Technote 1189

The Monster Disk Driver Technote

By Quinn " The Eskimo!"

Apple Worldwide Developer Technical Support

CONTENTS

Introduction

Disk Driver Basics

Driver Gestalt

Secrets of the Partition Map

Non-512 Byte Block Devices

Large Volume Support

How the ROM Loads SCSI| and ATA
Drivers

L oading FireWire Drivers

Chaining Drivers and Patch Partitions

Disk Drivers and the System Heap

PowerPC Native Disk Drivers

Installing and Removing Drivers and Drives

Close and Purge
File Exchange (né PC Exchange)

Private Control and Status Reguests

Read-Verify Mode

Color Icons

Target Mode

Disk Driver Power Management

Summary

ThisTechnote is both a summary and review of

existing disk driver information and a description of disk
driver features that until now have not been generaly
documented.

This Noteis directed at developers of disk driversand
disk formatting utilities. Thereisaso asection
specifically aimed at application developers who need to
operate on disks directly.

| ntroduction

The Mac OS disk driver architecture has not been comprehensively documented since Inside Macintosh
I1 (1985). In the intervening years, disk technology has changed radically, from 400 KB floppy disks
to FireWire, visiting two different SCSI Managers and four versions of ATA Manager on the way.
Many of these technological changes have been accompanied by architectural changes for which the
documentation isin obscure places, was not generally released, or was just never written.

The technote is an attempt to rectify that oversight. It serves both to bring together the existing
documentation and to fill in the missing pieces. Y ou can use this technote as either areference, an
introduction to writing disk drivers, or just to bring yourself up-to-date on the latest disk driver
advances.

If you are new to Mac OS disk drivers, you should start with the Disk Driver Basics section. If you're
already familiar with the basics of the Mac OS disk driver architecture, you may want to start with the
two high-level summaries, one for disk driver writersand one for application devel opers.

Existing Infor mation

The existing documentation for disk driversis scattered through many different Apple documents,
interface files, and code samples. The section classifies these references based on their usefulness.

Core References

These large works cover information that you will definitely need in your driver. Don't start a disk
driver without being familiar with these works:

e Inside Macintosh: Devices, SCSI Manager is the core reference for the classic SCSI Manager
programming interface, introduced with the Mac Plus. It also describes the Apple partition map
format, used by al Macintosh computers since the Mac Plus.

e Inside Macintosh: Devices, SCSI Manager 4.3 isthe core reference for the SCSI Manager 4.3
programming interface, introduced with the Quadra 840av. All SCSI drivers written today
should use the SCSI Manager 4.3 programming interface.

o ATA Device Software for Macintosh Computers (previously known as the ATA Device
Software Guide) is the core reference for the ATA Manager, which alows you to find and
control ATA devices connected to the computer. The "ATA Driver Reference’ chapter offersa
useful summary of the Control and Status requests relevant to amodern Mac OS hard disk
driver, athough some of the information is inaccurate and has been updated in this document.

o ATA 0/1 Software Devel opers Guide is a supplement to the above, and describes the changes
required to support device 0/1 (master/slave) on ATA buses.

e Inside Macintosh: Files describes the drive queue, a key data structure used by all disk drivers.

e Technote 1041, "Inside Macintosh: Files Errata’ comprises corrections to the core Inside
Macintosh: Files document.

e The Shared Device Access Protocol specification.

e DTS sample code RAM Disk implements the basic framework for adisk driver. Unfortunately,
it does not demonstrate how to handle requests asynchronously, which is one of the trickiest
thingsto get right in adisk driver.

e DTS sample code TradDriverL oaderLib shows how to correctly install aMac OS driver
"DRVR".

e DTS sample code SCS Driver Example demonstrates afully fledged SCSI driver that supports
both classic SCSI Manager and SCSI Manager 4.3. It isauseful sample, although it has
decayed ahit in the years since it was |last updated (1994).

e DTS samplecode ATA Demo demonstrates how to read blocks from both ATA and ATAPI
disks.

e "DriverGestalt.n" (from the latest Universal Interfaces) aways contains the most up-to-date list
of Driver Gestalt selectors.

o TheMoreDisks module from the DTS sample code library Morel sBetter contains a
comprehensive list of al the currently defined disk driver Control and Status requests, and
where to get more information on how to support them.

Additional Information
These smaller documents contain information that supplements the above in certain key areas.

e Technote 1098, "ATA Device Software Guide: Additions and Corrections' isthe latest errata

for the ATA Device Software for Macintosh Computers.

e Technote DV 17 Sony Driver: What your Sony Drives For Y ou documents the Control and
Status requests supported by Apple's standard floppy disk driver. Thisisakey reference for
disk driver developers. Floppy disk driver writers should aso read the "MFM Disk Device
Driver" chapter of Apple Logic Board Design LPX-40 Developer Note (hardware devel oper
note), which includes information on floppy disk Control and Status requests that is missing
fromDV 17.

e Technote DV 22, "CD-ROM Diriver Calls' documents the Control and Status requests
supported by Apple's standard CD-ROM driver. Thisis akey reference for CD-ROM driver
developers.

e Technote 1104, "Interrupt-Safe Routines’ answers the perennial question, can | do X at
interrupt time?

e Technote 1067, "Traditional Device Drivers: Sync or Swim" addresses acommon
misconception of device driver writers.

e Technote 1040, "Write Cache Flushing: Techniques for Properly Handling System Shutdown"
describes how disk drivers should handle system shutdown.

e Technote ME 09, "Coping with VM and Memory Mappings' is probably the best place for
information on ensuring that your device driver is compatible with virtual memory.

e Technote 1094, "Virtua Memory Application Compatibility” contains a description of the Mac
OS VM architecture as awhole, which is useful background material for device driver writers.

e Designing PCI Cards and Drivers for Power Macintosh Computers, pages 110 through 117,
documents the Driver Gestalt mechanism and some new Control requests. This technote
provides clarifications and corrections on Driver Gestalt and the mechanism used to boot from
apartition. In addition, the File Exchange section of this technote completely replaces the PC
Exchange description in the book.

e Guideto the File System Manager contains useful background information about how FSM
interacts with disk drivers; however, the specific recommendations for driver writers are
covered in the File Exchange section of this technote.

e DTS Q&A OPS 22, "Natification Manager Reinitialized During Boot" is an important tidbit for
disk driver developers.

e DTSQ&A DV 34, "Secondary Interrupts on the Page Fault Path" describes the dangers of
using secondary interrupts in software that must service page faults. While the Q& A was
written for SIM developers, itswarning is a so important for other page fault path software,
such as disk drivers. Disk drivers must not use secondary interrupts (or, for that matter,
deferred tasks) on the page fault path.

e Data Structureto Aid Security and Recovery Software, David Shayer and Marvin Carlberg,
1991

e TheInterruptSafeDebug module of the DTS sample code library Morel sBetter can be useful
when tracking down nasty crashing problemsin adevice driver, especially those that happen
early at startup time.

Obsolete

These documents, as they pertain to disk drivers, are considered obsolete. Thislist is provided for
completeness only. Y ou should read the recommended material instead.

e Inside Macintosh I1, "The Disk Driver", page 211 through 219, documents the basic interface
to adisk driver, include the kEject (7) Control request, thekSetTagBuffer (8) Control
request, and the kDriveStatus (8) Status request.

e Inside Macintosh 1V, "The Disk Driver”, page 223 through 224, documents the kverify (5),
kFormat (6), kTrackCache (9), and kDrivelcon (21) Control requests.

e Inside Macintosh 1V, "The SCSI Manager”, page 292 through 293 describes the original
partitioning format used on the Mac Plus and goes on to say, "Since the driver is called to
install itself, it must contain code to set up its own entry in the unit table and to call its own
Open routine. An example of how to do this can be obtained from Devel oper Technical
Support.” This example was part of the "SCSI Driver Developer Kit". All of theinformation in
the kit is available elsawhere. The specific sample code referenced by the book evolved into
SCSl Driver Example.

Inside Macintosh V, "The Disk Driver", page 470 through 471, documents the kDrivelcon
(21), kMedialcon (22), and kDrivelnfo (23) Control requests.

Technote DV 2,"_AddDrive, Drvringtall, and DrvrRemove" documented the AddDrive,
Driverlinstall, and DriverRemove System routines. This technote is now obsolete.
AddDrive isdocumented in Inside Macintosh: Files, and Driverlinstall, and DriverRemove
are covered by Inside Macintosh: Devices, aong with DriverInstal IReserveMenm.
Moreover, developers of 68K drivers should use TradDriverLoaderLib to install their drivers.
Technote DV 12, "Our Checksum Bounced" documents a misfeature of the code used by the
ROM to checksum disk drivers. The technote is now obsolete. The ROM checksum behavior
isdescribed in Inside Macintosh: Devices and this technote describes the checksum agorithm
itself.

Technote DV 13, " PBClose the Barn Door" till contains valid advice for genera device
driver writers, although this technote deals with thistopic asit applies to disk drivers.
Technote DV 18, "CD-ROM Notes (Most Excellent)" contains some interesting historical
information about CD-ROM devices, athough much of the information is now obsolete or
covered elsewhere.

Power Macintosh 9500 Computers (hardware devel oper note) describes many aspects of the
large volume support (greater than 4 GB support) introduced with that machine. The large
volume support aspects of that devel oper note are now obsolete. This technote discusses large
volume support asit appliesto disk drivers. DTS Q& As FL 07 and FL 08 discuss large
volume support from the application perspective.

The following documents were never released generally. Their developer-oriented content has
been rolled into this technote.

