



Preliminary Working Draft, Revision 26

12/23/99
Technical Publications
© Apple Computer, Inc. 1999



Driver Developer Kit

Mac OS USB DDK API
Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned
to another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is

accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Intel is a registered trademark of
Intel Corporation.
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON
MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR

PURPOSE. AS A RESULT, THIS
MANUAL IS PROVIDED “AS IS,”
AND YOU, THE DEVELOPER,
ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to make
any modification, extension, or
addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

3

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Contents

Figures and Tables 11

Preface

About This Note

13

Contents of This Note 14
Supplemental Reference Documents 15
Mac OS USB Resources 15
Apple Developer Connection Web Site 16

Chapter 1

Overview

17

Introduction to USB 18
Why Incorporate USB Into the Macintosh Architecture? 18

Better Device Expansion Model 18
Compact Connectors and Cables 19
Use of Standard Hardware 19
Lower Cost Than Comparable Non-USB Peripherals 20

Wide Selection of USB Devices 20
Device Classes 20
Low- and High-Speed Devices 21
USB Hub Devices 22
The USB Root Hub 22

Compatibility Issues 23
USB Software Gestalt Selectors 23
ADB, Serial/LocalTalk, and USB 23
Macintosh-To-Macintosh USB Connections 23
USB Storage Devices 24
Keyboard Requirements 24
USB Data Transfer Types Supported 24
USB Controller Support 25
Maintaining Printer Device and Driver Compatibility 25
Device Support For Multiple Vendor Specific Devices 26
USB PCI Adapter Card Support 26

4

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Transaction Timeouts 26

Chapter 2

USB Topology and Communication

29

USB Bus Topology 30
Host Software 30
Physical Topology 31
Logical Topology 31

Communication Over the USB 32
USB Interface 33
USB Devices 33
Endpoints 33

Endpoint 0 34
Non-0 Endpoints 34

Pipes 34
A Look At USB Devices with USB Prober 35

USB Prober Features for Developers 37
USB Prober Windows 37

Chapter 3

USB Software Components

41

Mac OS Software for USB Devices 42
USB Software Presence and Version Attributes 45
USB Interface Module (UIM) 45
USB Manager 46
Hub Driver 47
USB Class Drivers 47
USB Services Library (USL) 48

Applications and USB Drivers 49

Chapter 4

Writing Mac OS USB Drivers

51

Mac OS USB Driver Overview 53
USB Device and Driver Matching 54

Matching Interfaces to Interface Drivers 57
Matching Class Drivers to Composite Devices 59

5

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Device Driver and Interface Driver Matching Differences 60
Core Mac OS USB Driver Data Exports 60

USBDriverDescription Structure 60
USBClassDriverPlugInDispatchTable Structure 65

ValidateHWProc Function 67
InitializeDeviceProc Function 67
InitializeInterfaceProc Function 69
Driver notificationProc Function 70
FinalizeProc Function 71

Handling Hot Unplugging, Dealing With Notifications 71
Communicating With Client Processes 72

The Disappearing Driver 73
Common Ground and The Compatibility Shim 73
Where To Implement a Compatibility Shim 73
Designing A Compatibility Shim 74
Helpful Resources For Compatibility Shim Development 75
Communicating with the Human Interface Device Driver 75
The HIDDeviceDispatchTable Structure 76
The USBHIDModuleDispatchTable Structure 81

Detecting USB Device Presence 83
Mac OS USB Compatibility With Mac OS Toolbox Calls 86

Chapter 5

USB Services Library Reference

89

USB Services Library (USL) 90
Errors And Error Reporting Conventions 91

Device Access Errors 91
Errors on the USB Bus 92
Incorrect Command Errors 93
Driver Logic Errors 93
PCI Bus Busy Errors 93

USB References 93
The USBPB Parameter Block 94
Required USB Parameter Block Fields 98
Standard Parameter Block Errors 99
Using the USBPB For Isochronous Transactions 99
Asynchronous Call Support 101

6

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Polling Versus Asynchronous Completion (Important) 103
Transaction and Data Timeouts 104

USL Functions 106
Determining The Version of USB Software Present 106
USB Configuration Functions 107

Opening An Interface 112
Configuring The Device Interface(s) 113
Finding A Pipe 115
Getting Information About an Open Interface or Pipe 116

Generalized USB Device Request Function 120
USB Transaction Functions 124
Pipe State Control Functions 133

Data Toggle Synchronization 134
Device Control and Status Functions 141
USB Management Services Functions 144
USB Time Utility Functions 146
USB Memory Functions 149
Byte Ordering (Endianism) Functions 152
USL Logging Services Functions 154
USB Descriptor Functions 157
Debugger Aware Flag 163

Deprecated Pipe Functions 163
Constants and Data Structures 164

USB Constants 164
Parameter Block Constants 164
Flag Constants 164
Endpoint Type Constants 165
usbBMRequest Direction Constants 165
usbBMRequestType Type Constants 165
usbBMRequest Recipient Constants 165
usbBRequest Constants 165
Interface Constants 166
Interface Protocol Constants 166
Driver Class Constants 166
Descriptor Type Constants 167
Feature Selector Constants 167
Pipe State Constants 167
USB Power and Bus Attribute Constants 167

7

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Driver File and Resource Types 168
Driver Loading Option Constants 168
Error Status Level Constant 168

USB Data Structures 168
Device Descriptor Structure 169
Configuration Descriptor Structure 169
Interface Descriptor Structure 170
Endpoint Descriptor Structure 170
HID Descriptor Structure 170
HID Report Descriptor Structure 171

USL Error Codes 171

Chapter 6

USB Manager Reference

175

Overview 176
USB Manager API 177

Topology Database Access Functions 177
Getting Device Descriptors 178
Getting Interface Descriptors 178
Finding The Driver For A Device By Class 179
Getting The Connection ID For Class Driver 181
Getting The Bus Reference For a Device 181
Passing Messages To Another Driver 182
Receiving A Message From A Child Driver 183
Registering Shims After Boot Time 183
Adding a Driver For a Device After Boot Time 184

Callback Routine for Device Notification 185
Device Notification Callback Routine 185
Device Notification Parameter Block 186
Installing The Device Callback Request 187
Removing The Device Callback Request 188

Errors Returned By The USB Manager 188

Chapter 7

HID Library Reference

189

Overview 190

8

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HID Library API Reference 192
HID Descriptor Management Functions 192
HID Capabilities Functions 193
HID Report Decoding Functions 200
HID Report Data Encoding Functions 207

HID Library Constants 212
HID Report Constants 213
HIDOpenReportDescriptor Flags 213
HIDGetDeviceInfo Constants 213
HIDOpenDevice Constants 213
HIDInstallReportHandler Constant 214
HIDControlDevice Constant 214
Usage Table Constants 214

HID Library Data Structures 214
HIDDeviceDispatchTable 219
HIS Library Error Codes 220

Appendix A

Changes In Mac OS USB Software

223

Major Feature Updates In Version 1.1 223
Improved Bus Enumeration 224
Multiple USB Bus Support 224
Driver Notification Messages 224
Isochronous Transfer Support 225
Improved Functionality For USB Control Requests 225

Code Changes Required To Support The Version 1.1 USBPB 226
Major Features Introduced In Version 1.2 227
Changes and Enhancements Introduced in Version 1.4 228
Release Notes And Compatibility Issues 230

Bulk Data Transfer Performance Issues 230
Understanding Generic Drivers 231
Core 99 CPU Issues 232
Audio Support in Version 1.3.5 and 1.4 232
USB Extensions For Development and ROM Driver Conflicts 233

9

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Appendix B

Conventions and Abbreviations

235

Conventions 235
Abbreviations 235

Appendix C

USB Terminology

237

Index

243

10

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

11

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figures and Tables

Chapter 1

Overview

17

Table 1-1

Examples of USB device classes 20

Chapter 2

USB Topology and Communication

29

Figure 2-1

USB physical topology 31

Figure 2-2

USB communication flow 32

Figure 2-3

USB Prober utility, USB Bus Devices window 35

Figure 2-4

USB Prober view of a USB device 36

Figure 2-5

Expert log window 38

Figure 2-6

USB Prober Device Recorder window 39

Chapter 3

USB Software Components

41

Figure 3-1

USB architecture 44

Chapter 4

Writing Mac OS USB Drivers

51

Figure 4-1

Device driver matching algorithm 55

Figure 4-2

Interface driver matching algorithm 58

Chapter 5

USB Services Library Reference

89

Table 5-1

Standard parameter block errors 99

Table 5-2

Error definitions 171

Chapter 6

USB Manager Reference

175

Figure 6-1

Device addition event sequence on the USB 176

Table 6-1

USB Manager error codes 188

12

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Chapter 7

HID Library Reference

189

Figure 7-1

HID library in USB software architecture 191

Table 7-1

HID library error codes 220

13

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

P R E F A C E

About This Note

This document provides an introduction to the features of the Universal Serial
Bus (USB). It also describes the Apple Macintosh software components and
programming interfaces that support USB device hardware.

This document is intended for experienced hardware and software developers
interested in creating USB device drivers for the Macintosh platform. Hardware
and software developers reading this document should be familiar with the
information related to native drivers in the PCI Driver Development Kit,
available on the Developer CD Series, and have a copy of the current

Universal
Serial Bus Specification

, which can be found at http://www.usb.org/developers.

If you are not familiar with the terminology used to describe the elements that
make up the USB architecture, see Appendix C, “USB Terminology,” page 237
before moving on to the rest of the material in this document.

If you are interested in finding out about the features USB provides and want to
get a basic description of the elements that make up the USB topology, you
should read the introductory material in Chapter 1, “Overview,” and Chapter 2,
“USB Topology and Communication.”

If you already understand the features and topology of the USB architecture
and want to get to work developing a Mac OS compatible device driver for
your USB device, see the material in Chapter 3, “USB Software Components,”
Chapter 4, “Writing Mac OS USB Drivers,” the reference material in Chapter 5,
“USB Services Library Reference,” and Chapter 6, “USB Manager Reference.” In
addition, look at the example code provided in the Mac OS USB Device Driver
Kit.

Major differences between versions of the Mac OS USB software are noted in
Appendix A, “Changes In Mac OS USB Software,” page 223. In particular, this
draft includes information related to changes between version 1.0/1.0.1 and
version 1.1 of the Mac OS USB software. Versions 1.2, 1.3, and 1.4 of the Mac OS
USB software are also covered by the APIs defined in this document.

IMPORTANT

The information in this note is subject to change; no
representation or guarantee is made about its accuracy or
completeness.

▲

14

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

P R E F A C E

Contents of This Note 0

The information is arranged in four chapters and three Appendices:

■

Chapter 1, “Overview,” provides an introduction to the USB architecture.

■

Chapter 2, “USB Topology and Communication,” provides a high level
overview of the topology of the USB and how the host software
communicates with devices over the USB.

■

Chapter 3, “USB Software Components,” is an overview of the components
that make up the Macintosh USB software architecture.

■

Chapter 4, “Writing Mac OS USB Drivers,” discusses the composition of
Mac OS USB drivers and provides details about how the Mac OS USB
software communicates with the driver. It also discusses USB compatibility
shims, which developers can create to provide a layer of software that allows
applications or other client processes to communicate directly with their
vendor specific USB drivers through exported APIs.

■

Chapter 5, “USB Services Library Reference,” describes the Mac OS USB
system software libraries that developers use to support programming USB
class drivers for their USB devices.

■

Chapter 6, “USB Manager Reference,” describes the Mac OS USB Manager
library that provides service to the Mac OS and extension clients.

■

Chapter 7, “HID Library Reference,” defines the HID library API.

■

Appendix A, “Changes In Mac OS USB Software,” provides information
about the differences between various releases of the Mac OS USB software
that developers need to be aware of.

■

Appendix B, “Conventions and Abbreviations,” provides a list of standard
abbreviations used in Apple technical documentation.

■

Appendix C, “USB Terminology,” defines many of the terms that are
commonly used in discussion related to the USB hardware and software
architecture.

15

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

P R E F A C E

Supplemental Reference Documents 0

For technical documentation describing the USB specification, see the Universal
Serial Bus Specification, which can be found at

http://www.usb.org/developers

Technical specifications for USB device classes can also be found at the USB web
site.

For information about PCI expansion cards, Mac OS Power PC native drivers,
the Mac OS Name Registry, the Drivers Services Library, and other invaluable
services for the development of modern device drivers for the Mac OS platform,
refer to

Designing PCI Cards and Drivers for Power Macintosh Computers.

To understand the Mac OS APIs and services provided for application
programmers, you should also have copies of the relevant books of the

Inside Macintosh

 series

,

available in technical bookstores and on the World Wide
Web at

http://developer.apple.com/techpubs/mac/

The information found in

Inside Macintosh: Power PC System Software, Chapter 3,
“Code Fragment Manager”

 is a handy reference for developers writing USB
device and interface drivers, because USB drivers are essentially code
fragments. The information there is not specific to USB device drivers, but it
does define how code fragments work, and provide descriptions of the APIs
that support code fragments in the Mac OS environment.

Mac OS USB Resources 0

For late-breaking information, technical notes, and sample code for developing
USB device drivers for the Macintosh platform, visit the Mac OS USB web site:

http://developer.apple.com/dev/usb/

For developers getting started with the Macintosh platform, see the
Introduction to Macintosh Programming web site at:

http://developer.apple.com/macos/intro.html

16

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

P R E F A C E

For developers creating Macintosh software for gaming devices, see the
Macintosh Game Sprockets web site where you will find information about
Input Sprockets version 1.3, which supports writing Input Sprockets for USB
gaming devices.

http://developer.apple.com/dev/games/

Apple Developer Connection Web Site 0

The Apple Developer Connection Web site is the one-stop source for finding the
latest technical and marketing information specifically for developing
successful Macintosh-compatible software and hardware products. Developer
World can be reached at

<http://developer.apple.com/programs/>

17

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 1

Overview 1Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R 1

Overview

18

Introduction to USB

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This chapter provides a high-level introduction to the features of the Universal
Serial Bus™ (USB).

Introduction to USB 1

This section describes the benefits of incorporating USB into the Macintosh
hardware architecture. It also provides information about the selection of
devices supported by the USB architecture.

Why Incorporate USB Into the Macintosh Architecture? 1

The motivation behind the selection of USB for the Macintosh architecture is
simple.

■

USB is a low-cost, medium-speed peripheral expansion architecture that
provides data transfer rates up to 12 Mbps.

■

The USB is a synchronous protocol that supports isochronous and
asynchronous data and messaging transfers.

■

USB provides considerably faster data throughput for devices than does the
Apple Desktop Bus (ADB) and the Macintosh modem and printer ports. This
makes USB an excellent replacement solution for not only the existing slower
RS-422 serial channels in the Macintosh today, but also the Apple Desktop
Bus, and in some cases slower speed SCSI devices.

In addition to the obvious performance advantages, USB devices are hot
pluggable and as such provide a true plug and play experience for computer
users. USB devices can be plugged into and unplugged from the USB anytime
without having to restart the system. The appropriate USB device drivers are
dynamically loaded and unloaded as necessary by the Macintosh USB system
software to support hot plugging and unplugging.

Better Device Expansion Model 1

The USB specification includes support for up to 127 simultaneously available
devices on a single computer system. (One device ID is taken by the root hub.)
To connect and use USB devices, it isn’t necessary to open up the system and
add additional expansion cards. Device expansion is accomplished with the

C H A P T E R 1

Overview

Introduction to USB

19

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

addition of external USB multiport hubs. Hubs can also embedded in USB
devices like keyboards and monitors, which provide device expansion in much
the same way that the Apple Desktop Bus (ADB) is extended for the addition of
a mouse through the keyboard or monitor. However, the USB implementation
doesn’t have the device expansion or speed limitations that ADB does.

Compact Connectors and Cables 1

USB devices utilize a compact 4-pin connector rather than the larger 8- to 25-pin
connectors typically found on RS-232 and RS-422 serial devices. This results in
smaller cables with less bulk. The compact USB connector provides two pins for
power and two for data I/O. Power on the cable relieves hardware
manufacturers of low-power USB devices from having to develop both a
peripheral device and an external power supply, thereby reducing the cost of
USB peripheral devices for manufacturers and consumers.

The cables for high-speed and low-speed devices differ in construction.
High-speed USB device cables require shielding and two pairs of twisted-pair
wires inside. One twisted pair provides power, nominally +5V (4.3 to 5.3 V at
100ma) for devices connected directly to the host, and ground. A powered hub
can provide up to 500ma of +5V per port. (See “USB Hub Devices” (page 1-22)
for a description of the services a hub provides on the USB.) The other pair of
wires is for data I/O signals. (Low-speed cables are untwisted and do not
require shielding.)

High-speed cables are most common, and appear as patch cables to attach hubs
to hubs, or attach high-speed devices to a hub. Low-speed cable length can be
up to 3 meters, and high-speed cable length up to 5 meters. Both high-speed
and low-speed cables can be used on the same system bus.

USB cables are directional, the upstream connector is mechanically different
from the downstream connector. The upstream connector has a small nearly
square shape with a stacked pinout and the downstream connector has
rectangular shape with an in-line pinout. This prevents users from connecting
cables in a way that would create a loopback connection at a hub.

Use of Standard Hardware 1

Devices that are designed in accordance with the USB standard should not
require any modification to run on a Macintosh computer or other hardware
platforms. The only changes that developers need be concerned with to support

C H A P T E R 1

Overview

20

Introduction to USB

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

the Macintosh market are the changes involved in the development of
Macintosh USB device drivers and applications.

Lower Cost Than Comparable Non-USB Peripherals 1

Low-power USB devices are less expensive than their serial or parallel interface
counterparts, because of the elimination of the power supply and because the
USB standard is also incorporated into PC systems developed around the PC
’98 hardware architecture. Future versions of the PC ‘98 compliant operating
systems will also include built-in driver support for a wide variety of USB
devices. Together these factors mean that a larger customer base will form for
USB peripheral devices, resulting in lower retail costs of USB devices for all
personal computer users.

Wide Selection of USB Devices 1

The USB specification supports lower-speed devices, such as a keyboards, mice,
joysticks, and gamepads, at 1.5 Megabits per second and higher speed devices,
such as removable storage devices, scanners, or digital cameras, at up to 12
Megabits per second (high-speed is referred to as full speed signalling in the USB
specification).

Device Classes 1

USB devices are categorized by class. Table 1-1 lists a few examples of USB
device classes.

Table 1-1 Examples of USB device classes

USB device class USB devices in class

Audio class Speakers, microphones

Communication class Modem, speakerphone, internet phone

Composite class A single device that supports multiple functions,
mice, keyboards, and others

HID class Keyboards, mice, joysticks, drawing tablets, and
other pointing devices

C H A P T E R 1

Overview

Introduction to USB 21
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Low- and High-Speed Devices 1

Low-speed devices, which may include keyboards, mice, drawing tablets and
others, are typically in a USB class called the Human Interface Device (HID)
class. There is generally some cost reduction in low-speed devices because the
cabling is less expensive than cabling for high-speed devices.

Low-speed devices support only short messaging and do not support bulk and
isochronous transfers.

High-speed devices generally include communications devices, printing
devices, bulk storage devices, audio devices, and others.

There is nothing to prevent USB devices from being in either a high-speed or
low-speed category. However, some classes of devices, those that require bulk
or isochronous transfer services, cannot be part of the low-speed category.

Note
High speed in the case of USB is not comparable to
high-speed devices on a FireWire bus. USB is a
complementary technology to FireWire, not a competing
technology. USB enables the use of affordable higher-speed
consumer grade peripherals on Macintosh computers.

Hub class Hubs provide additional attachment points for
extending the USB. A hub may also be
embedded in another device, such as a keyboard
or display.

Mass storage class Floppy drives, other removable storage devices.

Printing class Printers

Vendor specific A device that doesn’t fit into any other
predefined class, or one that doesn’t use the
standard protocols for an existing class

Table 1-1 Examples of USB device classes (continued)

USB device class USB devices in class

C H A P T E R 1

Overview

22 Introduction to USB

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USB Hub Devices 1

Hubs are also USB devices and provide attachment points to the USB for other
devices or hubs. Hubs can be embedded into other USB devices (this is known
as a compound class device). For example, a hub can reside in a keyboard,
monitor, or printer to provide attachment points for other (typically) low-power
devices.

Hubs are also in the form of standalone multi-port hubs that provide
attachment points to the USB for other USB devices. Multiport-hubs are
generally categorized as bus-powered and self-powered. Bus-powered hubs can
request a total of 500ma from the USB and provide no more than 100ma of
power at each port on the hub. Even though a bus-powered hub may request
500ma, it may not get the power depending on the devices connected upstream
on the USB. Self-powered hubs (hubs that include a source of power external to
the USB) can supply additional power to the USB, and are required to provide
up to 500ma at each port on the hub.

While it is physically possible to connect two bus-powered hubs together in-line
without damaging any devices on the USB, it should not be done because there
isn’t enough power on the USB to support such an attachment. If sufficient
power isn’t available for the downstream device, the USB software will not be
able to properly configure the device’s power requirements. The downstream
hub most likely will not function. However, a self-powered hub and
bus-powered hub can be connected together in-line.

See Chapter 11 of the Universal Serial Bus Specification for additional
information about USB hubs.

The USB Root Hub 1

There is also a hub referred to as the root hub. The root hub is a software
simulation of a hub with hardware controller support. It acts as part of the host
hardware environment on the main logic board or on an I/O expansion card.
The root hub is similar to the other hubs, in that it provides an attachment point
or points to extend the USB from the host, however it is the initial connection
point and parent of the bus at which all signals originate. A simple diagram of
the USB topology is shown in Figure 2-1 (page 2-31).

C H A P T E R 1

Overview

Compatibility Issues 23
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Compatibility Issues 1

This section describes issues related to compatibility with legacy Macintosh
ADB, serial/LocalTalk, and storage devices. In addition, it describes some
fundamental differences in how USB works as a serial communications channel
in the Macintosh environment. Additional information about feature
compatibility between each of the Mac OS USB system software releases can be
found in Appendix A.

USB Software Gestalt Selectors 1

There are four gestalt selectors defined for determining the version attributes of
the USB software. To use the gestalt selectors you must understand how to use
the Gestalt Manager, which is defined in Inside Macintosh: Overview. The gestalt
selectors for USB software are defined in Chapter 3, “USB Software Presence
and Version Attributes.”

ADB, Serial/LocalTalk, and USB 1

You cannot physically connect legacy ADB devices or serial/LocalTalk devices
to USB ports.

It is currently not possible to use a USB keyboard to access Open Firmware if
the keyboard is connected to a PCI USB controller card in a Macintosh.
Essentially, keystrokes are not recognized early enough in the boot sequence to
allow boot keyboard access to Open Firmware. Other keyboard key
combinations, such as turning off system extensions with the Shift key down,
do function as expected.

Macintosh-To-Macintosh USB Connections 1

USB is a serial communications channel, but does not replace LocalTalk
functionality on Macintosh computers. You cannot connect two Macintosh
computers together using the USB like you can in a LocalTalk serial network for
a couple of reasons.

C H A P T E R 1

Overview

24 Compatibility Issues

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

■ The USB cable connectors are designed in such a way that it should be
impossible to attach two upstream devices together. A standard USB cable
has one upstream connector and one downstream connector. The root hub in
the Macintosh computer is the first device on the USB, and as such it is
always an upstream device in the USB topology.

■ The USB uses a master/slave communication model in which the Macintosh
host controls all communication and is the master of the bus. There cannot be
two masters on the same bus.

The most cost efficient method for networking USB enabled Macintosh
computers together is through the built-in Ethernet port.

USB Storage Devices 1

Version 1.0 of the Apple USB software does not support booting from any USB
storage device.

Keyboard Requirements 1

Apple provides a HID class driver for the Apple USB keyboard, which supports
the USB boot protocol. Keyboards intended for use on the Macintosh platform
must support the HID boot protocol, as defined in the USB Device Class
Definition for Human Interface Devices (HIDs).

USB Data Transfer Types Supported 1

There are four data transfer types defined by the USB specification. They are

■ Bulk transfers which offer guaranteed delivery of data. This may include
retrying transmissions at the hardware level. Bulk data transactions are best
suited for printers, scanners, modems, and devices that require accurate
delivery of data with relaxed timing constraints.

■ Interrupt transfers, which allow a device to signal the host. Interrupt data
transactions do not use up CPU cycles unless the device has data ready.
Interrupt transactions are used for HID class devices like keyboards, mice,
joysticks, as well as devices that want to report status changes, such as serial
or parallel adaptors and modems.

■ Isochronous transfers for one time delivery of data. Isochronous data
transactions are best suited for audio or video data streams.

C H A P T E R 1

Overview

Compatibility Issues 25
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

■ Control transfers for device configuration and initialization.

Version 1.0 of the Mac OS USB software provides functions that support only
control, bulk, and interrupt transfer types. Version 1.1 supports control, bulk,
interrupt, and isochronous transfers types.

USB Controller Support 1

The Apple Macintosh USB system software supports controllers compatible
with the Open Host Controller Interface (OHCI) specification. It does not
support Universal Host Controller Interface (UHCI) controllers.

Some early USB devices (most notably keyboards) can’t interoperate with an
OHCI controller. These devices will not be supported by the Apple USB system
software.

Maintaining Printer Device and Driver Compatibility 1

This section deals with issues related to USB printer dongles, USB printers, and
USB printer device driver development. What follows is a list of
recommendations that ensure compatibility and provide a quality customer
experience when using a USB printer on a Macintosh computer.

■ Put your vendor ID code in a EPROM of your USB printer dongle adaptor or
printer. Don’t use the default ID that comes with the USB device part. Failure
to do so may cause your vendor specific driver to match against a device
other than your own. For example, without a vendor ID EPROM, the USB
software will see your dongle as a USB to parallel bridge device rather than
your printer device, and your printer driver may never be matched with the
printer.

■ If you do supply your own printer driver, it absolutely must be vendor
specific and not generic. It must be named differently from the Apple USB
printer driver, and match to your vendor ID.

There are also important issues related to driver loading options in the driver
description structure that must be followed. The driver description structure is
defined in “USBDriverDescription Structure” (page 4-60). Essentially, the rule is
that you must set your driver loading options so that your driver does not
match to generic devices. To set your driver loading options to do not match
generic, specify kUSBDoNotMatchGenericDevice in the USBDriverLoadingOptions
field of the USBDriverDescription driver description structure.

C H A P T E R 1

Overview

26 Compatibility Issues

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Additional information about USB drivers and driver loading can be found in
Chapter 5, “USB Services Library Reference,” and “Installing The Device
Callback Request” (page 6-187).

Device Support For Multiple Vendor Specific Devices 1

Beginning with version 1.2 of the Mac OS USB software, multiple class drivers
can be merged into a single vendor specific USB extension file. Details on how
this is done and the benefits that are provided by this feature can be found in
“Major Features Introduced In Version 1.2” (page A-227).

As of version 1.4 of the Mac OS USB software both shims and class drivers can
be merged into a single USB extension file. Prior to version 1.4, it was only
possible to merge class drivers in a single file.

As stated above it version 1.2 provides support for multiple drivers in a driver
file. Unfortunately, this does not include support for merging a shim into the
same file as a class driver. Shim code is found because its creator code is 'usbs'.
A driver file is found because its creator is 'usbd.' If you attempt to merge both
shims and class drivers into a single extension running on versions 1.2 through
1.3.x of the Mac OS USB software, either the shim or the driver will not be
recognized, depending on the creator type of the resulting file.

For USB 1.4, it will be possible to merge the shim and the driver into a single file
and to set the creator code as either 'usbs' or 'usbd'.

USB PCI Adapter Card Support 1

Mac OS USB software is available to support USB PCI adapter cards. The USB
system extensions in this package allow users of Power Macintosh computers
with PCI slots to install a third-party USB PCI adapter card and communicate
with USB devices connected to the USB ports on the adapter card. The software
can be found at the Apple Software Updates:

http://asu.info.apple.com/swupdates.nsf/artnum/n11487

This software does not install on Macintosh computers with built-in USB ports.

Transaction Timeouts 1

Beginning with version 1.3 of the Mac OS USB software, a 5-second timeout is
enforced on control transactions. This can be overridden for drivers with

C H A P T E R 1

Overview

Compatibility Issues 27
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

devices that do not support the new behavior. A facility has also been added for
class drivers to set a no data timeout for devices. See “Transaction and Data
Timeouts” (page 5-104) for details about these new features in the Mac OS USB
software.

C H A P T E R 1

Overview

28 Compatibility Issues

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

29
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 2

USB Topology and
Communication 2

Figure 2-0
Listing 2-0
Table 2-0

C H A P T E R 2

USB Topology and Communication

30 USB Bus Topology

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This chapter introduces the USB topology and how the USB host software
communicates with devices. This is only a high-level introduction. For the
complete details of the USB topology and communication model, see the
Universal Serial Bus Specification, which can be found at
<http://www.usb.org/developers>.

USB Bus Topology 2

This section briefly describes the topology and communication model for the
USB architecture.

The USB architecture has a well defined physical and logical bus topology,
which is fully described in the Universal Serial Bus Specification. The physical
topology defines how USB devices are connected together. The logical topology
defines how the various components that make up the physical topology are
viewed by the host software.

Host Software 2

The client software, the USB management software, and the USB host controller
together make up the host software in the USB logical topology.

The host plays a special role as the arbiter of all activity on the USB. A USB
device can only gain access to the bus through the host by supplying a device
descriptor that includes the information necessary to manage the device
according to its features and class identifiers. See Chapter 5, “USB Services
Library Reference,” for additional information about the contents of the device
configuration descriptor structure.

The host interacts with USB devices through the host controller. The host is
responsible for:

■ Monitoring the attachment and removal of USB devices

■ Managing control and data flow between the host and USB devices

■ Maintaining device status and activity information

■ Providing a limited amount of power to the USB

C H A P T E R 2

USB Topology and Communication

USB Bus Topology 31
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Physical Topology 2

An example of the USB physical topology is shown in Figure 2-1. The system
software has to know about the physical topology to perform bandwidth
measurements in order to optimize bit time requirements for the USB as it
grows with additional hubs and devices. Device drivers do not have to know
about the physical topology. The USB specification states that the host can
handle up to six levels of hub support.

Figure 2-1 USB physical topology

Logical Topology 2

The logical topology is how the host software views and communicates with
devices in the physical topology. From the host software perspective, the USB is

Device

Device

Device

Device

Telephony
device

Host

Keyboard
with hub

Printer
device

Scanner
device

Mouse
device

bus-
powered

hub

self-
powered

hub

Root hub

C H A P T E R 2

USB Topology and Communication

32 Communication Over the USB

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

seen as a linear addressing space.The host is aware of the physical topology so
that it can accurately support connection and disconnection on hubs with
attached devices.

Communication Over the USB 2

This section provides an abridged description of the logical communication
model on USB. Refer to the Universal Serial Bus Specification for complete
technical details. A simplified diagram of the USB communication flow is
shown in Figure 2-2.

The USB driver software maintains an abstract view of the logical and physical
topology of the bus when it communicates with USB devices. Drivers look for
the interface(s) of interest that are available in devices on the USB.

Figure 2-2 USB communication flow

Client Software

Interface

USB logical device

Host

Buffers

Control pipe

Bulk pipes

Interrupt pipe

Isochronous
pipes

Endpoints

Client Software

Interface

C H A P T E R 2

USB Topology and Communication

Communication Over the USB 33
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USB Interface 2

Interfaces are a means of determining the functionality a device can provide to
the host and the means by which the device is controlled. For example, a device
which provides a bulk interface function to the host would be controlled by an
driver that understands the interface for the bulk transaction protocol.

Physical devices may contain multiple interfaces, which logically appear as
device functions within devices. Each device has one interface for each function
is supports.

The logical device is identified through an interface. Drivers use the USB
Manager APIs to open interfaces to device functions (capabilities). The device’s
function(s) are defined by the interface class, subclass, and protocol values in
the interface descriptor for the device. The interface descriptor is defined on
(page 5-170).

A logical USB device is a collection of endpoints, grouped into endpoint sets,
which implement a logical interface. USB software manages the interface using
a pipe or pipe bundles. (Pipe bundles are used for bulk and isochronous
transfers.) Data is packetized in a USB-defined structure by the host controller
and moved across the USB between a software serial interface engine on the
host and an endpoint on the device.

USB Devices 2

Every USB devices is accessed by a unique USB address, which is assigned by
the USB host software after initial device recognition and configuration takes
place. Each USB device additionally supports one or more endpoints with
which the host may communicate. All USB devices must support a specially
designated Endpoint 0 to which the USB device’s default control pipe is
attached during device initialization.

Endpoints 2

Endpoints are the terminus of a communication flow between a USB device and
the host. Endpoints are a logical point inside the USB device to which the host
may attach a pipe to initiate communication with a USB device. Endpoints
represent a specific data connection where interfaces represent a larger
functional connection.

C H A P T E R 2

USB Topology and Communication

34 Communication Over the USB

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Endpoint 0 2

Endpoint 0 has a special responsibility. It is used for USB device initialization
and configuration. All USB devices must support a default endpoint 0.
Endpoint 0 supports control transfers which provide control pipe access to
device descriptors and control requests to modify the device’s behavior.

Non-0 Endpoints 2

Non-0 endpoints are endpoints greater than 0. Low speed functions are limited
to two optional endpoints beyond the required endpoint 0. Higher speed
devices can have additional endpoints. However, no more than 16 input
endpoints and 16 output endpoints. Endpoint 0 is used as both an input and
output endpoint, which leaves a total of 15 each for input and output endpoints
(0 through 15 = 16).

A non-0 endpoint is not available for use until it is configured by the startup
configuration process when the device is attached to the USB.

Non-0 endpoints are not unique across device configurations. Endpoint
numbers are defined by the device vendor in a configuration descriptor for the
device. The associated interface or function associated with an endpoint
number may be different for the same endpoint number in different devices.
You should not count on endpoint numbers being identical from device to
device for a given interface.

Pipes 2

A pipe represents the communication link between a USB device endpoint and
the host software. Data moves to and from the USB device through the pipe.
Pipes have two communication modes, stream and message, and four transfer
types, control, isochronous, interrupt, and bulk.

For a detailed descriptions of USB interfaces, endpoints, pipes, communication
modes, and transfer types see the Universal Serial Bus Specification, which can
be found at <http://www.usb.org>.

C H A P T E R 2

USB Topology and Communication

A Look At USB Devices with USB Prober 35
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

A Look At USB Devices with USB Prober 2

The USB Prober application, which is included in the Utilities folder of the
Mac OS USB Device Driver Kit, is a utility for examining devices on the USB.

Figure 2-4 shows the USB Bus Probe window. The example shows the root hub
simulation at the top, then various USB devices connected to a 2-port USB PCI
card. A mouse and a self-powered 4-port hub are connected to the USB PCI
card. The 4-port hub has three devices connected to it.

Figure 2-3 USB Prober utility, USB Bus Devices window

In Figure 2-4 the device descriptor, configuration descriptor, and driver
information categories for a digital camera with a USB port are expanded to
show how the device and its associated drivers are defined.

C H A P T E R 2

USB Topology and Communication

36 A Look At USB Devices with USB Prober

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 2-4 USB Prober view of a USB device

The digital camera belongs to the composite class and has a composite interface
with a two bulk transfer endpoints; one supporting bulk input and the other
supporting bulk output transfers. The camera’s device driver is matched to the
vendor ID and product ID values found in the device descriptor and driver
descriptor.

C H A P T E R 2

USB Topology and Communication

A Look At USB Devices with USB Prober 37
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USB Prober Features for Developers 2

The USB Prober application provides several features that are useful to
programmers who are debugging USB device drivers, or anyone interested in
knowing what devices the Mac OS USB software recognizes on the USB.

The primary features of the USB Prober are those found in the Windows menu.

USB Prober Windows 2

The features of the USB Prober Windows menu include:

■ USB Bus Probe: This window option lists all the device and driver
information known about USB bus devices connected to the USB, including
the root hub. The content typically displayed in the USB Bus Device window
is shown in Figure 2-3 and Figure 2-4.

■ Open HCI Registers: This window option displays the OHCI controller for
each USB bus in the current system, and displays a decoded hierarchical list
of the contents of the controller registers.

■ USB Expert Log: This window option, shown in Figure 2-5, provides a
running list of status messages posted by various parts of the USB system
software. Both the USB Expert and device driver software routinely post
status information here, giving a great deal of insight as to what’s happening,
or not happening on the bus. Information in this log can help you to
determine when or if your driver is loading as expected. You can control the
level of status that is displayed in the window by selection one of 5 levels
found under the Commands menu in the Status Level menu item. The levels
are defined as:

■ 1: Fatal errors.
■ 2: General errors that may or may not effect operation.
■ 3: General driver messages.
■ 4: Important messages generated by the USB Expert and USL.
■ 5: General messages from the USB Expert and USL. This is the default

level selected when the Prober is first launched.

C H A P T E R 2

USB Topology and Communication

38 A Look At USB Devices with USB Prober

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 2-5 Expert log window

■ Device Recorder: This window option records information about a specified
device from a list of attached devices is provided in a popup menu. When
you press the Record button in the Device Recorder window, shown in
Figure 2-6, USB Prober saves the entire list of information in the USB Bus
Devices window that corresponds to the selected device into a file on disk.
The information it saves to disk includes the raw device, configuration,
string, and hub descriptor data.

C H A P T E R 2

USB Topology and Communication

A Look At USB Devices with USB Prober 39
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 2-6 USB Prober Device Recorder window

Device Record Viewer: Device specific information saved by the Device
Recorder can be displayed in hierarchical view with the Device Record Viewer.
The information can be saved as a text file that can be viewed by any
application that supports text files. The list of information about the device is
fully expanded in the text file that is saved.

Additional details about how to programmatically access the information that
defines a USB device can be found in “USB Services Library Reference.”

C H A P T E R 2

USB Topology and Communication

40 A Look At USB Devices with USB Prober

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

41
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 3

USB Software Components 3Figure 3-0
Listing 3-0
Table 3-0

C H A P T E R 3

USB Software Components

42 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This chapter is in preliminary overview of the components that make up the
Macintosh USB software architecture.

Mac OS Software for USB Devices 3

The software that supports USB devices in the Mac OS environment includes a
USB Interface Module (UIM), a USB Manager, a USB Services Library (USL),
and USB class drivers.

■ The UIM, pronounced whim, communicates with the USB controller
hardware and provides a hardware abstraction layer for the USL and USB
Manager.

■ The USB Manager is the API provided to the Mac OS, or extensions that need
information related to the USB.

■ The USL is the API that USB device drivers use to add device functionality to
the USB on Macintosh computers. The API is defined in the USB.h file and
Chapter 5, “USB Services Library Reference.”

■ Device class drivers in version 1. 0 of the Macintosh USB system software
include a USB composite device class driver to support USB HIDs, such as
keyboards and mice, and a hub class driver to support hubs attached to the
USB. Other drivers have been added in later releases.

The Mac OS USB system software components are available as system
extensions for Macintosh systems that do not include built-in USB ports. This
generally applies to Macintosh computers that have USB ports on PCI cards. As
of the last update to this document, version 1.3.5 of the Mac OS USB software
supports third-party USB PCI cards. The USB Device Extension and USB
Support extension support software development and third-party USB PCI
cards. The HID Library and SerialShimLib shared libraries are also required in
the Extensions folder to support the latest versions of Mac OS USB software.

The USB Device Extension contains the following class drivers

■ USBCompositeDriver - A class driver which is loaded for class 0 and subclass
0 devices (typically keyboards & mice, although a few printers and modems
appear as composite class devices).

■ USBHubDriver0 & USBHubDriver1 - The Hub driver for the root hub, the
Apple USB keyboard's hub, and most 3rd party hubs.

C H A P T E R 3

USB Software Components

Mac OS Software for USB Devices 43
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

■ USBKeyboardModule - The HID software module loaded for a keyboard
interface (typically in a compound device)

■ USBMouseModule - A HID software module loaded for a mouse interface
(typically in a compound device).

■ USBHIDUniversalModule - A HID module designed to support a number of
3rd party gaming devices via Game Sprockets. Refer to the “Mac OS USB
Compatibility Notes” in the DDK for a description of the game devices
supported.

■ USBOpenHCIDriver - The HAL (Hardware Abstraction Layer), also known
as the UIM (USB Interface Module). This driver provides an abstracted
interface to the OpenHCI host controllers on Mac motherboards and PCI
controller cards.

USB Support extension is the INIT (actually an 'expt') portion of the Family
Expert. Loaded prior to the INIT parade, it starts the “find a USB bus“ (UIM
driver), loads the hub driver (for the root hub), and starts the hub driver
running. Once running, the hub driver locates devices attached to the port and
asks the FamilyExpertLib to load drivers for the devices connected to the hub's
ports.

Macintosh computers that have USB ports designed into the main logic board,
like the iMac computer, have all of the USB software components, excluding the
class drivers, in the Macintosh system ROM file, Mac OS ROM.

Figure 3-1 shows the components that make up the USB software architecture
on the Macintosh computer. Release version 1.0 of the Macintosh USB software
provides only class driver support for a USB keyboard, mouse, and hub. Later
releases will provide support for other devices.

