
Technote 1063
Inside Macintosh: Processes, Time Manager Addenda

By Eric Simenel
Revised by Quinn "The Eskimo!"
Apple Worldwide Developer Technical Support

CONTENTS

Some Basic Time Manager Rules

Setting Up tmReserved

About tmWakeup

Undeferred Time Manager Task

The Microseconds Alternative

Summary

This technote discusses a number of Time Manager

issues that are not covered in the Time Manager chapter
of Inside Macintosh: Processes.

This Note is intended for all developers who want to do
time measurement using the Time Manager routines.

Some Basic Time Manager Rules

When programming with the Time Manager, it is important to observe the following rules.

For each Time Manager task that you insert (using InsTime or InsXTime), you must remove the
same Time Manager task (using RmvTime) once and only once.
While your Time Manager task is inserted (that is, between InsTime and RmvTime), you can
prime the task multiple times. For example, the sequence InsTime, PrimeTime, fire,
PrimeTime, fire, PrimeTime, fire, RmvTime is perfectly legal. Some developers always insert,
prime, and remove their Time Manager tasks. While legal, this is unnecessarily inefficient.
If you remove a Time Manager task (using RmvTime), you must insert it again (using InsTime
or InsXTime) before priming it.
If you have primed a Time Manager task, you must not prime it again until it fires. This is
explicitly called out in Inside Macintosh: Processes, page 3-11. If you need to cancel a Time
Manager task, simply remove it using RmvTime. If you need to reschedule a Time Manager task,
remove it, then reinsert it, then prime it again.
Don't use InsXTime unless you want drift-free timing. A common mistake is to install a
drift-free Time Manager task (using InsXTime), prime it for 1 second, let it fire, and then, 5
minutes later, prime it again for another 1 second. The task fires immediately because it was
installed as a drift-free task. To avoid this behavior, simply use the original InsTime call.

This rules are not new; they are all explicitly or implicitly described in Inside Macintosh: Processes.
However, recent systems now enforce these rules more strictly. If you break these rules, you may see
one of the following symptoms.

The system crashes with a dsVMDeferredFuncTableFull (112) system error.
The system freezes because low-memory is trashed (pre-System 7.5.5).
The system bus errors because of a fatal page fault.
PrimeTime returns qErr (-1) when you attempt to prime a task that isn't installed.
Timer Manager tasks not firing at the right time.

Note:
"Timer.h" defines the various Time Managers routines as void functions, which prevents you getting
the error result from PrimeTime [2389936]. This is a shame because the assembly language definition
of this routine has always included an error result in register D0. If necessary, you can access this error
result using custom Mixed Mode Manager glue.

Back to top

Setting Up tmReserved

On page 3-8 of Inside Macintosh: Processes, it clearly states that both tmWakeUp and tmReserved
should be set to 0 prior to the first call to InsXTime when using the extended Time Manager:

theTMTask.tmWakeUp = 0;
theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 2000);

If you do want to do some time measurement, then you have to call RmvTime to get the current value of
tmCount, which leads later to a new call to InsXTime, and a call to PrimeTime with a 0 delay which
has a special meaning in that case. Although it appears, after much reading, rather clear that you leave
the current value of tmWakeUp untouched in the TMTask structure, you can't be sure what to do about
the value of tmReserved.

The truth is that prior to October, 1992 (System Software 7.1), you didn't care, but it's more of a
concern now, since Apple slightly modified the behavior of the Time Manager to deal with performance
issues.

If you leave tmReserved untouched, then, after 127 calls to the following code:

RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);

for some good but can't-be-disclosed reason, your extended time task is converted into a non-extended
time task which, being waked up with a 0 delay PrimeTime (which has no special meaning for a
non-extended time task), will suddenly be called and called again--more frequently than it should be.

So, if you perform that kind of time measurement, be sure to write instead:

RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);

Since the Time Manager, prior to System Software 7.1, doesn't care about tmReserved, then you can
set tmReserved to 0 before each call to InsXTime without checking the system version. You still have,
of course, to ensure that the Time Manager you're using is the extended one (the response to
gestaltTimeMgrVersion is gestaltExtendedTimeMgr (3) or greater).

Back to top

About tmWakeUp

The following sentence, also on page 3-8 in Inside Macintosh: Processes, is incorrect: "The tmWakeUp
field contains the time at which the Time Manager task specified by tmAddr was last executed (or 0 if it
has not yet been executed)." It should say: "The tmWakeUp field contains the time at which the Time
Manager task specified by tmAddr is scheduled to be executed (or 0 if it has not yet been executed)."

WARNING:
Since the format of that field is undocumented and used internally by the Time Manager, developers are
strongly discouraged anyway from performing any kind of calculation or comparison on the value of
this field, since that format could change in the future.