"Chainable Drivers and Patches’

"Ruby Slipper Lite ERS" (large volume support)

"Bootable CD Developer Kit (Software Devel oper Note)"

"PC Exchange and Large Volume Drivers'

O0O0O0O

Checklist for Disk Driver Writers

All of the above is probably overwhelming, so hereisasummary of the most important steps to take to
improve the reliability and compatibility of your disk driver:

If you do nothing else, you should support Driver Gestalt.

Y ou should support the partition map entry features documented in Secrets of the Partition
Map. Specifically, you should ensure that your driver is checksummed, supports booting from
apartition, and write your driver signature to the pmPad field.

Y our driver should support large volumes, including booting from large volumes on machines
without large volume support in the ROM by means of the " ruby* patch.

Y ou should follow the rules when installing and removing your driver and its drive queue
elements. Y ou should also support closeto allow other devel opers to remove your driver
cleanly.

If your driver uses SCSI Manager 4.3 or ATA Manager, it must register itself with the
manager. The documentation for each manager describes how thisis done. If you're using
SCSI Manager 4.3, use SCSiCreateRefNumXref. If you're using ATA Manager, use
KATAMgrDriveRegister.

Y ou should support the File Exchange interface. Thiswill allow foreign file systems to access
your disks without any skullduggery.

Y ou should check that your private Control and Status requests follow the rules, both with
respect to Driver Gestalt and virtual memory. Thisis harder than you might think.

Y ou should support read-verify mode. This technote explains how to do it easily.

Y ou may want to support target modein your ATA driver.

Y ou may want to support color icons Woo hoo!

For Application Writers

The purpose of adisk driver isto support ageneric interface for accessing block devices. The primary
client of thisinterfaceisthe File Manager, although it can be used by other programs. If you're writing
aforeign file system, or just an application that needs something beyond the standard File Manager
programming interface, parts of this technote may be of interest to you.

e If you need to interrogate a driver about its capabilities, you should read the section Driver
Gestalt for Applications.

e If you need to read arbitrary blocks on avolume, you should read the discussion of the
XI1OParam block for applications, along with the accompanying hints and tips.

e |f you need to read arbitrary blocks outside of avolume -- for example, the partition map, or a
non-Mac OS partition -- you should investigate the File Exchange section of this technote,
especially the section on using the File Exchange interface.

e If you need to verify that you have written data to the disk correctly, you should check out the
read-verify mode section which describes the easiest way to do this. [Hint: Think
"MoreFiles'!]

e If you need to get color icons for adrive, you can now call the disk driver to get them --
although you should probably just call con Servicesinstead.

In addition, if you're writing a disk formatting utility, this technote contain invaluable information on
the partition map, chaining drivers, patch partitions, and "hostile" takeovers.

Disk Driver Basics

Mac OS communicates with attached devices through device driver s, which are software plug-ins
that conform to awell-defined structure. The Device Manager is the origina system component used to
install, find, manage, and communicate with device drivers. It exports routines that can be called by
higher level system software, and by applications. Most of these routines trandate directly into requests
to the underlying device driver.

In order to identify different drivers, the Device Manager assigns each installed driver a unique negative
number, referred to asadriver reference number. When calling the Device Manager, clients pass a
driver reference number to tell it which driver they are dealing with.

For ablock deviceto be available to the system, it must have adisk driver. Thisiseither in the ROM
(for the built-in floppy drive), or loaded at system startup from a special partition on the disk (SCSI,
ATA, and FireWire devices), or loaded from a system extension (USB and FireWire devices). In
addition, adisk driver can be loaded when adeviceis plugged in by either an I/O family expert (ATA,
USB, and FireWire), or by a special utility program (SCSl). Finaly, software can install adisk driver
for avirtual block device which has no obvious physical presence, such asa RAM disk or disk image.
Regardless of how they areinstalled, all disk drivers roughly follow the same rules.

It isimportant to note the difference between adisk and adevice. A block device isthe entity which
reads and writes data on adisk. A disk isthe medium which actually storesthe data. Thisdistinctionis
unimportant for fixed disk devices (such as hard disks), but is critical for removable disk devices (such
as floppy drives and removable cartridge disk devices).

Mac OS aways directs block /O to a software entity known asadrive. Each disk driver creates one or
more drives and puts them in a system structure called thedrive queue. Each drive queue element
represents a drive, and contains both the driver reference number and the drive number. Thedrive
number isapositive number that uniquely identifies the drive; it is assigned when the drive is added to
the drive queue.

A drive does not necessarily correspond directly to agiven physical device. Rather, the driver decides
which drives to create for the device it controls. In some cases, there is one drive per physical device.
For example, the built-in floppy disk driver creates adrive for each attached floppy disk device.
However, it isaso common for adriver to create multiple drives for asingle device. For example, the
driver for a partitioned hard disk device creates adrive for each file system partition on the disk.

When the system performs 1/0O to adrive, it supplies the driver reference number of the device driver
and the drive number of adrive created by that driver. The Device Manager uses the driver reference
number to find the device driver and call its entry point. The device driver then uses the drive number to
determine which driveisthe target of the 1/0 request.

All drive /O isdone isterms of 512-byte logical blocks. Therefore, al transfers must start at multiple
of 512 bytes and be amultiple of 512 byteslong. Thisis regardless of the underlying device's block
size.

File Manager and Drives

To alow the flexibility of storage required by the user interface (a hierarchy of folders and files), Mac
OS implements another layer of abstraction, known as the File Manager, on top of the Device Manager
and the drive queue.

Afile system isamechanism for storing fine-grained data (files) and meta-data (folders, Finders
attributes, and so on) on adrive. The file system defines the way this datais stored and the rules for
manipulating it. The File Manager includes built-in support for two file systems (HFS and HFS Plus)
and a plug-in architecture (File System Manager) for others (AppleShare, DOS FAT, ProDOS, UDF,
and third-party FSM plug-ins).

The File Manager exports a programming interface defined in terms of volumes, which contain
directories, files, and meta-data. A volume is an instance of afile system on adrive. Each volumeis
uniquely identified by anegative volume r efer ence number, which is stored, along with other data
to operate the volume, in avolume control block (VCB) that islinked into the system VCB

gueue. The VCB also contains the drive number and the driver reference number of the drive on which
the volume is mounted.

The process of making the contents of adrive available viathe File Manager is called mounting a
volume. When the File Manager attempts to mount avolume on adrive, it calls each of the file systems
in turn to determine which one understands the logical format of the data on the disk in the drive. It then
createsaVCB for that file system on that drive.

The File Manager takes requests to operate on the volume and passes them to the appropriate plug-in
file system, which reduces them to basic block operations and passes them to the drive viathe Device
Manager (using the drive number and driver reference number stored in the VCB). Asfar asthefile
system is concerned, the drive isits own logical disk, even though it may only represent asmall part of
thereal disk.

A drive can exist without having a volume mounted on it. This happens, for example, if the data format
on the drive isincomprehensible to the installed file systems, or the volume on the drive has been
unmounted. Y ou can still access the data on adrive that has no volume mounted on it, but only viathe
Device Manager interface.

Terminology

In any technical document, it is very important to get your terminology straight. Thisis especialy
important when talking about disk drivers, where much of the terminology has been extended over the
long, confusing history of the Mac OS block storage architecture. This technote uses the following
terms throughout.

disk driver
A software plug-in that implements a hardware abstraction layer for block devices, like hard
disks, floppy drives, and CD-ROM drives. In Mac OS, adisk driver must be a Device
Manager driver (either a68K driver or anative driver).

68K driver
A disk driver implemented using the traditional 68K driver architecture, as documented in
Inside Macintosh: Devices. A 68K driver is commonly stored in aresource of type *DRVR* or

inadriver partition.

native driver
A disk driver implemented using the native driver model, introduced with the first generation
of PCI Power Macintosh computers and documented in Designing PCl Cards and Drivers for
Power Macintosh Computers. A native driver iscommonly stored in afile of type "ndrv*,
although native drivers have started appearing in driver partitions as well.

driver reference number
Ansinti6 that uniquely identifies a Device Manager driver to the system. Driver reference
numbers are not persistent -- they are assigned when the driver is added to the unit table -- but
some driver reference numbers are assigned to certain well-known drivers. Driver reference
numbers occupy the same "name space” asfile reference numbers (which identify an open
file). Driver reference numbers are always negative, while file reference numbers are dways
positive. Zero isan invalid driver reference number and an invalid file reference number.

unit table
A Device Manager data structure that lists the installed device drivers (both 68K and native).

block device
A block-oriented storage device.

real block device
A block device that has some obvious physical presence, such as afloppy drive or a SCSI hard
disk device.

virtua block device
A block device this has no obvious physical presence, such asaRAM disk, adisk image, or a
network block device.

device
Some hardware attached to the computer. In this context of this technote, thistypically meansa
block device although, in some places, the term may be used for any type of device.
disk
The actual physical mediawhich holds data. A disk is made up of blocks, each of which holds
afixed number of bytes (typically 512). A disk isdistinct from ablock device because, in the
case of removable disk devices, the user can insert one of many different disksinto the device.
disc
A synonym for "disk" that isonly used in the context of CD or DVD discs (wherethedisk is
actualy adisc).
media
See disk.
drive

A Mac OS software construct used to represent a block storage entity. A volumeis always
mounted on a drive. There may be multiple drives corresponding to a single disk. Exception:
some removable disk devices have been historically known as drives (for example, floppy
drive, CD-ROM drive). This technote continues to use "drive" in these contexts, rather than the
more cumbersome "floppy disk device." However, if the word "drive" appears unqualified, it
always refersto the primary definition.

drive queue
A OS queue which contains al the drive gueue el ements known to the system. Y ou can get the
head of the drive queue using the routine GetDrvQHdr. See Inside Macintosh: Files for more
details of the drive queue and its elements.

