

ð

2

T E C H N O T E :
QuickDraw GX OffscreenLibrary.c
in Detail: Description, Uses
& Limitations

By Cary Clark
cary@artemis.com
Apple Emeritus

This Technote discusses OffscreenLibrary.c from the QuickDraw GX Libraries.

This Note is intended for Macintosh QuickDraw GX developers who
implement flickerless drawing or double buffering using OffscreenLibrary.c or
who are considering using it for their QuickDraw GX graphics applications.

About the GX Libraries 2

For better or worse, the development of QuickDraw GX took seven years from
conception to initial release. During that time, there were many requests for
About the GX Libraries 1 of 8
Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

feature enhancements and interface improvements that, if implemented, might
have taken seven more years to complete. As it turns out, some of these
enhancements could readily be built on existing services, but there was no time
to test or document these services with the rigor required to make them fully
part of the released system.

The GX Libraries fill this gap by providing services built on top of the rest of
GX in source form. This Technote and others documents these services. Since
GX libraries are provided as source, it is reasonable for developers to modify
them to meet their specific needs. Care was taken for the libraries not to
depend on the implementation details of GX so that future versions of GX
should not invalidate them, in original or modified form.

The libraries are likely to evolve to take advantage of improved algorithms,
new Macintosh or GX services; if you modify one for your application’s specific
needs, it’s worth occasionally reviewing the GX library provided by Apple to
stay synchronized with any improvements.

What are Offscreens? 2

Slick graphics applications attempt to draw animations seamlessly to the
screen, without flashing or flickering. QuickDraw GX provides a number of
strategies that change these distractions into attractions. The most popular
method to eliminate flickering is double buffering; the application draws into
one bitmap while the computer displays a second bitmap. The bitmap
receiving the drawing that will be displayed momentarily is called an offscreen.

What is in OffscreenLibrary.c? 2

The GX Library, OffscreenLibrary.c, provides utility functions to implement
double buffering; it creates bitmaps that in turn are imaged by GX Graphics. It
was written primarily by Oliver Steele, with contributions from the rest of the
GX Graphics team.

OffscreenLibrary.c has two distinct groups of functions. The simpler revolves
around the offscreen struct, and provide a single bitmap for back buffering. The
other set uses a viewPortBuffer to support multiple offscreens that correspond
to the portions of a window that spans multiple monitors of different depths.
2 of 8 About the GX Libraries

Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

Using OffscreenLibrary.c 2

The One Shot Solution: Struct offscreen 2

The meat of Offscreenlibrary.c is this struct:

struct offscreen {
gxShape draw; /* a bitmap which, when drawn, transfers the

offscreen to the display */
gxTransform xform; /* this causes shapes owning it to draw

offscreen. */
gxViewDevice device; /* the offscreen device whose colorSpace,

etc. you may change */
gxViewPort port; /* the offscreen port which may be put in

any transform's viewPort list */
gxViewGroup group; /* the global space in which the viewPort

and viewDevice exist */
};

and these functions:

void CreateOffscreen(offscreen *target, gxShape bitmapShape);

Use CreateOffscreen to fill in the offscreen struct, given the bitmap shape to
back up.

void DisposeOffscreen(offscreen *target);

When you’re through with the offscreen, use DisposeOffscreen to get rid of the
pieces.

void CopyToBitmaps(gxShape target, gxShape source);

To copy one bitmap to another, use CopyToBitmaps.

GX makes it pretty darn easy to create an offscreen. For instance, you can create
a bitmap that contains a diagonal line with these calls:
Using OffscreenLibrary.c 3 of 8
Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

gxLine aLine = {ff(20), ff(40), ff(60), ff(80)};
gxShape lineBits = GXNewLine(&aLine);
GXSetShapeType(lineBits, gxBitmapType);

Then, to create an offscreen from the line bitmap:

offscreen offLine;
CreateOffscreen(offLine, lineBits);

You can draw the line bitmap with:

GXDrawShape(offLine.draw);

To add a rectangle to the line bitmap, first create a rectangle:

gxRectangle aRect = {ff(50), ff(50), ff(60), ff(60)};
gxShape rectToAdd = GXNewRectangle(&aRect);

Then change the rectangle to the transform in the offscreen:

GXSetShapeTransform(rectToAdd, offLine.xform);
GXDrawShape(rectToAdd);

Now, drawing the line bitmap will draw both the line and the rectangle:

GXDrawShape(lineBits);

Once you’re done, you can use DisposeOffscreen to get rid of it:

DisposeOffscreen(&offLine);

The function CopyToBitmaps uses the offscreen structure internally to copy one
bitmap onto another. The name is somewhat misleading, since the shape to be
copied can be any shape type, not necessarily a bitmap. For instance, you can
use it to create a bitmap that has a specific bit depth from a picture:

static gxShape Create8BitPicture(gxShape myPicture)
{

gxRectangle bounds;
// get the bounding box of the picture

GXGetShapeBounds(myPicture, 0, &bounds);
4 of 8 Using OffscreenLibrary.c

Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

// move the picture so that it’s upper left corner is at (0, 0)
GXMoveShape(myPicture, -bounds.left, -bounds.top);

// create a bitmap big enough to hold the picture
gxShape bitmap = {nil, FixRound(bounds.right - bounds.left),

FixRound(bounds.bottom - bounds.top), 0, 8, nil, nil, nil};
// copy the picture to the bitmap

CopyToBItmaps(bitmap, myPicture);
// move the bitmap to the picture’s original position

GXMoveShape(myPicture, bounds.left, bounds.top);
// restore the picture’s original position

GXMoveShape(bitmap, bounds.left, bounds.top);
return bitmap;

}

The ViewPortBuffer Multiple Offscreen Scheme 2

The Macintosh is relatively unique among computers in that it allows windows
to straddle two or more monitors at the same time. QuickDraw GX fully
embraces this capability, and takes it to the logical extreme; not only can
viewPorts cross multiple viewDevices, but the viewDevices themselves can
overlap each other.

