

Extending Printing Dialogs in
Mac OS X
Preliminary

5/23/00
© Apple Computer, Inc. 2000



T I T L E P A G E
2

Preliminary  Apple Computer, Inc. 5/23/00

 Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
ObjectiveÐC, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.
Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

C O P Y R I G H T P A G E
4

Preliminary  Apple Computer, Inc. 5/23/00

Contents

Chapter 1 Extending Printing Dialogs in Mac OS X 9

Overview 11
Extending Printing Dialogs in Classic Mac OS and in Carbon 12
Extending Printing Dialogs in Mac OS X 13

Printing Dialog Extensions and User Options 13
Controls in Printing Dialog Extensions 17
Advantages and Disadvantages of PDEs 17

When You Should Use Printing Dialog Extensions 18
Printing Dialog Extension Architecture 19
Creating a Printing Dialog Extension 21

Designing a User Interface 22
Defining Factory and Type IDs 23
Defining a User Option Kind ID 24
Defining Constants for the Print Settings Ticket 24
Defining Additional Data Structures 25

Defining an Unknown Interface Structure 26
Defining a PDE Interface Structure 27
Defining a Private Context 28

Writing Code to Implement Your PDE 29
Implementing a Factory Function 30
Implementing Functions for the CFPlugIn Interface 31
Implementing Functions Required by All Printing Plug-ins 35
Implementing the PDE Interface 38
Implementing Additional Functions for the PDE 49

Creating a Custom Information Property List 53
Using a PDE in Your Application 55

Chapter 2 Printing Dialog Extension Reference 57

Printing Dialog Extension Callback Functions 57
Printing Manager Plug-In Callback Functions 57

Retain 58
5
Preliminary  Apple Computer, Inc. 5/23/00

C O N T E N T S

Release 59
GetAPIVersion 59

Printing Dialog Extension Callback Functions 60
Prologue 61
Initialize 63
Sync 65
GetSummaryText 66
Open 67
Close 68
Terminate 69

Printing Dialog Extension Data Types 70
PluginAPIVersion 71
PMPlugInHeaderInterface 72
PMPlugInHeaderVTable 72
PlugInIntf 73
PlugInIntfVTable 73
PMPDERef 75
PMPDEContext 75
PMPDEFlags 75

Printing Dialog Extension Constants 76
Printing Dialog Extension Interface ID Constants 76
Printing Dialog Extension Type ID Constants 77
Printing Dialog Extension Interface Version Constants 77
Feature Request Flags Constants 78
Universal and Standard User Option Kind ID Constants 79

Printing Dialog Extension Result Codes 79
6

Preliminary  Apple Computer, Inc. 5/23/00

Figures, Listings, and Tables

Chapter 1 Extending Printing Dialogs in Mac OS X 9

Figure 1-1 A Page Setup dialog showing a universal user option (Page
Attributes) 15

Figure 1-2 A PDE plug-in, showing the main interface functions 20
Figure 1-3 A Print dialog, showing a universal user option

(Copies & Pages) 23
Listing 1-1 A sample factory ID 24
Listing 1-2 A sample user option kind ID 24
Listing 1-3 Sample constants for storing and retrieving Print Settings ticket

data 25
Listing 1-4 A sample structure for an unknown interface 26
Listing 1-5 A sample structure for a PDE interface 27
Listing 1-6 A sample structure for a private PDE context 29
Listing 1-7 A sample plug-in factory function 30
Listing 1-8 A sample IUnknown interface AddRef function 32
Listing 1-9 A sample IUnknown interface Release function 33
Listing 1-10 A sample IUnknown interface QueryInterface function 34
Listing 1-11 A sample Printing Manager plug-in Retain function 36
Listing 1-12 A sample Printing Manager plug-in Release function 37
Listing 1-13 A sample Printing Manager plug-in GetAPIVersion function 38
Listing 1-14 A sample PDE Prologue function 39
Listing 1-15 A sample PDE Initialize function 40
Listing 1-16 A sample PDE Sync function 42
Listing 1-17 A sample PDE GetSummaryText function 45
Listing 1-18 A sample PDE Open function 47
Listing 1-19 A sample PDE Close function 48
Listing 1-20 A sample PDE Terminate function 48
Listing 1-21 A sample CreatePlugInInterface function 50
Listing 1-22 A sample InitContext function 52
Listing 1-23 A sample function that obtains user option information 52
Listing 1-24 A custom information property list for the sample application

PDE 53
7
Preliminary  Apple Computer, Inc. 5/23/00

L O F A T

Chapter 2 Printing Dialog Extension Reference 57

Table 2-1 Printing dialog extension (PDE) result codes defined by the Mac OS X
Printing Manager 79
8

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

1 Extending Printing Dialogs in
Mac OS X
Note: This is a preliminary document. While it has received
some technical review, there are likely to be changes to some of
the information provided here.

This document describes how to use the Mac OS X Printing ManagerÕs printing
dialog extension (PDE) mechanism to add application-specific information or
controls to the Print and Page Setup dialogs. Although much of that information can
also be applied to printer module PDEs, detailed coverage of printer modules is not
provided here.

This document provides overview material, code samples, and API reference, in the
following sections:

■ ÒOverviewÓ (page 11)

■ ÒExtending Printing Dialogs in Classic Mac OS and in CarbonÓ (page 12)

■ ÒExtending Printing Dialogs in Mac OS XÓ (page 13)

■ ÒPrinting Dialog Extension ArchitectureÓ (page 19)

■ ÒCreating a Printing Dialog ExtensionÓ (page 21)

■ ÒUsing a PDE in Your ApplicationÓ (page 55)

■ ÒPrinting Dialog Extension ReferenceÓ (page 57)

The sample code in this document is taken from a complete implementation of a
PDE which will be distributed with the Mac OS X Printing Manager SDK. The
sample code is for Carbon applications.
9

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

This document assumes you are familiar with the Classic Printing Manager and
printing concepts in general. You should also be familiar with the Control Manager
and with Mac OS APIs that provide cut and paste, drag and drop, high-level events,
and Apple events.

The following documents contain information that may be useful in working with
PDEs. All are available at the Apple website at:

<http://developer.apple.com/techpubs/carbon>

■ Inside Mac OS X: System Overview (the ÒSystem ArchitectureÓ chapter
provides an overview of the Mac OS X printing system)

■ Adopting the Carbon Printing Manager

■ Carbon Printing Manager Reference

■ Adopting the Aqua Interface

■ Introduction to the Carbon Event Manager

■ Core Foundation Plug-In Services

■ Core Foundation Bundle Services

Note: PDEs are not supported in the DP4 release of Mac OSX, though they are
scheduled for inclusion in the 1.0 release. Also scheduled for the 1.0 release are:
1. Printing help available through a help button on printing dialogs.
2. Saved settings (collections of user-saved or application-supplied or
driver-supplied settings for the Print dialog). The Print dialog will allow a user
to choose from existing settings or to create new saved settings.
3. Dependencies between user options. User options are described in ÒPrinting
Dialog Extensions and User OptionsÓ (page 13). DonÕt implement your own
mechanism for dependencies between user options.
10

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

Overview

The Mac OS X Printing Manager is part of a robust new printing system in
Mac OS X that provides a refined user interface, as well as many sophisticated
features for developers who work with printing. For a detailed overview of the
printing system, see the ÒSystem ArchitectureÓ chapter of ÒInside Mac OS X:
System Overview.Ó

All Carbon applications must convert their printing code to use the Carbon Printing
Manager API, which provides access to many of the printing features available in
Mac OS X. The Carbon Printing Manager allows Carbon applications to print in
Mac OS 8 and Mac OS 9 with existing printer drivers and in Mac OS X with its new
printing architecture.

The Carbon Printing Manager also provides a printing session mechanism, where a
session encapsulates one entire printing cycleÑthat is, the steps from bringing up
the Print dialog to printing the document. In Mac OS 8 and 9, only one printing
session is allowed at a time, but in Mac OS X the session API supports multiple,
simultaneous printing sessions. The Carbon Printing Manager also supports sheets,
a per-document mechanism for displaying Print or Page Setup information.

The Mac OS X Printing Manager supports additional printing features, including a
powerful mechanism for extending printing dialogsÑthe printing dialog extension
(PDE) mechanism documented here.

The following sections provide a brief description of the traditional mechanism for
extending printing dialogs, outline the new PDE mechanism, and offer some advice
on when to use the new PDE mechanism:

■ ÒExtending Printing Dialogs in Classic Mac OS and in CarbonÓ (page 12)

■ ÒExtending Printing Dialogs in Mac OS XÓ (page 13)

■ ÒWhen You Should Use Printing Dialog ExtensionsÓ (page 18)
Overview 11

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

Extending Printing Dialogs in Classic Mac OS and in
Carbon
An application can extend a printing dialog in Classic Mac OS using the mechanism
described in the ÒPrinting ManagerÓ chapter of ÒInside Macintosh: Imaging With
QuickDrawÓ and updated in ÒTechnote 1080: Adding Items to the Printing
ManagerÕs Dialogs.Ó That mechanism, sometimes referred to as the ÒAppendDITLÓ
approach, requires the application to provide routines to initialize the Print or Page
Setup dialog, append new items to it, draw the items, handle user actions on the
appended items, and so on.

The AppendDITL mechanism is supported by the Carbon Printing Manager.
Carbon applications that use this mechanism to modify printing dialogs will work
both in Mac OS 8 and 9 and in Mac OS X. The Carbon Printing Manager API
provides access to the fields of the printing dialog. However, Carbon does not
permit direct access to TPrDlg, as described in Technote 1080, so applications that
use AppendDITL will require some modification.

Using the AppendDITL mechanism can provide the following advantages:

■ If youÕve already written code to extend printing dialogs, you can reuse it.

■ Your Carbon application can use the same code when running in
Mac OS 8 and 9 and in Mac OS X.

However, there are significant drawbacks to using the AppendDITL mechanism to
extend printing dialogs:

■ You canÕt use sheets, a per-document mechanism for displaying Print or Page
Setup information in Mac OS X.

■ You canÕt extend printing dialogs in Mac OS X with the full flexibility available
from printing dialog extensions (PDEs), as described throughout this document.

For example, you can add only one panel per dialog, with a limited amount of
screen space for your dialog additions.

■ When a user saves a collection of settings from a Print dialog in Mac OS X, you
wonÕt be able to easily save your extended information with the settings.

■ You wonÕt be able to provide a summary of user option information to the user.
12 Overview

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

Extending Printing Dialogs in Mac OS X
Applications running in Mac OS X can use the Mac OS X Printing ManagerÕs
printing dialog extension (PDE) mechanism to modify and extend the Page Setup
and Print dialogs, which are shown in Figure 1-1 (page 15) andFigure 1-3 (page 23),
respectively.

The following sections provide an overview of working with PDEs in Mac OS X:

■ ÒPrinting Dialog Extensions and User OptionsÓ (page 13)

■ ÒControls in Printing Dialog ExtensionsÓ (page 17)

■ ÒAdvantages and Disadvantages of PDEsÓ (page 17)

Printing Dialog Extensions and User Options

A user option is a collection of related user interface elements which appear
together in a panel of a printing dialog. For example, Figure 1-3 (page 23) shows the
ÒCopies & PagesÓ user option.

A printing dialog extension (PDE) is a code module, implemented as a Core
Foundation plug-in, that implements one or more user options. For more detail on
how a PDE is constructed, see ÒPrinting Dialog Extension ArchitectureÓ (page 19).

A PDE typically implements its user interface with an embedded control hierarchy
and uses Carbon event handlers to respond to user interaction with the optionÕs
controls. You can find information on designing controls in Aqua in the document
ÒAdopting the Aqua Interface.Ó Additional user interface information on printing
dialogs will be provided in a future, comprehensive document on the Aqua
interface. For related information on controls, see ÒControls in Printing Dialog
ExtensionsÓ (page 17).

A user option kind ID is a string that identifies a user option independently of its
title. If an application implements PDEs for more than one kind of user option, it can
identify the type of a PDE by its kind ID. For information on user option kind IDs
defined by the Mac OS X Printing Manager, see ÒUniversal and Standard User
Option Kind ID ConstantsÓ (page 79).
Overview 13

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

Kinds of User Options

Your application can supply PDEs to override universal user options or to
implement standard and custom options.

A universal user option is implemented as part of the Mac OS X Printing Manager
and thus always available. The Mac OS X Printing Manager defines kind IDs and
titles for universal user options, supplies PDEs that implement the options, and is
responsible for providing localized versions of all universal title strings. For an
example of a universal user option, see Figure 1-3 (page 23), which shows the
ÒCopies & PagesÓ option on the Print dialog.

