Technote 1104

I nterrupt-Safe Routines

By Brian Bechtel and Quinn " The Eskimo"
Revised by Quinn " The Eskimo!"
Apple Worldwide Developer Technical Support

CONTENTS T

Infroduction he traditional Mac O§ has al?adly defined set of
heterogeneous programming environments. In some of

Execution Levels these environments, your code can access some system
services but not others. Furthermore, the names given to

Execution Levesin Other these environments are often overloaded and confusing.

Documentation Thisresultsin alot of programmer confusion.

Wheat Interrupt Routines Can't Do This Technote attempts to clear up this confusion by
assigning each of the execution levels a unique name,

[nterrupt-Safe Routines by Manager describing how and why your code might find itself
running at a particular execution level, and outlining the

Summary of Interrupt-Safe Routines restrictions your code might face when running at that
level.

Downloadables

This Technote isimportant for anyone programming any
Mac OS code that might run at "interrupt time," and vital
for anyone doing system-level programming under the
traditional Mac OS.

| ntroduction

There has been much confusion about which Mac OS routines can be used at interrupt time and which
cannot. This Technote lists the Mac OS routines which can be used at interrupt time.

This Technote list routines which are safe at interrupt time, rather than those that are unsafe. Asthe
system evolves, more routines are added, and it may become necessary to do more work in existing
routines. So routines that just happen to be interrupt-safe may become otherwise. Thus, any list of
interrupt-unsafe routines will grow over time, and consequently is hard to maintain. A list of routines
that are safeismore likely to remain accurate.

DTS recommends that you assume all routines absent from thislist are unsafe to cal at interrupt time.
Thisisageneral defensive programming guideline, not a definitive pronouncement. If you know of a
routine which you always considered to be interrupt-safe that is not listed here, please let us know. As
an example of how your feedback is valuable to us, the first version of thistechnote failed to mention
that SetCursor was interrupt-safe. This was an obvious omission which has now been corrected, and
it'slikely that there are others.

A interrupt-safe routine can become unsafe if it is patched inappropriately. When you patch aroutine
which isinterrupt-safe, you should assume that your patch is running at interrupt time and avoid doing
thingsthat areillega at interrupt time.

Note:
DTS still recommends against patching, asit has aways has. The above comments reflect the pragmatic
attitude that, if you're going to patch, you should do it correctly.

The old Insde Macintosh, volume 6, appendix B had alist of routines which can be called at interrupt
time. This Technote is an updated list of those routines, along with comments as appropriate. Do not rely
on thelist of interrupt-safe routines in Inside Macintosh, volume 6, appendix B.

Back to top

Execution Levels

The traditional Mac OS supports the following execution levels:

e Hardware Interrupt
o Deferred Task
e System Task

In addition, the native device driver model defines the following execution levels:

e Native-Hardware Interrupt
e Secondary Interrupt

e Task

e Software Interrupt

Since these execution levels are model ed after the execution levels supported by Copland, their
implementation on the traditional Mac OS is somewhat imprecise. In broad terms, the following

analogies apply:

e native-hardware interrupt is like hardware interrupt
e secondary interrupt is like deferred task

e taskislike system task

e software interrupt is not supported

However, the distinction between these analogous pairs isimportant in certain circumstances, as
explained later in this note.

Note:
Y ou can read more about native device driver execution levelsin Designing PCl Cards and Drivers for
Power Macintosh Computers, page 67.

IMPORTANT:

This Technote does not discuss the PowerPC hardware interrupt mechanism. On PowerPC computers
running the traditional Mac OS, PowerPC hardware interrupts are handled by a nanokernel, which
routes the interrupt through the 68K emulator. Where this note references 68K -specific concepts, you
can safely assume that this behavior is emulated by the low-level PowerPC system software on
machines with PowerPC processors.

IMPORTANT:

The execution level islargely independent of the processor interrupt mask, i.e., the value stored in the
680x0 SR register. In some cases, interrupts can be enabled during an interrupt (e.g., while running a
deferred task); in other cases, interrupts can be disabled at system task time (e.g., Enqueue disables
interrupts to guarantee mutual exclusion). The interrupt mask is not areliable way to detect whether you
are a "interrupt time."

Thisremainder of this section describes each of the execution levelsin detail.

Hardware Interrupt
What isit?

Hardware interrupt-level execution happens as adirect result of a hardware interrupt request. Software
executed at hardware interrupt level includes installable interrupt handlers for NuBus and other devices,
aswell asinterrupt handlers supplied by Apple.

How do you get there?

Y ou get to hardware interrupt level as the direct result of ainstalling a hardware interrupt handler (e.g., a
NuBus handler installed with SIntiInstall or by changing the interrupt vector tablesin low memory) or
by being called by something that is directly invoked by a hardware interrupt handler (e.g., a SCSI
Manager 4.3 completion routine). Note that Time Manager tasks and VBL s are a'so executed at hardware
interrupt level.

