



Technical Publications
© Apple Computer, Inc. 1998



I N S I D E M A C I N T O S H

Managing Color With ColorSync

Covers ColorSync 2.5.1

November 20, 1998

11/20/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1995–98 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
AppleVision, Macintosh, Mac, and
Power Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Adobe and Adobe Photoshop are
trademarks of Adobe Systems
Incorporated.
PowerPC is a trademark of
International Business Machines

Corporation, used under license
therefrom.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 13
Revision History 17

Start Here About This Document 19

What’s in This Document 19
Conventions 21

Quick Reference Banners 21
Version Notes 21
Special Fonts 21
Types of Notes 22

Important Note on Code Listings 22

Chapter 1 Introduction to Color and Color Management Systems 23

ColorSync 25
Color: A Brief Overview 26

Color Perception 27
Hue, Saturation, and Value (or Brightness) 27
Additive and Subtractive Color 28

Color Spaces 28
Gray Spaces 29
RGB-Based Color Spaces 30

RGB Spaces 30
sRGB Color Space 31
HSV and HLS Color Spaces 31

CMY-Based Color Spaces 33
Device-Independent Color Spaces 34

XYZ Space 35
Yxy Space 35
L*u*v* Space and L*a*b* Space 37

Indexed Color Spaces 38
Named Color Spaces 39
3
11/20/98  Apple Computer, Inc.

Color-Component Values, Color Values, and Colors 39
Color Conversion and Color Matching 40
Color Management Systems 41

Chapter 2 Introduction to ColorSync 43

About ColorSync 45
Why You Should Use ColorSync 46

The ColorSync Advantage 46
Color Management in Action 47

ColorSync Manager Overview 47
ColorSync Versions 48
Minimum Requirements For Running ColorSync 2.5 48
Programming Interface 49
Profiles 49

The International Color Consortium Profile Format 49
ColorSync and ICC Profile Format Version Numbers 50
Source and Destination Profiles 50
Profile Classes 51
Profile Properties 53
Profile Location 53
Setting Default Profiles 54

Profile Search Locations 55
Where ColorSync Searches for Profiles 56
Where ColorSync Does Not Look for Profiles 57
Temporarily Hiding a Profile Folder 57

The Profile Cache and Optimized Searching 57
Color Management Modules 58

Setting a Preferred CMM 59
Rendering Intents 60

When Color Matching Occurs 62
General Purpose Color-Matching Functions 64
QuickDraw-Specific Color-Matching Functions 64

Converting Between Color Spaces 65
Monitor Calibration and Profiles 67

Setting a Profile for Each Monitor 69
Calibration 69
4
11/20/98  Apple Computer, Inc.

Video Card Gamma 70
Scripting Support 71

Scriptable Properties 71
Scriptable Operations 71
Extending the Scripting Framework 72
Sample Scripts 72

Multiprocessor Support 73
When ColorSync Uses Multiple Processors 73
Efficiency of ColorSync’s Multiprocessor Support 73

QuickDraw GX and the ColorSync Manager 74
How the ColorSync Manager Uses Memory 74

What Users Can Do With ColorSync-Supportive Applications 75
Display Matching 75
Gamut Checking 76
Soft Proofing 76
Device Link Profiles 76
Calibration 76

Chapter 3 Developing ColorSync-Supportive Applications 79

About ColorSync Application Development 81
About the ColorSync Manager Programming Interface 82
What Should a ColorSync-Supportive Application Do? 82

At a Minimum 83
Storing and Handling Profiles 83

How the ColorSync Manager Selects a CMM 84
Selecting a CMM by the Arbitration Algorithm 86

Developing Your ColorSync-Supportive Application 91
Determining If the ColorSync Manager Is Available 92
Providing Minimal ColorSync Support 93
Obtaining Profile References 95

Opening a Profile and Obtaining a Reference to It 95
Reference Counts for Profile References 97

Poor Man’s Exception Handling 98
Identifying the Current System Profile 99
Getting the Profile for the Main Display 100
Matching to Displays Using QuickDraw-Specific Operations 101
5
11/20/98  Apple Computer, Inc.

Matching Colors in a Picture Containing an Embedded Information 102
More on Embedded Information 104
Matching Colors as a User Draws a Picture 105

Creating a Color World to Use With the General Purpose Functions 105
Matching Colors Using the General Purpose Functions 107

Matching the Colors of a Pixel Map to the Display’s Color Gamut 108
Matching the Colors of a Bitmap Image to the Display’s Color

Gamut 109
Embedding Profiles and Profile Identifiers 112

Embedded Profile Format 113
Embedding Different Profile Versions 114
The NCMUseProfileComment Function 115

Extracting Profiles Embedded in Pictures 118
Counting the Profiles in the PICT File 120
Extracting a Profile 122

Performing Optimized Profile Searching 130
An Iteration Function for Profile Searching With ColorSync 2.5 131
A Filter Function for Profile Searching Prior to ColorSync 2.5 132
A Compatible Function for Optimized Profile Searching 134

Searching for Specific Profiles Prior to ColorSync 2.5 136
Searching for a Profile That Matches a Profile Identifier 139
Checking Colors Against a Destination Device’s Gamut 142
Creating and Using Device Link Profiles 143

Considerations 146
Providing Soft Proofs 147
Calibrating a Device 149
Accessing a Resource-Based Profile With a Procedure 149

Defining a Data Structure for a Resource-Based Profile 150
Setting Up a Location Structure for Procedure Access to a Resource-Based

Profile 151
Disposing of a Resource-Based Profile Access Structure 153
Responding to a Procedure-Based Profile Command 153
Handling the Begin Access Command 156
Handling the Create New Access Command 157
Handling the Open Read Access Command 158
Handling the Open Write Access Command 159
Handling the Read Access Command 162
Handling the Write Access Command 163
6
11/20/98  Apple Computer, Inc.

Handling the Close Access Command 164
Handling the Abort Write Access Command 165
Handling the End Access Command 166

Summary of the ColorSync Manager 167
Functions 167
Data Structures 178
Constants 186

Chapter 4 Developing ColorSync-Supportive Device Drivers 193

About ColorSync-Supportive Device Driver Development 195
Devices and Their Profiles 196

The Profile Format and Its Cross-Platform Use 196
ColorSync Profile Format Version Numbers 197
Storing and Handling Device Profiles 197
How a Device Driver Uses Profiles 198

Devices and Color Management Modules 199
Providing ColorSync-Supportive Device Drivers 199

Providing Minimum ColorSync Support 199
Providing More Extensive ColorSync Support 200

Developing Your ColorSync-Supportive Device Driver 201
Determining If the ColorSync Manager Is Available 201
Interacting With the User 201

Setting a User-Selected Rendering Intent 202
Setting a User-Selected Color-Matching Quality Flag 205

Color Matching an Image to Be Printed 210

Chapter 5 ColorSync Reference for Applications and Drivers 211

Gestalt Selector Codes for the ColorSync Manager 217
Constants for ColorSync Manager Gestalt Selectors and Responses 217
Older ColorSync Gestalt Selectors 219

Functions for the ColorSync Manager 220
Accessing Profiles 221
Accessing Profile Elements 241
Accessing Named Color Profile Values 256
7
11/20/98  Apple Computer, Inc.

Matching Colors Using General Purpose Functions 261
Matching Colors Using QuickDraw-Specific Functions 284
Embedding Profile Information in Pictures 290
Getting the Preferred CMM 292
Getting and Setting the System Profile File 293
Getting and Setting Default Profiles by Color Space 297
Getting and Setting Monitor Profiles by AVID 299
Locating the ColorSync Profiles Folder 301
Profile Searching 303

Searching for Profiles With ColorSync 2.5 303
Searching for Profiles Prior to ColorSync 2.5 306
Searching for a Profile by Profile Identifier 314

Converting Between Color Spaces 318
Color-Matching With PostScript Devices 332
Converting 2.x Profiles to 1.0 Format 339

Application-Defined Functions for the ColorSync Manager 340
Data Types for the ColorSync Manager 349

Date and Time 350
Profile Header 351
Profile Reference 358
Profile Identifier 358
Profile Location 360
Cached Profile Searching 365
Non-Cached Profile Searching 367
Color Values 371
Bitmap Information 380
Color Matching Reference 381
Color Worlds 382
Video Card Gamma 386
Color Matching While Printing 390
Color Rendering Dictionary Virtual Memory Size 390

Constants for the ColorSync Manager 392
Profile Location Type 393
Profile Access Procedure Operation Codes 395
Profile Class 396
Signature of ColorSync’s Default Color Management Module 397
Commands for Caller-Supplied ColorSync Data Transfer Functions 397
Constants for PostScript Data Formats 398
8
11/20/98  Apple Computer, Inc.

Picture Comments 398
Picture Comment Kinds for Profiles and Color Matching 399
Picture Comment Selectors for Embedding Profile Information 400
Constants for Embedding Profiles and Profile Identifiers 402

Color Space Constants 402
Color Space Signatures 402
Color Packing for Color Spaces 404
Abstract Color Space Constants 406
Color Space Constants With Packing Formats 409

ColorSync Flag Constants 413
Flag Mask Definitions for Version 2.x Profiles 414
Quality Flag Values for Version 2.x Profiles 417
Device Attribute Values for Version 2.x Profiles 418
Rendering Intent Values for Version 2.x Profiles 419

Video Card Gamma Constants 421
Video Card Gamma Tag 421
Video Card Gamma Tag Type 422
Video Card Gamma Storage Type 422

PrGeneral Function Operation Codes 423
Element Tags and Signatures for Version 1.0 Profiles 424

Result Codes for the ColorSync Manager 425

Chapter 6 Developing Color Management Modules 427

About Color Management Modules 430
Creating a Color Management Module 432

Creating a Component Resource for a CMM 432
The Component Resource 432
The Extended Component Resource 433

How Your CMM Is Called by the Component Manager 434
Required Component Manager Request Codes 435
Required ColorSync Manager Request Codes 435
Optional ColorSync Manager Request Codes 436
Handling Request Codes 439
Responding to Required Component Manager Request Codes 440

Establishing the Environment for a New Component Instance 440
Releasing Private Storage and Closing the Component Instance 440
9
11/20/98  Apple Computer, Inc.

Determining Whether Your CMM Supports a Request 441
Providing Your CMM Version Number 441

Responding to Required ColorSync Manager Request Codes 441
Initializing the Current Component Instance for a Two-Profile

Session 442
Matching a List of Colors to the Destination Profile’s Color Space 443
Checking a List of Colors 443

Responding to ColorSync Manager Optional Request Codes 444
Validating That a Profile Meets the Base Content Requirements 445
Matching the Colors of a Bitmap 446
Checking the Colors of a Bitmap 447
Matching the Colors of a Pixel Map Image 448
Checking the Colors of a Pixel Map Image 449
Initializing the Component Instance for a Session Using Concatenated

Profiles 450
Creating a Device Link Profile and Opening a Reference to It 451
Obtaining PostScript-Related Data From a Profile 452
Obtaining the Size of the Color Rendering Dictionary for PostScript

Printers 454
Flattening a Profile for Embedding in a Graphics File 455
Unflattening a Profile 456
Supplying Named Color Space Information 457

Summary of the Color Management Modules 459
Functions 459
Constants 462

Chapter 7 ColorSync Reference for Color Management Modules 465

Required CMM-Defined Functions 467
Optional CMM-Defined Functions 474
Constants 514

Color Management Module Component Interface 515
Required Request Codes 515
Optional Request Codes 517

Chapter 8 Version and Compatibility Information 523

ColorSync Version Information 525
Gestalt, Shared Library, and CMM Version Information 526
CPU and System Requirements 527
ColorSync Header Files 528

ColorSync Manager 2.x Backward Compatibility 529
ColorSync 2.1 Support in Version 2.5 529
ColorSync 2.0 Support in Version 2.1 529

ColorSync Manager 1.0 Backward Compatibility 529
ColorSync 1.0 Profile Support 530

ColorSync 1.0 Profiles and Version 2.x Profiles 531
How ColorSync 1.0 Profiles and Version 2.x Profiles Differ 531
CMMs and Mixed Profiles 532
Converting a 2.x Profile to the 1.0 Format 532

Using Newer Versions of the ColorSync Manager With ColorSync 1.0
Profiles 532

ColorSync Manager 2.x Functions Not Supported for ColorSync 1.0
Profiles 533

Using ColorSync 1.0 Profiles With Newer Versions of the ColorSync
Manager 534

ColorSync 1.0 Functions With Parallel 2.x Counterparts 536

Chapter 9 What’s New 537

New Features in ColorSync Manager Version 2.5 539
New Profile Folder Location 540
Optimized Profile Searching 540
Monitor Calibration Framework and Per/Monitor Profiles 540
Scripting Support 541
Multiprocessor Support 542
Sixteen-bit Channel Support 542
Flexibility in Choosing CMMs and Default Profiles 543
Additional Features 543

New and Revised Functions, Data Types, and Constants 544
New and Revised Code Listings 549
New Features in ColorSync Manager Version 2.1 550
Other Color Documentation 551
11
11/20/98  Apple Computer, Inc.

Glossary 553

Index 561
12
11/20/98  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1 Introduction to Color and Color Management Systems 23

Figure 1-1 Gray space 29
Figure 1-2 RGB color space (Red corner is hidden from view) 31
Figure 1-3 HSV (or HSB) color space and HLS color space 32
Figure 1-4 Additive and subtractive colors 33
Figure 1-5 Yxy chromaticities in the CIE color space 36
Figure 1-6 L*a*b* color space 37
Figure 1-7 Color gamuts for two devices expressed in Yxy space 41

Chapter 2 Introduction to ColorSync 43

Figure 2-1 The ColorSync control panel 54
Table 2-1 ICC rendering intents and typical image content 60
Figure 2-2 The ColorSync Manager and the Component Manager 63
Figure 2-3 Monitors & Sound Control Panel for ColorSync 2.5 68

Chapter 3 Developing ColorSync-Supportive Applications 79

Figure 3-1 Color matching when the source and destination profiles specify the
same CMM 86

Figure 3-2 Color matching using the destination profile’s CMM 87
Figure 3-3 Color matching using the source profile’s CMM 88
Figure 3-4 Color matching through an XYZ interchange space using both

CMMs 89
Figure 3-5 Matching using both CMMs and two interchange color spaces 90
Figure 3-6 Color matching using the default CMM 91
Listing 3-1 Determining if ColorSync 2.5 is available 92
Listing 3-2 Opening a reference to a file-based profile 97
Listing 3-3 Poor man’s exception handling macro 98
Listing 3-4 Identifying the current system profile 100
Listing 3-5 Getting the profile for the main display 101
Listing 3-6 Matching a picture to a display 103
Listing 3-7 Matching the colors of a bitmap using a color world 110
Figure 3-7 Embedding profile data in a PICT file picture 115
13
11/20/98  Apple Computer, Inc.

Listing 3-8 Embedding a profile by prepending it before its associated
picture 117

Listing 3-9 Counting the number of profiles in a picture 121
Listing 3-10 Calling the CMUnflattenProfile function to extract an embedded

profile 123
Listing 3-11 The unflatten procedure 125
Listing 3-12 The comment procedure 128
Listing 3-13 An iteration function for profile searching with ColorSync 2.5 131
Listing 3-14 A filter function for profile searching prior to ColorSync 2.5 133
Listing 3-15 Optimized profile searching compatible with previous versions of

ColorSync 135
Listing 3-16 Searching for specific profiles in the ColorSync Profiles

folder 137
Listing 3-17 Searching for a profile that matches a profile identifier 140
Listing 3-18 Setting up a location structure for procedure access to a

resource-based profile 152
Listing 3-19 Disposing of a resource-based profile access structure 153
Listing 3-20 Responding to a procedure-based profile command 154
Listing 3-21 Handling the begin access command 157
Listing 3-22 Handling the create new access command 158
Listing 3-23 Handling the open read access command 158
Listing 3-24 Handling the open write access command 160
Listing 3-25 Handling the read access command 162
Listing 3-26 Handling the write access command 163
Listing 3-27 Handling the close access command 164
Listing 3-28 Handling the abort write access command 165
Listing 3-29 Handling the end access command 166

Chapter 4 Developing ColorSync-Supportive Device Drivers 193

Listing 4-1 Modifying a profile header’s quality flag and setting the rendering
intent 208

Chapter 5 ColorSync Reference for Applications and Drivers 211

Figure 5-1 The flags field of the CM2Header structure 414
Figure 5-2 The deviceAttributes field of the CM2Header structure 418
Figure 5-3 The renderingIntent field of the CM2Header structure 420
14
11/20/98  Apple Computer, Inc.

Chapter 6 Developing Color Management Modules 427

Figure 6-1 The ColorSync Manager and the Component Manager 431

Chapter 8 Version and Compatibility Information 523

Table 8-1 ColorSync Manager version numbers, with corresponding shared
library version numbers and Gestalt selectors 526

Table 8-2 ColorSync Manager CPU and system requirements 527
Table 8-3 ColorSync header files 528
Table 8-4 ColorSync 1.0 functions and their ColorSync Manager

counterparts 536

Chapter 9 What’s New 537

Table 9-1 New and revised functions in ColorSync 2.5 544
Table 9-2 New and revised data types in ColorSync 2.5 547
Table 9-3 New and revised constants in ColorSync 2.5 548
Table 9-4 New and revised code listings for ColorSync 2.5 549
15
11/20/98  Apple Computer, Inc.

A p p l e T e c h n i c a l P u b l i c a t i o n s

Revision History 0

Revision history for Managing Color With ColorSync.

November 1998: First release. This document combines ColorSync
documentation from Advanced Color Imaging on the Mac OS with new material
covering the ColorSync Manager through version 2.5.1. It includes updated
conceptual material, code samples, and a complete API reference.
Revision History 17
11/20/98  Apple Computer, Inc.

P R E F A C E

About This Document

This document describes ColorSync, the color management system from Apple
Computer, Inc. that provides essential services for fast, consistent, and accurate
color management. It also describes the ColorSync Manager, the application
programming interface (API) to these services.

This Preface covers:

■ “What’s in This Document” (page 19)

■ “Conventions” (page 21)

■ “Important Note on Code Listings” (page 22)

For additional information about this document, see “What’s New” (page 539).

What’s in This Document 0

This document introduces ColorSync and the concepts of color management,
shows how to use ColorSync in applications and device drivers, and provides
an overview of developing color management modules (CMMs). It describes
features available through ColorSync version 2.5. Most existing code written to
use version 2.0 or 2.1 of the ColorSync Manager should continue to work with
version 2.5 without modification.

Note
There are no changes to the ColorSync Manager API
between version 2.5 and version 2.5.1, so this document is
up-to-date for ColorSync 2.5.1. ◆

This document includes the following sections, as well as a glossary and index.

■ “Introduction to Color and Color Management Systems” (page 25) provides
a general introduction to color-management, defines terms such as profile,
color space, and CMM, and serves as a primer for those unfamiliar with color
management systems.
19
11/20/98  Apple Computer, Inc.

P R E F A C E

■ “Introduction to ColorSync” (page 45) provides an overview of ColorSync
and the ColorSync Manager, including both user interface and API elements.
It describes ColorSync’s support for scripting, monitor calibration, the use of
multiple processors, and other features.

■ “Developing ColorSync-Supportive Applications” (page 81) describes how
your application can use the ColorSync Manager to provide many color
management services. It includes detailed code samples.

■ “Developing ColorSync-Supportive Device Drivers” (page 195) describes
how you can use the ColorSync Manager to create ColorSync-supportive
drivers for peripherals such as input, output, and display devices.

■ “ColorSync Reference for Applications and Drivers” (page 217) describes the
functions, constants, and data types defined by the ColorSync Manager for
use by your application or device driver.

■ “Developing Color Management Modules” (page 429) describes how to
create a color management module (CMM) component that ColorSync can
use to match and check colors.

■ “ColorSync Reference for Color Management Modules” (page 467) describes
the request code constants passed to your color management module from
the Component Manager to request services your CMM provides. It also
describes the functions your CMM may define to respond to ColorSync
Manager request codes

■ “Version and Compatibility Information” (page 525) describes the Gestalt
information, shared library version numbers, CMM version numbers, and
ColorSync header files you use with different versions of the ColorSync
Manager. It also describes CPU and system requirements. In addition, it
describes backward compatibility between versions of the ColorSync
Manager and the profile formats they use.

■ “What’s New” (page 539) lists the new features available with ColorSync 2.5
and provides links to new and revised material. It includes a summary of
new and changed code listings, functions, data types, and constants. It also
includes a list of features new to ColorSync version 2.1, as well as
information on where to obtain documentation for other color-related
technologies.
20

11/20/98  Apple Computer, Inc.

P R E F A C E
Conventions 0

This document uses the following conventions to help you locate information.

Quick Reference Banners 0

The following banners appear below section headings in reference material.
They indicate features that are new in ColorSync version 2.5 or that operate
differently than in previous versions.

NEW IN COLORSYNC 2.5
Functions, types, and constants introduced in ColorSync version 2.5.

CHANGED IN COLORSYNC 2.5
Functions, types, and constants that have been modified in ColorSync version
2.5, or are used differently than in previous versions.

NOT RECOMMENDED IN COLORSYNC 2.5
Functions that have been superseded by new functions and are not
recommended for use with ColorSync version 2.5.

Version Notes 0

Functions and data types that are changed or not recommended in ColorSync
version 2.5 generally contain a VERSION NOTES section that summarizes the
changes or points to related information.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in a monospaced font
such as Letter Gothic (this is Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.
21
11/20/98  Apple Computer, Inc.

P R E F A C E
Types of Notes 0

There are several types of notes used in this document.

Note
A note like this contains information that is interesting but
possibly parenthetical to the main text. ◆

IMPORTANT

A note like this sets off information that is essential for an
understanding of the main text. ▲

▲ W AR N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application or
device driver. Failure to heed these warnings could result
in system crashes or loss of data. ▲

Important Note on Code Listings 0

All code listings in this document are shown in C, except for listings that
describe resources, which are shown in Rez-input format. Many listings are
from the CSDemo application, which is available with the ColorSync 2.5 SDK.
See Figures, Tables, and Listings (page 13) for the locations of all code listings in
this document.

IMPORTANT

Although the listings in this document have been compiled
and, to some degree, tested, Apple Computer does not
promote the direct incorporation of these code samples into
your application. For example, to make the code listings in
this document more readable, only limited error handling
is shown. You need to develop your own techniques for
detecting and handling errors. ▲
22

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 1-0
Listing 1-0
Table 1-0
1 Introduction to Color and Color
Management Systems
ColorSync 25
Color: A Brief Overview 26

Color Perception 27
Hue, Saturation, and Value (or Brightness) 27
Additive and Subtractive Color 28

Color Spaces 28
Gray Spaces 29
RGB-Based Color Spaces 30

RGB Spaces 30
sRGB Color Space 31
HSV and HLS Color Spaces 31

CMY-Based Color Spaces 33
Device-Independent Color Spaces 34

XYZ Space 35
Yxy Space 35
L*u*v* Space and L*a*b* Space 37

Indexed Color Spaces 38
Named Color Spaces 39

Color-Component Values, Color Values, and Colors 39
Color Conversion and Color Matching 40
Color Management Systems 41
23

C H A P T E R 1
Introduction to Color and Color Management Systems 1

This section provides a very brief description of ColorSync, the cross-platform
color management system from Apple Computer, Inc. It then provides a general
introduction to the basics of color and color management systems.

Read this section to learn about color perception, additive and subtractive color
systems, how different peripheral devices represent color, and how color
management systems maintain consistent color among devices. If you are
already familiar with these concepts, you can skip ahead to “Introduction to
ColorSync” (page 45), which provides a detailed overview of ColorSync.

For more information on color theory and color spaces, see:

■ Fred W. Billmeyer, Jr., and Max Saltzman. Principles of Color Technology,
second edition. Wiley, 1981.

■ James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice, second edition. Addison-Wesley,
1990.

■ Roy Hall. Illumination and Color in Computer Generated Imagery. New York:
Springer-Verlag, 1988.

■ R.W.G. Hunt. Measuring Colour, second edition. Prentice-Hall, 1991.

■ Günther Wyszecki and W.S. Stiles. Color Science: Concepts and Methods,
Quantitative Data and Formulae, second edition. A Wiley-Interscience
Publication, 1982.

ColorSync 1

ColorSync is the platform-independent color management system from Apple
Computer, Inc. ColorSync provides essential services for fast, consistent, and
accurate desktop color calibration, proofing, and reproduction for the graphic
arts, publishing, and printing industries. The ColorSync Manager is the
application programming interface (API) to these services. ColorSync and the
ColorSync Manager are described in detail in “Introduction to ColorSync”
(page 45). Color management systems are defined in “Color Management
Systems” (page 41).
ColorSync 25
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Color: A Brief Overview 1

Color is a sensation and, therefore, a subjective experience. The sensation of
color is one component of the visual sensation, caused by the sensitivity of the
human eye to light. Light can be perceived either directly from light sources
(such as the sun, a fire, incandescent or fluorescent bulbs, television screens,
and computer displays) or indirectly, when light from these sources is
transmitted through or reflected by objects. Color sensation is also affected by
how the brain processes information and is specific to each individual. Thus
color perception is avery complex phenomenon.

The foundation of the color reproduction process is trichromatic color vision,
which describes the capacity of the human eye to respond equally to two or
more sets of stimuli having different visible spectra. This means that two or
more visible spectra may exist that will be perceived as the same color, a
phenomenon known as metamerism. Because of this property, spectral color
reproduction, a very expensive and impractical process, can be replaced by
trichromatic color reproduction, a process that is much cheaper and easier to
control.

Trichromatic color reproduction induces the illusion of a color using various
amounts of only three primary colors: either red, green, and blue mixed
additively or cyan, magenta, and yellow mixed subtractively. Additive and
subtractive colors are described in “Additive and Subtractive Color” (page 28).
Trichromatic color reproduction is the fundamental mechanism used in the
majority of color reproduction devices, from television, computer display and
movie screens, to magazines, newspapers, large posters, and small pages
printed on your desktop printer.

Computers enable us to control color digitally and many peripherals have been
developed for acquiring, displaying, and reproducing color. As a result, there is
a need for a mechanism to maintain color control in an environment that can
include different computer operating systems and hardware, as well as a wide
variety of devices and media connected to the computer.

In the Mac OS, the ColorSync Manager is the part of the operating system that
provides color management. For a detailed description, see “ColorSync
Manager Overview” (page 47).
26 Color: A Brief Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Color Perception 1

The eye contains two types of receptors, cones and rods. The rods measure
illumination and are not sensitive to color. The cones contain a chemical known
as Rhodopsin, which is variously sensitive to reds and blues and has a default
sensitivity to yellow. The color the eyes see in an object depends on how much
red, green, and blue light is reflected to a small region in the back of the eye
called the fovea, which contains a great majority of the cones present in the eye.
Black is perceived when no light is reflected to the eye.

Even the conditions in which color is viewed greatly affect the perception of
color. The light source and environment must be standardized for accurate
viewing. When viewing colors, people in the graphic arts industry, for example,
avoid fluorescent and tungsten lighting, use a particular illuminant that is
similar to daylight, and proof against a neutral gray surface.

Color images frequently contain hundreds of distinctly different colors. To
reproduce such images on a color peripheral device is impractical. However, a
very broad range of colors can be visually matched by a mixture of three
“primary” lights. This allows colors to be reproduced on a display by a mixture
of red, green, and blue lights (the primary colors of the additive color space
shown in Figure 1-4) or on a printer by a mixture of cyan, magenta, and yellow
inks or pigments (the primary colors of the subtractive color space shown in
Figure 1-4). Black is printed to increase contrast and make up for the deficiency
of the inks (making black the key, or K, in CMYK).

Hue, Saturation, and Value (or Brightness) 1

Color is described as having three dimensions. These dimensions are hue,
saturation, and value. Hue is the name of the color, which places the color in its
correct position in the spectrum. For example, if a color is described as blue, it is
distinguished from yellow, red, green, or other colors. Saturation refers to the
degree of intensity in a color, or a color’s strength. A neutral gray is considered
to have zero saturation. A saturated red would have a color similar to apple red.
Pink is an example of an unsaturated red. Value (or brightness) describes
differences in the intensity of light reflected from or transmitted by a color
image. The hue of an object may be blue, but the terms dark and light
distinguish the value, or brightness, of one object from another. The
3-dimensional color spaces based on hue, saturation and value are described in
“HSV and HLS Color Spaces” (page 31).
Color: A Brief Overview 27
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Additive and Subtractive Color 1

The additive color theory refers to the process of mixing red, green, and blue
lights, which are each approximately one-third of the visible spectrum. Additive
color theory explains how red, green, and blue light can be added to make
white light. Red and green projected together produce yellow, red and blue
produce magenta, and blue and green produce cyan. With red, blue, and green
transmitted light, all the colors of the rainbow can be matched.

The subtractive color theory refers to the process of combining subtractive
colorants such as inks or dyes. In this theory, various levels of cyan, magenta,
and yellow absorb or “subtract” a portion of the spectrum of white light that is
illuminating an object. The color of an object is the result of the color lights that
are not absorbed by the object. An apple appears red because the surface of the
apple absorbs the blue and green light.

Monitors use the additive color space, output printing devices use the
subtractive color space.

Color Spaces 1

A color space describes an environment in which colors are represented,
ordered, compared, or computed. A color space defines a one-, two-, three-, or
four-dimensional environment whose components (or color components)
represent intensity values. A color component is also referred to as a color
channel. For example, RGB space is a three-dimensional color space whose
stimuli are the red, green, and blue intensities that make up a given color; and
red, green, and blue are color channels. Visually, these spaces are often
represented by various solid shapes, such as cubes, cones, or polyhedra.

For additional information on color components, see “Color-Component
Values, Color Values, and Colors” (page 39).

The ColorSync Manager directly supports several different color spaces to give
you the convenience of working in whatever kind of color data most suits your
needs. The ColorSync color spaces fall into several groups, or base families.
They are:

■ gray spaces, used for grayscale display and printing; see “Gray Spaces”
(page 29)
28 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
■ RGB-based color spaces, used mainly for displays and scanners; see
“RGB-Based Color Spaces” (page 30)

■ CMYK-based color spaces, used mainly for color printing; see “CMY-Based
Color Spaces” (page 33)

■ device-independent color spaces, such as L*a*b, used mainly for color
comparisons, color differences, and color conversion; see
“Device-Independent Color Spaces” (page 34)

■ named color spaces, used mainly for printing and graphic design; see
“Named Color Spaces” (page 39)

■ heterogeneous HiFi color spaces, also referred to as multichannel color
spaces, primarily used in new printing processes involving the use of
red-orange, green and blue, and also for spot coloring, such as gold and
silver metallics; see “Color-Component Values, Color Values, and Colors”
(page 39)

All color spaces within a base family are related to each other by very simple
mathematical formulas or differ only in details of storage format.

Gray Spaces 1

Gray spaces typically have a single component, ranging from black to white, as
shown in Figure 1-1. Gray spaces are used for black-and-white and grayscale
display and printing. A properly plotted gray space should have a fifty percent
value as its midpoint.

Figure 1-1 Gray space

Black White
Color Spaces 29
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
RGB-Based Color Spaces 1

The RGB space is a three-dimensional color space whose components are the
red, green, and blue intensities that make up a given color. For example,
scanners read the amounts of red, green, and blue light that are reflected from
or transmitted through an image and then convert those amounts into digital
values. Information displayed on a color monitor begins with digital values that
are converted to analog signals for display on the monitor. The analog signals
are transmitted to the phosphors on the face of the monitor, causing them to
glow at various intensities of red, green, and blue (the combination of which
makes up the required hue, saturation, and brightness of the desired colors).

RGB-based color spaces are the most commonly used color spaces in computer
graphics, primarily because they are directly supported by most color displays
and scanners. RGB color spaces are device dependent and additive. The groups
of color spaces within the RGB base family include

■ RGB spaces

■ HSV and HLS spaces

RGB Spaces 1

Any color expressed in RGB space is some mixture of three primary colors: red,
green, and blue. Most RGB-based color spaces can be visualized as a cube, as in
Figure 1-2, with corners of black, the three primaries (red, green, and blue), the
three secondaries (cyan, magenta, and yellow), and white.
30 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Figure 1-2 RGB color space (Red corner is hidden from view)

sRGB Color Space 1

The sRGB color space is based on the ITU-R BT.709 standard. It specifies a
gamma of 2.2 and a white point of 6500 degrees K. You can read more about
sRGB space at the International Color Consortium site at <http://
www.color.org/>. This space gives a complimentary solution to the current
strategies of color management systems, by offering an alternate,
device-independent color definition that is easier to handle for device
manufacturers and the consumer market. sRGB color space can be used if no
other RGB profile is specified or available. Starting with version 2.5, ColorSync
provides full support for sRGB, including an sRGB profile.

Note that as an open architecture, ColorSync is not tied to the use of the sRGB
color space and can support any RGB space that the user might prefer. For
example, high end users with good quality reproduction devices may find that
the sRGB space, which limits colors to the sRGB gamut, is too restrictive for
their required color quality.

HSV and HLS Color Spaces 1

HSV space and HLS space are transformations of RGB space that can describe
colors in terms more natural to an artist. The name HSV stands for hue,
saturation, and value. (HSB space, or hue, saturation, and brightness, is
synonymous with HSV space.) HLS stands for hue, lightness, and saturation. The

Blue

Black

Green

Yellow

White

Magenta

Cyan
Color Spaces 31
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
two spaces can be thought of as being single and double cones, as shown in
Figure 1-3.

The components in HLS space are analogous, but not completely identical, to
the components in HSV space:

■ The hue component in both color spaces is an angular measurement,
analogous to position around a color wheel. A hue value of 0 indicates the
color red; the color green is at a value corresponding to 120°, and the color
blue is at a value corresponding to 240°. Horizontal planes through the cones
in Figure 1-3 are hexagons; the primaries and secondaries (red, yellow, green,
cyan, blue, and magenta) occur at the vertices of the hexagons.

■ The saturation component in both color spaces describes color intensity. A
saturation value of 0 (in the middle of a hexagon) means that the color is
“colorless” (gray); a saturation value at the maximum (at the outer edge of a
hexagon) means that the color is at maximum “colorfulness” for that hue
angle and brightness.

Figure 1-3 HSV (or HSB) color space and HLS color space

■ The value component in HSV describes the brightness. In both color spaces, a
value of 0 represents the absence of light, or black. In HSV space, a maximum
value means that the color is at its brightest. In HLS space, a maximum value

HSV space

Hue

HLS space

Lightness

Hue

Saturation

Value

Saturation
32 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
for lightness means that the color is white, regardless of the current values of
the hue and saturation components.

CMY-Based Color Spaces 1

CMY-based color spaces are most commonly used in color printing systems.
They are device dependent and subtractive in nature. The groups of color
spaces within the CMY family include

■ CMY, which is not very common except on low-end color printers

■ CMYK, which models the way inks or dyes are applied to paper in printing

The name CMYK refers to cyan, magenta, yellow, and key (represented by
black). Cyan, magenta, and yellow are the three primary colors in this color
space, and red, green, and blue are the three secondaries. Theoretically black is
not needed. However, when full-saturation cyan, magenta, and yellow inks are
mixed equally on paper, the result is usually a dark brown, rather than black.
Therefore, black ink is overprinted in darker areas to expand the dynamic range
and give a better appearance. Printing with black ink makes it possible to use
less cyan, magenta, and yellow ink. This may prevent saturation, especially on
materials such as plain paper which cannot accept too much ink. Using black
can also reduce the cost per page because cyan, magenta, and yellow inks are
generally more expensive than black ink. It can also provide a sharper image,
because a single dot of black ink is used in place of three dots of other inks.

Figure 1-4 shows how additive and subtractive colors mix to form other colors.

Figure 1-4 Additive and subtractive colors

Additive color Subtractive color

Red

Green

Cyan Yellow

Magenta

Blue

White

Yellow

Green

Blue

Cyan Magenta

Red

Black
Color Spaces 33
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Theoretically, the relation between RGB values and CMY values in CMYK space
is quite simple:

Cyan = 1.0 – red
Magenta = 1.0 – green
Yellow = 1.0 – blue

(where red, green, and blue intensities are expressed as fractional values
varying from 0 to 1). In reality, the process of deriving the cyan, magenta,
yellow, and black values from a color expressed in RGB space is complex,
involving device-specific, ink-specific, and even paper-specific calculations of
the amount of black to add in dark areas (black generation) and the amount of
other ink to remove (undercolor removal) where black is to be printed.
Therefore, when ColorSync converts between CMYK and RGB color spaces, it
uses an elaborate system of multi-dimensional lookup tables, which ColorSync
knows how to interpret. This information is stored in profiles, which are
defined in the section “Color Conversion and Color Matching” (page 40).

Device-Independent Color Spaces 1

Some color spaces can express color in a device-independent way. Whereas
RGB colors vary with display and scanner characteristics, and CMYK colors
vary with printer, ink, and paper characteristics, device-independent colors are not
dependent on any particular device and are meant to be true representations of
colors as perceived by the human eye. These color representations, called
device-independent color spaces, result from work carried out by the
Commission Internationale d’Eclairage (CIE) and for that reason are also called
CIE-based color spaces.

The most common method of identifying color within a color space is a
three-dimensional geometry. The three color attributes, hue, saturation, and
brightness, are measured, assigned numeric values, and plotted within the color
space.

Conversion from an RGB color space to a CMYK color space involves a number
of variables. The type of printer or printing press, the paper stock, and the inks
used all influence the balance between cyan, magenta, yellow, and black. In
addition, different devices have different gamuts, or ranges of colors that they
can produce. Because the colors produced by RGB and CMYK specifications are
specific to a device, they’re called device-dependent color spaces. Device color
34 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
spaces enable the specification of color values that are directly related to their
representation on a particular device.

Device-independent color spaces can be used as interchange color spaces to
convert color data from the native color space of one device to the native color
space of another device.

The CIE created a set of color spaces that specify color in terms of human
perception. It then developed algorithms to derive three imaginary primary
constituents of color—X, Y, and Z—that can be combined at different levels to
produce all the color the human eye can perceive. The resulting color model,
CIEXYZ, and other CIE color models form the basis for all color management
systems. Although the RGB and CMYK values differ from device to device,
human perception of color remains consistent across devices. Colors can be
specified in the CIE-based color spaces in a way that is independent of the
characteristics of any particular display or reproduction device. The goal of this
standard is for a given CIE-based color specification to produce consistent
results on different devices, up to the limitations of each device.

XYZ Space 1

There are several CIE-based color spaces, but all are derived from the
fundamental XYZ space. The XYZ space allows colors to be expressed as a
mixture of the three tristimulus values X, Y, and Z. The term tristimulus comes
from the fact that color perception results from the retina of the eye responding
to three types of stimuli. After experimentation, the CIE set up a hypothetical
set of primaries, XYZ, that correspond to the way the eye’s retina behaves.

The CIE defined the primaries so that all visible light maps into a positive
mixture of X, Y, and Z, and so that Y correlates approximately to the apparent
lightness of a color. Generally, the mixtures of X, Y, and Z components used to
describe a color are expressed as percentages ranging from 0 percent up to, in
some cases, just over 100 percent.

Other device-independent color spaces based on XYZ space are used primarily
to relate some particular aspect of color or some perceptual color difference to
XYZ values.

Yxy Space 1

Yxy space expresses the XYZ values in terms of x and y chromaticity
coordinates, somewhat analogous to the hue and saturation coordinates of HSV
Color Spaces 35
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
space. The coordinates are shown in the following formulas, used to convert
XYZ into Yxy:

Y = Y
x = X / (X+Y+Z)
y = Y / (X+Y+Z)

Note that the Z tristimulus value is incorporated into the new coordinates and
does not appear by itself. Since Y still correlates to the lightness of a color, the
other aspects of the color are found in the chromaticity coordinates x and y. This
allows color variation in Yxy space to be plotted on a two-dimensional diagram.
Figure 1-5 shows the layout of colors in the x and y plane of Yxy space.

Figure 1-5 Yxy chromaticities in the CIE color space

1.0

0 1.0

y

x

Red
Cyan

White

Magenta

Green

Color
families

Yellow

Blue
36 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
L*u*v* Space and L*a*b* Space 1

One problem with representing colors using the XYZ and Yxy color spaces is
that they are perceptually nonlinear: it is not possible to accurately evaluate the
perceptual closeness of colors based on their relative positions in XYZ or Yxy
space. Colors that are close together in Yxy space may seem very different to
observers, and colors that seem very similar to observers may be widely
separated in Yxy space.

L*u*v* space and L*a*b* space are nonlinear transformations of the XYZ
tristimulus space. These spaces are designed to have a more uniform
correspondence between geometric distances and perceptual distances between
colors that are seen under the same reference illuminant. A rendering of L*a*b
space is shown in Figure 1-6.

Figure 1-6 L*a*b* color space

100 %

50 %

0 %

+L

+b

-b

-a

+a

L*a*b* color space
Color Spaces 37
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Both L*u*v* space and L*a*b* space represent colors relative to a reference
white point, which is a specific definition of what is considered white light,
represented in terms of XYZ space, and usually based on the whitest light that
can be generated by a given device.

IMPORTANT

Because L*u*v* space and L*a*b* space represent colors
relative to a specific definition of white light, they are not
completely device independent; two numerically equal
colors are truly identical only if they were measured
relative to the same white point. ▲

Measuring colors in relation to a white point allows for color measurement
under a variety of illuminations.

A primary benefit of using L*u*v* space and L*a*b* space is that the perceived
difference between any two colors is proportional to the geometric distance in
the color space between their color values, if the color differences are small. Use
of L*u*v* space or L*a*b* space is common in applications where closeness of
color must be quantified, such as in colorimetry, gemstone evaluation, or dye
matching.

Indexed Color Spaces 1

In situations where you use only a limited number of colors, it can be
impractical or impossible to specify colors directly. If you have a bitmap with
only a few bits per pixel (1, 2, 4, or 8, for example), each pixel is too small to
contain a complete color specification; its color must be specified as an index
into a list or table of color values. If you are using spot colors in printing or pen
colors in plotting, it can be simpler and more precise to specify each color as an
index into a list of colors instead of an actual color value. Also, if you want to
restrict the user to drawing with a specific set of colors, you can put the colors
in a list and specify them by index.

Indexed space is the color space you use when drawing with indirectly
specified colors. An indexed color value (a color specification in indexed color
space) consists of an index value that refers to a color in a color list. Color
values are defined in “Color-Component Values, Color Values, and Colors”
(page 39).
38 Color Spaces

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Named Color Spaces 1

In a named color space, each color has a name; colors are generally ordered so
that each has an equal perceived distance from its neighbors in the color space.
A named color space provides a relatively small number of discrete colors.

Color systems using named color spaces have existed for many years. Graphic
artists and designers using named color systems can “see” the real color by
looking at a color chip or swatch. Printing shops can reproduce a specified color
accurately.

Named color systems are useful for spot colors, but they have several
drawbacks:

■ They are not useful for images, which require a continuous range of colors.

■ They are highly device dependent and proprietary.

■ Colors are tied to medium-specific formulations.

■ Applications that use these systems require a device-specific database for
each supported printer, making it difficult to add additional devices.

Color-Component Values, Color Values, and Colors 1

Each of the color spaces described here requires one or more numeric values in
a particular format to specify a color.

Each dimension, or component, in a color space has a color-component value.
An unsigned 16-bit color-component value can vary from 0 to 65,535 (0xFFFF),
although the numerical interpretation of that range is different for different
color spaces. In most cases, color-component intensities are interpreted
numerically as varying between 0 and 1.0. An exception occurs for the a* and b*
channels of the Lab color space, where values ranging from 0 to 65,535 are
interpreted numerically as varying from -128.0 to approximately 128.0.

Depending on the color space, one, two, three, or four color-component values
combine to make a color value. For HiFi colors, up to eight color-component
values combine to make a color. A color value is a structure; it is the complete
specification of a color in a given color space.
Color-Component Values, Color Values, and Colors 39
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Color Conversion and Color Matching 1

Color conversion is the process of converting colors from one color space to
another. Color matching, which entails color conversion, is the process of
selecting colors from the destination gamut that most closely approximate the
colors from the source image. Color matching always involves color conversion,
whereas color conversion may not entail color matching. Rendering intent
refers to the approach taken when a CMM maps or translates the colors of an
image to the color gamut of a destination device—that is, a rendering intent
specifies a gamut-matching strategy.

Different imaging devices (scanners, displays, printers) work in different color
spaces and each is capable of producing a different range of colors. Although
color displays from different manufacturers all use RGB colors, each will
typically have a different RGB gamut. Printers that work in CMYK space vary
drastically in their gamuts, especially if they use different printing technologies.
Even a single printer’s gamut can vary significantly with the ink or type of
paper it uses. It’s easy to see that conversion from RGB colors on an individual
display to CMYK colors on an individual printer using a particular paper type
can lead to unpredictable results.

When an image is output to a particular device, the device displays only those
colors that are within its gamut. Likewise, when an image is created by
scanning, all colors from the original image are reduced to the colors within the
scanner’s gamut. Devices with different gamuts cannot reproduce each other’s
colors exactly, but careful shifting of the colors used on one device can improve
the visual match when the image is displayed on another.
40 Color Conversion and Color Matching

11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
Figure 1-7 Color gamuts for two devices expressed in Yxy space

Figure 1-7 shows examples of two devices’ color gamuts, projected onto Yxy
space. Both devices produce less than the total possible range of colors, and the
printer gamut is restricted to a significantly smaller range than the RGB gamut.
The problem illustrated by Figure 1-7 is to display the same image on both
devices with a minimum of visual mismatch. The solution to the problem is to
match the colors of the image using profiles for both devices and one or more
color management modules. A profile is a structure that provides a means of
defining the color characteristics of a given device in a particular state. For more
information, see “Profiles” (page 49).

Color Management Systems 1

Members of the computer and publishing industries have developed color
management systems (CMSs) to convert colors from the color space of one

1.0

0 1.0

y

x

RGB gamut

Printer gamut
Color Management Systems 41
11/20/98  Apple Computer, Inc.

C H A P T E R 1

Introduction to Color and Color Management Systems
device to the color space of another device (for example, from a scanner to a
monitor). The components of a color management system include

■ collections of color characteristics (these collections are given various names,
such as color tags, precision transforms, or profiles)

■ a color management module (CMM) that performs the color matching
among, and transformation between, collections of color characteristics; for
more information, see “Color Management Modules” (page 58)

■ a programming interface for invoking color matching

The goal of these systems is to provide consistent color across peripheral
devices and across operating-system platforms. Most CMSs are proprietary, but
ColorSync, the platform-independent color management system from Apple
Computer, supports the industry-standard color profile specification currently
defined by the International Color Consortium (ICC). The ICC publishes the
International Color Consortium Profile Format Specification. To obtain a copy of the
specification, or to get other information about the ICC, visit the ICC Web site at
<http://www.color.org/>.

A color management system gives the user the ability to perform color
matching, to see in advance which colors cannot be accurately reproduced on a
specific device, to simulate the range of colors of one device on another, and to
calibrate peripheral devices using a device profile and a calibration application.
42 Color Management Systems

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Introduction to ColorSync
About ColorSync 45
Why You Should Use ColorSync 46

The ColorSync Advantage 46
Color Management in Action 47

ColorSync Manager Overview 47
ColorSync Versions 48
Minimum Requirements For Running ColorSync 2.5 48
Programming Interface 49
Profiles 49

The International Color Consortium Profile Format 49
ColorSync and ICC Profile Format Version Numbers 50
Source and Destination Profiles 50
Profile Classes 51
Profile Properties 53
Profile Location 53
Setting Default Profiles 54

Profile Search Locations 55
Where ColorSync Searches for Profiles 56
Where ColorSync Does Not Look for Profiles 57
Temporarily Hiding a Profile Folder 57

The Profile Cache and Optimized Searching 57
Color Management Modules 58

Setting a Preferred CMM 59
Rendering Intents 60

When Color Matching Occurs 62
General Purpose Color-Matching Functions 64
QuickDraw-Specific Color-Matching Functions 64
43

C H A P T E R 2
Converting Between Color Spaces 65
Monitor Calibration and Profiles 67

Setting a Profile for Each Monitor 69
Calibration 69
Video Card Gamma 70

Scripting Support 71
Scriptable Properties 71
Scriptable Operations 71
Extending the Scripting Framework 72
Sample Scripts 72

Multiprocessor Support 73
When ColorSync Uses Multiple Processors 73
Efficiency of ColorSync’s Multiprocessor Support 73

QuickDraw GX and the ColorSync Manager 74
How the ColorSync Manager Uses Memory 74

What Users Can Do With ColorSync-Supportive Applications 75
Display Matching 75
Gamut Checking 76
Soft Proofing 76
Device Link Profiles 76
Calibration 76
44 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 2
Introduction to ColorSync 2

This section describes ColorSync and the ColorSync Manager. ColorSync is the
platform-independent color management system from Apple Computer, Inc.
ColorSync provides essential services for fast, consistent, and accurate color
calibration, proofing, and reproduction. The ColorSync Manager is the
application programming interface (API) to these services on the Mac OS.

Read this section if your software product performs color drawing, printing, or
calculation or if your peripheral device supports color. You should also read this
section if you are creating a color management module (CMM)—a component
that implements color-matching, color conversion, and gamut-checking
services.

If you are unfamiliar with terms and concepts such as CMM, profile, color
space, and color management, or would like to review these topics, read
“Introduction to Color and Color Management Systems” (page 25) before
reading this section.

“What’s New” (page 539) lists the new features available with ColorSync 2.5
and provides links to new and revised material in this document. It also
describes where to obtain documentation for other color-related technologies.

About ColorSync 2

ColorSync is the first system-level implementation of an industry-standard
color management system. Even in a system in which all input, output, and
display devices are new and perfectly calibrated, there will be differences in
device gamuts (the ranges of color that can be reproduced by the devices).
ColorSync can correct for such differences in device gamuts, as well as for
differences caused by aging of filter sets and lamps on scanners, phosphor
decay and ambient light on monitors, and differences in pigments and
substrates on output devices such as printers and presses. As a result, it is
possible to maintain accurate color across many possible input, display, and
output devices.

Developers writing device drivers use the ColorSync Manager to support color
matching between devices. Application developers use the ColorSync Manager
to communicate with drivers and to present users with color-matching
information, such as a device’s color capabilities.
About ColorSync 45
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Why You Should Use ColorSync 2

Different imaging devices such as scanners, displays, and printers work in
different color spaces, and each can have a different gamut (the range of colors a
device can display). Color displays from different manufacturers all use RGB
colors but may have different RGB gamuts as a result of the type and age of the
phosphors used. Printers and presses work in CMYK space and can vary
drastically in their gamuts, especially if they use different printing technologies.
Even a single printer’s gamut can vary significantly depending on the ink or
type of paper in use. It’s easy to see that conversion from RGB colors on an
individual display to CMYK colors on an individual printer using a specific ink
and paper type can lead to unpredictable results.

The ColorSync Manager addresses these problems by providing applications
and color peripheral device drivers with device-independent color-matching
and color conversion services based on the ColorSync color management
system. With this ColorSync support, the user can quickly and accurately
convert color images for optimal results on a specified device.

The ColorSync Advantage 2

There are many reasons you should consider adding ColorSync support to your
products:

■ Working with color is more difficult than many people realize, but ColorSync
provides a highly effective system to help you perform accurate,
industry-standard color management.

■ Devices age and are subject to continuous inconsistence due to phosphor
aging, pigment changes, substrate differences (white point, absorption,
reflectivity), filter aging, and change in the life of the luminant.

■ Artists, designers, and prepress experts need to achieve repeatable, reliable,
and consistent color—onscreen, in print, and for electronic delivery to
multimedia and the Internet. ColorSync is the tool of choice for meeting
these requirements.

■ There are many color measurement instruments, an array of profiling
software, and a wide selection of production tools—page make-up, image
46 Why You Should Use ColorSync

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
editing, illustration, image database, Photo CD applications, and more—that
already support ColorSync.

■ ColorSync is widely available to Macintosh users, who make up the large
majority of graphic arts and publishing professionals.

■ Starting with version 2.5, the ColorSync Manager provides an extensible
AppleScript framework that allows users to script many common tasks, such
as matching an image or embedding a profile in an image. These AppleScript
capabilities, described in “Scripting Support” (page 71), make it possible to
automate many workflow processes.

Color Management in Action 2

Firms that sell clothing through mail order catalogs and Web sites report the
most common reason a customer returns an item is color: when the product
arrived, it didn’t match the color in the catalog or on the monitor. Working with
managed color, however, these firms can ensure the original image is scanned
accurately, the catalog or monitor displays the color correctly, the output device
prints the color correctly, and the customers see the color as accurately as they
are able.

ColorSync Manager Overview 2

This section provides an overview of the ColorSync Manager and how an
application or device driver can use it for color conversion, color matching,
color gamut checking, profile management, monitor calibration, and creating
color management modules (CMMs).

The ColorSync Manager provides a set of routines contained in a system
extension. ColorSync also includes a collection of display device profiles for all
Apple color monitors, some default profiles for standard color spaces, and a
robust default CMM. In addition, the ColorSync control panel, shown in
Figure 2-1 (page 54), allows a user to specify a preferred CMM and various
default profiles. CMMs and profiles are discussed throughout this material.

To provide its color-matching services, the ColorSync Manager works with
color profiles and with one or more color management modules. Your
application or driver can supply its own CMM, or you can use the default
CMM, a robust CMM that is installed as part of the ColorSync extension and
ColorSync Manager Overview 47
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
supports all the required and optional functions defined by the ColorSync
Manager. The ColorSync Manager relies on the Component Manager to support
plug-and-play capability for third-party CMMs. The Component Manager is
described in Inside Macintosh: More Macintosh Toolbox. For more information on
CMMs, see “Color Management Modules” (page 58).

A profile is a table that contains the color characteristics of a given device in a
particular state. ColorSync profiles conform to the format currently defined by
the International Color Consortium (ICC). Device driver developers and
peripheral manufacturers can provide their own profiles or they can obtain
profiles from a number of vendors. For a list of profile vendors, see the
ColorSync Web site at <http://colorsync.apple.com/>. Profiles are described in
detail in “Profiles” (page 49).

ColorSync Versions 2

This document covers the ColorSync Manager through version 2.5. Most
existing code written to use version 2.0 or 2.1 of the ColorSync Manager should
continue to work with version 2.5 without modification.

This document uses a specific version number, such as “version 2.5 of the
ColorSync Manager,” only where necessary to identify features associated with
a particular version. It may use “2.x” to refer inclusively to ColorSync versions
2.0, 2.1, and 2.5, or to refer to the profile format used with these versions—the
meaning should be clear from the context. For more information on profile
version numbers, see “ColorSync and ICC Profile Format Version Numbers”
(page 50).

For a description of the Gestalt information, shared library version numbers,
CMM version numbers, and ColorSync header files you use with different
versions of the ColorSync Manager, see “ColorSync Version Information”
(page 525).

Minimum Requirements For Running ColorSync 2.5 2

ColorSync version 2.5 requires Mac OS version 7.6.1 or newer, running on a
Power Macintosh or on a 68K Macintosh computer with a 68020 or greater
processor. For information on system and CPU requirements for previous
ColorSync versions, and for related information such as Gestalt, shared library,
and CMM versions, see “ColorSync Version Information” (page 525).
48 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Programming Interface 2

The ColorSync Manager application programming interface (API) allows your
application or device driver to handle such tasks as color matching, color
conversion, profile management, and profile searching. You can access and read
individual tagged elements within a profile, embed profiles in documents,
modify profiles, and transform images through various CMMs to perform color
matching and profile data transfer from one format to another.

The ColorSync API is summarized in “Summary of the ColorSync Manager”
(page 167). You can find detailed information about individual functions,
constants, and data types in “ColorSync Reference for Applications and
Drivers” (page 217). For code samples that show how to use the ColorSync API,
see “Developing ColorSync-Supportive Applications” (page 81). For
information on the ColorSync Manager header files, see “ColorSync Header
Files” (page 528).

The ColorSync Manager is implemented as a shared library on PowerPC-based
computers. For a listing of the shared library version number for each released
version of the ColorSync Manager, along with corresponding Gestalt selector
codes, see “Gestalt, Shared Library, and CMM Version Information” (page 526).

Profiles 2

To perform color matching or color conversion across different color spaces
requires the use of a profile for each device involved. Profiles provide the
information necessary to understand how a particular device reproduces color.
A profile may contain such information as lightest and darkest possible tones
(referred to as white point and black point), the difference between specific
“targets” and what is actually captured, and maximum densities for red, green,
blue, cyan, magenta, and yellow. Together these measurements represent the
data which describe a particular color gamut.

The International Color Consortium Profile Format 2

ColorSync supports the profile format defined by the International Color
Consortium (ICC). The ICC format provides a single cross-platform standard
for translating color data across devices. The ICC defines several types of
profiles, including input, output, and display profiles. Each of these types
specifies a different required set of information, but all follow the same format.
ColorSync Manager Overview 49
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
The founding members of the ICC include Adobe Systems Inc.; Agfa-Gevaert
N.V.; Apple Computer, Inc.; Eastman Kodak Company; FOGRA (Honorary);
Microsoft Corporation; Silicon Graphics, Inc.; and Sun Microsystems, Inc. These
companies have committed to full support of this specification in their
operating systems, platforms, and applications.

To obtain a copy of the International Color Consortium Profile Format Specification,
or to get other information about the ICC, visit the ICC Web site at <http://
www.color.org/>.

ColorSync and ICC Profile Format Version Numbers 2

The first version of ColorSync used a 1.0 profile format that preceded the ICC
profile format definition. Starting with version 2.0 of the ColorSync Manager,
ColorSync uses a 2.x profile format that supports all current ICC profile format
versions. As of this writing, that includes ICC versions 2.0 and 2.1. The ICC
defines the profile format version as part of the profile header. For more
information on the differences between these profile format versions, see
“ColorSync 1.0 Profiles and Version 2.x Profiles” (page 531).

Source and Destination Profiles 2

When a ColorSync-supportive scanning application creates a scanned image, it
embeds a profile for the scanner in the image. The profile that is associated with
the image and describes the characteristics of the device on which the image
was created is called the source profile. If the colors in the image are
subsequently converted to another color space by the scanning application or
by another ColorSync-supportive application, ColorSync can use that source
profile to identify the original colors and to match them to colors expressed in
the new color space.

Displaying the image requires using another profile, which is associated with
the output device, such as a display. The profile for that device is called the
destination profile. If the image is destined for a display, ColorSync can use the
display’s profile (the destination profile) along with the image’s source profile
to match the image’s colors to the display’s gamut. If the image is printed,
ColorSync can use the printer’s profile to match the image’s colors to the
printer, including generating black and removing excessive color densities
(known as undercolor removal, or UCR) where appropriate.
50 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Profile Classes 2

The ColorSync Manager supports seven classes, or types, of profiles. These
classes are defined below. Three of the profile classes define device profiles for
different types of devices: input, output, and display devices. The other four
profile classes include definitions for an abstract profile, a color space profile, a
named color space profile, and a device link profile. The constants used to
specify these classes are described in “Profile Class” (page 396).

A device profile characterizes a particular device: that is, it describes the
characteristics of a color space for a physical device in a particular state. A
display, for example, might have a single profile, or it might have several, based
on differences in gamma value and white point. A printer might have a
different profile for each paper type or ink type it uses because each paper type
and ink type constitutes a different printer state. When an application calls a
ColorSync Manager color-matching function to match colors between devices,
such as a display and a printer, it specifies the profile for each device.

Device profiles are divided into three broad classifications:

■ input devices, such as scanners and digital cameras

■ display devices, such as monitors and flat-panel screens

■ output devices, such as printers, film recorders, and printing presses.

Each device profile class has its own signature. The ColorSync constants for
these signatures are described in “Profile Class” (page 396). For related
information, see “Devices and Their Profiles” (page 196).

A profile connection space (PCS) is a device-independent color space used as
an intermediate when converting from one device-dependent color space to
another. Profile connection spaces are typically based on spaces derived from
the CIE color space, which is described in “Device-Independent Color Spaces”
(page 34). ColorSync supports two of these spaces, XYZ and L*a*b.

A color space profile contains the data necessary to convert color values
between a PCS and a non-device color space (such as L*a*b to or from L*u*v, or
XYZ to or from Yxy), for color matching. The ColorSync Manager uses color
space profiles when mapping colors between different color spaces. Color space
profiles also provide a convenient means for CMMs to convert between
different non-device profiles.

L*a*b, L*u*v, XYZ, and Yxy color spaces are described in “Color Spaces”
(page 28).
ColorSync Manager Overview 51
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Abstract profiles allow applications to perform special color effects
independent of the devices on which the effects are rendered. For example, an
application may choose to implement an abstract profile that increases yellow
hue on all devices. Abstract profiles allow users of the application to make
subjective color changes to images or graphics objects.

A device link profile represents a one-way link or connection between devices.
It can be created from a set of multiple profiles, such as various device profiles
associated with the creation and editing of an image. It does not represent any
device model, nor can it be embedded into images.

For more information on device link profiles, see CWNewLinkProfile (page 267)
and CMConcatProfileSet (page 384).

IMPORTANT

The CMConcatProfileSet structure used to create a device
link profile includes a field that identifies the one CMM to
use for the entire color-matching session across all profiles.
However, you should read “How the ColorSync Manager
Selects a CMM” (page 84), for a full description of the
algorithm ColorSync uses to choose a CMM. ▲

A named color space profile contains data for a list of named colors. The profile
specifies a device color value and the corresponding CIE value for each color in
the list. Profiles are typically stored as individual files in the ColorSync Profiles
folder. For example, device-specific profiles provided by hardware vendors
should be stored in the ColorSync Profiles folder. The location and use of the
ColorSync Profiles folder has changed beginning in version 2.5. For a
description of these changes, see “Profile Search Locations” (page 55).

Profiles can also be embedded within images. For example, profiles can be
embedded in PICT, EPS, and TIFF files and in the private file formats used by
applications. Embedded profiles allow for the automatic interpretation of color
information as the color image is transferred from one device to another.

Note
The ICC profile format implemented in a ColorSync
version 2.x profile is significantly different from the
ColorSync 1.0 profile implementation. For more
information, see “ColorSync and ICC Profile Format
Version Numbers” (page 50). ◆
52 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Embedding a profile in an image guarantees that the image can be rendered
correctly on a different system. However, profiles can be large—the largest can
be several hundred KB or even larger. A profile identifier is an abbreviated data
structure that uniquely identifies, and possibly modifies, a profile in memory or
on disk, but takes up much less space than a large profile. For example, an
application might embed a profile identifier to change just the rendering intent
in an image without having to embed an entire new profile. Rendering intents
are described in “Rendering Intents” (page 60). For more information on
embedding profile information, see “Embedding Profiles and Profile
Identifiers” (page 112).

IMPORTANT

A document containing an embedded profile identifier (as
opposed to an embedded profile) is not necessarily
portable to different systems or platforms. ▲

Profile Properties 2

Profiles can contain different kinds of information. For example, a scanner
profile and a printer profile have different sets of minimum required tags and
element data. However, all profiles have at least a header followed by a
required element tag table. The required tags may represent lookup tables, for
example. The required tags for various profile classes are described in the
International Color Consortium Profile Format Specification.

Profiles contain additional information, such as a specification for how to apply
matching. For more information, see “Color Management Modules” (page 58).
Profiles may also have a series of optional and private tagged elements. These
private tagged elements may contain custom information used by particular
color management modules.

Profile Location 2

In most cases, a ColorSync version 2.x profile is stored in a disk file. However,
to support special requirements, a profile can also be located in memory or in
an arbitrary location that is accessed by a procedure you specify. See “Profile
Location” (page 360) for a description of ColorSync Manager structures for
working with profiles that are stored in each of these locations. See “Opening a
Profile and Obtaining a Reference to It” (page 95) for information on working
with profile locations in your application.
ColorSync Manager Overview 53
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Setting Default Profiles 2

Prior to version 2.5, the default system profile (or simply the system profile)
served as the default display profile; it also served as the default profile for
color operations for which no profile was specified. The system profile had to be
an RGB profile. A user could specify the system profile through the ColorSync
control panel (formerly called the “ColorSync™ System Profile” control panel).
If a user did not specify a system profile, then by default ColorSync used the
Apple 13-inch color display profile.

Because the system profile was used for two dissimilar functions (default
display profile and default profile for some RGB operations), there were several
limitations:

■ A user could not specify default profiles for color spaces other than RGB.

■ A user could not specify separate profiles for more than one monitor.

■ When matching an image without an embedded monitor profile, no
matching occurred because the source and destination profiles were the same
(system) profile.

Figure 2-1 The ColorSync control panel
54 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Starting with ColorSync version 2.5, a user can set default profiles for RGB and
CMYK color spaces, as well as for the system profile, using the ColorSync
control panel shown in Figure 2-1. In addition, your application can call
routines to get and set default profiles for the RGB, CMYK, Lab, and XYZ color
spaces. As in previous versions of ColorSync, you can also call routines to get
and set the current system profile.

Also starting with ColorSync version 2.5, a user can specify a separate profile
for each monitor using the Monitors & Sound control panel. In addition, your
application can call routines to get and set the profile for each display.

IMPORTANT

When a user sets a profile for a monitor in the Monitors &
Sound control panel, ColorSync makes that profile the
current system profile. When your application sets a profile
for a monitor, it may also wish to make that profile the
system profile. ▲

Because ColorSync version 2.5 provides capabilities for getting and setting
default profiles for color spaces and for assigning a profile to each monitor, your
application and anyone using it can more precisely specify source and
destination profiles. For example, your application can set the destination
profile for an operation to be the profile for a specific monitor or the source
profile to be the default CMYK profile.

IMPORTANT

Under certain conditions, functions such as
NCMUseProfileComment (page 290) still use the system
profile, so you should set the system profile to an
appropriate value, such as a profile for your main
display. ▲

For information on getting and setting profiles in code, see “Getting and Setting
Default Profiles by Color Space” (page 297). “Monitor Calibration and Profiles”
(page 67), describes how a user can specify a separate profile for each available
monitor.

Profile Search Locations 2

ColorSync uses the ColorSync Profiles folder as a common location for profile
files. When you install ColorSync, for example, it puts a number of default
monitor profiles in the ColorSync Profiles folder. Users should also store custom
ColorSync Manager Overview 55
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
profiles there, and ColorSync functions that search for profiles begin their
search in the profiles folder.

Starting with ColorSync version 2.5, the ColorSync Profiles folder is located in
the System folder; in earlier versions the folder was named “ColorSync™
Profiles” and was located in the Preferences folder. The new location protects
profile files from deletion when the Preferences folder is deleted. More
importantly, placement in the System folder will allow the profiles folder to
become a “magic” folder, providing the following benefits:

■ Starting with version 8.5 of the Mac OS, profiles dragged onto the System
folder are automatically routed to the profiles folder.

■ Starting with version 8.5 of the Mac OS, ColorSync can use the Toolbox
FindFolder routine to find the profiles folder, using the Folder Manager
constant kColorSyncProfilesFolderType.

IMPORTANT

Your application should continue to call ColorSync’s
CMGetColorSyncFolderSpec (page 302) function to obtain the
location of the profiles folder—it should not use a
hard-coded path to a specific folder. ▲

For backward compatibility, ColorSync automatically inserts into the new
profiles folder an alias to the old location (inside the Preferences folder), if that
folder exists and contains any profiles.

Where ColorSync Searches for Profiles 2

Prior to ColorSync 2.5, profile search routines such as CMNewProfileSearch
(page 308) looked for profiles only in the profiles folder (within the Preferences
folder). Starting with version 2.5, the search routines look in the following
locations:

■ in the ColorSync Profiles folder (within the System folder)

■ in first-level subfolders of the ColorSync Profiles folder

■ in locations specified by aliases in the ColorSync Profiles folder (whether the
aliases are to single profiles or to folders containing profiles)

With this searching support, you can group profiles in subfolders within the
profiles folder (one level of subfolders is currently allowed). For example, you
might store all scanner profiles in one folder and a variety of monitor profiles
for your primary monitor in another. You can also store aliases to other profiles
56 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
and profile folders within the ColorSync Profiles folder. ColorSync search
routines will find all profiles in the specified locations.

“The Profile Cache and Optimized Searching” (page 57) describes how your
application can perform optimized profile searching with ColorSync 2.5.

Where ColorSync Does Not Look for Profiles 2

Because profile searching in ColorSync 2.5 can only go two levels deep,
ColorSync search routines will not find a profile in the following cases:

■ The profile is located in a folder that is within a folder in the profiles folder
(requires more than two levels of searching).

■ The profile is located in a folder that is within a folder specified by an alias in
the profiles folder (again, requires more than two levels of searching).

■ The profile is in a folder whose name starts with a parenthesis.

■ The profile is specified by an alias to an unmounted volume (only mounted
volumes are searched).

Temporarily Hiding a Profile Folder 2

To temporarily hide a folder from ColorSync’s search path, put parentheses
around the name of the folder or the alias to the folder.

The Profile Cache and Optimized Searching 2

Starting with version 2.5, ColorSync creates a cache file (containing private
data) in the Preferences folder to keep track of all currently-installed profiles.
The cache stores key information about each profile, using a smart algorithm
that avoids rebuilding the cache unless the profile folder has changed.

ColorSync takes advantage of the profile cache to speed up profile searching.
This optimized searching can help your application speed up some operations,
such as displaying a pop-up menu of available profiles.

ColorSync’s intelligent cache scheme provides the following advantages in
profile management:

■ The cache contains information including the name, header, script code, and
location for each installed profile, so that once the cache has been built,
ColorSync Manager Overview 57
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
ColorSync can supply the information your application needs for many tasks
without having to reopen any profiles.

■ When you call a search routine, ColorSync can quickly determine if there has
been any change to the currently-installed profiles. If not, ColorSync can
supply information from the cache immediately, giving the user a pleasing
performance experience.

ColorSync 2.5 provides a flexible new routine, CMIterateColorSyncFolder
(page 304), that takes full advantage of the profile cache to provide truly
optimized searching and quick access to profile information. For an example of
how to use this routine in your application, see “Performing Optimized Profile
Searching” (page 130).

IMPORTANT

Your application should use the CMIterateColorSyncFolder
(page 304) function, or one of the other ColorSync search
functions described in “Profile Searching” (page 303), to
search for a profile, even if you are only looking for one file.
Do not search for a profile by obtaining the location of the
profiles folder and searching for the file directly. ▲

Note that calls to the ColorSync search routines available before version 2.5
cannot take full advantage of the profile cache. For example, with the
CMNewProfileSearch (page 308) routine, the caller passes in a search criteria and
gets back a list of profiles that match that criteria. Before version 2.5, ColorSync
had to open each profile to build the list, and the caller was likely to open each
profile again after getting the list back. With version 2.5, ColorSync can at least
use the profile cache to narrow down the list (unless the search criteria asks for
all profiles!), but it cannot fully optimize the search process.

Color Management Modules 2

A color management module (CMM) is a component that implements
color-matching, color conversion, and gamut-checking services. A CMM uses
profiles to convert and match a color in a given color space on a given device to
or from another color space or device.

Each profile header includes a field that specifies a CMM to use for performing
color matching involving that profile. If two profiles in a color-matching session
specify different CMMs, or if a specified CMM is unavailable or unable to
perform a requested function, the ColorSync Manager follows an algorithm,
58 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
described in “How the ColorSync Manager Selects a CMM” (page 84), to
determine which CMM to use.

ColorSync ships with a robust CMM that is installed as part of the ColorSync
extension. This CMM supports all the required and optional functions defined
by the ColorSync Manager, so it can always be used as a default CMM when
another CMM is unavailable or unable to perform an operation.

The ColorSync Manager includes color conversion functions that allow your
application or driver to convert colors between color spaces belonging to the
same base families without the use of CMMs; CMMs themselves can also call
these color conversion functions. However, color conversion and color
matching across color spaces belonging to different base families always entail
the use of a CMM.

When colors from one device’s gamut are displayed on a device with a different
gamut, as shown in Figure 1-7 (page 41), ColorSync can minimize the perceived
differences in the displayed colors between the two devices by mapping the
out-of-gamut colors into the range of colors that can by produced by the
destination device.

A CMM uses lookup tables and algorithms for color matching, previewing
color reproduction capabilities of one device on another, and checking for
out-of-gamut colors (colors that cannot be reproduced). Although ColorSync
provides a default CMM, device manufacturers and peripheral developers can
create their own CMMs, tailored to the specific requirements of their device. For
information on creating CMMs, see “Developing Color Management Modules”
(page 429) and “ColorSync Reference for Color Management Modules”
(page 467). ColorSync also provides the Kodak CMM as a “custom install”
feature, for users who wish to work with that CMM.

Setting a Preferred CMM 2

Starting with version 2.5, the ColorSync control panel, shown in Figure 2-1
(page 54), lets you choose a preferred CMM from any CMMs that are present
(that is, registered with the Component Manager—see “Creating a Component
Resource for a CMM” (page 432) for a description of how to create a CMM the
ColorSync Manager can use).

If you choose a preferred CMM with the ColorSync control panel, and if that
CMM is available, ColorSync will attempt to use that CMM for all color
conversion and matching operations. If you specify “Automatic” instead, or if
the specified CMM is no longer present or cannot provide the required
ColorSync Manager Overview 59
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
matching service, or for versions prior to version 2.5, ColorSync follows an
algorithm described in “How the ColorSync Manager Selects a CMM” (page 84)
to determine which available CMM to use for matching.

Note that if you want color conversion and matching operations to use the
same CMM-selection algorithm they did in versions prior to ColorSync 2.5,
specify “Automatic” in the ColorSync control panel. ◆

Starting with ColorSync 2.5, your application can determine the preferred CMM
by calling the function CMGetPreferredCMM (page 292).

Rendering Intents 2

Rendering intent refers to the approach taken when a CMM maps or translates
the colors of an image to the color gamut of a destination device—that is, a
rendering intent specifies a gamut-matching strategy. The ICC specification
defines a profile tag for each of four rendering intents: perceptual matching,
relative colorimetric matching, saturation matching, and absolute
colorimetric matching. These rendering intents are described in Table 2-1.

Table 2-1 ICC rendering intents and typical image content

ICC term Description
Typical
content

perceptual
matching

All the colors of one gamut are scaled to fit within
another gamut. Colors maintain their relative
positions. Usually produces better results than
colorimetric matching for realistic images such as
scanned photographs. The eye can compensate for
gamuts differences, such as in Figure 1-7 (page 41),
and when printed on a CMYK device, the image
may look similar to the original on an RGB device.
A side effect is that most of the colors of the original
space may be altered to fit in the new space.

photographic
60 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
relative
colorimetric
matching

Colors that fall within the overlapping gamuts of
both devices are left unchanged. For example, to
match an image from the RGB gamut onto the
CMYK printer gamut in Figure 1-7, only the colors
in the RGB gamut that fall outside the printer
gamut are altered. Allows some colors in both
images to be exactly the same, which is useful when
colors must match quantitatively. A disadvantage is
that many colors may map to a single color,
resulting in tone compression. All colors outside the
printer gamut, for example, would be converted to
colors at the edge of its gamut, reducing the
number of colors in the image and possibly altering
its appearance. Colors outside the gamut are
usually converted to colors with the same lightness,
but different saturation, at the edge of the gamut.
The final may be lighter or darker overall than the
original image, but the blank areas will coincide.

spot colors

saturation
matching

The relative saturation of colors is maintained as
well as can be achieved from gamut to gamut.
Colors outside the gamut of the “to” space are
usually converted to colors with the same
saturation of the “from” space, but with different
lightness, at the edge of the gamut. Can be useful
for some graphic images, such as bar graphs and
pie charts, when the actual color displayed is less
important than its vividness.

business
graphics

absolute
colorimetric
matching

Preserves native device white point of source image
instead of mapping to D50 relative. Most often
using in simulation or proofing operations where a
device is trying to simulate the behavior of another
device and media. For example, simulating
newsprint on a monitor with absolute colorimetric
intent would allow white space to be displayed
onscreen as yellowish background because of the
differences in white points between the two
devices.

no typical
content
(most often
used in
proofing)

Table 2-1 ICC rendering intents and typical image content (continued)

ICC term Description
Typical
content
ColorSync Manager Overview 61
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Color professionals and technically-sophisticated users are likely to be familiar
with the ICC terms for rendering intent and the gamut-matching strategies they
represent. If your application is aimed at novice users, however, you may prefer
to add a simplified terminology based on the typical image content associated
with a rendering intent (for example, perceptual matching is commonly used
for photographic images). Table 2-1 lists the ICC-specified rendering intents and
the corresponding image content term, where applicable. Note that there is no
simplified terminology for describing absolute colorimetric matching. However,
novice users are not likely to need this rendering intent.

For information about the actual rendering intent tags, you can obtain the latest
ICC profile specification by visiting either the ICC Web site at <http://
www.color.org/> or the ColorSync Web site at <http://colorsync.apple.com/>.

When Color Matching Occurs 2

When the color gamut of a source profile is different from the color gamut of a
destination profile, ColorSync relies on the CMM and the information stored in
both profiles for mapping the colors from the source profile’s gamut to the
destination profile’s gamut. The CMM contains the necessary algorithms and
lookup tables to enable consistent color mapping among devices.

When an application or device driver uses the ColorSync Manager functions for
color matching, it specifies the source and destination profiles. If it does not
specify the source profile or the destination profile for a matching operation,
ColorSync substitutes a default profile. See “Setting Default Profiles” (page 54)
for more information.
62 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Figure 2-2 The ColorSync Manager and the Component Manager

Color matching between the source and destination color spaces happens inside
the color management module (CMM) component. Figure 2-2 shows the
relationship between your application or device driver, the ColorSync Manager,
the Component Manager, and one or more available CMM components.

Your application can call any ColorSync Manager function, whether
QuickDraw-specific or general purpose. One of three things then happens:

■ The ColorSync Manager routine performs the operation directly.

■ The ColorSync Manager communicates with a CMM through the
Component Manager.

■ The ColorSync Manager calls other ColorSync routines that communicate
with a CMM through the Component Manager.

Component Manager

CMM componentCMM component CMM component

ColorSync
Manager

Applications, drivers,
and other software

QuickDraw-specific functions

General purpose functions
ColorSync Manager Overview 63
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
General purpose and QuickDraw-specific functions are described in the
following sections.

General Purpose Color-Matching Functions 2

A general purpose color-matching function is one that uses a color world to
characterize how to perform color-matching. General purpose functions depend
on the information contained in the profiles that you supply when you set up
the color world. You can define a color world for color transformations between
a source profile and a destination profile, or define a color world for color
transformations between a series of concatenated profiles.

“Creating a Color World to Use With the General Purpose Functions”
(page 105) provides a code sample for working with general purpose functions.
“Matching Colors Using General Purpose Functions” (page 261) lists the
general purpose functions and provides a description of each function.

In contrast to the general purpose color-matching functions, the
“QuickDraw-Specific Color-Matching Functions” (page 64) are tailored for
color-matching with QuickDraw. Note, however, that you can also use the
general purpose functions when working with QuickDraw—for example, if you
need the greater level of control the general purpose functions provide.

QuickDraw-Specific Color-Matching Functions 2

A QuickDraw-specific color-matching function is one that uses QuickDraw to
provide images showing consistent colors across displays. The ColorSync
Manager provides two QuickDraw-specific functions that your application can
call to draw a color picture to the current display:

■ NCMBeginMatching (page 285) uses the source and destination profiles you
specify to match the colors of the source image to the colors of the device for
which it is destined.

■ NCMDrawMatchedPicture (page 288) matches a QuickDraw picture’s colors to a
destination device’s color gamut as the picture is drawn, using the specified
destination profile. Uses the system profile as the initial source profile but
switches to any embedded profiles as they are encountered.

“Matching to Displays Using QuickDraw-Specific Operations” (page 101)
provides a code sample for working with QuickDraw-specific functions.
“Matching Colors Using QuickDraw-Specific Functions” (page 284) lists the
QuickDraw-specific functions and provides a description of each function. Note
64 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
that the QuickDraw-specific functions call upon the general purpose functions
to perform their operations, as shown in Figure 2-2 (page 63).

Converting Between Color Spaces 2

Color conversion, which does not require the use of color profiles, is a much
simpler process than color matching. The ColorSync Manager provides
functions your application can call to convert a list of colors within the same
base family—that is, between a base color space and any of its derived color
spaces or between two derivatives of the same base family.

You can convert a list of colors between XYZ and any of its derived color
spaces, which include L*a*b*, L*u*v*, and Yxy, or between any two of the
derived color spaces. You can also convert colors defined in the XYZ color space
between CMXYZColor data types in which the color components are expressed as
16-bit unsigned values and CMFixedXYZColor data types in which the colors are
expressed as 32-bit signed values.

You can convert a list of colors between RGB, which is the base-additive
device-dependent color space, and any of its derived color spaces, such as HLS,
HSV, and Gray, or between any two of the derived color spaces.

Note
The color conversion functions do not support conversion
of HiFi colors. ◆

Here are brief descriptions of the XYZ color space and its derivative color
spaces:

■ The XYZ space, referred to as the interchange color space, is the
fundamental, or base CIE-based independent color space.

■ The L*a*b* color space is a CIE-based independent color space used for
representing subtractive systems, where light is absorbed by colorants such
as inks and dyes. The L*a*b* color space is derived from the XYZ color space.
The default white point for the L*a*b* interchange space is the D50 white
point.

■ The L*u*v* color space is a CIE-based color space used for representing
additive color systems, including color lights and emissive phosphor
displays. The L*u*v* color space is derived from the XYZ color space.

■ The Yxy color space expresses the XYZ values in terms of x and y
chromaticity coordinates, somewhat analogous to the hue and saturation
ColorSync Manager Overview 65
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
coordinates of HSV space. This allows color variation in Yxy space to be
plotted on a two-dimensional diagram.

■ The XYZ color space includes two XYZ data type formats. The
CMFixedXYZColor data type uses the Fixed data type for each of the three
components. Fixed is a signed 32-bit value. The CMFixedXYZColor data type is
also used in the ColorSync Manager 2.x profile header CM2Header
(page 354).The CMXYZColor data type uses 16-bit values for each component.

Here are brief descriptions of the RGB color space and its derivative color
spaces:

■ The RGB color space is a three-dimensional color space whose components
are the red, green, and blue intensities that make up a given color.

■ The HLS and HSV color spaces belong to the family of RGB-based color
spaces, which are directly supported by most color displays and scanners.

■ Gray spaces typically have a single component, ranging from black to white.
The Gray color space is used for black-and-white and grayscale display and
printing.

To convert colors from one color space to one of its derived spaces, you don’t
need to specify source and destination profiles. Instead, you just call the
appropriate ColorSync Manager function to convert between the desired color
spaces. In cases where you’re converting between XYZ and Lab or Luv spaces, a
“white reference” is required to perform the conversion. This reference is
expressed in the XYZ color space, and provides a way to specify the theoretical
illuminant (for example, D65) under which the colors are viewed.
66 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Note
Prior to version 2.1, the ColorSync Manager used a
component to implement color conversion. An application
had to open a connection to the component with the
Component Manager, then pass the component instance as
a parameter to the color conversion functions. For example,
the CMXYZToLab function performs the same conversion as
CMConvertXYZToLab, but takes a first parameter of

ComponentInstance ci

For backward compatibility, component-based color
conversion functions such as CMXYZToLab are still supported.
However, their use is discouraged, and they are not
guaranteed to work in future versions (nor are they
documented here). ◆

Monitor Calibration and Profiles 2

Since ColorSync was first introduced, a common question from end users has
been “Where is the ColorSync profile for my monitor?” The answer is that
because some monitor manufacturers do not supply ColorSync profiles for their
products, purchasers of third-party monitors may not have access to a profile
that is specific to their monitor. As a result, they are unable to use ColorSync
effectively.

Even when a user has a factory-supplied profile, switching to a different
monitor setup can reduce the profile’s accuracy. For example, if the user
changes the monitor’s gamma value and white point, the original profile is no
longer useful. The user needs to run a calibration application (if one is
available) to generate a new ColorSync profile for the new monitor settings.
ColorSync Manager Overview 67
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Figure 2-3 Monitors & Sound Control Panel for ColorSync 2.5

Starting with version 2.5, ColorSync uses the Monitors & Sound control panel to
provide a monitor calibration framework to help users obtain the monitor
profiles they need. Figure 2-3 (page 68) shows the new Monitors & Sound
control panel. Note that the list of gamma values (Mac Standard Gamma,
uncorrected gamma) has been removed because that function is now part of the
calibration process.

Note
If you develop a utility that adjusts gamma or modifies
other calibration values, you should modify your software
so that it uses the monitor calibration framework to gain
system-level support. u
68 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Setting a Profile for Each Monitor 2

Because Monitors & Sound displays a panel for each available monitor, a user
can also select, for each monitor, a separate profile from the list of available
profiles. When a user sets a profile for a monitor in the Monitors & Sound
control panel, ColorSync makes that profile the current system profile, as
described in “Setting Default Profiles” (page 54). When your application sets a
profile for a monitor, it may also wish to make that profile the system profile. If
so, it must set the system profile explicitly by calling CMSetSystemProfile
(page 295). For information on how to set monitor profiles in your code, see
“Getting and Setting Monitor Profiles by AVID” (page 299).

Calibration 2

Calibration and characterization are related terms, but with important
differences. Calibration is the process of setting a device’s parameters
according to its factory standards. This is also known as linearizing or
linearization. Characterization is the process of learning the color character of a
monitor so that a profile can be created to describe it. Unlike input and output
devices, whose calibration and characterization steps are not the same, a
monitor is calibrated and characterized in one step.

The Calibrate button on the Monitors & Sound control panel provides the
launching point for monitor calibration. A user can calibrate each monitor and
create one or more color profiles for each, based on variations in gamma, white
point, and so on. For related information on profiles, see “Profiles” (page 49)
and “Devices and Their Profiles” (page 196).

AppleVision and Apple ColorSync monitors are self-calibrating, so you will not
see a Calibrate button for these monitors, unless there is a third-party calibrator
installed in your Extensions folder.

Calibrating a monitor can be a challenging task for a naive user, but Apple
Computer supplies a default calibrator that leads the user through a series of
calibration steps. Using the default calibrator, even a novice should have a
reasonable chance for success.

Note
There are limits to the effectiveness of monitor calibration
by users. For example, some monitors, due to age or
condition, cannot be calibrated, and a small percentage of
the user population is color-blind. ◆
ColorSync Manager Overview 69
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
The calibration framework uses a plug-in architecture that is fully accessible to
third-party calibration plug-ins. When a user clicks on the Calibrate button, the
Monitors & Sound control panel provides a list of all available calibrator
plug-ins. To appear in the list, a plug-in must meet the following criteria:

■ It must be stored in the Extensions folder.

■ It must be a shared library (file type 'shlb').

■ Its shared library must export the symbols CanCalibrate and Calibrate.

■ It should have a unique creator type (registered with Apple).

■ The name of the library’s code fragment (specified in the 'cfrg' resource)
must be unique (among all currently loaded shared libraries) and begin with
'Cali'. For example, you might want to name the library by appending your
creator type to 'Cali'.

You can find source code for sample monitor calibration plug-ins in the
ColorSync 2.5.1 SDK. If you plan to create a monitor calibration plug-in, you
should read the next section “Video Card Gamma” (page 70).

Video Card Gamma 2

Starting with version 2.5, ColorSync supports an optional profile tag for video
card gamma, which you specify with the cmVideoCardGammaTag constant. The tag
specifies gamma information, stored either as a formula or in table format, to be
loaded into the video card when the profile containing the tag is put into use.
When you call the function CMSetProfileByAVID (page 300) and specify a profile
that contains a video card gamma tag, ColorSync will extract the tag from the
profile and set the video card based on the tag.

IMPORTANT

The function CMSetSystemProfile (page 295) does not
retrieve video card gamma data to set the video card. Only
the CMSetProfileByAVID function currently sets video card
gamma data. ▲

If you provide monitor calibration software, you should include the video card
gamma tag in the profiles you create. For information on the constants and data
types you use to work with video card gamma, see “Video Card Gamma
Constants” (page 421) and “Video Card Gamma” (page 386). You can get more
information about AVID values from the Display Manager SDK.
70 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Scripting Support 2

Starting with version 2.5, the ColorSync Manager provides AppleScript support
that allows users to script many common color-matching tasks. To provide this
support, ColorSync now runs as a faceless background application (one with no
user interface), rather than as a standard extension. By running as a background
application, ColorSync can avoid namespace collisions and time-outs during
long operations, and it can have its own AppleScript dictionary.

Note
You can examine ColorSync’s full AppleScript dictionary
by dragging the file “ColorSync Extension” from your
Extensions folder onto the Script Editor application
(usually located in the AppleScript folder within the Apple
Extras folder). ◆

Scriptable Properties 2

ColorSync provides scriptable support for getting and setting the following
properties:

■ system profile (the default system profile)

■ default profiles for RGB, CMYK, Lab, and XYZ color spaces

■ quit delay (the time in seconds for auto-quit, where 0 = never)

■ profile location (a file specification)

For the following, you can only get, not set, the property:

■ profile folder (the ColorSync profile folder)

Location is the only property currently supported for profiles, but future
support is planned for additional profile properties.

Scriptable Operations 2

ColorSync supports the following scriptable operations:

■ Matching an image.

■ Matching an image with a device link profile.

■ Proofing an image or a series of images.
ColorSync Manager Overview 71
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
■ Embedding a profile in an image (very helpful for converting archives of
legacy film).

Scriptable image operations currently work only on TIFF files, but support for
other formats is planned.

Extending the Scripting Framework 2

The scripting framework uses a plug-in architecture that is fully accessible to
third-party scripting plug-ins. When a user invokes a script to perform a
ColorSync operation on an image, ColorSync (operating as a faceless
background application) automatically builds a list of all available scripting
plug-ins. It then attempts to call each of the plug-ins in the list until one of them
successfully executes the desired operation. To appear in the list, a plug-in must
meet the following criteria:

■ It must be stored in the Extensions folder.

■ It must be a shared library (file type 'shlb').

■ It should have a unique creator type (registered with Apple).

■ The name of the library’s code fragment (specified in the 'cfrg' resource)
must be unique (among all currently loaded shared libraries) and begin with
'CSSP'. For example, you might want to name the library by appending your
creator type to 'CSSP'.

Sample Scripts 2

The ColorSync SDK includes several sample scripts that demonstrate how to
perform common operations. You can use the scripts as is, or borrow from them
for your own custom scripts. For more information, see the detailed Read Me
files that accompany the sample scripts.
72 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Multiprocessor Support 2

Starting with version 2.5, ColorSync’s default CMM can take advantage of
multiple processors. Multiprocessor support is transparent to your code—the
CMM invokes it automatically if the required conditions are met.

When ColorSync Uses Multiple Processors 2

The default CMM takes advantage of multiprocessor support only if the
following conditions are satisfied:

1. The MPLibrary was successfully loaded at boot time.

2. The CMM successfully links against the MPLibrary at runtime.

3. The number of processors available is greater than one.

4. The number of rows in the image is greater than the number of processors.

5. The source and destination buffers have the same number of bytes per row
or have different locations in memory.

Unless all of these conditions are met, matching will proceed without
acceleration. Multiprocessor support is currently supplied only for the
following component request codes:

■ kCMMMatchBitMap

■ kCMMMatchPixMap

As a result, the default CMM invokes multiprocessor support only in response
to the general purpose CWMatchPixMap (page 272) and CWMatchBitmap (page 276)
functions, or when those calls are invoked as a result of a call to the
QuickDraw-specific matching routines, such as NCMBeginMatching (page 285).

Efficiency of ColorSync’s Multiprocessor Support 2

Depending on the image and other factors, ColorSync’s matching algorithms
take advantage of multiple processors with up to 95% efficiency (your mileage
may vary). If you have two processors, for example, ColorSync can complete a
matching operation in as little 53% of the time required by one processor.
Additional processors should provide proportional improvement.
ColorSync Manager Overview 73
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
QuickDraw GX and the ColorSync Manager 2

Unless your application uses QuickDraw GX to create and render images, your
application must call ColorSync functions, such as NCMBeginMatching and
NCMDrawMatchedPicture, to match colors between devices.

However, if your application uses QuickDraw GX and your application sets the
view port attribute gxEnableMatchPort, the ColorSync Manager automatically
matches colors when your application draws to the screen.

QuickDraw GX color profile objects contain ColorSync profiles, and each profile
specifies the kind of matching to perform with it. For more information about
QuickDraw GX color architecture, see the chapter “Colors and Color-Related
Objects” in Inside Macintosh: QuickDraw GX Objects.

QuickDraw GX version 1.1.2 or earlier uses ColorSync 1.0. However, because
the ColorSync Manager provides robust backward compatibility, including
continued support of the ColorSync 1.0 API, you can use the ColorSync
Manager with QuickDraw GX. For more information about the ColorSync
Manager’s backward compatibility, see “Version and Compatibility
Information” (page 525).

IMPORTANT

For information on changes to the printing and graphics
architecture in the Mac OS that affect QuickDraw GX, see
the technote <http://gemma.apple.com/technotes/
gxchange.html>.

How the ColorSync Manager Uses Memory 2

The ColorSync Manager attempts to allocate the memory it requires from the
following sources in this order:

■ The current heap zone. If the current heap zone is set to the application heap,
the ColorSync Manager will attempt to allocate the memory it requires from
the application heap.

■ The system heap. If the current heap zone is set to the system heap, the
ColorSync Manager will try the system heap first and never attempt to
allocate memory from the application heap.

■ The Process Manager temporary heap. (If this final source does not satisfy
the ColorSync’s Manager’s memory requirements, any attempt to load the
ColorSync Manager will fail.)
74 ColorSync Manager Overview

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
By default, the current heap zone is set to the application heap. When the
ColorSync Manager is used apart from QuickDraw GX, this scenario commonly
prevails, making application heap memory available to the ColorSync Manager.

However, QuickDraw GX holds a covenant with applications committing not to
allocate memory from the application heap. QuickDraw GX sets the current
heap zone to the system heap. Consequently, when the ColorSync Manager is
used by QuickDraw GX, the ColorSync Manager is prohibited from allocating
memory it requires from the application heap and must allocate all the memory
it requires from the system heap and the Process Manager temporary heap.

What Users Can Do With ColorSync-Supportive
Applications 2

ColorSync allows your application or driver to maintain consistent color across
devices and across platforms. You can also let users perform quick and
inexpensive color proofing and see in advance which colors cannot be printed
on their printers. This section provides an overview of these and other color
management features you can provide. See “Developing ColorSync-Supportive
Applications” (page 81) and “Developing ColorSync-Supportive Device
Drivers” (page 195) for information on how to implement specific features.

Display Matching 2

When your application displays an image that contains one or more embedded
profiles, it can use ColorSync to make sure the user experiences consistent color
from one display to another. If a color cannot be reproduced exactly on a
particular destination device, the ColorSync Manager can map the color to a
similar color that is in the color gamut of the device.

Your application or driver can allow a user to embed or tag color-matching
information and it should be able to use the ColorSync Manager to display a
tagged picture. Most importantly, your application or driver must preserve
picture comments in documents and allow the information to be passed on to
the destination device.
What Users Can Do With ColorSync-Supportive Applications 75
11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
Gamut Checking 2

Because not all colors can be rendered on all devices, you may want your
application to warn users when a color they choose is out of gamut for the
currently selected destination device. For example, you can use gamut checking
to see if a given color is reproducible on a particular printer. If the color is not
directly reproducible—that is, if it is out of gamut—you can alert the user to
that fact. The ColorSync Manager provides the CWCheckPixMap and
CWCheckColors functions for checking a color against a device’s profile to see if it
is in or out of gamut for the device. Your application can then display the
results of this check to the user.

Soft Proofing 2

Using the destination device’s profile, your application can enable users to
preview on a monitor what a color image will look like on a particular device.
Further, it enables remote proofing between client and prepress service. This
simulation of a device’s output can save the user considerable time and cost.

Device Link Profiles 2

Most users use the same device configuration for scanning, viewing, and
printing over a period of time. Your application can allow users to create a
device link profile. A device link profile is a means of storing in a single profile a
series of linked profiles that correspond to a specific configuration in the order
in which the devices in that configuration are normally used. A device link
profile represents a one-way link or connection between devices. It does not
represent any device model, nor can it be embedded into images.

Calibration 2

Your application can provide calibration services. A calibration application
offers the option of calibrating a peripheral device based on a standard state or
calibrating the device based on its current state.

If a peripheral device, such as a color printer, has drifted from its original state
over time, a calibration application can make use of the characterization data
contained in the corresponding profile to bring the color response back into
range.
76 What Users Can Do With ColorSync-Supportive Applications

11/20/98  Apple Computer, Inc.

C H A P T E R 2

Introduction to ColorSync
A user may want to improve the reproduction quality of a device without
returning the device to a standard state. Your application can create a profile
based on the current state of the device, then use the profile to characterize that
device. This approach to calibration maintains the existing dynamic density
range while improving the device’s overall quality.