A standard user option has a standard user kind ID and title defined by the
Mac OS X Printing Manager, but is not implemented by the Printing Manager.
Standard user options help provide users with a consistent printing experience
when switching between different applications and printers. ÒColorÓ and ÒPaper
SourceÓ are examples of standard user options. The Mac OS X Printing Manager is
responsible for providing localized versions of all standard title strings.

A custom user option is unique to an application or destination printer.
Applications that implement custom user options define a kind ID for each option
and are responsible for localization of all text within the option, including its title.
The Mac OS X Printing Manager does not modify the appearance of custom user
options in any way.
14 Overview

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

Figure 1-1 A Page Setup dialog showing a universal user option (Page Attributes)

Working With Universal and Standard Options

Your application can supply PDEs to override universal options and to implement
standard user options. In both cases, any title string supplied by the PDE is ignored;
the string defined by the Mac OS X Printing Manager is always used.

A PDE that overrides a universal user option must provide all the original
functionality of that user option, as well as any added functionality. Specifically, the
overriding PDE must supply all the public data defined for the overridden option
in the Page Format or Print Settings ticket, using the keys and data types defined by
the Mac OS X Printing Manager. The PDE may store any additional private data in
the ticket using its own tags. For related information, see ÒDefining Constants for
the Print Settings TicketÓ (page 24).

For standard user options, the Printing Manager defines only the title and user
option kind ID, not the data format. A PDE that implements a standard user option
is free to store the settings for that user option in any format and with any tags it
wishes in the Page Format or Print Settings ticket, as appropriate. However, it is
Overview 15

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

recommended that the PDE use types defined by Core Foundation to store its
information in a ticket, so that the ticket can be flattened and unflattened (that is,
converted to XML and written to disk, or read from disk and translated from XML).

If a PDE overrides a user option, it must provide an implementation. Once a user
option is registered, a panel is reserved for it and it is expected that the PDE will
display the user option within its assigned panel in accordance with the PDE API.

The Printing Manager uses the following order of precedence to determine which
user option is displayed in the printing dialog if more than one PDE attempts to
register the same user option kind:

1. Application

2. Printer Module

3. Printing Manager

An applicationÕs user option is displayed in preference to any other option with the
same kind. A printer moduleÕs user option is displayed in preference to a user
option with the same kind implemented by the Printing Manager. A Printing
Manager user option appears only if no other PDE registers an option with the same
kind.

The Printing Manager registers user options according to its order of precedence:
application user options, followed by printer module user options, followed by
Printing Manager user options. Once an application registers a universal or
standard user option, a printer module or Printing Manager PDE will not be able to
register that user option. Similarly, a Printing Manager PDE cannot register a PDE
that has already been registered by an application or printer module.

If, for any reason, a user option is overridden during the execution of the dialog
(because, for example, the user switches printer modules), the Terminate (page 69)
function of the overridden PDE is called and the controls of the overridden user
option are deleted.

Because a PDE that overrides a universal user option completely replaces that
option, the overriding PDE is responsible for providing all the basic functionality of
the overridden option. It must also respond to any Mac OS X Printing Manager
APIs which affect the universal user option (such as setting the number of copies).
When a Mac OS X Printing Manager function that could affect an overriding user
option is called, the Mac OS X Printing Manager calls the PDEÕs Sync (page 65)
16 Overview

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X

function with the reinitializePlugIn parameter set to TRUE. The PDE should then
examine the page format and print settings objects and adjust its controls
accordingly.

Controls in Printing Dialog Extensions

The hosting of human interface elements in Mac OS X Printing Manager dialogs is
based on the Carbon Control Manager. The Carbon Control Manager supports
embedding controls within user panes, which allows the owner of the user pane to
manipulate those embedded controls as a group, without knowing precisely which
controls have been embedded.

When the Printing Manager needs to draw the human interface elements of a
printing dialog extension, it simply makes the user pane in which they are
embedded visible. The Control Manager then draws the embedded controls.
Updates and activate/deactivate events are handled through the Control and
Window Managers.

If a human interface element requires explicit handling by the printing dialog
extension, it should register a drawing callback with the Control Manager when the
element is created in the PDEÕs Initialize (page 63) function.

All event handling is performed through the Carbon Control ManagerÕs event
handling model. A user interface element registers an event handler, which is called
whenever a user interacts with the element. The embedding hierarchy ensures that
the proper handlers are called.

Advantages and Disadvantages of PDEs

Using printing dialog extensions (PDEs) to extend printing dialogs in Mac OS X can
provide many advantages:

■ You can extend a printing dialog with as many additional user option panels as
necessary.

■ A printing dialog extended with a PDE can be displayed as a per-document
sheet in Mac OS X (although supporting sheets requires some additional work).

■ You can override the universal user options supplied by the Mac OS X Printing
Manager (such as the ÒCopies & PagesÓ option).

■ You can ask for an increased panel size for a user option.
Overview 17

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
■ When a user saves a collection of settings from a Print dialog in Mac OS X, you
can easily save information from your user options with the settings.

■ You can provide summary information about user options to the user in the
ÒSummaryÓ pane.

There are also some potential disadvantages to using the PDE mechanism in your
Carbon application:

■ A PDE canÕt directly reuse ÒAppendDITLÓ code you may have already written.

■ A PDE can only extend printing dialogs for an application running in Mac OS X.
Your application must provide additional code to extend printing dialogs in
Mac OS 8 and 9.

When You Should Use Printing Dialog Extensions
Based on the previous sections, we can make the following statements about when
to use printing dialog extensions (PDEs) and when to use the traditional
AppendDITL mechanism:

■ If you want to write (or reuse) one chunk of code that extends printing dialogs
in Mac OS 8 or 9 and Mac OS X, you can use the traditional AppendDITL
approach, though you wonÕt be able to take advantage of some advanced
printing features available in Mac OS X.

■ If you need to extend printing dialogs in Mac OS 8 or 9 and Mac OS X and want
to take advantage of the advanced Mac OS X features available through PDEs,
your application should include code for both the AppendDITL approach (for
Mac OS 8 and 9) and the PDE approach, and determine at run time which to use.

■ If your application is going to run only in Mac OS X, keep readingÑitÕs time to
learn how to write PDEs for the Mac OS X Printing Manager.
18 Overview

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Printing Dialog Extension Architecture

To understand the architecture of printing dialog extensions, you should be familiar
with the information in the document ÒCore Foundation Plug-In Services.Ó This
section provides a brief overview of the relationship between printing dialog
extensions and the Core Foundation plug-in model.

A sample PDE is shown in Figure 1-2. A PDE is a Core Foundation plug-in and
includes the following, all implemented by the plug-in developer:

■ A factory function, which knows how to create an instance of the IUnknown
interface. The IUnknown interface is described in ÒCore Foundation Plug-in
Services.Ó

■ An implementation of the IUnknown interface, based on the IUnknownVTbl
structure defined in CFPlugIn.h.

■ The QueryInterface function knows how to create an instance of a PDE
function table.

■ An implementation of the functions defined in the PDE function table. The PDE
function table is based on two structures:

■ The PMPlugInHeaderVTable (page 72) structure defined in
PMPluginHeader.h. All Mac OS X Printing Manager plug-ins must
implement these functions.

■ The PlugInIntfVTable (page 73) structure defined in
PMPrintingDialogExtensions.h. All PDEs must implement these functions.
Printing Dialog Extension Architecture 19

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Figure 1-2 A PDE plug-in, showing the main interface functions

The Mac OS X Printing Manager depends on the following process to load your
PDE and to create instances of the PDE interface (or function table) to display your
user option in a Print or Page Setup dialog:

1. Before your application calls the PMSessionPrintDialog function or the
PMSessionPageSetupDialog function to display a printing dialog, it must call the
CFPlugIn function CFPlugInCreate to create an instance of the PDE. This
function registers information about your PDE, including the types and
interfaces it supports and a factory function for each type.

Sample PDE Plug-in

A PDE type interface

Factory function

IUnknown interface (from CFPlugin)
 AddRef
 Release
 QueryInterface

Implementation of interface functions

Mac OS X Printing Manager
plug-in interface functions
 Retain
 Release
 GetAPIVersion

PDE interface functions
 Prologue
 Initialize
 Sync
 GetSummaryText
 Open
 Close
 Terminate

PDE function table
20 Printing Dialog Extension Architecture

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
2. Before displaying a printing dialog, the Mac OS X Printing Manager uses
CFPlugIn to obtain a reference to a function table for each registered PDE
plug-in type.

a. The factory function creates an instance of the IUnknown interface for the
PDE.

b. The QueryInterface function of the IUnknown interface creates an instance
of the PDE interface (or function table).

3. For each such PDE function table, the Printing Manager calls the Prologue
(page 61) function to get information about the user option, then the Initialize
(page 63) function, to set up the user option.

To support this process, you perform the tasks described in the next section,
ÒCreating a Printing Dialog ExtensionÓ (page 21).

Okay, letÕs get to work on that PDE.

Creating a Printing Dialog Extension

This section shows in detail how to create a custom application printing dialog
extension (PDE). The sample code implements a simple custom user option called
ÒSample Application PDEÓ for the Print dialog. The user option displays a ÒPrint
Selected Text OnlyÓ checkbox.

Before starting on your PDE, you should have read the section ÒPrinting Dialog
Extension ArchitectureÓ (page 19).

To create a PDE and use it in your application, you complete the tasks described in
the following sections:

1. ÒDesigning a User InterfaceÓ (page 22)

2. ÒDefining Factory and Type IDsÓ (page 23)

3. ÒDefining a User Option Kind IDÓ (page 24)

4. ÒDefining Constants for the Print Settings TicketÓ (page 24)

5. ÒDefining Additional Data StructuresÓ (page 25)
Creating a Printing Dialog Extension 21

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
6. ÒWriting Code to Implement Your PDEÓ (page 29)

7. ÒCreating a Custom Information Property ListÓ (page 53)

8. ÒUsing a PDE in Your ApplicationÓ (page 55)

Designing a User Interface
A printing dialog extension implements one or more user optionsÑcollections of
related user interface elements which appear together in a panel of a printing
dialog. Your application can provide user options for both the Page Setup and Print
dialogs. A user option may consist of multiple controls, but these controls should
generally refer to a single featureÑfor example, the ÒCopies & PagesÓ option in the
Print dialog shown in Figure 1-3 (page 23).

There are no restrictions on a PDEÕs ability to display dialogs, alerts, and other
elements. You are encouraged, however, to avoid excessive use of additional
windows and dialogs, which can clutter the Mac OS X Printing Manager human
interface and degrade the user experience.

Consult the document ÒAdopting the Aqua InterfaceÓ for information on the size
and positioning of controls in Aqua.
22 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Figure 1-3 A Print dialog, showing a universal user option (Copies & Pages)

The sample code in this document implements a PDE that adds a simple custom
user option to the Print dialog to specify printing the current selection. The PDE title
is ÒSample Application PDEÓ. It is up to your PDE to supply a localized version of
the title string, which appears in the settings panels navigation menu (the pop-up
menu that shows the user option ÒCopies & PagesÓ in Figure 1-3). For information
on localization, see the document ÒCore Foundation Bundle Services.Ó

Defining Factory and Type IDs
Because printing dialog extensions are based on the CFPlugIn model, they must
supply at least one factory ID to associate with the CFPlugInFactories key and at
least one type ID to associate with the CFPlugInTypes key.

The Mac OS X Printing Manager defines type IDs for PDEs. These type IDs are
described in ÒPrinting Dialog Extension Type ID ConstantsÓ (page 77). You only
need to define a factory ID for your PDEÕs factory function. The sample application
PDE defines the following constant for a factory ID:

A PDE that
provides a
universal user
option
Creating a Printing Dialog Extension 23

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-1 A sample factory ID

#define kSampleAppPDEIntfFactoryIDStr "BED2EC92-E57F-11D3-80C9-0050E4603277"

The sample PDE then uses this constant in the SampleAppPDEPluginFactory (page 30)
function to create a UUID (Universally Unique Identifier) for the factory and to
store it in the instance of the IUnknown interface the factory creates. UUIDs are
described in the document ÒCore Foundation Utility Services.Ó

A standard way to create associations between CFPlugIn keys and PDE constants is
to store the information in a custom information property list. For information on
how to do so, see ÒCreating a Custom Information Property ListÓ (page 53).

