
Installer Engine 4.5.2
Technical Guide

 ®

Document Version 1.4 - December 4, 1998

Table of Contents

Installer Engine 4.5.2 Technical Guide i

Installer Script Overview.. 1
Installer Scripting Writing Process ... 1

Choosing an Editing Environment.. 2
Before You Begin.. 2
Getting Started.. 3

Defining the User Interface .. 5
Example (Part 1): Implementing the User Interface ... 5

Step 1: Create the Custom Install Feature Hierarchy .. 5
Step 2: Add Feature Information Resources.. 6
Step 3: Create the Custom Install Framework.. 7
Step 4: Create the Recommended Feature Set Framework .. 7
Step 5: Create Additional Easy Feature Set Frameworks... 8
Step 6: Create a Preference Resource.. 8
Step 7: Test the User Interface .. 9

Using Packages (‘inpk’) .. 10
Atom Execution Order... 10

Package Reference.. 11
Using Frameworks (‘infr’)... 14

Custom Install Rule Framework.. 15
Easy Feature Set Rule Framework... 15
Global Rule Framework.. 15

Using Rules (‘inrl’) ... 15
Using Assertions... 17
Rule Execution.. 18
Supporting Up-Front Custom Feature Selection.. 18
Supporting Easy Feature Sets.. 19

Rule Clause Reference .. 20
Using the Installer Preference Resource (‘inpr’) ... 29

Using the Target Disk Interface.. 29
Using the Application Folder Interface... 29

Installer Preference Resource Reference... 29

Defining Actions... 33
Example (Part 2): Defining the Actions ... 33

Step 8: Create the File Atom Resources ... 34
Using the File Atom (‘infa’ & ‘ifa#’) .. 35

Storing File Atoms in the ‘ifa# Resource.. 35
Comparing Files by Version.. 35
Using Split Sources with File Atoms... 36
Using Atom Extenders with File Atoms... 36
Installing a Custom Folder Icon... 37

File Atom Reference... 37
Using the Resource Atom .. 42

Storing Resource Atoms in the ‘inr# Resource ... 42
Comparing Resources By Version... 42
Using Split Sources with Resource Atoms .. 43
Using Atom Extenders with Resource Atoms .. 43

Resource Atom Reference .. 43
Using the Font Atom... 48

Table of Contents

Installer Engine 4.5.2 Technical Guide ii

Auto-Routing Under Pre-7.1 Systems... 48
Using Atom Extenders with Font Atoms... 49

Font Atom Reference... 49
Using the ResMerge Atom... 55
ResMerge Atom Reference... 56
Using the Folder Atom (‘infm’)... 57

Specifying the Source and Target Folder ... 58
Installing Folders with Custom Icons... 58
Creating Empty Folders with a Folder Atom... 58

Folder Atom Reference ... 58
Using Action Atoms (‘inaa’).. 59
Action Atom Reference ... 59
Using Audit Atoms (‘inat’) ... 63
Audit Atom Reference .. 63
Using Boot Block Atoms (‘inbb’) .. 64
Boot Block Atom Reference... 64
Using Atom Extenders (‘inex’) ... 67

Creating an ‘inex’ Script Resource ... 67
Writing a Simple Atom Extender.. 68
Memory Allocation within Atom Extenders... 70
Running within a Sub-Heap.. 71
Converting Existing Decompression Code... 71

Atom Extender Reference.. 72
Using Version Compare Functions (‘invc’) .. 77

Using Version Compare Functions with File Atoms.. 78
Using Version Compare Functions with Resource Atoms ... 78
Version Compare Runtime Environment... 79

Version Compare Function Reference... 79

File Specification .. 81
About File Specifications ... 81
Example (Part 3): Specifying Target and Source Files .. 81

Step 9: Create the Target File Specifications .. 81
Step 10: Create the Source File Specifications... 82

Specifying Target Files (‘intf’ & ‘itf#’) ... 82
Storing Target File Specs in the ‘ift# Resource ... 83
Installing into Special Folders.. 83
Installing into the User-Selected Application Folder.. 84
Managing Rollbacks on Multiple Target Volumes .. 84
Installing onto the Installer Volume ... 85
Setting the Finder flags and Dates.. 85

Specifying Source Files (‘infs’).. 85
Source Disk Search Path .. 85

File Spec. Reference ... 86
About File Searching (‘insp’).. 90

Using File Searching with File and Resource Atoms .. 90
Using File Searching with Rule Clauses.. 90
Allowable Installer Functions During File Searching... 91

File Searching Reference.. 91
Using the Disk Order Resource (‘indo’).. 93
Disk Order Reference ... 94

Table of Contents

Installer Engine 4.5.2 Technical Guide iii

Miscellaneous Resources... 95
Example (Part 3): Specifying Target and Source Files .. 95

Step 11: Add Installer Version Resource .. 95
Step 12: Build the Installer Script File ... 95
Step 13: Run ScriptCheck on the Installer Script File... 95
Step 14: Test the Installer Script... 96

About the Installer Version Resource (‘invs’) ... 96
Installer Version Reference... 96
About the Script Size Resource (‘insz’) .. 97
Script Size Reference.. 97
About the Script Creation Date Resource (‘incd’) ... 97
Script Creation Date Reference... 97

Installer Functions.. 99
Installer Functions Reference .. 99

Runtime Issues.. 109
Installer Script Compatibility ..109

Interacting with the User..109
Compatibility for Existing Installer Scripts ...109

Message Area Strings ..110

Installer Apple Event Suite .. 118
Apple Event Suite Summary..118

Sending Apple Events to Installer Engine ...118
Starting an Installation or Removal...119
Canceling an Installation ..119
Registering and Deregistering Clients..119
Opening Installer Script Documents ...119
Quitting Installer Engine...119

How Installer Engine Processes Events..119
Installer Engine Objects ...120

Application Object ..121
Document Object ..121
Status Object...122
Easy Feature Set Object ...124
Custom Feature Set Object..124
Feature Object ...125

Receiving Events from Installer Engine...126
Receiving Progress Events ..126
Receiving Debugging Events...127
Receiving Error Events...128
Receiving a Report ..128
Receiving a Message Alert Display Request...130

Responsibilities of a Client ...130
Replacing Newer Files..131
Replacing Locked Files..131
Quitting Applications and Forcing Restarts..131
Source Disk Limitations ..131
Handling Parasite Installer Scripts...131

Table of Contents

Installer Engine 4.5.2 Technical Guide iv

Remapping Machine IDs ...132
AppleScript Example..132

AppleScript Example Using Polling Method..132
AppleScript Example Using Event Handlers..132

C H A P T E R 1

Installer Engine 4.5.2 Technical Guide 1

Installer Script Overview

An Installer script encapsulates the presentation of the installable features of a software
component to the user, as well as the actions required to install or remove each user-selectable
feature. A software component can be a complete stand-alone application, or a module intended
to be installed in conjunction with other software components.

This document covers the design process and technical details of writing an Installer script for
version 4.5.2 of the Installer Engine application. Installer Engine is a background-only
application that interprets and executes an Installer script, allowing a client application to
present the installable features to the user and perform the installation or removal of the
selected features. An example of a client application is the Upgrader application, which
Apple uses as the assistant-like user interface for installing Mac OS and is also licensable by
developers. Since Installer Engine provides an extensive Apple event suite for interacting with
the Installer script, developers and administrators can write specialized client applications
using AppleScript or a programming environment such as MetroWerks or MPW.

Related reading:

• Cappella User Manual2 D1 – Guide for creating Installer scripts using Cappella, a
visual environment for creating and editing Installer scripts using drag-n-drop
simplicity.

• Upgrader 1.2.3 Guide – Manual for using the client application “Upgrader” as the user
experience for your Installer script.

• ScriptCheck 4.2 User’s Guide – Information about how to use the ScriptCheck MPW
tool to check the integrity of your Installer script when using MPW to create your
Installer script.

Installer Scripting Writing Process
At its most basic level, the Installer script is a list of instructions for Installer Engine, in the
form of resources. Some of these resources define user-visible elements, and some define the low-
level actions carried out during the installation.

C H A P T E R 1

Installer Script Overview

Installer Engine 4.5.2 Technical Guide 2

Choosing an Editing Environment
At the moment, you have three primary methods of creating new Installer script, or modifying
an existing Installer script: a user-friendly editing environment called Cappella, the popular
resource editing tool Resorcerer , or the more intensive method using MPW.

Cappella This tool provides a visual environment for creating and
editing an Installer script using drag-n-drop simplicity to
quickly get your user interface and file actions defined.
Cappella provides access to the most popular features of
Installer Engine, but if you find you need access a feature
Cappella doesn’t support, you can easily switch to MPW to
finish your Installer script. You’ll find the latest version of
Cappella on the Installer SDK.

Resorcerer This third-party resource editing tool combined with the
Installer script template file provided on the Installer
SDK provides a semi-visual method of creating and editing
the resources in an Installer script. You’ll still need to
understand the relationship between the various resources,
but you won’t have to learn how to use MPW.

MPW Apple’s Macintosh Programmer's Workshop has been the
primary method of creating Installer scripts since the
inception of the Apple Installer. Unfortunately, using
MPW requires knowledge of the Rez language and an
understanding of its tools and environment. Given that
MPW provides complete access to all of Installer Engine’s
features, this document presents its technical information
using the MPW form.

Most likely you are learning about Installer scripts for one of two reasons: you need to create a
new Installer script, or you need to modify an existing one. Unless you are already familiar
with MPW and the Rez language, it’s probably best to begin with Cappella. And since
Cappella can import existing Installer scripts there’s no barrier to prevent switching to
Cappella if MPW was used for prior versions of your Installer script. Even if you choose to use
MPW or Resorcerer to begin a script from scratch, it might helpful to begin with one of our
examples on the SDK or a similar Installer script.

Before You Begin
Given the years of experience we’ve had at Apple writing Installer scripts for our own products,
it’s no coincidence that the layout of this technical guide parallels the strategy we use for our
largest projects. Since many decisions must be made before the Installer scriptwriter even
begins, knowing which questions to ask up front should help reduce changes later in the project.
Consider finding answers to this these questions before you begin:

• Does this software component have optional features that the user should be able to
choose to install or not install? This will determine if the user must customize the
installation, and thereby require you to provide a custom install mode.

• If the user can customize the installation, what are the installable features? Try to
define the installable features as important, user-identifiable attributes of the
software component. Unless your software component is extremely complex, try to limit
the number of features at any one level to five or less. Have the project team agree to
the custom install hierarchy before you begin writing your Installer script.

C H A P T E R 1

Installer Script Overview

Installer Engine 4.5.2 Technical Guide 3

• Which features will be installed by default? This will determine which features are
installed as part of the recommended feature set. You should always provide a
recommended installation (easy install).

• Is the recommended installation dependent on certain system software or hardware
attributes or conditions? This will require you to write additional Installer rules to
make decisions at run time. Compare the attributes you must inspect with the built-in
functionality of Installer Engine to predict whether you will have to write rule function
code resources.

• Are there other collections of optional features that users will want to install? If your
software component has many optional features, providing additional feature sets, such
as “Minimal Installation” or “Full Installation”, will help users quickly select the
configuration that is best for them.

• What files must be installed for each user-selectable feature? Knowing all the files
you’ll eventually install up-front is very helpful, even if you must install dummy files
until the real ones are available.

• Which pieces can’t simply be installed as complete files? You’ll what to know about
any special situations that cause you to create new files or update existing files using a
method other than a simple file copy. You might need to learn how to install or remove
individual resources using Resource Atoms.

• Which files are shared with other features or other software that cannot be removed?
You’ll want to prevent any shared files, such as libraries, system software pieces, etc.
from beging removed if you allow the user to remove the feature.

• Can you depend on files being in predetermined locations? If you must search for files to
update or remove, you’ll need to write a code resource to perform the actual search.

Getting Started
Once you’ve found some answers to our recommended questions you’re ready to begin creating the
necessary resources the will make up your Installer script. If you are:

• Using Cappella to create or modify your Installer script, it will be best if you use the
Cappella manual to as your primary guide and reference this document whenever you
need additional detail.

• Using MPW or Resorcerer to create or modify your Installer script, use this document.

It’s best if you start by creating a skeletal implementation of your user interface. This means
creating the resources that define the custom install feature hierarchy, the recommended
installation features set, plus additional feature sets you’ve defined. The chapter “Defining
the User Interface” describes the process of implementing the user interface.

Next, you’ll need to create the resources that describe the actions to perform. The chapters
“Define Action” and “File Specification” will give you the information you need to describe the
actions to perform to install each feature.

Next, there are some miscellaneous resources that must be added to your script to make it
complete.

Finally, you’ll want to run the ScriptCheck MPW tool on your Installer script to check the
integrity of your Installer script and update size and date information. See ScriptCheck 4.2
User’s Guide for more information about using ScriptCheck.

C H A P T E R 1

Installer Script Overview

Installer Engine 4.5.2 Technical Guide 4

Additional chapters cover the API available to code resources, run-time issues, and using Apple
events to drive Installer Engine.

C H A P T E R 2

Installer Engine 4.5.2 Technical Guide 5

Defining the User Interface

This chapter is broken into two main sections. First, we walk you through the process of
defining the user interface of your Installer script, then we provide a reference section for each
Installer script resource related to implementing the user interface. We use the “User Interface
Example” from the Installer SDK, for this and many of the subsequent chapters.

Example (Part 1): Implementing the User Interface
Our goal is to create a custom install feature list with multiple levels, and three easy feature
sets — recommended, minimal, and full — that install various collections of features.
Although we don’t write any decision making code using Installer rules in this example, you’ll
find several other examples on the SDK that do. Let’s start, why don’t we!

Step 1: Create the Custom Install Feature Hierarchy
Image your project team has decided they want the following feature hierarchy for your
software component:

Feature ID Removable

[] Feature #1 (i) 1001 Yes
[] Feature #2 (i) 1002 No
-- 9999 -
[] More Features 1003 Partial

[] Feature #3 2001 Yes
[] Even More Features 2002 Partial

[] Feature #4 3001 No
[] Feature #5 3002 Yes

 [] Feature #6 1004 No
 [] Feature #7 1005 Yes

We’ve arbitrarily assigned IDs to each feature, and indicated whether the feature can be
removed. Although only two of the features are specified to have information buttons ((i)),
you should normally supply information buttons for all features.

To define each feature, we create a package resource (‘inpk’) with our chosen ID and the feature
name we wish to be displayed to the user. We describe the package resources using the Rez
language in the following way:

resource 'inpk' (1001) {
format0 {

showsOnCustom, // show the package as a selectable item

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 6

// item when used as a subpackage

removable, // show under Custom Remove as a selectable
// item, when package is a subpackage

dontForceRestart, // don't make user reboot after installation

1001, // package comments resource ID

0, // package size (if 0, filled by ScriptCheck)

"Feature #1", // Custom Install selection description
{

'infa', 1001; // file to install or remove
},

}
};

resource 'inpk' (1002) { format0 { showsOnCustom, notRemovable, dontForceRestart,
1002, 0, "Feature #2", { 'infa', 1002 }, } };

resource 'inpk' (9999) { format0 { showsOnCustom, notRemovable, dontForceRestart,
0, 0, "-", {}, } };

resource 'inpk' (1003) { format0 { showsOnCustom, removable, dontForceRestart,
0, 0, "More Features", { 'inpk', 2001,'inpk', 2002 }, } };

resource 'inpk' (2001) { format0 { showsOnCustom, removable, dontForceRestart,
0, 0, "Feature #3", { 'infa', 2001 }, } };

resource 'inpk' (2002) { format0 { showsOnCustom, removable, dontForceRestart,
0, 0, "Even More Features", { 'inpk', 3001,'inpk', 3002 }, } };

resource 'inpk' (3001) { format0 { showsOnCustom, notRemovable, dontForceRestart,
0, 0, "Feature #4", { 'infa', 3001 }, } };

resource 'inpk' (3002) { format0 { showsOnCustom, removable, dontForceRestart,
0, 0, "Feature #5", { 'infa', 3002 }, } };

resource 'inpk' (1004) { format0 { showsOnCustom, notRemovable, dontForceRestart,
0, 0, "Feature #6", { 'infa', 1004 }, } };

resource 'inpk' (1005) { format0 { showsOnCustom, removable, dontForceRestart,
0, 0, "Feature #7", { 'infa', 1005 }, } };

Each package resource contains, either a list of actions perform, or a list of sub features. For our
example, all leaf node features reference a single file copy action (‘infa’), and the features
which contain sub features, reference other package resources (‘inpk’).

Step 2: Add Feature Information Resources
To help the user choose the most appropriate features when customizing the installation, you
should provide extra information for each feature. This is accomplished by referencing a
package comment resource (‘inpc’) from each package resource (‘inpk’).

The feature information resources in the Rez language:
resource 'inpc' (1001) {

format1 {
0, // sample date (08/08/94 seconds since 1904)
0x08018000, // sample version (8.0.1 GM)

0, // Ignored, not shown in user interface

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 7

9128, // icon resource ID ('ICN#', 'icl4', 'icl8')
// - ID must be greater than 1024
// - resource item is in included rsrc file

1001 // 'TEXT' resource ID of item containing package description
}

};

resource 'inpc' (1002) { format1 { 0, 0, 0, 9128, 1002 } };

data 'TEXT' (1001) { "This feature installs 'Example File • 1'." };
data 'TEXT' (1002) { "This feature installs 'Example File • 2'." };

// resource 'icl8' (9128) - Not listed due to space, see “UserInterfaceExample.r” for resource.

Step 3: Create the Custom Install Framework
To tell Installer Engine which package resources make up our feature hierarchy, we must create
a framework which adds the top-level features to the list. Since our framework doesn’t make
any decisions, it references a single rule resource that calls the AddCustomItems rule clause.

Here’s what these resources look like in the Rez language:
// custom install framework always uses ID of 766
resource 'infr' (766) {

format0 {{
pickFirst, { 800 },

}}
};

// rule that adds top-level features to Custom Install
resource 'inrl' (800) {

format0 {{
AddCustomItems{{ 1001, 1002, 1003, 1004, 1005 }},

}}
};

Step 4: Create the Recommended Feature Set Framework
For users that don’t want to customize the installation of our software component, but instead
wish to let the installation program decide what’s best we must define the recommended
installation. To do this we create another framework that adds those features we want
installed. We also provide a prompt string to be displayed when this feature set is chosen to
help guide the user.

Let’s assume your project team has decided that the following features will be installed as part
of the recommended installation: “Feature #1”, “Feature #3”, “Feature #5”, and “Feature #7”.
Here’s what these resources look like in the Rez language:

// Recommended Feature Set
resource 'infr' (1000) {

format0 {{
pickFirst, { 1000 },

}}
};

// Rule that specifies Recommended Feature Set
resource 'inrl' (1000) {

format0 {{
// define recommended feature set and user prompt
AddPackages{{ 1001, 2001, 3002, 1005 }},
AddUserDescription{ "Click Start to install the recommended software onto “^0”." },

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 8

}}
};

Step 5: Create Additional Easy Feature Set Frameworks
In addition to the recommended feature set, the project team has also decided to provide the
user with pre-defined feature sets for both minimal and full installations. The full feature set
will contain all features, and the minimal feature set will contain the following features:
“Feature #1” and “Feature #5”. To do this we create an additional framework for each feature
set.

Here’s what these resources look like in the Rez language:
// Full Feature Set
resource 'infr' (1001) {

format0 {{
pickFirst, { 1001 },

}}
};

// Rule that specifies Full Feature Set
resource 'inrl' (1001) {

format0 {{
// define ‘full’ feature set and user prompt
AddPackages{{ 1001, 1002, 1003, 1004, 1005 }},
AddUserDescription{ "Click Start to install all software onto “^0”." },

}}
};

// Minimal Feature Set
resource 'infr' (1002) {

format0 {{
pickFirst, { 1002 },

}}
};

// Rule that specifies Minimal Feature Set
resource 'inrl' (1002) {

format0 {{
// define ‘minimal feature set and user prompt
AddPackages{{ 1001, 3002 }},
AddUserDescription{ "Click Start to install a minimal set of software onto “^0”." },

}}
};

Step 6: Create a Preference Resource
Installer Engine provides a default preference resource, but because we want additional easy
feature sets, we reference these additional framework resources from our own preference
resource.

The preference resource define in the Rez language:
resource 'inpr' (300) {

format1 {
useDiskTargetMode, // User chooses an entire disk as the destination.
noSetupFunctionSupplied, // Not using a setup function code resource
dontAllowCleanInstall, // Clean install is only appropriate when installing Apple SSW
isNotSSWInstallation, // We're not installing System Software
'', // Setup function type, but we don't have one so it's zero
0, // Setup function ID, but we don't have one so it's zero
0, // Text Encoding ID of product's localized language, 0 for U.S.
1000, // ID of 'STR#' resource to store feature set names
{

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 9

1000, 1, // Recommended Feature Set (Feature set rule framework ID and
// string index of feature set name)

1001, 2, // Full Feature Set
1002, 3, // Minimal Feature Set

},
"" // Default target folder name. Not needed for disk mode.

}
};

// Feature Set names as presented to the user
resource 'STR#' (1000) {

{
/* [1] */ "Recommended Installation",
/* [2] */ "Full Installation",
/* [3] */ "Minimal Installation",

}
};

Step 7: Test the User Interface
Although we won’t be able to install anything, if we Rez the resources we’ve defined so far and
create an Installer script file, we can see our user interface in action. Using the single Installer
script mode of Upgrader, we should see the following interface:

The recommended installation is the initially selected feature set when first entering the
installation panel.

All feature sets are shown when the user clicks the Installation Type pop-up menu, in addition
to items for custom install and remove.

Selecting Customized Installation from the pop-up presents the Custom Install Selection
Dialog, in which the user has chosen the minimal installation feature set.

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 10

In the next chapter the example will continue with definition of the actions.

Using Packages (‘inpk’)
In addition to defining the custom install feature hierarchy, package resources can also be used
to group atoms together to make your scriptwriting easier. Installer Engine only knows what to
install by the package resource IDs you pass to it via the AddPackages and AddCustomItems
rule clauses. The package resource contains a list of those atoms or other packages that you
have specified to be installed or removed when the parent package is installed or removed.

Atom Execution Order
Once the user starts the installation or removal, all specified packages are decomposed into a
flat list of atoms. Therefore, the order Installer Engine executes the atoms is unrelated to their
position in the package resource’s part list. Prior to installation Installer Engine groups File,
Resource, Font, ResMerge, and Folder Atoms based on the source disk they reference. Those
atoms that do not need source disks (atoms that delete on install) are grouped together.

For each source disk Installer Engine executes the atoms in the following order:

■ Folder Atoms.

■ File Atoms. This allows you to overwrite a file copied with a Folder Atom on the same
or previous source disk.

■ ResMerge Atoms. This allows you to add or replace additional resources to a file copied
on the same or previous source disk.

■ Resource Atoms. This allows you to add or replace a resource in a file copied with a
Folder, File or ResMerge Atom on the same or previous source disk.

■ Font Atoms.

Although Installer Engine will consistently order the atoms of a specific type, the scriptwriter
should never depend on this ordering, except for Action Atoms, which are always guaranteed to
be ordered by their ‘inaa’ resource ID.

To ensure that the source disks will always be copied in the same order, include a Disk Order
resource (‘indo’) in your script.

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 11

Package Reference

Package Resource Description
Packages have an 'inpk' resource type. Its template is shown below.
#definePackageFlags \

booleandoesntShowOnCustom, showsOnCustom; \
booleannotRemovable, removable; \
booleanforceRestart, dontForceRestart; \
fill bit[13] /* Reserved */

type 'inpk' {
switch {

case format0:
key integer = 0; /* Package Format version */
PackageFlags; /* Package Flags */
unsigned integer; /* Package Comment Rsrc ID */
unsigned longint; /* Package Size */
EvenPaddedString; /* Package Name */
unsigned integer = $$CountOf(PartsList);
wide array PartsList { /* Parts List */
 RsrcType; /* Part Type */
 RsrcID; /* Part ID */
};

};
};

Flag descriptions

showsOnCustom/doesntShowOnCustom
Determines if the package should be displayed in the
Custom Install list.

removable/notRemovable Determines if the package should be added to the list of
packages to be removed when the user removes this feature.
When used with the showsOnCustom flag, determines if
the package is selectable in the Custom Remove list. Note
that you must also set the deleteWhenRemoving flag on
any File, Resource or Font Atoms that are to be removed and
you must set the actOnRemove flag in any Action Atoms
that are to be called.

To include a package as a selectable item within Custom
Remove, it is necessary to also include the package as a
selectable item in Custom Install. There is no option to
display a package as a selectable item in Custom Remove,
but not in Custom Install. You may however choose to do
nothing if the package is a selected item within Custom
Install, and only act on that selected package during
Custom Remove, but this may be confusing to the user.

forceRestart/dontForceRestart
Determines if the client application should force the user to
restart their Macintosh after installing or removing this
package when the currently active System Folder is a
target. Use the forceRestart flag if the installation

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 12

requires rebooting to gain functionality, or if the package
makes changes to the System file.

Field descriptions

Package Comment Rsrc ID
The resource ID of a package comment resource that
displays the package’s size, date, version and a brief
description of its contents or what it does. It’s recommended
that every package shown in the Custom Install list have a
comment resource. If you do not wish to provide a package
comment, place a zero in this field. There are two types of
comment resources. The first, an ‘icmt’ resource, provides
basic information in one resource. The newer ‘inpc’ resource
supports the RAM Size field and references a ‘TEXT’
resource that allows up to 32K of information text. (2-
bytes)

Package Size The size of all atoms and packages contained in this
package. This value is used to display in the comment
window as well as provide the estimated selection size
provided in Custom Install. Installer Engine does not use
this field to determine the actual disk space requirements
of the target hard disk during preflighting. Individual
atom sizes are summed to determine if sufficient target disk
space is available. (4-bytes)

Package Name The name to be displayed in the Custom Install list. (even-
padded Pascal string)

If the Package Name field is a single dash character (-), a
gray horizontal line appears in the list of packages. This
dash line is similar to the one found for menu resources.
This line can be used to separate the items that can be
installed into logical groups. If a package is used just for
displaying a separation line, all of the other fields are
ignored.

Below is a sample gray-line package:

resource 'inpk' (1, "dashed line") {
format0 {

showsOnCustom,
notRemovable,
dontForceRestart,
0, /* Pkg Cmnt Rsrc ID */
0, /* Package size */
"-", /* Package Name */
{} /* empty brackets */

}
};

Part List The type and resource ID of each part contained in this
package. (4-bytes + 2-bytes for each list item)

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 13

Package Comment Resource Description
Visible packages should reference one of two comment resources to provide additional
information to the user about the packages they might want to install or remove. The older
‘icmt’ is supported, but cannot specify the RAM Size field. The new ‘inpc’ comment resource
must reference a ‘TEXT’ resource that contains the text to display at the bottom of the package
info window. Both templates are described below.

New Package Comment Resource Description

type 'inpc' { * New Custom Item comment */
switch {

case format1:
key integer = 1; /* Custom Item Format version */
unsigned hex longint; /* Custom Item Date */
unsigned hex longint; /* Custom Item Version */
unsigned hex longint; /* Custom Item RAM Requirements */
rsrcID; /* Custom Item Icon ID */
rsrcID; /* Custom Item Desc. ('TEXT' ID)*/

};
};

Field descriptions

Custom Item Date The release date of the package. The value is specified in
seconds since January 1, 1904. Installer Engine uses the
IUDateString toolbox call to get the string to display. See
Inside Macintosh Volume II, page 377 and Inside Macintosh
Volume I, page 504. (4-bytes)

Custom Item Version The version number of this package. Installer Engine can
decipher two version formats:

Binary coded decimal number. The ones digit is the
secondary revision (0 to 9), the tens digit is the primary
revision (0 to 9), and all greater digits make up the version
number. For example, 100 is version 1.0, 290 is version 2.9,
605 is version 6.0.5, and 5704 is version 57.0.4. Installer
Engine knows this format because it will always be less
than 10000. (4-bytes)

‘vers’ resource hexadecimal number. See the definition of
‘Version’ in the “InstallerTypes.r” file. (4-bytes)

Custom Item RAM Requirements
The estimated RAM needs of this package. Installer Engine
displays this value in the package information window.
(4-bytes)

Custom Item Icon ID The ID of the appropriate ICON, ICN#, icl4 and/or
icl8 resources. The ID must be 1024 or greater (IDs below
this range are reserved). If the script contains these icons,
the appropriate one is displayed in the upper left corner of
the package information window. (2-bytes)

Custom Item Description
The ID of a ‘TEXT’ resource containing the text to appear in
the comment section of the package information window. It

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 14

should describe the package and provide any information
that will help the user decide if installing or removing the
package is appropriate. Styled text is not currently
supported. (2-bytes)

Old Package Comment Resource Description

type 'icmt' {
unsigned hex longint; /* Release Date */
unsigned hex longint; /* Version Number*/
RsrcID; /* Icon ID */
EvenPaddedString; /* Package Comment Text */

};

Field descriptions

Release Date The release date of the package. The value is specified in
seconds since January 1, 1904. Installer Engine uses the
IUDateString toolbox call to get the string to display. See
Inside Macintosh Volume II, page 377 and Inside Macintosh
Volume I, page 504. (4-bytes)

Version Number The version number of this package. Installer Engine can
decipher two version formats:

Binary coded decimal number. The ones digit is the
secondary revision (0 to 9), the tens digit is the primary
revision (0 to 9), and all greater digits make up the version
number. For example, 100 is version 1.0, 290 is version 2.9,
605 is version 6.0.5, and 5704 is version 57.0.4. Installer
Engine knows this format because it will always be less
than 10000. (4-bytes)

‘vers’ resource hexadecimal number. See the definition of
‘Version’ in the “InstallerTypes.r” file. (4-bytes)

Icon ID The ID of the appropriate ICON, ICN#, icl4 and/or
icl8 resources. The ID must be 1024 or greater (IDs below
this range are reserved). If the script contains these icons,
the appropriate one is displayed in the upper left corner of
the Package Comment window. (2-bytes)

Package Comment Text The text which appears in the comment section of the
Package Comment. It should describe the package and
provide any information that will help the user decide if
installing or removing the package is appropriate. (even-
padded Pascal string)

Using Frameworks (‘infr’)
The framework and rule resources work together to enable you to define the user interface and
make run-time decisions about what should be installed based your environment. For example,
in Apple’s Mac OS Installer scripts, we install different software depending on the type of
machine on which Installer Engine is running, the type of target disk the user has chosen, and
what has previously been installed. Depending on the requirements of your user interface, you
may need to create some or all of the three uses of framework resources.

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 15

Custom Install Rule Framework
The custom install rule framework provides control over items shown in the custom install
feature hierarchy. When Installer Engine finds and opens the script, the custom install
framework is located by looking for an ‘infr’ resource of ID 766. If one is not found, Installer
Engine uses the Installer 3.X method of determining which packages should be shown in the
custom install feature hierarchy to provide compatibility with older Installer scripts.