C H A P T E R 3

USB Software Components

44 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 3-1 USB architecture

USB Hardware

Software

Mac OS layer

USB Manager

Chooser
extension

ADB
Manager

Comm
Toolbox

File
System

MouseKeyboard

CDM shimADB shim

Other

Composite class driver

Printer
class
driver

Comm
class
driver

Mass
Storage
driver

PCI
cards

UIM
(future)

OpenHCI
Controller

OpenHCI UIM

Root hub
simulation

Devices

USB class
driver layer

Card
bus

UIM
(future)

DevicesDevices

USB Services

Hardware abstraction
layer

USB Interface Module
(UIM)

connectors
on computer

Application

USB Services Library (USL)

Root hub

Other

Hub
driver

C H A P T E R 3

USB Software Components

Mac OS Software for USB Devices 45
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USB Software Presence and Version Attributes 3

Applications can obtain information about the presence, version, and attributes
of USB software on Macintosh computers by using the Gestalt Manager
routines and USB gestalt selectors. The Gestalt Manager is defined in Inside
Macintosh: Overview.

The gestaltUSBAttr, gestaltUSBPresent, gestaltUSBHasIsoch, and
gestaltUSBVersionGestalt selectors are defined for Macintosh USB software as
follows:

gestaltUSBAttr = ‘usb ‘ USB attributes
gestaltUSBPresent = 0 Bit 0 is set if USB software is present
gestaltUSBHasIsoch = 1 Bit 1 is set is USB software supports

isochronous transfers
gestaltUSBVersion = ‘usbv‘ USB version number

The gestaltUSBVersion selector returns the version of the USB software in a
32-bit format as follows:

MMmmRRss

MM The most significant byte containing the major version number.
The current value for the major version number is 1. This
number will increment with each major release.

mm The next byte contains the minor version and revision number.
The current value for the minor version number is 2. This
number will increment with each minor release.

RR The next byte contains the release stage. The release stage is
defined as: 0x20 = development, 0x40 = alpha, 0x60 = beta, and
0x80 = final. If the software was at the beta release stage, this
number would be 0x60.

ss The least significant byte is the sequence number of the release,
and it changes with every build of the USB software.

USB Interface Module (UIM) 3

The UIM provides the upper layers of the USB software with a hardware
abstraction layer to the USB host controller interface hardware. The UIM
communicates directly with the USB controller hardware to set up the

C H A P T E R 3

USB Software Components

46 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

appropriate communication links with the USB devices on the bus. The UIM
also provides root hub simulation.

The UIM is a native driver 'ndrv' code fragment, as defined in “Designing
Macintosh PCI Cards and Drivers for Power Macintosh Computers.” In
addition to supporting the data export guidelines for ndrvs, the UIM provides
USB specific data exports that define the UIM driver entry points and
descriptor structures built for devices on the USB.

Open Firmware builds a Name Registry entry for the host controller and
matching UIM during hardware bring up time, prior to booting the operating
system. The USB Manager uses the information in the Name Registry to
communicate with the UIM. Once the UIM is loaded and begins hub
simulation, the USB Manager determines that a hub is present and loads the
hub driver. At this point, the hub driver begins monitoring all USB device
activity at the USB hub simulation provided by the UIM.

A UIM is required for every USB bus controller implementation installed in the
host. For example, multiple UIMs would be required on a host which has both a
built-in USB host controller interface and a USB controller interface on a PCI
card. Developers designing PCI, Card Bus, or any other controller interface to
the USB may need to provide a UIM for their card interface. For information
regarding the APIs needed for UIM software development, send email to the
Apple USB evangelist at USB@apple.com.

USB Manager 3

The USB Manager performs driver matching and loading services and
communicates internally with other components of the Macintosh USB host
software to identify devices on the USB. The USB Manager also provides
services that Mac OS and applications use to determine the status of devices,
handle power management tasks, and notify the user or other applications
about USB devices being attached to or removed from the USB.

An example of a service that the USB Manager can provide for a client is when
a client makes a request to find a keyboard. The USB Manager determines if a
keyboard is installed and returns the appropriate response. If a keyboard is
installed, the client can ask where the class driver is for that keyboard. The USB
Manager then points to the code fragment that contains the class driver for
keyboards. The client then communicates with the keyboard through the class
driver. The keyboard class driver communicates with the keyboard interface
through the USB Services Library. The API for the USB Manager is included in

C H A P T E R 3

USB Software Components

Mac OS Software for USB Devices 47
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Chapter 6, “USB Manager Reference.”The API for the USB Services Library is
described in Chapter 5, “USB Services Library Reference.”

Hub Driver 3

The hub driver provides support for the USB software architecture by
monitoring the connection and removal of devices on the USB at a hub. This
process is referred to as device enumeration. When the hub driver recognizes
that a device has been plugged into the bus at a given port ID on a hub, it
notifies the USL. The USL notifies the USB Manager, which in turn builds the
Name Registry entry for the device and binds the appropriate class driver with
that device. When the hub driver finds a device, it notifies the USB Manager
that a device has been found. The USB Manager loads the appropriate class
driver based on the class and subclass and other information found in the
device configuration or interface configuration descriptor for the device.

Additional information about the process of bus enumeration is described in
Chapter 9 of the Universal Serial Bus Specification.

USB Class Drivers 3

A USB device must have a USB class driver or drivers for every interface
(function) the device supports to operate properly on the Macintosh computer.
Macintosh USB class drivers are implemented as Shared Libraries with a file
type 'ndrv' and creator 'usbd'. As with other PCI drivers, the code fragment
Manager (CFM) code fragment must export driver description structures to
characterize the USB functionality the driver provides. The USB Manager uses
the description structure to match drivers with a device or interface.

The USB Manager matches drivers to device interfaces by initially examining
the product ID and vendor ID fields in the device descriptor for the device. To
ensure proper device and driver matching, additional information regarding
the device is examined if none or more than one driver matches the product ID
and vendor ID values for the device. Detailed information about how USB class
driver and device matching is accomplished is in the Universal Serial Bus
Common Class Specification which can be found at <http://www.usb.org>.

There are several classes of drivers defined by various USB specifications, and
new classes are being proposed all the time. The Macintosh USB software
includes HID class drivers for the HID interfaces in the USB keyboard and
mouse. The keyboard and mouse drivers are loaded by a composite class driver,

C H A P T E R 3

USB Software Components

48 Mac OS Software for USB Devices

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

which is loaded by the hub driver when the keyboard and mouse are found on
the USB.

Mouse cursor movement and other operations reported to the Mac OS from
keyboards and mice are handled by compatibility shims. Shims provide a layer
of software translation between the USB driver and upper-level APIs, such as
the Cursor Device Manager (CDM) in the case of a mouse or pointing device.
An ADB shim provides compatibility services for the ADB Manager to support
the USB keyboard. The ADB compatibility shim services allow older
applications that are not USB aware to function as expected with a USB
keyboard. The CDM shim provides the same level of compatibility with the
USB mouse for older applications.

For additional information about how compatibility shims are used in Mac OS
USB environment, see “Applications and USB Drivers” (page 3-49), the driver
code sample available in the Mac OS USB DDK, and Chapter 4, “Writing Mac
OS USB Drivers.”

A USB device includes an interface or interfaces, which are defined in
descriptor data structures associated with the device. The interfaces are like sub
devices within the device, each having a function specified by numerical class
and sub class identifiers. The functions provide device capabilities to the host
system. Interfaces also define how a function in a device is accessed by the host
system. The functional features of the device are accessed by the USL when
given an interface reference.

The Macintosh system software maintains a driver dispatch table for USB class
drivers that defines among other things the driver initialization routine, driver
gestalt, and the driver callback completion routine. For more information, see
the driver descriptor structure defined in the USB.h file.

USB Services Library (USL) 3

The USB Services library is the programming interface that USB device drivers
use to communicate with the USB on a Macintosh computer. The USL provides
the services necessary to find a device with the appropriate interface, open an
interface to the device, open the device, instantiate the appropriate pipe
connections, determine device status, and perform read and write transactions
with the device. For additional information about the USL, see Chapter 5, “USB
Services Library Reference.”

C H A P T E R 3

USB Software Components

Applications and USB Drivers 49
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Applications and USB Drivers 3

The Mac OS USB architecture implements a driver model in which the USB
drivers are dynamically loaded libraries, code fragments with exported symbols
in the form of a driver description and driver dispatch table. This allows USB
driver writers to export whatever public or private APIs they see fit for their
devices. The symbols that drivers export are defined in “Core Mac OS USB
Driver Data Exports” (page 4-60).

The USB Manager and its sibling, the USB Family Expert, are used to manage
the loading and unloading of USB drivers. The USB Family Expert does the
matching of drivers to devices, while the USB Manager provides APIs that let
applications, compatibility shims, INITs, and so on, discover what USB devices
are currently attached to the USB, and request to be notified whenever devices
are connected or disconnected.

There are a number of ways that applications can communicate with USB
drivers. They range from calling directly into the USB driver, creating a layer
between the application and class driver (a compatibility shim), or creating a
unit table driver that calls the class driver. You could also have cdevs and INITs
call class drivers, as long as you handle the mixed mode environment properly.

The decision to use one method over the other depends on the following
factors:

■ Does your device driver emulate a legacy I/O device? For example, a serial
device.

■ Do you need to have something (a shim) manage multiple devices connected
simultaneously?

■ Are you planning on publishing the APIs to application programmers, or
will you be the only application writer?

■ Do you care about architectural issues that may affect you in the future?

Ideally application writers should not have to worry about the USB Manager.
Applications have a way of living on for 5, 10, or 15 years. And who knows
what changes may take place in the USB Manager services over that entire time
span. Instead of relying specifically on the USB Manager APIs from the start, it
would be better to export a set of abstract functions from your driver that have
little to do with USB specifically.

C H A P T E R 3

USB Software Components

50 Applications and USB Drivers

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

For example, put your exported APIs into a USB compatibility shim, and let
your application call the compatibility shim. That way, you can revise your USB
compatibility shim to support any revisions to the USB Manager without
needing to rewrite an entire application.

And if you're emulating a legacy device that has a driver model already
established (for example, .ain, .aout, .sony, and so on), then you'll want to create
a unit table driver that applications can talk to. That’s what is done with the
Apple USB Storage class driver and USB Modem driver, which are available in
Mac OS USB software version 1.2. They both have compatibility shims that
create standard Device Manager style unit table drivers.

You need to be very careful when having applications call class drivers directly.
It’s possible that the driver could unexpectedly quit, or the device may be
unexpectedly unplugged. You need to pay careful attention to application
quitting and device removal situations.

In summary:

If you're planning on creating APIs that 3rd party application writers can use,
then abstract your API so that it isn’t USB specific.

If you're planning on developing a device that you will emulate a legacy unit
table driver, then you’ll need to create unit table driver that in turn calls your
USB device’s class driver.

You can also have your application call directly into your class driver. But you’ll
need to weigh the long term application compatibility issues and see what
makes the greatest amount of sense to you.

51
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 4

Writing Mac OS USB Drivers 4Figure 4-0
Listing 4-0
Table 4-0

C H A P T E R 4

Writing Mac OS USB Drivers

52
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This chapter describes how the USB Manager interacts with class drivers when
a USB device is recognized, and defines the core functionality that the driver
must implement to operate properly on the Macintosh platform.

This chapter provides information about the composition of a Mac OS USB
driver, describes how drivers are matched to devices, defines the driver entry
points and core data structures drivers must export, and discusses how a driver
gets called by the Mac OS USB software. Sample code is also provided where
necessary to support important concepts.

This chapter is divided into the following sections:

■ “Mac OS USB Driver Overview” deals with the basic composition of a USB
driver, and refers to the symbols, defined later in “Core Mac OS USB Driver
Data Exports”, that a driver must export to describe its device support
features to the Mac OS USB software.

■ “USB Device and Driver Matching” describes the criteria used by the Mac OS
USB software to match drivers to USB devices. This section also describes
how the fields in the driver core data exports are used to facilitate accurate
matching of drivers to devices.

■ “Core Mac OS USB Driver Data Exports” defines the contents of the driver
description structure that the Mac OS USB software uses to match and load
USB class drivers, and the driver dispatch table that class drivers use to
communicate with the Mac OS USB software and monitor device activity on
the USB. The structures defined in this section are the two symbols that a
driver must export to the Mac OS USB software to operate properly with
USB devices on the Macintosh platform.

■ “Handling Hot Unplugging, Dealing With Notifications” further defines how
notification messages, listed in “Driver notificationProc Function”
(page 4-70), are used by Mac OS software to communicate device activity on
the USB to USB drivers.

■ “Communicating With Client Processes” describes how to facilitate
communication between Mac OS applications and processes and USB class
drivers. Design and use of compatibility shims is discussed in this section.

■ “Detecting USB Device Presence” provides ideas about how to implement
two different means for finding a USB device.

■ “Mac OS USB Compatibility With Mac OS Toolbox Calls” discusses issues
USB class drivers should be aware of with regard to the services provided by
the Mac OS Toolbox.

C H A P T E R 4

Writing Mac OS USB Drivers

Mac OS USB Driver Overview 53
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Apple provides class drivers for USB hub devices, HID devices (mice,
keyboards, joysticks, and gamepads), printing, communications, and mass
storage devices shipped in specific system configurations. Other drivers are
provided as samples in the Mac OS USB DDK. Unless devices are 100 percent
compliant with the class specification and are supported by Apple, developers
need to write a class driver for their device.

In addition to writing a USB class driver, another important software
component to consider creating is a software compatibility shim which makes it
possible for existing processes, such as a Comm Tool box module (CTM) or
Chooser printer device, to communicate with the USB device.

Note
Input Sprockets version 1.7 provides support for HID
devices, such as joysticks, gamepads, steering wheels, and
rudder pedals. Input Sprockets version 1.7 will be
incorporated into future releases of the Mac OS software.

Mac OS USB Driver Overview 4

USB class drivers provide the software interface between USB hardware and
client processes that communicate with the hardware. As discussed in Chapter
3, “USB Software Components,” a Mac OS USB class driver is implemented as a
shared library with a file type 'ndrv' and creator 'usbd'. In a similar fashion to
PCI drivers, the driver CFM code fragment must export driver description
structures to characterize the USB functionality the driver provides. All USB
class drivers are recognized by the contents of the USBDriverDescription
structure, which is defined in, “USBDriverDescription Structure” (page 4-60).
The use of the USBDriverDescription structure for Mac OS USB drivers is
modeled after the DriverDescription structure discussed in “Designing PCI
Cards Drivers for Power Macintosh Computers, Revised Edition.”

The Mac OS USB Manager handles the recognition of all connected USB
devices, both at startup and when hot-plugged. As part of device recognition,
Mac OS USB Manager assigns the unique USB address, and opens a control
pipe to endpoint zero of the device. Mac OS USB Manager queries the device’s
endpoint 0 for the device descriptor, which includes information such as vendor
id, product id, device class, subclass, and protocol.

C H A P T E R 4

Writing Mac OS USB Drivers

54 USB Device and Driver Matching

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Upon receipt of the standard device descriptor information, the Mac OS USB
Manager searches for all USB class drivers by looking at files of type 'ndrv' and
creator 'usbd'. For each file, the USB Manager searches for all code fragments
and for the exported symbol USBDriverDescription and subsequently at the first
four bytes of the structure to match the kUSBDriverDescriptionSignature. This
constant identifies the CFM code fragment as a USB class driver. Refer to the
section “USBDriverDescription Sample” for more information and an example
of the content of the USBDriverDescription structure.

Note
In version 1.0 through 1.1 of the Mac OS USB software only
a single USB code fragment can exist in the driver file.
Beginning with version 1.2 multiple driver CFMs within a
driver file are supported. For more information about how
to support multiple USB devices with similar
characteristics, see “Major Features Introduced In Version
1.2” (page A-227).

USB Device and Driver Matching 4

Mac OS USB defines a match criteria to determine which class driver is selected
to support a USB device. A match value is assigned to each USB driver. The
following criteria determine the match value under Mac OS USB. The match
criteria are listed from highest to lowest.

1. The vendor and product IDs match. A match of the usbDeviceReleaseNumber
increases the match value.

2. The device class vendor specific, match of vendor ID, device subclass and
protocol.

3. kUSBDoNotMatchGenericDevice bit clear in the usbDriverLoadingOptions field of
driver description structure, match of device class, device subclass and
device protocol.

4. kUSBDoNotMatchGenericDevice bit clear in the usbDriverLoadingOptions field of
driver description structure, match of device class, device subclass and
kUSBProtocolMustMatch bit clear in the usbDriverLoadingOptions field of
driver.

C H A P T E R 4

Writing Mac OS USB Drivers

USB Device and Driver Matching 55
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 4-1 provides a flow diagram that illustrates how the USB Manager
assigns values to the driver matching criteria.

Figure 4-1 Device driver matching algorithm

Typically a driver should set the kUSBDoNotMatchGenericDevice bit in the
usbDriverLoadingOptions field of the USBDriverDescription, defined in

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No No

No

NoNo

No

No No

InterfaceMatchOnly
flag set?

Vendor and product
both match?

Release number
matches?

Device class
vendor-specific?

DoNotMatchGeneric
flag set?

Class and
subclass

both match?

Device protocol
matches?

Return rank of 0

Return rank of 10

Return rank of 8

Return rank of 7

Return rank of 0

Return rank of 9

ProtocolMustMatch
flag set?

Return rank of 6

Vendor,
subclass,and
protocol all

match?

Return rank of 0

Return rank of 0

C H A P T E R 4

Writing Mac OS USB Drivers

56 USB Device and Driver Matching

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

“USBDriverDescription Structure” (page 4-60), to indicate that it only supports
vendor specific devices. This way the driver is not matched as a generic driver
for a device that it may not actually support. If the bit is clear, then the driver
indicates generic support for devices by device class and subclass. Unless you
plan to write a class driver that supports all devices with a specific class and
subclass, you should have your device return a device class of 0xFF (vendor
specific) and set the kUSBDoNotMatchGenericDevice bit in the
usbDriverLoadingOptions field of the USBDriverDescription structure.

Regardless of whether a match, or “best match” is found, the USB Manager
registers the device in the Name Registry. Drivers that could potentially support
the device are accessed in a high-to-low rank order through the driver’s
USBClassDriverPluginDispatchTable.

The driver’s USBClassDriverPluginDispatchTable defines five functions that a
Mac OS USB driver must support. The contents of the structure and functions
are defined in the section “USBClassDriverPlugInDispatchTable Structure”
(page 4-65). The functions in the USBClassDriverPluginDispatchTable are the
driver entry points that the Mac OS USB uses to properly instantiate the
appropriate driver for a USB device.

The USB Manager calls the validateHWProc to have the class driver verify that
the driver supports the hardware. The validateHWProc routine can compare the
vendor and device ID, or other fields of the device descriptor, to validate that it
can support the device. If no error is returned, the initializeDeviceProc routine
is called so that the class driver can establish communications with the device.
Refer to the sections “ValidateHWProc Function” and “InitializeDeviceProc
Function” below for more information on implementing these functions.

For USB devices that match to the composite class type (device class 0, subclass
0), the Apple USB composite class driver is loaded, which in turn selects from
the available configurations. The composite class driver sets the appropriate
configuration based on the power and or bandwidth available, and examines
the interface descriptors by calling the USBExpertInstallInterfaceDriver
function for each interface. The USB Manager uses the interface descriptor,
class, subclass, and protocol, and rescans the USB class drivers for a match of
the interface descriptor section of the driver descriptor. When a match (or best
match) is found, the USB Manager loads the driver code fragment, and finds the
USBClassDriverPluginDispatchTable for the matched driver. The
initializeInterfaceProc function is called for the interface driver to initiate
communication with the particular function in the device.

C H A P T E R 4

Writing Mac OS USB Drivers

USB Device and Driver Matching 57
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Matching Interfaces to Interface Drivers 4

Similar to matching devices with drivers, Mac OS USB defines a match criteria
to determine which class driver is selected to support a USB interface. A match
value is assigned to each USB driver. The following criteria determine the
match value under Mac OS USB v1.0. The criteria is listed in order of match
value, 10 being the highest or best match.

1. vendor and product IDs match along with the configuration value and
interface number. A match of the usbDeviceReleaseNumber increases the match
value by 1.

2. interface class vendor specific, match of vendor ID and interface subclass. A
match of the protocol increases the match value by 1.

3. kUSBDoNotMatchGenericDevice bit clear in the usbDriverLoadingOptions field of
driver, match of interface class, interface subclass and interface protocol.

4. kUSBDoNotMatchGenericDevice bit clear in the usbDriverLoadingOptions field of
driver, match of interface class, interface subclass,.and
kUSBProtocolMustMatch bit clear in the usbDriverLoadingOptions field of
driver.

5. kUSBDoNotMatchInterface bit set in the usbDriverLoadingOptions field of
driver - don't match driver for interface.

Figure 4-2 provides a flow diagram that illustrates how the USB Manager
assigns values to the driver matching criteria.

C H A P T E R 4

Writing Mac OS USB Drivers

58 USB Device and Driver Matching

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Figure 4-2 Interface driver matching algorithm

Once the USB Manager has matched a class driver to the interface, the driver’s
initializeInterfaceProc function pointed to from the driver dispatch table is
called. The initializeInterfaceProc function is used by the class driver to
prepare itself to communicate with the interface. When interface class drivers
are loaded, the validateHWProc is not called. However, a driver can return an
error from the initializeInterfaceProc and the next best matching driver is

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No No

Yes

No

No

NoNo

No

No No

DoNotMatchInterface
flag set?

Vendor, product,
and InterfaceNum

all match?

Release number
matches?

Interface class
vendor-specific?

DoNotMatchGeneric
flag set?

Interface
class and interface

subclass both
match?

Interface protocol
matches?

Return rank of 0

Return rank of 10

Return rank of 6

Return rank of 0

Return rank of 9

Interface protocol
matches?

Return rank of 8

Return rank of 7

ProtocolMustMatch
flag set?

Return rank of 5

Vendor and
Interface subclass

both match?

Return rank of 0

Return rank of 0

C H A P T E R 4

Writing Mac OS USB Drivers

USB Device and Driver Matching 59
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

loaded. As with device matching, you want to specify matching to interfaces by
the vendor, product ID, and interface number, or by setting the interface class to
0xFF (vendor specific), and setting the kUSBDoNotMatchGenericDevice bit in the
usbDriverLoadingOptions field to indicate that the driver does not support a
class and subclass interface generically.

When a device has been disconnected from the bus, the driver’s
notificationProc function is called, and when it returns noErr, the driver’s
finalizeProc function is called by the USB Manager. The finalizeProc function
is called at task time so that a class driver can clean up memory allocations, and
perform other operations associated with the driver or interface no longer being
present. The finalizeProc must be synchronous. That is, when the driver
returns kUSBNoErr, the Mac OS USB software assumes that there is no further
need to keep the driver code fragment around, and unloads it from memory.

Matching Class Drivers to Composite Devices 4

For composite class USB devices, the Mac OS USB software implements class
driver matching differently in the following two cases

■ when the device is connected at startup, and

■ when the device is “hot plugged”

The following explanation of composite class device and driver matching
applies to USB v1.0.1 and earlier. At system startup, the Mac OS USB software
cannot access file based drivers. To support boot devices, such as the keyboard
and mouse, which are USB composite HID class devices, the Mac OS USB
software uses the generic composite class driver in the Mac OS ROM file (in
iMac and later computers). If a device is identified as a composite device, and it
is attached to the USB bus at startup, then the generic composite class driver is
matched to that device. This happens even though there may be a file based
driver which is a better match for your device. Once the driver is matched, USB
v1.0.1 does not check for a better match when the file system becomes available.

If the composite device is hot plugged later, then the USB software can find a
better matching disk-based driver, if one exists.

Mac OS USB software v1.1 and later look for a better match disk-based driver
when the file system becomes available.

The generic composite class driver sets the configuration for the composite class
device to the first configuration it finds. The generic composite class driver only

C H A P T E R 4

Writing Mac OS USB Drivers

60 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

checks that the configuration's power requirement is within the available power
limits of the hub to which the device is connected.

Device Driver and Interface Driver Matching Differences 4

The implementation of a Mac OS USB class driver is such that drivers may be
loaded as either device drivers or interface drivers. The primary difference
between device and interface driver loading is that the device driver code must
issue a SetConfiguration call (a USBDeviceRequest call with the usbBRequest field
set to kUSBRqSetConfig) to define which configuration is active. In contrast, the
interface driver can not set a configuration. Both device and interface drivers
identify the interfaces present, find one to activate, open the pipes in the desired
interface, and handle the I/O on the pipes within the interface.

Typically, the class driver is loaded as an interface driver if the device is
detected as a composite class device and the Apple USB composite driver is
loaded. The Apple USB composite class driver detects the available
configurations and makes the USBExpertInstallInterfaceDriver call to the USB
Manager, which results in the appropriate class driver being loaded and
initialized as specified in the driver’s initializeInterfaceProc, defined in
“USBClassDriverPlugInDispatchTable Structure” (page 4-65).

Core Mac OS USB Driver Data Exports 4

This section defines the contents of the USBDriverDescription and the
USBClassDriverDispatchTable structures. The two structures described here are
the symbols that a Mac OS USB driver must export to communicate with the
Mac OS USB software and in turn the USB device and/or interface the class
driver module supports.

USBDriverDescription Structure 4

The USBDriverDescription is a required exported symbol that the USB Manager
uses to first identify USB class drivers, and second, to identify whether a driver
supports a specific USB device. The structure of the USBDriverDescription
structure is as follows:

C H A P T E R 4

Writing Mac OS USB Drivers

Core Mac OS USB Driver Data Exports 61
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

struct USBDriverDescription
{

OSType usbDriverDescSignature; /* Signature field of */
/* this structure. */

USBDriverDescVersion usbDriverDescVersion; /* Version of this */
/* data structure */

USBDeviceInfo usbDeviceInfo; /* Product & Vendor Info */
USBInterfaceInfo usbInterfaceInfo; /* Interface info */
USBDriverType usbDriverType; /* Driver Info */
USBDriverLoadingOptions usbDriverLoadingOptions; /* Options for class */

/* driver loading. */
};
typedef struct USBDriverDescription USBDriverDescription;

Field descriptions
usbDriverDescSignature

Set to kTheUSBDriverDescriptionSignature to indicate that
the CFM library is a USB class driver.

usbDriverDescVersion
The structure version field. As of the initial release, this
field should be set to kInitialUSBDriverDescriptor. For
future releases of Mac OS USB, you may need to set this
field to indicate support for new functionality.

The remaining fields of the driver description record are used to match the class
driver to a device or interface. For most of the fields, a value of zero indicates
that the field is not to be used to match the class driver to a device. For other
fields such as the usbDeviceClass and usbInterfaceClass, a device and interface
specific value must be entered.

USBDeviceInfo The usbVendorID and usbProductID in the USBDeviceInfo
structure are used to match a class driver to support both
device drivers and interfaces. As indicated above for device
and interface matching, the highest match value is
generated when the VendorID and ProductID match along
with the configuration value.

The USBDeviceInfo structure is defined as follows:

struct USBDeviceInfo {
UInt16 usbVendorID; /* USB Vendor ID */
UInt16 usbProductID; /* USB Product ID */

C H A P T E R 4

Writing Mac OS USB Drivers

62 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt16 usbDeviceReleaseNumber; /* Release Number of Device */
UInt16 usbDeviceProtocol; /* Protocol Info. */

};

For the USBDeviceInfo fields, VendorID and ProductID, enter
the values that correspond to the device that the class
driver supports. For the DeviceReleaseNumber field, enter a
BCD value for the device version. For the
usbDeviceProtocol field, enter the protocol value assigned
by the USB specification for your device. A value of 0
indicates that no device specific protocol is used and is a
valid setting for the device. A value of 0xFF indicates that a
vendor specific protocol is used. A match of the VendorID
and the ProductID is the highest possible match.

USBInterfaceInfo The information presented in the USBInterfaceInfo
structure is used to match a class driver to support a device
interface. When a device is detected as a composite class
device, the composite class driver is loaded and tries to
match class a class driver for each interface. For interface
matching, the second highest match value is generated
when the interface class is vendor specific AND the
VendorID and interface subclass match. In case of duplicate
matches, matching the interface protocol field for a driver
raises its match level.
The kUSBDoNotMatchInterface bit must be clear in the
USBDriverLoadingOptions field in order for the class driver
to be checked to see if it can support an interface. For an
interface match, the interface number must also match.
A class driver can support an interface class generically by
not setting the kUSBDoNotMatchGenericDevice bit in the
USBDriverLoadingOptions field. When this bit is clear, USB
checks the class driver's support for the interface class,
subclass and protocol against that for the device. When all
three values match, the third highest match level is set for
the driver. If the class and subclass match and the
kUSBProtocolMustMatch bit is clear, then the fourth highest
match level is set for the driver.

The USBInterfaceInfo structure is defined as follows:

C H A P T E R 4

Writing Mac OS USB Drivers

Core Mac OS USB Driver Data Exports 63
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

struct USBInterfaceInfo {
UInt8 usbConfigValue; /* Configuration Value */
UInt8 usbInterfaceNum; /* Interface Number */
UInt8 usbInterfaceClass; /* Interface Class */
UInt8 usbInterfaceSubClass; /* Interface SubClass */
UInt8 usbInterfaceProtocol; /* Interface Protocol */
};

USBDriverType The information provided in the USBDriverType structure is
used to match a class driver to support a device. For device
matching, the second highest match level occurs when the
device class is vendor specific, 0xFF, and the vendorID in
the USBDeviceInfo field, the device subclass and protocol
fields all match.
A class driver can support a device class generically by not
setting the kUSBDoNotMatchGenericDevice bit in the
USBDriverLoadingOptions field. When this bit is clear, USB
checks the class driver's support for the device class,
subclass and protocol against that for the device. When all
three values match, the third highest match level is set for
the driver. If the class and subclass match and the
kUSBProtocolMustMatch bit is clear, then the fourth highest
match level is set for the driver.

The USBDriverType structure is defined as follows:

struct USBDriverType {
Str31 nameInfoStr; /* Driver's name when loading */

/* into the Name Registry */
UInt8 usbDriverClass; /* USB Class this driver */

/* belongs to */
UInt8 usbDriverSubClass; /* Module type */
NumVersion usbDriverVersion; /* Class driver version number */

};

The nameInfoStr field, is used by the USB Expert to record debugging
information. The field is a Pascal string with the string length in byte 0. The
usbDriverClass and usbDriverSubClass fields are used as described above to
match a class driver generically to a device. Starting with version 1.2 of the
Mac OS USB software, the usbDriverVersion field is used to distinguish class
drivers.

C H A P T E R 4

Writing Mac OS USB Drivers

64 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBDriverLoadingOptions
The USBDriverLoadingOptions field is used to control
whether a class driver supports generic devices, interfaces,
and other matching options. As of the v1.0 release, the
following options are defined.
kUSBDoNotMatchGenericDevice = 0x00000001

The kUSBDoNotMatchGenericDevice bit indicates whether the
class driver supports or does not support all devices or
interfaces. When set, the class driver can only support a
device with a matching vendorID as specified in the
USBDeviceInfo structure. If this bit setting is clear, then the
class driver module can support a device generically as
specified in the section “USB Device and Driver Matching”
(page 4-54).
kUSBDoNotMatchInterface = 0x00000002

The kUSBDoNotMatchInterface bit indicates whether the
class driver supports USB interfaces. When set, the Mac OS
USB software does not consider the driver for support of an
interface. If this bit setting is clear, then the class driver
module indicates that it can support an interface as defined
in the settings of the USBInterfaceInfo structure.
kUSBProtocolMustMatch = 0x00000004

The kUSBProtocolMustMatch bit indicates whether a generic
class driver can match when the class and subclass values
match, but the protocol does not match. Set this bit in to
require that USB match the protocol field, in addition to the
class and subclass values during driver matching.
Otherwise, leave this bit clear and a match value is
generated when the class and subclass match.

The following example of a USBDriverDescriptor structure is for a vendor
specific device.

USBDriverDescription TheUSBDriverDescription = {
// Signature info

kTheUSBDriverDescriptionSignature, // specifies USB Class Device Driver
kInitialUSBDriverDescriptor, // specifies the USB Class Driver version

// Device Info
kMyVendorID, // vendor, 0 = unspecified

C H A P T E R 4

Writing Mac OS USB Drivers

Core Mac OS USB Driver Data Exports 65
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kMyProductID, // product, 0 = unspecified
0, // version of product, 0 = unspecified
0, // protocol, 0 = not device specific

// Interface Info
0, // Configuration Value, 0 = unspecified
0, // Interface Number, 0 - interface 0
kUSBVendor_Specific, // Interface Class, 0x03 - HID Interface
0, // Interface SubClass
0, // Interface Protocol

// Driver Info
"\pUSBCustomDriver", // Driver name for Name Registry
kUSBVendor_Specific, // Device Class, 0x03 HID Interface class
0, // Device Subclass
kMyHexMajorVers,
kMyHexMinorVers,
kMyCurrentRelease,
kMyReleaseStage, // version of driver

// Driver Loading Info
kUSBDoNotMatchGeneric // Flags 2 = don’t care if protocol matches

will not match a generic device and interface
will match to an interface

USBClassDriverPlugInDispatchTable Structure 4

The USBClassDriverPluginDispatchTable is the second exported symbol that the
CFM class driver module must export. The Mac OS USB software looks for this
symbol in order to initialize the class driver module. The dispatch table
structure contains pointers to functions that your driver must support to
operate properly in the Mac OS USB environment.

Typically, class drivers may require additional exports to facilitate
communication with a shim of other Mac OS service.

The structure of USBClassDriverPluginDispatchTable for class drivers is as
follows:

struct USBClassDriverPluginDispatchTable {
UInt32 pluginVersion;
USBDValidateHWProcPtr validateHWProc; /* Proc for driver to */

C H A P T E R 4

Writing Mac OS USB Drivers

66 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

/* verify proper HW */
USBDInitializeDeviceProcPtr initializeDeviceProc; /* Proc that initializes */

/* the class driver */
USBDInitializeInterfaceProcPtr initializeInterfaceProc; /* Proc that */

/* initializes particular */
/* interface in the */
/* class driver */

USBDFinalizeProcPtr finalizeProc; /* Proc that finalizes */
/* the class driver */

USBDDriverNotifyProcPtr notificationProc; /* Proc to pass */
/* notifications to */
/* the driver */

};

You must initialize the pluginVersion field to kClassDriverPluginVersion
defined in the header file USB.h. The USB Manager uses this field to distinguish
between future versions of the dispatch table.

The following fields of the dispatch table are required when the device is
initialized

■ validateHWProc

■ intializeDeviceProc

■ finalizeProc

If any of these fields are nil, then the kUSBBadDispatchTable error is returned to
the USB Family Expert, and the driver load fails. Each of these calls is made at
task time, and each is made synchronously.

You are advised to install a notificationProc, so that you can handle a "hot
unplug" situation. However, if this field is nil, the device driver load still
continues.

If your class driver can be used to communicate with a specific interface portion
of a composite device, the following fields of the dispatch table are required.

■ initializeInterfaceProc

■ finalizeProc

If either of these fields are nil, then the kUSBBadDispatchTable error is returned,
and the interface load fails. Each of these calls are made at task time, and each is
made synchronously.

C H A P T E R 4

Writing Mac OS USB Drivers

Core Mac OS USB Driver Data Exports 67
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

As above, you are advised to install a notificationProc, so that you can handle
a "hot unplug" situation. However, if this field is nil, the interface driver load
still continues.

The contents of the fields in the USBClassDriverPluginDispatchTable are defined
in the following sections.

ValidateHWProc Function 4

The validateHWProc function is called for a USB class driver to validate that the
device is supported by the selected driver. The prototype for the validateHWProc
is

OSStatus USBDValidateHWProcPtr(
USBDeviceRef device,
USBDeviceDescriptorPtr pDesc);

The USB Manager finds the best matching class driver for a device, then calls
the USBValidateHWProcProcPtr to provide the class driver with a chance to check
the device descriptor itself to verify that the device is supported. This procedure
call is made at system task time, and is issued synchronously. The class driver
may want to verify that a certain minimum device hardware version exists, or
lock out support for specific incompatible products or versions.

The driver returns a kUSBNoErr OSStatus result, if the class driver supports the
hardware, or a value other than kUSBNoErr to indicate that the driver does not
support the hardware. The validateHWProc should be used solely to validate the
support for a specific hardware device. It should not be used to set up the
driver connection. To set up the driver connection use the initializeDeviceProc
function, which is discussed next.

InitializeDeviceProc Function 4

The Mac OS USB software calls the initializeDeviceProc function to tell the
class driver to prepare for communications with the USB device. The prototype
for the initializeDeviceProc function is

OSStatus USBDInitializeDeviceProcPtr(
USBDeviceRef device,
USBDeviceDescriptorPtr pDesc,
UInt32 busPowerAvailable);

C H A P T E R 4

Writing Mac OS USB Drivers

68 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The initializeDeviceProc function is called at system task time. The class
driver may wish to allocate memory, set up resources (see the “Mac OS USB
Compatibility With Mac OS Toolbox Calls” section), and initiate the necessary
sequence of USB calls to configure the device. This includes identifying the
available configurations, specifying the configuration and interface to be used,
opening endpoints and pipes, specifying the protocol to be used, installing an
interrupt routine, and related actions.

The description that follows applies for cases when the class driver is called
through either the initializeDeviceProc or the initializeInterfaceProc
function. Both of these functions are called synchronously and at system task
time. If either the initializeDeviceProc or initializeInterfaceProc functions
return anything other than kUSBNoErr, the driver is be loaded, and the USB
Manager attempts to load the next-best matching driver. Before returning from
the function, the driver must complete any calls that must be made at task time.
After doing so, the driver should initiate an asynchronous “state machine
process” to complete the connection. This can include memory allocation,
assuming that the USBAllocMem call is made. Once the asynchronous state
machine process is begun, the driver can return from the initializeDeviceProc
function call.

As a reminder, most USB calls are asynchronous. As stated in “Polling Versus
Asynchronous Completion (Important)” (page 5-103), a USB driver can NOT
poll for completion of these asynchronous USB calls by simply checking the
usbStatus field without using a completion routine.

All of the USB example class drivers found in the Mac OS USB DDK implement
an asynchronous state machine startup process. In the driver examples, the last
thing that the initializeDeviceProc or initializeInterfaceProc code does
before returning to the caller, is to make an initiateTransaction call. The
initiateTransaction call uses the usbRefCon field in the USB parameter block,
defined in “The USBPB Parameter Block” (page 5-94), as a selector into a switch
statement. After the first call to initiateTransaction is initiated, control returns
to the caller. As the asynchronous call completes, the completion routine checks
the call results, modifies the usbRefCon field appropriately and issues a call to
the initiateTransaction function. The initiateTransaction function checks the
usbRefCon field and issues a new asynchronous call to handle the next step in
the state machine. This continues until all of the processing is complete.

C H A P T E R 4

Writing Mac OS USB Drivers

Core Mac OS USB Driver Data Exports 69
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

InitializeInterfaceProc Function 4

The Mac OS USB software calls the initializeInterfaceProc function to tell the
class driver to prepare for communications with the USB interface. The
prototype for the initializeInterfaceProc function is

OSStatus USBDInitializeInterfaceProcPtr(
UInt32 interfaceNum,
USBInterfaceDescriptorPtr pInterface,
USBDeviceDescriptorPtr pDevice,
USBInterfaceRef interfaceRef);

A composite USB device generally results in the load of the composite class
driver. The composite class driver obtains information about the first
configuration, verifies that the bus power required for the device is supported
by the hub, then sets the configuration. A new interface reference is created for
each interface in the selected configuration, and the USB Manager attempts to
find and load a driver for that interface. The interface matching process is
described in “USB Device and Driver Matching” (page 4-54).

The initializeInterfaceProc function is called synchronously at system task
time. If the initializeInterfaceProc function returns anything other than
kUSBNoErr, the driver is not loaded, and the USB Manager attempts to load the
next-best matching driver. The class driver may wish to allocate memory, set up
resources (see “Mac OS USB Compatibility With Mac OS Toolbox Calls”), and
initiate the necessary sequence of USB calls to configure the interface. This
includes specifying the interface to be used, opening endpoints and pipes,
specifying the protocol to be used, installing an interrupt routine, and related
actions.

Before returning from the function, the driver must complete any calls that
must be made at task time. After doing so, the driver should initiate an
asynchronous “state machine process” to complete the connection. This can
include memory allocation, assuming that the USBAllocMem call is made. Once
the asynchronous state machine process is begun, the driver can return from the
initializeInterfaceProc function call.

All of the USB example class drivers found in the Mac OS USB DDK implement
an asynchronous state machine startup process. In the examples, the last thing
that the initializeInterfaceProc code does before returning to the caller, is to
make an InitiateTransaction call. The initiateTransaction call uses the
usbRefCon field as a selector into a switch statement. After the first call to
initiateTransaction is initiated, control returns to the caller. As the

C H A P T E R 4

Writing Mac OS USB Drivers

70 Core Mac OS USB Driver Data Exports

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

asynchronous call completes, the completion routine checks the call results,
modifies the usbRefCon field appropriately and issues a call to the
initiateTransaction function. The initiateTransaction function checks the
usbRefCon field and issues a new asynchronous call to handle the next step in
the state machine. This continues until all of the processing is complete.

