#

fna -

TECHNOTE 1085

Using the Drag Manager to Interact with and
Manipulate File System Entities

By Pete Gontier
Apple Developer Technical Support (DTS)

gurgle@apple.com [

CONTENTS

Introducing f | avor Type and
f1 avor TypeHFS

Using f | avor TypeHFS

Sending f | avor TypeHFS

Coping with Finder Bugs

Receiving f| avor TypeHFS

Using f | avor TypePr oni seHFS

Sending f | avor TypePr om seHFS

Creating the File

Deferring Writing the File

Receiving f| avor TypePr om seHFS

The True Nature of Find File's Evil: A

Sidebar

Working Around Find File

Summary

Appendices

The Drag Manager defines two data flavors

for interacting with and manipulating file
system entities. While The Drag Manager
Programmer’s Guide explains these flavors, it
does not provide sufficient detail for a complete
understanding of how to use them.

Developers who are interested in "teaching" (or
even those who have already taught) their
applications to interact with and manipulate file
system entities via the Drag Manager should
read this Technote.

This Technote assumes you are familiar with
the material in the Drag Manager Programmer’s
Guide and that, in particular, you have read
pages 2-36 and 2-37 and understand the
operation of a Dr agSendDat aPr oc, which is
documented starting on the bottom of page
2-72. Also, some familiarity with the
AppleEvent Manager data structure AEDesc is
assumed. (The AppleEvent Manager is
documented in chapter 3 of Inside Macintosh:
Interapplication Communication.) Finally,
familiarity with the File Manager call

PBGet Cat | nf o is recommended.

You can download a complete version of the
code snippets in this Technote, FinderDragPro
Metrowerks Project, as well as the Drag Manager
Programmer's Guide, by clicking on the item
here or by clicking on the appropriate icon in the
Downloadables section at the end of this Note.

Introducing flavor TypeHFS and f1 avor TypePr om seHFS

There are two data flavors for interacting with and manipulating file system entities:

f1 avor TypeHFS and f | avor TypePr omi seHFS. Despite similar names, their meanings are quite
different. The key difference is that for one, the file exists, while for the other the file

does not yet exist.

Putting f | avor TypeHFS data, which refers to an existing file, into a Dr agRef er ence is like
saying "I know of an existing file (which I may or may not have created myself) in which
drag receivers might be interested." Putting f | avor TypePr oni seHFS data into a

Dr agRef er ence is like saying "I'm willing to create a new file as soon as somebody (a drag

receiver) tells me where to put it."

Note:

The Drag Manager has the concept of "promising" data to a Dr agRef er ence. Do not
confuse this with f I avor TypePr oni seHFS. The two kinds of promise are different,
and promising flavorTypeHFS data to a Dr agRef er ence has nothing to do with

fl avor TypePr om seHFS.

This can be especially confusing when an application promises

f I avor TypePr oni seHFS data to a Dr agRef er ence; the promised data is in turn a
promise to the receiving application to provide data which refers to a newly
created file - a triple indirection.

In this Technote, I make an effort to avoid using the word "promise" in more
than one sense at a time; nevertheless, read carefully.

Important:

Drag Manager flavor data is only conventional. This means this nothing in the
API forces senders and receivers to use it correctly. As always, you need to be
careful to implement these flavors strictly by the book.

The situation may even be worse.This document came into existence several
years after the release of the Drag Manager. As a result, it's been difficult for early
adopters of the Drag Manager to implement these flavors properly. And there
may be applications which aren't as conscientious as yours. You should be extra
careful to check error return values and build assertions into your code, so that
your app is ready to cope with other apps which unexpectedly deviate from the
conventions documented in this Note.

Using fl avor TypeHFS
In theory, usingf | avor TypeHFS data appears simple, but in practice there are a few tricks
you need to know. The following sections document a few of those tricks for you. For

quick reference, here's a copy of the HFSFI avor declaration from <bDr ag. h>:

struct HFSFI avor

{

OSType fileType; /I file type

OSType fileCreator; /1l file creator

unsi gned short fdFl ags; /1l Finder flags

FSSpec fil eSpec; /1l file system specification
s

typedef struct HFSFI avor HFSFl avor;

Sending flavorTypeHFS

To originate a drag containing f | avor TypeHFS data, you must first declare an HFSFI avor
record. This record contains an FSSpec and a few other fields which allow some potential
drag receivers to avoid calling FSpGet FI nf o.