In order for features to appear in the list, the scriptwriter must call the AddCustomItem rule
clause for each top-level feature to be displayed. The AddCustomItem rule clause accepts a
list of the package resource (‘inpk’) IDs. The items will be listed in the order they are added.
Sub-packages with the showsOnCustom flag set will automatically be added at the
appropriate levels in the hierarchical list.

Easy Feature Set Rule Framework
The easy feature set rule framework provides control over the prompt string and package
resources specified to be installed for the feature set. When using the older, format 0 of the
preference resource (‘inpr’), Installer Engine locates the recommended installation framework
by looking for an ‘infr’ resource that does not have the ID of 765 or 766. This is to provide
compatibility with Installer 3.4.X scripts that can use any ID for their ‘infr’ resource. If you are
using the latest version of the preference resource, then you will have listed the IDs of the easy
feature sets in the order you wish to display them to the user.

Global Rule Framework
The global framework is an optional framework that provides common rules between the custom
install and easy feature set frameworks. The global framework is always executed before the
easy feature set or custom install frameworks, thereby encouraging smaller and simpler scripts
by allowing the other frameworks to refer to assertions set in the global framework. All rule
clauses can be called in the global framework, but those not relevant to the interface mode are
ignored. The global framework is located by looking for an ‘infr’ resource of ID 765.

Using Rules (‘inrl’)
Rules, which are organized by the rule framework, provide the ability to make run-time
decisions. Rules can examine the installation environment, save information about the
installation environment to simplify other rules, provide information to the user about what
the installation will do for them, report errors, and/or recommend which features should be
installed.

Rules are composed of one or more clauses. Each clause returns a Boolean value. The first clause
that returns FALSE terminates the rule. If the terminated rule is part of a pickFirst set in
the rule framework then the following rule, if any, is evaluated. If all of the clauses in a rule
return TRUE, the rule is said to fire. If the firing rule is part of a pickFirst set in the rule
framework then no more rules in the set are evaluated.

Clauses can be combined to develop the equivalent of an if-then statement. For example, the if-
then statement:
IF the chosen target is a floppy disk
THEN use the package named floppyInstall in the Easy Install

would be written as a rule as follows:

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 16

resource 'inrl' (rFloppyInstall) {
format0 {{

checkTgtVolSize {floppy, floppy}, <-- A Clause
addPackages {{pFloppyInstall}} <-- Another Clause

}};
};

The scriptwriter defines the constants rFloppyInstall and pFloppyInstall earlier in the
script (for example: #define rFloppyInstall 1000). This rule has two clauses. The first
clause, checkTgtVolSize returns TRUE if the currently chosen target volume is a floppy. If
checkTgtVolSize returns TRUE, the second clause is evaluated. This second clause,
addPackages , always returns TRUE, but also has the effect of adding the package whose ID is
pFloppyInstall to the list of packages to be used in the Easy Install. So, if the first clause is
TRUE, the addPackages clause will be TRUE and the rule will fire.

Clauses can be ANDed together. For example, we could write:
IF the chosen target is a floppy disk

AND we are installing on a Mac+
THEN return the package named floppyInstall to Easy Install

AND add “• Mac+ Floppy Installation” to the Easy Install text

as

resource 'inrl' (rFloppyInstall) {
format0 {{

checkTgtVolSize {floppy, floppy},
checkGestalt {gestaltMachineType, {gestaltMacPlus}},
addPackages {{pFloppyInstall}},
addUserDescription {'• Mac+ Floppy Installation'}

}};
};

This rule has four clauses. If the first two return TRUE (i.e., we are installing onto a floppy and
the current machine is a Mac Plus) then the second two clauses will be evaluated. Note that
the clauses addPackages and addUserDescription always return TRUE.

For a more complete example, suppose you wanted to add a piece of text to the Easy Install
message which described the machine you were installing onto. The pseudo code is as follows:
IF (Machine=Plus) THEN

Return the message 'Installing onto your Macintosh Plus'
ELSE IF (Machine=SE) THEN

Return the message 'Installing onto your Macintosh SE
ELSE IF (Machine=II) THEN

Return the message 'Installing onto your Macintosh II'

The rule framework is as follows:
resource 'infr' (kEasyInstallFrameworkRsrcID) {

format0 {{
pickFirst, {rPlusUD, rSEUD, rIIUD},

}}
};

The rules which this framework references are as follows:
resource 'inrl' (rPlusUD) {

format0 {{
checkGestalt {gestaltMachineType, {gestaltMacPlus}},
addUserDescription {'Installing onto your Macintosh Plus'}

}};

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 17

};

resource 'inrl' (rSEUD) {
format0 {{

checkGestalt {gestaltMachineType, {gestaltMacSE}},
addUserDescription {'Installing onto your Macintosh SE}

}};
};

resource 'inrl' (rIIUD) {
format0 {{

checkGestalt {gestaltMachineType, {gestaltMacII}},
addUserDescription {'Installing onto your Macintosh II}

}};
};

The constants, rPlusUD, rSEUD , and rIIUD would be defined in the script before being used.

Using Assertions
It is often useful to keep track of information about the type of installation that is being done.
This allows a more natural script organization. Note: Installer Engine clears all assertions
prior to firing rules. Suppose, for example, that many of the rules in a script depended on
knowing whether an update or a new install was being done. The pseudo code for this is as
follows:
IF System File Exists

AND Installing on Mac+
THEN Use Mac+ Update packages

IF System File Exists
AND Installing on MacSE

THEN Use MacSE Update packages

More conveniently (and with better performance):
IF System File Exists
THEN Assert(updating)

IF updating
AND Installing on Mac+

THEN Use Mac+ Update packages

IF updating
AND Installing on MacSE

THEN Use MacSE Update packages

Assertions provide this functionality. Using assertions is a three-step process: 1) define a
unique constant for the assertion, 2) set the assertion using an AddAssertion clause, and 3)
check the assertions via CheckAllAssertions, CheckAnyAssertion ,
CheckMoreThanOneAssertion, CheckAllNonAssertions, or
CheckAnyNonAssertion clauses. The above example is written as follows:
#define aUpdating 1 <-- uniquely defined

resource 'infr' (kEasyInstallFrameworkRsrcID) {
format0 {{

pickAll, {rCheckUpdate, rSEUpdate, rIIUpdate},
}}

};

resource 'inrl' (rCheckUpdate) {

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 18

format0 {{
checkFileRsrcForkExists {fsSystemFile},
addAssertion {{aUpdating}} <-- set it

}};
};

resource 'inrl' (rSEUpdate) {
format0 {{

checkAllAssertions {aUpdating}, <-- check it
checkGestalt {gestaltMachineType, {gestaltMacSE}},
addPackages {{pSEUpdate}}

}};
};

resource 'inrl' (rIIUpdate) {
format0 {{

checkAllAssertions {aUpdating} <-- check it
checkGestalt {gestaltMachineType, {gestaltMacII}},
addPackages {{pIIUpdate}}

}};
};

Rule Execution
Frameworks are evaluated whenever the environment may have changed. Although this
should not be an issue with most Installer script, don’t assume your rules are only executed once
during the installation.

Supporting Up-Front Custom Feature Selection
To enable the user to customize the installation of your product in future versions of Upgrader,
we must run the custom install rules before the installation actually starts. Most Installer
scripts warn the user if the target volume will not support the installation, such as a missing
System Folder or files. This works fine when the Installer script is run individually, but as a
chained install in Upgrader there may be one or more Installer scripts that will be run before
your script. If the target disk is completely empty, then most scripts correctly call
ReportVolError, but some don’t call AddCustomItems in this case. The result is that the human
interface doesn’t have a custom install hierarchy to show, and consequently can’t let the user
customize the installation, thereby forcing the user to perform an easy install.

The changes required to support this scenario are quite simple, and many scripts already
support this scenario. To solve this problem, we need the scriptwriter to always call
AddCustomItems, even when they report a volume error. The human interface code will ignore
your volume error and present the custom install hierarchy so the user can choose the features to
be installed later. If at the time of installation, your custom rules still returns an error,
Upgrader will alert the user and stop the installation of your product.

As an example of a script that doesn't support up-front custom selection in all cases, consider the
following custom rules (displayed in InstallTalk pseudo code). These rules make a simple
decision based on the version and existence of the target System file.

Listing 3-3 Problematic custom feature set rules

if CheckFileVersion(targetFile20000, 8, 0, 0, final, 0) then
 AddCustomItems(package1, package3)
else if CheckFileVersion(targetFile20001, 7, 6, 0, final, 0) then
 AddCustomItems(package2, package3)
else

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 19

 ReportVolError("This product requires System 7.6 or later.")
end

To make the above custom rules provide a custom hierarchy even when calling ReportVolError,
we need to add calls to AddCustomItems, as shown in the modified rules below.

Listing 3-4 Problematic custom feature set rules

if CheckFileVersion(targetFile20000, 8, 0, 0, final, 0) then
 AddCustomItems(package1, package3)
else if CheckFileVersion(targetFile20001, 7, 6, 0, final, 0) then
 AddCustomItems(package2, package3)
else
 ReportVolError("This product requires System 7.6 or later.")
 AddCustomItems(package1, package3)
end

With these changes Upgrader can present a feature hierarchy to the user even when the target
is empty. Unfortunately, this strategy still presents a problem to Installer when upgrading
from 7.6 to 8.X. When we run the custom rules before the installation is started in order for the
user to select the desired features, package 2 will be added to feature hierarchy. But when the
Installer script is actually run — chained somewhere after the SSW script — the custom rules
will add package 1. To combat this problem, Upgrader saves the package name in addition to
the package ID so the correct package is selected once the installation is ready to begin. In the
example above, it would be important for the scriptwriter to use the same name for both
package 1 and package 2.

Note: To Upgrader correctly handle up-front custom selection, set the Support Dynamic Custom
Hierarchy option for the software component in the installation plug-in preference resource.

Supporting Easy Feature Sets
Users have always wanted to see which custom features are installed for an easy install. Like
the up-front custom selection problem discussed above, we need to have the easy rules call
AddPackages even when it calls ReportVolError. Additionally, the package IDs passed in the
calls to AddPackages must correspond to the package IDs shown in the custom hierarchy.

To illustrate the problem, consider the following easy rules:

Listing 3-5 Problematic easy feature set rules

AddUserDescription("Click Install to place ...")
 AddPackages(package4)
else if CheckFileVersion(targetFile20001, 7, 6, 0, final, 0) then
 AddUserDescription("Click Install to place ...")
 AddPackages(package5)
else
 ReportVolError("This product requires System 7.6 or later.")
end

There are two problems here. The first problem is that package 4 or package 5 is added, but
neither was added using AddCustomItems, directly or indirectly. To fix this problem we add
package 1 or package 2 instead. The second problem is the same problem we had with the
custom rules. Since AddPackages doesn't get called when the target System file doesn't exist,
the human interface cannot show which features will be installed for an easy install. To fix
this, we add calls to AddPackages even when ReportVolError is called.
Listing 3-6 Corrected easy feature set rules

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 20

if CheckFileVersion(targetFile20000, 8, 0, 0, final, 0) then
 AddUserDescription("Click Install to place ...")
 AddPackages(package1)
else if CheckFileVersion(targetFile20001, 7, 6, 0, final, 0) then
 AddUserDescription("Click Install to place ...")
 AddPackages(package2)
else
 ReportVolError("This product requires System 7.6 or later.")
 AddPackages(package1)
end

Since calls to ReportVolError always override any calls to AddCustomItems, AddPackages, or
AddUserDescription, you don't have to worry about confusing the Upgrader by calling
ReportVolError in addition to calling AddPackages. The modifications presented above will
continue to be compatible with older versions of Installer.

Rule Clause Reference
This section describes the available rule clauses.
#define kEasyInstallFrameworkRsrcID 764
#define kCustomInstallFrameworkRsrcID 766
#define kGlobalFrameworkRsrcID 765

Global Rule Clauses

CheckGestalt

CheckGestalt { gestaltSelector, {gestaltReturnValuesList} }

gestalt Selector A selector value specifying the type of system information
to check. (4-bytes)

gestaltReturnValuesList A list of Gestalt return values. If the Gestalt result matches
one of the values in the list the function will return TRUE.
(4-bytes)

DESCRIPTION

Use the CheckGestalt clause to check a Gestalt attribute. CheckGestalt takes two
arguments: a Gestalt selector, and a list of valid Gestalt return values. Installer Engine
calls Gestalt with the given selector. If the Gestalt return value is in the list of valid return
values, checkGestalt returns TRUE.

NOTE

If the Gestalt selector specified requires a value containing flags (or a bit mask), you should
use the CheckGestaltAttributes routine described below. ◆

CheckGestaltAttributes

CheckGestaltAttributes { gestaltSelector, bitMask }

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 21

gestalt Selector A selector value specifying the type of system information
to check. (4-bytes)

bitMask A bit mask that will be AND’ed with actual result from
the Gestalt call. (4-bytes)

DESCRIPTION

Use the CheckGestaltAttributes clause to check one or more specific bits in the Gestalt
value. Passing a bit mask with more than one bit set will effectively OR the specified bits in
the Gestalt result value. CheckGestaltAttributes takes two arguments: a Gestalt
selector, and a bit mask. Installer Engine calls Gestalt with gestaltSelector , then AND’s
the result value with bitMask . If this value is non-zero then CheckGestaltAttributes
returns TRUE.

CheckMinMemory

CheckMinMemory{ minimalMemory }

minimalMemory The minimal number of megabytes of physical memory. (4-
bytes)

DESCRIPTION

Use CheckMinMemory to specify the minimal amount of physical memory needed for an
installation. Note that you cannot use CheckGestalt for this job unless you want to list all of
the memory configurations applicable for an installation. CheckMinMemory takes a single
argument: the minimal amount of memory (in MB) needed for this clause to be TRUE.

CheckFileDataForkExists

CheckFileDataForkExists{ targetFileSpecRsrcID }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

DESCRIPTION

Use CheckFileDataForkExists to determine whether a specific file has a data fork. It
takes a single argument: the Target File Spec ID of the file you are interested in.
CheckFileDataForkExists returns TRUE if the file referenced by the File Spec exists and
has a data fork.

CheckFileRsrcForkExists

CheckFileRsrcForkExists{ targetFileSpecRsrcID }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

DESCRIPTION

Use CheckFileRsrcForkExists to determine whether a specific file has a resource fork. It
takes a single argument: the Target File Spec ID of the file you are interested in. It returns

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 22

TRUE if the file referenced by the File Spec exists and has a resource fork.
CheckFileRsrcForkExists is a convenient way to see if a file which contains code exists..

CheckFileContainsRsrcByID

CheckFileContainsRsrcByID{ targetFileSpecRsrcID, resourceType, resourceID }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

resourceType A resource type. (4-bytes)

resourceID A resource ID. (2-bytes)

DESCRIPTION

Many times it is necessary to determine whether a specific file contains a specific resource. Use
the checkFileContainsRsrcByID clause to determine whether a file has a resource with a
known type and ID. checkFileContainsRsrcByID takes three arguments: the File Spec ID
of the target file, the type of the resource, and the ID of the resource.

CheckFileContainsRsrcByName

CheckFileContainsRsrcByName{ targetFileSpecRsrcID, resourceType, resourceName }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

resourceType A resource type. (4-bytes)

resourceName A resource name. (even-padded Pascal string)

DESCRIPTION

Use checkFileContainsRsrcByName to determine whether a file has a resource with a
known type and name. checkFileContainsRsrcByName takes three arguments: the File
Spec ID of the target file, the type of the resource, and the name of the resource.

CheckFileVersion

CheckFileVersion{ targetFileSpecRsrcID, majorVersNum, minorVersNum, releaseStage,
releaseNum}

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

majorVersNum The major version number. (2-bytes)

minorVersNum The minor version number. (2-bytes)

releaseStage The release stage. Four release stage constants are defined
in the InstallerTypes.r file: development, alpha, beta,
final and release. (2-bytes)

releaseNum The release number. (2-bytes)

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 23

DESCRIPTION

Use CheckFileVersion to check the version of a file. CheckFileVersion takes two
arguments: the filespec ID of the file in question, and the minimal version of the file needed for
this clause to be TRUE. Installer Engine obtains this information from the file’s 'vers' ID =1
resource. If no 'vers' resource exists, CheckFileVersion returns FALSE.

For example, to check for System version 6.0.5 or newer, use the following clause.
checkFileVersion{SysFileSpec, 6, 5, release, 0};

To check for System version 7.1 or newer, use the following clause.
checkFileVersion{FinderFileSpec, 7, 0x10, release, 0};

To check for AppleTalk version 57.0.4 or newer, use the following clause.
checkFileVersion{ATalkFileSpec, 0x57, 0x04, release, 0};

CheckFileCountryCode

CheckFileCountryCode{ targetFileSpecRsrcID, countryCode }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

countryCode A country code. (2 bytes)

DESCRIPTION

Use the CheckFileCountryCode clause to determine a file’s country code (the name 'country
code' has recently been changed to region code). CheckFileCountryCode takes two
arguments: the File Spec ID of the file in question, and the country/region code required.
Installer Engine obtains this information from the file’s 'vers' resource. The country (MPW
3.1) /region (MPW 3.2) codes can be found in the MPW interface file SysTypes.r.

CheckTgtVolSize

CheckTgtVolSize{ minimumSize, maximumSize }

minimumSize The minimum size of the volume in Kbytes. (4-bytes)

maximumSize The maximum size of the volume in Kbytes. (4-bytes)

DESCRIPTION

Use the CheckTgtVolSize clause to check target disk size. Note that this check is for disk
size (to distinguish floppy from hard disks), not available disk space. Installer Engine itself
handles the case where the target has insufficient space to accomplish the installation.
CheckTgtVolSize takes two arguments: the smallest and largest size disks possible. To
match any size disk, the minimal and maximal target disk sizes are both zero. If the minimum
size is greater than zero but the maximum size equals zero, only the minimal requirement is
used. Note that there are three size pairs defined in InstallerTypes.r. If you use {floppy,
floppy} then checkTgtVolSize will return TRUE for 400 or 800k floppy targets. If you use
{hdFloppy, hdFloppy} then checkTgtVolSize will return TRUE for high density floppy
(1.4mb) targets. If you use {hardDisk, hardDisk} then checkTgtVolSize will return TRUE for
any target volume of 10mb or greater.

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 24

NOTE

Since RAM disks may be most any size, make sure your rules handle this situation correctly. ◆

CheckRuleFunction

CheckRuleFunction{ ruleFunctionCodeRsrcID }

ruleFunctionCodeRsrcID The resource ID of a RuleFunction resource (‘inrf’). (2-bytes)

DESCRIPTION

Rule functions provide you with the ability to extend the rule-based decision-making scheme
using a custom code resource written by you or someone else. When the CheckRuleFunction
clause is evaluated the code resource is called and its return result determines whether the
clause returns TRUE or FALSE.

To call a rule function code resource, first create a Rule Function resource (‘inrf’) that describes
how to call the code resource. The Rule Function resource is described in the “InstallerTypes.r”
file and the code resource can include the file “RuleFunctionHeader.h”.

When the code resource is called, the code resource receives the parameter block:
typedef struct {

ProcPtr fCallBackProcPtr;
short fTargetVRefNum;
long fTargetFolderDirID;
short fSystemVRefNum;
long fSystemBlessedDirID;
long fRefCon;

} RuleFunctionPBRec, *RuleFunctionPBPtr;

NOTE

The fTargetFolderDirID field will be -1 if Installer Engine is using disk mode, the folder
does not exist, or a target File Spec referencing the reserved folder path folder-user has not
been referenced by in another rule clause prior to calling the CheckRuleFunction rule clause. ◆

The code resource should use the function declaration:
long RuleFunction(RuleFunctionPBPtr);

The function must return either a TRUE or FALSE value. Constants for these values are defined
as:
#define kTRUERuleFunctionResult 1
#define kFALSERuleFunctionResult 0

▲ W A R N I N G

If you choose to create a sub-heap for each invocation of the Rule Function please read the
section “Running with a Sub-Heap” within the Atom Extender portion of this document. You
can enter 0 (zero) in the requested memory field to not create a sub-heap and run inside Installer
Engine’s heap. ▲

AddAssertion

AddAssertion{ { assertionValueList } }

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 25

assertionValueList A list of 2-byte assertion values that you wish to set.

DESCRIPTION

Use the AddAssertion clause to set a list of 1 or more assertions. AddAssertion takes a list
of assertion constants as arguments. The constants are uniquely defined Rez symbols.
addAssertion always returns TRUE.

CheckAllAssertions

CheckAllAssertions{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to check.

DESCRIPTION

Use CheckAllAssertions to check all of the constants a given list are currently asserted.
CheckAllAssertions takes a list of assertion constants as arguments.
checkAllAssertions returns TRUE if all of the items in the list have been asserted.

CheckAnyAssertion

CheckAnyAssertion{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to check.

DESCRIPTION

Use CheckAnyAssertion to check if one or more constants are currently asserted.
CheckAnyAssertion takes a list of assertion constants as arguments. CheckAnyAssertion
returns TRUE if one or more of the items in the list have been asserted.

CheckMoreThanOneAssertion

CheckMoreThanOneAssertion{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to check.

DESCRIPTION

CheckMoreThanOneAssertion is used to detect whether more than one constant in a list of
constants are currently asserted. CheckMoreThanOneAssertion takes a list of assertion
constants as arguments, and returns TRUE if more than one of the constants has been asserted.
CheckMoreThanOneAssertion could be used, for example, to determine whether more than
one printer is being installed. In that case, display a generic message reporting that “printer
software” is being installed.

ClearAssertions

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 26

ClearAssertions{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to clear.

DESCRIPTION

Use the ClearAssertions clause to clear a list of one or more assertions. ClearAssertions
takes a list of assertion constants as arguments. The constants are uniquely defined Rez symbols.
ClearAssertions always returns TRUE.

CheckAllNonAssertions

CheckAllNonAssertions{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to check.

DESCRIPTION

Use CheckAllNonAssertions to check all of the constants a given list are currently not
asserted. CheckAllNonAssertions takes a list of assertion constants as arguments.
CheckAllNonAssertions returns TRUE if all of the items in the list are not currently
asserted.

CheckAnyNonAssertion

CheckAnyNonAssertion{ { assertionValueList } }

assertionValueList A list of 2-byte assertion values that you wish to check.

DESCRIPTION

Use CheckAnyNonAssertion to check if one or more constants are currently not asserted.
CheckAnyNonAssertion takes a list of assertion constants as arguments.
CheckAnyNonAssertion returns TRUE if one or more of the items in the list are currently not
asserted.

AddAuditRec

AddAuditRec{ targetFileSpecRsrcID, selector, value }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

selector The selector. (4-bytes)

value The value (4-bytes)

DESCRIPTION

The AddAuditRec clause is used to add a record to a target file’s audit record. AddAuditRec
takes three arguments: a File Spec ID for the target file, an audit selector, and an audit value.

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 27

CheckAnyAuditRec

CheckAuditRec{ targetFileSpecRsrcID, auditSelector, {auditValueList} }

targetFileSpecRsrcID A Target File Spec resource ID. (2-bytes)

auditSelector The selector. (4-bytes)

auditValueList A list of 4-byte values.

DESCRIPTION

The CheckAnyAuditRec clause is used to determine whether a given selector and value have
been entered into the audit record of a target file (specified by the File Spec ID).
CheckAnyAuditRec takes three arguments: a File Spec ID for the target file, an audit
selector, and a list of audit values. If the value found in the audit resource for the specified
selector is contained in the list of values the clause returns TRUE.

ReportVolError

ReportVolError{ errorString }

errorString String to display. (Pascal String)

DESCRIPTION

ReportVolError is used to report an error because of a problem with the target disk (not a
hard disk, disk size too small, no system, et cetera). The ReportVolError clause reports an
error message in the Easy Install or Custom Install message area. ReportVolError always
returns TRUE, so it can be called multiple times in a script. Messages are concatenated, just as
with addUserDescription . Up to four lines can be displayed. ReportVolError takes a
single even-padded Pascal string as an argument. To insert the name of the volume into the
string, place the characters "^O" in the desired place.

If Installer Engine evaluates a ReportVolError clause, the Easy Install or Custom Install
dialog displays a caution icon, and the Install button is dimmed. If you use this clause, the user
can still switch volumes.

NOTE

Calling ReportVolError from within the global framework may not work correctly for some
scripts. Depending on the rules within the easy or custom framework, the Install button may
still be enabled. To solve this, call ReportVolError from within the easy or custom framework.
◆

ReportSysError

ReportSysError{ errorString }

errorString String to display. (Pascal String)

DESCRIPTION

ReportSysError is used to report an error because of a problem with the system Installer
Engine is running on (usually unsupported hardware or a fatal error). The ReportSysError

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 28

clause reports an error message to the Easy Install or Custom Install screen, which ever shows
first. ReportSysError always returns TRUE, so it can be called multiple times in a script. Up
to four lines can be displayed. Messages are concatenated, just as with AddUserDescription .
ReportSysError takes a single even-padded Pascal string as an argument. If Installer Engine
evaluates a ReportSysError clause, the Easy Install or Custom Install dialog displays a
caution icon, and the Install button is dimmed. If you use this clause, the user cannot switch or
eject volumes from the interface and has only one option: to quit.

Easy Feature Set Rule Clauses

AddPackages

AddPackages{ { assertionValueList } }

packageIDList A list of 2-byte package resource (‘inpk’) IDs.

DESCRIPTION

The AddPackages clause is used to return a set of packages to the Easy Install screen.
AddPackages can be called multiple times from a script, and the packages are unioned
together. AddPackages takes a list of package IDs as arguments. addPackages always
returns TRUE.

AddUserDescription

AddUserDescription{ messageString }

messageString String to display. (Pascal String)

DESCRIPTION

Use AddUserDescription to add to the text which is shown in the Easy Install dialog.
AddUserDescription takes a single even-padded Pascal string as an argument. The text to be
added is appended to whatever text has been previously added using the
AddUserDescription clause. Up to four lines can be displayed. AddUserDescription
always returns TRUE. Note that Installer Engine will not supply introductory information so
you need to say something like: “Click the Install button to install\n {your product
here}.” Use the "\n " characters to insert a return character into the description string.

Custom Install Rule Clauses

AddCustomItems

AddCustomItems{ { integer packageRsrcID } }

packageRsrcID A list of 2-byte resource IDs of ‘inpk’ resources to append to
the top level of the Custom Install list.

DESCRIPTION

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 29

The AddCustomItems rule clause appends the specified packages to the top level of the
custom install list regardless of the setting of its showsOnCustom flag. Each package is
appended in the order listed. All sub-packages with the showsOnCustom flag set are
appended at the appropriate sub-level.

Using the Installer Preference Resource (‘inpr’)
The preference resource allows the scriptwriter to override certain default interface features
and actions of Installer Engine. To utilize this control you must add a preference resource (‘inpr’
ID=300) to the script file. Installer Engine contains a default ‘inpr’ resource with the ID of 305.
Installer Engine first looks for your ‘inpr’ with the ID 300, and if not found uses its default
resource.

The fields and flags in the preference resource control two main areas of Installer Engine, the
recommended target disk/folder selection, and specific human interface elements.

Using the Target Disk Interface
If your product must always be installed into a specific location on the target disk, then you’ll
probably want to limit the user to only selecting from the mounted volumes. This is the case for
products, such as system software, that need to be installed predominately in the System
Folder. Setting the useDiskTargetMode flag in the preference resource tells Installer Engine
to present an interface compatible with the old Installer 3.X.

Using the Application Folder Interface
If your script installs a product such as an application which can be placed most anywhere on
the user's Macintosh, then you’ll probably want to allow the user to select a target folder.

Much like the current special-xxxx folder path identifier, the new folder-user folder
path identifier will be the folder path selected by the user. When the user clicks the Select
Folder button a modified standard file dialog appears to allow selection of a new or existing
folder. This dialog is discussed in the section “Using the Select Folder Dialog”.

Note: the target selection plug-in in Upgrader does not currently allow selection of an
application folder.

Installer Preference Resource Reference
This section describes the resource description of the ‘inpr’ resource.

Resource Description
Format 1 of the ‘inpr’ resource:

#definepreferenceFlags1 \
booleanuseDiskTargetMode, useFolderTargetMode; \
fill bit[2]; \
booleannoSetupFunctionSupplied, setupFunctionSupplied; \
booleandontAllowCleanInstall, allowCleanInstall; \
fill bit[1]; \
boolean isNotSSWInstallation, isSSWInstallation; \
fill bit[9];

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 30

#define featureSetFlags \
fill bit[16];

type 'inpr' {
switch {

case format1:
key integer = 1; /* Preference version */
preferenceFlags1; /* Preference Flags */
rsrcType; /* Type of code resource for Setup Function */
rsrcID; /* Id of code resource for Setup Function */
longint; /* Text Encoding ID of product's language */
rsrcID; /* ID of 'STR#' rsrc with feature set names */
unsigned integer = $$CountOf(featureSetList); /* Feature Set List */
wide array featureSetList {

featureSetFlags; /* Feature set flags */
rsrcID; /* Feature set rule framework */
integer; /* String index of feature set name */

};
evenPaddedString; /* Default Folder name for folder mode. */

};
};

Flag descriptions

useDiskTargetMode/useFolderTargetMode
Specifies whether the user can choose a target folder, or is
limited to choosing a target disk. If the
useDiskTargetMode flag is specified, “Switch Disk ” and
“Eject Disk” buttons are shown to the user. This is very
similar to the old Installer 3.X. If the
‘useFolderTargetMode’ flag is specified, the interface
appears with a “Select Folder…” button, instead of the
“Switch Disk ” and “Eject Disk” buttons.

noSetupFunctionSupplied/setupFunctionSupplied
Specifies whether Installer Engine should call the setup
function. The type and ID of the setup function code resource
must be entered in the setup function fields when the
setupFunctionSupplied flag is specified.

dontAllowCleanInstall/allowCleanInstall
Specifies whether Installer Engine should allow a clean a
install of this software component. WARNING: Only
Installer scripts that install an entire System Folder should
allow a clean installation. Generally, this flag should only
be used by Apple Computer, Inc.

isNotSSWInstallation/isSSWInstallation
Specifies whether this software component installs an
entire System Folder. WARNING: Generally, this flag
should only be used by Apple Computer, Inc.

Field descriptions

Setup Function Code Resource Type
The resource type of the setup function code resource. This
field is ignored unless the setupFunctionSupplied flag
is specified. The type is usually ‘infn’. (4-bytes)

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 31

Setup Function Code Resource ID
The resource ID of the setup function code resource. This
field is ignored unless the setupFunctionSupplied flag
is specified. (2-bytes)

Text Encoding ID Enter the text encoding value that corresponds to the
localized region of the software component you are
installing. Entering the correct value helps conversion of
Unicode-based file names when installing onto Extended
format volumes. (4-bytes)

Feature Names ‘STR#’ ID The ID of a ‘STR#’ resource containing the names of the
features sets listed below. (2-bytes)

Feature Set Framework ID The ID of a ‘infr’ resource defining the feature set. (2-bytes
)

Feature Name Index The index of the string in the ‘STR#’ resource specified
above that contains the name of the feature set to be
displayed to the user. (2-bytes)

Recommended Target Folder Name
The recommended target folder name. This can be specified
at run-time by the scriptwriter in the setup function. As
with any file name, the length should be limited to 31
characters, although Installer Engine will truncate the
string if too long. (even-padded Pascal string)

Data Structures
The setup function is a code resource specified in the preference resource that is passed a pointer
to a parameter block with information about Installer Engine’s environment. The entry point of
this code resource must have the interface:
OSErr EnvironmentSetupFunction(EnvironmentSetupPBPtr);

Return the result code noErr to have Installer Engine continue as normal. Return the result code
kQuitInstallerNow to force Installer Engine to quit immediately. Returning any other value
will cause an error alert to be display before forcing Installer Engine to quit.

