
T E C H N O T E :
Controlling Apps with
Synthesized Events,
or jGNEFilter — the Untold Story

by Pete Gontier <gurgle@apple.com>
and Mark Cookson <mcookson@apple.com>
Apple Developer Technical Support (DTS)

Until now, jGNEFilter has been “under documented,” with only vague mentions
appearing in Technote TB 11. jGNEFilter is the name of a mechanism by which
programs can obtain access to each EventRecord just before the event is sent to the
caller of GetNextEvent or WaitNextEvent.

Using jGNEFilter, your programs can customize most event-driven interaction
with the user, including but not limited to such things as monitoring keystrokes,
and programmatically simulating some kinds of user activity. Also, without

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 1 of 7

being an application or driver, your program can arrange to be called
periodically at a time when it’s safe to call Memory Manager (and the high-level
managers which depend on Memory Manager).

Developers who would like to make use of jGNEFilter — or developers who are
already bravely making use of it even in the face of inadequate documentation —
should read this Technote.

jGNEFilter Fundamentals

The interface to jGNEFilter is, unfortunately, rather primitive. The key to the
whole thing is a single long word in low memory (at address 0x029A, to be
precise). This long word, if non-zero (and it’s almost always is non-zero; more on
that later), is the address of a routine that GetNextEvent calls to filter events. It’s
that simple.

The process of installing a jGNEFilter routine amounts to saving off the old filter
routine address and installing a new one. There is no arbitration for access to this
memory location; programs must be very careful to access it according to the
calling conventions, as explained in the next section of this Technote. Otherwise,
the system may begin to misbehave in mysterious ways and other jGNEFilter
routines may not get the access to events they need to function properly.

As is always the case with low memory, you should access jGNEFilter only
through the LM accessor functions declared in the Universal Headers’
<LowMem.h>, which in this case are LMGetGNEFilter and LMSetGNEFilter.

All jGNEFilter routines should call any previous routine. This policy alone is
responsible for the formation of a “chain” of jGNEFilter routines. This is roughly
the same idea as a trap patch. Calling the previous jGNEFilter is essential to the
proper operation of the Mac and cannot be omitted. Exactly when in your
routine to call the next routine in the chain is up to you.

jGNEFilter Calling Conventions

jGNEFilter calling conventions are inherently 68000-oriented and don’t conform
to the calling conventions of any high-level language.

For PowerPC filter routines, use NewGetNextEventFilterProc and
CallGetNextEventFilterProc, both of which make use of a special-case routine
descriptor that makes writing the routine’s interface in a high-level language
simple.

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 2 of 7

For 68K filter routines, it’s probably not impossible to write a jGNEFilter routine
entirely in a high-level language (assuming you’re using a reasonably modern
compiler), but it’s probably more effort than it’s worth. Instead, you’ll probably
want to use a few lines of assembly glue to call a routine written in a higher-level
language.

On entry to your jGNEFilter glue, register A1 will contain the address of the
event record to be filtered. Register D0 will contain a word which is the proposed
return value for GetNextEvent. The word at offset 4 from register A7 (just above
the return address) will also be the proposed return value for GetNextEvent. The
difference is that D0 is an input value and the stack word is an output value. The
stack word will be returned to the caller of GetNextEvent. Initially, the word in D0
and the word on the stack are (or should be, assuming there are no buggy
jGNEFilter functions higher in the chain) the same.

It’s important to note that the values of both registers A1 and D0 must be set
before calling the next routine in the chain or returning. This isn’t anything
particularly special to jGNEFilter routines (as opposed to trap patches and other
such things), but it warrants emphasis because it’s an easy thing to forget.

By far, the trickiest part of calling the previous jGNEFilter routine is knowing
when and how to set the value of the word on the stack. If your routine is going
to jump to the next routine in the chain (using a 68K JMP instruction or its
equivalent), you need to make sure the stack value is what you would have
returned in case the next routine in the chain chooses not to change it. If your
routine is going to call the next routine in the chain (using a 68K JSR instruction
or its equivalent), you should push a word onto the stack before calling the next
routine in the chain and pop the word after the routine returns. You can then use
the return value from the next routine in the chain routine to help you decide
what return value to put on the stack when your routine returns.

In any case, you should set register D0 to the value you want the next routine in
the chain to use as input.

These lines, slightly modified from the “jGNE Helper” sample on the Developer
CD Series Tool Chest Edition, perform the correct sequence of assembly
instructions to allow a C function to do the brunt of the work.

MOVE.W D0,-(A7) // push pre-result for C
MOVE.L A1,-(A7) // push event record pointer for C
JSR myGNE // do the real work (in C)
MOVE.L (A7)+,A1 // restore event record pointer
ADDQ.L #2,A7 // pop pre-result

// the post-result (from C) is in D0
ASL.W #8,D0 // bump C boolean to (Lisa) Pascal format
MOVE.W D0,4(A7) // stash result where caller expects it

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 3 of 7

jGNEFilter “Gotchas”

The following section discusses the two important edge cases that you need to
take into consideration when installing a jGNEFilter.

The Low Memory Context Switching Gotcha

Most low memory global variables are swapped in and out of low memory on a
process-by-process basis. (Their values live in the Process Manager’s storage
while they’re swapped out.) This was done in the early days of MultiFinder to
appease applications that assumed they owned the whole machine.

jGNEFilter is not one of the low memory globals which is swapped.
Consequently, it’s possible for an application to install a filter routine and get
access to events which are about to be passed to other applications. (Mostly, such
filters get access to all relevant events destined for the foreground application but
only null and update events destined for background applications, because these
events are generally the only events which background applications receive.)

