ScriptCheck
User’'s Manual

®

Document Version 1.10 - August 18, 1998

Table of Contents

ScriptCheck Basics

(@ V22T Y4 =Y AR 1
(@007 91 2.27=1 5 T N 10T T R 1
(O] o 11 [o] o - T PP PP UUPTRUPTIN 2

Error Checking

1060] 8 Y =T 0 [0 A =l £ o] £SO TPPTUPTRPTRN 5
oo | [ol = (o] £ J TP 6

Script Updating

ol g o1 @de]0 0] o] (=11 o] o DT TUPTTRRN 8
FIllING IN SIZE FIEIUS. ...t e 8
Filling in SoUrce VErsion FIeldSo e 9
Filling in SOUrce Creation Datescooiiuiiiiiii i ettt 9
FIllING 1N FINAEE FIAGS.t i e 9
Filling in Package Comment REIaSE DateS.........ccciiiuiiiiiiiiiei e 9
Updating the Script Creation Date ReSoUrce (“INCA’)coouuniiiiiiiiiiiiii e 10
Updating the Script Size RESOUICE (“INSZ’). . ciiiiiieiiii e 10

File/Resource INfo EXIENSION RETEIEINCE.uu i e e e e 10
U To (Lo o T N (T = Lot TR 10
File/ZReSOUICE INTO EXTENSIONttt e et e et e e e e e et e e e eaenas 10
AT [0 o T L) (ol =T =] 1Y o] o PP 10
Parameter BIOCK oo e e 11
File/Resource Info Extension Parameter BIOCK.............oooiiiiiiiii e 11
Version Compare Extension Parameter BIOCK........... .o 12
RESOUICE DESCIIPLION ...ttt ettt et e e e et e e e s 13
File/Resource INfo EXTENSION RESOUICEiiut ettt e e e e e et e e e eeenas 13
Version INfO EXTENSION RESOUICE.iiue ittt e e et e e et e et e e et e et e e et e e et e e eanaeeees 14

Table of Contents

CHAPTER 1

ScriptCheck Basics

This chapter provides an overview a command line summary of the MPW ScriptCheck tool.

Overview

The Installer Script Checker, referred to as ‘ScriptCheck’ from this point forward, is a tool
that provides the script writer with script error and consistency checking and script
completion. ScriptCheck can be quite valuable in debugging flaws in Installer scripts. It will
inform the scriptwriter of inconsistencies such as missing resources, incorrect formats, and other
errors that can cause a script to be unusable. ScriptCheck also completes a script by doing the
tedious chores of filling in atom and package sizes and other required and optional fields in an
Installer script.

This document describes the features of ScriptCheck and explains how to use the tool. It
assumes a prior knowledge of Installer script structure, design, and resource types. For more
information on these topics consult the document Installer Engine Guide.

ScriptCheck was written to help you debug and finish your Installer scripts. Although it can
find many errors and problems in a script, it is a preprocessor and cannot check the run-time
robustness of your script. Just as a Pascal compiler may smile on a piece of code that later
executes an infinite loop, ScriptCheck may approve of a script that the Installer later barfs
on!

To help catch as many bugs in your script as you can, use the Installer Debugger is conjunction
with ScriptCheck.

Good luck.

Command Line

ScriptCheck is an MPW tool that is executed from the MPW WorkSheet. Run ScriptCheck
after you have Rez’d your Installer script and fixed any errors that Rez reported.

After starting ScriptCheck, the only action required by the user involves inserting the source
disks. For those scriptwriters that develop their installation scripts utilizing folders on their
hard disk in lieu of the actual installation disks, the insertion of source disks is necessary only
if ScriptCheck fails to find the source files within the “install disk” folders. The rest of the
process is automatic, but can take time depending on the size of the script.

ScriptCheck User's Manual 1

CHAPTER 1

ScriptCheck Basics

ScriptCheck ([-a] [d] [f] [h] [-10...2] [-p] [-a] [r] [s]) scriptFileName

Options

All of the command line options, in parenthesis above, are optional.