The parameter block contains Installer Engine’s suggested target application folder and system
disk. The fields in the parameter block can be changed to override the suggested values.
typedef struct {
 —> ProcPtr fCallBackProcPtr;
<—> FSSpec fTargetFSSpec;
<—> short fSystemVRefNum;
} EnvironmentSetupPB, *EnvironmentSetupPBPtr;

Field descriptions

fCallBackProcPtr A pointer to Installer Engine’s dispatch routine. You’ll need
to pass this field as a parameter to Installer function glue
routines.

fTargetFSSpec Contains Installer Engine’s suggested target folder
information. You can choose to override this suggestion by
changing any of the fields in the FSSPec structure. If the
useDiskTargetMode flag is specified in the preference

C H A P T E R 2

Defining the User Interface

Installer Engine 4.5.2 Technical Guide 32

resource, only the vRefNum field of fTargetFSSpec is
used by Installer Engine.

fSystemVRefNum The fSystemVRefNum field contains Installer Engine’s
recommended System Folder volume. You can choose to
override this suggestion by changing the value passed.
This field is ignored when using the useDiskTargetMode
flag because the system disk must always be the same as
the target disk.

C H A P T E R 3

Installer Engine 4.5.2 Technical Guide 33

Defining Actions

Actions you wish to perform during an installation or removal are specified using atoms. There
are eight different types of atoms, each performing a unique type of action, such as installing a
file or executing your own custom code resource. In order to have your actions performed, you
must reference them by ID from the package resources you defined for your user interface.

Atoms available:

File Atom Copies or deletes one or both forks of a Macintosh file.

Resource Atom Copies or deletes a single resource inside a file.

Font Atom Copies or deletes a font family inside a file. NOTE: Apple
recommends installing fonts as entire suitcase files instead
of using the font atom.

ResMerge Atom Merges all resources of a source file into the target file.

Folder Atom Copies all files from a source folder into a target folder.

Action Atom Executes a custom code resource at the beginning or at the
end of the installation .

Boot Block Atom Updates the book blocks of a target volume. NOTE: This
atom is only used for installation of system software.

Audit Trial Atom Updates information stored in an audit trail resource in the
target file.

Before we delve into the details of each atom, let’s continue our example we started in the
previous chapter.

Example (Part 2): Defining the Actions
You might have noticed in part 1 of this example, the ‘inpk resources we defined already
contained references to file atoms, which we now need to create.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 34

Step 8: Create the File Atom Resources
Since this example Installer script is pretty simple, we’ll use the same IDs for our file atoms as
the package resources. For the seven features selectable by the user, we’ll create seven file
atoms using the new ‘ifa#’ resource type:

resource 'ifa#' (300) {
format0 {

{ /* [1] */ 1001, // Unique ID of this File Atom
deleteWhenRemoving, // Delete file on removal
deleteWhenInstalling, // Doesn't matter since we're copying
copy, // Copy file during installation
dontIgnoreLockedFile, // Warn user if file is locked
dontSetFileLocked, // Leave file unlocked after installation
useVersProcToCompare, // Compare newness of file based on 'vers' resource
srcNeedExist, // File must exist on source disk
rsrcForkInRsrcFork, // File isn't compressed so rsrc fork is in rsrc fork
leaveAloneIfNewer, // Don't update an existing newer file
updateExisting, // Go ahead an update if appropriate
copyIfNewOrUpdate, // Go ahead and create a new file when necessary
rsrcFork, // Copy the resource fork, if any
dataFork, // Copy the data fork, if any
0, // Total file size, filled in by ScriptCheck
0, // Finder attributes, filled in by ScriptCheck
1001, // Reference to target file specification
1001, // Reference to source file specification
0, // Exact target data fork size, filled in by ScriptCheck
0, // Exact target rsrc fork size, filled in by ScriptCheck
0, // Source version number, filled in by ScriptCheck
0, // Compare versions using built-in compare proc.
0, // Zero because we’re not copying compressed data

/* [2] */ 1002, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 1002, 1002, 0, 0, 0, 0, 0,

/* [3] */ 2001, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
 dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
 leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 2001, 2001, 0, 0, 0, 0, 0,

/* [4] */ 3001, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 3001, 3001, 0, 0, 0, 0, 0,

/* [5] */ 3002, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 3002, 3002, 0, 0, 0, 0, 0,

/* [6] */ 1004, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 1004, 1004, 0, 0, 0, 0, 0,

/* [7] */ 1005, deleteWhenRemoving, deleteWhenInstalling, copy, dontIgnoreLockedFile,
dontSetFileLocked, useVersProcToCompare, srcNeedExist, rsrcForkInRsrcFork,
leaveAloneIfNewer, updateExisting, copyIfNewOrUpdate, rsrcFork, dataFork,
0, 0, 1005, 1005, 0, 0, 0, 0, 0,

}
}

};

In the next chapter the example we will continue with the definition of the source and target
file specifications.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 35

Using the File Atom (‘infa’ & ‘ifa#’)
The File Atom can be used to copy or delete one or both forks of a file. You have a choice of two
resources to describe the file action. The older ‘infa’ resource allows files to be split across
multiple source disk, but the new ‘ifa#’ resource is more efficient and easier to use and is our
recommended choice. You can mix both resource types as long as you ensure each file atom has a
unique ID.

The File Atom provides the following major features for copying or deleting files:

■ Ability to update a file only if it already exists.

■ Ability to preserve an existing file.

■ Ability to preserve a newer file based on its creation date, ‘vers’ 1 resource or custom
code you write.

■ Decompression of a file during installation.

■ Automatically unlock the file before replacing or deleting, and/or lock the file when
the installation is finished.

■ Install a file that has been split among multiple source files (not supported when using
the ‘ifa#’ resource).

If you are simply copying hundreds of uncompressed files and do not wish to create separate
Files Atoms for each, you might be able to use a Folder Atom.

Storing File Atoms in the ‘ifa# Resource
When referencing a File Atom from a package resource, you must always use the ‘infa’ atom
type, regardless if it is stored as a ‘infa’ resource or in a ‘ifa#’ resource. When looking for a file
atom by ID, Installer Engine will look first for a file atom with the specified record ID in the
‘ifa#’ resource, and if not found will look for a ‘infa’ resource with the specified ID. NOTE: an
Installer script can only have one ‘ifa#’ resource.

Comparing Files by Version
Two new fields in the File Atom allow the scriptwriter to compare the source and target file
using their version number, instead of only using their creation date. The first field holds the
source file’s version number, and the second field holds the resource ID of a new Version
Compare (‘invc’) script resource. The Version Compare script resource allows the scriptwriter to
call a code resource that calculates the version number of the target file.

To compare the newness of the target and source using the old creation date method, use the
useSrcCrDateToCompare flag. To compare using the version number in the target’s ‘vers’
ID=1 resource then use the useVersProcToCompare flag and place a 0 (zero) in the Version
Compare Rsrc ID field. If the version number is stored somewhere besides the ‘vers’ ID=1
resource then you’ll need to create and attach a Version Compare script resource to the File
Atom.

Using either the useSrcCrDateToCompare or useVersProcToCompare flag presents the
identical interface to the user if the source file is older than the target file. See the description
of the leaveAloneIfNewer flag in the “File Atom Reference” section.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 36

Using Split Sources with File Atoms
The new ‘infa’ script resource contains a source list that holds zero or more references to source
files. If the original source file must be split into smaller files, an entry for each split source
piece should be placed into the source list. Each entry contains information about the location
of the source file (‘infs’ ID), the target size of the resource fork piece and the target size of the
data fork piece.

Each target size field must contain the exact size the source piece will appear in the target file.
If the piece is being decompressed with an Atom Extender during installation, then this field
must contain the uncompressed size of the piece. If only one fork is requested to be copied, the
target size field of the other fork is ignored. Place a zero in a fork’s target size field if the fork
contains no data.

NOTE

The order of the entries in the source list is important. Each piece will be written to the target
file in the same order as it appears in the list. ◆

Using Atom Extenders with File Atoms
Using Atom Extenders with the new File Atom (Format 1) allows scriptwriters to easily
decompress files that have been compressed on the source installation disk. Attach the Atom
Extender to the File Atom file by entering the ID of the ‘inex’ script resource into the
appropriate field in the ‘infa’. The code resource referenced from the ‘inex’ script resource will
be called at the desired point in the installation so it can read the compressed file data,
decompress the data, then write it to the target file.

NOTE

You should never create a source file that has a compressed resource fork, because any attempt
to access the resource fork by the Finder or other application may crash the Macintosh. The
rsrcForkInRsrcFork/rsrcForkInDataFork flag has been added to designate where the
resource fork is stored. Use the rsrcForkInDataFork flag when copying a compressed
resource fork that is stored in the data fork of the source file. Use the rsrcForkInRsrcFork
flag when copying a non-compressed resource fork. ◆

When Installer Engine is preparing to install, each File Atom is expanded into one or more
parts. As each part is installed, the Atom Extender attached to the original File Atom will be
called for each part. When only one source file is specified there is one part for each fork being
copied. When split source pieces are specified there is one part for each fork being copied from
each piece.

The goal of the new File Atom and Atom Extender is to provide compatibility with most
popular compressed source file configurations. Several configurations are listed below.

■ The simplest source file configuration is for each compressed fork to be placed into the
data fork of two separate files. Installer Engine will call the Atom Extender
separately for each fork.

■ Another source file configuration places both forks into the same data fork of a source
file, with a header describing the format of the data. The Atom Extender will be
called once for each fork copied, but will be responsible for finding, reading and writing
the correct data for the specified fork. The Atom Extender parameter block will
provide information about which fork is being copied.

■ An “archived” source file configuration contains multiple compressed files (and forks)
in one source file. One File Atom must be created for each target file being copied, with

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 37

each referring to the same source file (‘infs’). The Atom Extender parameter block will
contain information about the current file (and fork) being copied, with which the
Atom Extender will find, read, decompress and write the proper target file’s data. Our
InstaCompOne Atom Extender is an example of this approach.

For those source configurations that cannot be accommodated by the built-in routines,
scriptwriters can use the supplied parameter block to perform the copy by themselves. This
strategy should only be taken when absolutely necessary.

Installing a Custom Folder Icon
The File Atom can easily be used to set the custom icon of any folder on the target disk.
Installer Engine notices if the scriptwriter is copying the special invisible “Icon\n” file, and if
so automatically sets the userCustomIcon bit on its parent folder.

There are several key points to remember when installing a custom icon:

■ Since Installer Engine does not remove the special “Icon\n” file correctly, use the
dontDeleteWhenRemoving flag to prevent its removal.

■ It’s polite to preserve an existing custom icon, so use the keepExisting flag.

■ Installer Engine will install the custom icon even if the directory is the root level of
the hard disk. We discourage scriptwriters from recommending the root level of the
hard disk as the target folder, but user’s can select it if they choose.

File Atom Reference
This section describes the resource description of the ‘infa’ and ‘ifa#’ resources.

Resource Descriptions

File Atom Resource (‘infa’)

#definefileAtomFlags \
boolean dontDeleteWhenRemoving, deleteWhenRemoving; \
boolean dontDeleteWhenInstalling, deleteWhenInstalling; \
boolean dontCopy, copy; \
fill bit[3] /* Reserved */ \
boolean dontIgnoreLockedFile, ignoreLockedFile; \
boolean dontSetFileLocked, setFileLocked; \
boolean useSrcCrDateToCompare, useVersProcToCompare; \
boolean srcNeedExist, srcNeedNotExist; \
boolean rsrcForkInRsrcFork, rsrcForkInDataFork; \

 boolean updateEvenIfNewer, leaveAloneIfNewer; \
boolean updateExisting, keepExisting; \
boolean copyIfNewOrUpdate, copyIfUpdate; \
boolean noRsrcFork, rsrcFork; \
boolean noDataFork, dataFork

type 'infa' {
switch {

case format1:
key integer = 1; /* File Atom version */
fileAtom1Flags; /* File Atom Flags */

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 38

unsigned longInt; /* Total Target File Size */
unsigned integer; /* Finder Attribute Flags */
fileSpecID; /* Tgt file spec ID */
integer = $$CountOf (Pieces); /* Number of Source Pieces */
wide array Pieces {

fileSpecID; /* Source File Spec*/
unsigned longInt; /* Target Data Fork Part Size */
unsigned longInt; /* Target Rsrc Fork Part Size */

};
unsigned longint; /* Source Version Number */
rsrcID; /* Version Compare Rsrc ID */
rsrcID; /* Atom Extender Rsrc ID */
evenPaddedString; /* Atom Description */

};
};

Flag Descriptions

dontDeleteWhenRemoving/deleteWhenRemoving
Determines if the file is deleted during a removal. When
using the deleteWhenRemoving flag, if the target file
exists and the user clicks Remove, the target file is deleted.
If the file does not exist on the target disk, this flag is
ignored. The file atom must be part of a package that uses
the removable flag. Note that of the following File Atom
flags, only the rsrcFork/noRsrcFork and
dataFork/noDataFork flags have any effect on the
removal process.

dontDeleteWhenInstalling/deleteWhenInstalling
Determines if a file is deleted during an installation when
using the dontCopy flag. Installer generally ignores this
flag when using the copy flag. When using the
deleteWhenInstalling flag, after the user clicks
Install, the target file is deleted if it exists, otherwise the
flag is ignored. The deleteWhenInstalling flag is
primarily used for deleting previously installed files that
are no longer needed.

dontCopy/copy Determines if the file is copied during an installation.
Note that some flags (leaveAloneIfNewer ,
keepExisting , copyIfUpdate) can prevent copying from
happening under the circumstances specified.

dontIgnoreLockedFile/ignoreLockedFile
Determines if an existing locked target file should be
automatically unlocked before replacing. Only use the
ignoreLockedFile flag if you originally installed the
file locked or your software locks the file. Use the
dontIgnoreLockedFile flag the majority of times to
preserve the user’s control over their Macintosh.

dontSetFileLocked/setFileLocked
Determines if the target file should be locked after
copying. Use setFileLocked to request that the target
file be locked at the end of the installation.

useSrcCrDateToCompare/useVersProcToCompare
Determines how Installer Engine will determine if the

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 39

target file is newer or older than the source file. If using
the useSrcCrDateToCompare flag the creation date
entered in the Source File Spec is compared with the
creation date of the target file. If the
useVersProcToCompare flag is used, an optionally
supplied version function is called to determine the version
number of the target file. See the description of the
Version Compare Rsrc ID field.

srcNeedExist/srcNeedNotExist
Determines whether the source file must exist on the source
disk. Use srcNeedNotExist if the source file can
optionally reside on the source disk. If the file is not found
the atom is ignored and the installation continues.

rsrcForkInRsrcFork/rsrcForkInDataFork
Since a compressed resource fork should never be left in the
resource fork of the source file, this allows the scriptwriter
to easily store the compressed resource fork in the data
fork. These flags determine where the resource fork data
will be read from when using the ReadSourceData()
routine. If the rsrcForkInDataFork flag is specified,
the source data will actually be read from the data fork.

updateEvenIfNewer/leaveAloneIfNewer
Determines what action Installer Engine should take if the
target file is newer than the source file that is replacing it.
The method Installer Engine uses to determine the newness
of the files is based on the useSrcCrDateToCompare and
useVersProcToCompare flags. Use the
updateEvenIfNewer flag if the version of this file must
be synchronized with specific versions of other files that
are part of the installation. The alert displayed to the
user depends whether the user is performing an Easy Install
or a Custom Install.

Easy Install — If using the leaveAloneIfNewer flag, the
user will not be notified and the newer will be preserved. If
using the updateEvenIfNewer flag, an alert is shown
that has two options: Continue or Cancel. Clicking Cancel
will stop the installation, and clicking Continue will
replace the newer target file with the older source file.

Custom Install — If using the leaveAloneIfNewer flag,
the user will be presented with an alert that provides
three choices: Newer, Older or Cancel. If using the
updateEvenIfNewer flag, the alert is the same as for an
Easy Install.

updateExisting/keepExisting
Allows the scriptwriter to preserve an existing file when
using the copy and/or deleteOnInstall flag. This
might be the case if you want to preserve a preference file
that contains user specific data. Use keepExisting to
prevent Installer Engine from disturbing an existing target
file. No copying will occur if the keepExisting flag is
used with the copyIfUpdate flag.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 40

copyIfNewOrUpdate/copyIfUpdate
Allows the scriptwriter to update a file only if it already
exists when used with the copy flag. Use copyIfUpdate
to prevent a new file from being created. If the
copyIfUpdate flag is used with the keepExisting flag
then no copying will occur.

noRsrcFork/rsrcFork Determines if the resource fork of the file is affected during
an installation or removal. Use resourceFork to copy or
delete the entire resource fork of the file during an
installation, or delete the entire resource fork during a
removal. Use noResourceFork to not touch the resource
fork of the file.

noDataFork/dataFork Determines if the data fork of the file is affected during an
installation or removal. Use dataFork to copy or delete
the entire data fork of the file during an installation, or
delete the entire data fork during a removal. Use
noDataFork to not touch the data fork of the file.

Field Descriptions

Total Target File Size The size in bytes of the file to be installed or deleted. This
field is only used by Installer Engine in figuring the disk
size needed for an installation. (4-bytes)

Finder Attribute Flags
These flags determine how Finder displays and manages
user interaction with the file. If you are using ScriptCheck
4.0 or later, then this field is updated automatically (see
ScriptCheck documentation for handling compressed source
files), otherwise you must place the correct value in this
field. See Inside Macintoh, Volume VI, pages 9-36 - 9-38 for
more information about these flags. (2-bytes)

Source File Spec. Rsrc ID
The resource ID of a Source File Spec. (‘infs’) describing the
source file where the data is stored. If you’re just deleting a
file and therefore don’t need a source file, enter 0 (zero) in
this field. (2-bytes)

Target Data Fork Piece Size
The number of bytes the data fork piece will occupy in the
target file. If the data fork is decompressed using an Atom
Extender during the installation, then this value should be
the original noncompressed size of the source piece. The
value is used to compute where multiple pieces are to be
written into the final target file, and therefore must be
exact. If not copying the data fork, this field is ignored. (4-
bytes)

Target Rsrc Fork Piece Size
The number of bytes the resource fork piece will occupy in
the target file. If not copying the resource fork, this field is
ignored. If the resource fork is decompressed using an Atom
Extender during the installation, then this value should be
the original noncompressed size of the source piece. The
value is used to compute where multiple pieces are to be

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 41

written into the final target file, and therefore must be
exact. (4-bytes)

Source Version Number The version number (BCD format) of the source file when
using the useVersProcToCompare flag. See Inside
Macintosh: Macintosh Toolbox Essentials, page 7-31 for a
description of the version number format. (4-bytes)

Version Compare Rsrc ID The resource ID of a Version Compare (‘invc’) script
resource. The resulting version number from the version
function will be compared with the Version Number field
to determine if the target is newer or older than the source.
If the resource ID is 0 (zero) and the
useVersProcToCompare flag is used Installer Engine will
default to comparing the Source Version Number field
with the version number in the ‘vers’ ID=1 resource
contained in the target file. If no ‘vers’ ID=1 resource exists
then the target version number is assumed to be 0 (zero). (2-
bytes)

Atom Extender Rsrc ID The resource ID of an Atom Extender (‘inex’ script resource).
(2-bytes)

File Atom Description The File Atom Description field is an even-padded Pascal
string describing the atom. This is used as part of the status
dialog. If you do not supply a description Installer Engine
will display “Copying File: [file name]” or “Writing File:
[file name].” If you supply a description it will be
appended to the string “Copying “ or “Writing “.

File Atom List Resource (‘ifa#’)

type 'ifa#' {
switch {

case format0:
key integer = 0; /* Data Format version */
integer = $$CountOf (FileAtomRec); /* Number of records */
wide array FileAtomRec {

longint; /* Record ID */
fileAtom1Flags; /* File Atom Flags */
unsigned longInt; /* Total Target File Size */
unsigned integer; /* Finder Attribute Flags */
fileSpecID; /* Tgt file spec ID */
fileSpecID; /* Source File Spec*/
unsigned longInt; /* Target Data Fork Part Size */
unsigned longInt; /* Target Rsrc Fork Part Size */
unsigned hex longint; /* Source Version Number*/
rsrcID; /* Version Compare Rsrc ID */
rsrcID; /* Atom Extender Rsrc ID */

};
};

};

Flag Descriptions

See flag descriptions of ‘infa’ resource for information about flags

Field Descriptions

Record ID An ID that uniquely identifies this file atom. When
combining multiple ‘infa’ and ‘inf#’ resource within the

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 42

same Installer script, make sure that no ID of an ‘infa’
resource is used to identify a file atom record with a ‘ifa#’
resource. (4-bytes)

See field descriptions of ‘infa’ resource for information on the other fields

Using the Resource Atom
The Resource Atom should be used to copy or delete individual resources in a file. Like the file
atom, you have a choice of two resources to describe the resource action. The older ‘inra’
resource allows resources to be split across multiple source disk, but the new ‘inr#’ resource is
more efficient and easier to use and is our recommended choice. You can mix both resource types
as long as you ensure each resource atom has a unique ID.

The resource atom provides the following major features for copying or deleting resources:

■ Ability to update a resource only if it already exists.

■ Ability to preserve an existing resource.

■ Ability to preserve a newer resource based on its version number that is determined by
custom code you write.

■ Decompression of the resource during installation.

■ Installation of a resource that has been split among multiple resources on multiple
source disks (not supported when using the ‘inr#’ resource).

If you need to copy all the resources from a single source file and merge them with the target
file you may want to consider using the ResMerge Atom.

Storing Resource Atoms in the ‘inr# Resource
When referencing a Resource Atom from a package resource, you must always use the ‘inra’ atom
type, regardless if it is stored as a ‘inra’ resource or in a ‘inr#’ resource. When looking for a
Resource Atom by ID, Installer Engine will look first for a Resource Atom with the specified
record ID in the ‘inr#’ resource, and if not found will look for a ‘inra’ resource with the specified
ID. NOTE: an Installer script can only have one ‘inr#’ resource.

Use the ‘infa’ resource for those Resource Atoms that need any of the following features:

■ Find a source resource based on its name.

■ Copy a resource that is split across multiple files.

■ Specify a target resource name.

■ Use with InstaCompOne decompression Atom Extender.

■ Change the type or ID during installation. The Resource List Atom requires the target
resource type and ID to be the same as the source resource type and ID.

Comparing Resources By Version
Two new fields in the Resource Atom allow the scriptwriter to compare the source and target
resource based on the version number. The first field holds the source file’s version number, and

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 43

the second field holds the ID of a Version Compare (‘invc’) script resource. The Version
Compare script resource allows the scriptwriter to call a code resource that calculates the
version number of the target resource.

To compare the version number of the target resource to the source version number entered in the
Resource Atom you’ll need to create and attach a Version Compare script resource to the
Resource Atom. Since setting and obtaining version number information for an individual
resource is not a feature of the Resource Manager, extracting the version number from the target
resource depends on how the resource encodes its version number. Most examples of this use a
header at the beginning of the resource to hold this type of information.

Using Split Sources with Resource Atoms
The format 1 version of the Resource Atom script resource contains a list of source entries. If the
original resource must be split into smaller resource pieces, an entry for each split source piece
must be placed into the source list. Each entry contains information about the location of the
source file (‘infs’ ID), the source resource type, the source resource ID, the target size of the
resource piece, and the source resource name. The target size field must contain the exact size
the source piece will appear in the target resource. If the piece is being decompressed with an
Atom Extender during installation, this field must contain the original uncompressed size of the
piece.

When specifying more than one split resource piece, Installer Engine joins the pieces into a
target resource in the order the sources are specified. Generally, you’ll want to use ‘part’ for the
type of source resources that have been split and/or compressed. This prevents resources
compressed using third-party schemes from being confused with the original resource,
especially when using tools like ResEdit and DeRez.

Using Atom Extenders with Resource Atoms
You’ll use an Atom Extender to decompress a resource that was compressed by you to save space
on your source disks. The Resource Atom is expanded into one or more parts that the Atom
Extender receives with the kBeforePart and kAfterPart messages. There will be one part
for each source resource piece specified in the source list. Since owned resources are always
copied whole and are usually relatively small, the owner’s Atom Extender is never called when
copying its owned resources.

NOTE

The compressed flag in the resource attributes should NOT be set on any source resource being
decompressed using an Atom Extender. This flag is presently reserved for use by Apple
Computer, Inc. ◆

Resource Atom Reference
This section describes the resource description of the ‘inra’ and ‘inr# resources.

Resource Description

Resource Atom Resource (‘inra’)

#defineresourceAtomFlagsFormat1 \

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 44

boolean dontDeleteWhenRemoving, deleteWhenRemoving; \
boolean dontDeleteWhenInstalling, deleteWhenInstalling; \
boolean dontCopy, copy; \
fill bit[5]; /* Reserved */ \
boolean updateEvenIfNewer, leaveAloneIfNewer; \
boolean noTgtRequired, tgtRequired; \
boolean updateExisting, keepExisting; \
boolean copyIfNewOrUpdate, copyIfUpdate; \
boolean dontIgnoreProtection, ignoreProtection; \
boolean srcNeedExist, srcNeedNotExist; \
boolean byName, byID; \
boolean nameNeedNotMatch, nameMustMatch

type 'inra' {
switch {

case format1:
key integer = 1; /* Resource Atom Format vers */
resourceAtomFlagsFormat1; /* Resource Atom Flags */
unsigned longInt; /* Total Target Size */
fileSpecID; /* Target File Spec */
rsrcType; /* Target Resource Type */
rsrcID; /* Target Resource ID */
integer; /* Target Resource Attributes */
evenPaddedString; /* Target Resource Name */
integer = $$CountOf (Parts); /* Number of Pieces */
wide array Parts {

fileSpecID; /* Source Piece File Spec */
rsrcType; /* Source Piece Type */
rsrcID; /* Source Piece Rsrc ID */
unsigned longInt; /* Target Piece Size */
evenPaddedString /* Source Piece Rsrc Name */

}
unsigned longint; /* Source Version Number */
rsrcID; /* Version Compare Rsrc ID */
rsrcID; /* Atom Extender Rsrc ID */
evenPaddedString; /* Atom Description */

};
};

Flag Descriptions

dontDeleteWhenRemoving/deleteWhenRemoving
Determines if the resource is deleted during a removal.
When using the deleteWhenRemoving flag, if the target
resource exists and the user clicks Remove, the target
resource is deleted. If the resource does not exist on the
target disk, this flag is ignored. Note that the Resource
Atom must be part of a package that uses the removable
flag.

dontDeleteWhenInstalling /deleteWhenInstalling

Determines if the resource is deleted during an installation
when using the dontCopy flag. When using the
deleteWhenInstalling flag, after the user clicks
Install, the target resource is deleted if it exists, otherwise
the flag is ignored. The deleteWhenInstalling flag is
primarily used for deleting previously installed resources
that are no longer needed. Note that some flags
(leaveAloneIfNewer , keepExisting) can prevent
deletion from happening under the circumstances specified.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 45

dontCopy/copy Determines if the resource is copied or not during an
installation. Note that some flags (leaveAloneIfNewer ,
keepExisting , copyIfUpdate) can prevent copying from
happening under the circumstances specified.

updateEvenIfNewer/leaveAloneIfNewer
Determines what action Installer Engine should take if the
target resource is newer than the source resource that is
replacing it. The scriptwriter must write a code resource
that determines the version number by referencing the
resource ID of a Version Compare (‘invc’) script resource.
Use the leaveAloneIfNewer flag to prevent the older
source resource from replacing the newer target resource
during an installation. Unlike the File Atom, the user is
not given a chance to override the result of this flag. Use
the updateEvenIfNewer flag if the version of this resource
must be synchronized with specific versions of other files or
resources that are part of the installation.

noTgtRequired/tgtRequired
The target file for this resource must already exist. If the
target file does not exist, the user is warned that a target
file is needed. (For example, AppleShare installs resources
into the System file, but if there is no system file, Installer
Engine alerts the user, rather than creating a System file
which has only the AppleShare resources in it.) When
using the noTgtRequired flag and the target file does not
exist, Installer Engine will create one.

updateExisting/keepExisting
Allows the scriptwriter to preserve an existing resource
when using the copy and/or deleteOnInstall flag. This
might be the case if you want to preserve a preference
resource that contains user specific data. Use
keepExisting to prevent Installer Engine from disturbing
an existing target resource. No copying will occur if the
updateExisting flag is used with the copyIfUpdate
flag.

copyIfNewOrUpdate/copyIfUpdate
Allows the scriptwriter to update a resource only if it
already exists. Use the copyIfUpdate flag to prevent a
new resource from being created. If the copyIfUpdate flag
is used with the keepExisting flag then no copying will
occur.

dontIgnoreProtection/ignoreProtection
Determines if the user should be alerted if any resource
with its protected bit set will be replaced or deleted.
When using the ignoreProtection flag the resource is
deleted from or updated in the target file even if it is
protected in the target file.

srcNeedExist/srcNeedNotExist
Determines whether the source resources must exist on the
source disk. Use the srcNeedNotExist flag if the source
resources can optionally reside on the source disk. If the

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 46

source file or source resources are not found, the atom it is
ignored and the installation continues normally.

byName/byID Determines how the resource should be found in the source
and target files. If using the byID flag the resource is found
in the source and target file using only the ID. If you want
to require the resource name to match as well then use the
nameMustMatch flag. If using the byName flag the
resource is found in the source and target file using only the
name specified in the Resource Name field. Use the
byName flag when installing Desk Accessory resources in
pre-7.0 System files.

nameNeedNotMatch/nameMustMatch
Specifies that the resource found in the source file using its
ID have the name in the Resource Name field. The resource
with the same name and ID in the target file, if any, will
be replaced or deleted (if the updateExisting flag is
used). This flag is ignored if the byName flag, above, is
used. If using the nameNeedNotMatch flag the byID flag
must also be used.