An application installing a jGNEFilter function does not pose a problem until it’s
time to quit the application and/or uninstall the filter. Since the jGNEFilter
routine address is just a long word in low memory, there’s no way to prevent a
second application from reading it and installing a new filter routine address.
This second application would expect to call what it perceives to be the next filter
routine in the chain. When the time came for the first application to quit, it would
restore the “next” routine address low memory, over-writing the filter routine
address of the second application. Suddenly, the second application would be
excluded from the filter chain and would stop functioning properly. The
situation would get even worse if the second application were to call its “next”
filter routine address, because that code would have disappeared when the first
application quit.

The solution for applications that want to install a jGNEFilter is to install it
indirectly via a “jump island” in a 6-byte pointer block in the system heap.
Disassembled, the jump island looks like this:

JMP XXXXXXXX ; where XXXXXXXX is the address of your filter routine

You declare a struct for this:

#if PRAGMA_ALIGN_SUPPORTED
pragma options align=mac68k
#endif

typedef struct
{

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 4 of 7

unsigned short jmp;
void *addr;

}
tJumpIsland, *tJumpIslandP;

#if PRAGMA_ALIGN_SUPPORTED
pragma options align=reset
#endif

After calling NewSysPtr to allocate the block, you set jmp to 0x4EF9 and addr to the
address of your filter routine (or GetNextEventFilterUPP). Remember to flush the
instruction cache after performing this magic. (See Technote HW 06 for details on
flushing the instruction cache.) When you want to uninstall your filter routine,
simply set addr to the previous filter routine address. Don’t dispose the pointer
block and don’t call LMSetGNEFilter, so that other programs continue to function.
Do remember to flush the instruction cache again.

The Unexpectedly NIL Filter Routine Address Gotcha

Since the system uses jGNEFilter to do housekeeping such as servicing the
Notification Manager queue, one might expect jGNEFilter to always be non-NIL.
However, this is not the case. Some third-party programs have taken it upon
themselves to set the jGNEFilter routine address to NIL temporarily for their
own nefarious purposes. Always be ready to compensate for this. Compensating
might be as simple as testing the address before calling it.

jGNEFilter Limitations

Compared to other mechanisms, jGNEFilters have remarkably few limitations.
jGNEFilter routines can allocate or move memory (directly or indirectly), call the
Toolbox, perform file I/O, launch applications, etc. The limitations are:

Not Every Event

Your jGNEFilter function will not receive every event returned to GetNextEvent
and WaitNextEvent.

MacOS 8

The jGNEFilter mechanism will almost certainly be unavailable under Mac OS 8.
You should abstract as much of your event-handling code as possible to
minimize maintenance if and when MacOS 8 provides a similar mechanism.

Not a Process

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 5 of 7

Any system call that relies on the current process to establish some sort of unique
identity is not going to work very well. The reason is that a jGNEFilter routine
can be called while any process is current.

For example, the AppleEvent Manager uses the current process to identify the
sender of an AppleEvent. A jGNEFilter routine can send AppleEvents, as long as
the current process has its modeHighLevelEventAware bit set, but it can’t receive
them, and that includes queued reply events. It might be tempting to set up
AppleEvent handler routines while a given process is current, but that’s likely to
cause you big compatibility problems in the long term, if not right away –– just
don't do it.

If you need a process, consider starting up a background-only application, either
via LaunchApplication or by changing your ‘INIT’ file to an ‘appe’. You can find
more information on background-only applications in Technote PS 02.

Not an Event Loop

jGNEFilter is not a loop but a filter. Consequently, a jGNEFilter routine does not
have the freedom to define the way in which it handles events. It handles them
when the system dictates. If your routine jumps to the next routine in the chain,

Your routine might make Event Manager calls which result in another call to
jGNEFilter; these calls include GetNextEvent and WaitNextEvent (because
WaitNextEvent calls GetNextEvent).

The bottom line is your routine may need to set and/or test a re-entrancy flag to
avoid infinite recursion.

International Keystrokes

“Fake” keyDown events are not sent through the jGNEFilter chain. This is a known
bug. It should manifest only when multi-byte script packages, such as the
Japanese Language Kit, are installed.

If your program needs access to keystrokes and will be sold into a market where
WorldScript is in heavy use, you may be better off patching WaitNextEvent than
writing a jGNEFilter routine. (Yes, it’s shocking to see DTS speaking in a
favorable light about a trap patch, and it pains us to write it, but it’s the plain
truth.) Unfortunately, this kind of patch is difficult to write.

Text Services Manager Bugs

In the presence of a Text Services Manager input-method window (usually

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 6 of 7

called, simply, a TSM window), some mouseDown events may not be sent to the
jGNEFilter and in fact may appear to “pass through” a TSM window into
whatever is behind it. Unfortunately, there is no official workaround for this
known bug.

Summary

The jGNEFilter is a powerful mechanism that adds new functionality to your
code, enabling you to watch the system as whole. If you’re trying to monitor or
modify the user’s interaction with the system, jGNEFilter is the place to start. If
you’re simply trying to achieve a more flexible environment for your periodic
tasks –– i.e., allowing them to allocate memory or do file I/O, jGNEFilter may
also be for you. There are some limitations, as explained in this Technote, but the
unique advantages of jGNEFilter outweigh its disadvantages.

Further Reference

• Technote TB 11
• Technote HW 06
• Technote PS 02

For sample code, see:

Dev.CD Aug 96 TC
 Tool Chest
 OS Utilities
 jGNE Helper

Acknowledgments

Thanks to Matt Slot for sanity-checking and other rewardingly useful
suggestions.

Technote 1060 /// Release 1.0 © Apple Computer, Inc. /// 8/1/96 /// Page 7 of 7