What can you do there?

Hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager,
and Open Transport. The associated restrictions are described |ater in this document.

In addition, you should make every attempt to minimize the amount of time you spend at hardware
interrupt level. Hardware interrupt level requires that al interrupts with lower interrupt priority be
disabled for the duration of the hardware interrupt handler. The longer you spend in your hardware
interrupt handler, the longer the interrupt latency of the computer will be. Increased interrupt latency may
result in apoor user experience -- such as sound breakup or mouse tracking problems -- or worse. If
you need to do extended processing at interrupt time, you should schedule a deferred task (using
DTInstall) to perform the operation.

| s paging safe?

Paging is not safe at hardware interrupt level unless the interrupt has been deferred using DeferUserFn.
Some system interrupt handlers (Device Manager completion routines, VBLS, dot VBLS, Time Manager
tasks) automatically defer their operation until VM-safe time, but other hardware interrupt handlers must
be sure not to cause page faults. If you need to access memory that might page fault, you should defer
that operation using DeferUserFn.

Note:
Do not confuse the semantics of DeferUserFn, which defers a hardware interrupt until paging is safe,

with those of DTInstal 1, which schedules a deferred task to be executed when interrupts are
re-enabled.

Deferred Task
What isit?

A deferred task is a mechanism whereby hardware interrupt-level code can schedule aroutine to be
executed when interrupts have been re-enabled, but before the return from the interrupt. Hardware
interrupt handlers do thisin order to minimize the amount of time spent in the hardware interrupt
handler, and thereby minimize system interrupt latency.

How do you get there?

The most common way to get to deferred task level isto have your hardware interrupt handler call

DT Instal 1 to schedule aroutine, which the system calls back at deferred task time. The interrupt system
executes deferred tasks just before returning from interrupts, but after re-enabling interrupts.

Y ou can aso get to deferred task level by being called by something that is executing at deferred task
level. A good example of this are Open Transport notifier functions, which are often called at deferred
task level.

What can you do there?

Deferred tasks are considered "interrupt time" as defined by the toolbox. The associated restrictions are
described |ater in this document.

| s paging safe?
Paging is safe at deferred task level.
Special Considerations

Another useful feature of deferred tasksisthat they are serialized. The system will not interrupt a
deferred task in order to run another deferred task. This makes areally neat mutual exclusion mechanism.

System Task

What isit?

System task level isthe level at which most application code runs.

The name is derived from an obsolete Mac OS system call, SystemTask. Prior to the introduction of

MultiFinder (now known as the Process Manager), applications were required to call SystemTask at
regular intervalsto allow device driverstimeto do things that could not be done at interrupt time.

Note:
The SystemTask routineitself is now obsol ete because Wai tNextEvent automatically callsit for you.
However, the name lives on as a testament to those hardy Mac OS pioneers who actually had to call it.

How do you get there?

An application's main entry point is called at system task level. Cooperatively scheduled Thread Manager
threads also run at system task level. For other types of code, Technote 1033: "Interruptsin Need of (a
Good) Time" describes how to get to system task level from interrupt level.

What can you do there?

Code running at system task level isnot considered "interrupt time" by anything. Y ou can do virtualy
anything at system task level.

| s paging safe?
By default paging is safe at system task level. The exceptions occur when your code is accessing some

resource that the system needs to support paging. For example, if you obtain exclusive access to the
SCSI bus using SCSIGet, you must not cause a page fault even at system task level.

Native Hardwar e I nterrupt
What isit?

Native hardware interrupt level isvirtually identical to normal hardware interrupt level except that it only
comes into play on machines that have the native driver architecture.

Note:

The native in the name of thislevel does not imply fully native-interrupt processing. Under the
traditional Mac OS, the nanokernel vectors al interrupts through the 68K emulator in order to ensure
68K interrupt priorities and instruction atomicity. Therefore, even native hardware interrupts involve

Mixed Mode Manager switches.

How do you get there?

Y ou get to native hardware interrupt level by installing a hardware interrupt handler using the native
Interrupt Manager, or by being called by something that is directly invoked by such a handler.

What can you do there?

Native hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory
Manager and Open Transport. The associated restrictions are described later in this document.

Aswith code running at hardware interrupt level, you should make every attempt to minimize the amount
of time you spend at native hardware interrupt level. If you need to do extended processing in response
to a native hardware interrupt, you should schedule a secondary interrupt (using

QueueSecondary InterruptHandler) to continue the interrupt processing.

| s paging safe?

Paging is not safe at native hardware interrupt level.

Secondary Interrupt
What isit?

The native driver model provides secondary interrupts -- which are much like deferred tasks -- allowing
native driversto defer complex processing in order to minimize interrupt latency.