Field Descriptions

Total Target Size The size, in bytes, of the copied target resource and all its
owned resources. This field is used only by Installer Engine
in figuring the disk size needed for an installation. (4-
bytes)

Target Resource File Spec.
The resource ID of a Target File Spec script resource (‘intf’,
or ‘infs’ for pre-4,0 scripts) describing the file on the target
disk where the resource will be deleted, created, or
updated. (2-bytes)

Target Resource Type The resource type Installer Engine will use to find or create
the resource in the target file. (4-bytes)

Target Resource ID The resource ID Installer Engine will use to find or create
the resource in the target file. If the ID of the resource
doesn’t matter and you’re copying using the byName flag
(e.g., most Desk Accessories), this field should be 0, in
which case Installer Engine picks an ID for the resource in
the target file. (2-bytes)

Target Resource Attributes
The attributes that will be given to the target resource
when copying. (2-bytes)

Target Resource Name The name that will be given to the target resource. If this
string is empty, the name of the first source resource will be
given to the target resource. (even-padded Pascal string)

Source Piece File Spec. The resource ID of a Source File Spec. (‘infs’) describing the
source file that holds the resource part. If you’re just
deleting a resource and therefore don’t need a source file,
leave the source list empty. (2-bytes)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 47

Source Piece Type The resource type of the resource piece being copied. If
there is more then one piece, it’s recommended that the
type by ‘part’. (4-bytes)

Source Piece ID The resource ID of the resource piece being copied. This
field is ignored if the resource piece is being found by name
(byName flag is used). (2-bytes)

Target Piece Size The number of bytes the resource piece will occupy in the
target file. If the resource will be decompressed using an
Atom Extender, then this value should be the
noncompressed size of the source piece. This value is used to
compute where multiple pieces are to be written in the final
target file, and therefore must be exact. (4-bytes)

Source Piece Resource Name
The name of the source resource. This field is only needed
when finding the source resource by its resource name
(byName flag is used). (even-padded Pascal string)

Source Version Number The version number (BCD format) of the source resource
when a Version Compare function is used to calculate the
target version number. (4-bytes)

Version Compare Rsrc ID The resource ID of a Version Compare (‘invc’) script
resource. The resulting version number from the version
function will be compared with the Source Version
Number field to determine if the target is newer or older
than the source. If this field is 0 (zero) then the target
version number is assumed to be 0 (zero). (2-bytes)

Atom Extender Rsrc ID The resource ID of an Atom Extender (‘inex’) script resource.
This Atom Extender will be called during copying of each
resource part. (2-bytes)

When using InstaCompOne compression enter a value of 241
here.

Resource Atom Description

The Resource Atom Description field is an even-padded
Pascal string describing the atom. This is used as part of
the status dialog. If you do not supply a description
Installer Engine will display “Building File: [file name]” or
“Writing File: [file name].” If you supply a description it
will be appended to the string “Building “ or “Writing “.

Resource Atom List Resource (‘inr#’)

type 'inr#' {
switch {

case format0:
key integer = 0; /* Resource Atom Format version */

integer = $$CountOf (inraRsrcs); /* Number of inraRsrcs */
wide array inraRsrcs {

integer; /* Resource ID */
resourceAtomFlagsFormat1; /* Resource Atom Flags */

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 48

unsigned longInt; /* Total Target Size */
fileSpecID; /* Target File Spec */
fileSpecID; /* Source File Spec */
rsrcType; /* Src/Tgt Rsrc Type */
rsrcID; /* Src/Tgt Rsrc ID */
integer; /* Tgt Rsrc Attributes */
unsigned longint; /* Source Version Number */
rsrcID; /* Version Compare Rsrc ID */
rsrcID; /* Atom Extender ID */
unsigned longInt; /* Target Size of Rsrc */

};
};

};

Flag Descriptions

The flags for the Resource List Atom are identical to format 1 of the Resource Atom. Since there
is no source name field in the Resource List Atom you should always use the byID and
nameNeedNotMatch flags.

Field Descriptions

Resource ID The ID value that will be used to find this record from the
reference in a package. For example, if you choose the ID
value of 369, then the reference from a package should
have the type ‘inra’ and the ID 369. (4-bytes)

See field descriptions of ‘infa’ resource for information on the other fields

Using the Font Atom
The Font Atom is used to describe a set of font strikes (size/style) from a specified font family
that should be copied to or removed from a file. NOTE: Apple now copies fonts as entire
suitcases using File Atoms instead of the Font Atom. We encourage developers to do the same.

The Font Atom provides the following major features for copying or deleting fonts:

■ Ability to preserve an existing font strike.

■ Ability to specify an individual strike to copy/delete or simple mode that copies the
complete family.

■ Support for installing into all versions of System Software with a single Font Atom.

■ Decompression of font resources (‘NFNT’, ‘sfnt’ or ‘FONT’) during installation.

■ Installation of a font strike that has been split among multiple resources on multiple
source disks.

Note: Apple recommends installing fonts as entire suitcase files instead of using the font atom

Auto-Routing Under Pre-7.1 Systems
To overcome the effort involved with installing fonts into the various versions of System
Software, Installer Engine will automatically place the font resources into the System file if
installing into a System Folder that does not support the “Fonts” folder. To use this feature,
write your script to always install into a file in the System Folder’s “Fonts” folder. Make the
target file path start with the reserved folder name “special-font” and reference this target
file spec. from the Font Atom, and Installer Engine will handle the rest.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 49

Using Atom Extenders with Font Atoms
You’ll use an Atom Extender to decompress font resources that were compressed by you to save
space on your source disks. Minor constraints are required when using the Font Atom with this
feature.

Scriptwriters must specify individual strikes(size and style) to copy when using an Atom
Extender to decompress font resources. This is required because the target piece sizes for each
strike must be entered in the optional source list. It’s recommended to place compressed font
resource data into resources of type ‘part’.

The Font Atom is expanded into one or more parts that the Atom Extender receives with the
kBeforePart and kAfterPart messages. As each part is installed, the Atom Extender
attached to the original Font Atom will be called for each part. There will be a part for each
source resource piece being copied. The only exception to this rule is for strikes that reference
font resources in ROM. Since there is no data copied for these strikes the Atom Extender is not
called.

NOTE

The ‘FOND’ resource is always copied using Installer Engine’s default copy mechanism. This
prevents the scriptwriter from decompressing the ‘FOND’ resource using an Atom Extender. The
‘FOND’ resource is the road map to other font resources (‘FONT, ‘NFNT’, and ‘sfnt’), and
therefore must never be compressed. We suggest that you convert the ‘FOND’ resource into the
type ‘iFND’ and use the encodedFONDRsrc flag when compressing any of the font resources it
references. This will prevent the system software from becoming confused when finding a
‘FOND’ resource in your source file that may reference not existent font resources. In addition,
the compressed flag should NOT be set in the resource attributes of the ‘part’ resource because
this flag is presently reserved for use by Apple Computer, Inc. ◆

Font Atom Reference
This section describes the resource description of the ‘inff’ script resource, format 1.

Resource Description

#defineStyle \
fill bit[9]; /* Reserved */ \
BooleannoExtendedStyle, extendedStyle; /* Extended style */ \
BooleannoCondensedStyle, condensedStyle; /* Condensed style */ \
BooleannoShadowStyle, shadowStyle; /* Shadow style */ \
BooleannoOutlineStyle, outlineStyle; /* Outline style */ \
BooleannoUnderlineStyle, underlineStyle; /* Underline style */ \
BooleannoItalicStyle, italicStyle; /* Italic style */ \
BooleannoBoldStyle, boldStyle; /* Bold style */

#define fontFamilyAtomFlags \
boolean dontDeleteWhenRemoving, deleteWhenRemoving; \
boolean dontDeleteWhenInstalling, deleteWhenInstalling; \
boolean dontCopy, copy; \
fill bit[5] /* Reserved */ \
boolean noEncodedFONDRsrc, encodedFONDRsrc; \
boolean noTgtRequired, tgtRequired; \
boolean updateExisting, keepExisting; \
boolean copyIfNewOrUpdate, copyIfUpdate; \
boolean dontIgnoreProtection, ignoreProtection; \
boolean srcNeedExist, srcNeedNotExist; \
boolean byName, byID; \

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 50

boolean nameNeedNotMatch, nameMustMatch

#defineRsrcSpec \
fileSpecID; /* Source Piece File Spec. */ \
rsrcType; /* Source Piece Rsrc Type*/ \
rsrcID; /* Source Piece Rsrc ID */ \
unsigned longInt; /* Source Piece Rsrc Size */ \
evenPaddedString /* Source Piece Rsrc Name */

#defineSrcPartsList \
integer = $$CountOf (Pieces);/* Number of source pieces */ \
wide array Pieces{ \

RsrcSpec; /* Description of this piece*/ \
}

#define Strike \
integer; /* Font Size */ \
Style; /* Font Style */ \
RsrcType; /* Target Font Resource Type */ \
integer; /* Target Attributes */ \
SrcPartsList; /* Optional source pieces */

type 'inff' {
switch {

case format2:
key integer = 2; /*format version 2 */
fontFamilyAtomFlags; /* Font Atom Flags */
fileSpecID; /* Target File Spec */
fileSpecID; /* FOND Source File Spec */
integer; /* Target FOND Attributes */
unsigned longInt; /* Family Size */
rsrcID; /* Target Family Number */
switch {
case entireFamily:
 key integer = 1;
case explicitFamilyMembers:

key integer = 2;
unsigned integer = $$CountOf(StrikeEntries);
wide array StrikeEntries {

Strike; /* Source for each of the strikes */
};

};
rsrcID; /* Atom Extender ID */
evenPaddedString; /* Atom Description */
evenPaddedString; /* Family Name */

};
};

Flag Descriptions

dontDeleteWhenRemoving/deleteWhenRemoving
Determines if specific font strikes or the entire family is
deleted during a removal.

Using with explicitFamilyMembers copy option
— When using the deleteWhenRemoving flag, if the
target font strike exists and the user clicks Remove the
strike is deleted. If a strike does not exist on the target
disk, this flag is ignored. If all font strikes for a given
family are removed, the family’s ‘FOND’ resource is also
deleted.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 51

Using with entireFamily copy option — When using
the deleteWhenRemoving flag, the family’s ‘FOND’
resource and all font strikes for the family are deleted.

Note that the font atom must be part of a package that uses
the removable flag.

dontDeleteWhenInstalling/deleteWhenInstalling
Determines if specific font strikes or the entire family is
deleted during an installation when using the dontCopy
flag.

Using with explicitFamilyMembers copy option
— When using the deleteWhenRemoving flag, if the
target font strike exists and the user clicks Remove the
strike is deleted. If a strike does not exist on the target
disk, this flag is ignored. If all font strikes for a given
family are removed, the family’s ‘FOND’ resource is also
deleted.

Using with entireFamily copy option — When using
the deleteWhenRemoving flag, the family’s ‘FOND’
resource and all font strikes for the family are deleted.

The deleteWhenInstalling flag is primarily used for
deleting previously installed font resources that are no
longer needed.

dontCopy/copy Determines if the font resources are copied or not during an
installation. Note that some flags (leaveAloneIfNewer ,
keepExisting , copyIfUpdate) can prevent copying from
happening under the circumstances specified.

noEncodedFONDRsrc/encodedFONDRsrc
Allows ‘FOND’ resources to be encoded into the resource
type ‘iFND’ when compessing the font resources. This is
recommended to help prevent the system software from
becoming confused when finding a ‘FOND’ resource in your
source file that may reference not existent font resources.

noTgtRequired/tgtRequired
The target file must already exist. If the target file does
not exist, the user is warned that a target file is needed.
When using the noTgtRequired flag and the target file
does not exist, Installer Engine will create one.

updateExisting/keepExisting
Allows the scriptwriter to preserve existing font resources
when using the copy and/or deleteOnInstall flag. Use
the keepExisting flag to prevent Installer Engine from
disturbing an existing target font strike or family.

Using with explicitFamilyMembers copy option
— When using the keepExisting flag and a specific
strike in the ‘FOND’ resource already exists in the target
file, it will not be replaced.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 52

Using with entireFamily copy option — When using
the keepExisting flag and the ‘FOND’ resource already
exists, no strikes will be copied or replaced.

No copying will occur if the updateExisting flag is used
with the copyIfUpdate flag.

copyIfNewOrUpdate/copyIfUpdate
Allows the scriptwriter to update a font resource only if it
already exists. Use the copyIfUpdate flag to prevent a
new resource from being created.

Using with explicitFamilyMembers copy option
— When using the copyIfUpdate flag, a specific strike is
copied to the target file only if the strike already exists in
the target file.

Using with entireFamily copy option — The entire
source font family will be copied if any strikes exist in the
target file.

If the copyIfUpdate flag is used with the keepExisting
flag, then no copying will occur.

dontIgnoreProtection/ignoreProtection
Determines if the user should be alerted if any font resource
with its protected bit set will be replaced or deleted.

Using with explicitFamilyMembers copy option
— When using the dontIgnoreProtection flag, if the
‘FOND’ resource or any font resource to be replaced has the
protection flag set, the user will be alerted, and the
installation will be canceled. Use the
dontIgnoreProtection flag if preserving protected font
resources is important. When using the
ignoreProtection flag the font resources are deleted
from or updated in the target file even if it any are
protected in the target file.

Using with entireFamily copy option — When using
the dontIgnoreProtection flag the user is alerted only
if the ‘FOND’ resource is protected, but if any other font
resources are protected, they will be replaced without
alerting the user. When using the ignoreProtection
flag the font resources are deleted from or updated in the
target file even if it any are protected in the target file.

srcNeedExist/srcNeedNotExist
Determines whether the source font resources must exist on
the source disk. Use the srcNeedNotExist flag if the
source resources can optionally reside on the source disk. If
the source file or source resources are not found, the atom it
is ignored and the installation continues normally.

byName/byID Determines how the font strike resources should be found in
the source files. If using the byID flag the font strike’s
resources are found in the source file using only the ID. If
you want to require the resource name to match as well then

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 53

use the nameMustMatch flag. Note that the byID flag can
only be used when installing using the
explicitFamilyMembers copy option and split source
resources are specified. If using the byName flag the font
strike resources are found in the source file using only the
name specified in the Source Piece Rsrc Name field.

nameNeedNotMatch/nameMustMatch
Specifies if the font strike resources found in the source file
using their IDs must have the name in the Source Piece
Rsrc Name field. Note that the nameMustMatch flag can
only be used when installing using the
explicitFamilyMembers copy option and split source
resources are specified. This flag is ignored if the byName
flag is used.

Field Descriptions

Target File Spec ID The resource ID of a Target File Spec script resource (‘intf’,
or ‘infs’ for pre-4,0 scripts) describing the file on the target
disk where the resource will be deleted, created, or
updated. (2-bytes)

Source File Spec ID The resource ID of a Source File Spec script resource
describing the file on the source disk that contains the
'FOND' resource to be copied into the target file.

Using with explicitFamilyMembers copy option
— If no optional split source information is provided, the
strikes specified must also be contained in the same file as
the source ‘FOND’ resource. Optional split source
information always overrides that default source for those
strikes that use it.

Using with entireFamily copy option — The source
strike resources referenced in the source 'FOND' resource
must be contained in the same source file as the source
'FOND' resource.

If you’re just deleting strikes and therefore don’t need a
source file, set this field to 0. (2-bytes)

Target FOND Attributes The resource attributes that will be given to the target
'FOND' resource during installation. See Inside Macintosh
Vol. I, page 111 for more information about resource
attributes. (2-bytes)

Font Family Size The size in bytes of all font resources including the 'FOND'
resource to be installed or deleted. This field is used by
Installer Engine in figuring the sizes for an installation. (4-
bytes)

Target FOND ID The resource ID that will be given to the target 'FOND'
resource. Normally, this ID should also be the same ID as
the resource ID of the source 'FOND' resource. Installer
Engine always sets the family number field contained in
the ‘FOND’ resource to the resource ID of the ‘FOND’ when
it is copied or updated. (2-bytes)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 54

How-To-Copy Value Key Specifies how the font resources will be copied, or deleted.
Currently, the two copy options are available:
entireFamily Value (1), and
explicitFamilyMembers Value (2). (2-bytes)

Using the entireFamily copy option — Tells Installer
Engine that all strikes specified in the source 'FOND'
resource will be copied. The 'FONT', 'NFNT', or 'sfnt'
resources must exist in the same source file as the 'FOND'
resource. The Copy Entire Family Value is provided to
copy small, simple font families with minimal scripting
effort. Since the target resource attributes cannot be
specified, the target resource inherits the source's. If the
Font Family Atom Flags are set for deleteWhenRemoving
or deleteWhenInstalling & dontCopy the target
'FOND' resource and ALL of its referenced strikes will be
deleted from the target file upon removal or installation.
(2-bytes)

Using the explicitFamilyMembers copy option
— Tells Installer Engine that one or more strikes are
specified in the following member list. (2-bytes)

Point Size The family member's point size. (2-bytes)

Style Contains flags describing the style of the font. The style
bits are defined below. (2-bytes)
Bit 0: Set for Bold
Bit 1: Set for Italic
Bit 2: Set for Underline
Bit 3: Set for Outline
Bit 4: Set for Shadow
Bit 5: Set for Condensed
Bit 6: Set for Extend
All other bits are reserved.

Resource Type The resource type of the target or source font resource. This
will be the type of the font resource created by combining
the split resources. If no split resource information is given,
this field should be the type of the source font resource (e.g.
'FONT', 'NFNT', or 'sfnt'). (4-bytes)

Resource Attributes The resource attributes that will be given to the target font
resource. The Split Resource list specifies one or more
resources that make up the font resource when combined in
the order listed. (2-bytes)

Split Resource File Spec ID
The Split Resource File Spec ID field is a 2-byte field that
specifies the file on the source disk that contains the split
resource to be combined. (2-bytes)

Split Resource Type The resource type of the source split resource. Usually, this
should be type 'part'. (4-bytes)

Split Resource ID The resource ID of the source split resource. (2-bytes)

Split Resource Size The exact size in bytes of the source split resource. (4-bytes)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 55

Split Resource Name The name of the source split resource. If the resource is
being found using the byName flag, this field must be filled.
To help ensure that the correct resource is being installed,
the name of the resource in the source file must match this
field if the resource is being found by name. (even-padded
Pascal string)

Atom Extender ID The resource ID of an Atom Extender ‘inex’ script resource.
This Atom Extender will be called during copying of each
font resource part. (2-bytes)

Font Family Atom Description
A Pascal string describing the atom. This field is used as
part of the status dialog. If this field is not empty, the
status dialog displays “Reading <Description String>”, or
“Writing <Description String>”. If this field is empty, the
status dialog displays “Reading font: <Font Family
Name>”, or “Writing font: ”. (even-
padded Pascal string)

Font Family Name The family name. The family name will be used to find the
source and target 'FOND' resource. (even-padded Pascal
string)

Using the ResMerge Atom
The ResMerge Atom can be used to copy all resources from a source file to a target file. Each
resource is copied separately, replacing an existing resource of the same type and ID. Because
the ResMerge Atom offers no options, you may find that you will need to use individual
Resource Atoms to handle special situations.

The ResMerge Atom is unique from using Resource Atoms because anyone can add to or delete
resources from the source file without changing the atom. This is acceptable as long as Installer
Engine can successfully preflight the required disk space. A field in the atom holds the total
size the resources expect to occupy in the target file. This flexibility comes at a cost to ease of
use because Installer Engine cannot determine during preflighting how many resources will be
replaced, thus not requiring additional disk space. We will therefore usually overestimate the
required disk space, forcing the user to make more space available than will probably be
necessary.

The ResMerge Atom offers limited options, so determining when to use the ResMerge Atom
versus separate Resource Atoms or a File Atom is important. The main purpose of the ResMerge
Atom is to provide a simple high-level resource copy mechanism without forcing the
scriptwriter to create numerous Resource Atoms.

Installer Engine executes a ResMerge Atom by automatically converting the atom into
individual Resource Atoms when Installer Engine is ready to begin reading from the source disk.
The Resource Atom is created with the following flags:

■ dontDeleteWhenRemoving — The ResMerge Atom does nothing during a removal.

■ dontDeleteWhenInstalling.

■ copy.

■ noTgtRequired — The target file will be created if it does not already exist.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 56

■ updateExisting — Existing resources with the same type and ID will be replaced.

■ copyIfNewOrUpdate.

■ srcNeedNotExist — Doesn’t really matter because if it didn’t exist we would not be
creating this Resource Atom to copy it.

■ byID.

■ nameNeedNotMatch — The name is ignored, but the new name will replace the old
name if different.

NOTE

System Software scriptwriters must use care when using the ResMerge Atom because on pre-7.0
systems we determine if the Folder Manager will be available based on the presence of a
Resource Atom copying a ‘fld#’ resource. This means a separate Resource Atom must always be
created to install the ‘fld#’ resource. ◆

ResMerge Atom Reference
The format of the ResMerge Atom is simple. Its template is shown below.

#defineresMergeAtomFlags \
fill bit[16];

type 'inrm' {
switch {

case format0:
key integer = 0; /* ResMerge Atom Format version */
mergeAtomFlags; /* ResMerge Atom Flags */
unsigned longInt; /* Total Resources Size */
fileSpecID; /* Target File Spec. Rsrc ID */
fileSpecID; /* Source File Spec. Rsrc ID */
evenPaddedString; /* Status Description */

};
};

Field descriptions

ResMerge Atom Flags Currently reserved for use by Apple Computer, Inc. (2-
bytes)

Total Resources Size The size that all resources will occupy in the target file.
For most purposes, the size of the source file’s resource fork
is an adequate estimate. This field is used by Installer
Engine to figure the amount of disk space required. (4-
bytes)

Target File Spec. Rsrc ID
The resource ID of a Target File Spec (‘intf’) script resource
describing the desired location of the target file. (2-bytes)

Source File Spec. Rsrc ID
The resource ID of a Source File Spec (‘infs’) script resource
describing the location of the source file. (2-bytes)

Status Description An optional string that is displayed in the Status dialog
during execution of the ResMerge Atom. (even-padded
Pascal string)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 57

Using the Folder Atom (‘infm’)
The Folder Atom can be used to copy all files from the root-level of a source folder to the root-
level of a target folder. Each file is copied separately, replacing an existing file of the same
name. Folders within the source folder are ignored, and must be copied using separate Folder
Atoms. Because the Folder Atom offers no options, you may find that you will need to use
individual Resource Atoms to copy some or all the resources.

The Folder Atom is unique from using File Atoms because anyone can add to or delete files from
the source folder without changing the atom. This is OK as long as Installer Engine can
successfully preflight the required disk space. A field in the atom holds the total size the
source files. This flexibility comes at a cost to ease of use because Installer Engine cannot
determine during preflighting how many files will be replaced, thus not requiring additional
disk space. We will therefore usually overestimate the required disk space, forcing the user to
make more space available than will probably be necessary.

NOTE

The Folder Atom only copies the files at the root level of the source folder. Nested folders must
be copied separately with additional Folder Atoms. ◆

The Folder Atom offers no options, so determining when to use the Folder Atom versus separate
File Atoms is important. The main purpose of the Folder Atom is to provide a simple high-
level file copy mechanism without forcing the scriptwriter to create numerous File Atoms. The
Folder Atom does not support decompression or version comparison.

Installer Engine executes a Folder Atom by automatically converting the atom into individual
File Atoms when Installer Engine is ready to begin reading from the source folder. The File
Atom is created with the following flags:

■ dontDeleteWhenRemoving — The Folder Atom does nothing during a removal.

■ dontDeleteWhenInstalling.

■ copy.

■ dontIgnoreLockedFile — The user is notified about locked target files, and the
installation is stopped.

■ dontSetFileLocked or setFileLocked — If the source file is locked it will be locked after
it is copied.

■ useSrcCrDateToCompare — Since no version compare procedure can be specified.

■ srcNeedNotExist — Doesn’t really matter because if it didn’t exist we would not be
creating this File Atom to copy it.

■ rsrcForkInRsrcFork — Since no decompression is allowed.

■ updateExisting — Existing files with the same name will be replaced.

■ copyIfNewOrUpdate.

■ rsrcFork — Copy resource fork if it exists.

■ dataFork — Copy data fork if it exists.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 58

Specifying the Source and Target Folder
The standard ‘infs’ and ‘intf’ file spec resources are used to specify the source and target folder
with several differences:

■ The path name is similar to normal file specs, but the path should end with the name
of the source or target folder. A colon at the end of the path is optional.

■ All File Spec flags are ignored when used with Folder Atoms.

■ The File Type, File Creator and Creation Date fields are ignored when used with
Folder Atoms.

NOTE

The reserved folder path name “special-xxxx” cannot be used with Folder Atoms. If you do, the
user will be told the script document is damaged. ◆

Installing Folders with Custom Icons
The Folder Atom will automatically set the target folder to use the source folder’s custom icon
if one exits. Although the scriptwriter need not be aware of how the custom icon is stored,
Installer Engine uses the File Atom’s feature of setting the target folder’s icon whenever the
special invisible “Icon\n” file is written to disk.

Creating Empty Folders with a Folder Atom
Installer Engine will not create a target folder if there are no files are present in the source file.
If you wish to create an empty folder, the easiest work around is to create a custom icon for the
source folder, thereby causing the invisible “Icon\n” file to be copied, and the target folder to be
created.

Folder Atom Reference
The format of the Folder Atom is simple. Its template is shown below.

#definefolderAtomFlags \
fill bit[16];

type 'infm' {
switch {

case format0:
key integer = 0; /* Folder Atom Format version */
folderAtomFlags; /* Folder Atom Flags */
unsigned longInt; /* Total Folder Size */
rsrcID; /* Target File Spec. Rsrc ID */
rsrcID; /* Source File Spec. Rsrc ID */
evenPaddedString; /* Status Description */

};
};

Field Descriptions

Folder Atom Flags Currently reserved for use by Apple Computer, Inc. (2-
bytes)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 59

Total Folder Size The size of all files in the source folder. This field is used
by Installer Engine to figure the amount of disk space
required. (4-bytes)

Target File Spec. Rsrc ID
The resource ID of a Target File Spec (‘intf’) script resource
describing the desired location of the target folder. (2-
bytes)

Source File Spec. Rsrc ID
The resource ID of a Source File Spec (‘infs’) script resource
describing the location of the source folder. (2-bytes)

Status Description An optional string that is displayed in the Status dialog
during execution of the Folder Atom. (even-padded Pascal
string)

Using Action Atoms (‘inaa’)
Action Atoms are used to run a code resource at the beginning and/or end of an installation or
removal.

To use an Action Atom, an 'inaa' resource must first be added to the script. This atom specifies
the resource which contains an executable piece of code. The user-defined Action Atom code can
be executed at two different times for installations. One is after the user clicks on the Install
button but before installation begins. The other is after the installation is finished, but before
the user is asked to quit or continue. The code can also be executed at two different times for
removals. One is after the user clicks on the Remove button but before removal begins. The
other is after the removal is finished, but before the user is asked to quit or continue. For
installation and removal the order of execution is defined by the ID of the 'inaa' resources.

NOTE: You can no longer display dialogs or interact directly with the user when your code
resource is running under Installer Engine. Please see the chapter “Run-Time Issues” for
information about this limitation.

Action Atom Reference
This section describes the Action Atom resource format, data structures and function interface.

Resource Description
The format of the Action Atom is shown below.

#defineactionAtomFlagsFormat2 \
fill bit[12]; \
boolean continueBusyCursors, suspendBusyCursors \
boolean actAfter, actBefore; \
boolean dontActOnRemove, actOnRemove; \
boolean dontActOnInstall, actOnInstall;

type 'inaa' {
switch {

case format2:
key integer = 2; /* Action Atom Format version. */
actionAtomFlagsFormat2; /* Action Atom Flags */
literal longint; /* Code Resource Type */
integer; /* Code Resource ID */

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 60

longint; /* RefCon */
longint; /* Requested Memory (in bytes) */
evenPaddedString; /* Status Description */

};
};

Flag Descriptions

continueBusyCursors/suspendBusyCursors
NOTE: Installer Engine ignores this flag because Installer
Engine script can not display dialogs directly.

actAfter/ActBefore Determines whether this Action Atom code resource is
called before or after the installation/removal.

dontActOnRemove/actOnRemove
Determines if this Action Atom code resource should be
called on a removal.

dontActOnInstall/actOnInstall
Determines if this Action Atom code resource should be
called on an installation.

Field descriptions

Code Resource Type The resource type of the code resource, usually ‘infn’. (4-
bytes)

Code Resource ID The resource ID of the code resource. (2-bytes)

RefCon A value to be passed directly to the code resource. For
example, the System 7.X Installer script has all of its
Action Atoms linked together into one code resource and uses
this refCon value as a selector that tells which action atom
to run. By linking all action atoms together into one code
resource and eliminating duplicate code, we cut the size of
our action atoms in half. (4-bytes)

Requested Memory The requested number of bytes that should be available in
the Action Atom’s sub-heap when called. Enter 0 (zero) to
not create a sub-heap and run inside Installer Engine’s
heap. Please see warnings about using sub-heaps in the
Atom Extender section if you specify a value other than 0.
(4-bytes)

Status Description An optional string that is displayed in the Status dialog
during execution of the Action Atom. (even-padded Pascal
string)

Data Structures

Function Interface
The entry point of the Action Atom code resource must have the interface:
ActionAtomResult ActionAtomFormat2(ActionAtom2PBPtr);

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 61

The Action Atom should return a result telling Installer Engine what to do after executing the
code resource. You can use these constants to specify the result code:

enum { kActionAtomResultFatalError = -1,
kActionAtomResultContinue = 0,
kActionAtomResultCancel = 1 };

typedef long ActionAtomResult;

Return results produce the following effect:

■ Return kActionAtomResultContinue if you wish the installation to continue.

■ Return kActionAtomResultCancel to cancel the installation, just as if the user had
pressed the Cancel button. When an action atom returns the cancel message, all action
atom waiting in the queue are not run. Cancel messages are then sent to all ‘after’ action
atoms to allow them to clean up their environment.

■ Return kActionAtomResultFatalError to signal that there is something seriously
wrong, and the installation should not continue. When an action atom returns the error
message, all action atoms waiting in the queue are not run. Cancel messages are then
sent to all ‘after’ action atoms to allow them to clean up their environment.

▲ W A R N I N G

If you choose to create a sub-heap for each invocation of format 2 of the Action Atom please
read the section “Running with a Sub-Heap” within the Atom Extender portion of this
document. You can enter 0 (zero) in the requested memory field to not create a sub-heap and run
inside Installer Engine’s heap. ▲

Parameter Block
The Action Atom parameter block contains information about Installer Engine’s environment.
The parameter block has the structure:

typedef struct {
InstallationStage fMessageID;
Handle fStaticDataHdl;
ProcPtr fCallBackProcPtr;
short fTargetVRefNum;
long fTargetFolderDirID;
short fSystemVRefNum;
long fSystemBlessedDirID;
long fRefCon;
Boolean fDoingInstall;
Boolean fDidLiveUpdate;
long fInstallerTempDirID;

}ActionAtom2PBRec, *ActionAtom2PBPtr;

Field Descriptions

fMessageID One of three messages the Atom Extender will receive when
being called. Use these constants to understand the message
ID:

enum {before,
after,
cleanUpCancel };

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 62

typedef unsigned char InstallationStage;

If your Action Atom is running before the installation takes
place, the fMessageID field is before .

If your Action Atom is running after the installation
completes successfully, the fMessageID field will be
after .