drive queue element
The specific data structure used to represent adrive. A drive queue element is a structure of
typeDrvQEI alocated in the system heap and placed in the drive queue.

drive number
Ansinti6 which uniquely identifies adrive. Drive numbers are not persistent; they are
assigned when the drive is added to the drive queue. Drive numbers occupy the same "name
gpace” as volume reference numbers. Drive numbers are always positive, while volume
reference numbers are aways negative.

partition
A disk may be divided into a set of contiguous blocks, each known as a partition. Partitions are
typicaly either file system partitions (which hold file system data) or meta-data partitions
(which hold information about the disk, such as the partition map or the disk's device driver).
Not al disks are partitioned, although a disk must be partitioned to support booting (except for
floppy disks, because the driver for the built-in floppy disk driveisin the ROM).

partition map
A data structure, typically at the beginning of the disk, which describes the partitions on the
disk. Most Mac OS disks are partitioned using the Apple partition map format, described in
Secrets of the Partition Map.

partition map entry
The Apple partition map describes each partition on the disk using a partition map entry data
structure (of type Partition).

startup partition
The partition which the user has designated as the one from which they prefer to boot the
system, or the partition from which the system booted.

driver partition
A partition which contains adisk driver.

file system partition
A partition which contains file system data.

meta-data partition
A partition which holds information about the disk, such as the partition map or the disk's
devicedriver.

partition-based driver
A driver that isloaded from a partition.

file system-based driver
A driver that isloaded from afilein the file system, typically in the Extensions folder.

disk-based driver
Either a partition-based driver or afile system-based driver. Thisterm is ambiguous and to be
avoided.

ghost partitioning
A system used on non-512 byte block devices where partition map entries appear at both
512-byte boundaries and device block boundaries so that they can be seen by software using
either physical or device blocks.

1/O family
A component of the Mac OS I/O subsystem that is responsible for a particular category of
devices. A driver can work within multiple 1/0O families. Each family requires certain attributes
of the driver (for example, how it is packaged and the programming interface it providesto
upper layer software) and provides services for the driver. For example, aFireWire disk driver
must be packaged as a native driver which responds to the standard disk driver programming
interface, and FiréWire provides services to the disk driver, such as SBP-2 utility routines.

1/O family expert
A component of an I/O family that seeks out devices of a particular type and registers them
with the I/O family.

volume
A File Manager software construct that represents a single, user-visible storage device. Each
volume appears as aicon on the desktop. Each volume is mounted on adrive, so if the disk
has multiple file system partitionsit will also have multiple drives and hence multiple volumes.

volume reference number
Ansint16 which uniquely identifies avolume. Volume reference numbers are not persistent;
they are assigned when the volume is mounted. V olume reference numbers occupy the same
'name space’ as drive numbers. Drive numbers are always positive, while volume reference
numbers are always negative.

refNum
This contraction of "reference number” is ambiguous and is not used in this document. In other
documents, it commonly means either adriver reference number or afile reference number,
depending on context.

vVRefNum
A contraction of volume reference number.

logical blocks
The block numbering scheme used to access blocks on adrive. Each logical block contains 512
bytes and the first block accessible through the drive isblock 0. See Block Trandation for
details.

physical blocks
The block numbering scheme used to access blocks on adisk. You can derive aphysical block
number from alogical block number by adding to it the start block number of the partition. If

the disk is not partitioned, logical blocks and physical blocks are identical. Each physical block
contains 512 bytes. See Block Trandation for details.

device blocks
The actua block numbering scheme used by the device hardware to access data on the disk.
Device blocks are not necessarily 512 bytes big, and the device driver is responsible for
blocking and deblocking to present the illusion of 512-byte physical blocks to the system. See
Block Trandation for details.

blocks
When used without qualification in this technote, blocks meanslogical blocks.

sectors
Depending on context, this can either mean device blocks (for afloppy drive), physical blocks
(for ahard disk device), or logical blocks (in avolume format specification). To avoid
confusion, this technote avoids the term "sector” in favor of its more specific synonyms.

chaining driver
A driver loaded from a partition which performs some action and then loads the next driver in
the driver chain. The most common chaining driver is Apple's patch driver.

driver chain
A sequence of drivers, each in itsown driver partition, that can all be loaded for a particular
expansion bus type (for example, SCSI or ATA). Each driver chain consists of one or more
chaining driversand areal driver for the disk. A disk may contain more than one driver chain if
it can be accessed through more than one expansion bus type.

patch driver
A chaining driver which applies the patches from a patch partition and then chains to the next
driver.

patch partition
A meta-data partition containing patches that must be applied to the system before it can boot.
The patches in the patch partition are applied by the patch driver before it chainsto the real disk
driver.

target mode
PowerBook computers can be placed in target mode, where the PowerBook's internal hard
disk deviceis accessible as a hard disk device to other computers on an expansion bus
(typically SCSI).

SCSI disk mode
See target mode.

regquest
When the Device Manager callsadriver entry point (Open, Close, Prime, Control, or Status
for a68K driver, DoDriverl0 for native drivers), it passes the address of a parameter block
which describes the requested operation. Thisis known as arequest. A request is different
from asimple function call in that the driver may return from thisinitia call without completing
the request. Specifically, for queued requests, the request is not complete until the driver
explicitly tellsthe system so (by calling 10Done for 68K drivers, or by calling
10Command IsComplete for native drivers).

gueued request
Synchronous and asynchronous requests are collectively known as queued requests. Thisis
because they are queued in the driver's queue (on the dCt1QHdr) and the driver is marked as
busy while the request is being processed.

immediate request
Immediate requests are distinct from queued requests in that they are not placed in the driver's
queue and do not mark the driver as busy.

Driver Gestalt

All disk drivers should support Driver Gestalt. Driver Gestalt is a mechanism whereby the system can
guery your driver to determine whether it supports advanced driver features. In many waysit is similar
to the Mac OS Gestalt Manager, except that the system is querying your driver, not the other way
around.

Y our driver should support Driver Gestalt. If you don't support Driver Gestalt, the system isin the
dark as to which advanced driver features your driver supports.

Driver Gestalt Reference

The basic reference for Driver Gestalt is Designing PCI Cards and Drivers for Power Macintosh
Computers specifically the "Driver Gestalt" section starting on page 106. However, Driver Gestalt is
useful even on non-PCl computers. Y our driver must support Driver Gestalt regardless of what
computer or OS version it is running on.

Designing PCI Cards and Drivers for Power Macintosh Computers does not document all of the
selectors associated with Driver Gestalt. The only official, up-to-date list of Driver Gestalt selectorsis
the "DriverGestalt.h" header file, provided as part of Universal Interfaces. When Apple defines a new
Driver Gestalt selector, we add the selector to "DriverGestalt.h", along with comments that describe
how to implement it.

In the event of a conflict between the written documentation and "DriverGestalt.h", "DriverGestalt.n" is
correct and the written documentation iswrong. For example, Designing PCI Cards and Drivers for
Power Macintosh Computers describes the response of the "purg*® selector asaBoolean (page 111),
whereas "DriverGestalt.h" correctly describes the response to be of type
DriverGestaltPurgeResponse.

Driver Gestalt Guarantees
By saying that it supports Driver Gestalt, your driver guarantees certain things to the system, including:

1. Your driver will return controlErr in response to a Control request with an unrecognized

csCode.

2. Your driver will return statusErr in response to a Status request with an unrecognized
csCode.

3. Your driver will return controlErr in response to a Driver Configure request with an
unrecognized selector.

4. Your driver will return statusErr in response to a Driver Gestalt request with an
unrecognized selector.

5. Your driver will not use any csCodes below 128 for private Control or Status requests.

Items 3 and 4 in the list above are not documented clearly in Designing PCI Cards and Drivers for
Power Macintosh Computers, although they are implemented by all Apple driversand are clearly
shown in the various Driver Gestalt samples. This technote serves to officially document these two
additional requirements.

Driver Gestalt for Applications

Probably the best way to understand how to issue Driver Gestalt queries from an application isto look
at some sample code. "Driver Gestalt Demo” is a simple sample that shows how to issue afew queries.
"DriverGestaltExplorer” is a more comprehensive sample, which is also useful as asimple test and
investigation tool. Both samples are available as DTS sample code.

Summary of Driver Gestalt

All disk drivers should support Driver Gestalt.

Secrets of the Partition Map

A number of features have been added to the Apple partition map since it was documented in Inside
Macintosh: Devices. This section describes those features in detail.

Partition Field Relevance

The description of the Partition datatypein Inside Macintosh: Devices does not explicitly call out that
some fields of the data structure are only relevant for driver partitions (those whose partition name
contains "Apple" and "Driver"). Specifically, the fields from pmLgBootStart through to pmProcessor
areonly relevant for driver partitions. Non-driver partitions should set these fields to zero.

pmParType Possibilities

Inside Macintosh: Devices documents the well known valuesfor the pmParType field of the partition
map entry, namely "Apple_partition_map", "Apple Driver", "Apple Driverd3", "Apple MFS",
"Apple HFS', "Apple Unix_SVR2", "Apple PRODOS", "Apple_Free", and "Apple_Scratch”. This
technote describes a number of additional partition types.

"Apple Driver ATA" -- Holds the device driver for an ATA device.

"Apple_Driver_ATAPI" -- Holds the device driver for an ATAPI device. When it discoversa

deviceon an ATA bus, the ATA Manager identifies whether adeviceisATA or ATAPI and

automatically loads the corresponding driver.

"Apple_Driver43_CD" -- A SCSI CD-ROM driver suitable for booting.

