
ð

T E C H N O T E :
Cross-Platform Communication Using
the PC Compatibility Messaging System
By Ben Manuto
<manuto@apple.com>
Apple Engineering

This Technote describes the Messaging System Architecture used in Apple's PC
Compatibility and DOS Compatibility products. Specifically, the messaging
system allows communication of data between the PC-based machine running
on a NuBus or PCI card and the Macintosh OS. This inter-machine
communication is facilitated through a driver on the Macintosh which controls
the PC card and allows it to run within the Macintosh hardware and software
space.

This Technote is directed toward third-party developers who are interested in
developing software for the Mac and the PC , which needs to communicate
instructions or data between platforms. The applications developed to use the
messaging system would be intended to run specifically with Apple’s PC
Compatibility products.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 1 of 19

This document assumes the developer is familiar with application and driver-
level software development on the Macintosh platform as well as the PC. For the
Mac, an understanding of the Device Manager and implementing 68K and PPC
native code is essential. For the PC, an understanding of 16-bit DOS Real mode
execution and x86 assembly language is useful. For development in conjunction
with Window's based applications, a knowledge of 32-bit Windows
programming and virtual device drivers (VxD's) is necessary.

This document also assumes the reader is familiar with Apple's PC Compatibility
products and how they function within the Macintosh OS.

Further information on Macintosh programming at the device level can be found
in Inside Macintosh: Devices. For more information on Windows VxD
programming (only necessary for using the message system with Windows 3.x
or Windows 95), see Writing Windows Virtual Device Drivers by David Thielen
and Bryan Woodruff.

About the PC Compatibility Messaging System
The PC Compatibility (or DOS Compatibility) systems currently supported by
this messaging architecture are the Centris 610 DOS Compatible, PowerMac
6100/66 DOS Compatible, the Quadra 630 DOS Compatible, and any PCI-based
Macintosh which includes the most recent PCI-based 100Mhz Pentium and Cyrix
5x86 PC Compatibility Cards. Currently, the only system bundled with the PCI-
based cards is the PowerMac 7200/120. All of these systems must be running
version 1.5 of the PC Compatibility Software or later, which includes the driver
that allows the messaging system to function.

The messaging system is implemented as a 16-bit DOS real-mode driver and is
used extensively in these current products to allow the PC to have access to the
shared devices on the Mac (HD, CD, floppy, etc.), networking communications,
folder sharing, and clipboard support.

Using the Messaging System
Software programs on the Mac and the PC are capable of exchanging messages
containing up to 64K of data by using the Messaging System API. Applications
that plan on sharing messages must define and understand the types of
messages to be sent and received. More importantly, verification and
acknowledgment of sent and received messages must be maintained by the
sending and receiving applications.

The driver installed at the Mac OS startup time is called ".Symbiosis" and needs
to be opened by your Macintosh application before driver calls can be made.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 2 of 19

Your program will then use device manager _Control calls to register, send, and
receive messages. The PC accesses the messaging system through a software
interrupt interface. The application will load x86 registers with appropriate
values, a function selector, and then call the messaging system via an INT 5Fh
call.

Basic Messaging Concepts

Both the Mac and the PC applications accessing the messaging systems must
define a 32-bit selector for their messages and a count value that denotes the
number of different types of messages available for this selector. Typically,
applications that are to pass messages define one selector type. Selector types can
be any unique 32-bit value, so 4-character values work well (32-bit OSType). Both
the Mac and the PC applications must know the message selector and they must
know the number of message types associated with that selector in order to
register themselves with the messaging system (See the Registering Messages
section for more details on Message Selectors and Types).

The basic process of single message communication between an application on
the Mac and an application on the PC is as follows:

1) Open the messaging system and verify it is available.
2) Accurately register message selector and number of message types.
3) Install message handlers and completion routines.
4) Begin transceiving messages.
5) Once the message handler is called, the application can provide space

to receive the data or ignore the message.
6) After the data has been received, the receiving application should send

a response to the sending application, acknowledging the data was
properly received.

7) Once the acknowledge has been received, the calling application can
then send another message (goto step 4) or both apps can stop
sending messages.

8) After all messages have been sent, both applications must remove and
deallocate all their message handlers.

