
Power Management & The Energy Saver API

By Vinnie Moscaritolo
Apple Developer Technical Support (DTS)

http://webstuff.apple.com/~vinnie/

vinnie@apple.com

CONTENTS

Energy Saver Overview

Energy Services Access

Energy Services API

The ESGlobals Structure

ESLoadPreferences

ESGetPreferences

ESSetPreferences

ESRefreshSettings

ESSavePreferences

ESAddNoteProc

ESRemoveNoteProc

Energy Saver Notification
Function

ESRestoreDefaults

ESGetUnsavedFolder

ESSetUnsavedFolder

ESGetINITVersion

Summary

In an effort to provide a consistent method of

controlling the various power conservation
hardware and software features implemented
on the Macintosh platform, Apple has
introduced the Energy Saver system.

In addition to providing developers with a
standard way to control power management
features such as display sleep/dimming, hard
drive spindown, idle shutdown or sleep, the
Energy Services API also provides a consistent
way to synchronize the Human Interfaces for
multiple concurrent applications that need to
access these features.

This Note discusses how to communicate with
the Macintosh Energy Saver Extension through
the Energy Services API and is important for
developers who wish to access Mac OS power
management features from their applications.

This Note also includes the public interfaces for
the Energy Services API.

Energy Saver Overview

Energy Saver provides a consistent method of controlling the various power
conservation hardware and software features implemented on the Macintosh platform.

Although the features it supports vary depending on the machines' capabilities, Energy
Saver typically attempts to reduce power consumption by controlling such operations as:

Display Sleep/Dimming - by reducing the power requirements to the display
monitor.

Hard Drive Spindown - by reducing power by spinning down (removing power)
the hard disk drive spindle motor.

Idle Shutdown - by programatically turning off power to the computer without
losing any data.

Idle Sleep - Enter a reduced power requirement state from which rapid recovery
can be made when waking up. Note that the sleep state differs according to the
hardware capabilities present in the machine.

Scheduled Startup/Shutdown - Scheduled startup is used to restart the system at a
predetermined time. When used in conjunction with scheduled shutdown,
document autosave, and bookmarking, these can offer a substantial savings in
energy requirements while providing a convenient means of restarting the
system.

Document AutoSave - Document autosave provides the means to automatically
save open untitled or unsaved documents at system shutdown time without
requiring user intervention or confirmation.

Wakeup Sound- A user-configurable sound to be played when the system is
waking up from sleep mode. Since the monitor is typically dimmed, the wake-up
sound is the only means of determining if the system is currently active.

Even though the majority of action is handled by either the Mac OS Power Manager or
various Macintosh power conservation hardware, the Energy Saver is the method used to
provide the user with a mechanism for determining when and how the various actions
are to occur.

The Energy Services API also provides a way to synchronize the Human Interfaces for
multiple concurrent applications that need to access the power management features.

Components of the Energy Saver

Energy Saver is actually composed of two separate components: a system extension and a
control panel.

Control panel - The control panel manipulates the settings that are stored in
system memory and a preference file.

Energy Saver Extension - The extension uses the settings stored in the preference
file to direct desired energy-saving behavior.

Figure 1 provides an overview of the Energy Saver components.

FIGURE 1. Energy Saver Overview

Note:
The Energy Saver control panel is not really a control panel. It is an application with a
special signature of 'APPC', which, to the Finder in systems after Systems 7.5.2, is used to
allow applications dropped on the System Folder to be automatically placed into the
Control Panel.

This allows the developer to construct control panels in the same manner as an
application but permits the Finder to do its auto-placement function.

Energy Services Access

Applications can safely use the same mechanism to manipulate the Energy Saver
preference file as the Energy Saver control panel. This is accomplished through the
Energy Services API. The purpose of this API is to provide homogenous support for
high-level power management features that are not provided by the Power Manager, as
well as provide standardized preference support for power manager functions that do
not have persistent PRAM settings.