How do you get there?
Y ou can get to secondary interrupt level by having your native hardware interrupt handler call
QueueSecondaryInterruptHandler to schedule aroutine which the system calls back at secondary

interrupt level. The interrupt system executes secondary interrupts after re-enabling interrupts but before
running deferred tasks and returning from the interrupt handler.

Y ou can also execute a secondary interrupt handler directly from task level using
CallSecondarylnterruptHandler2.

What can you do there?

Secondary interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager
and Open Transport. The associated restrictions are described later in this document.

I's paging safe?

Paging is not safe at secondary interrupt level.
Task

What isit?

Under the traditional Mac OS, the native driver model defines task level to be any code that's not at
native hardware interrupt level and not at secondary interrupt level.

How do you get there?

The most common source of task level execution is standard system task level execution, i.e., normal
application code. However, other execution levelsthat are traditionally considered to be interrupt levels,
such as non-native hardware interrupts and deferred tasks, are a'so considered to be task level.
Remember that under the traditional Mac OS, task level is defined as either non- native interrupt level or
secondary interrupt level.

What can you do there?

The environment restrictions of task level are defined by the underlying execution level that'sreally
being executed.

I's paging safe?

The native driver model defines that paging is always safe at task level. However, on the traditional Mac
OS, paging isonly safe at task level if the underlying execution level definesit to be safe.

Software Interrupt

What isit?

The native driver model defines the concept of a software interrupt, the ability to force atask to
immediately execute aroutine in the context of that task. Thisisdistinct from, but commonly confused
with, secondary interrupt level.

How do you get there?

Software interrupts are not supported under Mac OS. Thisis clearly stated in Designing PCI Cards and
Driversfor Power Macintosh Computers, page 262:

Currently, SendSoftwareInterrupt calsthe user back at the same execution level. In
future versions of Mac OS it can be used to force execution of code that can't be called
at interrupt time.

Thismeansisthat if you call SendSoftwarelInterrupt at execution level X, the software interrupt will
run at execution level X. This makes software interrupts effectively useless on the traditional Mac OS.

What can you do there?

Software interrupts are defined to run at task level, in the context of the task to which the software
interrupt was sent.

I's paging safe?

The native driver model defines that paging is always safe at software interrupt level.

Note:

When the native driver model was designed, it was designed with Copland in mind. The goal was that
anative driver (binary, not source) would run without modification on both the traditional Mac OS and
Copland. A lot of effort was put into both operating systems to support this goal.

In general, the support for the native driver model on the traditional Mac OS is acceptable. However, in
some cases, it isjust not possible to support features of Copland under the traditional Mac OS. The
most obvious of these is software interrupts. These require significant microkernel support and were
not implemented on the traditional Mac OS.

Given that Copland is dead, software interrupts linger on in name only, the vestigial appendix on the
Intestine that is the native driver model.

Back to top

Execution Levelsin Other Documentation

In genera, the following execution levels are considered to be "interrupt time."

e Hardware Interrupt

e Deferred Task

e Native Hardware I nterrupt
e Secondary Interrupt

However, the use of the term "interrupt time" can vary from manager to manager. This section
documents some of the more confusing cases.

T oolbox
Most toolbox routines cannot be called at "interrupt time,” asit is defined above.

There are many different reasons why toolbox routines cannot be called at interrupt time. Some
routines, like all of the Memory Manager, rely on global data structures that are not interrupt-safe.
Other routines might move or purge unlocked handles, which is equivalent to calling the Memory
Manager. Still others, like synchronous calls to the File Manager, are architecturally inaccessible.
Finally, some routines, likeReadDateTime, rely on interruptsin order to complete, and hence cannot
be called when interrupts are disabled.

The fact that a routine doesn't move or purge memory does not mean it is interrupt-safe.

Virtual Memory Manager

The Virtua Memory Manager documentation (_chapter 3 of Inside Macintosh: Memory and Technote
ME 09: "Coping with VM and Memory Mappings') says that page faults are not allowed at "interrupt
time." This has caused alot of confusion among programmers who have heard that, for example,
Device Manager completion routines are "interrupt time," and hence assume that paging is unsafein
MacTCP completion routines. In the light of the above description, it's easy to clear up that confusion.

Asfar asthe Virtua Memory is concerned, "interrupt time" means any hardware interrupt that hasn't
been deferred by VM itsdlf or using DeferUserFn. So it is safe to take page faults from Device
Manager completion routines, even though other documentation might refer to that execution level as
"Interrupt time."

For the full story about virtual memory on the traditional Mac OS, check out Technote 1094 "Virtual
Memory Application Compatibility".

Open Transport

The original Open Transport documentation caused much confusion by saying that Open Transport
could not be called at "interrupt time." This means that you can only call Open Transport from system
task level or deferred task level. So you can call Open Transport at execution levels that would normally
be considered "interrupt time" (specifically, from a deferred task) aslong as you don't call it from
hardware interrupt level (or native hardware or secondary interrupt levels).