-a Tells ScriptCheck to update the size fields for ALL ‘infa’ and
‘inra’ resources, regardless of whether they were manually
entered. This option may be useful when re-checking a script,
which is NOT recommended.

-d Tells ScriptCheck to update ALL ‘infs’ creation dates
regardless of the value it finds in the creation date field. This
feature is useful when ScriptChecking a script that has
previously been checked. If you get a new set of source disks
and the only changes are file sizes and creation dates, then you
can run ScriptCheck again with the -d option to update those
dates.

This feature should be used only in special circumstances; it is
much better to start with a fresh Installer script each time you
run ScriptCheck.

-f Tells ScriptCheck to update ALL Finder flags regardless of the
value it finds in the Finder flags field. Otherwise, only those
files that have zero in this field will be updated. This
feature is useful when ScriptChecking a script that has
previously been checked.

This feature should be used only in special circumstances; it is
much better to start with a fresh Installer script each time you
run ScriptCheck.

-h Forces ScriptCheck to restrict its search for the source files to
the folders surrounding the script file. ScriptCheck uses the
same source folder search strategy as Installer Engine.
Without this option ScriptCheck automatically asks for a
source floppy disk, ignoring source files near the script file.

If you do not have some or all of the source disks available,
you can still run ScriptCheck to verify the correctness of your
script itself without checking the source disks. This is
accomplished by pressing the “Skip Disk” button in the dialog
box that requests a source disk. Please note that skipping a
disk may cause the size calculation that is placed in the ‘inra’,
‘infa’, and ‘inpk’ to be incorrect (because the file sizes were not
extracted) and creation dates will not be filled in for ‘infs’
resources that reference the skipped disk. The skip disk
feature should only be used for preliminary script
development, not for final versions of the script.

-10...2 Overrides the default error checking level. The default level
is level 2, which causes ScriptCheck to output all error,
warning, and note messages during its check. This is the most
stringent checking level and displays any problems, minor and
major, that it finds. Level 0, on the other hand, is the most

ScriptCheck User's Manual 2

CHAPTER 1

ScriptCheck Basics

ScriptCheck User's Manual

lenient checking level. ScriptCheck will only output error
type messages when set to this level. Only use level 0 when
you are confident that you can disregard any warnings and
notes that would have otherwise been output on a more
stringent level. Finally, level 1 is a moderate checking level
that outputs both errors and warnings, but does not output note
messages. In some cases, the note messages may be superfluous
information, and you may prefer to use level 1 to avoid them.

Causes ScriptCheck to output progress information as it
proceeds through its checking cycle. This information is useful
because it gives a context to the error, warning, and note
messages that are output as script problems are encountered.
ScriptCheck will tell you where it is in the checking process
and this can help you understand the messages that it
presents.

Tells ScriptCheck to perform a quick check of the script; to not
ask for the source floppy disks. This option is used for
preliminary development of scripts. The size fields and
creation date fields for the various scripts will not be filled in.

Causes ScriptCheck to display “dead” script resources. A
“dead” resource is a resource that is found in the script file, but
is never referenced by any script resources. For example, if an
‘infs’ exists in the script, but is never referenced by a ‘inrl’,
‘infa’, or other script resources that can reference an ‘infs’, then
it is labeled a “dead” script resource.

Causes ScriptCheck to strip out “dead” script resources. As
described above, “dead” script resources are those resources
found in the script that are never referenced by any other
script resources. This strip option removes these resources,
minimizing script size. The next time you Rez the script you
could choose to remove these dead resources yourself or you can
continue to have ScriptCheck do it for you. Use this feature
very conservatively; if a particular resource that ScriptCheck
says is “dead” is really not dead, then ignore the note and do
NOT use the -s option to do the stripping.

CHAPTER 2

Error Checking

This chapter describes the error checking performed by ScriptCheck.

The complexity of Installer scripts increases the probability of errors. The types of errors fall
into two categories: consistency errors and logic errors. Consistency errors, which are more
easily diagnosed and corrected, include missing information, such as nonexistent file specs that
are referenced in a script, and also extraneous information, such as resources that are present in
the script but are never referenced. Consistency checking also includes the files, resources and
fonts, expected on the source disks. ScriptCheck can guarantee that every file, resource, and
font referenced in the script is present on the source disks. ScriptCheck provides detailed error
messages explaining exactly what files, resources, or fonts expected on the source disks are
missing and also what script resources are missing from a script.