Performing multiple message communication is also possible (i.e., the ability to
send more than one message before receiving an acknowledge), but requires
more maintenance. The intent here is to describe the basic communication
between applications. Therefore, multiple message communication concepts are
discussed in the Advanced Messaging Techniques section of this Technote.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 3 of 19

Opening the Messaging System

On the Mac, the application must open the .Symbiosis driver and retrieve the
refNum for the driver in order to make other message system control calls. Your
application can do this using the OpenDriver function. If this returns an error, the
.Symbiosis driver is not available and the messaging system cannot be used.

On the PC, the application must load the AH register with 0 and call the software
interrupt INT 5Fh. If the messaging system is installed, AH = $A5 and AL will
equal the highest implemented function code, which is currently 5, when the
interrupt returns. The highest implemented function code means there are a total
of 5 functions supported for registering and receiving messages. This will be
discussed in detail later.

Essential Data Types

The basic data structures for accessing the messaging system on the Mac side are
defined as follows:

typedef struct {
QElemPtr qLink;
SInt16 qType;
SInt16 ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion; // always NULL
OSErr ioResult; // error result info.
StringPtr ioNamePtr;
SInt16 ioVRefNum;
SInt16 ioCRefNum; // refNum of Symbiosis driver.
SInt16 csCode; // messaging system function
void * csPtr; // pointer to procedure or data
SInt32 csData; // data
SInt32 csData2; // data

} SBParamBlockRec, *SBParamBlockRecPtr;

The SBParamBlockRec is virtually the same as a standard paramBlockRec except
only the fields used by the messaging system are included for the data area. The
only fields needed for messaging are the ioCRefNum and csCode for calling the
driver, and then the csPtr and csData fields which are used to point to other
structures that are defined below. The different csCode's used for calling the
messaging system are defined below:

enum {
eSendMessage = 800, // Send a message
eInstallMsgHandler = 801, // Install a message handler
eRemoveMsgHandler = 802, // Remove message handler
eRegisterMessage = 803 // Register message type

};

The data structures used for sending and receiving messages are below:

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 4 of 19

typedef struct MsgPBlk {
struct MsgPBlk*msgQLink; // Pointer to next MsgPBlk
SInt16 msgQType; // Queue Flags
SInt16 msgCmd; // The message type or command
SInt32 msgParam1; // Message parameter 1
SInt32 msgParam2; // Message parameter 2
void* msgBuffer; // Ptr to the msg data buffer
SInt32 msgReqCount; // Requested data length
SInt32 msgActCount; // Actual data length
MsgCompletionUPP msgCompletion; // Ptr to comp. rtn. or NULL
SInt16 msgResult; // The result of msg operation
UInt16 msgFlags; // Message flags
UInt32 msgUserData; // refCon (a5, etc…)

} MsgPBlk, *MsgPBlkPtr;

typedef struct MsgRecElem {
struct MsgRecElem* recQLink; // Next queue element
SInt16 recQType; // queue flags
SInt16 recFlags; // Not used...Set to zero
MsgReceiveUPP recProc; // Ptr to the receive proc.
SInt16 recCmdBase;// Msg Selector base.
SInt16 recCmdCount; // # of msgTypes
UInt32 recUserData; // refCon (could be A5...)

} MsgRecElem, *MsgRecElemPtr;

The MsgPBlk is used for sending and receiving data and the MsgRecElem is used
for notification of incoming messages.

For the PC application using the messaging system, the PC Data structures and
function ID constants are defined below:

enum {
eIsAvailable = 0 // Index for is available
eSendMessage = 1 // Index for Send func
eInstallMsgHandler = 2 // Index for Install Msg Handler func
eRemoveMsgHandler = 3 // Index for Remove Msg Handler func
eRegisterMessage = 4 // Index for Register Msg
eVersionCheck = 5 // Index to get the version numbers

};

// some basic types used for the MsgPBlk and MsgRecElem structures.

typedef char SInt8;
typedef short SInt16;
typedef long SInt32;
typedef unsigned char UInt8;
typedef unsigned short UInt16;
typedef unsigned long UInt32;
typedef char __far* Ptr32;