Defining a User Option Kind ID
If you are writing a custom PDE, you need to define a string constant that specifies
the user option kind. The sample application PDE defines the following constant for
that purpose:

Listing 1-2 A sample user option kind ID

#define kSampleAppUserOptionKindID "com.appvendor.print.pde.PrintSelectionOnly"

The user option kind ID should be unique, and a string like the one shown here,
where you replace appvendor with your information, serves that purpose. The
sample application PDE uses this constant in its Prologue (page 61) function, which
is shown in Listing 1-14 (page 39).

If you are overriding a universal option or implementing a standard option, you use
one of the kind IDs defined in ÒUniversal and Standard User Option Kind ID
ConstantsÓ (page 79).

Defining Constants for the Print Settings Ticket
Print job information associated with printing dialogs is stored in objects referred to
as ticketsÑeither Page Format tickets or Print Settings tickets. To store information
for a Print dialog user option in a Print Settings ticket and retrieve it from the ticket,
you must define a key constant to identify the data in the ticket. (You would define
similar constants to work with information for a Page Setup user option in a Page
24 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Format ticket.) The sample application PDE uses the following constants to specify
a key for the one data type it needs to store and retrieve (the state of the checkbox
that indicates whether to print the current selection only):

Listing 1-3 Sample constants for storing and retrieving Print Settings ticket data

#define kAppPrintSelectionOnlyStr kPMPrintSettingsPrelude "AppPrintSelectionOnly"
#define kAppPrintSelectionOnlyKey CFSTR(kAppPrintSelectionOnlyStr)

kAppPrintSelectionOnlyStr

Concatenates a string identifying our user option with a prelude
string to make a unique identifier for the option data. The constant
kPMPrintSettingsPrelude is defined by the Mac OS X Printing
Manager. You should define your own prelude string for your PDE.

kAppPrintSelectionOnlyKey

Creates a CFSTR string, based on the string defined by
kAppPrintSelectionOnlyStr, that can be used as a key to store
information in or extract information from a Print Settings ticket.

Listing 1-16 (page 42) shows how the sample application PDE uses the key
kAppPrintSelectionOnlyKey in its MyPDESync function to extract information from a
Print Settings ticket or to add it to a ticket.

Defining Additional Data Structures
You will need to define certain additional data structures for your PDE. For
example, the PDE ÒSample Application PDEÓ defines a structure for the IUnknown
interface, a structure for its own interface, and a structure to store its private context.
These structures are described in the following sections:

ÒDefining an Unknown Interface StructureÓ (page 26)

ÒDefining a PDE Interface StructureÓ (page 27)

ÒDefining a Private ContextÓ (page 28)
Creating a Printing Dialog Extension 25

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Defining an Unknown Interface Structure

Listing 1-5 (page 27) shows IUnknownInstance, the interface structure for the
IUnknown interface that is defined by the sample application PDE. All PDEs must
define an interface structure similar to this oneÑstarting with the CFPlugIn data
type IUnknownVTblÑ and provide a factory function that knows how to create an
instance of the interface. For information on the IUnknown interface functions, see
ÒImplementing Functions for the CFPlugIn InterfaceÓ (page 31). For an overview of
the entire PDE plug-in, see ÒPrinting Dialog Extension ArchitectureÓ (page 19).

The SampleAppPDEPluginFactory function, shown in Listing 1-7 (page 30), creates an
instance the IUnknown interface for the sample application PDE.

Listing 1-4 A sample structure for an unknown interface

typedef struct
{
 // Pointer to the vtable (defined in CFPlugIn.h):
 const IUnknownVTbl* vtable;

 // Our vtable storage:
 IUnknownVTbl vtableStorage;

 // Factory ID this instance is for:
 CFUUIDRef factoryID;

 // Reference counter:
 ULONG refCount;

}
IUnknownInstance;

vtable

A pointer to a vtable, or table of interface callback functions. Points
to the vtableStorage field.

vtableStorage

The actual IUnknownVTbl structure, defined in CFPlugIn.h. This table
includes entries for the callback functions AddRef, Release, and
QueryInterface. The versions of these functions implemented by the
26 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
sample application PDE, MyCFAddRef, MyCFRelease, and
MyCFQueryInterface, are shown in Listing 1-8 (page 32), Listing 1-9
(page 33), and Listing 1-10 (page 34), respectively. The
MyCFQueryInterface function is also described in ÒPrinting Dialog
Extension ArchitectureÓ (page 19).

factoryID

Stores an ID that identifies the factory function that can create
instances of this interface. For related information, see ÒDefining
Factory and Type IDsÓ (page 23).

refCount

A counter used by the functions AddRef and Release to keep track of
references to an instance of the interface.

The sample application PDE described in this document implements separate
reference counting for the IUnknown interface defined here and the PDE interface
defined in PMPlugInHeaderVTable (page 72). However, your PDE may wish to
combine its reference counting.

Defining a PDE Interface Structure

Listing 1-5 (page 27) shows the interface structure for the sample printing dialog
extension ÒSample Application PDE,Ó which implements a user option to print only
the current selection. An instance of this interface provides the function table for the
PDE interface, as well as a reference count variable for the instance. For an overview
of the PDE interface, see ÒPrinting Dialog Extension ArchitectureÓ (page 19).

All PDEs must implement an interface similar to this one and provide a function
similar to the MyCFQueryInterface (page 34) function that knows how to create an
instance of the interface. However, your PDE does not necessarily need to define its
own PDE interface structure. You can add use the PlugInIntf (page 73) structure
defined in PMPrintingDialogExtensions.h and add functionality to the PDE using a
private context structure. For more information, see ÒDefining a Private ContextÓ
(page 28).

Listing 1-5 A sample structure for a PDE interface

typedef struct
{
 PlugInIntfVTable *vtable;

Creating a Printing Dialog Extension 27

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
 UInt32 refCount;
}
PrintSelOnlyPlugInInterface;

vtable

A pointer to a table of callback functions. The interface for all
Mac OS X Printing Manager plug-ins, including PDEs, must start
with the header interface defined by the PMPlugInHeaderVTable
(page 72) structure. In the interface defined here, the vtable field is a
pointer to a PlugInIntfVTable (page 73) structure, which in turn has
a structure of type PMPlugInHeaderVTable as its first element.

refCount

The sample application PDE uses this field to keep track of
references to an instance of the plug-in. To see how this is done in the
sample application PDE, see the MyPMRetain function, shown in
Listing 1-11 (page 36), and the MyPMRelease function, shown in
Listing 1-12 (page 37).

Defining a Private Context

In Mac OS X, a user can have multiple, simultaneous print sessionsÑfor example, a
user can display sheets for printing two documents in the same application at the
same time. The Mac OS X Printing Manager calls on the PDE plug-in to create a new
instance of its interface (or function table) for each session. Each instance accesses
the same plug-in code, but can contain its own private context, which allows the
plug-in to be reentrant.

After the Mac OS X Printing Manager obtains a printing dialog extension (PDE)
function table, it calls the PDEÕs Prologue (page 61) function to obtain information
about the PDEÕs user option. The Prologue function may also provide a private
context. The Printing Manager passes this context in subsequent calls to other PDE
functions.

You can use the private context to provide your PDE with access to data or
functions. The sample application PDE defines the context structure shown in
Listing 1-6. This private context stores the location (in local coordinates) and
dimensions of the user optionÕs drawing area, as well as a reference to the optionÕs
lone control, a checkbox. The sample PDEÕs MyPDEPrologue function, shown in
Listing 1-14 (page 39), calls InitContext (page 51) to create and initialize the context.
28 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
InitContext merely initializes the context to safe valuesÑthe context gets fully
initialized when the Printing Manager calls the MyPDEInitialize (page 40) function,
which in turn calls the MyPDESync (page 42) function.

Listing 1-6 A sample structure for a private PDE context

typedef struct
{
 Rect theFrameRect; // This plug-in’s drawing area.

ControlRef thePrintSelTextOnlyControlRef;
}
PrintSelectionOnlyContext;

Writing Code to Implement Your PDE
ÒPrinting Dialog Extension ArchitectureÓ (page 19) describes the basic layout of a
printing dialog extension plug-in. To implement a PDE, you need to implement the
following functions:

■ A factory function that knows how to create an instance of the IUnknown
interface.

■ The IUnknown interface functions from CFPlugIn, which are defined by the
IUnknownVTbl structure in CFPlugIn.h. For more information, see the document
ÒCore Foundation Plug-in Services.Ó

■ The functions that are required in all Mac OS X Printing Manager plug-ins.
These are defined in the PMPlugInHeaderVTable (page 72) structure in
PMPluginHeader.h.

■ The functions specific to the PDE interface. These are defined in the
PlugInIntfVTable (page 73) structure, which includes a PMPlugInHeaderVTable
structure as its first element. These structures are defined in
PMPrintingDialogExtensions.h.

■ Any additional functions required by your PDE.

The following sections describe how to implement the required functions for a
sample application PDE and include sample code for each of the functions:

■ ÒImplementing a Factory FunctionÓ (page 30)
Creating a Printing Dialog Extension 29

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
■ ÒImplementing Functions for the CFPlugIn InterfaceÓ (page 31)

■ ÒImplementing Functions Required by All Printing Plug-insÓ (page 35)

■ ÒImplementing the PDE InterfaceÓ (page 38)

■ ÒImplementing Additional Functions for the PDEÓ (page 49)

Implementing a Factory Function

Mac OS X Printing Manager obtains an instance of the IUnknown interface, created
by the plug-inÕs factory function, for each registered plug-in. The sample
application PDE implements the following factory function:

SampleAppPDEPluginFactory

The SampleAppPDEPluginFactory function is the factory function for the sample
application PDE. It creates an unknown instance of type IUnknownInstance and
initializes its fields.

Listing 1-7 A sample plug-in factory function

void* SampleAppPDEPluginFactory(CFAllocatorRef allocator, CFUUIDRef
reqTypeID)
{
 CFUUIDRef myIntfID;
 CFUUIDRef myFactoryID;
 OSStatus err = noErr;
 IUnknownInstance* instance = NULL;

 // There is not much we can do with errors - just return NULL.
 myIntfID = CFUUIDCreateFromString(CFAllocatorGetDefault(),

CFSTR(kAppPrintDialogTypeIDStr));

 // If the requested type matches our plug-in type (it should!)
 // have a plug-in instance created which will query us for
 // interfaces:

 if(CFEqual(reqTypeID, myIntfID))
{

instance = (IUnknownInstance*) malloc(sizeof(IUnknownInstance));
30 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
if (instance != NULL)
{

// Clear all object memory:
 memset(instance, 0, sizeof(IUnknownInstance));

 // Assign all members:
 instance->vtable = &instance->vtableStorage;

 instance->vtableStorage.QueryInterface = MyCFQueryInterface;
 instance->vtableStorage.AddRef = MyCFAddRef;
 instance->vtableStorage.Release = MyCFRelease;

 myFactoryID = CFUUIDCreateFromString(CFAllocatorGetDefault(),
 CFSTR(kSampleAppPDEIntfFactoryIDStr));

 instance->factoryID = myFactoryID;
 instance->refCount = 1;

// Register the newly created instance
// for our factory with Core Foundation:
CFPlugInAddInstanceForFactory(myFactoryID);

}
}

 CFRelease(myIntfID);

 return ((void*) instance);
}

Implementing Functions for the CFPlugIn Interface

The IUnknown interface, based on the IUnknownVTbl structure defined in
CFPlugIn.h, is a required part of all plug-ins based on CFPlugIn, including all
Mac OS X Printing Manager plug-ins. The IUnknownInstance structure, which is
shown in Listing 1-4 (page 26), is the version of the IUnknown interface defined by
the sample application PDE and created by the SampleAppPDEPluginFactory
(page 30) function.

The following sections show how the sample PDE implements the functions of the
IUnknownInstance interface:

■ MyCFAddRef (page 32)
Creating a Printing Dialog Extension 31

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
■ MyCFRelease (page 32)

■ MyCFQueryInterface (page 34)

MyCFAddRef

The MyCFAddRef function works with MyCFRelease (page 32) to track references to an
instance of a plug-in and free the instance when it is no longer referenced. It merely
casts the passed object to its own type, IUnknownInstance, increments the reference
count, and returns the new count.