If the user clicks the Cancel/Stop button, or Installer Engine
cancels the installation because of an error,
cleanUpCancel messages are sent to all ‘after’ action
atoms to allow them to clean up their environment. Each
‘after’ action atom is guaranteed to receive only one cancel
message if the installation is canceled or stopped. This
may happen before the ‘before’ actions atoms have run, so
it’s important to be smart within your cleanup routines.

fStaticDataHdl A handle created by the Action Atom using INewHandle to
save information between before and after calls to this
Action Atom. The field is always NULL when receiving a
before message. You can assign a value to this field during
the first call to the Action Atom, and receive the same
value in this field during the next call.

fCallBackProcPtr A pointer to Installer Engine’s dispatch routine. You’ll need
to pass this field as a parameter to glue routines that
provide access to Installer functions.

fTargetVRefNum The target disk’s vRefNum. When allowing the user to
select a target application folder, this is the volume on
which the folder resides.

fTargetFolderDirID The target application folder’s directory ID. Target File
Specs that use the reserved folder path folder-user will
be placed in this folder. This value is -1 if Installer Engine
is using disk mode, the folder does not exist, or a File Spec
referencing the reserved folder path folder-user has not
been referenced by any atom included in the installation.

fSystemVRefNum The system disk’s vRefNum. Target File Specs that use the
reserved folder path special-xxx will be placed in the
System Folder on this volume.

fSystemFolderDirID The directory ID of the System Folder on the disk with the
refNum fSystemVRefNum . This directory is not
necessarily the currently active System Folder.

fRefCon A 4-byte value defined by the scriptwriter in the ‘inex’
script resource.

fDoingInstall TRUE if the user is performing an installation; otherwise,
FALSE if the user is removing.

fDidLiveUpdate TRUE if Installer Engine is modifying files inside the
active System Folder.

fInstallerTempDirID The directory ID of the temporary folder on the volume
specified in the fSystemVRefNum field. The temporary

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 63

folder holds the files that we are modifying to allow
rollback in case the installation is canceled. You’ll rarely
ever need to look inside this folder.

Using Audit Atoms (‘inat’)
During the development of System Software scripts, there were many times we wished that
there was a history of what had previously been installed. For example, the user did a
minimal SE System Software installation, and later wanted to add minimal Macintosh II
System Software. During the second installation, Installer Engine should be smart enough to
update the disk with both SE and II software. Installer Audit Atoms were added to facilitate
this type of updating. Their format is shown below.

When Installer Engine finds an Audit Atom in a script, after an installation is complete, it adds
a new resource (type 'audt') to the target file specified in the Audit Atom. This resource
contains an array of audit selector/value pairs. If an 'audt' resource already exists in the
target file and there is no entry for the given selector, an entry is added. If an entry for the
selector already exists, the higher of the two values is used. Using Installer Rules
checkAuditRecord and checkAnyAuditRecord , later installations can make decisions
based on this history.

Audit Atom Reference

Resource Description
Format 0 of the ‘inat’ resource:
type 'inat' {

switch {
case format0:

key integer = 0;
FileSpecID; /* Target File Spec Rsrc ID*/
OSType; /* Audit Selector */
literal longint; /* Audit Value */

};
};

Field descriptions

Target File Spec. Rsrc ID
The resource ID of a Target File Spec. of which you want to
add or update the audit resource. Apple uses the System
File to keep a history of System Software that has been
installed. A File Spec ('intf' resource) must exist in the
script with this ID. (2-bytes)

Audit Selector A meaningful type. (4-bytes)

Audit Value A meaningful value. (4-bytes)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 64

Using Boot Block Atoms (‘inbb’)
Boot Block Atoms are used to write or change the parameters in a target volume’s boot blocks.
Boot Block Atoms are different from file and resource atoms – they can indicate something to be
copied, or indicate an individual parameter that needs to be changed.

To cause boot blocks to be written to a target volume, include a Boot Block Atom with a key of
type 'bbUpdate' . The argument to this type of Boot Block Atom is an integer which indicates
the ID of a File Spec in the script. The file indicated by this File Spec should contain a 'boot'
resource. A copy of the resource is written to the first two blocks of the target volume.

Boot Block Atom Reference

Resource Description
Format 0 of the ‘inbb’ resource:
#defineBootBlockAtomFlags \

fill bit[14]; \
booleandontChangeOnInstall, changeOnInstall; \
booleandontChangeOnRemove, changeOnRemove;

#defineBootBlockUpdateFlags \
fill bit[7]; \
booleanreplaceBBSysName, saveBBSysName; \
booleanreplaceBBShellName, saveBBShellName \
booleanreplaceBBDbg1Name, saveBBDbg1Name; \
booleanreplaceBBDbg2Name, saveBBDbg2Name; \
booleanreplaceBBScreenName, saveBBScreenName; \
booleanreplaceBBHelloName, saveBBHelloName; \
booleanreplaceBBScrapName, saveBBScrapName; \
booleanreplaceBBCntFCBs, maxBBCntFCBs; \
booleanreplacebbCntEvts, maxBBCntEvts \

type 'inbb' {
switch {

case format0:
key integer = 0;
BootBlockAtomFlags;

switch {
case bbUpdate:

key integer = -1;
RsrcID;
BootBlockUpdateFlags;

case bbID:
key integer = 1;
decimal integer;

case bbEntry:
key integer = 2;
decimal longint;

case bbVersion:
key integer = 3;
decimal integer;

case bbPageFlags:
key integer = 4;

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 65

decimal integer;

case bbSysName:
key integer = 5;
EvenPaddedString;

case bbShellName:
key integer = 6;
EvenPaddedString;

case bbDbg1Name:
key integer = 7;
EvenPaddedString;

case bbDbg2Name:
key integer = 8;
EvenPaddedString;

case bbScreenName:
key integer = 9;
EvenPaddedString;

case bbHelloName:
key integer = 10;
EvenPaddedString;

case bbScrapName:
key integer = 11;
EvenPaddedString;

case bbCntFCBs:
key integer = 12;
decimal integer;

case bbCntEvts:
key integer = 13;
decimal integer;

case bb128KSHeap:
key integer = 14;
decimal longint;

case bb256KSHeap:
key integer = 15;
decimal longint;

case bb512KSHeap:
key integer = 16;
decimal longint;

case bbSysHeapSize:
key integer = 16;
decimal longint;

case bbSysHeapExtra:
key integer = 18;
decimal longint;

case bbSysHeapFract:
key integer = 19;
decimal longint;

};
EvenPaddedString; /* Boot Block Atom Description */

};
};

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 66

Flags descriptions

dontChangeOnInstall/changeOnInstall
Determine if the boot blocks should be updated during an
installation. (2-bytes)

dontChangeOnRemove/changeOnRemove
Not currently supported. (2-bytes)

Field descriptions

Boot Block Value Key Specifies which boot block parameter is being given a value
in the Boot Block Value field. The key can correspond to
any of the parameters which are changeable in the boot
blocks. (2-bytes)

The possible keys for this field are as follows:

bbUpdate Copy over boot blocks from a 'boot' resource found in the
file whose File Spec ID is given in the 2-byte value field.
A second 2-byte value field is used for this type of Boot
Block Value. This second value field is used to specify
which boot block fields are to be updated from the 'boot'
resource, and which ones are to be preserved on the target
disk. If bits 0 through 6 are set, the appropriate value on
the target is kept if it appears to be a legal value or string.
If bits 7 or 8 are set, the maximum parameter from the
resource or what already exists on the target is preserved.
The format of this field is as follows:

bbID The Boot Block Value field updates the boot blocks ID (2-
bytes).

bbEntry The value updates the boot block entry point (4-bytes).

bbVersion The value updates the boot block version (2-bytes).

bbPageFlags The value updates the page 2 usage flags (2-bytes).

bbSysName The value updates the name of the system resource file
(string).

bbShellName The value updates the name of the system shell (string).

bbDbg1Name The value updates the first loaded debugger’s name
(string).

bbDbg2Name The value updates the second loaded debugger’s name
(string).

bbScreenName The value updates the file name of the startup screen
(string).

bbHelloName The value updates the file name of the startup program
(string).

bbScrapName The value updates the file name of the system scrap file
(string).

bbCntFCBs The value updates the number of FCBs to open (2-bytes).

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 67

bbCntEvts The value updates the size of the event queue (2-bytes).

bb128KSHeap This boot block field is no longer used.

bb256KSHeap This boot block field is no longer used.

bb512KSHeap The value updates the size of the system heap on a 512K
Mac (4-bytes).

bbSysHeapSize The value updates the absolute size of the system heap (4-
bytes).

bbSysHeapExtra This boot block field is no longer used.

bbSysHeapFract The value updates the minimal additional system heap
space required (4-bytes).

Note: Under System 7.0 and greater, the system heap space
and the number of FCBs to open are dynamically
determined and not controlled by the boot block value.

Boot Block Value The value for the boot block parameter that was specified
in the boot block value key. It has a size as given above (in
parentheses). (size depends on the type of update)

Using Atom Extenders (‘inex’)
Scriptwriters can use Atom Extenders to enhance or replace the default copy mechanism of
Installer Engine. The most obvious purpose of the Atom Extender is to provide transparent
decompression of files during installation. Scriptwriters presently using Action Atoms to
perform decompression, either written by themselves or a third-party developer, will want to
use Atom Extenders for this purpose in the future.

If you want to write an Atom Extender then read the section “Writing Atom Extenders” to learn
how. If you only want to take advantage of an Atom Extender someone else has written then
consult the sections describing the File Atom, Resource Atom and Font Atom.

An Atom Extender is a newly-defined script resource of type ‘inex’ that can be referenced from
new versions of the File Atom, Resource Atom, and Font Atoms. At the heart of the Atom
Extender is a code resource (provided by the scriptwriter) that contains the necessary 68K code
to be executed at the desired point in the installation.

This section describes the necessary steps to create an Atom Extender.

Creating an ‘inex’ Script Resource
The new ‘inex’ script resource contains the necessary information to properly call the specified
code resource.

Code Listing 3-1 Sample ‘inex’ script resource
resource 'inex' (129) {

format0 {
dontSendInitMessage, /* Don’t send kInitialize message */
sendBeforeMessage, /* Send kBeforePart message */
dontSendAfterMessage, /* Don’t send kAfterPart message */
dontSendSuccessMessage, /* Don’t send kSuccess message */
dontSendCancelMessage, /* Don’t send kCancel message */
continueBusyCursors, /* Show busy cursor during call */
'infn', /* Resource type of code resource */

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 68

128, /* Resource ID of code resource */
100, /* RefCon (long integer) */
30720, /* 30K of requested free mem in heap */
"This is a test." /* Status description during call */

}
};

The sample ‘inex’ resource in Code Listing 3-1 asks Installer Engine to call the code resource
with the type ‘infn’ and ID = 128 before Installer Engine begins copying the atom’s data from
which the Atom Extender is referenced. When the code resource is called it will have a
maximum of 30720 bytes of free memory in its own heap, from which it can allocate memory
using Memory Manager routines, such as NewPtr and NewHandle . You must check the actual
size of the heap at the beginning of your code resource to make sure you were allocated the full
amount, since Installer Engine calls you whether or not your requested was fully granted. This
error will usually be an idication that Installer Engine’s memory partition is set too low. The
actual heap size is usually 5K larger than the requested size, but you should never depend on
this being true.

NOTE

Atom Extenders are only called during installations, never during removals. ◆

Writing a Simple Atom Extender
A very simple task for an Atom Extender is to simulate the default copy task of Installer Engine
using the supplied Installer routines. In Code Listing 3-2 the function reads and writes the
atom’s data using Installer Engine routines ReadSourceData and WriteTargetData .

Code Listing 3-2 Simple Atom Extender performing a direct copy of an atom’s data.
ExtenderResultCode main(ExtenderPBPtr extenderPBPtr)
{

OSErr theErr;
long dataLen;
Ptr theBufferPtr;
ExtenderResultCode resultCode;

// -- Initalize some important variables
dataLen = 30000;
theErr = noErr;

// -- Depending on the message, perform the proper task
switch(extenderPBPtr->fFileCopyPBRec.fEnvironmentHeader.fMessageID) {

case kBeforePart:

// -- Create a buffer
theBufferPtr = NewPtr(dataLen);

// -- Check that we got our buffer successfully
if(theBufferPtr != NULL && MemErr() == noErr) {

// -- Read as much as we can up to the size of the buffer.
theErr = ReadSourceData(&dataLen, theBufferPtr);

// -- Loop while there is more data to read.
while(dataLen > 0) {

// -- This is where we can massage the data before writing it out.
// For example, if the source files were compressed, this is
// where we might call our decompression routine.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 69

// -- Write the data out.
theErr = WriteTargetData(dataLen, theBufferPtr);

// -- Read as much as we can up to the size of the buffer.
if(theErr == noErr) {

theErr = ReadSourceData(&dataLen, theBufferPtr);

// -- If we got eofErr, then we know we're done,
// and dataLen will be 0 (zero).
if(theErr == eofErr)

theErr = noErr;
}

} // while not done copying

if(theErr == noErr)
resultCode = kCopiedData;

else
resultCode = kFatalError;

// -- Dispose the buffer
DisposPtr(theBufferPtr);

}
else

resultCode = kFatalError;

break;

// -- For this example, we ignore the other messages.
case kInitialize:
case kAfterPart:
case kSuccess:
case kCancel:

resultCode = kContinueAsNormal;
break;

}

return resultCode;
}

Once the code in Code Listing 3-2 has been compiled into a code resource, it can be called from
any atom and will copy the atom’s data as if Installer Engine had performed the copy. This
also works for atoms whose source pieces have been split across multiple source disks, because
Installer Engine keeps track of where each source piece should be written in the target file.
Installer Engine data routines are similar to high-level File Manager routines:

■ ReadSourceData — Similar to FSRead.

■ WriteTargetData — Similar to FSWrite .

■ SetTargetDataPos and SetSourceDataPos — Similar to SetFPos.

■ GetTargetDataPos and GetSourceDataPos — Similar to GetFPos .

■ GetTargetDataEOF and GetSourceDataEOF — Similar to GetEOF.

One of five messages can be sent to the Atom Extender. Flags in the ‘inex’ resource specify
which messages the Atom Extender wishes to receive. The Atom Extender writer can examine
the fMessageID field in the parameter block to determine which message has been sent. The
following messages have been defined:

■ kInitialize — Sent after the user clicks the Install button and preflighting has
successfully completed.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 70

■ kBeforePart — Sent after Installer Engine has opened the atom’s source file and is
about to copy the atom’s data.

■ kAfterPart — Sent after the atom’s data has been successfully copied.

■ kSuccess — Sent after the entire installation has successfully completed.

■ kCancel — Sent after an installation was stopped due to an error or cancelation by the
user, Action Atom or Atom Extender.

The Atom Extender must return a result telling Installer Engine what to do after receiving each
message. The result codes, kFatalError , kContinueAsNormal , kCancelInstallation can
be returned for any message. If you do not want to change the default action of Installer Engine,
return kContinueAsNormal ; otherwise, return kFatalError or kCancelInstallation to
stop the installation. If the message was kBeforePart and you’ve copied the data yourself
(with or without the supplied Installer routines) then return kCopiedData .

Memory Allocation within Atom Extenders
When the Atom Extender is executed, memory allocated using Macintosh OS/Toolbox routines
will come from a sub-heap created by Installer Engine. The size of the sub-heap is determined
by the requested free memory field of the ‘inex’ resource, and the available room in Installer
Engine’s heap. You must check the actual size of the heap to make sure you were allocated all
of the memory you requested, since Installer Engine calls you whether or not all your request was
allocated. This helps Installer Engine maintain better control over all memory allocation.

The scriptwriter may need to adjust the size of Installer Engine’s partition to make sure enough
memory is always available for the Atom Extender’s needs. The following equation helps
determine Installer Engine’s partition size for the required free memory and other factors.

runTimeSize = size of the largest: ‘FOND’ resource, Desk Accessory resource, or owned
resource being copied.

extenderSize = largest required free memory of any Atom Extender + code size of all
Atom Extenders, in use during an installation + the total amount of static memory
allocated.

scriptSize = the uncompressed size of the script

estimated partition size = (the larger of: runTimeSize, extenderSize) + scriptSize +
350K

Installer Engine provides memory management routines of its own to allow Atom Extenders to
use available memory from the MultiFinder and Installer heaps. These routines are very
similar to the Memory Manager calls, but are needed to maintain compatibility with pre-7.0
MultiFinder temporary memory calls.

■ INewHandle — Similar to NewHandle , but always use IDisposHandle to dispose this
handle, and IHLock and IHUnlock to lock and unlock this handle. The handle may
or may not have been allocated in the MultiFinder heap.

■ IDisposHandle — Similar to DisposHandle .

■ IHLock — Similar to HLock .

■ IHUnlock — Similar to HUnlock .

The INewHandle routine has been provided for two main purposes. The first purpose is to
allow access to extra memory, when available, to make the actions of an Atom Extender more

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 71

efficient. The second purpose is to allow memory to be maintained over invocations of an Atom
Extender.

Running within a Sub-Heap
A sub-heap for memory allocation is mandatory for Atom Extenders to prevent gridlock when
buffering data. Sub-heaps are optional for the other code resources that can be called during an
installation, such as search procedures, Action Atoms and rule functions. We suggest some do’s
and don’ts on dealing with sub-heaps below.

DO’s:

■ Sub-heaps are mandatory for Atom Extenders, but other code resources can run inside
Installer Engine’s heap, so enter 0 (size) as the request memory size if you don’t want to
bother with sub-heaps.

■ Set the current zone to the application heap before calling any Toolbox routine, and
restore it afterwards. This assures that memory allocated within these calls won’t get
left in your sub-heap.

■ Use Installer Engine’s memory routines, unless you want the memory allocated directly
from your sub-heap.

DON’Ts:

■ Watch out for memory that is left in the sub-heap after you return control to Installer
Engine that the system may have references to. If you set the current zone to the
application heap before calling any Toolbox routine you shouldn’t have any problems.
For example, if you call the GetResource routine (without properly setting the zone)
that allocates a handle inside your sub-heap Installer Engine may crash after returning
control to Installer Engine

■ Never return a reference to a handle allocated in your sub-heap for the
fStaticDataHdl field. Since the sub-heap is destroyed between invocations of the
code resource, it’s best to use INewHandle to allocate any handle you store in the
fStaticDataHdl field.

■ Never assume you received a sub-heap of the full size requested. Check that you have
enough memory enough to complete your task, since Installer Engine calls you whether
or not your full request was allocated. Look for warning messages in Installer Debugger
to help identify this situation.

Converting Existing Decompression Code
Conversion is simple for those decompressors that access files using standard File Manager
calls. Installer Engine routines have been designed to easily replace calls to the high-level
File Manager routines: FSRead, FSWrite, SetFPos, GetFPos and GetEOF.

If your decompression code must use a temporary file to store partially decompressed data, then
it’s up to you to create and destroy this file. Space on the target disk can be reserved by adding
the needed space to one File Atom installed to the target disk. As an alternative, Installer
Engine INewHandle routine can be used to allocate a temporary buffer if sufficient memory
exists, but the availability of this memory is never guaranteed.

If your original decompression code comes from an application and you are using the MPW
development system, make sure to read Tech. Note #256. To access global data you will need to
create your own A5 world and switch back to Installer Engine’s A5 world before calling any

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 72

Installer routine or Mac Toolbox trap. Avoiding global data makes writing code resources easier
unless your development system (i.e. THINK C) supports using the A4 register to access global
data.

Atom Extender Reference
This section describes the data structures and routines that are used by Atom Extenders. You’ll
need to include the interface file “AtomExtenderHeader.h” or “AtomExtenderHeader.p” to
have access to these data structures and routines.

Resource Description
Information about how to call the Atom Extender code resource is contained in the script resource
of type ‘inex’. New versions of File Atoms, Resource Atoms and Font Atoms reference the ‘inex’
resource using its resource ID. The resource has the template:

#defineatomExtenderFlags \
boolean dontSendInitMessage, sendInitMessage; \
boolean dontSendBeforeMessage, sendBeforeMessage; \
boolean dontSendAfterMessage, sendAfterMessage; \
boolean dontSendSuccessMessage, sendSuccessMessage; \
boolean dontSendCancelMessage, sendCancelMessage; \
boolean continueBusyCursors, suspendBusyCursors; \
fill bit[10];

type 'inex' {
switch {

case format0:
key integer = 0; /* Extender Format version */
atomExtenderFlags; /* Flags for Format 0 */
unsigned longInt; /* Code resource Type */
integer /* Code resource ID */
longInt; /* Refcon Value */
longInt; /* Required Free Memory */
evenPaddedString; /* Status Description */

};
};

Flag descriptions

sendInitMessage Asks to send an kInitialize message to those Atom
Extenders attached to atoms that will be executed during
the installation. The Atom Extender receives the
kInitialize message after each time the user clicks the
Install button and preflighting is successful. The purpose of
the kInitialize message is to allocate any static
memory needed to communicate between Atom Extenders.

sendBeforeMessage Asks to send a kBeforePart message to the Atom Extender
code resource when the atom part is ready to be copied.
Installer Engine has found and opened the source file that
the part exists in and is ready to begin buffering the source
data. The Atom Extender can override Installer Engine’s
default copy mechanism by using the supplied routines and
returning a kCopiedData result code.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 73

sendAfterMessage Asks to send an kAfterPart message to the Atom Extender
code resource for each part that has been successfully
written by Installer Engine or Atom Extender. An
kAfterPart message is only sent if Installer Engine
performed the copy or the Atom Extender called
WriteTargetData (with data length greater than 0)
during a kBeforePart message.

sendSuccessMessage Asks to send a kSuccess message to the Atom Extender
code resource after the entire installation has successfully
completed. The purpose of the kSuccess message is to
allow disposal of any static memory allocated during the
kInitialize message, and delete any temporary files
that were created by the Extender. Only those Atom
Extenders that received kInitialize messages will be
sent a kSuccess message.

sendCancelMessage Asks to send a kCancel message to the Atom Extender code
resource when the user cancels the installation, an error
forces the installation to stop, or an Atom Extender cancels
the installation. The purpose of the kCancel message is to
reverse any changes that were made during the
installation, and dispose of any static memory allocated
during the kInitialize message. Only those Atom
Extenders that received kInitialize messages will be
sent a kCancel message.

Field descriptions

Code Resource Type The resource type of the Atom Extender code resource to be
called. (4-bytes)

Code Resource ID The resource ID of the Atom Extender code resource to be
called. (2-bytes)

RefCon Value The value that will be passed in the fRefCon field of the
Atom Extender parameter block. (4-bytes)

Required Free Memory The minimum number of free bytes the Atom Extender needs
in its own heap to make local allocation of memory using
Macintosh OS/Toolbox routines. (4-bytes)

Status Description An optional string that is displayed in the Status dialog
during execution of the Atom Extender. (even-padded
Pascal string)

Data Structures

Function Interface
The entry point of the Atom Extender code resource must have the interface:
ResultCode MyAtomExtender(ExtenderPBPtr myExtenderPBPtr);

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 74

The Atom Extender should return a result telling Installer Engine what to do after executing the
code resource. You can use these constants to specify the result code:
typedef enum {

kFatalError = -1, /* Stop installation with error user dialog. */
kContinueAsNormal = 0, /* Request default action from Installer. */
kCancelInstallation = 1, /* Cancel installation with cancel user dialog. */
kCopiedData = 2 /* Override default copy on kBeforePart message. */

} ResultCode;

Parameter Block
The AtomExtender parameter block contains information about the atom being installed. Most
Atom Extenders will only need to reference a few fields from this parameter block. The
parameter block has the structure:
typedef struct {

ExtenderMessageID fMessageID;
Handle fStaticDataHdl;
ProcPtr fCallBackProcPtr;
short fTargetVRefNum;
long fTargetFolderDirID;
short fSystemVRefNum;
long fSystemBlessedDirID;
long fRefCon;
DataType fDataType;

} EnvironsHeaderRec;

typedef struct {
FSSpec fSourceFile;
FSSpec fTargetFile;
long fTotalTargetSize;
long fTargetPosStart;
long fTargetPartSize;
long fSourcePartSize;
long fInstallerTempDirID;

} CopyHeaderRec;

typedef struct {
EnvironsHeaderRec fEnvironmentHeader;
CopyHeaderRec fCopyPBHeader;

} BasicCopyRec;

typedef struct {
EnvironsHeaderRec fEnvironmentHeader;
CopyHeaderRec fCopyPBHeader;
ResType fSourceRsrcType;
short fSourceRsrcID;
ResType fTargetRsrcType;
short fTargetRsrcID;
Str255 fTargetRsrcName;
short fTargetRsrcAttrs;

} RsrcCopyRec;

typedef struct {
EnvironsHeaderRec fEnvironmentHeader;
TCopyHeaderRec fCopyPBHeader;
ResType fSourceFontRsrcType; /* usually ‘part’ */
short fSourceFontRsrcID;
ResType fTargetFontRsrcType; /* FONT, NFNT, or sfnt */
short fTargetFontRsrcID;
Str255 fTargetFontRsrcName;
short fTargetFontRsrcAttrs;
Str255 fFamilyName;
short fFamilyID;

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 75

short fFontSize;
short fFontStyle;

} FontCopyRec;

typedef union {
 BasicCopyRec fBasicPBRec;
 BasicCopyRec fFileCopyPBRec;
 RsrcCopyRec fRsrcCopyPBRec;
 FontCopyRec fFontCopyPBRec;
} ExtenderPBRec, *ExtenderPBPtr;

Field descriptions

fMessageID One of five messages the Atom Extender will receive when
being called. Use these constants to understand the message
ID:

typedef enum {
kInitialize = 0,
kBeforePart = 1,
kAfterPart = 2,
kSuccess = 3,
kCancel = 4

} ExtenderMessageID;

Certain fields in the Atom Extender parameter block may
or may not be valid when receiving a specific message.
Each of the following field descriptions include a note
about when the field is valid.

fStaticDataHdl A handle created by the Atom Extender using INewHandle
to save information between calls to this Atom Extender
code resource. The field is always NULL when receiving an
kInitialize message. You can assign a value to this field
during any call to the Atom Extender, and receive the same
value in this field during the next message. (Valid for all
messages.)

fCallBackProcPtr A pointer to Installer Engine’s dispatcher routine. You’ll
need to pass this field as a parameter to glue routines that
provide access to Installer functions. (Valid for all
messages.)

fTargetVRefNum The target disk’s vRefNum. When allowing the user to
select a target application folder, this is the volume on
which the folder resides. (Valid for all messages.)

fTargetFolderDirID The target application folder’s directory ID. This value is
-1 if the user cannot select a target application folder.
Target File Specs that use the reserved folder path
folder-user will be placed in this folder. (Valid for all
messages.)

fSystemVRefNum The System disk’s vRefNum. Target File Specs that use the
reserved folder path special-xxx will be placed in the
System Folder on this volume. (Valid for all messages.)

fSystemFolderDirID The directory ID of the System Folder on the disk with the
refNum fSystemVRefNum . This directory is not

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 76

necessarily the currently active System Folder. (Valid for
all messages.)

fRefCon A 4-byte value defined by the scriptwriter in the ‘inex’
script resource. (Valid for all messages.)

fDataType One of five values that specifies the type of data the Atom
Extender has been given. Use this value to determine
which type of atom is being installed, and which variant
of the parameter block should be used. Use these constants
to understand the data type:

typedef enum {
kFileAtomDataFork = 0,
kFileAtomRsrcFork = 1,
kFileAtomRsrcForkInDataFork = 2,
kRsrcAtom = 3,
kFontAtom = 4

} DataType;

(Valid for all messages.)

fSourceFile An FSSpec record specifying the source file from which the
source data is read. (Valid only for kBeforePart and
kAfterPart messages.)

fTargetFile An FSSpec record specifying the target file to which the
target data is written. (Valid only for kBeforePart and
kAfterPart messages.)

fTotalTargetSize The number of bytes all source pieces will occupy in the
target. (Valid only for kBeforePart and kAfterPart
messages.)

fTargetPosStart The offset in bytes into the target data the part’s data is
written. (Valid only for the kBeforePart and
kAfterPart messages.)

fTargetPartSize The size in bytes the part’s data will occupy in the target.
(Valid only for the kBeforePart and kAfterPart
messages.)

fSourcePartSize The size in bytes the part’s data occupies in the source.
(Valid only for the kBeforePart message.)

fInstallerTempDirID The directory ID of the Installer temp folder on the target’s
volume that contains the original target file. If this field
is -1, the original file was not saved or did not exist. You
can get the target’s volume refNum from the fTargetFile
field. (Valid only for the kBeforePart and kAfterPart
messages.)

Field descriptions for Resource Atoms

fSourceRsrcType The resource type of the source resource part. (Valid only
for kBeforePart and kAfterPart messages.)

fSourceRsrcID The resource ID of the source resource part. (Valid only for
kBeforePart and kAfterPart messages.)

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 77

fTargetRsrcType The resource type of the target resource. (Valid only for
kBeforePart and kAfterPart messages.)

fTargetRsrcID The resource ID of the target resource. (Valid only for
kBeforePart and kAfterPart messages.)

fTargetRsrcName The resource name to be given to the target resource. (Valid
only for kBeforePart and kAfterPart messages.)

fTargetRsrcAttrs The resource attributes to be given to the target resource.
(Valid only for kBeforePart and kAfterPart messages.)

Field descriptions for Font Atoms

fSourceFontRsrcType The resource type of the source font resource part. (Valid
only for kBeforePart and kAfterPart messages.)

fSourceFontRsrcID The resource ID of the source font resource part. (Valid only
for kBeforePart and kAfterPart messages.)

fTargetFontRsrcType The resource type of the target font resource. (Valid only
for kBeforePart and kAfterPart messages.)

fTargetFontRsrcID The resource ID of the target font resource, which is not
known until the part has been written by Installer Engine.
(Valid only for the kAfterPart messages.)

fTargetFontRsrcName The resource name to be given to the target font resource.
(Valid only for kBeforePart and kAfterPart messages.)

fTargetFontRsrcAttrs The resource attributes to be given to the target font
resource. (Valid only for kBeforePart and kAfterPart
messages.)

fFamilyName The family name (i.e. “Times”, “Geneva”…). The source
‘FOND’ resource can be found using this name. (Valid only
for kBeforePart and kAfterPart messages.)

fFamilyID The family ID. Normally this is the resource ID of the
‘FOND’ resource. (Valid only for kBeforePart and
kAfterPart messages.)

Using Version Compare Functions (‘invc’)
Version Compare functions allow external code resources to be called when the target file or
resource’s version must be determined in order to compare with the source version number
supplied in the script.

The Installer 3.X versions allow the scriptwriter to specify how it should handle the case
where the target file is newer than the source file. This usually prevents downgrading the
user’s software, but the opposite case may occur where downgrading is required to maintain
sync-ed versions of software. Previously, the determination of “newness” was dependent on
comparing the creation dates of the target file to the value in the source ‘infs’ resource. This
works most of the time, but is not a reliable way to compare files.

All files being installed should have a version resource (‘vers’ 1 and maybe a ‘vers’ 2), and the
ability to “newness” of files based on version resource is a desirable feature. Installer Engine
provides three ways to compare files:

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 78

■ Old way using creation date. Use the useSrcCrDateToCompare flag in the File
Atom.

■ Default version number comparison using the ‘vers’ 1 resource in the target file. Use the
useVersProcToCompare flag in the File Atom. Place the source version number in the
Source Version Number field and place 0 (zero) in the Version Compare Rsrc
ID field of the File Atom.