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 5 of 19

typedef struct MsgPBlk {
 struct MsgPBlk* link; // Pointer to the next MsgPBlk.
 SInt16 msgCmd; // The message command or type
 SInt32 msgParam1; // Param 1
 SInt32 msgParam2; // Param 2
 UInt32 msgCompletion; // Ptr to the completion routine
 Ptr32 msgBuffer; // Ptr to the data buffer
 SInt32 msgReqCount; // Length of the data
 SInt32 msgActCount; // # of bytes actually transfered
 SInt8 msgResult; // The err code after complete or 1
 UInt8 msgFlags; // Not used, init to zero.
 UInt32 msgUserData; // for caller's use
 UInt32 msgVXD; // Used by VxD
} MsgPBlk, *MsgPBlkPtr;

typedef struct MsgRecElem {
 struct MsgRecElem* Link;
 SInt32 Code;
 SInt16 cmdBase; // the base message number for this proc
 SInt16 cmdCount;// the # of message numbers for this proc
 UInt32 userData; // for caller's use
 UInt32 recVXD; // reserved - Used by VxD
} MsgRecElem, *MsgRecElemPtr;

Registering Messages with the Message System

The process of message registration requires both the Mac application and the PC
application to be aware of a predefined set of message types that are defined by
the application developer. Both applications are aware of the data formats of
these messages and know how to decode and use certain parts of the messages
based on their distinct message type ID. These message types are grouped
together by a message selector (4-byte value of type OSType) known to both the
Mac and the PC application.

Both applications send the message selector and the number of message types to
the message system and the message system returns a cmdBaseID (See Figure 1).

Figure 1. Registering a message selector and message types.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 6 of 19

Msg Selector

M
es

sa
gi

n
g

S
ys

te
mMsg type 1

Msg type 2

Msg type 3

Msg type n

Msg type 4

MsgCmd Base ID

MsgCmd Base ID + 1

MsgCmd Base ID + 2

MsgCmd Base ID + 3

MsgCmd Base ID + (n-1)

Once the set of messages for the Mac and PC applications has been registered
with the message system, each individual message has a unique value (called a
msgCmd) which ranges from the msgCmdBaseID to the total number of
messages - 1. When the applications send and receive messages, they will
reference particular message types through the msgCmdBaseID plus some value
which specifies the message type. The resulting value is the msgCmd.

Registering a Message on the Mac

To register messages on the Mac, your application must fill out a
SBParamBlockRec make the appropriate driver call. To do this, fill out the
following fields of a SBParamBlockRec:

--> ioCRefNum = <refNum of the .Symbiosis driver>;
--> ioVRefNum = 0;
--> ioCompletion = 0;
<-- ioResult = 0;
--> csCode = eRegisterMessage;
<-> csPtr = <message selector>;
--> csData = <number of message types>;

The message selector entered in the csPtr field should by a 4-byte value of type
OSType. The csData field should be the number of message types registered.

Make the driver call using the PBControlImmed function. If the registration is
successful, the ioResult will equal noErr and the csPtr will contain a message
base command (msgCmdBaseID) value which is used in the message send and
receive parameter blocks.

Registering a Message on the PC

To register a message on the PC, load the 32-bit message selector into the EBX
register and put the number of message types in CX. Then call INT 5Fh with AH
equal to the registerMessage function ID (4). On return from the interrupt, BX
will contain a message command base ID which must be used in the MsgPBlk's
and MsgRecElem's. A sample function called MsgRegister, which passes in a
selector and count (number of msg types) and returns the command base ID, is
shown below:

MsgRegister PROC FAR C msgSel:DWORD, msgCount:WORD, msgCmmd:WORD

 mov ebx,msgSel ; load EBX with the msgSelector.
 mov cx,msgCount ; load CX with the msgCount
 mov ah,registerMessage ; load AH with the function ID.
 int 05Fh ; make the interrupt call.

 mov dx,bx ; move BX to DX.
 mov bx,msgCmmd ; Put the address of msgCmd in BX.
 mov [bx],dx ; Return the msgCmd value.
 ret
MsgRegister ENDP

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 7 of 19

Sending a Message from the Mac

For either machine to send a message to the other, a MsgPBlk must be filled out
and passed to the message system. The message system function for sending
messages is always executed asynchronously, but the actual driver call is still
made with PBControlImmed function and the ioCompletion field of the
SBParamBlockRec should be set to NULL. The SBParamBlockRec is only used to
send the MsgPBlk to the messaging system, so the completion routine function
pointer is filled in the ioCompletion field of the MsgPBlk. The csPtr field on the
SBParamBlockRec should be a ptr to the completed MsgPBlk.