Listing 1-8 A sample IUnknown interface AddRef function

static ULONG MyCFAddRef(void *obj)
{
 IUnknownInstance *instance = (IUnknownInstance*) obj;

ULONG refCount = 0;

 // We can't do much with errors here since we can only return
 // updated reference count value.

if(NULL != instance)
{

 // Get updated refCount value (should be under mutex):
 refCount = ++instance->refCount;
 }
 else
 {
 refCount = 0;
 }
 return (refCount);
}

MyCFRelease

The MyCFRelease function works with MyCFAddRef (page 32) to track references to an
instance of a plug-in and free the instance when it is no longer referenced.
MyCFRelease casts the passed object to its own type, IUnknownInstance, decrements
the reference count, and if the count reaches 0, unregisters the plug-in with the OS
and frees the plug-in instance.
32 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-9 A sample IUnknown interface Release function

static ULONG MyCFRelease(void *obj)
{
 IUnknownInstance* instance = (IUnknownInstance*) obj;
 ULONG refCount = 0;

 // We can't do much with errors here since we can only return
 // updated reference count value.

try
{

if(instance == NULL)
{

 // Get updated refCount value (should be under mutex):

 // Make sure refCount is non-zero:
 if(instance->refCount == 0)
 {
 instance = NULL;
 return(refCount);
 }
 refCount = --instance->refCount;

 // Is it time to self-destruct?
 if(refCount == 0)
 {
 // Unregister 'instance for factory' with Core Foundation:
 CFPlugInRemoveInstanceForFactory(instance->factoryID);

 // Release used factoryID:
 CFRelease(instance->factoryID);
 instance->factoryID = NULL;

 // Deallocate object's memory block:
 free((void*) instance);
 instance = NULL;
 }
 }

 }
 catch(...)
 {
Creating a Printing Dialog Extension 33

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
 if(instance)
 {
 // Release used factoryID:
 if(instance->factoryID)
 CFRelease(instance->factoryID);

 // Deallocate object's memory block:
 free((void*) instance);
 }
 // Return zero refCount value:
 refCount = 0;
 }
 return refCount;
}

MyCFQueryInterface

As described in ÒPrinting Dialog Extension ArchitectureÓ (page 19), the Mac OS X
Printing Manager calls the IUnknown instanceÕs QueryInterface function to create
an instance of the PDE. The MyCFQueryInterface function shown here calls the
CreatePlugInInterface (page 49) function to return the actual PDE instance.

Listing 1-10 A sample IUnknown interface QueryInterface function

static HRESULT MyCFQueryInterface(void *obj, REFIID iID, LPVOID *intfPtr)
{
 IUnknownInstance* instance = (IUnknownInstance*) obj;
 CFUUIDRef myIntfID = NULL, reqIntfID = NULL;
 HRESULT err = E_UNEXPECTED;
 PlugInIntf* interface;

 // Get IDs for requested and PDE interfaces:
 reqIntfID = CFUUIDCreateFromUUIDBytes(CFAllocatorGetDefault(), iID);
 myIntfID = CFUUIDCreateFromString(CFAllocatorGetDefault(),

CFSTR(kDialogExtensionIntfIDStr));

// If we are asked to return the interface for the
// IUnknown vtable, which the system already has access to,
// just increment the refcount value
34 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
 if(CFEqual(reqIntfID, IUnknownUUID))
 {
 instance->vtable->MyCFAddRef((void*) instance);
 *intfPtr = (LPVOID) instance;

err = S_OK;
 }
 else // if we are asked for the PDEs interface,

// make one and return it.
 if (CFEqual(reqIntfID, myIntfID))

{
err = CreatePlugInInterface(&interface);
if (err == noErr)
{

*intfPtr = (LPVOID) interface;
err = S_OK;

}
}
else // we will return the err = E_NOINTERFACE and a *intfPtr of NULL;
{
 *intfPtr = NULL;
 err = E_NOINTERFACE;
}

 // Clean up and return status:
 CFRelease(reqIntfID);
 CFRelease(myIntfID);

 return(err);
}

Implementing Functions Required by All Printing Plug-ins

All printing plug-ins in the Mac OS X printing system, including printing dialog
extensions, must implement the functions defined in the PMPlugInHeaderVTable
(page 72) structure and described in the following sections:

■ MyPMRetain (page 36)

■ MyPMRelease (page 36)

■ MyPMGetAPIVersion (page 37)
Creating a Printing Dialog Extension 35

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
MyPMRetain

Retain Ñ Increments the reference count for an instance of a plug-in. Your retain
function increments the count of references to your PDE. (page 58)

The previous paragraph describes a generic Retain function. The version below,
implemented by the sample application PDE, casts the passed object pointer of type
PMPlugInHeaderInterface (page 72) to its own PrintSelOnlyPlugInInterface type
(shown in Listing 1-5 (page 27)) to get access to its reference count. This cast works
because both types start with a PMPlugInHeaderVTable (page 72) reference.

Listing 1-11 A sample Printing Manager plug-in Retain function

static OSStatus MyPMRetain(PMPlugInHeaderInterface *obj)
{

if (obj != NULL)
{
 PrintSelOnlyPlugInInterface *plugin =

(PrintSelOnlyPlugInInterface*) obj;

 // Increment reference count:
 plugin->refCount++;
}

 return noErr;
}

MyPMRelease

Release Ñ Decrements the reference count for an instance of a plug-in. Your release
function sets the passed object pointer to NULL, decrements the reference count for
your PDE, and if the count reaches 0, frees the PDE and any related storage.
(page 59)

The previous paragraph describes a generic Release function. The version below,
implemented by the sample application PDE, casts the passed object pointer of type
PMPlugInHeaderInterface (page 72) to its own PrintSelOnlyPlugInInterface type
(shown in Listing 1-5 (page 27)) to get access to its reference count. This cast works
because the definition of each type starts with a PMPlugInHeaderVTable (page 72)
reference. If the reference count goes to 0, MyPMRelease disposes of the PDEÕs
function table, then of the PDE instance itself.
36 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-12 A sample Printing Manager plug-in Release function

static OSStatus MyPMRelease(PMPlugInHeaderInterface **objPtr)
{

if (*objPtr != NULL)
{
 PrintSelOnlyPlugInInterface* plugin =

(PrintSelOnlyPlugInInterface*) *objPtr;

 // Clear caller's variable:
 *objPtr = NULL;

 // Decrement reference count:
 plugin->refCount--;

 // When reference count is one it's time to self-destruct:
 if(plugin->refCount == 0)
 {
 // Delete object's vtable:
 DisposePtr((char *)plugin->vtable);

 // Delete object's memory block:
 DisposePtr((char *)plugin);
 }
}

 return noErr;
}

MyPMGetAPIVersion

GetAPIVersion Ñ Supplies API version information for a plug-in. Your version
function supplies information that can be used to determine PDE compatibility.
(page 59)

The previous paragraph describes a generic GetAPIVersion function. The version
below, implemented by the sample application PDE, simply sets the fields of the
version structure pointed to by the passed version pointer to constant values
defined in ÒPrinting Dialog Extension Interface Version ConstantsÓ (page 77).
Creating a Printing Dialog Extension 37

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-13 A sample Printing Manager plug-in GetAPIVersion function

static OSStatus
MyPMGetAPIVersion(

PMPlugInHeaderInterface *obj, PlugInAPIVersion *versionPtr)
{
 // Return versioning info:
 versionPtr->buildVersionMajor = kPDEBuildVersionMajor;
 versionPtr->buildVersionMinor = kPDEBuildVersionMinor;
 versionPtr->baseVersionMajor = kPDEBaseVersionMajor;
 versionPtr->baseVersionMinor = kPDEBaseVersionMinor;

 return noErr;
}

Implementing the PDE Interface

All printing dialog extension plug-ins must implement the functions defined in the
PlugInIntfVTable (page 73) structure and described in ÒPrinting Dialog Extension
Callback FunctionsÓ (page 60). The following sections provide sample
implementations of these functions:

■ MyPDEPrologue (page 38)

■ MyPDEInitialize (page 40)

■ MyPDESync (page 42)

■ MyPDEGetSummaryText (page 44)

■ MyPDEOpen (page 47)

■ MyPDEClose (page 47)

■ MyPDETerminate (page 48)

MyPDEPrologue

Prologue Ñ Called by the Mac OS X Printing Manager after it obtains a printing
dialog extension (PDE) plug-in interface (or function table). Your prologue function
returns information about the PDEÕs user option and may also provide its own
private context information. (page 61)
38 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
The previous paragraph describes a generic Prologue function. The version below,
implemented by the sample application PDE, does in fact provide context
information, which it gets by calling the InitContext (page 51) function. It also
provides the other information needed by the Mac OS X Printing Manager,
including user option title, screen space needed by the user panel, and so on.

Listing 1-14 A sample PDE Prologue function

static OSStatus
MyPDEPrologue(PMPDEContext*context,

 OSType *creator,
CFStringRef *userOptionKind,
CFStringRef *title,
UInt32 *maxH,
UInt32 *maxV)

{
OSErr err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// this is a Pascal string because it is the string
// that goes into a menu item
Str255 theTitle = "\pSample Application Plug-in";

err = InitContext(&myContext);

if (err == noErr)
{

*context = (PMPDEContext) myContext;

// Calculate the maximum screen real estate this plug-in needs.
*maxH = kPrintSelCheckBoxLeftMargin + kPrintSelCheckBoxHSize;
*maxV = kPrintSelCheckBoxTopMargin + kPrintSelCheckBoxVSize + 6;

CFStringRef theTitleRef;
CFStringRef theUserOptionKindRef;

theTitleRef = CFStringCreateWithPascalString(
kCFAllocatorSystemDefault,
theTitle,
CFStringGetSystemEncoding());
Creating a Printing Dialog Extension 39

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
if (theTitleRef != NULL)
*title = theTitleRef;

theUserOptionKindRef = CFStringCreateWithCString(
kCFAllocatorSystemDefault,
kSampleAppUserOptionKindID,
CFStringGetSystemEncoding());

if (theUserOptionKindRef != NULL)
*userOptionKind = theUserOptionKindRef;

// In the next line, use a constant for your own creator type
*creator = 'spde';

}
else // return an error

err = kPMErrPDEInvalidContext;

return (err);
}

MyPDEInitialize

Initialize Ñ Called by the Mac OS X Printing Manager after it calls the Prologue
function. Your initialization routine uses information supplied by the Printing
Manager to initialize its user option, and may supply further information about the
PDE. (page 63)

The previous paragraph describes a generic Initialize function. The version
below, implemented by the sample application PDE, creates the controls (a
checkbox) for its user option and embeds them in the passed user pane. It also
returns flags information indicating it doesnÕt support any special features. Finally,
it calls the PDEÕs own MyPDESync (page 42) function so it can initialize its user option
controls from the ticket settings for the print job.

Listing 1-15 A sample PDE Initialize function

static OSStatus
MyPDEInitialize(PMPDEContext context,

PMPDEFlags *flags,
40 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
PMPDERef ref,
ControlRef embedderUserPane,
PMPrintSession printSession)

{
OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.

myContext = (PrintSelectionOnlyContextPtr) context;

if ((myContext != NULL) && (printSession != NULL))
{

// get the windowref from the user pane
WindowRef theWindow = NULL;
theWindow = GetControlOwner(embedderUserPane);

// get the user pane's frame rect
Rect frameRect;
GetControlBounds(embedderUserPane, &frameRect);

// The user pane's rect is the rect we should use to draw our
// controls into. The printing system calculates the user pane
// size based on the maxh and maxv sizes returned by our
// MyPDEPrologue function.
SetRect(&(myContext->theFrameRect),

frameRect.left, frameRect.top,
frameRect.right, frameRect.bottom);

Rect theCheckBoxRect;
GetPrintSelCheckBoxRect(frameRect, &theCheckBoxRect);
myContext->thePrintSelTextOnlyControlRef =

NewControl(theWindow, &theCheckBoxRect,
"\pPrint Selected Text Only", false, 0, 0, 1,

kControlCheckBoxAutoToggleProc, 0);

// embed the control in to the user pane; establish control where
// plug-in's controls are in the window's control hierarchy
err = EmbedControl(myContext->thePrintSelTextOnlyControlRef,

embedderUserPane);

// Set the control's visibility to visible, so when the user pane is
Creating a Printing Dialog Extension 41

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
// made visible the plug-in's controls will be shown.
SetControlVisibility(myContext->thePrintSelTextOnlyControlRef,

 true, false);

*flags = kPMPDENoFlags;

// Initialize this plug-in's controls based on the information in the
// PageSetup or PrintSettings ticket.
MyPDESync(context, printSession, true);

}
else

err = kPMErrPDEInvalidContext;

return (err);
}

MyPDESync

Sync Ñ Gives the printing dialog extension a chance to synchronize its settings (and
control elements) with values in either the PMPageFormat or the PMPrintSettings
ticket. Your synchronization function either updates its settings or modifies the
ticket settings, depending on the reinitializePlugIn parameter. (page 65)

The previous paragraph describes a generic Sync function. The version below,
implemented by the sample application PDE, shows how to extract a PDEÕs user
option information from a print ticket.