This makes allocating an offscreen bitmap a challenge, since there may be no
single best depth that allows drawing to contain the correct amount of color
and draw as quickly as possible. The solution provided by a viewPortBuffer
creates a picture containing an array of offscreens that match the desired
multiple viewDevices.

Here’s the interface to viewPortBuffer.

typedef struct viewPortBufferRecord **viewPortBuffer;

The viewPortBuffer is a blind handle that points to the internals kept by these
routines. It is never necessary to directly access the fields pointed to by this
handle.

viewPortBuffer NewViewPortBuffer(gxViewPort originalPort);

To create an offscreen for a window that may cross multiple monitors, call
NewViewPortBuffer. It takes the window’s viewPort, returns a reference to the
Using OffscreenLibrary.c 5 of 8
Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

internal structure. The window’s viewPort can be retrieved from
GXGetWindowViewPort.

void DisposeViewPortBuffer(viewPortBuffer target);

When the window is closed, call DisposeViewPortBuffer to get deallocate the
internal objects allocated by the viewPortBuffer.

gxViewPort GetViewPortBufferViewPort(viewPortBuffer source);

To draw shapes into the offscreen, first call GetViewPortBufferViewPort.
GetViewPortBufferViewPort returns a viewPort that references the multiple
offscreens. Drawing into this viewPort draws into as many offscreen bitmaps
as is appropriate. To attach this viewPort to a single shape, use the library
routine SetShapeViewPort. To change all shapes of a given type, try
SetTransformViewPort(GXGetDefaultTransform(theType));

gxShape GetViewPortBufferShape(viewPortBuffer source);

To draw the offscreens, call GetViewPortBufferShape to get the shape to draw.
Drawing the returned shape transfers the offscreen bitmaps to the viewDevices
pointed to by the original viewPort, typically the window’s viewPort.

Boolean ValidViewPortBuffer(viewPortBuffer target);

The user may foul things up by changing the monitors depth or the window’s
position. After a window-altering event, call ValidViewPortBufffer to see if the
viewPortBuffer needs to be recomputed.

Boolean UpdateViewPortBuffer(viewPortBuffer target);

If the viewPortBuffer is out of date, UpdateViewPortBuffer will put things right
again. It returns true if the viewPortBuffer was already valid.

Here’s a convoluted example that builds the offscreens and draws a shape.

static void BufferDraw(gxShape shape, WindowPtr window)
{
// create the viewPortBuffer from the viewPort associated with the window

viewPortBuffer buffer =
NewViewPortBuffer(GXGetWindowViewPort(window));

// retrieve the viewPort created that allows drawing into the offscreen
6 of 8 Using OffscreenLibrary.c

Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

viewPort offscreenPort = GetViewPortBufferViewPort(buffer);
// point the shape to that offscreen

SetShapeViewPort(shape, offscreenPort);
// draw the shape into the offscreen

GXDrawShape(shape);
// draw the offscreen into the window

GXDrawShape(GetViewPortBufferShape(buffer));
// throw the offscreen away

DisposeViewPortBuffer(buffer);
}

How the ViewPortBuffer Works 2

Since the viewPortBuffer is implemented as a library, you can read the code
yourself; you’ll find it is pretty straight-forward.

The implementation is split into a few steps:

1. Figure out which devices the window/viewPort crosses.

2. For each device, figure out the coordinates for the viewPort on that device.

3. Create a bitmap that has the same pixel depth, color set, color profile and
color space as the corresponding device.

4. Keep track of the allocations and object references so that closing the
window (or disposing the device) doesn’t leave any dangling references or
pointers.

Summary 2

GX Libraries contain a wealth of information and show how to use QuickDraw
GX to solve real problems. OffscreenLibrary.c shows how to use GX to
construct flickerless drawing by implementing double buffering on a single
device or on multiple devices.

Further Reference 2

■ MacOS SDK CD, Development Kits (Disc 1): QuickDraw GX: Programming
Stuff: GX Libraries:
Summary 7 of 8
Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

■ Inside Macintosh: QuickDraw GX Objects

■ Inside Macintosh: QuickDraw GX Environment and Utilities

Acknowledgements 2

Thanks to Tom Dowdy, Rob Johnson and Ingrid Kelly for reviewing this
Technote. Special thanks to Michael Fairman for proving that graphics is more
than what you can draw.
8 of 8 Summary

Technote 1038 - Release 1.0  Apple Computer, Inc. 3/25/96

	About the GX Libraries
	What are Offscreens?
	What is in OffscreenLibrary.c?

	Using OffscreenLibrary.c
	The One Shot Solution: Struct offscreen
	The ViewPortBuffer Multiple Offscreen Scheme
	How the ViewPortBuffer Works
	1. Figure out which devices the window/viewPort cr...
	2. For each device, figure out the coordinates for...
	3. Create a bitmap that has the same pixel depth, ...
	4. Keep track of the allocations and object refere...

	Summary
	Further Reference
	Acknowledgements