To send a message, your application should fill out the MsgPBlk as follows:

--> msgCmd = <message cmdBase ID + type ID>;
--> msgParam1 = <any 32-bit value>;
--> msgParam2 = <any 32-bit value>;
--> msgBuffer = <pointer to a data buffer (64K max)>;
--> msgReqCount = <size (in bytes) of the data buffer)>;
<-- msgActCount = 0; // init to zero!
--> msgCompletion = <pointer to completion rtn. or NULL>;
<-- msgResult = 0; // init to zero.
--> msgFlags = 0; // always set to zero!
--> msgUserData = <any 32-bit pointer of value>;

The msgCmd field should contain a value equal to the message cmdBase ID
returned from the message registration function plus the message type value for
this message. If your application registered 15 message types for a particular
selector (for which a cmdBase ID was returned), cmdBaseID <= msgCmd <
(cmdBaseID + number of message types). The message handler on the PC will
receive the msgCmd and can determine the message type ID by subtracting the
cmdBaseID from the msgCmd. The format and/or types of these messages are
predefined and recognizable by the applications which defined them.

The msgParam1 and msgParam2 fields can contain any 32-bit values the sending
application wishes to place in them. The receiving function on the PC will have
access to these paramters before the msgBuffer is actually transferred to the PC.
So these fields can be used for messages without a data block or they can be used
to determine if the receiving application wants to receive the data buffer.

The MsgReqCount field should contain the length (in bytes) of the data that is
contained within the msgBuffer block. This does not mean it should be the length
of the msgBuffer block, only the length of the data you wish to send that is
contained from the start of the msgBuffer (e.g., msgReqCount <= size of buffer).
The msgActCount field is filled in by the message system contains the number of
bytes that were actually sent to the PC.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 8 of 19

The msgUserData is a refCon that can be a 32-bit value or a pointer to data. This
field does not get transferred to the PC, but it available for use when the
completion routine gets called.

Once the message is sent, the msgResult field will be set to 1 to mark that the
message is currently busy. Once the completion routine is called, msgResult will
be 0 (noErr) or -3 (msgTimeout).

Note: The completion routine gets called at Deferred Task time and can use
registers D0-D2, A0, and A1. All other registers must be saved and restored. A0
will contain a pointer to the MsgPBlk. A5 must be restored and saved if access to
globals are necessary and you are coding under 68K. Use the msgUserData field
hold onto your A5 world.

If your application is PPC Native, universal proc pointers and mixed-mode
function definitions have been provided in the Messaging.h file included in the
MessageTest tool source code that accompanies this Technote. Obviously, no
save and restore of global space is necessary when running from PPC Native
code.

Sending a Message from the PC

The MsgPBlk on the Mac and the MsgPBlk on the PC are virtually identical as far
as the fields of the data structure the messaging application must use. The PC
application should build the MsgPBlk in the same manner as described in the
previous section and then send it through the message system interface on the
PC.

To send a message from the PC, ES:BX should contain a far pointer to the
MsgPBlk. AH should contain the function ID for sendMessage (1). Then the
application should make the INT 5Fh call. The message will be queued and the
msgResult field will be set to 1. Once the message has been sent, the completion
routine will be called.

Your completion routine can be done in C code as well as assembly, but you
must remember to use the __loadds keyword in your function prototype in order
to have access to globals within your functions data segment.

Note: The completion routine specified will be called with a far call, so your
completion routine must return with a RETF instruction (if you are writing your
completion routine in C, this is usually not an issue). Interrupts are also turned
off when the completion routine is called and the function should not turn
interrupts on for any reason. The completion routine can use the AX, BX, CX, DX,
DI, SI, ES, and DS registers. When the completion routine is called ES:BX
contains a pointer to the MsgPBlk.

See the Test.c and Mesg.asm files for the PC MsgTest tool that accompanies this
Technote for sample code.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 9 of 19

Receiving a Message

To receive a message, your application must install a message handler function.
A message handler function must be unique to every message selector that has
been registered with the messaging system, but is the same function for every
message type that belongs to a particular selector. In other words, if your
application registers a message selector 'abcd' which has 15 message types
associated with it, your application only has to install one message handler that
will know how to process all 15 types of messages. The receive function can
determine the message type by subtracting the cmdBaseID from the msgCmd
value in the MsgRecElem.

The purpose of a message handler is to examine the msgCmd, msgParam1 and
msgParam2 fields of the message that has been sent to determine if there is any
data to be retrieved from the message. If there is data the receiving application
wants to get, it must provide a pointer to a MsgPBlk with space allocated for the
msgBuffer field for receiving the data. The msgReqCount field of the MsgPBlk
should also contain the number of bytes the application expects to receive or the
absolute size in bytes of the msgBuffer (i.e., 0 < msgReqCount <= size of
msgBuffer). The messaging system will only write a maximum of msgReqCount
bytes or less of data to the msgBuffer block.