Listing 1-16 A sample PDE Sync function

static OSStatus
MyPDESync(PMPDEContext context,

PMPrintSession printSession,
Boolean reinitializePlugin)

{
OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.

myContext = (PrintSelectionOnlyContextPtr) context;
42 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
if ((myContext != NULL) && (printSession != NULL))
{

CFNumberRef cfTicketRef = NULL;
PMTicketRef printSettings = NULL;

// Get the PrintSettings TicketRef from the Session.
// The TicketRef in the session is wrapped in a CFNumber type.
err = PMSessionGetDataFromSession(printSession,

 kPMPrintSettingsRef, (CFTypeRef *)&cfTicketRef);
if (NULL == cfTicketRef)

 err = kPMErrPDEInvalidPrintSettings;

 // Now lets extract the real PMTicketRef from the CFNumber

if (err == noErr)
err = CFNumberGetValue(cfTicketRef, kCFNumberSInt32Type,

 (void *)&printSettings);

if ((err == noErr) && (printSettings != NULL))
{

if (reinitializePlugin)
{

Boolean printSelectionOnly;

// Get the initial value for whether we should print
// the selected text only.
err = PMTicketGetBoolean(printSettings, kPMTopLevel,

kPMTopLevel,kAppPrintSelectionOnlyKey,
&printSelectionOnly);

if (err == noErr)
{

if (printSelectionOnly)
SetControlValue(

myContext->thePrintSelTextOnlyControlRef,
kControlCheckBoxCheckedValue);

else
SetControlValue(

myContext->thePrintSelTextOnlyControlRef,
kControlCheckBoxUncheckedValue);

}

Creating a Printing Dialog Extension 43

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
}
else
{

SInt16 theControlValue = -1;

theControlValue = GetControlValue(
myContext->thePrintSelTextOnlyControlRef);

if (theControlValue == kControlCheckBoxCheckedValue)
{

// if the tag is not part of the ticket it will be
// added and set by the PMTicketSetBoolean routine
err = PMTicketSetBoolean(

printSettings, kPMPrintingManager,
kAppPrintSelectionOnlyKey,
(Boolean) true, kPMUnlocked);

}
else
{

err = PMTicketSetBoolean(printSettings,
kPMPrintingManager, kAppPrintSelectionOnlyKey,
(Boolean) false, kPMUnlocked);

}
}

}

err = kPMErrPDEInvalidPrintSettings;
}
else

err = kPMErrPDEInvalidContext;

return (err);
}

MyPDEGetSummaryText

GetSummaryText Ñ Called when the Mac OS X Printing Manager needs to display a
summary of the printing dialog extension settings. Your summarization function
supplies a title strings and a brief (one line) textual summaries of the current
settings in the user option. (page 66)
44 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
The previous paragraph describes a generic GetSummaryText function. The version
below, implemented by the sample application PDE, provides text to describe
whether the user option is set to print the selected text only. The Mac OS X Printing
Manager displays the summary text in the last panel in the settings panels
navigation menuÑthe pop-up menu that shows the user option ÒCopies & PagesÓ
in Figure 1-3 (page 23).

Listing 1-17 A sample PDE GetSummaryText function

static OSStatus
MyPDEGetSummaryText(PMPDEContext context,

CFArrayRef *titleArray,
CFArrayRef *summaryArray)

{
OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.
myContext = (PrintSelectionOnlyContextPtr) context;

if (myContext != NULL)
{

*titleArray = NULL;
*summaryArray = NULL;

CFMutableArrayRef theTitleArray = NULL;
CFMutableArrayRef theSummaryArray = NULL;

theTitleArray = CFArrayCreateMutable(
kCFAllocatorSystemDefault, 0, NULL);

theSummaryArray = CFArrayCreateMutable(
kCFAllocatorSystemDefault, 0, NULL);

if ((theTitleArray != NULL) && (theSummaryArray != NULL))
{

// Get the pascal style string from the scale edit text control
// and put it into the summary text array
Str255 theSummaryString;
SInt16 theControlValue = -1;

theControlValue = GetControlValue(
Creating a Printing Dialog Extension 45

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
myContext->thePrintSelTextOnlyControlRef);

if (theControlValue == kControlCheckBoxCheckedValue)
{

BlockMove("Yes", (Ptr) &theSummaryString[1], 3);
theSummaryString[0] += 3;

}
else
{

BlockMove("Nope, Print All Text",
(Ptr) &theSummaryString[1], 20);

theSummaryString[0] += 20;
}
Str255 theTitle = "\pPrint Selected Text Only";
CFStringRef title;
title = CFStringCreateWithPascalString(

kCFAllocatorSystemDefault,
theTitle,
CFStringGetSystemEncoding());

CFArrayAppendValue(theTitleArray, title);

CFStringRef summary;
summary = CFStringCreateWithPascalString(

 kCFAllocatorSystemDefault,
theSummaryString,

 CFStringGetSystemEncoding());
CFArrayAppendValue(theSummaryArray, summary);

*titleArray = theTitleArray;
*summaryArray = theSummaryArray;

}
}
else

err = kPMErrPDEInvalidContext;

return (err);
}

46 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
MyPDEOpen

Open Ñ Called at any time after the PDE has been initialized and immediately before
the user option is made visible to the user. Your open function performs any
required tasks before the user option is opened. (page 67)

The previous paragraph describes a generic Open function. The version below,
implemented by the sample application PDE, checks for a valid context, but doesnÕt
need to do anything else for its simple user option.

Listing 1-18 A sample PDE Open function

static OSStatus MyPDEOpen(PMPDEContextcontext)
{

OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.

myContext = (PrintSelectionOnlyContextPtr) context;

if (myContext != NULL)
{

// Do anything special your PDE requires.
}
else

err = kPMErrPDEInvalidContext;

return (err);
}

MyPDEClose

Close Ñ Called at any time after the PDEÕs Open function has been called, and
immediately after the user option is hidden from the user. Your close function
performs any required tasks after the user option is closed. (page 68)

The previous paragraph describes a generic Close function. The version below,
implemented by the sample application PDE, checks for a valid context, but doesnÕt
need to do anything else for its simple user option.
Creating a Printing Dialog Extension 47

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-19 A sample PDE Close function

static OSStatus MyPDEClose(PMPDEContext context)
{

OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.

myContext = (PrintSelectionOnlyContextPtr) context;

if (myContext != NULL)
{

// Do anything special your PDE requires.
}
else

err = kPMErrPDEInvalidContext;

return (err);
}

MyPDETerminate

Terminate Ñ Called by the Mac OS X Printing Manager immediately before closing
a printing dialog after a user dismisses the dialog. Your termination function
performs any required tasks, such as releasing memory. (page 69)

The previous paragraph describes a generic Terminate function. The version below,
implemented by the sample application PDE, checks for a valid context, then
possibly frees the user optionÕs one control, as well as the context itself.

Listing 1-20 A sample PDE Terminate function

static OSStatus MyPDETerminate(PMPDEContext context, OSStatus status)
{

OSStatus err = noErr;
PrintSelectionOnlyContextPtr myContext = NULL;

// Pointer to global data block.

myContext = (PrintSelectionOnlyContextPtr) context;
48 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
if (myContext != NULL)
{

if (myContext->thePrintSelTextOnlyControlRef != NULL)
{

// Now dispose of the actual control
DisposeControl(myContext->thePrintSelTextOnlyControlRef);

}

// Free the global context.
if (context != NULL)
{

DisposePtr((Ptr) myContext);
myContext = NULL;

}
}
else

err = kPMErrPDEInvalidContext;

return (err);

}

Implementing Additional Functions for the PDE

To implement the user option provided by your PDE, you may need to write
additional private functions. The sample application PDE uses the following
functions:

■ CreatePlugInInterface (page 49)

■ InitContext (page 51)

■ GetPrintSelCheckBoxRect (page 52)

CreatePlugInInterface

This function creates an instance of the plug-in interface (the function table for the
PDE). The interface structure used in this example, PrintSelOnlyPlugInInterface, is
shown in Listing 1-5 (page 27). It incorporates the PlugInIntfVTable (page 73)
structure, which in turn incorporates the PMPlugInHeaderVTable (page 72) structure.
Creating a Printing Dialog Extension 49

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
The result is a structure that includes the header interface functions required by all
Mac OS X Printing Manager plug-ins, the callback functions required by all printing
dialog extensions, and any additional data specific to your PDEÑin other words, a
full-fledged PDE interface, including function table and data. This interface
mechanism is described in ÒPrinting Dialog Extension ArchitectureÓ (page 19).

After instantiating an interface structure and vtable, the CreatePlugInInterface
function sets all the function references for the function table. It also sets the
reference count, the only data field defined by the sample application PDE, to 1.

The MyCFQueryInterface (page 34) function calls CreatePlugInInterface when it is
asked to create an interface for our PDE, as shown in Listing 1-10 (page 34).

Listing 1-21 A sample CreatePlugInInterface function

static OSStatus CreatePlugInInterface(PlugInIntf **objPtr)
{
 PrintSelOnlyPlugInInterface* intf = NULL;
 PlugInIntfVTable* vtable = NULL;

OSStatus err = noErr;

 // Allocate object and clear it:
 intf = (PrintSelOnlyPlugInInterface*)

NewPtrClear(sizeof(PrintSelOnlyPlugInInterface));

if (intf != NULL)
{
 // Assign all plug-in data members:
 intf->refCount = 1;

 // Allocate object's vtable and clear it:
 vtable = (PlugInIntfVTable*)

NewPtrClear(sizeof(PlugInIntfVTable));
if (vtable != NULL)
{

 intf->vtable = vtable;

 // Assign all plug-in header methods:
 vtable->plugInHeader.Retain = MyPMRetain;
 vtable->plugInHeader.Release = MyPMRelease;
50 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
 vtable->plugInHeader.GetAPIVersion = MyPMGetAPIVersion;

 // Assign all plug-in methods:
vtable->Prologue = MyPDEPrologue;

 vtable->Initialize = MyPDEInitialize;
 vtable->Sync = MyPDESync;

vtable->GetSummaryText = MyPDEGetSummaryText;
vtable->Open = MyPDEOpen;
vtable->Close = MyPDEClose;

 vtable->Terminate = MyPDETerminate;

 objPtr = (PlugInIntf) intf;
 }

else
{

err = kPMErrPDERefInvalid;
}

}
else
{

err = kPMErrPDERefInvalid;
}

 // Return results:
 return err;
}

InitContext

After the Mac OS X Printing Manager obtains a a function table for a printing dialog
extension (PDE), it calls the PDEÕs MyPDEPrologue (page 38) function to obtain
information about the PDEÕs user option. The sample application PDEÕs
MyPDEPrologue function calls InitContext to create and initialize an instance of a
context, described in ÒDefining a Private ContextÓ (page 28). The InitContext
function merely initializes the context to safe valuesÑthe context gets fully
initialized when the Printing Manager calls the MyPDEInitialize (page 40) function,
which in turn calls the MyPDESync (page 42) function.

The Printing Manager passes the context supplied by the MyPDEPrologue function in
subsequent calls to other PDE functions. The context structure defined by the
sample PDE is shown in Listing 1-6. This private context stores the user optionÕs
drawing area, as well as a reference to the optionÕs lone control, a checkbox.
Creating a Printing Dialog Extension 51

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Listing 1-22 A sample InitContext function

static
OSStatus
InitContext(PrintSelectionOnlyContextPtr *context)
{

OSStatus err = noErr; // Error condition.

/*
Allocate the global context.
*/
*context = (PrintSelectionOnlyContextPtr)

 NewPtrClear(sizeof(PrintSelectionOnlyContext));

 if (NULL != *context)
{

/*
Initialize the global data.
*/
SetRect(&((*context)->theFrameRect), 0,0,0,0);
(*context)->thePrintSelTextOnlyControlRef = NULL;

}
else

err = MemError();

return (err);

} // InitContext

GetPrintSelCheckBoxRect

The PDEÕs MyPDEInitialize (page 40) function calls the GetPrintSelCheckBoxRect
function to obtain the size and location for the sample application PDEÕs user
option.

