyPluginPanel kPrintButtonitem,
&itemType, (Handle *) &printButtonControl, &itemRect);

if ((environmentFlags & kPrinterAvailableMask) == Q)
printButtonHilite = 255;

else
printButtonHilite = O;

if (FrontWindow() == gMyPluginPanel)
HiliteControl((ControlHandle) printButtonControl, printButtonHilite);

I - Note: this line should not be removed
SetCRefCon((ControlHandle) printButtonControl, printButtonHilite);

SetPort(savedPort);

/I - let the Shell have a go at the standard help panel resume events
(void) PSHandleHelpWindowEvent(gMyPluginHelpPanel, inEvent);

}
}

break;

default;

break;
}
ExitPlugin();
return wasHandled;

Exchanging Data with other Plug-ins

Plug-ins can use the Global Data routines to store (PSSetGlobalData) and retrieve
(PSGetGlobalData) data that persist between invocations of a plug-in. Publicly defined global data
types allow plug-ins to communicate with one another. A plug-in’s documentation should describe
which global data types it reads and which it sets. Privately defined global data types allow a single
plug-in to store information until its next invocation.

NOTE

Don’t confuse global data with global variables. Global variables are identifiers you
define within your code that have global scope but are only valid while the plug-in is
running and disappear when the plug-in terminates.

Referencing Files

If a plug-in needs to access a file other than the data file or plug-in file, it should use a file reference
resource (‘flrf") to store the path to this file. The Upgrader API provides two routines for resolving a
'flrf' resource: PSLaunchFile and PSMakeFSSpecFromFileReflD . Use the PSLaunchFile routine
to launch an application specified by a file reference resource ID. Otherwise, use
PSMakeFSSpecFromFileReflID to obtain an FSSpec to a file specified by its file reference resource ID.

See the section “Upgrader Application Reference” for a detailed description of the file reference
resource.

Chapter 10: Writing Upgrader Plug-ins 92

Displaying Alerts

The Upgrader API provides two routines (PSAlert and PSErrorAlert) for displaying auto-sized
dialogs for the purpose of displaying errors or other simple alerts containing a text message. Common
alert dialogs are provided in the Upgrader, but the plug-in writer can define new dialogs and store
these within the plug-in file.

The PSAlert routine is used to display an alert when you have a text string to display and the ID of a
'DLOG' resource to display the text within. The 'DLOG' resource can be one the predefined dialogs
contained in the Upgrader application, or one that you define in your plug-in file.

The PSErrorAlert routine is used in conjunction with a 'ners' resource to look up the text message and
dialog based on either a Upgrader-defined error number or a error number defined by your plug-in.

Displaying Upgrader-Defined Error Alerts

You can call the Upgrader routine PSErrorAlert to display one of the Upgrader-defined error numbers
that you might have received as the result of calling a Upgrader routine. See the section “Summary of
the Upgrader API” for a listing of the Upgrader-defined error numbers available for use with the
PSErrorAlert routine.

Table 10-1 shows the dialogs supplied with the Upgrader application to be used with the PSAlert
routine and when defining your own error numbers to be used with the PSErrorAlert routine.

Table 10-1 Dialogs supplied in the Upgrader application

Dialog ID Dialog Layout
Wia} | =
ot
kStopDLOGID (600)
B | @
[T}
kStopAndQuitDLOGID (526)
| @ |
| sEp | | Conlhwe |
kSkipOrContinueDLOGID (520)
(=Y = |
= | = |
[SEp] [Con[Thue]
kStopOrContinueDLOGID (506)
| = |
m
kStopOKDLOGID (519)

Chapter 10: Writing Upgrader Plug-ins 93

kNoteOKDLOGID (508)

kRestartOrContinueDLOGID (514)

[r]

| Conzhue | | oo |

kQuitOrContinueDLOGID (507)

Displaying Plug-in-Defined Errors

The 'ners' resource connects the message to be displayed with the dialog to be shown by referencing the
'DLOG' resource ID and the index within a 'STR#' resource. When a plug-in writer wants to display
messages that are specific to a plug-in this is done by creating a 'ners' resource 1D 500 in the plug-in file,
and also creating a 'STR#', containing the error messages, with ID 520. The individual messages are
then added to the 'STR#' resource, making sure that they correspond to the indices for each error
message number in the 'ners' resource.

NOTE

'ners' resources must always use the resource ID 500 and the 'STR#' reference from a
'ners' resource must always have a resource ID of 520.

If none of the 'DLOG's available in the shell are suitable, a 'DLOG' resource can also be added to the
plug-in file. See PSAlert and PSErrorAlert for more information.

Listing 10-8 shows an example 'ners' resource as it might appear in a “.r” file, which connects the error
number defined by the plug-in with the message and dialog to be displayed.

Listing 10-8 An example 'ners' 500 resource used in conjunction with a 'STR#' 520 resource

resource 'ners' (500, nonpurgeable) {

{
1000, 1, kStopDLOGID,
1001, 2, kStopDLOGID,
}
¥
resource 'STR# (520, nonpurgeable) {
{
"Unable to determine if your computer is compatible with this program.”;
"This program cannot run on your computer.";
}

Chapter 10: Writing Upgrader Plug-ins 94

Supporting Multiple Source Disks

The main motivation for preloading resources is to eliminate extra disk swaps when the user is
installing from multiple disks. Upgrader overrides the normal method of preloading resources (by
selecting the preload attribute for the necessary resource) to ensure that all the various resources from
all the Upgrader files are preloaded when necessary. There are a number of situations when plug-in
resource preloading should be considered:

= If Upgrader is launched from a server and there is a possibility of the connection to the server being
lost. If this happens, Upgrader will display an alert and then quit, calling the current plug-in’s
termination handler. The resources required to display this error message will already be
preloaded but it is possible that resources will also be required by the plug-in, possibly to update a
panel or for use in the plug-in’s termination routine.

= If Upgrader is running from floppy disks or some other ejectable media and there is a possibility of
the plug-in requiring a file on a different floppy (this is most likely to be the case if the plug-in
uses PSLaunchFile to open another application). There is also the possibility that the data file
and the plug-in are on different floppy disks.

Since plug-ins usually have some of their resources in the data file and some in the plug-in file itself,
plug-in writers must ensure that both sets of resources in both are preloaded when necessary.

= For plug-in resources in the data file, each plug-in should have a 'RES#' resource in the data file
that contains the list of all the resources in the data file relevant to the plug-in. Upgrader will
find this list using the “Data file preload list” element in the plug-in’s section of the 'tsqc' resource.
The Upgrader will only preload these resources if it determines that the plug-in’s volume is
different volume to the data file’s.

= For plug-in resources in the plug-in file that the plug-in writer decides are necessary to preload,
another 'RES#' resource must be created (and placed in the plug-in file). The plug-in itself will
have to determine if it is necessary to preload these and if so preload them using Upgrader routine
PSCollect

Listing 10-9 shows a simple example of one as it would look in a .r file:

Listing 10-9 An example 'RES#' resource

resource 'RES# (3500, nonpurgeable) {

{
‘wppr', 3500,
'STR#, 3500,
TEXT', 3502,
}

2

See the section “Upgrader Application Reference” for a detailed description of the 'RES#' resource.

Upgrader API Reference

Plug-in-Defined Routines

There is one required entry points to the plug-in code resource, InitializePluginModule and two
other optional entry point routines, HandleEventForPluginModule and TerminatePluginModule

Chapter 10: Writing Upgrader Plug-ins 95

InitializePluginModule

void InitializePluginModule (void *inPSTable,
Sint32 inRefCon,
Boolean inEnterAtBeginning);

DESCRIPTION

This is the main entry point of the plug-in, initially called by the Shell. This routine must first do some
standard initialization and then may perform any initialization tasks that the plug-in itself needs.

PARAMETERS
inPSTable An internal data structure that will be used by SetupPlugin
to allow the plug-in to access the Upgrader library routines.
inRefCon The RefCon value stored in the sequence resource for this plug-
in. The standard use of this parameter is to pass the ID of the
preference resource to the plug-in in the low-word so multiple
preference resources can be used with a single plug-in file.
inEnterAtBeginning True if the user is entering the plug-in from the previous plug-

n.

HandleEventForPluginModule

Boolean HandleEventForPluginModule (EventRecord *inEvent);

DESCRIPTION

This routine will be called each time through the Upgrader’s event loop. The plug-in will decide
whether or not to handle the event passed in itself and handle the event if it’s a plug-in event. A
boolean is returned by the plug-in to indicate whether or not the event was handled (TRUE if the plug-
in handled the event itself).

The Upgrader shell has defined a special event type (kMenuSelectionEvent) for passing the menu
selection to plug-ins. Plug-ins interested in handling menu selection of their own menus should look this
event type in the “what” field of the event record. The result of the shell’s call to MenuSelect is in the
“message” field. As with other events, the plug-in should return TRUE if the menu is one of it’s own and
it handled the event.

PARAMETERS

inEvent A pointer to the event which is due for processing

RETURNS

TRUE if the routine (and/or child routines) handled the event and/or no further processing is required
by the Shell, FALSE if the event wasn’t handled or if the event needs further handling by the Shell.

SPECIAL CONSIDERATIONS
= It is important to set the return value to be TRUE if the event was handled by
HandleEventForPluginModule , since the Shell handling of the event may be unpredictable if it is

being handled a second time.

= For resume events, the plug-in must return FALSE to the Shell to allow the Shell a turn at processing
the event.

Chapter 10: Writing Upgrader Plug-ins 96

TerminatePluginModule

void TerminatePluginModule (void);
DESCRIPTION
The exit point of a plug-in. Performs any tidying-up tasks needed by the plug-in when it quits. This gets

called by the Shell when the application quits, when moving to the next plug-in, or when a serious error
OCCurs.

Setup Routines

EnterPlugin

EnterPlugin();

DESCRIPTION

This routine must be called on entry to any routine in the plug-in that may be called directly from the
Upgrader, such as initial entry point, termination entry point, event entry point and any callback
routines, including both System callbacks and Upgrader callbacks (e.g. user item draw procedures, etc.).
It allows the plug-in to access its global variables.