Once a MsgPBlk has been provided, the messaging system will then retrieve the
data into the msgBuffer field and update the msgActCount field of the MsgPBlk
with the actual number of bytes transferred. If msgReqCount == msgActCount,
msg Result equals noErr (0). If msgReqCount < msgActCount, msgResult will
equal -1 (msgOverrun). If msgReqCount > msgActCount, msgResult will equal -
2 (msgUnderrun). If msgResult equals -3 (msgTimeout), a time out error
occurred and the transferal of data may not be complete. After the data has been
received, the completion routine specified in the MsgPBlk will be called.

Note: The msgBuffer pointer will be advanced msgActCount bytes after the data
transfer has been made (i.e., the pointer will point the end of the msgBuffer) and
needs to be reset back to the start of the buffer after the completion routine is
called in order to access the transfered data. This behavior is consistent for the
Mac and the PC.

Receiving a Message on the Mac

To establish the ability for the Mac application to receive messages, the
MsgRecElem should be built and installed. Typically, this should be done before
the application sends a message so it is able to receive an acknowledge from the
receiving application. Build a MsgRecElem as follows:

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 10 of 19

--> recFlags = 0; // not used, init to zero.
--> recProc = <pointer to msg receive handler function>;
--> recCmdBase = <cmdBaseID for this app's msg Selector>;
--> recCmdCount = <Number of msgTypes for this msg selector>;
--> recUserData = <any 32-bit value or pointer>;

To install the msg receive handler, build the MsgRecElem and then build an
SBParamBlcokRec as follows:

--> ioCRefNum = <refNum of the .Symbiosis driver>;
--> ioVRefNum = 0;
--> ioCompletion = 0;
<-- ioResult = 0;
--> csCode = eInstallMsgHandler ;
--> csPtr = <pointer to MsgRecElem>;
--> csData = 0;
--> csData2 = 0;

Then install the msg handler by passing the built SBParamBlock to
PBControlImmed.

When the Mac receives a message from the PC, the message handler function
pointed to by recProc in the MsgRecElem will be called. Your handler is called at
interrupt time with interrupts masked at the slot interrupt level. When the
handler is called, D0.w contains the msgCmd, D1 contains msgParam1, and D2
contains msgParam2 from the sending applications MsgPBlk.

Based on these three values passed to the message handler, it must determine
whether there is data to be received or whether it wants to receive the data. If the
handler decides to receive the message data, it must return a pointer to a
MsgPBlk that has an allocated msgBuffer and where the msgReqCount field is
set to the number of bytes it expects to or is able to receive (see the previous
section). The MsgPBlk should be returned in A0. If the MsgHandler decides not
to receive the data, it should return 0 in A0.

The completion routine specified in the MsgPBlk will be called after the data has
finished transmitting through the message system. The completion routine is
called at deferred task time and can use registers A0, A1, D0, D1, and D2. All
other registers must be saved and restored. A0 will contain a pointer to the
MsgPBlk. (The universal procedure prototypes automatically handle moving the
MsgPBlk into the function for PPC Native C functions.)

Receiving a Message on the PC

The process for receiving a message on the PC is much the same as on the Mac.
Build a MsgRecElem just as was shown in the previous section. To install the
message handler, place a pointer to MsgRecElem in ES:BX, set AH to
installMsgHandler (2) and call INT 5Fh.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 11 of 19

The installed message handler routine is called at interrupt time with interrupts
turned off. The AX, BX, CX, DX, SI, DI, ES, and DS registers are available for use.
When it is called, AX contains the msgCmd from the sending application's
MsgPBlk. ECX contains msgParam1 and EDX contains msgParam2 from the
sending application's MsgPBlk. DS:DI contains a pointer to the MsgRecElem.

Just the same as in the Mac message handler, the PC message handler must
determine whether there is data to be received or whether it wants to receive the
data in the message. If it does, it must return a pointer to a MsgPBlk in ES:BX,
otherwise it should set ES:BX to NULL.

After the data has been received by the PC, the completion routine specified in
the MsgPBlk will be called. ES:BX will contain the pointer the MsgPBlk and the
function can use the AX, BX, CX, DX, DI, SI, ES, and DS registers. All other
registers must be saved and restored.