The Energy Saver Extension provides auto power on/off features for all Macs with an
Egret or Cuda microcontrollers. In addition, it will manage preferences for Screen
dimming, Hard disk spin down, sleep mode, and options for all these features. There are
calls that can be used to obtain and set the preferences, as well as calls to activate the

h

p
settings in the preferences passed.

Whenever possible, application developers should use this functionality instead of
creating their own from scratch, at least to the extent of updating the preferences, so that
other applications and control panels will reflect user choices made in all applications.

Determining If Your Mac Supports the Energy Services API

The proper way to determine if a particular Macintosh model supports the Energy
Services API is to use the Gestalt function to check for the 'wnkl' selector, then check
the response for non-nil value. This will indicate that the Energy Services API is loaded.

Calling the Energy Services API

Once you have established the existence of the Energy Services Manager you can access the
energy services API via the gestalt selector 'wnkl' response value. The response is a Handle to a
data structure whose first field is a pointer to the Main routine. The interface to this routine is:

typedef pascal long (*ESRoutineCallPtr)(short selector, long parm1, long parm2);

To facilitate developer usage, the EnergyServPubLib.c and EnergyServPub.h files are
provided with this document and and should be used to access to the Energy Services API.

Calling the ESGetINITVersion function from the EnergyServPubLib is the recomended way to
determine if the Energy Services API is loaded and available. The interface code will perform
the proper safety checks.

Energy Services API

The ESGlobals Structure

The Energy Saver Extension maintains a set of preferences globals. These globals are
defined in the ESGlobals structure as follows:

typedef struct {
 short version; // data structure version (1)
 long EnergySaverFeatures; // ES features (not used yet)

// Idle Sleep & ShutDown Timing
 unsigned long dimIdleTime; // minutes before screen sleeps
 unsigned long spinDownIdleTime; // minutes before HD spins down
 // desktops must be >30
 unsigned long sleepIdleTime; // minutes prior to system sleep

 short idleFlags; // Idle time features supported
 // 0001 = Enable dimIdleTime
 // 0002 = Enable spinDownIdleTime
 // 0008 = ShutDown instead of sleep
 // 0010 = Never Spindown disk
 // 0020 = Restart after powerfail
 short reserved1;
 short reserved2;

// Schedule Sleep & Shut Down
// These times are in minutes from midnight (actually 12:00:01 AM)
// th fil d l d b th E S li ti HI

// these fileds are only used by the Energy Saver application HI.
// your application should use the SDxxxTime and SWUxxxTime fields
// to maniupulate the shutdown and Wakeup time
 unsigned long mainWUTime; // Time computer starts up
 unsigned long mainSDTime; // Time computer shuts down

// bit fields telling which day of the week Wakeup or Shutdown is enabled
 short WUFields; // Startup
 short SDFields; // Shutdown
 // Monday = 0x0001
 // Tuesday = 0x0002
 // Wednesday = 0x0004
 // Thursday = 0x0008
 // Friday = 0x0010
 // Saturday = 0x0020
 // Sunday = 0x0040
 // EveryDay = 0x007F
 // Enabled = 0x0080

// The following fields let you specify different times of the day
// for startup and shutdown for each individual day. If you are not
// going to allow specific daily schedules. then set all WU's to
// mainWUTime and all SD fields to mainSDTime.

// Shutdown Time
 unsigned long SDMonTime;
 unsigned long SDTueTime;
 unsigned long SDWedTime;
 unsigned long SDThuTime;
 unsigned long SDFriTime;
 unsigned long SDSatTime;
 unsigned long SDSunTime;

// Wakeup Time
 unsigned long WUMonTime;
 unsigned long WUTueTime;
 unsigned long WUWedTime;
 unsigned long WUThuTime;
 unsigned long WUFriTime;
 unsigned long WUSatTime;
 unsigned long WUSunTime;