SPECIAL CONSIDERATIONS

= This macro saves-off the current A4 world.

SEE ALSO

CodeWarrior documentation for more information on EnterCodeResource

ExitPlugin

ExitPlugin();

DESCRIPTION

This routine must be called just before exiting any routine that may be called directly from the Shell,
such as initial entry point, termination entry point, event entry point and any callback routines,
including both System callbacks and Upgrader callbacks (e.g. user item draw procedures, etc.). It
removes access to the plug-in’s global variables. A call to ExitPlugin should match a previous call to
EnterPlugin in the same routine.

SPECIAL CONSIDERATIONS

= This macro restores the current A4 world.

SEE ALSO

CodeWarrior documentation for more information on ExitCodeResource

Chapter 10: Writing Upgrader Plug-ins 97

NOTE

It is important that before EnterPlugin is called and after ExitPlugin is called, the
routine must not try to access global variables. One place where it is easy to use global
variables incorrectly is if a Str255 is declared in the variable declaration section.
CodeWarrior stores strings as globals. Another potential error would be to try returning
the value of a global from a routine after the call to ExitPlugin has been made. See
code listings 10-10 and 10-11 for an illustration of this.

Listing 10-10 shows an example of the incorrect use of EnterPlugin ~ and ExitPlugin

Listing 10-10 Incorrect use of the EnterPlugin routine
Sint16 gSomeGlobalVariable;
Boolean HandleEventForPluginModule (EventRecord *inEvent)
{ Str255 myString = "\pThis is my string";

Boolean wasHandled = true;

gSomeGilobalVariable = 0;

EnterPlugin();

Il ... etc.

ExitPlugin();

return wasHandled;
}

Listing 10-11 shows an example of the correct use of EnterPlugin ~ and ExitPlugin

Listing 10-11 Correct use of the EnterPlugin routine
SInt16 gSomeGlobalVariable;
Boolean HandleEventForPluginModule (EventRecord *inEvent)
{ Str255 myString;
Boolean wasHandled = true;
EnterPlugin();
MyPStringCopy(myString, "\pThis is my string");
gSomeGilobalVariable = 0;
Il ... etc.
ExitPlugin();
return wasHandled,;
}

SetupPlugin

The SetupPlugin routine is primary used in plug-ins is to allow access to the Upgrader routines. It also

Chapter 10: Writing Upgrader Plug-ins 98

allows access to the Upgrader’s QuickDraw globals which are needed for any plug-in drawing
procedures. This routine needs only to be called once and this will always be from the
InitializePluginModule routine.

void SetupPlugin (void *shellFunctions);
DESCRIPTION

Performs several internal initialization routines for the plug-ins, one of which sets up an internal table
of all the Upgrader routines available to the Shell. So, this routine must be called by the plug-in in

InitializePluginModule before any other Upgrader routines are called.
PARAMETERS
shellFunctions A table of all the routines available to the plug-in, the

structure of this is not available to the plug-ins.
SPECIAL CONSIDERATIONS
= This must be called before any other Upgrader routines are called.

= This routine must be preceded with a call to EnterPlugin and ultimately succeeded by a call to
ExitPlugin

PSRegisterHandler

ShellErr PSRegisterHandler (HandlerIDType inHandlerType,
UniversalProcPtr inHandlerProcPtr);

DESCRIPTION

Gives the Upgrader the necessary access to the plug-in’s HandleEventForPluginModule and

TerminatePluginModule plug-in entry point routines.

PARAMETERS

inHandlerType kEven tHandlerID if registering the
HandleEventForPluginModule routine, or
kTerminationHandlerID if registering the
TerminatePluginModule routine

inHandlerProcPtr A pointer to the plug-in’s HandleEventForPluginModule or
TerminatePluginModule routine

RETURNS

noErr The routine was successfully registered with the Shell

kUnknownPluginHandlerErr inHandlerType was not recognized or handled by the Shell

SPECIAL CONSIDERATIONS

= Support for UniversalProcPtrs for PPC code is not provided in Upgrader.

NOTE

It is important to call SetupPlugin before PSRegisterHandler is called, as the
plug-in won’t have any access to the Upgrader routines including

Chapter 10: Writing Upgrader Plug-ins 99

PSRegisterHandler , until after the call to SetupPlugin

Panel Handling Routines

Several routines are available to the plug-in writer to handle Upgrader panels and these are now
detailed.

PSSetupNewPanel

ShellErr PSSetupNewPanel (Sint16 inPanelltemsRsrcID,
PanelPtr *outPanelPtr);

DESCRIPTION
This is used to setup the contents of a global panel based on the contents of the specified 'DITL". If the

global panel is not already open then it creates the panel, if the panel is already open it changes the
contents of the panel.

PARAMETERS

inPanelltemsRsrcID A 'DITL' resource ID which specifies the contents of the panel

outPanelPtr If successful, returns a PanelPtr to the panel. On failure
(panel couldn’t be opened or changed), returns NULL.

RETURNS

noErr The panel was correctly set up

kinternalErr If the global PanelPtr is NULL and we are attempting to
change its contents

MemError Standard memory error

ResError Standard resource error

SPECIAL CONSIDERATIONS

= This routine does not display the panel or its new contents, call PSShowPanel to do this.

PSNewCustomPanel

ShellErr PSNewCustomPanel (short inPanelltemsRsrcID,
DVFlags inFlags,
PanelPtr *outPanelPtr);

DESCRIPTION

Sets up the contents of a new custom panel based on the 'DITL' specified. This routine will always create
a new window for the panel.

PARAMETERS
inPanelltemsRsrcID A 'DITL' resource ID which specifies the contents of the panel
inFlags Always kGrowWindow , which causes PSNewCustomPanel to

load a resizable window (with a Grow Box)

Chapter 10: Writing Upgrader Plug-ins 100

outPanelPtr On success, returns a PanelPtr to the panel. On failure (panel
couldn’t be opened or changed), returns NULL.

RETURNS

noErr The new custom panel was correctly set up

kinternalErr If the global PanelPtr is NULL and we are attempting to
change its contents

MemError Standard memory error

ResError Standard resource error

SPECIAL CONSIDERATIONS
= This routine does not display the panel or its new contents, call PSShowPanel to do this.

= The Shell automatically handles the growing of panels, i.e., it will move buttons, resize DocViewers,
etc.

PSUpdatePanel

ShellErr PSUpdatePanel (PanelPtr inPanelPtr);
DESCRIPTION

Redraws the specified panel. This is normally called in response to an update event for the current
panel. Most plug-ins will not need to directly call this routine and should return FALSE in
HandleEventForPluginModule , thereby forcing the Shell to handle the update event. In the event
that is is needed to be explicitly called, it should be bracketed with calls to BeginUpdate and
EndUpdate in the calling routine.

PARAMETERS

inPanelPtr A pointer to the panel which is to be drawn
RETURNS

noErr The panel was drawn correctly

paramErr An illegal parameter was passed to NewGWorld
cDepthErr An invalid pixel depth was passed to NewGWorld
QDErr Standard QuickDraw error

SPECIAL CONSIDERATIONS

= This routine assumes that suitable bracketing with BeginUpdate and EndUpdate calls is provided
in the calling routine.

= It is the responsibility of the calling routine to erase the regions of the window that need to be
redrawn.

SEE ALSO

Inside Macintosh: Imaging with QuickDraw 6-16 for more information on NewGWorld.

Chapter 10: Writing Upgrader Plug-ins 101

PSActivatePanel

ShellErr PSActivatePanel (PanelPtr inPanelPtr,
Boolean inShouldActivate);

DESCRIPTION

This routine is used to activate or deactivate panels, depending on the value of inShouldActivate

Most plug-ins will not need to directly call this routine and should return FALSE in
HandleEventForPluginModule , thereby forcing the Shell to handle the activate/deactivate event.
Typically, a plug-in might call this directly before displaying a dialog box to deactivate the panel and
then to reactivate the panel when the dialog box is closed.

PARAMETERS

inPanelPtr A pointer to the panel to be activated

inShouldActivate If TRUE, activate the panel, if FALSE, deactivate the panel
RETURNS

noErr Always returns noErr

SPECIAL CONSIDERATIONS

= This routine sets the current port to the panel window.

PSDisposePanel

void PSDisposePanel (PanelPtr inPanelPtr);
DESCRIPTION

Removes a panel from the screen, disposes of its window and releases the memory occupied by all
structures associated with the panel.

PARAMETERS
inPanelPtr A pointer to the panel to be disposed of
SPECIAL CONSIDERATIONS

= There is no need to explicitly dispose of/hide the global panel if the next plug-in is going to change its
contents or hide it.

= This should not be called by a plug-in to close the global panel, PSHidePanel should be called
instead.

= This should only be used in conjunction with panels created with PSNewCustomPanel .

Chapter 10: Writing Upgrader Plug-ins 102

PSShowPanel

ShellErr PSShowPanel (PanelPtr inPanelPtr);
DESCRIPTION

Shows the panel if it was hidden, else brings it to the front.

PARAMETERS

inPanelPtr A pointer to the panel to be shown
RETURNS

noErr Always returns noErr
PSHidePanel

void PSHidePanel (PanelPtr inPanelPtr);
DESCRIPTION

Hides the specified panel.

PARAMETERS

inPanelPtr A pointer to the panel to be hidden

PSGetPanelltemHit

Boolean PSGetPanelltemHit (PanelPtr inPanelPtr,
EventRecord *inPanelEvent,
short *outltemHit);

DESCRIPTION

Call this routine in response to a mousedown event in a panel to find which item on the panel was hit by

the user.

PARAMETERS

inPanelPtr A pointer to the panel in which the mousedown occurred

inPanelEvent The event record for the mousedown event

outltemHit On return, the item number of the item that was hit on the
panel (if an item on the current panel was clicked), else
outltemHit is undefined

RETURNS

TRUE if an active control item on this panel was clicked, FALSE otherwise.