Note
You can also provide a monitor calibration plug-in, as
described in “Monitor Calibration and Profiles”
(page 67). ◆
What Users Can Do With ColorSync-Supportive Applications 77
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Developing
ColorSync-Supportive
Applications
About ColorSync Application Development 81
About the ColorSync Manager Programming Interface 82
What Should a ColorSync-Supportive Application Do? 82

At a Minimum 83
Storing and Handling Profiles 83

How the ColorSync Manager Selects a CMM 84
Selecting a CMM by the Arbitration Algorithm 86

Developing Your ColorSync-Supportive Application 91
Determining If the ColorSync Manager Is Available 92
Providing Minimal ColorSync Support 93
Obtaining Profile References 95

Opening a Profile and Obtaining a Reference to It 95
Reference Counts for Profile References 97

Poor Man’s Exception Handling 98
Identifying the Current System Profile 99
Getting the Profile for the Main Display 100
Matching to Displays Using QuickDraw-Specific Operations 101

Matching Colors in a Picture Containing an Embedded Information 102
More on Embedded Information 104
Matching Colors as a User Draws a Picture 105

Creating a Color World to Use With the General Purpose Functions 105
Matching Colors Using the General Purpose Functions 107

Matching the Colors of a Pixel Map to the Display’s Color Gamut 108
Matching the Colors of a Bitmap Image to the Display’s Color
Gamut 109

Embedding Profiles and Profile Identifiers 112
Embedded Profile Format 113
79

C H A P T E R 3
Embedding Different Profile Versions 114
The NCMUseProfileComment Function 115

Extracting Profiles Embedded in Pictures 118
Counting the Profiles in the PICT File 120
Extracting a Profile 122

Performing Optimized Profile Searching 130
An Iteration Function for Profile Searching With ColorSync 2.5 131
A Filter Function for Profile Searching Prior to ColorSync 2.5 132
A Compatible Function for Optimized Profile Searching 134

Searching for Specific Profiles Prior to ColorSync 2.5 136
Searching for a Profile That Matches a Profile Identifier 139
Checking Colors Against a Destination Device’s Gamut 142
Creating and Using Device Link Profiles 143

Considerations 146
Providing Soft Proofs 147
Calibrating a Device 149
Accessing a Resource-Based Profile With a Procedure 149

Defining a Data Structure for a Resource-Based Profile 150
Setting Up a Location Structure for Procedure Access to a Resource-Based
Profile 151
Disposing of a Resource-Based Profile Access Structure 153
Responding to a Procedure-Based Profile Command 153
Handling the Begin Access Command 156
Handling the Create New Access Command 157
Handling the Open Read Access Command 158
Handling the Open Write Access Command 159
Handling the Read Access Command 162
Handling the Write Access Command 163
Handling the Close Access Command 164
Handling the Abort Write Access Command 165
Handling the End Access Command 166

Summary of the ColorSync Manager 167
Functions 167
Data Structures 178
Constants 186
80 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 3
Developing ColorSync-Supportive Applications 3

This section describes how your application can use the ColorSync Manager to
provide many color management services. For a complete list, see “Developing
Your ColorSync-Supportive Application” (page 91).

Before you read this section, you should read “Introduction to Color and Color
Management Systems” (page 25) and “Introduction to ColorSync” (page 45).
These sections provide an overview of color theory and color management
systems (CMSs), define key terms, and describe the ColorSync Manager.

If you are developing a device driver that supports ColorSync, you should read
this section in addition to “Developing ColorSync-Supportive Device Drivers”
(page 195).

If your application works with images created by other applications, you
should at least read “Providing Minimal ColorSync Support” (page 93), which
explains how to preserve profiles embedded in images.

While reading this section, refer to “ColorSync Reference for Applications and
Drivers” (page 217) for more information about the functions, constants, and
data types used here.

“ColorSync Version Information” (page 525) describes the Gestalt information,
shared library version numbers, CMM version numbers, and ColorSync header
files you use with different versions of the ColorSync Manager. It also includes
CPU and Mac OS system requirements.

The book Inside Macintosh: Imaging With QuickDraw describes how your
application can use QuickDraw to create and display Macintosh graphics, and
how to use the Printing Manager to print the images created with QuickDraw.

“What’s New” (page 539) explains where to get information on the Color Picker
Manager, which provides your application with a standard dialog box for
soliciting a color choice from users.

You should read “Important Note on Code Listings” (page 22) before working
with the code in this chapter.

About ColorSync Application Development 3

ColorSync provides your application with color-matching capabilities that users
can employ without the need for a proprietary environment. ColorSync
provides the first system-level implementation of an industry-standard
About ColorSync Application Development 81
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
color-matching system. Because ColorSync supports the profile format defined
by the International Color Consortium (ICC), a color image a user creates can be
color matched, rendered, and modified by another user running another
application on another platform that supports the format. Conversely, your
application can modify and color match images created by other applications
that support ColorSync or a CMS that includes support for the ICC profile
format. For information on profile format version numbers, see “ColorSync and
ICC Profile Format Version Numbers” (page 50).

“ColorSync Version Information” (page 525) describes the Gestalt information,
shared library version numbers, CMM version numbers, and ColorSync header
files you use with different versions of the ColorSync Manager. It also describes
CPU and Mac OS system requirements.

About the ColorSync Manager Programming Interface 3

The ColorSync Manager programming interface allows your application to
handle tasks such as color matching, color conversion, profile management,
profile searching and accessing, reading individual tagged elements within a
profile, embedding profiles in documents, and modifying profiles.

The ColorSync API is summarized in “Summary of the ColorSync Manager”
(page 167). You can find detailed information about individual functions, data
types, and constants in “ColorSync Reference for Applications and Drivers”
(page 217). The ColorSync Manager includes a number of interface files you
may need for your development efforts. These files are described in “ColorSync
Header Files” (page 528).

What Should a ColorSync-Supportive Application Do? 3

Your ColorSync-supportive application can provide a rich set of color-matching
features. Your application can color match images, pixel maps, bitmaps, and
even individual colors. In addition to color matching, you can handle such tasks
as color conversion, color gamut checking, soft proofing of images, profile
management, profile searching and accessing, reading individual tagged
elements within a profile, embedding profiles and profile identifiers in
documents, extracting embedded profiles and profile identifiers, and modifying
profiles and profile identifiers.

Your application can provide an interface that offers pop-up menus or other
user interface items allowing a user to choose which profile to associate with an
image and how an image is rendered. It can show the user the colors of an
82 About ColorSync Application Development

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
image that are in or out of gamut for a particular device on which the image is
to be produced and how ColorSync adjusts for colors that are out of gamut.
This allows the user to preview differences that occur in the color-matching
transition between gamuts and make corrections if necessary.

Most of the terms and operations mentioned in this section are defined in
“Introduction to Color and Color Management Systems” (page 25) and
“Introduction to ColorSync” (page 45); see also “Glossary” (page 553).

At a Minimum 3

ColorSync allows your application to preserve high fidelity to the original
colors of an image—whether the image was created using your application or
another—by supporting the use of embedded profiles. Your application can
take advantage of a profile embedded along with an image, matching the
original colors of the device used to create the image to those of the destination
display or printer. Even if your application doesn’t support some of the more
advanced features that ColorSync affords, such as soft proofing, you should
color match images using the source profile, if one is identified and available.

At a minimum, your application should preserve images tagged with a profile
by not stripping out picture comments used to embed profiles or by leaving
profiles in documents that use other methods to include them.

It is important for your application to tag an image with the profile for the
device used to create the image and to preserve existing tagging because a
picture that is not tagged assumes use of a default profile as described in
“Setting Default Profiles” (page 54). If the picture is moved to a different system
that uses a different default profile, the picture will display differently.
“Providing Minimal ColorSync Support” (page 93) explains how to preserve
embedded profiles, and “Embedding Profiles and Profile Identifiers” (page 112)
explains how to tag an image. Some of these features are described in greater
detail in the rest of this material.

Storing and Handling Profiles 3

Profiles for use with the ColorSync Manager are stored in the ColorSync Profiles
folder. The precise location of this folder can vary for different versions of
ColorSync, as described in “Setting Default Profiles” (page 54). When you
install ColorSync, the ColorSync Profiles folder contains a selection of display
profiles for all Apple color monitors, as well as default profiles for standard
color spaces and profiles for several Apple printers.
About ColorSync Application Development 83
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Starting with ColorSync 2.5, a user can select a default profile for certain color
spaces from the ColorSync control panel, as described in “Setting Default
Profiles” (page 54). Also starting with version 2.5, the Monitors & Sound control
panel allows the user to select a separate profile for each monitor, as described
in “Monitor Calibration and Profiles” (page 67).

Your application specifies the profiles for color matching when the application
calls a ColorSync Manager function. For most functions, the ColorSync
Manager uses one of the default profiles if your application doesn’t specify a
profile. Some functions require that you explicitly specify a profile by reference.

Device drivers for ColorSync-supportive input and output devices, such as
scanners and printers, may install the profiles they use in the ColorSync Profiles
folder, making them available to your application for color matching or gamut
checking. If your application creates device link profiles, as described in
“Creating and Using Device Link Profiles” (page 143), you should place those
profiles in the ColorSync Profiles folder.

Your application can provide the interface to allow a user to choose a profile for
a specific device. Using the ColorSync Manager functions described in “Profile
Searching” (page 303), your application can search the ColorSync Profiles folder
and display information about available profiles.

See “Developing Your ColorSync-Supportive Application” (page 91) for a list of
programming examples that demonstrate many of these features. As described
in “Providing Minimal ColorSync Support” (page 93), your application should,
at a minimum, leave profile information intact in the documents and pictures
that it imports or copies into its own documents.

How the ColorSync Manager Selects a CMM 3

When a ColorSync function performs a color matching or color checking
operation, it must determine which CMM to use. You typically pass source and
destination profiles to a function, either directly or as part of a color world—an
abstract private data structure you create by calling either the NCWNewColorWorld
(page 262), the CWConcatColorWorld (page 265), or the CWNewLinkProfile
(page 267) function. When you call one of the latter two functions to create a
color world, you use the CMConcatProfileSet (page 384) data structure to specify
a series of one or more profiles for the color world.

A profile header contains a CMMType field that specifies a CMM for that profile.
For example, “Signature of ColorSync’s Default Color Management Module”
(page 397) describes a signature for the CMMType field that specifies ColorSync’s
84 About ColorSync Application Development

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
default CMM. When you set up a CMConcatProfileSet data structure to specify a
series of profiles, you set the structure’s keyIndex field to specify the zero-based
index of the profile within the array of profiles whose CMM (as indicated by its
CMMType field) ColorSync should use. A CMM specified by this mechanism is
called a key CMM.

As we have seen, an operation may use more than one profile and there are
multiple factors that can affect the choice of a CMM. To deal with these factors,
ColorSync uses the following algorithm to select a CMM:

1. Starting with version 2.5, a user can select a preferred CMM in the ColorSync
control panel. If a user has chosen a preferred CMM, and if that CMM is
available, ColorSync uses that CMM for all color checking and color
matching operations the CMM can handle.

If the preferred CMM is not available or cannot handle an operation,
ColorSync uses the default CMM, as described in step 4.

2. Prior to ColorSync 2.5, or if the user has not selected a preferred CMM with
the ColorSync control panel, or has selected “Automatic,” and if the
ColorSync function takes a color world reference and the user has initialized
the color world with CWConcatColorWorld (page 265) or CWNewLinkProfile
(page 267), ColorSync uses the key CMM.

If the key CMM is not available or cannot handle an operation, ColorSync
uses the default CMM, as described in step 4.

3. Prior to ColorSync 2.5, or if the user has not selected a preferred CMM with
the ColorSync control panel, or has selected “Automatic,” and if the
ColorSync function takes a color world reference and the user has initialized
the color world with NCWNewColorWorld (page 262) (and therefore without a
CMConcatProfileSet structure), ColorSync uses an arbitrated CMM or
CMMs—a CMM or CMMs selected from the source and destination profiles
as described in “Selecting a CMM by the Arbitration Algorithm” (page 86).

If an arbitrated CMM is not available or cannot handle an operation,
ColorSync uses the default CMM, as described in step 4.

4. If a CMM is not specified by one of the previous three steps, or if a specified
CMM is not available or cannot handle an operation, ColorSync uses the
default CMM—the robust CMM that is installed as part of the ColorSync
extension. The default CMM supports all the required and optional functions
defined by the ColorSync Manager, and is therefore a suitable CMM of last
resort. The signature for the default CMM is specified by the constant
kDefaultCMMSignature.
About ColorSync Application Development 85
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Selecting a CMM by the Arbitration Algorithm 3

This section describes the arbitration algorithm, introduced in “How the
ColorSync Manager Selects a CMM” (page 84), ColorSync uses to select one or
more arbitrated CMMs for a color matching or color checking operation:

■ If the source and destination profiles specify the same CMM and that CMM
component is available and able to perform the matching, then the specified
CMM maps the colors directly from the color space of the source profile to
the color space of the destination profile. This is the simplest scenario, and
Figure 3-1 illustrates it.

Figure 3-1 Color matching when the source and destination profiles specify the
same CMM

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
XYZ

CMMType A

RGB data CMYK data

CMMType A

CMM A
86 About ColorSync Application Development

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
■ If the source and destination profiles specify different CMMs, then the
ColorSync Manager follows these steps to choose the CMM:

1. If the CMM specified by the destination profile is available, is able to
perform the color matching using the two profiles, and is not the default
CMM, then the ColorSync Manager uses this CMM. Figure 3-2 shows this
scenario.

Figure 3-2 Color matching using the destination profile’s CMM

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
XYZ

CMMType A

RGB data CMYK data

CMMType B

CMM B
About ColorSync Application Development 87
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
2. If the destination profile’s specified CMM is unavailable or unable to
perform the color-matching request using the two profiles, then the
ColorSync Manager looks for the CMM specified by the source profile. If
the CMM specified by the source profile is available, is able to perform the
color matching using the two profiles, and is not the default CMM, the
ColorSync Manager uses this CMM. Figure 3-3 shows this scenario.

Figure 3-3 Color matching using the source profile’s CMM

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
XYZ

CMMType A

RGB data CMYK data

CMMType B

CMM A
88 About ColorSync Application Development

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
3. If both the source-specified CMM and the destination-specified CMM are
available, but neither is able to perform the match alone, the ColorSync
Manager uses the source profile’s CMM to convert the colors of the source
image from the source profile’s color space to an interchange color space
using the XYZ color space profile as the destination profile. Next, the
ColorSync Manager uses the CMM specified by the destination profile to
convert the colors now specified in the interchange color space to colors
expressed in the color space of the destination profile using the XYZ color
space profile as the source profile. The color conversion and matching
work this way if both profiles specify the same interchange color space.
Figure 3-4 shows this scenario.

Figure 3-4 Color matching through an XYZ interchange space using both CMMs

4. If both the source-specified CMM and the destination-specified CMM are
available, but neither is able to perform the match alone and both profiles
specify different interchange color spaces, the ColorSync Manager uses the
source profile’s CMM to convert the colors of the source image from the
source profile’s color space to its interchange color space using the
appropriate color space profile as the destination profile. The example
shown in Figure 3-5 uses the XYZ color space profile as the destination
profile. Then the ColorSync Manager inserts a part into the process, itself
converting colors from the source profile’s interchange color space to the

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
XYZ

CMMType A

XYZ data

CMMType B

RGB data CMYK data
CMM A CMM B

XYZ color
space profile
About ColorSync Application Development 89
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
destination profile’s interchange color space. Next, the ColorSync
Manager uses the CMM specified by the destination profile to convert the
colors now specified in the destination profile’s interchange color space to
colors expressed in the destination profile’s color space using the
appropriate color space profile as the source profile. The example shown
in Figure 3-5 uses the Lab color space profile as the source profile.

Figure 3-5 Matching using both CMMs and two interchange color spaces

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
Lab

ColorSync
Manager

CMMType A

RGB data XYZ data

CMMType B

Lab data CMYK data
CMM A

XYZ

Lab
CMM B

XYZ color
space profile

Lab color
space profile
90 About ColorSync Application Development

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
■ If neither the source nor the destination profile’s specified CMM is available
or able to perform the color conversion and matching, then the ColorSync
Manager uses the default CMM, which will always attempt to perform the
match. Figure 3-6 shows this scenario.

Figure 3-6 Color matching using the default CMM

Developing Your ColorSync-Supportive Application 3

This section describes some of the tasks your application can perform to
implement color-matching and color-checking features with the ColorSync
Manager.

This section provides code samples for:

■ “Determining If the ColorSync Manager Is Available” (page 92); revised for
ColorSync 2.5

■ “Providing Minimal ColorSync Support” (page 93)

■ “Opening a Profile and Obtaining a Reference to It” (page 95); revised for
ColorSync 2.5

Source profile Destination profile

ProfileConnectionSpace
XYZ

ProfileConnectionSpace
Lab

CMMType A

RGB data CMYK data

CMMType B

Apple-supplied
default CMM
Developing Your ColorSync-Supportive Application 91
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
■ “Identifying the Current System Profile” (page 99)

■ “Poor Man’s Exception Handling” (page 98); new for ColorSync 2.5

■ “Getting the Profile for the Main Display” (page 100); revised for
ColorSync 2.5

■ “Matching to Displays Using QuickDraw-Specific Operations” (page 101)

■ “Creating a Color World to Use With the General Purpose Functions”
(page 105)

■ “Matching Colors Using the General Purpose Functions” (page 107)

■ “Embedding Profiles and Profile Identifiers” (page 112)

■ “Extracting Profiles Embedded in Pictures” (page 118)

■ “Performing Optimized Profile Searching” (page 130); new for ColorSync 2.5

■ “Searching for Specific Profiles Prior to ColorSync 2.5” (page 136)

■ “Searching for a Profile That Matches a Profile Identifier” (page 139)

■ “Checking Colors Against a Destination Device’s Gamut” (page 142)

■ “Creating and Using Device Link Profiles” (page 143)

■ “Providing Soft Proofs” (page 147)

■ “Calibrating a Device” (page 149)

■ “Accessing a Resource-Based Profile With a Procedure” (page 149)

Determining If the ColorSync Manager Is Available 3

To determine whether version 2.5 of the ColorSync Manager is available on a
68K-based or a PowerPC-based Macintosh system, you use the Gestalt function
with the gestaltColorMatchingVersion selector. The function shown in
Listing 3-1 returns a Boolean value of true if version 2.5 or later of the
ColorSync Manager is installed and false if not.

Listing 3-1 Determining if ColorSync 2.5 is available

Boolean ColorSync25Available (void)
{

Boolean haveColorSync25 = false;
92 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
long version;

if (Gestalt(gestaltColorMatchingVersion, &version) == noErr)
{

if (version >= gestaltColorSync25)
{

haveColorSync25 = true;
}

}
return haveColorSync25;

}

If your application does not depend on features added for version 2.5 of the
ColorSync Manager, use the ColorSync Gestalt selector for the ColorSync
version you require. For example, you might substitute gestaltColorSync20 for
gestaltColorSync25 in the previous function (and rename the function
appropriately). To identify other versions of ColorSync, use any of the
ColorSync Gestalt selector constants described in “Gestalt Selector Codes for
the ColorSync Manager” (page 217). For related version information, see
“ColorSync Version Information” (page 525).

Providing Minimal ColorSync Support 3

ColorSync supports the profile format defined by the International Color
Consortium (ICC). The ICC format provides a single cross-platform standard
for translating color data across devices. The ICC’s common profile format
allows one user to electronically transfer a document containing a color image
to another user with the assurance that the original image will be rendered
faithfully according to the source profile for the image.

To ensure this, the application or driver used to create the image stores the
profile for the source device in the document containing the color image. The
application can do this automatically or allow the user to tag the image. If the
source profile is embedded within the document, a user can move the
document from one system to another without concern for whether the profile
used to create the image is available.

To support ColorSync, your application should, at a minimum, leave profile
information intact in the documents and pictures it imports or copies. That is,
your application should not strip out profile information from documents or
pictures created with other applications. Even if your application does not use
Developing Your ColorSync-Supportive Application 93
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
the profile information, users may be able to take advantage of it when using
the documents or pictures with other applications.

For example, profiles and profile identifiers may be embedded in pictures that a
user pastes into documents created by your application. A profile identifier is an
abbreviated data structure that identifies, and possibly modifies, a profile in
memory or on disk. For more information on profile identifiers, see “Searching
for a Profile That Matches a Profile Identifier” (page 139). Profiles and profile
identifiers can be embedded in formats such as PICT or TIFF files. For files of
type 'PICT', the ColorSync Manager defines the following picture comments for
embedding profiles and profile identifiers, and for performing color matching:

/* PicComment IDs */
enum {

cmBeginProfile = 220, /* begin ColorSync 1.0 profile */
cmEndProfile = 221, /* end a ColorSync 2.x or 1.0

 profile */
cmEnableMatching = 222, /* begin color matching for either

ColorSync 2.x or 1.0 */
cmDisableMatching = 223, /* end color matching for either

 ColorSync 2.x or 1.0 */
cmComment = 224 /* embedded ColorSync 2.x profile

 information */
};

The picture comment kind value of cmComment is defined for embedded
ColorSync Manager version 2.x profiles and profile identifiers. This picture
comment is followed by a 4-byte selector that describes the type of data in the
picture comment.

/* PicComment selectors for cmComment */
enum {

cmBeginProfileSel = 0, /* begining of a ColorSync 2.x
profile; profile data to
follow */

cmContinueProfileSel = 1, /* continuation of a ColorSync
2.x profile; profile data to
follow */

cmEndProfileSel = 2 /* end of ColorSync 2.x profile
data; no profile data follows */

cmProfileIdentifierSel = 3 /* profile identifier information
follows; the matching profile
94 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
may be stored in the image or
on disk */

};

Your application should leave these comments and the embedded profile
information they define intact. Similarly, if your application imports or converts
file types defined by other applications, your application should maintain the
profile information embedded in those files, too.

Your application can also embed picture comments and profiles in documents
and pictures it creates or modifies. For information describing how to do this,
see “Embedding Profiles and Profile Identifiers” (page 112). Inside Macintosh:
Imaging With QuickDraw describes picture comments in detail.

Obtaining Profile References 3

Most of the ColorSync Manager functions require that your application identify
the profile or profiles to use in carrying out the work of the function. For
example, when your application calls functions to perform color matching or
color gamut checking, you must identify the profiles to use for the session. For
functions that use QuickDraw, you specify a source profile and a destination
profile. For general purpose functions, you specify a color world containing
source and destination profiles or a set of concatenated profiles. You can also
create a device link profile, which is described in “Creating and Using Device
Link Profiles” (page 143), but to do so your application must first obtain
references to all the profiles that will comprise the device link profile.

The ColorSync Manager provides for multiple concurrent accesses to a single
profile through use of a private data structure called a profile reference. A profile
reference is a unique reference to a profile; it is the means by which your
application identifies a profile and gains access to the contents of that profile.
Many applications can use the same profile at the same time, each with its own
reference to the profile. However, an application can only change a profile if it
has the only reference to the profile.

Opening a Profile and Obtaining a Reference to It 3

To open a profile and obtain a reference to it, you call the function
CMOpenProfile (page 222). You can also obtain a profile reference from the
CMCopyProfile (page 229), CWNewLinkProfile (page 267), and CMNewProfile
Developing Your ColorSync-Supportive Application 95
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
(page 227) functions. To identify a profile that is file based, memory based, or
accessed through a procedure, you must give its location.

The ColorSync Manager defines the CMProfileLocation (page 362) data type to
specify a profile’s location:

struct CMProfileLocation {
short locType; /* specifies the location type */
CMProfLoc u; /* structure for specified type */

};

The CMProfileLocation structure contains the u field of type CMProfLoc
(page 361). The CMProfLoc type is a union that can provide access to any of the
structures CMFileLocation (page 363), CMHandleLocation (page 363),
CMPtrLocation (page 364), or CMProcedureLocation (page 364).

The data you specify in the u field indicates the actual location of the profile. In
most cases, a ColorSync profile is stored in a disk file and you use the union for
a file specification. However, a profile can also be located in memory, or in an
arbitrary location (such as a resource) that is accessed through a procedure
provided by your application. For more information on profile access, see
“Accessing a Resource-Based Profile With a Procedure” (page 149). In addition,
you can specify that a profile is temporary, meaning that it will not persist in
memory after your application uses it for a color session.

To identify the data type in the u field of the CMProfileLocation structure, you
assign to the CMProfileLocation.locType field one of the constants or numeric
equivalents defined by the following enumeration:

enum {
cmNoProfileBase = 0, /* the profile is temporary */
cmFileBasedProfile = 1, /* file-based profile */
cmHandleBasedProfile = 2, /* handle-based profile */
cmPtrBasedProfile = 3 /* pointer-based profile */
cmProcedureBasedProfile = 4 /* procedure-based profile */

};

For example, for a file-based profile, the u field would hold a file specification
and the locType field would hold the constant cmFileBasedProfile. Your
application passes a CMProfileLocation structure when it calls the CMOpenProfile
(page 222) function and the function returns a reference to the specified profile.
96 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Note
If you already have a profile reference for a profile, you can
call the NCMGetProfileLocation (page 233) function
(available starting in ColorSync 2.5) or the
CMGetProfileLocation (page 234) function (for previous
versions of ColorSync) to obtain the location for the
profile. ◆

Listing 3-2 shows an application-defined function, MyOpenProfileFSSpec, that
assigns the file specification for a profile file to the profLoc union and identifies
the location type as file-based. It then calls the CMOpenProfile function, passing
to it the profile’s file specification and receiving in return a reference to the
profile.

Listing 3-2 Opening a reference to a file-based profile

CMError MyOpenProfileFSSpec (FSSpec spec, CMProfileRef *prof)
{

CMError theErr;
CMProfileLocation profLoc;

profLoc.u.fileLoc.spec = spec;
profLoc.locType = cmFileBasedProfile;

theErr = CMOpenProfile(prof, &profLoc);

return theErr;
}

Reference Counts for Profile References 3

The ColorSync Manager keeps an internal reference count for each profile
reference returned from a call to the CMOpenProfile (page 222), CMCopyProfile
(page 229), CMNewProfile (page 227), or CWNewLinkProfile (page 267) functions.
Calling the CMCloneProfileRef (page 231) function increments the count; calling
the CMCloseProfile (page 223) function decrements it. When the count reaches 0,
the ColorSync Manager releases all private memory, files, or resources allocated
in association with that profile. The profile remains open as long as the
reference count is greater than 0, indicating that at least one task retains a
Developing Your ColorSync-Supportive Application 97
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
reference to the profile. You can determine the current reference count for a
profile reference by calling the CMGetProfileRefCount function.

When your application passes a copy of a profile reference to an independent
task, whether synchronous or asynchronous, the task should call
CMCloneProfileRef to increment the reference count. Both the called task and the
caller should call CMCloseProfile when finished with the profile reference. This
ensures that the tasks can finish independently of each other.

IMPORTANT

You call CMCloneProfileRef after copying a profile reference
but not after duplicating an entire profile (as with the
CMCopyProfile function). ▲

When your application passes a copy of a profile reference internally, it may not
need to call CMCloneProfileRef, as long as the application calls CMCloseProfile
once and only once for the profile.

IMPORTANT

In your application, make sure that CMCloseProfile is called
once for each time a profile reference is created or cloned.
Otherwise, the private memory and resources associated
with the profile reference may not be properly freed, or a
task may attempt to use a profile reference that is no longer
valid. ▲

Poor Man’s Exception Handling 3

Listing 3-3 shows a macro definition that is used in several subsequent code
listings. In this macro, if assertion evaluates to false, execution continues at the
location exception. Otherwise, execution continues at the next statement
following the macro.

Listing 3-3 Poor man’s exception handling macro

// Equivalent to if ((assertion) == false) goto exception;
#define require(assertion, exception) \

do { \
98 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
if (assertion) ; \
else { goto exception; } \

} while (false)

You can find examples of how to use this macro in Listing 3-4 (page 100),
Listing 3-5 (page 101) and others. While this style of “poor man’s exception
handling” may not appeal to all developers, it does offer these advantages:

■ It improves readability because it avoids pushing code off the page with
multiple nested “if then else” clauses and by limiting the number of return
statements in the code.

■ You can enhance the macro to provide debug messages that supply useful
runtime information about the error or where it occurred.

Identifying the Current System Profile 3

For the functions NCMBeginMatching (page 285), NCMUseProfileComment
(page 290), and NCWNewColorWorld (page 262), your application can specify NULL
to signify the system profile. For all other functions—for example, the
CMGetProfileElement function, the CMValidateProfile function, and the
CMCopyProfile function—for which you want to specify the system profile, you
must give an explicit reference to the profile. You can use the
CMGetSystemProfile (page 294) function to obtain a reference to the system
profile.

IMPORTANT

Starting with ColorSync version 2.5, the system profile is
used primarily for backward compatibility, as described in
“Setting Default Profiles” (page 54). As a result, you should
not use the system profile as a source or destination profile
if you can determine a specific profile to use instead. For
example, you may want to call CMGetDefaultProfileBySpace
(page 297) to get the default profile for a specific color
space or CMGetProfileByAVID (page 300) to get a profile for a
specific display. ▲

Each profile, including the profile configured as the system profile, has a name
associated with it. If your application needs to display the name of the system
profile to the user, it can call CMGetSystemProfile, as shown in Listing 3-4, to get
the system profile, then call the CMGetScriptProfileDescription (page 256)
function to get the profile name and script code.
Developing Your ColorSync-Supportive Application 99
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-4 Identifying the current system profile

CMError MyPrintSystemProfileName (void)
{

CMError theErr;
CMProfileRef sysProf;
Str255 profName;
ScriptCode profScript;

theErr = CMGetSystemProfile(&sysProf);
require(theErr == noErr, cleanup);

theErr = CMGetScriptProfileDescription(sysProf, profName,
&profScript);

require(theErr == noErr, cleanup);

// … call Script Mgr to get correct font for script …

DrawString(profname);

// Do any necessary cleanup. In this case, just return.
cleanup:

return theErr;
}

Getting the Profile for the Main Display 3

Starting with ColorSync version 2.5, a user can select a separate profile for each
display, as described in “Setting a Profile for Each Monitor” (page 69). In your
code, you can determine the profile for any display for which you know the
AVID by calling the function CMGetProfileByAVID (page 300), which is also new
in version 2.5. You can get more information about AVID values from the
Display Manager SDK.

Listing 3-5 shows how to get the profile for the main display (the one that
contains the menu bar).
100 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-5 Getting the profile for the main display

CMError GetProfileForMainDisplay (CMProfileRef *prof)
{

CMError theErr;
AVIDType theAVID;
GDHandle theDevice;

// Get the main GDevice.
theDevice = GetMainDevice();

// Get the AVID for that device.
theErr = DMGetDisplayIDByGDevice(theDevice, &theAVID, true);
require(theErr == noErr, cleanup);

// Get the profile for that AVID.
theErr = GetProfileByAVID(theAVID, prof);
require(theErr == noErr, cleanup);

// Do any necessary cleanup. In this case, just return.
cleanup:

return theErr;
}

This code first gets a graphic device handle for the main display, then calls the
Display Manager routine DMGetDisplayIDByGDevice to get an AVID for the
device. It then passes the AVID to the ColorSync Manager routine
CMGetProfileByAVID (page 300) to get a profile reference to the profile for the
display.

Matching to Displays Using QuickDraw-Specific Operations 3

To provide images and pictures showing consistent colors across displays, your
application can use ColorSync to match the colors in a user’s pictures and
documents with the colors available on the user’s current display. If a color
cannot be reproduced on the system’s current display, ColorSync maps the
color to the color gamut of the display according to the specifications defined by
the profiles. “When Color Matching Occurs” (page 62) describes both
QuickDraw-specific and general purpose ColorSync functions for color
matching.
Developing Your ColorSync-Supportive Application 101
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
The ColorSync Manager provides two QuickDraw-specific functions that your
application can call to draw a color picture to the current display. The function
NCMDrawMatchedPicture (page 288) matches the picture’s colors to the display’s
gamut defined by the specified display profile. It uses the system profile as the
initial source profile but switches to any embedded profiles as they are
encountered. The function NCMBeginMatching (page 285) uses the source and
destination profiles you specify to match the colors of the source image to the
colors of the device for which it is destined.

The current display device’s profile is typically configured as the system profile.
A user can do this with the ColorSync control panel. However, starting with
ColorSync 2.5, a user can use the Monitors & Sound control panel to set a
separate profile for each display, as described in “Setting a Profile for Each
Monitor” (page 69). When a user sets a profile for a display, ColorSync makes
that profile the current default system profile.

Because the ColorSync Manager assumes the system profile is that of the
current display, you can pass a value of NULL to the QuickDraw-specific
functions instead of supplying an explicit profile reference. Passing NULL for a
profile reference directs the ColorSync Manager to use the system profile. Note
however, that starting with ColorSync 2.5, if you know the primary display for
the image, and you know the AVID for that display, you can call
CMGetProfileByAVID (page 300) to get the profile for the specific display. For
example, Listing 3-5 shows how to get the profile for the main display (the one
with the menu bar).

The following sections describe how to use ColorSync’s QuickDraw-specific
matching functions, which automatically perform color matching in a manner
acceptable to most applications. However, if your application needs a finer level
of control over color matching than is supplied by the QuickDraw-specific
functions, you can use the general purpose functions described in“Matching
Colors Using the General Purpose Functions” (page 107) to match the colors of
a bitmap, a pixel map, or a list of colors.

Matching Colors in a Picture Containing an Embedded Information 3

If a user copies a picture that includes a profile or profile identifier into one of
your application’s documents, your application can use the ColorSync
Manager’s QuickDraw-specific function NCMDrawMatchedPicture (page 288) to
match the colors in that picture to the display on which you draw it.

As the picture is drawn, the NCMDrawMatchedPicture function automatically
matches all colors to the color gamut of the display device, using the
102 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
destination profile passed in the dst parameter. To use this function, you need
to supply only the profile for the destination display device. The function
acknowledges color-matching picture comments embedded in the picture and
uses embedded profiles and profile identifiers. The source profile for the device
on which the image was created should be embedded in the QuickDraw picture
whose handle you pass to the function; the NCMDrawMatchedPicture function uses
the embedded source profile, if it exists. If the source profile is not embedded,
the function uses the current system profile as the source profile.

A picture may have more than one profile embedded, and may embed profile
identifiers that refer to, and possibly modify, embedded profiles or profiles on
disk. If the profiles and profile identifiers are embedded correctly, the
NCMDrawMatchedPicture function will use them successively, as they are
encountered.

By specifying NULL as the destination profile when you use this function, you are
assured that the system profile—typically set to the profile for the main
screen—is used as the destination profile. Alternatively, your application can
call the CMGetSystemProfile (page 294) function to obtain a reference to the
profile and specify the system profile explicitly. Or, starting in ColorSync
version 2.5, if you know the AVID for the display on which drawing takes place,
you can call CMGetProfileByAVID (page 300) to get the profile for the display.

Listing 3-6 shows sample code that uses the QuickDraw-specific function
NCMDrawMatchedPicture to perform color matching to a display. The code gets a
profile for the destination display using an AVID if it is available; otherwise, it
passes NULL to the NCMDrawMatchedPicture function to specify the system profile.

Listing 3-6 Matching a picture to a display

// Matching a picture to a display
CMError MyDrawPictureToADisplay (PicHandle thePict, AVIDType theAVID, Rect *destRect)
{

CMError theErr;
CMProfileRef destProf;

// Init for error handling.
theErr = noErr;
destProf = NULL;

// If caller supplied an AVID and CS 2.5 is running...
Developing Your ColorSync-Supportive Application 103
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
if (theAVID && ColorSync25Available()) // See Listing 3-1 (page 92).
{

theErr = GetProfileByAVID(theAVID, &destProf);
require(theErr == noErr, cleanup);

}
else
{

// Use the System profile as the destination.
destProf = NULL;

}
// Draw the picture, with color matching.
NCMDrawMatchedPicture(thePict, destProf, destRect);
theErr = QDError();
require(theErr == noErr, cleanup);

// Do any necessary cleanup. If necessary, close the profile.
cleanup:

if (destProf)
CMCloseProfile(destProf);

return theErr;
}

More on Embedded Information 3

For embedded profiles (and profile identifiers) to operate correctly, the currently
effective profile must be terminated by a picture comment of kind cmEndProfile
after drawing operations using that profile are performed. If a picture comment
was not specified to end the profile, the profile will remain in effect until the
next embedded profile is encountered with a picture comment of kind
cmBeginProfile. However, use of the next profile might not be the intended
action. It is good practice to always pair use of the cmBeginProfile and
cmEndProfile picture comments. When the ColorSync Manager encounters an
cmEndProfile picture comment, it restores use of the system profile for matching
until it encounters another cmBeginProfile picture comment.
104 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Note
Profile identifiers are also stored with picture comments.
For more information on profile identifiers, see
“Embedding Profiles and Profile Identifiers” (page 112) and
“Searching for a Profile That Matches a Profile Identifier”
(page 139).

If your application allows a user to modify and save an image that you color
matched using the function NCMUseProfileComment (page 290), your application
should either embed the destination profile in the picture file or convert and
match the colors of the modified image to the colors of the source profile. By
doing this your application ensures the integrity of the image during future
operations and display. The method you choose is specific to your application.

Matching Colors as a User Draws a Picture 3

To use Color QuickDraw functions to draw a document with colors matched to
a display, your application can simply use the NCMBeginMatching (page 285)
function before calling Color QuickDraw functions, then conclude its drawing
with the CMEndMatching function. For example, you might want to do this to
customize settings in the profile that affect the matching operation. For more
information on Color QuickDraw drawing functions, see Inside Macintosh:
Imaging With QuickDraw.

To use the NCMBeginMatching function, you must specify both the source and
destination profiles. The NCMBeginMatching (page 285) function returns a
reference to the color-matching session in its myRef parameter. You then pass the
reference to the CMEndMatching (page 287) function to terminate color matching.
Code for performing this operation is not shown here.

Creating a Color World to Use With the General Purpose
Functions 3

A color world is a reference to a private ColorSync structure that represents a
unique color-matching session. Although profiles can be large, a color world is
a compact representation of the mapping needed to match between profiles.
Conceptually, you can think of a color world as a sort of “matrix multiplication”
of two or more profiles that distills all the information contained in the profiles
into a fast, multidimensional lookup table.

For the ColorSync Manager general purpose functions, a color world
characterizes how the color-matching session will occur based on information
Developing Your ColorSync-Supportive Application 105
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
contained in the profiles that you supply when your application sets up the
color world. “When Color Matching Occurs” (page 62) describes both general
purpose and QuickDraw-specific ColorSync functions for color matching. Your
application can define a color world for color transformations between a source
profile and a destination profile, or it can define a color world for color
transformations between a series of concatenated profiles.

For the general purpose ColorSync Manager functions, a color world is the
equivalent of the ColorSync Manager QuickDraw-based functions’ source and
destination profiles. From your application’s perspective, the difference in
specifying profiles for the general purpose functions is that instead of calling a
function and passing it references to the profiles for the session, first you must
create a color world using those profile references and pass the color world to
the function. This general purpose interface provides better performance during
color-matching.

Your application calls the NCWNewColorWorld (page 262) function to set up a
simple color world for color transformations involving two profiles—a source
profile and a destination profile—and the function returns a reference to the
color world it creates. Setting up a color world for color processing involving a
series of concatenated profiles or a single device link profile, which contains a
series of profiles, is slightly more complex. Here are the steps you take:

1. Obtain references to the profiles to use for the concatenated color world.

For information describing how to obtain references to the profiles for the
color world, see “Obtaining Profile References” (page 95).

2. Set up an array containing references to the profiles comprising the set.

Before your application calls the function CWConcatColorWorld (page 265) to
create the color world, you must establish the profile set. The ColorSync
Manager defines the following data structure of type CMConcatProfileSet that
you use to specify the profile set:

struct CMConcatProfileSet {
unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

Your application also uses the CMConcatProfileSet data structure to define a
profile set for a device link profile. See “Creating and Using Device Link
Profiles” (page 143) for more information.
106 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Your application creates an array that contains references to the profiles for
the color world, specifying these references in processing order. You specify
the one-based number of profile references in the array by setting the value
of the CMConcatProfileSet.count field. You assign the profile array to the
CMConcatProfileSet.profileSet field.
The ColorSync Manager defines rules governing the types of profiles you can
specify in a profile array. These rules differ depending on whether you are
creating a profile set to create a device link profile or to create a concatenated
color world. For a list of the rules defining the types of profiles you can use
for these purposes, see CWNewLinkProfile (page 267) and CWConcatColorWorld
(page 265).

3. Identify the CMM for color processing.

Each of the profiles whose references you give identifies a CMM for color
processing involving that profile. To perform color transformation using a
series of profiles, the ColorSync Manager uses only one CMM. You use the
CMConcatProfileSet.keyIndex field to identify the index into the array
corresponding to the profile whose specified CMM is to be used. The array is
zero based, so you must specify the CMConcatProfileSet.keyIndex value as a
number in the range of 0 to count – 1, where count is the number of elements
in the array.

IMPORTANT

See “How the ColorSync Manager Selects a CMM”
(page 84) for a complete description of the ColorSync
algorithm for selecting a CMM. ▲

4. Call the CWConcatColorWorld function to set up the color world.

You pass the CWConcatColorWorld function a parameter of type
CMConcatProfileSet to specify the profile array, and the function returns a
color world reference. To perform color matching or gamut checking using
the profiles comprising a color world, you call the general purpose function
passing it the reference to the color world.

Using a device link profile for the general purpose functions entails additional
steps, described in “Creating and Using Device Link Profiles” (page 143).

Matching Colors Using the General Purpose Functions 3

“When Color Matching Occurs” (page 62) describes both general purpose and
QuickDraw-specific ColorSync functions for color matching. Using the general
Developing Your ColorSync-Supportive Application 107
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
purpose functions CWMatchPixMap (page 272) or CWMatchBitmap (page 276), your
application can match the colors of a pixel image or a bitmap image to the
display’s color gamut without relying on QuickDraw.

Color matching occurs relatively quickly, but for a session involving a large
pixel image or bitmap image, the color-matching process may take some time.
To keep the user informed, you can provide a progress-reporting function. For
example, your function can display an indicator, such as a progress bar, to
depict how much of the matching has been done and how much remains. Your
function can also allow the user to interrupt the color-matching process.

When your application calls either the CWMatchPixMap function or the
CWMatchBitmap function, you can pass the function a pointer to your callback
progress-reporting function and a reference constant containing data, such as
the progress bar dialog box’s window reference. When the CMM used to match
the colors calls your progress-reporting function, it passes the reference
constant to it. If you provide a progress-reporting function, here is how you
should declare the function, assuming you name it MyCMBitmapCallBackProc:

pascal Boolean MyCMBitmapCallBackProc (long progress, void *refCon);

For a complete description of the progress-reporting function declaration, see
MyCMBitmapCallBackProc (page 345).

To use the CWMatchPixMap (page 272) and CWMatchBitmap (page 276) functions,
your application must first set up a color world that specifies the profiles
involved in the color-matching session as described in “Creating a Color World
to Use With the General Purpose Functions” (page 105). The color world
establishes how matching will take place between the profiles. Listing 3-7
shows how to match the colors of a bitmap using the general purpose functions
that take a color world.

The ColorSync Manager uses the PixMap data type defined by Color QuickDraw.
The ColorSync Manager defines and uses the cmBitmap data type, based on the
classic QuickDraw Bitmap data type.

Matching the Colors of a Pixel Map to the Display’s Color Gamut 3

Your application can call the function CWMatchPixMap (page 272) to match the
colors of a pixel image to the display’s color gamut. To use CWMatchPixMap, you
first create a color world, as described in “Creating a Color World to Use With
the General Purpose Functions” (page 105). The color world is based on the
108 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
source profile for the device used to create the pixel image and the destination
profile for the display on which the image is shown.

To match the colors of a pixel image to the display’s color gamut, the source
profile for the color world must specify a data color space of RGB as its
dataColorSpace element value to correspond to the pixel map data type, which
is implicitly RGB. If the source profile you specify for the color world is the
original source profile used to create the pixel image, most likely these values
match. However, if you want to verify that the source profile’s dataColorSpace
element specifies RGB, you can use the CMGetProfileHeader (page 245) function
to obtain the profile header. The profile header contains the dataColorSpace
element field. For a pixel image, the display profile’s dataColorSpace element
must also be set to RGB; this is the color space commonly used for displays.

If the source profile is embedded in the document containing the pixel map,
your application can extract the profile and open a reference to it before you
create the color world. For information on how to extract an embedded profile,
see “Extracting Profiles Embedded in Pictures” (page 118). If the source profile
is installed in the ColorSync Profiles folder, your application can display a list of
profiles to the user to allow the user to select the appropriate one.

Matching the Colors of a Bitmap Image to the Display’s Color Gamut 3

Matching the colors of a bitmap image to the current system’s display is similar
to the process of matching a pixel map’s colors, except that the data type of a
bitmap image is explicitly stated in the space field of the bitmap. You can
specify a bitmap image using any of the following data types: cmGraySpace,
cmGrayASpace, cmRGB16Space, cmRGB24Space, cmRGB32Space, cmARGB32Space,
cmRGB48Space, cmCMYK32Space, cmCMYK64Space, cmHSV32Space, cmHLS32Space,
cmYXY32Space, cmXYZ32Space, cmLUV32Space, cmLAB24Space, cmLab32Space,
cmLAB48Space, cmNamedIndexed32Space, cmMCFive8Space, cmMCSix8Space,
cmMCSeven8Space, or cmMCEight8Space. The data type of the source bitmap image
must correspond to the data color space specified by the color world’s source
profile.

When you call the CWMatchBitmap (page 276) function, you can pass it a pointer
to a bitmap to hold the resulting image. In this case, you must allocate the pixel
buffer pointed to by the image field of the CMBitmap structure. Because the
CWMatchBitmap function allows you to specify a separate bitmap to hold the
resulting color-matched image, you must ensure that the data type you specify
in the space field of the resulting bitmap matches the destination’s color data
space. On input, the color space of the source profile must match the color space
Developing Your ColorSync-Supportive Application 109
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
of the bitmap. If you specify NULL for the destination bitmap, on successful
output, ColorSync will change the space field of the source bitmap to reflect the
bitmap space to which the source image was mapped.

Rather than create a bitmap for the color-matched image, you can match the
bitmap in place. To do so, you specify NULL instead of passing a pointer to a
resulting bitmap.

The code in Listing 3-7 shows how to set up a bitmap for the resulting
color-matched image before calling the CWMatchBitmap function to perform the
color matching. The MyMatchImage function calls the MyGetImageProfile function
(not shown) to obtain an embedded profile from the image. If none is found, it
calls the MyGetImageSpace function (also not shown) to determine the color space
for the profile, then calls the ColorSync routine CMGetDefaultProfileBySpace
(page 297) to obtain the default profile for that space.

The MyMatchImage function then calls GetProfileForMainDisplay, shown in
Listing 3-5, to get the destination profile. It uses the source and destination
profiles to set up a color world by calling NCWNewColorWorld (page 262), then
uses the resulting color world when it calls CWMatchBitmap (page 276) to match
the colors to the display.

Listing 3-7 Matching the colors of a bitmap using a color world

void MyMatchImage (FSSpec theImage)
{

CMError theErr;
CMProfileRef sourceProf;
CMProfileRef destProf;
CMWorldRef cw;
CMBitmap bitmap;
OSType theSpace;

/* Init for error handling. If any error during process,
jump to cleanup area and quit trying. */

theErr = noErr;
sourceProf = nil;
destProf = nil;
cw = nil;
bitmap.image = nil;
110 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
// Determine source profile.
// 1st - try to find an embedded profile
theErr = MyGetImageProfile(theImage, &sourceProf);
if (theErr == noErr)
{

// 2nd - use default profile for the image space
theErr = MyGetImageSpace(theSpace, &sourceProf);
require(theErr == noErr, cleanup);

theErr = CMGetDefaultProfileBySpace(theSpace, &sourceProf);
require(theErr == noErr, cleanup);

}
require(theErr == noErr, cleanup);

// Determine dest profile.
theErr = GetProfileForMainDisplay(&destProf);
require(theErr == noErr, cleanup);

// Set up a color world.
theErr = NCWNewColorWorld(&cw, sourceProf, destProf);
require(theErr == noErr, cleanup);

// close profiles after setting up color world.
if (sourceProf)

CMCloseProfile(sourceProf);
if (destProf)

CMCloseProfile(destProf);
sourceProf = destProf = nil;

// Read the image into the CMBitmap structure
theErr = MyGetImageBitmap(theImage, &bitmap);
require(theErr == noErr, cleanup);

// Match bitmap in place.
theErr = CWMatchBitmap(cw, &bitmap, nil, nil, nil);
require(theErr == noErr, cleanup);

// Render results here ... (code not shown)

/* Do any necessary cleanup:close profiles and dispose of
color world and bitmap. */
Developing Your ColorSync-Supportive Application 111
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
cleanup:

if (sourceProf)
CMCloseProfile(sourceProf);

if (destProf)
CMCloseProfile(destProf);

if (cw)
CWDisposeColorWorld(cw);

if (bitmap.image)
DisposePtr(bitmap.image);

return theErr;
}

Embedding Profiles and Profile Identifiers 3

When the user creates and saves a document or picture containing a color
image created or modified with your application, your application can provide
for future color matching by saving—along with that document or picture—the
profile for the device on which the image was created or modified. In addition
to a profile—or instead of a profile—your application can save a profile
identifier. A profile identifier is an abbreviated data structure that identifies, and
possibly modifies, a profile in memory or on disk.

When embedding source profiles or profile identifiers in the documents created
by your application, you can store them in any manner that you choose. For
example, you may choose to have your application store, in the resource fork of
the document file, one profile for an entire image, or a separate profile for every
object in an image, or a separate profile identifier that points to a profile on disk
for every device on which the user modified the image.

When embedding source profiles or profile identifiers in PICT file pictures, your
application should use the cmComment picture comment, which has a kind value
of 224 and is defined for embedded version 2.x profiles. This comment is
112 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
followed by a 4-byte selector that describes the type of data in the comment.
The following selectors are currently defined:

Because the dataSize parameter of the PicComment procedure is a signed 16-bit
value, the maximum amount of profile data that can be embedded in a single
picture comment is 32,763 bytes (32,767 – 4 bytes for the selector).

You can embed a larger profile by using multiple picture comments of selector
type cmContinueProfileSel, as shown in Figure 3-7. You must embed the profile
data in consecutive order, and you must conclude the profile data by
embedding a picture comment of selector type cmEndProfileSel. The ColorSync
Manager provides the NCMUseProfileComment function to automate the process of
embedding profile information.

Embedded Profile Format 3

Figure 3-7 shows how profile data is embedded in a PICT file picture as a series
of picture comments. The illustration shows two embedded profiles. The first
profile contains less than 20K of data, so its data can be stored in one picture
comment with selector type cmBeginProfileSel. Note, however, that a second
comment of selector type cmEndProfileSel, containing no data, concludes the
embedded profile.

The second embedded profile shown in Figure 3-7 has more than 32K of data,
so its data must be stored in two consecutive picture comments. The first
comment has selector type cmBeginProfileSel, while the second has type
cmContinueProfileSel. If the profile were larger and required additional picture
comments, each additional comment would have selector type
cmContinueProfileSel. As with all embedded profiles, the final picture comment
has selector type cmEndProfileSel.

Selector Value Description

cmBeginProfileSel 0 Beginning of a version 2.x profile.
Profile data to follow.

cmContinueProfileSel 1 Continuation of version 2.x profile data.
Profile data to follow.

cmEndProfileSel 2 End of version 2.x profile data. No
profile data follows.

cmProfileIdentifierSel 3 Profile identifier follows. A profile
identifier identifies a profile that may
reside in memory or on disk.
Developing Your ColorSync-Supportive Application 113
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Embedding Different Profile Versions 3

For version 1.0 of the ColorSync Manager, you use picture comment types
cmBeginProfile and cmEndProfile to begin and end a picture comment. The
cmBeginProfile comment is not supported for ColorSync version 2.x profiles;
however, the you can use the cmEndProfile comment to end the current profile
for both ColorSync 1.0 and 2.x. Following a cmEndProfile comment, the
ColorSync Manager reverts to the system profile. You use the cmEnableMatching
and cmDisableMatching picture comments to begin and end color matching in
both ColorSync 1.0 and 2.x. See Inside Macintosh: Imaging With QuickDraw for
more information about picture comments.
114 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Figure 3-7 Embedding profile data in a PICT file picture

The NCMUseProfileComment Function 3

The ColorSync Manager provides the function NCMUseProfileComment (page 290)
to automate the process of embedding a profile or profile identifier. This
function generates the picture comments required to embed the specified profile
or identifier into the open picture. It calls the QuickDraw PicComment function

.

.

.

.

.

.

Selector=1
(4 bytes)

Selector=2
(4 bytes)

Selector=0
(4 bytes)

Profile data
(30K)

Reminder of
profile data

(20K)

1st
PicComment

Kind=224 Kind=224

Kind=224

Kind=224

Kind=224

2nd
PicComment

1st
PicComment

3rd
PicComment

2nd
PicComment

.

.

.

.

.

.

.

.

.

PICT data with embedded
20K profile

PICT data with embedded
50K profile

Selector=2
(4 bytes)

Selector=0
(4 bytes)

Profile data
(20K)
Developing Your ColorSync-Supportive Application 115
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
with a picture comment kind value of cmComment and a 4-byte selector that
describes the type of data in the picture comment: 0 to begin the profile, 1 to
continue, and 2 to end the profile; or 3 for a profile identifier. For a profile, if the
size in bytes of the profile and the 4-byte selector together exceed 32 KB, this
function segments the profile data and embeds the multiple segments in
consecutive order using selector 1 to embed each segment.

For embedded profiles or profile identifiers to work correctly, the currently
effective profile must be terminated by a picture comment of kind cmEndProfile
after drawing operations using that profile are performed. If you do not specify
a picture comment to end the profile, the profile will remain in effect until the
next embedded profile is introduced with a picture comment of kind
cmBeginProfile. It is good practice to always pair use of the cmBeginProfile and
cmEndProfile picture comments. When the ColorSync Manager encounters a
cmEndProfile picture comment, it restores use of the system profile for matching
until it encounters another cmBeginProfile picture comment.

IMPORTANT

The NCMUseProfileComment function does not automatically
terminate the embedded profile or profile identifier with a
cmEndProfile picture comment. You must add a picture
comment of kind cmEndProfile when the drawing
operations to which the profile applies are complete.
Otherwise, the profile remains in effect until the next
embedded profile with a picture comment of kind
cmBeginProfile is encountered. ▲

In addition to embedded profiles, an image may contain embedded profile
identifiers, which are stored with the selector cmProfileIdentifierSel. For more
information on profile identifiers, see “Searching for a Profile That Matches a
Profile Identifier” (page 139), and CMProfileIdentifier (page 359).

Listing 3-8 shows how to embed a profile in a picture file. The
MyPreprendProfileToPicHandle function creates a new picture, embeds the
profile for the device used to create the picture, then draws the picture. The
caller passes a reference for the profile as the prof parameter. Note that after
MyPreprendProfileToPicHandle calls the NCMUseProfileComment function to
embed the profile, it calls its own MyEndProfileComment function to embed a
comment of kind cmEndProfile, ensuring that the profile is properly terminated.
116 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-8 Embedding a profile by prepending it before its associated picture

CMError MyPrependProfileToPicHandle (
PicHandle pict,
PicHandle *pictNew,
CMProfileRef prof,
Boolean embedAsIdentifier)

{
OSErr theErr;
CGrafPtr savePort;
GDHandle saveGDev;
GWorldPtr tempWorld;
Rect pictRect;
unsigned long flags;

// Init for error handling.
theErr = noErr;
tempWorld = nil;

// Check parameters
if (prof == nil) theErr = paramErr;
require(theErr == noErr, cleanup);

// Determine whether to embed as identifier or whole profile.
if (embedAsIdentifier)

flags = cmEmbedProfileIdentifier;
else

flags = cmEmbedWholeProfile;

// Create a temporary graphics world.
theErr = NewSmallGWorld(&tempWorld);
require(theErr == noErr, cleanup);

// Save current world and switch to temporary.
GetGWorld(&savePort, &saveGDev);
SetGWorld(tempWorld, nil);
pictRect = (**pict).picFrame;
ClipRect(&pictRect); // Important: set clipRgn.

// Create a new picture.
*pictNew = OpenPicture(&pictRect); // Start recording.
Developing Your ColorSync-Supportive Application 117
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
theErr = NCMUseProfileComment(prof,flags);
DrawPicture(pict, &pictRect);
MyEndProfileComment(); // Routine shown below.
ClosePicture();

if (theErr)
KillPicture(*pictNew);

SetGWorld(savePort, saveGDev);

// Do any necessary cleanup:dispose of graphics world.
cleanup:

if (tempWorld)
DisposeGWorld(tempWorld);

return theErr;
}

Here is the application-defined MyEndProfileComment function called by
MyPrependProfileToPicHandle to add the cmEndProfile picture comment to
terminate the profile:

void MyEndProfileComment (void)
{

PicComment(cmEndProfile, 0, 0);
}

Extracting Profiles Embedded in Pictures 3

To color match or gamut check a picture embedded in a document, your
application should first check for embedded profiles in the document. If a
profile is found, your application can then open a reference to the profile and
use it as the source profile. This process requires you to locate and identify the
profile for the image within the document and extract the profile data from the
document file.
118 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Note
If you use the QuickDraw-specific NCMDrawMatchedPicture
(page 288) function, you do not need to extract the source
profile from the PICT file. ◆

To extract an embedded profile, your application can use the function
CMUnflattenProfile (page 239). This function takes a pointer to a low-level
data-transfer function that your application supplies to transfer the profile data
from the document containing it. This function assumes that your low-level
data-transfer function is informed about the context of the profile. After all of
the profile data has been transferred, the CMUnflattenProfile function returns
the file specification for the profile.

Prior to ColorSync 2.5, when your application calls the CMUnflattenProfile
function, the ColorSync Manager uses the Component Manager to pass the
pointer to your low-level data-transfer function along with the reference
constant your application can use as it desires. The CMM is determined by the
selection process described in “How the ColorSync Manager Selects a CMM”
(page 84). The CMM calls your low-level data-transfer function, directing it to
open the file containing the profile, read segments of the profile data, and return
the data to the CMM’s calling function.

The CMM communicates with your low-level data transfer-function using a
command parameter to identify the operation to perform. To facilitate the
transfer of profile data from the file to the CMM, the CMM passes to your
function a pointer to a data buffer for data, the size in bytes of the profile data
your function should return, and the reference constant passed from the calling
application.

On return, your function passes to the CMM segments of the profile data and
the number of bytes of profile data you actually return.

Starting with ColorSync 2.5, the ColorSync Manager calls your transfer function
directly, without going through the preferred, or any, CMM. On return from
CMUnflattenProfile, the value of preferredCMMnotfound is guaranteed to be
false.

Listing 3-9 and Listing 3-10 show portions of a sample application called
CSDemo, available as part of the ColorSync SDK. You can find the complete
sample application on the Developer CD series, or at the web site <http://
developer.apple.com/sdk>.

In these listings, all variables beginning with a lowercase letter “g” are global
variables previously defined. The application uses global variables to pass data
Developing Your ColorSync-Supportive Application 119
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
between functions that do not include reference constant parameters.
Listing 3-9 counts the profiles in a PICT file, while Listing 3-10 extracts a profile,
identified by an index number, from a PICT file.

Counting the Profiles in the PICT File 3

Given a picHandle value to a picture containing an embedded profile, the
sample code shown in Listing 3-9 counts the number of profiles in the picture.

The MyCountProfilesInPicHandle function calls the Toolbox function
SetStdCProcs to get the current QuickDraw drawing bottleneck procedures,
then sets the bottlenecks to its own routines. It initializes its global counter,
gCount, which holds a single count summing both ColorSync 1.0 profiles and
version 2.x profiles, to zero. The MyCountProfilesInPicHandle function calls its
own drawing function, MyDrawPicHandleUsingBottleneck, not shown here, to
draw the picture. The drawing function sets up a port that uses the private
bottleneck routines.

As the picture is drawn, the MyCountProfilesCommentProc bottleneck procedure
counts the number of profiles encountered. MyCountProfilesCommentProc checks
for both version 1.0 profiles and version 2.x profiles and increments the global
count when it finds either type. You can easily modify this code to keep
separate counts if necessary.

MyCountProfilesInPicHandle doesn’t use any other QuickDraw bottlenecks, so it
uses nonoperational routines (routines that do nothing but return) for all other
bottlenecks. The prototype for a function to handle the TextProc bottleneck, for
example, can be defined as follows:

static pascal void MyNoOpTextProc (short byteCount,
Ptr textAddr,

 Point numer,
Point denom);

For a general discussion of customizing QuickDraw’s bottleneck routines, see
“Customizing QuickDraw’s Text Handling” in Inside Macintosh: Text.
120 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-9 Counting the number of profiles in a picture

CMError MyCountProfilesInPicHandle (PicHandle pict, unsigned long *count)
{

OSErr theErr = noErr;
CQDProcs procs;

/* Set up bottleneck for picComments so we can count the profiles. */
SetStdCProcs(&procs);
procs.textProc = NewQDTextProc (MyNoOpTextProc);
procs.lineProc = NewQDLineProc (MyNoOpLineProc);
procs.rectProc = NewQDRectProc (MyNoOpRectProc);
procs.rRectProc = NewQDRRectProc (MyNoOpRRectProc);
procs.ovalProc = NewQDOvalProc (MyNoOpOvalProc);
procs.arcProc = NewQDArcProc (MyNoOpArcProc);
procs.polyProc = NewQDPolyProc (MyNoOpPolyProc);
procs.rgnProc = NewQDRgnProc (MyNoOpRgnProc);
procs.bitsProc = NewQDBitsProc (MyNoOpBitsProc);
procs.commentProc = NewQDCommentProc(MyCountProfilesCommentProc);
procs.txMeasProc = NewQDTxMeasProc (MyNoOpTxMeasProc);

/* Initialize the global counter to be incremented by the commentProc. */
gCount = 0;

/* Draw the picture and count the profiles while drawing. */
theErr = MyDrawPicHandleUsingBottlenecks (pict, procs, nil);

/* Obtain the result from the count global variable. */
*count = gCount;

/* Clean up and return. */
DisposeRoutineDescriptor(procs.textProc);
DisposeRoutineDescriptor(proc.lineProc);
DisposeRoutineDescriptor(procs.rectProc);
DisposeRoutineDescriptor(procs.rRectProc);
DisposeRoutineDescriptor(procs.ovalProc);
DisposeRoutineDescriptor(procs.arcProc);
DisposeRoutineDescriptor(procs.polyProc);
DisposeRoutineDescriptor(procs.rgnProc);
DisposeRoutineDescriptor(procs.bitsProc);
DisposeRoutineDescriptor(procs.commentProc);
Developing Your ColorSync-Supportive Application 121
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
DisposeRoutineDescriptor(procs.txMeasProc);
}

pascal void MyCountProfilesCommentProc (short kind,
short dataSize,
Handle dataHandle)

{
long selector;

switch (kind)
{

case cmBeginProfile
gCount ++; // We found a ColorSync 1.0 profile; increment the count.
break;

case cmComment;
// Break if dataSize is too small to be a selector.
if (dataSize <= 4) break;

// Since dataSize is >= 4, we can get a selector from the first long.
selector = *((long *)(*dataHandle));
if (selector == cmBeginProfileSel)

gCount ++; // We found a ColorSync 2.xprofile; increment the count.
break;

}
}

Extracting a Profile 3

Flattening refers to transferring a profile stored in an independent disk file to an
external profile format that can be embedded in a graphics document.
Unflattening refers to transferring from the embedded format to an
independent disk file.

This part of the sample application identifies the profile to unflatten, unflattens
the profile, creates a temporary profile, and disposes of the original. To perform
these tasks, the code must again draw the picture using the bottleneck routines.

Part A: Calling the Unflatten Function 3

Listing 3-10 shows the MyGetIndexedProfileFromPicHandle entry point function
that drives the process of unflattening the profile. The function creates a
122 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
universal procedure pointer (UPP), MyflattenUPP, that points to the low-level
data-transfer procedure.

A PICT handle may contain more than one profile. To identify the profile to
unflatten, the MyGetIndexedProfileFromPicHandle function contains an index
parameter that specifies the profile’s index. The function stores the index in the
global variable gIndex so that the value is accessible by the application’s other
functions that check for the correct profile and extract it. Then, the function calls
the CMUnflattenProfile function, passing it the MyflattenUPP pointer. This
invokes the MyUnflattenProc function shown in Listing 3-11.

The function MyGetIndexedProfileFromPicHandle, shown in Listing 3-10, first
calls CMUnflattenProfile (page 239) to create an independent file-based profile,
then calls the function CMOpenProfile (page 222) to open a temporary profile
reference to the file-based profile. It then calls CMCopyProfile (page 229) to create
a copy of the profile reference. Finally, the function disposes of the original
profile. The purpose for creating a temporary profile, copying it into the
specified location, then deleting the temporary profile, is to adhere to the
copyright protection for embedded profiles specified by the flags field in the
profile header.

Listing 3-10 Calling the CMUnflattenProfile function to extract an embedded profile

CMError MyGetIndexedProfileFromPicHandle (PicHandle pict,
unsigned long index,
CMProfileRef *prof,
CMProfileLocation *profLoc)

{
CMError theErr;
unsigned long refCon;
CMFlattenUPP myFlattenUPP;
Boolean preferredCMMNotFound;
Boolean tempCreated;
FSSpec tempSpec;
CMProfileRef tempProf;
CMProfileLocation tempProfLoc;

// Init for error handling.
theErr = noErr;
tempCreated = false;
tempProf = nil;
Developing Your ColorSync-Supportive Application 123
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
// Create a universal procedure pointer for the
// unflatten procedure shown in Listing 3-11.
myFlattenUPP = NewCMFlattenProc(MyUnflattenProc);

// Pass the pict as the refcon.
refCon = (unsigned long) pict;

// Set the global index variable to the index of the profile we’re looking for.
gIndex = index;

// The next call invokes the MyUnflattenProc shown in Listing 3-11.
//On return, tempSpec identifies the newly created profile on disk.
theErr = CMUnflattenProfile(&tempSpec, myFlattenUPP,(void*)&refCon,

&preferredCMMNotFound);
DisposeRoutineDescriptor(myFlattenUPP);// Dispose of the procedure pointer.
require(theErr == noErr, cleanup);
tempCreated = true;

// Open the newly created profile, create a temporary profile reference for it,
// copy the temporary reference, then close it and delete the profile file.
tempProfLoc.locType = cmFileBasedProfile;
tempProfLoc.u.fileLoc.spec = tempSpec;

theErr = CMOpenProfile(&tempProf, &tempProfLoc);
require(theErr == noErr, cleanup);

theErr = CMCopyProfile(prof, profLoc, tempProf);
require(theErr == noErr, cleanup);

// Do any necessary cleanup:close profile and delete file spec.
cleanup:

if (tempProf)
theErr = CMCloseProfile(tempProf);

if (tempCreated)
theErr = FSpDelete(&tempSpec);

return theErr;
}

124 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Part B: Unflattening the Profile 3

Prior to ColorSync 2.5, your transfer function is called by the CMM that handles
the unflatten operation. Starting with ColorSync 2.5, however, the ColorSync
Manager calls your transfer function directly, without going through the
preferred, or any, CMM.

When the code in MyGetIndexedProfileFromPicHandle (Listing 3-10) calls the
CMUnflattenProc function, passing it a pointer to the MyUnflattenProc function,
the MyUnflattenProc function (Listing 3-11) is called by ColorSync or by the
CMM (depending on the version of ColorSync) to perform the low-level profile
data transfer from the document file.

When the MyUnflattenProc function is called with an open command, the
function initializes global variables, creates a graphics world, and installs
bottleneck procedures in the graphics world. The only bottleneck procedure
actually used is MyUnflattenProfilesCommentProc, which checks the picture
comments as the picture is drawn offscreen to identify the desired profile. For a
general discussion of customizing QuickDraw’s bottleneck routines, see
“Customizing QuickDraw’s Text Handling” in Inside Macintosh: Text.

When the MyUnflattenProc function is called with a read command, the function
reads the appropriate segment of data from a chunk and returns it. To
accomplish this, it calls the MyDrawPicHandleUsingBottlenecks function with the
appropriate bottleneck procedure installed. In turn, this invokes the
MyUnflattenProfilesCommentProc shown in Listing 3-12.

When the MyUnflattenProc function is called with a close command, the
function releases any memory it allocated and disposes of the graphics world
and bottlenecks.

Listing 3-11 The unflatten procedure

pascal OSErr MyUnflattenProc (long command,
long *sizePtr,
void *dataPtr,
void *refConPtr)

{
OSErr theErr = noErr;
static CQDProcs procs;
static GWorldPtr offscreen;
PicHandle pict;
Developing Your ColorSync-Supportive Application 125
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
switch (command)
{

case cmOpenReadSpool:
theErr = NewSmallGWorld(&offscreen);
if (theErr)

return theErr;

/* Replace the QuickDraw bottleneck routines, mostly with routines
that do nothing, but also with our unflatten comments routine,
so that we can intercept the comments we are interested in and
ignore everything else. */

SetStdCProcs(&procs);
procs.textProc = NewQDTextProc (MyNoOpTextProc);
procs.lineProc = NewQDLineProc (MyNoOpLineProc);
procs.rectProc = NewQDRectProc (MyNoOpRectProc);
procs.rRectProc = NewQDRRectPro (MyNoOpRRectProc);
procs.ovalProc = NewQDOvalProc (MyNoOpOvalProc);
procs.arcProc = NewQDArcProc (MyNoOpArcProc);
procs.polyProc = NewQDPolyProc (MyNoOpPolyProc);
procs.rgnProc = NewQDRgnProc (MyNoOpRgnProc);
procs.bitsProc = NewQDBitsProc(MyNoOpBitsProc);
procs.commentProc = NewQDCommentProc (MyUnflattenProfilesCommentProc);
procs.txMeasProc = NewQDTxMeasProc (MyNoOpTxMeasProc);

gChunkBaseHndl = nil;
gChunkIndex = 0;
gChunkOffset = 0;
gChunkSize = 0;
break;

case cmReadSpool:
if (gChunkOffset > gChunkSize) /* If we overread the last chunk, */
{

return ioErr; /* use system I/O error value. */
}
if (gChunkOffset == gChunkSize) /* If we used up the last chunk, */
{

if (gChunkBaseHndl !=nil)
{

HUnlock(gChunkBaseHndl); /* dispose of the previous chunk. */
DisposeHandle(gChunkBaseHndl);
126 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
gChunkBaseHndl = nil;
}
gChunkIndex++; /* Read in a new chunk. */
gChunkOffset = 0;
gCount = 0;
gChunkCount = 0;
pict = *((PicHandle *)refConPtr);
theErr = MyDrawPicHandleUsingBottlenecks (pict, procs, offscreen);
/* This invokes MyUnflattenProfilesCommentProc shown in Listing 3-12. */
if (gChunkBaseHndl==nil) /* Check to see if we're overread. */

return ioErr; /* If so, return system I/O error value. */
HLock(gChunkBaseHndl);

}
if (gChunkOffset < gChunkSize)
{

*sizePtr = MIN(gChunkSize-gChunkOffset, *sizePtr);
BlockMove((Ptr)(&((*gChunkBaseHndl)[gChunkOffset])),

(Ptr)dataPtr, *sizePtr);
gChunkOffset += (*sizePtr);

}
break;

case cmCloseSpool:
if (gChunkBaseHndl != nil)
{

HUnlock(gChunkBaseHndl); /* Dispose of the previous chunk. */
DisposeHandle(gChunkBaseHndl);
gChunkBaseHndl = nil;

}
/* Dispose of our offscreen world and the routine descriptors

for our bottlenect routines. */
DisposeGWorld(offscreen);
DisposeRoutineDescriptor(procs.MyNoOpTextPrc);
DisposeRoutineDescriptor(procs.MyNoOpLinePrc);
DisposeRoutineDescriptor(procs.MyNoOpRectProc);
DisposeRoutineDescriptor(procs.MyNoOpRRectPrc);
DisposeRoutineDescriptor(procs.MyNoOpOvalProc);
DisposeRoutineDescriptor(procs.MyNoOpArcProc);
DisposeRoutineDescriptor(procs.MyNoOpPolyPrc);
DisposeRoutineDescriptor(procs.MyNoOpRgnProc);
DisposeRoutineDescriptor(procs.MyNoOpBitsProc);
Developing Your ColorSync-Supportive Application 127
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
DisposeRoutineDescriptor(procs.MyUnflattenProfilesCommentPrc);
DisposeRoutineDescriptor(procs.MyNoOpTxMeasPrc);
break;

default:
break;

}
return theErr;

}

Part C: Calling the Comment Procedure 3

When the MyUnflattenProc function’s MyDrawPicHandleUsingBottlenecks
function calls the MyUnflattenProfilesCommentProc function, the function shown
in Listing 3-12 finds the profile identified by the index, finds the correct segment
of data within the profile, and stores the data in the gChunkBaseHndl global
variable.

Listing 3-12 The comment procedure

pascal void MyUnflattenProfilesCommentProc (short kind,
short dataSize,
Handle dataHandle)

{
long selector;
OSErr theErr;

if (gChunkBaseHndl != nil) return;
/* The handle is in use; this shouldn’t happen. */

if (gCount > gIndex) return;
/* We have already found the profile. */

switch (kind)
{
case cmBeginProfile:

gCount ++; /* We found a version 1 profile. */
gChunkCount = 1; /* v1 profiles should only have 1 chunk. */
if (gCount != gIndex) break;

/* This is not the profile we're looking for. */
if (gChunkCount != gChunkIndex) break;
128 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* This is not the chunk we're looking for. */
gChunkBaseHndl = dataHandle;
theErr = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 0;
break;

case cmComment:
if (dataSize <= 4) break;

/* The dataSize too small for selector, so break. */
selector = *((long *)(*dataHandle));

/* Get the selector from the first long in data. */
switch (selector)
{

case cmBeginProfileSel:
gCount ++; /* We found a version 2 profile. */
gChunkCount = 1;
if (gCount != gIndex) break;

/* This is not the profile we're looking for. */
if (gChunkCount!=gChunkIndex) break;

/* This is not the chunk we're looking for. */
gChunkBaseHndl = dataHandle;
theErr = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 4;
break;

case cmContinueProfileSel:
gChunkCount ++;
if (gCount != gIndex) break;

/* This is not the profile we're looking for. */
if (gChunkCount!=gChunkIndex) break;

/* This is not the chunk we're looking for. */
gChunkBaseHndl = dataHandle;
theErr = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 4;
break;

case cmEndProfileSel:
/* Check to see if we're overreading. */
Developing Your ColorSync-Supportive Application 129
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
gChunkCount = 0;
break;

}
break;

}
}

Performing Optimized Profile Searching 3

Starting with version 2.5, ColorSync provides a profile cache and a new routine,
CMIterateColorSyncFolder (page 304), for optimized profile searching. The
sample code shown in Listing 3-13 through Listing 3-15 takes advantage of
optimized searching if ColorSync version 2.5 is available; if not, it performs a
search that is compatible with earlier versions of ColorSync. The compatible
search may take some advantage of the profile cache, but cannot provide fully
optimized results.

As background for the code samples in Listing 3-13 to Listing 3-15, you should
be familiar with the topics described in the following sections:

■ “Profile Location” (page 53)

■ “Profile Search Locations” (page 55)

■ “The Profile Cache and Optimized Searching” (page 57)

IMPORTANT

You cannot use the ColorSync Manager search functions to
search for ColorSync 1.0 profiles. ▲

The CMIterateColorSyncFolder function uses ColorSync’s profile cache to
supply your application with information about the profiles currently available
in the ColorSync Profiles folder. The function calls your callback routine once
for each available profile, supplying your routine with the profile header, script
code, name, and location, stored in a structure of type CMProfileIterateData
(page 366).

Even though there may be many profiles available, CMIterateColorSyncFolder
can take advantage of ColorSync’s profile cache to return profile information
quickly, and (if the cache is valid) without having to open any profiles. As a
result, your routine may be able to perform its function, such as building a list
of profiles to display in a pop-up menu, quickly and without having to open
each file-based profile.
130 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
An Iteration Function for Profile Searching With ColorSync 2.5 3

The CMIterateColorSyncFolderCompat function, shown in Listing 3-15 (page 135),
performs an optimized search using the CMIterateColorSyncFolder (page 304)
function if ColorSync version 2.5 is available. Otherwise, it calls
theCMNewProfileSearch (page 308) function, which is available in earlier versions
of ColorSync.

When you call the CMIterateColorSyncFolderCompat function, you pass a
universal procedure pointer to a filter procedure in the proc parameter.
CMIterateColorSyncFolderCompat uses that filter procedure when it performs an
optimized search with CMIterateColorSyncFolder. Listing 3-13 provides a
sample filter procedure called MyIterateProc.

The MyIterateProc function is called once for each available profile and merely
stores the names of all non-display profiles (such as printer and scanner
profiles) at an arbitrary position in a list. You would do something similar, for
example, to display a list of profiles in a dialog.

Note that the CMIterateColorSyncFolderCompat function works in a similar way
for ColorSync 2.5 and for earlier versions, although the search is much more
efficient with version 2.5. CMIterateColorSyncFolderCompat either calls the
CMIterateColorSyncFolder function, which calls the MyIterateProc function once
for each available profile, or it calls the CMNewProfileSearch (page 308) function,
which calls the ProfileSearchFilter function (Listing 3-14) once for each
available profile. The ProfileSearchFilter function in turn calls MyIterateProc,
so similar processing occurs.

Listing 3-13 An iteration function for profile searching with ColorSync 2.5

Pascal OSErr MyIterateProc(CMProfileIterateData* data, void* refcon)
{

Cell theCell;
// Assume we can cast refCon to a ListHandle.
ListHandle list = (ListHandle)refcon;

/* Assume we’re interested only in non-display profiles, such as printer
and scanner profiles. */

if (data->header.profileClass != cmDisplayClass)
{

/* This code adds the profile name at an arbitrary position
in a list. You could do something similar to display a
Developing Your ColorSync-Supportive Application 131
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
list of all available profiles. */
cell.v = LAddRow(1,999,list);
cell.h = 0;
// The name data in the iterate data structure is in Pascal format,

so we use the length byte to determine how many bytes to copy. */
LSetCell((Ptr)data->name+1, name[0], cell, list);
cell.h = 1;
// Store the profile's location information with the cell.
LSetCell((Ptr)data->location, sizeof(cmProfileLocation), cell, list);

}
// A more complicated function might need to return an error here.
return noErr;

};

A Filter Function for Profile Searching Prior to ColorSync 2.5 3

To search for profiles prior to version 2.5 of the ColorSync Manager, you use the
CMNewProfileSearch (page 308) function. You supply CMNewProfileSearch with a
search record of type CMSearchRecord (page 368) that identifies the search
criteria. If you also provide a pointer to a filter function, CMNewProfileSearch
uses the function to eliminate profiles from the search based on additional
criteria not defined by the search record. The ProfileSearchFilter function
shown in Listing 3-14 provides an example of a filter routine for searching with
the CMNewProfileSearch function.

Listing 3-14 defines the IterateCompatPtr data type, a pointer to a structure that
stores search information. When you call the CMIterateColorSyncFolderCompat
function shown in Listing 3-15, you pass a reference to the MyIterateProc
function (Listing 3-13) in the proc parameter. If ColorSync 2.5 is not available,
the CMIterateColorSyncFolderCompat function calls the CMNewProfileSearch
function. It passes the ProfileSearchFilter function (Listing 3-13) as the search
filter and it passes an IterateCompatPtr pointer as the refCon parameter. It sets
the proc field of the IterateCompatPtr pointer to the MyIterateProc function that
you passed in the proc parameter.

The CMNewProfileSearch function calls the ProfileSearchFilter function
(Listing 3-13) once for each profile. The ProfileSearchFilter function simply
casts the passed refCon pointer to an IterateCompatPtr, then calls the function
specified by the pointer’s proc field. As a result, the MyIterateProc function is
called once for each profile, just as it is when CMIterateColorSyncFolderCompat
calls CMIterateColorSyncFolder under ColorSync 2.5.
132 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Note that ProfileSearchFilter always returns true, indicating the profile
should be filtered out of the search result returned by CMNewProfileSearch,
because we’ve already gotten all the information we need from it. Note also that
ProfileSearchFilter uses the require macro, which is defined in “Poor Man’s
Exception Handling” (page 98).

Listing 3-14 A filter function for profile searching prior to ColorSync 2.5

// Declare a structure to use for searching with ColorSync versions prior to 2.5.
typedef struct IterateCompat
{

CMProfileIterateUPP proc;
OSErr osErr;
void* refCon;

} IterateCompatRec, *IterateCompatPtr;

static pascal Boolean ProfileSearchFilter (CMProfileRef prof, void *refCon)
{

OSErr theErr = noErr;
IterateCompatPtr refConCompatPtr;
CMProfileIterateData iterData;

// Cast refcon to our type.
refConCompatPtr = (IterateCompatPtr)refCon;

// If we had an error from an earlier profile, give up
// by branching to cleanup location.
theErr = refConCompatPtr->osErr;
require(theErr == noErr, cleanup); // require is defined in Listing 3-3 (page 98).

// Try to get the profile's location.
theErr = CMGetProfileLocation(prof, &iterData.location);
require(theErr == noErr, cleanup);

// Try to get the profile's header.
theErr = CMGetProfileHeader(prof, (CMAppleProfileHeader*)&iterData.header);
require(theErr == noErr, cleanup);

// Try to get the profile's name.
theErr = CMGetScriptProfileDescription(prof, iterData.name, &iterData.code);
Developing Your ColorSync-Supportive Application 133
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
require(theErr == noErr, cleanup);

iterData.dataVersion = cmProfileIterateDataVersion1;

// Call the iterate callback routine.
theErr = CallCMProfileIterateProc(refConCompatPtr->proc,

&iterData, refConCompatPtr->refCon);
require(theErr == noErr, cleanup);

cleanup:

if (theErr)
refConCompatPtr->osErr = theErr;

return true; // exclude the profile;
}

A Compatible Function for Optimized Profile Searching 3

Listing 3-15 provides sample code that performs an optimized profile search if
ColorSync 2.5 is available, but provides a search that is compatible with
previous versions if ColorSync 2.5 is not available.

When ColorSync 2.5 is available, CMIterateColorSyncFolderCompat simply calls
the function CMIterateColorSyncFolder (page 304), passing on the information it
received through its parameters. As a result, CMIterateColorSyncFolder calls the
MyIterateProc function, shown in Listing 3-13 (page 131), once for each
available profile. Your version of MyIterateProc can examine the passed
information for each profile and perform any required operation on the profiles
it is interested in.

When ColorSync 2.5 is not available, CMIterateColorSyncFolderCompat sets up a
search with the function CMNewProfileSearch (page 308). As part of this setup, it
initializes a structure of type IterateCompatRec, defined in Listing 3-14
(page 133), which it passes to CMNewProfileSearch for the refCon parameter. The
CMNewProfileSearch function in turn passes a pointer to the IterateCompatRec
structure as the refCon parameter to ProfileSearchFilter, which it calls once for
each available profile.

ProfileSearchFilter calls the MyIterateProc function, which gets a chance to
handle each profile, just as it does in the case where ColorSync 2.5 is available.
The main drawback is that without the availability of the profile cache and the
134 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
CMIterateColorSyncFolder function, searching through the profiles is likely to be
a much more time-consuming task.

Note that CMIterateColorSyncFolderCompat uses the require macro, which is
defined in “Poor Man’s Exception Handling” (page 98).

Listing 3-15 Optimized profile searching compatible with previous versions of
ColorSync

CMError CMIterateColorSyncFolderCompat (CMProfileIterateUPP proc,
 unsigned long *seed,
 unsigned long *count,
 void *refCon)

{
CMError theErr = noErr ;

/* Presume the caller passed a pointer to MyIterateProc to this
function in the proc parameter. */

if (ColorSync25Available()) // This routine is shown in Listing 3-1 (page 92).
return CMIterateColorSyncFolder(proc, seed, count, refCon);

else
{

CMProfileSearchRef searchResult;
CMSearchRecord searchSpec;
unsigned long count;
IterateCompatRec refConCompat;

/* Set up a search record to pass to CMNewProfileSearch. Include
procedure pointer to search filter from Listing 3-14 (page 133). */

searchSpec.filter = NewCMProfileFilterProc(ProfileSearchFilter);
searchSpec.searchMask = cmMatchAnyProfile;

/* Set up our private data structure for compatible (pre-ColorSync 2.5)
profile searching.
Pass the pointer to the MyIterateProc function, which was

presumably passed to this function in the proc parameter,
on to our filter routine, ProfileSearchFilter,
in the refCon parameter, using an IterateCompatRec structure. */

refConCompat.proc = proc;
refConCompat.osErr = noErr;
Developing Your ColorSync-Supportive Application 135
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
refConCompat.refCon = refCon;

// Start traditional search.
theErr = CMNewProfileSearch(&searchSpec,

(void*)&refConCompat, &count, &searchResult);
if (theErr == noErr)
{

// We don’t use the result, but still must dispose of it.
CMDisposeProfileSearch(searchResult);
theErr = refConCompat.osErr;

}
DisposeRoutineDescriptor(searchSpec.filter);

}

return theErr;
}

Searching for Specific Profiles Prior to ColorSync 2.5 3

Starting with version 2.5, you can do fast, optimized profile searching that takes
advantage of the profile cache added in ColorSync 2.5. For an overview, see
“The Profile Cache and Optimized Searching” (page 57). The sample code in
Listing 3-15 (page 135) takes advantage of optimized searching if ColorSync
version 2.5 is available; if not, it performs a search that is compatible with
earlier versions of ColorSync. The compatible search may take some advantage
of the profile cache, but cannot provide fully optimized results.

Listing 3-16, shown in this section, provides an additional example of the
searching mechanism available prior to ColorSync version 2.5.

IMPORTANT

You cannot use the ColorSync Manager search functions to
search for ColorSync 1.0 profiles. ▲

Your application can use the ColorSync Manager search functions to obtain a
list of profiles in the ColorSync Profiles folder that meet specifications you
supply in a search record. For example, you can use these functions to find all
profiles for printers that meet certain criteria defined in the profile. Your
application can walk through the resulting list of profiles and obtain the name
and script code of each profile corresponding to a specific index in the list. Your
application can then display a selection menu showing the names of the
136 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
profiles. Listing 3-16 shows sample code that takes an approach similar to the
one this example describes.

Note
You can also search the ColorSync Profiles folder for
profiles that match a profile identifier. For more
information, see “Searching for a Profile That Matches a
Profile Identifier” (page 139), and
CMProfileIdentifierFolderSearch (page 315). ◆

The MyProfileSearch function, shown in Listing 3-16, defines values for the
search specification record fields, including the search mask, and assigns those
values to the record’s fields after initializing the search result. Then
MyProfileSearch calls the CMNewProfileSearch function to search the ColorSync
Profiles folder for profiles that meet the search specification requirements. The
CMNewProfileSearch (page 308) function returns a one-based count of the
profiles matching the search specification and a reference to the search result list
of the matching profiles.

Next the MyProfileSearch function calls the CMSearchGetIndProfile (page 312)
function to obtain a reference to a specific profile corresponding to a specific
index into the search result list. Passing the profile reference returned by the
CMSearchGetIndProfile function as the foundProf parameter, MyProfileSearch
calls the CMGetScriptProfileDescription (page 256) function to obtain the
profile name and script code.

Finally, the MyProfileSearch function cleans up, calling the CMCloseProfile
function to close the profile and the CMDisposeProfileSearch function to dispose
of the search result list.

Listing 3-16 Searching for specific profiles in the ColorSync Profiles folder

// NOTE: The preferred mechanism for searching in ColorSync 2.5 is shown
// in Listing 3-15 (page 135).

/* field definitions for search */
#define kCMMType 'appl' /* ColorSync default CMM */
#define kProfileClass cmDisplayClass /* monitor */
#define kAttr0 0x00000000
#define kAttr1 0x00000002 /* Macintosh standard gamma */
Developing Your ColorSync-Supportive Application 137
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* Define mask to search for profiles that match on CMM type, profile class,
and attributes. */

#define kSearchMask (cmMatchProfileCMMType + cmMatchProfileClass + cmMatchAttributes)

void MyProfileSearch (void)
{

CMError cmErr;
CMProfileRef foundProf;
Str255 profName;
ScriptCode profScript;
CMSearchRecord searchSpec;
CMProfileSearchRef searchResult;
unsigned long searchCount;
unsigned long i;

/* Init for error handling. */
searchResult = NULL;

/* Specify search. */
searchSpec.CMMType = kCMMType;
searchSpec.profileClass = kProfileClass;
searchSpec.deviceAttributes[0]= kAttr0;
searchSpec.deviceAttributes[1] = kAttr1;

searchSpec.searchMask = kSearchMask;

searchSpec.filter= NULL; /* Filter proc is not used. */

cmErr = CMNewProfileSearch(&searchSpec, NULL, &searchCount, &searchResult);

if (cmErr == noErr)
{

for (i = 1; i <= searchCount; i++)
{

if (CMSearchGetIndProfile(searchResult, i, &foundProf) != noErr)
{

break;
}

cmErr = CMGetScriptProfileDescription(foundProf, profName, &profScript);
138 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
if (cmErr == noErr)
{

/* Assume profile name ScriptCode is smRoman. */
(void) printf("%s\n", p2cstr(profName));

}

(void) CMCloseProfile(foundProf);
}

}

if (searchResult != NULL)
{

CMDisposeProfileSearch(searchResult);
}

}

Searching for a Profile That Matches a Profile Identifier 3

Embedding a profile in an image guarantees that the image can be rendered
correctly on a different system. However, profiles can be large—the largest can
be more than several hundred kilobytes. The ColorSync Manager defines a
profile identifier structure, CMProfileIdentifier, that can identify a profile but
that takes up much less space than a large profile.

The profile identifier structure contains a profile header, an optional calibration
date, a profile description string length, and a variable-length profile
description string. Your application might use an embedded profile identifier,
for example, to change just the rendering intent or flag values in an image
without having to embed an entire copy of a profile. For more information on
the profile identifier structure, including a description of how a match is
determined between a profile reference and a profile identifier, see
CMProfileIdentifier (page 359).

IMPORTANT

A document containing an embedded profile identifier can
not necessarily be ported to different systems or
platforms. ▲

The ColorSync Manager provides the NCMUseProfileComment (page 290) routine
to embed profiles and profile identifiers in an open picture file. For information
on embedding, see “Embedding Profiles and Profile Identifiers” (page 112).
Developing Your ColorSync-Supportive Application 139
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Your application can embed profile identifiers in place of entire profiles, or in
addition to them. A profile identifier can refer to an embedded profile or to a
profile on disk.

The ColorSync Manager provides the CMProfileIdentifierListSearch
(page 316) routine for finding a profile identifier in a list of profile identifiers
and the CMProfileIdentifierFolderSearch (page 315) routine for finding a
profile identifier in the ColorSync Profiles folder.

When your application or device driver processes an image, it typically keeps a
list of profile references for each profile it encounters in the image. Each time it
encounters an embedded profile identifier, your application first calls the
CMProfileIdentifierListSearch function to see if there is already a matching
profile reference in its list. That function returns a list of profile references that
match the profile identifier. Although the returned list would normally contain
at most one reference, it is possible to have two or more matches. If the
CMProfileIdentifierListSearch routine does not find a matching profile
reference, your application calls the CMProfileIdentifierFolderSearch routine to
see if a matching profile can be found in the ColorSync Profiles folder.

Listing 3-17 demonstrates how your application can use the ColorSync
Manager’s search routines to obtain a profile reference for an embedded profile
identifier. It uses the following structure to store a list of profile identifiers,
along with a count of the number of items in the list.

typedef struct {
long count;
CMProfileRef profs[1];

} ProfileCacheList, **ProfileCacheHandle;

Listing 3-17 Searching for a profile that matches a profile identifier

CMError MyFindAndOpenProfileByIdentifier(ProfileCacheHandle profCache,
CMProfileIdentifierPtr unique,
Boolean *pFoundInCache,
CMProfileRef *pProf)

{
CMError theErr = noErr;
CMProfileRef prof = nil;
long cacheCount = (**profCache).count;
unsigned long foundCount = 0;
140 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
*pFoundInCache = false;

/* If there are any profile references in the cache (the list of profile
references for profiles or profile identifiers we have already
encountered) look there for a match with the passed profile identifier. */

if (cacheCount)
{

CMProfileRef *cacheList;

cacheList = (**profCache).profs;
foundCount = 1; // return no more than one match
theErr = CMProfileIdentifierListSearch(unique, cacheList, cacheCount,

&foundCount, &prof);
if (foundCount && !theErr)

*pFoundInCache = true;
else

prof = nil;
}

/* If we didn't find a match for the passed profile identifier in the list of
previously encountered profiles, look for a match on disk, in the
ColorSync Profiles folder */

if (!prof)
{

CMProfileSearchRef search = nil;
foundCount = 0;

theErr = CMProfileIdentifierFolderSearch(unique, &foundCount, &search);
/* If we found one or more matches, obtain a profile reference for the

first matching profile; if no error, dispose of the search result. */
if (!theErr)
{

if (foundCount)
theErr = CMSearchGetIndProfile(search, 1, &prof);

CMDisposeProfileSearch(search);
}

}

/* If we still didn't find a match for the passed profile identifier,
use the system profile. */
Developing Your ColorSync-Supportive Application 141
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
if (!prof)
{

theErr = CMGetSystemProfile(&prof);
}

if (theErr)
prof = nil;

*pProf = prof;
return theErr;

}

Although typically there is at most one profile reference in your application’s
list or one profile in the ColorSync Profiles folder that matches the searched-for
profile identifier, it is possible that two or more profiles may qualify. It is not an
error condition if either the CMProfileIdentifierListSearch or the
CMProfileIdentifierFolderSearch routine finds no matching profile.

Checking Colors Against a Destination Device’s Gamut 3

Different imaging devices (scanners, displays, printers) work in different color
spaces, and each can have a different gamut or range of colors that they can
produce. The process of matching colors between devices entails adjusting the
colors of an image from the color gamut of one device to the color gamut of
another device so that the resulting image looks as similar as possible to the
original image. Not all colors can be rendered on all devices. The rendering
intent used in the color transformation process dictates how the colors are
matched, strongly influencing the outcome. Your application can give a user
some control over the outcome by allowing the user to select the rendering
intent. However, some users might want to know in advance which colors are
out of gamut for the destination device so that they can choose other
appropriate colors within the gamut.

Using the ColorSync Manager general purpose color-checking functions, your
application can check the colors of a pixel map (using the CWCheckPixMap
(page 274) function), the colors of a bitmap (using the CWCheckBitMap (page 279)
function), or a list of colors (using the CWCheckColors function) against the color
gamut of the destination device and provide a warning when a color is out of
gamut for that device.

There are a number of ways in which your application can provide
gamut-checking services. For example, you can use gamut checking to see if a
142 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
given color is reproducible on a particular printer. If the color is not directly
reproducible—that is, if it is out of gamut—you could alert the user to that fact.

You can allow a user to specify a list of colors that fall within the gamut of a
source device to see if they fit within the gamut of a destination device before
the user color matches an image. Your application could display the results in a
window, indicating which colors are in the gamut and which are out. This
feature, too, gives the user the opportunity to test colors and select different
ones for portions of an image whose colors fall out of gamut. To handle this
feature, your application can call the CWCheckColors (page 283) function.

In addition to providing features that allow a user to anticipate which colors are
out of gamut for a particular device, your application can also show results.
Your application can provide a print preview dialog box, showing which colors
in a printed image, for example, are out of gamut for the image as it appears on
the screen.

For an image that your application prepares, for example, your application can
present a print preview dialog box that signifies those colors within the image
that the printer cannot accurately reproduce. Your application can also allow
users to choose whether and how to match colors in the image with those
available on the printer.

You can provide a gamut-checking feature that marks the areas of a displayed
image, showing the colors that do not fall within the destination device’s
gamut. For example, your application can color check an image against a
destination device and create a black-and-white version of the image drawn to
the display using black to indicate the portions of the source image that are out
of gamut. The CSDemo sample application takes this approach. For information
on how to obtain the CSDemo application, see “Extracting Profiles Embedded
in Pictures” (page 118).

Creating and Using Device Link Profiles 3

To accommodate users who use a specific configuration requiring a
combination of device profiles and possibly non-device profiles repeatedly over
time, your application can create device link profiles. A device link profile offers
a means of saving and storing a series of profiles corresponding to a specific
configuration in a concatenated format. This feature provides an economy of
effort for both your application and its user.
Developing Your ColorSync-Supportive Application 143
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
There are many uses for device link profiles. For example, a user might want to
store multiple profiles, such as various device profiles and color space profiles
associated with the creation and editing of an image.