"Apple_FWDriver" -- Holds a FireWire driver for the device. See Loading FireWire Drivers for

details.

e "Apple Void" -- A dummy partition map entry, used to pad out a partition map to ensure the
correct alignment of partition map entries in a bootable CD-ROM.

e "Apple_Patches' -- Holds a patch partition. The patch partition architecture is described in

Chaining Drivers and Patch Partitions.

IMPORTANT:

Apple reserves al partition types beginning with "Apple”. Apple expects to add a number of new
partition types in the near future, and your software should handle these new, reserved partition types
cleanly.

pmPartStatus Revealed

Inside Macintosh: Devices says that the pmPartStatus field of the Partition data structureis only
used by A/UX, bits 0 through 7 having a defined meaning and all others being reserved. Thisisno
longer true.

The following flags are defined in pmPartStatus field of the Partition structure. All bits not defined
here are reserved (you should initialize them to 0 and ignore their vaue).

enum {
kPartitionAUXIsValid = 0x00000001,
kPartitionAUXIsAl located = 0x00000002,
kPartitionAUXIslInUse = 0x00000004,
kPartitionAUXIsBootvalid = 0x00000008,
kPartitionAUXIsReadable = 0x00000010,
kPartitionAUXIsWriteable = 0x00000020,
kPartitionAUXIsBootCodePositionlndependent = 0x00000040,
kPartitionlsWriteable = 0x00000020,
kPartitionlsMountedAtStartup = 0x40000000,
kPartitionlsStartup = 0x80000000,
kPartitionlsChainCompatible = 0x00000100,
kPartitionlsRealDeviceDriver = 0x00000200,
kPartitionCanChainToNext = 0x00000400,

};

Bits O through 4 and 6 are still defined as documented in Inside Macintosh: Devices. A Mac OS
formatting utility should always set these bit to 1 for file system partitions and clear them for other
partition types.

The second group of bitsis used by Apple Mac OS disk driversto hold information about file system
partitions.

kPartitionlsWriteable
This bit indicates whether the partition is writeable (1) or write-protected (0). If the bit is clear
and your driver creates a drive queue el ement to represent this partition, it should mark the drive
gueue element as write-protected. Note that mask has the same value (and the same semantics)
as kPartitionAUXIsWriteable.

kPartitionlsMountedAtStartup
This bit indicates whether the partition is mounted at system startup (1) or not (0). If your driver
would otherwise create a drive queue element to represent this partition at system startup and
thisbit is clear, it should not create the drive.

kPartitionlsStartup
This bit indicates whether thisis the startup partition (1) or not (0). This bit must be set for at
most one partition. See A Partition of Y our Imagination below.

Note:

Some third-party disk drivers reverse the sense of the kPartitionlsMountedAtStartup bit of
pmPartStatus. Thisisabug. Unfortunately, we cannot retroactively fix that bug on all installed disks,
so it isnot possible to look at this flag and determine whether the partition will be mounted. The most
reliable way to work out whether a partition will be mounted at startup is by using the partition attribute
Control and Status requests.

The third group of bits provides information about driver partitions. Y ou may need to read Chaining
Drivers and Patch Partitions to understand these descriptions.

kPartitionlsChainCompatible
The driver in this partition supports being loaded by a chaining driver.
kPartitionlsRealDeviceDriver
This partition contains a driver that actually knows how to drive the device. Contrast thiswith
the patch driver, which is chain compatible, but which can only load patches and then chain to
the next driver; it does not actually contain adisk driver.
kPartitionCanChainToNext
This partition contains adriver that can chain to another driver. Typically, all driversin the chain
must have this bit set, except the last one where it is clear.

IMPORTANT:
Some Apple and most third-party drivers do not have the chaining flags set correctly, so it isvirtually
impossible for your software to rely on their semantics.

Partition Attributes

There are anumber of Control and Status requests that modify the attributes of a partition. A disk driver
must support these requests as described below. A formatting application can use these requests to
modify partition attributes.

Note:

Many of these Control and Status requests were previously documented in Designing PCI Cards and
Driversfor Power Macintosh Computers, page 113 through 114, and ATA Device Software for

M acintosh Computers. The description herein replaces both of these documents. The old documents

fail to describe the Deviceldent parameter to these routines, nor do they clarify that csParam[0. .1]
is apartition map entry address.

Setting the Startup Partition

Trap |_Control

Mode |[Synch, Async

csCode

SIntl6

kSetStartupPartition (44)

10VRefNum

SIntl6

->

The drive number of the new startup partition, or O if
you wish to specify the startup partition by block
number.

csParam[0..1]

ulnt32

If ioVRefNum iSO, thisisthe physical block number of
the partition map entry of the new startup partition. If
ioVRefNum isnot O, thisisignored.

csParam[2..3]

Deviceldent

If ioVRefNum iSO, thisisthe device containing the new
startup partition. Thisisin the same format as the
scsi1D field of the partinfoRec. If ioVRefNum is not
0, thisisignored.

In response to this request, your disk driver must set the partition described by iovRefNum and
csParam[0. . 3] asthe startup partition. Typically thisinvolves setting kPartitionlsStartup in
pmPartStatus, which in turn causes your disk driver to place the drive queue element for this partition

first in the drive queue at system startup.

IMPORTANT:

When your driver setsthe kPartitionlsStartup bit for one partition, it must clear it for all other
partitions. This bit must be set for at most one partition.

Determining Whether a Partition isthe Startup Partition

Trap |_status

Mode |[Synch, Async

csCode |Slnt16 -> |kGetStartupStatus(440
i - || The drive number of the partition to query, or O if you
ToVRefNum Sinti6 > [lwish to query the partition by block number.

If ioVRefNum iSO, thisisthe physical block number of
csParam[0..1] ||[UInt32 -> |[the partition map entry of the partition to query. If

ioVRefNum isnot O, thisisignored.

If ioVRefNum iSO, thisisidentifies the device

_ containing the partition to query. Thisisin the same
> .

csParam[2..3] (Deviceldent format asthe scs11D field of the partinforec. If

ioVRefNum isnot O, thisisignored.
csParan[0] UINt16 <. |[Your disk driver must set thisto either O (thisis not the

startup partition) or 1 (thisisthe startup partition).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition
described by ioVRefNum and csParam[0. . 3] isthe startup partition. Typically thisinvolvestesting

kPartitionlsStartup in pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the system
actually started from this partition.

Specifying That a Partition Should Be Mounted at Startup

Trap _Control |
Mode |[Synch, Async |

kSetStartupMount (45) |

The drive number of the partition, or O if you wish to
specify the partition by block number.

csCode |Slnt16 |->

ioVRefNum SIntl6 ->

If 1oVRefNum iSO, thisisthe physical block number of
csParam[0..1] (UInt32 -> (the partition map entry of the partition. If ioVRefNum is
not O, thisisignored.

If iovVRefNum iSO, thisisthe device containing the
partition. Thisisin the same format asthe scsi1D field
of thepartinfoRec. If ioVRefNumisnot O, thisis
ignored.

csParam[2..3] |[[Deviceldent ->

In response to this request, your disk driver must set the partition described by iovRefNum and
csParam[0. .3] to be mounted at startup. Typically thisinvolves setting
kPartitionlsMountedAtStartup in pmPartStatus, which in turn causes your disk driver to place a
drive gueue element for this partition in the drive queue at system startup.

This request modifies the partition map, and hence only takes effect the next time the system is started. It
does not affect the state of any volume currently mounted on the partition.

Specifying That a Partition Should Not Be Mounted at Startup

Trap _Control |
Mode |[Synch, Async |

kClearPartitionMount (48) |

The drive number of the partition, or O if you wish to
specify the partition by block number.

csCode |Slnt16 |->

ioVRefNum SIntl6 ->

If 1oVRefNum iSO, thisisthe physical block number of
csParam[0..1] (UInt32 -> [the partition map entry of the partition. If ioVRefNum is
not O, thisisignored.

If ioVRefNum iSO, thisisthe device containing the
partition. Thisisin the same format asthe scs11D field
of thepartinfoRec. If ioVRefNumisnot O, thisis
ignored.

csParam[2..3] |[[Deviceldent ->

In response to this request, your disk driver must set the partition described by iovRefNum and
csParam[0. .3] to not be mounted at startup. Typically thisinvolves clearing
kPartitionlsMountedAtStartup in pmPartStatus, which in turn causes your disk driver to not place
adrive queue element for this partition in the drive queue at system startup.

Thisrequest modifies the partition map and hence only takes effect the next time the system is started. It
does not affect the state of any volume currently mounted on the partition.

Determining Whether a Partition isto be Mounted

Trap | _Status |
Mode |[Synch, Async |

csCode | SIntl16 | -> | kGetMountStatus (45) |

The drive number of the partition to query, or O if you
wish to query the partition by block number.

1oVRefNum SIntl6 ->

If ioVRefNum isO, thisisthe physical block number of
csParam[0..1] |UInt32 -> (the partition map entry of the partition to query. If
ioVRefNum isnot O, thisisignored.

If iovRefNum iSO, thisisidentifiesthe device
containing the partition to query. Thisisin the same

csParam[2..3] |Deviceldent " |lformat asthe scs11D field of the partinforec. |f
ioVRefNum isnot O, thisisignored.
Your disk driver must set thisto either O (this partition
csParam[0] uiIntl6 <- |lisnot to be mounted) or 1 (this partition isto be

mounted).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition
described by ioVRefNum and csParam[0. . 3] isto be mounted at system startup. Typically thisinvolves
testing kPartitionlsMountedAtStartup in pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the partition
was actually mounted at startup.

Mounting a Partition Immediately

Trap | _Control |
Mode |[Synch, Async |

csCode | SIntl6 | ->

kMountVolume (60) |

The drive number of the partition, or O if you wish to
specify the partition by block number.