Listing 1-23 A sample function that obtains user option information

static void GetPrintSelCheckBoxRect(Rect inRect, Rect* outRect)
{

52 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
outRect->left = inRect.left + kPrintSelCheckBoxLeftMargin;
outRect->top = inRect.top + kPrintSelCheckBoxTopMargin;
outRect->bottom = outRect->top + kPrintSelCheckBoxVSize;
outRect->right = outRect->left + kPrintSelCheckBoxHSize;

}

The sample PDE defines user option size and location constants as follows:

#define kPrintSelCheckBoxTopMargin 16
#define kPrintSelCheckBoxLeftMargin 40
#define kPrintSelCheckBoxHSize 300
#define kPrintSelCheckBoxVSize 16

Creating a Custom Information Property List
Printing dialog extensions are based on the CFPlugIn model, which is described in
the document ÒCore Foundation Plug-in Services.Ó A CFPlugIn must associate at
least one factory ID with the CFPlugInFactories key and at least one type ID with
the CFPlugInTypes key. The standard way to create these associations is to store the
information in a custom information property list. The property list can then be
stored in the plug-inÕs bundle. You can find information about property lists and
bundles in ÒCore Foundation Property List ServicesÓ and ÒCore Foundation Bundle
Services.Ó

The information property list defines various aspects of the plug-in's runtime
behavior and can also specify whether the plug-in should be registered
dynamically. Listing 1-24 (page 53) shows the custom information property list for
the sample application PDE described in this document.

Listing 1-24 A custom information property list for the sample application PDE

{
CFBundleExecutable = "SampleAppPDE";
CFBundleIdentifier = "SampleAppPDE";
CFPlugInDynamicRegistration = NO;
CFPlugInFactories =
{

 "BED2EC92-E57F-11D3-80C9-0050E4603277" = "SampleAppPDEPluginFactory";
};
Creating a Printing Dialog Extension 53

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
CFPlugInTypes =
{

"BCB07250-E57F-11D3-8CA6-0050E4603277" =
("BED2EC92-E57F-11D3-80C9-0050E4603277");

};
}

CFBundleExecutable

The sample application PDE supplies the string "SampleAppPDE" as
the name of its executable.

CFBundleIdentifier

The sample application PDE supplies the string "SampleAppPDE" as
the name of its identifier.

CFPlugInDynamicRegistration

PDE plug-ins typically load statically, so the sample application PDE
supplies the value NO for the dynamic registration key.

CFPlugInFactories

This entry in the property list associates a factory ID with the name
of the PDEÕs factory function. The value on the left side of the equal
sign is the UUID defined by the kSampleAppPDEIntfFactoryIDStr
constant, as described in ÒDefining Factory and Type IDsÓ (page 23).
The string on the right, "SampleAppPDEPluginFactory", is the name of
the factory function. This function is shown in Listing 1-7 (page 30).

CFPlugInTypes

This entry associates a factory function with a plug-in type. The type
ID on the left comes from the constant kAppPrintDialogTypeIDStr,
which specifies a Print dialog PDE. PDE type constants are described
in ÒPrinting Dialog Extension Type ID ConstantsÓ (page 77). The
factory ID on the right is the same UUID defined by the
kSampleAppPDEIntfFactoryIDStr constant and used in the previous
entry in the property list.
54 Creating a Printing Dialog Extension

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
Using a PDE in Your Application

Once you have completed the steps to design and implement a printing dialog
extension, it is very easy for your application to use it. Before calling the
PMSessionPrintDialog function or the PMSessionPageSetupDialog function to display
a printing dialog, you just call the CFPlugIn function CFPlugInCreate and the
Mac OS X Printing Manager takes over from there.

For more information on how the Printing Manager works with plug-ins to display
user options, see the section ÒPrinting Dialog Extension ArchitectureÓ (page 19).
Using a PDE in Your Application 55

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 1

Extending Printing Dialogs in Mac OS X
56 Using a PDE in Your Application

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2
2 Printing Dialog Extension
Reference
This is a preliminary document. While it has received some technical review, there
are likely to be changes to some of the information provided here.

The reference material described here is part of the Mac OS X Printing Manager.
This material will eventually be incorporated into a larger reference document.

For related material, see the document ÒCarbon Printing Manager Reference.Ó

■ ÒPrinting Dialog Extension Callback FunctionsÓ (page 57)

■ ÒPrinting Dialog Extension Data TypesÓ (page 70)

■ ÒPrinting Dialog Extension ConstantsÓ (page 76)

■ ÒPrinting Dialog Extension Result CodesÓ (page 79)

Printing Dialog Extension Callback Functions

■ ÒPrinting Manager Plug-In Callback FunctionsÓ (page 57)

■ ÒPrinting Dialog Extension Callback FunctionsÓ (page 60)

Printing Manager Plug-In Callback Functions
These callbacks are defined in the PMPlugInHeaderVTable (page 72) structure. They
must be implemented by all Mac OS X Printing Manager plug-ins, including
printing dialog extensions.
Printing Dialog Extension Callback Functions 57

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
■ Retain Ñ Increments the reference count for an instance of a plug-in. Your retain
function increments the count of references to your PDE. (page 58)

■ Release Ñ Decrements the reference count for an instance of a plug-in. Your
release function sets the passed object pointer to NULL, decrements the
reference count for your PDE, and if the count reaches 0, frees the PDE and any
related storage. (page 59)

■ GetAPIVersion Ñ Supplies API version information for a plug-in. Your version
function supplies information that can be used to determine PDE compatibility.
(page 59)

Retain

Increments the reference count for an instance of a plug-in. Your retain function
increments the count of references to your PDE.

OSStatus (*Retain) (PMPlugInHeaderInterface *obj);

You can use any name for your retain function, but if you were to name it
MyPMRetain you would declare it like this:

OSStatus MyPMRetain (PMPlugInHeaderInterface *obj);

obj
A pointer to a header interface of type PMPlugInHeaderInterface
(page 72). Your retain function can cast this object to your PDE
interface type to obtain information specific to your PDE, as shown
in Listing 1-11 (page 36).

Discussion
The Retain function works with the Release (page 59) function to track references to
an instance of a plug-in and free the instance when it is no longer referenced.

For an example of a retain function, see Listing 1-11 (page 36).
58 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Release

Decrements the reference count for an instance of a plug-in. Your release function
sets the passed object pointer to NULL, decrements the reference count for your PDE,
and if the count reaches 0, frees the PDE and any related storage.

OSStatus (*Release) (PMPlugInHeaderInterface **objPtr);

You can use any name for your release function, but if you were to name it
MyPMRelease you would declare it like this:

OSStatus MyPMRelease(
PMPlugInHeaderInterface **objPtr);

objPtr
A pointer to a pointer to a header interface of type
PMPlugInHeaderInterface (page 72). Your release function can cast
this object to your PDE interface type to obtain information specific
to your PDE, as shown in Listing 1-12 (page 37).

Discussion
The Release function works with the Retain (page 58) function to track references to
an instance of a plug-in and free the instance when it is no longer referenced.

For an example of a release function, see Listing 1-12 (page 37).

GetAPIVersion

Supplies API version information for a plug-in. Your version function supplies
information that can be used to determine PDE compatibility.

OSStatus (*GetAPIVersion) (PMPlugInHeaderInterface *obj,
PlugInAPIVersion *versionPtr);

You can use any name for your get API version function, but if you were to name it
MyPMGetAPIVersion you would declare it like this:

OSStatus MyPMGetAPIVersion(
PMPlugInHeaderInterface obj,
PluginAPIVersion *versionPtr);
Printing Dialog Extension Callback Functions 59

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
obj
A pointer to a header interface of type PMPlugInHeaderInterface
(page 72). You can cast this interface object to your PDE interface
type, as shown in Listing 1-12 (page 37), although you may not need
to do so to supply version information.

versionPtr
A pointer to a plug-in interface version structure, defined in
PluginAPIVersion (page 71). Your version function supplies the
plug-inÕs version information in the structure. Version constants are
described in ÒPrinting Dialog Extension Interface Version
ConstantsÓ (page 77).

Discussion
For an example of a get API version function, see Listing 1-13 (page 38).

Printing Dialog Extension Callback Functions
The following functions are defined in the interface structure (function table) for
printing dialog extensions, PlugInIntfVTable (page 73). All printing dialog
extensions must implement these functions.

■ Prologue Ñ Called by the Mac OS X Printing Manager after it obtains a printing
dialog extension (PDE) plug-in interface (or function table). Your prologue
function returns information about the PDEÕs user option and may also provide
its own private context information. (page 61)

■ Initialize Ñ Called by the Mac OS X Printing Manager after it calls the
Prologue function. Your initialization routine uses information supplied by the
Printing Manager to initialize its user option, and may supply further
information about the PDE. (page 63)

■ Sync Ñ Gives the printing dialog extension a chance to synchronize its settings
(and control elements) with values in either the PMPageFormat or the
PMPrintSettings ticket. Your synchronization function either updates its
settings or modifies the ticket settings, depending on the reinitializePlugIn
parameter. (page 65)

■ GetSummaryText Ñ Called when the Mac OS X Printing Manager needs to
display a summary of the printing dialog extension settings. Your
summarization function supplies a title strings and a brief (one line) textual
summaries of the current settings in the user option. (page 66)
60 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
■ Open Ñ Called at any time after the PDE has been initialized and immediately
before the user option is made visible to the user. Your open function performs
any required tasks before the user option is opened. (page 67)

■ Close Ñ Called at any time after the PDEÕs Open function has been called, and
immediately after the user option is hidden from the user. Your close function
performs any required tasks after the user option is closed. (page 68)

■ Terminate Ñ Called by the Mac OS X Printing Manager immediately before
closing a printing dialog after a user dismisses the dialog. Your termination
function performs any required tasks, such as releasing memory. (page 69)

Prologue

Called by the Mac OS X Printing Manager after it obtains a printing dialog
extension (PDE) plug-in interface (or function table). Your prologue function
returns information about the PDEÕs user option and may also provide its own
private context information.

OSStatus (*Prologue) (PMPDEContext *context, OSType *creator, CFStringRef
*userOptionKind, CFStringRef *title, UInt32 *maxH, UInt32 *maxV);

You can use any name for your prologue function, but if you were to name it
MyPDEPrologue you would declare it like this:

OSStatus MyPDEPrologue(
PMPDEContext *context,
OSType *creator,
CFStringRef *userOptionKind,
CFStringRef *title,
UInt32 *maxH,
UInt32 *maxV);

context
A pointer to the printing dialog extensionÕs private context. The
Mac OS X Printing Manager passes the context supplied by your
MyPDEPrologue function in subsequent calls to other PDE functions.
Your PDE may want to use the storage pointed to by the context
parameter to identify itself, because in Mac OS X it is possible for
more than one printing dialog (and hence more than one instance of
a PDEÕs interface) to be instantiated simultaneously. The PDE can
store global data it needs to ensure that it is reentrant, as well as
pointers to additional functions it may need to use.
Printing Dialog Extension Callback Functions 61

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
For an example of a context structure, see ÒDefining a Private
ContextÓ (page 28).

creator
Your PDE supplies the applicationÕs creator type in this parameter.

userOptionKind
Your PDE supplies a string identifying the kind of user option in this
parameter. This string distinguishes a PDE from other PDEs created
by the same application. For an example of a custom user option, see
ÒDefining a User Option Kind IDÓ (page 24). For universal and
standard user options, see ÒUniversal and Standard User Option
Kind ID ConstantsÓ (page 79).

title
For a custom user option, your PDE supplies the localized title in this
parameter. For universal and standard options, the Mac OS X
Printing Manager supplies the title, ignoring any text you supply
here.

maxH
Your PDE supplies the maximum horizontal extent, in pixels,
required to draw its user option. If the Mac OS X Printing Manager
cannot provide the area specified by maxH and maxV, it calls your
Terminate (page 69) function, passing an error value.

maxV
Your PDE supplies the maximum vertical extent, in pixels, required
to draw its user option. If the Mac OS X Printing Manager cannot
provide the area specified by maxH and maxV, it calls your Terminate
(page 69) function, passing an error value.

Discussion
The Mac OS X Printing Manager guarantees that it will call the Prologue functions
of any registered printing dialog extensions in the order in which their interfaces
were supplied by their factory functions. For more information on interfaces and
factory functions, see the document ÒCore Foundation Plug-In Services.Ó For an
example of a factory function, see Listing 1-7 (page 30).

For an example of a prologue function, see Listing 1-14 (page 39).
62 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Initialize

Called by the Mac OS X Printing Manager after it calls the Prologue function. Your
initialization routine uses information supplied by the Printing Manager to
initialize its user option, and may supply further information about the PDE.