Errors in logic are often more subtle than consistency errors. For example, the flag bits that are
used in many Installer resource types easily allow for logic errors. These flag bits allow the
script writer to specify that a file is update only, copy data fork, delete on remove, and many
other options. Certain combinations of these bits are completely meaningless or, in other cases,
just ambiguous. For example, if the update only bit is set and the copy bit is clear then the file
will not be copied to the target even if it already exists on the target. This is not completely
wrong, but it is useful for ScriptCheck to inform the writer that the update will not occur with
the copy bit clear, which alerts the writer to a possible error. Diagnosis of errors in logic also
include range checking of values such as target disk size for logic flaws. For example if the
minimum disk size is greater than the maximum disk size (and the maximum is not zero, which
is a special case), the writer is alerted that this will never be true and the rule will never fire.

ScriptCheck considers some errors more severe than others. A three-level error reporting
mechanism provides the scriptwriter with a precise idea of the severity of the problem. The
most severe problems are termed Errors, followed by less severe Warnings, and finally the
least severe Notes messages. An Error must be fixed for the script to be usable by the Installer.
Warnings can be fixed in order to guarantee robustness of the script, but may not cause
noticeable problems. Note level messages can often be ignored, but can pinpoint subtle
problems. You can easily differentiate between these three types of messages as ScriptCheck
prefixes each message with either:

#Error: |, #Warning: , or #Note .

ScriptCheck User’'s Manual 4

CHAPTER 2

Error Checking

Consistency Errors

The checking performed on the script itself assures the writer that all referenced resources
exist and also that all resources in a script are necessary. With disk space becoming a major
concern at this time, removing unneeded resources from scripts can be an important concern of
scriptwriters. The second form of consistency checking is done on the source disks to confirm
that all files and resources referenced in the script exist in the designated places on the proper
disks.

The checks will guarantee existence of all:

m ‘inrl’ resources referenced by ‘infr’ resources

m ‘inpk’ resources referenced by ‘inrl’ resources

m ‘icmt’ resources referenced by ‘inpk’ resources

m ‘infa’, ‘inra’, ‘inbb’, ‘inaa’, ‘inat’, ‘inff’, and ‘inpk’ resources referenced by ‘inpk’ resources
m ‘infs’ resources referenced by ‘infa’, ‘inra’, inbb’, ‘inat’, ‘inff’, and ‘inrl’ resources

m files on source disks that are referenced by ‘infs’ resources

m ‘ICON’, ‘icl4’, or ‘icl8’ resources referenced by ‘icmt’ resources

m User function code resources referenced by ‘inrl’ and ‘inaa’ resources. These user function
resources must exist in the script itself.

m ‘boot’ resources referenced by ‘inbb’ resources

m ‘sfnt’, ‘NFNT’, ‘FONT’, and all point sizes of font resources referenced by ‘inff’ resources.
If any referenced resources are not found, then informative error messages are displayed.

For example, if an ‘inrl’ references an ‘infs’ and the ‘infs’ is not found in the script, the

following message will be output:

Error: 'infs' ID = 258 referenced from ‘inrl' ID = 997 does not
exist.

The script writer can then immediately go back to the script sources and figure out why ‘infs’
ID = 258 was not Rez’d into the script.
Similarly, if a file cannot be located on the source disks, a message such as this is displayed:

Error: Source file Cool Demos:Lotus 123?7? referenced from 'infs' ID
= 3005 not found on source disk.

The scriptwriter can then determine whether the ‘infs’ specified an incorrect path or the file
was simply not in the correct location on the source disks.

The consistency checks also alert the scriptwriter to “dead” resources that are not needed in
the script. A “dead” resource is a resource that is found in the script file, but is never
referenced by any script resources. For example, if an ‘infs’ exists in the script, but is never
referenced by a ‘inrl’, ‘infa’, or other script resources that can reference an ‘infs’, then it is
labeled a “dead” script resource.