Driver notificationProc Function 4

The driver notificatioProc function receives device notification messages from
the Mac OS USB software. The prototype for the notificatioProc function is

OSStatus USBDDriverNotifyProcPtr(
USBDriverNotification notification,
void *pointer,
UInt32 refcon);

The Mac OS USB software calls the driver’s notificationProc function with a
message when something the driver needs to be aware of is happening. There
are many messages passed both internally to the USB software and to drivers to
communicate what is happening on the USB. The notification messages that are
of importance to class drivers are:

kNotifySystemSleepRequest = 0x00000001,
kNotifySystemSleepDemand = 0x00000002,
kNotifySystemSleepRevoke = 0x00000003
kNotifyHubEnumQuery = 0x00000006,
kNotifyChildMessage = 0x00000007,
kNotifyExpertTerminating = 0x00000008,
kNotifyDriverBeingRemoved = 0x0000000B

The sleep notification messages kNotifySystemSleepRequest and
kNotifySystemSleepDemand are the same on any power-managed system. On
PowerBook models, the processor and I/O subsystems are turned off when the
machine goes to sleep. Because the USB is part of the I/O subsystem on
PowerBooks with built-in USB or USB on a PC Card, the sleep state does effect
USB drivers. Desktop Macintosh computers do not see these messages, since
the processor and network I/O subsystems on desktop models remain active
during system sleep.

When a PowerBook computer with Mac OS USB software version 1.2 or later
goes to sleep, the USB Manager sends any active USB drivers the
kNotifySystemSleepDemand message and then unloads the driver just like a

C H A P T E R 4

Writing Mac OS USB Drivers

Handling Hot Unplugging, Dealing With Notifications 71
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

disconnect (hot unplug). When the PowerBook wakes up, the USB software
re-enumerates the USB and appropriate drivers are loaded for any USB devices
found on the bus.

FinalizeProc Function 4

The Mac OS USB software calls the finalizeProc function just before unloading
the driver. This function is not called if any of the validate or initialize procs
have retuned an error. The prototype for the finalizeProc function is

OSStatus USBDFinalizeProcPtr(
USBDeviceRef device,
USBDeviceDescriptorPtr pDesc);

A kNotifyDriverBeingRemoved notification is sent prior to the finalizeProc
actually being called. When this notification is received by the driver’s
notificationProc function, it is the last chance a driver has to run any cleanup
or user notification code before being unloaded.

The finalizeProc function is called at system task time and is called
synchronously. When the finalizeProc function returns, the class driver may be
unloaded from memory. A crash can occur if the finalizeProc function is called
while the driver has USB calls pending completion. The crash occurs because
immediately after returning from the finalizeProc function, the class driver is
unloaded from memory and any outstanding completion procs may become
invalid. To protect against this problem and get additional details about the use
of the notificationProc function, refer to the section on “Handling Hot
Unplugging, Dealing With Notifications”

Handling Hot Unplugging, Dealing With Notifications 4

A class driver module must be designed to handle a “hot unplug” situation, in
which the client process still has the class driver open. When the Mac OS USB
software detects that a device has been unplugged, but before the driver
finalizeProc is called, the Mac OS USB software calls at system task time, the
notificationProc that was registered in the driver’s
USBClassDriverPluginDispatchTable. The notificationProc is sent the
kNotifyDriverBeingRemoved message. If the driver still has a client connection to
maintain, then it can return the kUSBDeviceBusy result. By returning the

C H A P T E R 4

Writing Mac OS USB Drivers

72 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBDeviceBusy result, the Mac OS USB software holds off calling the driver’s
finalizeProc function. The Mac OS USB software then periodically calls the
notificationProc with the kNotifyDriverBeingRemoved message until the
kUSBNoErr result is returned. Once the kUSBNoErr returns, the driver’s
finalizeProc is called, after which the driver code fragment is unloaded from
memory.

Using the mechanism described above provides a means to protect your driver
from being unloaded after the device has been removed by a hot unplug. By
continuing to return the kUSBDeviceBusy result, you can hold off execution of the
finalizeProc. Note that any calls into the USL to your device, will fail.

This raises the issue as to what happens to pending calls, when the device is
unplugged. These calls may complete with error kUSBNotRespondingError, or
they may be aborted by the pipe closure process with error kUSBAbortedError.
Note that the class driver should never retry an unexpected kUSBAbortedError in
the completion routine. The order of these errors or notifications is not
guaranteed. They may occur after the notificationProc function is called with
the kNotifyDriverBeingRemoved notification message. If this event occurs, then
make the USBAbortPipeByReference function call for each pipe with active
transactions. The notificationProc must wait until all of the transactions have
completed, before returning kUSBNoErr in response to the
KNotifyDriverBeingRemoved message. If the kUSBNoErr response is returned with
pending transactions incomplete, then the driver’s finalizeProc is called, the
class driver is unloaded, and the system crashes when the completion routine
for the transaction finally completes (for example, with a kUSBAbortedError
status) at some point later on.

Communicating With Client Processes 4

To this point, the discussion in this chapter has been about how a Mac OS USB
driver communicates with a USB device. Ultimately, there must be
communication that takes place between the USB class driver and the Mac OS
applications and processes. While there are specific guidelines for how USB
drivers and devices communicate with each other, there is no official API for
how client processes communicate with USB drivers. This section discusses
different strategies for facilitating these communications.

C H A P T E R 4

Writing Mac OS USB Drivers

Communicating With Client Processes 73
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The Disappearing Driver 4

The USB class driver is designed to be loaded and present to support an
attached USB device. When the device is detached, the class driver is unloaded
from memory. This makes the USB class driver model unsuitable for client
processes that are not prepared to deal with a disappearing driver.

Common Ground and The Compatibility Shim 4

For most device I/O, a device driver is implemented to present a standard I/O
API to client processes. For serial communications and disk storage devices, this
may mean that a DRVR/NDRV style resource is loaded into memory with a
corresponding unit entry in the device table. Keyboards, mice, and graphics
tablets typically register a driver with the Cursor Device Manager. A digital
camera implements a video digitizer (also known as a vdig). A printer requires
a print chooser device. The key thing to understand is how existing non-USB
devices, which are similar to your USB device, currently communicate with
Mac OS clients. Once you understand how the non-USB device model works,
you then develop a similar type of device driver, one that presents a familiar
API to the client process, but also knows how to communicate with the USB
class driver. For purposes of this discussion, this modified driver is called a
compatibility shim.

Where To Implement a Compatibility Shim 4

It’s important to understand that the compatibility shim cannot be
implemented within the class driver. As mentioned previously, if a device is
unplugged suddenly, the class driver is called via it’s finalizeProc function.
Upon completion of the finalizeProc, the shared library driver code may be
unloaded from memory. If the compatibility shim is included in the class driver,
then the shim code also disappears.

In addition, with Mac OS X, it’s important to isolate those portions of code that
require change. This is especially true of the compatibility shim, which may
require an API under the current OS that may not be supported in the future.
For this reason, Apple advises that you not implement the compatibility shim
within your class driver code.

C H A P T E R 4

Writing Mac OS USB Drivers

74 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Designing A Compatibility Shim 4

In considering the design of a compatibility shim, you should be familiar with
the method by which application processes communicate with similar non-USB
devices. In many cases, the compatibility shim should be thought of as a
resident process that client processes can easily find. When the client process
opens the compatibility shim, the shim determines whether the USB device is
attached and initiates communications with the class driver. The class driver
knows about making calls to the USB device. The compatibility shim knows
about communicating with the Mac OS services.

Note
If you are designing a DRVR style driver, you may find the
TradDriverLoadLibrary code invaluable. This code is
available on the Developer CD, Tool Chest volume. The
Developer CD also includes a RAMDisk sample that
demonstrates an implementation of a working DRVR
resource.

At some point, the compatibility shim finds the class driver, and implements
communications between the class driver, the Mac OS, and finally the user. A
discussion of the means by which the compatibility shim code can detect the
presence of the class driver is provided in “Detecting USB Device Presence”
(page 4-83).

One method for facilitating communication between the Mac OS and the device
is for the class driver to export a dispatch table. The
USBClassDriverPluginDispatchTable is an example of this mechanism. The USB
Manager imports the USBClassDriverPluginDispatchTable and calls the
functions defined in the dispatch table as necessary. Your class driver could
define such a dispatch table and export the dispatch table symbol. The
compatibility shim, would use the FindSym call to obtain the address of the
dispatch table, then make calls to the functions that are defined in the dispatch
table as appropriate.

For some USB devices, there is no standard mechanism for communications
with client processes. It is possible for an application to do exactly what the
compatibility shim does. If an application does communicate directly with the
USB class driver, an important consideration concerns the hot-unplug situation.
The application must be ready to handle this situation, just as the compatibility
shim must be designed to do so also. The application should also provide
support for multiple devices and dynamically allow them to be used without
requiring the user to quit and relaunch the application.

C H A P T E R 4

Writing Mac OS USB Drivers

Communicating With Client Processes 75
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Helpful Resources For Compatibility Shim Development 4

This section points you to sample code which you may find helpful in
designing compatibility shim code.

For many compatibility shims, a 68K DRVR code resource may prove useful to
implement. While this is legacy code and is not supported under Mac OS X, it is
the required mechanism for device Input/Output for many client processes.

For a USB Communications Class devices, the compatibility shim must provide
a 68K driver and also register the DRVR with the Communications Toolbox
(CRM) Comm Resource Manager. This allows the USB Communications device
to be recognized by all CRM aware applications. For more information on the
68K DRVR mechanism, refer to Inside Macintosh: Devices. A description of the
standard process by which Mac OS applications find and open serial devices, is
presented in Tech Note 1119, Serial Port Apocrypha.

For a sample of implementing a 68K 'DRVR' code resource, there is the
RAMDisk v1.45 code sample. This sample is also useful in demonstrating how
to set up a Metrowerks CodeWarrior project to create a DRVR code resource.
The sample code demonstrates the use of the TradDriverLoaderLib code that
facilitates the installation of all DRVR code resources into the Device Manager
Device Unit Table.

For Video Input Devices, such as a USB camera, the standard mechanism for
processing data from hardware, is the Video Digitizer. You can learn more
Video Digitizers in Inside Macintosh: QuickTime Components, available from
the QuickTime Developer Documentation Web Page.

For Networking Devices, such as an Ethernet/USB convertor, an Open
Transport DLPI Driver must be implemented. As sample Loopback DLPI driver
is provided as part of the Open Transport SDK. You can obtain the latest Open
Transport SDK from the Apple Developer Open Transport Web Page.

For Print class devices, a compatibility shim would provide a Chooser Printer
Driver. An example Chooser Printer Driver is provided with the USB DDK, in
the Examples folder.

Communicating with the Human Interface Device Driver 4

For HID (Human Interface Devices), there can be a number of different shims
such as the Input Sprocket (used by many games to handle a wide range of
controllers). The shims communicate with the HID driver through a dispatch
table. Originally, versions of the HID class driver provided by the USB DDK

C H A P T E R 4

Writing Mac OS USB Drivers

76 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

contained TheHIDModuleDispatchTable. Starting with version 1.3.7 of the USB
software, a more flexible dispatch table, TheHIDDeviceDispatchTable, has been
used. For backward compatibility, the HID class driver provides both dispatch
tables. However, to insure your software works with future USB HID devices,
the new TheHIDDeviceDispatchTable should be used.

The HIDDeviceDispatchTable Structure 4

The HIDDeviceDispatchTable is defined as follows:

struct HIDDeviceDispatchTable {
UInt32 dispatchTableCurrentVersion;
UInt32 dispatchTableOldestVersion;
UInt32 vendorID;
UInt32 vendorSpecific;
UInt32 reserved;
HIDGetDeviceInfoProcPtr pHIDGetDeviceInfo;
HIDGetHIDDescriptorProcPtr pHIDGetHIDDescriptor;
HIDOpenDeviceProcPtr pHIDOpenDevice;
HIDCloseDeviceProcPtr pHIDCloseDevice;
HIDInstallReportHandlerProcPtr pHIDInstallReportHandler;
HIDRemoveReportHandlerProcPtr pHIDRemoveReportHandler;
HIDCallPreviousReportHandlerProcPtr pHIDCallPreviousReportHandler;
HIDGetReportProcPtr pHIDGetReport;
HIDSetReportProcPtr pHIDSetReport;
HIDControlDeviceProcPtr pHIDControlDevice;

};

The dispatchTableCurrentVersion field identifies which version of driver this
dispatch table supports. The normal value to assign here is
kHIDCurrentDispatchTableVersion. As of USB DDK 1.4, the HID class driver has
implemented pHIDGetReport and pHIDSetReport, which bumped its version to 2.

The dispatchTableOldestVersion field is set to the version of the oldest built
client using this API that this HID device driver works with. The normal value
to assign here is kHIDOldestCompatableDispatchTableVersion. While new
functions were added for version 2, the structure of the dispatch table remains
the same as version 1, so that is the value of
kHIDOldestCompatableDispatchTableVersion provided with USB DDK 1.4.

C H A P T E R 4

Writing Mac OS USB Drivers

Communicating With Client Processes 77
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The vendorID field identifies who wrote this HID device driver. Valid data here
would be a high word of 0 and the low word would contain the USB vendorID.

The vendorSpecific field is a way to pass specific flags or selectors to a driver
that is not required by generic HID drivers, such as the HID class driver.

The HIDGetDeviceInfoProcPtr is used to get specific information about a HID
device. The prototype for this function is defined as follows:

OSStatus HIDGetDeviceInfoProcPtr (
UInt32 inInfoSelector,
void * outInfo
UInt32 * ioSize);

The selectors for the type of information that can be gotten from the device are:

kHIDGetInfo_VendorID

kHIDGetInfo_ProductID

kHIDGetInfo_VersionNumber

kHIDGetInfo_MaxReportSize

kHIDGetInfo_GetManufacturerString

kHIDGetInfo_GetProductString

kHIDGetInfo_GetSerialNumberString

kHIDGetInfo_GetIndexedString

The HIDGetHIDDescriptorProcPtr is used to get the HID descriptor in its native,
unparsed form from the device. This descriptor must be used by the HID
Library to interpret reports issued by the HID class driver. To get the HID
descriptor, the caller must specify the inDescriptorType to be kUSBReportDesc
and index of 0. The caller also allocates the buffer for the HID descriptor.
Calling this with a buffer size of 0 returns the required size in the ioBufferSize
variable. The prototype for this function is defined as follows:

OSStatus HIDGetHIDDescriptorProcPtr (
UInt32 inDescriptorType,
UInt32 inDescriptorIndex,
void * outDescriptor
UInt32 * ioBufferSize);

C H A P T E R 4

Writing Mac OS USB Drivers

78 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The HIDOpenDeviceProcPtr is used to open a HID device before the HID Library
can use it. The prototype for this function is defined as follows:

OSStatus HIDOpenDeviceProcPtr (
HIDDeviceConnectionRef outConnectionRef,
UInt32 permissions,
UInt32 reserved);

The HIDOpenDeviceProcPtr must also specify what type of access the shim wants
of the HID device in the permissions parameter. Possible permissions are:

kHIDPerm_ReadOnly

kHIDPerm_ReadWriteShared

kHIDPerm_ReadWriteExclusive

The HIDCloseDeviceProcPtr is used to close the HID device when the HID
Library has finished using it. The prototype for this function is defined as
follows:

OSStatus HIDCloseDeviceProcPtr (
HIDDeviceConnectionRef inConnectionRef);

IMPORTANT

The dispatch table entries that follow rely upon a report
handler. This report handler is a user provided function to
be called when a HID report is received. When a report is
passed in, the HID driver manages the memory provided
for the report. The report handler is of type
HIDReportHandlerProcPtr and is defined as follows:

void HIDReportHandlerProcPtr (
void * inHIDReport,
UInt32 inHIDReportLength,
UInt32 inRefcon);

The HIDInstallReportHandlerProcPtr is used to install a HID report handler.
When installed, a report handler is called at deferred task time, unless
kHIDFlag_CallbackIsResident is passed. Whenever an interrupt packet is

C H A P T E R 4

Writing Mac OS USB Drivers

Communicating With Client Processes 79
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

received on the first interrupt in pipe, the supplied refcon is also passed
through. The prototype for this function is defined as follows:

OSStatus HIDInstallReportHandlerProcPtr (
HIDDeviceConnectionRef inConnectionRef,
UInt32 flags,
HIDReportHandlerProcPtr inReportHandlerProc,
UInt32 inRefcon);

The HIDRemoveReportHandlerProcPtr is used to remove a report handler when it
is no longer needed. When the current report handler is removed, any
previously installed report handler that is still valid is restored to handle the
HID reports. The prototype for this function is defined as follows:

OSStatus HIDRemoveReportHandlerProcPtr (
HIDDeviceConnectionRef inConnectionRef);

The HIDCallPreviousReportHandlerProcPtr can be used within your report
handler. If there was a HIDReportHandler installed previous to the one from this
connection, use this proc ptr to pass the report on to that previous handler. The
prototype for this function is defined as follows:

OSStatus HIDCallPreviousReportHandlerProcPtr (
HIDDeviceConnectionRef inConnectionRef,
void * inHIDReport,
UInt32 inHIDReportLength);

The HIDGetReportProcPtr is used to get a report of type input, output, or feature,
directly to a HID device. The HID class driver buffers the information and
returns immediately to the caller. Then at a safe time, the driver passes this
command on to the device. In the event that the command buffers are full,
HIDGetReportProcPtr returns memFullErr and you will have to reissue the
command at a later time. When HID driver finally gets the information from the
device, the report is returned directly to the HIDReportHandlerProcPtr. The
HIDGetReportProcPtr was not available until version 2 of the dispatch table and
was listed as reserved in version 1. The HID class driver did not publicly
implement this function until USB DDK 1.4. Therefore, check for a nil value

C H A P T E R 4

Writing Mac OS USB Drivers

80 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

before dispatching through this proc pointer. The prototype for this function is
defined as follows:

OSStatus HIDGetReportProcPtr (
HIDDeviceConnectionRef inConnectionRef,
UInt32 inReportType,
UInt32 inReportID,
HIDReportHandlerProcPtr inReportHandlerProc,
UInt32 inRefcon);

The HIDSetReportProcPtr is used to send a report of type input, output, or
feature, directly to a HID device. Before calling this function, the calling routine
must allocate memory for the report and use the HID Library functions,
documented in chapter 7, to encode the values. The HID class driver copies the
required information, so this memory can be deallocated upon return from this
call. This proc pointer was not available until version 2 of the dispatch table and
was listed as reserved in version 1. The HID class driver did not publicly
implement this function until USB DDK 1.4. Therefore check for a nil value
before dispatching through this proc pointer. Note that when this call
completes, there may be no notification to the calling code that this set report
has succeeded. It may be necessary to later call HIDGetReportProcPtr to get
confirmation. The prototype for HIDSetReportProcPtr is defined as follows:

OSStatus HIDSetReportProcPtr (
HIDDeviceConnectionRef inConnectionRef,
UInt32 inReportType,
UInt32 inReportID,
void * inInfo,
ByteCount inSize);

The HIDControlDeviceProcPtr is used to send miscellaneous control messages to
the device. The prototype for this function is defined as follows:

OSStatus HIDControlDeviceProcPtr (
HIDDeviceConnectionRef inConnectionRef,
UInt32 inControlSelector,
void * ioControlData);

The only selector currently available for the inControlSelector parameter is:

KHIDVendorSpecificControlStart

C H A P T E R 4

Writing Mac OS USB Drivers

Communicating With Client Processes 81
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBHIDModuleDispatchTable Structure 4

This section provides an example of how a cursor device shim and an ADB
shim communicate with a class driver.

Note
The information provided in this section describes an early
version of the HID dispatch table, and is documented here
for backward compatibility. The information is still valid
with respect to shim and driver communication. However,
while the HIDDeviceDispatchTable documented above is
similar to the USBHIDModuleDispatchTable documented here,
the newer HIDDeviceDispatchTable differs in that it allows
much more flexibility in requesting reports, getting all the
data the device is capable of supplying, and sending
reports to the device. If your device is a HID device, it is
suggested you write a client for the HID class driver using
the HIDDeviceDispatchTable and the HID Library APIs
documented in Chapter 7, “HID Library Reference.”

The dispatch table is the USBHIDModuleDispatchTable and is defined as follows:

struct USBHIDModuleDispatchTable {
UInt32 hidDispatchVersion;
USBHIDInstallInterruptProcPtr pUSBHIDInstallInterrupt;
USBHIDPollDeviceProcPtr pUSBHIDPollDevice;
USBHIDControlDeviceProcPtr pUSBHIDControlDevice;
USBHIDGetDeviceInfoProcPtr pUSBHIDGetDeviceInfo;
USBHIDEnterPolledModeProcPtr pUSBHIDEnterPolledMode;
USBHIDExitPolledModeProcPtr pUSBHIDExitPolledMode;

};

The USBHIDInstallInterruptProcPtr is used to install the interrupt routine that
is called to process incoming data. The prototype for this function is defined as
follows:

OSStatus USBHIDInstallInterruptProcPtr(
HIDInterruptProcPtr HIDInterruptFunction,
UInt32 refcon);

When the class driver is called via this dispatch proc pointer, the class driver
must save the HIDInterruptProcPtr and the refcon. When incoming data has

C H A P T E R 4

Writing Mac OS USB Drivers

82 Communicating With Client Processes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

been received, call the registered HIDInterruptProcPtr passing the saved refcon
value as the first parameter, and the appropriate data structure pointer, as the
second parameter. For keyboard devices, this is the USBKeyboardData structure.
For mouse devices, this is the USBMouseData structure. The prototype for the
HIDInterruptProcPtr function is defined as follows

void HIDInterruptProcPtr(UInt32 refcon, void *theData);

The USBHIDPollDeviceProcPtr is used to ?????

The USBHIDControlDeviceProcPtr is used to have the device perform device
specific functions. The prototype for this function is defined as follows:

OSStatus USBHIDControlDeviceProcPtr(
UInt32 theControlSelector,
void *theControlData);

The selector values which can be passed depend on the type of device. For
mouse type HID devices, the selector values that can be expected are as follows

kHIDRemoveInterruptHandler - clear out the ShimInterruptHandler, as well as the
associated refcon and save interrupt handler

kHIDEnableDemoMode - save the current interrupt handler, set up a Cursor Device
Manager device, and install a data processing routine similar to the USBMouseIn
routine from the file HIDEmulation.c from the Mouse Module example class
driver. Refer to the USB DDK for this example.

kHIDDisableDemoMode - this call is made following a control call to
kHIDEnableDemoMode. Dispose of the current Cursor Device Manager structure
and replace the interrupt handler with the saved interrupt handler.

For keyboard type HID devices, the selector values that can be expected are as
follows:

kHIDSetLEDStateByBits - command issued to device to set state of the keyboard
LEDs. Refer to the KBDHIDEmulation.c file in the DDK for code that shows
how this call should be handled.

kHIDRemoveInterruptHandler - clear out the current interrupt handler along with
the refcon and any saved interrupt handler information.

kHIDEnableDemoMode - save the current interrupt routine and replace it with a
version like the USBDemoKeyIn code. This routine is

The USBHIDGetDeviceInfoProcPtr is used to (to be completed later)

C H A P T E R 4

Writing Mac OS USB Drivers

Detecting USB Device Presence 83
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBHIDEnterPolledModeProcPtr is used to (to be completed later)

The USBHIDExitPolledModeProcPtr is used to (to be completed later)

Detecting USB Device Presence 4

There are two different means for finding a USB device.

■ Use the USBGetNextDeviceByClass call to check for the immediate presence of
a device and locate its class driver.

■ Use the USBInstallDeviceNotification mechanism to be alerted when a
device or interface is added or removed.

Use the USBGetNextDeviceByClass call to determine the presence of a device.
This call returns the CFragConnectionID associated with the class driver. Use the
CfragConnectionID with the FindSym call to obtain the address of an exported
symbol, for example the address to a proc pointer dispatch table. When making
the USBGetNextDeviceByClass, you want to set the input USBDeviceRef parameter
to kNoDeviceRef so that it finds the first instance of a device. Leave the
usbDeviceRef value set to the last found device to find all devices of this device.

Listing 4-1 is an example of using the USBGetNextDeviceByClass function to look
for a keyboard device. If the keyboard is found, the sample looks for the
TheUSBHIDModuleDispatchTable export symbol. All HID class drivers are
required to export a dispatch table symbol. In the case of older HID drivers, the
symbol is TheUSBHIDModuleDispatchTable, current implementation should export
the symbol TheHIDDeviceDispatchTable, which is documented in Chapter 7,
“HID Library Reference.” See “The USBHIDModuleDispatchTable Structure”
for additional information about the contents of the USBHIDModuleDispatchTable
used in this discussion.

Listing 4-1 Detecting a keyboard device

UInt16 deviceClass = 0x0003;
UInt16 deviceSubClass = 0x0001;
UInt16 keyboardDeviceProtocol = 0x0001;

CFragConnectionID keyboardConnID = kUSBNoDeviceRef;
CFragSymbolClass symClass;

C H A P T E R 4

Writing Mac OS USB Drivers

84 Detecting USB Device Presence

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

THz currentZone;
currentZone = GetZone ();
SetZone (SystemZone ()); /* Class drivers are always loaded in the System Zone */

while (USBGetNextDeviceByClass(&keyboardConnID, deviceClass,
deviceSubClass, keyboardDeviceProtocol))

{
status = FindSymbol (keyboardConnID, "\pTheUSBHIDModuleDispatchTable",

(Ptr *)&pTheKeyboardDispatchTable, &symClass);
}
SetZone (currentZone);

The significance of the sample in Listing 4-1, is that it demonstrates a way for
the compatibility shim code to find a procedure pointer table defined by the
class driver. This mechanism also demonstrates a limitation for writing
universal handlers in that all other devices of the same type would need to
implement the exact same procedure pointer tables and functionality.

For compatibility shims that need to handle hot plug-in device connections,
there is a mechanism for notification of AddDevice, AddInterface, RemoveDevice,
and RemoveInterface events. Use the USBInstallDeviceNotification function to
install a notification handler.

The sample code in Listing 4-2 demonstrates the use of the
USBInstallDeviceNotification call. Note that the sample is designed to have the
notification routine called whenever any USB device is plugged in or
unplugged from the USB chain.

Listing 4-2 Using the USBInstallDeviceNotification function

pb.usbDeviceNotification = -1; // tell me about everything
pb.usbClass = kUSBHIDInterfaceClass; // want to know about HID class devices
pb.usbSubClass = kUSBAnySubClass; // tell me about all sublclass devices
pb.usbProtocol = -1; // don't care about the protocol used by device
pb.usbVendor = -1; // allow any vendors keyboard notification
pb.usbProduct = -1; // allow any product ID notification
pb.result = noErr;
pb.callback = (USBDeviceNotificationCallbackProcPtr)&myNotificationCallback;
pb.refcon = nil;

USBInstallDeviceNotification (&pb);

C H A P T E R 4

Writing Mac OS USB Drivers

Detecting USB Device Presence 85
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

For the notification sample described above, the notification proc might be as
shown below.

OSStatus ShimOpenDriver(USBDeviceRef theDevRef)
{

OSStatus theErr = 0;
CFragSymbolClass symClass;
CFragConnectionID connID;
THz currentZone;

theDevRef = 0;
currentZone = GetZone(); // save the current zone setting to restore to later
SetZone (SystemZone ()); // set the current zone to the system zone

// look for the desired device
theErr = USBGetNextDeviceByClass(&theDevRef, &connID,

kUSBInterestingClass, 0, 0);
SetZone (currentZone); // restore the zone

if (theErr == noErr)
{

SetZone(SystemZone()); // set the current zone to the system zone
// find the desired exported symbol

theErr = FindSymbol(connID, "\pTheUSBHIDModuleDispatchTable",
(Ptr *)&pTheDispatchTable, &symClass);

SetZone (currentZone); // restore the zone
}
return theErr;

}

void myNotificationCallback(USBDeviceNotificationParameterBlock *pb)
{

switch(pb->usbDeviceNotification) // why were we notified?
{

case kNotifyAddInterface: // because a HID device appeared
ShimOpenDriver(pb->usbDeviceRef);
break;

case kNotifyRemoveInterface: // because a HID device disappeared
break;

C H A P T E R 4

Writing Mac OS USB Drivers

86 Mac OS USB Compatibility With Mac OS Toolbox Calls

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

default:
break;

}
}

The format of the exported symbol TheUSBHIDModuleDispatchTable referred to in
the sample code above would be specific for use between the shim and class
driver. Some elements of the dispatch table might include a notification proc
pointer, and other proc pointers to handle read, write, control, status, and killio
requests from the client.

Mac OS USB Compatibility With Mac OS Toolbox Calls 4

The use of Mac OS Toolbox calls is discouraged from within a USB class driver,
however, there are cases when the Toolbox calls can be made. Carefully
consider whether a Toolbox call is really required within the class driver, as
opposed to implementing the functionality within the compatibility shim. There
are cases where the use of Toolbox calls make sense to handle concerns that USB
Manager may not be able to handle.

It is important to understand that the class driver typically operates at
secondary interrupt time, under interrupt conditions. Many of the Toolbox calls
cannot be made in an interrupt context. The exception to this guideline is that
the intializeProc and the finalizeProc are called at system task time.

With regard to memory allocation, the use of USL function USBAllocMem is
preferred over the NewPtrSys call. The USBAllocMem call is designed to use an
appropriate memory allocation method for the system software releases. The
NewPtrSys call may be supported under the current implementation of USB, but
it may not be in the future. Note that one can make the NewPtrSys call during the
intializeProc.

To handle preferences, the preferred solution is to have the compatibility shim
access the Resource Manager, then tell the class driver to implement the setting
via the ControlProc. The ControlProc would be a proc imported to the
compatibility shim as described above.

The 1.2 and earlier releases of Mac OS USB do not provide timeout support for
USB calls. Where this is a requirement, the class driver could implement a
watchdog Time Manager task, to check if a USB call has completed in a

C H A P T E R 4

Writing Mac OS USB Drivers

Mac OS USB Compatibility With Mac OS Toolbox Calls 87
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

specified period of time. Examples of using the Time Manager can be found in
“Inside Macintosh: Processes,” Chapter 3, Time Manager.

Driver clients, such as compatibility shims, must also register with the USB
Manager to receive notifications. A client registers with the USB Manager by
calling the USBInstallDeviceNotification function, described in Chapter 6,
“Callback Routine for Device Notification.”

The client notification messages are:

kNotifyAddDevice - USB device driver has been loaded

kNotifyRemoveDevice - USB device driver is about to be removed. After this
message is processed, the finalizeProc for the device is called.

kNotifyAddInterface - USB interface driver has been loaded

kRemoveInterface - USB device driver that was loaded as an interface driver, is
about to be removed. After this message is processed, the finalizeProc for the
interface is called.

C H A P T E R 4

Writing Mac OS USB Drivers

88 Mac OS USB Compatibility With Mac OS Toolbox Calls

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

89
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 5

USB Services Library Reference 5Figure 5-0
Listing 5-0
Table 5-0

C H A P T E R 5

USB Services Library Reference

90 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This chapter describes the APIs in the Mac OS USB Services Library that
support software development of USB class drivers. This chapter does not
provide any tutorial material designed to teach programming on the Macintosh
platform. For information about how to program the Macintosh computer, see
the documentation listed in “Supplemental Reference Documents” (page -15).

The Mac OS USB DDK provides source code for building examples of USB class
drivers. The driver sources illustrate how to use the USL for USB class driver
development. The USB.h file contains the current application programming
interfaces to the USL. Future class driver compatibility requires adhering to the
interfaces defined in the USL libraries.

The Mac OS USB DDK ReadMe file in the Mac OS USB DDK folder provides
the instructions for setting up your Macintosh development system and target
environments.

Mac OS USB Compatibility Notes file contains information about ADB, serial
port, and USB gaming device compatibility and software support issues.

The Mac OS USB DDK and other valuable resources for developers can be
found at:

http://developer.apple.com/dev/usb/devinfo.htm

Note
The hub specific functions have been removed from this
draft. Apple strongly recommends that developers of
standard USB hub devices utilize the hub driver provided
in the Mac OS USB software. The Mac OS hub driver
supports hub devices that adhere to the version 1.0 and 1.1
USB specifications for standard hub devices. If you have a
hub that you need to write a vendor specific device driver
for, contact Apple Developer Technical Support at
dts@apple.com and copy usb@apple.com.

USB Services Library (USL) 5

The USB Services Library is the programming interface that USB device drivers
use to communicate with the USB on a Macintosh computer. The USL provides
all of the control and status functions necessary to find a device with the
appropriate interface, open an interface to the device, open the device,

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 91
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

instantiate the appropriate pipe connections, determine device status, and
perform read and write transactions with the device.

This section includes:

■ a definition of the standard error reporting mechanism implemented by the
USL

■ a discussion of the concept of a USB reference used for the various device
types found on the USB

■ the USB parameter block used by the majority of USL functions

■ guidelines for working in the asynchronous USL environment

Later sections define the functions provided in the USL, list the constants and
common data structures, and finally provide a table of the errors returned
through the USL.

Errors And Error Reporting Conventions 5

The USB software uses a “return errors, set references” convention. In this
convention, all APIs return a common OSStatus type. PipeRef, DeviceRef,
InterfaceRef, and endpointRef reference numbers are all in a field of the
parameter block passed to the function. No reference variables do double duty.
That is, they do not report both error codes and reference numbers (refnums).

Error codes returned by the USL are in the range -6900 to -6999 and are listed in
“USL Error Codes” (page 5-171).

The following discussion deals with common causes of errors returned by the
USL

Device Access Errors 5

Any function that accesses a device may give one of the transfer errors. Transfer
errors generally cause a pipe stall on non-default pipes. See text following the
error list for exceptions. The transfer errors are in the range -6901 through -6915
as follows:

kUSBCRCErr -6915 Bad CRC
kUSBBitstufErr -6914 Bitstuffing
kUSBDataToggleErr -6913 Bad data toggle
kUSBEndpointStallErr -6912 Device didn't understand
kUSBNotRespondingErr -6911 No device, device hung
kUSBPIDCheckErr -6910 PID CRC error

C H A P T E R 5

USB Services Library Reference

92 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The kUSBNotRespondingError most often occurs when a device is unplugged. A
driver should prepare to be deleted, if it gets this error. This error may occur
when a device is hung, or when a bus error occurs.

The pipe is not stalled when a kUSBNotSent2Err is received if the number of any
of the frames indicated in the frame list of an isochronous transfer have expired.

A kUSBUnderRun error does not stall the pipe on isochronous transactions. For
example, the frame list that is constructed for audio input sets the request size
to the maximum frame size that can be expected. Most frames return a request
count that matches the unadjusted size with an occasional frame returning the
adjusted size to make up for the fractional portion of the sample rate, for
example, the point 1 in 44.1 kHz. All of the non-adjusted frames are less than
the request size and result in an underrun error. This does not stall the pipe and
requires no corrective action by the driver.

Errors on the USB Bus 5

Errors on the USB bus occur when a device is behaving erratically or there are
bad cables or connectors. USB bus errors include:

The USB bus errors are uncommon and should rarely be seen.

kUSBWrongPIDErr -6909 Bad or wrong PID
kUSBOverRunErr -6908 Packet too large or more data than

allocated buffer
kUSBUnderRunErr -6907 Less data than buffer, this error does

not stall the pipe on isochronous
transactions

kUSBBufOvrRunErr -6904 Host hardware failure on data in, PCI
busy?

kUSBBufUnderRunErr -6903 Host hardware failure on data out,
PCI busy?

kUSBNotSent1Err -6902 Transaction not sent
kUSBNotSent2Err -6901 Transaction not sent, this error does

not stall the pipe on isochronous
transfers

kUSBCRCErr -6915 Bad CRC
kUSBBitsufErr -6914 Bitstuffing
kUSBDataToggleErr -6913 Bad data toggle
kUSBPIDCheckErr -6910 PID CRC error
kUSBWrongPIDErr -6909 Bad or wrong PID

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 93
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Incorrect Command Errors 5

When a device receives an incorrect command or a command it cannot comply
with, it stalls the pipe and returns a kUSBEndpointStallErr.

Driver Logic Errors 5

The kUSBOverRunErr and kUSBUnderRunErr are usually caused by logic errors in
the driver. In most cases, the driver and the device are not in agreement as to
how much data is to be transferred.

An over run error occurs most often when a buffer is not an exact multiple of
the maximum packet size (maxPacketSize), and the controller determines that
the last packet will overflow the end of the buffer. This also occurs if a packet is
sent that is larger than the maximum packet size. This is often a protocol error
and the sign of a bad device.

In version 1.0 of the USB Services Library software, this error can occur if the
transfer buffer is not aligned to the maximum packet size of the endpoint. This
problem has been addressed in version 1.1 and later of the Mac OS USB
software.

Under run errors occur when a packet shorter that the maximum packet size is
received. It is the pipe policy to treat this situation as an error. Underrun errors
are usually not generated. Currently, short packets always cause a normal
completion.

PCI Bus Busy Errors 5

Errors may be generated if the PCI bus is busy for extended periods of time.
These errors include kUSBBufOverRunErr and kUSBBufUnderRunErr.

USB References 5

All references to the USB are made on the basis of a USB reference. The USB
references are of type USBReference. USBDeviceRef, USBInterfaceRef, USBPipeRef,
and USBEndPointRef are USB references that you pass into or obtain from the
USL functions. The USB reference is an opaque reference maintained by the
USB Services Library.

A device reference is obtained when the class or interface driver is initialized,
since it is passed as a parameter to the initialization procedure. The USB
reference for a particular USB device can be found in the device entry in the

C H A P T E R 5

USB Services Library Reference

94 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Name Registry and vice-versa by calling the USB Manager. See “Topology
Database Access Functions” (page 6-177) for a description of the functions
available for obtaining information about USB devices.

The USBPB Parameter Block 5

The majority of calls to the USL are made with a parameter block of type
USBPB. The USBPB parameter block contains all the necessary parameters to
facilitate host communication with the device interface or device interface
communication with the USB. The parameter block also includes a pointer to a
callback completion routine for support of asynchronous calls.

There are currently two versions of the USBPB parameter block, the version 1.0
parameter block (kUSBCurrentPBVersion), and the version 1.1 parameter block
(kUSBIsocPBVersion) that supports isochronous transfers. Version 1.1 and later of
the Mac OS USB software accepts function calls made with both parameter
blocks. For information about converting code that was dependent on the
version 1.0 parameter block to use the 1.1 USBPB, see “Code Changes Required
To Support The Version 1.1 USBPB” (page A-226).

Parameters for the USBPB parameter block that are not specified as required in
the USL function descriptions are ignored by the USL. Parameters that are not
specified as output values are not altered, except for the Reserved, usbWValue,
and usbWIndex fields.

The types associated with the version USBPB parameter block structure are
defined as follows:

typedef SInt32 USBReference;
typedef USBReference USBDeviceRef;
typedef USBReference USBInterfaceRef;
typedef USBReference USBPipeRef;
typedef USBReference USBBusRef;
typedef UInt32 USBPipeState;
typedef UInt32 USBCount;
typedef UInt32 USBFlags;
typedef UInt8 USBRequest;
typedef UInt8 USBDirection;
typedef UInt8 USBRecipient;
typedef UInt8 USBRqType;
typedef UInt16 USBRqIndex;
typedef UInt16 USBRqValue;

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 95
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

typedef void (*USBCompletion)(USBPB *pb);

The isochronous version 1.1 USBPB structure is defined as:

struct USBIsocFrame {
OSStatus frStatus; /* Frame status information */
UInt16 frReqCount; /* Bytes to transfer */
UInt16 frActCount; /* Actual bytes transferred */

};

struct usbIsocBits {
USBIsocFrame *FrameList;
UInt32 NumFrames;

};

struct usbHubBits {
UInt32 Request;
UInt32 Spare;

};

struct usbControlBits {
UInt8 BMRequestType; /* For control transactions */
UInt8 BRequest; /* Specific control request */
USBRqValue WValue; /* For control transactions, the */

/* value field of the setup packet */
USBRqIndex WIndex; /* For control transactions, the */

/* value field of the setup packet */
UInt16 reserved4; /* Reserved */

};

struct USBPB{

void* qlink;
UInt16 qType;
UInt16 pbLength; /* Length of parameter block */
UInt16 pbVersion; /* Parameter block version number */

/* kUSBIsocPBVersion = iscohronous */
/* version 1.1 USBPB */

UInt16 reserved1; /* Reserved */
UInt32 reserved2; /* Reserved */

C H A P T E R 5

USB Services Library Reference

96 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

OSStatus usbStatus; /* Completion status of the call */
USBCompletion usbCompletion; /* Completion routine */
UInt32 usbRefcon; /* For use by completion routine */
USBReference usbReference; /* Device, pipe, interface, or */

/* endpoint reference */

void* usbBuffer; /* Pointer to the data to be sent */
/* to or received from the device */

USBCount usbReqCount; /* Length of usbBuffer */
USBCount usbActCount; /* Number of bytes sent */

/* or received */
USBFlags usbFlags; /* Miscellaneous flags */

UInt32 usbFrame; /* Start frame of transfer */

union{
usbControlBits cntl; /* usbControlBits struct */

/* used for control transactions */
usbIsocBits isoc; /* usbIsocBits frames structure */
usbHubBits hub; /* usbHubBits struct */

}usb;

UInt8 usbClassType; /* Class for interfaces, */
/* transfer type for endpoints */

UInt8 usbSubclass; /* Subclass for interfaces */
UInt8 usbProtocol; /* Protocol for interfaces */
UInt8 usbOther; /* General purpose value */
UInt32 reserved6; /* Reserved */
UInt16 reserved7; /* Reserved */
UInt16 reserved8; /* Reserved */

}USBPB;

The older version 1.0 USBPB parameter block is defined as:

struct USBPB{

void* qlink;
UInt16 qType;
UInt16 pbLength; /* Length of parameter block */

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 97
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt16 pbVersion; /* Parameter block version number */
UInt16 reserved1; /* Reserved */
UInt32 reserved2; /* Reserved */

OSStatus usbStatus; /* Completion status of the call */
USBCompletion usbCompletion; /* Completion routine */
UInt32 usbRefcon; /* For use by the completion */

/* routine */
USBReference usbReference; /* Device, pipe, interface, */

/* endpoint reference */
/* as appropriate */

void* usbBuffer; /* Pointer to the data to be sent */
/* to or received from the device */

USBCount usbReqCount; /* Length of usbBuffer */
USBCount usbActCount; /* Number of bytes sent */

/* or received */
USBFlags usbFlags; /* Miscellaneous flags */

UInt8 usbBMRequestType; /* For control transactions, */
/* the bmRequestType field */

UInt8 usbBRequest; /* Specific control request */
USBRqValue usbWValue; /* For control transactions, the */

/* Value field of the setup packet */
USBRqIndex usbWIndex; /* For control transactions, the */

/* Index field of the setup packet */
UInt16 reserved4; /* Reserved */
UInt32 usbFrame; /* Reserved for future use */

UInt8 usbClassType; /* Class for interfaces, */
/* transfer type for endpoints */

UInt8 usbSubclass; /* Subclass for interfaces */
UInt8 usbProtocol; /* Protocol for interfaces */
UInt8 usbOther; /* General-purpose value */
UInt32 reserved6; /* Reserved */
UInt16 reserved7; /* Reserved */
UInt16 reserved8; /* Reserved */

}USBPB;

C H A P T E R 5

USB Services Library Reference

98 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

During asynchronous calls, before the callback, no fields in the parameter block
are valid other than the usbRefcon field. The usbRefcon field is never altered and
is free for use by class drivers.