1oVRefNum SIntl6 ->

If ioVRefNum isO, thisisthe physical block number of
csParam[0..1] |UInt32 -> ||the partition map entry of the partition. If iovVRefNum is
not O, thisisignored.

If ioVRefNum iSO, thisisthe device containing the
partition. Thisisin the same format asthe scsi1D field
of thepartinfoRec. If ioVRefNumisnot O, thisis
ignored.

csParam[2..3] |[[Deviceldent ->

In response to this request, your disk driver must create a drive queue e ement for the partition described
by ioVRefNum and csParam[0. .3] (if it doesn't already have one) and post a "disk inserted" event for
it. It must do this regardless of the state of the kPartitionlsMountedAtStartup bit in the partition's
pmPartStatus; however, the kPartitionlsWriteable bit sill controls whether the drive iswriteable.

If there is already a volume mounted on the partition, the system will ignore the "extra disk inserted”
event this request generates.

L ocking a Partition

Trap _Control |
Mode | Synch, Async |

csCode | SIntl6 | ->

kLockPartition (46) |

The drive number of the partition, or O if you wish to
specify the partition by block number.

ioVRefNum SIntl6 ->

If ioVRefNum isO, thisisthe physical block number of
csParam[0..1] [UInt32 -> |Ithe partition map entry of the partition. If ioVRefNum is
not O, thisisignored.

If ioVRefNum iSO, thisisthe device containing the
partition. Thisisin the same format asthe scsi1D field
of thepartinfoRec. If ioVRefNumisnot O, thisis
ignored.

csParam[2..3] |[[Deviceldent ->

In response to this request, your disk driver must lock the partition described by iovRefNum and
csParam[0..3]. Typicaly thisinvolves:

e clearing kPartitionlsWriteable in pmPartStatus, whichin turn causes your disk driver to
create aread-only drive queue element for this partition at system startup, and

e making the drive queue element associated with this partition read-only. A read-only drive queue
element has hit 7 of thewriteProt field of the drive queue e ement set, as described in Inside
Macintosh: Files, page 2-85.

Unlocking a Partition

Trap | _Control |

Mode |Synch, Async |

csCode | SIntl6 | -> | kUnlockPartition (49) |
S oVReFNUM SINt16 _> || Thedrive number of the partition, or O if you wish to

specify the partition by block number.

If ioVRefNum isO, thisisthe physical block number of
csParam[0..1] |UInt32 -> (the partition map entry of the partition. If ioVRefNum is
not O, thisisignored.

If ioVRefNum iSO, thisisthe device containing the
partition. Thisisin the same format asthe scsi1D field
of thepartinfoRec. If ioVRefNumisnot O, thisis
ignored.

csParam[2..3] |[[Deviceldent ->

In response to this request, your disk driver must unlock the partition described by iovRefNum and
csParam[0..3]. Typicaly thisinvolves:

e settingkPartitionlsWriteable inpmPartStatus, which in turn causes your disk driver to
create aread/write drive queue element for this partition at system startup, and
e making the drive queue e ement associated with this partition read/write.

Determining Whether a Partition is L ocked

| Trap | _Status |

IMode ||Synch, Async ||

|csCode HSInth |k> “kGetLockStatus(46)

The drive number of the partition to query, or O if you
wish to query the partition by block number.

ioVRefNum SIntl6 ->

If ioVRefNum isO, thisisthe physical block number of
csParam[0..1] [UInt32 -> |[the partition map entry of the partition to query. If
ioVRefNum isnot O, thisisignored.

If ioVRefNum isO, thisisidentifiesthe device
containing the partition to query. Thisisin the same

csParam[2..3] Deviceldent "> |lformat asthe scsi 1D field of the partinforec. If
ioVRefNum isnot O, thisisignored.
csParam[0] UINt16 <. ||Your disk driver must set thisto either O (this partition

isnot locked) or 1 (this partition islocked).

In response to this request, your disk driver must set csParam[0] to indicate whether the partition
described by ioVRefNum and csParam[0. . 3] islocked. Typically thisinvolves testing
kPartitionlsWriteable in pmPartStatus.

IMPORTANT:
The polarity of thistest is opposite to the other partition attribute Status requests. If the partitionis
locked, kPartitionlsWriteable isclear in pmPartStatus.

The request returns the status that is currently recorded in the partition map, not whether the partition
was actually locked at startup. Y ou can determine whether adrive is currently write-protected by |ooking
at bit 7 of thewriteProt field of the drive queue element, as described in Inside Macintosh: Files, page
2-85.

pmPad Pearls

A previoudly undocumented feature of the Partition structure isthe use of the pmpPad field. Thefirst
four bytes of thisfieldisadriver signature, aMac OS four- character code that uniquely identifiesthe
driver. Developers must fill out this field with either aregistered creator code (which is strongly
recommended) or zero. Driversthat use aregistered creator code in this driver signature field may then
use the remainder of pmPad to hold driver-specific configuration parameters.

Apple currently uses the following driver signatures:

enum {
kPatchDriverSignature = "ptDR",
kSCSIDriverSignature = 0x00010600,
kATADriverSignature = "wiki",
kSCSICDDriverSignature = "CDvr-,
KATAPIDriverSignature = "ATPI",
kDriveSetupHFSSignature = "DSU1*"

}:
The values have the following meaning:

kPatchDriverSignature
The Apple patch driver.

kSCSIDriverSignature
The Apple SCSI hard disk driver. [The significance of this value has been lost in the mists of
time]

KATADriverSignature

The Apple ATA hard disk driver.
kSCSICDDriverSignature
The Apple SCSI CD-ROM driver.
KATAPIDriverSignature
The Apple ATAPI CD-ROM driver.
kDriveSetupHFSSighature
Drive Setup setsthefirst four bytes of the pmPad field of "Apple HFS' partitionsto this value.
Whilethisis not, in the strictest sense, adriver signature, it is documented here for
compl eteness.

Remember that your disk driver should use its own driver signature; do not use these values for your
own driver.

New Driver Types

Inside Macintosh: Devices describes how aMac OS driver istagged by having ddType set to 1 in the
driver descriptor map (DDM). Thereis a constant for this, sbMac, defined in "SCSI.h". However, there
are other useful constants for thisfield.

enum {
kDriverTypeMacSCSI = 0x0001,
kDriverTypeMacATA = 0x0701,
kDriverTypeMacSCSIChained = OXFFFF,
kDriverTypeMacATAChained = OxF8FF

}s
The following constants are defined for the ddType field of the DDM:

kDriverTypeMacSCSI
ThisisaMac OS SCSI driver, equivaent to sbMac. Typically thisisonly used for the first
driver (the patch driver) in a SCSl driver chain.

kDriverTypeMacATA
ThisisaMac OS ATA driver. Typicaly thisisonly used for thefirst driver (the patch driver) in
an ATA driver chain.

kDriverTypeMacSCSIChained
Thisisachained Mac OS SCSI driver. Thisis used for the second and subsequent driversin a
driver chain.

kDriverTypeMacATAChained
Thisisachained Mac OS ATA driver. Thisis used for the second and subsequent driversin a
driver chain.

The driver type for achained driver is always the two's complement of the driver type for the patch
driver. For more information about this relationship, see Chaining Drivers and Patch Partitions.

Driver Checksums

Inside Macintosh, Volume V (page 580) contains an assembly language description of the checksum
algorithm used for the pmBootCksum field of the partition map, but this algorithm was somehow dropped
from Inside Macintosh: Devices. Asit isnow quite difficult to obtain copies of Inside Macintosh,
Volume V, the agorithm isincluded below.

; Inputs:

a0.1 -> pointer to driver code

dl.w -> length of driver code in bytes
; Outputs:

dOo.w -> driver checksum

DoCksum

moveq- 1 #0,d0 ; Initialize sum register
moveq- 1 #0,d7 ; zero extended byte
bra.s CkDecr ; handle O bytes
CkLoop
move.b (a0)+,d7 ; get a byte
add.w d7,do ; add to checksum
rol.w #1,d0 ; and rotate
CkDecr
dbra d1l,CkLoop ; next byte
tst.w do ; convert a checksum of O
bne.s @1 ; Into $FFFF
subq.-w #1,d0
@1

Thefollowing isaC equivalent.

static UInt32 ChecksumDriver(void *start, UIntl6 bytesToSum)
{

Ulnt8 *cursor;
Ulntl6 result;

cursor
result

= (UInt8 *) start;
:O;
while (bytesToSum I= 0) {
result = result + *cursor;
result = ((result << 1) & OxOFFFE) |
((result >> 15) & 0x00001);
cursor += 1;
bytesToSum -= 1;
+
if (result == 0) {
result = OXOFFFF;
}

return result;

}

One minor mystery of the pmBootCksum field isthat the field is 32 bits wide but the checksum algorithm
only calculates a 16-hit value. The checksum is always stored in the least significant 16 bits of
pmBootCksum and the most significant bits are always set to zero.

Inside Macintosh, Volume V aso states that driver checksumming is only done for if the first four bytes
of the driver's partition map entry pmPartName field is"Maci". Thisisonly true for SCS| disk drivers.
Other, partition-based disk drivers are always checksummed.

The above algorithm isknown asthe 16-bit driver checksum algorithm. Thisis because the ROM
decrements and tests bytesToSum using aDBRA instruction (which effectively makes bytesToSum a
UInt16), so only thefirst bytesToSum modulo 64 K bytes of the driver are checksummed. Thisisnot a
problem if your driver issmaller than 64 K bytes. If your driver islarger, you must be careful for two
reasons.

1. The code you use to calculate pmBootCksum must mimic the incorrect behavior and only
checksum your driver up to the driver size modulo 64 K.

2. 'You may want to include your own checksum in the driver to ensure that the driver codeis
intact.