The checks will ensure that all:
m ‘inrl’ resources are actually referenced by the one ‘infr’ resource

m ‘inpk’ resources are actually referenced by at least one ‘inrl’ or ‘inpk’ resource

ScriptCheck User’'s Manual 5

CHAPTER 2

Error Checking

m ‘infa’, ‘inra’, ‘inbb’, ‘inat’, and ‘inff’ resources are actually referenced by at least one ‘inpk’
resource

m ‘icmt’ resources are actually referenced by at least one ‘inpk’ resource

m ‘infs’ resources are actually referenced by at least one ‘infa’, ‘inra’, inbb’, ‘inat’, ‘inff’ or
‘inrl’ resource

m other resource types in the script itself are referenced at least once in the script

ScriptCheck enumerates all extraneous references in the script. You’ll need to use the -r option
to calculate this information. For example, an unreferenced ‘infs’ will be highlighted with
the following message:

Note: Script resource 'infs' ID = 257 was never referenced in the
script.

Multiple file spec (‘infs’) resources referring to the same file are another common problem seen
in Installer scripts. Because of the special way the Installer deals with files, this problem can
confuse the Installer. Therefore, it is essential that the scriptwriter remove any duplicated
file specs.

Specifically, all source file specs must be unique and only one ‘infs’ resource should be used to
point to each source file used in the script. In addition, all target file specs must be unique and
only one ‘infs’ resource should be used to point to each target file used in the script.
ScriptCheck checks your script to make sure that you have followed this important rule. If it
finds ‘infs’ resources that duplicate a path to a source or target file, it warns you of your error.
An example output of this problem follows:

Warning: 'infs' resources ID = 3005 & ID = 3002 refer to the same
source file ('FileMaker Data:JustAFile"). This can cause the Installer
problems, remove the duplicates!

After the check ends, it is the script writer’s responsibility to remove duplicate ‘infs’ resources
and fix all ‘infa’, ‘inra’, and other script resources which reference the duplicates. Change
those resources to reference the ‘infs’ resource that will remain in the script.

Logic Errors

The main type of logic errors that can get into a script result from improper setting of the flag
bits used in the file and resource atom resources. There are a great number of permutations of
these bits that result in illogical or ambiguous actions. For example, if the keep existing and
the update only bits in a resource atom flag are both set, then this tells the installer that if
the file already exists on the target, then keep the existing one, but also update the file if the
file exists.

The file will never be updated with these two bits set together and the script writer is alerted
to this illogical setting. An example ScriptCheck output of this type of logic errors follows:

Warning: The flag bits in 'inra’ ID = 2000 are set copy, keepExisting, and updateOnly.
This combination makes the resource atom never update because it will always keep an
existing copy.

ScriptCheck also range checks values that can be entered in the ‘inrl’ script resources.
The ‘inrl” values that are checked include:

m checkMinMemory: make sure the value is feasible (0 <= value <= 16MB)

ScriptCheck User’'s Manual 6

CHAPTER 2

Error Checking

m checkTgtVolSize: make sure the minimum is not greater than the maximum value (aside
from the special case when max is 0)

If either of these values is out of reasonable bounds, warning messages alert the scriptwriter of
possible problems.

ScriptCheck User’'s Manual 7

CHAPTER 3

Script Updating

This chapter describes the tasks ScriptCheck performs to help make keeping your script up to
date easy.

Script Completion

Some script resource types require information that is very tedious and cumbersome to
calculate. For instance, the size field that is found in the ‘infa’ must contain the actual size
(in bytes) of the file on the source disks. Filling in this type of field is tedious and it must be
updated each time the files on the source disks change sizes.

Filling in Size Fields

Installer Engine requires certain size fields in atoms have the exact size the file or resource
parts will occupy on the target file. ScriptCheck makes sure these fields are set properly by
looking at the source file.