The next step is to initialize the fi | eSpec field appropriately, then decide whether the
data refers to a file. If so, simply set the fil eType, fil eCreator, and f dFl ags fields to match
the appropriate information for the file. If the f1 avor TypeHFS data refers to a directory or
volume, set the fileType and fileCreator fields in the HFSFI avor record according to
Table 1:

Table 1. The fileType and fileCreator fields for the HFSFl avor record

entity type fileCreator fileType
directory (folder) MACS fold
volume (disk) MACS di sk

These values are a hint to potential drag receivers that they are dealing with something
other than a file. They are the same as the ones you would use in your application's
bundle resource to let Finder know your app will accept folders and disks dropped onto
your application's icon.

Snippet #1: Deciding how to set thefil eCreator andfil eType fields

pascal OSErr MakeHFSFI avor
(short vRef Num 1|ong dirlD, ConstStr255Param pat h,
HFSFI avor regi ster *hfsFl avorP)

OSErr err = nofErr;

if (!(err = FSMakeFSSpec
(vRef Num di r I D, pat h, & hf sFl avor P- >fi |l eSpec))))

Cl nf oPBPtr ci pbp =
(ClnfoPBPtr) NewPtrC ear (sizeof (*cipbp));
if (!(err = MenError ()))

{
ci pbp- >hFi |l el nf o. i oVRef Num =
hf skl avor P- >fi | eSpec. vRef Num
ci pbp- >hFil el nfo.ioDirlD =
hf skl avor P- >f i | eSpec. par | D,
ci pbp- >hFi |l el nfo. i oNanePtr =
hf skl avor P- >f i | eSpec. nane;
if (!(err = PBGetCatlnfoSync (cipbp)))
hf sl avor P- >f dFl ags =
ci pbp- >hFi | el nf 0. i oFl Fndr | nf o. f dFI ags;
i f (hfsFlavorP->fileSpec. parl D == fsRtParl D)
{
hf sFl avor P- >fi | eCr eat or = ' MACS';
hf skl avor P- >fi | eType = 'disk';
}
else if (cipbp->hFilelnfo.ioFl Attrib & ioDirMask)
{
hf sFl avor P- >fi | eCr eat or = ' MACS';
hf skl avor P- >fi | eType = 'fold";
}
el se
hf sFl avor P- >fi | eCr eat or =
ci pbp- >hFi | el nf o. i oFl Fndr | nf o. f dCr eat or ;
hf skl avor P- >fi | eType =
ci pbp- >hFi | el nf 0. i oFl Fndr | nf o. f dType;
}
}
Di sposePtr ((Ptr) cipbp);
if (lerr) err = MenkError ();
}
}
return err;
}
Coping with Finder Bugs

Dragging f | avor TypeHFS data from your application to Finder has always supposed to
have been possible. However, Finder bugs have prevented most applications from
successfully using this feature.

From Finder's perspective, there are two cases for receiving f | avor TypeHFS data. The
second case is more interesting.

1. If the drop location is on the same volume as the f I avor TypeHFS data, Finder
simply moves the file to the drop location.

2. If the the drop location is on a different volume, Finder needs to copy the file to
the new volume.

Finder is AppleEvent-intensive. It sends itself AppleEvents to order itself to do all sorts
of things, including displaying the progress window for copying files. However, Finder's
drag-receiving code mistakenly sends these particular AppleEvents to the front process
instead of the current process. The front process is generally the application which
originated the drag. Since the application does not have handlers for these events,
AppleEvent Manager returns an error to Finder's AESend call and Finder cancels the
entire operation.

Until this bug is fixed, your application can work around the problem by "handling"
these AppleEvents. On systems under which Finder has been fixed, the handler will
simply lie dormant in your app, because the AppleEvents will be sent to Finder, not your
app. Unfortunately, it doesn't do any good to "reflect”" these events back to the Finder;
trust us, we've tried. This means you'll have to do without the progress dialog, but this
is better than abject failure.