Most users use the same device configuration to scan, view, and print graphics
over a period of time, often soft proofing images before they print them. To
enhance your application’s soft-proofing feature, you can allow users to store
the contents of the profiles involved in the soft-proofing process in a device link
profile. Your application can use the appropriate device link profile each time a
user enacts the soft-proofing feature, instead of opening a profile reference to
each of the profiles to create a color world to pass to the color-matching
functions. For additional information about soft proofing, see “Providing Soft
Proofs” (page 147).

A device link profile is especially useful when a scanner application does not
embed the source profile in the document containing the image it creates. By
storing the scanner’s profile, your application eliminates the need to query the
user for the appropriate source profile each time the user wants to soft proof
using the configuration involving that scanner.

A user may want to see how a scanned image will look when printed using a
specific printer. The user may want to look at many images captured on the
same scanner at different times before printing the image. Because the same
devices are involved in the process, if your application has offered the user the
opportunity to create device link profiles, your application could display a list
of device link profiles that the user had previously created for various
configurations and allow the user to select the appropriate one for the current
soft proofing.

Here are the steps your application should take in creating a device link profile:

1. Open the profiles corresponding to the devices and transformations
involved in the configuration and obtain references to them.

To create a device link profile, your application must first obtain references to
the profiles involved in the configuration. If the profile for an input device,
such as a scanner, is embedded in the document containing the image, you
must first extract the profile. For a description of how to obtain a profile
reference, see “Obtaining Profile References” (page 95). For information
describing how to extract a profile from a document, see “Extracting Profiles
Embedded in Pictures” (page 118).

2. Create an array containing references to the profiles, specifying the profile
references in processing order.
144 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
You supply the profile references as an array of type CMProfileRef within a
data structure of type CMConcatProfileSet. The order of the profiles must
correspond to the order in which you want the colors of the image to be
processed. For example, for soft proofing an image, you should specify the
scanner profile reference first, followed by the printer profile reference, and
then the display profile reference because the goal is to match the colors of
the scanned image to the color gamut of the printer for which the image is
destined and then display the results to the user.
In the count field, specify a one-based number identifying how many profiles
the array holds. A device link profile represents a one-way link between
devices.
Here is the CMConcatProfileSet data type:

struct CMConcatProfileSet {
unsigned short keyIndex; /* zero-based */
unsigned short count; /* one-based */
CMProfileRef profileSet[1];

};

You must adhere to the rules that govern the type of profiles you can specify
in the array. For example, the first and last profiles must be device profiles.
For a list of these rules, see CMConcatProfileSet (page 384).

3. Specify the index corresponding to the profile whose specified CMM is
used to perform the processing.

The header of each profile specifies a CMM for that profile. Only one CMM is
used for all transformations across the profiles of a device link profile. You
identify the profile whose CMM is used by supplying the zero-based index
of that profile in the keyIndex field of the CMConcatProfileSet (page 384) data
type.

IMPORTANT

See “How the ColorSync Manager Selects a CMM”
(page 84) for a complete description of the ColorSync
algorithm for selecting a CMM. ▲

4. Using the CMProfileLocation data type, provide a file specification for the
new device link profile.

If the function CWNewLinkProfile (page 267) is successful, the ColorSync
Manager creates a device link profile in the location that you specify, opens a
reference to the profile, and returns the profile reference to your application.
Developing Your ColorSync-Supportive Application 145
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
To tell the ColorSync Manager where to create the new profile, your
application must provide a file specification. The ColorSync Manager defines
a data structure of type CMProfileLocation containing a CMProfLoc union that
you use to give a file specification.See Listing 3-2 (page 97), which assigns
values to a CMProfileLocation data structure.

5. Call the CWNewLinkProfile function to create the device link profile.

After you set up CMConcatProfileSet and CMProfileLocation (page 362), your
application can call the function CWNewLinkProfile (page 267), passing these
values to it. If the function completes successfully, it returns a reference to the
newly created device link profile.
Note that you should not embed a device link profile into a document along
with an image that uses it, as embedded profiles specify source device
characteristics only.

6. Using the CWConcatColorWorld function, create a color world based on the
device link profile.

You can use a device link profile with the general purpose ColorSync
Manager functions only. To use a device link profile for a color-matching or
color gamut-checking function, you must first create a color world using the
CWConcatColorWorld function, passing to it a data structure of type
CMConcatProfileSet (page 384). The CMConcatProfileSet data structure is the
same data type that you used to specify the array of profiles when you
created the new device link profile. To create the color world, however, you
specify the device link profile as the only member of the CMConcatProfileSet
array. If the CWConcatColorWorld function is successful, it returns a reference
to a color world that your application can pass to other general purpose
functions for color-matching and color gamut-checking sessions. A device
link profile remains intact and available for use again after your application
calls the CWDisposeColorWorld (page 271) function to dispose of the
concatenated color world.

Considerations 3

Here are some points to consider about how the ColorSync Manager uses
information contained in the profiles comprising a device link profile:

■ When you use a device link profile, the quality flag setting—indicating
normal mode, draft mode, or best mode—specified by the first profile
prevails for the entire session; the quality flags of following profiles in the
146 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
sequence are ignored. The quality flag setting is stored in the flags field of
the profile header.

■ The ColorSync Manager uses the rendering intent specified by the first
profile to color match to the second profile, the rendering intent specified by
the second profile to color match to the third profile, and so on through the
series of concatenated profiles.

When your application is finished with the device link profile, it must close the
profile with the CMCloseProfile function.

Providing Soft Proofs 3

Your application can use ColorSync to provide soft-proofing. Soft-proofing
enables a user to preview the printed results of a color image on the system’s
display or local printer without actually outputting the image to the printer that
will produce the final image. The destination printer’s profile provides the
ColorSync Manager with the information required to determine how the colors
of the image will appear when printed. You can soft proof an image by showing
on the system’s display the outcome a printer would produce because most
displays support a wider color gamut than do printers. Therefore, a display will
probably be able to show all the colors a printer could support.

Providing a feature that simulates the printed outcome for the user to preview
can save users considerable time and cost by allowing them to intervene and
adjust colors before sending the image to a printing shop. For example, without
the ability to soft proof and correct the colors of an image using a color
management system such as ColorSync, a graphics designer producing a poster
to be printed by a printing press would require the services of a prepress shop
to achieve the correct results before sending the image to the printing press. The
graphics designer might print the image to a local desktop printer with a color
gamut more limited than that of a printing press and then submit the output to
the prepress to correct the colors, repeating this process until the results were
satisfactory. Your application can eliminate the need for the intermediate steps
by allowing the user to color match the image to the color gamut of the final
printing press, display the image, and adjust the colors accordingly.

You can use the general purpose color-matching functions CWMatchPixMap
(page 272) and CWMatchBitmap (page 276) to perform the color matching, or you
can match a list of colors using the CWMatchColors (page 281) function. To use
these functions, your application must first define a color world that
encompasses the profiles for the devices involved in the soft-proofing process.
Developing Your ColorSync-Supportive Application 147
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
For example, suppose a user intends to create a color image by drawing to the
display, then color matching the image to the color gamut of the printing press
and printing the image to a local desktop printer before delivering it to the
printing press. The user intends to repeat this process until he or she is satisfied
with the color rendering. To allow the user to do this, your application must
build a color world using the profile for the display device, the profile for the
printing press, and the profile for the local desktop printer; you must specify
the profiles in processing order. Because the process involves three profiles,
your application must use the function CWConcatColorWorld (page 265) to set up
the color world. “Creating a Color World to Use With the General Purpose
Functions” (page 105) describes how to set up a color world.

You can preserve the series of profiles from a soft-proofing process for future
use by creating a device link profile representing the configuration and passing
the device link profile to the CWConcatColorWorld function to set up a color
world. For information on how to create and use a device link profile to build a
color world, see “Creating and Using Device Link Profiles” (page 143).

Your application can also use the QuickDraw-specific NCMBeginMatching
(page 285) and CMEndMatching (page 287) functions for soft proofing of a color
image drawn to the display that a user wants to color match to the gamut of a
printing press and print to a desktop printer.

The NCMBeginMatching function matches the colors using the two profiles that
you specify, and the CMEndMatching function terminates the color-matching
session. Because the NCMBeginMatching function takes two profiles only—a
source profile and a destination profile—you must call sets of these functions to
enact soft proofing.

QuickDraw matches to the most recently added profiles first. Therefore, to use
the NCMBeginMatching and CMEndMatching pair to perform soft proofing from a
displayed image to a printing press output image to a desktop printer image,
you would first call the NCMBeginMatching function with the printing press to
desktop printer profile references and then call NCMBeginMatching with the
display to printing press profile references. QuickDraw will color match all
drawing from display to printing press and then to the desktop printer.

To use the NCMBeginMatching function, you specify the source and destination
profiles. Passing NULL as the source profile assures that the ColorSync Manager
uses the system profile as the source profile. Similarly, passing NULL as the
destination profile uses the system profile as the destination profile.
148 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Calibrating a Device 3

A calibration application either creates a profile or tunes a profile to represent
the current state of the device.

A profile contains two types of device information: the actual calibration
information describing how to perform the color match and the device settings
at the time the match was made, for example, paper type, ink flow, or film
exposure time. A device may have several profiles, each for a different setting,
such as paper type or ink.

Your calibration program should first turn off matching on the device and
generate its image. You should then perform the calibration and generate a
profile. For related information, see “Monitor Calibration and Profiles”
(page 67)

Accessing a Resource-Based Profile With a Procedure 3

The ColorSync Manager provides for multiple concurrent accesses to a single
profile through the use of a private data structure called a profile reference. When
you call the CMOpenProfile (page 222) function to open a profile or the
CMNewProfile (page 227), CWNewLinkProfile (page 267), or CMCopyProfile
(page 229) functions to create or copy a profile, you pass a profile location and
the function returns a profile reference. To specify the profile location, you use a
structure of type CMProfileLocation, as described in “Opening a Profile and
Obtaining a Reference to It” (page 95).

A ColorSync profile that you open or create is typically stored in one of the
following locations:

■ In a disk file. The u field (a union) of the CMProfileLocation data structure
contains a file specification for a profile that is disk-file based. This is the
most common way to store a ColorSync profile.

■ In relocatable memory. The u field of the profile location data structure
contains a handle specification for a profile that is stored in a handle.

■ In nonrelocatable memory. The u field of the profile location data structure
contains a pointer specification for a profile that is pointer based.

■ In an arbitrary location accessed by a procedure you provide. The u field of
the profile location data structure contains a universal procedure pointer to
your access procedure, as well a pointer that may point to data associated
with your procedure.
Developing Your ColorSync-Supportive Application 149
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
The sample code in Listing 3-18 to Listing 3-29 demonstrates how to use a
profile access procedure to provide access to a resource-based profile.

Note
While the following sample code includes some error
handling, more complete error handling is left as an
exercise for the reader. ◆

Defining a Data Structure for a Resource-Based Profile 3

The sample code listings that follow use the application-defined
MyResourceLocRec data structure. It stores information to describe a
resource-based profile, including

■ the resource file specification

■ the resource type

■ the resource ID

■ the resource file reference

■ the resource handle

■ the profile access procedure pointer

■ the resource name

struct MyResourceLocRec {
FSSpec resFileSpec;
ResType resType;
short resID;
short resFileRef;
Handle resHandle;
CMProfileAccessUPP proc;
Str255 resName;

};

typedef struct MyResourceLocRec MyResourceLocRec, *MyResourceLocPtr;

The ColorSync Manager defines the CMProfileAccessUPP type as follows:

typedef UniversalProcPtr CMProfileAccessUPP;
150 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Setting Up a Location Structure for Procedure Access to a
Resource-Based Profile 3

The MyCreateProcedureProfileAccess routine shown in Listing 3-18 sets up a
CMProfileLocation (page 362) structure for procedure access to a resource-based
profile. The MyDisposeProcedureProfileAccess routine, shown in Listing 3-19,
disposes of memory allocated by MyCreateProcedureProfileAccess. Your
application uses these routines (or similar ones that you write) in the following
way:

1. Before calling a ColorSync Manager routine such as CMCopyProfile
(page 229), you call the MyCreateProcedureProfileAccess routine to set up a
CMProfileLocation structure that you can pass to the ColorSync Manager
routine. The location structure specifies your profile-access procedure and
may provide other information as well. A sample profile-access procedure is
shown in Listing 3-20.

2. During the course of its operations, the ColorSync Manager may call your
profile-access procedure many times.

3. After the ColorSync Manager routine has completed its operation, and if
your application does not need to use the CMProfileLocation structure for
another operation, you call the MyDisposeProcedureProfileAccess routine to
dispose of memory allocated by MyCreateProcedureProfileAccess.

For the sample MyCreateProcedureProfileAccess routine shown in Listing 3-18,
you pass a pointer to a CMProfileLocation structure to fill in, a pointer to a file
specification for the resource file containing the profile resource, the type of the
resource, the ID for the resource, and optionally the name of the resource
(stored as a Pascal string, where the first byte is a length byte for the string).

Note
Listing 3-18 assumes the profile access routine,
MyCMProfileAccessProc, is within the scope of the
MyCreateProcedureProfileAccess routine. Optionally, you
could add a parameter to pass in a procedure pointer for
the profile access routine. ◆
Developing Your ColorSync-Supportive Application 151
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-18 Setting up a location structure for procedure access to a resource-based
profile

OSErr MyCreateProcedureProfileAccess (
CMProfileLocation *profileLocation,
FSSpec *resourceSpec,
Str255 resourceName,
OSType resourceType,
short resourceID)

{
 OSErr theErr = noErr;

MyResourceLocPtr resourceInfo;

/* Allocate memory for our private resource info structure. */
resourceInfo = (MyResourceLocPtr) NewPtrClear(sizeof(MyResourceLocRec));
if (!resourceInfo)

theErr = MemError();

if (!theErr)
{

/* Set up our private resource info structure. */
resourceInfo->resFileSpec = *resourceSpec;
resourceInfo->resType = resourceType;
resourceInfo->resID = resourceID;
resourceInfo->resFileRef = 0;
resourceInfo->resHandle = 0;
resourceInfo->proc = NewCMProfileAccessProc(MyCMProfileAccessProc);
/* If a resource name was passed in, copy it to the structure;

since it’s a Pascal string, first byte is length;
note that BlockMoveData is faster than BlockMove for a
move that involves data only. */

if (resourceName)
BlockMoveData(resourceName, resourceInfo->resName,

resourceName[0]+1);

/* set up the profile location structure */
profileLocation->locType = cmProcedureBasedProfile;
profileLocation->u.procLoc.refCon = (void*) resourceInfo;
profileLocation->u.procLoc.proc = resourceInfo->proc;
152 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
}
return theErr;

}

If the MyCreateProcedureProfileAccess routine is able to set up the profile
location pointer for procedure access to a resource-based profile, it returns a
value of noErr.

Disposing of a Resource-Based Profile Access Structure 3

Your application calls the MyDisposeProcedureProfileAccess routine
(Listing 3-19) to dispose of any memory allocated by the
MyCreateProcedureProfileAccess routine (Listing 3-18).

Listing 3-19 Disposing of a resource-based profile access structure

void MyDisposeProcedureProfileAccess (CMProfileLocation *profileLocation)
{

DisposeRoutineDescriptor(profileLocation->u.procLoc.proc);

/* Dispose of our private resource info structure. */
 DisposePtr((Ptr)profileLocation->u.procLoc.refCon);
}

This routine first disposes of the universal procedure pointer to your profile
access procedure, then disposes of the pointer used to store resource data in a
MyResourceLocRec structure.

Responding to a Procedure-Based Profile Command 3

For information on the procedure declaration for a profile access procedure, see
MyCMProfileAccessProc (page 348). The ColorSync Manager calls your
procedure when the profile is created, initialized, opened, read, updated, or
closed, passing a command constant that specifies the current command. Your
profile access procedure must be able to respond to each of the following
command constants, which are described in “Profile Access Procedure
Operation Codes” (page 395):
Developing Your ColorSync-Supportive Application 153
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
enum {
cmOpenReadAccess = 1,
cmOpenWriteAccess = 2,
cmReadAccess = 3,
cmWriteAccess = 4,
cmCloseAccess = 5,
cmCreateNewAccess = 6,
cmAbortWriteAccess = 7,
cmBeginAccess = 8,
cmEndAccess = 9

};

The profile access procedure shown in Listing 3-20, MyCMProfileAccessProc,
consists of a single switch statement, which calls the appropriate routine based
on the value of the command parameter. Each of the nine routines called by
MyCMProfileAccessProc is described and listed in the sections that follow
Listing 3-20, and each refers back to Listing 3-20.

Listing 3-20 Responding to a procedure-based profile command

pascal OSErr MyCMProfileAccessProc (long command,
long offset,
long *sizePtr,
void *dataPtr,
void *refConPtr)

{
 OSErr theErr = noErr;

switch (command)
{

case cmBeginAccess:
theErr = DoBeginAccess(refConPtr);
break;

case cmCreateNewAccess:
theErr = DoCreateNewAccess(refConPtr);
break;

case cmOpenReadAccess:
theErr = DoOpenReadAccess(refConPtr);
break;
154 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
case cmOpenWriteAccess:
theErr = DoOpenWriteAccess(sizePtr, refConPtr);
break;

case cmReadAccess:
theErr = DoReadAccess(offset, sizePtr, dataPtr, refConPtr);
break;

case cmWriteAccess:
theErr = DoWriteAccess(offset, sizePtr, dataPtr, refConPtr);
break;

case cmCloseAccess:
theErr = DoCloseAccess(refConPtr);
break;

case cmAbortWriteAccess:
theErr = DoAbortWriteAccess(refConPtr);
break;

case cmEndAccess:
theErr = DoEndAccess(refConPtr);
break;

default:
theErr = paramErr;
break;

}

return theErr;
}

Note that the MyCMProfileAccessProc routine passes its parameter data as
necessary to the routines it calls. The parameters have the following values:

command A command value indicating the operation to perform. The
possible values for command constants are shown elsewhere in
this section.

offset For read and write operations, the offset from the beginning of
the profile at which to read or write data.
Developing Your ColorSync-Supportive Application 155
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
size For the cmReadAccess and cmWriteAccess command constants, a
pointer to a value indicating the number of bytes to read or
write; for the cmOpenWriteAccess command, the total size of the
profile. On output after reading or writing, the actual number of
bytes read or written.

data A pointer to a buffer containing data to read or write. On
output, for a read operation, contains the data that was read.

refConPtr A reference constant pointer that can store private data for the
MyCMProfileAccessProc procedure. For example, Listing 3-18
(page 152) shows how to set up a location structure for
procedure access to a resource-based profile. That routine sets
the location structure’s refCon field to a pointer to a
MyResourceLocRec structure, which is described in “Defining a
Data Structure for a Resource-Based Profile” (page 150). That
same structure pointer is passed to the MyCMProfileAccessProc
routine in the refConPtr parameter, and provides access to all
the stored information about the resource location.

Handling the Begin Access Command 3

When your application calls the CMOpenProfile (page 222) routine, specifying as
a location a procedure-based profile, the ColorSync Manager invokes your
specified profile access procedure with the cmBeginAccess command. This gives
your procedure an opportunity to perform any required initialization or
validation tasks, such as determining whether the data pointed to by the refcon
parameter is valid. If your procedure returns an error (any value except noErr),
the ColorSync Manager will not call your profile access procedure again.

For the cmBeginAccess command, the sample profile access procedure shown in
Listing 3-20 calls the DoBeginAccess routine, shown in Listing 3-21.
DoBeginAccess interprets the refcon parameter as a MyResourceLocPtr type. If the
parameter does not have a resource type of kProcResourceType, DoBeginAccess
returns an invalid profile error, which effectively cancels the procedure-based
profile access.
156 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-21 Handling the begin access command

static OSErr DoBeginAccess (void *refcon)
{

OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

resourceInfo->resFileRef = 0;

if (resourceInfo->resType != kProcResourceType)
theErr = cmInvalidProfileLocation;

else
theErr = noErr;

return theErr;
}

Handling the Create New Access Command 3

When your application calls the CMCopyProfile (page 229) or CMUpdateProfile
(page 226) routine, specifying as a location a procedure-based profile, the
ColorSync Manager invokes the specified profile access procedure with the
cmBeginAccess command, as described in “Handling the Begin Access
Command” (page 156).

If your profile access procedure returns without error, ColorSync calls the
procedure again with the cmCreateNewAccess command. Your procedure should
create a new data stream for the actual physical location of the profile. The size
of the profile is not known at this point.

For the cmCreateNewAccess command, the sample profile access procedure
shown in Listing 3-20 calls the DoCreateNewAccess routine. DoCreateNewAccess
interprets the refcon parameter as a MyResourceLocPtr type, and calls the
Toolbox routine FSpCreateResFile to create an empty resource fork based on the
file specification provided by the MyResourceLocPtr type. If the resource fork
does not already exist and cannot be created, DoCreateNewAccess returns an
error.

Note that for this example, the file type for a resource-based profile was chosen
arbitrarily to be 'rprf'.
Developing Your ColorSync-Supportive Application 157
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Listing 3-22 Handling the create new access command

OSErr DoCreateNewAccess (void *refcon)
{

OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

FSpCreateResFile(&(resourceInfo->resFileSpec), '????', 'rprf', 0);
theErr = ResError();
if (theErr == dupFNErr)

theErr = noErr;

 return theErr;
}

Handling the Open Read Access Command 3

When your application calls a ColorSync Manager routine to read information
from a procedure-based profile, the ColorSync Manager first calls your profile
access procedure with the cmOpenReadAccess command. Then it calls your profile
access routine once for each read session. The sample profile access procedure
shown in Listing 3-20 calls the DoOpenReadAccess routine.

The DoOpenReadAccess routine shown in Listing 3-23 uses information from the
refcon parameter, interpreted as type MyResourceLocPtr, to open the resource
fork for the resource-based profile with read permission. If it can open the
resource file, DoOpenReadAccess then attempts to load the profile resource.

The DoOpenReadAccess routine shows good citizenship by saving the current
resource file before performing its operations and restoring the resource file
afterward.

Listing 3-23 Handling the open read access command

static OSErr DoOpenReadAccess (void *refcon)
{

OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

short currentResFile;
158 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* Save current resource file. */
currentResFile = CurResFile();

 /* Open the file's resource fork. */
resourceInfo->resFileRef = FSpOpenResFile(&(resourceInfo->resFileSpec), fsRdPerm);
theErr = ResError();

/* Get the resource handle, but don’t force it to be loaded into memory. */
if (!theErr)
{

SetResLoad(false);
resourceInfo->resHandle = GetResource(resourceInfo->resType,

resourceInfo->resID);
theErr = ResError();
SetResLoad(true);

}

/* Restore previous resource file. */
UseResFile(currentResFile);

return theErr;
}

Handling the Open Write Access Command 3

When your application calls the CMUpdateProfile (page 226) routine to update a
procedure-based profile or the CMCopyProfile (page 229) routine to copy a
profile, the ColorSync Manager calls your profile access procedure with the
cmOpenWriteAccess command. The sample profile access procedure shown in
Listing 3-20 calls the DoOpenWriteAccess routine.

The DoOpenWriteAccess routine shown in Listing 3-24 uses information from the
refcon parameter, interpreted as type MyResourceLocPtr, to open the resource
fork for the resource-based profile with read/write permission. If it can open
the resource file, DoOpenWriteAccess then attempts to open the specified profile
resource. If it can’t open the resource, DoOpenWriteAccess creates a new resource.
It then sets the size of the resource based on the passed setProfileSize pointer
value and updates the resource file.

The DoOpenWriteAccess routine shows good citizenship by saving the current
resource file before performing its operations and restoring the resource file
afterward.
Developing Your ColorSync-Supportive Application 159
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Note
If the cmOpenWriteAccess command succeeds, the ColorSync
Manager guarantees an eventual call to the profile access
procedure with the cmCloseAccess command, possibly after
multiple cmWriteAccess commands, and possibly after a
cmAbortWriteAccess command. ◆

Listing 3-24 Handling the open write access command

static OSErr DoOpenWriteAccess (long *setProfileSize, void *refcon)
{

OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

Size resourceSize;
short currentResFile;

/* Save current resource file. */
currentResFile = CurResFile();

 /* Open the file's resource fork. */
 resourceInfo->resFileRef = FSpOpenResFile(&(resourceInfo->resFileSpec),

fsRdWrPerm);
 theErr = ResError();

/* Get the resource handle, but don’t force it to be loaded into memory. */
if (!theErr)
{

SetResLoad(false);
resourceInfo->resHandle = GetResource(resourceInfo->resType,

resourceInfo->resID);
theErr = ResError();
SetResLoad(true);

}

/* Call GetResourceSizeOnDisk to see if resource is already there. */
if (!theErr)
{

/* Get size of the resource. */
resourceSize = GetResourceSizeOnDisk(resourceInfo->resHandle);
theErr = ResError();
160 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
}

/* If the above call to GetResourceSizeOnDisk returns resNotFound,
then we need to create a new resource */

if (theErr == resNotFound)
{

/* Allocate a temporary handle just so that we can call AddResource. */
 resourceInfo->resHandle = NewHandle(sizeof(long));
 theErr = MemError();

 /* Add resource to the file and release the temp handle. */
 if (!theErr)
 {

AddResource(resourceInfo->resHandle, resourceInfo->resType,
 resourceInfo->resID, resourceInfo->resName);

theErr = ResError();
ReleaseResource(resourceInfo->resHandle);

}

/* Get the resource handle, but don’t force it to be loaded into memory. */
if (!theErr)
{

SetResLoad(false);
resourceInfo->resHandle = GetResource(resourceInfo->resType,

resourceInfo->resID);
theErr = ResError();
SetResLoad(true);

}
}

/* Change the resource size to fit the profile. */
if (!theErr)
{

SetResourceSize(resourceInfo->resHandle, *setProfileSize);
theErr = ResError();

}

/* Force an update of the resource file. */
if (!theErr)
{

UpdateResFile(resourceInfo->resFileRef);
Developing Your ColorSync-Supportive Application 161
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
theErr = ResError();
}

/* Restore previous resource file. */
UseResFile(currentResFile);

return theErr;
}

Handling the Read Access Command 3

When your application calls a ColorSync Manager routine to read information
from a procedure-based profile, the ColorSync Manager first calls your profile
access procedure with the cmOpenReadAccess command, as described in
“Handling the Open Read Access Command” (page 158). Your profile access
routine can be called with the cmReadAccess command at any time after the
cmOpenReadAccess command is called. When the sample profile access procedure
shown in Listing 3-20 receives the cmReadAccess command, it calls the
DoReadAccess routine.

The DoReadAccess routine shown in Listing 3-25 uses the refcon parameter,
interpreted as type MyResourceLocPtr, to get a resource handle for the
resource-based profile. From other parameters, it gets values for the offset at
which to start reading, the number of bytes to read, and a pointer to a buffer in
which to store the data that it reads. It then calls the Toolbox routine
ReadPartialResource to do the actual reading.

If an error occurs while reading, DoReadAccess returns the error.

Listing 3-25 Handling the read access command

static OSErr DoReadAccess (long offset,
long *sizePtr,
void *dataPtr,
void *refcon)

{
OSErr theErr;

 MyResourceLocPtr resourceInfo = refcon;

ReadPartialResource(resourceInfo->resHandle,
offset, dataPtr, *sizePtr);
162 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
theErr = ResError();

return theErr;
}

Handling the Write Access Command 3

When your application calls the CMUpdateProfile (page 226) routine to update a
procedure-based profile, the ColorSync Manager first calls your profile access
procedure with the cmOpenWriteAccess command. The DoOpenWriteAccess
routine shown in Listing 3-24 performs certain operations to prepare to write a
resource-based profile.

Your profile access routine can be called with the cmWriteAccess command at
any time after the cmOpenWriteAccess command is called. When the sample
profile access procedure shown in Listing 3-20 receives the cmWriteAccess
command, it calls the DoWriteAccess routine.

The DoWriteAccess routine shown in Listing 3-26 uses the refcon parameter,
interpreted as type MyResourceLocPtr, to get a resource handle for the
resource-based profile. From other parameters, it gets values for the offset at
which to start writing, the number of bytes to write, and a pointer to a buffer
from which to get the data that it writes. It then calls the Toolbox routine
WritePartialResource to do the actual writing.

If an error occurs while writing, DoWriteAccess returns the error.

Note
After ColorSync calls the profile access procedure with the
cmWriteAccess command, ColorSync is guaranteed to
eventually call the profile access procedure with the
cmCloseAccess command—possibly after additional calls
with the cmWriteAccess command, and possibly after a call
with the cmAbortWriteAccess command. ◆

Listing 3-26 Handling the write access command

static OSErr DoWriteAccess (long offset,
long *sizePtr,
void *dataPtr,
void *refcon)
Developing Your ColorSync-Supportive Application 163
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
{
OSErr theErr;

 MyResourceLocPtr resourceInfo = refcon;

WritePartialResource(resourceInfo->resHandle,
offset, dataPtr, *sizePtr);

theErr = ResError();

return theErr;
}

Handling the Close Access Command 3

The ColorSync Manager calls your profile access procedure with the
cmCloseAccess command to indicate that reading or writing is finished for the
moment. A cmCloseAccess command can be followed by a cmOpenReadAccess
command to begin reading again, a cmOpenWriteAccess command to begin
writing again, or a cmEndAccess command to terminate the procedure-based
profile access.

The sample profile access procedure shown in Listing 3-20 calls the
DoCloseAccess routine.

The DoCloseAccess routine shown in Listing 3-27 uses information from the
refcon parameter, interpreted as type MyResourceLocPtr, to close and update the
resource file for the resource-based profile. If DoCloseAccess is unsuccessful, it
returns an error value.

Listing 3-27 Handling the close access command

static OSErr DoCloseAccess (void *refcon)
{

OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

/* Close and update resource file. */
if (resourceInfo->resFileRef)
{

CloseResFile(resourceInfo->resFileRef);
theErr = ResError();
resourceInfo->resFileRef = 0;
164 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
}
else theErr = paramErr;

return theErr;
}

Handling the Abort Write Access Command 3

If an error occurs between a cmOpenWriteAccess command and a cmCloseAccess
command, the ColorSync Manager calls your profile access procedure with the
cmAbortWriteAccess command. This allows your access procedure to perform
any cleanup necessary for the partially written profile.

For the cmAbortWriteAccess command, the sample profile access procedure
shown in Listing 3-20 calls the DoAbortWriteAccess routine.

The DoAbortWriteAccess routine shown in Listing 3-28 uses information from
the refcon parameter, interpreted as type MyResourceLocPtr, to call the Toolbox
routine RemoveResource to delete the partially written resource. If
DoAbortWriteAccess is unsuccessful, it returns an error value.

Note
The ColorSync Manager will call your profile access
procedure with the cmCloseAccess command after a
cmAbortWriteAccess command. ◆

Listing 3-28 Handling the abort write access command

static OSErr DoAbortWriteAccess (void *refcon)
{
 OSErr theErr;
 MyResourceLocPtr resourceInfo = refcon;

/* Delete the resource that we started. */
if (resourceInfo->resHandle)
{

RemoveResource(resourceInfo->resHandle);
theErr = ResError();

}
else theErr = paramErr;
Developing Your ColorSync-Supportive Application 165
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
return theErr;
}

Handling the End Access Command 3

When access to a procedure-based profile is complete, the ColorSync Manager
calls your profile access procedure with the cmEndAccess command. This allows
your procedure to do any final cleanup, such as freeing memory allocated by
the procedure.

For the cmEndAccess command, the sample profile access procedure shown in
Listing 3-20 calls the DoEndAccess routine. Because there is no additional
memory to free or other cleanup to take care of, the DoEndAccess routine shown
in Listing 3-29 does nothing.

Note
The MyCreateProcedureProfileAccess routine, shown in
Listing 3-18, does allocate memory, which is freed by a call
to the MyDisposeProcedureProfileAccess routine, shown in
Listing 3-19. Your application calls the
MyCreateProcedureProfileAccess routine before calling a
ColorSync Manager routine such as CMCopyProfile with a
procedure-based profile. After the copy is complete, your
application calls the MyDisposeProcedureProfileAccess
routine to perform any necessary deallocation. ◆

Listing 3-29 Handling the end access command

pascal OSErr DoEndAccess (void *refcon)
{
 OSErr theErr = noErr;

 return theErr;
}

166 Developing Your ColorSync-Supportive Application

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Summary of the ColorSync Manager 3

This section provides a quick-reference summary of the functions, data types,
and constants that make up the ColorSync Manager programming interface.

Functions 3

Accessing Profiles
pascal CMError CMOpenProfile (CMProfileRef *prof,

const CMProfileLocation *theProfile);

pascal CMError CMCloseProfile (CMProfileRef prof);

pascal CMError CMProfileModified (CMProfileRef prof,
Boolean *modified);

pascal CMError CMUpdateProfile (CMProfileRef prof);

pascal CMError CMNewProfile (CMProfileRef *prof,
const CMProfileLocation *theProfile);

pascal CMError CMCopyProfile (CMProfileRef *targetProf,
const CMProfileLocation *targetLocation,
CMProfileRef prof);

pascal CMError CMCloneProfileRef (CMProfileRef prof);

pascal CMError CMGetProfileRefCount (
CMProfileRef prof,
long *count);

/* NCMGetProfileLocation is new in ColorSync 2.5 */

pascal CMError NCMGetProfileLocation (
CMProfileRef prof,
CMProfileLocation * profLoc,
unsigned long * locationSize);
Summary of the ColorSync Manager 167
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* CMGetProfileLocation is not recommended in ColorSync 2.5 */

pascal CMError CMGetProfileLocation (
CMProfileRef prof,
CMProfileLocation *theProfile);

pascal CMError CMValidateProfile (CMProfileRef prof,
Boolean *valid,
Boolean *preferredCMMnotfound);

/* Use of CMFlattenProfile is changed in ColorSync 2.5 */

pascal CMError CMFlattenProfile (CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

/* Use of CMUnflattenProfile is changed in ColorSync 2.5 */

pascal CMError CMUnflattenProfile(FSSpec *resultFileSpec,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

Accessing Profile Elements
pascal CMError CMProfileElementExists (

CMProfileRef prof,
OSType tag,
Boolean *found);

pascal CMError CMCountProfileElements (
CMProfileRef prof,
unsigned long *elementCount);

pascal CMError CMGetProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long *elementSize,
void *elementData);

pascal CMError CMGetProfileHeader (CMProfileRef prof,
CMAppleProfileHeader *header);
168 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal CMError CMGetPartialProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long offset,
unsigned long *byteCount,
void *elementData);

pascal CMError CMSetProfileElementSize (
CMProfileRef prof,
OSType tag,
unsigned long elementSize);

pascal CMError CMGetIndProfileElementInfo (
CMProfileRef prof,
unsigned long index,
OSType *tag,
unsigned long *elementSize,
Boolean *refs);

pascal CMError CMGetIndProfileElement (
CMProfileRef prof,
unsigned long index,
unsigned long *elementSize,
void *elementData);

pascal CMError CMSetPartialProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long offset,
unsigned long byteCount,
void *elementData);

pascal CMError CMSetProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long elementSize,
void *elementData);

pascal CMError CMSetProfileHeader(CMProfileRef prof,
const CMAppleProfileHeader *header);

pascal CMError CMSetProfileElementReference (
CMProfileRef prof,
OSType elementTag,
OSType referenceTag);
Summary of the ColorSync Manager 169
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal CMError CMRemoveProfileElement (
CMProfileRef prof, OSType tag);

pascal CMError CMGetScriptProfileDescription (
CMProfileRef prof,
Str255 name,
ScriptCode *code);

Accessing Named Color Profile Values
pascal CMError CMGetNamedColorInfo (

CMProfileRef prof,
unsigned long *deviceChannels,
OSType *deviceColorSpace,
OSType *PCSColorSpace,
unsigned long *count,
StringPtr prefix,
StringPtr suffix);

pascal CMError CMGetNamedColorValue (
CMProfileRef prof,
StringPtr name,
CMColor *deviceColor,
CMColor *PCSColor)

pascal CMError CMGetIndNamedColorValue (
CMProfileRef prof,
unsigned long index,
CMColor *deviceColor,
CMColor *PCSColor);

pascal CMError CMGetNamedColorIndex (
CMProfileRef prof,
StringPtr name,
unsigned long *index);

pascal CMError CMGetNamedColorName (
CMProfileRef prof,
unsigned long index,
StringPtr name)
170 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Matching Colors Using General Purpose Functions
/* Use of NCWNewColorWorld is changed in ColorSync 2.5 */

pascal CMError NCWNewColorWorld(CMWorldRef *cw,
CMProfileRef src,
CMProfileRef dst);

/* Use of CWConcatColorWorld is changed in ColorSync 2.5 */

pascal CMError CWConcatColorWorld (CMWorldRef *cw,
CMConcatProfileSet *profileSet);

pascal CMError CWNewLinkProfile(CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

/* Use of CMGetCWInfo is changed in ColorSync 2.5 */

pascal CMError CMGetCWInfo (CMWorldRef cw,
CMCWInfoRecord *info);

pascal void CWDisposeColorWorld (CMWorldRef cw);

pascal CMError CWMatchPixMap (CMWorldRef cw,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

pascal CMError CWCheckPixMap (CMWorldRef cw,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
BitMap *resultBitMap);

pascal CMError CWMatchBitmap (CMWorldRef cw,
CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitMap *matchedBitMap);

pascal CMError CWCheckBitmap (CMWorldRef cw,
const CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitMap *resultBitMap);
Summary of the ColorSync Manager 171
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal CMError CWMatchColors (CMWorldRef cw,
CMColor *myColors,
unsigned long count);

pascal CMError CWCheckColors (CMWorldRef cw,
CMColor *myColors,
unsigned long count,
long *result);

Matching Colors Using QuickDraw-Specific Functions
/* Use of NCMBeginMatching is changed in ColorSync 2.5 */

pascal CMError NCMBeginMatching (CMProfileRef src,
CMProfileRef dst,
CMMatchRef *myRef);

pascal void CMEndMatching (CMMatchRef myRef);

pascal void CMEnableMatchingComment (
Boolean enableIt);

/* Use of NCMDrawMatchedPicture is changed in ColorSync 2.5 */

pascal void NCMDrawMatchedPicture (PicHandle myPicture,
CMProfileRef dst,
Rect *myRect);

Embedding Profile Information in Pictures
pascal CMError NCMUseProfileComment (

CMProfileRef prof,
unsigned long flags);

Getting the Preferred CMM
/* CMGetPreferredCMM is new in ColorSync 2.5 */

pascal CMError CMGetPreferredCMM (
OSType *cmmType,
Boolean *preferredCMMnotfound)
172 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Getting and Setting the System Profile File
/* Use of CMGetSystemProfile is changed in ColorSync 2.5 */

pascal CMError CMGetSystemProfile (CMProfileRef *prof);

/* Use of CMSetSystemProfile is changed in ColorSync 2.5 */

pascal CMError CMSetSystemProfile (const FSSpec *profileFileSpec);

Getting and Setting Default Profiles by Color Space
/* CMGetDefaultProfileBySpace is new in ColorSync 2.5 */

pascal CMError CMGetDefaultProfileBySpace(
OSType dataColorSpace,
CMProfileRef * prof);

/* CMSetDefaultProfileBySpace is new in ColorSync 2.5 */

pascal CMError CMSetDefaultProfileBySpace (
OSType dataColorSpace,
CMProfileRef prof);

Getting and Setting Monitor Profiles by AVID
/* CMGetProfileByAVID is new in ColorSync 2.5 */

pascal CMError CMGetProfileByAVID (
AVIDType theAVID,
CMProfileRef *prof);

/* CMSetProfileByAVID is new in ColorSync 2.5 */

pascal CMError CMSetProfileByAVID (
AVIDType theAVID,
CMProfileRef prof);

Locating the ColorSync Profiles Folder
pascal CMError CMGetColorSyncFolderSpec (

short vRefNum,
Boolean createFolder,
short *foundVRefNum,
long *foundDirID);
Summary of the ColorSync Manager 173
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
Searching for Profiles With ColorSync 2.5
/* CMIterateColorSyncFolder is new in ColorSync 2.5 */

pascal CMError CMIterateColorSyncFolder (
CMProfileIterateUPP proc,
unsigned long * seed,
unsigned long * count,
void * refCon);

Searching for Profiles Prior to ColorSync 2.5
/* The functions in this group are not recommended in ColorSync 2.5 */

pascal CMError CMNewProfileSearch (CMSearchRecord *searchSpec,
void *refCon,
unsigned long *count,
CMProfileSearchRef *searchResult);

pascal CMError CMUpdateProfileSearch (
CMProfileSearchRef search,
void *refCon,
unsigned long *count);

pascal void CMDisposeProfileSearch (
CMProfileSearchRef search);

pascal CMError CMSearchGetIndProfile (
CMProfileSearchRef search,
unsigned long index,
CMProfileRef *prof);

pascal CMError CMSearchGetIndProfileFileSpec (
CMProfileSearchRef search,
unsigned long index,
FSSpec *profileFile);

Searching For a Profile by Profile Identifier
pascal CMError CMNewProfileSearch (CMSearchRecord *searchSpec,

void *refCon,
unsigned long *count,
CMProfileSearchRef *searchResult);
174 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal CMError CMProfileIdentifierListSearch (
CMProfileIdentifierPtr ident,
CMProfileRef *profileList,
unsigned long listSize,
unsigned long *matchedCount,
CMProfileRef *matchedList);

Converting Between Color Spaces
pascal ComponentResult CMXYZToLab (ComponentInstance ci,

const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMLabToXYZ (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMXYZToLuv (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMLuvToXYZ (ComponentInstance ci,
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMXYZToYxy (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMYxyToXYZ (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);
Summary of the ColorSync Manager 175
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal ComponentResult CMXYZToFixedXYZ (
ComponentInstance ci,
const CMXYZColor *src,
CMFixedXYZColor *dst,
unsigned long count);

pascal ComponentResult CMFixedXYZToXYZ (
ComponentInstance ci,
const CMFixedXYZColor *src,
CMXYZColor *dst,
unsigned long count);

pascal ComponentResult CMRGBToHLS (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMHLSToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMRGBToHSV (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMHSVToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMRGBToGray (
ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

Color-Matching With PostScript™ Devices
pascal CMError CMGetPS2ColorSpace (CMProfileRef srcProf,

unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);
176 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal CMError CMGetPS2ColorRenderingIntent (
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

pascal CMError CMGetPS2ColorRendering (
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

extern pascal CMError CMGetPS2ColorRenderingVMSize (
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long *vmSize,
Boolean *preferredCMMnotfound);

Converting 2.x Profiles to 1.0 Format
pascal CMError CMConvertProfile2to1 (

CMProfileRef profv2,
CMProfileHandle *profv1);

Application-Supplied Functions for the ColorSync Manager
/* MyProfileIterateProc is new in ColorSync 2.5 */

pascal OSErr MyProfileIterateProc (
CMProfileIterateData *iterateData,
void *refCon);

pascal OSErr MyColorSyncDataTransfer (
long command,
long *size,
void *data,
void *refCon);

pascal Boolean MyCMBitmapCallBackProc (
long progress,
void *refCon);
Summary of the ColorSync Manager 177
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
pascal Boolean MyCMProfileFilterProc (
CMProfileRef prof,
void *refCon);

Data Structures 3

/* date and time structure */
struct CMDateTime {

unsigned short year;
unsigned short month;
unsigned short dayOfTheMonth;
unsigned short hours;
unsigned short minutes;
unsigned short seconds;

};

/* ColorSync version 1.0 profile header */
struct CMHeader {

unsigned long size;
OSType CMMType;
unsigned long applProfileVersion;
OSType dataType;
OSType deviceType;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileNameOffset;
unsigned long customDataOffset;
CMMatchFlag flags;
CMMatchOption options;
CMXYZColor white;
CMXYZColor black;

};

/* ColorSync Manager profile 2.x header structure */
struct CM2Header {

unsigned long size;
OSType CMMType;
unsigned long profileVersion;
OSType profileClass;
OSType dataColorSpace;
178 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
OSType profileConnectionSpace;
CMDateTime dateTime;
OSType CS2profileSignature;
OSType platform;
unsigned long flags;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long renderingIntent;
CMFixedXYZColor white;
char reserved[48];

};

/* Apple profile header */
union CMAppleProfileHeader {

CMHeader cm1;
CM2Header cm2;

};

/* profile reference abstract data type */
typedef struct OpaqueCMProfileRef *CMProfileRef;

/* profile identifier structure */
struct CMProfileIdentifier {

CM2Header profileHeader;
CMDateTime calibrationDate;
unsigned long ASCIIProfileDescriptionLen;
char ASCIIProfileDescription[1]; /* variable length */

};

/* profile location union */
union CMProfLoc {

CMFileLocation fileLoc;
CMHandleLocation handleLoc;
CMPtrLocation ptrLoc;
CMProcedureLocation procLoc;

};

/* profile location structure */
struct CMProfileLocation{

short locType;
CMProfLoc u;

};
Summary of the ColorSync Manager 179
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* file specification for file-based profiles */
struct CMFileLocation {

FSSpec spec;
};

/* handle specification for memory-based profiles */
struct CMHandleLocation {

Handle h;
};

/* pointer specification for memory-based profiles */
struct CMPtrLocation {

Ptr p;
};

/* procedure specification for procedure access profiles */
struct CMProcedureLocation {

CMProfileAccessUPP proc;
void *refCon;

};

/* CMProfileIterateProcPtr and CMProfileIterateData are new in ColorSync 2.5 */

/* Cached profile searching */
pascal OSErr (*CMProfileIterateProcPtr)

(CMProfileIterateData *iterateData,
 void *refCon);

struct CMProfileIterateData {
unsigned long dataVersion; /* cmProfileIterateDataVersion1 */
CM2Header header;
ScriptCode code;
Str255 name;
CMProfileLocation location;

};
typedef struct CMProfileIterateData CMProfileIterateData;

/* Non-cached profile searching */
struct CMSearchRecord {

OSType CMMType;
OSType profileClass;
OSType dataColorSpace;
OSType profileConnectionSpace;
180 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
unsigned long deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileFlags;
unsigned long searchMask;
CMProfileFilterUPP filter;

};

/* profile search result reference abstract data type */
struct OpaqueCMProfileSearchRef *CMProfileSearchRef;

/* XYZ color-component values */
typedef unsigned short CMXYZComponent;

/* XYZ color value */
struct CMXYZColor {

CMXYZComponent X;
CMXYZComponent Y;
CMXYZComponent Z;

};

/* fixed XYZ color value */
struct CMFixedXYZColor {

Fixed X;
Fixed Y;
Fixed Z;

};

/* L*a*b* color value */
struct CMLabColor {

unsigned short L;
unsigned short a;
unsigned short b;

};

/* L*u*v* color value */
struct CMLuvColor {

unsigned short L;
unsigned short u;
unsigned short v;

};
Summary of the ColorSync Manager 181
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* Yxy color value */
struct CMYxyColor {

unsigned short capY; /* 0..65535 maps to 0..1 */
unsigned short x; /* 0..65535 maps to 0..1 */
unsigned short y; /* 0..65535 maps to 0..1 */

};

/* RGB color value */
struct CMRGBColor {

unsigned short red;
unsigned short green;
unsigned short blue;

};

/* HLS color value */
struct CMHLSColor {

unsigned short hue;
unsigned short lightness;
unsigned short saturation;

};

/* HSV color value */
typedef struct CMHSVColor {

unsigned short hue;
unsigned short saturation;
unsigned short value;

};

/* CMYK color value */
struct CMCMYKColor {

unsigned short cyan;
unsigned short magenta;
unsigned short yellow;
unsigned short black;

};

/* CMY color value */
struct CMCMYColor {

unsigned short cyan;
unsigned short magenta;
unsigned short yellow;

};
182 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* HiFi color values */
struct CMMultichannel5Color {

unsigned char components[5];
};

struct CMMultichannel6Color {
unsigned char components[6];

};

struct CMMultichannel7Color {
unsigned char components[7];

};

struct CMMultichannel8Color {
unsigned char components[8];

};

/* gray color value */
struct CMGrayColor {

unsigned short gray;
};

/* named color value */
struct CMNamedColor {

unsigned long namedColorIndex; /* 0..a lot */
};

/* color union */
union CMColor {

CMRGBColor rgb;
CMHSVColor hsv;
CMHLSColor hls;
CMXYZColor XYZ;
CMLabColor Lab;
CMLuvColor Luv;
CMYxyColor Yxy;
CMCMYKColor cmyk;
CMCMYColor cmy;
CMGrayColor gray;
CMMultichannel5Color mc5;
CMMultichannel6Color mc6;
CMMultichannel7Color mc7;
Summary of the ColorSync Manager 183
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
CMMultichannel8Color mc8;
CMNamedColor namedColor;

};

/* ColorSync Manager bitmap */
struct CMBitmap {

char *image;
long width;
long height;
long rowBytes;
long pixelSize;
CMBitmapColorSpace space;
long user1;
long user2;

};

/* QuickDraw-specific color-matching session reference abstract data type */
struct OpaqueCMMatchRef *CMMatchRef;

/* color world information record */
struct CMCWInfoRecord {

unsigned long cmmCount;
CMMInfoRecord cmmInfo[2];

};

/* color world reference abstract data type */
struct OpaqueCMWorldRef *CMWorldRef;

/* concatenated profile set structure */
struct CMConcatProfileSet {

unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

/* color management module (CMM) information record structure */
struct CMMInfoRecord {

OSType CMMType;
long CMMVersion;

};

/* The video card gamma data types are new in ColorSync 2.5 */
/* video card gamma type */
184 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
struct CMVideoCardGammaType
{

OSType typeDescriptor;
unsigned long reserved;
CMVideoCardGamma gamma;

};
typedef struct CMVideoCardGammaType CMVideoCardGammaType;

/* video card gamma table */
struct CMVideoCardGammaTable
{

unsigned short channels;
unsigned short entryCount;
unsigned short entrySize;
char data[1];

};
typedef struct CMVideoCardGammaTable CMVideoCardGammaTable;

/* video card gamma formula */
struct CMVideoCardGammaFormula {

Fixed redGamma;
Fixed redMin;
Fixed redMax;
Fixed greenGamma;
Fixed greenMin;
Fixed greenMax;
Fixed blueGamma;
Fixed blueMin;
Fixed blueMax;

};

/* video card gamma */
struct CMVideoCardGamma
{

unsigned long tagType;
union
{

CMVideoCardGammaTable table;
CMVideoCardGammaFormula formula;

} u;
};
typedef struct CMVideoCardGamma CMVideoCardGamma;
Summary of the ColorSync Manager 185
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* color matching while printing */
struct TEnableColorMatchingBlk {

short iOpCode;
short iError;
long lReserved;
THPrint hPrint;
Boolean fEnableIt;
SInt8 filler;

};

/* PostScript color rendering dictionary (CRD) virtual memory size tag structure */
struct CMIntentCRDVMSize {

long rendering Intent;
unsigned long VMSize;

};

struct CMPS2CRDVMSizeType {
OSType typeDescriptor;
unsigned long reserved;
unsigned long count;
CMIntentCRDVMSize intentCRD[1];

};

Constants 3

/* constants for profile location type */
enum {

cmNoProfileBase = 0,
cmFileBasedProfile = 1,
cmHandleBasedProfile = 2,
cmPtrBasedProfile = 3,
cmProcedureBasedProfile = 4

};

/* commands for profile access procedure */
enum {

cmOpenReadAccess = 1,
cmOpenWriteAccess = 2,
cmReadAccess = 3,
cmWriteAccess = 4,
cmCloseAccess = 5,
186 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
cmCreateNewAccess = 6,
cmAbortWriteAccess = 7,
cmBeginAccess = 8,
cmEndAccess = 9

};

/* profile classes */

enum {
cmInputClass = 'scnr',
cmDisplayClass = 'mntr',
cmOutputClass = 'prtr',
cmLinkClass = 'link',
cmAbstractClass = 'abst',
cmColorSpaceClass = 'spac',
cmNamedColorClass = 'nmcl'

};

/* signature of ColorSync’s default color management module (CMM) */
enum {

kDefaultCMMSignature = 'appl'
};

/* commands for calling the application-supplied MyColorSyncDataTransfer */
enum {

openReadSpool = 1,
openWriteSpool,
readSpool,
writeSpool,
closeSpool

};
/* PostScript data formats */

enum {
cmPS7bit = 1, /* data is 7-bit safe */
cmPS8bit = 2 /* data is 8-bit safe */

};

/* picture comment IDs for profiles and color matching */
enum {

cmBeginProfile = 220,
cmEndProfile = 221,
cmEnableMatching = 222,
Summary of the ColorSync Manager 187
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
cmDisableMatching = 223,
cmComment = 224

};

/* picture comment selectors for the cmComment ID */
enum {

cmBeginProfileSel = 0,
cmContinueProfileSel = 1,
cmEndProfileSel = 2,
cmProfileIdentifierSel = 3

};

/* color space signatures */
enum {

cmXYZData = 'XYZ ',
cmLabData = 'Lab ',
cmLuvData = 'Luv ',
cmYxyData = 'Yxy ',
cmRGBData = 'RGB ',
cmGrayData = 'GRAY',
cmHSVData = 'HSV ',
cmHLSData = 'HLS ',
cmCMYKData = 'CMYK',
cmCMYData = 'CMY ',
cmMCH5Data = 'MCH5',
cmMCH6Data = 'MCH6',
cmMCH7Data = 'MCH7',
cmMCH8Data = 'MCH8',
cmNamedData = 'NAME'

};

/* cm48_16ColorPacking and cm64_16ColorPacking were added in ColorSync version 2.5 */
/* color packing for color spaces */
enum {

cmNoColorPacking = 0x0000,
cmAlphaSpace = 0x0080,
cmWord5ColorPacking = 0x0500,
cmLong8ColorPacking = 0x0800,
cmLong10ColorPacking = 0x0a00,
cmAlphaFirstPacking = 0x1000,
cmOneBitDirectPacking = 0x0b00,
cmAlphaLastPacking = 0x0000,
188 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
cm24_8ColorPacking = 0x2100,
cm32_8ColorPacking = cmLong8ColorPacking,
cm40_8ColorPacking = 0x2200,
cm48_8ColorPacking = 0x2300,
cm56_8ColorPacking = 0x2400,
cm64_8ColorPacking = 0x2500,
cm32_16ColorPacking = 0x2600,
cm32_32ColorPacking = 0x2700,
cm48_16ColorPacking = 0x2900,
cm64_16ColorPacking = 0x2A00

};

/* cmRGBASpace and cmGrayASpace were moved to this enum from color space constants with
packing formats in ColorSync version 2.5 */
/* abstract color spaces */
enum {

cmNoSpace = 0,
cmRGBSpace = 1,
cmCMYKSpace = 2,
cmHSVSpace = 3,
cmHLSSpace = 4,
cmYXYSpace = 5,
cmXYZSpace = 6,
cmLUVSpace = 7,
cmLABSpace = 8,
cmReservedSpace1 = 9,
cmGraySpace = 10,
cmReservedSpace2 = 11,
cmGamutResultSpace = 12,
cmNamedIndexedSpace = 16,
cmMCFiveSpace = 17,
cmMCSixSpace = 18,
cmMCSevenSpace = 19,
cmMCEightSpace = 20,
cmRGBASpace = cmRGBSpace + cmAlphaSpace,
cmGrayASpace = cmGraySpace + cmAlphaSpace

};

/* cmGray16Space, cmGrayA32Space, cmRGB48Space, cmCMYK64Space, and cmLAB48Space were
added in ColorSync version 2.5 */
/* color space constants with packing formats */
Summary of the ColorSync Manager 189
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
enum {
cmGray16Space = cmGraySpace,
cmGrayA32Space = cmGrayASpace,
cmRGB16Space = cmWord5ColorPacking + cmRGBSpace,
cmRGB24Space = cm24_8ColorPacking + cmRGBSpace,
cmRGB32Space = cm32_8ColorPacking + cmRGBSpace,
cmRGB48Space = cm48_16ColorPacking + cmRGBSpace,
cmARGB32Space = cm32_8ColorPacking + cmAlphaFirstPacking + cmRGBASpace,
cmRGBA32Space = cm32_8ColorPacking + cmAlphaFirstPacking + cmRGBASpace,
cmCMYK32Space = cm32_8ColorPacking + cmCMYKSpace,
cmCMYK64Space = cm64_16ColorPacking + cmCMYKSpace,
cmHSV32Space = cmLong10ColorPacking + cmHSVSpace,
cmHLS32Space = cmLong10ColorPacking + cmHLSSpace,
cmYXY32Space = cmLong10ColorPacking + cmYXYSpace,
cmXYZ32Space = cmLong10ColorPacking + cmXYZSpace,
cmLUV32Space = cmLong10ColorPacking + cmLUVSpace,
cmLAB24Space = cm24_8ColorPacking + cmLABSpace,
cmLAB32Space = cmLong10ColorPacking + cmLABSpace,
cmLAB48Space = cm48_16ColorPacking + cmLABSpace,
cmGamutResult1Space = cmOneBitDirectPacking + cmGamutResultSpace
cmNamedIndexed32Space = cm32_32ColorPacking + cmNamedIndexedSpace,
cmMCFive8Space = cm40_8ColorPacking + cmMCFiveSpace,
cmMCSix8Space = cm48_8ColorPacking + cmMCSixSpace,
cmMCSeven8Space = cm56_8ColorPacking + cmMCSevenSpace,
cmMCEight8Space = cm64_8ColorPacking + cmMCEightSpace

};

/* flag mask values for version 2.x profiles */
enum {

cmICCReservedFlagsMask = 0x0000FFFF,
cmEmbeddedMask = 0x00000001,
cmEmbeddedUseMask = 0x00000002,
cmCMSReservedFlagsMask = 0xFFFF0000,
cmQualityMask = 0x00030000,
cmInterpolationMask = 0x00040000,
cmGamutCheckingMask = 0x00080000

};

/* quality flag values for version 2.x profiles */
enum {

cmNormalMode = 0,
cmDraftMode = 1,
190 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
cmBestMode = 2
};
/* Several unused mask constants were removed for ColorSync version 2.5 */
/* device attribute values for version 2.x profiles */
enum {

/* if bit 0 is 0 then reflective media, if 1 then transparent media */
cmReflectiveTransparentMask = 0x00000001,
/* if bit 1 is 0 then glossy media, if 1 then matte media*/
cmGlossyMatteMask = 0x00000002

};

/* rendering intent values for version 2.x profiles */
enum {

cmPerceptual = 0,
cmRelativeColorimetric = 1,
cmSaturation = 2,
cmAbsoluteColorimetric = 3

};

/* defines for the CMSearchRecord.searchMask field */
enum {

cmMatchAnyProfile = 0x00000000,
cmMatchProfileCMMType = 0x00000001,
cmMatchProfileClass = 0x00000002,
cmMatchDataColorSpace = 0x00000004,
cmMatchProfileConnectionSpace = 0x00000008,
cmMatchManufacturer = 0x00000010,
cmMatchModel = 0x00000020,
cmMatchAttributes = 0x00000040,
cmMatchProfileFlags = 0x00000080

};

/* The video card constants are new in ColorSync 2.5 */
/* Video card gamma tag. */
enum
{

…,
cmVideoCardGammaTag = FOUR_CHAR_CODE('vcgt')

};
Summary of the ColorSync Manager 191
11/20/98  Apple Computer, Inc.

C H A P T E R 3

Developing ColorSync-Supportive Applications
/* Video card gamma tag type. */

enum
{

cmSigVideoCardGammaType = FOUR_CHAR_CODE('vcgt')
};

/* Video card gamma storage type. */

enum
{

cmVideoCardGammaTableType = 0,
cmVideoCardGammaFormulaType = 1,

};

/* PrGeneral operation codes */
enum {

enableColorMatchingOp = 12,
registerProfileOp = 13

};

/* ColorSync Manager element tags and their signatures for version 1.0 profiles */

enum {
cmCS1ChromTag = 'chrm',
cmCS1TRCTag = 'trc ',
cmCS1NameTag = 'name',
cmCS1CustTag = 'cust'

};
192 Summary of the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 4-0
Listing 4-0
Table 4-0
4 Developing
ColorSync-Supportive Device
Drivers
About ColorSync-Supportive Device Driver Development 195
Devices and Their Profiles 196

The Profile Format and Its Cross-Platform Use 196
ColorSync Profile Format Version Numbers 197
Storing and Handling Device Profiles 197
How a Device Driver Uses Profiles 198

Devices and Color Management Modules 199
Providing ColorSync-Supportive Device Drivers 199

Providing Minimum ColorSync Support 199
Providing More Extensive ColorSync Support 200

Developing Your ColorSync-Supportive Device Driver 201
Determining If the ColorSync Manager Is Available 201
Interacting With the User 201

Setting a User-Selected Rendering Intent 202
Setting a User-Selected Color-Matching Quality Flag 205

Color Matching an Image to Be Printed 210
193

C H A P T E R 4
Developing ColorSync-Supportive Device Drivers 4

This section describes how you can use the ColorSync Manager to provide
ColorSync-supportive device drivers for peripherals. It first describes how
input, display, and output devices work with color profiles. It then discusses
how devices interact with color management modules (CMMs). Next it
describes what you must do to provide minimum ColorSync support, as well as
how you can provide more extensive support. Finally, it uses a
QuickDraw-based printer device driver to demonstrate some of the
color-matching features a device driver can provide.

Read this section if your device driver for an input, display, or output device
will support the ColorSync Manager and allow users to produce color-matched
images.

Before you read this section, you should read “Introduction to ColorSync”
(page 45) and “Introduction to Color and Color Management Systems”
(page 25). These sections provide an overview of ColorSync, explain color
theory and color management systems, and define key terms.

Although the features described here are commonly provided by printer device
drivers, the code samples in “Developing ColorSync-Supportive Applications”
(page 81) may also be of use in developing your device driver.

“ColorSync Reference for Applications and Drivers” (page 217) describes
constants, data structures, functions, and result codes for ColorSync-supportive
applications and device drivers.

“ColorSync Version Information” (page 525) describes the Gestalt information,
shared library version numbers, CMM version numbers, and ColorSync header
files you use with different versions of the ColorSync Manager. It also includes
CPU and Mac OS system requirements.

About ColorSync-Supportive Device Driver Development 4

A device driver that supports ColorSync should provide at least one profile for
the device. In addition, it can provide its own CMM, designed to perform the
best possible color matching for the device. If you are creating your own CMM,
you should read “Developing Color Management Modules” (page 429) and
“ColorSync Reference for Color Management Modules” (page 467).
About ColorSync-Supportive Device Driver Development 195
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
Devices and Their Profiles 4

To assess the way each device interprets color, color scientists and profile
developers perform device characterizations. This process, which entails
measuring the gamut of a device, yields a color profile for that device. For an
overview of profiles, see “Profiles” (page 49).

Device profiles are of paramount importance to any color management system
because they characterize the unique color behavior of each device and provide
the data needed for color matching and color conversion. Device profiles are
used by CMMs that perform the low-level calculations required to match colors
from a source device to a destination device.

The ICC defines a device profile class for each of three types of devices:

■ An input device, such as a scanner or a digital camera.

■ A display device, such as a monitor or a liquid crystal display.

■ An output device, such as a printer.

These classes are described in detail in “Profile Classes” (page 51).

Each device profile class has its own signature. The ColorSync constants for
these signatures are described in “Profile Class” (page 396). You can create a
device driver for any of the device classes. When you create a profile for your
device, you specify the signature in the profile header’s profileClass field. For
more information on profile headers, see “Profile Header” (page 351)

Whether you create a profile for your device or obtain one from a profile
vendor, your device driver must provide at least one profile for its device.
However, you can provide more than one profile for the same device to
characterize different states. Although a printer that your device driver
supports may have a number of profiles for different conditions, such as the use
of foils or different grades of paper, all of its profiles will use the same profile
signature, cmOutputClass.

The Profile Format and Its Cross-Platform Use 4

Device profiles follow the ICC profile format, an industry standard described in
“Profiles” (page 49). You can provide a single profile or a set of profiles that can
be used across different operating systems for the device your driver supports.
The common profile format specified by the ICC allows end users to
transparently move profiles and images with embedded profiles between
different operating systems.
196 About ColorSync-Supportive Device Driver Development

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
Note
The ICC publishes the International Color Consortium Profile
Format Specification.To obtain a copy of the specification,
visit the ICC Web site at <http://www.color.org/>. ◆

The profile structure is defined as a header followed by a tag table which, in
turn, is followed by a series of tagged elements that your device driver can
access randomly and individually. Using ColorSync Manager functions, you
can read the profile header and modify its contents and you can get and set
individual tags and their element data.

ColorSync Profile Format Version Numbers 4

This document uses “2.x” to refer to ColorSync profiles for ColorSync Manager
version 2.0 and greater, as described in “ColorSync and ICC Profile Format
Version Numbers” (page 50). Version 2.x profiles require more information and
are larger than ColorSync 1.0 profiles, which were originally memory based.
Because version 2.x profiles are larger, they are disk-based. The ICC profile
format specification defines how profiles can be stored as disk files and how
profiles can be embedded in common graphics file formats such as PICT and
TIFF. The ColorSync Manager provides the CMProfileLocation (page 362) data
structure to identify the location of a profile. It also provides functions you can
use to embed a profile in or extract if from a PICT file, as described in
“Embedding Profile Information in Pictures” (page 290).

Storing and Handling Device Profiles 4

Device profiles reside in the ColorSync Profiles folder, in pictures, or with
device drivers. Files that contain profiles store profile data in the data fork and
have a file type of 'prof'.

By convention, profiles not embedded in image documents are stored in the
ColorSync Profiles folder, as described in “Profile Search Locations” (page 55).
You can store your profile files wherever you want, but if you want other
drivers or applications to have access to them, you should store them in the
ColorSync Profiles folder. Applications that perform soft proofing or gamut
checking can use ColorSync Manager routines to search the folder for specific
types of profiles to provide a pop-up menu or list to the user. If your profiles are
not available, these applications will not be able to include these profiles in
menus or lists, and will not be able to color match to your device (unless they
provide a profile for your device themselves).
About ColorSync-Supportive Device Driver Development 197
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
Some applications may place special-purpose profiles for your device in the
ColorSync Profiles folder. For this reason, when your device driver itself
displays a pop-up menu or list to the user, you should search not only your
private profile location storage, if you use one, but also the ColorSync Profiles
folder, to make sure that you offer a complete list of available profiles for your
device.

The ColorSync Profiles folder can contain both ColorSync 1.0 profiles and
version 2.x profiles. However, your device driver will be able to search for only
version 2.x profiles. This is because ColorSync Manager 2.x search functions do
not acknowledge ColorSync 1.0 profiles. Support for 1.0 profiles may be even
more limited in the future. For more information on this and other limitations of
the 1.0 profile format, see “ColorSync 1.0 Profile Support” (page 530).

How a Device Driver Uses Profiles 4

For most ColorSync Manager functions that your device driver calls, you will
need to supply references to profiles for both the source device on which the
image was created and the destination device for which it is to be color matched
and where it will be rendered.

The driver for an input device such as a scanner typically embeds the scanner
profile used to create the image in the document containing the image. The
driver for a device that displays an existing image on the system’s display or a
printer device that prints a color-matched image typically extracts the
embedded profile that accompanies the image from the document containing
the image, and uses that profile as the source profile when matching.

Images created using input devices are commonly color matched using the
profile for the input device as the source profile and the system profile for the
display as the destination profile. “Setting Default Profiles” (page 54) describes
how to set the default system profile and other default profiles. Images that are
created, depicted, or modified on a display device and that are destined for an
output device such as a printer are color matched using the profile for the
display as the source profile and the printer’s profile as the destination profile.

To use a profile, you must first obtain a reference to the profile. For a description
of how to do this, see “Obtaining Profile References” (page 95).
198 About ColorSync-Supportive Device Driver Development

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
Devices and Color Management Modules 4

Your device driver can use the color conversion functions, described in
“Converting Between Color Spaces” (page 318), to convert colors between color
spaces belonging to the same base family without relying on a CMM. However,
color matching, gamut checking, providing color rendering dictionaries to
PostScript printers, and other tasks you perform using ColorSync Manager
functions all require use of a CMM. It is the CMM that actually carries out the
work of the ColorSync Manager functions, such as performing the low-level
calculations required to match colors from a source device to a destination
device.

If your ColorSync-supportive device driver can use the Apple-supplied default
CMM, you need only provide one or more profiles for your device. However,
you may want to provide a custom CMM that is optimized for your device and
its profiles. For example, a profile can provide private tags containing
information a custom CMM might use to achieve better results for the device.

To provide your own CMM, you can create one or obtain one from a vendor.
For information describing how to create a CMM, see “Developing Color
Management Modules” (page 429) and “ColorSync Reference for Color
Management Modules” (page 467)

For additional information on CMMs, see “Setting a Preferred CMM” (page 59)
and “How the ColorSync Manager Selects a CMM” (page 84).

Providing ColorSync-Supportive Device Drivers 4

Your ColorSync-supportive device driver can provide users with various
color-matching features based on the type of device you support. This section
describes:

■ “Providing Minimum ColorSync Support” (page 199)

■ “Providing More Extensive ColorSync Support” (page 200)

Providing Minimum ColorSync Support 4

The minimum level of ColorSync support you should provide differs
depending on the type of device your driver supports.

For a scanner, you should embed the scanner profile used to create the image in
the document containing the image; this is also referred to as tagging an image.
If you do not tag the image with the profile, you should at least make the profile
About ColorSync-Supportive Device Driver Development 199
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
for the image available so that it can be used for color matching. If you do not
provide the scanner profile, an application or driver that attempts to color
match the scanned image will use the system profile as the source profile and
may produce results inconsistent with the colors of the original image.

For a display device driver or a printer device driver, you must preserve images
tagged with a profile by not stripping out picture comments used to embed
profiles or by leaving profiles in documents that use other methods to include
them. For example, if your driver displays or prints PICT files but does not
perform color matching, your driver should not strip out the ColorSync-related
picture comments that are used to embed profiles in PICT files, begin and end
use of a specific profile, and enable and disable color matching. Even though
your driver may not make use of the comments, another display or printer
driver or an application may use them.

If you don’t perform color matching but you want to allow other applications to
produce images that are color matched for your device, you should provide a
device profile to be used as the destination profile. If you provide a profile for
your display or printer and place it in the ColorSync Profiles folder,
applications that perform color matching can use it to create a color-matched
image expressed in the colors of your device’s gamut. A user can then print a
color-matched image using the printer your driver supports.

Providing More Extensive ColorSync Support 4

Instead of relying on an application to color match an image for your printer,
your printer driver can color match the image itself before sending it to the
printer. To perform color matching, your printer driver must obtain a reference
to the source profile. Documents containing images to be printed often contain
an embedded profile along with the image. To use the source profile, your
printer driver must be able to extract it. If an image is not accompanied by a
source profile, the default system profile is used, as described in “Setting
Default Profiles” (page 54). In this case, your driver should provide an interface
that allows the user to select the rendering intent to be used. Rendering intents
are described in “Rendering Intents” (page 60).

You can provide an interface that offers additional features. Your interface can

■ allow a user to turn ColorSync color matching on or off before printing

■ offer pop-up menus, allowing the user to choose

■ the rendering method to be used in color matching the image (perceptual,
colorimetric, or saturation)
200 About ColorSync-Supportive Device Driver Development

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
■ the color-image quality (normal, draft, or best)

Some of these features are discussed below and in “Developing
ColorSync-Supportive Applications” (page 81).

Developing Your ColorSync-Supportive Device Driver 4

This section describes how your device driver can implement certain color
matching and related features with ColorSync. It includes the following:

■ “Determining If the ColorSync Manager Is Available” (page 201)

■ “Interacting With the User” (page 201)

■ “Color Matching an Image to Be Printed” (page 210)

Many of the tasks that your device driver performs to support ColorSync can
also be performed by other kinds of color-matching applications. Some of these
tasks are mentioned here, but not explained in detail. For a list of code samples
shown elsewhere, see “Developing Your ColorSync-Supportive Application”
(page 91).

Determining If the ColorSync Manager Is Available 4

To determine if the ColorSync Manager (version 2.x) is available, call the
Gestalt function with the gestaltColorMatchingVersion selector. For sample
code that demonstrates how to perform this operation, see “Determining If the
ColorSync Manager Is Available” (page 92). ColorSync constants for use with
the Gestalt function are described in “Constants for ColorSync Manager Gestalt
Selectors and Responses” (page 217). For related information on ColorSync
versions, see Table 8-1 (page 526), which lists version numbers for releases of
the ColorSync Manager, along with corresponding shared library version
numbers, Gestalt selector codes, and hardware and system requirements.

Interacting With the User 4

Using lists and dialog boxes, you can provide choices that influence the
color-matching process. For example, you can offer any of the following:
Developing Your ColorSync-Supportive Device Driver 201
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
■ A list of profiles to select from. You can allow the user to choose the
appropriate profile for your printer in its current state. To provide a list of
profiles for the user to select from, you must first search for the relevant
profiles:

■ Starting with version 2.5 of the ColorSync Manager, you should use the
algorithm shown in “Performing Optimized Profile Searching” (page 130)
to search for profiles. That algorithm uses CMIterateColorSyncFolder
(page 304).

■ For versions of the ColorSync Manager prior to 2.5, you can use the
functions described in “Searching for Profiles Prior to ColorSync 2.5”
(page 306).

■ A dialog box for specifying how the image will be color matched. If the
source profile is embedded with the image, the source profile specifies the
rendering intent to be used. However, if the source profile is not provided
and the system profile is used as the source profile, you should allow the
user to select the rendering intent to be used. After the user chooses a
rendering intent, you can use the selection to set the source profile’s header.
“Setting a User-Selected Rendering Intent” (page 202) explains this process.

■ A dialog box for choosing which color-matching quality of image to produce.
A user may want to produce a draft of the image quickly for review before
producing the best possible quality of the image. After the user chooses a
color-matching quality, you can use the selection to set the source profile’s
header. “Setting a User-Selected Color-Matching Quality Flag” (page 205)
explains how to do this.

■ A dialog box for turning ColorSync color matching on or off before printing.
If an application that creates or modifies an image has already performed
color matching using your printer profile as the destination profile, the user
might want to turn off color matching. To provide this capability, your driver
should support the PrGeneral function with the enableColorMatchingOp
operation code. For information on the PrGeneral function, see Inside
Macintosh: Imaging With QuickDraw. The enableColorMatchingOp operation
code constant defined by the ColorSync Manager is described in “PrGeneral
Function Operation Codes” (page 423).

Setting a User-Selected Rendering Intent 4

The ColorSync Manager supports the four standard rendering intents defined
by the ICC—perceptual, relative colorimetric, saturated, and absolute
colorimetric. Every profile supports these four intents, which are commonly
202 Developing Your ColorSync-Supportive Device Driver

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
used to match the colors of a source image to the color gamut of the destination
device in the most optimum way for the type of image. These intents are
described in detail in “Rendering Intents” (page 60).

If the source profile is embedded with the image, the source profile specifies the
rendering intent to be used. However, if the source profile is not available and
the system profile must be used as the source profile, you should allow the user
to select the rendering intent to be used.

Note
Starting with ColorSync 2.5, your application can call
CMGetDefaultProfileBySpace (page 297) to obtain an
appropriate source profile for matching, rather than using
the default system profile. However, you may still wish to
allow the user to specify a rendering intent. ◆

To allow users to choose the rendering intent most appropriate for color
matching a graphical image, you can provide a pop-up menu or a dialog box
identifying the rendering intent options available. By providing a description of
the available rendering intents, you can help a user select the rendering intent
that best maintains important aspects of the image.

Color professionals and technically-sophisticated users are likely to be familiar
with the ICC terms for rendering intent and the gamut-matching strategies they
represent. If your application is aimed at novice users, however, you may prefer
to use a simplified terminology based on the typical image content associated
with a rendering intent, as described in Table 2-1 (page 60). For example, you
might note the following:

■ For perceptual matching, all the colors of a given gamut may be scaled to fit
within another gamut. This intent is the best choice for realistic images, such
as scanned photographs.

■ For saturation matching, the relative saturation of colors is maintained from
gamut to gamut. Rendering the image using this intent gives the strongest
colors and is the best choice for bar graphs and pie charts, in which the actual
color displayed is less important than its vividness.

■ For relative colorimetric matching, the colors that fall within the gamuts of both
devices are left unchanged. Some colors in both images will be exactly the
same, a useful outcome when colors must match quantitatively. This intent is
best suited for logos or “spot colors.”
Developing Your ColorSync-Supportive Device Driver 203
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
■ For absolute colorimetric matching, a close appearance match may be achieved
over most of the tonal range, but if the minimum density of the idealized
image is different from that of the output image, the areas of the image that
are left blank will be different. Colors that fall within the gamuts of both
devices are left unchanged.

After the user selects the intent to be used, you must modify the
renderingIntent field of the system profile’s header to reflect the choice. To put
the rendering intent chosen by the user in the profile header, follow these steps:

1. Obtain a profile reference to the system profile.

“Identifying the Current System Profile” (page 99) describes how to do this.

2. Get the profile header of the system profile.

You call the function CMGetProfileHeader (page 245), passing the profile
reference, to obtain the profile’s header. The function returns the profile
header using a union of type CMAppleProfileHeader (page 357). You can use
this function for both ColorSync 1.0 profiles and version 2.x profiles.
For a version 2.x profile, you use the data structure CM2Header (page 354). For
a version 1.0 profile, you use the CMHeader (page 351) data structure. For more
information on profile headers, see “Profile Header” (page 351).

3. Assign the new rendering intent to the header field.

To assign a rendering intent to the system profile header’s renderingIntent
field, use the constants defined by the following enumeration:

enum {
cmPerceptual = 0,
cmRelativeColorimetric = 1,
cmSaturation = 2,
cmAbsoluteColorimetric = 3

};

These constants are described in “Rendering Intent Values for Version 2.x
Profiles” (page 419).

4. Set the modified profile header of the system profile.

After you assign the rendering intent, you must replace the header by calling
the function CMSetProfileHeader (page 254). You can use this function to set a
header for a version 1.0 or a version 2.x ColorSync profile. You pass the
header using the union CMAppleProfileHeader (page 357).
204 Developing Your ColorSync-Supportive Device Driver

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
You can now use the system profile to create a color world for the
color-matching process. For information on how to create a color world, see
“Creating a Color World to Use With the General Purpose Functions”
(page 105).

IMPORTANT

When you call CMSetProfileHeader, the profile header is
modified temporarily. The rendering intent change is
discarded when you call the function CMCloseProfile
(page 223). To preserve the change, you must call the
function CMUpdateProfile (page 226). ▲

Listing 4-1 includes code that uses the cmSaturation constant to set the
rendering intent for a profile.

Setting a User-Selected Color-Matching Quality Flag 4

The ColorSync Manager provides a feature, called the quality flags settings, that
controls the quality of the color-matching process in relation to the time
required to perform the match. This feature, which is not a standard feature
defined by the ICC profile format specification, works by letting you
manipulate certain bits of the profile header’s flags field. There are three
quality flag settings: normal, draft, and best. For a description of the profile
header’s flags field, see “Quality Flag Values for Version 2.x Profiles”
(page 417).

Normal mode is the default setting. Color matching using draft mode takes the
least time and produces the least exact results. Color matching using best mode
takes the longest time but produces the finest results.

Users sometimes want to produce review drafts of images quickly before
expending the time to produce the best-quality final copy. Your interface can
allow them this flexibility by offering a dialog box that provides the three
options.

After the user selects the color-matching quality, you can use the selection to set
the appropriate bits of the source profile’s flags field. To set the color-matching
quality chosen by the user, follow these steps:

1. Obtain a profile reference to the source profile.

“Obtaining Profile References” (page 95) describes how to do this.
Developing Your ColorSync-Supportive Device Driver 205
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
2. Get the profile header of the source profile.

You call the function CMGetProfileHeader (page 245), passing the profile
reference, to obtain the profile’s header. The function returns the profile
header using a union of type CMAppleProfileHeader (page 357).

3. Optionally, test the current setting of the source profile header’s flags.

The flags field of the source profile header is a long word coded in
big-endian notation. Big-endian notation is a means of encoding data in
which the first byte within 16-bit and 32-bit quantities is the most significant.
The ICC profile consortium reserves the first 2 bits of the low word for its
own use. The least significant 2 bits of the high word constitute the quality
flag settings used to specify the quality for the color matching. The bit
definitions for the flags field are shown in Figure 5-1 (page 414).
To evaluate and interpret the current setting of the quality flags bits, you can
take these steps, in order:
■ Right-shift by 16 bits.
■ Mask off the high 14 bits.
■ Compare the result with values defined by the following enumeration:

enum
{
 cmNormalMode = 0,
 cmDraftMode = 1,
 cmBestMode = 2
};

These constants are described in “Flag Mask Definitions for Version 2.x
Profiles” (page 414).

4. Set the quality flags bits to the user-selected value.

To set the quality flag, you can use the constants defined by the enumeration
provided by the ColorSync Manager and shown in step 3.

5. Set the source profile with the modified profile header.

After you set the flags field based on the user’s selection, you must replace
the header by calling the function CMSetProfileHeader (page 254). You pass
the header using the union CMAppleProfileHeader (page 357).

You can now use the source profile to create a color world for the
color-matching process. For information on how to create a color world, see
206 Developing Your ColorSync-Supportive Device Driver

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
“Creating a Color World to Use With the General Purpose Functions”
(page 105).

IMPORTANT

When you call CMSetProfileHeader, the profile header is
modified temporarily. Changes to the flags field are
discarded when you call the function CMCloseProfile
(page 223). To preserve the change, you must call the
function CMUpdateProfile (page 226). ▲

Listing 4-1 shows how to set the system profile’s quality flag to best mode for
producing the highest-quality color-matched image. It also sets the rendering
intent to saturation before setting up a color world based on the modified
system profile and the printer profile.

The MySetHeader function shown in Listing 4-1 initializes the CMProfileRef
(page 358) data structures it will use for the system profile and the printer
profile before it calls the following two functions—the ColorSync Manager
function CMGetSystemProfile (page 294) to obtain a reference to the system
profile and its own function MyGetPrinterProfile to obtain a reference to the
profile for its printer.

The source profile (in this case, the system profile), not the printer profile,
determines the quality mode and the rendering intent to be used in color
matching the image to the destination printer. Now that it has a reference to the
system profile, the code can obtain the profile’s header. It does this by calling
the function CMGetProfileHeader (page 245), specifying the reference it obtained
to the system profile.

Using the kSpeedAndQualityFlagMask constant it defined earlier, the code clears
the quality mode bits of the system profile’s flags field. Then it sets the quality
mode bits to cmBestMode to specify best mode quality for color matching. The
least significant 2 bits of the flags field’s high word constitute the quality flag.
After setting the quality flag, the code sets the system profile header’s
renderingIntent field to cmSaturation.

Now that the code has modified the system profile’s header to indicate the
user’s selections, it calls the CMSetProfileHeader function to write the profile
header to the profile. Because the driver code intends to use the values the user
selected only to color match the image to be printed, it does not permanently
preserve the header field changes by calling CMUpdateProfile (page 226) to write
the changes to the profile. When the code closes its reference to the system
Developing Your ColorSync-Supportive Device Driver 207
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
profile after having built the color world, the system profile’s header
modifications are discarded.

The code calls the NCWNewColorWorld function, passing the temporarily modified
system profile, to create the color world. It then closes its references to both the
system and printer profiles and color matches the image before sending it to the
printer. When it no longer needs the color world, the code calls the
CWDisposeColorWorld function to close the color world and release the memory it
uses. Finally, the code tests to ensure that the profile references are closed.

Listing 4-1 Modifying a profile header’s quality flag and setting the rendering intent

void MySetHeader(void);

CMError MyGetPrinterProfile(CMProfileRef *printerProf);

/* for CM2Header.profileVersion */
#define kMajorVersionMask 0XFF000000

/* two bits used to specify speed & quality */
/* must be shifted left 16 bits in flag’s long word */
#define kSpeedAndQualityFlagMask 0X00000003

void MySetHeader(void)
{

CMError cmErr;
CMProfileRef sysProf;
CMAppleProfileHeader sysHeader;
CMProfileRef printerProf;
CMWorldRef cw;

sysProf = NULL;
printerProf= NULL;
cw = NULL;

cmErr = CMGetSystemProfile(&sysProf);
if (cmErr == noErr)
{

cmErr = MyGetPrinterProfile(&printerProf);
}

208 Developing Your ColorSync-Supportive Device Driver

11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
if (cmErr == noErr)
{

cmErr = CMGetProfileHeader(sysProf, &sysHeader);
}

if (cmErr == noErr)
{

/* clear the current quality and then set it to best */
sysHeader.cm2.flags &= ~(kSpeedAndQualityFlagMask << 16);
sysHeader.cm2.flags |= (cmBestMode << 16);

/* set rendering intent to saturation */
sysHeader.cm2.renderingIntent = cmSaturation;

cmErr = CMSetProfileHeader(sysProf, &sysHeader);
}

if (cmErr == noErr)
{

cmErr = NCWNewColorWorld(&cw, sysProf, printerProf);
}

/* close any open profiles */
if (sysProf != NULL)
{

(void) CMCloseProfile(sysProf);
}

if (printerProf != NULL)
{

(void) CMCloseProfile(printerProf);
}

.

.

.
/* device-driver functions that use the color world to color match

the image and send it to the printer belong here */
.
.
.

Developing Your ColorSync-Supportive Device Driver 209
11/20/98  Apple Computer, Inc.

C H A P T E R 4

Developing ColorSync-Supportive Device Drivers
if (cw != NULL)
{

CWDisposeColorWorld(cw);
}

}

Color Matching an Image to Be Printed 4

The ColorSync Manager provides QuickDraw-specific and general purpose
color-matching functions, as described in “When Color Matching Occurs”
(page 62). Printer device drivers usually perform color matching using the
general purpose ColorSync Manager functions to match all QuickDraw
operations as they pass through the bottleneck routines of the printing grafport.

Note
The general-purpose functions can perform all the
operations performed by the QuickDraw-specific functions,
but the reverse is not true. ◆

When the stream of QuickDraw data sent to your printer device driver contains
a profile embedded using picture comments, your driver should extract the
embedded profile using the ColorSync Manager’s CMUnflattenProfile function.
After you extract the profile and open a reference to it, you should create a new
color world based on the extracted profile and a profile for your printer. For
information on how to extract an embedded profile, see “Extracting Profiles
Embedded in Pictures” (page 118). “Creating a Color World to Use With the
General Purpose Functions” (page 105) describes how to create a color world.

If the QuickDraw data stream does not contain embedded profiles, your driver
should use the system profile as the source profile in creating the color world.

You should then match subsequent QuickDraw operations using the color
world before sending them to your printer. See “Setting Default Profiles”
(page 54) for information on how the user and how your code can set default
profiles.
210 Developing Your ColorSync-Supportive Device Driver

11/20/98  Apple Computer, Inc.

C H A P T E R 5

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 5-0
Listing 5-0
Table 5-0
5 ColorSync Reference for
Applications and Drivers
Gestalt Selector Codes for the ColorSync Manager 217
Constants for ColorSync Manager Gestalt Selectors and Responses 217
Older ColorSync Gestalt Selectors 219

Functions for the ColorSync Manager 220
Accessing Profiles 221

CMOpenProfile 222
CMCloseProfile 223
CMProfileModified 225
CMUpdateProfile 226
CMNewProfile 227
CMCopyProfile 229
CMCloneProfileRef 231
CMGetProfileRefCount 232
NCMGetProfileLocation 233
CMGetProfileLocation 234
CMValidateProfile 236
CMFlattenProfile 237
CMUnflattenProfile 239

Accessing Profile Elements 241
CMProfileElementExists 242
CMCountProfileElements 243
CMGetProfileElement 243
CMGetProfileHeader 245
CMGetPartialProfileElement 246
CMGetIndProfileElementInfo 247
CMGetIndProfileElement 249
CMSetProfileElementSize 250
211

C H A P T E R 5
CMSetPartialProfileElement 251
CMSetProfileElement 253
CMSetProfileHeader 254
CMSetProfileElementReference 254
CMRemoveProfileElement 255
CMGetScriptProfileDescription 256

Accessing Named Color Profile Values 256
CMGetNamedColorInfo 257
CMGetNamedColorValue 258
CMGetIndNamedColorValue 259
CMGetNamedColorIndex 260
CMGetNamedColorName 260

Matching Colors Using General Purpose Functions 261
NCWNewColorWorld 262
CWConcatColorWorld 265
CWNewLinkProfile 267
CMGetCWInfo 270
CWDisposeColorWorld 271
CWMatchPixMap 272
CWCheckPixMap 274
CWMatchBitmap 276
CWCheckBitMap 279
CWMatchColors 281
CWCheckColors 283

Matching Colors Using QuickDraw-Specific Functions 284
NCMBeginMatching 285
CMEndMatching 287
CMEnableMatchingComment 288
NCMDrawMatchedPicture 288

Embedding Profile Information in Pictures 290
NCMUseProfileComment 290

Getting the Preferred CMM 292
CMGetPreferredCMM 292

Getting and Setting the System Profile File 293
CMGetSystemProfile 294
CMSetSystemProfile 295

Getting and Setting Default Profiles by Color Space 297
CMGetDefaultProfileBySpace 297
212 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 5
CMSetDefaultProfileBySpace 298
Getting and Setting Monitor Profiles by AVID 299

CMGetProfileByAVID 300
CMSetProfileByAVID 300

Locating the ColorSync Profiles Folder 301
CMGetColorSyncFolderSpec 302

Profile Searching 303
Searching for Profiles With ColorSync 2.5 303

CMIterateColorSyncFolder 304
Searching for Profiles Prior to ColorSync 2.5 306

CMNewProfileSearch 308
CMUpdateProfileSearch 310
CMDisposeProfileSearch 311
CMSearchGetIndProfile 312
CMSearchGetIndProfileFileSpec 313

Searching for a Profile by Profile Identifier 314
CMProfileIdentifierFolderSearch 315
CMProfileIdentifierListSearch 316

Converting Between Color Spaces 318
CMConvertXYZToLab 319
CMConvertLabToXYZ 320
CMConvertXYZToLuv 321
CMConvertLuvToXYZ 322
CMConvertXYZToYxy 323
CMConvertYxyToXYZ 324
CMConvertXYZToFixedXYZ 325
CMConvertFixedXYZToXYZ 326
CMConvertRGBToHLS 327
CMConvertHLSToRGB 328
CMConvertRGBToHSV 329
CMConvertHSVToRGB 330
CMConvertRGBToGray 331

Color-Matching With PostScript Devices 332
CMGetPS2ColorSpace 333
CMGetPS2ColorRenderingIntent 335
CMGetPS2ColorRendering 336
CMGetPS2ColorRenderingVMSize 338

Converting 2.x Profiles to 1.0 Format 339
Contents 213
11/20/98  Apple Computer, Inc.

C H A P T E R 5
CMConvertProfile2to1 339
Application-Defined Functions for the ColorSync Manager 340

MyProfileIterateProc 340
MyColorSyncDataTransfer 342
MyCMBitmapCallBackProc 345
MyCMProfileFilterProc 347
MyCMProfileAccessProc 348

Data Types for the ColorSync Manager 349
Date and Time 350

CMDateTime 350
Profile Header 351

CMHeader 351
CM2Header 354
CMAppleProfileHeader 357

Profile Reference 358
CMProfileRef 358

Profile Identifier 358
CMProfileIdentifier 359

Profile Location 360
CMProfLoc 361
CMProfileLocation 362
CMFileLocation 363
CMHandleLocation 363
CMPtrLocation 364
CMProcedureLocation 364

Cached Profile Searching 365
CMProfileIterateProcPtr 365
CMProfileIterateData 366

Non-Cached Profile Searching 367
CMSearchRecord 368
CMProfileSearchRef 370

Color Values 371
CMXYZComponent 372
CMXYZColor 372
CMFixedXYZColor 373
CMLabColor 373
CMLuvColor 374
CMYxyColor 374
214 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 5
CMRGBColor 374
CMHLSColor 375
CMHSVColor 375
CMCMYKColor 376
CMCMYColor 376
CMGrayColor 376
CMNamedColor 377
HiFi Color Values 377
CMColor 378

Bitmap Information 380
CMBitmap 380

Color Matching Reference 381
CMMatchRef 382

Color Worlds 382
CMCWInfoRecord 382
CMWorldRef 383
CMConcatProfileSet 384
CMMInfoRecord 385

Video Card Gamma 386
CMVideoCardGammaType 386
CMVideoCardGammaTable 387
CMVideoCardGammaFormula 388
CMVideoCardGamma 389

Color Matching While Printing 390
TEnableColorMatchingBlk 390

Color Rendering Dictionary Virtual Memory Size 390
CMIntentCRDVMSize 391
CMPS2CRDVMSizeType 392

Constants for the ColorSync Manager 392
Profile Location Type 393
Profile Access Procedure Operation Codes 395
Profile Class 396
Signature of ColorSync’s Default Color Management Module 397
Commands for Caller-Supplied ColorSync Data Transfer Functions 397
Constants for PostScript Data Formats 398
Picture Comments 398

Picture Comment Kinds for Profiles and Color Matching 399
Picture Comment Selectors for Embedding Profile Information 400
Contents 215
11/20/98  Apple Computer, Inc.

C H A P T E R 5
Constants for Embedding Profiles and Profile Identifiers 402
Color Space Constants 402

Color Space Signatures 402
Color Packing for Color Spaces 404
Abstract Color Space Constants 406
Color Space Constants With Packing Formats 409

ColorSync Flag Constants 413
Flag Mask Definitions for Version 2.x Profiles 414
Quality Flag Values for Version 2.x Profiles 417
Device Attribute Values for Version 2.x Profiles 418
Rendering Intent Values for Version 2.x Profiles 419

Video Card Gamma Constants 421
Video Card Gamma Tag 421
Video Card Gamma Tag Type 422
Video Card Gamma Storage Type 422

PrGeneral Function Operation Codes 423
Element Tags and Signatures for Version 1.0 Profiles 424

Result Codes for the ColorSync Manager 425
216 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 5
ColorSync Reference for Applications and Drivers 5

This section describes the functions, constants, and data types defined by the
ColorSync Manager for use by your application or device driver. The ColorSync
Manager allows your application or device driver to maintain consistent color
across devices and across platforms. You can use the ColorSync Manager for
color conversion, color matching, color gamut checking, profile management,
device calibration, and creating color management modules (CMMs) and
calibration plug-ins that perform these services.

This reference has been revised for ColorSync version 2.5.

Note
This document is up-to-date for ColorSync 2.5.1, which
introduces no changes to the ColorSync Manager API. ◆

“ColorSync Version Information” (page 525) describes the Gestalt information,
shared library version numbers, CMM version numbers, and ColorSync header
files you use with different versions of the ColorSync Manager. It also includes
CPU and Mac OS system requirements.

Gestalt Selector Codes for the ColorSync Manager 5

This section provides information on the Gestalt selector codes you use to
determine which version (if any) of the ColorSync Manager is currently
available. For an example of how to use these selector codes, see “Determining
If the ColorSync Manager Is Available” (page 92). For additional Gestalt
information, see “Gestalt, Shared Library, and CMM Version Information”
(page 526).

Constants for ColorSync Manager Gestalt Selectors and Responses 5
CHANGED IN COLORSYNC 2.55

You use the following constants with the Gestalt function to determine which
version of ColorSync is present. For a code sample, see “Determining If the
ColorSync Manager Is Available” (page 92). The constant gestaltColorSync25
was added in ColorSync 2.5. For additional information on ColorSync versions,
see Table 8-1 (page 526).
Gestalt Selector Codes for the ColorSync Manager 217
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
enum {
gestaltColorMatchingVersion = 'cmtc', /* Selector for version info. */
gestaltColorSync10 = 0x0100, /* ColorSync 1.0; no QD matching */
gestaltColorSync11 = 0x0110, /* ColorSync 1.0.3 */
gestaltColorSync104 = 0x0104, /* ColorSync 1.0.4 */
gestaltColorSync105 = 0x0105, /* ColorSync 1.0.5 */
gestaltColorSync20 = 0x0200, /* ColorSync 2.0 */
gestaltColorSync21 = 0x0210, /* ColorSync 2.1 */
gestaltColorSync25 = 0x0250, /* ColorSync 2.5 */
gestaltColorSync251 = 0x0251 /* ColorSync 2.5.1 */

};

Enumerator descriptions

gestaltColorMatchingVersion
The selector for obtaining version information. Use when
calling the Gestalt function to determine whether the
ColorSync Manager is available.

gestaltColorSync10
A Gestalt response value of gestaltColorSync10 indicates
version 1.0 of the ColorSync Manager is present. This
version supports general purpose color matching only and
does not provide QuickDraw-specific matching functions.

gestaltColorSync11
A Gestalt response value of gestaltColorSync11 indicates
version 1.0.3 of the ColorSync Manager is present.

gestaltColorSync104
A Gestalt response value of gestaltColorSync104 indicates
version 1.4 of the ColorSync Manager is present.

gestaltColorSync105
A Gestalt response value of gestaltColorSync105 indicates
version 1.5 of the ColorSync Manager is present.

gestaltColorSync20
A Gestalt response value of gestaltColorSync20 indicates
version 2.0 of the ColorSync Manager is present.

gestaltColorSync21
A Gestalt response value of gestaltColorSync21 indicates
version 2.1 of the ColorSync Manager is present.
218 Gestalt Selector Codes for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
gestaltColorSync25
A Gestalt response value of gestaltColorSync25 indicates
version 2.5 of the ColorSync Manager is present.

gestaltColorSync251
A Gestalt response value of gestaltColorSync251 indicates
version 2.5.1 of the ColorSync Manager is present. Note
that version 2.5.1 introduces no new API.