The USBPB parameter block has to be at least the minimum size. The size can be
extended; the pbLength field should contain the extended size.

The current version of the parameter block is represented as a binary-coded
decimal number. For version 1.0 it is of the form 0x0100. It is subject to change
at any time. Use the constant kUSBCurrentPBVersion to make sure you have the
version of the parameter block described by the latest revision of this document.
The isochronous variant of the parameter block is version 1.1 or later
(kUSBIsocPBVersion).

The values passed in the usbBMRequestType field require a specific format, which
can be derived by using the USBMakeBMRequestType function (page 5-120).

Required USB Parameter Block Fields 5

All calls to the USL that require a USBPB parameter block must supply the these
fields:

pbLength Length of the USBPB parameter block, including any client
additions

pbVersion Version number of USBPB in binary-coded decimal,
currently 1.1, initialize to kUSBCurrentPBVersion or
kUSBIsocPBVersion for isochronous call support. See
“Changes In Mac OS USB Software” (page A-223) for
additional information about how it use the isochronous
variant of the USB parameter block.

usbCompletion Completion routine
usbRefcon For client use
usbFlags Unless otherwise specified in the function description,

should be set to 0
The listed fields may not explicitly be referenced in all the call descriptions in
this document, but they are required.

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 99
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Standard Parameter Block Errors 5

All of the functions that use the parameter block return errors when a bad value
was passed in the parameter block. The standard parameter block errors are
listed in Table 5-1.

Using the USBPB For Isochronous Transactions 0

This section defines how to use the fields that support isochronous transactions
in the version 1.1 USBPB.

When making isochronous calls, you set the pbVersion field in the USBPB
parameter block to kUSBIsocPBVersion, and use the isochronous variant of the
USBPB parameter block.

Isochronous transfers occur on a per frame basis. Mac OS USB version 1.1 does
not implement the per sample method suggested in Chapter 10 of the USB
Specification 1.0. This may be added in a future release.

The isochronous transfer implementation requires managing data flow in
specific frames. An isochronous pipe has a maximum number of bytes that it
can transfer every frame. The pipe can transfer fewer bytes, but it can not
transfer more. Each frame can generate its own error code.

To support frames for isochronous transfers, the following new structure is
introduced:

Table 5-1 Standard parameter block errors

Error constant Error code Definition

kUSBPBVersionError -6986 The pbVersion field of the parameter
block contains an incorrect version
number.

kUSBPBLengthError -6985 The pbLength field of the parameter block
contains a value that is smaller than the
sizeof(USBPB)

kUSBCompletionError -6984 The usbCompletion pointer is nil or is set
to kUSBNoCallBack and the function does
not support this behavior

kUSBFlagsError -6983 An unspecified flag has been set

C H A P T E R 5

USB Services Library Reference

100 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

typedef struct{
OSStatus frStatus;
UInt16 frReqCount
UInt16 frActCount;

}USBIsocFrame;

This structure encapsulates the transfer for one frame. On entry, the value of the
frReqCount field is set to indicate how many bytes are to be transferred (in or
out) for this particular frame. (Note 16 bits is more than enough, the
maxpacketsize is 1023 bytes, 10 bits).

On completion, the frActCount field indicates how many bytes were actually
transferred and the frStatus field specifies the result of the attempt.

For input transfers the frStatus field may return errors, such as:

In all of the above cases, there is data in the usbBuffer (it may not be very good
data) which the class driver can use as it pleases.

For output, the error code is less interesting, you only know that the packet was
launched onto the bus (or not as the case may be). There is not any indication
that the data packet was received correctly, or that anyone was listening to it at
all.

The usbStatus field returns an overall status for the isochronous transaction. If
usbStatus returns with no error, then the status for all of the packets is also no
error. If usbStatus is returned with another status value, then all of the
individual packets should be examined for error codes. The usbStatus field
contains a representative error if there are multiple packet errors.

The usbBuffer field points to the data, all of the packets to be sent or received
are laid end to end.

The usbReqCount and usbActCount fields specify the overall total of data for all
the packets sent or received.

The usbReference field is a pipe reference to an isochronous pipe.

The FrameList field (usb.isoc.FrameList) in the usbIsocBits structure is a
pointer to an array of USBIsocFrame structures that specify the individual
packets. The start of any individual packet is found by adding the values in the

kUSBUnderRunErr -6907 Packet received was shorter than expected
kUSBOverRunErr

-6908
Packet too large or more data than buffer

kUSBCRCErr -6915 Pipe stall, bad CRC; packet was received
corrupt

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 101
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

frReqCount fields for all the preceding packets and adding that to usbBuffer. For
example, if the frReqCount values are (61, 62, 63, 64, and so on) and you want
the address for the packet to be sent in the third frame, start with the address of
usbBuffer and add 61 + 62.

The NumFrames field (usb.isoc.NumFrames) is the number of frames pointed to by
the FrameList field, and also defines over how many frames the call will be
active.

The usbFrame field specifies the frame number on which the transfers are to
start. A frame is specified to be the nearest frame to the current frame with the
specified low 32 bits when the transfer is called. This method eliminates the
need for a 64-bit frame counter as long as the class driver has a latency of less
than 23 days.

Isochronous pipes are opened when a USBConfigureInterface function
(page 5-113) is called. During a call to USBConfigureInterface function, the
available bandwidth is checked. If bandwidth is insufficient (in versions of the
USB software prior to 1.4), the call to open the isochronous pipes could fail. In
version 1.4 and later, the pipe is created, but not in the active state. See the
USBConfingureInterface function description for additional information.

Asynchronous Call Support 5

As a general rule, function calls to the USL complete asynchronously, with the
exception of the functions listed here:

USBGetPipeStatusByReference
USBAbortPipeByReference
USBResetPipeByReference
USBClearPipeStallByReference
USBSetPipeIdleByReference
USBSetPipeActiveByReference
USBGetFrameNumberImmediate
USBFindNextEndpointDescriptorImmediate
USBFindNextInterfaceDescriptorImmediate

Since most USL functions complete asynchronously, it’s important to allocate a
parameter block in memory that will be available until the call completes, either
with a call back or with an immediately returned error. Unless there is an
immediate error, the parameter block cannot be reused until the completion

C H A P T E R 5

USB Services Library Reference

102 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

routine is called. You can force the completion routine to be called for pipe
transactions by calling the USBAbortPipeByReference function.

Asynchronous calls to the USL are supported by a completion routine
mechanism. You pass a pointer to a completion routine in the USBPB parameter
block. The completion routine is invoked when the USL function call completes,
informing the driver of the calls completion.

The USB completion routine is of this form:

typedef void (*USBCompletion)(USBPB *pb);

The fields required in the USBPB parameter block for all USL functions that
return asynchronously are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the completion

routine
During the call to the completion routine, these fields are valid:

--> usbStatus Status information
--> usbRefcon General-purpose value passed back to the completion

routine
--> Any other call-specific fields marked as output from the

call
--> Any other call-specific fields used as input to and not

output from the call
When the completion routine is called, the processing of the parameter block is
complete and the parameter block is again available for use. The completion
routine may use the same parameter block to make a new call to the USL.
Polling the usbStatus field is not supported, since it may be used internally
during function execution.

The execution level that the completion routine may be called back at is not
guaranteed, unless otherwise specified in the individual routine specification.
Completion usually occurs at secondary interrupt level, or at system task level.
If the execution context is important to the operation of the code, the driver
services call CurrentExecutionLevel can be used to discover the current
execution level.

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 103
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The driver services library function CallSecondaryInterruptHandler2 can be
used to continue execution at secondary interrupt level. The USBDelay* function
can be used to effect a transition to task level. Note system task level is not the
same as application task level, it may not be safe to make some Mac OS calls,
particularly file system calls at system task level. Unless otherwise specified, all
of the USL functions are safe to be called from either secondary interrupt level
or from system task level.

*This functionality is missing in the USBDelay function in USB software versions
1.0 and 1.0.1, it does work as described with USB version 1.1 and higher. For
USB versions earlier that 1.1, the execution level can be checked with the
CurrentExecutionLevel function, and the delay retried if the call back happens
at a time other than task level. The CurrentExecutionLevel function is defined in
the Driver Services Library chapter of Designing PCI Cards and Drivers for
Power Macintosh Computers. The function returns a constant that defines the
current execution level:

kHardwareInterruptLevel
kSecondaryInterruptLevel
kTaskLevel

An execution level of kHardwareInterruptLevel should not be seen for USL
functions. If the current execution level is hardware interrupt level it indicates
that something is not operating correctly.

Polling Versus Asynchronous Completion (Important) 5

The Mac OS USB Service Library (USL) allows class drivers to poll for the
completion of USL function calls by polling the usbRefcon field of the parameter
block. In general, it is strongly advised to use asynchronous completion via the
call back mechanism defined in “Asynchronous Call Support,” instead of
polling. Polling the usbRefcon field is discouraged and should only be
implemented under exceptional circumstances.

The primary concern with polling lies with code that is designed to use the
asynchronous USL call mechanism, and then enters a tight code loop where
little happens except to check the usbRefcon field, and only exits the loop when
the usbRefcon field changes. This form of polling robs time from the system,
because nothing useful can happen while the code runs in the tight loop.

USB time scales are on the order of milliseconds. A tight polling loop represents
and eternity of time wasted, when the system could be doing useful work.

C H A P T E R 5

USB Services Library Reference

104 USB Services Library (USL)

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Some devices have very slow completion times. Completion times on the order
of 100ms are not uncommon. If a driver polled for this length of time, the user
would notice the pause, and system performance could suffer. In fact, there are
circumstances in which polling the parameter block can cause the system to
hang. These circumstances and some guidelines for avoiding them are further
defined below:

Never poll from secondary interrupt time. Secondary interrupts are queued,
and most I/O including the USL completes at secondary interrupt time. If you
poll within secondary interrupt time, USL calls will never get a chance to
complete, and the poll will never complete.

If you poll from task level time (task level is described in Designing PCI Cards
and Drivers for the Power Macintosh Computer) the system may still hang. In order
to guard against this you should either:

1). Applications can give time back to the system by calling waitnext event.
Shims should use SystemTask to give time back to the system.

2). Only poll for a limited time.

Option 1 is usually only practical from an application. Applications should not
be making USL calls. Only class drivers should make USL calls. The use of USL
calls by an application, is not supported.

Option 2 can be used by class drivers. The USB standard calls for a 5 second
timeout on all transactions. The polling software should make frequent calls to
USBGetFrameNumberImmediate to determine the elapsed time. If the elapsed time
becomes too great, the attempt should be abandoned with the
USBAbortPipeByReference call.

In general, it is best to use asynchronous completion routines wherever
possible.

Transaction and Data Timeouts 5

There are two types of timeout conditions on the USB, which can generally be
referred to as “transaction” timeouts and “no data” timeouts.

■ Transaction timeouts occur when too much time passes since a transaction
became active.

■ No data timeouts occur when too much time passes since the last data packet
was transferred.

C H A P T E R 5

USB Services Library Reference

USB Services Library (USL) 105
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The clock for a transaction timeout starts when a transaction reaches the head of
the endpoint queue. The transaction times out when the total amount of time
the transaction is active is greater than the specified number of frames.
Transaction timeouts apply to the following functions:

USBDeviceRequest
USBControlRequest
USBBulkRead
USBBulkWrite
USBIntRead
USBIntWrite

Class drivers may request a transaction timeout by setting the usbFlags field to
kUSBTimeout and specifying the time for the timeout in frames in the usbFrame
field.

No data timeouts occur when there is no data flow on the pipe for the specified
time. At the device level this means that the device has NAKed the request for
the specified period of time. If any data transfer takes place (even a single
ACKed transaction), the timeout clock is reset to the start. No data timeouts
currently only apply to control transactions where the standard timeout is 5
seconds.

Class drivers may request a no data timeout by setting the usbFlags field to
kUSBNoDataTimeout and specifying the time for the timeout in frames in the
usbFrame field.

When a transaction has timed out, the pipe is aborted along with all pending
transactions, and the kUSBTimedout error status is returned.

Starting with version 1.3 of the Mac OS USB software control transactions are
subject to a 5 second no data timeout. This new default behavior can be
overridden by a class driver by setting the usbFlags field in the USB parameter
block to kUSBNo5SecTimeout. The use of kUSBNo5SecTimeout is not recommended.
It should only be used in cases where the device is not compliant with the
standard.

Driver specified timeouts are not meant to be totally accurate. Like other USB
timing issues, the time value specified should be treated in a “no less than”
manner. It may be longer than the specified value because of other system
activity. No data timeouts are checked every 500ms, and specifying a value less
than 500ms is of no use.

Setting both kUSBTimeout and kUSBNoDataTimeout is allowed, however the no
data timeout cannot expire before the transaction timeout and therefore setting
both is redundant. For control transactions, setting usbFlags to

C H A P T E R 5

USB Services Library Reference

106 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBNoDataTimeout and specifying a timeout value in usbFrame overrides the 5
second no data timeout without the need to set kUSBNo5SecTimout.

Note
Isochronous transactions are time sensitive by nature and
are not subject to the timeout mechanism described in this
section. The timeout flags are not supported in isochronous
transactions.

USL Functions 5

This section describes the functions in the USB Services Library.

Determining The Version of USB Software Present 5

Beginning with version 1.3 of the Mac OS USB software, the USBGetVersion
function provides a way for drivers to determine the version number of Mac OS
USB software present.

USBGetVersion 5

The USBGetVersion function allows device drivers to determine the version of
Mac OS USB software that is running on the current Macintosh computer.

UInt32 USBGetVersion
(void);

The USBGetVersion function returns the version of the USB software in a 32-bit
format as follows:

MMmmRRss

MM The most significant byte containing the major version number.
The current value for the major version number is 1. This
number will increment with each major release.

C H A P T E R 5

USB Services Library Reference

USL Functions 107
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

mm The next byte contains the minor version and revision number.
The current value for the minor version number is 2. This
number will increment with each minor release.

RR The next byte contains the release stage. The release stage is
defined as: 0x20 = development, 0x40 = alpha, 0x60 = beta, and
0x80 = final. If the software was at the beta release stage, this
number would be 0x60.

ss The least significant byte is the sequence number of the release,
and it changes with every build of the USB software.

The following example demonstrates how this function may be used.

#include <USB.h> /* be sure that you are using the 1.3 USB.h file */

UInt32 MyUSBGetVersion (void)
{

UInt32 version;
if ((Ptr) USBGetVersion != (Ptr) kUnresolvedCFragSymbolAddress)

version = USBGetVersion();
else

version = 0; /* version of the USB less than 1.3 */
return version;

}

USB Configuration Functions 5

To make a connection to a USB device, the class driver must find an interface
function that meets its requirements, and then configure the USB device for
subsequent operations. The functions described in this section provide Mac OS
USB configuration services.

The first thing a class driver needs to do when configuring a device is find the
function in a device configuration on which the driver is to operate and set the
configuration. The function the driver is interested in is represented in the USB
device hierarchy by an interface inside of a configuration. The programmatic
view of the USB hierarchy is devices-> configurations-> interfaces-> endpoints.

C H A P T E R 5

USB Services Library Reference

108 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBFindNextInterface 5

The USBFindNextInterface function is used to find an interface and its parent
configuration. The USBFindNextInterface function searches through all
configurations for interfaces matching the USB class, subclass, and protocol
input parameters and returns both the number of the configuration it found the
interface in, and the number of the matching interface. The interface numbers
are returned in the order in which they appear in the configuration descriptor.
You can iterate through the list of both configurations and interfaces until you
find the interface you are looking for. The returned configuration information is
used in the USBSetConfiguration function call to set the device configuration
containing the interface. (The USBSetConfiguration function was called
USBOpenDevice prior to version 1.1 of the Mac OS USB software)

OSStatus USBFindNextInterface(USBPB *pb);

Required fields in the USBPB parameter block for the USBFindNextInterface
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
--> usbReqCount Maximum power requirement of the configuration, or 0 if

not concerned about the power requirement. If the
configuration requires more power than specified, the
kUSBDevicePowerProblem error is returned. In versions of the
Mac OS USB software prior to version 1.1, this field is not
used and should be set to 0.

--> usbFlags Should be set to 0 (0 returned); reserved in this call
<--> usbClassType --> Class, 0 matches any class

<-- Class value for interface found
<--> usbSubclass --> Subclass, 0 matches any subclass

<-- Subclass value for interface found

C H A P T E R 5

USB Services Library Reference

USL Functions 109
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<--> usbProtocol --> Protocol, 0 matches any protocol
<-- Protocol value for interface found

<--> usb.cntl.WValue
Configuration number; start with 0

<--> usb.cntl.WIndex
--> Interface number; start with 0
<-- Interface number

<--> usbOther Alternate interface, set to 0xff to find first alternate only
For alternate interface settings, the usbOther field provides a method for getting
details about a specific alternate interface or all of the alternate interfaces as a
set. For example, the composite class driver would find all the interfaces in a
device and load drivers for those interfaces. It would, however, treat the set of
alternates as one interface and load only one driver for the alternate. That
alternate driver would then have to determine what alternate settings were
appropriate and choose the appropriate driver for those settings.

To support finer granularity search criteria when looking for a specific interface
in a device, and to avoid matching an interface that requires too much power,
the usbReqCount field supports passing a value for the maximum power
supported by the configuration. A driver can look for an interface with a
specific class, subclass, and protocol in a configuration that supports less than a
specified amount of power. It the appropriate amount of power is not available
for the device, an error of kUSBDevicePowerProblem is retuned. The driver can
choose to notify the user or continue looking for an interface that satisfies all the
parameters.

If a driver chooses not to pass the power requirement in the usbReqCount field
when looking for an interface, the USL matches interfaces with the other
parameters even though they require more power than is available. When the
configuration for a device that requires more power than is available is passed
in with the USBSetConfiguration function, the USL generates a power alert to
the USB Manager.

The value of 0 for usbClass, usbSubclass, or usbProtocol is a wildcard value that
indicates the caller is interested in whatever information can be found for those
parameters in the search. The actual values for any interface found are returned
in those fields. If a driver wants to make a subsequent call using wild cards for
the class, subclass, and protocol values, a 0 value must be explicitly passed in
for the usbClass, usbSubclass, and usbProtocol fields, since the actual values for
the interface found during the last call are returned in those fields of the
parameter block.

C H A P T E R 5

USB Services Library Reference

110 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The usb.cntl.WValue and usb.cntl.WIndex fields should be set to 0 upon first
entry of the USBFindNextInterface function to indicate the search should start at
the beginning of the configuration descriptors. For subsequent calls to the
USBFindNextInterface function, the values returned in the usb.cntl.WValue and
usb.cntl.WIndex fields should be passed back in without modification. The next
interface matching the specified values will be found.

Errors returned by the USBFindNextInterface function include

USBSetConfiguration, USBOpenDevice 5

Once a suitable interface is found, the device is opened with the configuration
specified in the USBSetConfiguration function.

For version 1.1 and greater of the Mac OS USB software USBSetConfiguration
replaces the USBOpenDevice function name. The USBSetConfiguration and the
USBOpenDevice functions have the same behavior, but USBSetConfiguration is the
preferred function name, and should be used in versions of the Mac OS USB
software 1.1 and greater.

The input and return values in the parameter block for the USBSetConfiguration
are identical to those for the old USBOpenDevice function.

OSStatus USBOpenDevice(USBPB *pb); /* obsolete, do not use */

OSStatus USBSetConfiguration(USBPB *pb); /* for version 1.1 and later */

paramErr usbBuffer pointer, usbReqCount, or
usbActCount fields are not set to 0

kUSBDevicePowerProblem -6976 an interface was found that matches
the class, subclass, and protocol, but
failed the power requirements. This
error is also returned because no
matching interfaces were found that
meet the power requirement

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBInternalErr,
paramErr

-6999 internal configuration descriptor
cache corrupted

kUSBNotFound -6987 interface or configuration specified is
not in configuration descriptors

C H A P T E R 5

USB Services Library Reference

USL Functions 111
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Required fields in the USBPB parameter block for the USBSetConfiguration
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
--> usb,cntl.WValue

Configuration number
--> usbFlags Should be set to 0
<-- usbOther Number of interfaces in configuration
The configuration number is an arbitrary number assigned by the device to
label the configurations. The number is usually sequential 1,2,3 and so on, but
not guaranteed to be so.

An interface reference cannot be used in the usbReference field to change the
configuration. A device reference is required to implement a configuration
change. However, an interface reference will not cause an error if used to
specify the currently set configuration. This provides a level of backward
compatibility.

Errors returned by the USBOpenDevice and USBSetConfiguration function include

paramErr usbBuffer pointer, usbReqCount, or
usbActCount fields are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a current
device

kUSBDevicePowerProblem -6976 the device requires more power than is
currently available. A power alert
message will be displayed to the user.
If the current driver does its own
power error handling, it should not call
USBSetConfiguration when the power
is not available.

C H A P T E R 5

USB Services Library Reference

112 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Opening An Interface 5

The USBNewInterfaceRef function performs the first step in opening an interface.
The USBConfigureInterface function (page 5-113) completes the process by
setting up the interface for further communication.

USBNewInterfaceRef 5

The USBNewInterfaceRef function generates a new reference number that allows
the interface in the specified device to be referred to. An interface reference can
be used in most circumstances where a device reference can be used. Individual
function descriptions indicate where an interface or device reference cannot be
used interchangeably.

OSStatus USBNewInterfaceRef(USBPB *pb);

Required fields in the USBPB parameter block for the USBNewInterfaceRef
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbReference --> Device reference of device being configured

<-- Interface reference returned
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
--> usb.cntl.WIndex

Interface number

kUSBDeviceBusy -6977 the device is already being configured
kUSBInternalErr,
paramErr

-6999 internal configuration descriptor cache
corrupted

kUSBNotFound -6987 interface or configuration specified is
not in configuration descriptors

C H A P T E R 5

USB Services Library Reference

USL Functions 113
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usbFlags Should be set to 0
If you create an interface reference, the interface reference must be disposed of
in the driver finalize routine. In version 1.1 and later of the Mac OS USB
software, the interface references are disposed of when a device is unplugged.
However, you should still call the driver finalize routine and ignore any
kUSBUnknownDeviceErr to ensure compatibility with all versions of the Mac OS
USB software.

Errors returned by the USBNewInterfaceRef function include

Configuring The Device Interface(s) 5

Configuring the interface or interfaces of a device is done with the
USBConfigureInterface function.

USBConfigureInterface 5

The USBConfigureInterface function sets the interface on the device, and opens
each pipe in the interface. The number of pipes opened is returned. It can also
be used to set an alternate interface on the device.

This function does not currently operate as defined above. It does not set the
device interface, it will in the future. At this time, the class driver must call the
USBDeviceRequest function and make a set_interface device request to set the
device interface. The driver can then call USBConfigureInterface to open the
pipes in the interface and get the number of pipes. If required, an alternate
interface can be specified upon entry in the usbOther field.

OSStatus USBConfigureInterface(USBPB *pb);

paramErr usbBuffer pointer, usbReqCount, or
usbActCount fields are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBDeviceBusy -6977 the device is already being configured
kUSBNotFound -6987 interface or configuration specified is

not in configuration descriptor
kUSBOutOfMemoryErr -6988 ran our of internal structures

C H A P T E R 5

USB Services Library Reference

114 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Required fields in the USBPB parameter block for the USBConfigureInterface
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Interface reference obtained from USBNewInterfaceRef
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
--> usbFlags Should be set to 0
<--> usbOther --> Alternate interface; <-- Number of pipes in interface
If information about an individual pipe or other element is needed, a device
request has to be made.

Configuring an already opened interface is not an error. This sets the alternate
and flags settings for the interface. It also invalidates any pipe references you
are using.

In version 1.4 and later of the USB software, when a pipe cannot be configured
because of insufficient bandwidth available, it is still created, but not in an
active state. In cases where bandwidth is insufficient, the USBConfigureInterface
function returns a kUSBNoBandwidthError to indicate that one or more pipes
failed because of insufficient bandwidth.

Errors returned by the USBConfigureInterface function include

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

paramErr usbBuffer pointer, usbReqCount, or
usbActCount fields are not set to 0

kUSBInternalErr,
paramErr

-6999 internal configuration descriptor
cache corrupted

kUSBNotFound -6987 interface or configuration specified
is not in configuration descriptor

kUSBIncorrectTypeErr -6995 interface has control endpoints
kUSBTooManyPipesErr -6996 ran out of internal structures

C H A P T E R 5

USB Services Library Reference

USL Functions 115
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Finding A Pipe 5

After the functions used to open the interface have completed, you need to
work out which already open pipe in the interface is the one you want to
communicate through.

USBFindNextPipe 5

The USBFindNextPipe function can be used to either find a specific pipe, as
specified by the direction specifier in the usbFlags field and type in the
usbClassType field, or to search through the available pipes.

OSStatus USBFindNextPipe(USBPB *pb);

Required fields required the USBPB parameter block for the USBFindNextPipe
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbReference --> Interface or pipe reference

<-- Pipe reference
-- usbBuffer Should be set to 0 (0 returned); reserved in this call
-- usbActCount Should be set to 0 (0 returned); reserved in this call
-- usbReqCount Should be set to 0 (0 returned); reserved in this call
<--> usbFlags --> Specific direction of pipe (kUSBIn or kUSBOut) or

kUSBAnyDirn as a wildcard
<-- Direction of input or output pipe

<--> usbClassType --> Specific endpoint type (kUSBControl, kUSBInterrupt, or
kUSBBulk) or kUSBAnyType as a wildcard
<-- Endpoint type

<-- usb.cntl.WValue
Maximum packet size of endpoint

This function takes either an interface or pipe reference in the usbReference
field. To find the first pipe of a particular type, make a call to the function with

C H A P T E R 5

USB Services Library Reference

116 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

an interface reference. To find the next pipe of the same type, enter the pipe
reference returned by the previous call.

Some additional explanation is in order with regard to the use of the phrase
“the same type.” You may want to find a pipe with exactly the same type as that
given in the previous call, either specific or wildcard, or find a pipe of exactly
the same type as that returned by the last call, which is always a specific pipe
type.

For example, you can search for any type and get a bulk-in pipe. After that, you
could search for the next pipe of any type by using the returned pipe reference
and the same wildcard values again, or you could search for the next bulk-in
pipe by using the pipe reference returned from the last call.

The usbFlags field takes either a specified endpoint direction or a wildcard of
kUSBAnyDirn. The usbClassType field takes either a specified endpoint type or a
wildcard of kUSBAnyType. For example, if you specify values for an input
interrupt pipe, the function returns only the input interrupt pipes found. If a
wildcard is used, all pipes of any type and direction found are returned.
Multiple iterations using a wildcard value require that the wildcard be set up
for each subsequent call.

In version 1.4 and later of the USB software, if a pipe is created by the
USBConfigureInterface function, but not active due to bandwidth constraints,
the USBFIndNextPipe function returns kUSBNoBandwidthError. The pipe reference
returned in the usbRefernce field is valid, the pipe is not active though.

Errors returned by the USBFindNextPipe function include

Getting Information About an Open Interface or Pipe 5

Information about an opened interface or pipe is contained within the interface
and pipe descriptors, and other descriptors associated with them.

paramErr usbBuffer pointer, usbReqCount, or
usbActCount fields are not set to 0

kUSBUnknownDeviceErr -6998 usbReference does not refer to a current
device

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBNotFound -6987 interface or configuration specified is not

in configuration descriptor

C H A P T E R 5

USB Services Library Reference

USL Functions 117
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBFindNextAssociatedDescriptor 5

You use the USBFindNextAssociatedDescriptor function to find a specific
interface or pipe descriptor, or any descriptor associated with the interface or
endpoint. For example, a HID interface driver could use this function to find
HID descriptors.

OSStatus USBFindNextAssociatedDescriptor(USBPB *pb);

Required fields required the USBPB parameter block for the
USBFindNextAssociatedDescriptor function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Interface or pipe reference
<--> usb.cntl.WIndex

Descriptor index start at zero
--> usbBuffer Descriptor buffer
--> usbReqCount Size of buffer
<-- usbActCount Size of the descriptor returned
<--> usbOther Descriptor type (a value of 0 matches any)
The USBFindNextAssociatedDescriptor function steps through the descriptors
following the relevant interface or endpoint descriptor, and returns the
descriptors matching the given parameters. If usbReference is an interface
reference, all the descriptors are returned until the next interface descriptor is
found, or until the end of the configuration descriptor is reached. If
usbReference is a pipe reference, all of the descriptors are returned until the next
endpoint or interface descriptor is found, or until the end of the configuration
descriptor is reached.

The usb.cntl.WIndex field provides an index into all the available descriptors. A
value of 1 describes the interface or endpoint descriptor itself, so passing 0
allows the interface or endpoint descriptor to be returned. If usb.cntl.WIndex is
passed back in the next call untouched, the function returns the next available
matching descriptor.

C H A P T E R 5

USB Services Library Reference

118 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The usbOther field contains a descriptor type to match. If searching for any type
(usbOther set to 0) all descriptors are matched. To use this method of search
again for all descriptors, the usbOther field has to be set to 0 each time the
function is called.

The errors returned by the USBFindNextAssociatedDescriptor function include:

USBGetConfigurationDescriptor 5

The USBGetConfigurationDescriptor function gives class drivers access to the
USB configuration descriptor.

The USBGetConfigurationDescriptor function returns configuration descriptors
that define the contents of the configuration data for the device. The
configuration descriptor is 9 bytes, and is followed by all the interface
descriptors complete with their associated endpoint descriptors as well as any
class or vendor specific descriptors. The USBGetConfigurationDescriptor
function returns as much of this data for one configuration as requested.

OSStatus USBGetConfigurationDescriptor(USBPB *pb);

Required fields in the USBPB parameter block for the
USBGetConfigurationDescriptor function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
--> usbWValue Configuration number

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface or pipe

kUSBInternalErr,
paramErr

-6999 internal configuration descriptor
cache corrupted

kUSBNotFound -6987 interface or configuration specified
does not follow the starting index.
A matching descriptor may already
have been passed.

C H A P T E R 5

USB Services Library Reference

USL Functions 119
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usbReqCount Amount of configuration data requested
--> usbBuffer --> Pointer to the address to store the data in
<-- usbActCount Actual amount of data returned
--> usbFlags Should be set to 0
The USBGetConfigurationDescriptor function differs from the
USBGetFullConfigurationDescriptor function in that it allows the calling driver
to specify how much configuration data the function should return.
USBGetConfigurationDescriptor allows the caller to get either the 9-byte
configuration descriptor (USBConfigurationDescriptor), a descriptor specified in
usbWValue, or as much of the configuration data as requested.

The USBGetConfigurationDescriptor function requires the caller to allocate the
memory for the returned data and pass a pointer to the address of the allocated
memory block in usbBuffer. The caller must also specify how many bytes of the
configuration data to return to the buffer in the usbReqCount field.

The usbReqCount field specifies the largest amount of data that you want
returned. If the descriptor has less data, less data is returned. If the descriptor
has more data, only the requested amount of data is returned. This is not an
error condition.

USBDisposeInterfaceRef 5

The USBDisposeInterfaceRef function closes the specified interface currently
opened. The interface reference obtained with the USBNewInterfaceRef function
for this interface is no longer valid after the call USBDisposeInterfaceRef call
completes.

OSStatus USBDisposeInterfaceRef(USBPS *pb);

Required fields in the USBPB parameter block for the USBDisposeInterfaceRef
function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine

C H A P T E R 5

USB Services Library Reference

120 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usbReference Interface reference for the interface to close.
--> usbFlags Should be set to 0
If the usbCompletion field is set to kUSBNoCallBack, the call back mechanism is
not invoked. This is useful for finalization routines which need to clean up
immediately and can’t wait for a callback routine to complete.

If the no call back option (kUSBNoCallBack) is used, the parameter block is free as
soon as the USBDisposeInterfaceRef call returns.

Errors returned by the USBDisposeInterfaceRef function include

Generalized USB Device Request Function 5

The USB standard specifies one of the fields of a control request as a
BMRequestType. This field is a bit-mapped byte that tells the USB function about
the request. Information about the request includes direction of data flow, how
the function is defined (standard, class, or vendor specific) and what logically is
the recipient of the request.

USBMakeBMRequestType 5

The USBMakeBMRequestType function formats device and control request type
parameters into the bmRequestType format, which are passed to the USL in the
usbBMRequestType field of the USBDeviceRequest function.

Note
The use of this function is optional if the requestType
values are already provided in the standard documentation
describing the device. The known requestType values can
be transcribed directly into the usbBMRequestType field of
the USBDeviceRequest function.

kUSBUnknownInterfaceErr -6978 usbReference does not refer to a
current interface

C H A P T E R 5

USB Services Library Reference

USL Functions 121
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBMakeBMRequestType function returns a UInt8 or 0xff if one or more of the
parameters is incorrect. A value of 0xff is not a legal value and is not accepted
by the subsequent control call.

UInt8 USBMakeBMRequestType(UInt8 direction, UInt8 type,
UInt8 recipient);

direction Direction of data flow, kUSBOut, kUSBIn, or kUSBNone

type Definition of the request, kUSBStandard, kUSBClass, or kUSBVendor

recipient Part of the device receiving the request, kUSBDevice,
kUSBInterface, kUSBEndpoint, or kUSBOther

All USB devices respond to requests from the host on the device’s default pipe.
These requests are made using control transfers. The request and the request’s
parameters are sent to the device in the setup packet.

USBDeviceRequest 5

The USBDeviceRequest function performs control transactions to default pipe 0
(zero) of a device.

OSStatus USBDeviceRequest(USBPB *pb);

Required fields in the USBPB parameter block for the USBDeviceRequest function
are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The device reference passed to the driver when it is

loaded
--> usbBMRequestType The usbBMRequestType field is made up of the direction,

type, and recipient values
direction One of the following:

kUSBIn Data will be transferred to the host.

C H A P T E R 5

USB Services Library Reference

122 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBOut Data will be transferred to the device.
kUSBNone No data will be transferred. The length

and buffer parameters are ignored.
type One of the following:

kUSBStandard A request defined in the USB
standard.

kUSBClass A request defined in a class
standard.

kUSBVendor A vendor unique request type.
recipient One of the following:
 kUSBDevice The request is to the whole device.
 kUSBInterface The request is to a specific interface

in the device.
 kUSBEndpoint The request is to a specific pipe

endpoint in a device.
 kUSBOther The request is going somewhere else.

--> usbBRequest Defined by the USB standard, defined by a class driver
standard, or vender unique. See “usbBRequest
Constants” (page 5-165)

--> usbWValue General parameter unique to the transaction request.
This value is in host endian format, and will be
swapped if necessary when it is sent to the device.

--> usbWIndex General parameter unique to the transaction request.
This value is in host endian format, and will be
swapped if necessary when it is sent to the device.

--> usbReqCount Specifies the size of the data to transfer. If this is set to 0,
no transfer occurs

--> usbBuffer Points to the data to be transferred (kUSBOut request) or
where data will end up (kUSBIn request). The buffer
should be at least as big as the size specified in the
usbReqCount field. If usbBuffer is set to nil, no data is
transferred in the data phase regardless of the value of
length, setup and status still occurs

<-- usbActCount Specifies the actual amount of data transferred on
completion

--> usbFlags Should be set to 0, or kUSBAddressRequest for control
transactions addressed to an interface or endpoint. You
may also use kUSBTimeout to indicate that you are
setting the transaction timeout value according to the
amount of frames in the usbFrame field. See

C H A P T E R 5

USB Services Library Reference

USL Functions 123
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

“Transaction and Data Timeouts” for additional
information about transaction timeouts.

The request is sent to the default pipe 0 and the relevant data is transferred.

The flag kUSBAddressRequest supports USB control transactions addressed to an
interface or endpoint of a device. The kUSBAddressRequest flag, set in usbFlags,
allows the control call to be made without the driver explicitly knowing the
number of the endpoint or interface before the call is made. The USL fills in the
interface or endpoint number in the setup packet based on the pipe or interface
reference that is passed in with the call.

To use the addressed device request feature, specify the kUSBAddessRequest flag
in the usbFlags field. If the recipient field of the BMRequestType is an endpoint
or interface, the relevant endpoint or interface number is derived from the pipe
or interface reference that is passed in the usbReference field. The interface or
endpoint number is put into the WIndex field of the setup packet before the
control transaction call takes place.

Drivers should not issue device requests for

Set_Address (bRequest = 5, type = standard, recipient = device)
Set_Config (bRequest = 9, type = standard, recipient = device)

These are reserved for system use. Issuing a set_address device request could
disrupt communication on the USB. The USBSetConfiguration function should
be used to set a configuration instead of a set_config device request through
the USBDeviceRequest function. An attempt to issue a set_config with the
USBDeviceRequest function will cause the USBSetConfiguration function to be
called.

For additional information about the parameters specified for standard control
transactions, see section 9 of the USB Specification.

If the request is a set_config request, the USBDeviceRequest function returns the
same errors as those for the USBSetConfiguration function. Other errors
returned by the USBDeviceRequest function include

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBRqErr -6994 the value in the usbBMRequestType field
is not valid

kUSBUnknownRequestErr -6993 request code for a standard USB call is
not recognized

kUSBInvalidBuffer bad buffer specified

C H A P T E R 5

USB Services Library Reference

124 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USB Transaction Functions 5

There are four transaction types supported by the USL, control, interrupt, bulk,
or isochronous. When making isochronous calls, you set the pbVersion field in
the USBPB parameter block to kUSBIsocPBVersion, and use the isochronous
variant of the USBPB parameter block, described in “The USBPB Parameter
Block”.

When making function calls that are not a direct result of a call to the Device
Manager, such as the USB transaction functions, class drivers should arrange to
hold the memory for the data buffer used in the usbBuffer field. The driver can
do this with either the PrepareMemoryForIO function described in “Designing PCI
Cards & Drivers for Power Macintosh Computers,” or the older HoldMemory function
described in the Virtual Memory Manager section of “Inside Macintosh:Memory.”
It should be noted that memory returned by the USL USBAllocMem function is
held as it is with PoolAllocateResident, and is therefore safe.

The PrepareMemoryForIO and HoldMemory functions are only safe to call at task
level (any non-secondary interrupt time). One way to safely prepare the
memory is to create and hold a single buffer at driver initialization time, which
occurs at task level. You then use this buffer to make all transaction requests.
The USB Manager holds the driver code and globals automatically when the
driver is loaded. Therefore, declaring a buffer in the driver’s global space
guarantees the memory will be held before requesting a transaction.

USBControlRequest 5

A general device control request can be issued on a non-default control pipe (a
control pipe other than pipe 0) using the USBControlRequest function. The
specified request is sent to the specified pipe’s endpoint and the relevant data is
transferred. This function call can only be used after a device has been
configured. See the USBSetConfiguration function description on (page 5-110),
for additional information about configuring a device.

OSStatus USBControlRequest(USBPB *pb);

The fields required in the USBPB parameter block for the USBControlRequest
function are:

--> pbLength Length of parameter block

C H A P T E R 5

USB Services Library Reference

USL Functions 125
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe call for

the device you want to send the control request to. The
device must have already been configured before a
USBControlRequest is made.