ScriptCheck performs the following activities regarding size fields:

m For File, Resource and Font Atoms, ScriptCheck fills in the exact target size for each
specified part. If your files are compressed, and you are using an Atom Extender to
decompress the file or resource, then you must supply a code resource that ScriptCheck
calls for each compressed file to obtain the original file or resource’s size information. See
“File/Resource Info Extension Reference” later in this section.

m The total size field in the atom is filled using size information of the parts being installed
with the atom.

m The size field in all packages are updated with the total of the containing atom total
sizes. This allows the Installer to verify that all target disks have sufficient disk space
to complete the installation. This size field is also the value shown to the user in the info
window for packages that have the ShowOnCustom flag set.

NOTE

ScriptCheck has problems with updating the individual size fields of multiple source files
when the data fork contains the resource fork data. Therefore it is best to copy both forks of a
file that is split into multiple source files by using two File Atoms, one to copy the data fork,
and the other to copy the resource fork. O

ScriptCheck User's Manual 8

CHAPTER 3

Script Updating

Filling in Source Version Fields

Installer Engine allows the scriptwriter to determine the newness of the target resource or file
relative to the source using a version number. A field exists in the new formats of the Resource
and File Atom that hold the version number of the source. ScriptCheck will automatically
update this field if the scriptwriter chooses to supply the necessary custom code resource to
determine the source version number.

If the Version Compare rsrc ID field is non-zero ScriptCheck looks for an ‘scsv’ resource, which
describes how to call the code resource that will determine the source version number. The
version number returned by the code resource will be entered into the source version number
field. The interface of this code resource is described in the section “File/Resource Info
Extension Reference”.

For File Atoms that contain zero in their version compare resource ID field and are using the
useVersProcToCompare flag, ScriptCheck will automatically enter the version number from
the ‘vers’ ID 1 resource found in the source file. If no ‘vers’ ID 1 resource is found the field is left
untouched.

Filling in Source Creation Dates

In order to ensure that the Installer finds the proper files on the source disks, the creation date
of the files must be placed in the each source file spec. If the scriptwriter places a 1 in the
creation date field of the ‘infs’ resource, ScriptCheck will replace that with the creation date
that it finds when scanning the source disks. In addition, a command line parameter tells
ScriptCheck to update ALL creation dates regardless of whether a 1 exists in that field (see
"Using ScriptCheck" section below). To manually fill in the creation date field, simply place
a value other than 1 in that field.

Filling in Finder Flags

By default, ScriptCheck will update the Finder flags field in ‘infa’ resources if the field
contains zero. To force all Finder Flag fields to be updated, regardless of their prior value, use
the -f option.

Filling in Package Comment Release Dates

The ‘icmt’ (or ‘inpc’) package comment resource requires a field that specifies the version
release date of the software in that package. This is a LongInt value that corresponds to the
number of seconds between January 1, 1904 and the release date. In the past, the scriptwriter
had to calculate this value and place it in the ‘icmt’ resource. ScriptCheck allows a much
simpler method to get the correct Longlnt value in this resource. Instead of entering a value in
seconds in this field, the scriptwriter can set a numeric representation of the date in the form
mmddyyyy in this field and ScriptCheck will convert it to the correct value in seconds. For
example, if the release date is February 5, 1990, then place 2051990 in the date field of the
‘icmt’ resource. Note: A month value less than 10 does not need to be preceded with a 0, but a
day value less than 10 must be preceded with a 0 as is shown in the example. To fill in the
release date field manually, place a true seconds Longlnt value in that field and ScriptCheck
will not modify it.

ScriptCheck User's Manual 9

CHAPTER 3
Script Updating

Updating the Script Creation Date Resource (‘incd’)

ScriptCheck will always automatically create or update the ‘incd’ resource in the script file.
This resource is used by the Installer to help find source folders on AppleShare volumes.

Updating the Script Size Resource (‘insz’)

ScriptCheck will always automatically create or update the ‘insz’ resource in the script file.
This resource is used by the Installer to calculate the size of the script sub-heap.

File/Resource Info Extension Reference

This section describes the function interface and resource descriptions needed to use the
ScriptCheck File/Resource Info Extension script resource. The function prototype and
parameter block is defined in file “TargetinfoMgt.h”.