Older ColorSync Gestalt Selectors 5
NOT RECOMMENDED5

The following constants were added to ColorSync version 2.0 to aid in the
transition from 68K to PowerPC systems. They are not recommended for new
applications and are not guaranteed to be carried forward in future versions of
ColorSync. However, they are still supported as of version 2.5 for backward
compatibility. If you call the Gestalt function passing the selector
gestaltColorMatchingAttr, you can test the bit fields of the returned value with
the gestaltColorMatchingLibLoaded constant to determine if the ColorSync
Manager shared libraries are loaded, or with the gestaltHighLevelMatching
constant to determine if the ColorSync QuickDraw-specific functions are
present.

enum {
gestaltColorMatchingAttr = 'cmta', /* Selector for version info. */
gestaltHighLevelMatching = 0, /* bit 0 set if ColorSync present */
gestaltColorMatchingLibLoaded = 1 /* bit 1 set if ColorSync present on

PowerPC-based machine; cleared if
on 68K machine. */

};

Enumerator descriptions

gestaltColorMatchingAttr
The selector for obtaining version information. Use when
calling the Gestalt function to check for particular
ColorSync Manager features.

gestaltHighLevelMatching
This constant is provided for backward compatibility only.
Gestalt Selector Codes for the ColorSync Manager 219
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Bit 0 of the Gestalt response value is always set if
ColorSync is present.

gestaltColorMatchingLibLoaded
This constant is provided for backward compatibility only.
Bit 1 of the Gestalt response value is always set on a Power
Macintosh machine if ColorSync is present. It is always
cleared on a 68K machine if ColorSync is present.

Functions for the ColorSync Manager 5

This section describes the functions defined by the ColorSync Manager for your
application’s use. The functions are organized into the following categories:

■ “Accessing Profiles” (page 221)

■ “Accessing Profile Elements” (page 241)

■ “Accessing Named Color Profile Values” (page 256)

■ “Matching Colors Using General Purpose Functions” (page 261)

■ “Matching Colors Using QuickDraw-Specific Functions” (page 284)

■ “Embedding Profile Information in Pictures” (page 290)

■ “Getting the Preferred CMM” (page 292)

■ “Getting and Setting the System Profile File” (page 293)

■ “Getting and Setting Default Profiles by Color Space” (page 297)

■ “Getting and Setting Monitor Profiles by AVID” (page 299)

■ “Locating the ColorSync Profiles Folder” (page 301)

■ “Profile Searching” (page 303)

■ “Converting Between Color Spaces” (page 318)

■ “Color-Matching With PostScript Devices” (page 332)

■ “Converting 2.x Profiles to 1.0 Format” (page 339)
220 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Accessing Profiles 5

This section describes the functions you use to perform operations on profiles:

■ CMOpenProfile (page 222) opens the specified profile and returns a reference
to the profile.

■ CMCloseProfile (page 223) decrements the reference count for the specified
profile reference and, if the reference count reaches 0, frees all private
memory and other resources associated with the profile.

■ CMProfileModified (page 225) indicates whether the specified profile has been
modified since it was created or last updated.

■ CMUpdateProfile (page 226) saves modifications to the specified profile.

■ CMNewProfile (page 227) creates a new profile and associated backing copy.

■ CMCopyProfile (page 229) duplicates the specified existing profile.

■ CMCloneProfileRef (page 231) increments the reference count for the specified
profile reference.

■ CMGetProfileRefCount (page 232) obtains the current reference count for the
specified profile.

■ NCMGetProfileLocation (page 233) obtains the location of a profile based on
the specified profile reference; new in ColorSync 2.5.

■ CMGetProfileLocation (page 234) obtains the location of a profile based on the
specified profile reference (not recommended in ColorSync version 2.5).

■ CMValidateProfile (page 236) indicates whether the specified profile contains
the minimum set of elements required by the current color management
module for color matching or color checking.

■ CMFlattenProfile (page 237) transfers a profile stored in an independent disk
file to an external profile format that can be embedded in a graphics
document; changed in ColorSync 2.5.

■ CMUnflattenProfile (page 239) transfers a profile embedded in a graphics
document to an independent disk file; changed in ColorSync 2.5.
Functions for the ColorSync Manager 221
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMOpenProfile 5

Opens the specified profile and returns a reference to the profile.

pascal CMError CMOpenProfile (
CMProfileRef *prof
const CMProfileLocation *theProfile);

prof A pointer to a profile reference of type CMProfileRef (page 358).
On return, the reference refers to the opened profile.

theProfile A pointer to a profile location of type CMProfileLocation
(page 362) for the profile to open. Commonly a profile is
disk-file based, but it may instead be temporary, handle-based,
pointer-based, or accessed through a procedure supplied by
your application.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If the CMOpenProfile function executes successfully, the profile reference refers to
the opened profile. Your application uses this reference, for example, when it
calls functions to color match, copy, and update a profile, and validate its
contents.

The ColorSync Manager maintains private storage for each request to open a
profile, allowing more than one application to use a profile concurrently.

When you create a new profile or modify the elements of an existing profile, the
ColorSync Manager stores the new or modified elements in the private storage
it maintains for your application. Any new or changed profile elements are not
incorporated into the profile itself unless your application calls the function
CMUpdateProfile (page 226) to update the profile. If you call the function
CMCopyProfile (page 229) to create a copy of an existing profile under a new
name, any changes you have made are incorporated in the profile duplicate but
the original profile remains unchanged.

Before you call the CMOpenProfile function, you must set the CMProfileLocation
data structure to identify the location of the profile to open. Most commonly, a
profile is stored in a disk file. If the profile is in a disk file, use the profile
location data type to provide its file specification. If the profile is in memory, use
222 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
the profile location data type to specify a handle or pointer to the profile. If the
profile is accessed through a procedure provided by your application, use the
profile location data type to supply a universal procedure pointer to your
procedure.

Your application must obtain a profile reference before you copy or validate a
profile, and before you flatten the profile to embed it.

For example, your application can:

■ open a profile

■ call the CMGetProfileHeader function to obtain the profile’s header to modify
its values

■ set new values

■ call the CMSetProfileHeader function to replace the modified header

■ pass the profile reference to a function such as NCWNewColorWorld (page 262)
as the source or destination profile in a color world for a color-matching
session

■ When you close your reference to the profile by calling the function
CMCloseProfile (page 223), your changes are discarded (unless you called the
CMUpdateProfile function).

CMCloseProfile 5

Decrements the reference count for the specified profile reference and, if the
reference count reaches 0, frees all private memory and other resources
associated with the profile.

pascal CMError CMCloseProfile (CMProfileRef prof);

prof A profile reference of type CMProfileRef (page 358) that
identifies the profile that may need to be closed.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 223
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The ColorSync Manager keeps an internal reference count for each profile
reference returned from a call to the CMOpenProfile (page 222), CMNewProfile
(page 227), CMCopyProfile (page 229), or CWNewLinkProfile (page 267) functions.
Calling the function CMCloneProfileRef (page 231) increments the count; calling
the CMCloseProfile (page 223) function decrements it. The profile remains open
as long as the reference count is greater than 0, indicating there is at least one
remaining reference to the profile. When the count reaches 0, the ColorSync
Manager releases all private memory, files, or resources allocated in association
with that profile.

When the ColorSync Manager releases all private memory and resources
associated with a profile, any temporary changes your application made to the
profile are not saved unless you first call the CMUpdateProfile function to update
the profile.

When your application passes a copy of a profile reference to an independent
task, whether synchronous or asynchronous, it should call the function
CMCloneProfileRef (page 231) to increment the reference count. Both the called
task and the caller should call CMCloseProfile when finished with the profile
reference.

Note
You call CMCloneProfileRef after copying a profile reference,
but not after duplicating an entire profile (as with the
CMCopyProfile function). ◆

When your application passes a copy of a profile reference internally, it may not
need to call CMCloneProfileRef, as long as the application calls CMCloseProfile
once for the profile.

IMPORTANT

In your application, make sure that CMCloseProfile is called
once for each time a profile reference is created or cloned.
Otherwise, the private memory and resources associated
with the profile reference may not be properly freed, or an
application may attempt to use a profile reference that is no
longer valid. ▲

If you create a new profile by calling the CMNewProfile function, the profile is
saved to disk when you call the CMCloseProfile function unless you specified
NULL as the profile location when you created the profile.
224 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

To save changes to a profile before closing it, use the function CMUpdateProfile
(page 226).

CMProfileModified 5

Indicates whether the specified profile has been modified since it was created or
last updated.

pascal CMError CMProfileModified (
CMProfileRef prof,
Boolean *modified);

prof A profile reference of type CMProfileRef (page 358) to the profile
to examine.

modified A pointer to a Boolean variable. On output, the value of
modified is set to true if the profile has been modified, false if it
has not.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMProfileModified function returns, through the modified parameter, the
current state of the modified flag for the specified profile.

When a profile is first opened, its modified flag is set to false. On calls that add
to, delete from, or set the profile header or tags, the modified flag is set to true.
After calling the function CMUpdateProfile (page 226), the modified flag is reset
to false.
Functions for the ColorSync Manager 225
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMUpdateProfile 5

Saves modifications to the specified profile.

pascal CMError CMUpdateProfile (CMProfileRef prof);

prof A profile reference of type CMProfileRef (page 358) to the profile
to update.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMUpdateProfile function makes permanent any changes or additions your
application has made to the profile identified by the profile reference, if no other
references to that profile exist.

The ColorSync Manager maintains a modified flag to track whether a profile
has been modified. After updating a profile, the CMUpdateProfile function sets
the value of the modified flag for that profile to false.

Each time an application calls the function CMOpenProfile (page 222), the
function creates a unique reference to the profile. An application can also
duplicate a profile reference by passing a copy to another task. You cannot use
the CMUpdateProfile function to update a profile if more than one reference to
the profile exists—attempting to do so will result in an error return. You can call
the function CMGetProfileRefCount (page 232) to determine the reference count
for a profile reference.

You cannot use the CMUpdateProfile function to update a ColorSync 1.0 profile.
For information on updating a ColorSync 1.0 profile, see “Using ColorSync 1.0
Profiles With Newer Versions of the ColorSync Manager” (page 534).

After you fill in tags and their data elements for a new profile created by calling
the function CMNewProfile (page 227), you must call the CMUpdateProfile
function to write the element data to the new profile.

If you modify an open profile, you must call CMUpdateProfile to save the
changes to the profile file before you call the function CMCloseProfile
(page 223). Otherwise, the changes are discarded.

To modify a profile header, you use the function CMGetProfileHeader (page 245)
and the function CMSetProfileHeader (page 254).
226 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
To set profile elements outside the header, you use the function
CMSetProfileElement (page 253), the function CMSetProfileElementSize
(page 250), and the function CMSetPartialProfileElement (page 251).

CMNewProfile 5

Creates a new profile and associated backing copy.

pascal CMError CMNewProfile (
CMProfileRef *prof,
const CMProfileLocation *theProfile);

prof A pointer to a profile reference of type CMProfileRef (page 358).
On output, a reference to the new profile.

theProfile A pointer of type CMProfileLocation (page 362) to the profile
location where the new profile should be created. A profile is
commonly disk-file based—the disk file type for a profile is
'prof'. However, to accommodate special requirements, you
can create a handle- or pointer-based profile, you can create a
temporary profile that isn’t saved after you call the
CMCloseProfile function, or you can create a profile that is
accessed through a procedure provided by your application. To
create a temporary profile, you either specify cmNoProfileBase as
the kind of profile in the profile location structure or specify
NULL for this parameter.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMNewProfile function creates a new profile and backing copy in the
location you specify. After you create the profile, you must fill in the profile
header fields and populate the profile with tags and their element data, and
then call the function CMUpdateProfile (page 226) to save the element data to the
profile file. The default ColorSync profile contents include a profile header of
type CM2Header (page 354) and an element table.
Functions for the ColorSync Manager 227
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
To set profile elements outside the header, you use the function
CMSetProfileElement (page 253), the function CMSetProfileElementSize
(page 250), and the function CMSetPartialProfileElement (page 251). You set
these elements individually, identifying them by their tag names.

When you create a new profile, all fields of the CM2Header profile header are set
to 0 except the size and profileVersion fields.To set the header elements, you
call the function CMGetProfileHeader (page 245) to get a copy of the header,
assign values to the header fields, then call the function CMSetProfileHeader
(page 254) to write the new header to the profile.

For each profile class, such as a device profile, there is a specific set of elements
and associated tags, defined by the ICC, that a profile must contain to meet the
baseline requirements. The ICC also defines optional tags that a particular
CMM might use to optimize or improve its processing. You can also define
private tags, whose tag signatures you register with the ICC, to provide a CMM
with greater capability to refine its processing.

After you fill in the profile with tags and their element data, you must call the
CMUpdateProfile function to write the new profile elements to the profile file.

Note
This function is most commonly used by profile developers
who create profiles for device manufacturers and by
calibration applications. In most cases, application
developers use existing profiles. ◆

SEE ALSO

For information on how to fill in a profile with tags and element data including
a description of the profile tags, refer to the International Color Consortium Profile
Format Specification. For information on how to obtain the ICC format
specification, see the section “The International Color Consortium Profile
Format” (page 49) in this document.
228 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMCopyProfile 5

Duplicates the specified existing profile.

pascal CMError CMCopyProfile (
CMProfileRef *targetProf,
const CMProfileLocation *targetLocation,
CMProfileRef srcProf);

targetProf A pointer to a profile reference of type CMProfileRef (page 358).
On output, points to the profile copy that was created.

targetLocation
A pointer to a location specification that indicates the location,
such as in memory or on disk, where the ColorSync Manager is
to create the copy of the profile. A profile is commonly disk-file
based. However, to accommodate special requirements, you can
create a handle- or pointer-based profile, you can create a profile
that is accessed through a procedure provided by your
application, or you can create a temporary profile that isn’t
saved after you call the CMCloseProfile function. To create a
temporary profile, you either specify cmNoProfileBase as the
kind of profile in the profile location structure or specify NULL for
this parameter. To specify the location, you use the data type
CMProfileLocation (page 362).

srcProf A profile reference to the profile to duplicate.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMCopyProfile function duplicates an entire open profile whose reference
you specify. If you have made temporary changes to the profile, which you
have not saved by calling CMUpdateProfile, those changes are included in the
duplicated profile. They are not saved to the original profile unless you call
CMUpdateProfile for that profile.

The ColorSync Manager maintains a modified flag to track whether a profile
has been modified. After copying a profile, the CMCopyProfile function sets the
value of the modified flag for that profile to false.
Functions for the ColorSync Manager 229
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Unless you are copying a profile that you created, you should not infringe on
copyright protection specified by the profile creator. To obtain the copyright
information, you call the function CMGetProfileElement (page 243), specifying
the cmCopyrightTag tag signature for the copyright element (defined in the
CMICCProfile.h header file).

You should also check the flags field of the profile header structure CM2Header
(page 354) for copyright information. You can test the cmEmbeddedUseMask bit of
the flags field to determine whether the profile can be used independently. If
the bit is set, you should use this profile as an embedded profile only and not
copy the profile for your own purposes. The cmEmbeddedUseMask mask is
described in “Flag Mask Definitions for Version 2.x Profiles” (page 414). The
following code snippet shows how you might perform a test using the
cmEmbeddedUseMask mask:

if (myCM2Header.flags & cmEmbeddedUseMask)
{

// profile should only be used as an embedded profile
}
else
{

// profile can be used independently
}

A calibration program, for example, might use the CMCopyProfile function to
copy a device’s original profile, then modify the copy to reflect the current state
of the device. Or an application might want to copy a profile after unflattening
it.

SEE ALSO

To copy a profile, you must obtain a reference to that profile by either opening
the profile or creating it. To open a profile, use the function CMOpenProfile
(page 222). To create a new profile, use the function CMNewProfile (page 227). As
an alternative to using the CMCopyProfile function to duplicate an entire profile,
you can use the same profile reference more than once. To do so, you call the
function CMCloneProfileRef (page 231) to increment the reference count for the
reference each time you reuse it. Calling the CMCloneProfileRef function
increments the count; calling the function CMCloseProfile (page 223)
decrements it. The profile remains open as long as the reference count is greater
than 0, indicating at least one routine retains a reference to the profile.
230 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMCloneProfileRef 5

Increments the reference count for the specified profile reference.

pascal CMError CMCloneProfileRef (CMProfileRef prof);

prof A profile reference of type CMProfileRef (page 358) to the profile
whose reference count is incremented.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The ColorSync Manager keeps an internal reference count for each profile
reference returned from a call to the CMOpenProfile, CMNewProfile, or
CMCopyProfile functions. Calling the CMCloneProfileRef function increments the
count; calling the function CMCloseProfile (page 223) decrements it. The profile
remains open as long as the reference count is greater than 0, indicating that at
least one routine retains a reference to the profile. When the count reaches 0, the
ColorSync Manager releases all private memory, files, or resources allocated in
association with that profile.

When your application creates a copy of an entire profile with CMCopyProfile,
the copy has its own reference count. The CMCloseProfile routine should be
called for the copied profile, just as for the original. When the reference count
reaches 0, private resources associated with the copied profile are freed.

When your application merely duplicates a profile reference, as it may do to
pass a profile reference to a synchronous or an asynchronous task, it should call
CMCloneProfileRef to increment the reference count. Both the called task and the
caller should call CMCloseProfile when finished with the profile reference.

IMPORTANT

In your application, you must make sure that
CMCloseProfile is called once for each time a profile
reference is created or cloned. Otherwise, the memory and
resources associated with the profile reference may not be
properly freed, or an application may attempt to use a
profile reference that is no longer valid. ▲
Functions for the ColorSync Manager 231
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetProfileRefCount 5

Obtains the current reference count for the specified profile.

pascal CMError CMGetProfileRefCount (
CMProfileRef prof,
long *count);

prof A profile reference of type CMProfileRef (page 358) to the profile
whose reference count is obtained.

count A pointer to a reference count. On output, the reference count
for the specified profile reference.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The ColorSync Manager keeps an internal reference count for each profile
reference returned from calls such as CMOpenProfile (page 222) or CMNewProfile
(page 227). Calling the function CMCloneProfileRef (page 231) increments the
count; calling the function CMCloseProfile (page 223) decrements it. The profile
remains open as long as the reference count is greater than 0, indicating at least
one routine retains a reference to the profile. When the count reaches 0, the
ColorSync Manager releases all memory, files, or resources allocated in
association with that profile.

An application that manages profiles closely can call the CMGetProfileRefCount
function to obtain the reference count for a profile reference, then perform
special handling if necessary, based on the reference count.

SEE ALSO

To copy a profile with the function CMCopyProfile (page 229), you must obtain a
reference to that profile by either opening the profile or creating it. To open a
profile, use the function CMOpenProfile (page 222). To create a new profile, use
the function CMNewProfile (page 227). As an alternative to using the
CMCopyProfile function to duplicate an entire profile, you can use the same
profile reference more than once. To do so, you call the function
CMCloneProfileRef (page 231) to increment the reference count for the reference
each time you reuse it. Calling the CMCloneProfileRef function increments the
232 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
count; calling the function CMCloseProfile (page 223) decrements it. The profile
remains open as long as the reference count is greater than 0, indicating at least
one routine retains a reference to the profile.

NCMGetProfileLocation 5

NEW IN COLORSYNC 2.55

Obtains either a profile location structure for a specified profile or the size of the
location structure for the profile.

pascal CMError NCMGetProfileLocation (
CMProfileRef prof,
CMProfileLocation * profLoc,
unsigned long * locationSize);

prof A profile reference of type CMProfileRef (page 358). Before
calling NCMGetProfileLocation, you set the reference to specify
the profile for which you wish to obtain the location or location
structure size.

profLoc A pointer to a profile location structure, as described in “Profile
Location” (page 360). If you pass NULL, NCMGetProfileLocation
returns the size of the profile location structure for the profile
specified by prof in the locationSize parameter. If you instead
pass a pointer to memory you have allocated for the structure,
on return, the structure specifies the location of the profile
specified by prof.

locationSize A pointer to a value of type long. If you pass NULL for the
profLoc parameter, on return, locationSize contains the size in
bytes of the profile location structure for the profile specified by
prof. If you pass a pointer to a profile location structure in
profLoc, set locationSize to the size of the structure before
calling NCMGetProfileLocation, using the constant
cmCurrentProfileLocationSize.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 233
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The NCMGetProfileLocation function is available starting with ColorSync
version 2.5. It differs from its predecessor, CMGetProfileLocation (page 234), in
that the newer version has a parameter for the size of the location structure for
the specified profile.

You should use NCMGetProfileLocation rather than CMGetProfileLocation for the
following reasons:

■ Code using the older version (CMGetProfileLocation) may not be as easily
ported to other platforms.

■ Specifying the size of the profile location structure ensures that it can grow, if
necessary, in the future.

The best way to use NCMGetProfileLocation is to call it twice:

1. Pass a reference to the profile to locate in the prof parameter and NULL for the
profLoc parameter. NCMGetProfileLocation returns the size of the location
structure in the locationSize parameter.

2. Allocate enough space for a structure of the returned size, then call the
function again, passing a pointer in the profLoc parameter; on return, the
structure specifies the location of the profile.

It is possible to call NCMGetProfileLocation just once, using the constant
cmCurrentProfileLocationSize for the size of the allocated profile location
structure and passing the same constant for the locationSize parameter. The
constant cmCurrentProfileLocationSize may change in the future, but will be
consistent within the set of headers you build your application with. However,
if the size of the CMProfileLocation structure changes in a future version of
ColorSync (and the value of cmCurrentProfileLocationSize as well) and you do
not rebuild your application, NCMGetProfileLocation may return an error.

CMGetProfileLocation 5

NOT RECOMMENDED IN COLORSYNC 2.55

Obtains the location of a profile based on the specified profile reference.

pascal CMError CMGetProfileLocation (
CMProfileRef prof,
CMProfileLocation *theProfile);
234 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
prof A profile reference of type CMProfileRef (page 358). Before
calling CMGetProfileLocation, you set the reference to specify the
profile you wish to obtain the location for.

theProfile A pointer to a profile location structure of type
CMProfileLocation (page 362). On output, specifies the location
of the profile. Commonly, a profile is disk-file based, but it may
instead be temporary, handle-based, pointer-based, or accessed
through a procedure supplied by your application.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

When your application calls the CMValidateProfile function, the ColorSync
Manager dispatches the function to the CMM specified by the CMMType header
field of the profile whose reference you specify. The preferred CMM can
support this function or not.

VERSION NOTES

Starting with ColorSync version 2.5, you should use the function
NCMGetProfileLocation (page 233) instead of CMGetProfileLocation.

As of version 2.5, if you call CMGetProfileLocation, it will just call
NCMGetProfileLocation in turn, passing the profile specified by prof, the profile
location specified by theProfile, and a location size value of
cmOriginalProfileLocationSize.

SEE ALSO

To open a profile and obtain a reference to it, use the function CMOpenProfile
(page 222).
Functions for the ColorSync Manager 235
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMValidateProfile 5

Indicates whether the specified profile contains the minimum set of elements
required by the current color management module (CMM) for color matching
or color checking.

pascal CMError CMValidateProfile (
CMProfileRef prof,
Boolean *valid,
Boolean *preferredCMMnotfound);

prof A profile reference of type CMProfileRef (page 358) to the profile
to validate.

valid A pointer to a valid profile flag. On output, has the value true if
the profile contains the minimum set of elements to be valid and
false if it doesn’t.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM specified by the
profile was not available to perform validation or does not
support this function and the default CMM was used. Has the
value false if the profile’s preferred CMM is able to perform
validation.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

When your application calls the CMValidateProfile function, the ColorSync
Manager dispatches the function to the CMM specified by the CMMType header
field of the profile whose reference you specify. The preferred CMM can
support this function or not.

If the preferred CMM supports this function, it determines if the profile
contains the baseline elements for the profile class, which the CMM requires to
perform color matching or gamut checking. For each profile class, such as a
device profile, there is a specific set of required tagged elements defined by the
ICC that the profile must include. The ICC also defines optional tags, which
may be included in a profile. A CMM might use these optional elements to
236 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
optimize or improve its processing. Additionally, a profile might include private
tags defined to provide a CMM with processing capability particular to the
needs of that CMM. The profile developer can define these private tags, register
the tag signatures with the ICC, and include the tags in a profile. The CMM
checks only for the existence of profile elements; it does not check the element’s
content and size.

If the preferred CMM does not support the CMValidateProfile function request,
the ColorSync Manager calls the default CMM to handle the validation request.

CMFlattenProfile 5

CHANGED IN COLORSYNC 2.55

Transfers a profile stored in an independent disk file to an external profile
format that can be embedded in a graphics document.

pascal CMError CMFlattenProfile (
CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

prof A profile reference of type CMProfileRef (page 358) to the profile
to flatten.

flags Reserved for future use.

proc A pointer to a function that you provide to perform the
low-level data transfer. For more information, see the function
MyColorSyncDataTransfer (page 342).

refCon A reference constant for application data which the color
management module (CMM) passes to the
MyColorSyncDataTransfer function each time it calls the function.
For example, the reference constant may point to a data
structure that holds information required by the
MyColorSyncDataTransfer function to perform the data transfer,
such as the reference number to a disk file in which the flattened
profile is to be stored.
Functions for the ColorSync Manager 237
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Starting with ColorSync version 2.5, the ColorSync Manager
calls your transfer function directly, without going through the
preferred, or any, CMM.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM specified by the
profile was not available to perform flattening or does not
support this function and the default CMM was used. Has the
value false if the profile’s preferred CMM is able to perform
flattening.
Starting with ColorSync 2.5, the ColorSync Manager calls your
transfer function directly, without going through the preferred,
or any, CMM. On return, the value of preferredCMMnotfound is
guaranteed to be false.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The version notes that follow this section describe changes to how the
CMFlattenProfile function works starting in ColorSync version 2.5.

Prior to version 2.5, the ColorSync Manager dispatches the CMFlattenProfile
function to the CMM specified by the profile whose reference you provide. If
the preferred CMM is unavailable or it doesn’t support this function, then the
default CMM is used.

The ColorSync Manager passes to the CMM the pointer to your
profile-flattening function. The CMM calls your function
MyColorSyncDataTransfer (page 342) to perform the actual data transfer.

VERSION NOTES

Starting with ColorSync version 2.5, the ColorSync Manager calls your transfer
function directly, without going through the preferred, or any, CMM. As a
result, the value returned in the preferredCMMnotfound parameter is guaranteed
to be false.
238 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

To unflatten a profile embedded in a graphics document to an independent disk
file, use the function CMUnflattenProfile (page 239).

CMUnflattenProfile 5

CHANGED IN COLORSYNC 2.55

Transfers a profile embedded in a graphics document to an independent disk
file.

pascal CMError CMUnflattenProfile (
FSSpec *resultFileSpec,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

resultFileSpec
A pointer to a file specification. On return, the file specification
identifies an independent disk file containing the extracted
profile.

proc A pointer to a function provided by your application to receive
the profile data from the CMM and store it in a file.

refCon A reference constant for application data which the CMM passes
to the MyColorSyncDataTransfer function each time it calls the
function.
Starting with ColorSync 2.5, the ColorSync Manager calls your
transfer function directly, without going through the preferred,
or any, CMM.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM specified by the
profile was not available to perform unflattening or does not
support this function and the default CMM was used. Has the
value false if the profile’s preferred CMM is able to perform
unflattening.
Starting with ColorSync 2.5, the ColorSync Manager calls your
Functions for the ColorSync Manager 239
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
transfer function directly, without going through the preferred,
or any, CMM. On return, the value of preferredCMMnotfound is
guaranteed to be false.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The version notes that follow this section describe changes to how the
CMUnflattenProfile function works starting in ColorSync version 2.5.

Prior to version 2.5, the ColorSync Manager dispatches the CMUnflattenProfile
function (passed by your application in the proc parameter) to the CMM
specified by the profile that is to be transferred to a disk file. If the preferred
CMM is unavailable or it doesn’t support this function, then the default CMM
is used.

The ColorSync Manager calls your unflattening function to identify the CMM to
which it dispatches the CMUnflattenProfile function. For this reason, your
function must be able to buffer at least 8 bytes of data. For a description of an
unflattening function prototype, see MyColorSyncDataTransfer (page 342). For a
sample of an actual unflattening function, see “Part B: Unflattening the Profile”
(page 125).

The CMM calls your version of the MyColorSyncDataTransfer function to
transfer the profile data from the graphics document to an independent disk
file.

Before you can obtain a profile reference to a profile that was embedded in a
graphics document, you must use this function to unflatten the profile. Then
you can call CMOpenProfile to open the profile and obtain a reference to it.

When you have finished using the profile, you must call the CMCloseProfile
(page 223) function to close the profile and call the File Manager’s FSpDelete
function to delete the file.

VERSION NOTES

Starting with ColorSync version 2.5, the ColorSync Manager calls your transfer
function directly, without going through the preferred, or any, CMM. As a
result, the value returned in the preferredCMMnotfound parameter is guaranteed
to be false.
240 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Accessing Profile Elements 5

This section describes the functions you use to examine, set, and change
individual elements of a profile.

■ CMProfileElementExists (page 242) tests whether the specified profile
contains a specific element based on the element’s tag signature.

■ CMCountProfileElements (page 243) counts the number of elements in the
specified profile.

■ CMGetProfileElement (page 243) obtains element data from the specified
profile based on the specified element tag signature.

■ CMGetProfileHeader (page 245) obtains the profile header for the specified
profile.

■ CMGetPartialProfileElement (page 246) obtains a portion of the element data
from the specified profile based on the specified element tag signature.

■ CMGetIndProfileElementInfo (page 247) obtains the element tag and data size
of an element by index from the specified profile.

■ CMGetIndProfileElement (page 249) obtains the element data corresponding
to a particular index from the specified profile.

■ CMSetProfileElementSize (page 250) reserves the element data size for a
specific tag in the specified profile before setting the element data.

■ CMSetPartialProfileElement (page 251) sets part of the element data for a
specific tag in the specified profile.

■ CMSetProfileElement (page 253) sets or replaces the element data for a
specific tag in the specified profile.

■ CMSetProfileHeader (page 254) sets the header for the specified profile.

■ CMSetProfileElementReference (page 254) adds a tag to the specified profile
to refer to data corresponding to a previously set element.

■ CMRemoveProfileElement (page 255) removes an element corresponding to a
specific tag from the specified profile.

■ CMGetScriptProfileDescription (page 256) obtains the internal name (or
description) of a profile and the script code identifying the language in which
the profile name is specified from the specified profile.
Functions for the ColorSync Manager 241
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMProfileElementExists 5

Tests whether the specified profile contains a specific element based on the
element’s tag signature.

pascal CMError CMProfileElementExists (
CMProfileRef prof,
OSType tag,
Boolean *found);

prof A profile reference of type CMProfileRef (page 358) that specifies
the profile to examine.

tag The tag signature (for example, ‘A2B0’, or constant cmAToB0Tag)
for the element in question. For a complete list of the tag
signatures a profile may contain, including a description of each
tag, refer to the International Color Consortium Profile Format
Specification. For information on how to obtain the ICC format
specification, see the section “The International Color
Consortium Profile Format” (page 49) in this document. The
signatures for profile tags are defined in the CMICCProfile.h
header file.

found A pointer to a flag for whether the element was found. On
output, the flag has the value true if the profile contains the
element or false if it doesn’t.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

You cannot use this function to test whether certain data in the CM2Header profile
header exists. Instead, you must call the function CMGetProfileHeader (page 245)
to copy the entire profile header and read its contents.
242 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMCountProfileElements 5

Counts the number of elements in the specified profile.

pascal CMError CMCountProfileElements (
 CMProfileRef prof,
 unsigned long *elementCount);

prof A profile reference of type CMProfileRef (page 358) to the profile
to examine.

elementCount
A pointer to an element count. On output, a one-based count of
the number of elements.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Every element in the profile outside the header is counted. A profile may
contain tags that are references to other elements. These tags are included in the
count. For information about profiles and their tags, see “Profile Properties”
(page 53).

CMGetProfileElement 5

Obtains element data from the specified profile based on the specified element
tag signature.

pascal CMError CMGetProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long *elementSize,
void *elementData);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the target element.
Functions for the ColorSync Manager 243
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
tag The tag signature (for example, ‘A2B0’, or constant cmAToB0Tag)
for the element in question. The tag identifies the element. For a
complete list of the public tag signatures a profile may contain,
including a description of each tag, refer to the International
Color Consortium Profile Format Specification. For information on
how to obtain the ICC format specification, see the section “The
International Color Consortium Profile Format” (page 49) in this
document. The signatures for profile tags are defined in the
CMICCProfile.h header file.

elementSize A pointer to a size value. On input, you specify the size of the
element data to copy. Specify NULL to copy the entire element
data. To obtain a portion of the element data, specify the
number of bytes to copy.

On output, the size of the data returned.

elementData A pointer to memory for element data. On input, you allocate
memory. On output, this buffer holds the element data.

To obtain the element size in the elementSize parameter without
copying the element data to this buffer, specify NULL for this
parameter.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Before you call the CMGetProfileElement function to obtain the element data for
a specific element, you must know the size in bytes of the element data so you
can allocate a buffer to hold the returned data.

The CMGetProfileElement function serves two purposes: to get an element’s size
and to obtain an element’s data. In both instances, you provide a reference to
the profile containing the element in the prof parameter and the tag signature of
the element in the tag parameter.

To obtain the element data size, call the CMGetProfileElement function
specifying a pointer to an unsigned long data type in the elementSize field and
a NULL value in the elementData field.

After you obtain the element size, you should allocate a buffer large enough to
hold the returned element data, then call the CMGetProfileElement function
244 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
again, specifying NULL in the elementSize parameter to copy the entire element
data and a pointer to the data buffer in the elementData parameter.

To copy only a portion of the element data beginning from the first byte,
allocate a buffer the size of the number of bytes of element data you want to
obtain and specify the number of bytes to copy in the elementSize parameter. In
this case, on output the elementSize parameter contains the size in bytes of the
element data actually returned.

SEE ALSO

You cannot use the CMGetProfileElement function to copy a portion of element
data beginning from an offset into the data. To copy a portion of the element
data beginning from any offset, use the function CMGetPartialProfileElement
(page 246).

You cannot use this function to obtain a portion of the CM2Header profile header.
Instead, you must call the function CMGetProfileHeader (page 245) to copy the
entire profile header and read its contents.

CMGetProfileHeader 5

Obtains the profile header for the specified profile.

pascal CMError CMGetProfileHeader (
CMProfileRef prof,
CMAppleProfileHeader *header);

prof A profile reference of type CMProfileRef (page 358) to the profile
whose header is to be copied.

header A pointer to a profile header. On input, depending on the profile
version, you may allocate a ColorSync 2.x or 1.0 header. On
output, contains the profile data. For information about the
ColorSync 2.x profile header structure, see “CM2Header”
(page 354). For information about the ColorSync 1.0 header, see
“CMHeader” (page 351) and “How ColorSync 1.0 Profiles and
Version 2.x Profiles Differ” (page 531).
Functions for the ColorSync Manager 245
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMGetProfileHeader function returns the header for a ColorSync 2.x or
ColorSync 1.0 profile. To return the header, the function uses a union of type
CMAppleProfileHeader (page 357), with variants for version 1.0 and 2.x headers.

A 32-bit version value is located at the same offset in either header. For
ColorSync 2.x profiles, this is the profileVersion field. For ColorSync 1.0
profiles, this is the applProfileVersion field. You can inspect the value at this
offset to determine the profile version, and interpret the remaining header fields
accordingly.

SEE ALSO

To copy a profile header to a profile after you modify the header’s contents, use
the function CMSetProfileHeader (page 254).

CMGetPartialProfileElement 5

Obtains a portion of the element data from the specified profile based on the
specified element tag signature.

pascal CMError CMGetPartialProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long offset,
unsigned long *byteCount,
void *elementData);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the target element.

tag The tag signature for the element in question. For a complete list
of the tag signatures a profile may contain, including a
description of each tag, refer to the International Color Consortium
Profile Format Specification. For information on how to obtain the
246 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
ICC format specification, see the section “The International
Color Consortium Profile Format” (page 49) in this document.
The signatures for profile tags are defined in the CMICCProfile.h
header file.

offset Beginning from the first byte of the element data, the offset from
which to begin copying the element data.

byteCount A pointer to a data byte count. On input, the number of bytes of
element data to copy, beginning from the offset specified by the
offset parameter. On output, the number of bytes actually
copied.

elementData A pointer to memory for element data. On input, you pass a
pointer to allocated memory. On output, this buffer holds the
element data.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMGetPartialProfileElement function allows you to copy any portion of the
element data beginning from any offset into the data. For the
CMGetPartialProfileElement function to copy the element data and return it to
you, your application must allocate a buffer in memory to hold the data.

You cannot use this function to obtain a portion of the CM2Header profile header.
Instead, you must call the function CMGetProfileHeader (page 245) to get the
entire profile header and read its contents.

CMGetIndProfileElementInfo 5

Obtains the element tag and data size of an element by index from the specified
profile.

pascal CMError CMGetIndProfileElementInfo (
CMProfileRef prof,
unsigned long index,
Functions for the ColorSync Manager 247
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
OSType *tag,
unsigned long *elementSize,
Boolean *refs);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the element.

index A one-based element index within the range returned by the
elementCount parameter of the CMCountProfileElements function.

tag A pointer to an element signature. On output, the tag signature
of the element corresponding to the index.

elementSize A pointer to an element size. On output, the size in bytes of the
element data corresponding to the tag.

refs A pointer to a reference count flag. On output, set to true if
more than one tag in the profile refers to element data associated
with the tag corresponding to the index.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). See the
discussion for this function for one possible error return value.

DISCUSSION

Before calling the CMGetIndProfileElementInfo function, you should call the
function CMCountProfileElements (page 243), which returns the total number of
elements in the profile in the elementCount parameter. The number you specify
for the index parameter when calling CMGetIndProfileElementInfo should be in
the range of 1 to elementCount; otherwise the function will return a result code
of cmIndexRangeErr. The index order of elements is determined internally by the
ColorSync Manager and is not publicly defined.

You might want to call this function, for example, to print out the contents of a
profile.
248 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetIndProfileElement 5

Obtains the element data corresponding to a particular index from the specified
profile.

pascal CMError CMGetIndProfileElement (
CMProfileRef prof,
unsigned long index,
unsigned long *elementSize,
void *elementData);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the element.

index The index of the element whose data you want to obtain. This is
a one-based element index within the range returned as the
elementCount parameter of the CMCountProfileElements function.

elementSize A pointer to an element data size. On input, specify the size of
the element data to copy (except when elementData is set to
NULL). Specify NULL to copy the entire element data. To obtain a
portion of the element data, specify the number of bytes to be
copy.

On output, the size of the element data actually copied.

elementData A pointer to memory for element data. On input, you allocate
memory. On output, this buffer holds the element data.

To obtain the element size in the elementSize parameter without
copying the element data to this buffer, specify NULL for this
parameter.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Before you call the CMGetIndProfileElement function to obtain the element data
for an element at a specific index, you first determine the size in bytes of the
element data. To determine the data size, you can

■ call the function CMGetIndProfileElementInfo (page 247), passing the
element’s index
Functions for the ColorSync Manager 249
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ call the CMGetIndProfileElement function itself, specifying a pointer to an
unsigned long data type in the elementSize field and a NULL value in the
elementData field

Once you have determined the size of the element data, you allocate a buffer to
hold as much of the data as you need. If you want all of the element data, you
specify NULL in the elementSize parameter. If you want only a portion of the
element data, you specify the number of bytes you want in the elementSize
parameter. You supply a pointer to the data buffer in the elementData parameter.
After calling CMGetIndProfileElement, the elementSize parameter contains the
size in bytes of the element data actually copied.

SEE ALSO

Before calling this function, you should call the function
CMCountProfileElements (page 243). It returns the profile’s total element count in
the elementCount parameter.

CMSetProfileElementSize 5

Reserves the element data size for a specific tag in the specified profile before
setting the element data.

pascal CMError CMSetProfileElementSize (
CMProfileRef prof,
OSType tag,
unsigned long elementSize);

prof A profile reference of type CMProfileRef (page 358) to the profile
in which the element data size is reserved.

tag The tag signature for the element whose size is reserved. The tag
identifies the element. For a complete list of the tag signatures a
profile may contain, including a description of each tag, refer to
the International Color Consortium Profile Format Specification. For
information on how to obtain the ICC format specification, see
the section “The International Color Consortium Profile Format”
(page 49) in this document. The signatures for profile tags are
defined in the CMICCProfile.h header file.
250 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
elementSize The total size in bytes to reserve for the element data.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Your application can use the CMSetProfileElementSize function to reserve the
size of element data for a specific tag before you call the function
CMSetPartialProfileElement (page 251) to set the element data. The most
efficient way to set a large amount of element data when you know the size of
the data is to first set the size, then call the CMSetPartialProfileElement function
to set each of the data segments. Calling the CMSetProfileElementSize function
first eliminates the need for the ColorSync Manager to repeatedly increase the
size for the data each time you call the CMSetPartialProfileElement function.

In addition to reserving the element data size, the CMSetProfileElementSize
function sets the element tag, if it does not already exist.

CMSetPartialProfileElement 5

Sets part of the element data for a specific tag in the specified profile.

pascal CMError CMSetPartialProfileElement (
CMProfileRef prof,
OSType tag,
unsigned long offset,
unsigned long byteCount,
void *elementData);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the tag for which the element data is set.

tag The tag signature for the element whose data is set. The tag
identifies the element. For a complete list of the tag signatures a
profile may contain, including a description of each tag, refer to
the International Color Consortium Profile Format Specification. For
information on how to obtain the ICC format specification, see
Functions for the ColorSync Manager 251
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
the section “The International Color Consortium Profile Format”
(page 49) in this document. The signatures for profile tags are
defined in the CMICCProfile.h header file.

offset The offset in the existing element data where data transfer
should begin.

byteCount The number of bytes of element data to transfer.

elementData A pointer to the buffer containing the element data to transfer to
the profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

You can use the CMSetPartialProfileElement function to set the data for an
element when the amount of data is large and you need to copy it to the profile
in segments.

After you set the element size, you can call this function repeatedly, as many
times as necessary, each time appending a segment of data to the end of the
data already copied until all the element data is copied.

If you know the size of the element data, you should call the function
CMSetProfileElementSize (page 250) to reserve it before you call
CMSetPartialProfileElement to set element data in segments. Setting the size
first avoids the extensive overhead required to increase the size for the element
data with each call to append another segment of data.

SEE ALSO

To copy the entire data for an element as a single operation, when the amount
of data is small enough to allow this, call the function CMSetProfileElement
(page 253).
252 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMSetProfileElement 5

Sets or replaces the element data for a specific tag in the specified profile.

pascal CMError CMSetProfileElement (
CMProfileRef prof, OSType tag,
unsigned long elementSize,
void *elementData);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the tag for which the element data is set.

tag The tag signature for the element whose data is set. For a
complete list of the tag signatures a profile may contain,
including a description of each tag, refer to the International
Color Consortium Profile Format Specification. For information on
how to obtain the ICC format specification, see the section “The
International Color Consortium Profile Format” (page 49) in this
document. The signatures for profile tags are defined in the
CMICCProfile.h header file.

elementSize The size in bytes of the element data set.

elementData A pointer to the buffer containing the element data to transfer to
the profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMSetProfileElement function replaces existing element data if an element
with the specified tag is already present in the profile. Otherwise, it sets the
element data for a new tag. Your application is responsible for allocating
memory for the buffer to hold the data to transfer.
Functions for the ColorSync Manager 253
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMSetProfileHeader 5

Sets the header for the specified profile.

pascal CMError CMSetProfileHeader (
CMProfileRef prof,
const CMAppleProfileHeader *header);

prof A profile reference of type CMProfileRef (page 358) to the profile
whose header is set.

header A pointer to the new header to set for the profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

You can use the CMSetProfileHeader function to set a header for a version 1.0 or
a version 2.x profile. Before you call this function, you must set the values for
the header, depending on the version of the profile. For a version 2.x profile,
you use a data structure of type CM2Header (page 354). For a version 1.0 profile,
you use a data structure of type CMHeader (page 351). You pass the header you
supply in the CMAppleProfileHeader union, described in
“CMAppleProfileHeader” (page 357).

CMSetProfileElementReference 5

Adds a tag to the specified profile to refer to data corresponding to a previously
set element.

pascal CMError CMSetProfileElementReference (
CMProfileRef prof,
OSType elementTag,
OSType referenceTag);

prof A profile reference of type CMProfileRef (page 358) to the profile
to add the tag to.
254 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
elementTag The original element’s signature tag corresponding to the
element data to which the new tag will refer.

referenceTag The new tag signature to add to the profile to refer to the
element data corresponding to elementTag.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

After the CMSetProfileElementReference function executes successfully, the
specified profile will contain more than one tag corresponding to a single piece
of data. All of these tags are of equal importance. Your application can set a
reference to an element that was originally a reference itself without circularity.

If you call the function CMSetProfileElement (page 253) subsequently for one of
the tags acting as a reference to another tag’s data, then the element data you
provide is set for the tag and the tag is no longer considered a reference.
Instead, the tag corresponds to its own element data and not that of another tag.

CMRemoveProfileElement 5

Removes an element corresponding to a specific tag from the specified profile.

pascal CMError CMRemoveProfileElement (
CMProfileRef prof,
OSType tag);

prof A profile reference of type CMProfileRef (page 358) to the profile
containing the tag remove.

tag The tag signature for the element to remove.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMRemoveProfileElement function deletes the tag as well as the element data
from the profile.
Functions for the ColorSync Manager 255
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetScriptProfileDescription 5

Obtains the internal name (or description) of a profile and the script code
identifying the language in which the profile name is specified from the
specified profile.

pascal CMError CMGetScriptProfileDescription (
CMProfileRef prof,
Str255 name,
ScriptCode *code);

prof A profile reference of type CMProfileRef (page 358) to the profile
whose profile name and script code are obtained.

name A pointer to a name string. On output, the profile name.

code A pointer to a script code. On output, the script code.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The element data of the text description tag (which has the signature 'desc' or
constant cmSigProfileDescriptionType, defined in the CMICCProfile.h header
file) specifies the profile name and script code. The name parameter returns the
profile name as a Pascal string. Use this function so that your application does
not need to obtain and parse the element data, which contains other
information.

Accessing Named Color Profile Values 5

This section describes the functions you use to retrieve information from a
named color profile.

■ CMGetNamedColorInfo (page 257) obtains information about a named color
space from its profile reference.

■ CMGetNamedColorValue (page 258) obtains device and PCS color values for a
specific color name from a named color space profile.
256 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMGetIndNamedColorValue (page 259) obtains device and PCS color values for
a specific named color index from a named color space profile.

■ CMGetNamedColorIndex (page 260) obtains a named color index for a specific
color name from a named color space profile.

■ CMGetNamedColorName (page 260) obtains a named color name for a specific
named color index from a named color space profile.

CMGetNamedColorInfo 5

Obtains information about a named color space from its profile reference.

pascal CMError CMGetNamedColorInfo (
CMProfileRef prof,
unsigned long *deviceChannels,
OSType *deviceColorSpace,
OSType *PCSColorSpace,
unsigned long *count,
StringPtr prefix,
StringPtr suffix);

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile to obtain named color information from.

deviceChannels
A pointer to a count value. On output, the number of device
channels in the color space for the profile. It should agree with
the “data color space” field in the profile header. For example,
Pantone maps to CMYK, a four-channel color space. A value of
0 indicates no device channels were available.

deviceColorSpace
A pointer to a device color space. On output, a device color
space, such as CMYK.

PCSColorSpace
A pointer to a profile connection space color space. On output,
an interchange color space, such as Lab.

count A pointer to a count value. On output, the number of named
colors in the profile.
Functions for the ColorSync Manager 257
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
prefix A pointer to a Pascal string. On output, the string contains a
prefix, such as “Pantone”, for each color name. The prefix
identifies the named color system described by the profile.

suffix A pointer to a Pascal string. On output, the string contains a
suffix for each color name, such as “CVC”.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMGetNamedColorInfo function returns information about the named color
space referred to by the passed profile reference.

CMGetNamedColorValue 5

Obtains device and PCS color values for a specific color name from a named
color space profile.

pascal CMError CMGetNamedColorValue (
CMProfileRef prof,
StringPtr name,
CMColor *deviceColor,
CMColor *PCSColor);

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile to obtain color values from.

name A pointer to a Pascal string. You supply a color name string for
the color to get information for.

deviceColor A pointer to a device color. On output, a device color value in
CMColor union format. If the profile does not contain device
values, deviceColor is undefined.

PCSColor A pointer to a profile connection space color. On output, an
interchange color value in CMColor union format.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
258 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

Based on the passed color name, the CMGetNamedColorValue function does a
lookup into the named color tag and, if the name is found in the tag, returns
device and color PCS values. Otherwise, CMGetNamedColorValue returns an error
code.

CMGetIndNamedColorValue 5

Obtains device and PCS color values for a specific named color index from a
named color space profile.

pascal CMError CMGetIndNamedColorValue (
CMProfileRef prof,
unsigned long index,
CMColor *deviceColor,
CMColor *PCSColor);

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile to obtain color values from.

index A one-based index value for a named color.

deviceColor A pointer to a device color. On output, a device color value in
CMColor union format. If the profile does not contain device
values, deviceColor is undefined.

PCSColor A pointer to a profile connection space color. On output, an
interchange color value in CMColor union format.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed named color index, the CMGetIndNamedColorValue function
does a lookup into the named color tag and returns device and PCS values. If
the index is greater than the number of named colors, CMGetIndNamedColorValue
returns an error code.
Functions for the ColorSync Manager 259
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetNamedColorIndex 5

Obtains a named color index for a specific color name from a named color space
profile.

pascal CMError CMGetNamedColorIndex (
CMProfileRef prof,
StringPtr name,
unsigned long *index);

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile to obtain a named color index from.

name A pointer to a Pascal string. You supply a color name string
value for the color to obtain the color index for.

index A pointer to an index value. On output, an index value for a
named color.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed color name, the CMGetNamedColorIndex function does a
lookup into the named color tag and, if the name is found in the tag, returns the
index. Otherwise, CMGetNamedColorIndex returns an error code.

CMGetNamedColorName 5

Obtains a named color name for a specific named color index from a named
color space profile.

pascal CMError CMGetNamedColorName (
CMProfileRef prof,
unsigned long index,
StringPtr name)

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile to obtain a named color name from.
260 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
index An index value for a named color to obtain the color name for.

name A pointer to a Pascal string. On output, a color name string.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed color name index, the CMGetNamedColorName function does a
lookup into the named color tag and returns the name. If the index is greater
than the number of named colors, CMGetNamedColorName returns an error code.

Matching Colors Using General Purpose Functions 5

This section describes the functions you use to perform color matching with
general purpose ColorSync Manager functions that are independent of
QuickDraw. To use the general purpose functions, you first create a
color-matching world, which establishes how matching will take place between
the given profiles.

“General Purpose Color-Matching Functions” (page 64) provides an overview
of these functions, while “Creating a Color World to Use With the General
Purpose Functions” (page 105) provides a code sample for working with them.

Once you create a color world, it persists until you dispose of it, independent of
the functions for which you use it. The QuickDraw-specific functions described
in “Matching Colors Using QuickDraw-Specific Functions” (page 284) take
source and destination profile reference parameters and are state-based,
whereas the general purpose functions described here are not state-based.

You use the following functions to perform color-matching using general
purpose functions.

■ NCWNewColorWorld (page 262) creates a color world for color matching based
on the specified source and destination profiles; changed in ColorSync 2.5.

■ CWConcatColorWorld (page 265) sets up a color world that includes a set of
profiles for various color transformations among devices in a sequence;
changed in ColorSync 2.5.

■ CWNewLinkProfile (page 267) creates a device link profile based on the
specified set of profiles.
Functions for the ColorSync Manager 261
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMGetCWInfo (page 270) obtains information about the color management
modules (CMMs) used for a specific color world; changed in ColorSync 2.5.

■ CWDisposeColorWorld (page 271) releases the private storage associated with a
color world when your application has finished using the color world.

■ CWMatchPixMap (page 272) matches a pixel map in place based on a specified
color world.

■ CWCheckPixMap (page 274) checks the colors of a pixel map using the profiles
of a specified color world to determine whether the colors are in the gamut of
the destination device.

■ CWMatchBitmap (page 276) matches the colors of a bitmap to the gamut of a
destination device using the profiles specified by a color world.

■ CWCheckBitMap (page 279) tests the colors of the pixel data of a bitmap to
determine whether the colors map to the gamut of the destination device.

■ CWMatchColors (page 281) matches colors in a color list, using the specified
color world.

■ CWCheckColors (page 283) tests a list of colors using a specified color world to
see if they fall within the gamut of a destination device.

NCWNewColorWorld 5

CHANGED IN COLORSYNC 2.55

Creates a color world for color matching based on the specified source and
destination profiles.

pascal CMError NCWNewColorWorld (
CMWorldRef *cw,
CMProfileRef src,
CMProfileRef dst);

cw A pointer to a color world. On output, a reference to a matching
session color world of type CMWorldRef (page 383). You pass this
reference to other functions that use the color world.
262 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
src A profile reference of type CMProfileRef (page 358) that specifies
the source profile for the color-matching world. This profile’s
dataColorSpace element corresponds to the source data type for
subsequent calls to functions that use this color world.
Starting with ColorSync version 2.5, you can call
CMGetDefaultProfileBySpace (page 297) to get the default profile
for a specific color space or CMGetProfileByAVID (page 300) to get
a profile for a specific display.
With any version of ColorSync, you can specify a NULL value to
indicate the ColorSync system profile. Note, however, that
starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

dst A profile reference of type CMProfileRef (page 358) that specifies
the destination profile for the color-matching world. This
profile’s dataColorSpace element corresponds to the destination
data type for subsequent calls to functions using this color
world.
Starting with ColorSync version 2.5, you can call
CMGetDefaultProfileBySpace (page 297) to get the default profile
for a specific color space or CMGetProfileByAVID (page 300) to get
a profile for a specific display.
With any version of ColorSync, you can specify a NULL value to
indicate the ColorSync system profile. Note, however, that
starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

You must set up a color world before your application can perform general
purpose color-matching or color-checking operations. To set up a color world
for these operations, your application can call NCWNewColorWorld after obtaining
references to the profiles to use as the source and destination profiles for the
color world. The following rules govern the types of profiles allowed:

■ You can specify a device profile or a color space conversion profile for the
source and destination profiles.

■ You can not specify a device link profile or an abstract profile for either the
source profile or the destination profile.
Functions for the ColorSync Manager 263
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ Only one profile can be a named color profile.

■ You can specify the system profile explicitly by reference or by giving NULL
for either the source profile or the destination profile.

You should call the function CMCloseProfile (page 223) for both the source and
destination profiles to dispose of their references after execution of the
NCWNewColorWorld function.

When you pass a color world to a color-matching or color-checking function,
the ColorSync Manager uses the selection scheme described in “How the
ColorSync Manager Selects a CMM” (page 84) to determine the CMM or CMMs
to use for the session.

The quality flag setting (indicating normal mode, draft mode, or best mode)
specified by the source profile prevails for the entire session. The quality flag
setting is stored in the flags field of the profile header. See CM2Header (page 354)
and “Flag Mask Definitions for Version 2.x Profiles” (page 414) for more
information on the use of flags. The rendering intent specified by the source
profile also prevails for the entire session.

For more information on color worlds, see CMConcatProfileSet (page 384).

VERSION NOTES

The parameter descriptions for src and dst describe changes in how this
function is used starting with ColorSync version 2.5.

SEE ALSO

The function CWConcatColorWorld (page 265) also allocates a color world
reference of type CMWorldRef (page 383).
264 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CWConcatColorWorld 5

CHANGED IN COLORSYNC 2.55

Sets up a color world that includes a set of profiles for various color
transformations among devices in a sequence.

pascal CMError CWConcatColorWorld (
CMWorldRef *cw,
CMConcatProfileSet *profileSet);

cw A pointer to a color world. On output, a reference to a color
world of type CMWorldRef (page 383). You pass the returned
reference to other functions that use the color world for
color-matching and color-checking sessions.

profileSet A pointer of type CMConcatProfileSet (page 384) to an array of
profiles describing the processing to carry out. You create the
array and initialize it in processing order—source through
destination.
You set the keyIndex field of the CMConcatProfileSet data
structure to specify the zero-based index of the profile within
the profile array whose specified CMM should be used for the
entire color-matching or color-checking session. The profile
header’s CMMType field specifies the CMM. This CMM will fetch
the profile elements necessary for the session.
Note that starting with ColorSync 2.5, the user can set a
preferred CMM with the ColorSync control panel, as described
in “Setting a Preferred CMM” (page 59). If that CMM is
available, ColorSync will use that CMM for all color conversion
and matching operations the CMM is capable of performing.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CWConcatColorWorld function sets up a session for color processing that
includes a set of profiles. The array of profiles is in processing order—source
through destination. Your application passes the function a pointer to a data
structure of type CMConcatProfileSet to identify the profile array.
Functions for the ColorSync Manager 265
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The quality flag setting—indicating normal mode, draft mode, or best mode—
specified by the first profile prevails for the entire session; the quality flags of
following profiles in the sequence are ignored. The quality flag setting is stored
in the flags field of the profile header. See CM2Header (page 354) and “Flag Mask
Definitions for Version 2.x Profiles” (page 414) for more information on the use
of flags.

The rendering intent specified by the first profile is used to color match to the
second profile, the rendering intent for the second profile is used to color match
to the third profile, and so on through the series of concatenated profiles.

The following rules govern the profiles you can specify in the profile array
pointed to by the profileSet parameter for use with the CWConcatColorWorld
function:

■ In the profile array, you can pass in one or more profiles, but you must
specify at least one profile. If you specify only one profile, it must be a device
link profile. If you specify a device link profile, you cannot specify any other
profiles in the profiles array; a device link profile must be used alone.

■ In the profile array, you can specify an abstract profile anywhere in the
sequence other than as the first or last profile.

■ For the first and last profiles, you can specify device profiles or color space
conversion profiles. However, when you set up a color-matching session
with a named color space profile and other profiles, the named color profile
must be first or the last profile in the color world—it cannot be in the middle.

■ You cannot specify NULL to indicate the system profile. Note that starting with
version 2.5, use of the system profile has changed, as described in “Setting
Default Profiles” (page 54).

■ If you specify a color space profile in the middle of the profile sequence, it is
ignored by the default CMM.

■ If you specify a named color profile, it must be the first or the last profile.
Otherwise, CWConcatColorWorld returns the value cmCantConcatenateError.

A after executing the CWConcatColorWorld function, you should call the function
CMCloseProfile (page 223) for each profile to dispose of its reference.

For more information on color worlds, see CMConcatProfileSet (page 384).
266 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
VERSION NOTES

The parameter description for profileSet includes changes in how this function
is used starting with ColorSync version 2.5.

When you pass a color world created with the CWConcatColorWorld function to a
color-matching or color-checking function, the ColorSync Manager uses the
selection scheme described in “How the ColorSync Manager Selects a CMM”
(page 84) to determine the CMM or CMMs to use for the session.

Note also that starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

SEE ALSO

Instead of passing in an array of profiles, you can specify a device link profile.
For information on how to create a device link profile, see the CWNewLinkProfile
function, which is described next.

CWNewLinkProfile 5

CHANGED IN COLORSYNC 2.55

Creates a device link profile based on the specified set of profiles.

pascal CMError CWNewLinkProfile (
CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

prof A pointer to an uninitialized profile reference of type
CMProfileRef (page 358). On output, points to the new device
link profile reference.

targetLocation
On output, a pointer to a location specification for the resulting
profile. A device link profile cannot be a temporary profile: that
is, it cannot have a location type of cmNoProfileBase.
Functions for the ColorSync Manager 267
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
profileSet On input, an array of profiles describing the processing to carry
out. The array is in processing order—source through
destination. For a description of the CMConcatProfileSet
(page 384) data type, see CMHeader (page 351).

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

This discussion is accurate for versions of ColorSync prior to 2.5. See the version
notes below for changes starting with version 2.5.

You can use this function to create a new single profile containing a set of
profiles and pass the device link profile to the function CWConcatColorWorld
(page 265) instead of specifying each profile in an array. A device link profile
provides a means of storing in concatenated format a series of device profiles
and non-device profiles that are used repeatedly in the same sequence.

IMPORTANT

The only way to use a device link profile is to pass it to the
CWConcatColorWorld function as the sole profile specified by
the array passed in the profileSet parameter. ▲

The zero-based keyIndex field of the CMConcatProfileSet data structure specifies
the index of the profile within the device link profile whose preferred CMM is
used for the entire color-matching or color-checking session. The profile
header’s CMMType field specifies the preferred CMM for the specified profile.
This CMM will fetch the profile elements necessary for the session.

The quality flag setting—indicating normal mode, draft mode, or best mode—
specified by the first profile prevails for the entire session; the quality flags of
profiles that follow in the sequence are ignored. The quality flag setting is
stored in the flag field of the profile header. See CM2Header (page 354) for more
information on the use of flags.

The rendering intent specified by the first profile is used to color match to the
second profile, the rendering intent specified by the second profile is used to
color match to the third profile, and so on through the series of concatenated
profiles.

The following rules govern the content and use of a device link profile:
268 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ The first and last profiles you specify in the profiles array for a device link
profile must be device profiles.

■ You cannot specify a named color profile.

■ You cannot include another device link profile in the series of profiles you
specify in the profiles array.

■ The only way to use a device link profile is to pass it to the
CWConcatColorWorld function as the sole profile specified by the array passed
in the profileSet parameter.

■ You cannot embed a device link profile in an image.

■ You cannot specify NULL to indicate the system profile.

When your application is finished with the device link profile, it must close the
profile with the function CMCloseProfile (page 223).

This function privately maintains all the profile information required by the
color world for color-matching and color-checking sessions. Therefore, after
executing the CWNewLinkProfile function, you should call the CMCloseProfile
(page 223) function for each profile used to build a device link profile (to
dispose of each profile reference).

VERSION NOTES

When you pass a color world created with the CWNewLinkProfile function to a
color-matching or color-checking function, the ColorSync Manager uses the
selection scheme described in “How the ColorSync Manager Selects a CMM”
(page 84) to determine the CMM or CMMs to use for the session.

Note also that starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).
Functions for the ColorSync Manager 269
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetCWInfo 5

CHANGED IN COLORSYNC 2.55

Obtains information about the color management modules (CMMs) used for a
specific color world.

pascal CMError CMGetCWInfo (
CMWorldRef cw,
CMCWInfoRecord *info);

cw A reference to the color world of type CMWorldRef (page 383)
about which you want information.

info A pointer to a color world information record of type
CMCWInfoRecord (page 382) that your application supplies. On
output, the ColorSync Manager returns information in this
structure describing the number of CMMs involved in the
matching session and the CMM type and version of each CMM
used.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

This discussion is accurate for versions of ColorSync prior to 2.5. See the version
notes below for changes starting with version 2.5.

To learn whether one or two CMMs are used for color matching and color
checking in a given color world and to obtain the CMM type and version
number of each CMM used, your application must first obtain a reference to the
color world. To obtain a reference to a ColorSync color world, you (or some
other process) must have created the color world using the function
NCWNewColorWorld (page 262) or the function CWConcatColorWorld (page 265).

The source and destination profiles you specify when you create a color world
identify their preferred CMMs, and you explicitly identify the profile whose
CMM is used for a device link profile or a concatenated color world. However,
you cannot be certain if the specified CMM will actually be used until the
ColorSync Manager determines internally if the CMM is available and able to
perform the requested function. For example, when the specified CMM is not
available, the default CMM is used.
270 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The CMGetCWInfo function identifies the CMM or CMMs to use. Your application
must allocate a data structure of type CMCWInfoRecord and pass a pointer to it in
the info parameter. The CMGetCWInfo function returns the color world
information in this structure. The structure includes a cmmCount field identifying
the number of CMMs that will be used and an array of two members containing
structures of type CMMInfoRecord (page 385). The CMGetCWInfo function returns
information in one or both of the CMM information records depending on
whether one or two CMMs are used.

For a brief description of a color world, see “Matching Colors Using General
Purpose Functions” (page 261).

VERSION NOTES

Starting with ColorSync 2.5, a user can select a preferred CMM with the
ColorSync control panel, as described in “Setting a Preferred CMM” (page 59).
If the user has selected a preferred CMM, and if it is available, then it will be
used for all color conversion and matching operations. For related information,
see “Color Management Modules” (page 58) and “How the ColorSync Manager
Selects a CMM” (page 84).

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).

CWDisposeColorWorld 5

Releases the private storage associated with a color world when your
application has finished using the color world.

pascal void CWDisposeColorWorld (CMWorldRef cw);

cw A color world reference of type CMWorldRef (page 383).

function result This routine does not return an error value.
Functions for the ColorSync Manager 271
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

The function NCWNewColorWorld (page 262) and the function CWConcatColorWorld
(page 265) both allocate color world references of type CMWorldRef (page 383).

The following functions use color worlds. If you create a color world to pass to
one of these functions, you must dispose of the color world when your
application is finished with it.

■ CWMatchColors (page 281)

■ CWCheckColors (page 283)

■ CWMatchBitmap (page 276)

■ CWCheckBitMap (page 279)

■ CWMatchPixMap (page 272),

■ CWCheckPixMap (page 274)

CWMatchPixMap 5

Matches a pixel map in place based on a specified color world.

pascal CMError CWMatchPixMap (
CMWorldRef cw,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

cw A reference to the color world of type CMWorldRef (page 383) in
which matching is to occur.

myPixMap A pointer to the pixel map to match. A pixel map is a
QuickDraw structure describing pixel data. The pixel map must
be nonrelocatable; to ensure this, you should lock the handle to
the pixel map before you call this function.

progressProc A function supplied by your application to monitor progress or
abort the operation as the pixel map colors are matched. The
default CMM calls your function approximately every
half-second, unless matching is completed in less time.
272 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
If the function returns a result of true, the operation is aborted.
You specify NULL for this parameter if your application will not
monitor the pixel map color matching. For information on the
callback function and its type definition, refer to the function
MyCMBitmapCallBackProc (page 345).

refCon A reference constant for application data that is passed as a
parameter to calls to progressProc.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CWMatchPixMap function matches a pixel map in place using the profiles
specified by the given color world. The preferred CMM, as determined by the
ColorSync Manager based on the color world configuration, is called to perform
the color matching.

If the preferred CMM is not available, then the ColorSync Manager calls the
default CMM to perform the matching. If the preferred CMM is available but it
does not implement the CMMatchPixMap function, then the ColorSync Manager
unpacks the colors in the pixel map to create a color list and calls the preferred
CMM’s CMMatchColors function, passing to this function the list of colors to
match. Every CMM must support the CMMatchColors function.

For this function to execute successfully, the source and destination profiles’
data color spaces (dataColorSpace field) must be RGB to match the data color
space of the pixel map, which is implicitly RGB. For color spaces other than
RGB, you should use the function CWMatchBitmap (page 276).

If you specify a pointer to a callback function in the progressProc parameter, the
CMM performing the color matching calls your function to monitor progress of
the session. Each time the CMM calls your function, it passes the function any
data you specified in the CWMatchPixMap function’s refCon parameter. If the
ColorSync Manager performs the color matching, it calls your callback
monitoring function once every scan line during this process.

You can use the reference constant to pass in any kind of data your callback
function requires. For example, if your application uses a dialog box with a
progress bar to inform the user of the color-matching session’s progress, you
can use the reference constant to pass the dialog box’s window reference to the
callback routine. For information about the callback function, see the function
MyCMBitmapCallBackProc (page 345).
Functions for the ColorSync Manager 273
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).

Note
Applications do not interact directly with the function
CMMatchColors (page 470). ◆

CWCheckPixMap 5

Checks the colors of a pixel map using the profiles of a specified color world to
determine whether the colors are in the gamut of the destination device.

pascal CMError CWCheckPixMap (
CMWorldRef cw,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
BitMap *resultBitMap);

cw A reference to the color world of type CMWorldRef (page 383) in
which color checking is to occur.

myPixMap A pointer to the pixel map to check colors for. A pixel map is a
QuickDraw structure describing pixel data. The pixel map must
be nonrelocatable; to ensure this, you should lock the handle to
the pixel map.

progressProc
A calling program–supplied callback function that allows your
application to monitor progress or abort the operation as the
pixel map colors are checked against the gamut of the
destination device.

The default CMM calls your function approximately every
half-second unless color checking occurs in less time; this
happens when there is a small amount of data to be checked. If
the function returns a result of true, the operation is aborted.
Specify NULL for this parameter if your application will not
274 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
monitor the pixel map color checking. For information on the
callback function and its type definition, see the function
MyCMBitmapCallBackProc (page 345).

refCon A reference constant for application data passed as a parameter
to calls to your MyCMBitmapCallBackProc function pointed to by
progressProc.

resultBitMap
A pointer to a QuickDraw bitmap. On output, bits are set to 1 if
the corresponding pixel of the pixel map indicated by myPixMap
is out of gamut. Boundaries of the bitmap indicated by
resultBitMap must equal the parameter of the pixel map
indicated by the myPixMap.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). CWCheckPixMap
returns cmCantGamutCheckError if the color world does not
contain gamut information. For more information, see “Flag
Mask Definitions for Version 2.x Profiles” (page 414).

DISCUSSION

The CWCheckPixMap function performs a gamut test of the pixel data of the
myPixMap pixel map to determine if its colors are within the gamut of the
destination device as specified by the destination profile. The gamut test
provides a preview of color matching using the specified color world.

The preferred CMM, as determined by the ColorSync Manager based on the
profiles of the color world configuration, is called to perform the color
matching.

If the preferred CMM is not available, then the ColorSync Manager calls the
default CMM to perform the matching. If the preferred CMM is available but
does not implement the CMCheckPixmap function, then the ColorSync Manager
unpacks the colors in the pixel map to create a color list and calls the preferred
CMM’s CMCheckColors function, passing to this function the list of colors to
match. Every CMM must support the CMCheckColors function.

For this function to execute successfully, the source and destination profiles’
data color spaces (dataColorSpace field) must be RGB to match the data color
space of the pixel map, which is implicitly RGB.
Functions for the ColorSync Manager 275
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
If you specify a pointer to a callback function in the progressProc parameter, the
CMM performing the color checking calls your function to monitor progress of
the session. Each time the CMM calls your function, it passes the function any
data you specified in the CWCheckPixMap function’s refCon parameter.

You can use the reference constant to pass in any kind of data your callback
function requires. For example, if your application uses a dialog box with a
progress bar to inform the user of the color-checking session’s progress, you can
use the reference constant to pass the dialog box’s window reference to the
callback routine. For information about the callback function, see the function
MyCMBitmapCallBackProc (page 345).

You should ensure that the buffer pointed to by the baseAddr field of the bitmap
passed in the resultBitMap parameter is zeroed out.

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both return color world references of type CMWorldRef (page 383).

CWMatchBitmap 5

CHANGED WITH COLORSYNC 2.55

Matches the colors of a bitmap to the gamut of a destination device using the
profiles specified by a color world.

pascal CMError CWMatchBitmap (
CMWorldRef cw,
CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitMap *matchedBitMap);

cw A reference to a color world of type CMWorldRef (page 383) in
which matching is to occur.

bitMap A pointer to a bitmap of type CMBitmap (page 380) whose colors
are to be matched.
276 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
progressProc A calling program–supplied universal procedure pointer to a
callback function that allows your application to monitor
progress or abort the operation as the bitmap colors are
matched. The default CMM calls your function approximately
every half-second unless color matching occurs in less time; this
happens when there is a small amount of data to be matched. If
the function returns a result of true, the operation is aborted. To
match colors without monitoring the process, specify NULL for
this parameter. For a description of the function your
application supplies, see the function MyCMBitmapCallBackProc
(page 345).

refCon A reference constant for application data passed through as a
parameter to calls to the progressProc function.

matchedBitMap
A pointer to a bitmap. On output, contains the color-matched
image. You must allocate the pixel buffer pointed to by the image
field of the structure CMBitmap (page 380). If you specify NULL for
matchedBitMap, then the source bitmap is matched in place.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CWMatchBitmap function matches a bitmap using the profiles specified by the
given color world.

The ColorSync Manager dispatches this function to the CMM determined by
the process described in “How the ColorSync Manager Selects a CMM”
(page 84).

You should ensure that the buffer pointed to by the image field of the bitmap
passed in the bitMap parameter is zeroed out before you call this function.

The following color spaces, defined in “Color Space Constants With Packing
Formats” (page 409), are currently supported for the CWMatchBitmap function:

■ cmGray16Space

■ cmGrayA32Space

■ cmRGB16Space

■ cmRGB24Space
Functions for the ColorSync Manager 277
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ cmRGB32Space

■ cmRGB48Space

■ cmARGB32Space

■ cmRGBA32Space

■ cmCMYK32Space

■ cmCMYK64Space

■ cmHSV32Space

■ cmHLS32Space

■ cmYXY32Space

■ cmXYZ32Space

■ cmLUV32Space

■ cmLAB24Space

■ cmLAB32Space

■ cmLAB48Space

■ cmGamutResult1Space

■ cmNamedIndexed32Space

■ cmMCFive8Space

■ cmMCSix8Space

■ cmMCSeven8Space

■ cmMCEight8Space

The ColorSync Manager does not explicitly support a CMY color space.
However, for printers that have a CMY color space, you can use either of the
following circumventions to make the adjustment:

■ You can use a CMY profile, which the ColorSync Manager does support,
with a CMYK color space. If you specify a CMYK color space in this case, the
ColorSync Manager zeroes out the K channel to simulate a CMY color space.

■ You can use an RGB color space and pass in the bitmap along with an RGB
profile, then perform the conversion from RGB to CMY yourself.

For this function to execute successfully, the source profile’s dataColorSpace
field value and the space field value of the source bitmap pointed to by the
bitMap parameter must specify the same data color space. Additionally, the
destination profile’s dataColorSpace field value and the space field value of the
resulting bitmap pointed to by the matchedBitMap parameter must specify the
278 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
same data color space, unless the destination profile is a named color space
profile.

IMPORTANT

If you set matchedBitMap to NULL to specify in-place
matching, you must be sure the space required by the
destination bitmap is less than or equal to the size of the
source bitmap. ▲

VERSION NOTES

Support for the following color space constants, defined in “Color Space
Constants With Packing Formats” (page 409), was added with ColorSync
version 2.5:

■ cmGray16Space

■ cmGrayA32Space

■ cmRGB48Space.

■ cmCMYK64Space

■ cmLAB48Space

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).

CWCheckBitMap 5

Tests the colors of the pixel data of a bitmap to determine whether the colors
map to the gamut of the destination device.

pascal CMError CWCheckBitMap (
CMWorldRef cw,
const CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitMap *resultBitMap);
Functions for the ColorSync Manager 279
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cw A reference to the color world of type CMWorldRef (page 383) to
use for the color check.

bitMap A pointer to a bitmap of type CMBitmap (page 380) whose colors
are to be checked.

progressProc
A calling program–supplied callback function that allows your
application to monitor progress or abort the operation as the
bitmap’s colors are checked against the gamut of the destination
device. The default CMM calls your function approximately
every half-second unless color checking occurs in less time; this
happens when there is a small amount of data to be checked. If
the function returns a result of true, the operation is aborted.
Specify NULL for this parameter if your application will not
monitor the bitmap color checking. For information on the
callback function and its type definition, see the function
MyCMBitmapCallBackProc (page 345).

refCon A reference constant for application data passed as a parameter
to calls to progressProc.

resultBitMap
A pointer to a bitmap. On output, contains the results of the
color check. The bitmap must have bounds equal to the
parameter of the source bitmap pointed to by bitMap. You must
allocate the pixel buffer pointed to by the image field of the
structure CMBitmap (page 380) and initialize the buffer to zeroes.
Pixels are set to 1 if the corresponding pixel of the source bitmap
indicated by bitMap is out of gamut. You must set the space field
of the CMBitMap structure to cmGamutResult1Space color space
storage format, as described in “Abstract Color Space
Constants” (page 406).

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). CWCheckBitMap
returns cmCantGamutCheckError if the color world does not
contain gamut information. For more information, see “Flag
Mask Definitions for Version 2.x Profiles” (page 414).
280 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

When your application calls the CWCheckBitMap function, the ColorSync
Manager dispatches the function to the preferred CMM. The ColorSync
Manager determines the preferred CMM based on the color world
configuration. If the color world you pass in was created by the
NCWNewColorWorld function, the color world contains a source and destination
profile, in which case the arbitration scheme described in “Selecting a CMM by
the Arbitration Algorithm” (page 86) is used to determine the preferred CMM.
If the color world you pass in was created by the CWConcatColorWorld function,
then the keyIndex field of the CMConcatProfileSet data structure identifies the
preferred CMM. If the preferred CMM is not available, the default CMM is used
to perform the color matching.

For the CWCheckBitMap function to execute successfully, the source profile’s
dataColorSpace field value and the space field value of the source bitmap
pointed to by the bitMap parameter must specify the same data color space.
CWCheckBitMap is not supported if the color world was initialized with a named
color space profile.

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).

CWMatchColors 5

Matches colors in a color list, using the specified color world.

pascal CMError CWMatchColors (
CMWorldRef cw,
CMColor *myColors,
unsigned long count);

cw A reference to the color world of type CMWorldRef (page 383) that
describes how matching is to occur in the color-matching
session.
Functions for the ColorSync Manager 281
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
myColors A pointer to an array containing a list of colors of type CMColor
(page 378). On input, contains the list of colors to match. On
output, contains the list of matched colors specified in the color
data space of the color world’s destination profile.

count A one-based count of the number of colors in the color list of the
myColors array.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CWMatchColors function matches colors according to the profiles
corresponding to the specified color world. On input, the color values in the
myColors array are assumed to be specified in the data color space of the source
profile. On output, the color values in the myColors array are transformed to the
data color space of the destination profile.

All color management modules (CMM)s must support this function. To
determine which CMM to use for the color-matching session, the ColorSync
Manager follows the arbitration scheme described in “Introduction to
ColorSync” (page 45).

This function supports color-matching sessions set up with one of the
multichannel color data types.

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).
282 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CWCheckColors 5

Tests a list of colors using a specified color world to see if they fall within the
gamut of a destination device.

pascal CMError CWCheckColors (
CMWorldRef cw,
CMColor *myColors,
unsigned long count,
long *result);

cw A reference to the color world of type CMWorldRef (page 383)
describing how the test is to occur.

myColors A pointer to an array containing a list of colors of type CMColor
(page 378) to be checked.This function assumes the color values
are specified in the data color space of the source profile.

count The number of colors in the array. This is a one-based count.

result A pointer to a buffer of 32-bit data. On output, each 32-bit value
is interpreted as a bit field with each bit representing a color in
the array pointed to by myColors. You allocate enough memory
to allow for 1 bit to represent each color in the myColors array.
Bits in the result field are set to 1 if the corresponding color is
out of gamut for the destination device. Ensure that the buffer
you allocate is zeroed out before you call this function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). CWCheckBitMap
returns cmCantGamutCheckError if the color world does not
contain gamut information. For more information, see “Flag
Mask Definitions for Version 2.x Profiles” (page 414).

DISCUSSION

The color test provides a preview of color matching using the specified color
world.

All CMMs must support the CWCheckColors function. To determine which CMM
to use for the color-checking session, the ColorSync Manager follows the
arbitration scheme described in “Introduction to ColorSync” (page 45).
Functions for the ColorSync Manager 283
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The result bit array indicates whether the colors in the list are in or out of
gamut for the destination profile. If a bit is set, its corresponding color falls out
of gamut for the destination device. The leftmost bit in the field corresponds to
the first color in the list.

If you have set a profile’s gamut-checking mask so that no gamut information is
included—see “Flag Mask Definitions for Version 2.x Profiles” (page 414)—
CWCheckColors returns the cmCantGamutCheckError error.

The CWCheckColors function supports matching sessions set up with one of the
multichannel color data types. CWCheckColors is not supported if the color world
was initialized with a named color space profile.

SEE ALSO

The functions NCWNewColorWorld (page 262) and CWConcatColorWorld (page 265)
both allocate color world references of type CMWorldRef (page 383).

Matching Colors Using QuickDraw-Specific Functions 5

This section describes the functions you use to perform color-matching when
working with QuickDraw. “QuickDraw-Specific Color-Matching Functions”
(page 64) provides an overview of these functions, while “Matching to Displays
Using QuickDraw-Specific Operations” (page 101) provides a code sample for
working with them. “Matching Colors Using General Purpose Functions”
(page 261) describes color-matching functions that don’t rely on QuickDraw.

■ NCMBeginMatching (page 285) sets up a QuickDraw-specific ColorSync
matching session, using the specified source and destination profiles;
changed in ColorSync 2.5.

■ CMEndMatching (page 287) concludes a QuickDraw-specific ColorSync
matching session initiated by a previous call to the NCMBeginMatching
function.

■ CMEnableMatchingComment (page 288) inserts a comment into the currently
open picture to turn matching on or off.

■ NCMDrawMatchedPicture (page 288) matches a picture’s colors (using the
system profile as the initial source profile but switching to any embedded
profiles as they are encountered) to a destination device’s color gamut, as the
picture is drawn, using the specified destination profile; changed in
ColorSync 2.5.
284 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
NCMBeginMatching 5

CHANGED IN COLORSYNC 2.55

Sets up a QuickDraw-specific ColorSync matching session, using the specified
source and destination profiles.

pascal CMError NCMBeginMatching (
CMProfileRef src,
CMProfileRef dst,
CMMatchRef *myRef);

src A profile reference of type CMProfileRef (page 358) that specifies
the source profile for the matching session. Starting with
ColorSync version 2.5, you can call CMGetDefaultProfileBySpace
(page 297) to get the default profile for a specific color space or
CMGetProfileByAVID (page 300) to get a profile for a specific
display.
With any version of ColorSync, you can specify a NULL value to
indicate the ColorSync system profile. Note, however, that
starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

dst A profile reference of type CMProfileRef (page 358) that specifies
the destination profile for the matching session. Starting with
ColorSync version 2.5, you can call CMGetDefaultProfileBySpace
(page 297) to get the default profile for a specific color space or
CMGetProfileByAVID (page 300) to get a profile for a specific
display.
With any version of ColorSync, you can specify a NULL value to
indicate the ColorSync system profile. Note, however, that
starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

myRef A pointer to a matching session. On output, it specifies the
QuickDraw-specific matching session that was set up.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 285
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The NCMBeginMatching function sets up a QuickDraw-specific matching session,
telling the ColorSync Manager to match all colors drawn to the current graphics
device using the specified source and destination profiles.

The NCMBeginMatching function returns a reference to the color-matching
session. You must later pass this reference to the functionCMEndMatching
(page 287) to conclude the session.

The source and destination profiles define how the match is to occur. Passing
NULL for either the source or destination profile is equivalent to passing the
system profile. If the current device is a screen device, matching to all screen
devices occurs.

The NCMBeginMatching and CMEndMatching functions can be nested. In such cases,
the ColorSync Manager matches to the most recently added profiles first.
Therefore, if you want to use the NCMBeginMatching–CMEndMatching pair to
perform a page preview—which typically entails color matching from a source
device (scanner) to a destination device (printer) to a preview device
(display)— you first call NCMBeginMatching with the printer-to-display profiles,
and then call NCMBeginMatching with the scanner-to-printer profiles. The
ColorSync Manager then matches all drawing from the scanner to the printer
and then back to the display. The print preview process entails multiprofile
transformations. The ColorSync Manager general purpose functions (which
include the use of concatenated profiles well suited to print-preview
processing) offer an easier and faster way to do this. These functions are
described in “Matching Colors Using General Purpose Functions” (page 261).

Note
If you call NCMBeginMatching before drawing to the screen’s
graphics device (as opposed to an offscreen device), you
must call CMEndMatching to finish a matching session before
calling WaitNextEvent or any other routine (such as
Window Manager routines) that could draw to the screen.
Failing to do so will cause unwanted matching to occur.
Furthermore, if a device has color matching enabled, you
cannot call the CopyBits procedure to copy from it to itself
unless the source and destination rectangles are the
same. ◆

Even if you call the NCMBeginMatching function before calling the QuickDraw
DrawPicture function, the ColorSync picture comments such as
cmEnableMatching and cmDisableMatching are not acknowledged. For the
286 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
ColorSync Manager to recognize these comments and allow their use, you must
call the function NCMUseProfileComment (page 290) for color matching using
picture comments.

This function causes matching for the specified devices rather than for the
current color graphics port.

VERSION NOTES

The parameter descriptions for src and dst describe changes in how this
function is used starting with ColorSync version 2.5.

SEE ALSO

The NCMBeginMatching function uses QuickDraw and performs color matching
in a manner acceptable to most applications. However, if your application
needs a finer level of control over color matching, it can use the general purpose
functions described in “Matching Colors Using General Purpose Functions”
(page 261).

For background information on graphics devices, see Inside Macintosh: Imaging
With QuickDraw.

CMEndMatching 5

Concludes a QuickDraw-specific ColorSync matching session initiated by a
previous call to the NCMBeginMatching function.

pascal void CMEndMatching (CMMatchRef myRef);

myRef A reference to the matching session to end. This reference was
previously created and returned by a call to NCMBeginMatching
function.

function result This routine does not return an error value.
Functions for the ColorSync Manager 287
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The CMEndMatching function releases private memory allocated for the
QuickDraw-specific matching session.

After you call the NCMBeginMatching function and before you call CMEndMatching
to end the matching session, embedded color-matching picture comments, such
as cmEnableMatching and cmDisableMatching, are not acknowledged.

CMEnableMatchingComment 5

Inserts a comment into the currently open picture to turn matching on or off.

pascal void CMEnableMatchingComment (Boolean enableIt);

enableIt A flag that directs the ColorSync Manager to generate a
cmEnableMatching PicComment comment if true, or a
cmDisbleMatching PicComment comment if false.

function resultThis routine does not return an error value.

If you call this function when no picture is open, it will have no effect.

NCMDrawMatchedPicture 5

CHANGED IN COLORSYNC 2.55

Matches a picture’s colors, using the system profile as the initial source profile
but switching to any embedded profiles as they are encountered, to a
destination device’s color gamut, as the picture is drawn, using the specified
destination profile.

pascal void NCMDrawMatchedPicture (
PicHandle myPicture,
CMProfileRef dst,
Rect *myRect);

myPicture The QuickDraw picture whose colors are to be matched.
288 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
dst A profile reference of type CMProfileRef (page 358) to the profile
of the destination device. Starting with ColorSync version 2.5, if
you know the destination display device, you can call
CMGetProfileByAVID (page 300) to get the specific profile for the
display, or you can call CMGetDefaultProfileBySpace (page 297)
to get the default profile for the RGB color space,.
With any version of ColorSync, you can specify a NULL value to
indicate the ColorSync system profile. Note, however, that
starting with version 2.5, use of the system profile has changed,
as described in “Setting Default Profiles” (page 54).

myRect A pointer to a destination rectangle for rendering the picture
specified by myPicture.

function result This routine does not return an error value. Instead, after calling
NCMDrawMatchedPicture you call the QDError routine to determine
if an error has occurred.

DISCUSSION

The NCMDrawMatchedPicture function operates in the context of the current color
graphics port. This function sets up and takes down a color-matching session. It
automatically matches all colors in a picture to the destination profile for a
destination device as the picture is drawn. It uses the ColorSync system profile
as the initial source profile and any embedded profiles thereafter. (Because
color-matching picture comments embedded in the picture to be matched are
recognized, embedded profiles are used.)

The ColorSync Manager defines five picture comment kinds, as described in
“Picture Comment Kinds for Profiles and Color Matching” (page 399). For
embedding to work correctly, each embedded profile that is used for matching
must be terminated by a picture comment of kind cmEndProfile. If a picture
comment is not specified to end the profile after drawing operations using that
profile are performed, the profile will remain in effect until another embedded
profile is introduced that has a picture comment kind of cmBeginProfile. To
avoid unexpected matching effects, always pair use of the cmBeginProfile and
cmEndProfile picture comments. When the ColorSync Manager encounters a
cmEndProfile picture comment, it restores use of the system profile for matching
until it encounters another cmBeginProfile picture comment.

The picture is drawn with matched colors to all screen graphics devices. If the
current graphics device is not a screen device, matching occurs for that graphics
device only.
Functions for the ColorSync Manager 289
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
If the current port is not a color graphics port, then calling this function is
equivalent to calling DrawPicture, in which case no color matching occurs.

VERSION NOTES

The parameter description for dst describes changes in how this function is
used starting with ColorSync version 2.5.

Embedding Profile Information in Pictures 5

Applications use the QuickDraw PicComment function, described in Inside
Macintosh: Imaging With QuickDraw, to add picture comments to a picture. The
ColorSync Manager provides the NCMUseProfileComment (page 290) function for
automatically embedding profile information with the PicComment function.

NCMUseProfileComment 5

Automatically embeds a profile or a profile identifier into an open picture.

pascal CMError NCMUseProfileComment (
CMProfileRef prof,
unsigned long flags);

prof A profile reference of type CMProfileRef (page 358) to the profile
to embed.

flags A flag value in which individual bits determine settings.
“Constants for Embedding Profiles and Profile Identifiers”
(page 402) describes constants for use with this parameter. For
example, you pass cmEmbedWholeProfile to embed a whole
profile or cmEmbedProfileIdentifier to embed a profile
identifier. No other values are currently defined; all other bits
are reserved for future use.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
290 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The NCMUseProfileComment function automatically generates the picture
comments required to embed the specified profile or profile identifier into the
open picture.

To embed a profile, you use the constant cmEmbedWholeProfile to set the flags
parameter before calling NCMUseProfileComment. The NCMUseProfileComment
function calls the QuickDraw PicComment function with a picture comment kind
value of cmComment and a 4-byte selector that describes the type of data in the
picture comment: cmBeginProfileSel to begin the profile, cmContinueProfileSel
to continue, and cmEndProfileSel to end the profile. These constants are
described in “Picture Comment Selectors for Embedding Profile Information”
(page 400).

If the size in bytes of the profile and the 4-byte selector together exceed 32 KB,
this function segments the profile data and embeds the multiple segments in
consecutive order using selector cmContinueProfileSel to embed each segment.

To embed a profile identifier of type CMProfileIdentifier (page 359), you use
the constant cmEmbedProfileIdentifier to set the flags parameter before calling
NCMUseProfileComment. The function extracts the necessary information from the
profile reference (prof) to embed a profile identifier for the profile. The profile
reference can refer to a previously embedded profile, or to a profile on disk in
the ColorSync Profiles folder.

IMPORTANT

You can use this function to embed most types of profiles in
an image, including device link profiles, but not abstract
profiles. You cannot use this function to embed ColorSync
1.0 profiles in an image. ▲

The NCMUseProfileComment function precedes the profile it embeds with a picture
comment of kind cmBeginProfile. For embedding to work correctly, the
currently effective profile must be terminated by a picture comment of kind
cmEndProfile after drawing operations using that profile are performed. You are
responsible for adding the picture comment of kind cmEndProfile. If a picture
comment was not specified to end the profile following the drawing operations
to which the profile applies, the profile will remain in effect until the next
embedded profile is introduced with a picture comment of kind cmBeginProfile.
However, use of the next profile might not be the intended action. Always pair
use of the cmBeginProfile and cmEndProfile picture comments. When the
ColorSync Manager encounters a cmEndProfile picture comment, it restores use
Functions for the ColorSync Manager 291
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
of the system profile for matching until it encounters another cmBeginProfile
picture comment.

For more information on the PicComment selector values used by
NCMUseProfileComment, see “Picture Comment Selectors for Embedding Profile
Information” (page 400).

VERSION NOTES

In ColorSync 2.0, the flags parameter was ignored and the routine always
embedded the entire profile.

In ColorSync 2.0, if the prof parameter refers to a version 1.0 profile, the profile
is not embedded into the picture correctly. In ColorSync versions starting with
2.1, this bug has been fixed. One possible workaround for this problem in
ColorSync 2.0 is to call CMCopyProfile to copy the 1.0 profile reference into a
handle. The handle can then be embedded into the picture using
CMUseProfileComment.

Getting the Preferred CMM 5

Starting with ColorSync version 2.5, the ColorSync control panel lets a user
choose a preferred CMM from any CMMs that are present, as described in
“Setting a Preferred CMM” (page 59).

The ColorSync Manager provides the function CMGetPreferredCMM (page 292) so
that you can determine the preferred CMM in your code.

CMGetPreferredCMM 5

NEW IN COLORSYNC 2.55

Identifies the preferred CMM specified by the ColorSync control panel.

pascal CMError CMGetPreferredCMM (
OSType *cmmType,
Boolean *preferredCMMnotfound)
292 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmmType A pointer to an OSType. On return, the component subtype for
the preferred CMM. For example, the subtype for ColorSync’s
default CMM is 'appl' and the subtype for the Kodak CMM is
'KCMS'. A return value of NULL indicates the preferred CMM in
the ColorSync control panel is set to Automatic, as described in
“Setting a Preferred CMM” (page 59).

preferredCMMnotfound
A pointer to a Boolean flag for whether the preferred CMM was
not found. On return, has the value true if the CMM was not
found, false if it was found.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

The CMGetPreferredCMM function returns in the cmmType parameter a value that
identifies the preferred CMM the user last specified in the ColorSync control
panel. CMGetPreferredCMM returns false in the preferredCMMnotfound parameter
if the preferred CMM is currently available and true if it is not. The preferred
CMM may not be available, for example, because a user specifies a preferred
CMM in the ColorSync control panel, then reboots with extensions off.
ColorSync does not change the preferred CMM setting when the preferred
CMM is not available.

Getting and Setting the System Profile File 5

The ColorSync Manager provides the following functions your code can call to
identify a profile as the system profile or obtain a reference to that profile. These
functions replace the capability provided by the ColorSync 1.0 Profile
Responder. “Setting Default Profiles” (page 54) describes changes in how the
ColorSync Manager uses the system profile starting in version 2.5; it also
describes use of the system profile in previous versions.

■ CMGetSystemProfile (page 294) obtains a reference to the current system
profile; changed in ColorSync 2.5.

■ CMSetSystemProfile (page 295) sets the current system profile; changed in
ColorSync 2.5.
Functions for the ColorSync Manager 293
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetSystemProfile 5

CHANGED IN COLORSYNC 2.55

Obtains a reference to the current system profile.

pascal CMError CMGetSystemProfile (CMProfileRef *prof);

prof A pointer to a profile reference of type CMProfileRef (page 358).
On output, a reference to the current system profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

“Setting Default Profiles” (page 54) describes how the ColorSync Manager uses
the system profile, both in version 2.5 and in previous versions. For example,
the system profile may serve as the default profile for color operations for
which no profile is specified.

The following functions allow you to pass NULL as a parameter value to specify
the system profile as a source or destination profile:

■ CMNewProfile (page 227)

■ NCWNewColorWorld (page 262)

■ NCMBeginMatching (page 285)

■ NCMDrawMatchedPicture (page 288)

Note that instead of passing NULL, you can pass a profile reference to a specific
profile, including the system profile.

If you want to specify the system profile for any other function that requires a
profile reference, such as CWConcatColorWorld (page 265) and CWNewLinkProfile
(page 267), you must use an explicit reference. You can obtain such a reference
with the CMGetSystemProfile function.

There are other reasons you might need to obtain a reference to the current
system profile. For example, your application might need to display the name
of the current system profile to a user.

To identify the location of the physical file, call the function
CMGetProfileLocation (page 234).
294 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
VERSION NOTES

Starting with version 2.5, use of the system profile has changed, as described in
“Setting Default Profiles” (page 54). So rather than call CMGetSystemProfile to
obtain a reference to the system profile, you may be able to obtain a profile
that’s more appropriate for the current operation by calling
CMGetDefaultProfileBySpace (page 297) to get the default profile for a color
space or by calling CMGetProfileByAVID (page 300) to get the profile for a specific
display.

SEE ALSO

When your application has finished using the current system profile, it must
close the reference to the profile by calling the function CMCloseProfile
(page 223).