Snippet #2: Receiving bogus AppleEvents from Finder

pascal OSErr BogusFi nder Event Handl er
(const Appl eEvent *, Appl eEvent *, |ong)
{

}

return noErr; // just drop that bad boy on the fl oor

pascal OSErr | nstall BogusFi nder Event Handl er (voi d)
{
OSErr err = noErr;
static AEEvent Handl er UPP bogusFi nder Event Handl er UPP;

i f (!bogusFi nder Event Handl er UPP)

{
bogusFi nder Event Handl er UPP =
NewAEEvent Handl er Proc (BogusFi nder Event Handl er) ;
i f (!bogusFi nder Event Handl er UPP)
err = nil Handl eErr;
el se
{
err = AEl nstal | Event Handl er
("cwin',"****" bogusFi nder Event Handl er UPP, O, f al se) ;
if (err)
{
Di sposeRout i neDescri ptor (bogusFi nder Event Handl er UPP) ;
bogusFi nder Event Handl er UPP = ni | ;
}
}
}
return err;

Receiving f | avor TypeHFS

Receiving f 1 avor TypeHFS, often from Finder, is much like receiving any other flavor of
data. However, be aware that some applications will offer you a truncated record; they
do not provide the unused bytes at the end of the name field of the fil eSpec field of the
HFSFI avor record. (This is a bug in the sending application, but if it's not your app, you
probably don't have an opportunity to fix it.)

Snippet #3: Calculating minimum bytes for FSSpec

(called from snippets #4 , #6, and #14)

static pascal Size M ni munByt esFor FSSpec (const FSSpec *fss)

/] callers can and do assune this does not nove nmenory
return sizeof (*fss) - sizeof (fss->nane) + *(fss->nane) + 1;

Snippet #4: Extracting flavorTypeHFS data

pascal OSErr Get HFSFl avor Fr onDr agRef er ence
(DragRef erence dragRef, ItenReference itenRef,
HFSFI avor *hf sFl avor)

OSErr err = nofErr;

Si ze size = sizeof (*hfsFlavor);
err = CetFl avor Dat a
(dragRef ,itenRef, fl avor TypeHFS, hf skl avor, &si ze, 0) ;

if (lerr)
{
Size m nSi ze = sizeof (*hfsFlavor) -
si zeof (hfsFl avor->fil eSpec);
m nSi ze += M ni nunByt esFor FSSpec (& hf sFl avor - >fil eSpec));
/'l see snippet 3 for M ni munByt esFor FSSpec
if (size < mnSize)
err = cantCet Fl avorErr;

}

return err;

Using f | avor TypeProm seHFS

Using f 1 avor TypePr oni seHFS data is significantly more complicated than using

f1 avor TypeHFS data. The chief area of confusion is centered on the multi-part nature of
f 1 avor TypePr omi seHFS data. For quick reference, here's a copy of the Proni seHFSFI avor
declaration from <Drag. h>:

struct Proni seHFSFI avor

{
OSType fileType; Il file type
OSType fileCreator; /1 file creator
unsi gned short fdFl ags; /| Finder flags
Fl avor Type promn sedFl avor; /1 pronised flavor
i

typedef struct Prom seHFSFl avor Promni seHFSFI avor ;

Sending f | avor TypePr om seHFS
Promising to Create a File

Before calling TrackDr ag, your application should call AddDr agl t enFl avor twice, passing
the same |t enRef er ence value both times, once for each part of the data.

For the first call, declare a record of type Proni seHFSFI avor and put ' fssP' (0x66737350) in
the proni sedFl avor field. The Drag Manager Programmer’s Guide tells you to put any
value you like into proni sedFl avor, but we're now recommending this specific value.
(Details can be found below; if your application already uses something else, don't worry
too much right now unless it's ' rwii' .) Fill in the other fields of the Proni seHFSFI avor
record appropriately and add the record to the Dr agRef er ence, passing

f1 avor TypePr omi seHFS for the FI avor Type parameter.

With the second call to AddDr agl t enFl avor, pass' fssP' for the Fl avor Type parameter. Pass 0
for the dat aPtr and dat aSi ze parameters to set up a promise to be kept later.

Snippet #5: Adding f1 avor TypePr om seHFSdata

pascal OSErr AddDragltentl avor TypeProni seHFS
(DragRef erence dragRef, |tenReference itenRef,
OSType fil eType, OSType fil eCreator,
U nt 16 fdFl ags, Flavor Type promni sedFl avor)

CSErr err = noErr;

Proni seHFSFI avor phfs;

phfs.fil eType = fileType;
phfs.fil eCreat or = fileCreator;
phfs. f dFl ags = f dFl ags;

phf s. prom sedFl avor prom sedFl avor;
if (!(err = AddDragltenFl avor
(dragRef ,itenRef, fl avor TypePromi seHFS,
&phf s, si zeof (phfs), fl avor Not Saved)))

err = AddDraglt enFl avor
(dragRef,itenRef, prom sedFl avor, nil, 0, fl avor Not Saved) ;

}
return err;
}
Important
Due to a bug in some versions of Finder, your application should add
f I avor TypePr oni seHFS flavor data before any other, followed immediately by the
flavor data for the proni sedFl avor field. If your application does not add these
flavors in this order, Finder will position the file's icon incorrectly.
Note

If your application hasn't already attached a Dr agSendDat aPr oc to the

Dr agRef er ence with a call to Set Dr agSendDat aPr oc, you'll need to add this
functionality.