Function Interface

File/Resource Info Extension

ScriptCheck calls your file/resource info extension code resource when the Atom Extender
resource ID entered in the atom is non-zero. ScriptCheck looks for an ‘scex’ resource in a file
with the name “scriptFileName.scx”, where scriptFileName is the name of the script you are
checking. This resource is almost identical to the actual Atom Extender (‘inex’) resource,
which describes how to call the code resource containing the file/resource info function.

The file/resource info function must have the following definition and be the entry point of the
code resource.

typedef OSErr (*TargetinfoProcPtr)(TargetinfoPBPtr);

The result is defined as an OSErr. Returning any other result besides noErr tells ScriptCheck
to use the information from the actual source file found on the source disk and disregard any
information passed back through the parameter block.

Version Info Extension

ScriptCheck calls your version compare extension code resource when the version compare
resource ID entered in the atom is non-zero. ScriptCheck looks for an ‘scvc resource in a file
with the name “scriptFileName.scx”, where scriptFileName is the name of the script you are
checking. This resource is almost identical to the actual VersionCompare (‘invc’) resource.

The version info function must have the following definition and be the entry point of the code
resource.

typedef long (*TargetVersProcPtr)(TargetVersPBPtr);

The result is defined as an OSErr. Returning any other result besides noErr tells ScriptCheck
to use the information from the actual source file found on the source disk and disregards any
information passed back through the parameter block.

ScriptCheck User's Manual 10

CHAPTER 3
Script Updating

Parameter Block

File/Resource Info Extension Parameter Block

The file/resource info function code resource is passed a pointer to a parameter block containing
fields that you will use to pass back original source information to ScriptCheck.

#define kDataTypelsFile -1
#define kDataTypelsRsrc 1

typedef struct {
-> FSSpec fSrcFSSpec;
-> long fSrcDataType;
-> Str31 fTgtFileName;
<- short fTgtFinderAttrs;
<- long fTgtDataForkSize;
<- long fTgtRsrcForkSize;
<- long fTgtCreationDate;
<- ResType fTotFileType; /l added for ScriptCheck 4.0.3
<- ResType fTgtFileCreator; // added for ScriptCheck 4.0.3
<- long fTgtModDate; // added for ScriptCheck 4.0.3
} TgtFileinfoType;
typedef struct {
-> FSSpec fSrcFSSpec;
-> long fSrcDataType;
-> OSType fSrcRsrcType;
-> short fSrcRsrclD;
-> OSType fTgtRsrcType;
-> short fTgtRsrclID;
<- short fTgtRsrcAttrs;
<- long fTgtRsrcSize;
} TgtRsrcInfoType;
typedef union {

TgtFileInfoType fFilelnfo;

TgtRsrcinfoType fRsrcinfo;

} TargetinfoPB, *TargetinfoPBPtr;

Field descriptions

fSrcFSSpec A FSSPec to the source file referenced by the atom that
ScriptCheck supplies you.

fSrcDataType ScriptCheck supplies one of two values: kDataTypelsFile if
ScriptCheck wants information about a file; otherwise,
kDataTypelsRsrc if ScriptCheck wants information about a
resource, including a font resource.

fTgtFileName

fTgtFinderAttrs
fTgtDataForkSize
fTgtRsrcForkSize

fTgtCreationDate

ScriptCheck User's Manual

ScriptCheck passes you the file name contained in the target
file spec.

Return the Finder flags of the original file.
Return the size in bytes of the original data fork of the file
Return the size in bytes of the original resource fork of the file.

Return the creation date of the original file.

11

CHAPTER 3
Script Updating
fTotFileType
fTgtFileCreator
fTgtModDate
fSrcRsrcType
fSrcRsrcID

fTgtRsrcType

fTgtRsrcID
fTgtRsrcAttrs
fTgtRsrcSize

Return the file type of the original file.

Return the file creator of the original file.

Return the modification date of the original file.

ScriptCheck passes you the resource type of the source resource.
ScriptCheck passes you the resource ID of the source resource.

ScriptCheck passes you the resource type of the target
resource.

ScriptCheck passes you the resource 1D of the target resource.
Return the resource attributes of the original resource.