This confusion has been cleared up in the latest release of Inside Macintosh: Networking with Open
Transport, which has an extensive table of which Open Transport routines can be called from which
execution levels.

Back to top

What Interrupt Routines Can't Do

Code running at "interrupt time" cannot do everything that system task code can do. The following list
summarizes the operations that interrupt routines should not perform. An interrupt routine which
violates any of these rules may cause a system crash:

e Aninterrupt routine must not allocate, move, or purge memory using the Mac OS Memory
Manager.

e Aninterrupt routine cannot rely on the state of any unlocked handle.

e Aninterrupt routine must not call any Memory Manager routine which sets the low memory
global MemErr.

e An interrupt routine must not call any Mac OS routines that violate the above.

e An interrupt routine must not do synchronous I/0O. Thisincludes File Manager, Device
Manager, PPC Toolbox, and Open Transport 1/0.

e For 68K code, an interrupt routine cannot access application global variables unlessit sets up
the application's A5 world properly. Thistechnique is explained in the Accessing Application
Globalsin aVBL Task section of Inside Macintosh: Memory.

e For 68K code, an interrupt routine cannot call aroutine from another code segment unless the
segment isloaded in memory and linked into the code's jump table. In addition, the code must
established the correct A5 world before calling across segments at interrupt time.

e Asasgpecia case of the above, some of the routines described in Inside Macintosh (for
example, BitAnd, HiWord) are actually implemented as glue that is statically linked to your
program. It'simportant to remember that this glue may be in another segment and, even
though the routine itself does not move memory, the act of calling it might.

e CFM-68K code must comply with the requirements outlined in Technote 1084: "Running
CFM-68K Code at Interrupt Time: Is Y our Code at Risk?"

Back to top

I nterrupt-Safe Routines by M anager

This section describes various interrupt-safe routines, grouped by manager.

IMPORTANT:

Thislist isintended only to document those routines which should always be safe to call at interrupt
time. There may be other routines, not documented here, which are safe by virtue of their current
implementation. Y ou should not rely on such routines continuing to be interrupt-safe.

Memory M anager

There are very few Memory Manager routines that you can safely call at interrupt time. The most common
exceptions are BlockMove (including BlockMoveData and other variants) and StripAddress; these two
routines may be safely made at all execution levels. At interrupt time, you cannot allocate, move, or purge
memory (either directly or indirectly). Y ou should never rely on the validity of handlesto unlock blocks.

There are some routines documented in Inside Macintosh: Memory that are safe. The entire suite of
debugger routines are interrupt-safe. Thisincludes DebuggerEnter, DebuggerExit, DebuggerGetMax,
DebuggerLockMemory, DebuggerPoll, PageFaul tFatal, DebuggerUnlockMemory, SwapMMUMode, and
Translate24to032.

The Virtual Memory Manager routines GetPageState, GetPhysical, DeferUserFN, UnholdMemory,

and UnlockMemory are interrupt-safe.

The Virtual Memory Manager routinesHoldvMemory, LockMemory, LockMemoryContiguous, and
LockMemoryForOutput areinterrupt-safe if you guarantee that either page faults are allowed or, if paging
isunsafe, that the routines will not cause a page fault. For example, it's safe to call LockMemory on
memory that you can guarantee is held.

No other Memory Manager routines are interrupt-safe, for one or more of the following reasons:

1. They clear the low-memory globa MemErr, which isreturned by the Memory Manager call
MemError. Applications regularly use MemError to examine the result of the previous Memory
Manager operation and may not properly detect a memory error if MemErr changes at interrupt
time.

2. They alocate, move, or purge memory, or rely on the state of unlocked handles.

3. They examine data structures that can be in an inconsistent state at interrupt time.

IMPORTANT:
Developers sometimes think "Calling aroutine that doesn't move memory (like DisposeHandle)

should be safe aslong as | save and restore the value of MemErr." Thisis not true because of point 3
above.

Specifically, do not call StackSpace at interrupt time. StackSpace operates by comparing two low
memory globalsin the current process low memory globals. At interrupt time you are not guaranteed that
you are even in avalid process. StackSpace aso clears the low memory globa MemErr, whichis
returned by the Memory Manager call MemError. Applications regularly uses MemError to examine the
result of the previous Memory Manager operation, and may not properly detect amemory error if MemErr
changes at interrupt time.

Note:
Unfortunately, there is some shipping software that calls StackSpace at interrupt time. Even more
unfortunately, Apple has -- in the past -- shipped software that calls StackSpace at interrupt time.