Note: Both the message handling routine and the completion routine are called
at interrupt time with interrupts turned off. Both functions should adhere to any
rules of execution during interrupt time for a PC system and should not at any
time turn interrupts back on.

Removing the Message Handlers

Message handlers must be removed when applications that installed them are no
longer active. If the message handler is not removed, the messaging system could
attempt to call the handler again. If the application has been terminated, it's a
good bet that both the PC and Mac will crash.

To remove a message handler on the Mac, create a SBParamBlockRec and specify
the eRemoveMsgHandler function code for the csCode. The csPtr field would be
a pointer to the MsgRecElem that was used to install the message handler. Pass
the SBParamBlockRec to the messaging system using a PBControl call.

To remove a message handler on the PC, set the AH register to
removeMsgHandler (3), set ES:BX to a pointer to the MsgRecElem used to install
the handler, and make an INT 5Fh call.

Advanced Messaging System Techniques

As described in the Basic Messaging Concepts section of this Technote, the goal
here is introduce developers to simple methods of performing Mac <--> PC
communication using the PC Compatibility Card's messaging system interface.
That basic level of communications means two applications send information to
each one message at a time (i.e., the sending application does not send a second
message to a receiving application until the receiving application has
acknowledged it actually received the data of the sent message). Some

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 12 of 19

applications may have a need to send multiple threads of messages back and
forth before awaiting a reply, however. The good news is that this can be done.
The bad news is that the developer is responsible for managing all of the
message types and basic send/acknowledge protocols the applications should
adhere to.

This management of messages is primarily performed in the message handler
function which would be required to maintain a list of MsgPBlk's to grab all of
the data being sent in. The only limit being how much memory the application
can allocate to hold on to this incoming data and how well the message
parameters and data are defined so acknowledging messages can be adequately
returned to the sending application

Figure 2. Basic data flow for multiple message communication.

Messaging System

Application

MsgRecElem

Msg
Handler

Incoming
Msg

Notification

MsgPBlk
or NIL

List of MsgPBlk's
with allocated
msgBuffer's.

(1...n)

Rcv
Comp.

Routine.

Rcv
Comp.

Routine.

App.
Message

Handler(s)

Message
Installer

(1...m)

MsgPBlk w/
msgBuffer

A notification for
the application

SendAck

MsgCmd,
bytesRec'd,
user data?

Ack
MsgPBlk

Note: Each MsgPBlk can have a unique
completion routine or they can share
(ie num of Comp. Rtn's <= num of

MsgPBlk's, m<= n).

1..n
MsgPBlks

A non-busy
MsgPBlk

As shown in Figure 2, a message installer can install a MsgRecElem and some
number of n MsgPBlk's with msgBuffer's allocated. When the MsgHandler is
called, it searches the list for an available MsgPBlk (one in which the msgResult
field <= 0, and the msgActCount = 0, so it knows the msgBuffer is empty) and
returns it to the messaging system. Each MsgPBlk may have its own completion
routine (if, for instance, one type of MsgPBlk was to be used for a specific

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 13 of 19

message type) or can use one particular completion routine. So the number of
completion routines <= the number of MsgPBlk's in the list.

After a MsgPBlk's completion routine is called, it can handle the data in any
method needed, but then needs to notify the application that the data is ready.
Either the msgBuffer needs to be detatched from the MsgPBlk (and a new buffer
attached) or the application must have some way of marking the MsgPBlk as
busy until the application can retrieve and process the data. The MsgPBlk can
then be reset and the MsgHandler can use it again for other incoming messages.

The application message handler is then responsible for sending the
acknowledge message back to the sending application after it has verified the
length and/or quality of the data.

What is described here is one possible methodology for handling multiple
message communication. Simpler methods or more complex methods may be
needed based on the complexity of data to be exchanged. The level of this
complexity is left to the developer, however. As long as the basic criteria are met
as to when the messaging system has access to the paramBlock's and when the
application has access to them, any system should work.

Similar messaging algorithms should be maintained for both the Mac and the PC
applications that communicate information. All transactions between the Mac
and the PC are made asynchronously at interrupt time.

Limitations

As stated earlier, the messaging system is capable of sending individual data
packets of up to 64K. All data transfers between the Mac and the PC occur at
interrupt time. This can sometimes have an effect on other software that may rely
on processing data during interrupt time. Therefore, it is highly reccommended
that if software designed to use this messaging system requires transmission of
large blocks of data, the packet size used for each message sent should be
reduced.