Return the size in bytes of the original resource.

Version Compare Extension Parameter Block

The version info function code resource is passed a pointer to a parameter block containing
fields that you will pass back original source information.

#define kVersTypelsFile

#define kVersTypelsRsrc 1
typedef struct {

-> FSSpec fSrcFSSpec;

-> long fSrcDataType;

-> Str31 fTgtFileName;

<- long fTgtVersionNum;
} TgtFileVersType;

typedef struct {

-> FSSpec fSrcFSSpec;

-> long fSrcDataType;

-> OSType fSrcRsrcType;
-> short fSrcRsrcID;

-> OSType fTgtRsrcType;
-> short fTgtRsrcID;

<- long fTgtRsrcVersionNum;
} TgtRsrcVersType;

typedef union {
TgtFileVersType
TgtRsrcVersType

fFileVers;
fRsrcVers;

} TargetVersPB, *TargetVersPBPtr;

Field descriptions
fSrcFSSpec

fSrcDataType

fTgtFileName

ScriptCheck User's Manual

A FSSPec to the source file referenced by the atom that
ScriptCheck supplies you.

ScriptCheck supplies one of two values: kDataTypelsFile if
ScriptCheck wants information about a file; otherwise,
kDataTypelsRsrc if ScriptCheck wants information about a
resource, including a font resource.

ScriptCheck passes you the file name contained in the target
file spec.

12

CHAPTER 3

Script Updating

fTgtVersionNum Return the version number of the original file.

fSrcRsrcType ScriptCheck passes you the resource type of the source resource.

fSrcRsrcID ScriptCheck passes you the resource ID of the source resource.

fTgtRsrcType ScriptCheck passes you the resource type of the target
resource.

fTgtRsrcID ScriptCheck passes you the resource ID of the target resource.

fTgtRsrcVersionNum Return the version number of the original resource.

Resource Description

The templates of the ScriptCheck Extension script resources are shown below. The following
definition is contained in the file “ScriptCheckTypes.r”.

File/Resource Info Extension Resource

#define scriptCheckAtomExtFlags \
fill bit[16];

type 'scex’ {
switch {
case formatO:
key integer = 0;
scriptCheckAtomExtFlags; /* Flags for Format 0 */

literal longint; [* Type of code resource */
integer; /* ID of code resource */
longint; I* Refcon for parameter block */
longint; /* Requested Memory in bytes */
evenPaddedString; /* Summary Description */
2
h
Field descriptions
Flags Currently reserved for use by Apple Computer, Inc. (2-bytes)
Code Rsrc Type The resource type of the file/resource info code resource. (4-
bytes)
Code Rsrc ID The resource 1D of the file/resource info code resource. (2-
bytes)
RefCon Currently Ignored. (4-bytes)
Requested Memory The minimum number of free bytes the file/resource info code

resource needs during execution. Currently Ignored. (4-bytes)

Summary Description An optional string briefly describing the purpose of this
file/resource info function. This string is never displayed to
the user. (even-padded Pascal string)

Version Info Extension Resource

#define scriptCheckVersCompareFlags \
fill bit[16];

ScriptCheck User's Manual 13

CHAPTER 3
Script Updating
type 'scvc' {

switch {
case formatO:

key integer = 0;

/* Format version */

scriptCheckVersCompareFlags; /* Flags for Format 0 */

literal longint; [* Type of code resource */
integer; /* ID of code resource */
longint; * Refcon for param block */
longint; /* Requested Memory in

bytes*/
evenPaddedString; [* Status Description */

2
2

Field descriptions
Flags

Code Rsrc Type
Code Rsrc ID
RefCon

Requested Memory

Summary Description

ScriptCheck User's Manual

Currently reserved for use by Apple Computer, Inc. (2-bytes)
The resource type of the version info code resource. (4-bytes)
The resource ID of the version info code resource. (2-bytes)
Currently Ignored. (4-bytes)

The minimum number of free bytes the version info code
resource needs during execution. Currently Ignored. (4-bytes)

An optional string briefly describing the purpose of this
version info function. This string is never displayed to the
user. (even-padded Pascal string)

14