■ Custom determination of the target version number of a file or resource using a code
resource. Use the useVersProcToCompare flag in the File Atom. Place the source
version number in the Source Version Number field and place the ‘invc’ resource ID
in the Version Compare Rsrc ID field of the File Atom or Resource Atom.

Using Version Compare Functions with File Atoms
During preflighting of the target disk Installer Engine will call the Version Compare code
resource for each existing target file that references a valid ‘invc’ script resource. Upon entering
the code resource the current resource file will have been set to the target file, so the code
resource can easily make Resource Manager calls to read an alternative version resource. If the
version information is stored in the data fork, or in another file the code resource must open and
close the file themselves.

The Compare Version code resource must return the version number as the function result. If an
error occurs while finding the version number, then return 0 (zero).

Allowable Installer functions when comparing the version of a file:

■ Memory functions: INewHandle, IDisposHandle, ILockHandle, IUnLockHandle.

■ Action Handler function: RegisterAction.

Using Version Compare Functions with Resource Atoms
During preflighting of the target disk Installer Engine will call the Version Compare code
resource for each existing target resource that references a valid ‘invc’ script resource. Upon
entering the code resource the current resource file will have been set to the file the target
resource resides. The code resource should call Installer Engine’s ReadTargetData routine to
read from the target resource. This should allow most resource version schemes using a header
to easily and quickly determine the version number of the resource. Using Resource Manager
calls should be avoided.

The Compare Version code resource must return the version number as the function result. If an
error occurs while finding the version number, then return 0 (zero).

Allowable Installer functions when comparing the version of a resource:

■ Memory functions: INewHandle, IDisposHandle, ILockHandle, IUnLockHandle.

■ Target functions: ReadTargeData, GetTargeDataEOF, GetTargeDataPos,
SetTargeDataPos.

■ Action Handler function: RegisterAction.

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 79

Version Compare Runtime Environment
The Version Compare code resource shares memory space with Installer Engine. Local memory
allocation using Memory Manager calls will come from Installer Engine’s heap. Please be nice
to our heap.

Version Compare Function Reference
This section describes the function interface and resource descriptions needed to use the Version
Compare script resource.

Function Interface
Installer Engine calls your Version Compare code resource assuming the following function
interface.

long ComputeVersionNumber(ComputeVersionPBPtr);

The Version Compare function writer must return a version number. The version number consists
of four bytes defined from the high byte as: major revision level, minor revision level,
development stage, and prerelease revision level. See Inside Macintosh: Macintosh Toolbox
Essentials, page 7-31 for more details.

Parameter Block
The version compare code resource is passed a pointer to a parameter block containing the
callback pointer.
typedef struct {

ProcPtr fCallBackProcPtr;
} ComputeVersionPB, *ComputeVersionPBPtr;

Field descriptions

fCallBackProcPtr A pointer to Installer Engine’s dispatch routine. You’ll need
to pass this field as a parameter to Installer function glue
routines.

Resource Description
The template of the Version Compare script resource is shown below.
#defineversionCompareFlags \

fill bit[16];

type 'invc' {
switch {

case format0:
key integer = 0; /* Format version */
versionCompareFlags; /* Version Compare */
literal longint; /* Version Compare Code Rsrc Type */
integer; /* Version Compare Code Rsrc ID */
longint; /* Minimal Requested Memory */
evenPaddedString; /* Summary */

};
};

C H A P T E R 3

Defining Actions

Installer Engine 4.5.2 Technical Guide 80

Field descriptions

Version Compare Flags Currently reserved for use by Apple Computer, Inc. (2-
bytes)

Version Compare Code Rsrc Type
The resource type of the Version Compare code resource. (4-
bytes)

Version Compare Code Rsrc ID
The resource ID of the Version Compare code resource. (2-
bytes)

Minimal Required Memory The minimum number of free bytes the Version Compare
code resource needs during execution. (4-bytes)

NOTE
Unless your Version Compare routine has a special need for
it's own memory heap, you should always assign this field
a value of zero. A value of zero allows the Version Compare
routine to use Installer Engine’s allocated memory. ◆

Version Compare Summary An optional string briefly describing the purpose of this
Version Compare function. This string is never displayed to
the user. (even-padded Pascal string)

C H A P T E R 4

Installer Engine 4.5.2 Technical Guide 81

File Specification

This chapter describes how to create the script resources that specify the source and target file.

About File Specifications
Most atoms require a source and target file to be specified in order to carry out the action defined
by the atom. For example, when using a File Atom to copy a file from the source disk to the
target disk, a Target File Spec resource (‘intf’) and a Source File Spec resource (‘infs’) must be
referenced from the atom.

Example (Part 3): Specifying Target and Source Files
During part 2 of this example, we created a ‘ifa#’ resource that contains seven File Atoms to
copy our seven files. Now we need to specific where the files reside on the source disk, and
location we wish to copy the files to on the target disk.

Step 9: Create the Target File Specifications
We’ll store our target file specifications inside a ‘itf#’ resource. Each target file specification
will have a record ID that corresponds to the value we store in each File Atom. The file paths
are stored in a separate resource of type ‘ist#’. Both resources are defined below:

resource 'itf#' (300) {
format0 {

300, // ID of 'ist#' resource containing path names.
{

/* [1] */ 1001, // Unique ID of this target file specification
noSearchForFile, // We don't need to search for the target file
TypeCrNeedNotMatch, // We don't care what the existing type and creator are
'ttro', // Type given to the file
'ttxt', // Creator given to the file
0x0, // Finder flags given to file, filled in by ScriptCheck
0x1, // Creation date given to file, value of 1 specifies

// that ScriptCheck should update this value
0x1, // Modification date given to file, value of 1 specifies

// that ScriptCheck should update this value
0, // No search proc specified since we're not searching
1, // Index of the file path in the 'ist#' resource

/* [2] */ 1002, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 2,

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 82

/* [3] */ 2001, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 3,
/* [4] */ 3001, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 4,
/* [5] */ 3002, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 5,
/* [6] */ 1004, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 6,
/* [7] */ 1005, noSearchForFile, TypeCrNeedNotMatch, 'ttro', 'ttxt', 0x0, 0x1, 0x1, 0, 7,

}
}

};

resource 'ist#' (300) {
format0 {

{
/* [1] */ ":User Interface Example:Example File • 1",
/* [2] */ ":User Interface Example:Example File • 2",
/* [3] */ ":User Interface Example:Example File • 3",
/* [4] */ ":User Interface Example:Example File • 4",
/* [5] */ ":User Interface Example:Example File • 5",
/* [6] */ ":User Interface Example:Example File • 6",
/* [7] */ ":User Interface Example:Example File • 7",

}
}

};

Step 10: Create the Source File Specifications
For the source file specifications, we must create a separate ‘infs’ resource for each of the seven
files.

resource 'infs' (1001) {
'ttro', // Type for source file
'ttxt', // Creator for source file
0x1, // Creation date for source file, value of 1 specifies

// that ScriptCheck should update this value
noSearchForFile, // ignored
TypeCrMustMatch, // Type & Creator must match file on source disk
"Example Files:Example File • 1" // Path to source file

};

resource 'infs' (1002) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 2" };

resource 'infs' (2001) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 3" };

resource 'infs' (3001) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 4" };

resource 'infs' (3002) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 5" };

resource 'infs' (1004) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 6" };

resource 'infs' (1005) { 'ttro', 'ttxt', 0x1, noSearchForFile, TypeCrMustMatch,
"Example Files:Example File • 7" };

Specifying Target Files (‘intf’ & ‘itf#’)
The goal of the Target File Spec is to specify where to install the file on the target disk. In
most cases the scriptwriter can hard code the path to the target file using the various reserved
folder path names, or in special cases, search for the file using a code resource.

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 83

The Target File Spec can be stored in one of two resources types. The older ‘intf’ resource requires
a separate resource for each target file, but the newer ‘itf#’ stores all file specs in a single
resource. Since you lose no functionality by using the new format, we recommend you store target
file specs in a ‘itf#’ resource.

The path to the target file that must start with a colon or one of two reserved tokens (special-
xxxx or folder-user). Because the target volume name is not known at the time a script is
written, the scriptwriter supplies a partial path name that begins in the root directory of the
target disk.

Storing Target File Specs in the ‘ift# Resource
When referencing a target file spec from an atom, Installer Engine will look first for a target
file spec with the specified record ID in the ‘itf#’ resource, and if not found will look for a ‘inft’
resource with the specified ID. NOTE: an Installer script can only have one ‘itf#’ resource.

Installing into Special Folders
A scheme is provided to support special folders such as the System Folder, the Apple Menu
Folder, and other Folder Manager folders. The short-hand notation used to specify a folder
manager folder is “special-xxxx ”, where the “xxxx” is one of the defined special folder
types. The special folder types currently defined for System 7.0 through 8.5 are as follows:

Type Folder Type Folder

'macs' System Folder 'prnt' PrintMonitor Documents
'strt' Startup Items 'amnu' Apple Menu Items
'extn' Extensions 'pref' Preferences
'ctrl' Control Panels 'font' Fonts (System 7.1 only)
'shdf' Shutdown Items 'macD' System Folder (Disabled)
'ctrD' Control Panels (Disabled) 'extD' Extensions (Disabled)
'strD' Startup Folder(Disabled) 'shdD' Shutdown Folder(Disabled)
'amnD' Apple Menu (Disabled) 'issf' Internet Search Sites
'laun' Launcher Items 'fnds' Find
'fbcf' TheFindByContentFolder 'ilgf' Installer Logs
'root' target volume root 'desk' Desktop Folder
'trsh' Trash 'empt' Network Trash Folder
'temp' Temporary Items 'flnt' Cleanup At Startup
'asup' Application Support 'apps' Applications
'docs Documents 'odod' OpenDoc
'odsp' OpenDoc Shell Plug-Ins 'odlb' OpenDoc Libraries
'oded' Editors 'ƒtex' Text Encodings
'odst' Stationery 'ƒhlp' Help
'ƒnet' Internet Plug-Ins 'ƒmod' Modem Scripts
'ppdf' Printer Descriptions 'ƒprd' Printer Drivers
'ƒscr' Scripting Additions 'ƒlib' Extensions (for shared libraries)
'fvoc' Voices 'sdev' Control Strip Modules
'astƒ' Assistants 'utiƒ' Utilities
'aexƒ' Apple Extras 'cmnu' Contextual Menu Items
'morƒ' Mac OS Read Me Files 'prof' ColorSync Profiles
'appr' Appearance 'snds' Sound Sets
'thme' Theme Files 'dtpƒ' Desktop Pictures
'favs' Favorites 'fasf' Folder Action Scripts
'scrƒ' Scripts 'astƒ' Assistants
'rapp' Recent Applications 'rdoc' Recent Documents

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 84

'rsvr' Recent Servers 'spki' Speakable Items
'intƒ' Internet 'amnD' Apple Menu (Disabled)

This means that if the fully qualified path to the system file on the target disk was
“MyVolume:MyFolder:MySystemFolder:System”, then a reference to the special folder
“special-macs” would be expanded by Installer Engine to be
“MyVolume:MyFolder:MySystemFolder.” For example, if you wanted to install the Finder file
into the blessed folder on the system disk, you would use the path name “special-macs:Finder”
in the File Spec. If a folder in the path name does not exist, Installer Engine creates it.
Installer Engine supports the use of special folders even when running on systems which do not
have Folder Manager functionality. For more information about the Folder Manager, refer to
the Finder chapter in Inside Macintosh, Volume VI.

To support installing into pre-7.0 systems, Installer Engine will automatically map special
folders to the System Folder. For example, if your target is the Extensions Folder then Installer
Engine will change the destination to the System Folder rather than create an Extensions
Folder. This also applies to rule clauses that reference a file spec. While this simplifies script
writing for many files that go into special folders, it does not simplify DA installation.

In addition to the folder types defined by Apple, Installer Engine supports five special
autorouting folder types that are only valid when used with “special-“ within target file
specs. The auto routing feature allows the scriptwriter to search for the existence of a file in
either the main folder or the disabled folder. If a file is found in any of these folders, the same
folder will be used for installation. If the file is not found, the new file will be installed by
default in the enabled folder. If a file is found in both the enabled and disabled folder, the new
file will replace the file in the enabled folder. These autorouting folder types are as follows:

Type Folder Type Folder
'macX' auto routing to System Folder 'amnX' auto routing to Apple Menu Items
'ctrX' auto routing to Control Panels 'strX' auto routing to Startup Folder
'shdX' auto routing to Shutdown Folder

Localized systems are supported through a defined algorithm for determining the correct
special folder name by searching for the proper ‘fld#’ or ‘nfd#’ resource. Given a special folder
type, Installer Engine searches for the type in a ‘fld#’ or ‘nfd#’ resource in the following order:

■ Target System file
■ Installer Script file
■ Installer Engine application file
■ Booted System file

Generally, the scriptwriter should not include a ‘fld#’ or ‘nfd#’ resource in the script so
installations into localized System Folders will happen correctly.

Installing into the User-Selected Application Folder
The scriptwriter can easily install or remove files and resources from the application folder
selected by the user. This reserved folder name should only be used in conjunction with the
application folder interface mode. For example, to install the file “Demo Application” into
the application folder the path name might be “folder-user:Demo Application”.

Managing Rollbacks on Multiple Target Volumes
With the ability to install onto more than one target volume at a time, a complete rollback is
not possible unless the original files on all target volumes are maintained. This is not always

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 85

possible due to available disk space on the target volumes. Installer Engine always saves the
original System Folder files on the boot volume, but makes the saving of all other original files
optional based on the amount of available disk space on each target volume. If there is enough
space to save all original files on all target volumes the ‘Cancel’ button shows in the Status
dialog thereby allow for a complete rollback, otherwise a ‘Stop’ button is shown.

Installing onto the Installer Volume
To support installation onto the Installer volume, Installer Engine must prevent source files from
being disturbed. After the user clicks the Install button, Installer Engine determines whether
any target file matches the location of a source file. If there is a conflict the user is alerted.
This case is much more likely to happen when the scriptwriter allows the user to select the
target application folder.

Setting the Finder flags and Dates
Format 1 of the ‘intf’ resource supports supplying the Finder flags, creation date and
modification date to make target file specification of archived files easier. Installer Engine
sets the values of a newly created file to the specified values in the ‘intf’. If the ‘intf’ is
referenced from a File or ResMerge Atom and the file already exists the Finder flags, creation
and modification dates will be updated. The Finder Flags in a File Atom will always override
the Finder Flags specified in the ‘intf’ resource.

If you use an ‘infs’ or format 0 of the ‘intf’ Installer Engine continues to use the Finder flags,
creation and modification date of the source file. In cases where the source file is a compressed
archive, format1 version of the ‘intf’ is recommended. ScriptCheck will fill in the correct flags
and dates if the file does not reference an Atom Extender. If an Atom Extender is being used,
make sure to supply the appropriate ScriptCheck extension. To have ScriptCheck fill in the
correct values, place a zero in the Finder flags field and 1 in the Creation Date and
Modification Date fields. If the date field is zero or 1, Installer Engine reverts to the older
method of determining the correct target date, such as with format 0 of the ‘intf’.

Specifying Source Files (‘infs’)
The goal of the Source File Spec is to describe where the file resides on the original distribution
source disk.

NOTE

When performing installations from some network servers, it is necessary that all source files
have a file creation and modification time stamp that has an even value for the seconds. If you
intend for installation to be performed from network servers you should set the creation and
modification times of all your source files to a value such as 12:00:00 PM. ◆

Source Disk Search Path
Because of multiple disk installation capability, the semantics of the File Name field are a bit
complex. Customers may have copied the distribution disks onto a file server and want to
install from there, or they may have made floppy backup copies of the system disks provided
by Apple and expect to be able to install from those. They might also want to set up a server
that users can install from. In either case, the path name specified in the File Name field of
the Source File Spec will probably be slightly off (e.g. the backup disks may not have the same
names as the originals) so we need to be somewhat flexible when searching for a specific source

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 86

file. In a Source File Spec, the full path name (including volume name) must be given in the File
Name field, but it may not be used by Installer Engine exactly as given.

While Installer Engine is flexible as to exact volume names, it requires that disk contents be the
same as what is specified in the script. Installer Engine uses the scripts to make a list of the
volumes that are needed for the installation, and the files that should be on each volume. All
files that are supposed to be on the same volume must be on the same volume, but that volume’s
name may be different from the name given in the script. In addition, we relax this condition
slightly to allow for hard disk and network installations. When Installer Engine needs a disk
specified in the script, it searches in the following order:

• Search for a folder with the disk’s name at the same HFS level as the script.

• Search for a folder with the disk’s name at the script parent’s HFS level.

• Search for a folder with the disk’s name at the same HFS level as Installer Engine.

• Search for a folder with the disk’s name at Installer Engine parent’s HFS level

• Search for an online volume with the correct name.

• If Installer Engine was not launched from an AppleShare server volume, ask for a
floppy disk or CD-ROM.

For backup purposes, Installer Engine makes the assumption that source diskettes may have the
disk name changed. For example, the user may omit such special characters such as '©' and '™'
when making the backup copies of the original installations disk. To find source files, Installer
Engine parses off the disk name and searches for the required files from the root level of the
current diskette. If the file is not found, the search criteria listed above are used.

The disk that Installer Engine is on is a special case in our requesting disk and disk content
strategies. If possible, Installer Engine’s disk is always the first disk that we copy files and
resources from. Also, the contents of Installer Engine disk are checked for correctness before
anything is deleted or copied. We recommend that scriptwriters (especially for system
releases) have the most important files and resources to be copied on Installer Engine disk, since
that’s the only disk that we can guarantee the user has. Otherwise, Installer Engine could start
the installation, which includes deleting all appropriate target files and resources, and have
to ask for a disk that contains a crucial file, in which case the user cancels out of the dialog,
since that disk is for some reason not available, thereby aborting the installation, leaving the
user worse off than before (i.e., a system that no longer boots). This, of course, does not happen
when doing a live install

File spec. IDs of 0 should only be used for source files specifications for the deletion of files;
when the noCopy and deleteOnInstall flags are set in the 'infs' resource

File Spec. Reference
This section describes the data structures and script resources needed to reference source and
target files from atoms.

Resource Descriptions
The section describes the resource definitions for the target file specification resources (‘intf’,
‘itf#’, and ‘ist#’) and the source file specification resource (‘infs’).

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 87

Target File Spec. Resource (‘intf’)
The Target File Spec. resource contains a reference to an ‘insp’ script resource which describes
the file searching code resource, much like the Atom Extender script resource does.

#definetargetFileFlags \
boolean noSearchForFile, SearchForFile; \
boolean TypeCrNeedNotMatch, TypeCrMustMatch; \
fill bit[14] /* Reserved */

type 'intf' {
switch {

case format0:
key integer = 0; /* Target File Spec. Format version */
fileSpecFlags; /* Target File Spec. Flags */
literal longint; /* Target File Type */
literal longint; /* Target File Creator */
literal integer; /* Search Proc. Rsrc ID */
evenPaddedString; /* Target File Path */

case format1:
key integer = 1; /* Target File Spec. Format version */
fileSpecFlags; /* Target File Spec. Flags */
OSType; /* Target File Type */
OSType; /* Target File Creator */
unsigned hex integer; /* Target File Finder Flags */
unsigned hex longint; /* Target File Creation Date */
unsigned hex longint; /* Target File Mod. Date */
rsrcID; /* Search Proc. Rsrc ID */
evenPaddedString; /* Target File Path */

};
};

Flag descriptions

noSearchForFile/SearchForFile
Determines if the Search Procedure code resource will be
called. Use the searchForFile flag to override the
specified file path and use the list of files returned from
the Search Procedure code resource.

TypeCrNeedNotMatch/TypeCrMustMatch
Determines if the specified type and creator must match
the file found on the target disk. If the type and creator of
the found file do not match those specified, the
installation stops the installation. This is also true of any
found files returned by the Search Procedure.

Field descriptions

Target File Type The file’s type if Installer Engine must create one during a
copy. If the TypeCrMustMatch flag is used and an existing
file is found, its type must match the type entered in this
field. (4-bytes)

Target File Creator The file’s creator if Installer Engine must create one during
a copy. If the TypeCrMustMatch flag is used and an
existing file is found, its creator must match the creator
entered in this field. (4-bytes)

Target Finder Flags The Finder flags to be given to a new file. If referenced from
a ResMerge Atom, the Finder Flags are given to the existing

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 88

file. The Finder flags specified in a File Atom always
override this field. Only available in format 1. (2-bytes)

Target Creation Date The creation date to be given to a new file. If referenced
from a File Atom or ResMerge Atom, the existing file is
given this creation date. Leave as 0 to use the source file’s
or today’s date. Set to 1 to have ScriptCheck update using
the source file’s creation date. Only available in format 1.
(4-bytes)

Target Mod. Date The modification date to be given to a new file. If
referenced from a File Atom or ResMerge Atom, the
existing file is given this modification date. Leave as 0 to
use the source file’s or today’s date. Set to 1 to have
ScriptCheck update using the source file’s modification
date. Only available in format 1. (4-bytes)

Search Procedure Rsrc ID
The resource ID of an ‘insp’ resource, which describes the
code resource to call to perform the target file search. (2-
bytes)

Target File Path The partial path to the target file that must start with a
colon or one of two reserved tokens (special-xxxx or folder-
user). (even-padded Pascal string)

Target File Spec List Resources (‘itf#’ & ‘ist#’)

type 'itf#' {
switch {

case format0:
key integer = 0; /* Target File Spec. Format version */
rsrcID; /* File Paths Rsrc ID */
integer = $$Countof (TargetRec); /* Number of records */
wide array TargetRec {

longint; /* Record ID */
targetFileSpecFlags; /* Target File Spec. Flags */
OSType; /* Target File Type */
OSType; /* Target File Creator */
unsigned hex integer; /* Finder Flags */
unsigned hex longint; /* Creation date of new file */
unsigned hex longint; /* Modification date of new file */
rsrcID; /* Search Proc. Rsrc ID */
unsigned integer; /* File Path Index in ist# resource */

};
};

};

Flag Descriptions

See flag descriptions of ‘intf’ resource for information about flags

Field Descriptions

File Paths Rsrc ID The ID of the ‘ist#’ resource containing the file paths for
this ‘itf#’ resource. (2-bytes)

Record ID An ID that uniquely identifies this target file spec. When
combining multiple ‘intf’ resource with the ‘inf#’ resource in
the same Installer script, make sure no ID of an ‘intf’

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 89

resource is used to identify a target file spec record in the
‘itf#’ resource. (4-bytes)

File Path Index An index of the file path string within the specified ‘ist#’
resource. (2-bytes)

See field descriptions of ‘infa’ resource for information on the other fields

type 'ist#' {
switch {

case format0:
key integer = 0; /* Data Format version */
integer = $$Countof(StringArray); /* Number of strings */
wide array StringArray {

pstring; /* File Path */
};

};
};

Field Descriptions

File Path The file path string for the target file spec record
referencing this string index. This string must be a partial
path starting with a colon or one of two reserved tokens
(special-xxxx or folder-user). (pascal string, not even-
padded)

Source File Spec Resource (‘infs’)
The ‘infs’ script resource is referenced from atoms.

#definefileSpecFlags \
boolean noSearchForFile, searchForFile; \
boolean typeCrNeedNotMatch, typeCrMustMatch; \
fill bit[14]

type 'infs' {
literal longint; /* File Type */
literal longint; /* File Creator */
unsigned hex longint; /* Creation Date*/
fileSpecFlags; /* File Spec Flags */
evenPaddedString; /* Full Path */

};

Flags descriptions

noSearchForFile/searchForFile
Ignored by Installer Engine.

typeCrNeedNotMatch/typeCrMustMatch
Determines if the type and creator contained in the File
Creator and File Type fields must exactly match the source
file on the source disk. Use the typeCrMustMatch flag to
force the type and creator to match, otherwise the
installation stops with an error.

Field descriptions

Source File Type The source file’s type. If the TypeCrMustMatch flag is
used the source file’s type must match the type entered in
this field. Otherwise, the user is told the source disk is bad
and the installation is canceled. (4-bytes)

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 90

Source File Creator The source file’s creator. If the TypeCrMustMatch flag is
used source file’s creator must match the creator entered in
this field. Otherwise, the user is told the source disk is bad
and the installation is canceled. (4-bytes)

Creation Date The creation date the source file must have, otherwise the
installation is stopped. Values of 0 or 1 are considered to
match any creation date. (4-bytes)

Source File Path The full path to the source file. (even-padded Pascal
string)

About File Searching (‘insp’)
Whenever you want to update or delete a file on the user’s disk but don’t know where the file
will reside, you’ll need to search for it at installation time. For those File and Resource atoms
you wish to search for the target file, attach a Search Procedure (‘insp’) script resource to the
new Target File Spec. (‘intf’) script resource, then reference the ‘intf’ resource from the atom just
as you would the older ‘infs’ script resource. Setting the searchForFile flag in the ‘intf’
resource will tell Installer Engine to call the code resource at the appropriate time. The built-
in searching feature of Installer Engine will be removed and the searchForFile flag in the
present ‘infs’ resource will be ignored.

The actual searching code will be supplied by you, the scriptwriter, in a code resource whose
type and ID is specified in the ‘insp’ resource.

Using File Searching with File and Resource Atoms
The file searching code resource is given a pointer to a parameter block containing useful
information about Installer Engine’s environment. The search routine performs a search for the
desired file(s), then passes back a list of those files it has found, including a result code to tell
Installer Engine whether to continue or stop.

The search routine’s task is to create and return a handle to an array of FoundFileRec records in
the parameter block’s fFoundFiles field. The array should contain zero or more
FoundFileRec records that specify each target file to act upon. The number of elements in the
array is determined by the size of the handle. If the array has no elements, then the atom is
ignored. If one FoundFileRec element is specified, then the atom (file, resource, or font atom) is
processed normally with the designated target file. If more than one FoundFileRec element is
in the array, the atom is duplicated for each element.

The files that are returned to Installer Engine may or may not already exist. Installer Engine
will verify that the volume and directory exist and are valid, and that the file name does not
conflict with an existing directory name. If the file does not exist Installer Engine will create
one, if necessary.

Using File Searching with Rule Clauses
File searching can also be used with Target File Specs that are referenced from rule clauses. If a
Target File Spec returns more than one found file, the rule clause is duplicated for each valid
file. The duplicated rule clauses are “anded” with the original rule clause. Therefore, in order
for the original rule clause to return TRUE, every duplicated rule clause must also return TRUE.

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 91

Allowable Installer Functions During File Searching
While your file searching code resource is executing, you can call selected Installer functions.

Allowable Installer functions:

■ Memory functions: INewHandle, IDisposHandle, ILockHandle, IUnLockHandle.

■ Action Handler functions: RegisterAction.

File Searching Reference
This section describes the data structures and new script resources needed to support target file
searching.

Data Structures
This section describes the function interface and parameter block passed to the Search
Procedure code resource.

The Search Procedure must return a handle to an array of records describing the files it found.
This array handle is defined as:
typedef struct {
 short vRefNum;
 long parID;
 Str63 name;

short fReferenceID; /* Reserved for internal use. */
} FoundFileRec, FoundFileArray[], *FoundFileArrayPtr[], **FoundFileHdl[];

The handle should be allocated using Installer Engine’s INewHandle routine.

Function Interface
This section describes the Search Procedure function interface and the required result values.

The file search function must return one of three results to tell Installer Engine how to proceed:
typedef enum { kFatalSearchError = -1,

kSearchSuccessful = 0,
kCancelSearchAndInstallation = 1

} SearchResult;

The file search function must have the following interface:
SearchResult FileSearchRoutine(SearchProcedurePBPtr);

Parameter Block
The file search code resource is passed a pointer to a parameter block containing useful
information. Your code resource will want to return a handle to a list of found files in the
fFoundFileArray field.
typedef struct {
—> ProcPtr fCallBackProcPtr;
—> short fTargetVRefNum;
—> long fTargetFolderDirID;

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 92

—> short fSystemVRefNum;
—> long fSystemBlessedDirID;
—> long fRefCon;
—> OSType fFileSpecType;
—> OSType fFileSpecCreator;
—> long fFileSpecCrDate;
—> Str255; fFileSpecPath;
<- FoundFileArrayHdl fFoundFilesArray;
} SearchProcedurePBRec, *SearchProcedurePBPtr;

Field descriptions

fCallBackProcPtr A pointer to Installer Engine’s dispatch routine. You’ll need
to pass this field as a parameter to glue routines that
provide access to Installer functions.

fTargetVRefNum The target disk’s vRefNum. When allowing the user to
select a target application folder, this is the volume on
which the folder resides.

fTargetFolderDirID The target application folder’s directory ID. This value is
-1 if the user cannot select a target application folder.
Target File Specs that use the reserved folder path
folder-user will be placed in this folder.

fSystemVRefNum The system disk’s vRefNum. Target File Specs that use the
reserved folder path special-xxx will be placed in the
System Folder on this volume.

fSystemBlessedDirID The directory ID of the System Folder on the disk with the
refNum fSystemVRefNum . This directory is not
necessarily the currently active System Folder.

fRefCon A 4-byte value defined by the scriptwriter in the ‘insp’
script resource.

fFileSpecType The value from the Target File Type field of the Target
File Spec.

fFileSpecCreator The value from the Target File Creator field of the Target
File Spec.

fFileSpecCrDate The value from the Target File Creation Date field of the
Target File Spec.

fFileSpecPath The value from the Target File Path field of the Target
File Spec.

fFoundFilesArray A handle to an array of found target files that is created
and filled by the code resource.

Resource Description
The ‘insp’ script resource is referenced from the new Target File Spec. It defines how to call the
code resource that will perform the actual search.

type 'insp' {
switch {

case format0:
key integer = 0; /* Search Procedure Format version */

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 93

unsigned integer; /* Search Procedure Flags */
literal longint; /* Search Procedure Code Rsrc Type */
literal integer; /* Search Procedure Code Rsrc ID */
literal longint; /* RefCon Value */
literal longint; /* Required Free Memory */
evenPaddedString; /* Search Procedure Summary */

};
};

Field descriptions

Search Procedure Flags Currently reserved for use by Apple Computer, Inc. (2-
bytes)

Search Procedure Code Rsrc Type
The type of the code resource that will be called to perform
the search. (4-bytes)

Search Procedure Code Rsrc ID
The ID of the code resource that will be called to perform
the search. (2-bytes)

RefCon Value The value that will be passed to the code resource in the
fRefCon field of the Search Procedure parameter block.
(4-bytes)

Required Free Memory The minimum number of free bytes the Search Procedure
code resource needs in its own heap to make local allocation
of memory using Macintosh OS/Toolbox routines. Enter 0
(zero) to not create a sub-heap and run inside Installer
Engine’s heap. Please see warnings about using sub-heaps
in the Atom Extender section if you specify a value other
than 0. (4-bytes)

Search Procedure Summary
An optional string briefly describing the purpose of this
Search Procedure. This string is never displayed to the
user. (even-padded Pascal string)

Using the Disk Order Resource (‘indo’)
By default, Installer Engine requests disks from the user using the order of the atoms specified
in the script. This ordering is displayed in the status dialog. With more than just a few atoms,
it can be very difficult to control the order of disks. To make this easier, if an Installer Disk
Order resource exists in the script (resource type 'indo'), this resource is used to determine the
ordering of the disks. The format of the 'indo' resource is given below. The resource contains a
list of Pascal strings that are the names of the source disks. These names must exactly match
the names of the volumes given in the source and target paths within the File Specs.