OSStatus (*Initialize) (PMPDEContext context, PMPDEFlags *flags, PMPDERef
ref, ControlRef embedderUserPane, PMPrintSession printSession);

You can use any name for your initialize function, but if you were to name it
MyPDEInitialize you would declare it like this

OSStatus MyPDEInitialize(
PMPDEContext context
PMPDEFlags *flags,
PMPDERef ref,
ControlRef embedderUserPane,
PMPrintSession printSession);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

flags
The flags parameter contains 32 bits which indicate to the Mac OS X
Printing Manager various properties of the printing dialog extension
being registered. Your MyPDEInitialize function sets flag bits using
the constants defined in ÒFeature Request Flags ConstantsÓ
(page 78).

ref
A unique reference to the printing dialog extension, supplied by the
Mac OS X Printing Manager. You can cast this value to a pointer to
your interface structure, such as the structure shown in Listing 1-5
(page 27).
Printing Dialog Extension Callback Functions 63

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
embedderUserPane
A reference to a user pane control into which the printing dialog
extension is expected to embed its human interface elements. The
PDE must embed all user option controls and interface elements into
the pane.

printSession
A pointer to a printing session. Your PDE can obtain PMPageFormat
and PMPrintSettings ticket information from this parameter.

Discussion
After calling the Prologue function, the Mac OS X Printing Manager calls the
printing dialog extensionÕs Initialize function, providing the PDE with
information it can use to initialize the user option, and obtaining further
information about the printing dialog extension.

During the execution of Initialize, the PDE does anything it needs to do to
initialize itself, based upon the information supplied by the Printing Manager. For
example, it may wish to adjust its user option interface elements to fit within the
available space in the pane before returning the item list of its controls to the
Printing Manager.

If any control requires special handling, your user option can install a special
Carbon event handler for that control.

Once its interface elements have been embedded into the supplied user pane
control, the controls should be made visible, though they do not immediately
appear because the user pane is invisible at this time.

Under no circumstances should the PDE attempt to manipulate or make visible the
user pane itself!

The PDE should not attempt to draw into the area occupied by the user pane at this
point. The user optionÕs controls will be drawn automatically by the Control
Manager when the user pane in which they are embedded is made visible.

For an example of an initialization function, see Listing 1-15 (page 40).
64 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Sync

Gives the printing dialog extension a chance to synchronize its settings (and control
elements) with values in either the PMPageFormat or the PMPrintSettings ticket. Your
synchronization function either updates its settings or modifies the ticket settings,
depending on the reinitializePlugIn parameter.

OSStatus (*Sync) (PMPDEContext context, PMPrintSession printSession, Boolean
reinitializePlugIn);

You can use any name for your synchronization function, but if you were to name
it MyPDESync you would declare it like this:

OSStatus MyPDESync(
PMPDEContext context,
PMPrintSession printSession,
Boolean reinitializePlugIn);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

printSession
A pointer to a printing session. Your PDE can obtain PMPageFormat
and PMPrintSettings ticket information from this parameter.

reinitializePlugIn
If this Boolean value is TRUE, your PDE should obtain PMPageFormat or
PMPrintSettings ticket information from the printSession
parameter, update its internal settings, and if necessary, update its
control elements. If the value is FALSE, your PDE should obtain the
PMPageFormat or PMPrintSettings ticket from the printSession
parameter and set the ticket to match the PDEÕs internal settings.

Discussion
The Mac OS X Printing Manager typically calls your MyPDESync function in the
following situations:
Printing Dialog Extension Callback Functions 65

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
■ The user has switched out of the user option implemented by your PDE or has
closed the printing dialog (not cancelled it).

In either of these cases, the value of the reinitializePlugIn parameter is FALSE
and your PDE should update the PMPageFormat or PMPrintSettings ticket,
obtained from the printSession parameter, to match the PDEÕs internal settings.

■ The user has changed printers and your PDE needs to reinitialize itself from a
print ticket associated with the new printer.

In this case, the value of the reinitializePlugIn parameter is TRUE and your PDE
should update its internal settings to match the PMPageFormat or PMPrintSettings
ticket, obtained from the printSession parameter.

You may also choose to call your MyPDESync function from the PDE itself. For
example, the sample PDE described in this document calls MyPDESync from its
MyPDEInitialize function, as shown in Listing 1-15 (page 40).

For an example of a synchronization function, see Listing 1-16 (page 42).

GetSummaryText

Called when the Mac OS X Printing Manager needs to display a summary of the
printing dialog extension settings. Your summarization function supplies a title
strings and a brief (one line) textual summaries of the current settings in the user
option.

OSStatus (*GetSummaryText) (PMPDEContext context, CFArrayRef *titleArray,
CFArrayRef *summaryArray);

You can use any name for your summary function, but if you were to name it
MyPDEGetSummaryText you would declare it like this:

OSStatus MyPDEGetSummaryText(
PMPDEContext context,
CFArrayRef *titleArray,
CFArrayRef *summaryArray);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
66 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

titleArray
A pointer to an array reference. Your summary function stores in this
array the title for each setting in the user option. You allocate the title
strings you store in the array.

summaryArray
A pointer to an array reference. Your summary function stores in this
array a brief (one line) textual summary for each setting in the user
option. You allocate the title strings you store in the array.

Discussion
When the user chooses ÒSummaryÓ in the settings panels navigation menuÑthe
same pop-up menu that shows the user option ÒCopies & PagesÓ in Figure 1-3
(page 23)Ñthe Mac OS X Printing Manager calls the printing dialog extensionÕs
GetSummaryText function. The summary text your PDE provides is displayed in the
ÒSummaryÓ panel, the last panel specified in the panels navigation menu.

For an example of a summarization function, see Listing 1-17 (page 45).

Open

Called at any time after the PDE has been initialized and immediately before the
user option is made visible to the user. Your open function performs any required
tasks before the user option is opened.

OSStatus (*Open) (PMPDEContext context);

You can use any name for your open function, but if you were to name it MyPDEOpen
you would declare it like this:

OSStatus MyPDEOpen(
PMPDEContext context);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
Printing Dialog Extension Callback Functions 67

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

Discussion
There is no required functionality for the Open function.

A user option can either be open or closed. The user interface elements of an open
user option are visible to the user.

For an example of an open function, see Listing 1-18 (page 47).

Close

Called at any time after the PDEÕs Open function has been called, and immediately
after the user option is hidden from the user. Your close function performs any
required tasks after the user option is closed.

OSStatus (*Close) (PMPDEContext context);

You can use any name for your close function, but if you were to name it MyPDEClose
you would declare it like this:

OSStatus MyPDEClose(
PMPDEContext context);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

Discussion
There is no required functionality for the Close function.
68 Printing Dialog Extension Callback Functions

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
The Close function allows the PDE to perform any required task before the user
option is closed. If, for example, the PDE displays some form of animation using a
thread when the user option is open, it might want to stop executing the thread that
updates the animation when the user option is not visible.

A user option can either be open or closed. The user interface elements of a closed
user option are not visible (except for those managed by the Mac OS X Printing
Manager, such as the title).

For an example of a close function, see Listing 1-19 (page 48).

Terminate

Called by the Mac OS X Printing Manager immediately before closing a printing
dialog after a user dismisses the dialog. Your termination function performs any
required tasks, such as releasing memory.

OSStatus (*Terminate) (PMPDEContext context, OSStatus status);

You can use any name for your termination function, but if you were to name it
MyPDETerminate you would declare it like this:

OSStatus MyPDETerminate(
PMPDEContext context,
OSStatus status);

context
The printing dialog extensionÕs private context (typically a pointer to
a context structure defined by you). Your PDE supplies the context
when the Mac OS X Printing Manager calls its Prologue (page 61)
function.
The context may contain anything you choose to store, such as
information to identify the PDE, global data needed to ensure the
PDE is reentrant, or pointers to additional functions.
For related information, see ÒDefining a Private ContextÓ (page 28).

status
Indicates the conditions under which the printing dialog extension
was terminated. If, for example, an out-of-memory error occurs
during initialization of the PDE, the Mac OS X Printing Manager
Printing Dialog Extension Callback Functions 69

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
might call the Terminate function and pass memFullErr in the status
parameter. The PDE should not respond with an alertÑthe Printing
Manager will already have supplied one if necessary.
Error codes specific to printing dialog extensions are shown in
ÒPrinting Dialog Extension Result CodesÓ (page 79).

Discussion
When the user dismisses a printing dialog, the Mac OS X Printing Manager calls
each printing dialog extensionÕs termination function immediately before closing
the dialog. The PDEs then perform any necessary termination tasks. The dialog can
be assumed to be invisible to the user, but still present. The PDEÕs controls have not
yet been deleted.

For an example of a termination function, see Listing 1-20 (page 48).

Printing Dialog Extension Data Types

■ PluginAPIVersion Ñ Stores the version information for a plug-inÕs interface.
(page 71)

■ PMPlugInHeaderInterface Ñ Provides access to a vtable that must be the first
element in the interface definition for every Mac OS X Printing Manager
plug-in. (page 72)

■ PMPlugInHeaderVTable Ñ Defines a vtable whose functions must be
implemented by every Mac OS X Printing Manager plug-in. (page 72)

■ PluginIntf Ñ Provides access to the full interface that all printing dialog
extensions must implement. (page 73)

■ PlugInIntfVTable Ñ Combines plug-in and PDE vtables to define the full
interface that all printing dialog extensions must implement. (page 73)

■ PMPDERef Ñ Specifies a reference to an instance of a printing dialog extension.
(page 75)

■ PMPDEContext Ñ Specifies a reference to a printing dialog extensionÕs private
context. (page 75)
70 Printing Dialog Extension Data Types

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
■ PMPDEFlags Ñ Specify properties of a printing dialog extension to the Mac OS X
Printing Manager. (page 75)

PluginAPIVersion

Stores the version information for a plug-inÕs interface.

typedef struct PluginAPIVersion
{

UInt32 buildVersionMajor;
 UInt32 buildVersionMinor;

UInt32 baseVersionMajor;
 UInt32 baseVersionMinor;
}
PluginAPIVersion;

Field descriptions
buildVersionMajor

The major component of the API version the plug-in was compiled
with.

buildVersionMinor

The minor component of the API version the plug-in was compiled
with.

baseVersionMajor

The major component of the base API version this plug-in is
upwardly compatible with. That is, the plug-in is guaranteed to be a
superset of all versions of the API starting with this one.

baseVersionMinor

The major component of the base API version this plug-in is
upwardly compatible with. That is, the plug-in is guaranteed to be a
superset of all versions of the API starting with this one.

Discussion
In the plug-in model defined by Core Foundation Plug-in Services, an interface
cannot ever change once it has been published. Instead of changing a typeÕs
interface, you simply add a new interface (more functions) to the type with the
changed or additional functionality.

This API version structure shown here provides a mechanism for keeping track of
plug-in versions. For related information, see GetAPIVersion (page 59) and ÒPrinting
Dialog Extension Interface Version ConstantsÓ (page 77).
Printing Dialog Extension Data Types 71

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
PMPlugInHeaderInterface

Provides access to a vtable that must be the first element in the interface definition
for every Mac OS X Printing Manager plug-in.

struct PMPlugInHeaderInterface
{

const PMPlugInHeaderVTable *vtable;
};

Field descriptions
vtable

A pointer to a structure of type PMPlugInHeaderVTable (page 72). This
structure defines an interface whose functions every Mac OS X
plug-in must implement. This structure must also be the first
element in any interface definition (except the IUnknown interface
defined in CFPlugin.h).

Discussion
Some plug-in functions, such as Retain (page 58) and Release (page 59), pass a
pointer to a PMPlugInHeaderInterface structure, which your application can cast to
a pointer to its own PDE interface structure, as shown in Listing 1-11 (page 36).

PMPlugInHeaderVTable

Defines a vtable whose functions must be implemented by every Mac OS X Printing
Manager plug-in.

struct PMPlugInHeaderVTable
{

OSStatus Retain (PlugInInterface* obj);
OSStatus Release (PlugInInterface** objPtr);
OSStatus GetAPIVersion (PlugInInterface* obj,

PluginAPIVersion* versionPtr);
};

Field descriptions
Retain

For a description of this function, see Retain (page 58).
Release

For a description of this function, see Release (page 59).
GetAPIVersion

For a description of this function, see GetAPIVersion (page 59).
72 Printing Dialog Extension Data Types

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Discussion
All Mac OS X Printing Manager plug-ins, including printing dialog extensions,
must implement the interface defined in the PMPlugInHeaderVTable structure. PDEs
must also implement additional interface elements, defined in the PlugInIntfVTable
(page 73) structure.