CMSetSystemProfile 5

CHANGED IN COLORSYNC 2.55

Sets the current system profile.

pascal CMError CMSetSystemProfile (
const FSSpec *profileFileSpec);

profileFileSpec
A pointer to a file specification structure. Before calling
CMSetSystemProfile, set the structure to specify the desired
system profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

By default, a standard RGB profile is configured as the system profile. By calling
the CMSetSystemProfile function, your application can specify a new system
profile. You can configure only a display device profile as the system profile.
Functions for the ColorSync Manager 295
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
VERSION NOTES

Starting with version 2.5, use of the system profile has changed, as described in
“Setting Default Profiles” (page 54).

The function CMSetSystemProfile does not retrieve video card gamma data
(introduced in ColorSync version 2.5) to set the video card; use the function
CMSetProfileByAVID (page 300) instead.

SEE ALSO

The FSSpec data type you use to specify the profile file location is described in
Inside Macintosh: Files.
296 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Getting and Setting Default Profiles by Color Space 5

This section describes the ColorSync functions, new in version 2.5, that you use
to get and set default profiles for RGB, CMYK, Lab, and XYZ color spaces. Note
that a user can set the default profile for the RGB and CMYK color spaces with
the ColorSync control panel, as described in “Setting Default Profiles” (page 54).

■ CMGetDefaultProfileBySpace (page 297) gets the default profile for the
specified color space; new in ColorSync 2.5.

■ CMSetDefaultProfileBySpace (page 298) sets the default profile for the
specified color space; new in ColorSync 2.5.

CMGetDefaultProfileBySpace 5

NEW IN COLORSYNC 2.55

Gets the default profile for the specified color space.

pascal CMError CMGetDefaultProfileBySpace(
OSType dataColorSpace,
CMProfileRef * prof);

dataColorSpace
A four-character identifier of type OSType. You pass a color space
signature that identifies the color space you wish to get the
default profile for. The currently-supported values are
cmRGBData, cmCMYKData, cmLabData, and cmXYZData. These
constants are a subset of the constants described in “Color Space
Signatures” (page 402). If you supply a value that isn’t
supported, the CMGetDefaultProfileBySpace function returns an
error value of paramErr.

prof A pointer to a profile reference. On return, the reference
specifies the current profile for the color space specified by
dataColorSpace. CMGetDefaultProfileBySpace currently supports
only file-based profiles.

function result A result code of type CMError. For possible values, see the
description of dataColorSpace for this function, as well as
“Result Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 297
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The CMGetDefaultProfileBySpace function currently supports the RGB, CMYK,
Lab, and XYZ color spaces. The signature constants for these color spaces
(shown above with the dataColorSpace parameter description) are described in
“Color Space Signatures” (page 402). Support for additional color spaces may
be provided in the future. CMGetDefaultProfileBySpace returns an error value of
paramErr if you pass a color space constant it doesn’t currently support.

The CMGetDefaultProfileBySpace function always attempts to return a file-based
profile for a supported color space. For example, if the user has not specified a
default profile in the ColorSync control panel for the specified color space, or if
the profile is not found (the user may have deleted the profiles in the ColorSync
Profiles folder or even the folder itself), CMGetDefaultProfileBySpace creates a
profile, stores it on disk, and returns a reference to that profile. However, you
should always check for an error return—for example, a user may have booted
from a CD, so that CMGetDefaultProfileBySpace cannot save a profile file to disk.

CMSetDefaultProfileBySpace 5

NEW IN COLORSYNC 2.55

Sets the default profile for the specified color space.

pascal CMError CMSetDefaultProfileBySpace (
OSType dataColorSpace,
CMProfileRef prof);

dataColorSpace
A four-character identifier of type OSType. You pass a color space
signature that identifies the color space you wish to set the
default profile for. The currently-supported values are
cmRGBData, cmCMYKData, cmLabData, and cmXYZData. These
constants are a subset of the constants described in “Color Space
Signatures” (page 402). If you supply a value that isn’t
supported, the CMGetDefaultProfileBySpace function returns an
error value of paramErr.
298 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
prof A profile reference. Before calling CMSetDefaultProfileBySpace,
set the reference to specify the default profile for the color space.
The profile must be file-based; otherwise, the function returns a
CMInvalidProfileLocation error.

function result A result code of type CMError. For possible values, see the
descriptions of dataColorSpace and prof for this function, as well
as “Result Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMSetDefaultProfileBySpace function currently supports the RGB, CMYK,
Lab, and XYZ color spaces. The signature constants for these color spaces
(shown above with the dataColorSpace parameter description) are described in
“Color Space Signatures” (page 402). Support for additional color spaces may
be provided in the future. CMSetDefaultProfileBySpace returns a value of
paramErr if you pass a color space constant it doesn’t currently support.

Note that a user can also use the ColorSync control panel to specify a default
profile for the RGB and CMYK color spaces, as described in “Setting Default
Profiles” (page 54).

Getting and Setting Monitor Profiles by AVID 5

This section describes the ColorSync functions, new in version 2.5, that you use
to get and set a profile for each monitor. These routines work with the AVIDType
data type, which is defined by the Display Manager and used to specify a
device such as a monitor. Note that a user can set a profile for each display with
the Monitors & Sound control panel, as described in “Setting a Profile for Each
Monitor” (page 69). You can get more information about AVID values from the
Display Manager SDK.

■ CMGetProfileByAVID (page 300) gets the current profile for a monitor; new in
ColorSync 2.5.

■ CMSetProfileByAVID (page 300) sets the profile for the specified monitor,
optionally setting video card gamma; new in ColorSync 2.5.
Functions for the ColorSync Manager 299
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetProfileByAVID 5

NEW IN COLORSYNC 2.55

Gets the current profile for a monitor.

pascal CMError CMGetProfileByAVID (
AVIDType theAVID,
CMProfileRef *prof);

theAVID A Display Manager ID value. You pass the ID value for the
monitor for which to get the profile. You can get more
information about AVID values from the Display Manager SDK.

prof A pointer to a profile reference. On return, a reference to the
current profile for the monitor specified by theAVID.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If the Display Manager supports ColorSync, the CMGetProfileByAVID function
calls on the Display Manager to get the profile for the specified display. This is
the case if the version of the Display Manager is 2.2.5 or higher (if
gestaltDisplayMgrAttr has the gestaltDisplayMgrColorSyncAware bit set).

CMSetProfileByAVID 5

NEW IN COLORSYNC 2.55

Sets the profile for the specified monitor, optionally setting video card gamma.

pascal CMError CMSetProfileByAVID (
AVIDType theAVID,
CMProfileRef prof);

theAVID A Display Manager ID value. You pass the ID value for the
monitor for which to set the profile. You can get more
information about AVID values from the Display Manager SDK.
300 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
prof A profile reference. Before calling CMSetProfileByAVID, set the
reference to identify the profile for the monitor specified by
theAVID.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If you specify a profile that contains the optional profile tag for video card
gamma, CMSetProfileByAVID extracts the tag and sets the video card based on
the tag data, as described in “Video Card Gamma” (page 70). This is the only
ColorSync function that sets video card gamma. The tag constant
cmVideoCardGammaTag is described with the constants in “Video Card Gamma
Constants” (page 421).

When a user sets a display profile using the Monitors & Sound control panel,
the system profile is set to the same profile, as described in “Setting a Profile for
Each Monitor” (page 69). When you call CMSetProfileByAVID to set a profile for a
monitor, you may also wish to make that profile the system profile. If so, you
must call CMSetSystemProfile (page 295) explicitly—calling CMSetProfileByAVID
alone has no affect on the system profile.

Note that if the Display Manager supports ColorSync, the CMSetProfileByAVID
function calls on the Display Manager to set the profile for the specified display.
This is the case if the version of the Display Manager is 2.2.5 or higher (if
gestaltDisplayMgrAttr has the gestaltDisplayMgrColorSyncAware bit set).

Locating the ColorSync Profiles Folder 5

The ColorSync Manager provides the function CMGetColorSyncFolderSpec
(page 302) to obtain the location of the ColorSync Profiles folder. See the
function description for changes starting with ColorSync version 2.5.
Functions for the ColorSync Manager 301
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetColorSyncFolderSpec 5

CHANGED IN COLORSYNC 2.5.5

Obtains the volume reference number and the directory ID for the ColorSync
Profiles folder.

pascal CMError CMGetColorSyncFolderSpec (
short vRefNum,
Boolean createFolder,
short *foundVRefNum,
long *foundDirID);

vRefNum The reference number of the volume to examine. The volume
must be mounted. The constant kOnSystemDisk defined in the
Folders header file (Folders.h) specifies the active system
volume.

createFolder A flag you set to true to direct the ColorSync Manager to create
the ColorSync Profiles folder, if it does not exist. You can use the
constants kCreateFolder and kDontCreateFolder, defined in the
Folders.h header file, to assign a value to the flag.

foundVRefNum A pointer to a volume reference number. On output, the volume
reference number for the volume on which the ColorSync
Profiles folder resides.

foundDirID A pointer to a directory ID. On output, the directory ID for the
volume on which the ColorSync Profiles folder resides.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If the ColorSync Profiles folder does not already exist, you can use this function
to create it.

VERSION NOTES

Starting with version 2.5, the name and location of the profile folder changed, as
described in “Profile Search Locations” (page 55).
302 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Your application should use the function CMIterateColorSyncFolder (page 304),
available starting in ColorSync version 2.5, or one of the search functions
described in “Searching for Profiles Prior to ColorSync 2.5” (page 306), to search
for a profile file, even if it is only looking for one file. Do not search for a profile
file by obtaining the location of the profiles folder and searching for the file
directly.

SEE ALSO

For information about the Macintosh file system, see Inside Macintosh: Files.

Profile Searching 5

This section describes the ColorSync functions you use to search for profiles.

IMPORTANT

Your application should use one of the ColorSync search
functions described here to search for a profile file, even if
you are only looking for one file. Do not search for a profile
file by obtaining the location of the profiles folder and
searching for the file directly. ▲

■ “Searching for Profiles With ColorSync 2.5” (page 303)

■ “Searching for Profiles Prior to ColorSync 2.5” (page 306)

■ “Searching for a Profile by Profile Identifier” (page 314)

Searching for Profiles With ColorSync 2.5 5

Starting with version 2.5, ColorSync provides a profile cache, described in “The
Profile Cache and Optimized Searching” (page 57), for keeping track of profile
files. A flexible new routine, CMIterateColorSyncFolder, takes advantage of the
profile cache to provide truly optimized searching and quick access to profile
information. Your application can quickly examine all the profile files in the
ColorSync Profiles folder to find those that match a desired criteria.

■ CMIterateColorSyncFolder (page 304) Iterates over the available profiles; new
in ColorSync 2.5.
Functions for the ColorSync Manager 303
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
For additional information on profile searching, see “Searching for Profiles Prior
to ColorSync 2.5” (page 306) and “Searching for a Profile by Profile Identifier”
(page 314).

CMIterateColorSyncFolder 5

NEW IN COLORSYNC 2.55

Iterates over the available profiles.

pascal CMError CMIterateColorSyncFolder (
CMProfileIterateUPP proc,
unsigned long * seed,
unsigned long * count,
void * refCon);

proc A universal procedure pointer of type CMProfileIterateUPP,
which is described in CMProfileIterateProcPtr (page 365). If
you do not wish to receive callbacks, pass NULL for this
parameter. Otherwise, pass a pointer to your callback routine.

seed A pointer to a value of type long. The first time you call
CMIterateColorSyncFolder, you typically set the value to 0. In
subsequent calls, you set the value to the seed value obtained
from the previous call. ColorSync uses the value in determining
whether to call your callback routine, as described in the
discussion for this function.
On return, the value is the current seed for the profile cache
(unless you pass NULL, as described in the discussion).

count A pointer to a value of type long. On return, the value is the
number of available profiles. CMIterateColorSyncFolder
provides the number of profiles even when no iteration occurs
(unless you pass NULL, as described in the discussion below). To
determine the count alone, without iteration, call
CMIterateColorSyncFolder and pass a value of NULL for all
parameters except count.
304 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
refCon An untyped pointer to arbitrary data supplied by your
application. CMIterateColorSyncFolder passes this data to your
callback routine. If you pass NULL for the refCon parameter,
CMIterateColorSyncFolder passes NULL to your callback routine.

function result A result code of type CMError. If your callback function returns
an error, CMIterateColorSyncFolder stops iterating and returns
the error value to its caller (presumably your code). For possible
values, see “Result Codes for the ColorSync Manager”
(page 425).

DISCUSSION

Starting with ColorSync version 2.5, when your application needs information
about the profiles currently available in the ColorSync Profiles folder, it can call
the CMIterateColorSyncFolder routine, which in turn calls your callback routine
once for each profile.

Note
Starting with version 2.5, the name and location of the
profile folder changed. In addition, the folder can now
contain profiles within nested folders, as well as aliases to
profiles or aliases to folders containing profiles. There are
limits on the nesting of folders and aliases. For details, see
“Profile Search Locations” (page 55). ◆

Even though there may be many profiles available, CMIterateColorSyncFolder
can take advantage of ColorSync’s profile cache to return profile information
quickly, and (if the cache is valid) without having to open any profiles. For each
profile, CMIterateColorSyncFolder supplies your routine with the profile header,
script code, name, and location, in a structure of type CMProfileIterateData
(page 366). As a result, your routine may be able to perform its function, such as
building a list of profiles to display in a pop-up menu, without further effort
(such as opening each file-based profile).

IMPORTANT

Only 2.x profiles are included in the profile search result. ▲

Before calling CMIterateColorSyncFolder for the first time, you typically set seed
to 0. ColorSync compares 0 to its current seed for the profile cache. It isn’t likely
they will match—the odds are roughly one in two billion against it. If the values
don’t match, the routine iterates through all the profiles in the cache, calling
Functions for the ColorSync Manager 305
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
your callback routine once for each profile. CMIterateColorSyncFolder then
returns the actual seed value in seed (unless you passed NULL for that
parameter).

If you pass the returned seed value in a subsequent call, and if there has been
no change in the available profiles, the passed seed will match the stored cache
seed and no iteration will take place.

Note that you can pass a NULL pointer for the seed parameter without harm. The
result is the same as if you passed a pointer to 0, in that the function iterates
through the available profiles, calling your callback routine once for each
profile. However, the function doesn’t return a seed value, since you haven’t
passed a valid pointer.

You can force ColorSync to call your callback routine (if any profiles are
available) by passing a NULL pointer or by passing 0 for the seed value. But
suppose you have an operation, such as building a pop-up menu, that you only
want to perform if the available profiles have changed. In that case, you pass
the seed value from a previous call to CMIterateColorSyncFolder. If the profile
folder has not changed, ColorSync will not call your callback routine.

Note that if there are no profiles available, ColorSync does not call your callback
routine.

Note
You can safely pass NULL for any or all of the parameters to
the CMIterateColorSyncFolder function. If you pass NULL for
all of the parameters, calling the function merely forces
rebuilding of the profile cache, if necessary. ◆

For sample code demonstrating how to use CMIterateColorSyncFolder, see
“Performing Optimized Profile Searching” (page 130).

Searching for Profiles Prior to ColorSync 2.5 5

NOT RECOMMENDED IN COLORSYNC 2.55

This section describes the functions you use to search for profiles with versions
of ColorSync prior to version 2.5. These functions are not recommended with
version 2.5—see “Searching for Profiles With ColorSync 2.5” (page 303) instead.
306 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The functions described here allow your application to search for profile files
within the ColorSync Profiles folder based on certain criteria, and to obtain
references to the found profiles and their file specifications.

Note
Starting with version 2.5, the name and location of the
profile folder changed, as described in “Profile Search
Locations” (page 55). ◆

Code that uses these functions still works in version 2.5, but does not take full
advantage of ColorSync’s profile cache and optimized searching, which is
described in “Searching for Profiles With ColorSync 2.5” (page 303).

■ CMNewProfileSearch (page 308) searches the ColorSync Profiles folder and
returns a list of 2.x profiles that match the search specification; not
recommended in ColorSync 2.5.

■ CMUpdateProfileSearch (page 310) searches the ColorSync Profiles folder and
updates an existing search result obtained originally from the
CMNewProfileSearch function; not recommended in ColorSync 2.5.

■ CMDisposeProfileSearch (page 311) frees the private memory allocated for a
profile search after your application has completed the search; not
recommended in ColorSync 2.5.

■ CMSearchGetIndProfile (page 312) opens the profile corresponding to a
specific index into a specific search result list and obtains a reference to that
profile; not recommended in ColorSync 2.5.

■ CMSearchGetIndProfileFileSpec (page 313) obtains the file specification for
the profile at a specific index into a search result; not recommended in
ColorSync 2.5.

For additional information on profile searching, see “Searching for a Profile by
Profile Identifier” (page 314).

IMPORTANT

Only 2.x profiles are included in the profile search result. ▲
Functions for the ColorSync Manager 307
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMNewProfileSearch 5

NOT RECOMMENDED IN COLORSYNC 2.55

Searches the ColorSync Profiles folder and returns a list of 2.x profiles that
match the search specification.

pascal CMError CMNewProfileSearch (
CMSearchRecord *searchSpec,
void *refCon,
unsigned long *count,
CMProfileSearchRef *searchResult);

searchSpec A pointer to a search specification. For a description of the
information you can provide in a search record of type
CMSearchRecord to define the search, see CMSearchRecord
(page 368).

refCon An untyped pointer to arbitrary data supplied by your
application. CMNewProfileSearch passes this data to your filter
routine. For a description of the filter routine, see the function
MyCMProfileFilterProc (page 347).

count A pointer to a profile count. On output, a one-based count of
profiles matching the search specification.

searchResult
A pointer to a search result reference. On output, a reference to
the profile search result list. For a description of the
CMProfileSearchRef private data type, see CMProfileSearchRef
(page 370).

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMNewProfileSearch function sets up and defines a new search identifying
through the search record the elements that a profile must contain to qualify for
inclusion in the search result list. The function searches the ColorSync profiles
folder for version 2.x profiles that meet the criteria and returns a list of these
profiles in an internal private data structure whose reference is returned to you
308 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
in the searchResult parameter. For a complete description of where the function
searches for profiles, see “Profile Search Locations” (page 55).

You must provide a search record of type CMSearchRecord identifying the search
criteria. You specify which fields of the search record to use for any given search
through a search bit mask whose value you set in the search record’s searchMask
field.

Among the information you can provide in the search record is a pointer to a
filter function to use to eliminate profiles from the search based on additional
criteria not defined by the search record. The search result reference is passed to
the filter function after the search is performed. For a description of the filter
function and its prototype, see the function MyCMProfileFilterProc (page 347).

Your application cannot directly access the search result list. Instead, you pass
the returned search result list reference to other search-related functions that
allow you to use the result list. These functions are described in the “See Also”
section.

When your application has completed its search, it should call the function
CMDisposeProfileSearch (page 311) to free the private memory allocated for the
search.

VERSION NOTES

The CMNewProfileSearch function does not take full advantage of the optimized
profile searching available starting with ColorSync version 2.5, as described in
“The Profile Cache and Optimized Searching” (page 57). Use
CMIterateColorSyncFolder (page 304) instead.

SEE ALSO

To obtain a reference to a profile corresponding to a specific index in the list, use
the function CMSearchGetIndProfile (page 312). To obtain the file specification
for a profile corresponding to a specific index in the list, use the function
CMSearchGetIndProfileFileSpec (page 313). To update the search result list, use
the function CMUpdateProfileSearch (page 310). To free the private memory
allocated for a profile search after your application has completed the search,
use the function CMDisposeProfileSearch (page 311).
Functions for the ColorSync Manager 309
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMUpdateProfileSearch 5

NOT RECOMMENDED IN COLORSYNC 2.55

Searches the ColorSync Profiles folder and updates an existing search result
obtained originally from the CMNewProfileSearch function.

pascal CMError CMUpdateProfileSearch (
CMProfileSearchRef search,
void *refCon,
unsigned long *count);

search A reference to a search result list returned to your application
when you called the CMNewProfileSearch function. For a
description of the CMProfileSearchRef private data type, see
CMProfileSearchRef (page 370).

refCon A reference constant for application data passed as a parameter
to calls to the filter function specified by the original search
specification. For a description of the filter function, see the
function MyCMProfileFilterProc (page 347).

count A pointer to a profile count. On output, if the function result is
noErr, a one-based count of the number of profiles matching the
original search specification passed to the CMNewProfileSearch
function. Otherwise undefined.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

After a profile search has been set up and performed through a call to the
CMNewProfileSearch function, the CMUpdateProfileSearch function updates the
existing search result. You must use this function if the contents of the
ColorSync Profiles folder have changed since the original search result was
created.

The search update uses the original search specification, including the filter
function indicated by the search record. Data given in the
CMUpdateProfileSearch function’s refCon parameter is passed to the filter
function each time it is called.
310 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Sharing a disk over a network makes it possible for modification of the contents
of the ColorSync Profiles folder to occur at any time.

VERSION NOTES

Starting with version 2.5, you should use the function
CMIterateColorSyncFolder (page 304) for profile searching.

SEE ALSO

For a description of the function you call to begin a new search, see the function
CMNewProfileSearch (page 308). That function specifies the filter function
referred to in the description of the refCon parameter.

CMDisposeProfileSearch 5

NOT RECOMMENDED IN COLORSYNC 2.55

Frees the private memory allocated for a profile search after your application
has completed the search.

pascal void CMDisposeProfileSearch (CMProfileSearchRef search);

search A reference to the profile search result list whose private
memory is to be released. For a description of the
CMProfileSearchRef private data type, see CMProfileSearchRef
(page 370).

function result This routine does not return value.

VERSION NOTES

Starting with version 2.5, you should use the function
CMIterateColorSyncFolder (page 304) for profile searching.

SEE ALSO

To set up a search, use the function CMNewProfileSearch (page 308). To obtain a
reference to a profile corresponding to a specific index in the list, use the
Functions for the ColorSync Manager 311
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
function CMSearchGetIndProfile (page 312). To obtain the file specification for a
profile corresponding to a specific index in the list, use the function
CMSearchGetIndProfileFileSpec (page 313). To update the search result list, use
the function CMUpdateProfileSearch (page 310).

CMSearchGetIndProfile 5

NOT RECOMMENDED IN COLORSYNC 2.55

Opens the profile corresponding to a specific index into a specific search result
list and obtains a reference to that profile.

pascal CMError CMSearchGetIndProfile (
CMProfileSearchRef search,
unsigned long index,
CMProfileRef *prof);

search A reference to the profile search result list containing the profile
whose reference you want to obtain. For a description of the
CMProfileSearchRef private data type, see CMProfileSearchRef
(page 370).

index The position of the profile in the search result list. This value is
specified as a one-based index into the set of profiles of the
search result. The index must be less than or equal to the value
returned as the count parameter of the CMNewProfileSearch
function or the CMUpdateProfileSearch function; otherwise
CMSearchGetIndProfile returns a result code of cmIndexRangeErr.

prof A pointer to a profile reference of type CMProfileRef (page 358).
On output, the reference refers to the profile associated with the
specified index.

function result A result code of type CMError. One possible result code is
described with the index parameter above. For other possible
values, see “Result Codes for the ColorSync Manager”
(page 425).
312 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
VERSION NOTES

Starting with version 2.5, you should use the function
CMIterateColorSyncFolder (page 304) for profile searching.

SEE ALSO

Before your application can call the CMSearchGetIndProfile function, it must call
the function CMNewProfileSearch (page 308) to perform a profile search and
produce a search result list. The search result list is a private data structure
maintained by the ColorSync Manager. After your application has finished
using the profile reference, it must close the reference by calling the function
CMCloseProfile (page 223).

CMSearchGetIndProfileFileSpec 5

NOT RECOMMENDED IN COLORSYNC 2.55

Obtains the file specification for the profile at a specific index into a search
result.

pascal CMError CMSearchGetIndProfileFileSpec (
CMProfileSearchRef search,
unsigned long index,
FSSpec *profileFile);

search A reference to the profile search result containing the profile
whose file specification you want to obtain. For a description of
the CMProfileSearchRef private data type, see
CMProfileSearchRef (page 370).

index The index of the profile whose file specification you want to
obtain. This is a one-based index into a set of profiles in the
search result list. The index must be less than or equal to the
value returned as the count parameter of the CMNewProfileSearch
function or the CMUpdateProfileSearch function; otherwise
CMSearchGetIndProfile returns a result code of cmIndexRangeErr
Functions for the ColorSync Manager 313
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
profileFile A pointer to a file specification. On output, this parameter
points to a file specification for the profile at the location
specified by index. For a description of the FSSpec data type, see
Inside Macintosh: Files.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Before your application can call the CMSearchGetIndProfileFileSpec function, it
must call the function CMNewProfileSearch (page 308) to perform a profile search
and produce a search result list. The search result list is a private data structure
maintained by ColorSync.

The CMSearchGetIndProfileFileSpec function obtains the Macintosh file system
file specification for a profile at a specific index in the search result list.

VERSION NOTES

Starting with version 2.5, you should use the function
CMIterateColorSyncFolder (page 304) for profile searching.

Searching for a Profile by Profile Identifier 5

Starting with version 2.1, the ColorSync Manager defines the structure
CMProfileIdentifier (page 359), which identifies a profile but takes up much
less space than most profiles. A profile identifier can refer to an embedded
profile or to a profile file stored in the ColorSync Profiles folder. Your
application can embed profile identifiers in place of entire profiles, or in
addition to them.

ColorSync provides the following functions for searching for profile identifiers:

■ CMProfileIdentifierFolderSearch (page 315) searches the ColorSync Profiles
folder and returns a list of profile references, one for each profile that
matches the specified profile identifier.

■ CMProfileIdentifierListSearch (page 316) searches a list of profile references
and returns a list of all references that match a specified profile identifier.
314 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
IMPORTANT

Only version 2.x profiles are included in the profile search
result. ▲

For sample code that demonstrates how to use the profile identifier search
functions, see “Searching for a Profile That Matches a Profile Identifier”
(page 139).

For information on searching for entire profiles, see “Profile Searching”
(page 303).

CMProfileIdentifierFolderSearch 5

Searches the ColorSync Profiles folder and returns a list of profile references,
one for each profile that matches the specified profile identifier.

pascal CMError CMProfileIdentifierFolderSearch (
CMProfileIdentifierPtr ident,
unsigned long *matchedCount,
CMProfileSearchRef *searchResult);

ident A pointer to a profile identifier structure specifying the profile to
search for.

matchedCount A pointer to a value of type unsigned long. On output, the
one-based count of profiles that match the specified profile
identifier. The count is typically 0 or 1, but can be higher.

searchResult A pointer to a search result reference of type CMProfileSearchRef
(page 370). On output, a reference to the profile search result list.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). It is not an error
condition if this function finds no matching profiles. It returns
an error only if a File Manager or other low-level system error
occurs.

DISCUSSION

When your application or device driver processes an image, it can keep a list of
profile references for each profile it encounters in the image. Each time it
Functions for the ColorSync Manager 315
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
encounters an embedded profile identifier, your application can call the
function CMProfileIdentifierListSearch (page 316) to see if there is already a
matching profile reference in its list. If not, it can call the function
CMProfileIdentifierFolderSearch (page 315) to see if the profile is located in the
ColorSync Profiles folder.

Although there should typically be at most one profile in the ColorSync Profiles
folder that matches the profile identifier, two or more profiles with different
filenames may qualify. It is not considered an error condition if the
CMProfileIdentifierFolderSearch function finds no matching profiles.

For sample code demonstrating how to use CMProfileIdentifierListSearch, see
“Searching for a Profile That Matches a Profile Identifier” (page 139).

CMProfileIdentifierListSearch 5

Searches a list of profile references and returns a list of all references that match
a specified profile identifier.

pascal CMError CMProfileIdentifierListSearch (
CMProfileIdentifierPtr ident,
CMProfileRef *profileList,
unsigned long listSize,
unsigned long *matchedCount,
CMProfileRef *matchedList);

ident A pointer to a profile identifier. The function looks for profile
references in profileList that match the profile described by
this identifier. For information on how a profile identifier match
is determined, see CMProfileIdentifier (page 359).

profileList A pointer to a list of profile references to search.

listSize The number of profile references in profileList.

matchedCount A pointer to a count of matching profile references. If you set
matchedList to NULL, on output matchedCount specifies the
number of references in profileList that match ident. The count
is typically 0 or 1, but can be higher.
If you do not set matchedList to NULL, on input you set
matchedCount to the maximum number of matching references to
316 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
be returned in matchedList. On output, the value of
matchedCount specifies the actual number of matching references
returned, which is always equal to or less than the number
passed in.

matchedList A pointer to a list of profile references. If you set matchedList to
NULL on input, on output nothing is returned in the parameter,
and the actual number of matching references is returned in
matchedCount.
If you do not set matchedList to NULL on input, it is treated as a
pointer to allocated memory. On output, the allocated memory
will contain a list, in no particular order, of profile references
that match ident. The number of references in the list is equal to
or less than the value you pass in the matchedCount parameter.
You must allocate enough memory for matchedList to store the
requested number of profile references.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425). It is not an error
condition if the CMProfileIdentifierListSearch function finds
no matching profiles. The function returns an error only if a
Memory Manager or other low-level system error occurs.

DISCUSSION

When your application or device driver processes an image, it can keep a list of
profile references for each unique profile or profile identifier it encounters in the
image. Each time it encounters an embedded profile identifier, your application
can call the CMProfileIdentifierListSearch function to see if there is already a
matching profile reference in the list. Although your list of profile references
would normally contain at most one reference that matches the profile
identifier, it is possible to have two or more matches. For information on how a
profile identifier match is determined, see CMProfileIdentifier (page 359).

If no matching profile is found in the list, your application can call the function
CMProfileIdentifierFolderSearch (page 315) to see if a matching profile can be
found in the ColorSync Profiles folder.

To determine the amount of memory needed for the list of profile references
that match a profile identifier, your application may want to call
CMProfileIdentifierListSearch twice. The first time, on input you set
matchedList to NULL and ignore matchedCount. On output, matchedCount specifies
Functions for the ColorSync Manager 317
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
the number of matching profiles. You then allocate enough memory to hold that
many profile references (or a smaller number if you don’t want all the
references) and call CMProfileIdentifierListSearch again. This time you set
matchedList to a pointer to the allocated memory and set matchedCount to the
number of references you wish to obtain. To allocate memory, you use code
such as the following:

myProfileRefListPtr = NewPtr(sizeof(CMProfileRef) * matchedCount);

If your application is interested in obtaining only the first profile that matches
the specified profile, you need call CMProfileIdentifierListSearch only once. To
do so, you just allocate enough memory to store one profile reference, set
matchedList to point to that memory (or just set matchedList to point to a local
variable), and set matchedCount to 1. On return, if matchedCount still has the
value 1, then CMProfileIdentifierListSearch found a matching profile.

For sample code demonstrating how to use CMProfileIdentifierFolderSearch,
see “Searching for a Profile That Matches a Profile Identifier” (page 139).

Converting Between Color Spaces 5

See “Converting Between Color Spaces” (page 65) for a description of the color
conversion capabilities the ColorSync Manager provides. That section also
describes color conversion prior to ColorSync version 2.1.

The ColorSync Manager provides the following functions to convert colors
between a base color space and any of its derived color spaces or between two
derivatives of the same base family.

■ CMConvertXYZToLab (page 319) converts colors specified in the XYZ color
space to the L*a*b* color space.

■ CMConvertLabToXYZ (page 320) converts colors specified in the L*a*b* color
space to the XYZ color space.

■ CMConvertXYZToLuv (page 321) converts colors specified in the XYZ color
space to the L*u*v* color space.

■ CMConvertLuvToXYZ (page 322) converts colors specified in the L*u*v* color
space to the XYZ color space.

■ CMConvertXYZToYxy (page 323) converts colors specified in the XYZ color
space to the Yxy color space.
318 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMConvertYxyToXYZ (page 324) converts colors specified in the Yxy color space
to the XYZ color space.

■ CMConvertXYZToFixedXYZ (page 325) converts colors specified in the XYZ color
space whose components are expressed as XYZ 16-bit unsigned values of
type CMXYZColor to equivalent colors expressed as 32-bit signed values of type
CMFixedXYZColor.

■ CMConvertFixedXYZToXYZ (page 326) converts colors specified in XYZ color
space whose components are expressed as Fixed XYZ 32-bit signed values of
type CMFixedXYZColor to equivalent colors expressed as XYZ 16-bit unsigned
values of type CMXYZColor.

■ CMConvertRGBToHLS (page 327) converts colors specified in the RGB color
space to equivalent colors defined in the HLS color space.

■ CMConvertHLSToRGB (page 328) converts colors specified in the HLS color space
to equivalent colors defined in the RGB color space.

■ CMConvertRGBToHSV (page 329) converts colors specified in the RGB color
space to equivalent colors defined in the HSV color space when the device
types are the same.

■ CMConvertHSVToRGB (page 330) converts colors specified in the HSV color
space to equivalent colors defined in the RGB color space.

■ CMConvertRGBToGray (page 331) converts colors specified in the RGB color
space to equivalent colors defined in the Gray color space.

CMConvertXYZToLab 5

Converts colors specified in the XYZ color space to the L*a*b* color space.

pascal CMError CMConvertXYZToLab (
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of XYZ colors to convert
to L*a*b* colors.

white A pointer to a reference white point.
Functions for the ColorSync Manager 319
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
dst A pointer to an array containing the list of L*a*b* colors
resulting from the conversion.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertXYZToLab function converts one or more colors defined in the XYZ
color space to equivalent colors defined in the L*a*b* color space. Both color
spaces are device independent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertXYZToLab function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).

CMConvertLabToXYZ 5

Converts colors specified in the L*a*b* color space to the XYZ color space.

pascal CMError CMConvertLabToXYZ (
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

src A pointer to a buffer containing the list of L*a*b* colors to
convert to XYZ colors.

white A pointer to a reference white point.

dst A pointer to a buffer containing the list of colors as specified in
the XYZ color space resulting from the conversion.
320 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertLabToXYZ function converts one or more colors defined in the
L*a*b color space to equivalent colors defined in the XYZ color space. Both color
spaces are device independent.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).

CMConvertXYZToLuv 5

Converts colors specified in the XYZ color space to the L*u*v* color space.

pascal CMError CMConvertXYZToLuv (
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of XYZ colors to convert
to L*u*v* colors.

white A pointer to a reference white point.

dst A pointer to an array containing the list of colors represented in
L*u*v* color space resulting from the conversion.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 321
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The CMConvertXYZToLuv function converts one or more colors defined in the XYZ
color space to equivalent colors defined in the L*u*v* color space. Both color
spaces are device independent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertXYZToLuv function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).

CMConvertLuvToXYZ 5

Converts colors specified in the L*u*v* color space to the XYZ color space.

pascal CMError CMConvertLuvToXYZ (
const CMColor *src,
const CMXYZColor *white,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of L*u*v* colors to
convert.

white A pointer to a reference white point.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the XYZ color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
322 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The CMConvertLuvToXYZ function converts one or more colors defined in the
L*u*v color space to equivalent colors defined in the XYZ color space. Both
color spaces are device independent.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).

CMConvertXYZToYxy 5

Converts colors specified in the XYZ color space to the Yxy color space.

pascal CMError CMConvertXYZToYxy (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of XYZ colors to convert
to Yxy colors.

dst A pointer to an array containing the list of colors resulting from
the conversion represented in the Yxy color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertXYZToYxy function converts one or more colors defined in the XYZ
color space to equivalent colors defined in the Yxy color space. Both color
spaces are device independent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertXYZToYxy function to overwrite the source colors with
the resulting converted color specifications.
Functions for the ColorSync Manager 323
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).

CMConvertYxyToXYZ 5

Converts colors specified in the Yxy color space to the XYZ color space.

pascal CMError CMConvertYxyToXYZ (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of Yxy colors to convert.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the XYZ color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertYxyToXYZ function converts one or more colors defined in the Yxy
color space to equivalent colors defined in the XYZ color space. Both color
spaces are device independent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertYxyToXYZ function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
324 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertXYZToFixedXYZ 5

Converts colors specified in the XYZ color space whose components are
expressed as XYZ 16-bit unsigned values of type CMXYZColor to equivalent colors
expressed as 32-bit signed values of type CMFixedXYZColor.

pascal CMError CMConvertXYZToFixedXYZ (
const CMXYZColor *src,
CMFixedXYZColor *dst,
unsigned long count);

src A pointer to an array containing the list of XYZ colors to convert
to Fixed XYZ colors.

dst A pointer to an array containing the list of colors resulting from
the conversion in which the colors are specified as Fixed XYZ
colors.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertXYZToFixedXYZ function converts one or more colors whose
components are defined as XYZ colors to equivalent colors whose components
are defined as Fixed XYZ colors. Fixed XYZ colors allow for 32-bit precision.
The XYZ color space is device independent.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
Functions for the ColorSync Manager 325
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertFixedXYZToXYZ 5

Converts colors specified in XYZ color space whose components are expressed
as Fixed XYZ 32-bit signed values of type CMFixedXYZColor to equivalent colors
expressed as XYZ 16-bit unsigned values of type CMXYZColor.

pascal CMError CMConvertFixedXYZToXYZ (
const CMFixedXYZColor *src,
CMXYZColor *dst,
unsigned long count);

src A pointer to an array containing the list of Fixed XYZ colors to
convert to XYZ colors.

dst A pointer to an array containing the list of colors resulting from
the conversion specified as XYZ colors.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertFixedXYZToXYZ function converts one or more colors defined in the
Fixed XYZ color space to equivalent colors defined in the XYZ color space. The
XYZ color space is device independent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertFixedXYZToXYZ function to overwrite the source colors
with the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
326 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertRGBToHLS 5

Converts colors specified in the RGB color space to equivalent colors defined in
the HLS color space.

pascal CMError CMConvertRGBToHLS (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of RGB colors to convert
to HLS colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the HLS color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertRGBToHLS function converts one or more colors defined in the RGB
color space to equivalent colors defined in the HLS color space. Both color
spaces are device dependent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertRGBToHLS function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
Functions for the ColorSync Manager 327
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertHLSToRGB 5

Converts colors specified in the HLS color space to equivalent colors defined in
the RGB color space.

pascal CMError CMConvertHLSToRGB (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of HLS colors to convert
to RGB colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the RGB color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertHLSToRGB function converts one or more colors defined in the HLS
color space to equivalent colors defined in the RGB color space. Both color
spaces are device dependent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertHLSToRGB function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
328 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertRGBToHSV 5

Converts colors specified in the RGB color space to equivalent colors defined in
the HSV color space when the device types are the same.

pascal CMError CMConvertRGBToHSV (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of RGB colors to convert
to HSV colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the HSV color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertRGBToHSV function converts one or more colors defined in the
RGB color space to equivalent colors defined in the HSV color space. Both color
spaces are device dependent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertRGBToHSV function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
Functions for the ColorSync Manager 329
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertHSVToRGB 5

Converts colors specified in the HSV color space to equivalent colors defined in
the RGB color space.

pascal CMError CMConvertHSVToRGB (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of HSV colors to convert
to RGB colors.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the RGB color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertHSVToRGB function converts one or more colors defined in the HSV
color space to equivalent colors defined in the RGB color space. Both color
spaces are device dependent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertHSVToRGB function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
330 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConvertRGBToGray 5

Converts colors specified in the RGB color space to equivalent colors defined in
the Gray color space.

pascal CMError CMConvertRGBToGray (
const CMColor *src,
CMColor *dst,
unsigned long count);

src A pointer to an array containing the list of colors specified in
RGB space to convert to colors specified in Gray space.

dst A pointer to an array containing the list of colors, resulting from
the conversion, as specified in the Gray color space.

count The number of colors to convert.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMConvertRGBToGray function converts one or more colors defined in the
RGB color space to equivalent colors defined in the Gray color space. Both color
spaces are device dependent.

If your application does not require that you preserve the source color list, you
can pass the pointer to the same color list array as the src and dst parameters
and allow the CMConvertRGBToGray function to overwrite the source colors with
the resulting converted color specifications.

SEE ALSO

For information about the color conversion routines in previous versions of
ColorSync, see “Converting Between Color Spaces” (page 318).
Functions for the ColorSync Manager 331
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Color-Matching With PostScript Devices 5

The ColorSync Manager provides three functions that support color matching
by PostScript Level 2 devices. The default CMM implements these functions if
the preferred CMM corresponding to the profile does not.

■ CMGetPS2ColorSpace (page 333) obtains color space element data in text
format usable as the parameter to the PostScript setColorSpace operator,
which characterizes the color space of subsequent graphics data.

■ CMGetPS2ColorRenderingIntent (page 335) obtains the rendering intent
element data in text format usable as the parameter to the PostScript
findRenderingIntent operator, which specifies the color-matching option for
subsequent graphics data.

■ CMGetPS2ColorRendering (page 336) obtains the color rendering dictionary
(CRD) element data usable as the parameter to the PostScript
setColorRendering operator, which specifies the PostScript color rendering
dictionary to use for the following graphics data.

■ CMGetPS2ColorRenderingVMSize (page 338) determines the virtual memory
size of the color rendering dictionary (CRD) for a printer profile before your
application or driver obtains the CRD and sends it to the printer.

Starting with PostScript version 2016, to provide better support for ColorSync
and ICC profiles, Postscript Level 2 supports up to four-component color spaces
through the addition of CIEBasedDEF and CIEBasedDEFG color spaces.

To use these new color spaces, starting with ColorSync version 2.1, the
CMGetPS2ColorSpace function supports profiles with four components, as well as
scanner and monitor profiles that contain multidimensional table information.
In previous versions of ColorSync, routines such as CMGetPS2ColorSpace
returned an error if asked to generate PostScript code for a profile with more
than three components.

The CIEBasedDEF and CIEBasedDEFG color spaces are extensions to the
CIEBasedABC color space. To work with these color spaces, PostScript defines
the RangeDEF, RangeHIJK, DecodeDEFG, and Table arrays. You can read more
about how these arrays are used to convert CIEBasedDEF and CIEBasedDEFG
color space values in the PostScript Language Reference Manual Supplement,
version 2016.
332 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
IMPORTANT

If you use ColorSync to generate PostScript output for
CIEBasedDEF and CIEBasedDEFG color spaces, be sure the
printer has PostScript version 2016 or later. ▲

CMGetPS2ColorSpace 5

Obtains color space element data in text format usable as the parameter to the
PostScript setColorSpace operator, which characterizes the color space of
subsequent graphics data.

pascal CMError CMGetPS2ColorSpace (
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

srcProf A profile reference to the source profile that defines the data
color space and identifies the preferred CMM.

flags If the value of flags is equal to cmPS8bit, the generated
PostScript will utilize 8-bit encoding whenever possible to
achieve higher data compaction. If the value of flags is not
equal to cmPS8bit, the generated data will be 7-bit safe, in either
ASCII or ASCII base-85 encoding.

proc A pointer to a callback flatten function to receive the PostScript
data from the CMM. For information, see the function
MyColorSyncDataTransfer (page 342).

refCon An untyped pointer to arbitrary data supplied by your
application. CMGetPS2ColorSpace passes this data in calls to your
MyColorSyncDataTransfer (page 342) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM corresponding to
profile was not available or if it was unable to perform the
function and the default CMM was used. Otherwise, has the
value false.
Functions for the ColorSync Manager 333
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMGetPS2ColorSpace function obtains PostScript color space data from the
source profile. The valid profile classes for the CMGetPS2ColorSpace function are
display, input, and output profiles with at most four components.

To determine which profile elements to use to generate the PostScript color
space data, the CMM:

■ uses the PostScript cmPS2CSATag, if it exists

■ otherwise, uses the multidimensional table tag (cmAToB0, cmAToB1, or cmAToB2),
if it exists, for the rendering intent currently specified by the profile

■ otherwise, uses the multidimensional table tag cmAToB0, if it exists

■ otherwise, for display profiles only, uses the tristimulus tags
(cmRedColorantTag, cmGreenColorantTag, cmBlueColorantTag) and the tonal
curve tags (cmRedTRCTag, cmGreenTRCTag, and cmBlueTRCTag)

The CMM obtains the PostScript data from the profile and calls your low-level
data transfer procedure passing the PostScript data to it. The CMM converts the
data into a PostScript stream and calls your procedure as many times as
necessary to transfer the data to it.

Typically, the low-level data transfer function returns this data to the calling
application or device driver to pass to a PostScript printer as an operand to the
PostScript setcolorspace operator, which defines the color space of graphics
data to follow.

The CMGetPS2ColorSpace function is dispatched to the CMM component
specified by the source profile. If the designated CMM is not available or the
CMM does not implement this function, then the ColorSync Manager
dispatches the function to the default CMM.
334 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMGetPS2ColorRenderingIntent 5

Obtains the rendering intent element data in text format usable as the
parameter to the PostScript findRenderingIntent operator, which specifies the
color-matching option for subsequent graphics data.

pascal CMError CMGetPS2ColorRenderingIntent (
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

srcProf A profile reference to the source profile that defines the data
color space and identifies the preferred CMM.

flags If the value of flags is equal to cmPS8bit, the generated
PostScript will utilize 8-bit encoding whenever possible to
achieve higher data compaction. If the value of flags is not
equal to cmPS8bit, the generated data will be 7-bit safe, in either
ASCII or ASCII base-85 encoding.

proc A low-level data transfer function supplied by the calling
application to receive the PostScript data from the CMM. For
more information, see the function MyColorSyncDataTransfer
(page 342).

refCon An untyped pointer to arbitrary data supplied by your
application. CMGetPS2ColorSpace passes this data in calls to your
MyColorSyncDataTransfer (page 342) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM corresponding to
profile was not available or if it was unable to perform the
function and the default CMM was used. Otherwise, has the
value false.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Functions for the ColorSync Manager 335
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

The CMGetPS2ColorRenderingIntent function obtains PostScript rendering intent
information from the header of the source profile. It returns data by calling your
low-level data transfer procedure and passing the PostScript data to it.
Typically, your low-level data transfer function returns this data to the calling
application or device driver to pass to a PostScript printer.

The CMGetPS2ColorRenderingIntent function is dispatched to the CMM
component specified by the source profile. If the designated CMM is not
available or the CMM does not implement this function, then ColorSync
dispatches the function to the default CMM.

CMGetPS2ColorRendering 5

Obtains the color rendering dictionary (CRD) element data usable as the
parameter to the PostScript setColorRendering operator, which specifies the
PostScript color rendering dictionary to use for the following graphics data.

pascal CMError CMGetPS2ColorRendering (
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

srcProf A profile reference to a profile that supplies the rendering intent
for the CRD.

dstProf A profile reference to a profile from which to extract the CRD
data.

flags If the value of flags is equal to cmPS8bit, the generated
PostScript will utilize 8-bit encoding whenever possible to
achieve higher data compaction. If the value of flags is not
equal to cmPS8bit, the generated data will be 7-bit safe, in either
ASCII or ASCII base-85 encoding.
336 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
proc A pointer to a callback flatten function to perform the data
transfer. For information, see the function
MyColorSyncDataTransfer (page 342).

refCon An untyped pointer to arbitrary data supplied by your
application. CMGetPS2ColorSpace passes this data in calls to your
MyColorSyncDataTransfer (page 342) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM corresponding to
profile was not available or if it was unable to perform the
function and the default CMM was used. Otherwise, has the
value false.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMGetPS2ColorRendering function obtains CRD data from the profile
specified by the dstProf parameter. To be valid, the parameter must specify an
output profile with at most four components. The CMM uses the rendering
intent from the profile specified by the srcProf parameter to determine which of
the PostScript tags (ps2CR0Tag, ps2CR1Tag, ps2CR2Tag, or ps2CR3Tag) to use in
creating the CRD. If none of these tags exists in the profile, the CMM creates the
CRD from one of the multidimensional table tags (cmAToB0, cmAToB1, or cmAToB2),
again chosen according to the rendering intent of the profile specified by the
srcProf parameter.

This function is dispatched to the CMM component specified by the destination
profile. If the designated CMM is not available or the CMM does not implement
this function, the ColorSync Manager dispatches this function to the default
CMM.

The CMM obtains the PostScript data and passes it to your low-level data
transfer procedure, specified by the proc parameter. The CMM converts the data
into a PostScript stream and calls your procedure as many times as necessary to
transfer the data to it. Typically, the low-level data transfer function returns this
data to the calling application or device driver to pass to a PostScript printer.
Functions for the ColorSync Manager 337
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
SEE ALSO

Before your application or device driver sends the CRD to the printer, it can call
the function CMGetPS2ColorRenderingVMSize (page 338) to determine the virtual
memory size of the CRD.

CMGetPS2ColorRenderingVMSize 5

Determines the virtual memory size of the color rendering dictionary (CRD) for
a printer profile before your application or driver obtains the CRD and sends it
to the printer.

pascal CMError CMGetPS2ColorRenderingVMSize (
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long *vmSize,
Boolean *preferredCMMnotfound);

srcProf A profile reference to a profile that supplies the rendering intent
for the CRD.

dstProf A profile reference to the destination printer profile.

vmSize A pointer to a memory size. On return, the virtual memory size
of the CRD.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found.
On output, has the value true if the CMM corresponding to
profile was not available or if it was unable to perform the
function and the default CMM was used. Otherwise, has the
value false.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Your application or device driver can call this function to determine if the
virtual memory size of the color rendering dictionary exceeds the printer’s
capacity before sending the CRD to the printer. If the printer’s profile contains
338 Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
the Apple-defined optional tag 'psvm' described in “CMConcatProfileSet”
(page 384), then the default CMM will return the data supplied by this tag
specifying the CRD virtual memory size for the rendering intent’s CRD. If the
printer’s profile does not contain this tag, then the CMM uses an algorithm to
assess the VM size of the CRD, in which case the assessment can be larger than
the actual maximum VM size.

The CMM uses the profile specified by the srcProf parameter to determine the
rendering intent to use.

Converting 2.x Profiles to 1.0 Format 5

The ColorSync Manager provides the CMConvertProfile2to1 function to convert
2.x format profiles to the 1.0 profile format. These format version numbers are
described in “ColorSync and ICC Profile Format Version Numbers” (page 50).

Because 1.0 and 2.x scanner and monitor profiles generally carry the same
required color information, converting between them will not result in lost
accuracy. With printer profiles, however, some accuracy may be lost by
conversion, leading to significantly different results. Because of the possible loss
of accuracy in some cases, 2.x to1.0 profile conversion is not encouraged.

Note
ColorSync fully supports 1.0 format profiles, but this
support is not guaranteed to continue in future versions.
Apple strongly recommends that developers using the 1.0
format move to the 2.x format. ◆

CMConvertProfile2to1 5

Converts the specified ColorSync profile from the 2.x format to the 1.0 format.

pascal CMError CMConvertProfile2to1 (
CMProfileRef profv2,
CMProfileHandle *profv1);

profv2 A reference to a ColorSync 2.x format profile to convert to 1.0
format.
Functions for the ColorSync Manager 339
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
profv1 A pointer to a profile handle. On output, the handle contains a
1.0 format version of the 2.x format profile referred to by profv2.
In some cases there may be loss of information in creating the
version 1.0 profile.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

Application-Defined Functions for the ColorSync Manager 5

Your application supplies the following functions for use with ColorSync
Manager functions. The ColorSync Manager functions that use your functions
take a universal procedure pointer to your function as an input parameter.

■ MyProfileIterateProc (page 340) is called once for each found profile by the
CMIterateColorSyncFolder (page 304) function as it iterates over the available
profiles; new in ColorSync 2.5.

■ MyColorSyncDataTransfer (page 342) transfers profile data from the format for
embedded profiles to disk file format or vice versa.

■ MyCMBitmapCallBackProc (page 345) reports on the progress of a
color-matching or color-checking session being performed for a bitmap or a
pixel map.

■ MyCMProfileFilterProc (page 347) examines the profile whose reference you
specify and determines whether to include it in the profile search result list.

■ MyCMProfileAccessProc (page 348) provides procedure-based access to a
profile.

MyProfileIterateProc 5

NEW IN COLORSYNC 2.55

Application-defined function that the CMIterateColorSyncFolder (page 304)
function calls once for each found profile file as it iterates over the available
profiles. Used, for example, to obtain a list of profiles to display in a pop-up
menu.
340 Application-Defined Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
This application-supplied function must conform to the following declaration,
although the function name is arbitrary:

pascal OSErr MyProfileIterateProc (
CMProfileIterateData *iterateData,
void *refCon);

iterateData A pointer to a structure of type CMProfileIterateData
(page 366). When the function CMIterateColorSyncFolder
(page 304) calls MyProfileIterateProc, as it does once for each
found profile, the structure contains key information about the
profile.

refCon An untyped pointer to arbitrary data your application
previously passed to the function CMIterateColorSyncFolder
(page 304).

function result A result code of type OSErr. If MyProfileIterateProc returns an
error, CMIterateColorSyncFolder stops iterating and returns the
error value to its caller (presumably your code). For possible
values, see “Result Codes for the ColorSync Manager”
(page 425).

DISCUSSION

When your application needs information about the profiles currently available
in the profiles folder, it calls the function CMIterateColorSyncFolder (page 304),
which, depending on certain conditions, calls your callback routine once for
each profile. See the description of CMIterateColorSyncFolder for information on
when it calls the MyProfileIterateProc routine.

Your MyProfileIterateProc routine examines the structure pointed to by the
iterateData parameter to obtain information about the profile it describes. The
routine determines whether to do anything with that profile, such as list its
name in a pop-up menu of available profiles.
Application-Defined Functions for the ColorSync Manager 341
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
MyColorSyncDataTransfer 5

CHANGED IN COLORSYNC 2.55

Application-defined function that transfers profile data from the format for
embedded profiles to disk file format or vice versa. Used, for example, by
PostScript functions to transfer data from a profile to text format usable by a
PostScript driver.

This application-supplied function must conform to the following declaration,
although the function name is arbitrary:

pascal OSErr MyColorSyncDataTransfer (
long command,
long *size,
void *data,
void *refCon);

command The command with which the MyColorSyncDataTransfer function
is called. This command specifies the operation the function is to
perform.

size A pointer to a size value. On input, the size in bytes of the data
to transfer. On output, the size of the data actually transferred.

data A pointer to the buffer supplied by the ColorSync Manager to
use for the data transfer.

refCon A reference constant that holds the application data passed in
from the functions CMFlattenProfile (page 237),
CMUnflattenProfile (page 239), CMGetPS2ColorSpace (page 333),
CMGetPS2ColorRenderingIntent (page 335), or
CMGetPS2ColorRendering (page 336). Each time the CMM calls
your MyColorSyncDataTransfer function, it passes this data to the
function.
Starting in ColorSync version 2.5, the ColorSync Manager calls
your function directly, without going through the preferred, or
any, CMM.

function result A result code of type OSErr. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
342 Application-Defined Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
DISCUSSION

Starting in ColorSync version 2.5, the ColorSync Manager calls your data
transfer function directly, without going through the preferred, or any, CMM.
So any references to the CMM in the discussion that follows are applicable only
to versions of ColorSync prior to version 2.5. Where the discussion does not
involve CMMs, it is applicable to all versions of ColorSync.

Your MyColorSyncDataTransfer function is called to flatten and unflatten profiles
or to transfer PostScript-related data from a profile to the PostScript format to
send to an application or device driver.

The ColorSync Manager and the CMM communicate with the
MyColorSyncDataTransfer function using the command parameter to identify the
operation to perform. To read and write profile data, your function must
support the following commands: openReadSpool, openWriteSpool, readSpool,
writeSpool, and closeSpool.

You determine the behavior of your MyColorSyncDataTransfer function. The
following sections describe how your function might handle the flattening and
unflattening processes.

Flattening a Profile 5

The ColorSync Manager calls the specified profile’s preferred CMM when an
application calls the CMFlattenProfile function to transfer profile data
embedded in a graphics document.

The ColorSync Manager determines if the CMM supports the CMFlattenProfile
function. If so, the ColorSync Manager dispatches the CMFlattenProfile
function to the CMM. If not, ColorSync calls the default CMM, dispatching the
CMFlattenProfile function to it.

The CMM communicates with the MyColorSyncDataTransfer function using a
command parameter to identify the operation to perform. The CMM calls your
function as often as necessary, passing to it on each call any data transferred to
the CMM from the CMFlattenProfile function’s refCon parameter.

The ColorSync Manager calls your function with the following sequence of
commands: openWriteSpool, writeSpool, and closeSpool. Here is how you
should handle these commands:

■ When the CMM calls your function with the openWriteSpool command, you
should perform any initialization required to write profile data you receive
from the CMM to a buffer or file.
Application-Defined Functions for the ColorSync Manager 343
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ The CMM will call your function with the writeSpool command as many
times as necessary to transfer all the profile data to you. Each time you are
called, you should receive the data and write it to your buffer or file,
returning in the size parameter the number of bytes of data you actually
accepted.

■ When the CMM calls your function with the closeSpool command, you
should perform any required cleanup processes.

As part of this process, your function can embed the profile data in a graphics
document, for example, a PICT file or a TIFF file. For example, your
MyColorSyncDataTransfer function can call the QuickDraw PicComment function
to embed the flattened profile in a picture.

Unflattening a Profile 5

When an application calls the CMUnflattenProfile function to transfer a profile
that is embedded in a graphics document to an independent disk file, the
ColorSync Manager calls your MyColorSyncDataTransfer function with the
following sequence of commands: openReadSpool, readSpool, closeSpool. Here is
how you should handle these commands:

■ When the ColorSync Manager calls your function with the openReadSpool
command, you should perform any initialization required to read from the
embedded profile format.

■ The ColorSync Manager calls your function with the readSpool command as
many times as necessary, directing your function to extract the profile data
from the embedded format in the image file and return it to the ColorSync
Manager in the data buffer. For each call, the ColorSync Manager specifies in
the size parameter the number of bytes of data you should return. Each time
your function is called it should read and return the requested data; it should
also specify in the size parameter the actual number of bytes of data it
returns.

■ When the ColorSync Manager calls your function with the closeSpool
command, you should perform any required cleanup processes.

VERSION NOTES

Starting in ColorSync version 2.5, the ColorSync Manager calls your function
directly, without going through the preferred, or any, CMM.
344 Application-Defined Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
MyCMBitmapCallBackProc 5

Application-defined function that reports on the progress of a color-matching or
color-checking session being performed for a bitmap or a pixel map.

This application-supplied function must conform to the following declaration,
although the function name is arbitrary:

pascal Boolean MyCMBitmapCallBackProc (
long progress,
void *refCon);

progress A byte count that begins at an arbitrary value when the function
is first called. On each subsequent call, the value is decremented
by an amount that can vary from call to call, but that reflects
how much of the matching process has completed since the
previous call. If the function is called at all, it will be called a
final time with a byte count of 0 when the matching is complete.

refCon The reference constant passed to your MyCMBitmapCallBackProc
function each time the color management module (CMM) calls
your function.

function result A result code of type Boolean. A return value of false indicates
the color-matching or color-checking session should continue. A
return value of true indicates the session should be aborted—for
example, the user may be holding down the Command–period
keys.

DISCUSSION

Your MyCMBitmapCallBackProc function allows your application to monitor the
progress of a color-matching or color-checking session for a bitmap or a pixel
map. Your function can also terminate the matching or checking operation.

Your callback function is called by the CMM performing the matching or
checking process if your application passes a pointer to your callback function
in the progressProc parameter when it calls one of the following functions:
CWMatchPixMap (page 272), CWCheckPixMap (page 274), CWMatchBitmap (page 276),
and CWCheckBitMap (page 279). Note that your callback function may not be
called at all if the operation completes in a very short period.
Application-Defined Functions for the ColorSync Manager 345
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The CMM used for the color-matching session calls your function at regular
intervals. For example, the default CMM calls your function approximately
every half-second unless the color matching or checking occurs in less time; this
happens when there is a small amount of data to match or check.

Each time the ColorSync Manager calls your function, it passes to the function
any data stored in the reference constant. This is the data that your application
specified in the refCon parameter when it called one of the color-matching or
checking functions.

For large bitmaps and pixel maps, your application can display a progress bar
or other indicator to show how much of the operation has been completed. You
might, for example, use the reference constant to pass to the callback function a
window reference to a dialog box. You obtain information on how much of the
operation has completed from the progress parameter. The first time your
callback is called, this parameter contains an arbitrary byte count. On each
subsequent call, the value is decremented by an amount that can vary from call
to call, but that reflects how much of the matching process has completed since
the previous call. Using the current value and the original value, you can
determine the percentage that has completed. If the callback function is called at
all, it will be called a final time with a byte count of 0 when the matching is
complete.

To terminate the matching or checking operation, your function should return a
value of true. Because pixel-map matching is done in place, an application that
allows the user to terminate the process should revert to the prematched image
to avoid partial mapping.

For bitmap matching, if the matchedBitMap parameter of the CWMatchBitmap
function specifies NULL, to indicate that the source bitmap is to be matched in
place, and the application allows the user to abort the process, you should also
revert to the prematched bitmap if the user terminates the operation.

Each time the ColorSync Manager calls your progress function, it passes a byte
count in the progress parameter. The last time the ColorSync Manager calls
your progress function, it passes a byte count of 0 to indicate the completion of
the matching or checking process. You should use the 0 byte count as a signal to
perform any cleanup operations your function requires, such as filling the
progress bar to completion to indicate to the user the end of the checking or
matching session, and then removing the dialog box used for the display.
346 Application-Defined Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
MyCMProfileFilterProc 5

Application-defined function that examines the profile whose reference you
specify and determines whether to include it in the profile search result list.

After a profile has been included in the profile search result based on criteria
specified in the search record, your MyCMProfileFilterProc function can further
examine the profile. For example, you may wish to include or exclude the
profile based on criteria such as an element or elements not included in the
CMSearchRecord search record. Your MyCMProfileFilterProc function can also
perform searching using AND or OR logic.

This application-supplied function must conform to the following declaration,
although the function name is arbitrary:

pascal Boolean MyCMProfileFilterProc (
CMProfileRef prof,
void *refCon);

prof A profile reference of type CMProfileRef (page 358) to the profile
to test.

refCon A reference constant that holds data passed through from the
CMNewProfileSearch function or the CMUpdateProfileSearch
function.

function result A result code of type Boolean. A return value of false indicates
that the profile should be included. A return value of true
indicates that the profile should be filtered out.

DISCUSSION

Your MyCMProfileFilterProc function is called after the CMNewProfileSearch
function searches for profiles based on the search record’s contents as specified
by the search bitmask.

When your application calls CMNewProfileSearch, it passes a reference to a
search specification record of type CMSearchRecord of type CMSearchRecord
(page 368) that contains a filter field. If the filter field contains a pointer to
your MyCMProfileFilterProc function, then your function is called to determine
whether to exclude a profile from the search result list. Your function should
return true for a given profile to exclude that profile from the search result list.
Application-Defined Functions for the ColorSync Manager 347
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
If you do not want to filter profiles beyond the criteria in the search record,
specify a NULL value for the search record’s filter field.

MyCMProfileAccessProc 5

Application-defined function that provides procedure-based access to a profile.

When your application calls the CMOpenProfile, CMNewProfile, CMCopyProfile, or
CMNewLinkProfile functions, it may supply the ColorSync Manager with a
profile location structure of type CMProfileLocation (page 362) that specifies a
procedure that provides access to a profile. In the structure, you provide a
universal procedure pointer to a profile access procedure supplied by you and,
optionally, a pointer to data your procedure can use. The ColorSync Manager
calls your procedure when the profile is created, initialized, opened, read,
updated, or closed.

The profile access procedure supplied by your application must conform to the
following declaration, although the procedure name is arbitrary.

pascal OSErr MyCMProfileAccessProc (
long command,
long offset,
long *size,
void *data,
void *refConPtr);

command A command value indicating the operation to perform.
Operation constants are described in “Profile Access Procedure
Operation Codes” (page 395).

offset For read and write operations, the offset from the beginning of
the profile at which to read or write data.

size A pointer to a size value. On input, for the cmReadAccess and
cmWriteAccess command constants, a pointer to a value
indicating the number of bytes to read or write; for the
cmOpenWriteAccess command, the total size of the profile. On
output, after reading or writing, the actual number of bytes read
or written.
348 Application-Defined Functions for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
data A pointer to a buffer containing data to read or write. On
output, for a read operation, contains the data that was read.

refConPtr A reference constant pointer that can store private data for the
MyCMProfileAccessProc procedure.

function result A result code of type OSErr. If an error occurs during processing,
your routine returns the appropriate error value. If no error
occurs, it returns noErr.

DISCUSSION

When the ColorSync Manager calls your profile access procedure, it passes a
constant indicating the operation to perform. The operations include creating a
new profile, reading from the profile, writing the profile, and so on. Operation
constants are described in “Profile Access Procedure Operation Codes”
(page 395). Your procedure must be able to respond to each of these constants.

Data Types for the ColorSync Manager 5

This section describes the data types defined by the ColorSync Manager for
your application’s use. The types are organized into the following categories:

■ “Date and Time” (page 350)

■ “Profile Header” (page 351)

■ “Profile Reference” (page 358)

■ “Profile Identifier” (page 358)

■ “Profile Location” (page 360)

■ “Cached Profile Searching” (page 365); new in ColorSync 2.5

■ “Non-Cached Profile Searching” (page 367); not recommended in
ColorSync 2.5

■ “Color Values” (page 371)

■ “Bitmap Information” (page 380)

■ “Color Matching Reference” (page 381)

■ “Color Worlds” (page 382)
Data Types for the ColorSync Manager 349
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ “Video Card Gamma” (page 386); new in ColorSync 2.5

■ “Color Matching While Printing” (page 390)

■ “Color Rendering Dictionary Virtual Memory Size” (page 390)

Date and Time 5

The ColorSync Manager defines the CMDateTime type for specifying a date and
time.

CMDateTime 5

The ColorSync Manager defines the CMDateTime data structure to specify a date
and time in year, month, day of the month, hours, minutes, and seconds. Other
ColorSync structures use the CMDateTime structure to specify information such as
the creation date or calibration date for a color space profile.

The CMDateTime structure is similar to the Macintosh Toolbox structure
DateTimeRec, and like it, is intended to hold date and time values only for a
Gregorian calendar.

Note
The CMDateTime structure is platform independent.
However, when used with Macintosh Toolbox routines
such as SecondsToDate and DateToSeconds, which use
seconds to designate years, the range of years that can be
represented is limited. ◆

struct CMDateTime {
unsigned short year;
unsigned short month;
unsigned short dayOfTheMonth;
unsigned short hours;
unsigned short minutes;
unsigned short seconds;

};
350 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Field descriptions
year The year. Note that to indicate the year 1984, this field

would store the integer 1984, not just 84.
month The month of the year, where 1 represents January, and 12

represents December.
dayOfTheMonth The day of the month, ranging from 1 to 31.
hours The hour of the day, ranging from 0 to 23, where 0

represents midnight and 23 represents 11:00 P.M.
minutes The minutes of the hour, ranging from 0 to 59.
seconds The seconds of the minute, ranging from 0 to 59.

Profile Header 5

The ColorSync Manager defines a profile header type for version 2.x profiles, a
separate header for version 1.0 profiles, and a header union that can provide
access to either a version 2.x or a version 1.0 profile. For more information on
profile version numbers, see “ColorSync and ICC Profile Format Version
Numbers” (page 50).

■ CMHeader (page 351) defines the version 1.0 profile header; not recommended
starting with ColorSync 2.0.

■ CM2Header (page 354) supports the header format specified by the ICC format
specification for version 2.x profiles.

■ CMAppleProfileHeader (page 357) provides access to both version 2.x and
version 1.0 profiles.

CMHeader 5

NOT RECOMMENDED5

ColorSync 1.0 defined a version 1.0 profile whose structure and format are
different from that of the ICC version 2.x profile. The CMHeader data type
represents the version 1.0 profile header. For more information on profile
version numbers, see “ColorSync and ICC Profile Format Version Numbers”
(page 50). To obtain a copy of the International Color Consortium Profile Format
Data Types for the ColorSync Manager 351
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Specification, or to get other information about the ICC, visit the ICC Web site at
<http://www.color.org/>.

Your application cannot use ColorSync Manager functions to update a version
1.0 profile or to search for version 1.0 profiles. However, your application can
use other ColorSync Manager functions that operate on version 1.0 profiles. For
example, your application can open a version 1.0 profile using the function
CMOpenProfile (page 222), obtain the version 1.0 profile header using the
function CMGetProfileHeader (page 245), and access version 1.0 profile elements
using the function CMGetProfileElement (page 243).

To make it possible to operate on both version 1.0 profiles and version 2.x
profiles, the ColorSync Manager defines the union CMAppleProfileHeader
(page 357), which supports either profile header version. The CMHeader data type
defines the version 1.0 profile header, while the CM2Header (page 354) data type
defines the version 2.x profile header.

struct CMHeader {
unsigned long size; /* byte size of profile */
OSType CMMType; /* signature of preferred CMM */
unsigned long applProfileVersion; /* Apple profile version */
OSType dataType; /* type of color data, such as rgb */
OSType deviceType; /* device type, such as monitor */
OSType deviceManufacturer; /* device manufacturer */
unsigned long deviceModel; /* as specified by manufacturer */
unsigned long deviceAttributes[2]; /* private info on ink, paper, etc. */
unsigned long profileNameOffset; /* offset to name from top of data */
unsigned long customDataOffset; /* offset to custom data from top */
CMMatchFlag flags; /* misc. info used by drivers */
CMMatchOption options; /* matching type, such as perceptual */
CMXYZColor white; /* white point in XYZ space */
CMXYZColor black; /* black point in XYZ space */

};

Field descriptions
size The total size in bytes of the profile, including any custom

data.
CMMType The signature of the preferred CMM for color-matching

and color-checking sessions for this profile. To avoid
conflicts with other CMMs, this signature must be
registered with the ICC. For the signature of the default
352 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMM, see “Signature of ColorSync’s Default Color
Management Module” (page 397).

applProfileVersion
The Apple profile version. Set this field to $0100 (defined as
the constant kCMApplProfileVersion).

dataType The kind of color data. The types are
rgbData = 'RGB ', source or destination profiles
cmykData = 'CMYK', destination profiles
grayData = 'GRAY', source or destination profiles
xyzData = 'XYZ ' source or destination profiles

deviceType The kind of device. The types are
monitorDevice = 'mntr'
scannerDevice = 'scnr'
printerDevice = 'prtr'

deviceManufacturer
A name supplied by the device manufacturer.

deviceModel The device model specified by the manufacturer.
deviceAttributes Private information such as paper surface and ink

temperature.
profileNameOffset The offset to the profile name from the top of data.
customDataOffset The offset to any custom data from the top of data.
flags A field used by drivers; it can hold one of the following

flags:
CMNativeMatchingPreferred
CMTurnOffCache

The CMNativeMatchingPreferred flag is available for
developers of intelligent peripherals that can off-load color
matching into the peripheral. Most drivers will not use this
flag. (Its default setting is 0, meaning that the profile creator
does not care whether matching occurs on the host or the
device.)
Use the CMTurnOffCache flag for CMMs that won’t benefit
from a cache, such as those that can look up data from a
table with less overhead, or that don’t want to take the
memory hit a cache entails, or that do their own caching
and don’t want the CMM to do it. (The default is 0,
meaning turn on cache.)
Data Types for the ColorSync Manager 353
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
options The options field specifies the preferred matching for this
profile; the default is CMPerceptualMatch; other values are
CMColorimetricMatch or CMSaturationMatch. The options are
set by the image creator.

white The profile illuminant white reference point, expressed in
the XYZ color space.

black The black reference point for this profile, expressed in the
XYZ color space.

For more information on ColorSync 1.0 headers, see “How ColorSync 1.0
Profiles and Version 2.x Profiles Differ” (page 531).

VERSION NOTES

Use of the CMHeader type is not recommended for ColorSync versions starting
with 2.0. Use CM2Header (page 354) instead.

CM2Header 5

The ColorSync Manager defines the CM2header profile structure to support the
header format specified by the ICC format specification for version 2.x profiles.
For more information on profile version numbers, see “ColorSync and ICC
Profile Format Version Numbers” (page 50). For a description of CMHeader, the
ColorSync 1.0 profile header, see CMHeader (page 351). To obtain a copy of the
International Color Consortium Profile Format Specification, or to get other
information about the ICC, visit the ICC Web site at <http://www.color.org/>.

Your application cannot obtain a discrete profile header value using the element
tag scheme available for use with elements outside the header. Instead, to set or
modify values of a profile header, your application must obtain the entire
profile header using the function CMGetProfileHeader (page 245) and replace the
header using the function CMSetProfileHeader (page 254).

struct CM2Header {
unsigned long size; /* total size of profile */
OSType CMMType; /* CMM signature, registered with

CS2 consortium */
unsigned long profileVersion; /* version of the profile format */
354 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
OSType profileClass; /* input, display, output, devicelink,
abstract, color conversion, or
named color profile class */

OSType dataColorSpace; /* color space of data */
OSType profileConnectionSpace; /* profile connection color space */
CMDateTime dateTime; /* date & time of profile creation */
OSType CS2profileSignature; /* ‘acsp’ constant, required by ICC */
OSType platform; /* primary profile platform, registered

with CS2 consortium */
unsigned long flags; /* gives hints for certain options */
OSType deviceManufacturer; /* registered with ICC consortium */
unsigned long deviceModel; /* registered with ICC consortium */
unsigned long deviceAttributes[2]; /* attributes such as paper type */
unsigned long renderingIntent; /* preferred rendering intent of object

tagged with this profile */
CMFixedXYZColor white; /* profile illuminant */
OSType creator; /* profile creator */
char reserved[44]; /* reserved for future use */

};

Field descriptions
size The total size in bytes of the profile.
CMMType The signature of the preferred CMM for color-matching

and color-checking sessions for this profile. To avoid
conflicts with other CMMs, this signature must be
registered with the ICC. For the signature of the default
CMM, see “Signature of ColorSync’s Default Color
Management Module” (page 397).

profileVersion The version of the profile format. The first 8 bits indicate
the major version number, followed by 8 bits indicating the
minor version number. The following 2 bytes are reserved.
The profile version number is not tied to the version of the
ColorSync Manager. Profile formats and their versions are
defined by the ICC. For example, a major version change
may indicate the addition of new required tags to the
profile format; a minor version change may indicate the
addition of new optional tags.

profileClass One of the seven profile classes supported by the ICC:
input, display, output, named color space, device link, color
Data Types for the ColorSync Manager 355
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
space conversion, or abstract. For the signatures
representing profile classes, see “Profile Class” (page 396).

dataColorSpace The color space of the profile. Color values used to express
colors of images using this profile are specified in this color
space. For a list of the color space signatures, see “Color
Space Signatures” (page 402).

profileConnectionSpace
The profile connection space, or PCS. The signatures for the
two profile connection spaces supported by ColorSync,
cmXYZData and cmLabData, are described in “Color Space
Signatures” (page 402).

dateTime The date and time when the profile was created. You can
use this value to keep track of your own versions of this
profile. For information on the date and time format, see
“Date and Time” (page 350).

CS2profileSignature
The 'acsp' constant as required by the ICC format.

platform The signature of the primary platform on which this profile
runs. For Apple Computer, this is 'APPL'. For other
platforms, refer to the International Color Consortium Profile
Format Specification.

flags Flags that provide hints, such as preferred quality and
speed options, to the preferred CMM. The flags field
consists of an unsigned long data type. The 16 bits in the
low word, 0-15, are reserved for use by the ICC. The 16 bits
in the high word, 16-31, are available for use by color
management systems. For information on how these bits
are defined and how your application can set and test
them, see “Flag Mask Definitions for Version 2.x Profiles”
(page 414).

deviceManufacturer
The signature of the manufacturer of the device to which
this profile applies. This value is registered with the ICC.

deviceModel The model of this device, as registered with the ICC.
deviceAttributes Attributes that are unique to this particular device setup,

such as media, paper, and ink types. The data type for this
field is an array of two unsigned longs. The low word of
deviceAttributes[0] is reserved by the ICC. The high word
of deviceAttributes[0] and the entire word of
356 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
deviceAttributes[1] are available for vendor use. For
information on how the bits in deviceAttributes are
defined and how your application can set and test them,
see “Device Attribute Values for Version 2.x Profiles”
(page 418).

renderingIntent The preferred rendering intent for the object or file tagged
with this profile. Four types of rendering intent are defined:
perceptual, relative colorimetric, saturation, and absolute
colorimetric. The renderingIntent field consists of an
unsigned long data type. The low word is reserved by the
ICC and is used to set the rendering intent. The high word
is available for use. For information on how the bits in
renderingIntent are defined and how your application can
set and test them, see “Rendering Intent Values for Version
2.x Profiles” (page 419).

white The profile illuminant white reference point, expressed in
the XYZ color space.

creator Signature identifying the profile creator.
reserved This field is reserved for future use.

CMAppleProfileHeader 5

The ColorSync Manager defines the CMAppleProfileHeader structure to provide
access to both version 2.x and version 1.0 profiles, as specified by the
International Color Consortium. For related information, see “ColorSync and
ICC Profile Format Version Numbers” (page 50). To obtain a copy of the
International Color Consortium Profile Format Specification, or to get other
information about the ICC, visit the ICC Web site at <http://www.color.org/>.

union CMAppleProfileHeader {
CMHeader cm1; /* ColorSync version 1.0 profile header */
CM2Header cm2; /* ColorSync version 2.x profile header */

};
Data Types for the ColorSync Manager 357
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Field descriptions
cm1 A version 1.0 profile header. For a description of the

ColorSync version 1.0 profile header, see CMHeader
(page 351).

cm2 A current profile header. For a description of the ColorSync
profile header, see CM2Header (page 354).

Profile Reference 5

The ColorSync Manager defines the CMProfileRef type to provide access to a
specific profile.

CMProfileRef 5

A profile reference is the means by which your application gains access to a
profile. Several ColorSync Manager functions return a profile reference to your
application. Your application then passes it as a parameter on subsequent calls
to other ColorSync Manager functions that use profiles.

The ColorSync Manager returns a unique profile reference in response to each
individual call to the CMOpenProfile (page 222), CMCopyProfile (page 229), and
CMNewProfile (page 227) functions. This allows multiple applications concurrent
access to a profile. The ColorSync Manager defines an abstract private data
structure of type OpaqueCMProfileRef for the profile reference.

typedef struct OpaqueCMProfileRef *CMProfileRef;

Profile Identifier 5

The ColorSync Manager defines the CMProfileIdentifier type to store a profile
identifier.
358 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMProfileIdentifier 5

Embedding a profile in an image guarantees that the image can be rendered
correctly on a different system. However, profiles can be large—as much as
several hundred kilobytes. The ColorSync Manager defines a profile identifier
structure, CMProfileIdentifier, that can identify a profile but that takes up
much less space than a large profile.

The profile identifier structure contains a profile header, an optional calibration
date, a profile description string length, and a variable-length profile
description string. Your application might use an embedded profile identifier,
for example, to change just the rendering intent or the flag values in an image
without having to embed an entire copy of a profile. Rendering intent is
described in “Rendering Intent Values for Version 2.x Profiles” (page 419) and
flag values are described in “Flag Mask Definitions for Version 2.x Profiles”
(page 414).

IMPORTANT

A document containing an embedded profile identifier
cannot necessarily be ported to different systems or
platforms. ▲

The ColorSync Manager provides the function routine NCMUseProfileComment
(page 290) to embed profiles and profile identifiers in an open picture file. Your
application can embed profile identifiers in place of entire profiles, or in
addition to them. A profile identifier can refer to an embedded profile or to a
profile on disk.

The ColorSync Manager provides two routines for finding a profile identifier:

■ CMProfileIdentifierListSearch (page 316) for finding a profile identifier in a
list of profile identifiers

■ CMProfileIdentifierFolderSearch (page 315) for finding a profile identifier in
the ColorSync Profiles folder.

The descriptions of those functions provide information on searching
algorithms. See also CMProfileSearchRef (page 370) for additional information
on profile searching.

struct CMProfileIdentifier {
CM2Header profileHeader; /* version 2.x profile header */
CMDateTime calibrationDate; /* optional; may be set to 0 */
Data Types for the ColorSync Manager 359
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
unsigned long ASCIIProfileDescriptionLen; /* length of following array */
char ASCIIProfileDescription[1]; /* variable length */

};
typedef struct CMProfileIdentifier CMProfileIdentifier;
typedef CMProfileIdentifier *CMProfileIdentifierPtr;

Field descriptions
profileHeader A version 2.x profile header structure. For more

information, see CM2Header (page 354). In determining a
profile match, all header fields are considered, except for
primary platform, flags, and rendering intent.

calibrationDate A structure of type Date and Time (page 350), which
specifies year, month, day of month, hours, minutes, and
seconds. This field is optional—when set to 0, it is not
considered in determining a profile match. When nonzero,
it is compared to the 'calt' tag data.

ASCIIProfileDescriptionLen
The length of the ASCII description string that follows.

ASCIIProfileDescription
The ASCII profile description string, as specified by the
profile description tag.

The CMProfileIdentifierPtr type definition defines a pointer to a profile
identifier structure.

Profile Location 5

In most cases, a ColorSync version 2.x profile is stored in a disk file. (For
information on profile version numbers see “ColorSync and ICC Profile Format
Version Numbers.”) However, to support special requirements, a profile can
also be located in memory or in an arbitrary location that is accessed by a
procedure you specify. The ColorSync Manager provides the following data
types for working with profile locations:

■ CMProfLoc (page 361) is a union that can describe a file-, handle-, pointer-, or
procedure-based profile location.

■ CMProfileLocation (page 362) is a structure that combines a union of type
CMProfLoc with a tag to identify the location type in the union.
360 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMFileLocation (page 363) is a structure that specifies the location of a
file-based profile.

■ CMHandleLocation (page 363) is a structure that specifies the location of a
handle-based profile.

■ CMPtrLocation (page 364) is a structure that specifies the location of a
pointer-based profile.

■ CMProcedureLocation (page 364) is a structure that specifies the location of a
procedure-based profile.

IMPORTANT

Starting with ColorSync version 2.5, you should use the
NCMGetProfileLocation (page 233) function to obtain a
profile location, rather than the CMGetProfileLocation
(page 234) function. ▲

CMProfLoc 5

You use a union of type CMProfLoc to identify the location of a profile. You
specify the union in the u field of the data type CMProfileLocation (page 362).
Your application passes a pointer to a CMProfileLocation structure when it calls
the CMOpenProfile (page 222) function to identify the location of a profile or the
CMNewProfile (page 227), CMCopyProfile (page 229), or CWNewLinkProfile
(page 267) functions to specify the location for a newly created profile.

You also pass a pointer to a CMProfileLocation structure to the
NCMGetProfileLocation (page 233) and CMGetProfileLocation (page 234)
functions to get the location of an existing profile. The NCMGetProfileLocation
function is available starting with ColorSync version 2.5. It differs from its
predecessor, CMGetProfileLocation, in that the newer version has a parameter
for the size of the location structure for the specified profile.

union CMProfLoc {
CMFileLocation fileLoc; /* specifies location on disk*/
CMHandleLocation handleLoc; /* specifies location in relocatable memory */
CMPtrLocation ptrLoc; /* specifies location in nonrelocatable

memory */
CMProcedureLocation procLoc; /* specifies access procedure */

};
Data Types for the ColorSync Manager 361
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Field descriptions
fileLoc A data structure containing a file system specification

record specifying the location of a profile disk file.
handleLoc A data structure containing a handle that indicates the

location of a profile in relocatable memory.
ptrLoc A data structure containing a pointer that points to a profile

in nonrelocatable memory.
procLoc A data structure containing a universal procedure pointer

that points to a profile access procedure supplied by you.
The ColorSync Manager calls your procedure when the
profile is created, initialized, opened, read, updated, or
closed.

CMProfileLocation 5

Your application passes a profile location structure of type CMProfileLocation
when it calls:

■ the function CMOpenProfile (page 222), specifying the location of a profile to
open

■ the CMNewProfile (page 227), CWNewLinkProfile (page 267), or CMCopyProfile
(page 229) functions, specifying the location of a profile to create or duplicate

struct CMProfileLocation {
short locType; /* location type for profile */
CMProfLoc u; /* location information for profile */

};

Field descriptions
locType The type of data structure that the u field’s CMProfLoc union

holds—a file specification, a handle, a pointer, or a
universal procedure pointer. To specify the type, you use
the constants defined in the enumeration described in
“Profile Location Type” (page 393).

u A union of type CMProfLoc (page 361) identifying the profile
location.
362 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMFileLocation 5

Your application uses the CMFileLocation structure to provide a file specification
for a profile stored in a disk file. You provide a file specification structure in the
CMProfileLocation structure’s u field to specify the location of an existing profile
or a profile to be created.

struct CMFileLocation {
FSSpec spec; /* specifies profile file location on disk */

};

Field descriptions
spec A file system specification structure giving the location of

the profile file. A file specification structure includes the
volume reference number, the directory ID of the parent
directory, and the filename or directory name. For a
description of the FSSpec data structure, see Inside
Macintosh: Files.

CMHandleLocation 5

Your application uses the CMHandleLocation structure to provide a handle
specification for a profile stored in relocatable memory. You provide the handle
specification structure in the CMProfileLocation structure’s u field to specify an
existing profile or a profile to be created.

struct CMHandleLocation {
Handle h; /* handle that specifies profile’s location in memory */

};

Field descriptions
h A data structure of type Handle containing a handle that

indicates the location of a profile in memory. For a
description of the Handle data structure, see Inside
Macintosh: Memory.
Data Types for the ColorSync Manager 363
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMPtrLocation 5

Your application uses the CMPtrLocation structure to provide a pointer
specification for a profile stored in nonrelocatable memory. You provide the
pointer specification structure in the CMProfileLocation structure’s u field to
point to an existing profile.

struct CMPtrLocation {
Ptr p; /* pointer that specifies profile’s location in memory */

};

Field descriptions
p A data structure of type Ptr holding a pointer that points to

the location of a profile in memory. For a description of the
Ptr data structure, see Inside Macintosh: Memory.

CMProcedureLocation 5

Your application uses the CMProcedureLocation structure to provide a universal
procedure pointer to a profile access procedure. You provide this structure in
the CMProfileLocation structure’s u field. The CMProcedureLocation structure
also contains a pointer field to specify data associated with the profile access
procedure.

The ColorSync Manager calls your profile access procedure when the profile is
created, initialized, opened, read, updated, or closed.

struct CMProcedureLocation {
CMProfileAccessUPP proc; /* profile access function universal

procedure pointer */
void * refCon; /* pointer to access procedure’s

private data, if any */
};

Field descriptions
proc A universal procedure pointer to a profile access procedure.

For a description of the procedure, see the function
MyCMProfileAccessProc (page 348).
364 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
refCon A pointer to the profile access procedure’s private data,
such as a file or resource name, a pointer to a current offset,
and so on.

The ColorSync Manager defines the CMProfileAccessUPP type as follows:

typedef UniversalProcPtr CMProfileAccessUPP;

Cached Profile Searching 5

The function CMIterateColorSyncFolder (page 304) takes advantage of the
profile cache available starting with ColorSync version 2.5 to provide optimized
searching and quick access to profile information. The function iterates through
the available profiles, calling a function you supply to process each profile you
are interested in. For more information, see“Searching for Specific Profiles Prior
to ColorSync 2.5” (page 136) and “Searching for Profiles With ColorSync 2.5”
(page 303).

The ColorSync Manager defines the following types for profile searching with
the CMIterateColorSyncFolder function:

■ CMProfileIterateProcPtr (page 365) defines a callback routine you
implement to process the profiles found during a search; new in
ColorSync 2.5.

■ CMProfileIterateData (page 366) stores information about a specific profile;
passed to your callback routine during a search; new in ColorSync 2.5.

CMProfileIterateProcPtr 5

NEW IN COLORSYNC 2.55

The function CMIterateColorSyncFolder (page 304) has a parameter of type
CMProfileIterateUPP. ColorSync defines the procedure pointer
Data Types for the ColorSync Manager 365
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMProfileIterateProcPtr to use for this parameter. For a description of the
application-defined function itself, see MyCMProfileFilterProc (page 347).

CMProfileIterateProcPtr is defined as follows:

pascal OSErr (*CMProfileIterateProcPtr)
(CMProfileIterateData *iterateData,
 void *refCon);

iterateData A pointer to a structure of type CMProfileIterateData
(page 366). When the CMIterateColorSyncFolder (page 304)
function calls your application-defined function, as it does once
for each found profile, the structure contains key information
about the profile.

refCon An untyped pointer to arbitrary data your application
previously passed to the function CMIterateColorSyncFolder
(page 304).

callback return value
A result code of type CMError. If your callback function returns
an error, CMIterateColorSyncFolder stops iterating and returns
the error value to its caller (presumably your code). For possible
values, see “Result Codes for the ColorSync Manager”
(page 425).

DISCUSSION

When you call CMIterateColorSyncFolder (page 304), you pass a universal
procedure pointer of type CMProfileIterateProcPtr (page 365) that points to a
callback function you provide. For more information on the callback function,
see MyProfileIterateProc (page 340).

CMProfileIterateData 5

NEW IN COLORSYNC 2.55

The ColorSync Manager defines the CMProfileIterateData structure to provide
your CMProfileIterateProcPtr (page 365) callback routine with a description of
a profile during an iteration through the available profiles that takes place when
you call CMIterateColorSyncFolder (page 304).
366 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
struct CMProfileIterateData {
unsigned long dataVersion; /* cmProfileIterateDataVersion1 */
CM2Header header;
ScriptCode code;
Str255 name;
CMProfileLocation location;

};
typedef struct CMProfileIterateData CMProfileIterateData;

dataVersion A value identifying the version of the structure. Currently set to
cmProfileIterateDataVersion1.

header A ColorSync version 2.x profile header structure of type
CM2Header (page 354), containing information such as the profile
size, type, version, and so on.

code A script code identifying the script system used for the profile
description. You can learn more about script codes in Inside
Macintosh: Text. The ScriptCode data type is defined in the
MacTypes.h header file.

name The profile name, stored as a Pascal-type string (with length
byte first) of up to 255 characters.

location A structure specifying the profile location. With ColorSync 2.5,
the location is always file-based, but that may not be true for
future versions. Your code should always verify that the location
structure contains a file specification before attempting to use it.

Non-Cached Profile Searching 5

The ColorSync Manager defines the following types your application to use in
searching for profiles.

IMPORTANT

These types do not take advantage of the profile cache
added in ColorSync version 2.5. They are used with the
searching described in “Searching for Profiles Prior to
ColorSync 2.5” (page 306). ▲
Data Types for the ColorSync Manager 367
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMSearchRecord (page 368) provides the ColorSync Manager with search
criteria to use in determining which version 2.x profiles to include in a search
result list and which to filter out.

■ CMProfileSearchRef (page 370) stores a search result consisting of a list of
profiles matching certain search criteria.

CMSearchRecord 5

NOT RECOMMENDED IN COLORSYNC 2.55

Your application supplies a search record of type CMSearchRecord as the
searchSpec parameter to the function CMNewProfileSearch (page 308). The search
record structure provides the ColorSync Manager with search criteria to use in
determining which version 2.x profiles to include in the result list and which to
filter out.

Most of the fields in the CMSearchRecord structure are identical to corresponding
fields in the CM2Header structure for version 2.x profiles. When you set a bit in
the searchMask field of the CMSearchRecord structure, you cause the search
criteria to include the data specified by that bit. For example, if you set the
cmMatchProfileCMMType bit, the search result will not include a profile unless the
data in the profile header’s CMMType field matches the data you specify in the
CMSearchRecord structure’s CMMType field.

IMPORTANT

If you specify a bit in the searchMask field, you must supply
information in the CMSearchRecord field that corresponds to
that bit. ▲

The ColorSync Manager preserves the search criteria internally along with the
search result list until your application calls the CMDisposeProfileSearch
function to release the memory. This allows your application to call the
CMUpdateProfileSearch function to update the search result if the ColorSync
Profiles folder contents change without needing to provide the search
specification again.

IMPORTANT

You cannot use the ColorSync Manager search functions to
search for ColorSync 1.0 profiles. ▲
368 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
A search record is defined by the CMSearchRecord type definition.

struct CMSearchRecord {
OSType CMMType; /* CMM signature */
OSType profileClass; /* profile signature */
OSType dataColorSpace; /* data color space */
OSType profileConnectionSpace; /* profile connection

color space */
unsigned long deviceManufacturer; /* device manufacturer */
unsigned long deviceModel; /* device model */
unsigned long deviceAttributes[2]; /* specifies attributes such as

paper or ink type */
unsigned long profileFlags; /* hints to CMM */
unsigned long searchMask; /* bitmap specifying search

mask fields to use */
CMProfileFilterUPP filter; /* pointer to function that

determines whether to
exclude profile */

};

Field descriptions
CMMType The signature of a CMM. The signature of the default CMM

is specified by the kDefaultCMMSignature constant.
profileClass The class signature identifying the type of profile to search

for. For a list of profile class signatures, see “Profile Class”
(page 396).

dataColorSpace A data color space. For a list of the color space signatures,
see “Color Space Signatures” (page 402).

profileConnectionSpace
A profile connection color space. The signatures for the two
profile connection spaces supported by ColorSync,
cmXYZData and cmLabData, are described in “Color Space
Signatures” (page 402).

deviceManufacturer
The signature of the manufacturer.

deviceModel The model of a device.
deviceAttributes Attributes for a particular device setup, such as media,

paper, and ink types.
Data Types for the ColorSync Manager 369
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
profileFlags Flags that indicate hints for the preferred CMM, such as
quality, speed, and memory options. In most cases, you will
not want to search for profiles based on the flags settings.

searchMask A bitmask that specifies the search record fields to use in
the profile search. Here are the defined bitmask values:
cmMatchAnyProfile0x00000000
cmMatchProfileCMMType 0x00000001
cmMatchProfileClass 0x00000002
cmMatchDataColorSpace 0x00000004
cmMatchProfileConnectionSpace 0x00000008
cmMatchManufacturer 0x00000010
cmMatchModel 0x00000020
cmMatchAttributes 0x00000040
cmMatchProfileFlags 0x00000080

filter A pointer to an application-supplied function that
determines whether to exclude a profile from the profile
search result list. For more information, see the function
MyCMProfileFilterProc (page 347).

VERSION NOTES

This type does not take advantage of the profile cache added in ColorSync
version 2.5. It is used with the searching described in “Searching for Profiles
Prior to ColorSync 2.5” (page 306). See “Cached Profile Searching” (page 365)
for information on data structures used with searching in version 2.5.

CMProfileSearchRef 5

NOT RECOMMENDED IN COLORSYNC 2.55

A search result consists of a list of profiles matching certain search criteria.
When your application calls the function CMNewProfileSearch (page 308) to
search in the ColorSync Profiles folder for profiles that meet certain criteria, the
ColorSync Manager returns a reference to an internal private data structure
containing the search result. Your application passes the search result reference
to these ColorSync functions:

■ CMUpdateProfileSearch (page 310) updates a search result list.
370 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMDisposeProfileSearch (page 311) disposes of a search result list.

■ CMSearchGetIndProfile (page 312) opens a reference to a profile at a specific
position in a search result list.

■ CMSearchGetIndProfileFileSpec (page 313) obtains the file specification for a
profile in a search result list.

The ColorSync Manager uses an abstract private data structure of type
OpaqueCMProfileSearchRef in defining the search result reference.

struct OpaqueCMProfileSearchRef *CMProfileSearchRef;

VERSION NOTES

This type does not take advantage of the profile cache added in ColorSync
version 2.5. It is used with the searching described in “Searching for Profiles
Prior to ColorSync 2.5” (page 306). See “Cached Profile Searching” (page 365)
for information on data structures used with searching in version 2.5.

Color Values 5

The ColorSync Manager defines the following data types for storing standard
color values:

■ CMXYZComponent (page 372)

■ CMXYZColor (page 372)

■ CMFixedXYZColor (page 373)

■ CMLabColor (page 373)

■ CMLuvColor (page 374)

■ CMYxyColor (page 374)

■ CMRGBColor (page 374)

■ CMHLSColor (page 375)

■ CMHSVColor (page 375)

■ CMCMYKColor (page 376)

■ CMCMYColor (page 376)
Data Types for the ColorSync Manager 371
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ CMGrayColor (page 376)

■ CMNamedColor (page 377)

■ HiFi Color Values (page 377)

■ CMColor (page 378)

CMXYZComponent 5

Three components combine to express a color value defined by the CMXYZColor
type definition in the XYZ color space. Each color component is described by a
numeric value defined by the CMXYZComponent type definition. A component
value of type CMXYZComponent is expressed as a 16-bit value. This is formatted as
an unsigned value with 1 bit of integer portion and 15 bits of fractional portion.

typedef unsigned short CMXYZComponent; /* expresses value in XYZ color space; 1 bit
for integer part, 15 bits for fraction */

CMXYZColor 5

Three color component values defined by the CMXYZComponent type definition
combine to form a color value specified in the XYZ color space. The color value
is defined by the CMXYZColor type definition.