--> usbBMRequestType
The usbBMRequestType field is made up of the direction,
type, and recipient values (see also, the
USBMakeBMRequestType function (page 5-120))
direction One of the following:
kUSBIn Data will be transferred to the host.
kUSBOut Data will be transferred to the device.
kUSBNone No data will be transferred. The
 length and buffer parameters are ignored.

type One of the following:
kUSBStandard A request defined in the USB
 standard.
kUSBClass A request defined in a Class
 standard.
kUSBVendor A vendor unique request type.
recipient One of the following:

 kUSBDevice The request is to the whole device.
 kUSBInterface The request is to a specific interface in

 the device.
 kUSBEndpoint The request is to a specific pipe

 endpoint in a device.
 kUSBOther The request is going somewhere else.
--> usb.cntl.BRequest

Defined by the USB standard, or vender unique
--> usb.cntl.WValue

General parameter unique to the transaction request

C H A P T E R 5

USB Services Library Reference

126 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usb.cntl.WIndex
General parameter unique to the transaction request

--> usbReqCount Specifies the size of the data to transfer. If this is set to zero,
no data transfer will occur in the data phase.

--> usbBuffer Points to the data to be transferred (kUSBOut request) or
where data will end up (kUSBIn request). The buffer should
be at least as big as the size specified in the usbReqCount
field. If buffer is set to nil, no data is transferred in the data
phase regardless of the value of length, setup and status
still occur

<-- usbActCount Specifies the actual amount of data transferred on
completion

--> usbFlags Should be set to 0, or kUSBNo5SecTimeout to disable the
default 5-second timeout for control transactions. See
“Transaction and Data Timeouts” for additional
information about transaction timeouts.

In order to avoid the loss of data when transferring data from a device,
usbBuffer and usbReqCount should be at least the MaxPacket size.

For additional information about the parameters specified for control
transactions, see section 9 of the USB Specification.

The errors returned by the USBControlRequest function are

USBIntRead 5

The USBIntRead function queues an interrupt in transaction on the specified
pipe. The device is periodically polled and the transaction completes when the
device returns some data.

OSStatus USBIntRead(USBPB *pb);

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBRqErr -6994 the value in the usbBMRequestType field
is not valid

kUSBUnknownRequestErr -6993 request code for a standard USB call is
not recognized

kUSBInvalidBuffer bad buffer specified

C H A P T E R 5

USB Services Library Reference

USL Functions 127
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Required fields in the USBPB parameter block for the USBIntRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe

function
--> usbReqCount Specifies the size of the data to transfer. If this is set to 0,

anything but a zero length packet causes an error. A zero
length buffer causes a zero length packet to be sent to the
device.

--> usbBuffer Points to a buffer to which the incoming data is transferred
<-- usbActCount Specifies the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
In order to avoid the loss of data when transferring data from a device,
usbBuffer and usbReqCount should be a multiple of the value of the
MaxPacketSize field, in the device’s endpoint descriptor.

Errors returned by the USBIntRead function include

USBIntWrite 5

The USBIntWrite function queues an interrupt transaction on the specified pipe.
The device is periodically polled and the transaction completes when the device
has accepted the data in usbActCount. Interrupt out transactions were
introduced in version 1.1 of the USB Specification. This function is only
available in version 1.2 and later of the Mac OS USB software.

OSStatus USBIntWrite(USBPB *pb);

Required fields in the USBPB parameter block for the USBIntRead function are

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBIncorrectTypeErr -6995 pipe is not an interrupt pipes
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled

C H A P T E R 5

USB Services Library Reference

128 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe

function,
--> usbReqCount Specifies the size of the data to transfer, should be no

longer than the MaxPacketSize of the endpoint
--> usbBuffer Points to a buffer containing the outgoing data
<-- usbActCount Specifies the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
Errors returned by the USBIntWrite function include

USBBulkRead 5

The USBBulkRead function can be used to request multiple bulk transactions on
an inbound bulk pipe to fulfill the size of request specified, or for the entire
transfer.

OSStatus USBBulkRead(USBPB *pb);

Required fields in the USBPB parameter block for the USBBulkRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe

function

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBIncorrectTypeErr -6995 pipe is not an interrupt pipes
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled

C H A P T E R 5

USB Services Library Reference

USL Functions 129
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usbReqCount Specifies the size of the data to transfer. Must be a multiple
of the packet size. If it is not a multiple of the packet size,
the last packet my overrun. If set to 0, any non-zero size
transfer causes an error

--> usbBuffer Points to a buffer to which the incoming data is transferred
<-- usbActCount Specifies the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
In order to avoid the loss of data when transferring data from a device,
usbBuffer and usbReqCount should be a multiple of the endpoint MaxPacketSize
in the device’s endpoint descriptor. See also “Bulk Data Transfer Performance
Issues” (page A-230).

If you want less data than MaxPacketSize, it is still advisable to make a
MaxPacketSize request, because the device is not aware of the actual amount of
data requested, it just sees a request for more data. If MaxPacketSize is
requested, any data transfer terminates the request. A short packet
automatically terminates the request. If a request is made for MaxPacketSize and
a MaxPacketSize size packet is returned, the transfer is also terminated, since the
total amount of data requested is satisfied.

You should check the usbActCount field upon completion for the actual amount
of data returned. If the value of usbActCount indicates that more or less data
were returned than you expected, there may be a problem with your device.
Requesting less than MaxPacketSize may cause a kUSBOverRunErr error to be
returned if the device returns more data than was needed, in which case no data
in the buffer is valid.

Errors returned by the USBBulkRead function include

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBIncorrectTypeErr -6995 pipe reference is not a bulk-in pipe
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled
kUSBOverRunErr -6908 packet too large or more data than

buffer

C H A P T E R 5

USB Services Library Reference

130 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBBulkWrite 5

The USBBulkWrite function requests multiple bulk out transactions on an
outbound bulk pipe to fulfill the size of request specified.

OSStatus USBBulkWrite(USBPB *pb);

Required fields in the USBPB parameter block for the USBBulkWrite function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The pipe reference returned by the USBFindNextPipe or

USBSetConfiguration functions
--> usbReqCount Specifies the size of the data to transfer. If this is set to 0, no

data transfer occurs, but the device senses a 0 length bulk
transaction

--> usbBuffer Points to the data to be transferred. The buffer should be at
least as big as the size specified in the usbReqCount field. If
the buffer is set to nil, no data is transferred regardless of
the value of usbReqCount

<-- usbActCount Specifies the actual amount of data transferred on
completion

--> usbFlags Should be set to 0
Errors returned by the USBBulkWrite function include

USBIsocRead 5

Isochronous data transfers are supported in version 1.2 and higher of the
Mac OS USB software.

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBIncorrectTypeErr -6995 pipe reference is not a bulk-out pipe
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled

C H A P T E R 5

USB Services Library Reference

USL Functions 131
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBIsocRead function supports isochronous read data transfers, and is
defined as follows:

OSStatus USBIsocRead(USBIsocPB *pb);

Required fields in the isochronous version of the USBPB parameter block for the
USBIsocRead function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version, must be kUSBIsocPBVersion for

isochronous function calls
<--usbStatus Aggregate status, see discussion in “Using the USBPB For

Isochronous Transactions”
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The isochronous pipe reference returned by the

USBFindNextPipe function
--> usbReqCount Specifies the size of the data to transfer. May be any size,

but no less than the sum of the individual packets sizes. If
set to 0, any non-zero size transfer causes an error.

--> usbBuffer Points to a buffer to which the incoming data is transferred
<-- usbActCount Specifies the actual amount of data transferred on

completion
--> usbFlags Should be set to 0
--> usb.isoc.FrameList

Pointer to the list of frame structures
--> frReqCount Number of bytes requested for
 each packet
<-- frStatus Status returned by packet
<-- frActCount Actual bytes transferred by packet

--> usb.isoc.NumFrames
Number of frames (specified in the FrameList) to attempt
transfers in

--> usbFrame Frame number of the first frame to transfer data
A complete discussion of how isochronous support is implemented and
additional details about using the fields in the isochronous version of the

C H A P T E R 5

USB Services Library Reference

132 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBPB parameter block can be found in “Using the USBPB For Isochronous
Transactions” (page 5-99).

USBIsocWrite 5

The USBIsocWrite function supports isochronous write transactions, and is
defined as follows:

USBIsocWrite(USBIsocPB *pb);

Required fields in the isochronous version of the USBPB parameter block for the
USBIsocWrite function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version, must be kUSBIsocPBVersion for

isochronous function calls
<--usbStatus Aggregate status, see discussion in “Using the USBPB For

Isochronous Transactions”
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference The isochronous pipe reference returned by the

USBFindNextPipe or USBSetConfiguration functions
--> usbReqCount Specifies the size of the data to transfer. If this is set to 0 in

the frReqCount field in the frame structure, the call sends a
packet size of 0.

--> usbBuffer Points to the data to be transferred. The buffer should be at
least as big as the size specified in the usbReqCount field. If
the buffer is set to nil, no data is transferred regardless of
the value of usbReqCount

<-- usbActCount Specifies the actual amount of data transferred on
completion

--> usbFlags Should be set to 0
--> usb.isoc.FrameList

Pointer to the list of frame structures
--> frReqCount Number of bytes requested for
 each packet

C H A P T E R 5

USB Services Library Reference

USL Functions 133
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<-- frStatus Status returned by packet
<-- frActCount Actual bytes transferred by packet

--> usb.isoc.NumFrames
Number of frames to attempt transfers in

--> usbFrame Frame number of the first frame to transfer data
A complete discussion of how isochronous support is implemented and
additional details about using the fields in the isochronous version of the
USBPB parameter block can be found in “Using the USBPB For Isochronous
Transactions”.

Pipe State Control Functions 5

A pipe’s state is governed by two factors:

■ the state of the device’s endpoint

■ the USL’s state

The USL state can be one of the following:

■ Active: The pipe is open and can transmit data.

■ Stalled: An error occurred on the pipe, no new transactions are accepted until
the stall is cleared.

■ Idle: The pipe will not accept any transactions.

A transaction error (errors -6915 to -6901) causes the pipe to enter the stalled
state. The class driver can change the state of the pipe using the functions in this
section.

Note that the pipe and interface control functions differ from most other USL
calls in these two ways:

■ They do not take a parameter block as a parameter.

■ They complete synchronously. There is no facility for asynchronous
completion.

Also note that pipe 0 to a device cannot be stalled. If a communication error
happens on pipe 0, the stall is automatically cleared before the call completes.
Thus some of these functions can affect a device’s default pipe 0 and some can’t.
Those functions that operate on both the default pipe 0 and pipes other than
pipe 0, take a device reference for the default pipe or a pipe reference for a

C H A P T E R 5

USB Services Library Reference

134 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

specific pipe. Those functions that can’t affect the default pipe, take only a pipe
reference.

These calls can be used on a device’s default pipe 0:

USBGetPipeStatusByReference
USBAbortPipeByReference
USBResetPipeByReference

These calls cannot be used on a device’s default pipe 0:

USBClearPipeStallByReference
USBSetPipeIdleByReference

Except for entering the stalled state on an error, the USL does not keep track of
the state of the device’s endpoint. The class driver must keep track of the state
of the endpoint.

Data Toggle Synchronization 5

When a pipe is reset, aborted, or had a stall cleared, the expected data toggle on
that pipe’s endpoint is reset to data0. This means that the next packet read on
that pipe may be discarded unless the device is told to synchronize its endpoint
data toggle.

The method of synchronizing the endpoint for the device is device specific. In
general, it should be possible to perform endpoint data toggle synchronization
with a call to the USBDeviceRequest function addressed to the endpoint in
question. A USB device request command of CLEAR_FEATURE and a feature
selector of ENDPOINT_STALL should complete the required data toggle
synchronization.

C H A P T E R 5

USB Services Library Reference

USL Functions 135
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBGetPipeStatusByReference 5

The USBGetPipeStatusByReference function returns status on a specified pipe or
the device’s default pipe 0.

OSStatus USBGetPipeStatusByReference (
USBReference ref,
USBPipeState *state);

--> ref Pipe reference.

<-- state Returns the pipe state, it can be one of these constants:
kUSBActive Pipe can accept new transactions
kUSBIdle Pipe cannot accept new transactions
kUSBStalled An error occurred on the pipe

If the status is not active (kUSBActive), a non-zero status code (kUSBPipeIdleErr
or kUSBPipeStalledErr) is also returned. If any other error is returned, the state
variable is not changed.

Returning a non-zero status when the call succeeds, can make using this
function a little tricky. This can be simplified if the pipe state variable is
preloaded with a value not returned by the function, for example -1. The pipe
state variable can then be examined to see if there was an error or to determine
what state the pipe is in.

Errors returned by the USBGetPipeStateByReference function include:

In version 1.0 of the Mac OS USB software the USBGetPipeStatusByReference
function does not operate as defined above. If the pipe is not active, it returns
an error and the state is not set. The USBGetPipeStatusByReference function does
work as defined in version 1.0.1 and later of the Mac OS USB software. If noErr
is returned, the state is returned correctly. If 1.0 compatibility is desired, it can
be worked around by examining the status returned. If this call returns an error,
the error should be examined to see what state the pipe is in.

noErr 0 specified pipe is active
kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled

C H A P T E R 5

USB Services Library Reference

136 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBAbortPipeByReference 5

The USBAbortPipeByReference function aborts operations on a specified pipe or
the device’s default pipe 0.

OSStatus USBAbortPipeByReference(USBReference ref);

--> ref Pipe reference, or device reference for implicit default pipe 0.

All outstanding transactions on the pipe are returned with a kUSBAborted status.
The state of the pipe is not affected.

After this function is called, the device’s endpoint needs to be synchronized
with the host’s endpoint. See “Data Toggle Synchronization” (page 5-134) for
information about how to accomplish endpoint data toggle synchronization.

Errors returned by the USBAbortPipeByReference function include:

USBResetPipeByReference 5

The USBResetPipeByReference function resets the specified pipe or the device’s
default pipe 0.

OSStatus USBResetPipeByReference(USBReference ref);

--> ref Pipe reference, or device reference for implicit default pipe 0.

In version 1.2 and later of the Mac OS USB software, all outstanding
transactions on the pipe are returned with a kUSBAborted status. The pipe status
is set to active. The stalled and idle state are cleared.

After this function is called, the device’s endpoint needs to be synchronized
with the host’s endpoint. See “Data Toggle Synchronization” (page 5-134) for
information about how to accomplish endpoint data toggle synchronization.

kUSBUnknownPipeErr -6997 pipe reference specified is unknown

C H A P T E R 5

USB Services Library Reference

USL Functions 137
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

IMPORTANT

For USB parameter block version 1.0, the implementation
of USBResetPipeByReference does nothing if passed a real
pipe reference. However, if the function is passed a
non-existent pipe reference, it will corrupt low memory.
Version 1.0.1 and later of the USB Services software corrects
this problem.

Errors returned by the USBRestPipeByReference function include:

In version 1.0 of the USB Services software, the pipe may or may not have been
made active, depending on whether the pipe was previously stalled or not, and
the kUSBPipeIdleErr is returned. If an idle pipe was not stalled, it is not affected.
If an idle pipe was stalled, it is made active. In version 1.0.1 and later of the USB
Services software this behavior is corrected.

In version 1.0 of the USB Services software, the kUSBPipeStalledErr is returned
if the pipe was previously idle and the call succeeded despite the error. This
behavior is not an error and noErr is returned in versions 1.0.1 and later of the
USB Services software.

USBClearPipeStallByReference 5

The USBClearPipeStallByReference function clears a stall on the specified pipe.
This call can only be used on a pipe, not on a device’s default pipe 0.

OSStatus USBClearPipeStallByReference(USBPipeRef ref);

--> ref Pipe reference.

All outstanding transactions on the pipe are returned with a kUSBAborted status.
The pipe status is set to active; if the pipe was previously idle it is set back to
idle. The stalled state is cleared, idle is not.

A call to this function does not clear a device’s endpoint stall. The class driver
has to take care of that by using USB standard device commands, such as
CLEAR_ENDPOINT_STALL. The class driver may need to take other remedial actions.

kUSBUnknownPipeErr -6997 pipe reference specified is unknown

kUSBPipeStalledErr -6979 pipe stalled, pipe is reset despite the
error

C H A P T E R 5

USB Services Library Reference

138 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

After this function is called, the device’s endpoint needs to be synchronized
with the host’s endpoint. See “Data Toggle Synchronization” for information
about how to accomplish endpoint data toggle synchronization.

Errors returned by the USBClearPipeStallByReference function include:

USBSetPipeIdleByReference 5

The USBSetPipeIdleByReference function sets a specified pipe to the idle state.
This call can be used only on a specified pipe, not on a device’s default pipe 0.

OSStatus USBSetPipeIdleByReference(USBPipeRef ref);

--> ref Pipe reference.

The state of the pipe is set to idle. No outstanding transactions are affected.

Errors returned by the USBSetPipeIdleByReference function include:

In version 1.0 of the USB Services software, the following errors are returned if
the pipe is not currently active. In these instances, the call has succeeded despite
the returned error. This behavior is not an error and noErr is returned in
versions 1.0.1 and later of the USB Services software.

USBSetPipeActiveByReference 5

The USBSetPipeActiveByReference function sets the state of a specified pipe to
active.

OSStatus USBSetPipeActiveByReference(USBPipeRef ref);

--> ref Pipe reference.

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBPipeIdleErr -6980 specified pipe is in the idle state

kUSBUnknownPipeErr -6997 pipe reference specified is unknown

kUSBPipeIdleStalled -6979 pipe was stalled, pipe is still active
despite error

kUSBPipeIdleErr -6980 specified pipe is in the idle state

C H A P T E R 5

USB Services Library Reference

USL Functions 139
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The pipe status is set to active if the pipe is not stalled. The idle state is cleared,
stalled is not.

Errors returned by the USBSetPipeActiveByReference function include:

In version 1.0 of the USB Services software, the following error is returned if the
pipe was previously idle. In this instance the call has succeeded despite the
returned error. This behavior is not an error and noErr is returned in versions
1.0.1 and later of the USB Services software.

USBGetBandwidthAvailableByReference 5

The USBGetBandwidthAvailableByReference function, available in version 1.4 and
later of the Mac OS USB software, determines the currently available
bandwidth for isochronous and interrupt devices.

OSStatus USBGetBandwidthAvailableByReference(
USBReference ref,
UInt32 *avail)

--> ref Device, interface, or pipe reference

<-- *avail Currently available bandwidth in number of bytes per frame

The reference passed in specifies a bus to which the referenced object is
attached. The bandwidth currently available for that bus is returned in avail as
a number of bytes per frame.

The bandwidth value indicated is not guaranteed to be available when a
request is made to reserve it. This is an indicator only.

Possible errors for the USBGetBandwidthAvailableByReference function include:

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBPipeIdleStalled -6979 pipe was stalled, pipe is set idle

kUSBPipeIdleErr -6980 pipe was previously idle, pipe is
still made active

kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled

C H A P T E R 5

USB Services Library Reference

140 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBSetPipePolicy 5

The USBSetPipePolicy function, available in version 1.4 and later of the Mac OS
USB software, provides a method for modifying pipe parameters.

OSStatus USBSetPipePolicy(USBPB *pb)

--> usbReference
Pipe reference

--> usbReqCount
Max data per IRP

--> usb.cntl.WValue
Max bytes per frame

--> usbOther Max service interval

Field descriptions
usbReqCount The max data per IRP feature is not yet implemented, it

may be used as a hint towards better resource
management. If zero is passed it will not be changed. If it
has never been specified, the default will be used.

IRP is equivalent to one call to a data transfer function,
such as USBBulkRead or USBIsocWrite.

The default is probably 1MB, which is the maximum
recommended to transfer in one call.

usb.cntl.WValue Max bytes per frame sets the maximum packet size that
will be used on the pipe. This overrides that which is
specified in the endpoint descriptor. The main use of this
field is to allow isochronous endpoints to give back
bandwidth they are not actually using. For isochronous
pipes, valid values are 0 through 1023. A value of 0xffff
(kUSBBandwidthUnchanged) means not to change this from
the current value.

If the bandwidth requested is not available,
kUSBNoBandwidthError is returned.

C H A P T E R 5

USB Services Library Reference

USL Functions 141
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This field cannot be used to increase the MaxPacketSize
above that specified in the endpoint descriptor.

usbOther Max Service interval is not yet implemented. This will be
used with the isochronous stream model, when
implemented. For Interrupt endpoints it can change the
requested max polling interval. Valid values are 0-255. 0
meaning not to change it from the current setting. Low
speed endpoints are not allowed to suggest a value in the
range 1-7.

Errors returned by the USBSetPipePolicy function include:.

Device Control and Status Functions 5

This section defines USL device control and status functions. The functions
USBSuspendDevice, USBResumeDeviceByReference, and USBPortStatus were
introduced in version 1.4 of the Mac OS USB software, and as such, are only
available in version 1.4 and later.

USBResetDevice 5

The USBResetDevice function resets a specified device. The port the device is
attached to sends the reset signal for 10ms, as specified in the USB Specification.
Following the reset signal, the device’s USB address is set so that the USB
device reference, usbReference, remains valid when the completion routine is
called. The reset does not affect any other devices on the bus, unless the device
reset is a hub. However, only hub drivers should be concerned with hubs.

This function should be considered a last resort to bring a misbehaving device
back on line. If a device is reset, the driver will have to reinstate the device

noErr 0 specified pipe is active
kUSBUnknownPipeErr -6997 pipe reference specified is unknown
kUSBPipeIdleErr -6980 specified pipe is in the idle state
kUSBPipeStalledErr -6979 specified pipe is stalled
kUSBNoBandwidthError Indicates there was insufficient

bandwidth to set the requested max
packet size for the pipe.

C H A P T E R 5

USB Services Library Reference

142 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

configuration again, starting with getting a new interface reference. See
“USBFindNextInterface” (page 5-108) for details.

OSStatus USBResetDevice(USBPB *pb);

Required fields in USBPB parameter block for the USBResetDevice function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device reference
--> usbFlags Set to 0

USBSuspendDevice 5

The USBSuspendDevice function sends a message to the hub driver requesting
that the hub port the device is attached to be suspended.

OSStatus USBSuspendDevice (USBPB *pb);

Required fields in USBPB parameter block for the USBSuspendDevice function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device or interface reference
--> usbFlags Set to 0
The USBSuspendDevice call completes asynchronously when the port is resumed.
The port is resumed either by the device generating a USB RESUME signal, or
by the driver issuing a USBResumeDeviceByReference call.

There are some hubs that cannot generate the correct SUSPEND/RESUME
signaling for devices. These hubs immediately call the usbCompletion function
indicating that they are resumed.

C H A P T E R 5

USB Services Library Reference

USL Functions 143
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBResumeDeviceByReference 5

The USBResumeDeviceByReference function causes a device which is suspended
to be re-activated by generating the USB RESUME signal on the port the device
is connected to.

OSStatus USBResumeDeviceByReference (usbReference ref)

ref Device or interface reference

This call completes immediately. However, the device is not activated and
available until the completion routine from the USBSuspendDevice function is
called. You can find out the current status of a port by using the USBPortStatus
function.

USBPortStatus 5

This function queries the hub to determine the port status of the port that a
particular device, interface, or pipe reference is connected to.

OSStatus USBPortStatus(USBPB *pb)

Required fields in USBPB parameter block for the USBPortStatus function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device, interface, or pipe reference
--> usbFlags Set to 0
<-- usbStatus Port status
This call can return an immediate error of kUSBDeviceBusy, indicating that the
hub driver cannot handle this request. Your driver should use the USBDelay
function and try again.

Upon successful completion the usbStatus field contains one of the following
values:

C H A P T E R 5

USB Services Library Reference

144 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBDeviceDisconnected - Device has been disconnected. Your driver can expect
to be removed (since it hasn't been removed yet!)

kUSBPortDisabled - Port has been disabled. This is probably due to a babble
condition. A babble condition is typically caused by electro-static discharge or
other errors outside of your device). When the kUSBPortDisabled status is
returned, you need to use USBResetDevice to recover the device.

kUSBDeviceSuspended - The port is currently suspended. It can be resumed using
USBResumeDeviceByReference function.

USB Management Services Functions 5

The USL provides an interface to services provided by the USB Manager. These
services make it so class drivers need only link against the USB Services library
or Driver Services library.

The errors returned by the USB Management functions include:

USBExpertInstallDeviceDriver 5

The USBExpertInstallDeviceDriver function notifies the USB Manager that there
is a device that needs a driver matched and loaded. Typically only hub drivers
need the service provided by this function.

OSStatus USBExpertInstallDeviceDriver (
USBDeviceRef ref,
USBDeviceDescriptorPtr *descUSBReference hubRef,
UInt32 port,
UInt32 busPowerAvailable);

The ref parameter can be a device reference or an interface reference. Similarly
the desc parameter can be a device or interface descriptor.

--> ref Device reference of the new device.

kUSBBadDispatchTable -6950 improper driver dispatch table
kUSBUnknownNotification -6949 notification type not defined
kUSBQueueFull -6948 internal queue full

C H A P T E R 5

USB Services Library Reference

USL Functions 145
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> desc Device descriptor of the device to find a driver for. See also,
“Device Descriptor Structure” (page 5-169)

--> hubRef The device reference of the parent hub of this device.

--> port The parent port of this device.

busPowerAvailable
How much current is available from the bus for the device, in 2
milliamperes (mA) units. This should have one of two values,
100mA (kUSB100mAAvailable) for a bus-powered hub parent and
500mA (kUSB500mAAvailable) for a self-powered parent. See
“USB Power and Bus Attribute Constants” (page 5-167).

USBExpertRemoveDeviceDriver 5

The USBExpertRemoveDeviceDriver function notifies the USB Manager that a
device has been removed from the bus and that the class driver for that device
needs to be terminated. Typically only hub drivers need the service provided by
this function.

OSStatus USBExpertRemoveDeviceDriver(USBDeviceRef ref);

The ref parameter can be a device reference or an interface reference.

--> ref Device reference of the device removed from the bus.

USBExpertInstallInterfaceDriver 5

The USBExpertInstallInterfaceDriver function notifies the USB Manager that a
class driver needs to be loaded for the given interface of the given device. This
function is used by class drivers that select configurations and interfaces. The
drivers that use this functionality are typically composite class drivers.

OSStatus USBExpertInstallInterfaceDriver (
USBDeviceRef ref,
USBDeviceDescriptor *desc,

C H A P T E R 5

USB Services Library Reference

146 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBInterfaceDescriptor *interface,
USBReference hubRef,
UInt32 busPowerAvailable);

--> ref Device reference of device containing the interface.

--> desc Device descriptor of the interface to find a driver for. See also,
“Device Descriptor Structure” (page 5-169)

--> interface Interface descriptor of interface to find a driver for. See also,
“Interface Descriptor Structure” (page 5-170).

--> hubRef The device reference for the device containing this interface.
Usually a device reference of a hub.

--> busPowerAvailable
How much current is available from the bus for the device, in 2
milliamperes (mA) units. This should have one of two values,
100mA for a bus-powered hub parent and 500mA for a
self-powered parent.

USBExpertRemoveInterfaceDriver 5

The USBExpertRemoveInterfaceDriver function notifies the USB Manager that a
device has been removed from the bus and that the class driver needs to be
disposed.

OSStatus USBExpertRemoveInterfaceDriver(USBInterfaceRef ref);

--> ref Interface reference from the removed device

USB Time Utility Functions 5

This section describes the functions for managing time within the context of
USB frames. A USB frame is approximately a 1 ms unit of time. Approximately,
because it may vary a few bit times.

C H A P T E R 5

USB Services Library Reference

USL Functions 147
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBDelay 5

The USBDelay function calls back through the normal completion mechanism
when the specified number of frames have passed. There is up to an extra one
frame delay to accommodate synchronizing with USB frames. For example, 0
frames delay means after the current frame, which could be up to 1 ms plus any
other system delays.

OSStatus USBDelay(USBPB *pb);

Required fields in the USBPB parameter block for the USBDelay function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device
--> usbReqCount Number of frames to delay
<-- usbActCount Frame number at completion of delay
--> usbFlags Callback flag
Setting the usbFlags parameter to kUSBTaskTimeFlag requests that a call back be
made at task level, and thus the callback only occurs at task level, and never at
secondary interrupt time. This potentially means that the delay could be
extended. Using the task time mechanism requires that the rest of the system
software cooperates and gives the USB software time.

The usbReqCount field specifies the number of frames to delay. A requested
delay of kUSBNoDelay causes the call back to occur as soon as possible. When
used in conjunction with the kUSBTaskTimeFlag flag, you can effect the quickest
transition to task time.

It should be noted that the delay time requested is a minimum time. The actual
delay time will never be less than the requested time, however it may be a
longer delay depending upon other system activity. As noted in the previous
discussion, using the kUSBTaskTimeFlag can cause the longest delays. Even if the
kUSBTaskTimeFlag flag is not specified, the callback may be delayed if the USB
Manager is not given time by the system.

C H A P T E R 5

USB Services Library Reference

148 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBDelay function should not be used as a system-wide timing mechanism,
since the time values are only relevant within the context of USB frames. The
Mac OS USB software guarantees that only the specified number of frames will
pass over the USB before the completion routine executes. It will never be less
than the specified length of delay. Other activity affecting the system may
determine how long it actually takes for a specified number of frames to pass.
The functions in the Driver Services library provide accurate timing services for
native drivers.

There must be a valid USBReference passed in the usbReference field of the
parameter block. If a nil value or a reference that does not match an existing
device, interface, or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with a call to the USBDelay function is unplugged and its
driver removed while the function call is pending, the delay is cancelled and
the function will not complete. In version 1.3 and later of the USB software, the
delay will complete with a kUSBAbortedError if the kUSBReturnOnException flag is
specified. Your finalize routine can assume that the delay is finished and safely
dispose of the parameter block.

The USBDelay function returns the following errors:

USBGetFrameNumberImmediate 5

The USBGetFrameNumberImmediate function returns the current frame number for
the specified device. The function completes synchronously and is the
recommended function to use for making time calculations for a class driver. It
can be called at any execution level. This function also supports multiple USB
bus implementations.

OSStatus USBGetFrameNumberImmediate(USBPB *pb);

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBAbortedError -6982 Pipe aborted. This error is
returned when a delay call is
pending and the associated device
is unplugged

C H A P T E R 5

USB Services Library Reference

USL Functions 149
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Required fields in the USBPB parameter block for the
USBGetFrameNumberImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference Device, interface, or endpoint reference
--> usbReqCount Size of buffer (0 or size of UInt64)
--> usbBuffer Nil or pointer to a UInt64 structure for full 64 bits of frame

data.
<-- usbActCount Size of data returned
<-- usbFrame Low 32 bits of the current frame number
In multiple USB bus configurations, each bus has an independent frame count.
The USBGetFrameNumberImmediate function takes any device, interface, or
endpoint reference as input and returns the current frame number for the bus
on which that device, interface, or endpoint is connected.

The frame count for each bus is maintained internally by the USB software as a
64 bit value. The USBGetNextFrameNumberImmediate function allows a driver to
get either the low 32 bits of this value in the parameter block, or the full 64 bit
value in a UInt64 structure. To get the low 32 bits, specify a value of nil in
usbBuffer and a value of 0 in usbReqCount. To get the full 64 bits, specify the size
of the UInt64 structure in the usbReqCount field and pointer to an address of the
structure in usbBuffer.

This function does not call the completion routine. However, a value is required
in the usbCompletion field. kUSBNoCallBack can be specified as the completion
routine.

The USBGetNextFrameNumberImmediate function returns the following error:

USB Memory Functions 5

The memory functions allow USB class drivers to allocate and deallocate
memory. Since memory allocation must typically occur at task time, the

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

C H A P T E R 5

USB Services Library Reference

150 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

memory functions will queue the request until task time is available, then
allocate the memory and return asynchronously. These functions are the
preferred way of specifying memory requirements, because they relieve the
class driver from monitoring execution levels when performing memory
management functions.

USBAllocMem 5

The USBAllocMem function allocates a specified amount of memory.

OSStatus USBAllocMem(USBPB *pb);

Required fields in the USBPB parameter block for the USBAllocMem function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device
--> usbReqCount Amount of memory required to be allocated
<-- usbActCount Amount of memory actually allocated
<-- usbBuffer Memory allocated
--> usbFlags Should be set to 0
There must be a valid USBReference passed in the usbReference field of the
parameter block. If a nil value or a reference that does not match an existing
device, interface, or pipe is passed in, the call returns immediately with an
unknown device error.

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete. In version 1.3 and
later of the USB software, if the kUSBReturnOnException flag is specified, the
delay completes with a kUSBAbortedError. Your finalize routine can assume that
the delay is finished and safely dispose of the parameter block for this call.

C H A P T E R 5

USB Services Library Reference

USL Functions 151
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USBAllocMem function returns the following error:

USBDeallocMem 5

The USBDeallocMem function deallocates the memory allocated with the
USBAllocMem function.

OSStatus USBDeallocMem(USBPB *pb);

Required fields in the USBPB parameter block for the USBDeallocMem function are:

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbReference A device, interface, or pipe reference which associates the

call with a device
<--> usbBuffer --> previously allocated memory to be deallocated

<-- pointer set to nil
--> usbFlags Should be set to 0
You can pass kUSBNoCallBack as the usbCompletion field parameter to notify the
USL that you want the operation to complete immediately if at task time. It is
an error to specify no call back, if the current execution level is not task time.

If the usbCompletion field is set to kUSBNoCallBack, the call back mechanism is
not invoked, and the specified usbReference is not checked or used. This is
useful for finalization routines which need to clean up immediately and can’t
wait for a callback routine to complete.

There must be a valid USBReference passed in the usbReference field of the
parameter block. If a reference that does not match an existing device, interface,
or pipe is passed in, the call returns immediately with an unknown device error.

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBAbortedError -6982 Pipe aborted. This error is returned
when the call is pending and the
associated device is unplugged

C H A P T E R 5

USB Services Library Reference

152 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

If the device associated with this call is unplugged and its driver removed while
this function call is pending, the function will not complete. In version 1.3 and
later of the USB software, if the kUSBReturnOnException flag is specified, the
delay completes with a kUSBAbortedError. Your finalize routine can assume that
the delay is finished and safely dispose of the parameter block for this call.

The USBDeAllocMem function returns the following error:

Byte Ordering (Endianism) Functions 5

There are several functions to deal with the differences in byte ordering
between the Intel platform and Mac OS platform. The USB uses Intel byte
ordering (called little endian) on all multibyte fields, which is reversed from the
Mac OS byte ordering (called big endian, because the most significant byte
appears at the lowest memory address). These functions are of endian neutral
form. Using these functions correctly allows the code to be recompiled on an
Intel endian platform and still work as expected.

All parameters and parameter block elements are automatically swapped by the
USB Services Library. These functions need be used only for data that the USL
has no knowledge of. This includes all descriptors returned from the descriptor
functions.

If you need to embed a 16-bit USB constant in your code, you can use this
macro:

USB_CONSTANT16(x)

x The USB constant

This macro is only useful for the C or C++ programming languages.

kUSBUnknownDeviceErr -6998 usbReference does not refer to a
current device

kUSBCompletionError -6984 kUSBNoCallBack was specified and
current execution level is not task
time

kUSBAbortedError -6982 Pipe aborted. This error is
returned when the call is pending
and the associated device is
unplugged

C H A P T E R 5

USB Services Library Reference

USL Functions 153
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HostToUSBWord 5

The HostToUSBWord function changes the byte order of a value from big endian
to little endian.

UInt16 HostToUSBWord(UInt16 value)

HostToUSBLong 5

The HostToUSBLong function changes the byte order of a value from big endian
to little endian.

UInt16 HostToUSBLong(UInt32 value)

USBToHostWord 5

The USBToHostWord function changes the byte order of a value from little endian
to big endian.

UInt16 USBToHostWord(UInt16 value)

If you need to embed a 16-bit USB constant in your code, you can use this
macro:

USB_CONSTANT16(x)

x The USB constant

This macro is only useful for the C or C++ programming languages.

C H A P T E R 5

USB Services Library Reference

154 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBToHostLong 5

The USBToHostLong function changes the byte order of a value from little endian
to big endian.

UInt16 USBToHostLong(UInt32 value)

USL Logging Services Functions 5

The USB Manager provides services to log status messages from drivers to aid
in debugging and software development. The USL provides an interface to this
service. When one of these messages is sent, it currently ends up in a buffer that
the USB Prober utility knows how to read. Choose the USB Expert Log menu
item in the USB Prober Window menu to look at the message.

USBExpertStatus 5

The USBExpertStatus function sends a general message to the Expert status log.
No weight is attached to this message by the operating system. The status
messages can be seen by the USB Prober application in the USB Expert Log
window.

OSStatus USBExpertStatus (
USBDeviceRef ref,
void *pointer,
UInt32 value);

--> ref Device reference for the device driver giving notification. The
reference is for the purpose of displaying information only.
Currently this reference is not validated.

--> pointer A pointer to a string to display. This value is a P-string.

--> value An arbitrary number to display.

C H A P T E R 5

USB Services Library Reference

USL Functions 155
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBExpertStatusLevel 5

The USBExpertStatusLevel function sends a message with a specific level of
importance. The value for the level of status messages is sent to the USB
Manager. These messages can be seen by the USB Prober application in the USB
Expert Log window. The USB Prober also allows you to set the level of status
messages you want displayed. Only messages below the current level are kept
in the Expert log. For more information about the USB Expert Log window, see
“USB Prober Features for Developers” (page 2-37).

OSStatus USBExpertStatusLevel (
UInt32 level,
USBDeviceRef ref,
char *status,
UInt32 value);

level The level to assign to the status message. Integers 1 through 5
kUSBStatusLevelFatal = 1 Fatal errors.
kUSBStatusLevelError = 2 General errors that may or may
 not effect operation.
kUSBStatusLevelClient = 3 General driver messages.
kUSBStatusLevelGeneral = 4 Important messages generated by
 the USB Expert and USL.
kUSBStatusLevelVerbose = 5 General messages from the USB
 Expert and USL.

ref Device reference for the device driver giving notification. The
reference is for the purpose of displaying information only.
Currently this reference is not validated.

status A pointer to a string status message to display. This value is a
P-string.

value An arbitrary number to display.

Note
The USBExpertStatusLevel function was added to the USL
in Mac OS USB software version 1.2. Unless you weak link
to this symbol, using this function prevents your driver
from loading on systems running Mac OS USB software
prior to version 1.2. ◆

C H A P T E R 5

USB Services Library Reference

156 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBExpertGetStatusLevel 5

The USBExpertGetStatusLevel function returns the current logging level. Only
messages less than the returned status level are being recorded in the status log.

UInt32 USBExpertGetStatusLevel(void);

USBExpertSetStatusLevel 5

The USBExpertSetStatusLevel function set the current logging level. Only
messages with a value lower than that specified are recorded in the status log.

void USBExpertSetStatusLevel(UInt32 level);

level The status level values. Integers 1 through 5
kUSBStatusLevelFatal = 1 Fatal errors.
kUSBStatusLevelError = 2 General errors that may or may
 not effect operation.
kUSBStatusLevelClient = 3 General driver messages.
kUSBStatusLevelGeneral = 4 Important messages generated by
 the USB Expert and USL.
kUSBStatusLevelVerbose = 5 General messages from the USB
 Expert and USL.

The USBExpertSetStatusLevel function could be used to debug a call sequence at
a higher level.

USBExpertFatalError 5

The USBExpertFatalError function is intended to inform the system of
nonrecoverable errors in a class driver. Currently no action is taken when this

C H A P T E R 5

USB Services Library Reference

USL Functions 157
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

message is received other than to add the message to the expert log. In the
future it may cause a driver to be unloaded.

OSStatus USBExpertFatalError (
USBDeviceRef ref,
OSStatus status,
void *pointer,
UInt32 value);

--> ref Device reference for the device driver giving notification.

--> status The error status that explains the failure.

--> pointer A pointer to a error status string to display. This value is a
P-string.

--> value An arbitrary number to display.

USB Descriptor Functions 5

All of the USB configuration services were not fully implemented in earlier
versions of the USL. USB configuration had to be performed manually by the
class driver. To make this process less cumbersome, configuration descriptor
parsing functions were provided. These functions are still available, and some
sample drivers may use them, but it is recommended that you use the
configuration services described in “USL Functions” (page 5-106).

The immediate functions (those that end with Immediate in the function name)
may be used repeatedly with the same parameter block to search for interface
and endpoint descriptors.

USBGetFullConfigurationDescriptor 5

The USBGetFullConfigurationDescriptor function returns the entire block of
configuration data from the specified device and any associated descriptors,
which includes interface and endpoint descriptors, and all of the information
that pertains to them. The configuration data returned by the
USBGetFullConfigurationDescriptor function is suitable for use with the

C H A P T E R 5

USB Services Library Reference

158 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBFindNextInterfaceDescriptorImmediate and the
USBFindNextEndpointDescriptorImmediate functions.

OSStatus USBGetFullConfigurationDescriptor(USBPB *pb)

Required fields in the USBPB parameter block for the
USBGetFullConfigurationDescriptor function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
--> usbFlags Should be set to 0
--> usbReference Device reference
--> usb.cntl.WValue

Configuration index
<-- usbBuffer Points to a configuration descriptor structure
<-- usbActCount Size of descriptor returned
The USBGetFullConfigurationDescriptor function determines the size of a full
configuration descriptor, including all interface and endpoint descriptors for a
given configuration, allocates memory for the configuration descriptor, and
reads all the descriptors in.

You don’t pass the USBGetFullConfigurationDescriptor function a buffer
pointer, the function allocates one and passes a pointer back in the usbBuffer
field of the parameter block. The memory for the configuration descriptor must
be deallocated when the information is no longer needed. The USBDeallocMem
function should be used in the class driver’s finalize routine for deallocating
memory and disposing of the descriptor.