Add any other flavors you might want to provide in this Dr agRef er ence, and
you're ready to call TrackDr ag.

Keeping the Promise

When Drag Manager requests a Fl avor Type equal to the proni sedFl avor field of your

f 1 avor TypePr omi seHFS data, it's your cue to keep your promise by delivering the promised
file. Keeping the promise involves finding out where the drag receiver wants the file to
end up, deciding where to create the file, and creating the file. You'll do this in your

Dr agSendDat aPr oc associated with the Dr agRef er ence.

Getting the Drop Location

First, your Dr agSendDat aPr oc will need to find out where the drag receiver wants the file.
You'll need to call Get Dr opLocat i on, which will produce an AEDesc record. The type of the
data found in this record is defined by the drag receiver. Finder, for example, places
typeAl i as data in the drop location. To convert this data to an FSSpec, coerce its type to

t ypeFSS and copy the FSSpec data out of the resulting descriptor.

Snippet #6: Extracting the drop folder

pascal OSErr GetDropDirectory (DragReference dragRef, FSSpecPtr fssCut)
{

OSErr err = noErr;
AEDesc dropLocAlias = { typeNull, nil };
if (!(err = GetDropLocation (dragRef, &ropLocAli as)))

i f (dropLocAli as.descriptorType != typeAlias)
err = parankrr;
el se

{
AEDesc dropLocFSS = { typeNull, nil };

if (!(err = AECoerceDesc
(&dr opLocAl i as, t ypeFSS, &dr opLocFSS)))

{
/1 assume M ni nunByt esFor FSSpec does not nobve nenory
FSSpecPtr fss = (FSSpecPtr) *(dropLocFSS. dataHandl e) ;
Bl ockMbveDat a (fss, fssQut, M ni nunByt esFor FSSpec(fss));
/1l see snippet 3 for M ni munByt esFor FSSpec
err = AED sposeDesc (&dr opLocFSS);
}
}
i f (dropLocAli as. dataHandl e)
{
OSErr err2 = AED sposeDesc (&ropLocAli as);
if (lerr) err = err2;
}
}
return err;
}
Note

The FSSpec data describes a directory; it is not an FSSpec you can use for creating
your file. To get the directory ID for the file you want to create, use PBGet Cat | nf o,
as is done in function in Appendix C.

If the drop location data is not of t ypeAl i as, the call to AECoer ceDesc will fail. Your

Dr agSendDat aPr oc will probably want to provide no data and return an error in this
situation. However, be aware that applications other than Finder are free to provide a
drop location of typeAl i as (and some even do), so don't rely on typeAl i as signifying that
Finder is the drop receiver.

Note

Finder currently has a few bugs having to do with deciding where to allow

f I avor TypePr oni seHFS drops. Aliases to folders, aliases to the Trash, and
applications which accept the file type presented in the Proni seHFSFI avor record
will highlight as if they are going to accept a drag. However, they reject the drag
when the mouse button is released. In the latter case (applications), the drop
location will be an alias to the application file itself. There is no good
workaround for this problem.

Note

Don't try to create the file on a volume other than the one specified by the drop
location. Finder will not copy the file to the drop location.

Creating the File

Once you've decided where to put the file, you can create it by calling a function like this
one:

Snippet #7: Creating the promised file or folder

pascal OSErr CreateProm sedFil eO Fol der
(const Proni seHFSFlI avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

{
OSErr err = noErr;
i f (phfs->prom sedFl avor == kPromi sedFl avor Fi ndFi | e)
err = parankrr;
else if (phfs->fileType == 'disk')
err = parankrr;
else if (phfs->fileType == 'fold")
err = CreateProni sedFol der (phfs,fss,scriptTag); // see Snippet 9
el se
err = CreateProni sedFile (phfs,fss,scriptTag); // see Snippet 8
return err;
}

Snippet #8: Called by snippet #7

static pascal CreateProm sedFile
(const Proni seHFSFI avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