There is no absolute rule to follow here and the effect on other interrupt
dependent software running at the same time as the data packets being
transmitted to and from the PC Compatibility Card also depends on the
capability of the hardware being used. As a general rule, however, it is advised
that if the software being developed needs to transmit more than 1 MB of data at
any particular time, the message packet size should be reduced to 32K or 16K.
This will allow interrupts to not be turned off for as long a period of time to
process the data transfers and allow other interrupts to execute and catch up.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 14 of 19

The MacMsgTest and PCMsgTst Tools

This Technote is accompanied by two tools, one for the Mac and one for the PC,
that perform very simple messaging. MacMsgTest is written entirely in C and is
designed and compiled to run PPC Native. PCMsgTst is written in C and x86
assembly. Source code, header files, and makefiles are included for each tool. The
necessary build environments are not included.

The tools are available on Apple's Developer World website
(http://www.devworld.apple.com/) and on the Developer CD.

Please see each tool's individual ReadMe files for further information on
executing and building MacMsgTest and PCMsgTst.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 15 of 19

Summary of the Messaging System
Note: All of the Macintosh constants, data types, universal procedure pointers,
and universal procedure definitions can be found in the "Messaging.h" file in
MacMsgTest tool that accompanies this technote.

Constants (Mac)

#define kDriverName "\p.Symbiosis" // The name of the driver

enum {
eSendMessage = 800, // Send a message
eInstallMsgHandler = 801, // Install a message handler
eRemoveMsgHandler = 802, // Remove message handler
eRegisterMessage = 803 // Register message type

};

enum {
msgNoError = 0, // No error
msgOverrun = -1, // More data was available
msgUnderrun = -2, // Less data was available
msgTimeout = -3 // Timeout error

};

Data Types (Mac)

typedef struct {
QElemPtr qLink;
SInt16 qType;
SInt16 ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion; // always NULL
OSErr ioResult; // error result info.
StringPtr ioNamePtr;
SInt16 ioVRefNum;
SInt16 ioCRefNum; // refNum of Symbiosis driver.
SInt16 csCode; // messaging system function
void * csPtr; // pointer to procedure or data
SInt32 csData; // data
SInt32 csData2; // data

} SBParamBlockRec, *SBParamBlockRecPtr;

typedef struct MsgPBlk {
struct MsgPBlk*msgQLink; // Pointer to next MsgPBlk
SInt16 msgQType; // Queue Flags
SInt16 msgCmd; // The message type or command
SInt32 msgParam1; // Message parameter 1
SInt32 msgParam2; // Message parameter 2
void* msgBuffer; // Ptr to the msg data buffer
SInt32 msgReqCount; // Requested data length
SInt32 msgActCount; // Actual data length
MsgCompletionUPP msgCompletion; // Ptr to comp. rtn. or NULL
SInt16 msgResult; // The result of msg operation
UInt16 msgFlags; // Message flags
UInt32 msgUserData; // refCon (a5, etc…)

} MsgPBlk, *MsgPBlkPtr;

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 16 of 19

typedef struct MsgRecElem {
struct MsgRecElem* recQLink; // Next queue element
SInt16 recQType; // queue flags
SInt16 recFlags; // Not used...Set to zero
MsgReceiveUPP recProc; // Ptr to the receive proc.
SInt16 recCmdBase; // Msg Selector base.
SInt16 recCmdCount; // # of msgTypes
UInt32 recUserData; // refCon (could be A5...)

} MsgRecElem, *MsgRecElemPtr;

Universal ProcPtr and Procedure Definitions

#if GENERATINGCFM
typedef UniversalProcPtr MsgCompletionUPP;
typedef UniversalProcPtr MsgReceiveUPP;
#else
typedef ProcPtr MsgCompletionUPP;
typedef ProcPtr MsgReceiveUPP;
#endif

enum {
uppMsgReceiveProcInfo = kRegisterBased

| REGISTER_ROUTINE_PARAMETER(1, kRegisterA1,
 SIZE_CODE(sizeof(MsgRecElemPtr)))

| REGISTER_ROUTINE_PARAMETER(2, kRegisterD0,
 SIZE_CODE(sizeof(short)))

| REGISTER_ROUTINE_PARAMETER(3, kRegisterD1,
 SIZE_CODE(sizeof(long)))

| REGISTER_ROUTINE_PARAMETER(4, kRegisterD2,
 SIZE_CODE(sizeof(long)))

| REGISTER_RESULT_LOCATION(kRegisterA0)
| RESULT_SIZE(kFourByteCode),

uppMsgCompletionProcInfo = kRegisterBased
| REGISTER_ROUTINE_PARAMETER(1, kRegisterA0,