Chapter 10: Writing Upgrader Plug-ins 103

PSSetPRefCon

void PSSetPRefCon (PanelPtr inPanelPtr,
long inRefCon);

DESCRIPTION

Sets the panel’s refCon.

PARAMETERS
inPanelPtr A pointer to the panel whose refCon is to be set
inRefCon A long value which can be used by the plug-in for its own use

SPECIAL CONSIDERATIONS

= This is needed since the panel module uses the standard window’s refCon to store information.

PSGetPRefCon

long PSGetPRefCon (PanelPtr inPanelPtr);

DESCRIPTION

Gets the panel’s refCon.

PARAMETERS

inPanelPtr A pointer to the panel whose refCon we wish to retrieve
RETURNS

The value of the refCon stored in the panel record’s refCon field, or 0 (zero) if inPanelPtr isnota
valid panel pointer.

SPECIAL CONSIDERATIONS

= This is needed since the panel module uses the standard window’s refCon to store information.

PSSetPanelltemAction

ShellErr PSSetPanelltemAction (PanelPtr inPanelPtr,
short inltemNumber,
PanelActionType inActionType);

DESCRIPTION

Sets the “action” attributes for a specified panel item. These attributes are drawing the default button
and handling the Continue, Go Back, or Quit buttons. The main motivations for using this routine are
ease of plug-in development and the standardization of plug-in behavior. Constants for specifying
panel item actions are defined in the “UpgraderPlugins.h” file.

Chapter 10: Writing Upgrader Plug-ins 104

The following details the keys mapping:

Key Mapped To
Return Default button
Enter Default button
Escape Go Back button
Clear Go Back button
PARAMETERS
inPanelPtr A pointer to the panel containing the item whose action
attributes are to be set
inltemNumber The panel item number of the item whose action attributes are
to be set
inActionType The action attributes to be set for the specified item
RETURNS
noErr The action attributes were set for the specified item
kltemTypeMismatchErr The specified item was not a control item
kPanelltemNotFoundInListErr The specified item was not found on the panel

Example, setting panel button actions:

// setting the default button:
(void) PSSetPanelltemAction(gMyPluginPanel, kContinueButtonltem, kDefaultButtonMask);

// setting the Continue button:
(void) PSSetPanelltemAction(gMyPluginPanel, kContinueButtonltem, kContinueButtonMask);

// setting the Go Back button:
(void) PSSetPanelltemAction(gMyPluginPanel, kGoBackButtonltem, kGoBackButtonMask);

Panel Content Routines

Following are the routines for handling Upgrader panels.

PSSetPanelltem

ShellErr PSSetPanelltem (PanelPtr inPanelPtr,
short inltemNumber,
PanelltemType inltemType,
Handle inltemHandle,
Rect *inltemRect);
DESCRIPTION
This routine works like SetDialogltem . It can be used to change the type or data of a specified panel

item, or can be used to move the item on the panel (by changing its boundary rectangles).

Chapter 10: Writing Upgrader Plug-ins 105

PARAMETERS

inPanelPtr A pointer to the panel containing the item to change

inltemNumber The panel item number of the item to change

inltemType A value which represents the type of item in the itemNumber
parameter.

inltemHandle A pointer to the draw procedure for a user item, or a handle to
the item to be changed for all other items

inltemRect The display rectangle (in the panel’s local coordinates) of the

item to be changed

RETURNS
noErr The item was changed successfully
kCantChangePanelltemToSpecifiedTypeErr The item couldn’t be changed

SPECIAL CONSIDERATIONS
= This routine disposes of the previous data associated with the panel item.
SEE ALSO

Inside Macintosh: Macintosh Toolbox Essentials 6-121 for more information on inltemType

PSGetPanelltem

ShellErr PSGetPanelltem (PanelPtr inPanelPtr,
short inltemNumber,
PanelltemType *outltemType,
Handle *outltemHandle,
Rect *outltemRect);
DESCRIPTION

Returns the item specific data associated with a panel item.

PARAMETERS

inPanelPtr A pointer to the panel

inltemNumber The panel item number of the item we want to retrieve
information about

outltemType On return, the type of the requisite item

outltemHandle On return, the handle of the requisite item

outltemRect On return, the encompassing rect of the requisite item

RETURNS

noErr The required information was retrieved

kPanelltemNotFoundInListErr The item was not found on the panel

Chapter 10: Writing Upgrader Plug-ins 106

PSNewsStyledStringltem

TEHandle PSNewStyledStringltem (Rect *inltemRect,
short inSTRListRsrcID,
short inStringListitem,
short inFontNum,
short inFontStyle,
short inFontSize);
DESCRIPTION

Creates a new monostyled text item which can then be added to the panel with a call to
PSSetPanelltem . The contents of a monostyled text item are loaded from a 'STR#' resource.

PARAMETERS

inltemRect The encompassing rect of the styled string item on the panel

inSTRListRsrcID The resource 1D of the 'STR#' which the string is to be read
from

inStringListitem The index into the 'STR#' of the string required

inFontNum The number of the font to draw the text in

inFontStyle The style of the font to draw the text in

inFontSize The size of the font to draw the text in

RETURNS

On success, returns a handle to the newly created styled string item. On failure, returns NULL.
SPECIAL CONSIDERATIONS

= Assumes that inStringListitem is greater than 0

PSNewStyledTextltem

TEHandle PSNewStyledTextltem (Rect *inltemRect,
short iINTEXTRsrcID);

DESCRIPTION

Creates a new multi styled text item which can then be added to the panel with a call to
PSSetPanelltem. The contents of a styled text item are loaded from a 'TEXT' and optional 'styl'

resource.

PARAMETERS

inltemRect The encompassing rect of the styled text item on the panel
iINTEXTRsrcID The resource ID of the "'TEXT' and 'styl' resources to use
RETURNS

On success, returns a handle to the newly created styled text item. On failure, returns NULL.
SPECIAL CONSIDERATIONS

= Assumes that the "'TEXT' and 'styl' resources have the same resource ID.

Chapter 10: Writing Upgrader Plug-ins 107

= Assumes that inltemRect is specified in local co-ordinates of the current grafport.

PSNewUserltem

PanelUserltemHandle PSNewUserltem (UserltemProcPtr inUserltem,
Boolean inTransparent);

DESCRIPTION

Creates a new user item which can then be added to the panel with a call to PSSetPanelltem . User
items can be used to create the writer’s own item on a panel, as with normal dialogs. Upgrader also
provides routines for setting user items to DocViewer and static text items.

PARAMETERS

inUserltem A pointer to the user item draw procedure

inTransparent TRUE if the panel background (color, 'PICT's etc.) is to show
through the user item. FALSE if the item’s background is
whatever the user draw procedure sets

RETURNS

On success, returns a handle to the newly created user item on the panel. On failure, returns NULL.
SPECIAL CONSIDERATIONS

= Assumes that inUserltem is a valid user item procedure.

Sample code for creating a custom drawing procedure for a user item (error-checking is omitted for

clarity):

ShellErr theErr = noErr;

Handle userltemHandle;

Rect userltemRect;

PanelltemType userltemType;

UserltemUPP drawUPP = NULL;

Il - use DisposeRoutineDescriptor(drawUPP) later to kill it

drawUPP = NewUserltemProc(DrawingProcedureName);
if (drawUPP != NULL) {
userltemHandle = PSNewUserltem(drawUPP, true);
if (userltemHandle != NULL) {
(void) PSGetPanelltem(gMyPluginPanel, kUserltemNumber,
&userltemType, &userltemHandle, &userltemRect);

(void) PSSetPanelltem(gMyPluginPanel, kUserltemNumber,
userltemType, userltemHandle, &userltemRect);

Chapter 10: Writing Upgrader Plug-ins 108

Document Viewer Routines

PSNewDocViewerltem

DocInfoHandle PSNewDocViewerltem (PanelPtr inPanelPtr,
Rect *inltemRect,
DocViewerType inDocViewerType,
short inTextRsrclD,
short inBasePICTRsrcID);
DESCRIPTION

Creates a new DocViewer item which can then be added to the panel with a call to PSSetPanelltem
The contents can be read from 'TEXT'/'styl' resources or from a SimpleText file, based on the value of the
inDocViewerType parameter.

PARAMETERS

inPanelPtr A pointer to the panel which will contain the new DocViewer
item

inltemRect The encompassing rect of the DocViewer item

inDocViewerType kDocResType if the contents of the DocViewer item are to be
loaded from resources, or kDocFileType if they are to be
loaded from a SimpleText formatted file

inTextRsrcID The 'TEXT' resource ID if kDocResType , or the 'flrf' resource
ID for the file containing the text, if kDocFileType

inBasePICTRsrcID For kDocResTypes this is the base resource ID of the first
'PICT' embedded in the text. For kDocFileTypes
inBasePICTRsrcID s ignored. (It is set to 1000 internally,
which is the SimpleText standard).

RETURNS

On success, returns a handle to the newly created DocViewer item on the panel. On failure, returns
NULL.

SPECIAL CONSIDERATIONS

= See Appendix A information on embedding 'PICT's into a DocViewer item.

PSHandleDocScroll

ShellErr PSHandleDocScroll (PanelPtr inPanelPtr,
Point inLocalPt,
short inDocltem);
DESCRIPTION

Handles scrolling in the DocViewer object.

PARAMETERS
inPanelPtr The panel which contains the DocViewer object
inLocalPt The point, in local coordinates, where the mouse was clicked in

the DocViewer item. (Normally taken from the mousedown

Chapter 10: Writing Upgrader Plug-ins 109

event record)

inDocltem The panel item number of the DocViewer object
RETURNS

noErr The scrolling was handled correctly
kPanelltemNotFoundInListErr The DocViewer item was not found on the panel

SPECIAL CONSIDERATIONS

= Auto scrolling is not supported.