Back to top

Undeferred Time Manager Tasks

This section describes an optimization that you might want to employ when using the Time Manager in
the presence of virtual memory (VM). Most developers will not be interested in this; however, all users
of the Time Manager should heed the following warning.

WARNING:
Because there is an extremely remote possibility that the memory you have allocated for your Time
Manager task contains the special value listed below, if you want to ensure the behavior defined in
Inside Macintosh: Memory, you should always clear the qLink field in the TMTask before
installing it.

As described in Inside Macintosh: Memory, Time Manager tasks are automatically deferred by the
Virtual Memory (VM) system to avoid fatal page faults. This was done for backward compatibility with
existing applications that use the Time Manager, but it can seriously increase the latency between when
the timer expires and when your Time Manager task executes.

For more information about interactions between the Time Manager and VM, see Technote 1094,
"Virtual Memory Application Compatibility."

For example, if you schedule a Time Manager task to execute at time X and, at time (X - delta) some
process takes a page fault, your Time Manager task will not be called until time (X + Y - delta), where Y
is the time required to field a page fault. If the page fault causes the hard disk to seek, Y could be as great
as the hard disk's average seek time, approximately 10 ms. If you are trying to use the Time Manager to
measure time in microseconds, this could be a problem.

There is a way you can install Time Manager tasks so the callback is not deferred by VM; however,
before using this technique, you should be aware of its dangers. Because VM does not defer these
special Time Manager tasks, it is possible for them to fire when paging is not safe. To avoid fatal page
faults, you must ensure:

The TMTask record is held for the entire time the Time Manager task is installed. You can do that
using the following code:

HoldMemory(&theTask, sizeof(TMTask));
The code for the timer task and any data it references is held. If the code for your timer task is
stored in a code resource, you can use the following snippet to make sure it is held. If your timer
task code is not in a code resource, it's very difficult to ensure that it and its data are held.

// Ensure the code doesn't move in logical memory
HLock(ttaskCodeHandle);
// Ensure the code is held in physical memory and cannot be paged to disk
HoldMemory(*ttaskCodeHandle, GetResourceSizeOnDisk(ttaskCodeHandle));
You timer task code only calls system routines that are guaranteed to meet the above
requirement--this typically means only that routines that are known to be interrupt-safe.

WARNING:
If you fail to meet these requirements, you will cause a fatal page fault and crash the system.

If you call InsTime or InsXTime with the qLink field set to $65616461, the VM patch on the Time
Manager will recognize your special requirements and execute your timer task as soon as it fires,
regardless of whether paging is safe or not.

Back to top

The Microseconds Alternative

Another way to perform time measurement would be to use the Microseconds call, which is much easier
to use and less likely to change in the future.

pascal void Microseconds(UnsignedWide *microseconds);

IMPORTANT:
Currently, even with the most recent system software (7.5.3 revision 2) on a PCI Power Macintosh,
both the Time Manager calls and the Microseconds call are still in 68K code and thus are executed by
the emulator. If you call them from PowerPC code, you'll get a switch from PowerPC code to the 68K
emulator, so the values returned are incorrect by a few tenths of a microsecond. This means that you
have to be careful when using either of them to do time measurement. If you do use Microseconds,
then your time measurement is done by the difference of the 2 values returned by Microseconds before
and after the code you measure, and since the latency induced by the switches is the same in both case,
then your time measurement is correct. If you do use the Time Manager way of performing time
measurement, however, the tmCount field may be off by a few tenths of a microsecond.

Back to top

Summary

The following points explain what you should and should not do in working with the Time Manager:

Always follow the basic rules.
Always set tmReserved to 0 before calling InsXTime.
Set tmWakeUp to 0 before the first call to InsXTime, never look at it or modify it (except to set it
to 0 in some cases, no other value is acceptable) afterwards.
tmCount is only valid after a call to RmvTime.
Always clear qLink before calling InsXTime.
Microseconds might be a good alternate way.

Further References

Inside Macintosh: Processes, Chapter 3, The Time Manager
Denis G. Pelli's Web page

Back to top

Change History

Originally written by Eric Simenel (Developer Technical Support).
Updated by Quinn "The Eskimo!" (Apple Developer Technical Support) in March 1997 to
include information about undeferred Time Manager tasks.
Updated by Quinn "The Eskimo!" (Worldwide Developer Technical Support) in October 1999 to
reiterate some basic Time Manager rules. Also made some minor clarifications and cosmetic
changes.

Downloadables

Acrobat version of this Note (49K).

Acknowledgments

Thanks to Brian Bechtel, Bob Bradley, Drew Colace, Jim Luther, Denis G. Pelli, Geoff Stahl, and Bob
Wambaugh.

To contact us, please use the Contact Us page.
Updated: 11-October-1999

Technotes | Contents
Previous Technote | Next Technote

