

ð

T E C H N O T E :
Power Management & Servers:
Auto Restart From Power Failure

By Vinnie Moscaritolo
vinnie@apple.com
<http://webstuff.apple.com/~vinnie/>
Apple Developer Technical Support (DTS)

Automatically restarting from a power failure is an important feature for any
server. Normally, powering up a Macintosh computer requires manual
intervention by the user. It is possible, however, to configure the Macintosh
hardware, so that the system will power itself up anytime primary A.C. is
available.

This Note discusses how to communicate with the Macintosh’s internal power
management microcontroller and is important for developers who design
software that must run in an environment where little or no human intervention is
available.

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 1 of 7

The Process of Turning On Your Macintosh
Most server software is designed to run in an environment where you’re not
guaranteed human supervision. A remote server, for example, ought to be able to
restart itself after a power failure without any manual interaction.

By default, Macintosh computers are designed to be used in a desktop
environment, where the user must power up by manually pressing the power-on
key. However, in most cases it is possible to configure the Macintosh firmware, so
that the system will power itself up the next time that primary A.C. is available.

Most Macintosh computers are equipped with an internal microcontroller that,
among other things, manages the Macintosh power providing Soft Power Control.
This microcontroller, a custom ASIC designed specifically for Apple, dictates the
circumstances under which the Macintosh will initiate a power up cycle. Typical
power-on options include:

• Manual depression of the Power-key on the keyboard.

• Manual depression of a momentary contact switch, usually mounted on
the rear chassis of the system.

• External power up, such as occurs when a NuBus card asserts the PFW
signal directly.

• The internal power up alarm specified by the Power Manager command
SetStartupTimer becomes active.

• On Macintosh units that support this feature, there is a Wakeup line
connected to the serial ports GPI pin. A typical application of this feature
is to power up the Macintosh when it is used as an answering machine
or modem server.

• When the system is configured in Server Mode and A.C. power is
restored.

This Note only concentrates on the last two options, Server Mode and Wakeup
Mode, and how to enable/disable them.

Introducing The Cuda Manager
Server Mode is enabled by accessing an internal piece of Macintosh system
software known as the Cuda Manager (also known as Egret). The Cuda is the
firmware that communicates to the microcontroller responsible for managing the
Macintosh power.

Keep in mind that not all Macintosh models have the Cuda Manager or Soft
Power Control. Soft Power Control exists only on systems where A.C. voltage is
always available to the power supply, and the power supply is controlled by the
state of the power fail warning (PFW) signal.

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 2 of 7

On the other hand, Passive Power Control exists in systems where the power
supply is turned off or on by a switch directly in line with the primary A.C.
voltage to the supply.

For example, Macintosh Classic and Macintosh II LC employ Passive power
control, while the Macintosh II and most Power Macs use Soft Power.

There are also certain Macintosh models, such as the Color Classic and LC475,
LC575 CPUs, that implement a Pseudo Soft Power supply control. In those cases,
the keyboard power key can be used to initiate a power up of the system, but the
chassis switch is wired directly to the power supply and is not utilized by Cuda.

Determining If Your Mac Supports the Cuda
The proper way to determine if a particular Macintosh model supports the Cuda
Manager is as follows:

1. Use the Gestalt function to check for the gestaltHardwareAttr 'hdwr'
selector. Then check the response for gestaltHasSoftPowerOff (bit 19).
This will indicate if the Macintosh supports Soft Power

2. Use the GetOSTrapAddress to check for the existence of the Cuda Manager
dispatch trap known as _EgretDispatch ($A092)

long unknownTrapAddr;
unknownTrapAddr = GetOSTrapAddress(_Unimplemented);
if(unknownTrapAddr == GetOSTrapAddress(_EgretDispatch))

3. In addition to checking the _EgretDispatch trap vector, you also need to
ensure that the Cuda Manager software is loaded. There are a few
Macintosh ROMs that, even though they implement the Cuda trap, do
not have appropriate Cuda hardware. On these machines, invoking the
_EgretDispatch trap call will result in a bus error.

In order to verify that the Cuda software was loaded, you need to check
that the internal low memory global at location 0xDE0 does not equal -1.

#define CudaBase 0x00000DE0
typedef Ptr *CudaGlobalsPtr;

Boolean CheckForCuda(void)
{

long unknownTrapAddr;

unknownTrapAddr = GetOSTrapAddress(_Unimplemented)
if(unknownTrapAddr == GetOSTrapAddress(_EgretDispatch))

 return FALSE;
if(CudaBase == (CudaGlobalsPtr) -1)

return FALSE;
return TRUE;

}

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 3 of 7

Calling the Cuda Manager
Only after you have established the existence of the Cuda Manager should you
then pass commands to it. You can do this by issuing a trap dispatch call to the
Cuda Manager through the $A092 trap.

On entry, register A0 must contain a pointer to a parameter block which describes
the type of function to be executed by Cuda and how a response to execution of
that function is to be returned.