PSSaveDoc

void PSSaveDoc (PanelPtr inPanelPtr,
short inDocltem);

DESCRIPTION

Saves a DocViewer item to disk as a read only SimpleText format file. The standard Save dialog box is

displayed, in which the user can optionally enter a path and filename for the DocViewer item. Default
filenames for the standard Save dialog box can be provided for by putting a 'STR#' resource in the plug-

in’s resource fork, with an ID of 1000 and the following fields:

resource 'STR#' (1000) {

{
$'CA", /I non-breaking space, used as the PICT delimiters
/I (unused but must be present)
"untitled", /I default "Save As" field in standard Save dialog
}
%
PARAMETERS
inPanelPtr Pointer to the panel which contains the DocViewer item to
save
inDocltem Panel item number of the DocViewer item

SPECIAL CONSIDERATIONS
= |If the Standard File Package is not available, this routine should not be called, especially when

booting from floppy disks. See the description of PSCheckEnvironment for information on how to
check for the availability of the Standard File Package.

Chapter 10: Writing Upgrader Plug-ins 110

PSPrintDoc

ShellErr PSPrintDoc (PanelPtr inPanelPtr,
short inDocltem);

DESCRIPTION

Prints a DocViewer item. The standard Print Job Dialog box is displayed. If the option key is held down
when this call is made then the page setup dialog will be displayed.

PARAMETERS

inPanelPtr Pointer to the panel which contains the DocViewer item to
print

inDocltem Panel item number of the DocViewer item

RETURNS

noErr Printing completed successfully

kPanelltemNotFoundInListErr The DocViewer item was not found on the panel

PrError Standard printing error

MemError Standard memory error

Navigation Routines

Three “navigation” routines are available to plug-in writers: PSGoToPreviousPlugin
PSGoToNextPlugin and PSQuitShell . In the normal course of events (i.e. if the plug-in has setup the
Go Back/Continue buttons actions the Shell will take care of going to the next or previous plug-in, as
defined in the sequence list or history list, when the user clicks on either the Go Back or Continue
buttons (or their equivalents) on a panel. However, if the plug-in writer wishes to override the normal
plug-in sequence for any reason, these routines can be used.

PSGotoPreviousPlugin

ShellErr PSGoToPreviousPlugin(void);
DESCRIPTION

Go to the current plug-in’s previous plug-in as defined by the plug-in history list. This routine calls the
plug-in termination routine, TerminatePluginModule . PSGotoPreviousPlugin is called by the
Shell when the user clicks on the Go Back button, or its equivalent, if there is a permitted previous
plug-in to go to.

RETURNS

noErr Always returns noErr

The following is a rough guide to the flow of control when the user clicks Go Back (or some equivalent):

Plug-in: Go Back
-> causes ->

Shell: PSGotoPreviousPlugin()
-> causes ->

Plug-in: TerminatePluginModule()

Chapter 10: Writing Upgrader Plug-ins 111

-> causes ->
Shell: checks the history list and loads the previous plug-in (if permitted)

PSGotoNextPlugin

ShellErr PSGoToNextPlugin(ResourcelD inStrRsrcID);

DESCRIPTION

Go to the current plug-in’s next plug-in as defined by the plug-in sequence list, or go to the plug-in
specified by name. This routine can either be called explicitly by a plug-in, in which case the 'STR '
containing the plug-in name to branch to is passed, or by the Shell (when the user clicks on the Continue
button, or its equivalent), in which the name of the plug-in is taken from the plug-in sequence list
maintained by the Shell. PSGoToNextPlugin calls the plug-in termination routine,
TerminatePluginModule

PARAMETERS

inStrRsrclD kUseDefaultNextModuleName if using the default next plug-
in as defined by the sequence list, else the resource 1D of the
'STR ' containing the name of the plug-in to branch to

RETURNS

noErr Went to the next plug-in successfully

kUnknownPluginNameErr Trying to go forward from the last plug-in (no more plug-ins in
the sequence list)

kNextPluginSameAsCurrentErr Trying to call the same plug-in as we’re currently in

MemError Standard memory error

The following is a rough guide to the flow of control when the user clicks Continue (or some equivalent):

Plug-in: Go Forward

-> causes ->
Shell: PSGotoNextPlugin(kUseDefaultNextModuleName)
-> causes ->
Plug-in: TerminatePluginModule()
-> causes ->

Shell: checks the sequence list and loads the next plug-in (if permitted)

The following is a rough guide to the flow of control when the plug-in explicitly calls
PSGotoNextPlugin

Plug-in: PSGotoNextPlugin(resIDofPluginNameStr)
-> causes ->
Plug-in: TerminatePluginModule()
-> causes ->
Shell: loads the plug-in specified in the 'STR ' referenced in PSGotoNextPlugin

Chapter 10: Writing Upgrader Plug-ins 112

PSQuitShell

ShellErr PSQuitShell(Boolean inCanAllowUserToContinue);
DESCRIPTION

Instructs the Upgrader Shell to quit after returning from the current handler.

PARAMETERS

inCanAllowUserToContinue If inCanAllowUserToContinue is TRUE, the Shell will
check whether or not a restart is necessary as soon as the
Upgrader quits (most likely because system software has been
installed). The global data type 'rsrg' (boolean) can be set to
flag whether a restart or a quit is needed. If a restart is
necessary a two button dialog will be displayed, one button to
allow the user to cancel the quit instruction and continue with
the Upgrader and the other button to allow the user to restart.

If inCanAllowUserToContinue is FALSE, the Shell will
check whether a restart is necessary as soon as the Upgrader
quits but in this case will not display a dialog. If a restart is
necessary it will simply restart. Under most situations
inCanAllowUserToContinue will be set to TRUE by the
plug-ins. It should only be set to FALSE in cases where a serious
error has occurred and it would be unsafe to allow the Upgrader
to continue.

RETURNS

noErr There were no problems and the user did not select Continue if
PSQuitShell displayed the Continue/Restart alert
kUserContinuingAfterRestartMsgNum
PSQuitShell displayed the Continue/Restart alert and the
user selected Continue.

SPECIAL CONSIDERATIONS

= Upgrader does not quit immediately when this instruction is called, instead it sets a global to indicate
that Upgrader is to quit as soon as possible. When control is returned to the Upgrader’s event loop, the
global will be checked and the current plug-in’s termination routine is called. Other internal clean-up
routines are then called before Upgrader finally quits. It is safe to call this routine from anywhere in
the plug-in including the termination routine. (If it is called from within a plug-in termination routine
Upgrader will not call the termination routine again).

Help Window Routines

PSSetupHelpWindow

OSErr PSSetupHelpWindow (DocLocationType inLocation,
short inRsrclD,
short inBasePICTRsrcID,
Str255 inHelpPanelTitleStr,
PanelPtr *outHelpPanelPtr);

Chapter 10: Writing Upgrader Plug-ins 113

DESCRIPTION

Called by a plug-in to setup the help window associated with that plug-in. If this is the first time that
the routine has been called, it will create the PanelPtr and return it in outHelpPanelPtr

PARAMETERS

inLocation Location of Help panel contents. This will be either
kReadFromResourceFile , if the help panel DocViewer
items contents are being read from a resource, or
kReadFromSimpleTextFile , if the contents are being read
from a SimpleText format file.

inRsrcID "TEXT'/'styl' resource ID if inLocation is
kReadFromResourceFile or the flrf' resource ID if
inLocation is kReadFromSimpleTextFile

inBasePICTRsrcID The resource ID of the first 'PICT' (if any) referenced in the
text, if inLocation is kReadFromResourceFile . If
inLocation is kReadFromSimpleTextFile , this parameter
is ignored (as it’s always set to 1000 internally).

inHelpPanelTitleStr A pascal string containing the help panel title. There is no
default title supplied, so if this parameter is not explicitly
setup before being passed, the panel title will be some junk

outHelpPanelPtr On return, a pointer to the help panel, or NULL if it couldn’t be
created

RETURNS

noErr The help panel was successfully setup

kinternalErr If the global help PanelPtr is NULL and we are attempting to
change its contents

kPanelltemNotFoundInListErr Invalid item number

kCantChangePanelltemToSpecifiedTypeErr The item couldn’t be changed

MemError Standard memory error

ResError Standard resource error

SPECIAL CONSIDERATIONS

= The 'TEXT' and 'styl' resources used to specify the text contents of the help panel (in the event of
inLocation is kReadFromResourceFile) must have the same resource ID.

PSDisplayHelpWindow

void PSDisplayHelpWindow (PanelPtr inHelpPanelPtr);

DESCRIPTION

Called by a plug-in to display the help window, or if it is already there, to bring it to the foreground.
Also checks to see if (a) a printer is available, (b) the standard file package and list package are
available and enables or disables the print and/or save buttons appropriately. See the description of
PSCheckEnvironment for more information about checking for print/save capabilities.

PARAMETERS

inHelpPanelPtr A pointer to the help panel

SPECIAL CONSIDERATIONS

Chapter 10: Writing Upgrader Plug-ins 114

= Assumes that inHelpPanelPtr is an initialized, valid pointer to the current help panel.

PSCloseHelpWindow

void PSCloseHelpWindow (PanelPtr inHelpPanelPtr);

DESCRIPTION

Closes the help window, if inHelpPanelPtr is not NULL. This only hides the window, as it might be
needed by another plug-in. As it’s only hidden, its location and size are retained and don’t need to be
saved-off for use by another plug-in (the help panel is redisplayed by a future plug-in in the same state
and position it was in before it was hidden).

PARAMETERS

inHelpPanelPtr A pointer to the help panel

SPECIAL CONSIDERATIONS

= This is called by PSHandleHelpWindowEvent in response to the user clicking the Close button (or
some equivalent action) on the help panel, therefore it does not need to be called by a plug-in in the

normal course of events.

= The plug-in does not need to dispose of the help panel, as the shell takes care of it.

PSHandleHelpWindowEvent

Boolean PSHandleHelpWindowEvent (PanelPtr inHelpPanelPtr,
EventRecord *inEvent);

DESCRIPTION
Called by a plug-in in its event handler after determining that the event occurred in the help window

to handle help window events. This is also called in the plug-in’s resume event to give the shell a turn
at handling the resume event for the help panel.