For example, let’s say you have created a two disk set that uses one floppy disk and one CD
volume. Your ‘indo’ might look like this:
resource 'indo' (1000) {

format1 {{
kExpectFloppyDisk,
"Installer Disk",
kExpectCDVolume,
"Applications CD"

}};

C H A P T E R 4

File Specification

Installer Engine 4.5.2 Technical Guide 94

};

Specifying the expected type of source disk just helps Installer Engine know which type of disk
drive to make available to insert the requested source disk. This feature does not affect the
user’s ability to create network installation folders on an AppleShare server volume.

Disk Order Reference

Resource Description
Format 0 of the new ‘indo’ resource:
#define SrcDiskType \

integer \
kExpectFloppyDisk = 0, /* It’s a floppy Disk */ \
kExpectCDVolume = 1, /* It’s a CD */ \
kExpectFoldersOnVol = 2 /* It’s a folder */

type 'indo' {
switch {

case format1:
key integer = 1;
integer = $$Countof(SrcVolArray);
array SrcVolArray {

SrcDiskType; /* Source Disk Type */
evenPaddedString; /* Source Disk Name */

};
};

};

Field descriptions

Source Disk Type The expected source disk type. Currently, a floppy disk;
CD or folders on a CD, HD, or AppleShare volume.
Installer Engine primarily uses this information to
determine which type of disk to eject to make room for the
requested source disk. For example, if the requested source
disk is expected to be a CD and all CD drives are full, then
one of the CDs will be ejected. (2-bytes)

Source Disk Name The name of the source disk. The name can end in a colon if
you wish. (2-bytes)

C H A P T E R 5

Installer Engine 4.5.2 Technical Guide 95

Miscellaneous Resources

This chapter describes miscellaneous resources added to the scrip by, either the scriptwriter, or
the ScriptCheck MPW tool.

Example (Part 3): Specifying Target and Source Files
Our example Installer script is almost complete. We need to add one additional resource, then
run ScriptCheck.

Step 11: Add Installer Version Resource
Installer Engine version resource will make sure only Installer and Installer Engine applications
open your Installer script that supports the features you are using. For example, if you’ve
written your Installer script for Installer Engine 4.5.1, then use the following resource:
resource 'invs' (1) {

format0 {
0x4,
0x51,
release,
0x0,
"4.5.1"

}
};

Step 12: Build the Installer Script File
If you’ve defined your resources using the Rez language, then you’ll need to compile this text
into an actual Installer script file. The “MakeFile” file inside the UserInterfaceExample
folder in the Installer SDK provides an automatic way of building and ScriptChecking your
Installer script.

Step 13: Run ScriptCheck on the Installer Script File
Before you begin using your Installer script file, you must run ScriptCheck on the file, if not
already run in step 12. The ScriptCheck MPW tool verifies the integrity of your Installer script
and updates various fields from the source files.

See the document ScriptCheck 4.2 User’s Guide for more information about using this tool.

C H A P T E R 5

Miscellaneous Resources

Installer Engine 4.5.2 Technical Guide 96

Step 14: Test the Installer Script
Now you’re ready to test your Installer script. The “Single Installer Script Example” folder on
the Installer SDK contains an Upgrader-based program that installs the UserInstallerExample
Installer script. Feel free to use this Upgrader example as a starting point for your own
Installer script.

About the Installer Version Resource (‘invs’)
You may want to ensure that the version of Installer Engine that you used for development and
testing and that you shipped is the one that is launched. To do so, add an 'invs' Installer
Version resource to specify the specific Installer version needed for your script. If you require
Installer 4.0 and a different version is launched and the version specified in this resource is 4.0
then Installer Engine will display a dialog saying something like “The Installer document
[your document's name here] requires version [invs version number here] of the Installer
application. Try opening the Installer application that is in the same folder as this Installer
document.”

Installer Engine uses the four hex bytes that specify the version number to compare against its
own version. The string is used only in the dialog that is displayed when the two versions do
not match.

Installer Version Reference

Resource Description
Format 0 of the ‘invs’ resource:
type 'invs' {

switch {
case format0:

key integer = 0;
hex byte; /* Major revision in BCD */
hex byte; /* Minor revision in BCD */
hex byte; /* Release Stage */
hex byte; /* Release Number */
pstring; /* Short Version Number String */

};
};

Field descriptions

Major Revision The major version number. (2-bytes)

Minor Revision The minor version number. (2-bytes)

Release Stage The release stage. Four release stage constants are defined
in the InstallerTypes.r file: development, alpha, beta,
final and release. (2-bytes)

Release Number The release number. (2-bytes)

Short Version Number String
Text description of version number. (even-padded Pascal
string)

C H A P T E R 5

Miscellaneous Resources

Installer Engine 4.5.2 Technical Guide 97

About the Script Size Resource (‘insz’)
Use of the new script resource, ‘insz’ with an ID of 1 is recommend for scripts over 10K in size.
When the script resources are loaded into memory, they actually go into a sub-heap inside of
Installer Engine’s main heap. This improves Memory Manager performance on older machines.
In previous versions of Installer Engine, the size of this sub-heap was always overestimated to
account for possibly compressed resources in the script file. This older scheme has the potential
for wasting precious Installer heap memory, requiring a larger application partition.

ScriptCheck 4.X calculates this value and automatically places this resource into your script.
The size calculated is calculated using the following script resource types: 'inaa', 'infa', 'inra',
'inff', 'inrm', 'intf', infs', 'inpk', 'inrl', 'infr', 'inex', 'invc', 'insp', 'inat', 'inbb', 'indo', incd',
'insz', 'icmt', 'inpc', 'inr#', 'itf#', 'ifa#', and 'ist#'.

Script Size Reference

Resource Description
Format 0 of the ‘invs’ resource:
type 'insz' {

switch {
case format0:

key integer = 0; /* Format version */
unsigned longint; /* Script Sub-Heap Size in bytes */

};
};

Field descriptions

Script Sub-Heap Size The size in bytes the script resources will require when
loaded into memory. This value is used to create an
optimally sized sub-heap for the Installer script resources.
(4-bytes)

About the Script Creation Date Resource (‘incd’)
The script creation date resource holds a copy of the script file’s creation date field. This value
is used by Installer Engine to correctly find and verify the source files when copied to an
AppleShare server. Because the creation date of the source files may have been changed during
the copy, Installer Engine uses the creation date in the ‘incd’ resource to calculate a delta value
using the script’s creation date stored in the file by the File Manager. Without this resource,
the user may get an error after beginning the installation saying that the source files could not
be found.

ScriptCheck automatically updates or adds this resource to your script.

Script Creation Date Reference

C H A P T E R 5

Miscellaneous Resources

Installer Engine 4.5.2 Technical Guide 98

Resource Description
The ‘incd’ resource:
type 'incd' {

unsigned longint; /* Script Creation Date in seconds. */
};

};

Field descriptions

Script Creation Date The original creation date in seconds of the script file. (4-
bytes)

C H A P T E R 5

Installer Engine 4.5.2 Technical Guide 99

Installer Functions

Installer functions allow the code resource writer to communicate with Installer Engine and use
utility routines provided by Installer Engine. Some of the routines are the essential mechanism
for communicating with Installer Engine, such as when decompressing files during installation.
These routines are often limited to being called from specific code resources. Other routines may
be available all the time, either as a means to getting information from Installer Engine or as
helpful utility routines.

Installer callback functions are actually glue routines that you must include in your code to
access the proper routines inside Installer Engine. Either include the glue code file
“InstallerCallbackGlue.c” in your source code or compile it separately and link to it. You’ll find
the declaration of all Installer functions in the interface file “InstallerScript.h”.

Installer Functions Reference

Data I/O Routines
This section describes the routines available to manage reading and writing atom data. Most of
these routines are only available in Atom Extenders. These routines function very similar to
high-level File Manager routines. Consult Inside Macintosh: File s for an overview of topics
such as positioning marks in files.

ReadSourceData

pascal OSErr ReadSourceData(CallBackProcPtr pCallBackProcPtr,
long* count,
Ptr bufferPtr);

pCallBackProcPtr The callback pointer.

count The number of bytes to read from the source data. After the
call, the actual number of bytes read is returned in count .

bufferPtr A pointer to a buffer of at least size count .

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 100

DESCRIPTION

The ReadSourceData function reads the specified number of bytes from the source data
beginning at the current position. The supplied pointer must have already been allocated to at
least the size of count .

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
ioErr -36 I/O Error
eofErr -39 End of part reached
paramErr -50 Negative count or NULL bufferPtr

WriteTargetData

pascal OSErr WriteTargetData(CallBackProcPtr pCallBackProcPtr,
long count,
Ptr bufferPtr);

pCallBackProcPtr The callback pointer.

count The number of bytes to write to the target at the current
position.

bufferPtr A pointer to a buffer of at least size count .

DESCRIPTION

The WriteTargetData function writes the specified number of bytes from the supplied buffer
to the target beginning at the current position. The data is not immediately written to the
target file, but rather is buffered using Installer Engine heap or MultiFinder temporary
memory. This reduces our need for the target disk, which is especially important when
installing onto floppy disks.

IMPORTANT

Since there is overhead associated with each call to WriteTargetData , calls to write very
small amounts of data (less than 1K) should be avoided.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
paramErr -50 Negative count or NULL bufferPtr
memFullErr -108 Not enough memory to buffer data

ReadTargetData

pascal OSErr ReadTargetData(CallBackProcPtr pCallBackProcPtr,
long* count,
Ptr bufferPtr);

pCallBackProcPtr The callback pointer.

count The number of bytes to read from the target data. After the
call, the actual number of bytes read is returned in count .

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 101

bufferPtr A pointer to a buffer of at least size count .

DESCRIPTION

The ReadTargetData function reads the specified number of bytes from the target data
beginning at the current position. The supplied pointer must have already been allocated to at
least the size of count .

IMPORTANT

The ReadTargetData function can only be called while in a Version Compare code resource that
was referenced from a Resource Atom. Calling this function at any other time will return a
kNotImplementedErr error.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
ioErr -36 I/O Error
eofErr -39 End of part reached
paramErr -50 Negative count or NULL bufferPtr

SetTargetDataPos

pascal OSErr SetTargetDataPos(CallBackProcPtr pCallBackProcPtr,
short positionMode,
long positionOffset);

pCallBackProcPtr The callback pointer.

positionMode The positioning mode.

positionOffset The positioning offset.

DESCRIPTION

The SetTargetDataPos function sets the current position in the target data.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
eofErr -50 End of target data reached
posErr -40 Attempt to position mark before start of target data

GetTargetDataPos

pascal OSErr GetTargetDataPos(CallBackProcPtr pCallBackProcPtr,
long* positionOffset);

pCallBackProcPtr The callback pointer.

positionOffset On output, contains the current position offset from the
beginning of the target data.

DESCRIPTION

The GetTargetDataPos function returns the current position from the beginning of the target
data.

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 102

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error

GetTargetDataEOF

pascal OSErr GetTargetDataEOF(CallBackProcPtr pCallBackProcPtr,
long* theLength);

pCallBackProcPtr The callback pointer.

theLength On output, contains the current length of the target data.

DESCRIPTION

The GetTargetDataPos function returns the current length of the target data.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error

SetSourceDataPos

pascal OSErr SetSourceDataPos(CallBackProcPtr pCallBackProcPtr,
short positionMode,
long positionOffset);

pCallBackProcPtr The callback pointer.

positionMode The positioning mode.

positionOffset The positioning offset.

DESCRIPTION

The SetSourceDataPos function sets the current position in the source data.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
eofErr -50 End of source part data reached
posErr -40 Attempt to position mark before start of source part data

GetSourceDataPos

pascal OSErr GetSourceDataPos(CallBackProcPtr pCallBackProcPtr,
long* positionOffset);

pCallBackProcPtr The callback pointer.

positionOffset On output, contains the current position from the beginning
of the source data.

DESCRIPTION

The GetSourceDataPos function returns the current position from the beginning of the source
data.

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 103

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error

GetSourceDataEOF

pascal OSErr GetSourceDataEOF(CallBackProcPtr pCallBackProcPtr,
long* theLength);

pCallBackProcPtr The callback pointer.

theLength On output, contains the length of the source data.

DESCRIPTION

The GetSourceDataPos function returns the length of the source data.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error

Memory Routines
This section describes the routines available to manage static memory. Some code resources can
pass back a handle to static memory so the code resource can communicate between invocations
of the code resource. Generally, these routines are available all the time.

INewHandle

pascal Handle INewHandle(CallBackProcPtr pCallBackProcPtr,
long newHandleSize);

pCallBackProcPtr The callback pointer.

newHandleSize The requested size to allocate the handle.

DESCRIPTION

The INewHandle function attempts to allocate a handle of the specified size. If the memory is
not immediately available, Installer Engine writes out any buffered target data to the
appropriate target disk, then tries again. The resulting handle is NULL if the handle could
not be allocated.

Use INewHandle when you want to pass information between invocations of an Atom Extender
using the fStaticDataHandle of the parameter block.

IMPORTANT

Always use IDisposHandle to release a handle allocated using INewHandle . Always use
IHLock and IHUnLock when locking and unlocking a handle allocated using INewHandle .

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
memFullErr -108 Not enough room in Installer Engine’s or MultiFinder’s heap

zone

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 104

IDisposHandle

pascal Handle IDisposHandle(CallBackProcPtr pCallBackProcPtr,
Handle storageHandle);

pCallBackProcPtr The callback pointer.

storageHandle The handle to be disposed.

DESCRIPTION

The IDisposHandle function disposes the handle in the parameter storageHandle . The
handle could have been allocated using Installer Engine’s INewHandle function, or with any
other Macintosh Toolbox routine.

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
nilHandleErr -109 NULL master pointer
memWZErr -111 Attempt to operate on a free block

IHLock

pascal void IHLock(CallBackProcPtr pCallBackProcPtr,
Handle storageHandle);

pCallBackProcPtr The callback pointer.

storageHandle The handle to lock.

DESCRIPTION

The IHLock function locks the specified handle.

IMPORTANT

Always use IHLock to lock a handle allocated using INewHandle .

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
nilHandleErr -109 NULL master pointer
memWZErr -111 Attempt to operate on a free block

IHUnLock

pascal void IHUnLock(CallBackProcPtr pCallBackProcPtr,
Handle storageHandle);

pCallBackProcPtr The callback pointer.

storageHandle The handle to lock.

DESCRIPTION

The IHUnLock function unlocks the specified handle.

IMPORTANT

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 105

Always use IHUnLock to unlock a handle allocated using INewHandle .

RESULT CODES
kNotImplementedErr 30901 Routine not currently implemented
noErr 0 No error
nilHandleErr -109 NULL master pointer
memWZErr -111 Attempt to operate on a free block

Misc. Routines
This section describes various miscellaneous routines available.

MakeFSSpecFromFileSpecID

pascal OSErr MakeFSSpecFromFileSpecID (CallBackProcPtr pCallBackProcPtr,
short pFileSpecID,
FSSpec *pFSSpecPtr,
StringHandle *pExtraPathInfo)

pCallBackProcPtr The callback pointer.

DESCRIPTION

The RegisterScriptAction function.

IncrementStatusBar

pascal void IncrementStatusBar(CallBackProcPtr pCallBackProcPtr,
short pIncrementAmount)

pCallBackProcPtr The callback pointer.

pIncrementAmount Number of increments.

DESCRIPTION

Calling the IncrementStatusBar function increments the status bar during long waits inside
your code resource. Most often you’ll use this in your Action Atom code resource. Upon entry to
your Action Atom you are given 100 status increments to use to show progress while executing a
single Action Atom. Installer Engine limits the bar so you don’t have to worry about
incrementing the bar too far.

InstallerFindSpecialFolder

pascal OSErr InstallerFindSpecialFolder(
CallBackProcPtr pCallBackProcPtr,
short pVRefNum
OSType pFolderType
Boolean pCreateFolder
short * pFoundVRefNum
long * pFoundDirID);

pCallBackProcPtr The callback pointer.

pVRefNum The volume reference number

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 106

pFolderType The folder type being looked for

pCreateFolder true if the folder should be created if not found

pFoundVRefNum The volume reference number returned

pFoundDirID The directory ID returned by FindFolder

DESCRIPTION

The InstallerFindSpecialFolder function attempts to locate or create the folder which type is
pFolderType in the fld# or nfd# resource. The fld# resource is used for System 7.x installations
(target system), the nfd# resource is used for System 8.x installations. If your installer script
contains references to System 8 folder types and you are installing on top of System 7, Installer
Engine will use a resource of type 'nf7#' (same format as nfd#) to locate the folder.

RESULT CODES
fnfErr -43 Type not found

-1 Error looking for fld# or nfd#
noErr 0 No error

GetBoxFlagOverwrite

pascal long GetBoxFlagOverwrite(InstallerCallBackUPP pCallBackProcPtr);

pCallBackProcPtr The callback pointer.

DESCRIPTION

The GetBoxFlagOverwrite function returns the value of the box flag overwrite passed to
Installer Engine by the Upgrader application (or the Script Editor). This allows script writers
to take appropriate actions in their action atoms, relying on a machine ID passed by the
Upgrader, and not the real machine ID as returned by Gestalt.

If no box flag was passed by the client application, this function will return the real machine
ID as returned by Gestalt.

IsLaunchedByUpgrader

pascal Boolean IsLaunchedByUpgrader(InstallerCallBackUPP pCallBackProcPtr);

pCallBackProcPtr The callback pointer.

DESCRIPTION

Currently, Installer Engine’s IsLaunchedByUpgrader function always returns TRUE regardless
of the client application that launched it.

IsParasiteScript

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 107

pascal Boolean IsParasiteScript(InstallerCallBackUPP pCallBackProcPtr);

pCallBackProcPtr The callback pointer.

DESCRIPTION

The IsParasiteScript function returns TRUE if the current script is a parasite script. This call
only makes sense if Installer Engine was launched by the Upgrader 1.1.1 or later application.

NOTE : The return value is only significant if Installer Engine is used in conjunction with
Upgrader 1.1.1 or later.

PresentMessageAlert

pascal SInt16 PresentMessageAlert (InstallerCallBackUPP pCallBackProcPtr,
SInt16 pDialogID,
ConstStr255Param pMessageStr,
SInt16 pCancelButtonID,
SInt16 pDefaultButtonID);

pCallBackProcPtr The callback pointer.

DESCRIPTION
When it’s absolutely necessary to communicate with the user from within your Installer script,
Installer Engine provides a callback routine to request that the client show a dialog. Since it’s
only a request, you are at the mercy of the client to display your dialog. The
PresentMessageAlert callback routine will return -1 if the client could not display the dialog;
otherwise, the clicked button number is returned.
The following code example uses the PresentMessageAlert callback routine.

SInt32 MyActionAtom(…)
{

SInt16 theErr;
SInt16 theButtonClicked;

theButtonClicked = PresentMessageAlert(callBackPtr, 200, "\pHello!", 2, 1);

if(theButtonClicked != -1)
{

// Interpret the user’s response

}
else
{

// Do default action here
switch(theButtonClicked)
{

case 1: …
}

// Don’t return an error if the default action succeeded
theErr = noErr;

}

return (SInt32)theErr;

C H A P T E R 6

Installer Functions

Installer Engine 4.5.2 Technical Guide 108

}

RegisterScriptAction

pascal void RegisterScriptAction(CallBackProcPtr pCallBackProcPtr,
short actionClassID,
short actionIdentifier,
void* param0,
void* param1,
void* param2,
void* param3,
void* resultPtr)

pCallBackProcPtr The callback pointer.

actionClassID The action class ID number.

actionIdentifier The action identifier number.

param0…param3 A pointer to data or 4-byte value used to send information to
the Action Handler about the action.

resultPtr A pointer to a variable that the Action Handler can send
information back to the caller. The format of the data
structure is defined individually for those actions that
allow modification to the result.

DESCRIPTION

The RegisterScriptAction function registers an action with Installer Engine, which will be
immediately given to all loaded Action Handlers. This function is made available to help
code resource writers easily send text messages to Installer Debugger, using the action class
kDebuggingAction, and the action identifier kGenericDebugActID.

C H A P T E R 7

Installer Engine 4.5.2 Technical Guide 109

Runtime Issues

This chapter discusses information that may help some scriptwriters keep out of trouble and
provide solutions to unique situations. This chapter also provides a listing of the built-in error
strings that can be return during and after an installation or removal.

Installer Script Compatibility
The majority of existing Installer scripts (version 3.3 and newer) should run unmodified with
Installer Engine. The most common compatibility problem is a code resource attempting to
communicate directly with the user by displaying dialog during the installations.

Interacting with the User
Installer scripts that display dialogs using toolbox routines from within code resources, such as
action atoms, will not work when running with Installer Engine. For existing Installer scripts
that call select toolbox routines to create or show a window, Installer Engine attempts to trick
the code resource into not displaying the dialog, and allows the installation to complete.
Writers of new Installer scripts can use a callback routine to interact with the user, although
such user interaction is discouraged.

Compatibility for Existing Installer Scripts
Installer Engine prevents the scriptwriter from displaying a window by patching a handful of
window creation routines so that they return a value that can be checked by your code. The
following routines are patched to return the specified result.

Patched Routine Result under Installer Engine
GetNewDialog Returns NULL

NewDialog Returns NULL

NewWindow Returns NULL

Alert Returns -1

StopAlert Returns -1

NoteAlert Returns -1

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 110

CautionAlert Returns -1

Properly written action atoms normally check that the dialog or window pointer is not NULL
before continuing. When a NULL pointer is discovered the programmer normally returns a fatal
error result from the action atom, preventing the installation from completing successfully. To
combat this problem, Installer Engine flags whether an action atom attempts to show a dialog,
and if a fatal error is returned ignores this error allowing the installation to continue.

The following code example shows how a scriptwriter might write any action atom code
resource that displays a dialog when running with Installer 4.0.X, but does not display the
dialog when running with Installer Engine.

SInt32 MyActionAtom(…)
{

SInt16 theErr;
DialogPtr theDialog;

theDialog = GetNewDialog(200, NULL, (WindowPtr)-1L);

if(theDialog != NULL)
{

// Display dialog
theErr = HandleMyDialog(theDialog);

}
else
{

// Do default action here

// Don’t return an error if the default action succeeded
theErr = noErr;

}

return (SInt32)theErr;
}

Message Area Strings
The following error messages may be returned by Installer Engine.

1. Message: An unknown error #^0 has occurred.

Installer Engine doesn’t have a specific explaination for the problem.

2. Message: A problem occurred with the file server. You may not have the necessary
privileges. Check with your network administrator.

Any one of several AFP errors was returned by the System.

3. Message: A needed file is already in use or was left open.

We may display this error if we get a -47 or -49 File Manager error back from our Target
File routines. This error may be converted into a more generic error.

4. Message: You do not have the necessary privileges to access all of the files needed on
the server. Contact your network administrator.

The user is installing from a Network folder and does not have the necessary access
privileges to all of the required folders. As specified in the alert message, the user
needs to contact the AppleShare administrator to set folder privileges appropriately.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 111

5. Message: A disk error has occurred and installation cannot continue. Your disk may be
damaged.

This error occurs when the Installer and/or script file are placed on an MFS formatted
diskette, and are used from that diskette. It is also mapped to File Manager error
number –123 through –120 in some situations.

6. Message: An AppleShare volume has unexpectedly disappeared. The installation
cannot continue.

The user was installing from the network and the network connection became broken.
The user needs to contact the network administrator to have the connection problem
diagnosed.

7. Message: The Installer needs more memory to perform an installation. Try quitting
other applications and running the Installer again. You could also try removing some
system extensions and restarting to make more memory available.

We display this error when the Memory Manager returns an error from -117 to -108.
Depending on where we run out of memory, we’ll display this error if the Installer’s
partition is too low.

8. Message: A problem occurred with the AppleTalk network. Please quit the Installer
restart your computer, and try running the Installer again.

The network connection may have gone down while performing a network installation.

9. Message: A necessary file is locked. Installation cannot continue.

The Installer received the File Manager error -54 or -45 while opening a target file.
Most likely, something or someone locked a target file during the installation.

10. Message: One of your disks is no longer available. Please quit the Installer, restart your
computer, and try running the Installer again.

We may display this error when the File Manager returns an error of -53. This error
may be converted into a more generic error.

11. Message: The disk is locked.

The alert occurs only on an installation to a 'Floppy only' CPU. Between the switching
of the source and target disks, the user has locked the target disk.

12. Message: There are too many files open on your computer. Please quit any other
applications you are running and try again.

The Installer received the File Manager error -42 while opening a file. This might be
the case if another application has numerous files open, which would cause the
Installer to reach the maximum number of files that can be open at once. Try using up all
but two FCBs then performing a non-live installation.

13. Message: The destination disk “^3” is too full. Please remove some files you no longer
need, and try the installation again.

This problem can occur when the target volume is being shared via File Sharing. If an
installation is started and a user logs onto the same disk and copies additional data to
the server after the Installer preflight has taken place, the target disk may run out of
hard disk space resulting in this error.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 112

14. Message (2802): Installer Engine cannot open the document “^0” because it is the wrong
type.

The document you are trying to open is not one of the Installer script file types that
Installer Engine can open.

15. Message (2242): The files needed for this installation could not be found. The Installer
is looking for a disk or folder named “^0”. Please find the correct folder or disk and try
again.

Generic, can’t find the source disks/folders problem.

16. Message (2302): Installer Engine cannot run on this model of computer. Please contact
your authorized Apple dealer and inquire about upgrading your hardware.

This error occurs when trying to use Installer Engine on a 128K or 512K Mac. Installer
Engine is not compatible with these Systems.

17. Message (2501): The feature “^0” could not be found.

Couldn’t find feature by name when using Apple events to retreive information about a
feature set’s features.

18. Message (2502): Recommended installation not supported by Installer document.

This Installer script does not contain an easy feature set or ‘infr’ resource of ID 764.

19. Message (2302): Installer Engine could not find the ObjectSupportLib library file.

Installer Engine requires the ObjectSupportLib library to run. If your Installer runs on
systems prior to Mac OS 8.0, then you must place the ObjectSupportLib library file
suppliced on the Installer SDK in the same folder as the Installer Engine.

20. Message (2204): There is not enough space on the disk “^3” to complete the installation
(^0K needed, ^1K available). Remove some items from the disk “^3” and try again.
Instead, you could try installing on another disk.

This message occurs when there is insufficient disk space to perform the installation. In
this case, the user is not installing into the current active System Folder.

21. Message (2244): The file “^0” on the disk “^3” is too large to accommodate the
installation. The installation continue.\n\nEither, start your computer with Mac OS
7.6 or later then try installing again, or perform a clean installation.

We can’t add any more resources to a file because it has reached the limit. Booting
under a different verison of SSW works because newer versions allow more resources to
be stored in the file solves this.

22. Message (2027): The Installer needs to create a file named “^0” on the disk “^3” but a
folder with this name already exists.\n\nPlease rename the folder or move it so it is
inside another folder.

The Installer is unable to a file because a folder already exists with the same name in
the specified location.

23. Message (2211): There was nothing to remove.

This message occurs when the user goes to perform a software removal on a volume that
does not have the designated software to remove. Action Atoms that fire on removal
will prevent this message from appearing and will present the standard “Removal was
successful” message.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 113

24. Message (2217): There were files missing on “^3” that are required for this installation.
Please check your manual to see what is required.

The Installer script is trying to install resources or fonts into several files, but the files
do not exist and must because the “tgtRequired” flag is set in the atoms.

25. Message (2218): The file “^0” is missing on “^3” but is required for this installation.
Please check your manual to see how to get that file.

The Installer script is trying to install resources or fonts into the specified file, but the
file does not exist and must because the “tgtRequired” flag is set in the atom.

26. Message (2219): A file is missing from “^3” but is required for this installation. Please
check your manual to see what files are required and how to get these files.

The Installer script is trying to install resources or fonts into a file, but the file does not
exist and must because the “tgtRequired” flag is set in the atom. The name of the file is
unknown or is zero length.

27. Message (2220): System Software is required for this installation but is not present on
“^3”. OK, then install System Software before or as part of this installation.

The Installer script is trying to install a resource or font into a “System” file, but the
file does not exist. The file is required as the “tgtRequired” flag is set in the atom.

28. Message (2229): Cannot overwrite a protected resource in the file “^0” on the disk “^3”.

A resource specified for replacement on the target disk has the protected bit set. The
protected bit needs to be cleared before the installation can proceed.

29. Message (2235): No installation was necessary.

After clicking the Install button it has been determined that nothing needs to be
installed. This might happen if the script is only updating one file and the
“keepExisting” flag in the File Atom is being used.

30. Message (2236): “<DiskName>” has the correct name but is not the correct disk. Click
OK, then try inserting a different disk with this name..

The Installer was unable to find files that the designated disk was supposed to contain.
Some possible causes: 1. A file name on the disk has been modified by having a space
character appended to the end of the file name. 2. The contents of the disk are different
than those specified by the Installer script. This second problem can occur if a user tries
to update an Installer disk set by replacing an existing file with a more recent version.
When the Installer has the creation date/time setting stored for a file in the script,
and that time stamp does not match that of the source file, the Installer reports this
error. 3. A final cause is that a user has tried to set up a network installation on a
Novell server running Netware 2.x or earlier. See Appendix A for a discussion of this
problem.

31. Message (2800): The Installer document “^0” is damaged. Make sure you are using the
original Installer disks and try again.

The script document cannot be opened by the. This error can result given a network
installation when the administrator launches the script locally, then a user accesses
the script from a workstation and tries to run the script using a remote copy of the
Installer. The workstation Installer will receive this alert message.

Another possible reason is that not enough memory is available to load the script into
the Installer’s heap. Try raising the Installer’s partition if the script is large.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 114

32. Message (2232): Problems were encountered reading the source file “^0”. Installation
cannot continue.

Generic source error.

33. Message (2227): Problems were encountered accessing the file “^0” on the disk “^3”.
Please move the file to another folder and try again.

Generic target error.

34. Message (2231): There is a problem with a disk you are installing onto. No installation
can take place. Try installing onto another disk.

Resource Manager errors were returned during opening, reading or writing a target
resource or font. Most likely, the target file’s resource fork is corrupted.

35. Message (3209): To ensure safe removal from the active startup disk “^3” ^1K of free
disk space is required (^0K available).\n\nPlease remove some files using the Finder
and try again.

This message occurs when there is insufficient disk space to remove files from the active
System Folder. This sounds weird, but the Installer can not delete resources from active
files, or files that are currently active. (51)

36. Message (3204): There is not enough space on the active startup disk “<DiskName>”to
do this installation (<#> K available). To install on this disk you will need ^1K free.

This message occurs when there is insufficient disk space to perform the installation.
When installing into the active System Folder, the Installer takes additional steps to
guarantee disk integrity should the installation be canceled or aborted for whatever
reason.