PlugInIntf

Provides access to the full interface that all printing dialog extensions must
implement.

struct PlugInIntf
{

PlugInIntfVTable* vtable;
};

Field descriptions
vtable

A pointer to a vtable, or table of functions, of type PlugInIntfVTable
(page 73). The first field in all PDE interface objects must be of type
PMPlugInHeaderVTable (page 72). That is the case here, because vtable
is a pointer to a structure of type PlugInIntfVTable, whose first field
is a structure of type PMPlugInHeaderVTable.

Discussion
A PDE is an instance of this structure. The IUnknown interface for the sample PDE
creates such an instance when its MyCFQueryInterface function, shown in Listing
1-10 (page 34), calls the CreatePlugInInterface function, shown in Listing 1-21
(page 50).

PlugInIntfVTable

Combines plug-in and PDE vtables to define the full interface that all printing
dialog extensions must implement.

struct PlugInIntfVTable
{
 PMPlugInHeaderVTable plugInHeader;

OSStatus (*Prologue) (
PMPDEContext *context,

 OSType *creator,
CFStringRef *userOptionKind,
Printing Dialog Extension Data Types 73

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
CFStringRef *title,
UInt32 *maxH,
UInt32 *maxV);

OSStatus (*Initialize) (
PMPDEContext context,
PMPDEFlags *flags,
PMPDERef ref,
ControlRef embedderUserPane,
PMPrintSession printSession);

OSStatus (*Sync) (
PMPDEContext context,
PMPrintSession printSession,
Boolean reinitializePlugIn);

OSStatus (*GetSummaryText) (
PMPDEContext context,
CFArrayRef *titleArray,
CFArrayRef *summaryArray);

OSStatus (*Open(
PMPDEContext context);

OSStatus (*Close) (
PMPDEContext context);

OSStatus (*Terminate) (
PMPDEContext context,
OSStatus status);

};

Field descriptions
plugInHeader

A plug-in header defined in PMPlugInHeaderVTable (page 72). The
plug-in header is required with all printing dialog extension plug-ins
and must be the first field in the interface structure.

Prologue

For a description of this function, see Prologue (page 61).
Initialize

For a description of this function, see Initialize (page 63).
Sync

For a description of this function, see Sync (page 65).
GetSummaryText

For a description of this function, see GetSummaryText (page 66).
Open

For a description of this function, see Open (page 67).
Close

For a description of this function, see Close (page 68).
74 Printing Dialog Extension Data Types

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Terminate

For a description of this function, see Terminate (page 69).

Discussion
Your printing dialog extension must implement all of the functions defined in the
PlugInIntfVTable structure. For a complete listing of the functions your PDE must
implement, see ÒWriting Code to Implement Your PDEÓ (page 29).

For related information, see PlugInIntf (page 73).

PMPDERef

Specifies a reference to an instance of a printing dialog extension.

typedef SInt32 PMPDERef;

Discussion
Many of the functions defined in the PlugInIntfVTable (page 73) structure use
parameters of this data type to provide access to a PDE.

PMPDEContext

Specifies a reference to a printing dialog extensionÕs private context.

typedef UInt32 PMPDEContext;

Discussion
The Mac OS X Printing Manager passes the context supplied by your Prologue
(page 61) function in subsequent calls to other PDE functions.

PMPDEFlags

Specify properties of a printing dialog extension to the Mac OS X Printing Manager.

typedef UInt32 PMPDEFlags;

Discussion
The Initialize (page 63) function supplies the Mac OS X Printing Manager with
flag values in a parameter of this type. Possible flag values are defined in ÒFeature
Request Flags ConstantsÓ (page 78).
Printing Dialog Extension Data Types 75

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Printing Dialog Extension Constants

■ Printing Dialog Extension Interface ID Constant Ñ Identifies a plug-in
interface as a printing dialog extension. (page 76)

■ Printing Dialog Extension Type ID Constants Ñ Identify the plug-in type of a
printing dialog extension. (page 77)

■ Printing Dialog Extension Interface Version Constants Ñ Specify the version
of a printer dialog extension plug-inÕs interface. (page 77)

■ Feature Request Flags Ñ Specify properties of a printing dialog extension to the
Mac OS X Printing Manager. (page 78)

Printing Dialog Extension Interface ID Constants

Identifies a plug-in interface as a printing dialog extension.

#define kDialogExtensionIntfIDStr "A996FD7E-B738-11D3-8519-0050E4603277"

Constant descriptions
kDialogExtensionIntfIDStr

Identifies a plug-in interface as being for a printing dialog extension.
This constant is defined with a Ò#defineÓ statement to prevent
having the value mangled by a C++ compiler.

Discussion
An interface defines an area of functionality to be implemented by the plug-in
developer. For more information on plug-in interfaces, see the document ÒCore
Foundation Plug-In Services.Ó

For information on using an interface type in your PDE, see ÒCreating a Custom
Information Property ListÓ (page 53). For sample code that uses this constant, see
Listing 1-10 (page 34).
76 Printing Dialog Extension Constants

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Printing Dialog Extension Type ID Constants

Identify the plug-in type of a printing dialog extension.

#define kAppPageSetupDialogTypeIDStr "B9A0DA98-E57F-11D3-9E83-0050E4603277"
#define kAppPrintDialogTypeIDStr "BCB07250-E57F-11D3-8CA6-0050E4603277"
#define kPrinterModuleTypeIDStr "BDB091F4-E57F-11D3-B5CC-0050E4603277"

Constant descriptions
kAppPageSetupDialogTypeIDStr

Specifies a PDE plug-in type as a Page Setup dialog PDE supplied by
an application.

kAppPrintDialogTypeIDStr

Specifies a PDE plug-in type as a Print dialog PDE supplied by an
application. For use of this constant in a PDE, see Listing 1-7
(page 30) and ÒCreating a Custom Information Property ListÓ
(page 53).

kPrinterModuleTypeIDStr

Specifies a PDE plug-in type as a PDE supplied by a printer module.
This type is not used by application PDE developers. Printer
modules canÕt extend a Page Setup dialog, so this constant indicates
the PDE is for a Print dialog.

Discussion
A plug-in type is an aggregation of one or more interfaces, each of which defines an
area of functionality to be implemented by the plug-in developer. For more
information, see the document ÒCore Foundation Plug-In Services.Ó

These constants are defined with Ò#defineÓ statements to prevent having the values
mangled by a C++ compiler.

Printing Dialog Extension Interface Version Constants

Specify the version of a printer dialog extension plug-inÕs interface.

#define kPDEBuildVersionMajor 1
#define kPDEBuildVersionMinor 0
#define kPDEBaseVersionMajor 1
#define kPDEBaseVersionMinor 0
Printing Dialog Extension Constants 77

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
Constant descriptions
kPDEBuildVersionMajor

Update this value when you append new APIs to the end of the
interface. For example, going from 1 to 2 represents a major change
(such as 1.0 to 2.0).

kPDEBuildVersionMinor

Update this value when you append new APIs to the end of the
interface. For example, going from 0 to 1 represents a minor change
(such as 1.0 to 1.1).

kPDEBaseVersionMajor

Update this value when you cause some APIs in the interface to
become obsolete. Making APIs obsolete breaks the upward
compatibility chain for plug-ins and is strongly discouraged.

kPDEBaseVersionMinor

Update this value when you cause some APIs in the interface to
become obsolete. Making APIs obsolete breaks the upward
compatibility chain for plug-ins and is strongly discouraged.

Discussion
For related information, see GetAPIVersion (page 59) and PluginAPIVersion
(page 71).

Feature Request Flags Constants

Specify properties of a printing dialog extension to the Mac OS X Printing Manager.

enum
{

kPMPDENoFlags = 0x00000000,
kPMPDENoSummary = 0x00000001,
kPMPDEAllFlags = (UInt32) -1

};

Constant descriptions
kPMPDENoFlags

All flag bits are off, indicating no special features are supported.
Until other flag bits are defined, you should use this constant unless
your PDE doesnÕt support summary text. For sample code that uses
this constant, see Listing 1-15 (page 40).
78 Printing Dialog Extension Constants

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
kPMPDENoSummary

The printing dialog extension wonÕt provide a summary string. If a
PDE sets the bit indicated by the kPMPDENoSummary flag in response to
a call to its Initialize (page 63) function, the Mac OS X Printing
Manager never calls the PDEÕs GetSummaryText (page 66) function.
The PDE should set this flag only if summary information is
unnecessary or doesnÕt apply.

kPMPDEAllFlags

All flag bits are on. Until other flag bits are defined, you should not
use this constant.

Universal and Standard User Option Kind ID Constants

Identify printing dialog extensions (PDEs) that implement universal and standard
user options.

//To be supplied.

Discussion
User option kind definitions for universal and standard options have not yet been
released.

You can create PDEs that override the universal user options provided by the
Mac OS X Printing Manager, such as the Copies & Pages user option. You can also
create PDEs that implement the standard user options defined but not implemented
by the Printing Manager, such as ÒColorÓ or ÒPaper Source.Ó User options are
described in ÒPrinting Dialog Extensions and User OptionsÓ (page 13).

Printing Dialog Extension Result Codes

Table 2-1 Printing dialog extension (PDE) result codes defined by the Mac OS X
Printing Manager

Name Value Description

kPMErrPDEInvalidContext -9520 Invalid context for a PDE
Printing Dialog Extension Result Codes 79

Preliminary  Apple Computer, Inc. 5/23/00

C H A P T E R 2

Printing Dialog Extension Reference
kPMErrPDEInvalidSession -9521 Invalid session

kPMErrPDEInvalidPrintSettings -9522 Invalid print settings

kPMErrPDEInvalidPageFormat -9523 Invalid page format

kPMErrPDEInvalidJobTemplate -9524 Invalid job template

kPMErrPDEInvalidPrinterInfo -9525 Invalid printer information

kPMErrPDERefInvalid -9526 Invalid reference to a PDE

kPMErrPDEGeneralError -9528 Unspecified PDE error

Table 2-1 Printing dialog extension (PDE) result codes defined by the Mac OS X
Printing Manager

Name Value Description
80 Printing Dialog Extension Result Codes

Preliminary  Apple Computer, Inc. 5/23/00

	Title Page -
	TOC
	Figures, Listings, and Tables
	Extending Printing Dialogs in Mac OS X
	Overview
	Extending Printing Dialogs in Classic Mac OS and in Carbon
	Extending Printing Dialogs in Mac OS X
	Printing Dialog Extensions and User Options
	 Kinds of User Options
	Working With Universal and Standard Options

	Controls in Printing Dialog Extensions
	Advantages and Disadvantages of PDEs

	When You Should Use Printing Dialog Extensions

	Printing Dialog Extension Architecture
	Creating a Printing Dialog Extension
	Designing a User Interface
	Defining Factory and Type IDs
	Defining a User Option Kind ID
	Defining Constants for the Print Settings Ticket
	Defining Additional Data Structures
	Defining an Unknown Interface Structure
	Defining a PDE Interface Structure
	Defining a Private Context

	Writing Code to Implement Your PDE
	Implementing a Factory Function
	SampleAppPDEPluginFactory

	Implementing Functions for the CFPlugIn Interface
	MyCFAddRef
	MyCFRelease
	MyCFQueryInterface

	 Implementing Functions Required by All Printing Plug-ins
	MyPMRetain
	MyPMRelease
	MyPMGetAPIVersion

	Implementing the PDE Interface
	MyPDEPrologue
	MyPDEInitialize
	MyPDESync
	MyPDEGetSummaryText
	MyPDEOpen
	MyPDEClose
	MyPDETerminate

	Implementing Additional Functions for the PDE
	CreatePlugInInterface
	InitContext
	GetPrintSelCheckBoxRect

	Creating a Custom Information Property List

	Using a PDE in Your Application

	Printing Dialog Extension Reference
	 Printing Dialog Extension Callback Functions
	 Printing Manager Plug-In Callback Functions
	Retain
	Release
	GetAPIVersion

	 Printing Dialog Extension Callback Functions
	Prologue
	Initialize
	Sync
	GetSummaryText
	Open
	Close
	Terminate

	 Printing Dialog Extension Data Types
	PluginAPIVersion
	 PMPlugInHeaderInterface
	PMPlugInHeaderVTable
	PlugInIntf
	PlugInIntfVTable
	 PMPDERef
	 PMPDEContext
	 PMPDEFlags

	 Printing Dialog Extension Constants
	Printing Dialog Extension Interface ID Constants
	Printing Dialog Extension Type ID Constants
	Printing Dialog Extension Interface Version Constants
	Feature Request Flags Constants
	Universal and Standard User Option Kind ID Constants

	 Printing Dialog Extension Result Codes