Your application uses the CMXYZColor data structure to specify a color value in
the CMColor union to use in general purpose color matching, color checking, or
color conversion. You also use the CMXYZColor data structure to specify the XYZ
white point reference used in the conversion of colors to or from the XYZ color
space.

struct CMXYZColor {
CMXYZComponent X; /* X component of color in XYZ color space */
CMXYZComponent Y; /* Y component of color in XYZ color space */
CMXYZComponent Z; /* Z component of color in XYZ color space */

};
372 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMFixedXYZColor 5

ColorSync uses the CMFixedXYZColor data type to specify the profile illuminant
in the profile header’s white field and to specify other profile element values.
Color component values defined by the Fixed type definition can be used to
specify a color value in the XYZ color space with greater precision than a color
whose components are expressed as CMXYZComponent data types. The Fixed data
type is a signed 32-bit value. A color value expressed in the XYZ color space
whose color components are of type Fixed is defined by the CMFixedXYZColor
type definition.

Your application can convert colors defined in the XYZ color space between
CMXYZColor data types (in which the color components are expressed as 16-bit
unsigned values) and CMFixedXYZColor data types (in which the colors are
expressed as 32-bit signed values). To convert color values, you use the
functions CMConvertFixedXYZToXYZ (page 326) and CMConvertXYZToFixedXYZ
(page 325).

struct CMFixedXYZColor {
Fixed X; /* Fixed X component of color in XYZ color space */
Fixed Y; /* Fixed Y component of color in XYZ color space */
Fixed Z; /* Fixed Z component of color in XYZ color space */

};

CMLabColor 5

A color expressed in the L*a*b* color space is composed of L, a, and b
component values. The L color component is expressed as a numeric value
within the range of 0 to 65535, which maps to 0 to 100 inclusive. Note that this
encoding is slightly different from the 0 to 65280 encoding of the L channel
defined in the ICC specification for PCS L*a*b values. The a and b components
range from 0 to 65535, which maps to –128 to 127.996 inclusive. The color value
is defined by the CMLabColor type definition.

struct CMLabColor {
unsigned short L; /* L component of color in Lab color space */
unsigned short a; /* a component of color in Lab color space */
unsigned short b; /* b component of color in Lab color space */

};
Data Types for the ColorSync Manager 373
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMLuvColor 5

A color value expressed in the L*u*v* color space is composed of L, u, and v
component values. Each color component is expressed as a numeric value
within the range of 0 to 65535. For the L component, this maps to 0 to 100
inclusive. For the u and v components, this maps to –128 to 127.996 inclusive.
The color value is defined by the CMLuvColor type definition.

struct CMLuvColor {
unsigned short L; /* L component of color in Luv color space */
unsigned short u; /* u component of color in Luv color space */
unsigned short v; /* v component of color in Luv color space */

};

CMYxyColor 5

A color value expressed in the Yxy color space is composed of capY, x, and y
component values. Each color component is expressed as a numeric value
within the range of 0 to 65535 which maps to 0 to 1. The color value is defined
by the CMYxyColor type definition

struct CMYxyColor {
unsigned short capY; /* 0..65535 maps to 0..1 */
unsigned short x; /* 0..65535 maps to 0..1 */
unsigned short y; /* 0..65535 maps to 0..1 */

};

CMRGBColor 5

A color value expressed in the RGB color space is composed of red, green, and
blue component values. Each color component is expressed as a numeric value
within the range of 0 to 65535.
374 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
struct CMRGBColor {
unsigned short red;
unsigned short green;
unsigned short blue;

};

CMHLSColor 5

A color value expressed in the HLS color space is composed of hue, lightness,
and saturation component values. Each color component is expressed as a
numeric value within the range of 0 to 65535 inclusive. The hue value represents
a fraction of a circle in which red is positioned at 0.

struct CMHLSColor {
unsigned short hue;
unsigned short lightness;
unsigned short saturation;

};

CMHSVColor 5

A color value expressed in the HSV color space is composed of hue, saturation,
and value component values. Each color component is expressed as a numeric
value within the range of 0 to 65535 inclusive. The hue value represents a
fraction of a circle in which red is positioned at 0.

struct CMHSVColor {
unsigned short hue;
unsigned short saturation;
unsigned short value;

};
Data Types for the ColorSync Manager 375
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMCMYKColor 5

A color value expressed in the CMYK color space is composed of cyan, magenta,
yellow, and black component values. Each color component is expressed as a
numeric value within the range of 0 to 65535 inclusive.

struct CMCMYKColor {
unsigned short cyan;
unsigned short magenta;
unsigned short yellow;
unsigned short black;

};

CMCMYColor 5

A color value expressed in the CMY color space is composed of cyan, magenta,
and yellow component values. Each color component is expressed as a numeric
value within the range of 0 to 65535 inclusive.

struct CMCMYColor {
unsigned short cyan;
unsigned short magenta;
unsigned short yellow;

};

CMGrayColor 5

A color value expressed in the Gray color space is composed of a single
component, gray, represented as a numeric value within the range of 0 to 65535
inclusive.

struct CMGrayColor {
unsigned short gray;

};
376 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMNamedColor 5

A color value expressed in a named color space is composed of a single
component, namedColorIndex, represented as a numeric value within the range
of an unsigned long, or 1 to 232 – 1 inclusive.

struct CMNamedColor {
unsigned long namedColorIndex; /* 1..a lot */

};

HiFi Color Values 5

A color expressed in one of the multichannel color spaces with 5, 6, 7, or 8
channels. The color value for each channel component is expressed as an
unsigned byte of type char.

struct CMMultichannel5Color {
unsigned char components[5];

};

struct CMMultichannel6Color {
unsigned char components[6];

};

struct CMMultichannel7Color {
unsigned char components[7];

};

struct CMMultichannel8Color {
unsigned char components[8];

};
Data Types for the ColorSync Manager 377
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMColor 5

Your application can use a union of type CMColor to specify a color value
defined by one of the 15 data types supported by the union. Your application
uses an array of color unions to specify a list of colors to match, check, or
convert. The array is passed as a parameter to the general purpose color
matching, color checking, or color conversion functions. The following
functions use a color union:

■ The function CWMatchColors (page 281) matches the colors in the color list
array to the data color space of the destination profile specified by the color
world.

■ The function CWCheckColors (page 283) checks the colors in the color list array
against the color gamut specified by the color world’s destination profile.

■ The color conversion functions, described in “Converting Between Color
Spaces” (page 318), take source and destination array parameters of type
CMColor specifying lists of colors to convert from one color space to another.

IMPORTANT

You do not use a union of type CMColor to convert colors
expressed in the XYZ color space as values of type
CMFixedXYZ because the CMColor union does not support the
CMFixedXYZ data type. ▲

The color union is defined by the CMColor type definition. Each of the color
types included in the union is defined previously.

union CMColor {
CMRGBColor rgb;
CMHSVColor hsv;
CMHLSColor hls;
CMXYZColor XYZ;
CMLabColor Lab;
CMLuvColor Luv;
CMYxyColor Yxy;
CMCMYKColor cmyk;
CMCMYColor cmy;
CMGrayColor gray;
CMMultichannel5Color mc5;
CMMultichannel6Color mc6;
378 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMMultichannel7Color mc7;
CMMultichannel8Color mc8;
CMNamedColor namedColor;

};

A color union can contain one of the following fields.

Field descriptions
rgb A color value expressed in the RGB color space as data of

type CMRGBColor (page 374).
hsv A color value expressed in the HSV color space as data of

type CMHSVColor (page 375).
hls A color value expressed in the HLS color space as data of

type CMHLSColor (page 375).
XYZ A color value expressed in the XYZ color space as data of

type CMXYZColor (page 372).
Lab A color value expressed in the L*a*b* color space as data of

type CMLabColor (page 373).
Luv A color value expressed in the L*u*v* color space as data of

type CMLuvColor (page 374).
Yxy A color value expressed in the Yxy color space as data of

type CMYxyColor (page 374).
cmyk A color value expressed in the CMYK color space as data of

type CMCMYKColor (page 376).
cmy A color value expressed in the CMY color space as data of

type CMCMYColor (page 376).
gray A color value expressed in the Gray color space as data of

type CMGrayColor (page 376).
mc5 A color value expressed in the five-channel multichannel

color space as data of type CMMultichannel5Color. See “HiFi
Color Values” (page 377) for a description of the
CMMultichannel5Color data type.

mc6 A color value expressed in the six-channel multichannel
color space as data of type CMMultichannel6Color. See “HiFi
Color Values” (page 377) for a description of the
CMMultichannel6Color data type.

mc7 A color value expressed in the seven-channel multichannel
color space as data of type CMMultichannel7Color. See “HiFi
Data Types for the ColorSync Manager 379
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Color Values” (page 377) for a description of the
CMMultichannel7Color data type.

mc8 A color value expressed in the eight-channel multichannel
color space as data of type CMMultichannel8Color. See “HiFi
Color Values” (page 377) for a description of the
CMMultichannel8Color data type.

namedColor A color value expressed as an index into a named color
space. See CMNamedColor (page 377) for a description of the
CMNamedColor data type.

Bitmap Information 5

The ColorSync Manager defines the CMBitmap type to describe color bitmap
images.

CMBitmap 5

The ColorSync Manager defines a bitmap structure of type CMBitmap to describe
color bitmap images. When your application calls the function CWMatchBitmap
(page 276), you pass a pointer to a source bitmap of type CMBitmap containing
the image whose colors are to be matched to the color gamut of the device
specified by the destination profile of the given color world. If you do not want
the image color matched in place, you can also pass a pointer to a resulting
bitmap of type CMBitmap to define and hold the color-matched image. When
your application calls the function CWCheckBitMap (page 279), it passes a pointer
to a source bitmap of type CMBitmap, describing the source image, and a pointer
to a resulting bitmap of type CMBitmap, to hold the color-check results.

IMPORTANT

For QuickDraw GX, an image can have an indexed bitmap
to a list of colors. The ColorSync Manager does not support
indexed bitmaps in the same way QuickDraw GX does.
ColorSync supports indexed bitmaps only when the
cmNamedIndexed32Space color space constant is used in
conjunction with a named color space profile. ▲
380 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
struct CMBitmap {
char *image; /* a bit image */
long width; /* pixel width of a row in the image */
long height; /* number of rows in the image */
long rowBytes; /* offset in bytes from 1 row to the next */
long pixelSize; /* number of bits per pixel */
CMBitmapColorSpace space; /* color space for colors of bitmap image */
long user1; /* not used by ColorSync*/
long user2; /* not used by ColorSync */

};

Field descriptions
image A pointer to a bit image.
width The width of the bit image, that is, the number of pixels in a

row.
height The height of the bit image, that is, the number of rows in

the image.
rowBytes The offset in bytes from one row of the image to the next.
pixelSize The number of bits per pixel. The pixel size should

correspond to the packing size specified in the space field.
This requirement is not enforced as of ColorSync version
2.5, but it may be enforced in future versions.

space The color space in which the colors of the bitmap image are
specified. For a description of the possible color spaces for
color bitmaps, see “Color Space Constants With Packing
Formats” (page 409).

user1 Not used by ColorSync. It is recommended that you set this
field to 0.

user2 Not used by ColorSync. It is recommended that you set this
field to 0.

Color Matching Reference 5

The ColorSync Manager defines the CMMatchRef type to refer to a color-matching
session.
Data Types for the ColorSync Manager 381
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMMatchRef 5

The ColorSync Manager defines an abstract private data structure of type
OpaqueCMMatchRef for the color-matching-session reference. When your
application calls the function NCMBeginMatching (page 285) to begin a
QuickDraw-specific color-matching session, the ColorSync Manager returns a
reference pointer to the color-matching session which you must later pass to the
CMEndMatching function to conclude the session.

struct OpaqueCMMatchRef *CMMatchRef;

Color Worlds 5

The ColorSync Manager defines the following types for working with color
worlds:

■ CMCWInfoRecord (page 382) stores information about a specific color world.

■ CMWorldRef (page 383) identifies a color world for functions that perform
color-matching and color-checking sessions and dispose of the color world.

■ CMConcatProfileSet (page 384) establishes a color world with a sequential
relationship among several profiles.

■ CMMInfoRecord (page 385) stores information about one or two CMMs used in
a given color world.

CMCWInfoRecord 5

Your application supplies a color world information record structure of type
CMCWInfoRecord as a parameter to the CMGetCWInfo function to obtain information
about a given color world. The ColorSync Manager uses this data structure to
return information about the color world.

struct CMCWInfoRecord {
unsigned long cmmCount; /* number of CMMs in the session; 1 or 2 */
CMMInfoRecord cmmInfo[2]; /* records describing CMM type and version */

};
382 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Field descriptions
cmmCount The number of CMMs involved in the color-matching

session, either 1 or 2.
cmmInfo An array containing two elements. Depending on the value

that cmmCount returns, the cmmInfo array contains one or two
records of type CMMInfoRecord (page 385) reporting the
CMM type and version number.
If cmmCount is 1, the first element of the array (cmmInfo[0])
describes the CMM and the contents of the second element
of the array (cmmInfo[1]) is undefined.
If cmmCount is 2, the first element of the array (cmmInfo[0])
describes the source CMM and the second element of the
array (cmmInfo[1]) describes the destination CMM.

CMWorldRef 5

Your application passes a color world reference as a parameter on calls to
functions to perform color-matching and color-checking sessions and to dispose
of the color world. When your application calls the function NCWNewColorWorld
(page 262) and the function CWConcatColorWorld (page 265) to allocate a color
world for color-matching and color-checking sessions, the ColorSync Manager
returns a reference to the color world. The ColorSync Manager defines an
abstract private data structure of type OpaqueCMWorldRef for the color world
reference.

struct OpaqueCMWorldRef *CMWorldRef;

The color world is affected by the rendering intent, lookup flag, gamut flag, and
quality flag of the profiles that make up the color world. For more information,
see “Rendering Intent Values for Version 2.x Profiles” (page 419), “Flag Mask
Definitions for Version 2.x Profiles” (page 414), and “Quality Flag Values for
Version 2.x Profiles” (page 417).
Data Types for the ColorSync Manager 383
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMConcatProfileSet 5

You can call the function NCWNewColorWorld (page 262) to create a color world for
operations such as color matching and color conversion. A color world is
normally based on two profiles—source and destination. But it can include a
series of profiles that describe the processing for a work-flow sequence, such as
scanning, printing, and previewing an image. To create a color world that
includes a series of profiles, you use the function CWConcatColorWorld
(page 265).

You use an array to hold the set of profile references used in your operations.
You provide this array in the profileSet field of the CMConcatProfileSet
structure. You specify the profiles of the array in processing order—from source
through destination.

The array identifies a concatenated profile set your application can use to
establish a color world in which the sequential relationship among the profiles
exists until your application disposes of the color world. Alternatively, you can
create a device link profile composed of a series of linked profiles that remains
intact and available for use again after your application disposes of the
concatenated color world. In either case, you use a data structure of type
CMConcatProfileSet to define the profile set.

A device link profile accommodates users who use a specific configuration
requiring a combination of device profiles and possibly non-device profiles
repeatedly over time.

To set up a color world that includes a concatenated set of profiles, your
application uses the function CWConcatColorWorld (page 265), passing it a
structure of type CMConcatProfileSet. The array you pass may contain a set of
profile references or it may contain only the profile reference of a device link
profile. To create a device link profile, your application calls the function
CWNewLinkProfile (page 267), passing a structure of type CMConcatProfileSet.

struct CMConcatProfileSet {
unsigned short keyIndex; /* 0-based index into array of profiles,

specifying profile to use CMM for */
unsigned short count; /* 1-based count of profiles in array;

minimum is one profile */
CMProfileRef profileSet[1]; /* array of profile references */

};
384 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Field descriptions
keyIndex A zero-based index into the array of profile references

identifying the profile whose CMM is used for the entire
session. The profile’s CMMType field identifies the CMM.

count The one-based count of profiles in the profile array. A
minimum of one profile is required.

profileSet A variable-length array of profile references. The references
must be in processing order from source to destination. The
rules governing the types of profiles you can specify in a
profile array differ depending on whether you are creating
a profile set for the function CWConcatColorWorld (page 265)
or for the function CWNewLinkProfile (page 267). See the
function descriptions for details.

CMMInfoRecord 5

Your application supplies an array containing two CMM information record
structures of type CMMInfoRecord as a field of the CMCWInfoRecord structure.
These structures allow the CMGetCWInfo function to return information about the
one or two CMMs used in a given color world. Your application must allocate
memory for the array. When your application calls the CMGetCWInfo function, it
passes a pointer to the CMCWInfoRecord structure containing the array.

struct CMMInfoRecord {
OSType CMMType; /* CMM signature */
long CMMVersion; /* CMM version */

};

Field descriptions
CMMType The signature of the CMM as specified in the profile

header’s CMMType field. The CMGetCWInfo function returns
this value.

CMMVersion The version of the CMM. The CMGetCWInfo function returns
this value.
Data Types for the ColorSync Manager 385
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Video Card Gamma 5

Starting with version 2.5, ColorSync supports an optional profile tag for video
card gamma. The tag specifies gamma information, stored either as a formula or
in table format, to be loaded into the video card when the profile containing the
tag is put into use.

The ColorSync Manager defines the following data types for working with the
video card gamma profile tag

■ CMVideoCardGammaType (page 386) identifies a video card gamma profile tag;
new in ColorSync 2.5.

■ CMVideoCardGammaTable (page 387) stores video card gamma data in table
format; new in ColorSync 2.5.

■ CMVideoCardGammaFormula (page 388) stores video card gamma data in
formula format; new in ColorSync 2.5.

■ CMVideoCardGamma (page 389) specifies the video gamma data, in either table
or formula format, to store with a video gamma profile tag; new in
ColorSync 2.5.

CMVideoCardGammaType 5

NEW IN COLORSYNC 2.55

The ColorSync Manager defines the CMVideoCardGammaType data structure to
specify a video card gamma profile tag.

struct CMVideoCardGammaType
{

OSType typeDescriptor;
unsigned long reserved;
CMVideoCardGamma gamma;

};
typedef struct CMVideoCardGammaType CMVideoCardGammaType;

Field descriptions
typeDescriptor The signature type for a video card gamma tag. There is

currently only one type possible, cmSigVideoCardGammaType.
reserved This field is reserved and must contain the value 0.
386 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
gamma A structure that specifies the video card gamma data for
the profile tag, as described in “CMVideoCardGamma”
(page 389).

CMVideoCardGammaTable 5

NEW IN COLORSYNC 2.55

The ColorSync Manager defines the CMVideoCardGammaTable data structure to
specify video card gamma data in table format. You specify the number of
channels, the number of entries per channel, and the size of each entry. The last
field in the structure is an array of size one that serves as the start of the table
data. The actual size of the array is equal to the number of channels times the
number of entries times the size of each entry.

struct CMVideoCardGammaTable
{

unsigned short channels;
unsigned short entryCount;
unsigned short entrySize;
char data[1];

};
typedef struct CMVideoCardGammaTable CMVideoCardGammaTable;

Field descriptions
channels Number of gamma channels (1 or 3). If channels is set to 1

then the red, green, and blue lookup tables (LUTs) of the
video card will be loaded with the same data. If channels is
set to 3, then if the video card supports separate red, green,
and blue LUTs, then the video card LUTs will be loaded
with the data for the three channels from the data array.

entryCount Number of entries per channel (1-based). The number of
entries must be greater than or equal to 2.

entrySize Size in bytes of each entry.
data Variable-sized array of data. The size of the data is equal to

channels * entryCount * entrySize.
Data Types for the ColorSync Manager 387
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMVideoCardGammaFormula 5

NEW IN COLORSYNC 2.55

The ColorSync Manager defines the CMVideoCardGammaFormula data structure to
specify video card gamma data by providing three values each for red, blue and
green gamma. The values represent the actual gamma, the minimum gamma,
and the maximum gamma for each color. Specifying video gamma information
by formula takes less space than specifying it with a table, but the results may
be less precise.

struct CMVideoCardGammaFormula {
Fixed redGamma;
Fixed redMin;
Fixed redMax;
Fixed greenGamma;
Fixed greenMin;
Fixed greenMax;
Fixed blueGamma;
Fixed blueMin;
Fixed blueMax;

};

Field descriptions
redGamma The gamma value for red. It must be greater than 0.0.
redMin The minimum gamma value for red. It must be greater than

0.0 and less than 1.0.
redMax The maximum gamma value for red. It must be greater

than 0.0 and less than 1.0.
greenGamma The gamma value for green. It must be greater than 0.0.
greenMin The minimum gamma value for green. It must be greater

than 0.0 and less than 1.0.
greenMax The maximum gamma value for green. It must be greater

than 0.0 and less than 1.0.
blueGamma The gamma value for blue. It must be greater than 0.0.
blueMin The minimum gamma value for blue. It must be greater

than 0.0 and less than 1.0.
blueMax The maximum gamma value for blue. It must be greater

than 0.0 and less than 1.0.
388 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMVideoCardGamma 5

NEW IN COLORSYNC 2.55

The ColorSync Manager defines the CMVideoCardGamma data structure to specify
the video gamma data to store with a video gamma profile tag. The structure is
a union that can store data in either table or formula format.

struct CMVideoCardGamma
{

unsigned long tagType;
union
{

CMVideoCardGammaTable table;
CMVideoCardGammaFormula formula;

} u;
};
typedef struct CMVideoCardGamma CMVideoCardGamma;

Field descriptions
tagType A “Video Card Gamma Storage Type” (page 422) constant

that specifies the format of the data currently stored in the
union. To determine the type of structure present in a
specific instance of the CMVideoCardGamma structure, you test
this union tag. If you are setting up a CMVideoCardGamma
structure to store video card gamma data, you set tagType
to a constant value that identifies the structure type you are
using. The possible constant values are described in “Video
Card Gamma Storage Type” (page 422).

table A structure of type CMVideoCardGammaTable. If the tagType
field has the value cmVideoCardGammaTableType, the
CMVideoCardGamma structure’s union field should be treated
as a table, as described in “CMVideoCardGammaTable”
(page 387).

formula A structure of type CMVideoCardGammaFormula. If the tagType
field has the value cmVideoCardGammaFormulaType, the
CMVideoCardGamma structure’s union field represents a
formula, as described in “CMVideoCardGammaFormula”
(page 388).
Data Types for the ColorSync Manager 389
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Color Matching While Printing 5

The ColorSync Manager defines the TEnableColorMatchingBlk type for use with
the Toolbox PrGeneral function to enable or disable color matching while
printing.

TEnableColorMatchingBlk 5

You pass a structure defined by the TEnableColorMatchingBlk data type to the
PrGeneral function when you use the EnableColorMatchingOp opcode, described
in “PrGeneral Function Operation Codes” (page 423). ColorSync-supportive
drivers support the EnableColorMatchingOp operation code as a PrGeneral call
that turns the fEnableIt flag on or off to enable or disable color matching.

struct TEnableColorMatchingBlk {
short iOpCode;
short iError;
long lReserved;
THPrint hPrint;
Boolean fEnableIt;
SInt8 filler;

};

Field descriptions
iOpCode The PrGeneral printing opcode.
iError The returned error code.
lReserved Reserved for future use.
hPrint A valid print record.
fEnableIt The flag set by the EnableColorMatchingOp opcode.
filler Filler.

Color Rendering Dictionary Virtual Memory Size 5

The ColorSync Manager defines the CMIntentCRDVMSize type for specifying the
maximum virtual memory size of a color rendering dictionary.
390 Data Types for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMIntentCRDVMSize 5

To specify the maximum virtual memory (VM) size of the color rendering
dictionary (CRD) for a specific rendering intent for a particular PostScript™
Level 2 printer type, a printer profile can include the optional Apple-defined
'psvm' tag. The PostScript CRD virtual memory size tag structure’s element
data includes an array containing one entry for each rendering intent and its
virtual memory size.

If a PostScript printer profile includes this tag, the default CMM uses the tag
and returns the values specified by the tag when your application or device
driver calls the function CMGetPS2ColorRenderingVMSize (page 338).

If a PostScript printer profile does not include this tag, the CMM uses an
algorithm to determine the VM size of the CRD. This may result in a size that is
greater than the actual VM size.

The CMIntentCRDVMSize data type defines the rendering intent and its maximum
VM size. The CMPS2CRDVMSizeType data type for the tag includes an array
containing one or more members of type CMIntentCRDVMSize.

struct CMIntentCRDVMSize {
long renderingIntent; /* rendering intent value */
unsigned long VMSize; /* virtual memory size of CRD */

};

Field descriptions
renderingIntent The rendering intent whose CRD virtual memory size you

want to obtain. The following rendering intent values are
described in “Rendering Intent Values for Version 2.x
Profiles” (page 419):
0 (cmPerceptual)
1 (cmRelativeColorimetric)
2 (cmSaturation)
3 (cmAbsoluteColorimetric)

VMSize The virtual memory size of the CRD for the rendering
intent specified for the renderingIntent field.
Data Types for the ColorSync Manager 391
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMPS2CRDVMSizeType 5

The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional
tag.

struct CMPS2CRDVMSizeType {
OSType typeDescriptor; /* PostScript VM signature */
unsigned long reserved; /* reserved */
unsigned long count; /* entries in CRD array */
CMIntentCRDVMSize intentCRD[1]; /* variable-sized array */

};

Field descriptions
typeDescriptor The 'psvm' tag signature.
reserved Reserved for future use.
count The number of entries in the intentCRD array. You should

specify at least four entries: 0, 1, 2, and 3.
intentCRD A variable-sized array of four or more members defined by

the CMIntentCRDSize data type.

Constants for the ColorSync Manager 5

This section describes the constants defined by the ColorSync Manager for your
application’s use. The constants are organized into the following categories:

■ “Profile Location Type” (page 393)

■ “Profile Access Procedure Operation Codes” (page 395)

■ “Profile Class” (page 396)

■ “Signature of ColorSync’s Default Color Management Module” (page 397)

■ “Commands for Caller-Supplied ColorSync Data Transfer Functions”
(page 397)

■ “Constants for PostScript Data Formats” (page 398)

■ “Picture Comments” (page 398)

■ “Color Space Constants” (page 402)
392 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ “ColorSync Flag Constants” (page 413)

■ “Video Card Gamma Constants” (page 421)

■ “PrGeneral Function Operation Codes” (page 423)

■ “Element Tags and Signatures for Version 1.0 Profiles” (page 424)

Profile Location Type 5

Your application specifies the location for a profile using a profile location
structure of type CMProfileLocation (page 362). A ColorSync profile that you
open or create is typically stored in one of the following locations:

■ In a disk file. The u field (a union) of the profile location data structure
contains a file specification for a profile that is disk-file based. This is the
most common way to store a ColorSync profile.

■ In relocatable memory. The u field of the profile location data structure
contains a handle specification for a profile that is stored in a handle.

■ In nonrelocatable memory. The u field of the profile location data structure
contains a pointer specification for a profile that is pointer based.

■ In an arbitrary location, accessed by a procedure you provide. The u field of
the profile location data structure contains a universal procedure pointer to
your access procedure, as well as a pointer that may point to data associated
with your procedure.

Additionally, your application can create a new or duplicate temporary profile.
For example, you can use a temporary profile for a color-matching session and
the profile is not saved after the session. For this case, the ColorSync Manager
allows you to specify the profile location as having no specific location.

You use a pointer to a data structure of type CMProfileLocation to identify a
profile’s location when your application calls

■ the CMOpenProfile function to obtain a reference to a profile

■ the CMNewProfile, CWNewLinkProfile, or CMCopyProfile functions to create a
new profile

■ the CMGetProfileLocation function to get the location of an existing profile

Your application identifies the type of data the CMProfileLocation u field
holds—a file specification, a handle, and so on—in the CMProfileLocation
Constants for the ColorSync Manager 393
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
structure’s locType field. You use the constants defined by the following
enumeration to identify the location type.

enum {
cmNoProfileBase = 0, /* profile is temporary */
cmFileBasedProfile = 1, /* profile is disk-based */
cmHandleBasedProfile = 2, /* profile in relocatable memory */
cmPtrBasedProfile = 3, /* profile in nonrelocatable memory */
cmProcedureBasedProfile = 4 /* profile is accessed by procedure */

};

Enumerator descriptions

cmNoProfileBase The profile is temporary. It will not persist in memory after
its use for a color session. You can specify this type of
profile location with the CMNewProfile and the
CMCopyProfile functions.

cmFileBasedProfile
The profile is stored in a disk-file and the CMProfLoc union
of type CMProfLoc (page 361) holds a structure of type
CMFileLocation (page 363) identifying the profile file. You
can specify this type of profile location with the
CMOpenProfile, CMNewProfile, CMCopyProfile, and
CMNewLinkProfile functions.

cmHandleBasedProfile
The profile is stored in relocatable memory and the
CMProfLoc union of type CMProfLoc (page 361) holds a
handle to the profile in a structure of type CMHandleLocation
(page 363). You can specify this type of profile location with
the CMOpenProfile, CMNewProfile, and CMCopyProfile
functions.

cmPtrBasedProfile
The profile is stored in nonrelocatable memory and the
CMProfLoc union of type CMProfLoc (page 361) holds a
pointer to the profile in a structure of type CMPtrLocation
(page 364). You can specify this type of profile location with
the CMOpenProfile function only.

cmProcedureBasedProfile
The profile is in an arbitrary location, accessed through a
procedure supplied by you. The CMProfLoc union of type
CMProfLoc (page 361) holds a universal procedure pointer to
394 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
your profile access procedure in a structure of type
CMProcedureLocation (page 364). You can specify this type
of profile location with the CMOpenProfile, CMNewProfile,
CMCopyProfile, and CMNewLinkProfile functions. For a
description of an application-supplied profile access
procedure, see “MyCMProfileAccessProc” (page 348). For
sample code demonstrating procedure-based profile access,
see “Accessing a Resource-Based Profile With a Procedure”
(page 149).

Profile Access Procedure Operation Codes 5

When your application calls the CMOpenProfile, CMNewProfile, CMCopyProfile, or
CMNewLinkProfile functions, it can supply the ColorSync Manager with a profile
location structure of type CMProcedureLocation (page 364) to specify a procedure
that provides access to a profile. The ColorSync Manager calls your procedure
when the profile is created, initialized, opened, read, updated, or closed. The
profile access procedure declaration is described in “MyCMProfileAccessProc”
(page 348). For sample code demonstrating procedure-based profile access, see
“Accessing a Resource-Based Profile With a Procedure” (page 149).

When the ColorSync Manager calls your profile access procedure, it passes one
of the following constants in the command parameter to specify an operation.
Your procedure must be able to respond to each of these constants.

enum {
cmOpenReadAccess = 1, /* open profile for reading */
cmOpenWriteAccess = 2, /* open profile for writing */
cmReadAccess = 3, /* read specified bytes from profile */
cmWriteAccess = 4, /* write specifies bytes to profile */
cmCloseAccess = 5, /* close profile for read or write */
cmCreateNewAccess = 6, /* create new data stream for profile */
cmAbortWriteAccess = 7, /* cancel current write process */
cmBeginAccess = 8, /* begin procedure access */
cmEndAccess = 9 /* end procedure access */

};

Enumerator descriptions

cmOpenReadAccess Open the profile for reading.
Constants for the ColorSync Manager 395
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmOpenWriteAccess Open the profile for writing. The total size of the profile is
specified in the size parameter.

cmReadAccess Read the number of bytes specified by the size parameter.
cmWriteAccess Write the number of bytes specified by the size parameter.
cmCloseAccess Close the profile for reading or writing.
cmCreateNewAccess Create a new data stream for the profile.
cmAbortWriteAccess Cancel the current write attempt.
cmBeginAccess Begin the process of procedural access. This is always the

first operation constant passed to the access procedure. If
the call is successful, the cmEndAccess operation is
guaranteed to be the last call to the procedure.

cmEndAccess End the process of procedural access. This is always the last
operation constant passed to the access procedure (unless
the cmBeginAccess call failed).

Profile Class 5

The ColorSync Manager supports seven classes, or types, of profiles, as
described in “Profile Classes” (page 51).

A profile creator specifies the profile class in the profile header’s profileClass
field. For a description of the profile header, see “CM2Header” (page 354). The
following enumeration defines the profile class signatures:

enum {
cmInputClass = 'scnr', /* input device profile */
cmDisplayClass = 'mntr', /* display device profile */
cmOutputClass = 'prtr', /* output device profile */
cmLinkClass = 'link', /* device link profile */
cmAbstractClass = 'abst', /* abstract profile */
cmColorSpaceClass = 'spac' /* color space profile */
cmNamedColorClass = 'nmcl' /* named color profile */

};

Enumerator descriptions

cmInputClass An input device profile defined for a scanner.
cmDisplayClass A display device profile defined for a monitor.
cmOutputClass An output device profile defined for a printer.
396 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmLinkClass A device link profile.
cmAbstractClass An abstract profile.
cmColorSpaceClass A color space profile.
cmNamedColorClass A named color space profile.

Signature of ColorSync’s Default Color Management Module 5

A color management module (CMM) uses profiles to convert and match a color
in a given color space on a given device to or from another color space or
device. For more information on CMMs, including a description of the default
CMM supplied with ColorSync, see “Color Management Modules” (page 58).

To specify the default CMM, set the CMMType field of the profile header to the
default signature defined by the following enumeration. You use a structure of
type CM2Header (page 354) for a ColorSync 2.x profile and a structure of type
CMHeader (page 351) for a 1.0 profile header.

enum {
kDefaultCMMSignature = 'appl'

};

Enumerator descriptions

kDefaultCMMSignature
Signature for the default CMM supplied with the
ColorSync Manager.

Commands for Caller-Supplied ColorSync Data Transfer Functions 5

When your application calls the function CMFlattenProfile (page 237), the
function CMUnflattenProfile (page 239), or the PostScript-related functions of
type Color-Matching With PostScript Devices (page 332), the selected CMM—
or, for the CMUnflattenProfile function, the ColorSync Manager—calls the
flatten function you supply to transform profile data. The call passes one of the
command constants defined by this enumeration.

Your application provides a pointer to your ColorSync data transfer function as
a parameter to the functions. The ColorSync Manager or the CMM calls your
data transfer function, passing the command in the command parameter. For
more information on the flatten function, see CMFlattenProfile (page 237).
Constants for the ColorSync Manager 397
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
enum {
openReadSpool = 1, /* start read data process */
openWriteSpool = 2, /* start write data process */
readSpool = 3, /* read specified number of bytes */
writeSpool = 4, /* write specified number of bytes */
closeSpool = 5 /* complete data transfer process */

};

Enumerator descriptions

openReadSpool Directs the function to begin the process of reading data.
openWriteSpool Directs the function to begin the process of writing data.
readSpool Directs the function to read the number of bytes specified

by the MyColorSyncDataTransfer function’s size parameter.
writeSpool Directs the function to write the number of bytes specified

by the MyColorSyncDataTransfer function’s size parameter.
closeSpool Directs the function to complete the data transfer.

Constants for PostScript Data Formats 5

The ColorSync Manager provides the following constant declarations to specify
the format of PostScript data.

enum {
cmPS7bit = 1, /* data is 7-bit safe */
cmPS8bit = 2 /* data is 8-bit safe */

};

Enumerator descriptions

cmPS7bit The data is 7-bit safe—therefore the data could be in 7-bit
ASCII encoding or in ASCII base-85 encoding.

cmPS8bit The data is 8-bit safe—therefore the data could be in 7-bit
or 8-bit ASCII encoding.

Picture Comments 5

Your application uses the QuickDraw PicComment function, described in Inside
Macintosh: Imaging With QuickDraw, to specify picture comments for beginning
398 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
or ending use of an embedded profile, turning color matching on or off, or
embedding a profile identifier. The following sections describe constants you
use to perform these operations:

■ “Picture Comment Kinds for Profiles and Color Matching” (page 399)

■ “Picture Comment Selectors for Embedding Profile Information” (page 400)

■ “Constants for Embedding Profiles and Profile Identifiers” (page 402)

Picture Comment Kinds for Profiles and Color Matching 5

The ColorSync Manager defines five picture comment kinds. You use these
comments to embed a profile identifier, begin or end use of an embedded
profile, and enable or disable color matching within drawing code sent to an
output device. The PicComment function’s kind parameter specifies the kind of
picture comment.

IMPORTANT

Use a picture comment of kind cmEndProfile to explicitly
terminate use of the currently effective embedded profile
and begin use of the system profile. Otherwise, the
currently effective profile remains in effect, leading to
unexpected results if another picture follows that is meant
to use the system profile and so isn’t preceded by a
profile. ▲

enum {
cmBeginProfile = 220, /* begins 1.0 profile */
cmEndProfile = 221, /* ends 2.x or 1.0 profile */
cmEnableMatching = 222, /* turns on color matching */
cmDisableMatching = 223, /* turns off color matching */
cmComment = 224 /* profile or profile identifier

is embedded */
};

Enumerator descriptions

cmBeginProfile Indicates the beginning of a version 1.0 profile to embed.
(To start a 2.x profile, you use cmComment.)

cmEndProfile Signals end of the use of an embedded version 2.x or 1.0
profile.
Constants for the ColorSync Manager 399
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmEnableMatching Turns on color matching for the ColorSync
Manager. Do not nest cmEnableMatching and
cmDisableMatching pairs.

cmDisableMatching Turns off color matching for the ColorSync
Manager. Do not nest cmEnableMatching and
cmDisableMatching pairs. After the ColorSync Manager
encounters this comment, it ignores all ColorSync-related
picture comments until it encounters the next
cmEnableMatching picture comment. At that point, the most
recently used profile is reinstated.

cmComment Provides information about a 2.x embedded profile or
embedded profile identifier reference. This picture
comment is followed by a 4-byte selector identifying what
follows. “Picture Comment Selectors for Embedding Profile
Information” (page 400) describes the possible selectors.

Picture Comment Selectors for Embedding Profile Information 5

To embed a version 2.x profile or profile identifier reference in a picture
destined for display on another system or on a device such as a printer, your
application uses the QuickDraw PicComment function. The ColorSync Manager
provides the function NCMUseProfileComment (page 290) to embed picture
comments. You specify a picture comment kind value of cmComment and a 4-byte
selector describing the data in the picture comment. For sample code showing
how to use NCMUseProfileComment to embed profile information, see
“Embedding Profiles and Profile Identifiers” (page 112).

Because a profile may exceed QuickDraw’s 32 KB size limit for a picture
comment, your application can use an ordered series of picture comments to
embed a large profile. Figure 3-7 (page 115) shows how a large profile is
embedded in a PICT file picture.

You can also embed a profile identifier reference in a picture. The profile
identifier may refer to a previously embedded profile, so that you don’t have to
embed the entire profile again, or it may refer to a profile stored on disk. When
you embed a profile identifier, you can change certain values for the referred-to
profile, including the quality flags and rendering intent. For more information
on profile identifiers, see CMProfileIdentifier (page 359).
400 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
The following enumeration defines the 4-byte selector values your application
uses to identify the beginning and continuation of profile data and to signal the
end of it.

enum {
cmBeginProfileSel = 0, /* start 2.x profile data */
cmContinueProfileSel = 1, /* continuation of 2.x data */
cmEndProfileSel = 2, /* end 2.x profile data */
cmProfileIdentifierSel = 3 /* profile identifier data */

};

Enumerator descriptions

cmBeginProfileSel Identifies the beginning of version 2.x profile data. The
amount of profile data you can specify is limited to 32K
minus 4 bytes for the selector.

cmContinueProfileSel
Identifies the continuation of version 2.x profile data. The
amount of profile data you can specify is limited to 32K
minus 4 bytes for the selector. You can use this selector
repeatedly until all the profile data is embedded.

cmEndProfileSel Signals the end of version 2.x profile data—no more data
follows. Even if the amount of profile data embedded does
not exceed 32K minus 4 bytes for the selector and your
application did not use cmContinueProfileSel, you must
terminate the process with cmEndProfileSel. Note that this
selector has a behavior that is different from the
cmEndProfile picture comment described in “Picture
Comment Kinds for Profiles and Color Matching”
(page 399).

cmProfileIdentifierSel
Identifies the inclusion of profile identifier data. For
information on embedding a profile identifier, see the
function NCMUseProfileComment (page 290). For information
on the format of profile identifier data, see
“CMProfileIdentifier” (page 359).
Constants for the ColorSync Manager 401
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Constants for Embedding Profiles and Profile Identifiers 5

The ColorSync Manager provides the following constant declarations to use
with the function NCMUseProfileComment (page 290) for embedding picture
comments. You use these constants to set the flags parameter to indicate
whether to embed an entire profile or just a profile identifier.

enum {
cmEmbedWholeProfile = 0x00000000, /* embed the whole profile */
cmEmbedProfileIdentifier = 0x00000001 /* embed just the profile identifier */

};

Enumerator descriptions

cmEmbedWholeProfile
When the flags parameter has the value
cmEmbedWholeProfile, the NCMUseProfileComment function
embeds the entire specified profile.

cmEmbedProfileIdentifier
When the flags parameter has the value
cmEmbedProfileIdentifier, the NCMUseProfileComment
function embeds a profile identifier for the specified profile.

Color Space Constants 5

The ColorSync Manager defines signature constants to identify a color space in
a profile header, as well as constants for defining the color spaces themselves.
These constants are described in the following sections:

■ “Color Space Signatures” (page 402)

■ “Color Packing for Color Spaces” (page 404); changed in ColorSync 2.5

■ “Abstract Color Space Constants” (page 406); changed in ColorSync 2.5

■ “Color Space Constants With Packing Formats” (page 409); changed in
ColorSync 2.5

Color Space Signatures 5

A ColorSync profile header contains a dataColorSpace field that carries the
signature of the data color space in which the color values in an image using the
402 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
profile are expressed. This enumeration defines the signatures for the color
spaces supported by ColorSync for version 2.x profiles.

enum {
cmXYZData = 'XYZ ',
cmLabData = 'Lab ',
cmLuvData = 'Luv ',
cmYxyData = 'Yxy ',
cmRGBData = 'RGB ',
cmGrayData = 'GRAY',
cmHSVData = 'HSV ',
cmHLSData = 'HLS ',
cmCMYKData = 'CMYK',
cmCMYData = 'CMY ',
cmMCH5Data = 'MCH5',
cmMCH6Data = 'MCH6',
cmMCH7Data = 'MCH7',
cmMCH8Data = 'MCH8',
cmNamedData = 'NAME'

};

Enumerator descriptions

cmXYZData The XYZ data color space.
cmLabData The L*a*b* data color space.
cmLuvData The L*u*v* data color space.
cmYxyData The Yxy data color space.
cmRGBData The RGB data color space.
cmGrayData The Gray data color space.
cmHSVData The HSV data color space.
cmHLSData The HLS data color space.
cmCMYKData The CMYK data color space.
cmCMYData The CMY data color space.
cmMCH5Data The five-channel multichannel (HiFi) data color space.
cmMCH6Data The six-channel multichannel (HiFi) data color space.
cmMCH7Data The seven-channel multichannel (HiFi) data color space.
cmMCH8Data The eight-channel multichannel (HiFi) data color space.
Constants for the ColorSync Manager 403
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Color Packing for Color Spaces 5

CHANGED IN COLORSYNC 2.55

The ColorSync bitmap data type CMBitmap (page 380) includes a field that
identifies the color space in which the color values of the bitmap image are
expressed. The following enumeration defines the types of packing for a color
space’s storage format. The enumeration also defines an alpha channel that can
be added as a component of a color value to define the degree of opacity or
transparency of a color. These constants are combined with the constants
described in “Abstract Color Space Constants” (page 406) to create values that
identify a bitmap’s color space. Your application does not specify color packing
constants directly, but rather uses the combined constants, which are described
in “Color Space Constants With Packing Formats” (page 409).

enum {
cmNoColorPacking = 0x0000,
cmAlphaSpace = 0x0080,
cmWord5ColorPacking = 0x0500,
cmLong8ColorPacking = 0x0800,
cmLong10ColorPacking = 0x0a00,
cmAlphaFirstPacking = 0x1000,
cmOneBitDirectPacking = 0x0b00
cmAlphaLastPacking = 0x0000,
cm24_8ColorPacking = 0x2100,
cm32_8ColorPacking = cmLong8ColorPacking,
cm40_8ColorPacking = 0x2200,
cm48_8ColorPacking = 0x2300,
cm56_8ColorPacking = 0x2400,
cm64_8ColorPacking = 0x2500,
cm32_16ColorPacking = 0x2600,
cm32_32ColorPacking = 0x2700,
cm48_16ColorPacking = 0x2900,
cm64_16ColorPacking = 0x2A00

};

Enumerator descriptions

cmNoColorPacking This constant is not used for ColorSync bitmaps.
cmAlphaSpace An alpha channel component is added to the color value.
404 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmWord5ColorPacking
The color values for three 5-bit color channels are stored
consecutively in 16-bits, with the highest order bit unused.

cmLong8ColorPacking
The color values for three or four 8-bit color channels are
stored consecutively in a 32-bit long. For three channels,
this constant is combined with either cmAlphaFirstPacking
or cmAlphaLastPacking to indicate whether the unused eight
bits are located at the beginning or end.

cmLong10ColorPacking
The color values for three 10-bit color channels are stored
consecutively in a 32-bit long, with the two highest order
bits unused.

cmAlphaFirstPacking
An alpha channel is added to the color value as its first
component.

cmOneBitDirectPacking
One bit is used as the pixel format. This storage format is
used by the resulting bitmap pointed to by the
resultBitMap field of the function CWCheckBitMap (page 279);
the bitmap must be only 1 bit deep.

cm24_8ColorPacking
The color values for three 8-bit color channels are stored in
consecutive bytes, for a total of 24 bits.

cm32_8ColorPacking
The color values for four 8-bit color channels are stored in
consecutive bytes, for a total of 32 bits.

cm40_8ColorPacking
The color values for five 8-bit color channels are stored in
consecutive bytes, for a total of 40 bits.

cm48_8ColorPacking
The color values for six 8-bit color channels are stored in
consecutive bytes, for a total of 48 bits.

cm56_8ColorPacking
The color values for seven 8-bit color channels are stored in
consecutive bytes, for a total of 56 bits.
Constants for the ColorSync Manager 405
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cm64_8ColorPacking
The color values for eight 8-bit color channels are stored in
consecutive bytes, for a total of 64 bits.

cm32_16ColorPacking
The color values for two 16-bit color channels are stored in
a 32-bit word.

cm32_32ColorPacking
The color value for a 32-bit color channel is stored in a
32-bit word.

cm48_16ColorPacking
The color values for three 16-bit color channels are stored in
48 consecutive bits.

cm64_16ColorPacking
The color values for four 16-bit color channels are stored in
64 consecutive bits.

VERSION NOTES

The constants cm48_16ColorPacking and cm64_16ColorPacking were added in
ColorSync version 2.5.

Abstract Color Space Constants 5

CHANGED IN COLORSYNC 2.55

The data type CMBitmap (page 380) defines a bitmap for an image whose colors
can be matched with the function CWMatchBitmap (page 276) or color-checked
with the function CWCheckBitMap (page 279).

The space field of the CMBitmap type definition identifies the color space in
which the colors of the bitmap image are specified. A color space is
characterized by a number of components or dimensions, with each component
carrying a numeric value. These values together make up the color value. A
color space also specifies the format in which the color value is stored. For
bitmaps in which color values are packed, the space field of the CMBitmap data
type holds a constant that defines the color space and the packing format.

For the CWMatchBitmap function to perform color matching successfully, the color
space specified in the CMBitmap data type’s space field must correspond to the
color space specified in the profile’s dataColorSpace field. The source bitmap
and source profile values must match and the destination bitmap and
406 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
destination profile values must match. For the CWCheckBitMap function to
perform color checking successfully, the source profile’s dataColorSpace field
value and the space field value of the source bitmap must specify the same color
space. These functions will execute successfully as long as the color spaces are
the same without regard for the packing format specified by the bitmap.

The following enumeration defines constants for abstract color spaces which,
when combined with a packing format constant as described in “Color Packing
for Color Spaces” (page 404), can be used in the space field of the CMBitmap
structure. The combined constants are shown in “Color Space Constants With
Packing Formats” (page 409).

enum {
cmNoSpace = 0,
cmRGBSpace = 1,
cmCMYKSpace = 2,
cmHSVSpace = 3,
cmHLSSpace = 4,
cmYXYSpace = 5,
cmXYZSpace = 6,
cmLUVSpace = 7,
cmLABSpace = 8,
cmReservedSpace1 = 9,
cmGraySpace = 10,
cmReservedSpace2 = 11,
cmGamutResultSpace = 12,
cmNamedIndexedSpace = 16,
cmMCFiveSpace = 17,
cmMCSixSpace = 18,
cmMCSevenSpace = 19,
cmMCEightSpace = 20,
cmRGBASpace = cmRGBSpace + cmAlphaSpace,
cmGrayASpace = cmGraySpace + cmAlphaSpace

};

Enumerator descriptions

cmNoSpace The ColorSync Manager does not use this constant.
cmRGBSpace An RGB color space composed of red, green, and blue

components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a packing
format describing the amount of storage per component.
Constants for the ColorSync Manager 407
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmCMYKSpace A CMYK color space composed of cyan, magenta, yellow,
and black. A bitmap never uses this constant alone. Instead,
this color space is always combined with a packing format
describing the amount of storage per component.

cmHSVSpace An HSV color space composed of hue, saturation, and
value components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmHLSSpace An HLS color space composed of hue, lightness, and
saturation components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a
packing format describing the amount of storage per
component.

cmYXYSpace A Yxy color space composed of Y, x, and y components. A
bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format describing
the amount of storage per component.

cmXYZSpace An XYZ color space composed of X, Y, and Z components.
A bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format describing
the amount of storage per component.

cmLUVSpace An L*u*v* color space composed of L*, u*, and v*
components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a packing
format describing the amount of storage per component.

cmLABSpace An L*a*b* color space composed of L*, a*, b* components.
A bitmap never uses this constant alone. Instead, this color
space is always combined with a packing format describing
the amount of storage per component.

cmReservedSpace1 This field is reserved for use by QuickDraw GX.
cmGraySpace A luminance color space with a single component, gray.
cmReservedSpace2 This field is reserved for use by QuickDraw GX.
cmGamutResultSpace

A color space for the resulting bitmap pointed to by the
resultBitMap field of the function CWCheckBitMap (page 279).
A bitmap never uses this constant alone. Instead, it uses the
constant cmGamutResult1Space, which combines
408 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmGamutResultSpace and cmOneBitDirectPacking to define a
bitmap that is 1 bit deep.

cmMCFiveSpace A five-channel multichannel (HiFi) data color space.
cmMCSixSpace A six-channel multichannel (HiFi) data color space.
cmMCSevenSpace A seven-channel multichannel (HiFi) data color space.
cmMCEightSpace An eight-channel multichannel (HiFi) data color space.

cmRGBASpace An RGB color space composed of red, green, and blue color
value components and an alpha channel component.
ColorSync does not currently support bitmaps that use this
constant alone. Instead, this constant indicates the presence
of an alpha channel in combination with
cmLong8ColorPacking to indicate 8-bit packing format and
cmAlphaFirstPacking to indicate the position of the alpha
channel as the first component.

cmGrayASpace A luminance color space with two components, a gray
component followed by an alpha channel component. Each
component value is 16 bits.

VERSION NOTES

The constants cmRGBASpace and cmGrayASpace were moved to this enum from
“Color Space Constants With Packing Formats” (page 409) in ColorSync
version 2.5.

Color Space Constants With Packing Formats 5

CHANGED IN COLORSYNC 2.55

The following enumeration defines constants for color spaces which can specify
color values for a bitmap image. As a rule, these constants include a packing
format, defined in “Color Packing for Color Spaces” (page 404). You can use
these constants to set the space field of the CMBitmap type definition identifies
the color space in which the colors of the bitmap image are specified, as
described in “Abstract Color Space Constants” (page 406).

enum {
cmGray16Space = cmGraySpace,
cmGrayA32Space = cmGrayASpace,
Constants for the ColorSync Manager 409
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmRGB16Space = cmWord5ColorPacking + cmRGBSpace,
cmRGB24Space = cm24_8ColorPacking + cmRGBSpace,
cmRGB32Space = cm32_8ColorPacking + cmRGBSpace,
cmRGB48Space = cm48_16ColorPacking + cmRGBSpace,
cmARGB32Space = cm32_8ColorPacking + cmAlphaFirstPacking + cmRGBASpace,
cmRGBA32Space = cm32_8ColorPacking + cmAlphaFirstPacking + cmRGBASpace,
cmCMYK32Space = cm32_8ColorPacking + cmCMYKSpace,
cmCMYK64Space = cm64_16ColorPacking + cmCMYKSpace,
cmHSV32Space = cmLong10ColorPacking + cmHSVSpace,
cmHLS32Space = cmLong10ColorPacking + cmHLSSpace,
cmYXY32Space = cmLong10ColorPacking + cmYXYSpace,
cmXYZ32Space = cmLong10ColorPacking + cmXYZSpace,
cmLUV32Space = cmLong10ColorPacking + cmLUVSpace,
cmLAB24Space = cm24_8ColorPacking + cmLABSpace,
cmLAB32Space = cmLong10ColorPacking + cmLABSpace,
cmLAB48Space = cm48_16ColorPacking + cmLABSpace,
cmGamutResult1Space = cmOneBitDirectPacking + cmGamutResultSpace
cmNamedIndexed32Space = cm32_32ColorPacking + cmNamedIndexedSpace,
cmMCFive8Space = cm40_8ColorPacking + cmMCFiveSpace,
cmMCSix8Space = cm48_8ColorPacking + cmMCSixSpace,
cmMCSeven8Space = cm56_8ColorPacking + cmMCSevenSpace,
cmMCEight8Space = cm64_8ColorPacking + cmMCEightSpace

};

Enumerator descriptions

cmGray16Space A luminance color space with a single 16-bit component,
gray.

cmGrayA32Space A luminance color space with two components, a gray
component followed by an alpha channel component. Each
component value is 16 bits.

cmRGB16Space An RGB color space composed of red, green, and blue
components whose values are packed with 5 bits of storage
per component. The storage size for a color value expressed
in this color space is 16 bits, with the high-order bit not
used.

cmRGB24Space An RGB color space composed of red, green, and blue
components whose values are packed with 8 bits of storage
per component. The storage size for a color value expressed
in this color space is 24 bits.
410 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmRGB32Space An RGB color space composed of red, green, and blue
components whose values are packed with 8 bits of storage
per component. The storage size for a color value expressed
in this color space is 32 bits, with bits 24–31 not used.

cmRGB48Space An RGB color space composed of red, green, and blue
components whose values are packed with 16 bits of
storage per component. The storage size for a color value
expressed in this color space is 48 bits.

cmARGB32Space An RGB color space composed of red, green, and blue color
value components preceded by an alpha channel
component whose values are packed with 8 bits of storage
per component. The storage size for a color value expressed
in this color space is 32 bits.

cmRGBA32Space An RGB color space composed of red, green, and blue color
value components, followed by an alpha channel
component. Values are packed with 8 bits of storage per
component. The storage size for a color value expressed in
this color space is 32 bits.

cmCMYK32Space A CMYK color space composed of cyan, magenta, yellow,
and black components whose values are packed with 8 bits
of storage per component. The storage size for a color value
expressed in this color space is 32 bits.

cmCMYK64Space A CMYK color space composed of cyan, magenta, yellow,
and black components whose values are packed with 16
bits of storage per component. The storage size for a color
value expressed in this color space is 64 bits.

cmHSV32Space An HSV color space composed of hue, saturation, and
value components whose values are packed with 10 bits of
storage per component. The storage size for a color value
expressed in this color space is 32 bits, with the high-order
2 bits not used.

cmHLS32Space An HLS color space composed of hue, lightness, and
saturation components whose values are packed with 10
bits of storage per component. The storage size for a color
value expressed in this color space is 32 bits, with the
high-order 2 bits not used.

cmYXY32Space A Yxy color space composed of Y, x, and y components
whose values are packed with 10 bits of storage per
component. The storage size for a color value expressed in
Constants for the ColorSync Manager 411
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
this color space is 32 bits, with the high-order 2 bits not
used.

cmXYZ32Space An XYZ color space composed of X, Y, and Z components
whose values are packed with 10 bits per component. The
storage size for a color value expressed in this color space is
32 bits, with the high-order 2 bits not used.

cmLUV32Space An L*u*v* color space composed of L*, u*, and v*
components whose values are packed with 10 bits per
component. The storage size for a color value expressed in
this color space is 32 bits, with the high-order 2 bits not
used.

cmLAB24Space An L*a*b* color space composed of L*, a*, and b*
components whose values are packed with 8 bits per
component. The storage size for a color value expressed in
this color space is 24 bits. The 8-bit unsigned a* and b*
channels are interpreted numerically as ranging from -128.0
to approximately 128.0.

cmLAB32Space An L*a*b* color space composed of L*, a*, and b*
components whose values are packed with 10 bits per
component. The storage size for a color value expressed in
this color space is 32 bits, with the high-order 2 bits not
used. The 10-bit unsigned a* and b* channels are
interpreted numerically as ranging from -128.0 to
approximately 128.0.

cmLAB48Space An L*a*b* color space composed of L*, a*, and b*
components whose values are packed with 16 bits per
component. The storage size for a color value expressed in
this color space is 48 bits. The 16-bit unsigned a* and b*
channels are interpreted numerically as ranging from -128.0
to approximately 128.0.

cmGamutResult1Space
A gamut result color space for the resulting bitmap pointed
to by the resultBitMap field of the function CWCheckBitMap
(page 279), with 1-bit direct packing. A pixel in the
returned bitmap with value 1 (displayed as black) indicates
an out-of-gamut color, while a pixel value of 0 (white)
indicates a color that is in gamut.

cmNamedIndexed32Space
A color space where each color is stored as a single 32-bit
412 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
value, specifying an index into a named color space. The
storage size for a color value expressed in this color space is
32 bits.

cmMCFive8Space A five-channel multichannel (HiFi) data color space, whose
values are packed with 8 bits per component. The storage
size for a color value expressed in this color space is 40 bits.

cmMCSix8Space A six-channel multichannel (HiFi) data color space, whose
values are packed with 8 bits per component. The storage
size for a color value expressed in this color space is 48 bits.

cmMCSeven8Space A seven-channel multichannel (HiFi) data color space,
whose values are packed with 8 bits per component. The
storage size for a color value expressed in this color space is
56 bits.

cmMCEight8Space A eight-channel multichannel (HiFi) data color space,
whose values are packed with 8 bits per component. The
storage size for a color value expressed in this color space is
64 bits.

VERSION NOTES

The constants cmRGBASpace and cmGrayASpace were moved to “Abstract Color
Space Constants” (page 406) in ColorSync version 2.5.

The constants cmGray16Space, cmGrayA32Space, cmRGB48Space, cmCMYK64Space, and
cmLAB48Space were added in ColorSync version 2.5.

ColorSync Flag Constants 5

The ColorSync Manager defines the structure CM2Header (page 354) to represent
the profile header for the version 2.x profile format defined by the ICC. The
ColorSync Manager also defines constants to set and test flag bits in the flags,
deviceAttributes, and renderingIntent fields of the CM2Header profile header
structure.

The next sections describe ColorSync constants for evaluating and setting bits in
these fields

■ “Flag Mask Definitions for Version 2.x Profiles” (page 414)

■ “Quality Flag Values for Version 2.x Profiles” (page 417)
Constants for the ColorSync Manager 413
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
■ “Device Attribute Values for Version 2.x Profiles” (page 418)

■ “Rendering Intent Values for Version 2.x Profiles” (page 419)

Flag Mask Definitions for Version 2.x Profiles 5

The flags field of the structure CM2Header (page 354) is an unsigned long value
whose bits specify information about a profile. The ICC reserves the use of bits
0 to 15 and has assigned values to bits 0 and 1. Bits 16 to 31 are reserved for use
by color management system (CMS) vendors. ColorSync has assigned values to
bits 16 through 19. Figure 5-1 shows the bit assignments of the flags field
specified by ColorSync and by the ICC.

Figure 5-1 The flags field of the CM2Header structure

The following enumeration defines masks your application can use to set or test
various bits in the flags field of the CM2Header structure:

enum {
/* these bits of the flags field are defined and reserved by the ICC */

cmICCReservedFlagsMask = 0x0000FFFF,
/* if bit 0 is 0 then not embedded profile, if 1 then embedded profile */

cmEmbeddedMask = 0x00000001,
/* if bit 1 is 0 then ok to use anywhere, if 1 then use as embedded profile only */

31 1516171819 01

Reserved for vendors

flags

Reserved for ICC

Use anywhere/
use only as embedded

Embedded/not embeddedNormal/draft/best quality

Interpolate/lookup only

Include/don't include
gamut-checking table
414 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmEmbeddedUseMask = 0x00000002,
/* these bits of the flags field are defined and reserved for CMS vendors */

cmCMSReservedFlagsMask = 0xFFFF0000,
/* if bits 16-17 == 0 then normal, if 1 then draft, if 2 then best */

cmQualityMask = 0x00030000,
/* if bit 18 is 0 then interpolation, if 1 then lookup only */

cmInterpolationMask = 0x00040000,
/* if bit 19 is 0 then create gamut-checking info, if 1 then no gamut-checking info */

cmGamutCheckingMask = 0x00080000
};

Enumerator descriptions

cmICCReservedFlagsMask
This mask provides access to bits 0 through 15 of the flags
field, which are defined and reserved by the ICC. For more
information, see the International Color Consortium Profile
Format Specification, and the next two mask definitions.
To obtain a copy of the ICC specification, or to get other
information about the ICC, visit the ICC Web site at
<http://www.color.org/>.

cmEmbeddedMask This mask provides access to bit 0 of the flags field, which
specifies whether the profile is embedded. It has the value 1
if the profile is embedded, 0 if it is not.

cmEmbeddedUseMask This mask provides access to bit 1 of the flags field, which
specifies whether the profile can be used independently or
can only be used as an embedded profile. It has the value 0
if the profile can be used anywhere, 1 if it must be
embedded.
You should interpret the setting of this bit as an indication
of copyright protection. If the profile developer set this bit
to 1, you should use this profile as an embedded profile
only and not copy the profile for your own purposes. The
profile developer also specifies explicit copyright intention
using the cmCopyrightTag profile tag (defined in the
CMICCProfile.h header file).

cmCMSReservedFlagsMask
This mask provides access to bits 16 through 31 of the flags
field, which are available for a color management system
(CMS) vendor, such as ColorSync. ColorSync’s default
Constants for the ColorSync Manager 415
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
CMM uses bits 16 through 19 to provide hints for color
matching, as described in the following three mask
definitions. Other CMM vendors should follow the same
conventions.

cmQualityMask This mask provides access to bits 16 and 17 of the flags
field, which specify the preferred quality and speed
preferences for color matching. In general, the higher the
quality the slower the speed. For example, best quality is
slowest, but produces the highest quality result.
Bits 16 and 17 have the value 0 for normal quality, 1 for
draft quality, and 2 for best quality. “Quality Flag Values for
Version 2.x Profiles” (page 417) describes the constants
ColorSync defines to test or set these bits.
This feature is provided by the ColorSync Manager; it is not
defined by the ICC profile specification.

cmInterpolationMask
This mask provides access to bit 18 of the flags field, which
specifies whether to use interpolation in color matching.
The value 0 specifies interpolation. The value 1 specifies
table lookup without interpolation. Specifying lookup only
improves speed but can reduce accuracy. You might use
lookup only for a monitor profile, for example, when high
resolution is not crucial.
This feature is provided by the ColorSync Manager; it is not
defined by the ICC profile specification.

cmGamutCheckingMask
This mask provides access to bit 19 of the flags field. When
you use a profile to create a color world, bit 19 specifies
whether the color world should include information for
gamut checking. It has the value 0 if the color world should
include a gamut-checking table, 1 if gamut-checking
information is not required. ColorSync can create a color
world without a gamut table more quickly and in less
space.
Many applications do not perform gamut checking, so they
should set this bit to 1. However, if you call a color
checking function such as CWCheckColors (page 283),
CWCheckBitMap (page 279), or CWMatchPixMap (page 272), after
setting a profile’s gamut-checking bit so that the color
416 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
world does not contain gamut information, these routines
return the cmCantGamutCheckError error.
This feature is provided by the ColorSync Manager; it is not
defined by the ICC profile specification.

Quality Flag Values for Version 2.x Profiles 5

The following enumeration defines the possible values for the quality bits in the
flags field of the CM2Header structure. To determine the value of the quality flag,
you mask the flags field of the profile header with the cmQualityMask mask,
right shift 16 bits, then compare the result to the enumerated constants shown
below. For more information on the quality flag, see “Flag Mask Definitions for
Version 2.x Profiles” (page 414).

When you start a color-matching session, ColorSync sends all involved profiles
to the color management module (CMM). The CMM extracts the information it
needs from the profiles and stores an internal representation in private memory.
ColorSync’s default CMM samples the input space and stores the results in a
lookup table, a common technique that speeds up conversion for runtime
applications. The size of the table is based on the quality flag setting in the
source profile header. The setting of the quality flag can affect the memory
requirements, accuracy, and speed of the color-matching session. In general, the
higher the quality setting, the larger the lookup table, the more accurate the
matching, and the slower the matching process. Note however, that the default
CMM currently produces the same results for both normal and draft mode.

enum {
cmNormalMode = 0, /* use default method for quality */
cmDraftMode = 1, /* sacrifice quality to minimize resource

requirements */
cmBestMode = 2 /* ensure highest possible quality */

};

Enumerator descriptions

cmNormalMode This is the default setting. Normal mode indicates that the
CMM should use its default method to compromise
between performance and resource requirements.

cmDraftMode Draft mode indicates that the CMM should sacrifice
quality, if necessary, to minimize resource requirements.
Constants for the ColorSync Manager 417
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Note that the default CMM currently produces the same
results for both normal and draft mode.

cmBestMode Best mode indicates that the CMM should maximize
resource usage to ensure the highest possible quality.

Device Attribute Values for Version 2.x Profiles 5

The ColorSync Manager defines the structure CM2Header (page 354) to represent
the profile header for the version 2.x profile format defined by the ICC.The
deviceAttributes field of the CM2Header structure is an array of two unsigned
long values whose bits specify information about a profile. The ICC reserves the
use of deviceAttributes[1] and has assigned values to bits 0 and 1. All the bits
of deviceAttributes[0] are reserved for use by color management system
(CMS) vendors. Figure 5-2 shows the bit assignments for the deviceAttributes
field.

Figure 5-2 The deviceAttributes field of the CM2Header structure

The following enumeration defines masks your application can use to set or test
bits in deviceAttributes[1].

enum {
/* if bit 0 is 0 then reflective media, if 1 then transparent media */
cmReflectiveTransparentMask = 0x00000001,

31 0 31 01

Reserved for vendors

deviceAttributes[0] deviceAttributes[1]

Reserved for ICC

Glossy /matte media
Transparent/opaque media
418 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
/* if bit 1 is 0 then glossy media, if 1 then matte media*/
cmGlossyMatteMask = 0x00000002

};

Enumerator descriptions

cmReflectiveTransparentMask
Bit 0 of deviceAttributes[1] specifies whether the media is
transparent or reflective. If it has the value 0, the media is
reflective; if it has the value 1, the media is transparent. Use
the cmReflectiveTransparentMask mask to set the
transparent/reflective bit in deviceAttributes[1] or to clear
all bits except the transparent/reflective bit.

cmGlossyMatteMask
Bit 1of deviceAttributes[1] specifies whether the media is
glossy or matte. If it has the value 0, the media is glossy; if
it has the value 1, the media is matte. Use the
cmGlossyMatteMask mask to set the glossy/matte bit in
deviceAttributes[1] or to clear all bits except the glossy/
matte bit.

Rendering Intent Values for Version 2.x Profiles 5

The ColorSync Manager defines the structure CM2Header (page 354) to represent
the profile header for the version 2.x profile format defined by the ICC. The
renderingIntent field of the CM2Header structure is an unsigned long value
whose bits specify information about a profile. The ICC reserves the use of bits
0 to 15 and has assigned values to bits 0 and 1. Bits 16 to 31 are reserved for use
by color management system (CMS) vendors. Figure 5-3 shows the bit
assignments of the renderingIntent field specified by the ICC.

Rendering intent controls the approach a CMM uses to translate the colors of an
image to the color gamut of a destination device. Your application can set a
profile’s rendering intent, for example, based on a user’s choice of the preferred
approach for rendering an image.
Constants for the ColorSync Manager 419
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Figure 5-3 The renderingIntent field of the CM2Header structure

The following enumeration defines the four possible values for the rendering
intent bits of the renderingIntent field. Because rendering intent is specified by
the low two bits, and because no other bits are currently defined for this field,
you can use the constants defined here to test or set the value of the entire field,
without concern for possible information stored in other bits.

enum {
cmPerceptual = 0, /* scale colors to fit in gamut */
cmRelativeColorimetric = 1, /* don’t change colors that fall in

the gamuts of both devices */
cmSaturation = 2, /* maintain relative saturation */
cmAbsoluteColorimetric = 3 /* base on idealized, device-

independent color space */
};

Enumerator descriptions

cmPerceptual All the colors of a given gamut can be scaled to fit within
another gamut. This intent is best suited to realistic images,
such as photographic images.

cmRelativeColorimetric
The colors that fall within the gamuts of both devices are
left unchanged. This intent is best suited to logo images.

cmSaturation The relative saturation of colors is maintained from gamut
to gamut. This intent is best suited to bar graphs and pie

31 1516 01

Reserved for vendors

renderingIntent

Reserved for ICC

Rendering intent
420 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
charts in which the actual color displayed is less important
than its vividness.

cmAbsoluteColorimetric
This approach is based on a device-independent color
space in which the result is an idealized print viewed on a
ideal type of paper having a large dynamic range and color
gamut.

Video Card Gamma Constants 5
NEW IN COLORSYNC 2.55

Starting with version 2.5, ColorSync supports an optional profile tag for video
card gamma. The tag specifies gamma information, stored either as a formula or
in table format, to be loaded into the video card when the profile containing the
tag is put into use. As of version 2.5, the only ColorSync function that attempts
to take advantage of video card gamma data is CMSetProfileByAVID (page 300).

The following sections describe the constants you use to work with the video
card gamma profile tag:

■ “Video Card Gamma Tag” (page 421)

■ “Video Card Gamma Tag Type” (page 422)

■ “Video Card Gamma Storage Type” (page 422)

Video Card Gamma Tag 5

NEW IN COLORSYNC 2.55

When you create a tag to store video card gamma data in a profile, you use the
cmVideoCardGammaTag constant to specify the tag.

enum
{

…,
cmVideoCardGammaTag = FOUR_CHAR_CODE('vcgt')

};
Constants for the ColorSync Manager 421
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Enumerator descriptions

cmVideoCardGammaTag
Constant for profile tag that specifies video card gamma
information.

Video Card Gamma Tag Type 5

NEW IN COLORSYNC 2.55

You use the cmSigVideoCardGammaType constant to specify the signature type for a
video card gamma tag. That is, you use this constant to set the typeDescriptor
field of the CMVideoCardGammaType (page 386) structure. There is currently only
one type possible for a video card gamma tag.

enum
{

cmSigVideoCardGammaType = FOUR_CHAR_CODE('vcgt')
};

Enumerator descriptions

cmSigVideoCardGammaType
Constant that specifies video card gamma type signature in
a video card gamma profile tag.

Video Card Gamma Storage Type 5

NEW IN COLORSYNC 2.55

A video card gamma profile tag can store gamma data either as a formula or as
a table of values. You use a storage type constant to specify which data storage
type the tag uses.

IMPORTANT

If the video card uses a different format than the format
you specify (for example, the card uses data in table format
and you supply data in formula format), ColorSync will
adapt the data you supply to match the format the card
expects. ▲
422 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
enum
{

cmVideoCardGammaTableType = 0,
cmVideoCardGammaFormulaType = 1,

};

Enumerator descriptions

cmVideoCardGammaTableType
The video card gamma data is stored in a table format. See
“CMVideoCardGammaTable” (page 387) for a description
of the table format.

cmVideoCardGammaFormulaType
The video card gamma tag data is stored as a formula. See
“CMVideoCardGammaFormula” (page 388) for a
description of the formula format.

PrGeneral Function Operation Codes 5

This enumeration defines operation codes used with the PrGeneral function to
enable or disable color matching and, for ColorSync 1.0, to register a profile
with the profile responder or remove the profile’s registration. For information
on the PrGeneral function, see Inside Macintosh: Imaging With QuickDraw.

enum
{

enableColorMatchingOp = 12, /* enable or disable color matching; supported in
both ColorSync 1.0 and 2.x */

registerProfileOp = 13 /* register profile with driver; supported in
ColorSync 1.0 only */

};

Enumerator descriptions

enableColorMatchingOp
Use this operation code with the PrGeneral function to turn
color matching on or off. This code is supported by both
ColorSync 2.x and ColorSync 1.0. For more information, see
TEnableColorMatchingBlk (page 390).
Constants for the ColorSync Manager 423
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
registerProfileOp Use this operation code with the PrGeneral function to
register a profile with a driver. This code is supported only
by ColorSync 1.0.

Element Tags and Signatures for Version 1.0 Profiles 5

The ICC version 2.x profile format differs from the version 1.0 profile format,
and ColorSync Manager routines for updating a profile and searching for
profiles do not work with version 1.0 profiles. However, your application can
use version 1.0 profiles with all other ColorSync routines. For example, you can
open a version 1.0 profile using the function CMOpenProfile (page 222), obtain
the version 1.0 profile header using the function CMGetProfileHeader (page 245),
and access version 1.0 profile elements using the function CMGetProfileElement
(page 243).

To make this possible, the ColorSync Manager includes support for the version
1.0 profile header structure and synthesizes tags to allow you to access four 1.0
elements outside the version 1.0 profile header. The following enumeration
defines these tags:

enum {
cmCS1ChromTag = 'chrm', /* signature for XYZ chromaticities tag */
cmCS1TRCTag = 'trc ', /* signature for profile tonal response curve

data from associated device */
cmCS1NameTag = 'name', /* signature for profile name string tag */
cmCS1CustTag = 'cust' /* signature for private data for custom CMM */

};

Enumerator descriptions

cmCS1ChromTag The tag signature for the profile chromaticities tag whose
element data specifies the XYZ chromaticities for the six
primary and secondary colors (red, green, blue, cyan,
magenta, and yellow).

cmCS1TRCTag The tag signature for profile tonal response curve data for
the associated device.

cmCS1NameTag The tag signature for the profile name string. This is an
international string consisting of a Macintosh script code
followed by a 63-byte text string identifying the profile.

cmCS1CustTag Private data for a custom CMM.
424 Constants for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
Result Codes for the ColorSync Manager 5

noErr 0 No error (not specific to ColorSync)
cmProfileError –170 There is something wrong with the content of the

profile
cmMethodError –171 An error occurred during the CMM arbitration

process that determines the CMM to use
cmMethodNotFound –175 CMM not present
cmProfileNotFound –176 Responder error
cmProfilesIdentical –177 Profiles are the same
cmCantConcatenateError –178 Profiles can’t be concatenated
cmCantXYZ –179 CMM does not handle XYZ color space
cmCantDeleteProfile –180 Responder error
cmUnsupportedDataType –181 Responder error
cmNoCurrentProfile –182 Responder error
cmElementTagNotFound –4200 The tag you specified is not in the specified profile
cmIndexRangeErr –4201 Tag index out of range
cmCantDeleteElement –4202 Can’t delete the specified profile element
cmFatalProfileErr –4203 Returned from File Manager while updating a

profile file in response to CMUpdateProfile;
profile content may be corrupted

cmInvalidProfile –4204 Profile reference is invalid or refers to an
inappropriate profile

cmInvalidProfileLocation –4205 Operation not supported for this profile location
cmInvalidSearch –4206 Bad search handle
cmSearchError –4207 Internal error occurred during profile search
cmErrIncompatibleProfile –4208 Unspecified profile error
cmInvalidColorSpace –4209 Profile color space does not match bitmap type
cmInvalidSrcMap –4210 Source pixel map or bitmap was invalid
cmInvalidDstMap –4211 Destination pix/bit map was invalid
cmNoGDevicesError –4212 Begin matching or end matching—no graphics

devices available
cmInvalidProfileComment –4213 Bad profile comment during drawpicture
cmRangeoverFlow –4214 One or more output color value overflows in color

conversion; all input color values will be
converted and the overflow will be clipped
Result Codes for the ColorSync Manager 425
11/20/98  Apple Computer, Inc.

C H A P T E R 5

ColorSync Reference for Applications and Drivers
cmCantCopyModifiedV1Profile –4215 It is illegal to copy version 1.0 profiles that have
been modified

cmNamedColorNotFound –4216 The specified named color was not found in the
specified profile

cmCantGamutCheckError -4217 Gamut checking not supported by this color
world—that is, the color world does not contain a
gamut table because it was built with gamut
checking turned off
426 Result Codes for the ColorSync Manager

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 6-0
Listing 6-0
Table 6-0
6 Developing Color Management
Modules
About Color Management Modules 430
Creating a Color Management Module 432

Creating a Component Resource for a CMM 432
The Component Resource 432
The Extended Component Resource 433

How Your CMM Is Called by the Component Manager 434
Required Component Manager Request Codes 435
Required ColorSync Manager Request Codes 435
Optional ColorSync Manager Request Codes 436
Handling Request Codes 439
Responding to Required Component Manager Request Codes 440

Establishing the Environment for a New Component Instance 440
Releasing Private Storage and Closing the Component Instance 440
Determining Whether Your CMM Supports a Request 441
Providing Your CMM Version Number 441

Responding to Required ColorSync Manager Request Codes 441
Initializing the Current Component Instance for a Two-Profile
Session 442
Matching a List of Colors to the Destination Profile’s Color Space 443
Checking a List of Colors 443

Responding to ColorSync Manager Optional Request Codes 444
Validating That a Profile Meets the Base Content Requirements 445
Matching the Colors of a Bitmap 446
Checking the Colors of a Bitmap 447
Matching the Colors of a Pixel Map Image 448
Checking the Colors of a Pixel Map Image 449
427

C H A P T E R 6
Initializing the Component Instance for a Session Using Concatenated
Profiles 450
Creating a Device Link Profile and Opening a Reference to It 451
Obtaining PostScript-Related Data From a Profile 452
Obtaining the Size of the Color Rendering Dictionary for PostScript
Printers 454
Flattening a Profile for Embedding in a Graphics File 455
Unflattening a Profile 456
Supplying Named Color Space Information 457

Summary of the Color Management Modules 459
Functions 459
Constants 462
428 Contents

11/20/98  Apple Computer, Inc.

C H A P T E R 6
Developing Color Management Modules 6

This section gives a brief overview of color management modules (CMMs) and
the role a CMM plays in the ColorSync color management system. You should
read this section if you are a third-party developer who creates CMMs that
ColorSync (versions 2.0 and greater) can use instead of, or in conjunction with,
the default CMM.

Before reading this section, you should read “Introduction to ColorSync”
(page 45) for a more complete conceptual explanation of how a CMM fits within
the ColorSync system. If you are unfamiliar with terms and concepts such as
profile, color space, CMM, and color management, or would like to review
these topics, you should also read “Introduction to Color and Color
Management Systems” (page 25).

At a minimum, a ColorSync-compatible CMM must be able to match colors
across color spaces belonging to different base families and check colors
expressed in the color gamut of one device against the color gamut of another
device.

In addition to the minimum set of requests a CMM must service, a CMM can
also implement support for other requests a ColorSync-supportive application
or device driver might make. Among the optional services a CMM might
provide are verifying if a particular profile contains the base set of required
elements for a profile of its type and directing the process of converting profile
data embedded in a graphics file to data in an external profile file accessed
through a profile reference and vice versa. A CMM can also provide services for
PostScript printers by obtaining or deriving from a profile specific data required
by PostScript printers for color-matching processes and returning the data in a
format that can be sent to the PostScript printer.

This section provides a high-level discussion of the required and optional
ColorSync Manager request codes your CMM might be called to handle, and
also describes the Component Manager required request codes to which every
component must respond.

For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.
429
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
About Color Management Modules 6

A color management module (CMM) is a component that implements color
matching, color gamut checking, and other services and performs these services
in response to requests from ColorSync-supportive applications or device
drivers.

A CMM component interacts directly with the Component Manager, which
calls the CMM on behalf of the ColorSync Manager and the requesting
application or driver. When they call ColorSync Manager functions to request
color-matching and color gamut-checking services, ColorSync-supportive
applications and device drivers specify the profiles to use. These profiles
characterize the devices involved; they include information giving the color
spaces and the color gamuts of the devices and the preferred CMM to carry out
the work. A CMM uses the information contained in these profiles to perform
the processing required to service requests. Figure 6-1 shows the relationship
between a ColorSync-supportive application or driver, the ColorSync Manager,
the Component Manager, and one or more available CMM components.

A CMM should support all seven classes of profiles defined by the ICC. For
information on the seven classes of profiles, see “Profile Class” (page 396) or the
International Color Consortium Profile Format Specification, version 2.x or higher.
To obtain a copy of the specification, or to get other information about the ICC,
visit the ICC Web site at <http://www.color.org/>.

In some cases, a CMM will not be able to convert and match colors directly
from the color space of one profile to that of another. Instead, it will need to
convert colors to the device-independent color space specified by the profile. A
CMM uses device-independent color spaces, or interchange color spaces, to
interchange color data from the native color space of one device to the native
color space of another device.The profile connection space field of a profile
header specifies the interchange color space for that profile. Version 2.x of the
ColorSync Manager supports two interchange color spaces: XYZ and Lab.
430 About Color Management Modules

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Figure 6-1 The ColorSync Manager and the Component Manager

When interchange color spaces are involved, the ColorSync Manager handles
the process, which is largely transparent to the CMM. The ColorSync Manager
passes to the CMM the correct profiles for color matching. For example, in a
case in which both the source and destination profile’s CMMs are required to
complete the color matching using color space profiles, the ColorSync Manager
calls the source profile’s CMM with the source profile and an interchange color
space profile. Then it calls the destination profile’s CMM with an interchange
color space profile and the destination profile. The ColorSync Manager assesses
the requirements and breaks the process down so that the correct CMM is called
with the correct set of profiles. This process is described from the perspective of
an application or device driver in “How the ColorSync Manager Selects a
CMM” (page 84).

Component Manager

CMM componentCMM component CMM component

ColorSync
Manager

Applications, drivers,
and other software

QuickDraw-specific functions

General purpose functions
About Color Management Modules 431
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
A CMM uses lookup tables and algorithms for color matching, using one device
to preview the color reproduction capabilities of another device, and checking
for colors that cannot be reproduced.

Creating a Color Management Module 6

This section describes how to create a CMM component, including how to
respond to required Component Manager and ColorSync Manager requests and
optional ColorSync Manager requests. For more detailed information on
working with components, see the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox.

Creating a Component Resource for a CMM 6

A CMM is stored as a component resource. It contains a number of resources,
including the standard component resource (a resource of type 'thng') required
of any Component Manager component. In addition, a CMM must contain code
to handle required request codes passed to it by the Component Manager. This
includes support for Component Manager required request codes as well as
ColorSync Manager required request codes. For an example of the resources
your CMM should include, refer to the DemoCMM project available with the
ColorSync SDK.

To allow the ColorSync Manager to use your CMM when a profile specifies it as
its preferred CMM, your CMM should be located in the Extensions folder,
where it will automatically be registered at startup. The file type for component
files must be set to 'thng'.

The Component Resource 6

The component resource contains all the information needed to register a code
resource as a component. Information in the component resource tells the
Component Manager where to find the code for the component. As part of the
component resource, you must provide a component description record that
specifies the component type, subtype, manufacturer, and flags. Here is the data
structure for the component description:
432 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
struct ComponentDescription {
OSType componentType;
OSType componentSubType;
OSType componentManufacturer;
unsigned long componentFlags;
unsigned long componentFlagsMask;

};

The following are the key fields of the component description data structure for
creating a CMM component:

■ The componentType field contains a unique 4-byte code specifying the
resource type and resource ID of the component’s executable code. For your
CMM, set this field to 'cmm '.

■ The componentSubType field indicates the type of services your CMM
provides. You should set this field to your CMM name. This value must
match exactly the value specified in the profile header’s CMMType field. You
must register this value with the International Color Consortium (ICC). To
obtain information about the ICC, visit the ICC Web site at <http://
www.color.org/>.

■ The componentManufacturer field indicates the creator of the CMM. You may
set this field to any value you wish.

■ The componentFlags field is a 32-bit field that provides additional information
about your CMM component. The high-order 8 bits are reserved for
definition by the Component Manager. The low-order 24 bits are specific to
each component type. You can use these flags to indicate any special
capabilities or features of your component.

Note
Values you specify for all fields except the componentType
field must include at least one uppercase character. Apple
Computer reserves values containing all lowercase
characters for its own use. ◆

The Extended Component Resource 6

Since it was first defined, the component resource has been extended to include
additional information. That additional information includes the following field
for specifying the version of your component:
Creating a Color Management Module 433
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
long componentVersion; /* version of Component */

■ The componentVersion field indicates the version of the CMM. For related
information on specifying the CMM version, see “Required Component
Manager Request Codes” (page 435).

For more information on component data types, see the following files from the
Universal Interfaces distributed with development systems for the Mac OS:

■ Components.h

■ Components.r

How Your CMM Is Called by the Component Manager 6

Because a CMM is a direct client of the Component Manager, it must conform to
the Component Manager’s interface requirements, including supporting and
responding to required Component Manager calls.

The code for your CMM should be contained in a resource. The Component
Manager expects the entry point to this resource to be a function having this
format:

pascal ComponentResult main(ComponentParameters *params, Handle storage);

Whenever the Component Manager receives a request for your CMM, it calls
your component’s entry point and passes any parameters, along with
information about the current connection, in a data structure of type
ComponentParameters. This entry point must be the first function in your CMM’s
code segment. The Component Manager also passes a handle to the private
storage (if any) associated with the current instance of your component. Here is
the component parameters data structure, which is described in detail in Inside
Macintosh: More Macintosh Toolbox.

struct ComponentParameters {
unsigned char flags;
unsigned char paramSize;
short what;
long params[1];

};
434 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
The first field of the ComponentParameters data structure is reserved. The
following three fields carry information your CMM needs to perform its
processing. The what field contains a value that identifies the type of request.
The paramSize field specifies the size in bytes of the parameters passed from the
ColorSync-supportive calling application to your CMM. The parameters
themselves are passed in the params field.

Required Component Manager Request Codes 6

At a minimum, your CMM must handle the required Component Manager and
required ColorSync Manager request codes. The required Component Manager
request codes are defined by these constants:

■ kComponentOpenSelect (-1)
Requests that you open an instance of the component. For more information,
see “Establishing the Environment for a New Component Instance”
(page 440).

■ kComponentCloseSelect (-2)
Requests that you close the component instance. For more information, see
“Releasing Private Storage and Closing the Component Instance” (page 440).

■ kComponentCanDoSelect (-3)
Requests that you tell whether your CMM handles a specific request. For
more information, see “Determining Whether Your CMM Supports a
Request” (page 441).

■ kComponentVersionSelect (-4)
Requests that you return your CMM’s version number. For more
information, see “Providing Your CMM Version Number” (page 441). Note
that if you provide your version number in an extended component resource,
the Component Manager can obtain the version number without having to
call your code that handles this request code.

Required ColorSync Manager Request Codes 6

Your CMM must also be able to handle the required ColorSync Manager
request codes defined by these constants:

■ kCMMMatchColors (1)
Requests that you color match the specified colors from one color space to
Creating a Color Management Module 435
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
another. For more information, see “Matching a List of Colors to the
Destination Profile’s Color Space” (page 443).

■ kCMMCheckColors (2)
Requests that you check the specified colors against the gamut of the
destination device whose profile is specified. For more information, see
“Checking a List of Colors” (page 443).

■ kNCMMInit (6)
Requests that you initialize the current component instance of your CMM for
a ColorSync Manager 2.x session. For more information, see “Initializing the
Current Component Instance for a Two-Profile Session” (page 442).

Optional ColorSync Manager Request Codes 6

The Component Manager may also call your CMM with the following
ColorSync Manager request codes that are considered optional. A CMM may
support these requests, although you are not required to do so.

■ kCMMInit (0)
Requests that you initialize the current component instance of your CMM for
a ColorSync 1.0 session. This is a required request code only if your CMM
supports ColorSync 1.0 profiles.

■ kCMMMatchPixMap (3)
Requests that you match the colors of a pixel map image to the color gamut
of a destination profile, replacing the original pixel colors with their
corresponding colors. For more information, see “Matching the Colors of a
Pixel Map Image” (page 448).

■ kCMMCheckPixMap (4)
Requests that you check the colors of a pixel map image against the gamut of
a destination device for inclusion and report the results. For more
information, see “Checking the Colors of a Pixel Map Image” (page 449).

■ kCMMConcatenateProfiles (5)
This request code is for backward compatibility with ColorSync 1.0.

■ kCMMConcatInit (7)
Requests that you initialize any private data your CMM will need for a color
session involving the set of profiles specified by the profile array pointed to
by the profileSet parameter. For more information, see “Initializing the
Component Instance for a Session Using Concatenated Profiles” (page 450).
436 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
■ kCMMValidateProfile (8)
Requests that you test a specific profile to determine if the profile contains
the minimum set of elements required for a profile of its type. For more
information, see “Validating That a Profile Meets the Base Content
Requirements” (page 445).

■ kCMMMatchBitmap (9)
Requests that you match the colors of a source image bitmap to the color
gamut of a destination profile. For more information, see “Matching the
Colors of a Bitmap” (page 446).

■ kCMMCheckBitmap (10)
Requests that you check the colors of a source image bitmap against the color
gamut of a destination profile. For more information, see “Checking the
Colors of a Bitmap” (page 447).

■ kCMMGetPS2ColorSpace (11)
Requests that you obtain or derive the color space data from a source profile
and pass the data to a low-level data-transfer function supplied by the calling
application or device driver. For more information, see “Obtaining
PostScript-Related Data From a Profile” (page 452).

■ kCMMGetPS2ColorRenderingIntent (12)
Requests that you obtain the color-rendering intent from the header of a
source profile and then pass the data to a low-level data-transfer function
supplied by the calling application or device driver. For more information,
see “Obtaining PostScript-Related Data From a Profile” (page 452).

■ kCMMGetPS2ColorRendering (13)
Requests that you obtain the rendering intent from the source profile’s
header, generate the color rendering dictionary (CRD) data from the
destination profile, and then pass the data to a low-level data-transfer
function supplied by the calling application or device driver. For more
information, see “Obtaining PostScript-Related Data From a Profile”
(page 452).

■ kCMMGetPS2ColorRenderingVMSize (17)
Requests that you obtain or assess the maximum virtual memory (VM) size
of the color rendering dictionary (CRD) specified by a destination profile. For
more information, see “Obtaining the Size of the Color Rendering Dictionary
for PostScript Printers” (page 454).

■ kCMMFlattenProfile (14)
Requests that you extract profile data from the profile to be flattened and
Creating a Color Management Module 437
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
pass the profile data to a function supplied by the calling program. For more
information, see “Flattening a Profile for Embedding in a Graphics File”
(page 455).

Changed in ColorSync 2.5: Starting with ColorSync version 2.5, the
ColorSync Manager calls the function provided by the calling program
directly, without going through the preferred, or any, CMM. Your CMM only
needs to handle this request code for versions of ColorSync prior to version
2.5.

■ kCMMUnflattenProfile (15)
Requests that you create a file in the temporary items folder in which to store
profile data you receive from a function. The calling program supplies the
function. You call this function to obtain the profile data. For more
information, see “Unflattening a Profile” (page 456).

Changed in ColorSync 2.5: Starting with ColorSync version 2.5, the
ColorSync Manager calls the function provided by the calling program
directly, without going through the preferred, or any, CMM. Your CMM only
needs to handle this request code for versions of ColorSync prior to version
2.5.

■ kCMMNewLinkProfile (16)
Requests that you create a single device link profile that includes the profiles
passed to you in an array. For more information, see “Creating a Device Link
Profile and Opening a Reference to It” (page 451).

■ kCMMGetNamedColorInfo (70)
Requests that you extract and return named color data from the passed
profile reference.

■ kCMMGetNamedColorValue (71)
Requests that you extract and return device and profile connection space
(PCS) color values for the specified color name from the passed profile
reference.

■ kCMMGetIndNamedColorValue (72)
Requests that you extract and return device and PCS color values for the
specified named color index from the passed profile reference.

■ kCMMGetNamedColorIndex (73)
Requests that you extract and return a named color index for the specified
color name from the passed profile reference.
438 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
■ kCMMGetNamedColorName (74)
Requests that you extract and return a named color name for the specified
named color index from the passed profile reference.

Handling Request Codes 6

When your component receives a request, it should examine the what field of
the ComponentParameters data structure to determine the nature of the request,
perform the appropriate processing, set an error code if necessary, and return an
appropriate function result to the Component Manager.

Your entry point routine can call a separate subroutine to handle each type of
request. “ColorSync Reference for Color Management Modules” (page 467)
describes the prototypes for functions your CMM must supply to handle the
corresponding ColorSync Manager request codes. The entry routine itself can
unpack the parameters from the params parameter to pass to its subroutines, or
it can call the Component Manager’s CallComponentFunctionWithStorage routine
or CallComponentFunction routine to perform these services.

The CallComponentFunctionWithStorage function is useful if your CMM uses
private storage. When you call this function, you pass it a handle to the storage
for this component instance, the ComponentParameters data structure, and the
address of your subroutine handler. Each time it calls your entry point function,
the Component Manager passes to your function the storage handle along with
the ComponentParameters data structure. For a description of how you associate
private storage with a component instance, see “Establishing the Environment
for a New Component Instance” (page 440). The Component Manager’s
CallComponentFunctionWithStorage function extracts the calling application’s
parameters from the ComponentParameters data structure and invokes your
function, passing to it the extracted parameters and the private storage handle.

For sample code that illustrates how to respond to the required Component
Manager and ColorSync Manager requests, see the DemoCMM project available
with the ColorSync SDK. You may also wish to refer to the Apple technical note
QT05, “Component Manager Version 3.0.” This technical note shows how to
create a fat component, which is a single component usable for both 68K-based
and PowerPC-based systems.

For more information describing how your CMM component should respond to
request code calls from the Component Manager, see “Creating Components”
in Inside Macintosh: More Macintosh Toolbox.
Creating a Color Management Module 439
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Responding to Required Component Manager Request
Codes 6

This section describes some of the processes your CMM can perform in
response to the following Component Manager requests that it must handle:

■ “Establishing the Environment for a New Component Instance” describes
how to handle a kComponentOpenSelect request.

■ “Releasing Private Storage and Closing the Component Instance” describes
how to handle a kComponentCloseSelect request.

■ “Determining Whether Your CMM Supports a Request” (page 441) describes
how to handle a kComponentCanDoSelect request.

■ “Providing Your CMM Version Number” describes how to handle a
kComponentVersionSelect request.

Establishing the Environment for a New Component Instance 6

When a ColorSync-supportive application or device driver first calls a function
that requires the services of your CMM, the Component Manager calls your
CMM with a kComponentOpenSelect request to open and establish an instance of
your component for the calling program. The component instance defines a
unique connection between the calling program and your CMM.

In response to this request, you should allocate memory for any private data
you require for the connection. You should allocate memory from the current
heap zone. It that attempt fails, you should allocate memory from the system
heap or the temporary heap. You can use the SetComponentInstanceStorage
function to associate the allocated memory with the component instance.

For more information on how to respond to this request and open connections
to other components, see “Creating Components” in Inside Macintosh: More
Macintosh Toolbox.

Releasing Private Storage and Closing the Component Instance 6

To call your CMM with a close request, the Component Manager sets the what
field of the ComponentParameters data structure to kComponentCloseSelect. In
response to this request code, your CMM should dispose of the storage memory
associated with the connection.
440 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Determining Whether Your CMM Supports a Request 6

Before the ColorSync Manager calls your CMM with a request code on behalf of
a ColorSync-supportive application or driver that called the corresponding
function, the Component Manager calls your CMM with a can do request to
determine if your CMM implements support for the request.

To call your CMM with a can do request, the Component Manager sets
the what field of the ComponentParameters data structure to the value
kComponentCanDoSelect. In response, you should set your CMM entry point
function’s result to 1 if your CMM supports the request and 0 if it doesn’t.

Providing Your CMM Version Number 6

To call your CMM requesting its version number, the Component Manager sets
the what field of the ComponentParameters data structure to the value
kComponentVersionSelect. In response, you should set your CMM entry point
function’s result to the CMM version number. Use the high-order 16 bits to
represent the major version and the low-order 16 bits to represent the minor
version. The major version should represent the component specification level;
the minor version should represent your implementation’s version number.

If your CMM supports the ColorSync Manager version 2.x, your CMM should
return the constant for the major version defined by the following enumeration
when the Component Manager calls your CMM with the
kComponentVersionSelect request code:

enum {
CMMInterfaceVersion = 1
};

Note that if you provide your version number in an extended component
resource, the Component Manager can obtain the version number without
having to call your code that handles this request code.