{
OSErr err = noErr;
if (!(err = FSpCreate
(fss, phfs->fileCreator, phfs->fileType, scriptTag)))
{
i f (phfs->fdFl ags)
{
FInfo finderlnfo;
if (!'(err = FSpGetFInfo (fss, & inderlnfo)))
{
fi nderlnfo.fdFl ags = phfs->fdFl ags;
err = FSpSetFInfo (fss, & i nderlnfo);
}
}
}
return err;
}

Snippet #9: Called by Snippet #7

static pascal CreateProm sedFol der
(const Proni seHFSFI avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

CSErr err = noErr;

long newbDirlD; // scratch
if (!(err = FSpDirCreate (fss, scriptTag, &ewbDirlD)))
r

i f (phfs->fdFl ags)

{
Dl nfo finderlnfo;
/1 see Appendix B for FSpCGet DI nfo and FSpSet DI nf o
if (!'(err = FSpGetDli nfo (fss, & i nderlnfo)))
{
finderlnfo.frFlags = phfs->fdFl ags;
err = FSpSet Dl nfo (fss, & i nderlnfo);
}
}
}
return err;

}
Deferring Writing the File

Once the file is created, you may or may not want to write its contents in your

Dr agSendDat aPr oc. If the file is large or your app needs some time to generate the data that
will be in the file, you may want to defer writing the file. Since context switches are
disabled during Drag Manager callbacks, other applications would get no execution time if
you were to spend time writing the file, even if it were safe to periodically call

Wai t Next Event,, which it is not.

In this situation, you'll want to open the file in your DragSendDat aPr oc and leave it open.
In addition, set an internal state variable to tell another part of your application it needs
to write the file. After TrackDr ag returns, have that part of you app write the file with
periodic calls to Wi t Next Event .

Finishing the Drag

Once (and only if) the file has been successfully created, you should let the drag receiver
know what the filename was and where the file was created. To do this, call

Set | t enFl avor Dat a. For the Fl avor Type parameter, pass the value of the promisedFlavor
field of the Proni seHFSFI avor record. For the flavor data, pass an FSSpec record describing
the name and location of the file. The proni sedFl avor data should always be an FSSpec,
not an HFSFl avor . This snippet consists of simple glue which adds the data correctly:

Snippet #10: Adding the promised FSSpec

pascal OSErr Set Prom sedHFSF| avor Dat a
(DragRef erence dragRef, ItenReference itenRef,
const Prom seHFSFl avor *phfs, const FSSpec *fss)

return SetDragltenfl avor Dat a
(dragRef, it enRef, phfs- >prom sedFl avor, fss, si zeof (*fss), 0);

Impersonating Find File

If you need to provide a Dr agRef er ence which refers to an existing file or files, then if at all

pdssible you should be sending f | avor TypeHFS. But if you discover a compelling reason to
send f | avor TypePr oni seHFS instead, make sure you:

e Set the proni sedFl avor field of your Proni seHFSFI avor record to 'tWm1'
(0x72576D31).

e When Drag Manager asks your Dr agSendDat aPr oc for ' rwil' data and
Get DropLocat i on produces an AEDesc whose descriptorType field contains
typeNul I, provide the original location of the file.

e If Get DropLocat i on produces an AEDesc whose descri pt or Type field contains
typeAl i as, copy the file into the drop location. ' rwiL' is only a hint to the drag
receiver, and it may not take the hint.

Important
Perform these steps for all drag items or none; don't mix and match.

The section Coping with Find File elsewhere in this Note details why these steps are
necessary. The following snippet implements a decision tree which tells its caller whether
to copy a file the caller is dropping;:

Snippet #11: Deciding whether to copy a dropped file

pascal OSErr Shoul dCopyToDr opLoc
(DragRef erence dragRef, FlavorType prom sedFl avor,
Bool ean *shoul dCopy)

OSErr err = nofErr;

AEDesc dropLoc = { typeNull, nil };

*shoul dCopy = fal se;

if (!(err = GetDropLocation (dragRef, &roplLoc)))

{
i f (dropLoc. descriptorType == typeAli as)

{

// no hint or receiver mssed it
*shoul dCopy = true;

}
el se if (dropLoc. descriptorType !'= typeNull)

{
/1 unknown drop | ocation descriptor type
err = parantrr;
}
el se if (prom sedFl avor != kProm sedFl avor Fi ndFi | e)
{
/1 null descriptor but no hint intended (DragPeeker)
err = dirNFErr;
}
i f (dropLoc. dat aHandl e)
{
OSErr err2 = AED sposeDesc (&dropLoc);
if (lerr) err = err2;
}

return err;

}
Receiving f | avor TypeProm seHFS

Most applications have no need to receive f | avor TypePr onmi seHFS data; f | avor TypeHFS
should suffice for most needs. More senders provide f | avor TypeHFS, although there is at
least one important application (Find File) which provides f1 avor TypePr oni seHFS. In any
case, seriously consider f | avor TypeHFS before investing effort in f1 avor TypePr oni seHFS.