PARAMETERS
inHelpPanelPtr A pointer to the Help panel

inEvent A pointer to the latest event’s record
RETURNS

TRUE if the event was handled by this routine, FALSE otherwise.
SPECIAL CONSIDERATIONS
= Assumes that inHelpPanelPtr is an initialized, valid pointer to the current help panel.

= Deals with mousedown events and resume events for the help panel.

Chapter 10: Writing Upgrader Plug-ins 115

Global Data Routines

PSSetGlobalData

ShellErr PSSetGlobalData (GlobalDataType inGlobalDataType,
GlobalDataPtr inGlobalDataPtr,
Size inDataSize);

DESCRIPTION

Writes the value of the specified Global Data to the global list. If this Global Data doesn’t exist, then
it first creates it before updating the Global Data.

PARAMETERS

inGlobalDataType A four character constant identifying the Global Data
inGlobalDataPtr A pointer to the data to set

inDataSize The number of bytes of data to write for this global
RETURNS

noErr The global was successfully stored
kGlobalDataOutOfMemErr There wasn’t enough memory to add a new global

SPECIAL CONSIDERATIONS
= If the Global Data item already exists, then the data is overwritten, so it is the responsibility of the

plug-in to ensure that the new data is the same type and length as the original, or else there might be a
crash.

PSGetGlobalData

ShellErr PSGetGlobalData (GlobalDataType inGlobalDataType,

GlobalDataPtr inGlobalDataPtr,
Size inMaxDataSize,
Size *outActualDataSize);

DESCRIPTION

Reads the value of the specified global from the global list.

PARAMETERS

inGlobalDataType A four character constant identifying the global
inGlobalDataPtr A pointer to a buffer to copy the data into
inMaxDataSize The number of bytes of data to read for this global
outActualDataSize On return, the actual size of the stored global
RETURNS

noErr The global was retrieved successfully
kUnknownGlobalDataErr The global was not found or doesn’t exist

SPECIAL CONSIDERATIONS

Chapter 10: Writing Upgrader Plug-ins 116

= It is the responsibility of the plug-in to allocate sufficient memory for the buffer before data is copied
into it.

Error Alert Routines

PSErrorAlert

SInt16 PSErrorAlert (SInt16 inErrNum,
Boolean inlsStandardShellErr,
ConstStr255Param inParam0,
ConstStr255Param inParaml,
ConstStr255Param inParam2,
ConstStr255Param inParams3,
Sintl6 inDefaultButton,
Sintl6 inCancelButton);

DESCRIPTION

Displays the text associated with the inErrNum in the related dialog, which is resized if necessary.

PARAMETERS

inErrNum The error number of the error which occurred

inlsStandardShellErr If TRUE, the error text, dialogs etc., are contained in the Shell.
If FALSE, they are contained in the plug-in’s resource fork

inParamO Pascal string to replace ™0 in the dialog (or an empty pascal
string if none)

inParaml Pascal string to replace ~1 in the dialog

inParam2 Pascal string to replace ~2 in the dialog

inParam3 Pascal string to replace ~3 in the dialog

inDefaultButton The item number of the default button on the dialog

inCancelButton The item number of the cancel button on the dialog

RETURNS

The item number of the item the user selected on the dialog. Constants are defined for these return
values in the “UpgraderPlugins.h” file.

SPECIAL CONSIDERATIONS
= Depending on the 'DLOG', there may or may not be, some or any ™0, 1, /2, 73 strings to fill, so
inParamO , inParaml , inParam2 and inParam3 therefore may or may not be required, depending on

the 'DLOG' used. These parameters should be set to an empty string if not needed.

= If inDefaultButton is 0 (zero) then there is no default button set on the dialog. Similarly, if or
inCancelButton is 0, there is no cancel button set on the dialog.

Chapter 10: Writing Upgrader Plug-ins 117

PSAlert

Sint16 PSAlert (short inDLOGID,
DocumentType inWhichFileContainsDLOG,
ConstStr255Param inAlertText,
ConstStr255Param inParamO,
ConstStr255Param inParaml,
ConstStr255Param inParam2,
ConstStr255Param inParam3,
SInt16 inDefaultButton,
Sint16 inCancelButton);

DESCRIPTION

General purpose alert display routine which displays inAlertText in the dialog inDLOGID , which is
resized if necessary to fit the text. The plug-in developer may also create his/her own alert dialogs.

PARAMETERS

inDLOGID Resource ID of the 'DLOG' resource

inWhichFileContainsDLOG kUpgraderFile if the 'DLOG' resource is in the Shell,
kClientDataFile if the 'DLOG' is in the data file, or
kCurrentPluginResFile if the 'DLOG' is in the plug-in’s
resource fork

inAlertText Pascal string containing the text to be displayed on the dialog

inParamO Pascal string to replace ™0 in the dialog (or an empty pascal
string if none)

inParaml Pascal string to replace ™1 in the dialog

inParam?2 Pascal string to replace ~2 in the dialog

inParam3 Pascal string to replace ™3 in the dialog

inDefaultButton Item number of the default button on the dialog

inCancelButton Item number of the cancel button on the dialog

RETURNS

The item number of the item the user selected on the dialog. Constants are defined for these return
values in the “UpgraderPlugins.h” file.

SPECIAL CONSIDERATIONS
= Depending on the 'DLOG', there may or may not be, some or any "0, 1, /2, ~3 strings to fill, so
inParamO , inParaml , inParam2 and inParam3 therefore may or may not be required, depending on

the 'DLOG' used. These parameters should be set to an empty string if not needed.

= If inDefaultButton is 0 (zero) then there is no default button set on the dialog. Similarly, if or
inCancelButton is 0, there is no cancel button set on the dialog.

= If the plug-in writer designs his/her own alert box, there must be five buttons on the panel,

irrespective of the number of buttons (the maximum number of supported buttons is five) the writer
wishes to use. Any buttons not used should be hidden.

Utility Routines

This section details helpful utility routines available to plug-in writers. The various utility routines
for the Upgrader includes PSCheckEnvironment |, to check for Print/Save options, PSReadFontinfo ,
to read font information from an 'finf' resource, two more, PSAlert and PSErrorAlert to put up and

Chapter 10: Writing Upgrader Plug-ins 118

handle an alert box/error alert box and also PSCollect , to preload any resources listed in a 'RES#'
resource.

PSCheckEnvironment

OSErr PSCheckEnvironment (EnvironmentType *outEnvironment);

DESCRIPTION

Perform a check on the machine’s runtime environment to verify the availability of certain facilities.
Those supported at the moment are checks for

« Printing - checks to see if an active printer is selected or available

« Saving - checks to see if the List Manager Package and Standard File Manager
Package are available

These checks are handy later on if the plug-in writer needs to enable/disable a Print/Save button on a
panel, for example the help panel has both a Print and a Save button. This routine should be called on a
resume event to check for a printer becoming available. In the event of booting from a floppy disk, the
standard file and list package may not be available, so it might not be possible to save items.

PARAMETERS

OutEnvironment On return, a pointer to an EnvironmentType indicating
whether or not printing and/or saving is available

RETURNS

noErr Always returns noErr

SPECIAL CONSIDERATIONS
= The masks for checking availability of printing and saving are as follows:

Printing Available : kPrinterAvailableMask
Saving Available : kStandardFilePackageAvailableMask

PSReadFontinfo

Boolean PSReadFontinfo (short inLocation,
short inRsrclD,
short inFontltem,
short *outFontFace,
short *outFontStyle,
short *outFontSize);
DESCRIPTION

Read-in font information from a font information ('finf') resource and return it in outFontFace
outFontStyle and outFontSize

PARAMETERS

inLocation One of: kFontInfolnClientDataFile , if the resource is in

Chapter 10: Writing Upgrader Plug-ins 119

the data file, kFontinfolnPluginFile , if the resource is in

the plug-in, or kFontinfolnShell , if the resource is in the
Upgrader application
inRsrcID The resource ID of the 'finf' resource
inFontltem The index into the 'finf' resource for the required font
outFontFace On return, the loaded font number
outFontStyle On return, the loaded font style (face)
outFontSize On return, the loaded font size

RETURNS
TRUE if the font was read successfully, FALSE if there was a problem
SPECIAL CONSIDERATIONS

= outFontFace , outFontStyle and outFontSize are undefined if either the 'finf' resource or the
index into the resource weren’t found.

NOTE

A 'finf' resource has the following definition (taken from Fonts.r)

type 'finf {
integer = $$CountOf(Fonts); /I Number of fonts
array Fonts {
integer; /I Font Number
unsigned hex integer plain; /I Font Style
integer; /I Font Size
¥
¥
PSLaunchFile
Boolean PSLaunchFile (SInt16 inAppFileRefRsrclID,
Sintl6 inDocFileRefRsrclID,
AEDescList *inOptionalOpenParams,
Boolean inLaunchApplInFront,
ProcessSerialNumber *outApplicationPSN);
DESCRIPTION

Launches the specified file or application. If launching a file, the application the file is to be launched
with must also be specified.

PARAMETERS

inAppFileRefRsrcID The 'flrf' resource (see section 3.3 for more details), containing
the application to be launched

inDocFileRefRsrcID The 'firf' resource of the document to be launched, or 0 (zero) if
only an application launch

inOptionalOpenParams A list of optional parameters sent in the ‘'odoc’ AppleEvent

inLaunchApplnFront If kLaunchAppInFront , launch the application in front of all

other applications, if kLaunchApplnBack , launch the
application in the background

outApplicationPSN On success, the process serial number of the launched
application is returned. This can be used to communicate with

Chapter 10: Writing Upgrader Plug-ins 120

the launched application, or terminate the launched
application. On failure, this parameter is undefined.

RETURNS

TRUE if no errors occurred, else FALSE.

PSMakeFSSpecFromFileRefID

Boolean PSMakeFSSpecFromFileRefID (SInt16 inFileRefID,
Boolean inShowErrorAlert,
FSSpec *outFoundFile);
DESCRIPTION

Returns an FSSpec to a file defined by a 'flrf' resource. This allows plug-in writeres to store references to
files using the standard 'fIrf' resource, and find them during runtime.