Appleis committed to eliminating bugs like this from its system software, and DTS recommends that
developers continue to rely on the results of MemError. However, the paranoid developer may wish to
implement awrapper for common Memory Manager routines, as shown below:

static OSErr MyNewHandle(Size byteCount, Handle *result)
{

OSErr err;

Assert(result !'= nil);
err = noErr;
*result = NewHandle(byteCount);
if (*result == nil) {
err = MemError();
Assert(err !'= noErr);
if (err == noErr) {
err = memFullErr;
}

}

return err;

Operating System Utilities

Enqueue and Dequeue are interrupt-safe, and may be used at any time. FormatRecToString (formerly
Format2Str), StringToExtended (formerly Formatx2Str), and ExtendedToString (formerly
FormatStr2X) are interrupt-safe as well.

Note:

Do not call ReadLocation at interrupt time. ReadLocation needs to get information from the
parameter RAM (PRAM), using the poorly documented ReadXPRAM routine. Some Mac OS computers
communicate with parameter RAM viainterrupts. If you call ReadXPRAM, or any routine which calls
ReadXPRAM, at interrupt time, the call may hang your system.

Device Manager

The core Device Manager traps (_Open, _Read, _Write, _Control, _Status, _Close) areinterrupt-safe
in some cases. Some of these traps (_Open, _Read, _Write, _Close) are shared with the File Manager
and the behavior is dightly different for Device Manager requests versus File Manager requests. The
following rules summarize the situation:

e Synchronous routines are never interrupt-safe.

e Asynchronous routines are interrupt-safe, if they arelega at all.

e Immediate routines are interrupt-safe if the receiving driver is prepared to handle immediate
requests at interrupt time. Immediate routines are never legal for files.

e Y ou should always open and close device drivers with OpenDriver and CloseDriver, which
must be called at system task time.

e You should always open afile with one of the "OpenDF" routines (FSpOpenDF, PBOpenDF,
PBHOpenDF). Asynchronous variants of these routines are interrupt-safe.

e Asynchronous variants of the other "Open" routines (PBOpen, PBHOpen) are interrupt-safe when
applied to files. However, you should avoid these routines because they might unexpectedly open
adevicedriver. For example, if you attempt to open afile called ".Sony", these routines might
open the floppy device driver rather than the file.

The next section gives details on File Manager routines that are not shared with Device Manager.

If you're patching the Device Manager traps described above, you must ensure that your patch correctly
handles interrupt-time requests. Y our patch should not do interrupt-unsafe things unless it determines that
the request is synchronous.

When implementing a device driver, you receive three types of requests. synchronous, asynchronous, and
immediate. I f the driver can be called asynchronously, you must implement both
synchronous and asynchronous requests as if they wer e asynchronous, and not do things
that areillegal at interrupt time. [Thispoint is discussed in great detail in Technote 1067: "Traditional
Device Drivers. Sync or Swim".] On the other hand, immediate requests always execute at the execution
level at which the request was made, so if you know that your client made the request at system task time,
you know you are running at system task time.

Asaspecia case of thislast point, adriver is aways sent accRun control routines as an immediate request
at system task time, so your driver can move or purge memory in response to an accRun call.

File Manager

All asynchronous File Manager routines are interrupt-safe. For example, PBOpenDFAsync can be called at
interrupt time.

File System M anager

The File System Manager service routines GetFSInfo and SetFSInfo areinterrupt-safe. Other File
System Manager service routines (Instal IFS, RemoveFS, InformFSM, InformFFS) are documented as
not being interrupt-safe.

A File System Manager plug-in should assumethat it is running at interrupt time, and not violate the
provisions of this Technote except where noted in the File System Manager documentation. Asa
consequence, most File System Manager utility routines must be interrupt-safe. The routines documented
not to be interrupt-safe are UTAl locateVCB and UTDisposeVCB. Other File System Manager utility
routines (for example, UTCacheRead IP) are interrupt-safe but have other documented environmental
restrictions.

Driver Services

The native driver support library (DriverServicesLib) provides alarge number of routinesthat are
"interrupt- safe." The execution level a which these routines may be called is defined in Designing PCI
Cards and Drivers for Power Macintosh Computers, Table 9-2, starting on page 283.

When reading this table, you should note a number of important caveats:

e The column labelled " Software interrupt level" should be labelled " Secondary interrupt level."

e Towork inthe context of this technote, the column labelled "Hardware interrupt level” should be
labelled "Native Hardware Interrupt Level."

e Routinesthat are labelled as all ocating memory must be called at task level, and the underlying
execution level must be system task level.

e Routines callable from native hardware interrupt level are also callable from hardware interrupt
level.

In addition, the valid execution levels for PrepareMemoryFor10 iscovered in DTS Q& A DV 32
"PrepareMemoryForl O and Execution Levels."

Classic Networking

Classic AppleTak isimplemented as a set of device drivers, and hence may be called at interrupt time as
long as the calls are made asynchronously.

MacTCP is split into two parts. The core TCP, UDP, and ICMP support isimplemented as a device
driver, and hence may be called at interrupt time as long as the calls are made asynchronously.