For example, to install a 100 byte 'adbs' resource to the System file, the Installer moves
the System file to the temporary folder in the System folder, then makes a copy back in
the original location. The installation occurs on the copied (and currently non-opened)
System file. If a problem occurs, or the users cancels the installation, the copied file is
deleted, and the System file in the temporary folder restored. If the installation is
successful, the Installer places a Cleanup INIT which deletes the temporary folder and
it's contents at startup. Adding a 100 byte resource, may require 2M or greater of hard
disk memory on the boot volume. For this reason, it is difficult to perform an
installation of some System resource to a boot floppy. If the target volume is not a boot
volume, these precautions are not performed.

37. Message (2238): An error occurred while trying to complete the installation.

A action returned a fatal error.

38. Message (2243): The installation was stopped by the Installer script.

The action atom was cancelled, either by the user and the action atom didn’t present
it’s own dialog, or the action atom itself.

39. Message (2028): The Installer needs to create a folder named “^0” on the disk “^3” but a
file with this name already exists.\n\nPlease rename this file or move it to another
folder.

A file with the same name as a folder must be created during the installation. For
example, place file named “Control Panels” into the System Folder, then try to install
one or more Control Panels into the System Folder.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 115

40. Message (2240): The Installer needs to modify the file named “^0” on the disk “^3” but
that file is locked. Please unlock the file and try again.

Depending on the scriptwriter’s wishes, the Installer will not overwrite locked files.
Unfortunately, if several files are locked, this alert occurs for each locked file.

41. Message (2803): Installer Engine cannot open an alias to an Installer document.

Installer Engine does not support opening aliases to Installer scripts.

42. Message (2301): Installer Engine does not support this computer model or the version of
system software.

Installer Engine does not support the Macintosh model or the version of SSW. Installer
Engine requires a 68020 processor and System 7.0.

43. Message (2804): Installer documents cannot be printed.

The user has tried to print the document using the Finder or via the print Apple event.

44. Message (2223): Problems were encountered deleting old files. Please quit the Installer,
restart your computer and try running the Installer again.

This problem occurs when the Installer is unable to modify a target document. On a non-
boot volume installation, an open application may have some file opened that is
targeted for replacement by the installation. For example use ResEdit to open the
System file on a non-boot volume, and try to install system software to that volume.

45. Message (2241): The files needed for this installation could not be found on your server
volume "<VolName>". Please contact your network administrator about this problem.

This error occurs when a network installation is run, and an error occurs accessing the
source files. For example move some of the necessary files from the network
installation folder, and attempt the installation.

46. Message (2805): The Installer document “^0” cannot be opened because it requires version
^1 of the Installer Engine application.

The installation script includes an 'invs' resource which specifies the exact version of
the Installer to use. The version of the Installer opened does not match the script's
'invs' resource. One cause of this alert is that there exists another version of the
Installer in the Finder's application database, and the user launched the script instead
of the Installer application.

47. Message (2215): The file “^0” on the disk “^3” is too large to accommodate the
installation. The installation continue.\n\nEither, start your computer with Mac OS
7.6 or later then try installing again, or perform a clean installation.

The script is adding resources or fonts to a file whose resource fork will exceed the 16Mb
size limit. This was a real issue when installing Kanji fonts into the System file, but
shouldn’t happen as often with separate font suitcases.

48. Message (2029): The installation cannot continue because the source file “^0” on the disk
“^1” will be overwritten during the installation. Please choose a different destination
disk and try again.

The Installer will write over a file that is part of the installation sources. For disk
mode only.

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 116

49. Message (2030): The installation cannot continue because the source file “^0” on the disk
“^1” will be overwritten during the installation. Please select a different destination
folder and try again.

The Installer will write over a file that is part of the installation sources. For folder
mode only.

50. Message (2031): The removal cannot continue because the source file “^0” on the disk
“^1” will be deleted during the removal. Please choose a different destination disk and
try again.

The Installer will delete a file that is part of the installation sources. For disk mode
only.

51. Message (2032): The removal cannot continue because the source file “^0” on the disk
“^1” will be deleted during the removal. Please select a different destination folder
and try again.

The Installer will delete a file that is part of the installation sources. For folder mode
only.

52. Message (3412): The Installer cannot create files on the disk named “^0” because you do
not have write access. Please choose a different destination disk.

The user doesn’t have write permission to the root level of the target volume. This
might be the case when installing onto an AppleShare volume or UNIX volume.

53. Message (3410): No destination disk has been chosen.

There’s no valid disk to install onto.

54. Message (3413): The selected disk named “^0” is locked. Please choose a different
destination disk.

A locked hard drive or perhaps some third-party locked medium has been selected. To
replicate, use Apple HD SC Setup to lock a volume and try to perform an installation on
it. A CD-ROM disk or perhaps a locked Syquest disk will also produce this message.

55. Message (3414): The selected disk named “^0” is locked. Either, unlock the disk, or
choose a different destination disk.

The Installer cannot write to a locked destination disk.

56. Message (3411): The selected disk named “^0” is not an HFS volume. The Installer
cannot install on volumes without the hierarchical file system. Please choose different
destination disk.

 The Installer cannot install to an unlocked MFS 400K floppy disk.

57. Message (3415): The selected disk named “^0” is a network server volume. The Installer
cannot install on network server volumes. Please choose a different destination disk.

The Installer cannot install software to a mounted AppleShare volume unless the
preference flag has been set to allow this.

58. Message (3409): The selected disk named “^0” cannot be a destination disk. Please
choose a different destination disk.

An unknown error prevents installation onto target (App Folder mode).

C H A P T E R 7

Runtime Issues

Installer Engine 4.5.2 Technical Guide 117

59. Message (3405): The Installer cannot create files on the disk named “^0” because you do
not have write access. Please choose a different destination folder.

The user doesn’t have write permission to the root level of the target volume. This
might be the case when installing onto an AppleShare volume or UNIX volume (Folder
Mode).

60. Message (3407): The disk named “^0” is locked. Please choose a different destination
folder.

The Installer cannot write to a locked target disk (App Folder Mode).

61. Message (3408): The disk named “^0” is a network server volume. The Installer cannot
install on network server volumes. Please choose a different destination folder.

The Installer cannot install software to a mounted AppleShare volume unless the
preference flag has been set to allow this (App Folder Mode).

C H A P T E R 8

Installer Engine 4.5.2 Technical Guide 118

Installer Apple Event Suite

The Apple event suite implemented in Installer Engine has been designed to accommodate a
variety of client application needs. In addition to supporting AppleScript, custom client
applications can be created to provide an appropriate user experience to accommodate a
particular installation solution. An example of such an application is the Upgrader
application Apple uses to install Mac OS 8.5.

This chapter provides a summary of the Installer Apple event suite and touches on issues that
client applications should take in to account. Two AppleScript examples are provided at the
end of this chapter for those the need a simple automation solution.

Apple Event Suite Summary
Communicating with Installer Engine requires a combination of Apple events sent and received,
as well as manipulation of Apple event objects.

Sending Apple Events to Installer Engine
Clients will use seven Apple events handled by the application to perform basic tasks, such as
starting and stopping and installations. Three additional Apple events are used to get data, set
data, and count information contained in objects.

Apple Event Description
Install [feature IDs {}] [feature names {}] [preinstallation report] [preinstall report only]

Start the installation.

Remove [feature IDs {}] [feature names {}] [pre removal report] [pre removal report only]
Start the removal.

Cancel Cancel the installation that is currently in progress.

Register Client [with basic progress] [with progress] [with debugging] [with reporting]
Adds a process to the list of clients receiving the
specified class of events.

Deregister Client Deletes a process from the list of clients receiving
events.

Open Opens an Installer script document.

Quit Quits Installer Engine. If an installation is currently in
progress it will wait until it has completed before
quitting.

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 119

Set Data Sets the value of a property of an object.

Get Data Retrieves the value of a property and object.

Count Retrieves the number elements of an object.

Starting an Installation or Removal
An install event without parameters requests that the recommended installation be started.
Installation of specific features can be initiated by providing a list of the specific features to be
installed as a parameter of the install event.

A removal can be initiated with the remove Apple event. A list of features of remove should
always be provided with the remove event.

Canceling an Installation
An installation currently in progress can be canceled at any time using the cancel Apple event.

Registering and Deregistering Clients
Clients that wish to receive specific types of progress or debugging events must register
themselves with Installer Engine using the register client Apple event. Such clients may
include: debugging applications, remote clients, or any client that wants to monitor Installer
Engine.

Use the deregister client Apple event to stop Installer Engine from sending further progress and
debugging events to the client.

Opening Installer Script Documents
A client can open an Installer script document by sending an open Apple event with a reference
to the Installer script file. If a document is already open, it is automatically closed before
opening the specified Installer script.

Quitting Installer Engine
The Installer Engine application can be quit by sending a quit Apple event to it.

How Installer Engine Processes Events
Users familiar with scripting the Finder (and most other scriptable applications), know that
most events are synchronous — they do not return control to the client application until the
action is finished, or failed trying. This makes it easier to write AppleScripts to perform
numerous tasks one after another, but makes it harder for sophisticated clients to manage long
tasks.

The duration of an installation typically depends on how many objects are being installed, and
the speed of the source and target media. For this reason, we have chosen to make the Install
and Remove events asynchronous — they return immediately, even though the installation
may take many minutes. Because the client regains instantaneous control after starting the
installation, it can monitor the installation process as if feels necessary without having to use
an idle routine or worrying about event time-out issues. Some clients will find that querying the

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 120

cStatus object provides enough feedback, while other clients may want detailed progress
information sent to them. These topics are explored in the section titled “Advanced
Interaction.”

While Installer Engine is performing an installation certain actions cannot be performed. These
restricted events generally change the environment, which must stay constant until the
installation finishes. If you try to send an Apple event that is restricted it will return
immediately with an error. Certain events, such as the cancel Apple event, are necessary to
allow the client to control the installation.

Events that cannot be sent during the installation or removal process:

• Install — starting another installation must wait for the current one to finish.

• Remove — starting another removal must wait for the current one to finish.

• Open — opening another document cannot happen until the current one is able to be
closed.

• Setting any cDocument properties — the document properties provide the environment
settings for the installation, and therefore cannot be modified.

Events allowed during the installation or removal process:

• Cancel — an installation can be canceled at any time.

• Quit — the installation or removal is completes, then the application is quit.

• Register Client and Deregister Client — the client can change what events are being
sent to it by Installer Engine during an installation or removal.

• Getting any property value — all object property values can be read during the
installation.

Installer Engine Objects
Installer Engine uses a hierarchy of Apple event objects, see Figure 1-1, to describe the contents
of the Installer script and manage environmental information, such as the selected destination
disk.

Figure 8-1 Apple event object hierarchy for Installer Engine

cDocument

cEasyFeatureSet cCustomFeatureSet

cApplication

cFeaturecFeature

cStatus

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 121

Application Object
The application object provides access to the currently open Installer script and handles the
following events: Install, Remove, Cancel, Register Client, Deregister Client, Open and Quit.

Property Data Type Mod. Description

pVersion typeVersion R/O The version number of Installer
Engine.

pName typeChar R/O The name of Installer Engine.

Element Access Form Description

cDocument formAbsolutePosition The currently open Installer script
document.

Document Object
When an Installer script is open, its document object is accessible through the application object.
Only one document can be open at any one time.

Property Data Type Mod. Description

pName typeChar R/O The name of the Installer Script.

pAppTarget cFile R/W The target application folder. If
the script uses disk user mode, then
only volume is used.

pSysTarget cFile R/W The target volume which contains
the System Folder to be installed
into. The parent director and folder
name are ignored.

pReplaceNewerFiles typeBoolean R/W If TRUE, allows newer files to be
replaced with older files without
an error being generated.

pReplaceLockedFiles typeBoolean R/W If TRUE, the Installer allows
locked files to be replaced without
an error being generated.

pSourceLocation cFile R/W The folder that contains the source
folders.

pDoCleanInstall typeBoolean R/W Instructs the engine to create a new
System Folder during installation.

pIsParasiteScript typeBoolean R/W Tells the scriptwriter whether
they are running as a parasite. See
“UpgraderCommandsTool
Guide.pdf” for more information
about parasites.

pBoxFlagOverwrite typeLongInteger R/W Remaps the machine ID to the
value specified. Use this property
to allow older Installer scripts that
call CheckGestalt rule clause to
work on newer unsupported

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 122

machines. See
“UpgraderCommandsTool
Guide.pdf” for more information
about remap IDs.

Element Access Form Description

cEasyFeatureSet formAbsolutePosition The easy install installation object.
More than one may exist, depending
on the number of feature sets
implemented by the Installer
script.

cCustomFeatureSet formAbsolutePosition The custom install installation
object. Since there can only be one,
access the object using an index of
one.

cStatus formAbsolutePosition The current status of the
document. Since there is only one,
access the status object using an
index of one.

Status Object
Clients can poll the status object during long installatoins to provide progress information.

Property Data Type Mod. Description

pPercentTaskComplete cLongInteger R/O The percent complete of the current
task. The actual value ranges from
0 to 10,000. Therefore, if the task is
64% complete, the value of this
property is 6,400.

pOperationType cType R/O The operation type.

pOperationParams AERecord R/O An AERecord containing the
parameters for the specific type of
operation.

The following table describes the parameters contained in the AERecord returned from the
pOperationParams property given the operation type.

Operation Type Description & Operation Parameters
kTargetAnalysis Reconciling atoms against the target.

‘sttn’ Target Volume Name String

kSourceAnalysis Reconciling atoms against the source disk.
‘stsn’ Source Volume Name String

kDeleting Files and resources are being deleted, either at the
beginning of an installation or as the result of a
removal.

kReadingFile Reading file data.
‘obty’ Object Type Type
‘obID’ Object ID Long

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 123

‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kReadingRsrc Reading resource data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘rsty’ Rsrc Type Type
‘rsID’ Rsrc ID Long
‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kReadingFont Reading font data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obnm’ Family Name String
‘obds’ Opt. Desc. String

kReadingOther Reading some other type of data
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kWritingFile Writing file data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kWritingRsrc Writing resource data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘rsty’ Rsrc Type Type
‘rsID’ Rsrc ID Long
‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kWritingFont Writing font data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obnm’ Family Name String
‘obds’ Opt. Desc. String

kWritingOther Writing some other type of data.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obnm’ Object Name String
‘obds’ Opt. Desc. String

kClosingFiles Closing a target file.

kExecutingExternalAction Called an Action Atom.
‘obty’ Object Type Type
‘obID’ Object ID Long
‘obds’ Opt. Desc. String

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 124

kLookingForSrcDisk Verifying source disks during process of finding the next
source disk.
‘stsn’ Source Volume Name String

kCancelingOperation Cleaning up after a cancel request.

kUpdatingTargetDisk Final target disk updating, most likely adding entries
to the desktop database.
‘sttn’ Target Volume Name String

Easy Feature Set Object
The easy feature set object describes a scriptwriter-defined installation. If more than one object
exists, the first object is considered the recommended installation.

Property Data Type Mod. Description

pName typeChar R/O The name of the feature set.

pFeatureSetResult typeLongInteger R/O The error result after firing the
easy feature set rule framework.

pFeatureSetMessage typeChar R/O The message text after firing the
easy feature set rule framework.

pRestartRequired typeBoolean R/O If TRUE, the scriptwriter has
requested that the machine be
restarted immediately after the
installation. This property will
always be FALSE if not installing
into the active System Folder. It is
up to the client to restart the
machine.

pFeatureList typeLongInteger R/O A list of top-level feature IDs
contained in this feature set.

Element Access Form Description

cFeature formAbsolutePosition A top-level feature in this feature
set.

Custom Feature Set Object
The custom feature set object provides the client with information about the feature hierarchy
from which a user can choose a customized installation or removal.

Property Data Type Mod. Description

pFeatureSetResult typeLongInteger R/O The error result after firing the
custom feature set rule framework.

pFeatureSetMessage typeChar R/O The message text after firing the
custom feature set rule framework.

pRestartRequired typeBoolean R/O If TRUE, the scriptwriter has
requested that the machine be
restarted immediately after the
installation. This property will

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 125

always be FALSE if not installing
into the active System Folder. It is
up to the client to restart the
machine.

pSubFeatures typeLongInteger R/O A list of top-level feature IDs
contained in this feature set.

Element Access Form Description

cFeature formAbsolutePosition A top-level feature in this feature
set.

Feature Object
The feature object describes an individual feature that can be installed or possibly removed.

Property Data Type Mod. Description

pID typeLongInteger R/O The ID of the feature.

pName typeChar R/O The name of the feature.

pNeedsRestartToBeActive typeBoolean R/O This feature requires a restart after
installing into the booted System
Folder.

pVisible typeBoolean R/O This feature can be selected by the
user.

pRemovable typeBoolean R/O This feature can be removed.

pIcon AERecord R/O Contains the feature’s icon, as
displayed in the info window for
the feature. The AERecord
returned contains two icons:
kIconAndMaskKeyWord ('ICN#')
containing a B&W icon and mask,
and k8BitIconKeyWord ('icl8')
containing the color icon.

pVersion typeLongInteger R/O The feature’s version.

pDate typeLongInteger R/O The feature’s release date in
seconds.

pOnDiskSize typeLongInteger R/O The feature’s size in bytes.

pCommentText typeChar R/O The feature’s description.

pBasicProperties AERecord R/O A collection of specific feature
information in a single property to
enhance performance. <To be
documented>

pSubFeatures typeLongInteger R/O A list of top-level feature IDs
contained in this feature set.

Element Access Form Description

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 126

cFeature formAbsolutePosition Features contained in this feature.

Receiving Events from Installer Engine
Installer Engine sends numerous events back to the client application during certain tasks to
keep the client fully informed about the engine’s actions. As a client, you should first determine
the type of information you need, then understand how to process the information you receive.
As is true in many programming situations, the more information you request, the slower the
engine can accomplish its primary task.

By default, clients that send an Install or Remove event to Installer Engine are automatically
registered to receive basic progress and error events. If you want additional events, such as
detailed progress events, or if you want special debugging information you can use the Register
Client event to request this information be sent to you. You can send additional Register Client
events to change these flags over the course of your session with Installer Engine.

All events sent to the client application have a class of ‘inst’. The following table lists the
Apple events sent to the client application.

Apple Event Description
kAEInstallerProgress (‘iprg ‘) Clients receive basic progress events by default.

Detailed progress events can optionally be received by
specifying this in the Register Client Apple event.

kAEInstallerError (‘ierr’) Clients receiving basic progress events will also receive
error events from the engine.

kAEInstallerDebug (‘idbg’) Debug events can optionally be received by specifying
this in the Register Client Apple event.

kAEInstallerReport (‘irpt’) A report requested by the client describing the actions
Installer Engine will perform for the given installation
or removal. A parameter of the Install or Remove event
sent to Installer Engine determines if the client will
receive this event.

kAEInstallerAlertRequest (‘iadr’) A request from the scriptwriter to display the specified
dialog.

Receiving Progress Events
Progress events are divided into basic and detailed events. Basic progress events tell the client
when the installation/removal process has finished. Detailed progress events tell the client
about individual tasks performed during the installation or removal, such as the name of the
file being copied.

Basic progress Event Description
kOperationFinishedSuccessfully The operation finished successfully.

kOperationFinishedWithErrors The operation finished with an error. A separate error
is set before this progress event.

Detailed progress events Description
kTargetAnalysis Reconciling atoms against the target.

kSourceAnalysis Reconciling atoms against the source disk.

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 127

kDeleting Files and resources are being deleted, either at the
beginning of an installation or as the result of a
removal.

kReadingFile Reading file data.

kReadingRsrc Reading resource data.

kReadingFont Reading font data.

kReadingOther Reading some other type of data

kWritingFile Writing file data.

kWritingRsrc Writing resource data.

kWritingFont Writing font data.

kWritingOther Writing some other type of data.

kClosingFiles Closing a target file.

kExecutingExternalAction Called an Action Atom.

kLookingForSrcDisk Verifying source files.

kCancelingOperation Cleaning up after a cancel request.

kUpdatingTargetDisk Final target disk updating, most likely adding entries
to the desktop database.

Receiving Debugging Events
Debugging events are mainly for applications that desire a more intimate relationship with
Installer Engine. The Installer Debugger application provided with Installer Engine uses
debugging events to monitor Installer Engine remotely for testing and development purposes.

A debugging event has an ID of kAEDeregisterClient ('idgc'). The following table describes the
parameters.

Parameter Data Type Description

'dbID' typeLongInteger The ID of the debugging action that
occurred.

Additional parameters may be included depending on the action type. The following table
describes these actions.

Debugging Action Description
kDocumentOpened (0) A new document was just opened.

kDocumentClosed (1) A document is about to be closed.

kApplicationQuit (2) A Installer Engine is in the process of quitting.

kEngineAtion (3) An action to be performed by Installer Engine. The
event contains six additional parameters that further
describe the action:

kEngineActionClass 'eaci' typeLongInteger
kEngineActionID 'eaid' typeLongInteger

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 128

kEngineActionParam0 'eap0' Depends on action ID
kEngineActionParam1 'eap1' Depends on action ID
kEngineActionParam2 'eap2' Depends on action ID
kEngineActionParam3 'eap3' Depends on action ID

See “ActionHandlerHeader.h” for information about
the defined action classes and IDs sent by Installer
Engine.

Receiving Error Events
Clients receiving basic progress events will also receive all error events. When something goes
wrong during an installation, an error event is sent first to the client, then the
kOperationFinishedWithErrors basic progress event is sent. The following table describes the
paramters.

Parameter Data Type Description

keyErrorNumber ('errn') typeLongInteger The error number.

keyErrorString ('errs') typeChar A string desribing the error.

keyRollBackFlag ('rbfl') typeBoolean True if the installation was
canceled and all original files were
restored.

See the chapter “Runtime Issues” for a description of the errors returned by Installer Engine.

Receiving a Report
Requesting an installation report when sending an Install or Remove event to Installer Engine
causes a series of report events will be sent back to the client application. Since the report may
be large, and Apple events have a size limit, multiple events will be sent with the last event
containing an empty list.

A report event has an ID of kAEInstallerReport (‘irpt’). The following table describes the
paramters.

Parameter Data Type Description

kReportType ('rptt') typeInteger The type of report. This parameter
will be one of two values:
kPreInstallation (0) or
kPreRemoval (2).

kReportList ('rptl') AEList of ‘rptr’ A list of records of type ReportItem.

typedef struct

{

SInt16 fActionClassID;

SInt16 fActionIdentifier;

SInt16 fTgtVolRefNum;

SInt32 fTgtDirID;

Str255 fTgtFilePath;

} ReportItem;

The target file being acted upon is specified in the fTgtVolRefNum , fTgtDirID, and
fTgtFilePath fields. You can use these fields to create an FSSpec to the file. The following

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 129

table describes the possible values passed in the fActionClassID and fActionIdentifier fields of
the ReportItem record.

Action Class ID Action Identifier Description

kFileProgressAction (5800)

kFileCopiedID (5801) The file will be copied to the
location specified.

kFileNotCopiedNewerLeftID (5803)
The existing file will not be
updated because the existing file is
newer than the file we would be
copying.

kFileNotCopiedLockedID (5804)
The existing file will not be
updated because it is locked.

kFileUpdatedID (5805) The existing file will be updated.

kFileRemovedID (5808) The existing file will be updated.

kRsrcProgressAction (5900)

kRsrcCopiedID (5901) A resource will be copied to the
specified file. You aren’t told
which resource is copied, but only
that a resource will be copied. If
you need to know the resource type
and ID, then you should accept
debugging events instead.

kRsrcUpdatedID (5906) A resource will be update in the
specified file.

kRsrcRemovedID (5911) A resource will be removed from the
specified file.

kFontProgressAction (6000)

kFontCopiedID (6001) A font resource will be copied to the
file specified. You aren’t told
which resource is copied, but only
that a resource will be copied. If
you need to know the resource type
and ID, then you should accept
debugging events instead.

kFontUpdatedID (6003) A font resource will be update in
the specified file.

kFontRemovedID (6008) A font resource will be removed
from the specified file.

kFolderProgressAction (6100)

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 130

kFolderCopiedID (6101) The contents of the source folder
will be merged with the specified
folder.

kResMergeProgressAction (6200)

kResMergeCopiedID (6201)All resources contained in the source
file be copied to the specified file.

Receiving a Message Alert Display Request
Scriptwriters can no longer interact directly with the user via windows or dialog because
Installer Engine is a background-only application. To fix this limitation, Installer Engine
provides the callback routine PresentMessageAlert to handle simple dialog presentation and
interaction from within code resources such as action atoms. When the scriptwriter calls
PresentMessageAlert, Installer Engine sends an Apple event to the client application requesting
it to display the specified dialog. If the client does not support displaying the dialog, it
returns an error number and the scriptwriter handles this refusal appropriately.

The message alert event has an ID of kAEInstallerAlertRequest (‘iadr’). The following table
describes the paramters.

Parameter Data Type Description

keyAlertRequestDITLID ('idid') typeLongInteger The ID of a ‘DITL’ resource
supplied by the client application.
Most Installer scripts use the IDs
defined by the Upgrader shell
application. See Upgrader Tech.
Guide for more information.

keyAlertRequestMsgText ('iamt') typeChar The text message to display in the
dialog.

keyAlertRequestCancelBut ('icbu') typeLongInteger The index number of the cancel
button to map to Command-period.
Pass zero if no cancel button is
desired.

keyAlertRequestDefaultBut ('idbu') typeLongInteger The index number of the default
button to outline and map to the
return key. Pass zero if no default
button is desired.

Installer Engine expects the button number clicked by the user returned in the direct object
parameter (typeLongInteger) of the reply Apple event. If the client application could not
display the dialog or is inappropriate at this time, a value of –1 should be returned in the
direct object parameter.

Responsibilities of a Client
As the client application, you assume responsibility for certain aspects of the installation
process that involve user interaction, and therefore cannot be performed by the engine.
Evaluate each of the following areas to determine if your client application must accommodate
the situation.

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 131

Replacing Newer Files
Scriptwriters have an option to force an existing file to be downgraded to an older version
during an installation. Apple suggests that scriptwriters only force downgrading when
compatibility across set of files is required. The majority of existing scripts preserve the newer
file, which seems to meet the expectations of most users.

The client can control whether Installer Engine silently downgrades the newer files, or reports
each file as a separate error and thus canceling the installation. The cDocument property
pReplaceNewerFiles provides this option. Set the pReplaceNewerFiles property to true to
reduce the instances of errors stopping the installation.

Replacing Locked Files
Installer Engine currently prevents an installation from continuing that will replace locked
files. Installer 4.0 and later scripts have an option to allow the scriptwriter to ignore the
Finder’s locked flag for a specific file and silently replace the file.

Since this is another annoying error that would stop remote installations from completing, an
option can be set to silently replace any locked file. The cDocument property
pReplaceLockedFiles provides this option. Set the pReplaceLockedFiles property to true to
reduce the instances of errors stopping the installation.

Quitting Applications and Forcing Restarts
Scriptwriters can force a restart after a live installation by setting a flag in packages that
touch live files, such as the System file. Since Installer Engine contains no code for quitting
applications and restarting the machine, the client is responsible for performing these tasks.
The client should query the pRestartRequired property of the cEasyFeatureSet object before
initiating an installation so an appropriate user experience can be presented.

To reduce the number of restarts required, Installer Engine supports installing multiple products,
one after another, without quitting Installer Engine. This is handy when installing system
software, which may require various additional system software installations on top of a base
installation.

Source Disk Limitations
Installer Engine does not support installing from multiple source disks. It assumes all necessary
source disks are mounted or stored as folders on a mounted volume. If for some reason a folder or
file cannot be found, an error will be registered and the installation will be canceled.

By default, Installer Engine looks in four places to find the source folder: the script’s folder, the
script’s parent folder, Installer Engine’s folder and finally Installer Engine’s parent folder.
Clients can specify another folder by setting the pSourceLocation property in the cDocument
object before starting the installation.

Handling Parasite Installer Scripts
A callback routine allows scriptwriters to check if the Installer script is being installed as
parasite. Parasites are a type of invisible software component installed by the Upgrader
application. Unless your client application mimics the actions of Upgrader, you don’t need to
do anything special because Installer Engine defaults to false unless told otherwise.

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 132

To tell Installer Engine that the Installer script is a parasite, set the pIsParasiteScript
property in the document object to true immediately after opening the Installer script document.

Remapping Machine IDs
A feature in Installer Engine allows the client application to trick the Installer script into
thinking it’s running on a different machine. This is necessary when the scriptwriter would
rather add a parasite Installer script to an older Installer script instead of reopening the older
Installer script. The client application needs to recognize that it is running on a machine that is
not supported by the older Installer script, and give Installer Engine another Gestalt machine
ID to use instead.

To remap the ID, set the pBoxFlagOverwrite property in the document object to the older
machine ID immediately after opening the Installer script document.

AppleScript Example
Writing an AppleScript to perform an installation using Installer Engine requires the
AppleScript writer to write code to wait for the installation to complete after sending the
“install” Apple event. Examine both examples to determine which method of waiting is best
for your situation.

AppleScript Example Using Polling Method
For simple automation of an installation or removal from within Script Editor, the example in
Listing 8-1 demonstrates an easy way to wait for the installation to complete by polling the
status object. This method allows the AppleScript code to be executed from within Script
Editor, but doesn’t display any error messages if the installation does not complete successfully.

Listing 8-1 Example AppleScript code using polling technique

tell application "Installer Engine"

open file "Mac OS 8.1:System Software:Install Mac OS 8.1"
set System Target of Document 1 to file "Macintosh HD:"
Install

set percentage to 0
repeat while (percentage is not 10000)

copy Percent Task Complete of Status 1 of Document 1 to percentage
end repeat

end tell

AppleScript Example Using Event Handlers
Using a progress event handler to signal when the installation process is complete reduces the
overhead of polling for the information. Providing an additional error handler will allow the
AppleScript writers to display the error that stopped the installation process. Unlike the
polling example, this AppleScript must be saved and run as an application; otherwise, Script
Editor will receive the progress and error events instead of your AppleScript handlers.

Listing 8-2 Example AppleScript code using event handlers

C H A P T E R 8

Installer Apple Event Suite

Installer Engine 4.5.2 Technical Guide 133

on «event instierr» given «class errn»:errNum, «class errs»:errMsg --, «class
EMS1»:errMsg1, «class EMS2»:errMsg2, «class EMS3»:errMsg3

display dialog errMsg
end «event instierr»

on «event instiprg» given «class opID»:operationNum --, «class EMS0»:errMsg0, «class
EMS1»:errMsg1, «class EMS2»:errMsg2, «class EMS3»:errMsg3

global doneYet
if operationNum = 22 then

display dialog "Operation was successful."
set doneYet to true

else if operationNum = 23 then
display dialog "Operation was canceled."
set doneYet to true

end if
end «event instiprg»

on run
tell application "Installer Engine"

global doneYet
set doneYet to false

open file "Mac OS 8.1:System Software:Install Mac OS 8.1"
set system target of document 1 to file "Macintosh HD:"
install feature names {"Core System Software"}

repeat while not doneYet
end repeat

end tell
end run