Note:
The 16-bit driver checksum algorithm isidentical to the algorithm used by AppleTak's Datagram
Delivery Protocol (DDP).

In some situations where the ROM loads a driver, it does not use the 16-bit checksum algorithm.
Specifically, later versions of ATA Manager use a32-bit driver checksum algorithm, shown
below.

static UIntl6 ATALoadDoCksum(void *start, UInt32 bytesToSum)
{

UInt8 *startAsBytes;

UInt32 result;

uiInt32 i;

startAsBytes = (UInt8 *) start;
result = 0;

for (i = 0; 1 < bytesToSum; i++) {
result += startAsBytes[i];
result <<= 1;
result |= (result & 0x00010000) ? 1 : O;

by
return (UIntl6) result;

}

The key difference isthat bytesToSum is now expressed as a 32-bit quantity, and the algorithm correctly
checksums bytes beyond 64 KB. Further, the 16-bit algorithm never returns a checksum of O (itis
mapped to $FFFF), while the 32-bit algorithm can return a checksum of O.

Y our formatting utility must set pmBootCksum appropriately, depending on which version of ATA
Manager isloading your driver. Furthermore, the ATA driver loader mechanism is updated during the
system startup process so that on machines with the old checksum agorithm in ROM, your driver will
need a different checksum depending on whether it isloaded at start time or after system startup.

Overdl, the best solution to this driver checksum conundrum is;

e make your driver's size lessthan 64 KB (if necessary, use aboot strap driver to load your main
driver), and
e if your driver checksumsto 0, add pad bytes until it doesn't.

IMPORTANT:
ATA disk driversare aso limited to asize of 255 * block size bytes (just under 128 KB for 512-byte
block devices). Thisis because the ROM reads the entire driver using asingle ATA request.

A Partition of Your Imagination

The original Mac Plus SCSI implementation did not alow the user to specify a startup partition.
Obvioudly thisis desired feature, and disk driver developers came up with anumber of solutionsfor this
problem. Over the years, Apple has introduced various stages of OS support for booting from a partition.

Developer-Only Solutions

Prior to Apple providing a solution, developers were responsible for engineering their own. Developers
quickly noticed that, all things being equal, the Macintosh tends to boot from the first bootable drive in
the drive queue. Therefore, disk driver writers arranged to add the startup partition's drive queue element
to the drive queue before the non-boot partitions element. The disk driver's formatting utility provided

the user interface for specifying the boot partition.

This technique was relatively effective and stimulated user demand for a reliable mechanism for booting
from a partition.

Partition Attribute Support

Eventually, Apple codified this approach and provided support for it in the Startup Disk control panel.
The codification came in the form of the kPartitionlsStartup bit in the pmPartStatus field of the

partition map, along with adriver Control request, kSetStartupPartition, which alows the Startup
Disk control panel to instruct the driver to set that bit.

This standardized the previous non-standard behavior, although it still is not a perfect solution because
of variancesin the way the ROM startup code chooses a drive from which to start up.

SCSI Manager 4.3

Apple made further refinementsto this solution with the introduction of SCSI Manager 4.3. SCS|
Manager 4.3 presented new problems to the startup code because it allows for multiple SCSI buses, and
it provides full support for SCSI LUNS. So, when SCSI Manager 4.3 was introduced, Apple aso
introduced a new technique for finding the startup partition, the kdgBoot Driver Gestalt selector.

IMPORTANT:

SCSI Manager 4.3 must bein ROM for the kdgBoot selector to be effective. On machines, such asthe
Quadra 700, that can run SCSI Manager 4.3 but do not have it in ROM, SCSI Manager 4.3 |loads out
of the System file, too late for it to affect the startup drive selection.

When the user chooses adrive in the Startup Disk control panel, Startup Disk sends the kdgBoot Driver
Gestalt selector to the disk driver controlling that drive. Startup Disk then records the responseiin
PRAM. When the Macintosh boots, it iterates through the drive queue, sending akdgBoot request to
each drive. When it finds a drive with a value matching the value in PRAM, it knows that thisisthe
correct startup drive.

ThekdgBoot Driver Gestalt selector is documented in Designing PCI Cards and Drivers for Power
Macintosh Computers, page 113. This documentation is accurate for SCSI drivers. For ATA drivers, the
DriverGestaltBootResponse response fields should be set as follows.

extDev
The ATA bus number of the device.

partition
The partition number on the bootable partition on the device. As described below, the format of
thisfield isinternal to your disk driver.

SIMSlIot
ATA devices must set thisto kDriverGestal tBootATASIMSIot ($20). [This constant is not
currently in Universal Interfaces, Radar ID 2314693 .]

SIMSRSRC
If your driver supports ATA 0/1, you must put O or 1 in thisfield to indicate the number of the
device on the ATA bus. If your driver does not support ATA 0/1, you must set thisto zero. See
ATA 0/1 Software Developers Guide for more detailson ATA 0/1 support.

ROM-in-RAM (NewWorld)

TheROM-in-RAM architecture, introduced with the iMac, presents new challenges for the startup device
selection process. On a ROM-in-RAM machine, Open Firmware is responsible for loading the Mac OS
ROM file off the startup partition, and hence Open Firmware must define the startup partition well before
Mac OS starts to execute. When the Mac OS ROM dtarts, it continues booting from the startup partition

chosen by Open Firmware to avoid the potential user confusion of loading the Mac OS ROM from one
disk and the system software from another.

Open Firmware synthesizes the traditional Macintosh startup process, including:

e Startup drive selection agorithm -- Open Firmware implements the traditional startup drive
selection algorithm. It turns out that this algorithm is very complex, although the gist of it is:
1. if a"snag" key is held down, try booting from the corresponding
device,
2. try booting from the default drive (if any),
3. then try booting from other drives.

e CODS -- Holding down command-option-delete-shift (CODS) prevents the Open Firmware
from booting from the default drive.

e Cfor CD-ROM -- Holding down the C key forces Open Firmware to boot from the CD-ROM
device. Thiswas previously implemented by the **snag" patch but isimplemented by Open
Firmware in ROM-in-RAM computers.

e Flashing question mark -- If no startup device is available, Open Firmware displays the
traditional "flashing question mark™ icon (although, in deference to the fact that ROM-in-RAM
computers do not have floppy drives, it flashes the question mark inside afolder icon instead of
afloppy disk icon).

On ROM-in-RAM compuiters, the selected default startup device is held in an Open Firmware
configuration variable boot-device. This configuration variable holds an Open Firmware path to the
default startup device. The Startup Disk control panel generates a path based on the disk driver's
response to various Driver Gestalt queries.

It isimpossible for Open Firmware to completely mimic the startup drive selection algorithm when it
comes to selecting a startup partition. When booting from a partition, boot-device contains the Open
Firmware partition number of the startup partition. Unfortunately, there is no reliable way to get this
from adisk driver with commonly implemented Driver Gestalt queries.

Note:

Y ou might think that the partition field of the DriverGestal tBootResponse would do thetrick;
however, thisfield is defined to be opaque to the system. "Designing PCI Cards and Drivers for Power
Macintosh Computers' explicitly states:

Thepartition field enables the selection of asingle partition on amultiply
partitioned device as the boot device. It is not interpreted by the ROM or the Startup
Disk "cdev" [Sic], so the driver can choose a meaning and a value for thisfield.

It turns out that different disk drivers use different values for the partition field. Apple disk drivers
set this to be the block number of the partition map entry for the partition, but some third-party drivers
use other techniques, such as recording 1 for the first HFS partition, 2 for the second HFS partition,
and so on. The upshot of thisisthat Startup Disk is unable to use thisfield reliably to set the partition
number inboot-device.

Prior to Mac OS 9.0, the Startup Disk control panel used tricky heuristics to alow booting from a
partition with Apple disk drivers as atemporary measure to solving this problem. The long-term
solution; however, isfor disk driversto support a set of new Driver Gestalt queries, which return
exactly the information Startup Disk needs to set boot-device. The required Driver Gestalt selectors
(kdgDeviceReference, kdgNameRegistryEntry, kdgOpenFirmwareBootSupport, and
kdgOpenFirmwareBootingSupport) are described in "DriverGestalt.h” in Universal Interfaces 3.3.

Note:

Y our driver only need support the kdgNameRegistryEntry Driver Gestalt selector if your device has
an obvious Name Registry node. For devices with no Name Registry node (SCSI), or where the Name
Registry node can betricky to find (ATA), it is reasonable to just return statuskrr.

Non-512 Byte Block Devices

The original Mac OS disk driver architecture assumed that all block devices would use 512-byte blocks.
Supporting block devices with a different block size isrelatively smple, although it gets more
complicated if you want to boot from such a device. Non-512 byte block device support is most
important for CD-ROM drivers, which use a 2-KB block size.

Just the Basics

The basic rule for supporting non-512 block devices on Mac OS is that the disk driver isresponsible
for blocking and deblocking all 1/0 requests to a drive. This discussion assumes that the device block
sizeisan integer multiple of 512, although similar algorithms work for weird device block sizes.

Block Translation

The File Manager makes an 1/0 request in terms of 512-byte logical block number s on aparticular
drive. The disk driver isresponsible for trandating the logical block number of the request to an actua
block number on the drive. If the disk is partitioned, the first step of thistrandation isto add the offset
of the partition to the logical block number; this generatesthe physical block number. If the device
uses 512-byte blocks, the physical block number is the actual block number of the data on the disk. If
the device uses non-512 byte blocks, the disk driver must do a further trandation, converting the
physical block number to adevice block number by dividing the physical block number by the
number of 512-byte blocksin each physical block.