Getting the Two Flavors

In your drag tracking handler, you may retrieve the I avor TypePr oni seHFS data, which is a
Promi seHFSFl avor, but don't try to retrieve the proni sedFl avor data. Your drag tracking
handler can't know whether a given window in your application will be the ultimate
receiver of the data - the ultimate receiver might be another window in your app or one
of the windows of another app. If your drag tracking handler were to ask for the

f1 avor TypePr omi seHFS data, Drag Manager would call the sender's SendDat aPr oc, and the
data would thereafter be cached in the Dr agRef er ence. Consequently, other potential
receivers would get the cached data and the sender would not have a chance to adjust it
according to the receiver's drop location.

In your drag receive handler, it's safe to retrieve both the 1 avor TypePr omi seHFS data and
the proni sedFl avor data. Before requesting the proni sedFl avor data, however, make sure
to call Set DropLocat i on. The next snippet is a function which administrates this process.

Note that the folder parameter can be NI L; this means the caller supports Find File; we'll
explain how this works and why you'd want to do it a little later.

Snippet #12: Receiving f | avor TypeHFS

pascal OSErr Recei veProm sedFile
(DragRef erence dragRef, |tenReference itenRef,
HFSFl avor *hf sFl avor, const FSSpec *fol der)

{
CSErr err = noErr;
if (folder)
/1l see Snippet 13 for SetDropFol der
err = Set DropFol der (dragRef, fol der);
if (lerr)
{
/1 we'll explain 'isSupposedl yFronFindFile' |ater
Bool ean i sSupposedl| yFronFindFile = (folder == nil);
err = Cet HFSFl avor FronPromi se // see sni ppet 14
(dragRef, itenRef, hfsFlavor, isSupposedlyFronFindFile);
}
return err;
}

Setting the Drop Location

This nart of receivine fl avar TvnePr oni seHFS is relativelv easv. First. create an alias to the

el e R I St o) R S 2 e fh e e — me a e~ aeaea v ~—m ~ e am vy A vvive vias vraawil vv vaa~

drop location, which for I avor TypePr omi seHFS should always be a d1rectory Next, copy
the alias into an AEDesc. Finally, call Set DropLocat i on. This procedure is demonstrated in

the next snippet.

Snippet #13: Called by Snippet #12

static pascal OSErr SetDropFol der
(DragRef erence dragRef, const FSSpec *fol der)

{
OSErr err = noErr;
Al'i asHandl e ali asH,
if (!'(err = NewAliasM ninmal (folder, &liasH)))
{
HLockH ((Handl e) aliasH);
if (!(err = Menkrror ()))
{
Si ze size = GetHandl eSi ze ((Handl e) aliasH);
if (!(err = Menkrror ()))
{
AEDesc droplLoc;
if (!(err = AECreateDesc
(typeAlias, *al i asH, si ze, &ropLoc)))
{
CSErr err2;
err = SetDroplLocation (dragRef, &lropLoc);
err2 = AEDi sposeDesc (&droplLoc);
if (lerr) err = err2;
}
}
}
Di sposeHandl e ((Handl e) aliasH);
if (terr) err = MenkError ();
}
return err;
}

Coping with Find File

Many drag receivers would like to be able to receive data dragged from a Find File results
window. The first flavor most developers would look for in the DragRef er ence would be
f1 avor TypeHFS. However, Find File provides f | avor TypePr oni seHFS instead, in an attempt
to work around Finder bugs mentioned elsewhere in this Technote.

The True Nature of Find File's Evil: A Sidebar

Find File's workaround works pretty well within the scope of Finder, but it doesn't work
very well with many other applications which receive f 1 avor TypePr omi seHFS. You'll
remember that f1 avor TypePr oni seHFS is a promise to create a file which doesn't exist yet,

i~ AvirAss thawA'a AAma A bia

Taiadt Ticad TCila'a wana<ltn virisa A Aavis Aannmtaian Anler Aviatisaa~ L1~ D

DUl I'iiiu 1'11Ee 5 1eduUlLd vwWililluuvww Lulliidllild Ullly C)\lblllls L1ICD. l\lélll ClWCly LLICLEC D dIllldlluc
conflict. Let's look at a concrete example to see how this conflict can cause problems:

If an email application were to accept f| avor TypePr oni seHFS as an enclosure to a message
and assumed that the drag sender were honoring the semantics of f1 avor TypePr oni seHFS
as documented in this Technote, the email app would probably want to set the drop
location to its outgoing spool folder and delete the file when the associated message were
successfully sent. After all, the semantics of f | avor TypePr oni seHFS are to create a file
expressly for the exclusive use of the receiving app.

