SerialShimLib

Interface Specification/Guide

s

\ CPU Software

Version: 101

Date: 9/10/99



Overview

The SerialShimLib isintended to provide an abstraction for seria driverswhenin a
transient environment, such as USB. For the sake of this document the following diagram
outlines the basic “ architecture” and defines some of the terms used.

Legacy Serial Application(s)

I

Device Manager

I

Serial ShimLib (the shim)

I

Device Driver

The terms shim, serial shim and Serial ShimLib are synonymous and refer to the thin
layer that provides the abstraction from the Device Manager and the Communi cations
ToolBox Resource Manager (CRM). The term driver and Device Driver refer to the
actual driver that controls the hardware or interfaces to the underlying hardware.

The shim provides an abstraction that hides the details of the Unit Table DRVR and
CRM mechanisms. It also provides basic housekeeping when devices “ disappear” and
“re-appear”. Thisisimportant in numerous environments especially USB where devices
can be “hot plugged/unplugged”, sometimes inadvertently (someone disconnects an
upstream hub) while applications are open.

The shim stays in memory and manages calls from open applications, returning errors,
after the driver has been removed. Once the application closes, the shim cleans up and
removes device entries from the Unit Table and the CRM.



I nterface to the Shim

The interface with the shim isfairly straightforward and both the driver and the shim
make use of the Code Fragment Manager (CFM) to accomplish the appropriate linkage.
There are basically three calls the driver makes to the shim. One to install the driver, one
to remove the driver and one to complete any deferred I/O. The shim only has one call to
adriver which uses a selector code to indicate the action.

Installing adriver
When a device is detected (e.g. enumerated via USB) the driver that controls the deviceis
loaded and when ready makes the initial call to the shim.

OSErr Seria Shimlnstall Driver(Serial Shiminterface IntBlk, ShimRefNum *ref)

This call uses an interface parameter block which contains information the shim uses to
register the driver with the Device Manager and the CRM. It returns a shim reference
number which must be used on all subsequent calls to the shim. Refer to the USBModem
example for exact details on how this call is setup and made. An error isreturned if the
install can not take place for whatever reason.

The interface block contains the following:

typedef struct  Serial Shiminterface
{

StringPtr DRVRInNName;
StringPtr DRVROutName;
StringPtr CRMName;
IconPtr CRMIcon;
Ulnt32 MaxSpeed;
Ulnt32 RefCon;
CFragConnectionlD ConnlD;

} Seria Shiminterface;

The DRVRInName is the name used by the Device Manager for the input side of the
driver. Refer to Inside Macintosh: Devices for more information about this. The name
must be avalid DRVR name such as.XYZIn. If it is not the shim substitutes the default
name of .SSIn instead. The shim also makes these names unique, by appending a number
(.SSInl) if necessary.

The DRVROutName is the name used by the Device Manager for the output side of the
driver. The name must be avalid DRV R name such as . XY ZOut. If it is not the shim
substitutes the default name of .SSOut instead. The shim also makes these names unique,



by appending a number (.SSOutl) if necessary. As these names are pairs the shim will
make sure that both are valid before using them.

The CRMName is the name used to register with the Communications Resource
Manager. Thereis no checking done on this nameit is passed to the CRM asis. If thisis
anull string no registration is done with the CRM.

The CRMIcon isthe icon displayed in the Connect Viaor Connect Port dialog box that
applications use to select adevice. CRMName is displayed under theicon. Thisfield is
ignored if the CRMNameisnull.

MaxSpeed is the maximum DTE speed (in bits per second), required by the CRM.

RefCon is ageneral purpose 32 bit value passed to the shim. The shim then returns this
value on all subsequent calls to the driver.

The ConniD is the Code Fragment Managers identification of the driver. It allows the
shim to call back into the appropriate driver. The USBModem example shows how to
obtain the Connection ID.

Removing adriver
When a driver isterminated, the device has been turned off or physically removed (in the
case of USB unplugged) the following call must be made before the driver terminates.