In addition, the disk driver must block/deblock the request. If the physical block number, or the
number of blocksto transfer, isnot evenly divisible by the device block size, the disk driver must
transfer partial blocksto and from the disk.

The following diagrams shows the entire translation process for two partitions on a2 KB block device.
All numbers on the diagram are in the units labeled in the left column. For example, partition 1 isa50
MB partition which extends from 0 to 100 megalogical blocks (512-byte blocks), 40 to 140 mega
physical blocks (also 512-byte blocks), and 10 to 35 mega device blocks (2 KB byte blocks).

FPartition 1 Partition 2

Logical Blocks 0O 100 M % 0 120 M

Physical Blocks 40 M 140 M 1e0 M 220 M

Device Blocks

z5M TOM
10M 40 M

| mplementation Notes

A disk driver typically deblocks arequest by breaking it into three components. Theleading
component consists of al the requested physical blocks up to the first device block boundary. The

leading component is empty if the requested physical blocks start on a device block boundary.

Themain component consists of al the requested physical blocks which are fully encompassed by
device blocks. The main component may be empty if the transfer is short. The main component is
transferred directly from between the client buffer and the disk.

Finally, thetrailing component consists of al the requested physical blocks of the transfer which fall
after the last block of the main component. The trailing component is empty if the physical block
number plus the number of physical blocks to transfer falls on a device block boundary.

Because you can't transfer a sub-block size request, the leading and trailing components must be
transferred through atemporary buffer. Y ou should allocate this temporary buffer when your driver is
opened. Asthe leading and trailing components are always less than one device block (otherwise they
would be part of the main component), the temporary buffer need only be as big as a device block. If
your device driver is single threaded, you need only allocate a single temporary buffer. If your driver is
multi-threaded, you must allocate as many temporary buffers as you allow threads of execution within
your driver, or internally serialize the use of the temporary buffer.

The leading and trailing components are read by transferring the device block to the temporary buffer
and then copying the appropriate data out of the temporary buffer to the client buffer. The leading and
trailing components are written by first reading the current contents of the device to the temporary
buffer, then copying the new data from the client buffer to the temporary buffer, then writing the
temporary buffer to the device.

The following illustration shows how misaligned read is transferred to the client buffer:

4003 : : P anis

1000 1001 1002 1003 1004 1005

Fhysical Elock Request Transfer 1 [leading)

Device Blocks Transfer Z (main)
Client Transfer Buffer Transfer 3 (trailing)
Driver Temporary Buffer

Performance Consider ations

The above agorithm is obvioudly inefficient if transfers are misaligned, that is, if the leading and

trailing components are not empty. Misaligned writes are even more expensive than misaligned reads
because the disk driver must do an extra |/O to pre-fill the temporary buffer with the existing contents
of device block. Worse yet, amisaligned write that has both leading and trailing components takes five
I/0O operations (read leading, write leading, write main, read leading, write leading).

There are anumber of waysto avoid misaligned transfers:

e Your formatting utility should always start partitions (especially file system partitions) on
device block boundaries.

e File system clients can issue a Driver Gestalt kdgMedialnfo request to determine the device
block size and ensure that transfers are aligned. Thisis particularly important for write
requests.

e Asarule, volume formats should use the above technique to ensure that their alocation blocks
are correctly aligned. At aminimum, volume formats should align allocation blocks on 2 KB
boundaries to accommodate the most common cases, namely CD-ROM, DVD-ROM/RAM,
and magneto-optical devices.

It is strongly recommended that your disk driver cache at least one device block. Many Mac OS
programs will transfer datain sequential 512-byte chunks. By caching a single device block, your
driver can radically reduce the average time taken to service these requests.

Booting From Non-512 Byte Block Devices

This section is not yet finished and has been omitted in the interests of shipping an initia version of the
technote. A future revision of this technote will cover booting from anon-512 byte block device. If you
areinterested in thistopic, please email DTS and ask for a prerelease draft of this section.

L arge Volume Support

When Mac OS originally shipped, it supported volume sizes up to 2 GB. Thislimit was shared by a
number of system components, including the File Manager and disk drivers. Large volume support was
introduced in two phases.

1. System 7.5 introduced support for volumes larger than 2 GB, up to asize of 4 GB. The
semantics of two programming interfaces were changed to accomplish this.
o PBHGetVInfo does not return the true size of the volumes greater than 2 GB; the
volume size and free space are aways clipped to 2 GB or less.
o Thedctlposition field of the Device Control Entry (DCE) was redefined as an
unsigned quantity.
2. System 7.5.2 introduced support for volumes larger than 4 GB, upto asizeof a2 TB. This
required two new programming interfaces.
o PBXGetVol Info returns the volume size and free space as a 64-hit quantity.
o Thel/O parameter block passed to disk drivers was extended to include a 64-bit field,
ioWPosOffset, which supplants dCtlPosition.

The changes to the File Manager programming interfaces are not relevant to this technote; they are
documented in DTS Q&A FL 08, "Determining Volume Size." This section describes the changes to the
disk driver interface.

Large Volume Interfaces

Supporting volumes between 2 GB and 4 GB was simply a matter of redefining the dCtlPosition field
of the DCE and the ioPosOffset field of the 10Param structure to be unsigned longs (UInt32).

IMPORTANT:
While the semantics of these fields have been changed to unsigned, Universal Interfaces (as of the
current version, 3.3) still define the fields as signed. Y our code must type cast the fields as appropriate.

To support volumes larger than 4 GB, anew extended 1/0 parameter block (x10Param) structure was
defined. The original and extended I/O parameter blocks are distinguished by the
kUseWidePositioning bit of the ioPosMode field (clear for original, set for extended).

The C definition of the extended 1/0 parameter block is given below. The key difference is the addition
of the iowPosOffset field, asigned 64-bit quantity which contains the offset of the request.

IMPORTANT:

The extended 1/0 parameter block must only be used for _Read or _Write requeststo device drivers. It
must not be used for accessing files. The following description assumes this restriction to smplify the
text.

Note:
This structure was previously only documented in the Power Macintosh 9500 Computers hardware
developer note. The description hereis not only easier to find, but updated and more accurate.

struct XIOParam {

QElemPtr gLink;

short qType;

short ioTrap;

Ptr ioCmdAddr;
10CompletionUPP ioCompletion;
OSErr ioResult;
StringPtr ioNamePtr;
short ioVRefNum;
short ioRefNum;
SInt8 ioVersNum;
SInt8 ioPermssn;
Ptr ioMisc;

Ptr ioBuffer;
long ioReqgCount;
long ioActCount;
short ioPosMode;
wide ioWPosOffset;

}:
typedef struct XIOParam XIOParam;
typedef XIOParam *XI0ParamPtr;

For software making extended 1/0 requests, the fields are defined as follows:

gLink
qType
ioTrap
ioCmdAddr
Used internally by the Device Manager.
ioCompletion
For asynchronous requests, you must either set thisfield to zero or set it to a universal
procedure pointer for your completion routine. For synchronous requests, thisfield isignored.
ioResult
On completion thisfield contains the result of the request, which is either noErr (0) or a
negative error code. The Device Manager guarantees that thisfield will be set to iolnProgress
(1) until the request is complete.
ioNamePtr
Ignored for _Read and _Wri te requests.
ioVRefNum
Y ou must set thisfield to the drive number of the drive you wish to read or write.
ioRefNum
Y ou must set thisfield to the driver reference number of the device driver controlling the drive

you wish to read or write.
ioVersNum
ioPermssn
ioMisc
Ignored for _Read and _Wri te requests.
ioBuffer
Y ou must set thisto point to a data buffer from which datais written, or to which datais read.
ioReqCount
Y ou must set thisfield to the number of bytes you wish to read or write. For disk driver
reguests, this must be a multiple of 512 bytes.
ioActCount
On completion thisfield contains the number of bytes of data that were actually transferred.
ioPosMode
Y ou must set thisfield to kUseWidePositioning to indicate that thisisawide request. All wide
reguests use a positioning mode of fsFromStart. You must not specify any other positioning
mode (fsAtMark, fsFromLEOF, or fsFromMark). You may also specify rdverifyMask for
read-verify mode, noCacheMask to request that the data not be placed in the cache, or
pleaseCacheMask to request that data be placed in the cache.
i0WPosOffset
Y ou must set thisfield to the offset (in bytes) from the beginning of the disk where the transfer
should begin. For disk driver requests, this must be a multiple of 512 bytes.