 SIZE_CODE(sizeof(MsgPBlkPtr)))
| REGISTER_RESULT_LOCATION(kRegisterA0)
| RESULT_SIZE(kFourByteCode)

};

#if GENERATINGCFM
#define NewMsgReceiveProc(userRoutine) \

(MsgReceiveUPP) NewRoutineDescriptor((ProcPtr)(userRoutine), \
 uppMsgReceiveProcInfo, \
 GetCurrentArchitecture())

#else
#define NewMsgReceiveProc(userRoutine) \

((MsgReceiveUPP) (userRoutine))
#endif

#if GENERATINGCFM
#define NewMsgCompletionProc(userRoutine) \

(MsgCompletionUPP) NewRoutineDescriptor((ProcPtr)(userRoutine), \
 uppMsgCompletionProcInfo, \
 GetCurrentArchitecture())

#else

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 17 of 19

#define NewMsgCompletionProc(userRoutine) \
((MsgCompletionUPP) (userRoutine))

#endif

Note: All of the PC constants and data types for assembly language
programming can be found in the "PCMesg.inc" file that is part of the PCMsgTst
tool that accompanies this Technote. Constants and data types for C
programming can be found in the PCMesg.h file that is included

Constants (PC)

enum {
eIsAvailable = 0 // Index for is available
eSendMessage = 1 // Index for Send func
eInstallMsgHandler = 2 // Index for Install Msg Handler func
eRemoveMsgHandler = 3 // Index for Remove Msg Handler func
eRegisterMessage = 4 // Index for Register Msg
eVersionCheck = 5 // Index to get the version numbers

};

Data Types (PC)

// some basic types used for the MsgPBlk and MsgRecElem structures.

typedef char SInt8;
typedef short SInt16;
typedef long SInt32;
typedef unsigned char UInt8;
typedef unsigned short UInt16;
typedef unsigned long UInt32;
typedef char __far* Ptr32;

typedef struct MsgPBlk {
 struct MsgPBlk* link; // Pointer to the next MsgPBlk.
 SInt16 msgCmd; // The message command or type
 SInt32 msgParam1; // Param 1
 SInt32 msgParam2; // Param 2
 UInt32 msgCompletion; // Ptr to the completion routine
 Ptr32 msgBuffer; // Ptr to the data buffer
 SInt32 msgReqCount; // Length of the data
 SInt32 msgActCount; // # of bytes actually transfered
 SInt8 msgResult; // The err code after complete or 1
 UInt8 msgFlags; // Not used, init to zero.
 UInt32 msgUserData; // for caller's use
 UInt32 msgVXD; // Used by VxD
} MsgPBlk, *MsgPBlkPtr;

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 18 of 19

typedef struct MsgRecElem {
 struct MsgRecElem* Link;
 SInt32 Code;
 SInt16 cmdBase; // the base message number for this proc
 SInt16 cmdCount; // the # of message numbers for this proc
 UInt32 userData; // for caller's use
 UInt32 recVXD; // reserved - Used by VxD
} MsgRecElem, *MsgRecElemPtr;

Summary
The Messaging System Architecture described in this Technote is compatible
with the PC Compatibility Software v1.5 or later which is installable on all DOS
Compatible and PC Compatible products shipped by Apple. This includes the
Centris 610 DOS Compatible, the Quadra 630 DOS Compatible, the PowerMac
6100 DOS Compatible, the 7200 PC Compatible, and all PCI based Macintosh's
which support the 12" 100 MHz Pentium and 7" 100MHz Cyrix 5x86 PC
Compatibility Cards.

Future releases of the PC Compatibility Software may have modifications to
Messaging System Architectures that will require updates of the software
Interface described in this Technote.

Acknowledgments
Thanks to Rand Crippen, Craig Keithley and Daev Roehr for reviewing this
Technote. Special thanks to Scott Coleman for his input into this technote and his
ongoing support of Cross-Platform projects. An added thanks to Daev Roehr and
Scott Coleman for their help with the sample tools which accompany this
Technote.

I would also like to thank Markeeta Canada whose ongoing work and support of
the PC Compatible products has been above and beyond what anyone could've
expected.

Technote 1076 /// Release 1.2 © Apple Computer, Inc. /// 10/9/96 /// Page 19 of 19