However, if instead Find File were merely to move a pre-existing file into that spool
folder, the email app might well be deleting the user's only copy of that data, and at the
very least Find File would be moving a file to a place the user isn't likely to expect or
understand. This is in fact what Find File does.

Why? Well, since Finder is buggy, Find File convinces Finder a drop has occurred and
then proceeds to delete the dropped file and send AppleEvents to Finder to induce it to
do what it should have done with | avor TypeHFS on its own. The only data Find File
really wants from Finder is the drop location.

Regardless of any of the background information in this sidebar, your application should
conform as strictly as possible to the rest of this Technote.

Working Around Find File

The Find File engineers didn't just bludgeon the Finder into working the way they
wanted; they also provided a way for other applications to receive HFS-related drags
sensibly. It just hasn't been documented until now.

In your drag tracking handler, retrieve the f | avor TypePr oni seHFS data and compare its
proni sedFl avor field to ' rwit' (0x72576D31). This is the value which Find File always
uses. If proni sedFl avor has this value, set a flag to remind you not to call Set Dr opLocat i on
later.

In your drag receive handler, you'd normally call Set Dr opLocat i on before asking for the
promi sedFl avor data. However, if you're receiving f | avor TypePr oni seHFS data from Find
File, skip this step before asking the Drag Manager for the proni sedFl avor data (and, of
course, in this case promisedFlavor will always have the value ' rwii'). This will
produce FSSpec data without inducing Find File to move or copy the file.

Note In order for this variant on the f I avor TypePr oni seHFS protocol to work, you must
request the proni sedFl avor data in your drag receive handler. If you request it in your drag
tracking handler, you'll simply get an error.

And now we can see why the value of promisedFlavor is important; if it's ' rwit', the
data comes from Find File, and if the value is anything else (we've recommended ' f ssP'
[0x66737350]; but if your program already uses something else, don't worry about it), the
data comes from some other application. Applications other than Find File should
conform to the true semantics of fl avor TypePr onmi seHFS.

The next snippet shows how to retrieve both flavors, with some extra checking thrown in

RO [SIS DR, DR SR S, [SRR A B piA

10 Make sure nopoday 1s conrusea apout rina rie.

Snippet #14: Called by Snippet #12

static pascal OSErr Get HFSFl avor FronProni se
(DragRef erence dragRef, |tenReference itenRef,
HFSFl avor *hfs, Bool ean i sSupposed| yFronti ndFi | e)

{
OSEr r err = noErr;
Proni seHFSFI avor phfs;
Si ze size = sizeof (phfs);

err = CetFl avor Dat a
(dragRef ,itenRef, fl avor TypeProm seHFS, &phf s, &si ze, 0);

if (lerr)
{
if (size !'= sizeof (phfs))
err = cant Get Fl avorErr;

el se
{
Bool ean i sFronFi ndFile =
phfs. prom sedFl avor == kPromi sedFl avor Fi ndFi | e;
i f (isSupposedlyFronFindFile != isFronFindFile)
err = parankrr;
el se
{
size = sizeof (hfs->fileSpec);
err = CetFl avor Dat a
(dragRef, i tenRef, phfs. prom sedFl avor,
& hfs->fil eSpec), &size, 0);
if (lerr)
{
Size mi nSi ze = M ni nunByt esFor FSSpec
(& hfs->fil eSpec));
/1l see snippet 3 for M ni munByt esFor FSSpec
if (size < minSize)
err = cant Get Fl avor Err;
el se
{
hfs- >fil eType = phfs.fil eType;
hfs->fileCreator = phfs.fileCreator;
hf s- >f dFl ags = phfs. fdFl ags;
}
}
}
}
}
return err;

Summary

There are two file system-oriented flavor types associated with the Drag Manager. One, f1 avor Ty
is a relatively simple flavor which can be handled like most others except for some simple
workarounds for bugs in Finder. The other, f1 avor TypePr oni seHFS, is probably the most complex
flavor type developers will encounter and requires a high degree of care, attention to detail, and
tolerance for intrusive workarounds to implement correctly.