OSErr Seria ShimRemoveDriver(ShimRefNum ref, Boolean forced)

The shim reference number must be used to indicate to the shim which driver is being
terminated. The shim locates the driver and tries to remove the Unit Table entry and the
CRM entry. If thisis successful no error isreturned. If, for example, an application is
open then the Unit Table entry cannot be removed. The shim will mark the driver as
“unavailable” and will periodically try to removeit. Any calls made to the driver at this
point will result in an error being returned. If Forced is set to true, thisindicates to the
shim that the driver will be unloaded and the shim must manage removing the Unit Table
entry. If Forced is set to false, thisindicates the driver will continue to be around and the
shim should not periodically try to remove the Unit Table entry. The assumption hereis
that the driver will continue to issue Serial ShimRemoveDriver until no error is returned.
The driver will still be marked as “unavailable” and an error will be returned to the
application. If Forced is true and the driver cannot be removed the function returns
“pending” (1) to indicate to the driver that the shim isin the process of cleaning up.



Forced set to true is strongly recommended as this allows the shim to clean up with
minimal or no effort on the part of the driver.

Deferred 1/0
Any deferred 1/0, asynchronous requests not completed (returned pending to the
application) need to make the following call once the 1/0 has actually compl eted.

void Serial ShimlOComplete(ShimRefNum ref, ParmBIkPtr pb)

The shim reference number indicates which driver has completed the 1/0 and the
parameter block is the completed I/O parameter block. See the USBModem example for
more details on deferred I/O handling.



Interfaceto the Driver

The interface to the driver is again straightforward and uses the CFM to handle this. The
Connection ID passed into the Shim, in the interface block of the Serial ShiminstallDriver
call, is used to locate the driver and then communicate with it.

Passing commandsto the driver

Once acommand, in this context this means anything received from the Device Manager
destined for adriver (i.e. Open, Close, Prime (read/write), Control and Status), is
received by the Shim and is passed on to the driver. The Shim does some basic checking,
the driver is“available” (i.e. not been unloaded — the remove call has not been made) and
then builds the selector and makes the following call.

OSErr SerHAL_Entry(UInt16 HdwSelector, ParmBIkPtr pb, UInt32 RefCon)

The Hardware Selector code is defined as follows:

enum

{
SerHAL _Initidize = (0} /l Open
SerHAL_Terminate = 1, /I Close
SerHAL_Read = 2, /I Prime (Read)
SerHAL_Write = 3, /I Prime (Write)
SerHAL_SetConfiguration = 4, Il KSERDConfiguration
SerHAL _SetInputBuffer = 5, /I KSERDInputBuffer
SerHAL_SetFlowControl = 6, /I KSERD SerHShake/k SERDHandshake
SerHAL _SetBreak 7, /I kKSERD SetBreak/k SERDClearBreak
SerHAL_SetDTERate = 8, /I KSERDBaudRate/k SERD115kBaud/kSERD230kBaud
SerHAL_SetDTR = 9, /I KSERDAssertDTR/kSERDNegateDTR
SerHAL _SetParity 10, /I kKSERD SetPEChar/kSERD SetPEA[tChar
SerHAL_SetX OffFlag = 11, /I KSERD SetX OffFlag/k SERDClearX OffFlag
SerHAL_SendXOn = 12, /IkSERD SendX On/kSERD SendX OnOut
SerHAL _SendX Off = 13, Il kKSERD SendX Off/k SERD SendX Off Out
SerHAL _Miscellaneous = 14, [ KSERDMiscOptions
SerHAL _GetBuffer = 15, /I KSERDI nputCount
SerHAL_GetStatus = 16, /I KSERDStatus
SerHAL_GetVersion = 17, /I KSERDVersion
SerHAL_Control Extend = 18, /I Unrecognized code
SerHAL _StatusExtend = 19, /I Unrecognized code
SerHAL_KillRead = 20, I/ KillC ode
SerHAL _KillWrite = 21 /I KillCode

¥

Most of the codes are self explanatory, however one or two may need further explanation.
SerHAL _Initialize isthe result of an Open call. SertHAL _Terminateis the result of a
Close call. The SerHAL _ControlExtend and SerHAL _StatusExtend are the result of



csCodes not recognized by the Shim and could be driver specific. They are passed to the
driver asis and can be acted upon or ignored as appropriate.

The SerHAL_KillRead and the SerHAL _KillWrite events result when the Seria Driver
has been issued a KillCode on a parameter block. The Parameter block is the same one
that was passed to the shim by the Device Manager. The RefCon parameter is the same
one that was passed to the shim in the interface block of the Serial ShiminstallDriver call.
It isageneral purpose field for driver use and is returned to the driver unmodified.