The USBGetFullConfigurationDescriptor function is unusual in that it takes a
configuration index in the usb.cntl.WValue field rather than a configuration
value. The configuration value is found in the configuration descriptor, and is
not available until the descriptor has been read. The configuration index refers
to the 1st, 2nd, 3rd, or greater configuration descriptor in a device by specifying
0, 1, 2, or greater respectively. The configuration index is independent of the
configuration value found in the configuration descriptor. The configuration
value is used as an input parameter to set the configuration for a device.

C H A P T E R 5

USB Services Library Reference

USL Functions 159
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Currently there are no other functions in the USB configuration services that
provide the same functionality as the USBGetFullConfigurationDescriptor
function. Configuration descriptors can be retrieved using the
USBGetConfigurationDescriptor function, but the driver has to find the length of
the configuration descriptor and allocate the memory for the descriptor when
calling the function. Specific types of descriptors can be found with the
USBFindNextAssociatedDescriptor function.

Once you have obtained the configuration descriptor, you need to find the
interface you’re interested in within the configuration descriptor by using the
USBFindNextInterfaceDescriptorImmediate function.

USBFindNextInterfaceDescriptorImmediate 5

The USBFindNextInterfaceDescriptorImmediate function returns the address to
the next interface descriptor in a specified configuration descriptor.

OSStatus USBFindNextInterfaceDescriptorImmediate(USBPB *pb)

Required fields in the USBPB parameter block for the
USBFindNextInterfaceDescriptorImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbBuffer --> Configuration descriptor

<-- Interface descriptor
--> usbFlags Should be set to 0
<-- usbActcount Length of interface descriptor found
<--> usbReqCount --> 0, This should be set to 0 the first time the call is made.

Otherwise, the value from the last call should be left alone.
<-- Offset of this descriptor from the start of
the configuration descriptor

<--> usbClassType --> Class; 0 matches any class
<-- Class value for interface found

C H A P T E R 5

USB Services Library Reference

160 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<--> usbSubclass --> Subclass; 0 matches any subclass
<-- Subclass value for interface found

<--> usbProtocol --> Protocol; 0 matches any protocol
<-- Protocol value for interface found

<--> usb.cntl.WValue
--> 0
Configuration number: If more than one interface is
described in the configuration descriptor, this field specifies
the absolute number of the interface in the list.

<-- usb.cntl.WIndex
Interface number

<-- usbOther Alternate interface
The usbReqCount field should be set to 0 for the first iteration of this call. For
each subsequent call to the USBFindNextInterfaceDescriptorImmediate function,
usbReqCount contains the offset of the current interface descriptor from the
beginning of the configuration descriptor.

The usbBuffer field should be assigned the address of the start of the
configuration descriptor obtained from a call to the
USBGetFullConfigurationDescriptor function. This must be the full
configuration descriptor returned by USBGetFullConfigurationDescriptor. The
usbBuffer is assigned a pointer to the next interface descriptor within the
specified configuration for each subsequent call to the
USBFindNextInterfaceDescriptorImmediate function.

The usbClass, usbSubclass, and usbProtocol fields should contain either specific
class, subclass, and protocol numbers, or contain 0 to use for a wildcard search
if the caller wants to find an interface regardless of these fields. Upon return,
these fields contain the class, subclass, and protocol values for the next interface
found. If the caller wants to perform a wildcard search again, the wildcard
values must be reset, because these fields are filled in with the returned values
from the last call.

Once you’ve found an interface in the device, you need to find the endpoints
that make up that interface.

If no interface is found that matches the requested interface, kUSBNotFound is
returned.

C H A P T E R 5

USB Services Library Reference

USL Functions 161
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The errors returned by the USBFindNextInterfaceDescriptorImmediate function
include:

USBFindNextEndpointDescriptorImmediate 5

The USBFindNextEndpointDescriptorImmediate function returns the address to
the next endpoint descriptor in a configuration descriptor that follows a
specified interface descriptor. This is a synchronous call.

OSStatus USBFindNextEndpointDescriptorImmediate(USBPB *pb)

Required fields in the USBPB parameter block for the
USBFindNextEndpointDescriptorImmediate function are

--> pbLength Length of parameter block
--> pbVersion Parameter block version number
--> usbCompletion The completion routine
--> usbRefcon General-purpose value passed back to the

completion routine
<--> usbFlags --> Direction of endpoint (kUSBIn, kUSBOut, or kUSBAnyDirn)

<-- Direction is returned here if kUSBAnyDirn is used in the
usbClassType field. Note that if kUSBAnyDirn is specified, this
field is altered on the calls return. If you want to make
another call to find an endpoint of any direction,
kUSBAnyDirn must be specified again. Direction is also
returned if kUSBIn or kUSBOut are specified. It will however,
be the same value as that passed in.

<--> usbBuffer --> Interface descriptor on the first call, points to an
endpoint descriptor on subsequent calls
<-- Endpoint descriptor

<--> usbReqCount Offset of interface or endpoint descriptor in configuration
descriptor

<-- usbActcount Length of endpoint descriptor found

kUSBNotFound interface specified is not in configuration
kUSBInternalErr,
paramErr

not a valid configuration descriptor

C H A P T E R 5

USB Services Library Reference

162 USL Functions

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<--> usbClassType --> Specific endpoint type, or kUSBAnyType as wildcard
<-- Endpoint type

<--> usbOther --> Endpoint number, always pass 0 unless you want to
match a specific endpoint number.
<-- Next matching endpoint is returned

<-- usb.cntl.WValue
Maximum packet size of endpoint

The usbBuffer should be assigned the address of the start of the interface
descriptor obtained from a call to the USBFindNextInterfaceDescriptorImmediate
function. For each subsequent call to USBFindNextEndpointDescriptorImmediate,
usbBuffer is assigned a pointer to the next endpoint descriptor within the
specified interface.

The errors returned by the USBFindNextEndpointDescriptorImmediate function
include:

USBGetStringDescriptor 5

The USBGetStringDescriptor function is used to obtain the USB String
Descriptor as follows

OSStatus USBGetStringDescriptor(USBPB *pb)

The relevant fields in the USBPB for the USBGetStringDescriptor function are:

--> usbReference
Device/Interface

--> usb.cntl.WValue
String number

--> usb.cntl.WIndex
Language code, 0 for English

--> usbBuffer Where to put descriptor

kUSBNotFound -6987 endpoint specified is not in
configuration

kUSBInternalErr,
paramErr

-6999 not a valid configuration
descriptor

C H A P T E R 5

USB Services Library Reference

Deprecated Pipe Functions 163
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

--> usbReqCount
Size of buffer

<-- usbActCount
Size of returned string

Debugger Aware Flag 5

A debugger aware function USLDebuggerActive was introduced in version 1.4 of
the Mac OS USB software. It is used primarily by system software to notify the
USL that the system has entered or exited a debugger. However, the USL is
aware of the flag, kUSBDebuggerAwareFlag, that can be set by USB drivers in
transaction calls. This section describes the function, its behavior, and the use of
the flag.

void USLDebuggerActive(Boolean active);

active When called with a true parameter the USL is notified that the
debugger has been entered. All future transactions which
complete, and are not marked as debugger aware, will be
delayed until the debugger is exited.

When called with a false status, all transactions that had
completed are dispatched back to the calling driver, and the USL
does not delay transactions further.

USB drivers can set the kUSBDebuggerAwareFlag to make transactions immune to
this behavior. If a driver wants to use the flag in a function call, it should check
the current version of USB software before doing so. If this flag is set on a
version of the Mac OS USB software prior to version 1.4, the transaction is
rejected with a kUSBFlagsError. The USBGetVersion function is used to determine
the current version of the USB software.

Deprecated Pipe Functions 5

The USBOpenPipe and USBClosePipeByReference functions have been deprecated
from the current Mac OS USB API. Use of these functions is not supported for

C H A P T E R 5

USB Services Library Reference

164 Constants and Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

future compatibility. Some of the old code samples in the Mac OS USB DDK
used the USBOpenPipe and USBClosePipeByReference functions.

If you want your code to be compatible with future versions of the Mac OS USB
software, use the functions defined in “USB Configuration Functions”
(page 5-107) to configure a device interface and discover a pipe.

Constants and Data Structures 5

This section lists the constants and data structures used by the USL. Always
check the USB.h header file for the current version of the constants and
structures that support Mac OS USB driver development.

USB Constants 5

The constants recognized by the USL are listed in this section.

Parameter Block Constants 5

kUSBCurrentPBVersion = 0x0100 /* version 1.00*/
kUSBIsocPBVersion = 0x0109 /* version 1.10*/
kUSBCurrentHubPB = kUSBIsocPBVersion

Flag Constants 5

kUSBTaskTimeFlag = 1,
kUSBHubPower = 2,
kUSBPowerReset = 4,
kUSBHubReaddress = 8,
kUSBAddressRequest = 16,
kUSBReturnOnException = 32,
kUSBNo5SecTimeout = 64,
kUSBTimeout = 128,
kUSBNoDataTimeout = 256,
kUSBDebugAwareFlag = 512

C H A P T E R 5

USB Services Library Reference

Constants and Data Structures 165
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Endpoint Type Constants 5

kUSBControl = 0
kUSBIsoc = 1
kUSBBulk = 2
kUSBInterrupt = 3
kUSBAnyType = 0xff

usbBMRequest Direction Constants 5

kUSBOut = 0 /* Data is transfered to the device */
kUSBIn = 1 /* Data is transfered to the host */
kUSBNone = 2 /* No data is transfered */
kUSBAnyDirn = 3 /* Any direction */

usbBMRequestType Type Constants 5

kUSBStandard = 0
kUSBClass = 1
kUSBVendor = 2

usbBMRequest Recipient Constants 5

kUSBDevice = 0
kUSBInterface = 1
kUSBEndpoint = 2
kUSBOther = 3

usbBRequest Constants 5

kUSBRqGetStatus = 0
kUSBRqClearFeature = 1
kUSBRqReserved1 = 2
kUSBRqSetFeature = 3
kUSBRqReserved2 = 4
kUSBRqSetAddress = 5
kUSBRqGetDescriptor = 6

C H A P T E R 5

USB Services Library Reference

166 Constants and Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBRqSetDescriptor = 7
kUSBRqGetConfig = 8
kUSBRqSetConfig = 9
kUSBRqGetInterface = 10
kUSBRqSetInterface = 11
kUSBRqSyncFrame = 12

Interface Constants 5

kUSBHIDInterfaceClass = 0x03
kUSBNoInterfaceSubClass = 0x00
kUSBBootInterfaceSubClass = 0x01

Interface Protocol Constants 5

kUSBNoInterfaceProtocol = 0x00
kUSBKeyboardInterfaceProtocol = 0x01
kUSBMouseInterfaceProtocol = 0x02

Driver Class Constants 5

kUSBCompositeClass = 0
kUSBAudioClass = 1
kUSBCOMMClass = 2
kUSBHIDClass = 3
kUSBDisplayClass = 4
kUSBPrintingClass = 7
kUSBMassStorageClass = 8
kUSBHubClass = 9,
kUSBDataClass = 10
kUSBVenderSpecificClass = 0xFF

};

C H A P T E R 5

USB Services Library Reference

Constants and Data Structures 167
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Descriptor Type Constants 5

kUSBDeviceDesc = 1
kUSBConfDesc = 2
kUSBStringDesc = 3
kUSBInterfaceDesc = 4
kUSBEndpointDesc = 5
kUSBHIDDesc = 0x21
kUSBReportDesc = 0x22
kUSBPhysicalDesc = 0x23
kUSBHUBDesc = 0x29

Feature Selector Constants 5

kUSBFeatureDeviceRemoteWakeup = 1
kUSBFeatureEndpointStall = 0

Pipe State Constants 5

kUSBActive = 0, /* Pipe can accept new transactions */
kUSBIdle = 1, /* Pipe cannot accept new transactions */
kUSBStalled = 2 /* An error occured on the pipe */
kUSBSuspended = 4 /* Device is suspended */
kUSBNoBandwidth = 8 /* Isochronous or Interrupt pipe could */

/* not be initialized due to bandwidth
/* constraint */

USB Power and Bus Attribute Constants 5

kUSB100mAAvailable = 50
kUSB500mAAvailable = 250
kUSB100mA = 50
kUSBAtrBusPowered = 0x80
kUSBAtrSelfPowered = 0x40
kUSBAtrRemoteWakeup = 0x20

C H A P T E R 5

USB Services Library Reference

168 Constants and Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Driver File and Resource Types 5

kServiceCategoryUSB = FOUR_CHAR_CODE('usb ')
kUSBTypeIsHub = FOUR_CHAR_CODE('hubd')
kUSBTypeIsHID = FOUR_CHAR_CODE('HIDd')
kUSBTypeIsDisplay = FOUR_CHAR_CODE('disp')
kUSBTypeIsModem = FOUR_CHAR_CODE('modm')
kUSBDriverFileType = FOUR_CHAR_CODE('ndrv')
kUSBDriverRsrcType = FOUR_CHAR_CODE('usbd')
kUSBShimRsrcType = FOUR_CHAR_CODE('usbs')
kTheUSBDriverDescriptionSignature = FOUR_CHAR_CODE('usbd')

Driver Loading Option Constants 5

kUSBDoNotMatchGenericDevice = 0x00000001, /* Driver's VendorID */
/* must match Device's */
/* VendorID*/

kUSBDoNotMatchInterface = 0x00000002, /* Do not load this driver */
/* as an interface driver.*/

kUSBProtocolMustMatch = 0x00000004, /* Do not load this driver */
/* if protocol field */
/* doesn't match.*/

kUSBInterfaceMatchOnly = 0x00000008 /* Only load this driver */
/* as an interface driver.*/

Error Status Level Constant 5

kUSBStatusLevelFatal = 1,
kUSBStatusLevelError = 2,
kUSBStatusLevelClient = 3,
kUSBStatusLevelGeneral = 4,
kUSBStatusLevelVerbose = 5

USB Data Structures 5

These are the data structures defined by the USL for USB device and driver
descriptors. The current definitions can also be found in the USB.h file.

C H A P T E R 5

USB Services Library Reference

Constants and Data Structures 169
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Device Descriptor Structure 5

The USB device descriptor is of this form:

struct USBDeviceDescriptor {
UInt8 length; /* Length of this descriptor */
UInt8 descType;
UInt16 usbRel;
UInt8 deviceClass;
UInt8 deviceSubClass;
UInt8 protocol;
UInt8 maxPacketSize;
UInt16 vendor;
UInt16 product;
UInt16 devRel;
UInt8 manuIdx;
UInt8 prodIdx;
UInt8 serialIdx;
UInt8 numConf;
UInt16 descEnd;

};

Additional information about valid values for the fields in USBDeviceDescriptor
structure can be found in the USB specifications.

Configuration Descriptor Structure 5

The USB device configuration descriptor is of this form:

struct USBConfigurationDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt16 totalLength;
UInt8 numInterfaces;
UInt8 configValue;
UInt8 configStrIndex;
UInt8 attributes;
UInt8 maxPower;

};

C H A P T E R 5

USB Services Library Reference

170 Constants and Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Interface Descriptor Structure 5

The USB device interface descriptor is of this form:

struct USBInterfaceDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt8 interfaceNumber;
UInt8 alternateSetting;
UInt8 numEndpoints;
UInt8 interfaceClass;
UInt8 interfaceSubClass;
UInt8 interfaceProtocol;
UInt8 interfaceStrIndex;

};

Endpoint Descriptor Structure 5

The USB device endpoint descriptor is of this form:

struct USBEndPointDescriptor {
UInt8 length;
UInt8 descriptorType;
UInt8 endpointAddress;
UInt8 attributes;
UInt16 maxPacketSize;
UInt8 interval;

};

HID Descriptor Structure 5

The USB HID descriptor is of this form:

struct USBHIDDescriptor {
UInt8 descLen;
UInt8 descType;
UInt16 descVersNum;
UInt8 hidCountryCode;
UInt8 hidNumDescriptors;
UInt8 hidDescriptorType;

C H A P T E R 5

USB Services Library Reference

USL Error Codes 171
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt8 hidDescriptorLengthLo;
UInt8 hidDescriptorLengthHi;

};

HID Report Descriptor Structure 5

The USB HID report descriptor is of this form:

struct USBHIDReportDesc {
UInt8 hidDescriptorType;
UInt8 hidDescriptorLengthLo;
UInt8 hidDescriptorLengthHi;

};

For more information about human interface devices (HIDs), see Chapter 7,
“HID Library Reference.”

USL Error Codes 5

Error codes returned by the USL are in the range -6900 to -6999 as listed in
Table 5-2.

Table 5-2 Error definitions

Error constant Number Definition

kUSBNoErr 0 No error occurred

kUSBInternalErr -6999 Internal error

kUSBUnknownDeviceErr -6998 Device reference not recognized

kUSBUnknownPipeErr -6997 Pipe reference not recognized

kUSBTooManyPipesErr -6996 Too many pipes

kUSBIncorrectTypeErr -6995 Incorrect type specified

kUSBRqErr -6994 Request error

kUSBUnknownRequestErr -6993 Unknown request

C H A P T E R 5

USB Services Library Reference

172 USL Error Codes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBTooManyTransactionsErr -6992 Too many transactions

kUSBAlreadyOpenErr -6991 Device already open

kUSBNoDeviceErr -6990 No device

kUSBDeviceErr -6989 Device error

kUSBOutOfMemoryErr -6988 Out of memory

kUSBNotFound -6987 USB not found

kUSBPBVersionError -6986 Wrong parameter block version

kUSBPBLengthError -6985 pbLength too small

kUSBCompletionError -6984 No completion routine specified

kUSBFlagsError -6983 Flags not initialized to 0

kUSBAbortedError -6982 Pipe aborted

kUSBNoBandwidthError -6981 Not enough bandwidth available

kUSBPipeIdleError -6980 Pipe is idle; it cannot accept
transactions

kUSBPipeStalledError -6979 Pipe has stalled; it cannot be
used until the error is cleared
with a
USBClearPipeStallByReference
call

kUSBUnknownInterfaceErr -6978 Interface reference not
recognized

kUSBDeviceBusy -6977 Device is already being
configured

kUSBDevicePowerProblem -6976 Device has a power problem

kUSBInvalidBuffer -6975 Bad buffer, usually nil

kUSBDeviceSuspended -6974 Device is suspended

kUSBDeviceNotSuspended -6973 Device is not suspended for
resume

Table 5-2 Error definitions

Error constant Number Definition

C H A P T E R 5

USB Services Library Reference

USL Error Codes 173
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

kUSBDeviceDisconnected -6972 Disconnected during suspend or
reset

kUSBTimedOut -6971 Transaction timed out. See
“Transaction and Data
Timeouts,” for additional details

kUSBBadDispatchTable -6950 Improper driver dispatch table

kUSBUnknownNotification -6949 Notification type not defined

kUSBQueueFull -6948 Internal queue full

kUSBLinkErr -6916 Link error

kUSBCRCErr -6915 Pipe stall: bad CRC

kUSBBitstufErr -6914 Pipe stall: bitstuffing

kUSBDataToggleErr -6913 Pipe stall: bad data toggle

kUSBEndpointStallErr -6912 Device didn’t understand

kUSBNotRespondingErr -6911 Pipe stall, no device, or device
hung

kUSBPIDCheckErr -6910 Pipe stall: PID CRC error

kUSBWrongPIDErr -6909 Pipe stall: Bad or wrong PID

kUSBOverRunErr -6908 Packet too large or more data
than buffer

kUSBUnderRunErr -6907 Less data than buffer

kUSBBufOvrRunErr -6904 Host hardware failure on data in

kUSBBufUnderRunErr -6903 Host hardware failure on data
out

kUSBNotSent1Err -6902 Transaction not sent

kUSBNotSent2Err -6901 Transaction not sent

Table 5-2 Error definitions

Error constant Number Definition

C H A P T E R 5

USB Services Library Reference

174 USL Error Codes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

175
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 6

USB Manager Reference 6Figure 6-0
Listing 6-0
Table 6-0

C H A P T E R 6

USB Manager Reference

176 Overview

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USB Manager API is described in this chapter.

Overview 6

The USB Manager maintains a database of all the currently connected devices
that communicate using the USB protocol. Whenever a device is added to the
USB, it is the responsibility of the USB Manager to register the device with the
Name Registry and load the device’s driver software. In the event of a device
being removed, the USB Manager must ensure that the driver is removed
cleanly from the system and all references to the device in the Name Registry
are removed.

Figure 6-1 depicts the sequence of events that the USB Manager participates in
when a device is added to the USB.

Figure 6-1 Device addition event sequence on the USB

Device
driver

Device

USB Services Library
(USL)

USB Bus

Hub
driver

USB
Manager

2. Hub driver
 is notified of
 bus change

3. USB Manager is informed
 of bus change (Hub driver
 supplies device info)

4. USB Manager
 creates name
 registry entry for
 device

5. USB Manager
 loads driver

6. Driver begins using the USL
 to communicate with the USB device

1. Device is attached

C H A P T E R 6

USB Manager Reference

USB Manager API 177
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The USB Manager consists of native code fragments wrapped in a file of type
'expt'. A complete description of code fragments and the mechanisms for
dealing with them in applications can be found in Inside Macintosh: Power PC
System Software, Chapter 3, “Code Fragment Manager.”

During the Macintosh boot sequence, the USB Manager is loaded immediately
following all native drivers ('ndrv') and before generic INIT files. The USB
Manager resides in the Mac OS ROM file, or in the case of machines without
built-in USB ports, the USB Support extension in the Extensions folder.

The USB Manager is responsible for the following services which support the
USB architecture.

■ Maintain USB topology in database: keep updated information about the
USB in the Name Registry and dynamically update the information as
devices are added or removed from the bus.

■ Provide access functions for database information: Device information
needed by either the USL or a device driver should be accessible via the USB
Manager.

■ Generate unique opaque bus reference, a USBBusRef defined is a
USBReference (SInt32), when a root hub is detected/loaded. For possible
future use, a unique bus reference is generated by the USB Manager for each
instantiated root hub. Every device record stores the bus reference of the bus.

USB Manager API 6

This section describes the data structures and functions supported by the USB
Manager API. In this chapter functions refers to the function declarations for the
APIs rather than functions within USB devices.

Prototypes for all functions and definitions of other related data types are in the
USB.h header file. The file is typically found in the includes folder.

Topology Database Access Functions 6

The functions for getting information about the USB topology are defined in
this section.

C H A P T E R 6

USB Manager Reference

178 USB Manager API

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Getting Device Descriptors 6

The USBGetDeviceDescriptor function returns a pointer to the device descriptor
of the specified device reference.

OSStatus USBGetDeviceDescriptor (
USBDeviceRef *deviceRef,
USBDeviceDescriptor *deviceDescriptor,
UInt32 size);

--> deviceRef A pointer to the allocated device reference for which you want
the device descriptor.

<-- deviceDescriptor
A pointer to the device descriptor.

--> size Size of the descriptor. If the descriptor that is returned is larger
than the requested size, a kUSBOverRunErr is returned and only
the first size bytes of the descriptor are filled in.

Getting Interface Descriptors 6

The USBGetInterfaceDescriptor function returns a pointer to the interface
descriptor of supplied interface reference.

OSStatus USBGetInterfaceDescriptor (
USBInterfaceRef *interfaceRef,
USBInterfaceDescriptor *InterfaceDescriptor,
UInt32 size);

--> interfaceRef
A pointer to the allocated interface reference for which you want
the interface descriptor.

<-- interfaceDescriptor
A pointer to the device interface descriptor.

--> size Size of the descriptor. If the descriptor that is returned is larger
than the requested size, a kUSBOverRunErr is returned and only
the first size bytes of the descriptor are filled in.

C H A P T E R 6

USB Manager Reference

USB Manager API 179
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Finding The Driver For A Device By Class 6

The USBGetNextDeviceByClass function returns a class driver reference for the
class driver matching the specified device class and optionally the device
subclass for that device. This function also works with interface references.

OSStatus USBGetNextDeviceByClass (
USBDeviceRef *deviceRef,
CFragConnectionID *connID,
UInt16 theClass,
UInt16 theSubClass,
UInt16 theProtocol);

<--> deviceRef
A pointer to the device or interface driver reference for the
device or interface class specified.

<-- connID A pointer to the device connection ID.

--> theClass A number representing the device or interface class for which
you want a compatible class driver. You can pass in
kUSBAnyClass as a wildcard value. See the USB Specification for
the device and interface class descriptions and identifiers.

--> theSubClass
A number representing the device or interface sub class for
which you want a compatible class driver. You can pass in
kUSBAnySubClass as a wildcard value. See the USB Specification
for the device and interface subclass descriptions and identifiers.

--> theProtocol
A number representing the device or interface protocol for
which you want a compatible class driver. You can pass in
kUSBAnyProtocol as a wildcard value. See the USB Specification
for the device and interface protocol descriptions and identifiers.

The USBGetNextDeviceByClass function returns a pointer to the next
usbDeviceRef for a class driver matching the specified deviceClass and
(optionally) deviceSubClass and deviceProtocol parameters. Pass kNoDeviceRef
for the deviceRef parameter to begin, then pass the returned device reference
for subsequent searches.

An OSStatus error of -43 is returned if a device cannot be found with the
specified parameters. The device reference, deviceRef, returns unchanged if no
subsequent match is made. The typical way to find all similar devices is to keep

C H A P T E R 6

USB Manager Reference

180 USB Manager API

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

calling the USBGetNextDeviceByClass function until the status value changes
from noErr. At that point, the deviceRef is officially undefined.

The driver descriptor structure must have the same class and subclass codes as
the codes for the device that is specified in the function call. This is particularly
important for vendor specific devices, since the correct driver for the device
would not typically load if the class and subclass codes don’t match those for
the device.

If you are developing a device and the USBGetNextDeviceByClass function isn’t
finding the requested device, be sure that the driver descriptor structure for
your device driver has the same class and subclass codes as the device.

Constants are defined for the device class, subclass, protocol, vendor, and
product identifiers which you can pass as wildcard values in the functions
USBGetNextDeviceByClass and USBInstallDeviceNotification (page 6-187).

Note
In USB version 1.0.1 (the iMac update 1.0) a bug prevented
correct searches if usbClass, usbSubclass, and usbProtocol
were equal 0 and kNoDeviceRef is used for the deviceRef.
This behavior is not present in version 1.1 and greater of
the Mac OS USB software.

Constant Value Description
kUSBAnyClass 0xffff Pass in as a wildcard in the deviceClass

parameter or usbClass field in the device
notification parameter block.

kUSBAnySubClass 0xffff Pass in as a wildcard in the deviceSubClass
parameter or usbSubClass field in the device
notification parameter block

kUSBAnyProtocol 0xffff Pass in as a wildcard in the deviceProtocol
parameter or usbProtocol field in the device
notification parameter block

kUSBAnyVendor 0xffff Pass in as a wildcard in the usbVendor field in
the device notification parameter block.

kUSBAnyClass 0xffff Pass in as a wildcard in the usbProduct field
in the device notification parameter block

C H A P T E R 6

USB Manager Reference

USB Manager API 181
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Getting The Connection ID For Class Driver 6

The USBGetDriverConnectionID function returns a pointer to the connection ID,
CFragConnectionID, of the driver referenced by the device or interface reference.

OSStatus USBGetDriverConnectionID (
USBDeviceRef *deviceRef,
CFragConnectionID *connID);

--> deviceRef A pointer to the device or interface reference for which you
want a connection ID.

<-- connID A pointer to the connection ID.

This function can be used to get the code fragment connection ID of a device
driver or interface driver. An example of its use in a application would be to
locate and display information about a device driver. You could use the
USBGetDriverConnectionID function to get the connection ID, and then pass the
connection ID to the FindSymbol function, defined in Inside Macintosh: Power PC
System Software, Chapter 3, “Code Fragment Manager,” to locate the address of the
pTheUSBDriverDescription structure, which contains the USB driver description
information.

Here’s a code snippet showing the basic idea. This snippet does not include any
error or system zone checking code, which the driver would have to supply.

USBGetDriverConnectionID(&theDeviceRef, &connID);
FindSymbol (connID, “\pTheUSBDriverDescription”,

(Ptr *)&pTheUSBDriverDescription, &symClass);
sprinf((char *)buf, “Driver Description Version:. 0x%04x”,

pTheUSBDriverDescription->usbDriverDescVersion);

Getting The Bus Reference For a Device 6

The USBDeviceRefToBusRef function returns a pointer to the bus reference for the
device specified with a device reference.

OSStatus USBDeviceRefToBusRef (
USBDeviceRef *deviceRef,
USBBusRef *busRef);

--> deviceRef A pointer to an already established device reference for which
you want the bus reference.

C H A P T E R 6

USB Manager Reference

182 USB Manager API

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<-- busRef A pointer to the bus reference.

Passing Messages To Another Driver 6

The USBDriverNotify function supports message passing between drivers.

OSStatus USBDriverNotify (
USBReference reference,
USBDriverMessage mesg,
UInt32 refcon,
USBDriverNotificationCallbackPtr callback);

--> reference A USBReference for the recipient driver.

--> mesg The message to pass to the recipient driver

--> refcon General reference value passed the completion routine for use
by the driver.

--> callback A pointer to a callback function.

Drivers call the USBDriverNotify function with the USB reference of the recipient
driver, a message, a refcon, and an optional pointer to a callback function. The
USB Manager locates the recipient driver based on the supplied reference and
passes the message on by calling the USBDeviceNotificationCallbackProc for
recipient driver, if it has a notification proc. Possible message constants are:

kNotifySystemSleepRequest = 0x00000001,
kNotifySystemSleepDemand = 0x00000002,
kNotifySystemSleepRevoke = 0x00000003
kNotifyHubEnumQuery = 0x00000006,
kNotifyChildMessage = 0x00000007,
kNotifyExpertTerminating = 0x00000008,
kNotifyDriverBeingRemoved = 0x0000000B

The sleep notification messages kNotifySystemSleepRequest and
kNotifySystemSleepDemand are the same on any power-managed system. On
PowerBook models, the processor and I/O subsystems are turned off when the
machine goes to sleep. Because the USB is part of the I/O subsystem on
PowerBooks with built-in USB or USB on a PC Card, the sleep state does effect
USB drivers. Desktop Macintosh computers do not see these messages, since
the processor and network I/O subsystems on desktop models remain active
during system sleep.

C H A P T E R 6

USB Manager Reference

USB Manager API 183
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

When a PowerBook computer with Mac OS USB software version 1.2 or later
goes to sleep, the USB Manager sends any active USB drivers the
kNotifySystemSleepDemand message and then unloads the driver just like a
disconnect (hot unplug). When the PowerBook wakes up, the USB software
re-enumerates the USB and appropriate drivers are loaded for any USB devices
found on the bus.

Receiving A Message From A Child Driver 6

The USBExpertNotifyParent function allows a child driver to send a message to
its parent driver.

USBExpertNotifyParent (
USBReference reference,
void * pointer);

--> reference The USB reference for the calling child driver.

--> pointer A pointer to a privately defined message for the parent driver.

If a parent driver has its USBDeviceNotificationCallbackProc called with a
kNotifyChildMessage, then the parent driver should interpret the pointer
argument as a privately defined message type from the child driver and the
refcon argument as the USBReference of that child.

See the “Device Notification Parameter Block” (page 6-186) for details about
information passed in the device notification callback.

Registering Shims After Boot Time 6

The USBAddShimFromDisk function allows extensions or installers to register a
shim with the USB family expert after the system has booted. This function is
available in version 1.3 and later of the Mac OS USB software.

USBAddShimFromDisk (
FSSpec *shimFilePtr);

shimFilePtr The FSSpec file system specification record for the file containing
the shim or shims. The Macintosh file system specification
FSSpec record is defined in Chapter 2 of Inside Macintosh: Files.

The USBAddShimFromDisk function loads all code fragments that export the
symbol "USBShim" from the file described by the FSSpec, and then calls the

C H A P T E R 6

USB Manager Reference

184 USB Manager API

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

USBShim function. If the function returns a non-zero value, the code fragment is
unloaded, otherwise it remains loaded while USB is active, typically until
shutdown. However USB could be replaced, which would also cause shims to
be unloaded. Code fragments and shims are discussed in Chapter 4, “Writing
Mac OS USB Drivers.”

The USBAddShimFromDisk function is intended to be called by installers, or
extensions that want to register a shim with the USB expert, but can’t do it at
boot time because they require services that are not yet available. For example,
they link to libraries such as QuickTime or OpenTransport.

This function provides a method for installers or extensions to load a shim in
order to use a device immediately without the need to reboot. An example use
for this function would be in a USB software updater/installer application.
Such an installer could be designed to work when software is downloaded over
the internet by installing the driver software, and using USBAddShimFromDisk
function to activate any shims that were installed in the Extensions folder. The
device could then begin to function immediately without rebooting the
computer as is typically required for driver software with shims.

Note
This function is exported from the USBFamilyExpertLib
and not from the USBManagerLib.

Adding a Driver For a Device After Boot Time 6

The USBAddDriverForFSSpec function adds a driver for a given device based on
the device reference specified. Example uses for this function would be to load a
specific driver for a device that doesn’t have a current driver loaded in the
extensions folder, or to ensure that a vendor-specific driver is loaded for a
vendor-specific device. This function is available in version 1.3 and later of the
Mac OS USB software.

USBAddDriverForFSSpec (
USBReference reference
FSSpec *fileSpec);

reference The USBReference for the device. Interface references are not
permitted.

fileSpec Pointer to the FSSpec file system specification record for the
driver file . The Macintosh file system specification FSSpec
record is defined in Chapter 2 of Inside Macintosh: Files.

C H A P T E R 6

USB Manager Reference

USB Manager API 185
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

If there was a driver already installed for the reference, the routine returns the
error kUSBDeviceBusy if the existing driver did not finalize immediately. When
that happens, the USB software is deferring the termination of the driver. This
means that it is the responsibility of the caller to give the system some task time
so that Expert's idle task gets called and the deferred termination executed. If
the caller bails out after the first call, the deferred termination will still happen
(the old driver will eventually get unloaded).

Callback Routine for Device Notification 6

The callback routine, callback routine parameter block, and callback notification
request functions used for device notification are listed in this section.

The device notification mechanism is used to inform clients when devices are
added and removed from the USB. Clients register for notification services
using the USBInstallDeviceNotification function and can request all
notifications or a specific notification type. Whenever a device or interface is
added or removed from the bus, all registered clients are called back with the
information about the device or interface.

Note
Device notifications are only sent by the USB Manager
when there are drivers currently loaded for the device or
specific interface the notification request is registered for.

Clients that register for notifications must be sure to un-register with the
USBRemoveDeviceNotification function before their code fragment is unloaded.

The callback routine is always called at task time, and may allocate memory,
make Macintosh Toolbox calls, or perform other system maintenance
operations.

Device Notification Callback Routine 6

The device notification callback routine declaration is defined as:

typedef void (USBDeviceNotificationCallbackProc)
(USBDeviceNotificationParameterBlockPtr pb);

typedef USBDeviceNotificationCallbackProc
*USBDeviceNotificationCallbackProcPtr;

C H A P T E R 6

USB Manager Reference

186 USB Manager API

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Device Notification Parameter Block 6

The parameter block for the device notification callback routine is defined as:

/* Device Notification Parameter Block */
struct USBDeviceNotificationParameterBlock
{
UInt16 pbLength;
UInt16 pbVersion;
USBNotificationType usbDeviceNotification;
UInt8 reserved1;
USBDeviceRef usbDeviceRef;
UInt16 usbClass;
UInt16 usbSubClass;
UInt16 usbProtocol;
UInt16 usbVendor;
UInt16 usbProduct;
OSStatus result;
UInt32 token;
USBDeviceNotificationCallbackProcPtr callback;
UInt32 refcon;
};

Field descriptions
--> pbLength Length of parameter block
--> pbVersion Version number of this parameter block
<--> usbDeviceNotification

The type of notification
The following notifications are defined:
kNotifyAnyEvent
kNotifyAddDevice
kNotifyAddInterface
kNotifyRemoveDevice
kNotifyRemoveInterface

--> reserved1[1] Reserved, needed because of 2-byte 68k alignment
<-- usbDeviceRef The device reference for the target device
<--> usbClass The class of the target device, use kUSBAnyClass for any

class
<--> usbSubClass The subclass of the target device, use kUSBAnySubClass for

any subclass

C H A P T E R 6

USB Manager Reference

USB Manager API 187
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

<--> usbProtocol The protocol of the target device, use kUSBAnyProtocol for
any protocol

<--> usbVendor The vendor ID of the target device, use kUSBAnyVendor for
any vendor

<--> usbProduct The product ID of the target device, use kUSBAnyProduct for
any product

<-- result The status of the call
<-- token The value returned to uniquely identify this particular

device notification. You pass this value to the
USBRemoveDeviceNotification function.

--> callback A pointer to the callback routine to be called when the
notification criteria is satisfied

Installing The Device Callback Request 6

The USBInstallDeviceNotification function installs the device notification
routine for the device specified in the USBDeviceNotificationParameterBlock.
Pass in 0xffff or the wildcard constants as a wildcard for class, subclass,
protocol, vendor, and/or product. Pass in kNotifyAnyEvent (0xff) in the
usbDeviceNotification field to be notified for any change that occurs.

void USBInstallDeviceNotification (USBDeviceNotificationParameterBlock
*pb);

pb A pointer to the USBDeviceNotificationParameterBlock defined
on (page 6-186).

If a code fragment installs a device notification routine, the device notification
routine must be removed with the USBRemoveDeviceNotification function before
the code fragment is unloaded.

When registering with the USB Manager to be notified when device connections
occur, you will also be notified when interfaces are connected to the USB stack.
There is a differences between the notification implementation for devices
connections and device driver loading and interface connections and interface
driver loading. The difference is how the USB stack is informed about the
connection.

With composite devices that are handled by the Apple composite driver, the
USB stack is told about the interface by virtue of the load interface driver
request. This occurs because the Apple composite driver discovers the interface

C H A P T E R 6

USB Manager Reference

188 Errors Returned By The USB Manager

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

and asks the USB stack to handle it. For vendor specific drivers, the interfaces
are not discovered by the Apple composite driver, and the USB stack is not
informed or asked to handle the interface.

This means that if a shim or application installs a notification request into the
USB Manager for an interface, and the device is handled by a vendor specific
driver, then the shim or application won’t be notified that the interface was
discovered.

Unless a device is managed by the Apple composite driver, the shim or
application will not be notified when a device with a particular interface is
connected. Even if you have registered for notifications for that interface class
and subclass, or is you are watching for a specific interface’s class or subclass.

Removing The Device Callback Request 6

The USBRemoveDeviceNotification function removes a previously installed
device notification routine.

OSStatus USBRemoveDeviceNotification (UInt32 token);

token Notification identifier from the previously installed device
notification routine.

Errors Returned By The USB Manager 6

Table 6-1 lists errors returned by the USB Manager.

Table 6-1 USB Manager error codes

kUSBBadDispatchTable -6950 Improper driver dispatch table

kUSBUnknownNotification -6949 Notification type not defined

kUSBQueueFull -6948 Internal queue full

189
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

C H A P T E R 7

HID Library Reference 7Figure 7-0
Listing 7-0
Table 7-0

C H A P T E R 7

HID Library Reference

190 Overview

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The Human Interface Device (HID) library APIs for the Mac OS are described in
this chapter. To help understand the information presented in this chapter, you
should be familiar with the material in the other chapters of this document, as
well as the Device Class Definitions for Human Interface Devices (HID), HID Usage
Table, and Usage Tables for HID Power Devices class specifications, which are
available at the USB organization web site. The USB class specifications can be
downloaded at:

http://www.usb.org/developers/index.html

Overview 7

The Mac OS USB software includes a HID library that can determine the
features of a HID device by parsing HID report descriptors. Examples of the
types of HID devices the HID library can provide support for are:

■ USB audio devices, such as external speakers with push button controls

■ USB gaming devices, such as joysticks and gamepads

■ Display monitors with USB ports and push button controls

■ Uninterruptable power supplies with a USB host interface

The HID library is a shared library that is compatible with all Power Macintosh
computers running Mac OS 8.1 or later. It does require that the Macintosh
computer include a USB interface and have the Mac OS USB software version
1.2 or later installed. The USB hardware interface can be either built-in, like it is
in the iMac computer, or in the form of a PCI card installed in the computer.

The HID library is primarily used by higher-level drivers or shims, such as an
InputSprocket driver or the USB Mouse shim, to parse HID report descriptors
and decode HID reports.

The block diagram in Figure 7-1 shows how HID library fits into the Mac OS
USB software architecture. The diagram shows a HID device, the USB HID
interface driver, the HID library, and a block which can be a high-level
InputSprocket driver or USB shim. There are several additional Mac OS USB
software components involved in making communication with the HID device
possible. This diagram only shows those the higher-level driver generally deals
with when using the HID library.

C H A P T E R 7

HID Library Reference

Overview 191
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

In this software model, the USB device is controlled by driver software. Apple
system software provides drivers for standard devices, such as keyboards, mice,
joysticks, and controls for audio, display, and uninterruptable power supplies.

For special features or devices, vendor specific drivers must be provided. If the
device includes a Human Input Device, the USB HID interface driver exports a
HID dispatch table for each device it supports and is matched against. The
higher level software, such as a shim or InputSprocket driver, uses the device’s
HID interface driver API entry points defined in the dispatch table to
communicate with the device. The API a driver needs to implement in the HID
dispatch table is defined in “The HIDDeviceDispatchTable Structure”
(page 4-76), and in the HID.h file.