PARAMETERS

inFileReflD The ID of a 'flrf' resource (see section 3.3 for more details)
containing the file to be found

inShowErrorAlert If true, displays an alert if the file cannot be found.

outFoundFile On success, a FSSpec describing the location of the found file.

RETURNS

TRUE if no errors occurred, else FALSE.

PSCollect

void PSCollect (SInt16 inResListRsrcID);
DESCRIPTION

Given a resource list resource, or 'RES#, this routine goes through the list of resources and loads any of
the resources in the list which aren’t already in memory. It also makes them non-purgeable.

PARAMETERS
inResListRsrcID The resource ID of the 'RES#' resource
PSStartWaitCursor
void PSStartWaitCursor (SInt16 inCursorID,
Sint16 inDelayTicks);
DESCRIPTION

Starts the wait cursor after the specified number of ticks. For example, if you pass a value 120 in
inDelayTicks , the cursor will not change to a wait cursor if you call StopWaitCursor within two
seconds

Chapter 10: Writing Upgrader Plug-ins 121

PARAMETERS

inCursorID Resource ID of a ‘acur’ resource. Currently, only two animated
cursors are supported: 128 for standard watch, and 129 for
classic counting fingers.

inDelayTicks The number of ticks to wait before starting the wait cursor.

PSStopWaitCursor

void PSStartWaitCursor (void);
DESCRIPTION

Stops an animated wait cursor started by a call to PSStartWaitCursor and returns the cursor to an arrow.

Resources

These resources are contained in the plug-in file.

The Error Mapping Resource (‘ners'’)

One of the services the Upgrader provides to plug-ins is the ability to display error messages in
automatically resizeable dialog boxes. The routines which provide this functionality are

PSErrorAlert and PSAlert . PSErrorAlert makes use of 'ners' resources, which are used to identify
individual error numbers with the error string to be displayed and the error dialog to display it in.

type 'ners'{
wide array {
integer; /I Internal error number
integer; /I Index in 'STR#' ID = 500 resource
integer; /I Dialog to display; 'DLOG' Rsrc ID
%
¥

The first integer will be the error number for which you want to display a message. The second integer is
the index of a 'STR#' resource ID that the string is stored. The third integer contains the 'DLOG" ID of
the error dialog in which the error message is to be displayed.

The Plug-in Format Resource (‘pfmt’)

The plug-in file format resource defines the version of the plug-in file, so the Upgrader can determine if
it can execute the plug-in file or not.

type ‘pfmt {
byte PluginMajorRevisionNumber; /I The major version number
byte PluginMinorRevisionNumber; /I The minor version number
}

Chapter 10: Writing Upgrader Plug-ins 122

Summary of the Upgrader API

Constants

Constant

Value

PSErrorAlert /PSAlert constants:

Comment

Dialog IDs , needed by plug-ins to define their own private 'ners' resources:

StopOrContinueDLOGID
kQuitOrContinueDLOGID
kNoteOKDLOGID
kRestartOrContinueDLOGID
kinsertDiskDLOGID
kStopOKDLOGID
kSkipOrContinueDLOGID
kNoteQuitDLOGID
kStopAndQuitDLOGID

KEmptyString
kOKButtonIindex

kContinueNotSkipBtnindex
kSkipNotContinueBtnindex

kQuitButtonindex
kContinueNotQuitBtnindex

kRestartButtonIndex
kContinueNotRestartBtnindex

kYesButtonindex
kNoButtonindex

kStandardShellError
kPluginError

kUpgraderFile

kClientDataFile
kCurrentPluginResFile

PSQuitShell constants:

kDontAllowUserToContinue
kAllowUserToContinue

PSGotoNextPlugin constant:

kUseDefaultNextModuleName

PSNewCustomPanel constant:

Chapter 10: Writing Upgrader Plug-ins

506
507
508
514
515
519
520
600
526

note with Stop & Continue buttons
note with Continue & Quit buttons
note with OK button

note with Continue & Restart

disk swap icon

stop with OK button

caution with Skip & Continue

note with Quit button

stop with Quit button

(ConstStr255Param) "\p"

1

[N

[N

TRUE
FALSE

FALSE
TRUE

Default/selected button

Skip or continue

Continue or Quit

Continue or Restart

Yes or no

Look in the Shell for the error
Look in the plug-in for the error

123

kGrowWindow

PSReadFontIinfo constants:

0x02 inFlags parameter

Built-in *finf* resource IDs for the fontinfo field of StyledStringDesc

kUpgraderFonts
kLargeTextStyle
kMediumTextStyle
kSmallTextStyle
kAlertTextStyle

128
0
1
2
3

The file from which the *finf" resource is to be read:

kFontinfolnClientDataFile
kFontinfolnPluginFile
kFontinfolnShell
kFontinfolnAnyFile

PSGotoNextPlugin _ constant:

kUseDefaultNextModuleName

PSLaunchFile constants:

kLaunchAppInFront
kLaunchAppInBack

0
1
2
3

PSStartWaitCursor constants:

kWatchWaitCursor
kCountingFingersWaitCursor

HandleEventForPluginModule

kMenuSelectionEvent

PSReqisterPluginHandler

kEventHandlerID
kTerminationHandlerID

Format Resource constants:

kSequenceResourceType
kClientDataFormatRsrcType
kPluginFormatRsrcType

Error List Resource constant:

Chapter 10: Writing Upgrader Plug-ins

0
TRUE Launch the file or app frontmost
FALSE Launch the file or app in the background
128 Use in inCursorlD parameter
129 Use in inCursorlD parameter
constants:
2087 "what" field when menu event
constants:
‘ehID’
thiD'
'tsqc'
‘cfmt’
'‘pfmt’

124

KErrorListRsrcType 'ners'

PSNewDocViewerltem /PSSetPanelltem constants:

kDocResType ‘DOCV "TEXT'/*styl'/*PICT's stored in resources
kDocFileType 'DOCF' SimpleText file (optional *styl’/ "PICT" in
resource fork)

PSSetPanelltem constants:

kControlType 'CNTL'

klconType 'ICON'

kUserltemType 'USER' User panel item for drawing custom items
kStyledTextType 'STXT' "TEXT" and "styl" resource pairs
kStyledStringType 'SSTR' 'STR#", index and *finf"

kPICTType 'PICT

Global Data ldentifiers:

Selected volume's vRefNum set by Target Selection plug-in (SInt16):
kTargetDiskVolRefNumDataType ‘trgt’

Flag to signal to Shell and plug-ins that a restart is required (Boolean):
kForceRestartOnQuitDataType 'rsrq’

PSCheckEnvironment constants:

kPrinterAvailableMask 0x00000001
kStandardFilePackageAvailableMask ~ 0x00000002

PSSetupHelpPanel constants:

kReadFromResourceFile TRUE
kReadFromSimpleTextFile FALSE

PSSetPanelltemAction constants:

kContinueButtonMask 0x0001
kGoBackButtonMask 0x0002
kQuitButtonMask 0x0004
kDefaultButtonMask 0x0010

PSShowPanel /PSHidePanel constants:

Pass one of these if the current global panel is unknown (e.g. if the plug-in doesn't display a panel):
kGlobalPanel (void *) OXFFFFFFFF
kHelpPanel (void *) OXFFFFFFFE

Chapter 10: Writing Upgrader Plug-ins 125

Data Types

Typedefs:

typedef OSType GlobalDataType;
typedef Ptr GlobalDataPtr;
typedef OSErr ShellErr;

typedef OSType HandlerIDType;
typedef Sint16 ResourcelD;
typedef WindowPtr PanelPtr;

typedef Uint8 DVFlags;

typedef unsigned long PanelltemType;
typedef PanelltemType DocViewerType;
typedef short DocumentType;
typedef Byte DocLocationType;
typedef unsigned long EnvironmentType;
typedef Ulnt16 PanelActionType;
typedef Handle PanelUserltemHandle;

Plug-in-Defined Routines

void InitializePluginModule(void *INPSTable,
Sint32 inRefCon,
Boolean inEnterAtBeginning);

Boolean HandleEventForPluginModule(EventRecord *inEvent);

void TerminatePluginModule(void);

Upgrader Plug-in Routines

void SetupPlugin(void *shellFunctions);

ShellErr PSRegisterHandler(HandlerIDType inHandlerType,
UniversalProcPtr inHandlerProcPtr);
ShellErr PSHandleDocScroll(PanelPtr inPanelPtr,
Point inLocalPt,
short inDocltem);
void PSSaveDoc(PanelPtr inPanelPtr,
short inDocltem);

ShellErr PSPrintDoc(PanelPtr inPanelPtr,
short inDocltem);

ShellErr PSSetGlobalData(GlobalDataType inGlobalDataType,
GlobalDataPtr inGlobalDataPtr,
Size inDataSize);

ShellErr PSGetGlobalData(GlobalDataType inGlobalDataType,

GlobalDataPtr inGlobalDataPtr,
Size inMaxDataSize,

Chapter 10: Writing Upgrader Plug-ins 126

Size *outActualDataSize);

ShellErr PSSetupNewPanel(SInt16 inPanelltemsRsrclD,
PanelPtr *outPanelPtr);

ShellErr PSNewCustomPanel(short inPanelltemsRsrcID,
DVFlags inFlags,
PanelPtr *outPanelPtr);

ShellErr PSUpdatePanel(PanelPtr inPanelPtr);

void PSDisposePanel(PanelPtr inPanelPtr);

ShellErr PSShowPanel(PanelPtr inPanelPtr);

void PSHidePanel(PanelPtr inPanelPtr);

Boolean PSGetPanelltemHit(PanelPtr inPanelPtr,
EventRecord *inPanelEvent,
short *outltemHit);