Responding to Required ColorSync Manager Request Codes 6

This section describes some of the processes your CMM can perform in
response to the following ColorSync Manager requests that it must handle:

■ “Initializing the Current Component Instance for a Two-Profile Session”
describes how to handle the kNCMMInit request.
Creating a Color Management Module 441
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
■ “Matching a List of Colors to the Destination Profile’s Color Space” describes
how to handle a kCMMMatchColors request.

■ “Checking a List of Colors” describes how to handle a kCMMCheckColors
request.

Initializing the Current Component Instance for a Two-Profile Session 6

The Component Manager calls your CMM with an initialization request, setting
the what field of the ComponentParameters data structure to kNCMMInit. In most
cases the Component Manager calls your CMM with an initialization request
before it calls your CMM with any other ColorSync Manager requests.

In response to this request, your CMM should call its NCMInit initialization
subroutine. For a description of the function prototype your initialization
subroutine must adhere to, see NCMInit (page 468).

Using the private storage you allocated in response to the open request, your
initialization subroutine should instantiate any private data it needs for the
component instance. Before your entry point function returns a function result
to the Component Manager, your subroutine should store any profile
information it requires. In addition to the standard profile information, you
should store the profile header’s quality flags setting, the profile size, and the
rendering intent. After you return control to the Component Manager, you
cannot use the profile references again.

The kNCMMInit request gives you the opportunity to examine the profile contents
before storing them. If you do not support some aspect of the profile, then you
should return an unimplemented error in response to this request. For example,
if your CMM does not implement multichannel color support, you should
return an “unimplemented” error at this point.

The Component Manager may call your CMM with the kNCMMInit request code
multiple times after it calls your CMM with a request to open the CMM. For
example, it may call your CMM with an initialization request once with one
pair of profiles and then again with another pair of profiles. For each call, you
need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all seven classes of profiles defined by the ICC. For
the constants used to specify the seven classes of profiles, see “Profile Class”
(page 396).
442 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Matching a List of Colors to the Destination Profile’s Color Space 6

When a ColorSync-supportive application or device driver calls the
CWMatchColors function for your CMM to handle, the Component Manager calls
your CMM with a color-matching session request, setting the what field of the
ComponentParameters data structure to kCMMMatchColors and passing you a list of
colors to match. The Component Manager may also call your CMM with this
request code to handle other cases, for example, when a ColorSync-supportive
program calls the CWMatchPixMap function.

Before it calls your CMM with this request, the Component Manager calls your
CMM with one of the initialization requests—kCMMInit, kNCMMInit, or
kCMMConcatInit—passing to your CMM in the params field of the
ComponentParameters data structure the profiles for the color-matching session.

In response to the kCMMMatchColors request, your CMM should call its
CMMatchColors subroutine by calling the Component Manager’s
CallComponentFunctionWithStorage function and passing it a handle to the
storage for this component instance, the ComponentParameters data structure,
and the address of your CMMatchColors subroutine. For a description of the
function prototype to which your subroutine must adhere, see CMMatchColors
(page 470).

The parameters passed to your CMM for this request include an array of type
CMColor containing the list of colors to match and a one-based count of the
number of colors in the list.

To handle this request, your CMM must match the source colors in the list to
the color gamut of the destination profile, replacing the color value
specifications in the myColors array with the matched colors specified in the
destination profile’s data color space. You should use the rendering intent and
the quality flag setting of the source profile in matching the colors. For a
description of the color list array data structure, see CMColor (page 378).

Checking a List of Colors 6

When a ColorSync-supportive application or device driver calls the
CWCheckColors function for your CMM to handle, the Component Manager calls
your CMM with a color gamut-checking session request, setting the what field
of the ComponentParameters data structure to kCMMCheckColors and passing you a
list of colors to check.

Before the Component Manager calls your CMM with the kCMMCheckColors
request, it calls your CMM with one of the initialization requests—kCMMInit,
Creating a Color Management Module 443
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
kNCMMInit, or kCMMConcatInit—passing to your CMM in the params field of the
ComponentParameters data structure the profiles for the color gamut-checking
session.

In response to the kCMMCheckColors request, your CMM should call its
CMCheckColors subroutine. For example, if you use the Component Manager’s
CallComponentFunctionWithStorage function, you pass it a handle to the storage
for this component instance, the ComponentParameters data structure, and the
address of your CMCheckColors subroutine. For a description of the function
prototype to which your subroutine must adhere, see CMCheckColors (page 472).

In addition to the handle to the private storage containing the profile data, the
CallComponentFunctionWithStorage function passes to your CMCheckColors
subroutine an array of type CMColor containing the list of colors to gamut check,
a one-based count of the number of colors in the list, and an array of longs.

To handle this request, your CMM should test the given list of colors against the
gamut specified by the destination profile to determine whether the colors fall
within a destination device’s color gamut. For each source color in the list that
is out of gamut, you must set the corresponding bit in the result array to 1.

Responding to ColorSync Manager Optional Request Codes 6

This section describes some of the processes your CMM can perform in
response to the optional ColorSync Manager requests if your CMM supports
them. Before the Component Manager calls your CMM with any of these
requests, it first calls your CMM with a can do request to determine if you
support the specific optional request code. This section includes the following:

■ “Validating That a Profile Meets the Base Content Requirements” (page 445)
describes how to handle a kCMMValidateProfile request.

■ “Matching the Colors of a Bitmap” (page 446) describes how to handle a
kCMMMatchBitmap request.

■ “Checking the Colors of a Bitmap” (page 447) describes how to handle a
kCMMCheckBitmap request.

■ “Matching the Colors of a Pixel Map Image” (page 448) describes how to
handle the kCMMMatchPixMap request.

■ “Checking the Colors of a Pixel Map Image” (page 449) describes how to
handle the kCMMCheckPixMap request.
444 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
■ “Initializing the Component Instance for a Session Using Concatenated
Profiles” (page 450) describes how to handle a kCMMConcatInit request.

■ “Creating a Device Link Profile and Opening a Reference to It” (page 451)
describes how to handle a kCMMNewLinkProfile request.

■ “Obtaining PostScript-Related Data From a Profile” (page 452) describes how
to handle the kCMMGetPS2ColorSpace, kCMMGetPS2ColorRenderingIntent, and
kCMMGetPS2ColorRendering requests.

■ “Obtaining the Size of the Color Rendering Dictionary for PostScript
Printers” (page 454) describes how to handle a
kCMMGetPS2ColorRenderingVMSize request.

■ “Flattening a Profile for Embedding in a Graphics File” (page 455) describes
how to handle a kCMMFlattenProfile request.

■ “Unflattening a Profile” (page 456) describes how to handle a
kCMMUnflattenProfile request.

■ “Supplying Named Color Space Information” (page 457) describes how to
handle the kCMMGetNamedColorInfo, kCMMGetNamedColorValue,
kCMMGetIndNamedColorValue, kCMMGetNamedColorIndex, and
kCMMGetNamedColorName requests.

Validating That a Profile Meets the Base Content Requirements 6

When a ColorSync-supportive application or device-driver calls the
CMValidateProfile function for your CMM to handle, the Component Manager
calls your CMM with the what field of the ComponentParameters data structure
set to kCMMValidateProfile if your CMM supports the request.

In response to this request code, your CMM should call its CMMValidateProfile
subroutine. One way to do this, for example, is by calling the Component
Manager’s CallComponentFunction function, passing it the ComponentParameters
data structure and the address of your CMMValidateProfile subroutine. To
handle this request, you don’t need private storage for ColorSync profile
information, because the profile reference is passed to your function. However,
if your CMM uses private storage for other purposes, you should call the
Component Manager’s CallComponentFunctionWithStorage function. For a
description of the function prototype to which your subroutine must adhere,
see CMMValidateProfile (page 476).
Creating a Color Management Module 445
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
The CallComponentFunction function passes to your CMMValidateProfile
subroutine a reference to the profile whose contents you must check and a flag
whose value you must set to report the results.

To handle this request, your CMM should test the profile contents against the
baseline profile elements requirements for a profile of this type as specified by
the International Color Consortium. It should determine if the profile contains
the minimum set of elements required for its type and set the response flag to
true if the profile contains the required elements and false if it doesn’t.

To obtain a copy of the International Color Consortium Profile Format Specification,
version 2.x, visit the ICC Web site at <http://www.color.org/>.

The ICC also defines optional tags, which may be included in a profile. Your
CMM might use these optional elements to optimize or improve its processing.
Additionally, a profile might include private tags defined to provide your CMM
with processing capability it uses. The profile developer can define these private
tags, register the tag signatures with the ICC, and include the tags in a profile.

If your CMM is dependent on optional or private tags, your CMMValidateProfile
function should check for the existence of these tags also.

Instead of itself checking the profile for the minimum profile elements
requirements for the profile class, your CMMValidateProfile function may use
the Component Manager functions to call the default CMM and have it perform
the minimum defaults requirements validation.

To call the default CMM when responding to a kCMMValidateProfile request
from an application, your CMM can use the standard mechanisms applications
use to call a component. For information on these mechanisms, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

Matching the Colors of a Bitmap 6

When a ColorSync-supportive application or device driver calls the
CWMatchBitMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the ComponentParameters data structure set to
kCMMMatchBitmap if your CMM supports the request. If your CMM supports this
request code, your CMM should be prepared to receive any of the bitmap types
defined by the ColorSync Manager.

In response to this request code, your CMM should call its CMMatchBitmap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
446 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
handle for this component instance, the ComponentParameters data structure,
and the address of your CMMatchBitmap subroutine. For a description of the
function prototype to which your subroutine must adhere, see CMMatchBitmap
(page 477).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMMatchBitmap subroutine a pointer to the bitmap containing the source image
data whose colors your function must match, a pointer to a callback function
supplied by the calling program, a reference constant your subroutine must
pass to the callback function when you invoke it, and a pointer to a bitmap in
which your function stores the resulting color-matched image.

The callback function supplied by the calling function monitors the
color-matching progress as your function matches the bitmap colors. You
should call this function at regular intervals. Your CMMatchBitmap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-matching process. In this case, you
should terminate the color-matching process.

To handle this request, your CMMatchBitmap function must match the colors of
the source image bitmap to the color gamut of the destination profile using the
profiles specified by a previous kNCMInit, kCMMInit, or kCMMConcatInit request to
your CMM for this component instance. You must store the color-matched
image in the bitmap result parameter passed to your subroutine. If you are
passed a NULL parameter, you must match the bitmap in place.

For a description of the prototype of the callback function supplied by the
calling program, see MyCMBitmapCallBackProc (page 345).

Checking the Colors of a Bitmap 6

When a ColorSync-supportive application or device driver calls the
CWCheckBitMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the ComponentParameters data structure set to
kCMMCheckBitmap if your CMM supports the request. If your CMM supports this
request code, your CMM should be prepared to receive any of the bitmap types
defined by the ColorSync Manager.

In response to this request code, your CMM should call its CMCheckBitmap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
Creating a Color Management Module 447
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
and the address of your CMCheckBitmap subroutine. For a description of the
function prototype to which your subroutine must adhere, see
MyCMBitmapCallBackProc (page 345).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMCheckBitmap subroutine a pointer to the bitmap containing the source image
data whose colors your function must check, a pointer to a callback
progress-reporting function supplied by the calling program, a reference
constant your subroutine must pass to the callback function when you invoke
it, and a pointer to a resulting bitmap whose pixels your subroutine must set to
show if the corresponding source color is in or out of gamut. A black pixel
(value 1) in the returned bitmap indicates an out-of-gamut color, while a white
pixel (value 0) indicates the color is in gamut.

The callback function supplied by the calling function monitors the color
gamut-checking progress. You should call this function at regular intervals.
Your CMCheckBitmap function should monitor the progress function for a
returned value of true, which indicates that the user interrupted the color
gamut-checking process. In this case, you should terminate the process.

For a description of the prototype of the callback function supplied by the
calling program, see MyCMBitmapCallBackProc (page 345).

Using the content of the profiles that you stored at initialization time for this
component instance, your CMCheckBitmap subroutine must check the colors of
the source image bitmap against the color gamut of the destination profile. If a
pixel is out of gamut, your function must set the corresponding pixel in the
result image bitmap to 1. The ColorSync Manager returns the resulting bitmap
to the calling application or driver to report the outcome of the check.

For complete details on the CMCheckBitmap subroutine parameters and how your
CMCheckBitmap subroutine communicates with the callback function, see
MyCMBitmapCallBackProc (page 345).

Matching the Colors of a Pixel Map Image 6

When a ColorSync-supportive application or device driver calls the
CWMatchPixMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the ComponentParameters data structure set to
kCMMMatchPixMap if your CMM supports the request. If your CMM supports this
request code, your CMMatchPixMap function should be prepared to receive any of
the pixel map types defined by QuickDraw.
448 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
In response to this request code, your CMM should call its CMMatchPixMap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMMatchPixMap subroutine. For a description of the
function prototype to which your subroutine must adhere, see CMMatchPixMap
(page 486).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMMatchPixMap subroutine a pointer to the pixel map containing the source
image to match, a pointer to a callback progress-reporting function supplied by
the calling program, and a reference constant your subroutine must pass to the
callback function when you invoke it.

To handle this request, your CMMatchPixMap subroutine must match the colors of
the source pixel map image to the color gamut of the destination profile,
replacing the original pixel colors of the source image with their corresponding
colors expressed in the data color space of the destination profile. The
ColorSync Manager returns the resulting color-matched pixel map to the calling
application or driver.

The callback function supplied by the calling function monitors the
color-matching progress. You should call this function at regular intervals. Your
CMMatchPixMap function should monitor the progress function for a returned
value of true, which indicates that the user interrupted the color-matching
process. In this case, you should terminate the process.

For a description of the prototype of the callback function supplied by the
calling program, see MyCMBitmapCallBackProc (page 345).

Checking the Colors of a Pixel Map Image 6

When a ColorSync-supportive application or device-driver calls the
CWCheckPixMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the ComponentParameters data structure set to
kCMMCheckPixMap if your CMM supports the request.

In response to this request code, your CMM should call its CMCheckPixMap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMCheckPixMap subroutine. For a description of the
Creating a Color Management Module 449
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
function prototype to which your subroutine must adhere, see CMCheckPixMap
(page 488).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMCheckPixMap subroutine a pointer to the pixel map containing the source
image to check, a QuickDraw bitmap in which to report the color
gamut-checking results, a pointer to a callback progress-reporting function
supplied by the calling program, and a reference constant your subroutine must
pass to the callback function when you invoke it.

Using the content of the profiles passed to you at initialization time, your
CMCheckPixMap subroutine must check the colors of the source pixel map image
against the color gamut of the destination profile to determine if the pixel colors
are within the gamut. If a pixel is out of gamut, your subroutine must set to 1
the corresponding pixel of the result bitmap. The ColorSync Manager returns
the bitmap showing the color gamut-checking results to the calling application
or device driver.

Initializing the Component Instance for a Session Using Concatenated
Profiles 6

When a ColorSync-supportive application or device driver calls the
CWConcatColorWorld function for your CMM to handle, the Component Manager
calls your CMM with the what field of the ComponentParameters data structure
set to kCMMConcatInit if your CMM supports the request.

In response to this request code, your CMM should call its CMConcatInit
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMConcatInit subroutine. For a description of the
function prototype to which your subroutine must adhere, see CMConcatInit
(page 483).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMConcatInit subroutine a pointer to a data structure of type
CMConcatProfileSet containing an array of profiles to use in a subsequent
color-matching or color gamut-checking session. The profiles in the array are in
processing order—source through destination. The profileSet field of the data
structure contains the array. If the profile array contains only one profile, that
450 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
profile is a device link profile. For a description of the CMConcatProfileSet data
structure, see CMConcatProfileSet (page 384).

Using the storage passed to your entry point function in the CMSession
parameter, your CMConcatInit function should initialize any private data your
CMM will need for a subsequent color session involving the set of profiles.
Before your function returns control to the Component Manager, your
subroutine should store any profile information it requires. In addition to the
standard profile information, you should store the profile header’s quality flags
setting, the profile size, and the rendering intent. After you return control to the
Component Manager, you cannot use the profile references again.

A color-matching or color gamut-checking session for a set of profiles entails
various color transformations among devices in a sequence for which your
CMM is responsible. Your CMM may use Component Manager functions to call
other CMMs if necessary.

There are special guidelines your CMM must follow in using a set of
concatenated profiles for subsequent color-matching or gamut-checking
sessions. These guidelines are described in CMConcatInit (page 483).

Creating a Device Link Profile and Opening a Reference to It 6

When a ColorSync-supportive application or device driver calls the
CWNewLinkProfile function for your CMM to handle, the Component Manager
calls your CMM with the what field of the ComponentParameters data structure
set to kCMMNewLinkProfile if your CMM supports the request.

In response to this request code, your CMM should call its CMNewLinkProfile
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMNewLinkProfile subroutine. For a description of the
function prototype to which your subroutine must adhere, see CMNewLinkProfile
(page 491).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMNewLinkProfile subroutine a pointer to a data structure of type
CMConcatProfileSet containing the array of profiles that will make up the device
link profile.

To handle this request, your subroutine must create a single device link profile
of type DeviceLink that includes the profiles passed to you in the array pointed
Creating a Color Management Module 451
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
to by the profileSet parameter. Your CMM must create a file specification for
the device link profile. A device link profile cannot be a temporary profile: that
is, you cannot specify a location type of cmNoProfileBase for a device link
profile. For information on how to specify the file location, see “Profile Location
Type” (page 393).

The profiles in the array are in the processing order—source through
destination—which you must preserve. After your CMM creates the device link
profile, it must open a reference to the profile and return the profile reference
along with the location specification.

Obtaining PostScript-Related Data From a Profile 6

There are three very similar PostScript-related request codes that your CMM
may support. Each of these codes requests that your CMM obtain or derive
information required by a PostScript printer from the specified profile and pass
that information to a function supplied by the calling program.

When a ColorSync-supportive application or device driver calls the high-level
function corresponding to the request code and your CMM is specified to
handle it, the Component Manager calls your CMM with the what field of the
ComponentParameters data structure set to the corresponding request code if
your CMM supports it. Here are the three high-level functions and their
corresponding request codes:

■ When the application or device driver calls the CMGetPS2ColorSpace function,
the Component Manager calls your CMM with a kCMMGetPS2ColorSpace
request code. To respond to this request, your CMM must obtain the color
space data from a source profile and pass the data to a low-level data-transfer
function supplied by the calling application or device driver.

■ When the application or device driver calls the
CMGetPS2ColorRenderingIntent function, the Component Manager calls your
CMM with a kCMMGetPS2ColorRenderingIntent request code. To respond to
this request, your CMM must obtain the color rendering intent from the
source profile and pass the data to a low-level data-transfer function
supplied by the calling application or device driver.

■ When the application or device driver calls the CMGetPS2ColorRendering
function, the Component Manager calls your CMM with a
kCMMGetPS2ColorRendering request code. To respond to this request, your
CMM must obtain the rendering intent from the source profile’s header. Then
your CMM must obtain or derive the color rendering dictionary for that
452 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
rendering intent from the destination profile and pass the CRD data to a
low-level data-transfer function supplied by the calling application or device
driver.

In response to each of these request codes, your CMM should call its subroutine
that handles the request. For example, to do this, your CMM may call the
Component Manager’s CallComponentFunctionWithStorage function, passing it
the storage handle for this component instance, the ComponentParameters data
structure, and the address of your subroutine handler.

For a description of the function prototypes to which your subroutine must
adhere for each of these requests, see “ColorSync Reference for Color
Management Modules” (page 467).

■ For kCMMGetPS2ColorSpace, see CMMGetPS2ColorSpace (page 493)

■ For kCMMGetPS2ColorRenderingIntent, see CMMGetPS2ColorRenderingIntent
(page 495)

■ For kCMMGetPS2ColorRendering, see CMMGetPS2ColorRendering (page 497).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
subroutine a reference to the source profile containing the data you must obtain
or derive, a pointer to the function supplied by the calling program, and a
reference constant that you must pass to the supplied function each time your
CMM calls it. For kCMMGetPS2ColorRendering, your CMM is also passed a
reference to the destination profile.

To handle each of these requests, your subroutine must allocate a data buffer in
which to pass the particular PostScript-related data to the function supplied by
the calling application or driver. Your subroutine must call the supplied
function repeatedly until you have passed all the data to it. For a description of
the prototype of the application or driver-supplied function, see
MyColorSyncDataTransfer (page 342).

For a description of how each of your subroutines must interact with the calling
program’s supplied function, see the descriptions of the prototypes for the
subroutines in “Application-Defined Functions for the ColorSync Manager”
(page 340).
Creating a Color Management Module 453
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Obtaining the Size of the Color Rendering Dictionary for PostScript
Printers 6

When a ColorSync-supportive application or device driver calls the
CMGetPS2ColorRenderingVMSize function for your CMM to handle, the
Component Manager calls your CMM with the what field of the
ComponentParameters data structure set to kCMMGetPS2ColorRenderingVMSize if
your CMM supports the request.

In response to this request code, your CMM should call its
CMMGetPS2ColorRenderingVMSize subroutine. For example, to do this, your CMM
may call the Component Manager’s CallComponentFunctionWithStorage
function, passing it the storage handle for this component instance, the
ComponentParameters data structure, and the address of your
CMMGetPS2ColorRenderingVMSize subroutine. For a description of the function
prototype to which your subroutine must adhere, see “ColorSync Reference for
Color Management Modules” (page 467).

In addition to the storage handle for global data for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMMGetPS2ColorRenderingVMSize subroutine a reference to the source profile
identifying the rendering intent and a reference to the destination profile
containing the color rendering dictionary (CRD) for the specified rendering
intent.

To handle this request, your CMM must obtain or assess and return the
maximum VM size for the CRD of the specified rendering intent.

If the destination profile contains the Apple-defined private tag 'psvm',
described in the next paragraph, then your CMM may read the tag and return
the CRD VM size data supplied by this tag for the specified rendering intent. If
the destination profile does not contain this tag, then you must assess the VM
size of the CRD.

The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional tag
that a printer profile may contain to identify the maximum VM size of a CRD
for different rendering intents.

This tag’s element data includes an array containing one entry for each
rendering intent and its virtual memory size. For a description of the data
structures that define the tag’s element data, see “Color Rendering Dictionary
Virtual Memory Size” (page 390).
454 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Flattening a Profile for Embedding in a Graphics File 6

Flattening refers to transferring a profile stored in an independent disk file to an
external profile format that can be embedded in a graphics document.
Unflattening refers to transferring from the embedded format to an
independent disk file.

Starting With ColorSync 2.5 6

Starting with ColorSync version 2.5, when a ColorSync-supportive application
or device driver calls the CMFlattenProfile function, the ColorSync Manager
calls the flatten function provided by the calling program or driver directly,
without going through the preferred, or any, CMM.

Prior to ColorSync 2.5 6

Prior to ColorSync version 2.5, when a ColorSync-supportive application or
device driver calls the CMFlattenProfile function for your CMM to handle, the
Component Manager calls your CMM with the what field of the
ComponentParameters data structure set to kCMMFlattenProfile if your CMM
supports the request.

In response to this request code, your CMM should call its CMMFlattenProfile
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMMFlattenProfile subroutine. For a description of the
function prototype to which your subroutine must adhere, see
CMMFlattenProfile (page 503).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMMFlattenProfile subroutine a reference to the profile to be flattened, a pointer
to a function supplied by the calling program, and a reference constant your
subroutine must pass to the calling program’s function when you invoke it.

To handle this request, your subroutine must extract the profile data from the
profile, allocate a buffer in which to pass the profile data to the supplied
function, and pass the profile data to the function, keeping track of the amount
of data remaining to pass.

For a description of the prototype of the function supplied by the calling
program, see MyColorSyncDataTransfer (page 342). See also CMMFlattenProfile
Creating a Color Management Module 455
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
(page 503) for details on how your CMMFlattenProfile subroutine communicates
with the function supplied by the calling program.

Unflattening a Profile 6

Unflattening refers to transferring from the embedded format to an
independent disk file. Flattening refers to transferring a profile stored in an
independent disk file to an external profile format that can be embedded in a
graphics document.

Starting With ColorSync 2.5 6

Starting with ColorSync version 2.5, when a ColorSync-supportive application
or device driver calls the CMUnflattenProfile function, the ColorSync Manager
calls the unflatten function provided by the calling program or driver directly,
without going through the preferred, or any, CMM.

Prior to ColorSync 2.5 6

Prior to ColorSync version 2.5, when a ColorSync-supportive application or
device driver calls the CMUnflattenProfile function, the Component Manager
calls your CMM with the what field of the ComponentParameters data structure
set to kCMMUnflattenProfile, if your CMM supports that request code.

In response to the kCMMUnflattenProfile request code, your CMM should call its
CMMUnflattenProfile function. To do this, your CMM can call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the ComponentParameters data structure,
and the address of your CMMUnflattenProfile function. For more information,
see CMMUnflattenProfile (page 505).

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
CMMUnflattenProfile function a pointer to a function supplied by the calling
program and a reference constant. Your function passes the reference constant
to the calling program’s function when you invoke it. The calling program’s
function obtains the profile data and returns it to your subroutine. For a more
information on the data transfer function, see MyColorSyncDataTransfer
(page 342).

To handle this request, your subroutine must create a file in which to store the
profile data. You should create the file in the temporary items folder. Your
CMMUnflattenProfile subroutine must call the supplied ColorSyncDataTransfer
456 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
function repeatedly to obtain the profile data. Before calling the
ColorSyncDataTransfer function, your CMMUnflattenProfile function must
allocate a buffer to hold the returned profile data.

Your CMMUnflattenProfile function must identify the profile size and maintain a
counter to track the amount of data transferred and the amount of data
remaining. This information allows you to determine when to call the
ColorSyncDataTransfer function for the final time.

Supplying Named Color Space Information 6

When a ColorSync-supportive application or device driver calls the
CMGetNamedColorInfo function for your CMM to handle, the Component
Manager calls your CMM with the what field of the ComponentParameters data
structure set to kCMMGetNamedColorInfo if your CMM supports the request.

In response to this request code, your CMM should call its
CMMGetNamedColorInfo subroutine. To do this, your CMM might call the
Component Manager’s CallComponentFunctionWithStorage function, passing it
the storage handle for this component instance, the ComponentParameters data
structure, and the address of your CMMGetNamedColorInfo subroutine.

The CMMGetNamedColorInfo function returns information about a named color
space from its profile reference. For a description of the function prototype to
which your subroutine must adhere, see CMMGetNamedColorInfo (page 508).

A named color profile has a value of 'nmcl' in the Profile/Device class field of
its header. If the source profile passed to your CMMGetNamedColorInfo subroutine
is a named color profile, you can extract the necessary information to return in
the parameters of the CMMGetNamedColorInfo routine.

Your CMM can obtain named color information as well as profile header
information by reading the namedColor2Tag tag (signature 'ncl2'). This tag’s
element data includes a count of named colors, the number of device channels,
and a prefix and suffix for each named color name. The data also includes the
named color names themselves, along with profile connection space (PCS) and
device color information for each named color. For information on the format of
the namedColor2Tag tag, see the International Color Consortium Profile Format
Specification.

Your CMM responds similarly for other named color requests:

■ The CMGetNamedColorValue (page 258) routine generates a
kCMMGetNamedColorValue request, which you respond to in your
Creating a Color Management Module 457
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
CMMGetNamedColorValue routine. The CMMGetNamedColorValue routine returns
device and PCS color values from a named color space profile for a specific
color name.

■ The CMGetIndNamedColorValue (page 259) routine generates a
kCMMGetIndNamedColorValue request, which you respond to in your
CMMGetIndNamedColorValue routine. The CMMGetIndNamedColorValue routine
returns device and PCS color values from a named color space profile for a
specific named color index.

■ The CMGetNamedColorIndex (page 260) routine generates a
kCMMGetNamedColorIndex request, which you respond to in your
CMMGetNamedColorIndex routine. The CMMGetNamedColorIndex routine returns a
named color index from a named color space profile for a specific color
name.

■ The CMGetNamedColorName (page 260) routine generates a
kCMMGetNamedColorName request, which you respond to in your
CMMGetNamedColorName routine. The CMMGetNamedColorName routine returns a
named color name from a named color space profile for a specific named
color index.
458 Creating a Color Management Module

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
Summary of the Color Management Modules 6

Functions 6

Required Functions
pascal CMError NCMInit (ComponentInstance CMSession,

CMProfileRef srcProfile,
CMProfileRef dstProfile);

pascal CMError CMMatchColors(ComponentInstance CMSession,
CMColor *myColors,
unsigned long count);

pascal CMError CMCheckColors(ComponentInstance CMSession,
CMColor *myColors,
unsigned long count,
long *result);

pascal CMError CMInit(ComponentInstance CMSession,
CMProfileHandle srcProfile,
CMProfileHandle dstProfile)

Optional Functions
pascal CMError CMMValidateProfile (

ComponentInstance CMSession,
CMProfileRef prof,
Boolean *valid);

pascal CMError CMMatchBitmap(ComponentInstance CMSession,
const CMBitmap *bitmap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitmap *matchedBitmap);
Summary of the Color Management Modules 459
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
pascal CMError CMCheckBitmap(ComponentInstance CMSession,
const CMBitmap *bitmap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitmap *resultBitmap);

pascal CMError CMConcatInit (ComponentInstance CMSession,
CMConcatProfileSet *profileSet);

pascal CMError CMMatchPixMap(ComponentInstance CMSession,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

pascal CMError CMCheckPixMap(ComponentInstance CMSession,
const PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
BitMap *myBitMap,
void *refCon);

pascal CMError CMNewLinkProfile (ComponentInstance CMSession,
CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

pascal CMError CMConcatenateProfiles (
ComponentInstance CMSession,
CMProfileHandle thru,
CMProfileHandle dst,
CMProfileHandle *newDst);

pascal CMError CMMGetPS2ColorSpace (
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

pascal CMError CMMGetPS2ColorRenderingIntent (
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);
460 Summary of the Color Management Modules

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
pascal CMError CMMGetPS2ColorRendering (
ComponentInstance CMSession,
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

pascal CMError CMMGetPS2ColorRenderingVMSize (
ComponentInstance CMSession,
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long vmSize);

pascal CMError CMMFlattenProfile (
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

pascal CMError CMMUnflattenProfile (
ComponentInstance CMSession,
FSSpec *resultFileSpec,
CMFlattenUPP proc,
void *refCon);

pascal CMError CMMGetNamedColorInfo(
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long *deviceChannels,
OSType *deviceColorSpace,
OSType *PCSColorSpace,
unsigned long *count,
StringPtr prefix,
StringPtr suffix);

pascal CMError CMMGetNamedColorValue(
ComponentInstance CMSession,
CMProfileRef prof,
StringPtr name,
CMColor *deviceColor,
CMColor *PCSColor);
Summary of the Color Management Modules 461
11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
pascal CMError CMMGetIndNamedColorValue(
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long index,
CMColor *deviceColor,
CMColor *PCSColor);

pascal CMError CMMGetNamedColorIndex(
ComponentInstance CMSession,
CMProfileRef prof,
StringPtr name,
unsigned long *index);

pascal CMError CMMGetNamedColorName(
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long index,
StringPtr name);

Constants 6

enum {
CMMInterfaceVersion = 1
};

/* request codes (required) */
enum {

kCMMInit = 0,
kCMMMatchColors = 1,
kCMMCheckColors = 2
kNCMMInit = 6,
};

/* request codes (optional) */
enum {

kCMMMatchPixMap = 3,
kCMMCheckPixMap = 4,
kCMMConcatenateProfiles = 5, /* For backward compatibility

with ColorSync 1.0 only. */
kCMMConcatInit = 7,
kCMMValidateProfile = 8,
kCMMMatchBitmap = 9,
kCMMCheckBitmap = 10,
462 Summary of the Color Management Modules

11/20/98  Apple Computer, Inc.

C H A P T E R 6

Developing Color Management Modules
kCMMGetPS2ColorSpace = 11,
kCMMGetPS2ColorRenderingIntent = 12,
kCMMGetPS2ColorRendering = 13,
kCMMFlattenProfile = 14,
kCMMUnflattenProfile = 15,
kCMMNewLinkProfile = 16,
kCMMGetPS2ColorRenderingVMSize = 17,
kCMMGetNamedColorInfo = 70,
kCMMGetNamedColorValue = 71,
kCMMGetIndNamedColorValue = 72,
kCMMGetNamedColorIndex = 73,
kCMMGetNamedColorName = 74
};
Summary of the Color Management Modules 463
11/20/98  Apple Computer, Inc.

C H A P T E R 7

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 7-0
Listing 7-0
Table 7-0
7 ColorSync Reference for Color
Management Modules
Required CMM-Defined Functions 467
NCMInit 468
CMMatchColors 470
CMCheckColors 472

Optional CMM-Defined Functions 474
CMMValidateProfile 476
CMMatchBitmap 477
CMCheckBitmap 480
CMConcatInit 483
CMMatchPixMap 486
CMCheckPixMap 488
CMNewLinkProfile 491
CMMGetPS2ColorSpace 493
CMMGetPS2ColorRenderingIntent 495
CMMGetPS2ColorRendering 497
CMMGetPS2ColorRenderingVMSize 500
CMMFlattenProfile 503
CMMUnflattenProfile 505
CMMGetNamedColorInfo 508
CMMGetNamedColorValue 510
CMMGetIndNamedColorValue 511
CMMGetNamedColorIndex 512
CMMGetNamedColorName 513

Constants 514
Color Management Module Component Interface 515
Required Request Codes 515
Optional Request Codes 517
465

C H A P T E R 7
ColorSync Reference for Color Management Modules 7

This section describes the request code constants passed to your color
management module (CMM) from the Component Manager when a
ColorSync-supportive application or device driver calls a ColorSync Manager
function to request services your CMM provides. Your CMM must support a
required subset of these request codes, and it should support the other codes as
well.

This section also describes the functions your CMM may define to respond to
ColorSync Manager request codes. For information on how to develop a CMM
that responds to ColorSync Manager request codes, see “Developing Color
Management Modules” (page 429).

■ “Required CMM-Defined Functions” (page 467) describes the functions that
your CMM should define to handle ColorSync Manager required request
codes.

■ “Optional CMM-Defined Functions” (page 474) describes the functions that
your CMM should define to handle ColorSync Manager optional request
codes.

■ “Constants” (page 514) describes the constants for the CMM component
interface version and the ColorSync Manager request codes.

“ColorSync Version Information” (page 525) describes the Gestalt information,
shared library version numbers, CMM version numbers, and ColorSync header
files you use with different versions of the ColorSync Manager. It also includes
CPU and Mac OS system requirements.

Required CMM-Defined Functions 7

This section describes the functions that your CMM should define to handle
ColorSync Manager required request codes.

■ NCMInit (page 468) handles the kNCMMInit request by performing any required
private initialization.

■ CMMatchColors (page 470) handles the kCMMMatchColors request by matching
the specified colors to the gamut of the destination profile.

■ CMCheckColors (page 472) handles the kCMMCheckColors request by checking
the specified colors against the gamut of the destination profile.
Required CMM-Defined Functions 467
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
NCMInit 7

Handles the kNCMMInit request by performing any required private
initialization.

A CMM must respond to the kNCMMInit request code. The ColorSync Manager
sends this code to request your CMM to instantiate any private data it needs. A
CMM responds to the kNCMMInit request code by calling a CMM-defined
subroutine, for example, NCMInit to handle the request.

The NCMInit function is a color management module–defined subroutine.

pascal CMError NCMInit (
ComponentInstance CMSession,
CMProfileRef srcProfile,
CMProfileRef dstProfile);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProfile A reference to the source profile to use in the color-matching or
color-checking session. Your CMM should store any profile
information it requires before returning to the Component
Manager. (The calling program obtained the profile reference
passed in this parameter.)

dstProfile A reference to the destination profile to use in the
color-matching or color-checking session. Your CMM should
store any profile information it requires before returning to the
Component Manager. (The calling program obtained the profile
reference passed in this parameter.)

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The Component Manager calls your CMM with the kNCMMInit request code
when a ColorSync-supportive application or device driver specifies your CMM
for a color-matching or color-checking session. For example, when an
application or device driver calls the NCWNewColorWorld function, the Component
Manager calls your NCMInit function.
468 Required CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Using the storage pointed to by the CMSession handle, your NCMInit function
should initialize any private data your CMM will need for the color session and
for handling subsequent calls pertaining to this component instance. Your
function must obtain required information from the profiles and initialize
private data for subsequent color-matching or color-checking sessions with
these values. After your function returns to the Component Manager, it no
longer has access to the profiles.

This request gives you the opportunity to examine the profile contents before
storing them. If you do not support some aspect of the profile, then you should
return an unimplemented error in response to this request. For example, if your
CMM does not implement multichannel color support, you should return an
unimplemented error at this point.

In addition to the standard profile information you should preserve in response
to this request, you should preserve the quality flag setting specified in the
profile header and the rendering intent, also specified in the header.

The Component Manager calls your CMM with a standard open request to
open the CMM when a ColorSync-supportive application or device driver
requests that the Component Manager open a connection to your component.
At this time, your component should allocate any memory it needs to maintain
a connection for the requesting application or driver. You should allocate
memory from the current heap zone. If that attempt fails, you should allocate
memory from the system heap or the temporary heap. You can use the
SetComponentInstanceStorage function to associate the allocated memory with
the component instance. Whenever the calling application or driver requests
services from your component, the Component Manager supplies you with the
handle to this memory in the CMSession parameter.

The Component Manager may call your CMM with the kNCMMInit request code
multiple times after it calls your CMM with a request to open the CMM. For
example, it may call your CMM with an initialization request once with one
pair of profiles and then again with another pair of profiles. For each call, you
need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all seven classes of profiles defined by the ICC. For
information on the seven classes of profiles, see “ColorSync Reference for
Applications and Drivers” (page 217).
Required CMM-Defined Functions 469
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMatchColors 7

Handles the kCMMMatchColors request by matching the specified colors to the
gamut of the destination profile.

A CMM must respond to the kCMMMatchColors request code. The ColorSync
Manager sends this request code to your CMM on behalf of an application or
device driver that called the CWMatchColors function or high-level QuickDraw
operations.

The ColorSync Manager dispatches this request to the Component Manager,
which calls your CMM to service the request. A CMM typically responds to the
kCMMMatchColors request code by calling a CMM-defined function (for example,
CMMatchColors) to handle the request by matching colors in the color list.

The CMMatchColors function is a color management module–defined subroutine.

pascal CMError CMMatchColors (
ComponentInstance CMSession,
CMColor *myColors,
unsigned long count);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myColors A pointer to a color union array of type CMColor (page 378)
specified by the calling application or device driver. On input,
this array contains the list of colors to match. The color values
are given in the data color space of the source profile specified
by a previous kNCMMInit or kCMMConcatInit request to your
CMM. On output, this array contains the list of matched colors
specified by your function in the data color space of the
destination profile.

count A one-based count of the number of colors in the color list of the
CMColor array.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
470 Required CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
DISCUSSION

Before the Component Manager calls your CMM with a ColorSync request to
match colors, it calls your CMM with a kNCMMInit, kCMMInit, or kCMMConcatInit
request, passing your CMM references to the profiles to use for the
color-matching session and requesting your CMM to initialize the session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request code, it passes references to the source and destination profiles
to use for the color-matching session. If it calls your CMM with the ColorSync
kCMMConcatInit request code, it passes a pointer to an array of type
ConcatProfileSet containing a set of profiles or a device link profile specified by
the calling application to use for the color-matching session. For information
about the ConcatProfileSet data type, see “CMConcatProfileSet” (page 384).

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance.

In response to this request code, you must support 16-bit components for color
spaces other than multichannel components and 8-bit components for HiFi
colors.

Using the profile data you set in your storage for this component instance, your
CMMatchColors function should match the colors specified in the myColors array
to the color gamut of the destination profile, replacing the color value
specifications in the myColors array with the matched colors specified in the
data color space of the destination profile. If you used some other method to
store profile data for this component instance when you initialized the session,
you should obtain the profile data you require for the color matching from that
storage. The color list may contain multichannel color data types, so your CMM
must support them.

For a color-matching session with a named color space profile and other
profiles, the named color profile must be first in the color world. A color world
of this type cannot be used with bitmap or pixel map functions—it can only be
used with a function such as CMMatchColors, with the myColors color list
containing the named color indexes. For more information on the rules
governing the types of profiles you can specify in a profile array, see the
following:

■ CMHeader (page 351)

■ NCWNewColorWorld (page 262)

■ CWConcatColorWorld (page 265)
Required CMM-Defined Functions 471
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
■ CWNewLinkProfile (page 267)

CMCheckColors 7

Handles the kCMMCheckColors request by checking the specified colors against
the gamut of the destination profile.

A CMM must respond to the kCMMCheckColors request code. The ColorSync
Manager sends this request code to your CMM on behalf of an application or
device driver that called the CWCheckColors function. The ColorSync Manager
dispatches this request to the Component Manager, which calls your CMM to
service the request. A CMM typically responds to the kCMMCheckColors request
code by calling a CMM-defined function (for example, CMCheckColors) to handle
the request.

The CMCheckColors function is a color management module–defined subroutine.

pascal CMError CMCheckColors (
ComponentInstance CMSession,
CMColor *myColors,
unsigned long count,
long *result);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myColors A pointer to a color union array of type CMColor (page 378),
specified by the calling application or device driver, that
contains the list of colors to check against the destination
device’s color gamut. The color values are given in the data
color space of the source profile specified by a previous
kNCMMInit or kCMMConcatInit request to your CMM.

count A one-based count of the number of colors in the color list of the
CMColor array.

result A pointer to an array of long data types used as a bit field, with
each bit representing a color in the array pointed to by myColors.
The result array contains enough members to allow for 1 bit to
represent each color in the myColors array. Your function sets a
472 Required CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
bit in the array if the corresponding color-list color is out of
gamut for the destination profile. On return, this array indicates
the color-checking results.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

When your CMM receives a kCMMCheckColors request code, your CMM should
test the given list of colors against the gamut specified by the destination profile
to report if the colors fall within a destination device’s color gamut. Before the
Component Manager calls your CMM with a ColorSync request to gamut check
colors, it calls your CMM with a kNCMMInit, kCMMInit, or kCMMConcatInit request
passing your CMM references to the profiles to use for the color-checking
session and requesting your CMM to initialize the session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
use for the color-checking session. (If it calls your CMM with the ColorSync
kCMMConcatInit request, it passes a pointer to an array of type ConcatProfileSet
containing a set of profiles or a device link profile specified by the calling
program to use for the color-checking session.)

When the Component Manager calls your CMM with the kCMMCheckColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling application’s or device driver’s component
instance. This is the storage whose data you initialized when the Component
Manager called you to initialize the session for this component instance.

Using the profile data set in your storage for this component instance, your
CMCheckColors function should check the colors specified in the myColors array
against the color gamut of the destination profile. Your function should use the
result array to return indication of whether the colors in the list are in or out of
gamut for the destination device. If you used some other method to store profile
data for this component instance when you initialized the session, you should
obtain the profile data you require for the color matching from that storage. The
color list may contain multichannel color data types, so your CMM must
support them. If your CMM does not support these color data types, you
should return an unimplemented error in response to the initialization request
code. See the functions NCMInit (page 468) and CMConcatInit (page 483) for more
information.
Required CMM-Defined Functions 473
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
For each color in the list, your CMCheckColors function should set the
corresponding bit in the result bit array if the color is out of gamut for the
destination device as specified by the destination profile. The leftmost bit in the
field corresponds to the first color in the list.

The gamut test your function performs provides a preview of color matching.
The ColorSync Manager returns the results to the calling application or device
driver.

Optional CMM-Defined Functions 7

This section describes the functions that your CMM should define to handle
ColorSync Manager optional request codes.

■ CMMValidateProfile (page 476) handles the kCMMValidateProfile request by
determining if the specified profile contains the minimum set of elements
required for a profile of its type.

■ CMMatchBitmap (page 477) handles the kCMMMatchBitmap request by matching
the colors of the source image bitmap to the color gamut of the destination
profile.

■ CMCheckBitmap (page 480) handles the kCMMCheckBitmap request by checking
the colors of the source image bitmap against the color gamut of the
destination profile.

■ CMConcatInit (page 483) handles the kCMMConcatInit request by initializing
any private data the CMM will need for a color session involving the
specified set of profiles.

■ CMMatchPixMap (page 486) handles the kCMMMatchPixMap request by matching
the colors of the specified pixel map image to the destination profile’s color
gamut.

■ CMCheckPixMap (page 488) handles the kCMMCheckPixMap request by checking
the colors of the specified pixel map image against the color gamut of the
destination profile.

■ CMNewLinkProfile (page 491) handles the kCMMNewLinkProfile request by
creating a single device link profile that includes the profiles in the specified
profile set.
474 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
■ CMMGetPS2ColorSpace (page 493) handles the kCMMGetPS2ColorSpace request by
obtaining or deriving the color space element data from the source profile.

■ CMMGetPS2ColorRenderingIntent (page 495) handles the
kCMMGetPS2ColorRenderingIntent request by obtaining the rendering intent
from the source profile.

■ CMMGetPS2ColorRendering (page 497) handles the kCMMGetPS2ColorRendering
request by obtaining the rendering intent from the header of the source
profile.

■ CMMGetPS2ColorRenderingVMSize (page 500) handles the
kCMMGetPS2ColorRenderingVMSize request by obtaining the maximum virtual
memory (VM) size of the color rendering dictionary (CRD) for the rendering
intent specified by the source profile.

■ CMMFlattenProfile (page 503) handles the kCMMFlattenProfile request by
extracting profile data from the profile to flatten and passing it to the
specified function.

■ CMMUnflattenProfile (page 505) handles the kCMMUnflattenProfile request by
creating a uniquely-named file in the temporary items folder to store the
profile data.

■ CMMGetNamedColorInfo (page 508) handles the kCMMGetNamedColorInfo request
by returning information about a named color space from its profile
reference.

■ CMMGetNamedColorValue (page 510) handles the kCMMGetNamedColorValue
request by returning device and PCS color values from a named color space
profile for a specific color name.

■ CMMGetIndNamedColorValue (page 511) handles the kCMMGetIndNamedColorValue
request by returning device and PCS color values from a named color space
profile for a specific named color index.

■ CMMGetNamedColorIndex (page 512) handles the kCMMGetNamedColorIndex
request by returning a named color index from a named color space profile
for a specific color name.

■ CMMGetNamedColorName (page 513) handles the kCMMGetNamedColorName request
by returning a named color name from a named color space profile for a
specific named color index.
Optional CMM-Defined Functions 475
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMValidateProfile 7

Handles the kCMMValidateProfile request by determining if the specified profile
contains the minimum set of elements required for a profile of its type.

A CMM should respond to the kCMMValidateProfile request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the
CMValidateProfile function. The ColorSync Manager dispatches this request to
the Component Manager, which calls your CMM to service the request. A CMM
typically responds to the kCMMValidateProfile request code by calling a
CMM-defined function (for example, CMMValidateProfile) to handle the request.

The CMMValidateProfile function is a color management module–defined
subroutine.

pascal CMError CMMValidateProfile (
ComponentInstance CMSession,
CMProfileRef prof,
Boolean *valid);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A reference to the profile to validate.

valid A pointer to a flag whose value you set to true if the profile
contains the elements required for a color-matching or
color-checking session for a profile of this type and false if it
doesn’t.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Your CMMValidateProfile function should test the profile whose reference is
passed in the prof parameter to determine if the profile contains the minimum
set of elements required for a profile of its type. For each profile class, such as a
device profile, there is a specific set of required tagged elements defined by the
ICC that the profile must include.
476 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The ICC also defines optional tags, which may be included in a profile. Your
CMM might use these optional elements to optimize or improve its processing.
Additionally, a profile might include private tags defined to provide your CMM
with processing capability it uses. The profile developer can define these private
tags, register the tag signatures with the ICC, and include the tags in a profile.

Your CMMValidateProfile function should check for the existence of the required
minimum set of profile elements for a profile of this type and any optional or
private tags required by your CMM.

Instead of itself checking the profile for the minimum profile elements
requirements for the profile class, your CMMValidateProfile function may use
the Component Manager functions to call ColorSync’s default CMM and have it
perform the minimum defaults requirements validation. The signature of the
default CMM is 'appl'.

To call the default CMM when responding to a kCMMValidateProfile request
from an application, your CMM can use the standard mechanisms used by
applications to call another component. For information, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

CMMatchBitmap 7

Handles the kCMMMatchBitmap request by matching the colors of the source
image bitmap to the color gamut of the destination profile.

A CMM should respond to the kCMMMatchBitmap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the CWMatchBitMap
function or high-level QuickDraw operations. The ColorSync Manager
dispatches this request to the Component Manager, which calls your CMM to
service the request. A CMM typically responds to the kCMMMatchBitmap request
code by calling a CMM-defined function (for example, CMMatchBitmap) to handle
the request.

The CMMatchBitmap function is a color management module–defined subroutine.

pascal CMError CMMatchBitmap(
ComponentInstance CMSession,
const CMBitmap *bitmap,
Optional CMM-Defined Functions 477
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitmap *matchedBitmap);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

bitmap A pointer to the bitmap containing the source image data whose
colors your function must match.

progressProc A pointer to a callback function supplied by the calling
application or device driver that monitors the color-matching
progress or aborts the operation as your function matches the
bitmap colors. Your CMMatchBitmap function must call this
function periodically to allow it to report progress to the user.

refCon A reference constant passed from the calling application or
driver, which your CMMatchBitmap function must pass through as
a parameter to calls it makes to the CMBitmapCallBackProc
function.

matchedBitmap
A pointer to a bitmap in which your function stores the
resulting color-matched image. The calling program allocates
the pixel buffer pointed to by the image field of the CMBitmap
structure. If this value is NULL, then your CMMatchBitmap function
must match the bitmap colors in place.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If your CMM supports this request code, your CMMatchBitmap function should be
prepared to receive any of the bitmap types defined by the ColorSync Manager.
Your CMMatchBitmap function must match the colors of the source image bitmap
pointed to by bitmap to the color gamut of the destination profile using the
profiles specified by a previous kNCMMInit, kCMMInit, or kCMMConcatInit request
to your CMM. If the matchedBitmap parameter points to a bitmap, you should
store the resulting color-matched image in that bitmap. Otherwise, you should
store the resulting color-matched image in the source bitmap pointed to by the
478 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
bitmap parameter. The color-matched bitmap image your function creates is
returned to the calling application or driver.

Before the Component Manager calls your CMM with a ColorSync request to
match the colors of a bitmap, it calls your CMM with a kNCMMInit, kCMMInit, or
kCMMConcatInit request passing your CMM references to the profiles to use for
the color-matching session and requesting your CMM to initialize the session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
use for the color-matching session. If it calls your CMM with the ColorSync
kCMMConcatInit request code, it passes a pointer to an array of type
ConcatProfileSet containing a set of profiles or a device link profile specified by
the calling program to use for the color-matching session. For information about
the ConcatProfileSet data type, see “CMConcatProfileSet” (page 384).

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance. Your
CMMatchBitmap function should use the profile data you set in your storage for
this component instance to perform the color matching. If you used some other
method to store profile data for this component instance when you initialized
the session, you should obtain the profile data you require for the color
matching from that storage.

Your CMMatchBitmap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-matching session. Your CMMatchBitmap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-matching process. In this case, you
should terminate the color-matching process. The default CMM calls the
CMBitmapCallBackProc function approximately every half-second, unless color
matching takes less time; this happens when there is a small amount of data to
match.

Here is the prototype for the CMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean CMBitmapCallBackProc (
long progress,
void *refCon);
Optional CMM-Defined Functions 479
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Each time your CMMatchBitmap function calls the CMBitmapCallBackProc function,
it must pass to the function any data stored in the reference constant. When the
Component Manager calls your CMM with the kCMMMatchBitmap request code, it
passes to your CMM the reference constant from the calling program.

Each time your function calls the CMBitmapCallBackProc function, your function
must pass it a byte count in the progress parameter identifying the remaining
number of bytes. The last time your CMMatchBitmap function calls the
CMBitmapCallBackProc function, it must pass a byte count of 0. A byte count of
0—meaning there is no more data to match—indicates the completion of the
matching process and signals the progress function to perform any cleanup
operations it requires.

If the source profile’s dataColorSpace field value and the space field value of the
source bitmap pointed to by the bitmap parameter do not specify the same data
color space, your function should terminate the color-matching process and
return an error code.

Also, if the destination profile’s dataColorSpace field value and the space field
value of the resulting bitmap pointed to by the matchedBitmap parameter do not
specify the same data color space, your function should terminate the
color-matching process and return an error code.

If your CMM does not support a bitmap type that you receive, you can return
an unimplemented error. In this case, the ColorSync Manager unpacks the
colors of the bitmap and calls your CMMMatchColors function, passing it the
bitmap colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

CMCheckBitmap 7

Handles the kCMMCheckBitmap request by checking the colors of the source image
bitmap against the color gamut of the destination profile.

A CMM should respond to the kCMMCheckBitmap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the CWCheckBitMap
function. The ColorSync Manager dispatches this request to the Component
Manager, which calls your CMM to service the request. A CMM typically
responds to the kCMMCheckBitmap request code by calling a CMM-defined
function (for example, CMCheckBitmap) to handle the request.
480 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMCheckBitmap function is a color management module–defined subroutine.

pascal CMError CMCheckBitmap(
ComponentInstance CMSession,
const CMBitmap *bitmap,
CMBitmapCallBackUPP progressProc,
void *refCon,
CMBitmap *resultBitmap);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

bitmap A pointer to the bitmap containing the source image data whose
colors your function must check.

progressProc A pointer to a callback function supplied by the calling
application or device driver that monitors the color-checking
progress or aborts the operation as your function checks the
colors of the source image. Your CMCheckBitmap function must
call this function periodically to allow it to report progress to the
user.

refCon A reference constant passed from the calling application or
driver, which your CMCheckBitmap function must pass through as
a parameter to calls it makes to the CMBitmapCallBackProc
function.

resultBitmap A pointer to the resulting bitmap allocated by the calling
application or device driver. Your CMCheckBitmap function must
set pixels of the bitmap image to 1 if the corresponding pixel of
the source bitmap indicated by bitmap is out of gamut.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If your CMM supports this request code, your CMMCheckBitmap function should
be prepared to receive any of the bitmap types defined by the ColorSync
Manager. Your CMCheckBitmap function must check the colors of the source
image bitmap pointed to by bitmap against the color gamut of the destination
profile using the profiles specified by a previous kNCMMInit, kCMMInit, or
Optional CMM-Defined Functions 481
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
kCMMConcatInit request to your CMM. If a pixel is out of the destination
profile’s color gamut, your function should set the corresponding pixel in the
image of the bitmap pointed to by the resultBitmap parameter. The ColorSync
Manager returns the resulting bitmap to the calling application or driver to
report the outcome of the gamut check.

Before the Component Manager calls your CMM with a ColorSync request to
gamut check the colors of a bitmap, it calls your CMM with a kNCMMInit,
kCMMInit, or kCMMConcatInit request, passing references to the profiles to use for
the color-checking session and sending your CMM a request to initialize the
session.

If the Component Manager calls your CMM with a ColorSync kNCMMInit or
kCMMInit request, it passes references to the source and destination profiles to
use for the session. If it calls your CMM with the ColorSync kCMMConcatInit
request code, it passes a pointer to an array of type ConcatProfileSet containing
a set of profiles specified by the calling application to use for the session. For
information about the ConcatProfileSet data type, see “CMHeader” (page 351).

When the Component Manager calls your CMM with the kCMMMatchColors
request code, it passes to your CMM in the CMSession parameter a handle to
your CMM’s storage for the calling applications’s component instance. Your
CMCheckBitmap function should use the profile data you set in your storage for
this component instance to perform the color-checking process. If you used
some other method to store profile data for this component instance when you
initialized the session, you should obtain the profile data you require for the
color-checking process from that storage.

Your CMCheckBitmap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-checking session. Your CMCheckBitmap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-matching process. In this case, you
should terminate the color-matching process.

The default CMM calls the CMBitmapCallBackProc function approximately every
half-second, unless the gamut checking takes less time; this happens when there
is a small amount of data to check.

Here is the prototype for the CMBitmapCallBackProc function pointed to by the
progressProc parameter:
482 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
pascal Boolean CMBitmapCallBackProc (
long progress,
void *refCon);

Each time your CMCheckBitmap function calls the CMBitmapCallBackProc function,
it must pass to the function any data stored in the reference constant. When the
Component Manager called your CMM with the kCMMCheckBitmap request code,
it passed to your CMM the reference constant from the calling program.

Each time your function calls the CMBitmapCallBackProc function, your function
must pass it a byte count in the progress parameter identifying the remaining
number of bytes to check. The last time your CMMatchBitmap function calls the
CMBitmapCallBackProc function, it must pass a byte count of 0 to indicate the
completion of the color-checking process. This signals the progress function to
perform any cleanup operations it requires.

If the source profile’s dataColorSpace field value and the space field value of the
source bitmap pointed to by the bitmap parameter do not specify the same data
color space, your function should terminate the color-checking process and
return an error code.

If your CMM does not support a bitmap type that you receive, you can return
an unimplemented error. In this case, the ColorSync Manager unpacks the
colors of the bitmap and calls your CMMatchColors function, passing it the
bitmap colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

CMConcatInit 7

Handles the kCMMConcatInit request by initializing any private data the CMM
will need for a color session involving the specified set of profiles.

A CMM should respond to the kCMMConcatInit request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application or device driver that called the
CWConcatColorWorld function. The ColorSync Manager dispatches this request to
the Component Manager, which calls your CMM to service the request. A CMM
typically responds to the kCMMConcatInit request code by calling a
CMM-defined function (for example, CMConcatInit) to handle the request.
Optional CMM-Defined Functions 483
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMConcatInit function is a color management module–defined subroutine.

pascal CMError CMConcatInit (
ComponentInstance CMSession,
CMConcatProfileSet *profileSet);

CMsession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

profileSet A pointer to an array of profiles of type CMConcatProfileSet
(page 384) to use in a color-matching or color-checking session.
The profiles in the array are in processing order—source
through destination. The profileSet field of the data structure
contains the array.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Using the private storage pointed to by the CMSession handle, your
CMConcatInit function should initialize any private data your CMM will need
for a color session involving the set of profiles specified by the profile array
pointed to by the profileSet parameter. Your function should also initialize any
additional private data needed in handling subsequent calls pertaining to this
component instance.

A color-matching or color-checking session for a set of profiles entails various
color transformations among devices in a sequence for which your CMM is
responsible. Your function must obtain required information from the profiles
and initialize private data for subsequent color-matching or color-checking
sessions with these values. After your function returns to the Component
Manager, it no longer has access to the profiles.

This request gives you the opportunity to examine the profile contents before
storing them. If you do not support some aspect of the profile, then you should
return an unimplemented error in response to this request. For example, if your
CMM does not implement multichannel color support, you should return an
unimplemented error at this point.

When your CMM uses a device link profile or a set of concatenated profiles, you
must adhere to the following guidelines and rules:
484 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
■ You should use the quality flag setting—indicating normal mode, draft
mode, or best mode—specified by the first profile for the entire
color-matching session; you should ignore the quality flags of following
profiles in the sequence. The profile header flag field holds the quality flag
setting. Your CMM may choose to ignore the quality flag. This is allowed, but
not recommended unless you support best mode by default.

■ You must use the rendering intent specified by the first profile to color match
to the second profile, the rendering intent specified by the second profile to
color match to the third profile, and so on through the series of concatenated
profiles.

■ If the calling application or driver passed a color space profile in the middle
of the profile sequence, the default CMM ignores this profile. Your CMM
should also ignore it.

For specific guidelines on handling device link profiles and additional
information on handling concatenated profiles, see “ColorSync Reference for
Applications and Drivers” (page 217).

The Component Manager calls your CMM with a standard open request to
open the CMM when a ColorSync-supportive application or device driver
requests that the Component Manager open a connection to your component.
At this time, your component should allocate any memory it needs to maintain
a connection for the requesting application or driver. You should attempt to
allocate memory from the current heap zone. If that attempt fails, you should
allocate memory from the system heap or the temporary heap. You can use the
SetComponentInstanceStorage function to associate the allocated memory with
the component instance. Whenever the calling application or driver requests
services from your component, the Component Manager supplies you with the
handle to this memory in the session parameter. For complete details on the
SetComponentInstanceStorage function, see the chapter “Component Manager”
in Inside Macintosh: More Macintosh Toolbox.

The Component Manager may call your CMM with the kCMMConcatInit request
code multiple times after it calls your CMM with a request to open the CMM.
For example, it may call your CMM with an initialization request once with one
pair of profiles and then again with another pair of profiles. For each call, you
need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all seven classes of profiles defined by the ICC. For
information on the seven classes of profiles, see “ColorSync Reference for
Applications and Drivers” (page 217).
Optional CMM-Defined Functions 485
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMatchPixMap 7

Handles the kCMMMatchPixMap request by matching the colors of the specified
pixel map image to the destination profile’s color gamut.

A CMM should respond to the kCMMMatchPixMap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWMatchPixMap function or
high-level QuickDraw operations. The ColorSync Manager dispatches this
request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMMatchPixMap request code by
calling a CMM-defined function (for example, CMMatchPixMap) to handle the
request.

The CMMatchPixMap function is a color management module–defined subroutine.

pascal CMError CMMatchPixMap(
ComponentInstance CMSession,
PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

CMsession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myPixMap A pointer to the pixel map to match. A pixel map is a
QuickDraw structure describing pixel data. The pixel map is
stored in nonrelocatable memory. Your function replaces the
original colors of the pixel image with the matched colors
corresponding to the color gamut of the destination device.

progressProc A pointer to a callback function, supplied by the calling
application or device driver, that monitors the color-matching
progress or terminates the operation as your function matches
the pixel map colors. Your CMMatchPixMap function must call this
function at regular intervals to allow it to report progress to the
user.

refCon A reference constant passed from the calling application or
driver, which your CMMatchPixMap function must pass through as
a parameter to calls it makes to the CMBitmapCallBackProc
function.
486 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If your CMM supports this request code, your CMMatchPixMap function should be
prepared to receive any of the pixel map types defined by QuickDraw.Your
CMMatchPixMap function must match the colors of the pixel map image pointed to
by myPixMap parameter to the destination profile’s color gamut, replacing the
original pixel colors with their corresponding colors as specified in the data
color space of the destination device’s color gamut.

Before the Component Manager calls your CMM with a ColorSync request to
match the colors of a pixel map, it calls your CMM with a kNCMMInit or
kCMMConcatInit request. Your CMM sets up the destination profile information
during initialization in response to the kNCMMInit or kCMMConcatInit request
code.

When the Component Manager calls your CMM with the kCMMMatchPixMap
request code, it passes to your CMM in the session parameter a handle to your
CMM’s private storage for the calling applications’s component instance. Your
CMMatchPixMap function should use the profile data you set in your storage for
this component instance to perform the color matching. If you used some other
method to store profile data for this component instance when you initialized
the session, you should obtain the profile data you require for the color
matching from that storage.

Your CMMatchPixMap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-matching session. Your CMMatchPixMap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-matching process. In this case, you
should terminate the color-matching process. The default CMM calls the
progress function approximately every half-second, unless color matching takes
less time; this happens when there is a small amount of data to match.

Here is the prototype for the CMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean CMBitmapCallBackProc (
long progress,
void *refCon);
Optional CMM-Defined Functions 487
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Each time your CMMatchPixMap function calls the CMBitmapCallBackProc function,
it must pass to the function any data stored in the reference constant. When the
Component Manager called your CMM with the kCMMMatchPixMap request code,
it passed to your CMM the reference constant from the calling program.

Each time your function calls the CMBitmapCallBackProc function, your function
must pass it a byte count in the progress parameter identifying the remaining
number of bytes. The last time your CMMatchPixMap function calls the
CMBitmapCallBackProc function, it must pass a byte count of 0 to indicate the
completion of the matching process, signaling the progress function to perform
any cleanup operations it requires.

The data color space of a pixel map is implicitly RGB. If the source and
destination profiles’ data color spaces (dataColorSpace field) are not also RGB,
your function should not perform the color matching. Instead, it should return
an error.

If your CMM does not support a pixel map type that you receive, you can
return an unimplemented error. In this case, the ColorSync Manager unpacks
the colors of the pixel map and calls your CMMatchColors function, passing it the
pixel map colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

CMCheckPixMap 7

Handles the kCMMCheckPixMap request by checking the colors of the specified
pixel map image against the color gamut of the destination profile.

A CMM should respond to the kCMMCheckPixMap request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWCheckPixMap function. The
ColorSync Manager dispatches this request to the Component Manager, which
calls your CMM to service the request. A CMM typically responds to the
kCMMCheckPixMap request code by calling a CMM-defined function (for example,
CMCheckPixMap) to handle the request.

The CMCheckPixMap function is a color management module–defined subroutine.

pascal CMError CMCheckPixMap(
ComponentInstance CMSession,
const PixMap *myPixMap,
488 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMBitmapCallBackUPP progressProc,
BitMap *myBitMap,
void *refCon);

CMsession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

myPixMap A pointer to a nonrelocatable pixel map whose colors are to be
checked. A pixel map is a QuickDraw structure describing pixel
data.

progressProc A pointer to a callback function, supplied by the calling
application or device driver, that monitors the color-checking
progress or terminates the operation as your function checks the
pixel map colors. Your CMCheckPixMap function must call this
function at regular intervals to allow it to report progress to the
user.

myBitMap A pointer to a QuickDraw bitmap whose boundaries equal
those of the pixel map indicated by the myPixMap parameter.
Your CMCheckPixMap function must set a pixel to 1 if the
corresponding pixel of the pixel map indicated by myPixMap is
out of gamut.

refCon A reference constant passed from the calling application or
driver, which your CMCheckPixMap function must pass through as
a parameter to calls it makes to the CMBitmapCallBackProc
function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

If your CMM supports this request code, your CMCheckPixMap function should be
prepared to receive any of the pixel map types defined by QuickDraw.Your
CMCheckPixMap function must check the colors of the pixel map image pointed to
by the myPixMap parameter against the color gamut of the destination profile to
determine if the colors are within the gamut. If a pixel color of the pixel map
indicated by myPixMap is out of gamut, your function must set to 1 the
corresponding pixel of the bitmap indicated by myBitMap. The ColorSync
Optional CMM-Defined Functions 489
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Manager returns the bitmap showing the gamut check results to the calling
application or device driver.

Before the Component Manager calls your CMM with a ColorSync request to
check the colors of a pixel map, it calls your CMM with a kNCMMInit or
kCMMConcatInit request. Your CMM sets up the destination profile information
during initialization in response to the kNCMMInit or kCMMConcatInit request
code.

When the Component Manager calls your CMM with the kCMMCheckPixMap
request code, it passes to your CMM in the session parameter a handle to your
CMM’s private storage for the calling applications’s component instance. Your
CMCheckPixMap function should use the profile data you set in your storage for
this component instance. If you used some other method to store profile data
for this component instance when you initialized the session, you should obtain
the profile data you require for the color-checking process from that storage.

Your CMMatchPixMap function must call the progress function supplied by the
calling application or device driver at regular intervals to allow it to report
progress to the user on the color-checking session. Your CMCheckPixMap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-checking process. In this case, you
should terminate the color-checking process. The default CMM calls the
progress function approximately every half-second, unless color checking takes
less time; this happens when there is a small amount of data to match.

Here is the prototype for the CMBitmapCallBackProc function pointed to by the
progressProc parameter:

pascal Boolean CMBitmapCallBackProc (
long progress,
void *refCon);

Each time your CMCheckPixMap function calls the CMBitmapCallBackProc function,
it must pass to the function any data stored in the reference constant. When the
Component Manager called your CMM with the kCMMCheckPixMap request code,
it passed to your CMM the reference constant from the calling program.

Each time your function calls the CMBitmapCallBackProc function, your function
must pass it a byte count in the progress parameter identifying the remaining
number of bytes to check. As your CMCheckPixMap function checks the pixels of
the myPixMap map, it should set the corresponding pixel of myBitMap to 0 if the
color is in gamut and 1 if it is out of gamut. The last time your CMCheckPixMap
490 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
function calls the CMBitmapCallBackProc function, it must pass a byte count of 0
to indicate the completion of the color-checking process, signaling the progress
function to perform any cleanup operations it requires.

The data color space of a pixel map is implicitly RGB. If the source and
destination profiles’ data color spaces (dataColorSpace field) are not also RGB,
your function should not perform the color check. Instead, it should return an
error.

If your CMM does not support a pixel map type that you receive, you can
return an unimplemented error. In this case, the ColorSync Manager unpacks
the colors of the pixel map and calls your CMMatchColors function, passing it the
pixel map colors in a color list. You should avoid defaulting to this behavior, if
possible, because it incurs overhead and slows down performance.

CMNewLinkProfile 7

Handles the kCMMNewLinkProfile request by creating a single device link profile
that includes the profiles in the specified profile set.

A CMM should respond to the kCMMNewLinkProfile request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CWNewLinkProfile function. The
ColorSync Manager dispatches this request to the Component Manager, which
calls your CMM to service the request. A CMM typically responds to the
kCMMNewLinkProfile request code by calling a CMM-defined function (for
example, CMNewLinkProfile) to handle the request.

The CMNewLinkProfile function is a color management module–defined
subroutine.

pascal CMError CMNewLinkProfile(
ComponentInstance CMSession,
CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

CMsession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.
Optional CMM-Defined Functions 491
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
prof A pointer to a reference to a device link profile of type
DeviceLink. Your CMNewLinkProfile function creates this profile,
opens it to obtain a reference to it, and returns a pointer to the
profile reference in this parameter. The profile may be a
file-based profile or a handle-based profile. It must not be a
pointer-based profile or a temporary profile.

targetLocation
A pointer to a location specification for the resulting profile,
which your function returns. This is the file specification where
you created the profile. For information on how to specify the
location, see “CMProfLoc” (page 361) and “CMProfileLocation”
(page 362).

profileSet A pointer to an array of profiles of type CMConcatProfileSet
(page 384). Your function must include these profiles in order in
any device link profile it creates. The profiles in the array are in
processing order—source through destination. The profileSet
field of the data structure contains the array.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Your CMNewLinkProfile function must create a single device link profile of type
DeviceLink that includes the profiles passed to you in the array pointed to by
the profileSet parameter. For information about profiles of type DeviceLink, see
“Profile Class” (page 396). See also CWNewLinkProfile (page 267), which
describes how to create a device-link profile.

After your function creates the device link profile, it must open the profile and
return a reference to the profile in the prof parameter.

The International Color Consortium Profile Format Specification, version 2.x,
document revision 3.x, also describes device link profiles. For information on
how to obtain a copy of this document, contact the Developer Support
organization of Apple Computer.
492 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMGetPS2ColorSpace 7

Handles the kCMMGetPS2ColorSpace request by obtaining or deriving the color
space element data from the source profile.

A CMM may respond to the kCMMGetPS2ColorSpace request code, but it is not
required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CMGetPS2ColorSpace function.
The ColorSync Manager dispatches this request to the Component Manager,
which calls your CMM to service the request. A CMM typically responds to the
kCMMGetPS2ColorSpace request code by calling a CMM-defined function (for
example, CMMGetPS2ColorSpace) to handle the request.

The CMMGetPS2ColorSpace function is a color management module–defined
subroutine.

pascal CMError CMMGetPS2ColorSpace(
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

CMsession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile from which you must
obtain or derive the color space element data.

flags Reserved for future use.

proc A pointer to a ColorSyncDataTransfer function supplied by the
calling application or device driver. Your CMMGetPS2ColorSpace
function calls this function repeatedly as necessary until you
have passed all the source profile’s color space element data to
this function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your CMMGetPS2ColorSpace
function must pass to the ColorSyncDataTransfer function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
Optional CMM-Defined Functions 493
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
DISCUSSION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your CMMGetPS2ColorSpace function must
obtain or derive the color space element data from the source profile whose
reference is passed to your function in the srcProf parameter.

The color space data may be assigned to the PostScript Level 2 color space array
(ps2CSATag) tag in the source profile. The byte stream containing the color space
element data that your function passes to the ColorSyncDataTransfer function is
used as the operand to the PostScript setColorSpace operator.

Your function must allocate a data buffer in which to pass the color space
element data to the ColorSyncDataTransfer function supplied by the calling
application or driver. Your CMMGetPS2ColorSpace function must call the
ColorSyncDataTransfer function repeatedly until you have passed all the data to
it. Here is the prototype for the ColorSyncDataTransfer function pointed to by
the proc parameter:

pascal OSErr ColorSyncDataTransfer(
long command,
long *size,
void *data,
void *refCon);

Your CMMGetPS2ColorSpace function communicates with the
ColorSyncDataTransfer function, using a command parameter to identify
the operation to perform. Your function should call the ColorSyncDataTransfer
function first with the openWriteSpool command to direct the
ColorSyncDataTransfer function to begin the process of writing the profile color
space element data you pass it in the data buffer. Next, you should call the
ColorSyncDataTransfer function with the writeSpool command. After the
ColorSyncDataTransfer function returns in the size parameter the amount of
data it actually wrote, you should call the ColorSyncDataTransfer function again
with the writeSpool command, repeating this process as often as necessary until
all the color space data is transferred. After the data is transferred, you should
call the ColorSyncDataTransfer function with the closeSpool command.

When your function calls the ColorSyncDataTransfer function, it passes in the
data buffer the profile data to transfer to the ColorSyncDataTransfer function
and the size in bytes of the buffered data in the size parameter. The
ColorSyncDataTransfer function may not always write all the data you pass it in
the data buffer. Therefore, on return the ColorSyncDataTransfer function
494 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
command passes back in the size parameter the number of bytes it actually
wrote. Your CMMGetPS2ColorSpace function keeps track of the number of bytes of
remaining color space element data.

Each time your CMMGetPS2ColorSpace function calls the ColorSyncDataTransfer
function, you pass it the reference constant passed to your function in the
reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language Manual,
second edition.

CMMGetPS2ColorRenderingIntent 7

Handles the kCMMGetPS2ColorRenderingIntent request by obtaining the
rendering intent from the source profile.

A CMM may respond to the kCMMGetPS2ColorRenderingIntent request code, but
it is not required to do so. The ColorSync Manager sends this request code to
your CMM on behalf of an application that called the
CMGetPS2ColorRenderingIntent function. The ColorSync Manager dispatches
this request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMGetPS2ColorRenderingIntent
request code by calling a CMM-defined function (for example,
CMMGetPS2ColorRenderingIntent) to handle the request.

The CMMGetPS2ColorRenderingIntent function is a color management
module–defined subroutine.

pascal CMError CMMGetPS2ColorRenderingIntent(
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.
Optional CMM-Defined Functions 495
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
srcProf A profile reference to the source profile whose header contains
the rendering intent.

flags Reserved for future use.

proc A pointer to a function supplied by the calling application or
device driver. Your CMMGetPS2ColorRenderingIntent function
calls this function repeatedly as necessary until you have passed
all the source profile’s rendering intent data to this function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your
CMMGetPS2ColorRenderingIntent function must pass to the
ColorSyncDataTransfer function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your CMMGetPS2ColorRenderingIntent
function must obtain the rendering intent from the source profile whose
reference is passed to your function in the srcProf parameter. The byte stream
containing the rendering intent data that your function passes to the
ColorSyncDataTransfer function is used as the operand to the PostScript
findRenderingIntent operator.

Your function must allocate a data buffer in which to pass the rendering intent
data to the ColorSyncDataTransfer function supplied by the calling application
or driver. Your CMMGetPS2ColorRenderingIntent function must call the
ColorSyncDataTransfer function repeatedly until you have passed all the data to
it.

Here is the prototype for the ColorSyncDataTransfer function pointed to by the
proc parameter:

pascal OSErr ColorSyncDataTransfer(
long command,
long *size,
void *data,
void *refCon);
496 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Your CMMGetPS2ColorRenderingIntent function communicates with the
ColorSyncDataTransfer function using a command parameter to identify
the operation to perform. Your function should call the ColorSyncDataTransfer
function first with the openWriteSpool command to direct the
ColorSyncDataTransfer function to begin the process of writing the profile
color-rendering intent element data you pass it in the data buffer. Next, you
should call the ColorSyncDataTransfer function with the writeSpool command.
After the ColorSyncDataTransfer function returns in the size parameter the
amount of data it actually read, you should call the ColorSyncDataTransfer
function again with the writeSpool command, repeating this process as often as
necessary until all the color-rendering intent data is transferred. After the data
is transferred, you should call the ColorSyncDataTransfer function with the
closeSpool command.

When your function calls the ColorSyncDataTransfer function, it passes in the
data buffer the profile data to transfer to the ColorSyncDataTransfer function
and the size in bytes of the buffered data in the size parameter. The
ColorSyncDataTransfer function may not always write all the data you pass it in
the data buffer. Therefore, on return the ColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your CMMGetPS2ColorRenderingIntent function keeps track of the number
of bytes of remaining color-rendering intent element data.

Each time your CMMGetPS2ColorRenderingIntent function calls the
ColorSyncDataTransfer function, you pass it the reference constant passed to
your function in the reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language Manual,
second edition.

CMMGetPS2ColorRendering 7

Handles the kCMMGetPS2ColorRendering request by obtaining the rendering
intent from the header of the source profile.

A CMM may respond to the kCMMGetPS2ColorRendering request code, but it is
not required to do so. The ColorSync Manager sends this request code to your
CMM on behalf of an application that called the CMGetPS2ColorRendering
Optional CMM-Defined Functions 497
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
function. The ColorSync Manager dispatches this request to the Component
Manager, which calls your CMM to service the request. A CMM typically
responds to the kCMMGetPS2ColorRendering request code by calling a
CMM-defined function (for example, CMMGetPS2ColorRendering) to handle the
request.

The CMMGetPS2ColorRendering function is a color management module–defined
subroutine.

pascal CMError CMMGetPS2ColorRendering(
ComponentInstance CMSession,
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

CMSession A handle to your CMM’s private storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile whose header indicates
the rendering intent for generating the color rendering
dictionary (CRD).

dstProf A profile reference to the destination profile from which you
obtain or derive the CRD.

flags Reserved for future use.

proc A pointer to a function supplied by the calling application or
device driver. Your CMMGetPS2ColorRendering function calls this
function repeatedly as necessary until you have passed all the
CRD element data to this function.

refCon A reference constant, containing data specified by the calling
application or device driver, that your CMMGetPS2ColorRendering
function must pass to the ColorSyncDataTransfer function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).
498 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
DISCUSSION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your CMMGetPS2ColorRendering function
must obtain the rendering intent from the header of the source profile identified
by the srcProf parameter. The rendering intent identifies the color rendering
dictionary (CRD) data that you must obtain or derive from the destination
profile whose reference is passed to your function in the dstProf parameter. The
byte stream containing the specified rendering intent’s CRD data that your
function passes to the ColorSyncDataTransfer function is used as the operand to
the PostScript setColorRendering operator.

A profile may contain tags that specify the CRD data for each rendering intent.
A profile’s ps2CRD0Tag element data contains the CRD for perceptual rendering.
A profile’s ps2CRD1Tag contains the CRD for relative colorimetric rendering. A
profile’s ps2CS2Tag contains the CRD for saturation rendering. A profile’s
ps2CS3Tag contains the CRD for absolute colorimetric rendering. If the profile
does not contain a CRD tag, your CMM should create the CRD from the
destination profile using the rendering intent specified by the source profile.

Your function must allocate a data buffer in which to pass the CRD data to the
ColorSyncDataTransfer function supplied by the calling application or driver.
Your CMMGetPS2ColorRendering function must call the ColorSyncDataTransfer
function repeatedly until you have passed all the data to it. Here is the
prototype for the ColorSyncDataTransfer function pointed to by the proc
parameter:

pascal OSErr ColorSyncDataTransfer(
long command,
long *size,
void *data,
void *refCon);

Your CMMGetPS2ColorRendering function communicates with the
ColorSyncDataTransfer function using a command parameter to identify the
operation to perform. Your function should call the ColorSyncDataTransfer
function first with the openWriteSpool command to direct the
ColorSyncDataTransfer function to begin the process of writing the profile CRD
data you pass it in the data buffer. Next, you should call the
ColorSyncDataTransfer function with the writeSpool command. After the
ColorSyncDataTransfer function returns in the size parameter the amount of
data it actually wrote, you should call the ColorSyncDataTransfer function again
with the writeSpool command, repeating this process as often as necessary until
Optional CMM-Defined Functions 499
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
all the CRD data is transferred. After the data is transferred, you should call the
ColorSyncDataTransfer function with the closeSpool command.

When your function calls the ColorSyncDataTransfer function, it passes in the
data buffer the profile data to transfer to the ColorSyncDataTransfer function
and the size in bytes of the buffered data in the size parameter. The
ColorSyncDataTransfer function may not always write all the data you pass it in
the data buffer. Therefore, on return the ColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your CMMGetPS2ColorRendering function keeps track of the number of
bytes of remaining CRD data.

Each time your CMMGetPS2ColorRendering function calls the
ColorSyncDataTransfer function, you pass it the reference constant passed to
your function in the reference constant parameter.

SEE ALSO

For information about PostScript operations, see the PostScript Language Manual,
second edition.

CMMGetPS2ColorRenderingVMSize 7

Handles the kCMMGetPS2ColorRenderingVMSize request by obtaining the
maximum virtual memory (VM) size of the color rendering dictionary (CRD)
for the rendering intent specified by the source profile.

A CMM may respond to the kCMMGetPS2ColorRenderingVMSize request code, but
it is not required to do so. The ColorSync Manager sends this request code to
your CMM on behalf of an application that called the
CMGetPS2ColorRenderingVMSize function. The ColorSync Manager dispatches
this request to the Component Manager, which calls your CMM to service the
request. A CMM typically responds to the kCMMGetPS2ColorRenderingVMSize
request code by calling a CMM-defined function (for example,
CMMGetPS2ColorRenderingVMSize) to handle the request.
500 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMMGetPS2ColorRenderingVMSize function is a color management
module–defined subroutine.

pascal CMError CMMGetPS2ColorRenderingVMSize(
ComponentInstance CMSession,
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long vmSize);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to the source profile specifying the rendering
intent to use.

dstProf A profile reference to the destination printer profile from which
you obtain or assess the virtual memory (VM) size of the CRD.

vmSize The VM size of the CRD, returned by the function.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Only for special cases should a custom CMM need to support this request code.
If your CMM supports this function, your CMMGetPS2ColorRenderingVMSize
function must obtain the maximum VM size of the CRD for the rendering intent
specified by the source profile.

Your function must return the VM size in the vmSize parameter. (In turn, the
ColorSync Manager returns the VM size to the calling application or device
driver.) The CRD whose maximum size you return must be that of the
dictionary for the rendering intent specified by the source profile.

If the destination profile contains the Apple-defined private tag 'psvm',
described later in this section, then your CMM may read the tag and return the
CRD VM size data supplied by this tag for the specified rendering intent. If the
destination profile does not contain this tag, then you must assess the VM size
of the CRD. In this case, the assessment may be larger than the actual maximum
VM size.
Optional CMM-Defined Functions 501
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional tag
that a profile may contain to identify the maximum VM size of a CRD for
different rendering intents. This tag’s element data includes an array containing
one entry for each rendering intent and its virtual memory size.

The CMIntentCRDVMSize data type defines the rendering intent and its maximum
VM size:

struct CMIntentCRDVMSize {
long rendering Intent;
unsigned long VMSize;

};

For example, a rendering intent might be 0 and its VM size 120 KB.

Constant descriptions

renderingIntent The rendering intent whose CRD VM size you want to
obtain. Rendering intent values are
0 (cmPerceptual)
1 (cmRelativeColorimetric)
2 (cmSaturation)
3 (cmAbsoluteColorimetric)

VMSize The VM size of the CRD for the rendering intent specified
for the renderingIntent field.

The CMPS2CRDVMSizeType data type for the tag includes an array containing one
or more members of type CMIntentCRDVMSize:

struct CMPS2CRDVMSizeType {
OSType typeDescriptor;
unsigned long reserved;
unsigned long count;
CMIntentCRDVMSize intentCRD[1];

};

Constant descriptions

typeDescriptor The 'psvm' tag signature.
reserved Reserved for future use.
count The number of entries in the intentCRD array.
502 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
intentCRD A variable-sized array of four or more members defined by
the CMIntentCRDSize data type.

CMMFlattenProfile 7

CHANGED IN COLORSYNC 2.57

Handles the kCMMFlattenProfile request by extracting profile data from the
profile to flatten and passing it to the specified function.

A CMM may respond to the kCMMFlattenProfile request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMFlattenProfile function. The ColorSync Manager dispatches this request to
the Component Manager, which calls your CMM to service the request. A CMM
that handles the kCMMFlattenProfile request code typically responds by calling
a CMM-defined function (for example, CMMFlattenProfile).

The CMMFlattenProfile function is a color management module–defined
subroutine.

pascal CMError CMMFlattenProfile (
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc,
void *refCon);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A reference to the profile to flatten.

flags Reserved for future use.

proc A pointer to the ColorSyncDataTransfer function supplied by the
calling application or device driver to perform the low-level
data transfer. Your CMMFlattenProfile function calls this function
repeatedly as necessary until all the profile data is transferred.
Optional CMM-Defined Functions 503
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
refCon A reference constant containing data specified by the calling
application or device driver.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Only in rare circumstances should a custom CMM need to support this request
code. The process of flattening a profile is complex, and the default CMM
handles this process adequately for most cases. A custom CMM might respond
to this request code if the CMM provides special services such as profile data
encryption or compression, for example. Read the rest of this description if your
CMM handles this request code.

Your CMMFlattenProfile function must extract the profile data from the profile
to flatten, identified by the prof parameter, and pass the profile data to the
function specified in the proc parameter.

Your CMMFlattenProfile function calls the ColorSyncDataTransfer function
supplied by the calling application. Here is the prototype for the
ColorSyncDataTransfer function pointed to by the proc parameter:

pascal OSErr ColorSyncDataTransfer(
long command,
long *size,
void *data,
void *refCon);

Your CMMFlattenProfile function communicates with the ColorSyncDataTransfer
function using a command parameter to identify the operation to perform. Your
function should call the ColorSyncDataTransfer function first with the
openWriteSpool command to direct the ColorSyncDataTransfer function to begin
the process of writing the profile data you pass it in the data buffer. Next, you
should call the ColorSyncDataTransfer function with the writeSpool command.
After the ColorSyncDataTransfer function returns in the size parameter the
amount of data it actually wrote, you should call the ColorSyncDataTransfer
function again with the writeSpool command, repeating this process as often as
necessary until all the profile data is transferred. After the data is transferred,
you should call the ColorSyncDataTransfer function with the closeSpool
command.
504 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
When your function calls the ColorSyncDataTransfer function, it passes in the
data buffer the profile data to transfer to the ColorSyncDataTransfer function
and the size in bytes of the buffered data in the size parameter. The
ColorSyncDataTransfer function may not always write all the data you pass it in
the data buffer. Therefore, on return the ColorSyncDataTransfer function
command passes back in the size parameter the number of bytes it actually
wrote. Your function keeps track of the number of bytes of remaining profile
data.

Your CMMFlattenProfile function is responsible for obtaining the profile data
from the profile, allocating a buffer in which to pass the data to the
ColorSyncDataTransfer function, and keeping track of the amount of remaining
data to transfer to the ColorSyncDataTransfer function.

Each time your CMMFlattenProfile function calls the ColorSyncDataTransfer
function, you pass it the reference constant
passed to your function in the reference constant parameter.

VERSION NOTES

Starting with ColorSync version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going through the preferred,
or any, CMM. Your CMM only needs to handle the kCMMFlattenProfile request
code for versions of ColorSync prior to version 2.5.

CMMUnflattenProfile 7

CHANGED IN COLORSYNC 2.57

Handles the kCMMUnflattenProfile request by creating a uniquely-named file in
the temporary items folder to store the profile data.

A CMM may respond to the kCMMUnflattenProfile request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMUnflattenProfile function. The ColorSync Manager dispatches this request to
the Component Manager, which calls your CMM to service the request. A CMM
that handles the kCMMUnflattenProfile request code typically responds by
calling a CMM-defined function (for example, CMMUnflattenProfile).
Optional CMM-Defined Functions 505
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMMUnflattenProfile function is a color management module–defined
subroutine.

pascal CMError CMMUnflattenProfile (
ComponentInstance CMSession,
FSSpec *resultFileSpec,
CMFlattenUPP proc,
void *refCon);

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

resultFileSpec
A pointer to a file specification for the profile file. This is a
temporary file specification. You must create this temporary file,
which is returned to the calling application or device driver. The
calling application or driver is responsible for disposing of the
file when finished with it.

proc A pointer to a function supplied by the calling application or
device driver to perform the low-level data transfer. Your
CMMFlattenProfile function calls this function repeatedly as
necessary until all the profile data is transferred.

refCon A reference constant containing data specified by the calling
application program.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Only in rare circumstances should a custom CMM need to support this request
code. The process of unflattening a profile is complex, and the default CMM
handles this process adequately for most cases. A custom CMM might respond
to this request code if the CMM provides special services such as profile data
encryption or compression, for example. Read the rest of this description if your
CMM handles this request code.

Your CMMUnflattenProfile function must create a file with a unique name in
which to store the profile data. (You should create this file in the temporary
506 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
items folder.) The ColorSync Manager returns the temporary file specification to
the calling application or device driver.

To obtain the profile data, your CMMUnflattenProfile function calls the
ColorSyncDataTransfer function supplied by the calling application or device
driver. Here is the prototype for the ColorSyncDataTransfer function pointed to
by the proc parameter:

pascal OSErr ColorSyncDataTransfer (
long command,
long *size,
void *data,
void *refCon);

Before calling the ColorSyncDataTransfer function, your CMMUnflattenProfile
function must allocate a buffer to hold the profile data returned to you from the
ColorSyncDataTransfer function in the data parameter.

Your CMMUnflattenProfile function communicates with the
ColorSyncDataTransfer function using a command parameter to identify the
operation to perform. Your function should call the ColorSyncDataTransfer
function first with the openReadSpool command to direct the
ColorSyncDataTransfer function to begin the process of transferring data.
Following this, you should call the ColorSyncDataTransfer function with the
readSpool command as often as necessary until the ColorSyncDataTransfer
function has passed your function all the profile data from the graphics file.
After you have received all the profile data, your function should call the
ColorSyncDataTransfer function with the closeSpool command.

Each time you call the ColorSyncDataTransfer function, you should pass it a
pointer to the data buffer you created, the size in bytes of the profile data to
return to you in the buffer, and the reference constant passed to you from the
calling application.

On return, the ColorSyncDataTransfer function passes to you the profile data
that your function must write to the temporary file that you created for the new
profile file. The ColorSyncDataTransfer function will not always transfer the
number of bytes of profile data you requested. Therefore, the
ColorSyncDataTransfer function returns in the size parameter the number of
bytes of profile data it actually returned in the data buffer.

The profile file you create is returned to the calling application or device driver
in the resultFileSpec parameter. Your CMMUnflattenProfile function must
Optional CMM-Defined Functions 507
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
identify the profile size and maintain a counter tracking the amount of data
transferred to you and the amount of remaining data to determine when to call
the ColorSyncDataTransfer function with the closeSpool command. To
determine the profile size, your function can obtain the profile header, which
specifies the size.

The calling application or device driver uses the reference constant to pass to
the ColorSyncDataTransfer function information the ColorSyncDataTransfer
function requires to transfer the data.

VERSION NOTES

Starting with ColorSync version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going through the preferred,
or any, CMM. Your CMM only needs to handle the kCMMUnflattenProfile
request code for versions of ColorSync prior to version 2.5.

CMMGetNamedColorInfo 7

Handles the kCMMGetNamedColorInfo request by returning information about a
named color space from its profile reference.

A CMM may respond to the kCMMGetNamedColorInfo request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMMGetNamedColorInfo function. The ColorSync Manager dispatches this request
to the Component Manager, which calls your CMM to service the request. A
CMM that handles the kCMMGetNamedColorInfo request code typically responds
by calling a CMM-defined function (for example, CMMGetNamedColorInfo).

The CMMGetNamedColorInfo function is a color management module–defined
subroutine.

pascal CMError CMMGetNamedColorInfo(
ComponentInstance CMSession,
CMProfileRef srcProf,
unsigned long *deviceChannels,
OSType *deviceColorSpace,
OSType *PCSColorSpace,
508 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
unsigned long *count,
StringPtr prefix,
StringPtr suffix)

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

srcProf A profile reference to a named color space profile to supply
information about.

deviceChannels
A pointer to a count of device channels. On output, the number
of device channels in the color space for the profile. It should
agree with the “data color space” field in the profile header. For
example, Pantone maps to CMYK, a 4-channel color space. A
value of 0 indicates no device channels were available.

deviceColorSpace
A pointer to a device color space. On output, specifies a device
color space, such as CMYK, for the srcProf profile.

PCSColorSpace
A pointer to a profile connection space color space. On output,
specifies an interchange color space, such as Lab, for the srcProf
profile.

count A pointer to a named color count. On output, the number of
named colors in the srcProf profile.

prefix A pointer to a Pascal string. On output, the string contains a
prefix, such as “Pantone”, for each color name. The prefix
identifies the named color system described by the srcProf
profile.

suffix A pointer to a Pascal string. On output, the string contains a
suffix, such as “CVC”, for each color name.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

The CMMGetNamedColorInfo function returns information about the named color
space referred to by the passed profile reference.
Optional CMM-Defined Functions 509
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMGetNamedColorValue 7

Handles the kCMMGetNamedColorValue request by returning device and PCS color
values from a named color space profile for a specific color name.

A CMM may respond to the kCMMGetNamedColorValue request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMMGetNamedColorValue function. The ColorSync Manager dispatches this
request to the Component Manager, which calls your CMM to service the
request. A CMM that handles the kCMMGetNamedColorValue request code
typically responds by calling a CMM-defined function (for example,
CMMGetNamedColorValue).

The CMMGetNamedColorValue function is a color management module–defined
subroutine.

pascal CMError CMMGetNamedColorValue(
ComponentInstance CMSession,
CMProfileRef prof,
StringPtr name,
CMColor *deviceColor,
CMColor *PCSColor)

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A profile reference of type CMProfileRef (page 358) that
identifies the named color space profile to extract named color
information from.

name A pointer to a Pascal color name string that identifies the named
color to return color values for.

deviceColor A pointer to a device color. On output, a device color value in
CMColor union format. If the profile does not contain device
values, deviceColor is undefined.

PCSColor A pointer to a profile connection space color. On output, an
interchange color value in CMColor union format.
510 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed color name, the CMMGetNamedColorValue function does a
lookup into the named color tag in the profile whose reference is passed in the
prof parameter and, if the name is found in the tag, returns device and PCS
color values. Otherwise, CMMGetNamedColorValue returns an error code.

CMMGetIndNamedColorValue 7

Handles the kCMMGetIndNamedColorValue request by returning device and PCS
color values from a named color space profile for a specific named color index.

A CMM may respond to the kCMMGetIndNamedColorValue request code, but it is
not required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMGetIndNamedColorValue function. The ColorSync Manager dispatches this
request to the Component Manager, which calls your CMM to service the
request. A CMM that handles the kCMMGetIndNamedColorValue request code
typically responds by calling a CMM-defined function (for example,
CMMGetIndNamedColorValue).

The CMMGetIndNamedColorValue function is a color management module–defined
subroutine.

pascal CMError CMMGetIndNamedColorValue(
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long index,
CMColor *deviceColor,
CMColor *PCSColor)

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.
Optional CMM-Defined Functions 511
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
prof A profile reference of type CMProfileRef (page 358) to a named
color space profile.

index An index value for the named color to get color values for.

deviceColor A pointer to a device color. On output, a device color value in
CMColor union format. If the profile does not contain device
values, deviceColor is undefined.

PCSColor A pointer to a profile connection space color. On output, an
interchange color value in CMColor union format.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed named color index, the CMMGetIndNamedColorValue function
does a lookup into the named color tag of the profile whose reference is passed
in the prof parameter and returns device and PCS color values. If the index is
greater than the number of named colors, CMMGetIndNamedColorValue returns an
error code.

CMMGetNamedColorIndex 7

Handles the kCMMGetNamedColorIndex request by returning a named color index
from a named color space profile for a specific color name.

A CMM may respond to the kCMMGetNamedColorIndex request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
CMMGetNamedColorIndex function. The ColorSync Manager dispatches this
request to the Component Manager, which calls your CMM to service the
request. A CMM that handles the kCMMGetNamedColorIndex request code
typically responds by calling a CMM-defined function (for example,
CMMGetNamedColorIndex).
512 Optional CMM-Defined Functions

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
The CMMGetNamedColorIndex function is a color management module–defined
subroutine.

pascal CMError CMMGetNamedColorIndex(
ComponentInstance CMSession,
CMProfileRef prof,
StringPtr name,
unsigned long *index)

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A profile reference of type CMProfileRef (page 358) to a named
color space profile.

name A pointer to a Pascal color name string that identifies the named
color to return the index value for.

index A pointer to a value of type unsigned long. On output, it
specifies the index value for the named color specified by name.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed color name, the CMMGetNamedColorIndex function does a
lookup into the named color tag of the profile whose reference is passed in the
prof parameter and, if the name is found in the tag, returns the index.
Otherwise, CMMGetNamedColorIndex returns an error code.