When issuing a Cuda dispatch trap from C, it is necessary to pass a pointer to the
Cuda parameter block to the trap using register A0 as a pointer to the parameter
block. The following function prototype can be used to interface to the Cuda
Manager:

#pragma parameter Cuda(__A0)
void Cuda(CudaPB* myPB) = 0xA092;

Cuda Manager Parameter Block Structure
The Cuda Manager parameter block structure used by all the Cuda Management
functions is defined as follows:

#define pseudoPkt 0x01 /* Cuda Pseudo Packet */
#define EnDisFileS 0x13 /* enable/disable file server flag */
#define WakeupMode 0x23 /* Enable/Disable WakeUp Mode */
#define GetPwrFailTime 0x27 /* read time of last power failure */

typedef struct {

unsigned char pbCmdType; // Command Type, always ‘pseudoPkt’
unsigned char pbCmd; // Command
union{ // parameter to pass

unsigned char pByte[4];
unsigned short pWord[2];
unsigned long pLong;

}pbParam;
unsigned short pbByteCnt; // Number of bytes passed in buffer
unsigned char *pbBufPtr; // Pointer to a buffer.
unsigned char pbFlags; // Flags returned by Cuda
unsigned char pbSpare; // reserved

short pbResult; // Result code returned by Cuda
ProcPtr pbCompletion; // Routine to be called on

completion

}CudaPB, *CudaPbPtr;

The Cuda Manager functions that you need to use are classified as Pseudo Device
functions. Typically, parameters of four bytes or less can be passed to or from the
Cuda in the parameter block. An error code may also be returned in the event of
an unsuccessful completion of a function.

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 4 of 7

Enable / Disable File Server Mode

This call is used to inform Cuda whether the system should be configured as a
standard personal computer or as a file server. When configured as a file server,
the system will power itself up any time primary A.C. is available. When
configured as a standard personal computer, the system must be powered up
either by manual intervention of the user or the power up timer. A value of zero
passed to pbParam will configure the system as a standard personal computer
while a non zero value will configure the system as a file server.

short Enable_FS_Mode()
{
CudaPB thePB;

if(!CheckForCuda()) return(kNoCudaError);

thePB.pbCmdType = pseudoPkt;
thePB.pbCmd = EnDisFiles;
thePB.pbParam.pByte[0] = 1; //enable or disable
thePB.pbParam.pByte[1] = 0;
thePB.pbParam.pByte[2] = 0;
thePB.pbParam.pByte[3] = 0;
thePB.pbByteCnt = 0
thePB.pbBufPtr = nil;
thePB.pbResult = 0;
thePB.pbCompletion = nil;

Cuda(&thePB);
return thePB.pbResult

}

Note: The mode will revert to a standard personal computer if the Shutdown
command is issued.

Working with a UPS
File Server Mode can be used in conjunction with an external Uninterruptible
Power Supply (UPS). But it requires that you programatically shut down the
Macintosh before the UPS powers off. Since the File Server Mode state is only
valid until the next shutdown, you must “force” the shutdown into not reverting
the Cuda into personal computer mode.

One way to accomplish this is to interact with the shutdown process, as follows:

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 5 of 7

Near the end of the shutdown process the ShutDownMgr will check the
gestaltHardwareAttr 'hdwr' selector's response for gestaltHasSoftPowerOff (bit 19).
If this machine does not have soft power, it puts up the Safe to Shut Off Your
Computer alert.

As part of your UPS Manager’s setup, you can use the ShutDwnInstall procedure
to install a custom shutdown proc that will run before the computer powers
down. For example:

ErrNo = ShutDwnInstall (myShutdownProc, sdOnPowerOff);

Then in your Shutdown proc, you can use the ReplaceGestalt function to intercept
the ShutDownMgr’s Gestalt lookup, so that it returns a response that has the
gestaltHasSoftPowerOff bit reset.

Note: Be sure that you read the "Shutdown Manager" chapter of Inside Macintosh:
Processes to understand exactly what happens in the shutdown process and the
correct way to shut down a Macintosh computer.

Power Fail Time Clock

The GetPwrFailTime call is used to read the 32 bit integer that represents the last
time the system was powered down. The Cuda maintains this in the number of
elapsed seconds since January 1, 1904.

Word Get_PwrFail_Time()
{
myCudaPB.pbCmdType = pseudoPkt;
myCudaPB.pbCmd = GetPwrFailTime; // ($27)
myCudaPB.pbParam.pLong = Time;
myCudaPB.pbResult = noErr;
myCudaPB.pbCompletion = NIL;

Cuda(&myCudaPB);
return myCudaPB.pbResult;
 }

Note: This function is only available in Cuda Manager 3.0 or greater. The Cuda
Manager can be tested by checking the ‘cuda’ Gestalt selector.

Summary

Although this Technote describes how to configure your Macintosh to
automatically restart from a power failure, not all Macintoshes support this
feature. This is because there are other ways for Macintosh computers to
implement soft power control. For instance, PowerBooks utiltize a completely
different system. This is why your code should follow the steps outlined in this
Note to check if the Cuda/Egret trap is implemented.

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 6 of 7

Since accessing the Cuda Manager requires intimate knowledge of low memory
globals, it may not work in later Mac OS releases.

Further References
• Inside Macintosh: Devices, Chapter 6, Power Manager Reference

• Technote 1046: Inside Macintosh: Devices, Power Manager Addenda

Acknowledgments
Special thanks to Ray Montagne, Tom Maremaa, and Mark Baumwell.

Technote 1079 /// Release 1.0 © 1996 Apple Computer, Inc. /// 11/6/96 /// Page 7 of 7