ShellErr PSSetPanelltem(PanelPtr inPanelPtr,

short inltemNumber,
PanelltemType inltemType,
Handle inltemHandle,
Rect *inltemRect);
ShellErr PSGetPanelltem(PanelPtr inPanelPtr,
short inltemNumber,
PanelltemType *outltemType,
Handle *outltemHandle,
Rect *outltemRect);

void PSSetPRefCon(PanelPtr inPanelPtr,
long inRefCon);

long PSGetPRefCon(PanelPtr inPanelPtr);
ShellErr PSSetPanelltemAction(PanelPtr inPanelPtr,

short inltemNumber,
PanelActionType inActionType);

TEHandle PSNewStyledStringltem(Rect *inltemRect,
short inSTRListRsrcID,
short inStringListltem,
short inFontNum,
short inFontStyle,
short inFontSize);

TEHandle PSNewStyledTextltem(Rect *inltemRect,
short INTEXTRsrcID);

PanelUserltemHandle PSNewUserltem(UserltemProcPtr inUserltem,

Boolean inTransparent);
DocInfoHandle PSNewDocViewerltem(PanelPtr inPanelPtr,

Rect *inltemRect,

DocViewerType inDocViewerType,

Chapter 10: Writing Upgrader Plug-ins 127

short
short

ShellErr PSActivatePanel(PanelPtr
Boolean

ShellErr PSGoToPreviousPlugin(void);

inTextRsrclID,

inBasePICTRsrcID);

inPanelPtr,

inShouldActivate);

ShellErr PSGoToNextPlugin(ResourcelD inStrRsrcID);

ShellErr PSQuitShell(Boolean inCanAllowUserToContinue);

OSErr PSSetupHelpWindow(DocLocationType
short
short
Str255
PanelPtr

inLocation,

inRsrclID,
inBasePICTRsrclID,
inHelpPanelTitleStr,

*outHelpPanelPtr);

void PSDisplayHelpWindow(PanelPtr inHelpPanelPtr);
void PSCloseHelpWindow(PanelPtr inHelpPanelPtr);

Boolean PSHandleHelpWindowEvent(PanelPtr inHelpPanelPtr,
EventRecord *iInEvent);

OSErr PSCheckEnvironment(EnvironmentType *outEnvironment);

Boolean PSReadFontInfo(short inLocation,
short inRsrclD,
short inFontltem,
short *outFontFace,
short *outFontStyle,
short *outFontSize);

Boolean PSLaunchFile(SInt16
Sintl6
AEDescList
Boolean

inAppFileRefRsrcID,
inDocFileRefRsrcID,
*inOptionalOpenParams,
inLaunchApplInFront,

ProcessSerialNumber *outApplicationPSN);

Boolean PSMakeFSSpecFromFileRefID (SInt16 inFileRefID,
Boolean inShowErrorAlert,
FSSpec *outFoundFile);
SInt16 PSErrorAlert(SInt16 inErrNum,
Boolean inlsStandardShellErr,
ConstStr255Param inParamoO,
ConstStr255Param inParam1,
ConstStr255Param inParam2,
ConstStr255Param inParam3,
Sintl6 inDefaultButton,
Sintl6 inCancelButton);
Sint16 PSAlert(short inDLOGID,
DocumentType inWhichFileContainsDLOG,
ConstStr255Param inAlertText,
ConstStr255Param inParamo,
ConstStr255Param inParami,

Chapter 10: Writing Upgrader Plug-ins

128

ConstStr255Param inParam2,

ConstStr255Param inParam3,
SInt16 inDefaultButton,
SInt16 inCancelButton);

void PSCollect(SIntl16 inResListRsrcID);

Result Codes

The following are the errors numbers and constants defined in the Shell:

Error Name Number

DocViewer Errors:

kCantCreateDocumentErr 7000
kinvalidDocRecordErr 7001
kinvalidFileSpecErr 7002

Description

Unable to create the DocViewer object.

Returned if the inDocData parameter to
any of theDocViewer routines is NULL.

Returned from PSNewDocViewerltem if
the Upgrader couldn't resolve the file path
while attempting to read from a SimpleText
file.

General Shell error numbers that may be returned to plug-ins:

kUnknownPluginHandlerErr 1001

kCouldNotFindResourceMsgNum 1003

kMemoryErrorMsgNum 1004

Errors Returned byPSQuitShell

kUserContinuingAfterRestartAlertMsgNum 1030

Plug-in sequence errors:

kUnknownPluginNameErr 1040

kNextPluginSameAsCurrentErr 1041

Chapter 10: Writing Upgrader Plug-ins

Returned from PSRegisterHandler if
an invalid HandlerIDType parameter was
passed.

General resource warning for plug-in use, not
returned by any Upgrader routine to
plug-ins.

General memory warning for plug-in use, not
returned by any Upgrader routine to
plug-ins.

User selected Continue from
Continue/Restart displayed during a call to
PSQuitShell

Returned from PSGoToNextPlugin if
the plug-in specified by inStrResID was
invalid.

Returned from PSGoToNextPlugin if
the plug-in specified by inStrResID s the

129

same as the plug-in that the call was made
from.

Global data manager errors:

kUnknownGlobalDataErr 2000 Returned from PSGetGlobalData if the
type specified by parameter
inGlobalDataType could not be found.

kGlobalDataOutOfMemErr 2001 Returned from PSSetGlobalData if
memory could not be allocated for the
inGlobalDataPtr parameter.

kUnsupportedPrefsFormatErr 2010 Message used by plug-ins when they find the

preference resource for the plug-inis of a
unsupported format, not returned by any
Upgrader routine to plug-ins.

kNoPrefsErr 2011 Message used by plug-ins when they can't
find the preference resource for the plug-in,
not returned by any Upgrader routine to
plug-ins.

Panel manager errors:

kPanelltemNotFoundInListErr 2050 Message indicating that an item could not be
located in the panels item list, returned
from PSHandleDocScroll
PSPrintDoc , PSUpdatePanel
PSGetPanelltem and
PSSetPanelltemAction

kCannotLoadNeededResourceErr 2051 General purpose resource message that
plug-ins may use, is returned from
PSSetupNewPanel and
PSNewCustomPanel if problems occur
loading resource referenced from the panel's
‘DITL ' list.

kNoDataAvailableForltemErr 2052 Error number indicating that
PSGetPanelltem failed to find
information for the inltemNumber
parameter, no message is defined for this in
the Upgrader.

kinternalErr 2053 General purpose error message that may be
used by plug-ins, returned by
PSSetupNewPanel and
PSNewCustomPanel if problems occurred
while changing the panel list.

kltemTypeMismatchErr 2055 Error number returned by
PSNewDocViewerltem if the
inDocViewerType parameter is not of type
kDocResType or kDocFileType

Chapter 10: Writing Upgrader Plug-ins 130

kCantChangePanelltemToSpecifiedTypeErr

Chapter 10: Writing Upgrader Plug-ins

2058

Error number returned by
PSSetPanelltem if the inltemType
parameter is one that the Upgrader doesn't
support, no message is defined for this in the
Upgrader.

131

Writing ModifierTool
Editors

About ModifierTool Editors

ModifierTool provides the ability to modify Upgrader-based programs, such as the Install Mac OS 8
program used to install Mac OS 8. ModifierTool is designed to edit an existing Upgrader data file or
create a new data file from scratch.

An editor is simply a PPC code fragment that is executed to present windows to edit the resources
contained in the data file that are owned by the plug-in. The editor can be written using MPW,
Metrowerks or other development environment, but the examples and utility files provided on the SDK
use Metrowerks PowerPlant framework to make editor creation fast and easy. We encourage developers
to use the file reference and text editors provided on the SDK so users can edit these common data types
in a consistent way.

Writing a ModifierTool Editor

The best way to start an editor for a new plug-in is to duplicate an editor project for a similar plug-in.
You’ll find that most editors have the same basic resource reading/writing and display item setting
and getting routines.

Editor Entry Point

When the editor is loaded and executed, the ModifierTool application turns over complete control to
the editor until it it is finished. The editor should show modal or movable modal windows only,
because if the user is allowed to switch back to the ModifierTool window, the main window will not
handle the user interaction.

Listing 11-1 shows the entry point of the editor. You’'ll find this definition and other helpful routines in
the “EditorUTtilities.h” and “EditorUtilities.cp” files.

Chapter 11: Writing ModifierTool Editors 132

Listing 11-1 Editor parameter block definition

struct EditorLibProcParamBlock

{
SInt16 fFormatNum;
QDGlobals* fQDGlobals;
SInt16 fFileRefNum;
SInt16 fPreferenceRsrclD;
SInt16 fResListRsrcID;

J

typedef struct EditorLibProcParamBlock *EditorLibProcParamBlockPtr;

extern "C"{ typedef SInt32 (*EditorLibProcPtr)(EditorLibProcParamBlockPtr

inEditorLibProcParamBlockPtr); }

Field descriptions

fFormatNum

fQDGIlobals

fFileRefNum

fPreferenceRsrclD

fResListRsrcID

The format of the EditorLibProcParamBlock structure. The only
format currently defined is format 1.

A pointer to the ModifierTool application’s QuickDraw
globals.

The file refnum of the data file resource fork. Upon launch of
the editor the current resource file is set to the editor’s resource
fork.

The lo-word of the RefCon value stored in the plug-in entry in
the sequence resource. If this value is 0, then use the hard coded
preference resource ID used by the plug-in.

The ID of the 'RES#' resource that will contain the list of
resources stored in the data file owned by the plug-in. The
editor should update this resource whenever the user saves
changes.

Upon entry, the editor should locate and read its preference resource then display a movable modal
editing window. When the editing is finished, the editor should return one of four possible results:

0
1

-1 through -32768

The changes were saved and everything is great.

The user canceled the editing session, and any changes were
discarded.

The user wishes to remove this plug-in. On return to the
ModifierTool, the plug-in entry will be deleted.

An internal error occurred. Your editor should display an alert
telling the user what the problem was before returning this
result.

Updating Plug-in Resources

When the user wishes to save the changes he or she has made to the plug-in, the user should click Save
in your editor window, which will cause your preference resource and the appropriate referenced
resources to be saved. If the plug-in entry was just created by the user, and you need to create new
referenced resources, then make sure to create this resources with 1Ds between 10,000 and 20,000. The

routine GetUniquelDForResType

IDs.