On the other hand, the Domain Name Resolver (DNR) isimplemented as glue in your application. The
StrToAddr, AddrToName, HInfo, and MXInfo routines are safe at interrupt time under MacTCP.
However, these routines will fail (returning an error code) under Open Transport TCP/IPif they are first
called at interrupt time. For thisreason, DTS recommends that you do not calls these routines at interrupt
time.

Open Transport

The latest release of Inside Macintosh: Networking with Open Transport has an extensive table of which
Open Transport routines can be called from which execution levels.

Power M anager

Installing and removing a deep queue entry (using SleepQinstall and SleepQRemove) is safe, asare
BatteryStatus and SetWUTime.

Note:

On some computers, your sleep queue entry may be called at atime when you are not in a current
process. Thismeansthat it is unsafe to implement any user interaction from a sleep queue entry. For
example, the deep switch on the lid of some Duos and some PowerBooks gets noticed by a patch to the
Process Manager when it isin the middle of switching processes. If you call aroutine such as
ModalDialog at thistime, the Process Manager thinks that thereis no current front process, so it fails
to post any eventsfor the dialog. Y ou will hang because your modal dialog filter will never receive any
events.

Notification Manager
You may call NMInstal I and NMRemove at interrupt time.

Note:
A notification response procedure is called at system task time and hence it is safe to call most Toolbox

routines. However, putting up user interface is tricky because you are running in the context of the
front-most process.

Desktop M anager

All asynchronous Desktop Manager routines are interrupt-safe. For example, the PBDTAddAPPLAsync
routine can be called at interrupt time.

Gestalt

Inside Macintosh: Operating System Utilities has this to say about calling Gestal t at interrupt time:

When passed one of the Apple-defined selector codes, the Gestal t function does not
move or purge memory and therefore may be called at any time, even at interrupt time.
However, selector functions associated with non-Apple selector codes might move or
purge memory, and third-party software can alter the Apple-defined selector functions.

This statement is mostly correct. However, there are two important caveats:

1. Not all Apple-defined Gestalt selectors are interrupt-safe, and thereis no hard-and-fast rules for
determining which are and which aren't.

2. Prior to Mac OS 8.5, the Gestalt Manager itself has a small concurrency hole (when it grows the
Gestalt table) during which it may return incorrect information. In theory this makes Gestalt
unsafe to call at interrupt time; in practice, the Gestal t table grows very rarely and Apple has not
yet seen a case where this has caused problems.

In summary, our adviceisthat you should:

e avoid using Gestalt at interrupt time in new code,
e attempt to remove any interrupt-time usage of Gestal t, as convenient, when revising old code.

We do not believe that it is necessary for you to revise your code just to address thisissue.
Sound M anager

MACEVersion, SndGetSysBeepState, SndManagerStatus, SndPauseFilePlay,
SndSetSysBeepState, and SndSoundManagerVersion are al interrupt-safe.

SndDoImmediate and SndDoCommand are interrupt-safe if the command issued isinterrupt-safe.
Specificaly, abuffercmd is not interrupt-safe if it requires that the sound output channel be reconfigured.
The sound output channel is reconfigured if the format of the sound changes from one buffer to the next
(i.e., the sound changed from mono to stereo [or the reverse], 8-hit to 16-bit [or the reverse], or its
compression format changed).

It is not safe (with one exception) to start playing asound at interrupt time, but it is safe to continue
playing asound at interrupt time. The exception is that you can start playing a sound at interrupt time, if
you have previously issued a soundCmd at task level on the same sound channel to allow the Sound
Manager to prepare the sound channel for the type of sound that you will be playing at interrupt time.

IMPORTANT:
SysBeep isnot on the list. SysBeep can move or allocate memory. Do not call SysBeep at interrupt
time.

Process M anager

_GetFrontProcess, GetCurrentProcess, GetNextProcess, SameProcess, and WakeUpProcess are
interrupt-safe.

Time Manager

InsTime, InsXTime, PrimeTime, and RmvTime areinterrupt-safe.
Process to Process Communications T oolbox
All asynchronous PPC Toolbox routines are interrupt-safe.
Deferred Task Manager

Deferred task installation viaDTInstal I isinterrupt-safe. A deferred task runs at interrupt time with
respect to most of the Mac OS toolbox and should follow the rules for interrupt time code.

Vertical Retrace Manager

SlotVinstall, VRemove, SlotVRemove, AttachVBL, DoVBLTask, and GetVBLQHdr are all interrupt-safe.

Libraries

SetupA5, SetupA4, SetCurrentA5, SetCurrentA4, and so on are interrupt-safe as long as the
implementations do not reside in an unloaded segment. Y ou should check the code generated by your
development environment before using such routines at interrupt time.

Anything in PLStringFuncs.h issafe, aslong as the implementations do not reside in an unloaded
segment.