// Sleep Prefs Info stuff
 short reserved3;
 short WUSoundResID; // ID of the 'snd ' to play on wakeup
 short reserved4;

// Startup Prefs Info
 short reserved5;
 short AppFlags; // Always set to 0 in new pref file.
 short NonComplianceFlag; // Set if machine sleeps over 30 watts

// Shutdown Prefs Info
 short SDIdleTime;
 short SDNotifyFlags; // Notification Options
 // 0020 = Notify on Shutdown
 // 0001 = Blinking icon
 // 0002 = Text message
 // 0004 = Play snd
 // 0008 = save files

// 8008 D t l

 // 8008 = Dont save on sleep

 // 0400 = Play snd on Wakeup
 // 0800 = Wakeup on Ring detect
 // 1000 = Blink pwr light (portables)
 // 2000 = mute sounds when asleep

 short SDNotifyDelayTime;
 short SDSoundResID; // ID of the 'snd ' to play on Shutdown
 short reserved6;
 short reserved7;

// Energy Saver General prefs info
 long reserved8;
 Boolean reserved9;

} ESGlobals, *ESGlobalsPtr, **ESGlobalsHand;

ESLoadPreferences

ESLoadPreferences reloads the current settings from the preferences file
and updates the Energy Services Globals. It also returns a copy of the
settings for your use.

PROTOTYPE

OSErr ESLoadPreferences(ESGlobalsPtr thePrefs);

thePrefs A pointer to the ESGlobals structure

RESULT CODE

File Read Errors, Memory Errors, ES Errors

IMPORTANT

This is called by the Energy Saver Extension at system startup time. Your
application should never have to make this call unless you intend to
revert back to the saved preference settings.

ESLoadPreferences will not update the state of the machine. After making
this call, you need to call ESRefreshSettings() in order to make the read in
settings take effect.

ESGetPreferences

ESGetPreferences returns a copy of the current settings for your use. This is
the normal call an application will make to get the current user settings
for all the energy services information.

PROTOTYPE

OSErr ESGetPreferences(ESGlobalsPtr thePrefs);

thePrefs A pointer to the ESGlobals structure

RESULT CODE

Memory Errors, ES Errors

ESSetPreferences

ESSetPreferences copies the passed settings to the Energy Services globals.

PROTOTYPE

OSErr ESSetPreferences(ESGlobalsPtr thePrefs);

thePrefs A pointer to the ESGlobals structure

RESULT CODE

Memory Errors, ES Errors

IMPORTANT

ESSetPreferences will NOT call the Power Manager to make the settings
effective, nor will it set new startup and shutdown times. After making
this call, you need to call ESRefreshSettings() to cause the new settings to
take effect.

ESRefreshSettings

ESRefreshSettings will cause the current settings to be activated and will
make all necessary power manager calls to cause them to be active. In
addition, it will install whatever startup and shutdown tasks need to be
installed to act on the current set of notifications.

PROTOTYPE

OSErr ESRefreshSettings();
RESULT CODE

ES Errors

ESSavePreferences

ESSavePreferences performs three operations: it calls ESSetPreferences() to
transfer the passed settings, then ESRefreshSettings() to make them active,
and lastly it saves the settings out to the preferences file so they remain
consistent over boots. This is the normal call an application will make
when it wants to make a persistent update to the Energy services settings.

PROTOTYPE

OSErr ESSavePreferences(ESGlobalsPtr thePrefs);

thePrefs A pointer to the ESGlobals structure

RESULT CODE

File Errors, Memory Errors, ES Errors

IMPORTANT

When specifying snd resources in the WUSoundResID or SDSoundResID field
of ESGlobals record, you should ensure that those resources are in the
current resource chain. This is important because ESSavePreferences will
cause them to be loaded, detached and copied into System Heap.

ESAddNoteProc

You can use the ESAddNoteProc to install an Energy Saver notification
response procedure. This notfifier can be used to inform your application
that the energy saver prefs are being read or written.