The higher-level driver or shim software uses the HID library functions to
obtain additional information about the features of the device. For example, an
InputSprocket driver for a joystick will want to know what button features are
available on the device and present that information to the user in a game
environment. In order to find out what features are available, the InputSprocket
driver will have to use the HID library functions to parse the HID report
descriptor and decode the HID report for the joystick.

Figure 7-1 HID library in USB software architecture

In order for the higher level software to be informed of manual or
programmatic changes to the human input device, it must use the driver’s

Shim or Input
Sprocket driver

HID device

HID library USB HID
interface driver

C H A P T E R 7

HID Library Reference

192 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HIDDeviceDispatchTable to install, and later remove, a report handler. The
reports that then come to the handler are encoded by the driver according to the
HID report descriptors. The HID Library functions are then used by the report
handler to decode the reports. Conversely, when the higher level software
needs to send information to the HID device, it must create a report and use the
HID Library to encode the desired information. The HID driver does the actual
work of sending the report to the device when the higher level software
communicates with the driver through the HIDDeviceDispatchTable. Examples
of how report handlers are implemented can be found in the HID Reader folder
found in the Examples folder of the USB DDK.

HID Library API Reference 7

This section describes the functions supported by the HID Library. The
functions are organized according to usage.

HID Descriptor Management Functions 7

The HIDOpenReportDescriptor and HIDCloseReportDescriptor functions are used
for HID descriptor management.

HIDOpenReportDescriptor 7

extern OSStatus HIDOpenReportDescriptor (
void * hidReportDescriptor,
ByteCount descriptorLength,
HIDPreparsedDataRef * preparsedDataRef,
UInt32 flags);

The HIDOpenReportDescriptor function allocates the memory the parser needs to
handle the given report descriptor, and then parses the report descriptor. A data
reference to the parsed report information is returned.

C H A P T E R 7

HID Library Reference

HID Library API Reference 193
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

hidReportDescriptor
Contains a pointer to the actual HID report descriptor from the
USB device’s firmware.

descriptorLength
The length of the HID report descriptor

preparsedDataRef
Preparsed data reference to be used for subsequent function
calls

flags Flags for this function are kHIDFlag_StrictErrorChecking =
0x00000001

When the parsed information is no longer needed, clients should call the
HIDCloseReportDescriptor function.

HIDCloseReportDescriptor 7

extern OSStatus HIDCloseReportDescriptor (
HIDPreparsedDataRef preparsedDataRef);

Disposes of the memory the parser allocated for the HIDOpenReportDescriptor
function.

preparsedDataRef
Preparsed data reference for the report that is returned by the
HIDOpenReportDescriptor function. After making a call to the
HIDCloseReportDescriptor function, the preparsedDataRef is
invalid and should not be used.

HID Capabilities Functions 7

This sections defines the functions used to discover the capabilities of a HID
device.

C H A P T E R 7

HID Library Reference

194 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HIDGetButtonCaps 7

extern OSStatus HIDGetButtonCaps (
HIDReportType reportType,
HIDButtonCapsPtr buttonCaps,
UInt32 * buttonCapsSize,
HIDPreparsedDataRef preparsedDataRef);

Returns the button capabilities structures for a HID device based on the given
preparsed data.

reportType Specifies the type or report for which to retrieve the scaled
value. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

buttonCaps Points to a caller-allocated buffer that will contain, on return, an
array of HIDButtonCaps structures. The structures contain
information for all buttons that meet the search criteria.

buttonCapsSize

preparsedDataRef
Preparsed data reference for the report that is returned by the
HIDOpenReportDescriptor function. After making a call to the
HIDCloseReportDescriptor function, the preparsedDataRef is
invalid and should not be used.

HIDGetCaps 7

extern OSStatus HIDGetCaps (
HIDPreparsedDataRef preparsedDataRef,
HIDCapsPtr capabilities);

Returns a HIDCap capabilities structure in HIDCapsPtr. The HIDCap structure
includes the number of capabilities of each type in a HID device. Based on the
number for a given type, you can allocate the proper amount of memory to
contain the structure for the specific capabilities you are interested in.

C H A P T E R 7

HID Library Reference

HID Library API Reference 195
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

preparsedDataRef
Preparsed data reference for the HID device. This reference is
returned by calling the HIDOpenReportDescriptor function.

capabilities Points to a caller allocated buffer, that upon return contains the
HIDCap capability structure for this HID device. The HIDCap
structure is defined on (page 7-215).

HIDGetCollectionNodes 7

extern OSStatus HIDGetCollectionNodes (
HIDCollectionNodePtr collectionNodes,
UInt32 * collectionNodesLength,
HIDPreparsedDataRef preparsedDataRef);

Returns an array of HIDCollectionNode structures that describe the relationships
and layout of the link collections within this top level collection.

collectionNodes
Points to a caller-allocated array of HIDCollectionNode structures
in which this routine returns an entry for each collection within
the top level collection. A collection is a group of corresponding
HID descriptors containing input, output, and feature items that
have some common relationship to one another. For example, a
pointer collection contains items for x and y position data, and
button data. A HID collection is determined by the designer of
the HID device

<--> collectionNodesLength
On input, specifies the length in array elements, of the buffer
provided at collectionNodes. On output, this parameter is set to
the number of entries in the collectionNodes array that were
initialized.

preparsedDataRef
The preparsed data reference from HIDOpenReportDescriptor

The length of the buffer required, in array elements, for an entire collection
node array is found in the HIDCaps structure member numberCollectionNodes.
You obtain the HIDCaps information by calling the HIDGetCaps function.

C H A P T E R 7

HID Library Reference

196 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

For information on the relationships of link collections described by the data
returned from this routine, see the description of the HIDCollectionNode
structure.

HIDGetSpecificButtonCaps 7

extern OSStatus HIDGetSpecificButtonCaps (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
HIDButtonCapsPtr buttonCaps,
UInt32 * buttonCapsLength,
HIDPreparsedDataRef preparsedDataRef);

Retrieves the capabilities for all buttons in a specific type of report that meet the
search criteria.

reportType Specifies the type or report for which to retrieve the button
capabilities. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

usagePage Specifies a usage page identifier to use as a search criteria. If this
parameter is non-zero, then only buttons that specify this usage
page will be retrieved.

collection Specifies a link collection identifier to use as a search criteria. If
this parameter is non-zero, then only buttons that are part of the
specified link collection are retrieved.

usage Specifies a usage identifier to use as a search criteria. If this
parameter is non-zero, then only buttons that match the value
specified are retrieved.

buttonCaps Points to a caller-allocated buffer that will contain, on return, an
array of HIDButtonCaps structures. The structures contain
information for all buttons that meet the search criteria.

buttonCapsLength
On output, specifies the length, in array elements, of the buffer
provided in the buttonCaps parameter. On output, this
parameter is set to the actual number of elements that were

C H A P T E R 7

HID Library Reference

HID Library API Reference 197
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

returned by the function call, in the buffer provided in the
buttonCaps parameter, if the routine completed without error.

The correct length necessary to retrieve the button capabilities
can be found in the capability data returned for the device by
the HIDGetCaps function.

preparsedDataRef
Preparsed data reference returned by the
HIDOpenReportDescriptor function

The HIDGetSpecificButtonCaps function retrieves capability data for buttons that
meet a given search criteria, as opposed to the HIDGetButtonCaps function which
returns the capability data for all buttons on the device. Calling this routine
specifying zero for usagePage, usage, and collection is equivalent to calling the
HIDGetButtonCaps function.

HIDGetSpecificValueCaps 7

extern OSStatus HIDGetSpecificValueCaps (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
HIDValueCapsPtr valueCaps,
UInt32 * valueCapsLength,
HIDPreparsedDataRef preparsedDataRef);

Retrieves the capabilities for all values in a specific type of report that meet the
search criteria.

reportType Specifies the type or report for which to retrieve the value
capabilities. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

usagePage Specifies a usage page identifier to use as a search criteria. If this
parameter is non-zero, then only values that specify this usage
page will be retrieved.

C H A P T E R 7

HID Library Reference

198 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

collection Specifies a link collection identifier to use as a search criteria. If
this parameter is non-zero, then only values that are part of this
link collection will be retrieved.

usage Specifies a usage identifier to use as a search criteria. If this
parameter is non-zero, then only values that specify this usage
will be retrieved.

valueCaps Points to a caller-allocated buffer that will contain, on return, an
array of HIDValueCaps structures that contain information for all
values that meet the search criteria

valueCapsLength
Specifies the length on input, in array elements, of the buffer
provided in the valueCaps parameter. On output, this parameter
is set to the actual number of elements that were returned by
this function call, in the buffer provided in valueCaps parameter,
if the routine completed without error.

The correct length necessary to retrieve the value capabilities
can be found in the capability data returned for the device from
the HIDGetCaps function.

preparsedDataRef
Preparsed data reference returned from the
HIDOpenReportDescriptor function

The HIDGetSpecificValueCaps function retrieves capability data for values that
meet given search criteria, as opposed to the HIDGetValueCaps function, which
returns the capability data for all values on the device. Calling this routine with
a value of zero for usagePage, usage, and collection parameters is equivalent to
calling the HIDGetValueCaps function.

HIDGetValueCaps 7

extern OSStatus HIDGetValueCaps (
HIDReportType reportType,
HIDValueCapsPtr valueCaps,
UInt32 * valueCapsSize,
HIDPreparsedDataRef preparsedDataRef);

C H A P T E R 7

HID Library Reference

HID Library API Reference 199
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The HIDGetValueCaps function retrieves the capabilities for all values for a
specified top level collection.

reportType Specifies the type or report for which to retrieve the value
capabilities. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport.

valueCaps On return, points to a caller-allocated buffer that contains an
array of HIDValueCaps structures containing information for all
values in the top level collection.

valueCapsSize
On input, specifies the size in array elements of the buffer
provided in the valueCaps parameter. On output, this parameter
is set to the actual number of elements that were returned in the
buffer provided in the valueCaps parameter, if the function
completed without error.

The correct length necessary to retrieve the value capabilities
can be found in the capability data returned for the device by
the HIDGetCaps function.

preparsedDataRef
The preparsed data reference returned from the
HIDOpenReportDescriptor function.

The HIDGetValueCaps function retrieves the capability data for all values in a top
level collection without regard for the usage, usage page, or collection of the
value. To retrieve value capabilities for a specific usage, usage page, or
collection, use the HIDGetSpecificValueCaps function.

HIDMaxUsageListLength 7

extern UInt32 HIDMaxUsageListLength (
HIDReportType reportType,
HIDUsage usagePage,
HIDPreparsedDataRef preparsedDataRef);

The HIDMaxUsageListLength function returns the maximum number of buttons
that can be returned from a given report type for the top level collection.

C H A P T E R 7

HID Library Reference

200 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

reportType Specifies the type of report for which to get a maximum usage
count. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

usagePage Optionally specifies the usage page identifier to use as a search
criteria. If this parameter is zero, the function returns the
number of buttons for the entire top-level collection regardless
of the actual value of the usage page.

preparsedDataRef
The preparsed data reference for the report descriptor returned
from the HIDOpenReportDescriptor function.

HID Report Decoding Functions 7

This section defines the functions used to decode HID reports. The functions
described in this section do not get the values they return directly from the
device. The values are extracted from the HID report. The typical way to get a
value is to install a handler that passes along reports from the HID device at
interrupt time. The reports are encoded. The functions in this section decode
and extract the relevant data from the report.

HIDGetButtons 7

extern OSStatus HIDGetButtons (
HIDReportType reportType,
UInt32 collection,
HIDUsageAndPagePtr * usageList,
UInt32 * usageListSize,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDGetButtons function takes a report from a HID device an returns the
current state of the buttons in that report.

C H A P T E R 7

HID Library Reference

HID Library API Reference 201
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

reportType Specifies the type of report, provided in the report parameter,
from which to retrieve the buttons. This parameter must be one
of the following: kHIDInputReport, kHIDOutputReport, or
kHIDFeatureReport

collection Optionally specifies the link collection identifier used to retrieve
only specific button states. If this value is non-zero, only the
buttons that are part of the given collection are returned.

usageList On return, points to a caller-allocated buffer that contains the
usages of all the buttons that are pressed.

usageListSize
Is the size, in array elements, of the buffer provided in the
usageList parameter. On return, this parameter contains the
number of button states that were set by this routine. If the error
kHIDBufferTooSmallErr was returned, this parameter contains
the number of array elements required to hold all button data
requested.

The maximum number of buttons that can ever be returned for a
given type of report can be obtained by calling the
HIDMaxUsageListLength function.

preparsedDataRef
Preparsed data reference returned from the
HIDOpenReportDescriptor function

report Points to the caller-allocated buffer that contains the device
report data

reportLength Specifies the length, in bytes, of the report data provided in the
report parameter.

If you want to get only the buttons that appear on a particular page, you use the
HIDGetButtonsOnPage function.

HIDGetButtonsOnPage 7

HIDGetButtonsOnPage(
HIDReportType reportType,
HIDUsage usagePage,

C H A P T E R 7

HID Library Reference

202 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt32 collection,
HIDUsage * usageList,
UInt32 * usageListSize,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

Retrieves the button state information for buttons on a specified usage page.

reportType Specifies the type of report, provided in the report parameter,
from which to retrieve the buttons. This parameter must be one
of the following: kHIDInputReport, kHIDOutputReport, or
kHIDFeatureReport

usagePage Specifies the usage page of the buttons for which to retrieve the
current state.

collection Optionally specifies the link collection identifier used to retrieve
only specific button states. If this value is non-zero, only the
buttons that are part of the given collection are returned.

usageList On return, points to a caller-allocated buffer that contains the
usages of all the buttons that are pressed and belong to the
usage page specified in the usagePage parameter.

usageListSize
Is the size, in array elements, of the buffer provided in the
usageList parameter. On return, this parameter contains the
number of button states that were set by this routine. If the error
kHIDBufferTooSmallErr was returned, this parameter contains
the number of array elements required to hold all button data
requested.

The maximum number of buttons that can ever be returned for a
given type of report can be obtained by calling the
HIDMaxUsageListLength function.

preparsedDataRef
Preparsed data reference returned from the
HIDOpenReportDescriptor function

report Points to the caller-allocated buffer that contains the device
report data

C H A P T E R 7

HID Library Reference

HID Library API Reference 203
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

HIDGetScaledUsageValue 7

extern OSStatus HIDGetScaledUsageValue (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
SInt32 * usageValue,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDGetScaledUsageValue function returns the capabilities for all buttons for
a given top level collection.

 reportType Specifies the type or report for which to retrieve the scaled
value. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

usagePage Specifies the usage page of the value to be retrieved.

collection Optionally specifies the link collection identifier of the value to
be retrieved.

usage Specifies the usage of the scaled value to be retrieve.

usageValue Points to a variable, that on return from this routine holds the
scaled value retrieved from the device report.

preparsedDataRef
Preparsed data reference from HIDOpenReportDescriptor

report Points to the caller-allocated buffer that contains the device
report data

reportLength Specifies the length, in bytes, of the report data provided at
report.

C H A P T E R 7

HID Library Reference

204 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Clients who wish to obtain all capabilities for a usage that contains multiple
data items for a single usage that corresponds to a HID byte array, must call the
HIDGetUsageValueArray function.

HIDGetUsageValue 7

extern OSStatus HIDGetUsageValue (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
SInt32 * usageValue,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDGetUsageValue function returns a value from a device data report given a
selected search criteria.

reportType Specifies the type of report, provided at report, from which to
retrieve the value. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport

usagePage Specifies the usage page of the value to retrieve.

collection Optionally specifies the link collection identifier of the value to
be retrieved.

usage Specifies the usage of the value to be retrieve.

usageValue Points to a variable, that on return from this routine holds the
value retrieved from the device report.

preparsedDataRef
The preparsed data reference obtained by calling the
HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

C H A P T E R 7

HID Library Reference

HID Library API Reference 205
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

The HIDGetUsageValue function does not sign the value. To have the sign bit
automatically applied, use the HIDGetScaledUsageValue function instead. For
manually assigning the sign bit, the position of the sign bit can be found in the
HIDValueCaps structure for this value.

Clients who wish to obtain all data for a usage that contains multiple data items
for a single usage, corresponding to a HID byte array, must call the
HIDGetUsageValueArray function instead.

HIDGetUsageValueArray 7

extern OSStatus HIDGetUsageValueArray (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
Byte * usageValueBuffer,
ByteCount usageValueBufferSize,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDGetUsageValueArray function returns a value from a device data report
given a selected search criteria.

reportType Specifies the type of report, provided at report, from which to
retrieve the values. This parameter must be one of the following:
kHIDInputReport, kHIDOutputReport, or kHIDFeatureReport.

usagePage Specifies the usage page of the data to be retrieved.

collection Optionally specifies the link collection identifier of the data to be
retrieved.

usage Specifies the usage identifier of the value to be retrieve.

usageValueBuffer
Points to a caller-allocated buffer that contains, on output, the
data from the device. The correct length for this buffer can be
found by multiplying the reportCount and bitSize fields of the
HIDValueCaps structure for this value and rounding the resulting
value up to the nearest byte.

C H A P T E R 7

HID Library Reference

206 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

usageValueBufferSize
Specifies the size, in bytes, of the buffer in the usageValueBuffer
parameter.

preparsedDataRef
The preparsed data reference returned from the
HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided at report.

When the HIDGetUsageValueArray function retrieves the data, it fills in the buffer
in little-endian order beginning with the least significant bit of the data for this
usage. The data is filled in without regard to byte alignment and is shifted such
that the least significant bit is placed as the 1st bit of the given buffer.

HIDUsageListDifference 7

extern OSStatus HIDUsageListDifference (
HIDUsage * previousUsageList,
HIDUsage * currentUsageList,
HIDUsage * breakUsageList,
HIDUsage * makeUsageList,
HIDUsage usageListsLength);

The HIDUsageListDifference function compares and provides the differences
between two lists of buttons.

previousUsageList
Points to the older button list to be used for comparison.

currentUsageList
Points to the newer button list to be used for comparison.

breakUsageList
On return, points to a caller allocated buffer that contains the
buttons set in the older list, specified in the previousUsageList
parameter, but not set in the new list, specified in the
currentUsageList parameter.

C H A P T E R 7

HID Library Reference

HID Library API Reference 207
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

makeUsageList
On return, points to a caller allocated buffer that contains the
buttons set in the new list, specified in the currentUsageList
parameter, but not set in the old list, specified in the
previousUsageList parameter.

usageListsLength
Specifies the length, in array elements, of the buffers provided in
the currentUsageList and previousUsageList parameters.

HID Report Data Encoding Functions 7

The functions defined in this section are used to encode data to be sent back to
the device through HID reports.

HIDSetButton 7

extern OSStatus HIDSetButton (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDSetButton function takes a report from a HID device an sets the current
state of the specified button in that report.

reportType Specifies the type of report, provided at report. This parameter
must be one of the following: kHIDInputReport,
kHIDOutputReport, or kHIDFeatureReport.

usagePage Specifies the usage page identifier of the value to be set in the
report.

collection Optionally specifies the link collection identifier to distinguish
between buttons. If this parameter is zero, it is ignored.

C H A P T E R 7

HID Library Reference

208 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

usage Points to a caller-allocated buffer that contains the button data
to be set in the report in the report parameter.

preparsedDataRef
The preparsed data reference for the report descriptor returned
by the HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

HIDSetButtons 7

extern OSStatus HIDSetButtons (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage * usageList,
UInt32 * usageListSize,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDSetButtons function takes a report from a HID device an returns the
current state of the buttons in that report.

reportType Specifies the type of report, provided at report. This parameter
must be one of the following: kHIDInputReport,
kHIDOutputReport, or kHIDFeatureReport.

usagePage Specifies the usage page identifier of the value to be set in the
report.

collection Optionally specifies the link collection identifier to distinguish
between buttons. If this parameter is zero, it is ignored.

usageList Points to a caller-allocated buffer that contains an array of
button data to be set in the report in the report parameter.

C H A P T E R 7

HID Library Reference

HID Library API Reference 209
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

usageListSize
Specifies the size, in array elements, of the buffer provided in
the usageList parameter. If an error is returned by a call to this
function, the usageListLength parameter contains the location in
the array provided in the usageList parameter where the error
was encountered. All array entries encountered prior to the
error location were successfully set in the report provided in the
report parameter.

preparsedDataRef
The preparsed data reference for the report descriptor returned
by the HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

HIDSetScaledUsageValue 7

extern OSStatus HIDSetScaledUsageValue (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
SInt32 usageValue,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDSetScaledUsageValue function takes a signed physical (scaled) number
and converts it to the logical, or device representation and inserts it in a given
report.

reportType Specifies the type of report, provided at report. This parameter
must be one of the following: kHIDInputReport,
kHIDOutputReport, or kHIDFeatureReport

usagePage Specifies the usage page identifier of the value to be set in the
report.

C H A P T E R 7

HID Library Reference

210 HID Library API Reference

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

collection Optionally specifies the link collection identifier to distinguish
between values that have the same usage page and usage
identifiers. If this parameter is zero, it will be ignored.

usage Specifies the usage identifier of the value to be set in the report.

usageValue Specifies the physical, or scaled, value to be set in the value for
the given report.

preparsedDataRef
The preparsed data reference for the report descriptor returned
from the HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the length, in bytes, of the report data specified in the
report parameter.

The HIDSetScaledUsageValue function automatically handles the setting of the
signed bit in the data to be sent to the device.

HIDSetUsageValue 7

extern OSStatus HIDSetUsageValue (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
SInt32 usageValue,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDSetUsageValue function sets a value in a given report.

reportType Specifies the type of report, provided at report. This parameter
must be one of the following: kHIDInputReport,
kHIDOutputReport, or kHIDFeatureReport.

usagePage Specifies the usage page identifier of the value to be set in the
report.

C H A P T E R 7

HID Library Reference

HID Library API Reference 211
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

collection Optionally specifies the link collection identifier to distinguish
between values that have the same usage page and usage
identifiers. If this parameter is zero, it is ignored.

usage Specifies the usage identifier of the value to be set in the report.

usageValue Specifies the data this is to be set in the value for the given
report.

preparsedDataRef
The preparsed data reference for the report descriptor returned
from the HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

The HIDSetUsageValue function does not automatically handle the sign bit.
Clients must either manually set the sign bit, at the position provided in the
HIDValueCaps structure for this value, or call the HIDSetScaledUsageValue
function.

HIDSetUsageValueArray 7

extern OSStatus HIDSetUsageValueArray (
HIDReportType reportType,
HIDUsage usagePage,
UInt32 collection,
HIDUsage usage,
Byte * usageValueBuffer,
ByteCount usageValueBufferLength,
HIDPreparsedDataRef preparsedDataRef,
void * report,
ByteCount reportLength);

The HIDSetUsageValue function sets an array of values in a given report.

reportType Specifies the type of report, provided at report. This parameter
must be one of the following: kHIDInputReport,
kHIDOutputReport, or kHIDFeatureReport.

C H A P T E R 7

HID Library Reference

212 HID Library Constants

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

usagePage Specifies the usage page identifier of the value to be set in the
report.

collection Optionally specifies the link collection identifier to distinguish
between values that have the same usage page and usage
identifiers. If this parameter is zero, it is ignored.

usage Specifies the usage identifier of the value to be set in the report.

usageValueBuffer
Points to a caller-allocated buffer that contains, on output, the
data from the device. The correct length for this buffer can be
found by multiplying the reportCount and bitSize fields of the
HIDValueCaps structure for this value and rounding the resulting
value up to the nearest byte.

usageValueBufferLength
Specifies the size, in bytes, of the buffer in the usageValueBuffer
parameter.

preparsedDataRef
The preparsed data reference for the report descriptor returned
from the HIDOpenReportDescriptor function.

report Points to the caller-allocated buffer that contains the device
report data.

reportLength Specifies the size, in bytes, of the report data provided in the
report parameter.

The HIDSetUsageValue function does not automatically handle the sign bit.
Clients must either manually set the sign bit, at the position provided in the
HIDValueCaps structure for this value, or call the HIDSetScaledUsageValue
function.

HID Library Constants 7

This section lists the constants associated in the HID library APIs.

C H A P T E R 7

HID Library Reference

HID Library Constants 213
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HID Report Constants 7

kHIDInputReport = 1,
kHIDOutputReport = 2,
kHIDFeatureReport = 3,
kHIDUnknownReport = 255

HIDOpenReportDescriptor Flags 7

kHIDFlag_StrictErrorChecking = 0x00000001

HIDGetDeviceInfo Constants 7

The constants listed below are passed to the HIDGetDeviceInfo function, which
is implemented in the TheHIDModuleDispatchTable.

kHIDGetInfo_VendorID = 1,
kHIDGetInfo_ProductID = 2,
kHIDGetInfo_VersionNumber = 3,
kHIDGetInfo_MaxReportSize = 0x10,
kHIDGetInfo_GetManufacturerString = 0x0100,
kHIDGetInfo_GetProductString = 0x0101,
kHIDGetInfo_GetSerialNumberString = 0x0102,
kHIDGetInfo_GetIndexedString = 0x0103,
kHIDGetInfo_VendorSpecificStart = 0x00010000

HIDOpenDevice Constants 7

These permission constants are passed to the HIDControlDevice function.

kHIDPerm_ReadOnly = 0x0001,
kHIDPerm_ReadWriteShared = 0x0003,
kHIDPerm_ReadWriteExclusive = 0x0013

C H A P T E R 7

HID Library Reference

214 HID Library Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HIDInstallReportHandler Constant 7

kHIDFlag_CallbackIsResident = 0x0001

HIDControlDevice Constant 7

kHIDVendorSpecificControlStart = 0x00010000

Usage Table Constants 7

Usage table constants can be found in the HID Usage Table class specification
and in the HID.h file.

HID Library Data Structures 7

This section lists the data structures that are associated with the HID Library.

HIDUsageAndPage 7

struct HIDUsageAndPage
{

HIDUsage usage;
HIDUsage usagePage;

};

typedef HIDUsageAndPage * HIDUsageAndPagePtr;

The HIDUsageAndPage data structure is used by HID clients when obtaining
status of buttons to hold the usage page and usage of a button that is down.

Field descriptions
usage Specifies the usage identifier within the usage page

specified by usagePage of a button that is down.

C H A P T E R 7

HID Library Reference

HID Library Data Structures 215
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

usagePage Specifies the usage page identifier of a button that is down.
Clients use the HIDUsageAndPage structure with the HIDGetButtonsEx function to
obtain both the usage page and usage identifiers of each button that is down.

HIDCaps 7

struct HIDCaps
{

HIDUsage usage;
HIDUsage usagePage;
UInt32 inputReportByteLength;
UInt32 outputReportByteLength;
UInt32 featureReportByteLength;
UInt32 numberCollectionNodes;
UInt32 numberInputButtonCaps;
UInt32 numberInputValueCaps;
UInt32 numberOutputButtonCaps;
UInt32 numberOutputValueCaps;
UInt32 numberFeatureButtonCaps;
UInt32 numberFeatureValueCaps;

};

typedef HIDCaps * HIDCapsPtr;

The HIDCaps data structure is used by HID clients to hold the capabilities of a
HID device.

Field descriptions
usage Specifies the specific class of functionality that this device

provides. This value is dependent and specific to the value
provided in the usagePage field. For example, a keyboard
could have a usagePage of kHIDUsagePage_Generic and a
usage of kHIDUsage_Generic_Keyboard.

usagePage Specifies the usage page identifier for this top level
collection.

inputReportByteLength
Specifies the maximum length, in bytes, of an input report

C H A P T E R 7

HID Library Reference

216 HID Library Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

for this device, including the report ID which is unilaterally
prepended to the device data.

outputReportByteLength
Specifies the maximum length, in bytes, of an output report
for this device, including the report ID which is unilaterally
prepended to the device data.

featureReportByteLength
Specifies the maximum length, in bytes, of a feature report
for this device, including the report ID which is unilaterally
prepended to the device data.

numberCollectionNodes
Specifies the number of HIDCollectionNode structures that
are returned for this top level collection by the
HIDGetConnectionNodes function.

numberInputButtonCaps
Specifies the number of input buttons.

numberInputValueCaps
Specifies the number of input values.

numberOutputButtonCaps
Specifies the number of output buttons.

numberOutputValueCaps
Specifies the number of output values.

numberFeatureButtonCaps
Specifies the number of feature buttons.

numberFeatureValueCaps
Specifies the number of feature values.

This structure holds the parsed capabilities and data maximums returned for a
device by the HIDGetCaps function.

HIDCollectionNode 7

struct HIDCollectionNode
{

HIDUsage collectionUsage;
HIDUsage collectionUsagePage;
UInt32 parent;

C H A P T E R 7

HID Library Reference

HID Library Data Structures 217
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt32 numberOfChildren;
UInt32 nextSibling;
UInt32 firstChild;

};
typedef HIDCollectionNode * HIDCollectionNodePtr;

HIDButtonCaps 7

struct HIDButtonCaps
{

HIDUsage usagePage;
UInt32 reportID;
UInt32 bitField;
UInt32 collection;
HIDUsage collectionUsage;
HIDUsage collectionUsagePage;
Boolean isRange;
Boolean isStringRange;
Boolean isDesignatorRange;
Boolean isAbsolute;
{
struct

{
HIDUsage usageMin;
HIDUsage usageMax;
UInt32 stringMin;
UInt32 stringMax;
UInt32 designatorMin;
UInt32 designatorMax;
} range;

struct
{
HIDUsage usage;
HIDUsage reserved1;
UInt32 stringIndex;
UInt32 reserved2;
UInt32 designatorIndex;
UInt32 reserved3;
} notRange;

C H A P T E R 7

HID Library Reference

218 HID Library Data Structures

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

} u;
};
typedef HIDButtonCaps * HIDButtonCapsPtr;

The HIDButtonCaps structure is used by HID clients to hold the capabilities data
for a button on a HID device.

HIDValueCaps 7

struct HIDValueCaps
{

HIDUsage usagePage;
UInt32 reportID;
UInt32 bitField;
UInt32 collection;
HIDUsage collectionUsage;
HIDUsage collectionUsagePage;

Boolean isRange;
Boolean isStringRange;
Boolean isDesignatorRange;
Boolean isAbsolute;

UInt32 bitSize;
UInt32 reportCount;

SInt32 logicalMin;
SInt32 logicalMax;
SInt32 physicalMin;
SInt32 physicalMax;

union
{
struct
{

HIDUsage usageMin;
HIDUsage usageMax;
UInt32 stringMin;
UInt32 stringMax;

C H A P T E R 7

HID Library Reference

HIDDeviceDispatchTable 219
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

UInt32 designatorMin;
UInt32 designatorMax;

} range;
struct
{

HIDUsage usage;
HIDUsage reserved1;
UInt32 stringIndex;
UInt32 reserved2;
UInt32 designatorIndex;
UInt32 reserved3;

} notRange;
} u;

};
typedef HIDValueCaps * HIDValueCapsPtr;

The HIDValueCaps structure is used by HID clients to hold the capabilities data
for a value from a HID device.

HIDDeviceDispatchTable 7

This is the HIDDeviceDispatchTable. The HIDDeviceDispatchTable contains the
entry points for the functions that HID drivers must implement. Your driver
exports the symbol TheHIDDeviceDispatchTable. The documentation that
describes how a HID driver implements the dispatch table APIs is found in
“Communicating with the Human Interface Device Driver” in Chapter 4,
“Writing Mac OS USB Drivers,” and in the HID.h file.

struct HIDDeviceDispatchTable {
UInt32 dispatchTableCurrentVersion;
UInt32 dispatchTableOldestVersion;
UInt32 vendorID;
UInt32 vendorSpecific;
UInt32 reserved;

HIDGetDeviceInfoProcPtr pHIDGetDeviceInfo;
HIDGetHIDDescriptorProcPtr pHIDGetHIDDescriptor;
HIDOpenDeviceProcPtr pHIDOpenDevice;
HIDCloseDeviceProcPtr pHIDCloseDevice;

C H A P T E R 7

HID Library Reference

220 HIS Library Error Codes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

HIDInstallReportHandlerProcPtr pHIDInstallReportHandler;
HIDRemoveReportHandlerProcPtr pHIDRemoveReportHandler;
HIDCallPreviousReportHandlerProcPtr pHIDCallPreviousReportHandler;
HIDGetReportProcPtr pHIDGetReport; /* new for vers 2, was */

/* reserved in version 1*/
HIDSetReportProcPtr pHIDSetReport; /* new for vers 2, was */

/* reserved in version 1*/
HIDControlDeviceProcPtr pHIDControlDevice;

};

HIS Library Error Codes 7

Table contains a list of error codes returned by the HID library. The HID library
returns errors in the range -13949 to -13900.

Table 7-1 HID library error codes

Error code Error name Description

0 kHIDSuccess

-13950 kHIDBaseError

-13949 kHIDNullStateErr

-13948 kHIDBufferTooSmallErr

-13947 kHIDValueOutOfRangeErr

-13946 kHIDUsageNotFoundErr

-13945 kHIDNotValueArrayErr

-13944 kHIDInvalidPreparsedDataErr

-13943 kHIDIncompatibleReportErr

-13942 kHIDBadLogPhysValuesErr

-13941 kHIDInvalidReportTypeErr

-13940 kHIDInvalidReportLengthErr

-13939 kHIDNullPointerErr

C H A P T E R 7

HID Library Reference

HIS Library Error Codes 221
Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

-13938 kHIDBadParameterErr

-13937 kHIDNotEnoughMemoryErr

-13936 kHIDEndOfDescriptorErr

-13935 kHIDUsagePageZeroErr

-13934 kHIDBadLogicalMinimumErr

-13933 kHIDBadLogicalMaximumErr

-13932 kHIDInvertedLogicalRangeErr

-13931 kHIDInvertedPhysicalRangeErr

-13930 kHIDUnmatchedUsageRangeErr

-13929 kHIDInvertedUsageRangeErr

-13928 kHIDUnmatchedStringRangeErr

-13927 kHIDUnmatchedDesignatorRangeErr

-13926 kHIDReportSizeZeroErr

-13925 kHIDReportCountZeroErr

-13924 kHIDReportIDZeroErr

-13923 kHIDInvalidRangePageErr

-13910 kHIDDeviceNotReady

-13909 kHIDVersionIncompatibleErr

Table 7-1 HID library error codes

Error code Error name Description

C H A P T E R 7

HID Library Reference

222 HIS Library Error Codes

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

Major Feature Updates In Version 1.1 223
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

A P P E N D I X A

Changes In Mac OS USB Software A

This appendix includes a general discussion of the features in version 1.1 of the
Mac OS USB software. In addition, it defines the use of the version 1.1 USPB
parameter block that supports isochronous transfers, and it includes some
discussion of the feature enhancements in version 1.2 of the Mac OS USB
software.

There are significant differences in the features supported in version 1.1 and
later of the Mac OS USB software. To take advantage of the new features some
modification of existing code that supported version 1.0 Mac OS USB software
is required. For information about the required code changes to support version
1.1, see “Code Changes Required To Support The Version 1.1 USBPB”
(page 226).

Major Feature Updates In Version 1.1 A

The major feature enhancements included in version 1.1 of the Mac OS USB
software are:

■ Isochronous support, new parameter block defined in “The USBPB
Parameter Block” (page 94)

■ Multiple bus support

■ Improved bus enumeration

■ Driver notification messages that support Mac OS sleep and wake

■ Improved functionality for USB control requests

A P P E N D I X A

Changes In Mac OS USB Software

224 Major Feature Updates In Version 1.1

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

IMPORTANT

It should be noted that although the features listed here are
supported by the version 1.1 USBPB parameter block, all
Macintosh computers that support USB may not include
the necessary ROM code to implement the features. Always
check the USB gestalt selectors, defined in “Isochronous
Transfer Support” (page 225) and “USB Software Presence
and Version Attributes” (page 45), rather than the version
number to ensure that the features you are interested in are
supported on the Macintosh your software is running on.

Improved Bus Enumeration A

Version 1.1 provides improved bus enumeration at startup to support proper
USB driver loading before other system extensions are initialized. This is
accomplished by providing task time for the USB expert loader to process all
hub communications. When all hubs have reported that they have discovered
their devices, and the USB system software has completed the search for USB
class drivers, then the remainder of the booting process, loading extensions and
launching the finder, continues.

Multiple USB Bus Support A

The Mac OS USB version 1.1 software supports multiple USB buses on a
system. If you are looking through the name registry, you need to check every
USB controller node for attached hubs and devices.

Driver Notification Messages A

Additional messages have been defined for handling Mac OS power
management features. Version 1.1 of the Mac OS USB software notifies class
drivers through the USBDriverNotificationProcPtr with the following
messages:

Message constant name

kNotifyUSBSystemSleepRequest

A P P E N D I X A

Changes In Mac OS USB Software

Major Feature Updates In Version 1.1 225
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

These messages correspond to the Sleep procedure selector codes defined in the
Chapter 6, “Power Manager,” in Inside Macintosh, “Devices.” Your driver
should return an appropriate response to these messages as defined in “Writing
a Sleep Procedure” Chapter 6, “Power Manager,” Inside Macintosh: Devices.

Isochronous Transfer Support A

Version 1.1 contains support for isochronous transfers. You can test for the
presence of isochronous support by checking the gestalt selector gestaltUSBAttr
(‘usb ‘). If gestaltUSBHasIsoch (bit 1 = 0x02) is set, then isochronous support is
available in the form of two new calls:

OSStatus USBIsocWrite(USBPB *pb);
OSStatus USBIsocRead(USBPB *pb);

Improved Functionality For USB Control Requests A

A new flag was added to the USBDeviceRequest function (page 121) to allow for
USB control transactions addressed to an interface or endpoint of a device. The
new feature allows the call to be made without the driver explicitly knowing
the number of the endpoint or interface before the call is made. The USL now
fills in the interface or endpoint number when an interface or pipe reference is
passed in with the call.

To use the new feature, you specify the flag kUSBAddessRequest in the usbFlags
field of the USBDeviceRequest function. If the recipient field in BMRequestType is
an endpoint or interface, the relevant endpoint or interface number is derived
from the pipe or interface reference passed in the usbReference field. The
appropriate interface or endpoint number is put into the usbWIndex field before
the control transaction call takes place.

kNotifyUSBSystemSleepDemand

kNotifyUSBSystemSleepWakeUp

kNotifyUSBSystemSleepRevoke

Message constant name

A P P E N D I X A

Changes In Mac OS USB Software

226 Code Changes Required To Support The Version 1.1 USBPB

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

Code Changes Required To Support The Version 1.1 USBPB A

This section describes the changes you should be aware of if you are working
with code that supported the version 1.0 parameter block in USB.h and you
want to take advantage of the features in version 1.1 of the Mac OS USB
software.

The USBPB parameter block structure has been converted to include unions that
provide support for isochronous transfers. The change is binary compatible
(you can keep the same kUSBCurrentVersion value), but it is necessary to make
changes to existing source code in order to use the version 1.1 USB.h file.

At the simplest level, the necessary changes can be made by doing a search and
replace of the following strings in your code:

To aid with the conversion process, macros with the substitutions are available
in the version 1.1 USB.h file. To use the macros, add a define for OLDUSBNAMES
before including USB.h. It is recommended that you make the actual string
changes in the source, because the macro facility is not guaranteed to be
available in later versions of the USB.h file.

The USBClassDriverPlugInDispatchTable has changed in version 1.1. If the
version of USBClassDriverPluginDispatchTable is set to
kUSBClassDriverPluginVersion it indicates that USBDriverNotifyProcPtr has the
following prototype:

OSStatus USBDriverNotifyProc (
USBDriverNotification notification,
void *pointer,
Uint32 refcon);

Old string New replacement string

usbBMRequestType usb.cntl.BMRequestType

usbBRequest usb.cntl.BRequest

usbWValue usb.cntl.WValue

usbWIndex usb.cntl.WIndex

A P P E N D I X A

Changes In Mac OS USB Software

Major Features Introduced In Version 1.2 227
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

Drivers that were compiled with earlier versions of the USB.h header file will
have a different kUSBClassDriverPluginVersion value and the USB Manager will
call the USBDriverNotifyProc without the refcon parameter.

Check that the current version of USB software has isochronous support before
making the USBIsocRead or USBIsocWrite calls. You must also weak link your
class driver with the USBServicesLib USB.h file. If your driver makes
USBIsocRead and USBIsocWrite calls and hard links to the USBServicesLib file,
the system will check for support of these calls. If it finds that they are not
available, the driver will not load.

Major Features Introduced In Version 1.2 A

Beginning with version 1.2 of the Mac OS USB software, multiple class drivers
can be merged into a single Mac OS extension file. This feature is beneficial in
situations where you have several vendor specific devices in a product family,
each device requiring slightly different driver functionality. Rather than creating
a standalone native driver for each device, you can write driver code for each
device and merge all the driver code into a single file. The single file will be
loaded based on vendor and product specific ID information in favor of the
Apple generic drivers, which guarantees proper support your family of devices.

The steps below define how to merge USB class drivers into a single file using
CodeWarrior IDE 2.0 or greater. This discussion assumes familiarity with the
Macintosh and CodeWarrior programming environments.

1. Create each class driver into a Shared Library file of type 'shlb', not 'ndrv'
as you presently would for a standalone USB class driver.

2. Set the CodeWarrior Target Setting with the linker popup to Mac OS Merge.
Note that this target could be within the same project that creates the
separate driver files to be merged.