CMMGetNamedColorName 7

Handles the kCMMGetNamedColorName request by returning a named color name
from a named color space profile for a specific named color index.

A CMM may respond to the kCMMGetNamedColorName request code, but it is not
required to do so. Most CMMs can rely on the default CMM to handle this
request code adequately. The ColorSync Manager sends this request code to
your CMM on behalf of an application or device driver that called the
Optional CMM-Defined Functions 513
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
CMMGetNamedColorName function. The ColorSync Manager dispatches this request
to the Component Manager, which calls your CMM to service the request. A
CMM that handles the kCMMGetNamedColorName request code typically responds
by calling a CMM-defined function (for example, CMMGetNamedColorName).

The CMMGetNamedColorName function is a color management module–defined
subroutine.

pascal CMError CMMGetNamedColorName(
ComponentInstance CMSession,
CMProfileRef prof,
unsigned long index,
StringPtr name)

CMSession A handle to your CMM’s storage for the instance of your
component associated with the calling application or device
driver.

prof A profile reference to a named color space profile.

index An index value for a named color.

name A pointer to a Pascal color name string. On output, it identifies
the named color specified by index.

function result A result code of type CMError. For possible values, see “Result
Codes for the ColorSync Manager” (page 425).

DISCUSSION

Based on the passed color name index, the CMMGetNamedColorName function does
a lookup into the named color tag of the profile whose reference is passed in the
prof parameter and returns the name. If the index is greater than the number of
named colors, CMMGetNamedColorName returns an error code.

Constants 7

This section describes the constants for the CMM component interface version
and the ColorSync Manager request codes.
514 Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
■ “Color Management Module Component Interface” (page 515) describes
how to specify the ColorSync Manager version your CMM supports.

■ “Required Request Codes” (page 515) describes ColorSync Manager request
codes your CMM must respond to.

■ “Optional Request Codes” (page 517) describes ColorSync Manager request
codes your CMM may optionally respond to.

Color Management Module Component Interface 7

If your CMM supports the ColorSync Manager version 2.x, it should return the
constant defined by the following enumeration when the Component Manager
calls your CMM with the kComponentVersionSelect request code:

enum {
CMMInterfaceVersion = 1 /* Version 1 */

};

In response to the kComponentVersionSelect request code, a CMM should set its
entry point function’s result to the CMM version number. The high-order 16
bits represent the major version and the low-order 16 bits represent the minor
version. The CMMInterfaceVersion constant represents the major version
number.

Note
A CMM that only supports ColorSync 1.0 returns 0 for the
major version in response to the version request. ◆

The kComponentVersionSelect request code is one of four required Component
Manager requests your CMM must handle. For complete details on the
Component Manager required request codes, see the chapter “Component
Manager” in Inside Macintosh: More Macintosh Toolbox.

Required Request Codes 7

Your CMM must respond to the ColorSync Manager required request codes.
When a CMM receives a required request code from the ColorSync Manager,
the CMM must determine the nature of the request, perform the appropriate
processing, set an error code if necessary, and return an appropriate function
Constants 515
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
result to the Component Manager. For a description of how your CMM can
respond to ColorSync Manager requests from the Component Manager, see
“Developing Color Management Modules” (page 429).

The ColorSync Manager defines the following required request codes:

enum {
kCMMInit = 0, /* initialize (for 1.0 compatability) */
kCMMMatchColors = 1, /* match colors */
kCMMCheckColors = 2 /* gamut-check colors */
kNCMMInit = 6, /* initialize (2.x) */

};

Constant descriptions

kCMMInit This request code is provided for backward compatibility
with ColorSync 1.0. A CMM that supports ColorSync 1.0
profiles should respond to this request code by initializing
any private data required for the color-matching or
gamut-checking session to be held as indicated by
subsequent request codes. If your CMM supports only
ColorSync 1.0 profiles or both ColorSync 1.0 profiles and
ColorSync Manager version 2.x profiles, you must support
this request code. If you support only ColorSync Manager
version 2.x profiles, you should return an unimplemented
error in response to this request code.

kCMMMatchColors In response to this request code, your CMM should match
the colors in the myColors parameter to the color gamut of
the destination profile and replace the color-list color
values with the matched colors. For more information
about how your CMM should respond to this request code,
see the function CMMatchColors (page 470).

kCMMCheckColors In response to this request code, your CMM should test the
given list of colors in the myColors parameter against the
gamut specified by the destination profile and report if the
colors fall within a destination device’s color gamut. For
more information about how your CMM should respond to
this request code, see the function CMCheckColors
(page 472).

kNCMMInit In response to this request code, your CMM should
initialize any private data it will need for the color session
516 Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
and for subsequent requests from the calling application or
driver. For more information about how your CMM should
respond to this request code, see the function NCMInit
(page 468).

Optional Request Codes 7

Your CMM should respond to the ColorSync Manager request codes defined by
the following enumeration, but it is not required to do so. For a description of
how your CMM can respond to ColorSync Manager requests from the
Component Manager, see “Developing Color Management Modules”
(page 429).

The ColorSync Manager defines the following optional request codes:

enum {
kCMMMatchPixMap = 3, /* match colors of pix map image */
kCMMCheckPixMap = 4, /* gamut-check pix map colors */
kCMMConcatenateProfiles = 5, /* concatenate profiles (for backward

compatibility with ColorSync 1.0) */
kCMMConcatInit = 7, /* init prior to concat color worlds */
kCMMValidateProfile = 8, /* validate profile elements */
kCMMMatchBitmap = 9, /* match colors of bit map image */
kCMMCheckBitmap = 10, /* gamut-check bit map colors */
kCMMGetPS2ColorSpace = 11, /* get PostScript color space */
kCMMGetPS2ColorRenderingIntent = 12, /* get PostScript rendering intent */
kCMMGetPS2ColorRendering = 13, /* get PostScript color rendering

dictionary */
kCMMFlattenProfile = 14, /* extract data from profile */
kCMMUnflattenProfile = 15, /* create file for unflattened data */
kCMMNewLinkProfile = 16, /* create linked profile */
kCMMGetPS2ColorRenderingVMSize = 17, /* get PostScript version 2 color rendering

dictionary virtual memory size */
kCMMGetNamedColorInfo = 70, /* get named color information */
kCMMGetNamedColorValue = 71, /* get color values for a named color */
kCMMGetIndNamedColorValue = 72, /* get index for a named color */
kCMMGetNamedColorIndex = 73, /* get named color index from name */
kCMMGetNamedColorName = 74 /* get named color name from index */

};
Constants 517
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
Constant descriptions

kCMMMatchPixMap In response to this request code, your CMM must match
the colors of the pixel map image pointed to by the
myPixMap parameter to the gamut of the destination device,
replacing the original pixel colors with their corresponding
colors as specified in the data color space of the destination
device’s color gamut. To perform the matching, you use the
profiles specified by a previous kNCMMInit, kCMMInit, or
kCMMConcatInit request to your CMM. For more
information about how your CMM should respond to this
request code, see the function CMMatchPixMap (page 486).

kCMMCheckPixMap In response to this request code, your CMM must check the
colors of the pixel map image pointed to by the myPixMap
parameter against the gamut of the destination device to
determine if the pixel colors are within the gamut of the
destination device and report the results. To perform the
check, you use the profiles specified by a previous
kNCMMInit, kCMMInit, or kCMMConcatInit request to your
CMM. For more information about how your CMM should
respond to this request code, see the function
CMCheckPixMap (page 488).

kCMMConcatenateProfiles
This request code is for backward compatibility with
ColorSync 1.0.

kCMMConcatInit In response to this request code, your CMM should
initialize any private data your CMM will need for a color
session involving the set of profiles specified by the profile
array pointed to by the profileSet parameter. Your
function should also initialize any additional private data
needed in handling subsequent calls pertaining to this
component instance. For more information about how your
CMM should respond to this request code, see the function
CMConcatInit (page 483).

kCMMValidateProfile
In response to this request code, your CMM should test the
profile whose reference is passed in the prof parameter to
determine if the profile contains the minimum set of
elements required for a profile of its type. For more
information about how your CMM should respond to this
518 Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
request code, see the function CMMValidateProfile
(page 476).

kCMMMatchBitmap In response to this request code, your CMM must match
the colors of the source image bitmap pointed to by the
bitmap parameter to the gamut of the destination device
using the profiles specified by a previous kNCMMInit,
kCMMInit, or kCMMConcatInit request to your CMM. For
more information about how your CMM should respond to
this request code, see the function CMMatchBitmap
(page 477).

kCMMCheckBitmap In response to this request code, your CMM must check the
colors of the source image bitmap pointed to by the bitmap
parameter against the gamut of the destination device
using the profiles specified by a previous kNCMMInit,
kCMMInit, or kCMMConcatInit request to your CMM. For
more information about how your CMM should respond to
this request code, see the function CMCheckBitmap
(page 480).

kCMMGetPS2ColorSpace
In response to this request code, your CMM must obtain or
derive the color space element data from the source profile
whose reference is passed to your function in the srcProf
parameter and pass the data to a low-level data-transfer
function supplied by the calling application or device
driver. For more information about how your CMM should
respond to this request code, see the function
CMMGetPS2ColorSpace (page 493).

kCMMGetPS2ColorRenderingIntent
In response to this request code, your CMM must obtain
the color-rendering intent from the header of the source
profile whose reference is passed to your function in the
srcProf parameter and then pass the data to a low-level
data-transfer function supplied by the calling application
or device driver. For more information about how your
CMM should respond to this request code, see the function
CMMGetPS2ColorRenderingIntent (page 495).

kCMMGetPS2ColorRendering
In response to this request code, your CMM must obtain
the rendering intent from the source profile’s header and
generate the color rendering dictionary (CRD) data from
Constants 519
11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
the destination profile, and then pass the data to a
low-level data-transfer function supplied by the calling
application or device driver. For more information about
how your CMM should respond to this request code, see
the function CMMGetPS2ColorRendering (page 497).

kCMMFlattenProfile
In response to this request code, your CMM must extract
the profile data from the profile to flatten, identified by the
prof parameter, and pass the profile data to the function
specified in the proc parameter. For more information
about how your CMM should respond to this request code,
see the function CMMFlattenProfile (page 503).
Changed in ColorSync 2.5: Starting with ColorSync
version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going
through the preferred, or any, CMM. Your CMM only
needs to handle this request code for versions of ColorSync
prior to version 2.5.

kCMMUnflattenProfile
In response to this request code, your CMM must create a
temporary file in which to store the profile data you receive
from the low-level data-transfer function supplied by the
calling application or driver. Your function must return the
file specification. For more information about how your
CMM should respond to this request code, see the function
CMMUnflattenProfile (page 505).
Changed in ColorSync 2.5: Starting with ColorSync
version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going
through the preferred, or any, CMM. Your CMM only
needs to handle this request code for versions of ColorSync
prior to version 2.5.

kCMMNewLinkProfile
In response to this request code, your CMM must create a
single device link profile of type DeviceLink that includes
the profiles passed to you in the array pointed to by the
profileSet parameter. For more information about how
your CMM should respond to this request code, see the
function CMNewLinkProfile (page 491).
520 Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 7

ColorSync Reference for Color Management Modules
kCMMGetPS2ColorRenderingVMSize
In response to this request code, your CMM must obtain or
assess the maximum virtual memory (VM) size of the color
rendering dictionary (CRD) specified by the destination
profile. You must return the size of the CRD for the
rendering intent specified by the source profile. See the
function CMMGetPS2ColorRenderingVMSize (page 500) for
more information about how your CMM should respond to
this request code.

kCMMGetNamedColorInfo
In response to this request code, your CMM extracts named
color data from the profile whose reference is passed in the
srcProf parameter. For more information, see the function
CMMGetNamedColorInfo (page 508).

kCMMGetNamedColorValue
In response to this request code, your CMM extracts device
and profile connection space (PCS) color values for a
specific color name from the profile whose reference is
passed in the prof parameter. For more information, see the
function CMMGetNamedColorValue (page 510).

kCMMGetIndNamedColorValue
In response to this request code, your CMM extracts device
and PCS color values for a specific named color index from
the profile whose reference is passed in the prof parameter.
For more information, see the function
CMMGetIndNamedColorValue (page 511).

kCMMGetNamedColorIndex
In response to this request code, your CMM extracts a
named color index for a specific color name from the
profile whose reference is passed in the prof parameter. For
more information, see the function CMMGetNamedColorIndex
(page 512).

kCMMGetNamedColorName
In response to this request code, your CMM extracts a
named color name for a specific named color index from
the profile whose reference is passed in the prof parameter.
For more information, see the function
CMMGetNamedColorName (page 513).
Constants 521
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 8-0
Listing 8-0
Table 8-0
8 Version and Compatibility
Information
ColorSync Version Information 525
Gestalt, Shared Library, and CMM Version Information 526
CPU and System Requirements 527
ColorSync Header Files 528

ColorSync Manager 2.x Backward Compatibility 529
ColorSync 2.1 Support in Version 2.5 529
ColorSync 2.0 Support in Version 2.1 529

ColorSync Manager 1.0 Backward Compatibility 529
ColorSync 1.0 Profile Support 530

ColorSync 1.0 Profiles and Version 2.x Profiles 531
How ColorSync 1.0 Profiles and Version 2.x Profiles Differ 531
CMMs and Mixed Profiles 532
Converting a 2.x Profile to the 1.0 Format 532

Using Newer Versions of the ColorSync Manager With ColorSync 1.0
Profiles 532

ColorSync Manager 2.x Functions Not Supported for ColorSync 1.0
Profiles 533
Using ColorSync 1.0 Profiles With Newer Versions of the ColorSync
Manager 534

ColorSync 1.0 Functions With Parallel 2.x Counterparts 536
523

C H A P T E R 8
Version and Compatibility Information 8

This section describes the Gestalt information, shared library version numbers,
CMM version numbers, and ColorSync header files you use with different
versions of the ColorSync Manager. It also describes CPU and system
requirements.

This section also describes backward compatibility support for ColorSync 1.0
functions, profiles, and CMMs provided by the ColorSync Manager in versions
2.0 and later.

In addition, this section explains how to use the ColorSync Manager for color
matching between a ColorSync 1.0 profile and a version 2.x profile.

Version 2.5 of the ColorSync Manager replaces all earlier versions of the
product, including ColorSync 2.1, 2.0, and 1.0.

Note
There are no changes to the ColorSync Manager API
between version 2.5 and version 2.5.1, so this document is
up-to-date for ColorSync 2.5.1. ◆

Although ColorSync 1.0 used a proprietary profile format, the ColorSync
Manager provides backward compatibility for applications and device drivers
written for ColorSync 1.0. Your application that uses the ColorSync Manager
can match, convert, and color check colors using version 2.x profiles or, when
necessary, using a combination of version 2.x profiles and ColorSync 1.0
profiles.

IMPORTANT

Although ColorSync version 2.5 fully supports 1.0 format
profiles, this support is not guaranteed to continue in
future versions. Apple strongly recommends that
developers using the 1.0 format move to the 2.x format. ▲

ColorSync Version Information 0

This section describes the Gestalt information, shared library version numbers,
CMM version numbers, CPUs, system versions, and ColorSync header files you
use with different versions of the ColorSync Manager. Information is provided
in the following sections:
ColorSync Version Information 525
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
■ “Gestalt, Shared Library, and CMM Version Information” (page 526)

■ “CPU and System Requirements” (page 527)

■ “ColorSync Header Files” (page 528)

For additional version information, see the section “ColorSync Versions”
(page 48) and “ColorSync and ICC Profile Format Version Numbers” (page 50).

Gestalt, Shared Library, and CMM Version Information 8

Table 8-1 lists the version number for each release of the ColorSync Manager,
along with the Gestalt version number, shared library version number, and
Gestalt selector code for that version. Note that only the ColorSync version
numbers and Gestalt version numbers are unique for each version. For more
information on Gestalt selectors, see “Gestalt Selector Codes for the ColorSync
Manager” (page 217).

Table 8-1 ColorSync Manager version numbers, with corresponding shared library
version numbers and Gestalt selectors

ColorSync
Version Gestalt Version Gestalt Selector

Shared Library
Version

Color
Management
Module (CMM)
Version

1.0 $00000100 gestaltColorSync10 $00000000 $00000001

1.0.3 $00000110 gestaltColorSync11 $00000000 $00000001

1.0.4 $00000104 gestaltColorSync104 $00000000 $00000001

1.0.5 $00000105 gestaltColorSync105 $00000000 $00000001

2.0 $00000200 gestaltColorSync20 $02000000 $00010001

2.0.1 $00000200 gestaltColorSync20 $02000000 $00010001

2.1.0 $00000210 gestaltColorSync21 $02100000 $00010001

2.1.1 $00000211 gestaltColorSync21 $02100000 $00010001

2.1.2 $00000212 gestaltColorSync21 $02100000 $00010001

2.5 $00000250 gestaltColorSync25 $02500000 $00010002

2.5.1 $00000251 gestaltColorSync251 $02500000 $00010002
526 ColorSync Version Information

11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
CPU and System Requirements 8

Table 8-2 lists the CPU and system requirements for each release of the
ColorSync Manager.

Table 8-2 ColorSync Manager CPU and system requirements

ColorSync Version CPU System Version

1.0, 1.0.3, 1.0.4,
1.0.5

68K or PowerPC On 68K, requires either
System 7.0 or System 6.0.7
with 32-bit QuickDraw,
version 1.2.

For PowerPC, requires
System 7.0.

2.0, 2.0.1, 2.1.0,
2.1.1, 2.1.2

68020 or greater
or PowerPC

Requires System 7.0 or
greater with Color
QuickDraw.

2.5, 2.5.1 68020 or greater
or PowerPC

Requires System 7.6.1 or
greater.
ColorSync Version Information 527
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
ColorSync Header Files 8

Table 8-3 describes the ColorSync Manager header files. Note that some header
files are no longer used or are not recommended.

Table 8-3 ColorSync header files

Header File Description
First
Used Status

CMAcceleration.h CMM acceleration
component interface.

2.0 Not used starting
with 2.1.

CMApplication.h ColorSync Manager
functions, constants, and
data types for applications,
device drivers, and CMMs.

1.0 Supported.

CMCalibrator.h Interface for developing
monitor calibrator plug-ins.

2.5 Supported, but not
documented here.

CMComponent.h Old component interface for
CMMs. Replaced by
CMMComponent.h.

1.0 Not used starting
with 2.0.

CMConversions.h Component interface for
old-style conversion
routines.

2.0 Supported, but not
recommended
starting with 2.1.

CMICCProfile.h Constants and data types for
working with ICC profiles.

1.0 Supported.

CMMComponent.h Component interface for
ColorSync CMMs.

1.0 Supported.

CMPRComponent.h Component interface for
ColorSync 1.0 profile
responders.

1.0 Supported, but not
recommended
starting with 2.0.

CMScriptingPlugin.h Interface for developing
scripting plug-ins.

2.5 Supported, but not
documented here.
528 ColorSync Version Information

11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
ColorSync Manager 2.x Backward Compatibility 8

The following sections describe backward compatibility for ColorSync Manager
versions greater than 2.0.

ColorSync 2.1 Support in Version 2.5 8

Existing code written to use version 2.1 of the ColorSync Manager should
continue to work with ColorSync 2.5 without modification. Existing code may
operate more efficiently in some cases due to optimizations provided with
version 2.5, especially for multiple processors, as described in “When ColorSync
Uses Multiple Processors” (page 73). However, existing code can not take full
advantage of some new features; for example, see “The Profile Cache and
Optimized Searching” (page 57).

For a guide to the new features in version 2.5 of the ColorSync Manager, see
“New Features in ColorSync Manager Version 2.5” (page 539).

ColorSync 2.0 Support in Version 2.1 8

Existing code written to use version 2.0 of the ColorSync Manager should
continue to work with ColorSync 2.1 without modification, although it will not
necessarily take advantage of the new features described in “New Features in
ColorSync Manager Version 2.1” (page 550). For example, code written for
ColorSync version 2.0 cannot use the profile identifier, an abbreviated data
structure that identifies, and possibly modifies, a profile in memory or on disk.
An embedded profile identifier requires much less space than an entire profile.

ColorSync Manager 1.0 Backward Compatibility 8

The ColorSync Manager continues to fully support the ColorSync 1.0 interface,
including the ColorSync 1.0 profile responder. Note, that this support is
provided primarily for backward compatibility. If you are writing new code,
you should take advantage of the many new features added between version
2.0 and version 2.5. However, existing applications and drivers that use
ColorSync Manager 2.x Backward Compatibility 529
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
ColorSync 1.0 functions will continue to work properly, as will ColorSync 1.0
profiles, ColorSync 1.0 CMMs, and QuickDraw GX 1.0.

Although newer versions of the ColorSync Manager continue to support use of
the profile responder from ColorSync 1.0, this feature is not supported by the
ColorSync Manager interface.

ColorSync 1.0 Profile Support 8

The ColorSync Manager continues to support the use of ColorSync 1.0 profiles.
For example, you should always use ColorSync 1.0 functions with ColorSync
1.0 profiles, if possible. For example, always use ColorSync 1.0 functions to
match colors between the color gamuts of two devices if both devices have
ColorSync 1.0 profiles. The four ColorSync 1.0 functions and their new
counterparts are listed in Table 8-4 (page 536).

However, there are times when you may need to use a ColorSync 1.0 profile
with a ColorSync 2.x function. The ColorSync Manager’s backward
compatibility allows you to do this. For example, a document containing an
image to be color matched may include an embedded ColorSync 1.0 source
profile for the image. To match the colors of the source image to a device that
has a version 2.x profile, you must use 2.x functions because ColorSync 1.0
functions cannot gain access to a version 2.x profile.

IMPORTANT

Although ColorSync version 2.5 fully supports 1.0 format
profiles, this support is not guaranteed to continue in
future versions. Apple strongly recommends that
developers using the 1.0 format move to the 2.x format. ▲

One of the main differences between ColorSync 1.0 and 2.x functions is the
profile format used. The 2.x functions accommodate ColorSync 1.0 profiles so
that you can use those profiles if you must. Before describing how to use a
ColorSync 1.0 profile with the 2.x functions, this section explains the differences
between the ColorSync 1.0 profile format and the version 2.x profile format
defined by the International Color Consortium (ICC) and used by the
ColorSync Manager.
530 ColorSync Manager 1.0 Backward Compatibility

11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
ColorSync 1.0 Profiles and Version 2.x Profiles 8

The ColorSync 1.0 profile format was designed by Apple Computer. This profile
is memory resident and follows an internal structure based on tables. Although
it is an open format, it is not an industry standard.

The ICC profile format implemented in the ColorSync Manager is significantly
different from the profile format implemented for ColorSync 1.0. The version
2.x profile format is specified by the ICC and provides an industry standard
that allows for interoperability across platforms and devices. A version 2.x
profile created for a particular device can be used on systems running different
operating systems.

Because the ColorSync 1.0 and version 2.x profile formats differ, the ColorSync
Manager must resolve any compatibility issues involving accessing profiles and
color matching between profiles. The next section describes how these profile
formats differ.

How ColorSync 1.0 Profiles and Version 2.x Profiles Differ 8

A ColorSync 1.0 profile is smaller than a version 2.x profile and can therefore
reside in memory. It is handle-based. A version 2.x profile as implemented by
the ColorSync Manager is commonly file-based, but it can also be
memory-based. You use an abstract internal data structure, called a profile
reference, to access a version 2.x profile.

A ColorSync 1.0 profile contains a header, a copy of the Apple
CMProfileChromaticities record, profile response data for the associated device,
and a profile name string for use in dialog boxes. Custom profiles may also
have additional, private data. ColorSync 1.0 defines the following profile data
structure:

struct CMProfile {
CMHeader header;
CMProfileChromaticities profile;
CMProfileResponse response;
CMIString profileName; /* variable length */
char customData[anyNumber];

 /* optional custom CMM data */
};

The response data fields contain nine tables. The first table is for grayscale
values. The next three are red, green, and blue values, followed by three for
ColorSync Manager 1.0 Backward Compatibility 531
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
cyan, magenta, and yellow values. The eighth and ninth tables are for CMYK
printers requiring undercolor removal and black generation data.

The ColorSync 1.0 profile header, defined by the data structure CMHeader
(page 351), and the version 2.x profile header, defined by the structure
CM2Header (page 354), contain many fields in common. However, some fields in
the ColorSync 1.0 profile header reflect its table-based nature, while a version
2.x profile has a tagged-element structure. A version 2.x profile also supports
use of lookup table transforms that allow for faster processing.

CMMs and Mixed Profiles 8

Although version 2.x of the ColorSync Manager supports using a mix of
ColorSync 1.0 and version 2.x profiles, the success of a matching session
involving a ColorSync 1.0 profile depends on the CMM component performing
the process. Third-party CMMs may choose not to support ColorSync 1.0
profiles. The default CMM is able to establish a matching session involving one
or more ColorSync 1.0 profiles.

For device link profiles, you must include only version 2.x profiles. You cannot
mix ColorSync 1.0 and version 2.x profiles in a device link profile.

Converting a 2.x Profile to the 1.0 Format 8

The ColorSync Manager provides the CMConvertProfile2to1 function to convert
2.x format profiles to the 1.0 profile format. Because 1.0 and 2.x scanner and
monitor profiles generally carry the same required color information, no accuracy
is lost in converting from one to the other. With printer profiles, however, some
accuracy will be lost by conversion, leading to significantly different results.
Because of the possible loss of accuracy in some cases, 2.x to 1.0 profile
conversion is not encouraged.

Using Newer Versions of the ColorSync Manager With
ColorSync 1.0 Profiles 8

Despite differences between the version 2.x and ColorSync 1.0 profile formats,
you can use most of the ColorSync Manager 2.x functions to gain access to
ColorSync 1.0 profiles and their contents and to color match to and from the
two disparate profile formats, if necessary. The ColorSync Manager makes this
possible.
532 ColorSync Manager 1.0 Backward Compatibility

11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
You can open a reference to a ColorSync 1.0 profile using 2.x functions and
special data structures that accommodate both profile styles. You can also match
the colors of an image expressed in the color gamut of one device whose
characteristics are described by a ColorSync 1.0 profile to the colors within the
gamut of another device whose characteristics are described by a version 2.x
profile.

IMPORTANT

If you are color matching between devices that both use
ColorSync 1.0 profiles, you should use the ColorSync
functions that work with 1.0 profiles for the process. ▲

The next section describes

■ which version 2.x functions you cannot use for ColorSync 1.0 profiles

■ how you can use the ColorSync Manager with ColorSync 1.0 profiles

ColorSync Manager 2.x Functions Not Supported for ColorSync 1.0
Profiles 8

You cannot use the ColorSync Manager’s CMUpdateProfile function to update a
ColorSync 1.0 profile. The ColorSync Manager does not provide functions for
profile version conversions. This is the domain of profile-building tools and
calibration applications.

The ColorSync Manager 2.x versions provide a set of functions to search the
ColorSync Profiles folder for specific profiles that meet search criteria. These
functions act on version 2.x profiles only. If the ColorSync Profiles folder
contains ColorSync 1.0 profiles, these functions do not acknowledge them or
return results that include them. The 2.x search functions, which are not
supported for ColorSync 1.0 functions, are the CMIterateColorSyncFolder
(page 304), CMNewProfileSearch (page 308), CMUpdateProfileSearch (page 310),
CMDisposeProfileSearch (page 311), CMSearchGetIndProfile (page 312),
CMSearchGetIndProfileFileSpec (page 313), CMProfileIdentifierFolderSearch
(page 315), and CMProfileIdentifierListSearch (page 316) functions.

You cannot use the ColorSync Manager’s NCMUseProfileComment function to
generate automatically the picture comments required to embed a
ColorSync 1.0 profile. This function is designed to work with version 2.x
profiles only.
ColorSync Manager 1.0 Backward Compatibility 533
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
Using ColorSync 1.0 Profiles With Newer Versions of the ColorSync
Manager 8

You can use versions 2.0 and higher of the ColorSync Manager to match a
document image with an embedded 1.0 source profile to the color gamut of a
printer defined by a version 2.x profile. Newer versions of the ColorSync
Manager are able to contend with both profile formats.

The sections that follow explain how to obtain a reference to the ColorSync 1.0
profile, get the profile’s header, and get its synthesized tags.

Opening a ColorSync 1.0 Profile 8

To use a ColorSync 1.0 profile, you must obtain a reference to the profile.
Obtaining a reference to the profile is synonymous with opening the profile for
your program’s use. If the profile is embedded in a document, you must extract
the profile before you can open it.

You can use the CMOpenProfileFile function to obtain a reference to a ColorSync
1.0 profile. Other ColorSync Manager functions that you use to gain access to
the profile’s contents or perform color matching based on the profile require the
profile reference as a parameter.

Obtaining a ColorSync 1.0 Profile Header 8

After you obtain a reference to a profile, you can gain access to the profile’s
contents. To gain access to the contents of any of the fields of a profile header,
you must get the entire header. The ColorSync Manager allows you to do this
using the CMGetProfileHeader function. You pass this function the profile
reference and a data structure to hold the returned header. The ColorSync
Manager defines the following union of type CMAppleProfileHeader, containing
variants for ColorSync 1.0 and version 2.x ColorSync profile headers for this
purpose:

union CMAppleProfileHeader {
CMHeader cm1;
CM2Header cm2;

};

You use the cm1 variant for a ColorSync 1.0 profile header. You can easily test for
the version of a profile header to determine which variant to use because the
offset of the header version is at the same place for both ColorSync 1.0 profiles
and version 2.x profiles.
534 ColorSync Manager 1.0 Backward Compatibility

11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
Obtaining ColorSync 1.0 Profile Elements 8

The ColorSync Manager provides four tags to allow you to obtain four
ColorSync 1.0 profile elements pointed to from the profile header or contained
outside the header. To obtain the profile element, you specify its associated tag
signature as a parameter to the CMGetProfileElement function along with the
profile reference. The ColorSync Manager provides the following enumeration
that defines these tags:

enum {
cmCS1ChromTag = 'chrm',
cmCS1TRCTag = 'trc ',
cmCS1NameTag = 'name',
cmCS1CustTag = 'cust'

};

cmCS1ChromTag Profile chromaticities tag signature. Element data for this
tag specifies the XYZ chromaticities for the six primary and
secondary colors (red, green, blue, cyan, magenta, and
yellow).

cmCS1TRCTag Profile response data tag signature. Element data for this
tag specifies the profile response data for the associated
device.

cmCS1NameTag Profile name string tag signature. Element data for this tag
specifies the profile name string. This is an international
string consisting of a Macintosh script code followed by a
length byte and up to 63 additional bytes composing a text
string that identifies the profile.

cmCS1CustTag Custom tag signature. Element data for this tag specifies
the private data for a custom CMM.

Embedding ColorSync 1.0 Profiles 8

In ColorSync 1.0, picture comment types cmBeginProfile and cmEndProfile are
used to begin and end a picture comment.

The cmEnableMatching and cmDisableMatching picture comments are used to
begin and end color matching in ColorSync 1.0 and in newer versions of the
ColorSync Manager.
ColorSync Manager 1.0 Backward Compatibility 535
11/20/98  Apple Computer, Inc.

C H A P T E R 8

Version and Compatibility Information
ColorSync 1.0 Functions With Parallel 2.x Counterparts 8

Starting with version 2.0, the ColorSync Manager implements new versions of
four of the functions supported by ColorSync 1.0. In the new version of these
functions, for example, a parameter used to specify a profile takes a profile
reference.

It is easy to spot a ColorSync 2.x function that is a new version of a ColorSync
1.0 function, because the function name begins with an uppercase letter N,
signifying that it is new. The four ColorSync 1.0 functions and their new
counterparts are listed in Table 8-4.

If you are writing a new ColorSync-supportive program, you should always use
the new ColorSync Manager functions. The ColorSync 1.0 version of these
functions will not be supported indefinitely in new releases of the ColorSync
Manager.

Table 8-4 ColorSync 1.0 functions and their ColorSync Manager counterparts

ColorSync 1.0 function ColorSync 2.x function

pascal CWNewColorWorld
(CMWorldRef *cw, CMProfileHandle src,
CMProfileHandle dst);

pascal CMError NCWNewColorWorld
(CMWorldRef *cw, CMProfileRef src,
CMProfileRef dst);

pascal CMError CMBeginMatching
(CMProfileHandle src, CMProfileHandle
dst, CMMatchRef *myRef);

pascal CMError NCMBeginMatching
(CMProfileRef src, CMProfileRef dst,
CMMatchRef *myRef);

pascal void CMDrawMatchedPicture
(PicHandle myPicture, CMProfileHandle
dst, Rect *myRect);

pascal void NCMDrawMatchedPicture
(PicHandle myPicture, CMProfileRef dst,
Rect *myRect);

pascal CMError CMUseProfileComment
(CMProfileHandle profile);

pascal CMError NCMUseProfileComment
(CMProfileRef prof, unsigned long flags);
536 ColorSync Manager 1.0 Backward Compatibility

11/20/98  Apple Computer, Inc.

C H A P T E R 9

Contents

11/20/98  Apple Computer, Inc.

Contents
Figure 9-0
Listing 9-0
Table 9-0
9 What’s New
New Features in ColorSync Manager Version 2.5 539
New Profile Folder Location 540
Optimized Profile Searching 540
Monitor Calibration Framework and Per/Monitor Profiles 540
Scripting Support 541
Multiprocessor Support 542
Sixteen-bit Channel Support 542
Flexibility in Choosing CMMs and Default Profiles 543
Additional Features 543

New and Revised Functions, Data Types, and Constants 544
New and Revised Code Listings 549
New Features in ColorSync Manager Version 2.1 550
Other Color Documentation 551
537

C H A P T E R 9
What’s New 9

This section lists the new features available with version 2.5 of the ColorSync
Manager, provides links to new and revised material in other sections, and
summarizes changes to ColorSync functions, data types, and constants. It also
contains a brief summary of features that were added for ColorSync 2.1.

Note
There are no changes to the ColorSync Manager API
between version 2.5 and version 2.5.1, so this document is
up-to-date for ColorSync 2.5.1. ◆

This section includes the following:

■ “New Features in ColorSync Manager Version 2.5” (page 539) lists the
features new to version 2.5 and provides links to new and revised material.

■ “New and Revised Functions, Data Types, and Constants” (page 544)
provides tables that include a brief description of all new and changed
functions, data types, and constants, as well as links to more detailed
descriptions.

■ “New and Revised Code Listings” (page 549) describes new and revised
code listings for ColorSync 2.5.

■ “New Features in ColorSync Manager Version 2.1” (page 550) lists the
features new to ColorSync version 2.1.

■ “Other Color Documentation” (page 551) explains where you can find
information on earlier versions of ColorSync, and on other color technologies
such as the Color Picker Manager.

For related information, see “Revision History” (page 17) and “About This
Document” (page 19).

New Features in ColorSync Manager Version 2.5 9

Version 2.5 of the ColorSync Manager provides many new or enhanced
features. The following sections present a brief overview of these features, with
links to detailed information in other sections.
New Features in ColorSync Manager Version 2.5 539
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
New Profile Folder Location 9

Earlier versions of ColorSync placed the ColorSync Profiles folder inside the
Preferences folder. Version 2.5 places the profiles folder at the first level inside
the System folder. For backward compatibility, ColorSync may put an alias to
the original folder location inside the new profiles folder.

You can now organize profiles by storing them in one level of subfolders within
the profiles folder. You can also store aliases to other profiles and profile folders.
Profile searching can find profiles in any of these locations.

For an overview of this and related topics, see:

■ “Profile Search Locations” (page 55)

■ “Where ColorSync Searches for Profiles” (page 56)

■ “Where ColorSync Does Not Look for Profiles” (page 57)

■ The function description for NCMGetProfileLocation (page 233)

■ “Optimized Profile Searching” (page 540)

Optimized Profile Searching 9

ColorSync 2.5 uses a cache file to keep track of currently-installed profiles. A
flexible new routine, CMIterateColorSyncFolder, takes advantage of the profile
cache to perform fast profile searches and provide profile information quickly.

For an overview of this topic, see:

■ “The Profile Cache and Optimized Searching” (page 57)

For related information, including sample code that demonstrates optimized
searching, see:

■ “Performing Optimized Profile Searching” (page 130)

■ The function description for CMIterateColorSyncFolder (page 304)

Monitor Calibration Framework and Per/Monitor Profiles 9

ColorSync 2.5 uses the Monitors & Sound control panel to provide a monitor
calibration framework and per/monitor profiles. Among the features: you can
select a separate profile for each available monitor; you can calibrate monitors
and, for each monitor, create one or more color profiles (based on variations in
540 New Features in ColorSync Manager Version 2.5

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
gamma, white point, and so on); Apple provides a default calibration plug-in,
but you can create your own calibration plug-in or use third-party versions; you
can choose from any available calibrator to create a monitor profile.

For an overview of these features, see:

■ “Monitor Calibration and Profiles” (page 67)

Starting with version 2.5, ColorSync also offers new features for working with
displays: you can call ColorSync functions to get or set a monitor profile by
AVID; you can use an optional profile tag, which you specify with the
cmVideoCardGammaTag constant, to provide video card gamma data for a profile—
when you call the function CMSetProfileByAVID (page 300), it retrieves the video
card gamma data and sets the video card.

For sample code that uses the function CMGetProfileByAVID (page 300), see:

■ “Getting the Profile for the Main Display” (page 100)

For an overview of video card gamma, see:

■ “Video Card Gamma” (page 70)

For descriptions of the data types and constants you use with video card data,
see:

■ “Video Card Gamma” (page 386)

■ “Video Card Gamma Constants” (page 421)

Scripting Support 9

ColorSync 2.5 provides an extensible AppleScript framework that allows users
to script many common tasks. Among the features:

■ Scriptable operations include setting the system profile, matching an image,
and embedding a profile in an image.

■ Several sample scripts demonstrate how to automate repetitive tasks.

■ The scripting framework uses a plug-in architecture that is fully accessible to
third-party scripting plug-ins.

For more information, see:

■ “Scripting Support” (page 71)

■ “Scriptable Properties” (page 71)
New Features in ColorSync Manager Version 2.5 541
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
■ “Scriptable Operations” (page 71)
■ “Extending the Scripting Framework” (page 72)
■ “Sample Scripts” (page 72)

Multiprocessor Support 9

ColorSync’s default Color Matching Module, or CMM, now supports multiple
processors for some color matching functions. Multiprocessor support is
transparent to your code—it is invoked automatically when the required
conditions are met. Matching algorithms take advantage of multiple processors
with up to 95% efficiency. As a result, an operation can be performed nearly
twice as fast when two processors are available. Performance is scalable.

For more information on this topic, see:

■ “Multiprocessor Support” (page 73)

■ “When ColorSync Uses Multiple Processors” (page 73)
■ “Efficiency of ColorSync’s Multiprocessor Support” (page 73)

Sixteen-bit Channel Support 9

ColorSync’s default Color Matching Module now supports 16-bits-per-channel
color spaces. The new formats supported are:

■ RBG stored in 48 bits per pixel

■ CMYK stored in 64 bits per pixel

■ Lab stored in 48 bits per pixel

To make use of these new spaces, you specify one of the following constants in
the color space field (space) of the CMBitmap structure:

cmRGB48Space
cmCMYK64Space
cmLAB48Space

For more information on these constants, see “Color Space Constants With
Packing Formats” (page 409).
542 New Features in ColorSync Manager Version 2.5

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
Flexibility in Choosing CMMs and Default Profiles 9

The ColorSync control panel, which replaces the ColorSync™ System Profile
control panel, now lets you choose a preferred CMM from any CMMs that are
present.

Related changes include the following:

■ ColorSync previously supported only one default profile—the RGB “System”
profile. Users can now use the ColorSync control panel to set default profiles
for RGB and CMYK color spaces as well.

■ ColorSync provides functions your code can call to get and set default color
space profiles for RGB, CMYK, Lab, and XYZ color spaces.

For more information, see:

■ “Setting a Preferred CMM” (page 59)

■ “Setting Default Profiles” (page 54)

■ “Getting and Setting Default Profiles by Color Space” (page 297)

Additional Features 9

Version 2.5 of the ColorSync Manager ships with the following additional
features:

■ The Kodak Color Matching Module (available as an install option). Some
cross-platform applications use the Kodak Color Management System on the
Windows platform. Users working with Macintosh versions of those
applications can use the Kodak CMM to ensure consistent output.

■ New versions of the ColorSync Photoshop plug-ins that take advantage of
ColorSync 2.5. The Filter plug-in is accessible from the Photoshop “Filters”
menu, while the Export and Import filters are accessible from the “File”
menu.

■ Commonly-requested profiles, including SWOP (standard web offset press)
and sRGB (standardized RGB monitor).

■ Support for an optional video card gamma tag in profiles. For more
information, see “Monitor Calibration Framework and Per/Monitor Profiles”
(page 540).

■ A ColorPicker Manager extension that works with ColorSync 2.x.
New Features in ColorSync Manager Version 2.5 543
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
■ A revised version of the CSDemo application provides sample code that
demonstrates how to use many of the new features of ColorSync 2.5.

New and Revised Functions, Data Types, and Constants 9

The tables in this section provide a brief description of new and changed
functions, data types, and constants in ColorSync version 2.5, as well as links to
more detailed information.

■ Table 9-1 shows new and revised functions.

■ Table 9-2 shows new and revised data types.

■ Table 9-3 shows new and revised constants.

Table 9-1 New and revised functions in ColorSync 2.5

Function Version 2.5 Notes

NCMGetProfileLocation (page 233) New. Obtains either a profile location structure
for a specified profile or the size of the location
structure for the profile. Has parameter to specify
size of location structure.

CMGetProfileLocation (page 234) Not recommended. Use NCMGetProfileLocation
(page 233) instead.

CMFlattenProfile (page 237) Changed. The ColorSync Manager now calls the
transfer function directly, without going through
the preferred, or any, CMM.

CMUnflattenProfile (page 239) Changed. The ColorSync Manager now calls the
transfer function directly, without going through
the preferred, or any, CMM.

NCWNewColorWorld (page 262) Changed. Use of the system profile has changed,
as described in “Setting Default Profiles”
(page 54). This could affect use of src and dst
parameters.
544 New and Revised Functions, Data Types, and Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
CWConcatColorWorld (page 265) Changed. Selection of preferred CMM has
changed, as described in “Setting a Preferred
CMM” (page 59) and “How the ColorSync
Manager Selects a CMM” (page 84).

CWNewLinkProfile (page 267) Changed. Selection of preferred CMM has
changed, as described in “Setting a Preferred
CMM” (page 59) and “How the ColorSync
Manager Selects a CMM” (page 84).

CMGetCWInfo (page 270) Changed. Selection of preferred CMM has
changed, as described in “Setting a Preferred
CMM” (page 59) and “How the ColorSync
Manager Selects a CMM” (page 84).

CWMatchBitmap (page 276) Changed. Now supports additional color space
constants: cmGray16Space, cmGrayA32Space,
cmRGB48Space, cmCMYK64Space, and cmLAB48Space.

NCMBeginMatching (page 285) Changed. Use of the system profile has changed,
as described in “Setting Default Profiles”
(page 54). This could affect use of src and dst
parameters.

NCMDrawMatchedPicture (page 288) Changed. Use of the system profile has changed,
as described in “Setting Default Profiles”
(page 54). This could affect use of dst parameter.

CMGetPreferredCMM (page 292) New. Identifies the preferred CMM specified by
the ColorSync control panel.

CMGetSystemProfile (page 294) Changed. Use of the system profile has changed,
as described in “Setting Default Profiles”
(page 54).

CMSetSystemProfile (page 295) Changed. Use of the system profile has changed,
as described in “Setting Default Profiles”
(page 54).

CMGetDefaultProfileBySpace (page 297) New. Gets the default profile for the specified
color space.

CMSetDefaultProfileBySpace (page 298) New. Sets the default profile for the specified
color space.

Table 9-1 New and revised functions in ColorSync 2.5 (continued)

Function Version 2.5 Notes
New and Revised Functions, Data Types, and Constants 545
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
CMGetProfileByAVID (page 300) New. Gets the current profile for a monitor.

CMSetProfileByAVID (page 300) New. Sets the current profile for a monitor.

CMGetColorSyncFolderSpec (page 302) Changed. The name and location of the profile
folder changed, as described in “Profile Search
Locations” (page 55).

CMIterateColorSyncFolder (page 304) New. Provides optimized profile searching by
iterating over available profiles.

CMNewProfileSearch (page 308) Not recommended. Use
CMIterateColorSyncFolder (page 304) instead.

CMUpdateProfileSearch (page 310) Not recommended. Use
CMIterateColorSyncFolder (page 304) instead.

CMDisposeProfileSearch (page 311) Not recommended. Use
CMIterateColorSyncFolder (page 304) instead.

CMSearchGetIndProfile (page 312) Not recommended. Use
CMIterateColorSyncFolder (page 304) instead.

CMSearchGetIndProfileFileSpec
(page 313)

Not recommended. Use
CMIterateColorSyncFolder (page 304) instead.

MyProfileIterateProc (page 340) New. Application-defined function that the
CMIterateColorSyncFolder (page 304) function
calls once for each found profile file as it iterates
over the available profiles.

MyColorSyncDataTransfer (page 342) Changed. The ColorSync Manager calls the
function directly, without going through the
preferred, or any, CMM

Table 9-1 New and revised functions in ColorSync 2.5 (continued)

Function Version 2.5 Notes
546 New and Revised Functions, Data Types, and Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
Table 9-2 shows new and revised data types.

Table 9-2 New and revised data types in ColorSync 2.5

Data type Version 2.5 Notes

CMProfileIterateProcPtr (page 365) New. Universal procedure pointer definition
for application-defined function you pass to
the function CMIterateColorSyncFolder
(page 304).

CMProfileIterateData (page 366) New. Provides concise description of key
profile data during iteration over available
profiles.

CMSearchRecord (page 368) Not recommended. Use CMProfileIterateData
(page 366) instead.

CMProfileSearchRef (page 370) Not recommended. Use CMProfileIterateData
(page 366) instead.

CMVideoCardGammaType (page 386) New. Optional profile tag for video card
gamma.

CMVideoCardGammaTable (page 387) New. Specifies video card gamma data in table
format, based on the specified number of
channels, entries per channel, and entry size.

CMVideoCardGammaFormula (page 388) New. Specifies video card gamma data as a
formula, based on specified actual, minimum,
and maximum values for red, blue and green
gamma.

CMVideoCardGamma (page 389) New. Specifies video gamma data to store with
a video gamma profile tag, in either table or
formula format.
New and Revised Functions, Data Types, and Constants 547
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
Table 9-3 shows new and revised constants.

Table 9-3 New and revised constants in ColorSync 2.5

Constants Version 2.5 Notes

“Color Packing for Color Spaces” (page 404) Changed. The constants
cm48_16ColorPacking and
cm64_16ColorPacking were added.

“Abstract Color Space Constants” (page 406) Changed. The constants cmRGBASpace and
cmGrayASpace were moved from “Color Space
Constants With Packing Formats”
(page 409).

“Color Space Constants With Packing
Formats” (page 409)

Changed. The constants cmRGBASpace and
cmGrayASpace were moved to “Abstract Color
Space Constants” (page 406).

The constants cmGray16Space,
cmGrayA32Space, cmRGB48Space, cmCMYK64Space,
and cmLAB48Space were added.

“Device Attribute Values for Version 2.x
Profiles” (page 418)

Changed. The illustration was revised to
show the correct ICC definitions for the
deviceAttributes field in the CM2Header
(page 354) data structure. Unused enums
were removed.

“Video Card Gamma Tag” (page 421) New. Specifies the video card gamma tag in
a profile.

“Video Card Gamma Tag Type” (page 422) New. Specifies the signature type for a video
card gamma profile tag.

“Video Card Gamma Storage Type”
(page 422)

New. Specifies whether the data in a video
card gamma tag is in table or formula
format.
548 New and Revised Functions, Data Types, and Constants

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
New and Revised Code Listings 9

This section provides a brief description of new and revised code listings.

Table 9-4 New and revised code listings for ColorSync 2.5

Listing Version 2.5 Notes

Listing 3-1 (page 92), “Determining if
ColorSync 2.5 is available”

Revised. Checks for version 2.5.

Listing 3-2 (page 97), “Opening a
reference to a file-based profile”

Revised. Replaced profLoc.u.file.spec with
profLoc.u.fileLoc.spec.

Listing 3-3 (page 98), “Poor man’s
exception handling macro”

New. Provides the require macro for simple error
handling.

Listing 3-4 (page 100), “Identifying the
current system profile”

Revised. Returns CMError instead of void. Uses
require error-handling macro.

Listing 3-5 (page 101), “Getting the
profile for the main display”

New. Uses the new CMGetProfileByAVID
(page 300) function to get the profile for the main
display.

Listing 3-6 (page 103), “Matching a
picture to a display”

Revised. Formerly called both NCMBeginMatching
(page 285) and NCMDrawMatchedPicture (page 288).
Now calls only the latter. Uses require
error-handling macro.

Listing 3-7 (page 110), “Matching the
colors of a bitmap using a color world”

Revised. Formerly called both CWMatchPixMap
(page 272) and CWMatchBitmap (page 276). Now
calls only the latter (fixes bug 1669727). Uses
require error-handling macro.

Listing 3-8 (page 117), “Embedding a
profile by prepending it before its
associated picture”

Revised. Uses require error-handling macro.
Disposes of graphics world if necessary on error
condition.

Listing 3-9 (page 121), “Counting the
number of profiles in a picture”

Revised. Renamed bottleneck procedures for
clarity.

Listing 3-10 (page 123), “Calling the
CMUnflattenProfile function to extract
an embedded profile”

Revised. Uses require error-handling macro.
Performs cleanup if necessary on error condition.
New and Revised Code Listings 549
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
New Features in ColorSync Manager Version 2.1 0

This section describes new features added to version 2.1 of the ColorSync
Manager. These features are documented throughout this document. If you are
interested in documentation that covers only version 2.1, see “Other Color
Documentation” (page 551).

■ procedure-based profiles: You can specify your own profile-access procedure
that ColorSync will call when the profile is created, initialized, opened, read,
updated, or closed.

■ support for named color spaces: The ColorSync Manager provides data
structures and routines for working with named color spaces.

■ profile identifiers: The ColorSync Manager defines the profile identifier, an
abbreviated data structure that identifies, and possibly modifies, a profile in
memory or on disk. An embedded profile identifier requires much less space
than an entire profile.

Listing 3-13 (page 131), “An iteration
function for profile searching with
ColorSync 2.5”

New. Provides an iteration function for
optimized profile searching with the new
MyProfileIterateProc (page 340) function.

Listing 3-14 (page 133), “A filter
function for profile searching prior to
ColorSync 2.5”

New. Provides a filter function to perform profile
searching with the CMNewProfileSearch (page 308)
function that mimics the optimized searching
supported by the MyProfileIterateProc
(page 340) function.

Listing 3-15 (page 135), “Optimized
profile searching compatible with
previous versions of ColorSync”

New. Provides sample code that performs an
optimized profile search if ColorSync 2.5 is
available, but provides a compatible (though not
optimized) search if it is not.

Listing 4-1 (page 208), “Modifying a
profile header’s quality flag and setting
the rendering intent”

Revised. Additional comments.

Table 9-4 New and revised code listings for ColorSync 2.5 (continued)

Listing Version 2.5 Notes
550 New Features in ColorSync Manager Version 2.1

11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
■ additional PostScript support: Postscript Level 2 now supports up to
four-component color spaces. This allows the creation of device-independent
color space definitions that can support calibrated CMYK spaces and provide
more flexible support for calibrated scanner and monitor spaces.

■ color conversion without components: Color conversion routines are an
integral part of the ColorSync Manager and are no longer implemented as a
separate component.

■ support for new bitmap formats: The ColorSync Manager supports bitmap
formats for many additional color spaces, including 24-bit RGB, 32-bit RGB
with an alpha last channel, and 24-bit Lab.

■ profile reference counts: The ColorSync Manager maintains an internal
reference count for each profile reference so that it can efficiently free private
memory associated with that profile reference once it is no longer in use.

■ profile changed flag: The ColorSync Manager maintains a flag that indicates
whether the content of a profile has changed.

■ speed and accuracy enhancements: You can use a “lookup only” flag to skip
interpolation and speed up runtime color conversion. You can also disable
gamut checking to speed up initialization and reduce profile size.

■ revised sample application: A revised version of the CSDemo application
provides sample code that demonstrates how to use many of the new
features of ColorSync 2.1.

For a guide to the new features in version 2.1 of the ColorSync Manager, see the
document What’s New in Advanced Color Imaging on the Mac OS, available with
the ColorSync 2.1 SDK.

Other Color Documentation 9

For documentation that covers only features available with ColorSync Manager
2.1 and earlier versions, see Advanced Color Imaging on the Mac OS Revised for
ColorSync 2.1 and Advanced Color Imaging Reference Revised for ColorSync 2.1. These
documents also describe the Color Picker Manager (Version 2.0), Color
Manager, and Palette Manager.
Other Color Documentation 551
11/20/98  Apple Computer, Inc.

C H A P T E R 9

What’s New
An earlier, paper version of Advanced Color Imaging on the Mac OS, covering
ColorSync through version 2.0, was published by Addison-Wesley Publishing
Company. It has the catalog number ISBN 0-201-48949-X.

Technote 1100, “Color Picker 2.1” describes version 2.1 of the Color Picker
Manager. Note that Color Picker Manager version 2.1 works with ColorSync
Manager versions 2.0 and greater.

The electronic documents described here are available at <http://
developer.apple.com/>.
552 Other Color Documentation

11/20/98  Apple Computer, Inc.

Glossary
absolute colorimetric matching A
rendering intent that is used for a
device-independent color space in which the
result is an idealized print viewed on a
perfect paper having a large dynamic range
and color gamut. In reality, paper cannot
reproduce densities less than a particular
minimum density.

abstract profile A profile that allows
applications to perform special color effects
independent of the devices on which the
effects are rendered. Abstract space profiles
perform affects between two PCS color
spaces. See also profile, color space profile,
device profile, and named color space
profile.

additive color theory The process of
mixing red, green, and blue lights, which are
each approximately one-third of the visible
spectrum. Additive color theory explains
how red, green, and blue light can be added
to make white light.

animated color A color that the Palette
Manager uses for special animation effects.
Animated colors work only on devices that
have a color table; that is, they do not work
on direct devices.

application-owned dialog box A dialog
box, created by an application, for
presenting a color picker.

arbitrated CMM A CMM selected by the
ColorSync Manager from the available
source and destination profiles to perform a
specified operation. Compare with default
CMM, key CMM, and preferred CMM.

brightness A term in color theory used to
describe differences in the intensity of light
reflected from or transmitted by a color
image. Also known as value. The hue of an
object may be blue, but the adjectives dark
or light distinguish the brightness of one
object from another. Compare with hue and
saturation.

calibration The process of setting a
device’s parameters according to its factory
standards. Compare with characterization.

characterization The process of learning
the color character of a monitor so that a
profile can be created to describe it.
Compare with calibration.

CIE-based color spaces Color spaces that
allow color to be expressed in a
device-independent way, unlike RGB colors,
which vary with display, and scanner
characteristics and CMYK colors, which
vary with printer, ink, and paper
characteristics. CIE-based color spaces result
from work carried out in 1931 by the
Commission Internationale d’Eclairage
(CIE). These color spaces are also referred to
as device-independent color spaces.

CMM See color management module.
553
11/20/98  Apple Computer, Inc.

G L O S S A R Y
CMS See color management system.

CMY space A color space in which cyan,
magenta, and yellow are the three primary
colors. Used for some low-end printers.

CMYK space A color space in which cyan,
magenta, and yellow are the three primary
colors. Unlike CMY space, the CMYK color
space models the way inks or dyes are
applied to paper in printing, in which black
ink is overprinted in darker areas to give a
better appearance.

color channel See color component.

color component A dimension of a color
value expressed as a numeric value. For the
ColorSync Manager, depending on the color
space, a color value may consist of one, two,
three, four, or eight components, also
referred to as channels.

color-component value A value that
represents the color of a component. Each
component of a color space has a
color-component value. A color-component
value can vary from 0 to 65,535 (0xFFFF),
although the numerical interpretation of that
range is different for different color spaces.
In most cases, color-component intensities
are interpreted numerically as varying
between 0 and 1.0. See also color space and
color value.

color conversion The process of
converting colors from one color space to
another in a mathematically reversible way.

color gamut See gamut.

color management module (CMM) A
component, also referred to as a CMM, that
carries out the actual color matching and
gamut-checking processes based on requests

resulting from calls a program makes to the
ColorSync Manager API. An application or
driver can supply its own CMM or it can use
the robust default CMM that Apple
supplies. A CMM interprets the information
stored in a profile.

color management system (CMS)
Software that provides consistent color
across peripheral devices and across
operating-system platforms by converting
colors from the color space of one device to
the color space of another device.

Color Manager A set of system software
functions that supply color-selection
support for Color QuickDraw. Most
applications never need to call the Color
Manager directly.

color matching The process of adjusting or
matching converted colors appropriately to
achieve maximum similarity from the gamut
of one color space to the other. Color
matching always involves color conversion,
whereas color conversion may not entail
color matching. Matching also involves
devices, and may not be reversible.

color space An environment in which
colors are represented, ordered, compared,
or computed. A color space specifies how
color information is represented. It defines a
multidimensional space whose dimensions,
or components, represent intensity values.

color space profile A profile that contains
the data necessary to convert color values
between a PCS and a non-device color space
(such as L*a*b to or from L*u*v, or XYZ to or
from Yxy), as necessary for color matching.
Color space profiles provide a convenient
means for CMMs to convert between
554
11/20/98  Apple Computer, Inc.

G L O S S A R Y
different nondevice profiles. See also profile,
abstract profile, device profile, and named
color space profile.

ColorSync A platform-independent color
management system from Apple Computer
that provides services for fast, consistent,
and accurate desktop color calibration,
proofing, and reproduction.

ColorSync Manager A set of system
software functions (or API) that provide
device-independent color-matching and
color conversion services for device drivers
and applications; the implementation of
ColorSync for the Mac OS.

color value A complete specification of a
color in a given color space. Depending on
the color space used, one, two, three, or four
color-component values combine to make a
color value.

courteous color A color that accepts
whatever value the Color Manager
determines is the closest match available in
the color table. Compare tolerant color.

default CMM A CMM supplied with
ColorSync that supports all the required and
optional functions defined by the ColorSync
Manager, and is therefore a suitable CMM of
last resort when a specified CMM is not
available or cannot perform a specified
operation. Compare with arbitrated CMM,
key CMM, and preferred CMM.

default system profile The system profile
that serves as the default display profile, as
well as the default profile for color
conversion and matching operations for
which no profile is specified. Unless the
ColorSync Manager control panel is used to
select a different profile, which must be an

RGB profile, ColorSync uses the Apple
13-inch color display. See “Setting Default
Profiles” (page 54) for changes with
ColorSync 2.5.

destination profile The profile that
describes the characteristics of the output
device for which the image is destined. The
profile is used to color match the image to
the device’s gamut.

device-independent color spaces See
CIE-based color spaces.

device link profile A profile that
represents a one-way link or connection
between devices. It can be created from a set
of multiple profiles, such as various device
profiles associated with the creation and
editing of an image. It does not represent
any device model, nor can it be embedded
into images.

device profile A structure that contains the
color characteristics of a given device in a
particular state. See also profile, abstract
profile, color space profile, and named
color space profile.

explicit color A color that specifies an
index value in the devices color table rather
than an RGB color.

gamut The range of color that a device can
produce, also referred to as the device’s
color gamut.

general purpose color-matching function
One that uses a color world to characterize
how to perform color-matching. See also
QuickDraw-specific color-matching
function.
555
11/20/98  Apple Computer, Inc.

G L O S S A R Y
gray space A color space that typically has
a single component, ranging from black to
white.

HLS space A transformation of RGB space
that allow colors to be described in terms
more natural to an artist. The name HLS
stands for hue, lightness, and saturation.

HSB space A transformation of RGB space
that is analogous to HSV space. HSB stands
for hue, saturation, and brightness. where
brightness is synonymous with value in HSV
space. Compare with HSV and HLS space.

HSV space A transformation of RGB space
that allow colors to be described in terms
more natural to an artist. The name HSV
stands for hue, saturation, and value.
Compare with HSB and HLS space.

hue The name of the color that places the
color in its correct position in the spectrum.
For example, if a color is described as blue,
it is distinguished from yellow, red, green,
or other colors. Compare with brightness
and saturation.

indexed color space The color space used
when drawing with indirectly specified
colors.

inhibited color A color that is prevented
from appearing on particular screens. Colors
can be specifically inhibited on a 2-bit, 4-bit,
and 8-bit color or grayscale screen.

interchange color space
Device-independent color spaces that are
used for the interchange of color data from
the native color space of one device to the
native color space of another device.
Compare profile connection space (PCS).

International Color Consortium (ICC)
International color organization that
publishes the International Color Consortium
Profile Format Specification. The ICC Web site
is at <http://www.color.org/>.

inverse table A special data structure
arranged by the Color Manager in such a
manner that, given an arbitrary RGB color,
the Color Manager can very rapidly look up
its pixel value.

key CMM In a series of CMMs specified
by a CMConcatProfileSet (page 384)
structure, the CMM indicated by the
zero-based value of the structures keyIndex
field. Compare with arbitrated CMM,
default CMM, and preferred CMM.

L*a*b* space A nonlinear transformation
(that is, a third-order approximation) of the
Munsell color-notation system designed to
match perceived color difference with
quantitative distance in color space.

L*u*v* color space A nonlinear
transformation of XYZ space used to create a
perceptually linear color space. This color
space was designed to match perceived
color difference with quantitative distance in
color space.

metamerism The capability of the human
eye to perceive two or more visible spectra
as the same color. See also trichromatic
color vision.

named color space A color space in which
each color has a name; colors are generally
ordered so that each has an equal perceived
distance from its neighbors in the color
space.
556
11/20/98  Apple Computer, Inc.

G L O S S A R Y
named color space profile A profile that
contains data for a list of named colors. The
profile specifies a device color value and the
corresponding CIE value for each color in
the list. See also profile, abstract profile,
color space profile, device profile, and
named color space profile.

perceptual matching A rendering intent
in which all the colors of a given gamut may
be scaled to fit within another gamut. The
colors maintain their relative positions, so
the relationship between colors is
maintained.

pixel value A number used by system
software and a graphics device to represent
a color. The translation from the color that
an application specifies in an RGBColor data
structure to a pixel value is performed at the
time the application draws the color. The
process differs for indexed and direct
devices.

preferred CMM Starting with ColorSync
2.5, a user-selected CMM, chosen with the
ColorSync control panel, that is used for all
color checking and matching operations that
the CMM can handle. Compare with
arbitrated CMM, default CMM, and key
CMM.

profile A structure that provides a means
of defining the color characteristics of a
given device in a particular state. A profile
may contain measurements representing a
color gamut, including information such as
the lightest and darkest possible tones, and
maximum densities for red, green, blue,
cyan, magenta, and yellow. The
International Color Consortium defines
several different profile classes. Each profile
class must include a different required set of

information, but all of these classes follow
the same format. See also abstract profile,
color space profile, device profile, and
named color space profile.

profile chromaticities Color values that
define the extremes of saturation that the
device can produce for its primary and
secondary colors (red, green, blue, cyan,
magenta, yellow).

profile connection space (PCS) A
device-independent color space used as an
intermediate when converting from one
device-dependent color space to another.
Profile connection spaces are typically based
on spaces derived from CIE color spaces.
Compare interchange color space.

profile identifier An abbreviated data
structure that uniquely identifies, and
possibly modifies, a profile in memory or on
disk.

profile reference A unique reference to a
profile, returned by ColorSync and based on
a private data structure; the profile reference
is the means by which your application
identifies a profile and gains access to it.

QuickDraw-specific color-matching
function One that uses QuickDraw to
provide images showing consistent colors
across displays. See also general purpose
color-matching function.

reference white point A specific definition
of what is considered white light
represented in terms of XYZ space and
usually based on the whitest light that can
be generated by a given device.
557
11/20/98  Apple Computer, Inc.

G L O S S A R Y
relative colorimetric matching A
rendering intent in which the colors that fall
within the gamuts of both devices are left
unchanged. Relative colorimetric matching
allows some colors in both images to be
exactly the same, which is useful when
colors must match quantitatively. A
disadvantage of relative colorimetric
matching is that many colors may map to a
single color resulting in tone compression.

rendering intent The approach taken
when a CMM maps or translates the colors
of an image to the color gamut of a
destination device. Each profile supports
four different rendering intents: perceptual
matching, relative colorimetric matching,
saturation matching, and absolute
colorimetric matching.

RGB space A three-dimensional color
space whose components are the red, green,
and blue intensities that make up a given
color. Compare sRGB space.

saturation The degree of hue in a color or
a color’s strength. A neutral gray is
considered to have zero saturation. A
saturated red would have the a color similar
to apple red. Compare with brightness and
hue.

saturation matching A rendering intent
in which the relative saturation of colors is
maintained from gamut to gamut. Colors
outside the gamut are usually converted to
colors with the same saturation, but
different lightness, at the edge of the gamut.

source profile The profile that is associated
with the image and describes the
characteristics of the device on which the
image was created.

sRGB space A three-dimensional color
space that attempts to create a standard RGB
space based on a calibrated, colorimetric
RGB definition that calls for a gamma of 2.2,
a white point of 6500 degrees K, and P-22
phosphors. Compare RGB space.

subtractive color theory The process of
combining subtractive colorants such as inks
or dyes. In this theory colorants of cyan,
magenta, and yellow are used to subtract a
portion of the white light that is illuminating
an object.

system profile The profile that defines the
color characteristics for the system’s display
device. The ColorSync Manager provides a
control panel to allow the user to specify the
system profile for the current display device.

trichromatic color vision The capacity of
the human eye to responds equally to two or
more sets of stimuli having different visible
spectra. See also metamerism.

trichromatic color reproduction The
process of inducing the illusion of a color
using various amounts of only three
primary colors: either red, green, and blue
mixed additively or cyan, magenta, and
yellow mixed subtractively.

tristimulus values An hypothetical set of
primaries, XYZ, set up by the CIE that
correspond to the way the eye’s retina
behaves. The term tristimulus comes from
the fact that color perception results from
the retina of the eye responding to three
types of stimuli. After experimentation, the
CIE set up a hypothetical set of primaries,
XYZ, that correspond to the way the eye’s
retina behaves.
558
11/20/98  Apple Computer, Inc.

G L O S S A R Y
undercolor removal (UCR) The removal
of excessive color densities when printing an
image.

value See brightness.

XYZ color space The fundamental
CIE-based color space that allows colors to
be expressed as a mixture of the three
tristimulus values X, Y, and Z.

Yxy color space A color space belonging
to the XYZ base family that expresses the
XYZ values in terms of x and y chromaticity
coordinates, somewhat analogous to the hue
and saturation coordinates of HSV space.
559
11/20/98  Apple Computer, Inc.

Index
A

absolute colorimetric matching 61, 204
additive color 28
Apple CMM enumeration 397
Apple profile header data structure 357

B

base families for color spaces 28
bitmap color-checking request

defined 437
handling 447

bitmap color-matching request
handling 446

bitmap information 380
black generation 34
brightness 27

C

calibration, monitor 67 to 70
calibration applications 76, 149
chromaticity 35
CIE-based color spaces 34 to 38

defined 34
L*a*b* 37
L*u*v* 37
XYZ 35 to 36

CMCloneProfileRef function 231
CMCloseProfile function 223
CMConvertFixedXYZToXYZ function 326
CMConvertHLSToRGB function 328
CMConvertHSVToRGB function 330
CMConvertLabToXYZ function 320

CMConvertLuvToXYZ function 322
CMConvertProfile2to1 function 339
CMConvertRGBToGray function 331
CMConvertRGBToHLS function 327
CMConvertRGBToHSV function 329
CMConvertXYZToFixedXYZ function 325
CMConvertXYZToLab function 319
CMConvertXYZToLuv function 321
CMConvertXYZToYxy function 323
CMConvertYxyToXYZ function 324
CMCopyProfile function 229
CMCountProfileElements function 243
CMDisposeProfileSearch function 139
CMDisposeProfileSearch function 311
CMEnableMatchingComment function 288
CMEndMatching function 287
CMFlattenProfile function 237
CMGetColorSyncFolderSpec function 302
CMGetCWInfo function 270
CMGetDefaultProfileBySpace function 297
CMGetIndNamedColorValue function 259
CMGetIndProfileElement function 249
CMGetIndProfileElementInfo function 247
CMGetNamedColorIndex function 260
CMGetNamedColorInfo function 257
CMGetNamedColorName function 260
CMGetNamedColorValue function 258
CMGetPartialProfileElement function 246
CMGetPreferredCMM function 292
CMGetProfileByAVID function 300
CMGetProfileElement function 243
CMGetProfileHeader function 245
CMGetProfileLocation function 234
CMGetProfileRefCount function 232
CMGetPS2ColorRendering function 336
CMGetPS2ColorRenderingIntent function 335
CMGetPS2ColorRenderingVMSize function 338
CMGetPS2ColorSpace function 333
561
11/20/98  Apple Computer, Inc.

I N D E X
CMGetScriptProfileDescription function 100,
138

CMGetScriptProfileDescription function 256
CMGetSystemProfile function 99, 100
CMIterateColorSyncFolderCompat function 135
CMIterateColorSyncFolder function 304
CMM check bitmap colors function 480
CMM check colors function 472
CMM check pixel map colors function 488
CMM component interface version constant 515
CMM concatenated profiles initialization

function 483
CMM create device-linked profile function 491
CMM get named color from index function 511
CMM get named color from name function 513
CMM get named color index function 512
CMM get named color information function 508
CMM get named color value function 510
CMM information data structure 385
CMM initialization function 468
CMM match bitmap colors function 477
CMM match colors function 470
CMM match pixel map colors function 486
CMM PostScript color rendering function 497
CMM PostScript color rendering intent

function 495
CMM PostScript color space function 493
CMM PostScript CRD VM size function 500
CMM profile flattening function 503
CMM profile unflattening function 505
CMM profile validation function 476
CMMs

and ColorSync 1.0 profiles 532
and device drivers 195, 199
defined 58, 430
development of 429 to 463
for a color world 107
interaction with the Component Manager 430

to 432, 434 to 435
tasks performed by 199, 429

CMNewProfile function 227
CMNewProfileSearch function 138
CMNewProfileSearch function 304
CMOpenProfile function 97
CMOpenProfile function 222

CMProfileElementExists function 242
CMProfileIdentifierFolderSearch

function 315
CMProfileIdentifierListSearch function 316
CMProfileIterateData 366
CMProfileIterateProcPtr 365
CMProfileModified function 225
CMRemoveProfileElement function 255
CMSearchGetIndProfileFileSpec function 313
CMSearchGetIndProfile function 138
CMSearchGetIndProfile function 312
CMSetDefaultProfileBySpace function 298
CMSetPartialProfileElement function 251
CMSetProfileByAVID function 300
CMSetProfileElement function 253
CMSetProfileElementReference function 254
CMSetProfileElementSize function 250
CMSetProfileHeader function 254
CMSetSystemProfile function 294, 295
CMUnflattenProfile function 239
CMUpdateProfile function 226
CMUpdateProfileSearch function 310
CMValidateProfile function 236
CMY-based color spaces 33 to 34

CMY 33
CMYK 34
defined 33

CMY color data structure 376
CMYK-based color spaces 29

CMYK 33
CMYK color data structure 376
CMYK space 33 to 34
code listings

conventions 22
color

perception of 27
theory, an overview 26 to 28

color channels 28
color-checking request

defined 436
handling 443

color components 28
color-component value 39
color conversion 40
colorimetric matching 61
562
11/20/98  Apple Computer, Inc.

I N D E X
color management systems 41 to 42
color matching 40

creating a color world for 262
to the display 75
using embedded profiles 289
using general purpose functions 261
when it occurs 62 to 65
with general purpose functions 64
with QuickDraw-specific functions 64

color-matching request
defined 435
handling 443

color packing enumeration 404
color profiles

response data fields 531
colors

color value 39
out of gamut 40

color spaces 28 to 38
base families for 28
CMYK 33 to 34
defined 28
HLS 31 to 33
HSV 31 to 33
indexed 38
L*a*b* 37
L*u*v* 37
RGB 30
sRGB 31
XYZ 35
Yxy 35 to 36

color spaces enumeration, abstract 406
color spaces enumeration, with packing

format 409
color space signatures enumeration 402
ColorSync 1.0 529 to 535

and CMMs 532
ColorSync 1.0 element tag signatures

enumeration 424
ColorSync 1.0 profiles

and ColorSync Manager functions 533
and the CMGetProfileHeader header 534
and the CMOpenProfileFile function 534
and the ColorSync Manager 533

contrasted with version 2.0 profiles 351 to 354,
531 to 532

element tags 535
header for 531
response data 531

ColorSync data-transfer function command
enumeration 397

ColorSync header files 528
ColorSync Manager

and QuickDraw GX 74
backward compatibility 525 to 536

with ColorSync 1.0 profiles 530 to 532, 534 to
535

defined 47
developing CMMs 429 to 463
developing supportive applications 81 to 142
developing supportive device drivers 195 to

210
functions not supported for ColorSync 1.0

profiles 533
introduction 46 to 77
memory allocation and use 74
new, revised code listings in version 2.5 549 to

550
new, revised functions, data types, constants in

version 2.5 544 to 548
new features in version 2.1 550 to 551
new features in version 2.5 539 to 544
picture comments for 94
programming interfaces 49, 82
requirements 48, 82
testing for availability 92, 201
version information 48, 525

ColorSync Manager bitmap data structure 380
ColorSync Manager gestalt selectors

enumeration 217
ColorSync Manager routines that don’t work

with 1.0 profiles 352, 424
ColorSync Manager routines that work with 1.0

profiles 352, 424
ColorSync Profiles folder 136, 197
ColorSync-supportive applications

color-matching to a display 101 to 104
creating device-linked profiles 143 to 147
development of 81 to 142
563
11/20/98  Apple Computer, Inc.

I N D E X
embedding profiles 112 to 118
extracting embedded profiles 118 to 130
features an application can implement 91 to

149
gamut checking 142 to 143
matching a bitmap 109
matching a pixel map 108
optimized profile searching 130 to 136
poor man’s exception handling 98 to 99
providing minimum support 83, 93
providing soft proofs 147 to 148
searching for profiles 130 to 139
testing for ColorSync availability 92 to 93

ColorSync-supportive device drivers 195 to 210
development of 201 to 210
features of 195
minimum support 199 to 200
possible features, listed 200 to 201
setting the color-matching quality flags 205 to

210
setting the quality flag 208
setting the rendering intent 203 to 205, 208

ColorSync versions 525 to 528
color union data structure 378
Color Values 371
color values 39
Color Wold Information 382
color world information data structure 382
color world reference data structure 383
color worlds

creation of 105 to 107
for matching a pixel map or a bitmap 110
references for 107

Commission Internationale d’Eclairage (CIE) 34
ComponentDescription data structure 433
concatenated profiles

creation of 106
concatenated profile set data structure 384
CRD virtual memory size tag data structure 391
CWCheckBitMap function 279
CWCheckColors function 283
CWCheckPixMap function 274
CWConcatColorWorld function 146, 265
CWDisposeColorWorld function 270, 271
CWMatchBitmap function 276

CWMatchColors function 281
CWMatchPixMap function 272
CWNewColorWorld function 106
CWNewLinkProfile function 267

D

destination profile 50
device attributes enumeration 418
device drivers

and CMMs 195, 199
and profiles 196
ColorSync requirements for 196

device-independent color spaces. See CIE-based
color spaces

device-linked profiles
creation of 144 to 147
use of 144

device-linked profiles request
defined 438
handling 451

devices
supported by the ICC, types of 196

display devices 196
DoAbortWriteAccess function 165
DoBeginAccess function 157
DoCloseAccess function 164
DoCreateNewAccess function 158
DoEndAccess function 166
DoOpenReadAccess function 158
DoOpenWriteAccess function 160
DoReadAccess function 162
DoWriteAccess function 163

E

embedded profile information enumeration 402
embedded profiles

support of 83
enable color matching block 390
564
11/20/98  Apple Computer, Inc.

I N D E X
F

fixed XYZ color data structure 373
flag mask enumeration 414
format conventions 21 to 22

G

gamut checking 76
gamuts 34
gestaltColorMatchingAttr function 219
gestaltColorMatchingLibLoaded function 220
gestaltColorMatchingVersion selector 92
gestaltColorSync10 function 218
gestaltColorSync11 function 218
gestaltColorSync20 function 218
gestaltColorSync21 function 218, 219
gestaltHighLevelMatching function 219
GetProfileForMainDisplay function 101
Gray color data structure 376
gray spaces 28, 29

H

handle specification data structure 363
header files, ColorSync 528
HiFi color data structure 377
HiFi colors 39
high-level color-matching-session reference data

structure 382
HLS color data structure 375
HLS space 31 to 33
HSB space 31
HSV color data structure 375
HSV space 31 to 33
hue 27, 32

I, J, K

indexed color spaces 38

indexed space 38
initialization request

defined 436
handling 442

input devices 196
interchange color spaces 35
IterateCompat function 133

L

L*a*b* color data structure 373
L*a*b* space 37
lightness, in HLS space 32
L*u*v* color data structure 374
L*u*v* space 37

M

metamerism 26
monitor calibration 67 to 70
multiprocessor support 73
MyCMBitmapCallBackProc function 344
MyCMCheckBitmap function 480
MyCMCheckColors function 472
MyCMCheckPixMap function 488
MyCMConcatInit function 483
MyCMMatchBitmap function 477
MyCMMatchColors function 470
MyCMMatchPixMap function 486
MyCMMFlattenProfile function 503
MyCMMGetIndNamedColorValue function 511
MyCMMGetNamedColorIndex function 512
MyCMMGetNamedColorInfo function 508
MyCMMGetNamedColorName function 513
MyCMMGetNamedColorValue function 510
MyCMMGetPS2ColorRendering function 497
MyCMMGetPS2ColorRenderingIntent

function 495
MyCMMGetPS2ColorRenderingVMSize

function 500
MyCMMGetPS2ColorSpace function 493
565
11/20/98  Apple Computer, Inc.

I N D E X
MyCMMUnflattenProfile function 505
MyCMMValidateProfile function 476
MyCMNewLinkProfile function 491
MyCMProfileAccessProc function 154, 348
MyCMProfileFilterProc function 347
MyColorSyncDataTransfer function 342
MyCountProfilesInPicHandle function 121
MyCreateProcedureProfileAccess function 152
MyDisposeProcedureProfileAccess

function 153
MyDrawPictureToADisplay function 103
MyEndProfileComment function 118
MyFindAndOpenProfileByIdentifier

function 140
MyGetIndexedProfileFromPicHandle

function 123, 125
MyIterateProc function 131
MyMatchImage function 110
MyNCMInit function 468
MyOpenProfileFSSpec function 97
MyPrependProfileToPicHandle function 117,

118
MyPrintSystemProfileName function 100
MyProfileSearch function 137, 138
MyUnflattenProc function 125
MyUnflattenProfilesCommentProc function 128

N

named color data structure 377
named color space 39
named color space information, CMM

routines 508 to 514
named color space information, supplying 457 to

458
NCMBeginMatching function 285
NCMDrawMatchedPicture function 290
NCMGetProfileLocation function 233
NCMUseProfileComment function 113, 115, 290,

533
NCWNewColorWorld function 262

O

optimized profile searching 57
out-of-gamut colors 40
output devices 196

P

perceptual matching 60, 203
picture comment IDs enumeration 399
picture comments

for the ColorSync Manager 94
picture comment selectors enumeration 400
pixel map color-checking request

defined 436
handling 449

pixel map color-matching request
defined 436
handling 448

pointer specification data structure 364
PostScript

obtaining profile data for 332 to 339
PostScript color rendering intent request

handling 452
PostScript color rendering request

handling 452
PostScript color rendering VM size request

defined 437
handling 454, 457

PostScript color space request
defined 437
handling 452

PostScript data formats 398
preferred CMM 59

setting 59 to 60
PrGeneral function operation codes

enumeration 421
procedure specification data structure 364
profile 2.0 header data structure 354
profile classes enumeration 395, 396
profile flattening request

defined 437
handling 455, 456
566
11/20/98  Apple Computer, Inc.

I N D E X
profile headers 351
profile location data structure 362
profile location type enumeration 393
profile location union data structure 361
Profile Reference 358
profile reference abstract data structure 358
profile references 95 to 100

defined 95
obtaining 95

profiles 49 to 58
abstract 52
and device drivers 196
color space 51
concatenated 106
creating 227
cross-platform portability 196
defined 41, 196
destination 50
device 51
device-linked 52, 76, 143 to 147
device profile types 196
embedded 83
embedding in a picture 291
format of 196
getting an element of 241, 243
getting a partial element of 241, 246
locations for 96
named color space 52
opening and obtaining a reference to 95
properties of 53
restrictions on searching for 198
searching for 136 to 139, 303 to 314
setting default 54 to 55
source 50
storage and use of 197 to 199
system 99
updating 226
use with different device types 198

profiles and profile identifiers in pictures 290
profile searching, optimized 57
profile search record data structure 368
profile search result reference abstract data

structure 370
profile unflattening request

handling 456

profile validation request
defined 437
handling 445

Q

quality flag enumeration 417
quality flags 205 to 210

R

reference white point 38
relative colorimetric matching 61, 203
rendering intents 60 to 62

absolute colorimetric matching 61
allowing the user to select 202 to 205
business graphics 61
defined 40
perceptual matching 60
photographic 60
relative colorimetric matching 61
saturation matching 61
spot colors 61

rendering intent values enumeration 419
request codes

optional, constants for 517
required, constants for 515

request codes for CMMs
optional, defined 444
required, defined 440
responding to 439 to 456

bitmap color checking 447
bitmap color matching 446
can do an optional request 441
closing the CMM 440
CMM version number 441
color checking 444
color matching 443
device-linked profile 451
initialization request 442
obtaining PostScript-related data 452 to 454
567
11/20/98  Apple Computer, Inc.

I N D E X
opening the CMM 440
pixel map color checking 449
pixel map color matching 448
profile flattening 455
profile unflattening 456
profile validation 445
required 441 to 444

resources
'thng' 432

response data fields
for color profiles 531

RGB-based color spaces 30 to 33
defined 29, 30
HLS spaces 31 to 33
HSV spaces 31
RGB spaces 30

RGB color data structure 374
RGB space 30

S

sample routines
MyCountProfilesInPicHandle 121
MyGetIndexedProfileFromPicHandle 123,

125
MyGetPrinterProfile 208
MyGetSystemProfile 100
MyOpenProfileFSSpec 97
MyPrependProfileToPicHandle 118
MyProfileSearch 137, 138
MyUnflattenProc 125

saturation 27, 32
saturation matching 61, 203
scriptable operations 71
scriptable properties 71
scripting, extensible framework 72
scripting, sample scripts 72
scripting support 71
searching, optimized 57
searching for profiles 130 to 142
soft proofing 76
soft proofs 147 to 148, 197
source profile 50

sRGB space 31
subtractive color 28
system profiles

configuring 102
identifying the current system profile 99 to 100
using quality mode and rendering intent

of 207

T

trichromatic color reproduction 26
trichromatic color vision 26
tristimulus values 35

U

undercolor removal 34
universal color spaces 34

V

value, in HSV space 32
video card gamma 386

W

white point 38

X

XYZ color component data structure 372
XYZ color data structure 372
XYZ space 35
568
11/20/98  Apple Computer, Inc.

I N D E X
Y, Z

Yxy color data structure 374
Yxy space 35 to 36
569
11/20/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

11/20/98  Apple Computer, Inc.

This Apple manual was written, edited, and
composed on a desktop publishing system
using Apple Macintosh computers and
FrameMaker software.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf Dingbats®.
Some elements, such as program listings, are
set in Adobe Letter Gothic.

WRITERS
Steve Evangelou, Tony Francis,
Michael Kline, Judy Melanson

DEVELOPMENTAL EDITORS
Jeanne Woodward, Wendy Krafft,
Beverly McGuire

ILLUSTRATORS
Dave Arrigoni, Bruce Lee, Ruth Anderson,
Lisa Hymel

PRODUCTION EDITORS
GLen Frank, Gerri Gray, Pat Christenson,
Alan Morgenegg

PROJECT MANAGER
Tony Francis

LEAD WRITER
Steve Evangelou

LEAD EDITOR
Jeanne Woodward

LEAD ILLUSTRATOR
Bruce Lee

Special thanks to Eric Broadbent,
John Calhoun, Anil Gursahani,
David Hayward, Ingrid Kelly, Gabriel Marcu,
Roger Siminoff, and Steve Swen.

Acknowledgment to Wei-Ling Chu,
Richard Collyer, Rob Dearborn, John Gnaegy,
Donna Lee, Edgar Lee, John Myer,
Don Moccia, Tom Mohr, Han Nguyen,
Forrest Tanaka, David Van Brink,
Josh Weisberg, and John Wang.

	Managing Color With ColorSync
	Contents
	Figures, Tables, and Listings
	Revision History
	About This Document
	What’s in This Document
	Conventions
	Quick Reference Banners
	Version Notes
	Special Fonts
	Types of Notes

	Important Note on Code Listings

	Introduction to Color and Color Management Systems
	Introduction to Color and Color Management Systems
	ColorSync
	Color: A Brief Overview
	Color Perception
	Hue, Saturation, and Value (or Brightness)
	Additive and Subtractive Color

	Color Spaces
	Gray Spaces
	RGB-Based Color Spaces
	RGB Spaces
	sRGB Color Space
	HSV and HLS Color Spaces

	CMY-Based Color Spaces
	Device-Independent Color Spaces
	XYZ Space
	Yxy Space
	L*u*v* Space and L*a*b* Space

	Indexed Color Spaces
	Named Color Spaces

	Color-Component Values, Color Values, and Colors
	Color Conversion and Color Matching
	Color Management Systems

	Introduction to ColorSync
	Introduction to ColorSync
	About ColorSync
	Why You Should Use ColorSync
	The ColorSync Advantage
	Color Management in Action

	ColorSync Manager Overview
	ColorSync Versions
	Minimum Requirements For Running ColorSync 2.5
	Programming Interface
	Profiles
	The International Color Consortium Profile Format
	ColorSync and ICC Profile Format Version Numbers
	Source and Destination Profiles
	Profile Classes
	Profile Properties
	Profile Location
	Setting Default Profiles

	Profile Search Locations
	Where ColorSync Searches for Profiles
	Where ColorSync Does Not Look for Profiles
	Temporarily Hiding a Profile Folder

	The Profile Cache and Optimized Searching
	Color Management Modules
	Setting a Preferred CMM
	Rendering Intents

	When Color Matching Occurs
	General Purpose Color-Matching Functions
	QuickDraw-Specific Color-Matching Functions

	Converting Between Color Spaces
	Monitor Calibration and Profiles
	Setting a Profile for Each Monitor
	Calibration
	Video Card Gamma

	Scripting Support
	Scriptable Properties
	Scriptable Operations
	Extending the Scripting Framework
	Sample Scripts

	Multiprocessor Support
	When ColorSync Uses Multiple Processors
	Efficiency of ColorSync’s Multiprocessor Support

	QuickDraw GX and the ColorSync Manager
	How the ColorSync Manager Uses Memory

	What Users Can Do With ColorSync-Supportive Applications
	Display Matching
	Gamut Checking
	Soft Proofing
	Device Link Profiles
	Calibration

	Developing ColorSync-Supportive Applications
	Developing ColorSync-Supportive Applications
	About ColorSync Application Development
	About the ColorSync Manager Programming Interface
	What Should a ColorSync-Supportive Application Do?
	At a Minimum
	Storing and Handling Profiles

	How the ColorSync Manager Selects a CMM
	Selecting a CMM by the Arbitration Algorithm

	Developing Your ColorSync-Supportive Application
	Determining If the ColorSync Manager Is Available
	Providing Minimal ColorSync Support
	Obtaining Profile References
	Opening a Profile and Obtaining a Reference to It
	Reference Counts for Profile References

	Poor Man’s Exception Handling
	Identifying the Current System Profile
	Getting the Profile for the Main Display
	Matching to Displays Using QuickDraw-Specific Operations
	Matching Colors in a Picture Containing an Embedded Information
	More on Embedded Information
	Matching Colors as a User Draws a Picture

	Creating a Color World to Use With the General Purpose Functions
	Matching Colors Using the General Purpose Functions
	Matching the Colors of a Pixel Map to the Display’s Color Gamut
	Matching the Colors of a Bitmap Image to the Display’s Color Gamut

	Embedding Profiles and Profile Identifiers
	Embedded Profile Format
	Embedding Different Profile Versions
	The NCMUseProfileComment Function

	Extracting Profiles Embedded in Pictures
	Counting the Profiles in the PICT File
	Extracting a Profile

	Performing Optimized Profile Searching
	An Iteration Function for Profile Searching With ColorSync�2.5
	A Filter Function for Profile Searching Prior to ColorSync�2.5
	A Compatible Function for Optimized Profile Searching

	Searching for Specific Profiles Prior to ColorSync 2.5
	Searching for a Profile That Matches a Profile Identifier
	Checking Colors Against a Destination Device’s Gamut
	Creating and Using Device Link Profiles
	Considerations

	Providing Soft Proofs
	Calibrating a Device
	Accessing a Resource-Based Profile With a Procedure
	Defining a Data Structure for a Resource-Based Profile
	Setting Up a Location Structure for Procedure Access to a Resource-Based Profile
	Disposing of a Resource-Based Profile Access Structure
	Responding to a Procedure-Based Profile Command
	Handling the Begin Access Command
	Handling the Create New Access Command
	Handling the Open Read Access Command
	Handling the Open Write Access Command
	Handling the Read Access Command
	Handling the Write Access Command
	Handling the Close Access Command
	Handling the Abort Write Access Command
	Handling the End Access Command

	Summary of the ColorSync Manager
	Functions
	Data Structures
	Constants

	Developing ColorSync-Supportive Device Drivers
	Developing ColorSync-Supportive Device Drivers
	About ColorSync-Supportive Device Driver Development
	Devices and Their Profiles
	The Profile Format and Its Cross-Platform Use
	ColorSync Profile Format Version Numbers
	Storing and Handling Device Profiles
	How a Device Driver Uses Profiles

	Devices and Color Management Modules
	Providing ColorSync-Supportive Device Drivers
	Providing Minimum ColorSync Support
	Providing More Extensive ColorSync Support

	Developing Your ColorSync-Supportive Device Driver
	Determining If the ColorSync Manager Is Available
	Interacting With the User
	Setting a User-Selected Rendering Intent
	Setting a User-Selected Color-Matching Quality Flag

	Color Matching an Image to Be Printed

	ColorSync Reference for Applications and Drivers
	ColorSync Reference for Applications and Drivers
	Gestalt Selector Codes for the ColorSync Manager
	Constants for ColorSync Manager Gestalt Selectors and Responses
	Older ColorSync Gestalt Selectors

	Functions for the ColorSync Manager
	Accessing Profiles
	Accessing Profile Elements
	Accessing Named Color Profile Values
	Matching Colors Using General Purpose Functions
	Matching Colors Using QuickDraw-Specific Functions
	Embedding Profile Information in Pictures
	Getting the Preferred CMM
	Getting and Setting the System Profile File
	Getting and Setting Default Profiles by Color Space
	Getting and Setting Monitor Profiles by AVID
	Locating the ColorSync Profiles Folder
	Profile Searching
	Searching for Profiles With ColorSync 2.5
	Searching for Profiles Prior to ColorSync 2.5
	Searching for a Profile by Profile Identifier

	Converting Between Color Spaces
	Color-Matching With PostScript Devices
	Converting 2.x Profiles to 1.0 Format

	Application-Defined Functions for the ColorSync Manager
	Data Types for the ColorSync Manager
	Date and Time
	Profile Header
	Profile Reference
	Profile Identifier
	Profile Location
	Cached Profile Searching
	Non-Cached Profile Searching
	Color Values
	Bitmap Information
	Color Matching Reference
	Color Worlds
	Video Card Gamma
	Color Matching While Printing
	Color Rendering Dictionary Virtual Memory Size

	Constants for the ColorSync Manager
	Profile Location Type
	Profile Access Procedure Operation Codes
	Profile Class
	Signature of ColorSync’s Default Color Management Module
	Commands for Caller-Supplied ColorSync Data Transfer Functions
	Constants for PostScript Data Formats
	Picture Comments
	Picture Comment Kinds for Profiles and Color Matching
	Picture Comment Selectors for Embedding Profile Information
	Constants for Embedding Profiles and Profile Identifiers

	Color Space Constants
	Color Space Signatures
	Color Packing for Color Spaces
	Abstract Color Space Constants
	Color Space Constants With Packing Formats

	ColorSync Flag Constants
	Flag Mask Definitions for Version 2.x Profiles
	Quality Flag Values for Version 2.x Profiles
	Device Attribute Values for Version 2.x Profiles
	Rendering Intent Values for Version 2.x Profiles

	Video Card Gamma Constants
	Video Card Gamma Tag
	Video Card Gamma Tag Type
	Video Card Gamma Storage Type

	PrGeneral Function Operation Codes
	Element Tags and Signatures for Version 1.0 Profiles

	Result Codes for the ColorSync Manager

	Developing Color Management Modules
	Developing Color Management Modules
	About Color Management Modules
	Creating a Color Management Module
	Creating a Component Resource for a CMM
	The Component Resource
	The Extended Component Resource

	How Your CMM Is Called by the Component Manager
	Required Component Manager Request Codes
	Required ColorSync Manager Request Codes
	Optional ColorSync Manager Request Codes
	Handling Request Codes
	Responding to Required Component Manager Request Codes
	Establishing the Environment for a New Component Instance
	Releasing Private Storage and Closing the Component Instance
	Determining Whether Your CMM Supports a Request
	Providing Your CMM Version Number

	Responding to Required ColorSync Manager Request Codes
	Initializing the Current Component Instance for a Two-Profile Session
	Matching a List of Colors to the Destination Profile’s Color Space
	Checking a List of Colors

	Responding to ColorSync Manager Optional Request Codes
	Validating That a Profile Meets the Base Content Requirements
	Matching the Colors of a Bitmap
	Checking the Colors of a Bitmap
	Matching the Colors of a Pixel Map Image
	Checking the Colors of a Pixel Map Image
	Initializing the Component Instance for a Session Using Concatenated Profiles
	Creating a Device Link Profile and Opening a Reference to It
	Obtaining PostScript-Related Data From a Profile
	Obtaining the Size of the Color Rendering Dictionary for PostScript Printers
	Flattening a Profile for Embedding in a Graphics File
	Unflattening a Profile
	Supplying Named Color Space Information

	Summary of the Color Management Modules
	Functions
	Constants��

	ColorSync Reference for Color Management Modules
	ColorSync Reference for Color Management Modules
	Required CMM-Defined Functions
	Optional CMM-Defined Functions
	Constants
	Color Management Module Component Interface
	Required Request Codes
	Optional Request Codes

	Version and Compatibility Information
	Version and Compatibility Information
	ColorSync Version Information
	Gestalt, Shared Library, and CMM Version Information
	CPU and System Requirements
	ColorSync Header Files

	ColorSync Manager 2.x Backward Compatibility
	ColorSync 2.1 Support in Version 2.5
	ColorSync 2.0 Support in Version 2.1

	ColorSync Manager 1.0 Backward Compatibility
	ColorSync 1.0 Profile Support
	ColorSync 1.0 Profiles and Version 2.x Profiles
	How ColorSync 1.0 Profiles and Version 2.x Profiles Differ
	CMMs and Mixed Profiles
	Converting a 2.x Profile to the 1.0 Format

	Using Newer Versions of the ColorSync Manager With ColorSync 1.0 Profiles
	ColorSync Manager 2.x Functions Not Supported for ColorSync�1.0 Profiles
	Using ColorSync 1.0 Profiles With Newer Versions of the ColorSync Manager

	ColorSync 1.0 Functions With Parallel 2.x Counterparts

	What’s New
	What’s New
	New Features in ColorSync Manager Version 2.5
	New Profile Folder Location
	Optimized Profile Searching
	Monitor Calibration Framework and Per/Monitor Profiles
	Scripting Support
	Multiprocessor Support
	Sixteen-bit Channel Support
	Flexibility in Choosing CMMs and Default Profiles
	Additional Features

	New and Revised Functions, Data Types, and Constants
	New and Revised Code Listings
	New Features in ColorSync Manager Version 2.1
	Other Color Documentation

	Glossary
	Index