Chapter 11: Writing ModifierTool Editors

supplied in “EditorUtilities.cp” can help you generate these new

133

WARNING

Resources stored in the data file should never be shared between plug-ins. All
referenced resources should have 1Ds between 10,000 and 20,000.

Two additional routines supplied in “EditorUtilities.cp” can help you update 'STR ' and 'STR#'
resources. Use WriteStringResource to update a 'STR ' resource and
WriteStringListResourcelndex to update an individual string index within a 'STR#' resource.
The WriteStringListResourcelndex is not designed for speed, so if you need to update large 'STR#'
resources, you may want to consider rewriting this routine.

When called, your editor is passed the ID of the preload list resource which you should update when
saving changes. This resource is used to support running from a multiple disk set, such as floppies. The
routines ResetResListResource and AppendToResListResource are provided in
“EditorUtilities.cp” to help with this updating task. To use these routines, call
ResetResListResource once to reset the list to zero entries, then call AppendToResListResource
for each resource the your plug-in owns in the data file.

Removing Plug-in Resources

Because of the modular nature of ModifierTool and its editors, removing a plug-in entry is a joint effort
between the editor and the ModifierTool application. When the user clicks Remove in your editor
window, you should delete the preference resource and all referenced resources. The ModifierTool will
remove the preload resource for you when it deletes the plug-in entry from the Upgrader-owned
seguence resource.

The routine DeleteResource is provided in “EditorUtilities.cp” to help with deleting your resources.

Chapter 11: Writing ModifierTool Editors 134

Appendix A: Adding
Pictures to SimpleText
Documents

The following is an excerpt from Technical Note: 1005: The Compleat Guide to SimpleText.

So how do you use SimpleText to create Release notes? It’s easy. Get those creative juices flowing, grab a
cup of strong coffee (or your favorite highly-caffeinated beverage), and read on.

Write the Text

You can handle this part yourself. Use any word processor or text editor that supports saving to text-
only files (i.e., those files of type 'TEXT'). You can even use SimpleText if you so desire. Don’t put
carriage returns after each line either, since SimpleText automatically wraps lines, just like a real
word processor (the SimpleText window conforms to the size of the current screen, so don’t depend on the
breaks you see either). Don’t worry about non-breaking space characters at this point either; you’ll get
a chance to add them later. Just think about what pictures you want (if you want them at all) and in
what order you want them. When you are finished with the text, save it as a text-only file. If your
word processor gives you the option of putting carriage returns after lines or after paragraphs, choose
the after paragraphs option.

SimpleText now lets you use different fonts, sizes and styles in your documents. No longer are you held
captive to only one font. Be brave, spice up your document, this is a Mac, not a VT100. Just remember that
people actually have to read this document, so don’t make it so cluttered with fonts and sizes that it’s
illegible. Also stick to the standard fonts like Times, Helvetica, and Geneva, since if the font is not
installed on the reader’s system, the text will end up in Geneva.

Appendix A: Adding Pictures to SimpleText Documents 135

Draw the Pictures

First make a backup of your Scrapbook file (you should find it in your System Folder) if it contains
anything you consider important. After backing it up, throw away the original copy (this makes things
much easier later on in the process), but don’t worry, if you made a backup you can use it to restore the
original when finished. If you prefer, you can just rename the Scrapbook file, which effectively makes
a backup copy.

Unfortunately, the ideal method for creating a picture involves both a paint program and a draw
program. Once you are finished with your pictures, save them to a document, then do one of the
following:

If you used a painting program to draw your pictures

1. Select your picture with a Lasso tool to ensure that only the minimum size of the image is copied.
This takes up less space on disk and centers the picture in the document.

2. Copy the picture then paste it into the Scrapbook.

3. Repeat these steps for each individual picture you wish to include in the document.

If you used a draw program to draw your pictures

1. Copy each of your pictures into the Scrapbook.
2. Launch a paint program, then copy each picture from the Scrapbook into the paint program.

3. Once every picture is in a paint document, open the Scrapbook and clear each of your pictures from
the Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished (unless you
did not start with a fresh Scrapbook).

4. Follow the procedure in the steps for a painting program to copy and paste each of your pictures
back into the Scrapbook. At this point, regardless of which program you originally used to create
your pictures, they should all be in the Scrapbook and in bitmap form (after being copied with a
Lasso tool from a paint program). Because of a quirk in the Printing Manager and PostScript(R), you
have to perform a few more steps.

5. Launch a draw program, then copy each picture from the Scrapbook into the draw program.

6. Once every picture is in a draw document, open the Scrapbook and clear each of your pictures from
the Scrapbook. The Scrapbook should say “Empty Scrapbook” when you are finished (unless you
did not start with a fresh Scrapbook).

7. Copy each picture back to the Scrapbook. This process makes the pictures “transparent” when
printed, and this is important to avoid a problem with white, horizontal stripes running through
your pictures.

Adding the Pictures

Launch ResEdit and open the text-only SimpleText document (you may want to work on a backup copy).
SimpleText saves every document with a resource fork that holds the font information, so ResEdit
should not warn you about the file not having a resource fork unless you created the document with a
program other than SimpleText.

Open your Scrapbook file (the one with all the pictures in it). Its ResEdit window should contain a
'PICT' resource along with some others. Select 'PICT' (don’t double-click), and copy this resource to the
SimpleText document by bringing its window to the front and selecting Paste from the Edit menu. If you

Appendix A: Adding Pictures to SimpleText Documents 136

do this step correctly, your pictures and text should all be in the same document. Save the SimpleText
document so you don’t have to do this step again and close the Scrapbook.

Now you need to put the pictures into the proper numerical order so they show up in the correct order in
the SimpleText document. Numbering starts at 1000 (i.e., first picture should be 1000, second picture
1001, etc.). To order these pictures, double-click on the 'PICT" in the SimpleText document’s window.
You should get another window which contains each of the pictures you copied into this document. Use
the scroll bar until you find the first picture you want to appear in the document. Select it (by clicking
on it once), and choose the Get Info or Get Resource Info option to get information on the resource. ResEdit
displays an information window about the selected resource with space to enter a name and an ID (there
is already a random ID number assigned). Change the ID to 1000 and give the picture a name too (i.e.,
“Figure 17, etc.). Near the bottom of this window you can see the resource attributes. Be sure that the
“Purgeable” attribute is checked, then close the window. Repeat this process for each succeeding
picture, giving each a successive number (i.e., 1001, 1002, 1003, etc.). When you are finished with all of
the pictures, save the file and quit ResEdit.

That’s the difficult part; the rest is icing. Go get some more coffee or whatever it is you are drinking.

Edit the Text to Make It Look Pretty With the Pictures

Launch SimpleText and open your document. Find the location where you want to place the first picture
and position the text cursor there. Enter a carriage return or two (more if you want more space before the
picture) then a non-breaking space character (Option-Space Bar, remember), which will be invisible.

Now resize the window, and voila, when the window redraws, your picture will be just below the non-
breaking space character. Now enter as many carriage returns as necessary to provide space for the
picture. When you enter the first carriage return, SimpleText will erase the picture, so you will need to
resize the window again to verify your spacing, clicking the zoom box works well.

Once you have enough room for the first picture (you probably want to leave an extra blank line or two
after it too), move on to the next desired picture location and repeat the process. Continue this process
(and don’t forget to save the document along the way) until you have placed all of the pictures. When
you finish placing the pictures, you should save the document again and try printing it on both an
ImageWriter and LaserWriter if possible. You may wish to tweak the picture spacing or location to
keep them from crossing printed-page boundaries.

When you are satisfied with the results, Quit SimpleText.

Making the File Read-Only

Make a copy of the file (to save a step if you decide to edit it again) then launch ResEdit. Now choose
Get Info from the File menu and change the file type from "TEXT' to 'ttro’ (the lowercase is significant)
and check to make sure the creator type is 'ttxt'. Now quit ResEdit and save the changes to the
document when prompted.

That’s all there is to it.

A Few Hints On Creating Good Documents With
Pictures

The following hints should help to make your SimpleText document creation faster and more efficient
as well as make the final document as nice as possible for the user.

= Always use the Lasso tool in paint programs to select pictures to appear in SimpleText documents; it
makes them smaller.

Appendix A: Adding Pictures to SimpleText Documents 137

= Keep pictures as small and simple as possible; the document takes up less room on disk and scrolling
is faster.

= If two pictures appear on top of each other, you probably have two non-breaking space characters
on the same line. Simply delete one to fix it. It is generally a good idea to put non-breaking space
characters on a line by themselves with a blank line before it. In addition, always leave room for
an extra line after the picture so you do not have the picture running into the text which follows it.

= If you need to use the non-breaking space character as a non-breaking space, you can.

= Since SimpleText assigns the numbered 'PICT' resources to the non-breaking space characters in the
document, you can simply skip a resource number to use a non-breaking space character as a non-
breaking space in the text. For example, if you had four non-breaking spaces in the document and
you wanted pictures at the first, second, and fourth, you would number your 'PICT' resources 1000,
1001, and 1003. The third non-breaking space character would normally have 'PICT' resource 1002
assigned to it, but since there is not a resource with this ID, it simply acts as a non-breaking space in
the document.

= Don’t worry about how horrible everything looks when you are editing; users will not be able to
edit your document (unless they have read this Note), so they will not see the awful flashing,
disappearing pictures, etc.

= Make the document read-only even if you do not use pictures. Distributing read-only documents to
users gives the consistent impression that Release Notes are not to be modified.

= If your pictures are not appearing as you think they should, and if you cannot figure out what might
be wrong by following the sequence in this Note, then try the following: Open the document with
ResEdit. Click once on the 'PICT' list and choose Open Picker by ID from the Resource menu of
ResEdit 2.x. You should get a window with a list of all of your pictures, in order, and numbered
sequentially from 1000. If this is not what you get, then you have missed a step along the way and
need to make sure all your pictures are in the resource and numbered sequentially.

Appendix A: Adding Pictures to SimpleText Documents 138