Here are some important lessons worth repeating:

e For existing files, use f1 avor TypeHFS. For files which don't yet exist but you're willing to ¢
use f | avor TypePr om seHFS.

e Don't confuse the Drag Manager's concept of promising flavor data with
f1 avor TypePr omi seHFS. They're both promises, but they are significantly different kinds of
promises.

e Check all error codes and build assertions into your code to avoid being surprised by
applications which don't conform to the behavior you expect.

® Get DropLocati on and Set DropLocati on are your friends.

e When receiving fl avor TypePr oni seHFS for a file you plan to delete, make sure you do the
thing with Find File to avoid destroying data the user wanted to keep.

Further References

e The Drag Manager Programmer’s Guide, available on the Developer CD Series
Mac OS SDK disc. In addition, you can download it here.

® AEDesc is an AppleEvent Manager data structure documented starting on page
3-12 of Inside Macintosh: Interapplication Communication.

Acknowledgments

The following SmartFriends™ provided essential research assistance and technical review
in support of this Technote: Andy Bachorski, Brian Bechtel, Steve Christensen, Steve
Dorner, Dave Evans, Nitin Ganatra, Peter Lewis, Bill Monk, Matt Mora, Pete Resnick,
Leonard Rosenthol, Rich Siegel, jud spencer, James Thomson.

Appendices

The Appendices to this Technote contain code snippets which are necessary for a full
understanding of other snippets in the Technote but would have obstructed the flow of
the main text stream.

Appendix A
This is a utility function called by the functions in Appendices B and C. It allocates and

populates a Cl nf oPBRec so that it contains information on the given directory. The caller
is expected to dispose the Cl nf oPBRec if the function does not return an error.

static pascal OSErr FSpGetDirlnfo
(const FSSpec *spec, ClnfoPBPtr *cipbpp)

CSErr err = noErr;

ClnfoPBPtr pbp = (CInfoPBPtr) NewPtrC ear (sizeof (*pbp));

*ci pbpp = nil;
if (!(err = MenkError ()))
{
pbp- >di rl nfo.i oVRef Num = spec- >vRef Num
pbp- >dirinfo.ioDrDirl D = spec- >parl D
pbp- >dirI nfo.i oNanePtr = (StringPtr) spec- >nane;
err = PBCet Cat | nfoSync (pbp);
if (lerr && ! (pbp->hFilelnfo.ioFl Attrib & ioDi rMask))
err = dirNFErr;
if (err)
Di sposePtr ((Ptr) pbp);
el se
*ci pbpp = pbp;
}
return err;
}
Appendix B

These functions are intended to follow the same API as FSpGet Fi nf o and FSpSet FI nf o.
They both call FSpGet Di r | nf o, which can be found in Appendix A.

static pascal OSErr FSpGet DI nfo
(const FSSpec *spec, Dinfo *fndrlnfo)

{
OSErr err = nofErr;
Cl nf oPBPt r ci pbp;
if (!(err = FSpGetDirlnfo (spec, &ci pbp)))
{
*fndrinfo = cipbp->dirlnfo.ioDrUsrWs;
Di sposePtr ((Ptr) cipbp);
if (terr) err = MenkError ();
}
return err;
}

static pascal OSErr FSpSet DI nfo
(const FSSpec *spec, const DIinfo *fndrlnfo)

{
OSErr err = noErr;
Cl nf oPBPt r ci pbp;

if (!(err = FSpGetDirlnfo (spec, &ci pbp)))

ci pbp- >di r1 nfo.i oDr Usr Wis = *fndrl nf o;
ci pbp->dirinfo.ioDrDirlD = spec- >parl D

err = PBSet Cat | nfoSync (ci pbp);

Di sposePtr ((Ptr) cipbp);
if (lerr) err = MenError ();

}

return err;
}
Appendix C

This function returns the directory ID of a given folder. It calls FSpGet Di r I nf o, which can
be found in Appendix A.

pascal OSErr GetDirectoryl D (const FSSpec *spec, |ong *dirl D)

{
CSErr err = noErr;
Cl nf oPBPt r ci pbp;
if (!(err = FSpGetDirlnfo (spec, &ci pbp)))
{
*dirl D = ci pbp->dirinfo.ioDrDrlD,
Di sposePtr ((Ptr) cipbp);
if (lerr) err = MenError ();
}
return err;
}

Send feedback to devsupport@apple.com
Updated: 20-Dec-96

(]