Packages

Do not cal any routine implemented in a package (List Manager, Disk Initidization, Standard File, SANE,
International Utilities, AppleEvent Manager, PPC Browser, Edition Manager, Color Picker, Database
Access Manager, Help Manager, and the Picture Utilities) at interrupt time. Package routines are not
interrupt-safe, since the package may not be in memory at that time.

Component M anager

Opening and closing a component is not safe to do at interrupt time, but many other component routines
areinterrupt safe. Y ou should check the specifics of the component in question to determine exactly which
functions can be called at interrupt time.

Event Manager

The only interrupt-safe Event Manager routines are PostEvent, PPostEvent, and OSEventAvai I. Other
routines, specifically TickCount and GetKeys, are not interrupt-safe.

IMPORTANT:

TickCount and GetKeys are not interrupt-safe. Thisis because they support the Journaling
Mechanism, as described in Inside Macintosh | , page 261. While the Journaling Mechanismislong
obsolete -- leaving the core implementation of these routines interrupt-safe -- it islegal for third party
extensions to patch these routines with non-interrupt safe patches.

If you are writing interrupt time code, you should use the alternatives shown in the following table.

| Routine | Traditional Mac OS | Carbon |
|TickCount “LMGetTicks “TickCount [1] |
|GetKeys (modifiers only) ||OSEventAvai | ||GetCu rrentKeyModifiers |
|GetKeys (other keys) ||KeyMap ($174) ||n0ne/GetKeys [2] |

Notes:

1. The Carbon implementation of TickCount on traditional Mac OS calls LMGetTicks and is
therefore interrupt safe.
2. Carbon's GetKeys is not interrupt-safe on traditional Mac OS [2409819] but ison Mac OS X.

QuickDraw

Virtually none of QuickDraw isinterrupt-safe. The exception is SetCursor, which is documented as
interrupt-safe. If you patch SetCursor, you should be sure that your patch is interrupt-safe because it can
and will be called at interrupt time.

IMPORTANT:

SetCCursor isnot interrupt-safe and never will be. SetCCursor is not interrupt-safe because, amongst
other things, the ccrsr data structure contains unlocked handles. Apple cannot just defineit to be
interrupt-safe, because on real world systems SetCCursor is patched by interrupt-unsafe third party
extensions.

Appleis aware of the demand for an interrupt-safe mechanism for setting color cursors and isworking
on an aternate mechanism.

Do not be tricked into thinking that trivial QuickDraw routines -- such as SetRect or Random -- are
interrupt-safe: they are not! Thisis partly by definition and partly because it's possible for these routines to

reside in pageable code fragments. If you call these routines at any time paging is unsafe, they could cause
afatal pagefault.

Back to top

Summary of Interrupt-Safe Routines

Thisisasummary list of routines which may be called at interrupt time. Those routines with an asterisk
(*) have restrictions on their use; see the main body of this Technote for details:

AddrToName *
AttachVBL
BatteryStatus
BlockMove
PBControlAsync
DebuggerEnter
DebuggerExit
DebuggerGetMax
DebuggerLockMemory
DebuggerPoll
DebuggerUnlockMemory
DeferUserFN
Dequeue

DoVBLTask

Enqueue
ExtendedToString
Format2Str
FormatRecToString
FormatStr2X
FormatX2Str
GetCurrentProcess
GetFrontProcess
GetFSInfo
GetNextProcess
GetPageState
GetPhysical
GetVBLQHdr

Hinfo *

HoldMemory *
InsTime

InsXTime
LockMemory *
LockMemoryContiguous *
LockMemoryForQOutput *
MACEVersion

MXInfo *

NMInstall

NMRemove

Open Transport routines *
OSEventAvail
PBAllocContigAsync
PBAl locateAsync
PBCatMoveAsync
PBCatSearchAsync
PBCloseAsync *
PBCloseWDAsync
PBControlAsync
PBControl Immed *
PBCreateAsync

PBCreateFilelDRefAsync
PBDTAddAPPLASyNC
PBDTAddIconAsync
PBDTDeleteAsync
PBDTFlushAsync
PBDTGetAPPLAsyNnc
PBDTGetCommentAsync
PBDTGetlconAsync
PBDTGetlconlnfoAsync
PBDTGetInfoAsync
PBDTRemoveAPPLAsynNncC
PBDTRemoveCommentAsync
PBDTResetAsync
PBDTSetCommentAsync
PBDeleteAsync
PBDeleteFilelDRefAsync
PBDirCreateAsync
PBExchangeFilesAsync
PBFlushFileAsync
PBFlushVolAsync
PBGetAltAccessAsync
PBGetCatlnfoAsync
PBGetEOFAsync
PBGetFCBInfoAsync
PBGetFInfoAsync
PBGetFPosAsync
PBGetForeignPrivsAsync
PBGetUGENntryAsync
PBGetVInfoAsync
PBGetVolAsync
PBGetWD InfoAsync
PBGetXCatInfoAsync
PBHCopyFileAsync
PBHCreateAsync
PBHDeleteAsync
PBHGetDirAccessAsync
PBHGetFInfoAsync
PBHGetLogInInfoAsync
PBHGetVInfoAsync
PBHGetVolAsync
PBHGetVolParmsAsync
PBHMap IDAsync
PBHMapNameAsync
PBHMoveRenameAsync
PBHOpenAsync *
PBHOpenDFAsync
PBHOpenDenyAsync
PBHOpenRFAsync
PBHOpenRFDenyAsync
PBHRenameAsync
PBHRstFLockAsync
PBHSetDirAccessAsync
PBHSetFInfoAsync
PBHSetFLockAsync
PBHSetVolAsync
PBLockRangeAsync
PBMakeFSSpecAsync
PBOpenAsync *
PBOpenDFAsync
PBOpenRFAsync