PROTOTYPE

OSErr ESAddNoteProc(ESNotifyProcPtr theProc, long data);

theProc A pointer to a notification response procedure

data A user defined ref to pass to the data procedure

RESULT CODE

ES Errors

SEE ALSO

The Energy Saver Notification and ESRemoveNoteProc function.

ESRemoveNoteProc

You can use the ESRemoveNoteProc to remove an Energy Saver notification
response procedure.

PROTOTYPE

OSErr ESRemoveNoteProc(ESNotifyProcPtr theProc);

theProc A pointer to a notification response procedure

RESULT CODE

ES Errors

SEE ALSO

The Energy Saver Notification and ESAddNoteProc function.

Energy Saver Notification Function

Once installed by the ESAddNoteProc function, your notification procedure
will be called when any application attempts to access the ES prefs.

The notifier will be called with the selector xNoteESDataReq whenever the
Energy Saver prefs are being read but before the application is returned to
them.

You are also called when someone copies new prefs to the Energy Saver
Extension with a xNoteNewESData selector. You then get a chance to change
the data that they have copied Globals, but you get to it before it is applied.

This allows your application to dynamically update the display of the
ESGlobals or to filter data values.

PROTOTYPE

pascal long MyESNotifyProc (short selector, ESGlobalsPtr theData);

selector A value indicating the type of activity that has
occurred. See the description below for the meaning of
this field.

thePrefs A pointer to the ESGlobals structure

DESCRIPTION

The valid types of activity are:

Value name Value Description

xNoteNewESData 1 New ESGlobals written out.

xNoteESDataReq 2 ESGlobals are being requested.

ESRestoreDefaults

ESRestoreDefaults is used to restore the system to the machine-dependent
default settings as stored in the extension resource data. Use this call
whenever you want to return the Energy Saver back to the installed
default settings.

You also get a copy of the ESGlobals so that you can see what those defaults
are. Getting the ESGlobals is convenient so that you can update your HI to
reflect the current machine state.

One possible use for this is in response to a "Apple Defaults" menu item.

PROTOTYPE

OSErr ESRestoreDefaults(ESGlobalsPtr thePrefs);

thePrefs A pointer to the ESGlobals structure

RESULT CODE

Memory Errors, ES Errors

ESGetUnsavedFolder

This call is used to retrieve the pathname of the Unsaved Document folder used
by the Autosave feature.

PROTOTYPE

OSErr ESGetUnsavedFolder(Ptr theString);

theString A pointer to a string into which the current pathname
of the unsaved document folder will be copied.

RESULT CODE

Memory Errors, ES Errors

ESSetUnsavedFolder

You can use the ESSetUnsavedFolder to set the pathname of the Unsaved
Document folder used by the Autosave feature.

PROTOTYPE

OSErr ESSetUnsavedFolder(Ptr theString);

theString A pointer to a string which contains the pathname of
the unsaved document folder to be used.

RESULT CODE

Memory Errors, ES Errors

ESGetINITVersion

This call is used to retrieve the current version number of the installed Energy

This call is used to retrieve the current version number of the installed Energy
Saver extension file. Use this call to verify that the correct version of the Energy
Saver extension is being used.

PROTOTYPE

OSErr ESGetINITVersion(Handle* theVers);

theVers A pointer to the version structure

RESULT CODE

ES Errors

Summary

As the Macintosh platform continues to evolve, the Energy Saver API provides a
consistent method of monitoring and controlling power management features. In
addition, the Energy Saver API also presents a few interesting opportunities for
third-party developer applications.

Further References

Inside Macintosh: Devices, Chapter 6, Power Manager Reference
Technote 1046: Inside Macintosh: Devices, Power Manager Addenda
Technote 1079: Power Management & Servers: Auto Restart From Power Failure

Acknowledgments

Special thanks to Dave West, Nancy Zayed and Bun-Bun the Rabbit.

Send feedback to vinnie@apple.com
Updated: 20-Dec-96