3. In the Mac OS Merge Panel under the Linker grouping, set the Project type
popup menu to Shared Library, set the file name and set the file creator to
'usbd', and file type to 'ndrv'. Ensure that the Copy Code Fragments option
is checked. If there are resources associated with either of the drivers, then
make sure that the Copy Resources option is checked.

4. For this target, set the source files to be the shared library files which contain
the drivers to be merged.

A P P E N D I X A

Changes In Mac OS USB Software

228 Changes and Enhancements Introduced in Version 1.4

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

Changes and Enhancements Introduced in Version 1.4 A

This section provides information about changes and enhancements introduced
in version 1.4 since version 1.3.5 of the Mac OS USB software was released.

■ Added feature for a USB Shim to be registered as a shared library. The USB
Shim must export the symbol "ShimDescription" which is a structure of type
USBShimDescription where the USBShimLoadingOptions field must have the
kUSBRegisterShimAsSharedLibrary bit set, and the libraryName field defines
the CFM shared library name.

■ Added support for the HIDDriver, HIDGetReport, and HIDSetReport APIs.

■ The OHCI UIM has been modified so that the root hub simulation is
interrupt based instead of polled. Other changes were made to the USB
keyboard and pointing devices to work with Macsbug.

■ Fixed a buffer overrun situation with the USB Audio class driver which
resulted in the corruption of the heap. The common symptom was that USB
microphones would work for a period of time, but then input would stop.

■ Implemented several fixes in the USB Audio class for compatibility with
audio input and output devices.

■ Fixed an error-recovery problem in the printer class driver.

■ Modified USB Family Expert to report better error messages when a driver
fragment fails to load.

■ Modified the HID class driver for compatibility with USB 1.1. Version 1.1 of
the Mac OS USB software is now the earliest version on which the Apple
HID driver loads.

■ Added support to the HID class driver for some digitizer tablets.

■ Exported the USBAddShimFromDisk function from the USB Family Expert so
that the call now works properly.

■ USB shims and drivers can now be in either type 'usbd' or 'usbs' files.

■ Added function USBSetPipePolicy to allow changing pipe characteristics. The
function will be defined in the future version of this document. Examples of
characteristics that can be controlled are:

A P P E N D I X A

Changes In Mac OS USB Software

Changes and Enhancements Introduced in Version 1.4 229
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

■ Max number of bytes per frame. Allows isochronous devices to use less than
the bandwidth specified in the endpoint.

■ Max data per IRP. Basically the max that usbReqCount can be. This is currently
not implemented.

■ Max service interval. For interrupt endpoints, this is the polling interval.

■ Added the USBGetStringDescriptor function to obtain the USB String
Descriptor as follows:

OSStatus USBGetStringDescriptor(USBPB *pb)

The relevant fields in the USBPB for the USBGetStringDescriptor function are:

--> usbReference Device/Interface

--> usb.cntl.WValue
String number

--> usb.cntl.WIndex
Language code, 0 for English

--> usbBuffer Where to put descriptor

--> usbReqCount Size of buffer

<-- usbActCount Size of returned string

■ Fixed a problem with suspend and resume so that transactions are processed
correctly.

■ Removed support in the Apple audio class driver for 4.000 kHz and 8.000
kHz sampling rates.

■ Moved the USB.h file to the Interfaces folder. Added the HID.h file to the
Interfaces folder.

■ Added the USBGetBandwithAvailableByReference function to obtain the
bandwidth available to an isochronous device.

OSStatus USBGetBandwidthAvailableByReference

The parameters for the USBGetBandwithAvailableByReference function are:

--> usbReference device, interface. or pipe reference

<-- avail currently available bandwidth for given usbReference

A P P E N D I X A

Changes In Mac OS USB Software

230 Release Notes And Compatibility Issues

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

■ Added the kUSBDebugAwareFlag to USB.h. This flag is used by drivers that
want a transfer to complete while Macsbug is active. Typically users of this
function will just be keyboard and mouse drivers. The use of this flag will be
documented later. In order for Macsbug to work properly with drivers that
implement this flag, the next version (later than that in Mac OS 9) of the
MacOS ROM file is required.

■ Fixed a problem with the Audio class driver where that the mouse was jerky
with audio was active.

■ Fixed a problem with the USB CardBus Enabler so that the UIM is unloaded
before the card is ejected.

■ The HID class driver checks for USB versions earlier than 1.1 and refuses to
load.

■ Addressed a crash problem with hot-plugging devices to a CMD 670/673
USB PCI card.

■ Added the function USBPortStatus, defined as:

OSStatus USBPortStatus(USBPB *pb)

--> usbReference
Device or interface reference

■ Included the draft version of the USB Software Locator technote, along with
various tools for creating an Installer script and for testing the software
update from the USB staging server.

Release Notes And Compatibility Issues A

This section provides release notes and describes various Mac OS USB software
implementation issues that developers should be aware of.

Bulk Data Transfer Performance Issues A

As of Mac OS USB v1.2, an issue has been identified with how USB resources
are used for USB bulk read and write calls for large data transfers. If a buffer is
passed to a USB bulk call that is not aligned to a MaxPacketSize boundary, then
USB may require up to twice as many Transfer Descriptor resources in order to

A P P E N D I X A

Changes In Mac OS USB Software

Release Notes And Compatibility Issues 231
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

process the data coming in or going out. More importantly, for large transfer,
passing a misaligned buffer means that the transport descriptor will be limited
to a 4K transfer, while an aligned buffer extends the limit to 8K. For small
transfers (less than 8K), this issue may not make a noticeable difference. For
larger transfers, the use of a misaligned buffer can affect performance.

Note that the MaxPacketSize is the value read from the configuration descriptor.
For bulk devices, the MaxPacketSize values are 1, 2, 4, 8, 16, 32 and 64.

Assuming that you want to pass in a buffer that is 4 times MaxPacketSize, the
following algorithm demonstrates how one goes about setting up the usbBuffer
that begins on a MaxPacketSize aligned address. Note that you are working with
logical, not physical addresses.

#define kBufferMultiplier 4 // allocate a buffer that is 4x MaxPacketSize
UInt16 maxpacksize = 64; // set for MaxPacketSize of

// a bulk or control transaction
UInt8 *buffer;
UInt8 *alignedBuffer;

// first allocate a buffer that is the desired
// size + maxpacksize

buffer = NewPtrSys((kBufferMultiplier + 1) * maxpacksize);

// figure out where the buffer falls on the
// maxpacksize aligned address

alignedbuffer = (buffer + maxpacksize) & ~(maxpacksize - 1);

Following this example, you would set

usbReqCount = kBufferMultiplier * maxpacksize;
usbBuffer = alignedBuffer;

There is no limit as to the size of the buffer, however, the buffer size must be a
multiple of MaxPacketSize for maximum performance.

Understanding Generic Drivers A

Any driver that does not have the kUSBDoNotMatchGeneric flag set in the
usbDriverLoadingOptions field in the USBDriverDescription structure is

A P P E N D I X A

Changes In Mac OS USB Software

232 Release Notes And Compatibility Issues

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

technically considered a generic driver. Such a driver may be loaded for any
device or interface that matches the class, subclass, and protocol specified in the
USBDriverDescriptor structure.

Note however, that a driver is not really generic if it uses the validateHWproc
function as defined in “USBClassDriverPlugInDispatchTable Structure”
(page 65) to prevent it from being used for anything other than a specific set of
vendor IDs and/or product IDs. Using the validateHWProc function is the best
way for device developers to supply a generic style vendor-specific driver
without utilizing multiple fragments in a single driver file. The intended
purpose of the ValidateHW function was essentially to provide an alternative
method for implementing generic-style driver functionality.

For developers that want to keep the list of valid vendor and product IDs in
resources (or text files), loading those resource in your ValidateHW function,
which is called at file-safe task time, would be the best way to do it.

IMPORTANT

Don’t abuse the load generic ability. Always check for your
device(s) in a validateHW function. The problems associated
with not doing so are drivers that are matched to devices
they know nothing about. For example, a printer driver
that is loaded for the mouse because it matched device
class 0/0 - composite, or a storage device driver that is
loaded for a scanner (it could match interface class 0/0).
Don’t let this happen to you - use a validateHW function.

Core 99 CPU Issues A

There are issues with the iBook, iMac DV, and the Power Macintosh G4
computer systems with AGP support USB and Mass Storage devices at startup.
If media is present in a device when the system is started, the 1.3.3 driver in
ROM is not replaced with a newer Mass Storage driver, if present. On the other
hand, if media such as a Zip disk is inserted after the system has booted, the
newer Mass Storage driver is loaded and used.

Audio Support in Version 1.3.5 and 1.4 A

USB audio support requires a Macintosh system with built-in USB ports and
Mac OS 9.0. The Sound Manager components that are required to support USB

A P P E N D I X A

Changes In Mac OS USB Software

Release Notes And Compatibility Issues 233
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

Audio devices are incorporated into the Mac OS ROM file, which is not loaded
on systems that do not have built-in USB.

16 bit mono audio recording from USB audio input devices is not currently
functional. A new audio software extension is required for this to work.

USB Extensions For Development and ROM Driver Conflicts A

If you install the unmodified pre-release version 1.4x USB Support file available
for software development along with the USB Device Extension file onto a
system which has built-in USB, USB may fail. If you use the development
extensions, they must function together. If the USB Support file is not activated,
then the USB in ROM may try to use the USB device drivers out of the 1.4b1
USB Device Extension file, and may fail. In this case, you can reboot from the
boot CD-ROM supplied with your Macintosh system, or you can reboot with
Command-Option-ND key sequence held down which will keep the native
drivers on disk from loading.

A P P E N D I X A

Changes In Mac OS USB Software

234 Release Notes And Compatibility Issues

Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

235
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

A P P E N D I X B

Conventions and Abbreviations B

This developer note uses the following typographical conventions and
abbreviations.

Conventions 7

Computer-language text—any text that is literally the same as it appears in
computer input or output—appears in Letter Gothic font.

Hexadecimal numbers are preceded by a zero x (0x). For example, the
hexadecimal equivalent of decimal 16 is written as 0x10.

Note
A note like this contains information that is of interest but
is not essential for an understanding of the text. ◆

IMPORTANT

A note like this contains important information that you
should read before proceeding. ▲

Abbreviations B

When unusual abbreviations appear in this developer note, the corresponding
terms are also spelled out. Standard units of measure and other widely used
abbreviations are not spelled out.

Here are the standard units of measure used in developer notes:

A amperes mA milliamperes

dB decibels µA microamperes

GB gigabytes MB megabytes

Hz hertz MHz megahertz

in. inches mm millimeters

k 1000 ms milliseconds

A P P E N D I X B

Conventions and Abbreviations

236
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

Other abbreviations that may be used in this note include:

K 1024 µs microseconds

KB kilobytes ns nanoseconds

kg kilograms Ω ohms

kHz kilohertz sec. seconds

kΩ kilohms V volts

lb. pounds W watts

$n hexadecimal value n

ADB Apple Desktop Bus

ATA advanced technology attachment

ATAPI advanced technology attachment packet interface

AV audiovisual

CD-ROM compact disc read-only memory

DIN Deutsche Industries Norm

EMI electromagnetic interference

GCR group code recording

IC integrated circuit

IDE integrated device electronics

I/O input/output

IR infrared

JEDEC Joint Electronics Devices Engineering Council

PCI Peripheral Component Interconnect

PIO parallel input output

SCSI Small Computer System Interface

SCC serial communications controller

USB Universal Serial Bus
Figure A-0
Listing A-0
Table A-0

237
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

A P P E N D I X C

USB Terminology C

The USB terminology used in this document is defined here:

asynchronous data Data transferred at irregular intervals with no specific
latency requirements.

bandwidth The amount of data capable of being transmitted per
unit of time, typically bits per second (bps) or bytes per
second (Bps).

big endian A method of storing data that places the most
significant byte of multiple byte values at a lower
storage address. For example, a word stored in big
endian format places the least significant byte at the
higher address and the most significant byte at the
lower address. See also, little endian.

bps Transmission rate expressed in bits per second.

buffer Storage used to compensate for a difference in data
rates or time of occurrence of events, when transmitting
data from one device to another. The area in memory
where data is either stored or retrieved
programmatically.

bulk transfer Nonperiodic, large bursts of communication typically
used for a data transfer that can use any available
bandwidth and also be delayed until bandwidth is
available.

bus enumeration Detecting and identifying Universal Serial Bus devices.

class A group of devices or interfaces that have a set of
attributes or functions in common.

client Software resident on the host that interacts with host
software to arrange data transfer between a function in
a device and the host. The client is often the data
provider and consumer for transferred data.

configuration One of possibly several settings a device can be
programmed into. Configurations may be constrained
by available power or bandwidth, or may be
differentiated by function. See also, function.

A P P E N D I X C

USB Terminology

238
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

configuring
software

The host software responsible for configuring a
Universal Serial Bus device. This may be a system
configurator or software specific to the device.

control pipe Same as a message pipe.

control transfer One of four Universal Serial Bus Transfer Types.
Control transfers support configuration/command/
status type communications between client and
function.

default address An address defined by the Universal Serial Bus
Specification and used by a Universal Serial Bus device
when it is first powered or reset. The default address is
0x0.

default pipe The message pipe created by Universal Serial Bus
system software to pass control and status information
between the host and a Universal Serial Bus device’s
Endpoint 0. See also, pipe.

device A logical or physical entity that performs a function.
The actual entity described depends on the context of
the reference. At the lowest level, device may refer to a
single physical hardware component, as in a memory
device. At a higher level, it may refer to a collection of
hardware components that perform a particular
function, such as a Universal Serial Bus interface
device. At an even higher level, device may refer to the
function performed by an entity attached to the
Universal Serial Bus; for example, a data/FAX modem
device. Devices may be physical, electrical, addressable,
and logical.

When used as a non-specific reference, a Universal
Serial Bus device is either a hub or a function.

device address The address of a device on the Universal Serial Bus.
The device address is the default address when the
Universal Serial Bus device is first powered or reset.
Hubs and functions are assigned a unique device
address by Universal Serial Bus software. See also, hub.

device driver A program responsible for interfacing to a hardware
device.

A P P E N D I X C

USB Terminology

239
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

device endpoint A uniquely identifiable portion of a Universal Serial
Bus device that is the source or sink of information in a
communication flow between the host and device. See
also, isochronous sink endpoint, and isochronous
source endpoint.

downstream The direction of data flow from the host or away from
the host. A downstream port is the port on a hub
electrically farthest from the host that generates
downstream data traffic from the hub. Downstream
ports receive upstream data traffic.

endpoint See device endpoint.

endpoint address The combination of a Device Address and an Endpoint
Number on a Universal Serial Bus device.

endpoint number A number that identifies a unique pipe endpoint on a
Universal Serial Bus device.

frame The time from the start of one start of frame (SOF)
token to the start of the subsequent SOF token. A frame
is the master clock of the USB, and is typically 1ms
long. See also, SOF.

function A capability provided to the host by a Universal Serial
Bus device. For example, an ISDN connection, a digital
microphone, or speakers. A device may provide one or
more functions.

host The computer system in which the Universal Serial Bus
host controller is installed. This includes the host
hardware platform (CPU, bus, etc.) and the operating
system in use.

host controller The host’s Universal Serial Bus interface.

host controller
driver

The Universal Serial Bus software layer that abstracts
the host controller hardware. Host Controller Driver
provides an SPI for interaction with a host controller.
Host Controller Driver hides the specifics of the host
controller hardware implementation. On the Macintosh
this is the Universal Serial Bus interface module (UIM),
which is pronounced whim.

hub A Universal Serial Bus device that provides additional
attachment points to the Universal Serial Bus.

A P P E N D I X C

USB Terminology

240
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

interface A collection of pipes which form a logical interface to
part or all of a device. USB devices all have an interface
or interfaces. Interfaces provide the definitions of the
functions available within a device. The device’s
function or functions are defined by the interfaces it
supports. See also, pipe.

isochronous data A stream of data whose timing is implied by its
delivery rate.

isochronous device An entity with isochronous endpoints, as defined in the
USB specification, that sources or sinks sampled analog
streams or synchronous data streams.

isochronous sink
endpoint

An endpoint that is capable of consuming an
isochronous data stream.

isochronous source
endpoint

An endpoint that is capable of producing an
isochronous data stream.

Isochronous
transfer

One of four Universal Serial Bus transfer types.
Isochronous transfers are used when working with
isochronous data. Isochronous transfers provide
periodic, continuous communication between host and
device.

little endian Method of storing data that places the least significant
byte of multiple byte values at lower storage addresses.
For example, a word stored in little endian format
places the least significant byte at the lower address
and the most significant byte at the higher address. The
USB standard uses little-endian format for multi-byte
fields. See also big endian.

message pipe A pipe that transfers data using a request/data/status
paradigm. The data has an imposed structure which
allows requests to be reliably identified and
communicated. See also, pipe.

packet Data organized in a group for transmission. Packets
typically contain three elements: control information
(source, destination, and length), the data to be
transferred, and error detection and correction bits.

packet buffer The logical buffer used by a Universal Serial Bus device
for sending or receiving a single packet. This
determines the maximum packet size the device can
send or receive.

A P P E N D I X C

USB Terminology

241
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

packet ID (PID) A field in a Universal Serial Bus packet that indicates
the type of packet, and by inference the format of the
packet and the type of error detection applied to the
packet.

physical device A device that has a physical implementation; for
example, speakers, microphones, and CD players.

pipe A logical abstraction representing the association
between an endpoint on a device and software on the
host. A pipe has several attributes; for example, a pipe
may transfer data as streams (stream pipe) or messages
(message pipe).

port Point of access to or from a system or circuit. For
Universal Serial Bus, the point where a Universal Serial
Bus device is attached.

root hub A Universal Serial Bus hub attached directly to the host
controller. The root hub is the origin (tier 0) of the USB,
and is a software simulation of a standard USB hub
device.

root port The upstream port on a hub.

SOF An acronym for Start of Frame. The SOF is the first
transaction token in each frame. SOF allows endpoints
to identify the start of frame and synchronize internal
endpoint clocks to the host.

stream pipe A pipe that transfers data as a stream of samples with
no defined Universal Serial Bus structure.

synchronization
type

A classification that characterizes an isochronous
endpoint’s capability to connect to other isochronous
endpoints.

transaction The delivery of service to an endpoint; a complete
logical transfer with a beginning and end, consists of a
token packet, optional data packet, and optional
handshake packet. Specific packets are allowed/
required based on the transaction type.

transfer One or more bus transactions to move information
between a software client and its function.

transfer type Determines the characteristics of the data flow between
a software client and its function. Four transfer types
are defined: control, interrupt, bulk, and isochronous.

A P P E N D I X C

USB Terminology

242
Preliminary Working Draft. Revision 26.  Apple Computer, Inc. 12/23/99

UIM The Universal Serial Bus Interface Module (UIM); the
low-level (controller specific) software that provides the
upper layers of the USB management software with a
hardware abstraction layer to the USB host controller
interface hardware.

Universal Serial
Bus (USB)

A collection of Universal Serial Bus devices and the
software and hardware that allow them to connect the
capabilities provided by functions to the host.

USB software The host-based software responsible for managing the
interactions between the host and the attached
Universal Serial Bus devices. The USB drivers, USB
Manager, and UIM provide these software services on
the Macintosh computer.

USB driver The host-resident software entity responsible for
providing common services to clients that are
manipulating one or more functions on one or more
host controllers, hubs or devices.

upstream The direction of data flow towards the host. An
upstream port is the port on a device electrically closest
to the host that generates upstream data traffic from the
hub. Upstream ports receive downstream data traffic.

Figure B-0
Listing B-0
Table B-0

243
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

Index

A

abbreviations 235 to 236
aborting a pipe 136
ADB compatibility 23
ADB Manager 48
ADB shim 48
alternate interface 109
asynchronous calls 101

B

bandwidth 139
bulk transactions 128
bus busy errors 93
bus enumeration 224
bus errors 92
bus topology 30
byte ordering functions 152

C

cable length 19
CallSecondaryInterruptHandler2 driver

services function 103
CDM shim 48
class driver 42, 47
clearing a stall 137
closing an interface 119
code changes 226
communication flow 32
compatibility issues 23
compatibility shim 48, 73
completion routine 48, 102
completion routine execution context 102

configuration descriptor data structure 169
configuration descriptors 118
configuring device interfaces 113
connectors 19
constants

descriptor type 167
direction 165
driver class 166
driver loading 168
endpoint 165
error status level 168
flag 164
interface 166
interface protocol 166
pipe state 167
power and bus attributes 167
recipient 165
type 165
usbBRequest 165

control requests 124 to 126
control transactions 121
CurrentExecutionLevel driver services

function 102
Cursor Device Manager 48

D

data exports 46
data structures

HIDButtonCaps 218
HIDCaps 215
HIDCollectionNode 216
HIDUsageAndPage 214
HIDValueCaps 219
USBConfigurationDescriptor 169
USBDeviceDescriptor 169
USBEndPointDescriptor 170

I N D E X

244
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

USBHIDDescriptor 170
USBHIDReportDesc 171
USBInterfaceDescriptor 170
USBPB 94

data toggle synchronization 134
data transfer types supported 24
debugger aware flag 163
default pipe 121, 134
deprecated pipe functions 164
descriptors 117
descriptor type constants 167
device

power 19
speed 19

device access errors 91
device callback request 187
device configuration 107
device descriptor data structure 169
device detection 176
device detection example 83
device endpoint 117
device examples 20
device notification 84, 144
device notification callback routine 185
device notification parameter block 186
device notifications 187
device power requirements 109
device reference 94
device removal notification 145
device requests 120 to 123
device reset 142
devices 33
direction constants 165
driver class constants 166
driver descriptor structure 48
driver dispatch table 48
driver file and resource type 168
driver initialization routine 48
driver loading 187
driver loading options 168
driver logic errors 93
driver matching 47
driver notification messages 224
drivers, loading after boot time 184

E

endpoint 0 34
endpoint constants 165
endpoint descriptor data structure 170
endpoints 33
errors

bus 92
bus busy 93
device access 91
driver logic 93
incorrect command 93
overrun 93
parameter block 99
underrun 93

error status level constants 168
expansion capabilities 18

F

file types 168
finding an interface 107 to 110
flag constants 164
frActCount field 100
FrameList field 101
frames, isochronous transfers 99
frReqCount field 100
frStatus field 100
functions

USBAbortPipeByReference 136
USBAddDriverForFSSpec 184
USBAddShimFromDisk 183
USBAllocMem 150
USBBulkRead 128
USBBulkWrite 130
USBClearPipeStallByReference 137
USBClosePipeByReference (deprecated) 164
USBConfigureInterface 113
USBControlRequest 124
USBDeallocMem 151
USBDelay 147
USBDeviceRequest 121
USBDisposeInterfaceRef 119

I N D E X

245
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

USBDriverNotify 182
USBExpertFatalError 157
USBExpertGetStatusLevel 156
USBExpertInstallDeviceDriver 144
USBExpertInstallInterfaceDriver 145
USBExpertNotifyParent 183
USBExpertRemoveDeviceDriver 145
USBExpertRemoveInterfaceDriver 146
USBExpertSetStatusLevel 156
USBExpertStatus 154
USBFindNextAssociatedDescriptor 117
USBFindNextEndpointDescriptorImmediate 1

61
USBFindNextInterface 108
USBFindNextInterfaceDescriptorImmediate 15

9
USBFindNextPipe 115
USBGetBandwidthAvailableByReference 139
USBGetConfigurationDescriptor 118
USBGetFrameNumberImmediate 148
USBGetFullConfigurationDescriptor 158
USBGetPipeStateByReference 135, 139, 141
USBGetPipeStatusByReference 135
USBGetVersion 106
USBIntRead 127
USBIntWrite 127
USBIsocRead 131
USBIsocWrite 132
USBMakeBMRequestType 121
USBNewInterfaceRef 112
USBOpenDevice 110
USBOpenPipe (deprecated) 164
USBPortStatus 143
USBResetDevice 142
USBResetPipeByReference 136
USBResumeDeviceByReference 143
USBSetConfiguration 110
USBSetPipeActiveByReference 138
USBSetPipeIdleByReference 138
USBSetPipePolicy 140
USBSuspendDevice 142

G

gestalt selectors 23
gestaltUSBHasIsoch selector 225
getting the pipe state 135

H

HIDButtonCaps data structure 218
HIDCallPreviousReportHandlerProcPtr dispatch

table entry 79
HIDCaps data structure 215
HIDCloseDeviceProcPtr dispatch table entry 78
HIDCollectionNode data structure 216
HIDControlDeviceProcPtr dispatch table

entry 80
HID descriptor data structure 170
HIDDeviceDispatchTable structure 76
HID device info selectors 77
HID dispatch table entries

HIDCallPreviousReportHandlerProcPtr 79
HIDCloseDeviceProcPtr 78
HIDControlDeviceProcPtr 80
HIDGetDeviceInfoProcPtr 77
HIDGetHIDDescriptorProcPtr 77
HIDGetReportProcPtr 79
HIDInstallReportHandlerProcPtr 79
HIDOpenDeviceProcPtr 78
HIDRemoveReportHandlerProcPtr 79
HIDReportHandlerProcPtr 78
HIDSetReportProcPtr 80

HID dispatch table symbol 83
HIDGetDeviceInfoProcPtr dispatch table

entry 77
HIDGetHIDDescriptorProcPtr dispatch table

entry 77
HIDGetReportProcPtr dispatch table entry 79
HIDInstallReportHandlerProcPtr dispatch table

entry 79
HID library API 190
HID library constants 212
HID library data structures 214
HID library error codes 220 to 221

I N D E X

246
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

HID library functions
HIDCloseReportDescriptor 193
HIDGetButtonCaps 194
HIDGetButtons 200
HIDGetButtonsOnPage 202
HIDGetCaps 194
HIDGetCollectionNodes 195
HIDGetScaledUsageValue 203
HIDGetSpecificButtonCaps 196
HIDGetSpecificValueCaps 197
HIDGetUsageValue 204
HIDGetUsageValueArray 205
HIDGetValueCaps 199
HIDMaxUsageListLength 199
HIDOpenReportDescriptor 192
HIDSetButton 207
HIDSetButtons 208
HIDSetSelectUsageValue 209
HIDSetUsageValue 210
HIDSetUsageValueArray 211
HIDUsageListDifference 206

HID module device dispatch table 81
HIDOpenDeviceProcPtr dispatch table entry 78
HIDRemoveReportHandlerProcPtr dispatch table

entry 79
HID report descriptor data structure 171
HIDReportHandlerProcPtr dispatch table

entry 78
HIDSetReportProcPtr dispatch table entry 80
HIDUsageAndPage data structure 214
HIDValueCaps data structure 219
high-speed device 21
holding data buffer memory 124
host software 30
HostToUSBLong function 153
HostToUSBWord function 153
hub device 22
hub driver 47

I

incorrect command errors 93
interface 33, 107

alternate 109
closing 119

interface constants 166
interface descriptor 117
interface descriptor data structure 170
interface protocol constants 166
interface reference 48
interrupt data transfers 126, 127
introduction to USB 18
isochronous calls 99
isochronous parameter block 226

frActCount field 100
FrameList field 101
frReqCount field 100
frStatus field 100
NumFrames field 101
packet error code 100
usbBuffer field 100
usbFrame field 101
usbReference field 100
usbReqCount field 100
usbStatus field 100

isochronous pipes 101

K

keyboards supported 24
kNotifyUSBSystemSleepDemand 225
kNotifyUSBSystemSleepRequest 224
kNotifyUSBSystemSleepRevoke 225
kNotifyUSBSystemSleepWakeUp 225
kUSBCompletionError 99
kUSBDebuggerAwareFlag usage 163
kUSBDoNotMatchGenericDevice constant 168
kUSBDoNotMatchInterface constant 168
kUSBFlagsError 99
kUSBInterfaceMatchOnly constant 168
kUSBPBLengthError 99
kUSBPBVersionError 99
kUSBProtocolMustMatch constant 168

I N D E X

247
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

L

loading an interface driver 145
logical topology 31
low-speed device 21
low-speed device cables 19

M

maximum packet size 93
maxpacketsize 93
MaxPacketSize value 129
memory functions 150 to 152
merging code fragments 227
multiple bus support 148
multiple device support 26, 227
mutiple USB controllers 224

N

Name Registry 46
ndrv code fragment 46
network compatibility 23
no data timeout 105
non-0 endpoints 34
non-asynchronous calls 101
NumFrames field 101

O

OLDBUSNAMES macro 226
OpenFirmware 46
opening a device 110
opening an interface 112
over run errors 93

P

packet 93
packet size 93
parameter block errors 99
physical topology 31
pipe descriptor 117
pipes 34
pipe stall 134
pipe state constants 167
pipe state control functions 133
polling fields 102
port status 143
power and bus attribute constants 167
power features 22
power management features 224

R

recipient constants 165
references 93
removing an interface driver 146
reset device 142
resetting a device 141
resetting a pipe 136
resource types 168
resuming a device 143
root hub 22

S

secondary interrupt level 102
setting a pipe active 138
setting a pipe to idle 138
setting the configuration 110
shim 48, 73
shim, registering 183
sleep notification messages 224
storage devices 24
suspending a device 142
system task level 102

I N D E X

248
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

T

time functions 146 to 149
topology database access functions 177
transaction functions 124 to 130
transaction timeout 105
transaction timeout error 105

U

UIM 42, 45
underrun errors 93
USB

bus topology 30
communication flow 32
compatibility issues 23
connectors 19
device class examples 20
device expansion 18
devices 20, 33
endpoint 0 34
endpoints 33
gestalt selectors 23
high-speed device 21
host software 30
hub devices 22
interface 33
introduction to 18
logical topology 31
low-speed device 21
network compatibility 23
non-0 endpoints 34
parameter block 94
physical topology 31
pipes 34
power features 22
root hub 22
storage devices 24
supported controllers 25
supported data transfer types 24
supported keyboards 24

USBAbortPipeByReference function 136
USBAddDriverForFSSpec function 184

USBAddShimFromDisk function 183
USBAllocMem function 150
usbBMRequest

direction constants 165
recipient constants 165
type constants 165

usbBRequest constants 165
usbBuffer field 100, 124
USBBulkRead function 128
USBBulkWrite function 130
USBClassDriverPlugInDispatchTable

structure 226
USB class drivers 47
USBClearPipeStallByReference function 137
USBClosePipeByReference function

(deprecated) 164
USBConfigurationDescriptor data structure 169
USB configuration services 107 to 120
USBConfigureInterface function 113
USB constants 164
USB controllers supported 25
USBControlRequest function 124, 124 to 126
USB_CONTSTANT16 macro 152, 153
USBDeallocMem function 151
USBDelay function 147
USBDeviceDescriptor data structure 169
USBDeviceNotificationCallbackProc

function 185
USBDeviceRefToBusRef function 181
USBDeviceRequest function 121 to 123
USBDisposeInterfaceRef function 119
USBDriverNotificationProcPtr sleep notification

messages 224
USBDriverNotify function 182
USBDriverNotifyProcPtr prototype 226
USBEndPointDescriptor data structure 170
USBExpertFatalError function 157
USBExpertGetStatusLevel function 156
USBExpertInstallDeviceDriver function 144
USBExpertInstallInterfaceDriver function 145
USBExpertNotifyParent function 183
USBExpertRemoveDeviceDriver function 145
USBExpertRemoveInterfaceDriver function 146
USBExpertSetStatusLevel function 156
USBExpertStatus function 154

I N D E X

249
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

USBFindNextAssociatedDescriptor function 117
USBFindNextEndpointDescriptorImmediate

function 161
USBFindNextInterfaceDescriptorImmediate

function 159
USBFindNextInterface function 108
USBFindNextPipe function 115
usbFrame field 101
USB frames 146
USB Gestalt selectores 45
USBGetBandwidthAvailableByReference

function 139
USBGetConfigurationDescriptor function 118
USBGetDeviceDescriptor function 178
USBGetDriverConnectionID function 181
USBGetFrameNumberImmediate function 148
USBGetFullConfigurationDescriptor

function 158
USBGetInterfaceDescriptor function 178
USBGetNextDeviceByClass function 179
USBGetPipeStateByReference function 135, 139,

141
USBGetPipeStatusByReference function 135
USBGetVersion function 106
USBHIDDescriptor data structure 170
USBHIDDeviceDispatchTable 83
USBHIDModuleDispatchTable 81
USBHIDReportDesc data structure 171
USB hub driver 47
USBInterfaceDescriptor data structure 170
USB Interface Module 42, 45
USBIntRead function 127
USBIntWrite function 127
USBIsocFrame structure 100
USBIsocRead function 131
USBIsocWrite function 132
USBMakeBMRequestType function 121
USB Manager 42, 46, 176

APIs 177
device notification parameter block 186
getting device descriptors 178
getting driver connection ID 181
getting drivers by class 179
getting interface descriptors 178
getting the device bus reference 181

responsibilites 177
topology database access functions 177

USB Manager data structures
USBDeviceNotificationParameterBlock 186

USB Manager functions
USBAddDriverForFSSpec 184
USBAddShimFromDisk 183
USBDeviceNotificationCallbackProc 185
USBDeviceRefToBusRef 181
USBGetDeviceDescriptor 178
USBGetDriverConnectionID 181
USBGetInterfaceDescriptor 178
USBGetNextDeviceByClass 179
USBInstallDeviceNotification 187
USBRemoveDeviceNotification 188

USBNewInterfaceRef function 112
USBOpenDevice function 110
USBOpenPipe function (deprecated) 164
USBPB, required fields 98
USBPB parameter block 94
USBPB pbLength field 98
USBPB pbVersion field 98
USBPB usbBMRequestType field 98
USBPB usbCompletion field 98
USBPB usbFlags field 98
USBPB usbRefcon field 98
USBPortStatus function 143
USB Prober application 35
USB Prober features 37
usbReference field 100
USB reference types 93
usbReqCount field 100
USBResetDevice function 142
USBResetPipeByReference function 136
USBResumeDeviceByReference function 143
USB Services Library 42, 48, 91
USBSetConfiguration function 110
USBSetPipeActiveByReference function 138
USBSetPipeIdleByReference function 138
USBSetPipePolicy function 140
USB software architecture 44
USB software components 42
usbStatus field 100
USBSuspendDevice function 142
USBToHostLong function 154

I N D E X

250
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

USBToHostWord function 153
USB topology 30
USB transaction functions

setting up data buffer 124
usbWIndex field 110
usbWValue field 110
USL 42, 48, 91
USL data structures 168
USL error reporting 91
USL logging services 154 to 157
USL USB management services 144
USL utility functions 146

V

vendor specific device support 26
version 1.1 USB software 223

features 223
USB.h file 226

version 1.2 USB software 26, 227
virtual memory 124

I N D E X

251
Preliminary Working Draft, Revision 26.  Apple Computer, Inc. 12/23/99

T H E A P P L E P U B L I S H I N G S Y S T E M

Preliminary Working Draft, Revision 26. © Apple Computer, Inc. 12/23/99

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

	Title page
	Contents
	Figures and Tables
	About This Note
	Contents of This Note
	Supplemental Reference Documents
	Mac OS USB Resources
	Apple Developer Connection Web Site

	Overview
	Introduction to USB
	Why Incorporate USB Into the Macintosh Architecture?
	Better Device Expansion Model
	Compact Connectors and Cables
	Use of Standard Hardware
	Lower Cost Than Comparable Non-USB Peripherals

	Wide Selection of USB Devices
	Device Classes
	Low- and High-Speed Devices
	USB Hub Devices
	The USB Root Hub

	Compatibility Issues
	USB Software Gestalt Selectors
	ADB, Serial/LocalTalk, and USB
	Macintosh-To-Macintosh USB Connections
	USB Storage Devices
	Keyboard Requirements
	USB Data Transfer Types Supported
	USB Controller Support
	Maintaining Printer Device and Driver Compatibility
	Device Support For Multiple Vendor Specific Devices
	USB PCI Adapter Card Support
	Transaction Timeouts

	USB Topology and Communication
	USB Bus Topology
	Host Software
	Physical Topology
	Logical Topology

	Communication Over the USB
	USB Interface
	USB Devices
	Endpoints
	Endpoint 0
	Non-0 Endpoints

	Pipes

	A Look At USB Devices with USB Prober
	USB Prober Features for Developers
	USB Prober Windows

	USB Software Components
	Mac OS Software for USB Devices
	USB Software Presence and Version Attributes
	USB Interface Module (UIM)
	USB Manager
	Hub Driver
	USB Class Drivers
	USB Services Library (USL)

	Applications and USB Drivers

	Writing Mac OS USB Drivers
	Mac OS USB Driver Overview
	USB Device and Driver Matching
	Matching Interfaces to Interface Drivers
	Matching Class Drivers to Composite Devices
	Device Driver and Interface Driver Matching Differences

	Core Mac�OS USB Driver Data Exports
	USBDriverDescription Structure
	USBClassDriverPlugInDispatchTable Structure
	ValidateHWProc Function
	InitializeDeviceProc Function
	InitializeInterfaceProc Function
	Driver notificationProc Function
	FinalizeProc Function

	Handling Hot Unplugging, Dealing With Notifications
	Communicating With Client Processes
	The Disappearing Driver
	Common Ground and The Compatibility Shim
	Where To Implement a Compatibility Shim
	Designing A Compatibility Shim
	Helpful Resources For Compatibility Shim Development
	Communicating with the Human Interface Device Driver
	The HIDDeviceDispatchTable Structure
	The USBHIDModuleDispatchTable Structure

	Detecting USB Device Presence
	Mac OS USB Compatibility With Mac OS Toolbox Calls

	USB Services Library Reference
	USB Services Library (USL)
	Errors And Error Reporting Conventions
	Device Access Errors
	Errors on the USB Bus
	Incorrect Command Errors
	Driver Logic Errors
	PCI Bus Busy Errors

	USB References
	The USBPB Parameter Block
	Required USB Parameter Block Fields
	Standard Parameter Block Errors
	Using the USBPB For Isochronous Transactions
	Asynchronous Call Support
	Polling Versus Asynchronous Completion (Important)
	Transaction and Data Timeouts

	USL Functions
	Determining The Version of USB Software Present
	USB Configuration Functions
	Opening An Interface
	Configuring The Device Interface(s)
	Finding A Pipe
	Getting Information About an Open Interface or Pipe

	Generalized USB Device Request Function
	USB Transaction Functions
	Pipe State Control Functions
	Data Toggle Synchronization

	Device Control and Status Functions
	USB Management Services Functions
	USB Time Utility Functions
	USB Memory Functions
	Byte Ordering (Endianism) Functions
	USL Logging Services Functions
	USB Descriptor Functions
	Debugger Aware Flag

	Deprecated Pipe Functions
	Constants and Data Structures
	USB Constants
	Parameter Block Constants
	Flag Constants
	Endpoint Type Constants
	usbBMRequest Direction Constants
	usbBMRequestType Type Constants
	usbBMRequest Recipient Constants
	usbBRequest Constants
	Interface Constants
	Interface Protocol Constants
	Driver Class Constants
	Descriptor Type Constants
	Feature Selector Constants
	Pipe State Constants
	USB Power and Bus Attribute Constants
	Driver File and Resource Types
	Driver Loading Option Constants
	Error Status Level Constant

	USB Data Structures
	Device Descriptor Structure
	Configuration Descriptor Structure
	Interface Descriptor Structure
	Endpoint Descriptor Structure
	HID Descriptor Structure
	HID Report Descriptor Structure

	USL Error Codes

	USB Manager Reference
	Overview
	USB Manager API
	Topology Database Access Functions
	Getting Device Descriptors
	Getting Interface Descriptors
	Finding The Driver For A Device By Class
	Getting The Connection ID For Class Driver
	Getting The Bus Reference For a Device
	Passing Messages To Another Driver
	Receiving A Message From A Child Driver
	Registering Shims After Boot Time
	Adding a Driver For a Device After Boot Time

	Callback Routine for Device Notification
	Device Notification Callback Routine
	Device Notification Parameter Block
	Installing The Device Callback Request
	Removing The Device Callback Request

	Errors Returned By The USB Manager

	HID Library Reference
	Overview
	HID Library API Reference
	HID Descriptor Management Functions
	HID Capabilities Functions
	HID Report Decoding Functions
	HID Report Data Encoding Functions

	HID Library Constants
	HID Report Constants
	HIDOpenReportDescriptor Flags
	HIDGetDeviceInfo Constants
	HIDOpenDevice Constants
	HIDInstallReportHandler Constant
	HIDControlDevice Constant
	Usage Table Constants

	HID Library Data Structures
	HIDDeviceDispatchTable
	HIS Library Error Codes

	Changes In Mac OS USB Software
	Major Feature Updates In Version 1.1
	Improved Bus Enumeration
	Multiple USB Bus Support
	Driver Notification Messages
	Isochronous Transfer Support
	Improved Functionality For USB Control Requests

	Code Changes Required To Support The Version 1.1 USBPB
	Major Features Introduced In Version 1.2
	Changes and Enhancements Introduced in Version 1.4
	Release Notes And Compatibility Issues
	Bulk Data Transfer Performance Issues
	Understanding Generic Drivers
	Core 99 CPU Issues
	Audio Support in Version 1.3.5 and 1.4
	USB Extensions For Development and ROM Driver Conflicts

	Conventions and Abbreviations
	Conventions
	Abbreviations

	USB Terminology
	Index