PBOpenWDAsync
PBReadAsync
PBReadImmed *
PBRenameAsync
PBResolveFilelDRefAsync
PBRstFLockAsync
PBSetAltAccessAsync
PBSetCatlnfoAsync
PBSetEOFAsync
PBSetFInfoAsync
PBSetFLockAsync
PBSetFPosAsync
PBSetFVersAsync
PBSetForeignPrivsAsync
PBSetVInfoAsync
PBSetVolAsync
PBStatusAsync
PBStatuslmmed *
PBShareAsync
PBUnlockRangeAsync
PBUnshareAsync
PBWriteAsync
PBWritelmmed *
PBXGetVol InfoAsync
PageFaultFatal
PostEvent
PPostEvent
PrimeTime

RmvTime
SameProcess
SetCursor
SetFSInfo
SetWUTime
SleepQlInstall
SleepQRemove
SlotVinstall
SlotVRemove
SndDoCommand *
SndGetSysBeepState
SndManagerStatus
SndPauseFilePlay
SndSetSysBeepState
SndSoundManagerVersion
PBStatusAsync
StrToAddr *
StringToExtended
StripAddress
SwapMMUMode
Translate24to32
UnholdMemory
UnlockMemory
UTAllocateFCB
UTReleaseFCB
UTLocateFCB
UTLocateNextFCB

UT IndexFCB
UTResolveFCB
UTAddNewVCB
UTLocateVCBByRefNum
UTLocateVCBByName

UTLocateNextVCB
UTAl locateWDCB
UTReleaseWDCB
UTResolveWDCB
UTFindDrive
UTAdjJustEOF
UTSetDefaultVol
UTGetDefTaultVol
UTEjectVol
UTCheckWDRefNum
UTCheckFileRefNum
UTCheckVolRefNum
UTCheckPermission
UTCheckVolOffline
UTCheckVolModifiable
UTCheckFileModifiable
UTCheckDirBusy
UTParsePathname
UTGetPathComponentName
UTDetermineVol
UTGetBlock
UTReleaseBlock
UTFlushCache
UTMarkDirty
UTTrashVolBlocks
UTTrashFileBlocks
UTTrashBlocks
UTCacheReadlP
UTCacheWritelP
UTBlockInFQHashP
UTVolCacheReadlP
UTVolCacheWritelP
VRemove
WakeUpProcess

Further References

Inside Macintosh: Memory

File System Manager SDK

Designing PCI Cards and Drivers for Power M acintosh Computers

Technote 1033: "Interruptsin Need of (a Good) Time"

Technote 1067: "Traditional Device Drivers. Sync or Swim"

Technote 1084: "Running CFM-68K Code at Interrupt Time: |s Your Code at Risk"
Technote 1094: "Virtual Memory Application Compatibility".

Technote ME 09: "Coping with VM and Memory Mappings'

Back to top

Downloadables

Acrobat version of this Note (98K).

Change History

e Originaly written in February 1998 by Brian Bechtel and Quinn "The Eskimo!”

e Updated July 1998 by Quinn "The Eskimo!" with new and revised material:

an expanded discussion of "interrupt time"

anote about CFM-68K

adiscussion of software interrupt level

Open Transport information is now cross-referenced

complete rewrite of the Device Manager section

anew File System Manager section, with completely rewritten material

added Event Manager and QuickDraw sections

many stylistic improvements

e Updated in November 1999 by Quinn "The Eskimo!" with new materia in the Event Manager
section to list 0SEventAvai I asinterrupt-safe and discuss alternatives to non-interrupt safe
routines

OO0OO0OO0OO0O0OO0OO0OO

Acknowledgments

Thanksto Tim Carroll, Mark Cookson, Cameron Esfahani, Pete Gontier, Rich Kubota, Steve Lemke,
Peter N. Lewis, Jim Luther, Dave Lyons, Matt Mora, and Jim Murphy.

To contact us, please use the Contact Us page.
Updated: 22-November-1999

Technotes | Contents
Previous Technote | Next Technote