For disk drivers servicing an extended I/O request, the fields are defined as follows:

gLink

qType
Used internally by the Device Manager.

ioTrap
Y our driver must test bit O of thisfield to determine whether the request isa_Read (bit O clear)
or a_Write (bit O set). It must also test noQueueBit (bit 9) to determine whether the request is
immediate (bit 9 set) or not. If your driver does not support immediate requests, it must fail the
request with aparamErr. Y our driver must not test asyncTrpBit (bit 10) to determine whether
the reguest is synchronous or asynchronous. Instead, it should handle all requests asif they
\éver(_almade asynchronously. See Technote 1067 Traditional Device Drivers. Sync or Swim for

etails.

ioCmdAddr
Used internally by the Device Manager.

ioCompletion
The Device Manager 10Done routine will do the right thing with thisfield. Y our driver should
ignorethisfield and handle all requests as if they were made asynchronously. See Technote
1067 Traditional Device Drivers. Sync or Swim for details.

ioResult
Y our driver must not read or write thisfield. Your driver setsthisfield implicitly when it calls
10Done. When your driver has finished a queued request, it should call 10Done to signa that the
request is complete. 10Done performs a number of actions, one of which isto set thisfield to
the error status you passed to the routine in register DO. Y our driver must pass a
non-positive error statusto 10Done.

ioNamePtr
Y our driver must ignore thisfield.

ioVRefNum
Y our driver must use this field to determine which drive isthe target of the request. If your
driver does not control adrive with this drive number, it must complete the request with
nsDrvErr.

ioRefNum
Y our driver may look at thisfield to determine the driver reference number of the request. This
may be useful if the same codeis used for multiple device drivers (see Code Sharing).

ioVersNum

ioPermssn

ioMisc
Y our driver must ignore these fields.
ioBuffer
Y our driver must transfer data to or from the buffer pointed to by thisfield.
ioReqCount
Y our driver must attempt to transfer the number of bytes specified in thisfield. Your driver may
fail arequest (with paramerr) if thisis not amultiple of 512 bytes.
ioActCount

Before completing the request, your driver must set this field to the number of bytes that were
actually transferred.

ioPosMode
Y our driver must test the kUseWidePositioning bit to determine whether thisisawide
request, as described in the next section. If it isawide request, your driver must ignore the
bottom 2 bits of thisfield (that is, fsFromStart, fsAtMark, fsFromLEOF, and fsFromMark)
and use ioWPosOffset to determine the offset into the drive for the transfer. Y our driver may
choose to honor the rdVeri fyMask, noCacheMask, and pleaseCacheMask in the traditional
way.

i0WPosOffset
Y our driver must transfer data from this offset (in bytes) into the drive. Y our driver may fail a
request (withparamerr) if thisisnot amultiple of 512 bytes. If ioWPosOffset iS negative or
ioWPosOffset plus ioReqCount is beyond the end of the drive, your driver must fail the
request with aparamerr.

Supporting Large Volumesin Your Driver
To support large volumes correctly, your driver must implement the following:

e Your driver must return true in response to the kdgwide Driver Gestalt selector. Y ou may want
to use theGetDriverGestaltBooleanResponse mMacro to ensure that you set the correct
response byte in the parameter block.

e When handling all _Read or _Write requests, your driver must check whether the
kUseWidePositioning flagisset in ioPosMode. If it is, you must cast the parameter block to
an X10Param and do the 1/O at the 64-bit offset specified in iowPosOffset. Thistype of request
isknown asawide request.

e |f kUseWidePositioning ishot set, your driver must do the I/O at the offset specified by
dCctlPosition. You must cast this signed value to an unsigned quantity (UInt32) to correctly
handle offsets from 2 GB to 4 GB. Thistype of request is known asanarrow request.

There are some important caveats of which you should be aware.

e Thereisno guarantee that the system will check with Driver Gestalt before issuing awide
request. The system expects that any driver controlling adrive larger than 4 GB will respond to
wide request correctly. Similarly, the system expects that a driver controlling a drive whose size
is between 2 GB and 4 GB is smart enough to treat dCtlPosition asunsigned.

e Thereisno guarantee that the system will always use wide requests when talking to adrive
larger than 4 GB. In fact, the system currently decides on a request-by-request basis whether to
use awide or anarrow request, based on the request's offset on the drive. However, you must
not rely on this behavior; you must handle wide requests to offsets less than 4 GB correctly.

e Thedctlposition fied of the DCE isa32-bit quantity, thusit cannot accurately reflect the
position of the current 1/0O beyond the 4 GB boundary. Y ou should ignore dCtliPosition for
wide requests and use it only for narrow requests.

Notes for Developers Calling Disk Drivers

If you're writing software that issues_Read or _Write requeststo adisk driver, you must be careful to

avoid some common pitfalls. Specifically, you should follow the recommendations given below.

e You should always use an ioPosMode Of fsFromStart when calling adisk driver. Because
dctlPosition cannot accurately reflect the position beyond 4 GB, other positioning modes do
not work as expected in al cases.

e Beforeissuing awide request, you should call Driver Gestalt to determine whether the driver
supports wide requests.

e If thedriver supports wide requests, you may choose to always use wide requests for that
driver. However, for maximum compatibility, DTS recommends that you take the same
approach as the system by deciding to use awide or narrow request based on the offset into the
drive.

The following code snippet implements these recommendations.

static void SetWidePosOffset(UInt32 blockOffset, XIOParamPtr pb)
// Set up i1oPosMode and either 10oPosOffset or ioWPosOffset for a
// device _Read or _Write.

{
pb->ioWPosOffset.lo = blockOffset << 9; // convert block number
pb->ioWPosOffset_hi = blockOffset >> 23; // to wide byte offset
if (pb—>ioWPosOffset.hi 1= 0) {
// Offset on drive is >= 4G, so use wide positioning mode
pb->ioPosMode = fsFromStart | (1 << kWidePosOffsetBit);
} else {
// Offset on drive is < 4G, so use regular positioning mode,
// and move the offset into ioPosOffset
pb->ioPosMode = fsFromStart;
((10Param *)pb)->ioPosOffset = pb->ioWPosOffset.lo;
s
s

In addition, you should never call PBRead Immed or PBWritelmmed on adisk driver unless you know, in
advance, that the disk driver supports such requests. Many disk driversfail to handle Immediate
requests properly. Because immediate requests result in the disk driver possibly being reentered, these
problems are hard to detect and debug.

How the ROM Loads SCSI and ATA Drivers

This section describes how the ROM loads SCSI and ATA driversfrom adriver partition.
Understanding this process is critical to an understanding of the chaining driver architecture, and useful
for general disk driver writers.

Note:

This discussion only applies to computers with built-in support for SCSI or ATA, and the drivers
loaded from devices attached to those buses. It does not apply to the Macintosh 128 and 512, which
can only boot through the floppy drive interface and do not support partition-based drivers. Nor
doesit apply to drivers for modern /O buses, such as USB and FireWire.

When a Macintosh boots, code in the ROM scans each SCSI and ATA busfor block devicesin a
bus-specific manner. Once it has found a potentially bootable block device, the ROM attemptsto load a
driver from that device. The ROM executes the following procedure to load adriver.

1. Itfirst reads device block O of the disk. Thisisthe driver descriptor map (DDM) and is
structured as the Block0 datatype defined in "SCSI.h". It checksthat block O isavaid DDM
by comparing the sbSig field to sbS1GWord ($4552 or *ER*). If the DDM is not valid, the ROM
ignores the device.

2. It then reads device block 1 of the disk and looking for the first entry of the partition map. A
partition map entry is represented by the Partition data structure in "SCSI.h". For the
partition to be recognized, the pmSig field must be newPMSigWord ($5453 or *PM*). The ROM
usr?slthe pmMapBIkCnt field of thisfirst partition to determine the size of the partition map asa
whole.

3. The ROM then searchesthe DDM for thefirst driver that is compatible with this bootable bus.
The DDM contains an array of bbMap structures. The key field in this structure is ddType,
which identifies the type of driver defined by the structure. If the device is attached to a SCSI
bus, the ROM looks for abDMap whose ddType iSkDriverTypeMacSCSI. If the deviceis
attached to an ATA bus, the ROM looks for aDDMap whose ddType iSkDriverTypeMacATA.

4. The ROM then searches (by reading consecutive device blocks) the partition map for the chosen
driver's partition map entry (whose pmParType startswith "Apple Driver" and whose
pmPyPartStart equasthe ddBlock field of the DDMap of the chosen driver). It stores this
partition map entry in atemporary memory block.

5. The ROM then searches (by reading consecutive device blocks) the partition map for the first
HFS partition (whose pmParType iS"Apple_ HFS"). It stores this partition map entry in a
temporary memory block.

6. The ROM then uses the driver's DDMap to read the driver into memory. It first allocates a pointer
block in the system heap to hold the driver (the size of this block isthe size of the driver in
blocks (ddsize) multiplied by the disk's block size (sbB1kSize)) and then reads the driver off
the disk (starting from ddBlock) into that buffer.

7. Next, the ROM checksums the driver to ensure its validity. For more information on the exact
details of the checksum, see Driver Checksums.

8. The ROM then callsthe driver's entry point. The exact calling conventions are described below.
The driver is expected to install itself in the unit table, open itself, and create drive queue
elements for each mountable partition on the disk. (The exact definition of "mountable” is
covered in Cooperating with File System Manager.)

If any of these stepsfail, the ROM assumes that the device is not bootable and attempts to boot from the
next available device.

IMPORTANT:

The fact that the ROM requires an "Apple HFS' partition to boot from adevice is important to authors
of non-standard disk drivers, such as RAID striping drivers. The RAID software must create a dummy
"Apple_HFS" partition on the device so that the ROM will boot far enough to load the RAID driver.

Note:

The Macintosh Plus originally used an old style (Inside Macintosh V) partition format, identified by a
pmSig of oldPMSigWord ($5453 or *TS*"). Chaining drivers are not supported on the old partition
format. However, the new (Inside Macintosh V) partition map format will work on the Mac Plus, so it
is possible to use chaining drivers on these venerable machines.

If you want to support the Macintosh Plusin your driver, you need to be aware of the subtle difference
between it and later computers. Specifically the buffer pointed to by A0 when the Macintosh Plus ROM
calls your driver contains the contents of the second block on the disk (the old style "device partition
map"); on al subsequent computers, the buffer pointed to by A0 containsthefirst "Apple HFS'
partition map entry.

Each driver has two possible entry points. The primary entry point isat the beginning of the memory
block holding the driver. The secondary entry point is8 bytesinto the memory block holding the
driver. In genera, the primary entry point is called when an "old" driver isloaded, or a"new" driver is
loaded by an 'old’ ROM, and the secondary entry point is used when a'new' ROM load a"new" driver.
The secondary entry point has extra parameters that make sense in the 'new’ ROM environment.

The exact definition of "old" and "new" depends on the bootable bus. For SCSI, a"new" ROM isone
that contains SCSI Manager 4.3, and a"new" driver isindicated by the bytes"43" in the two bytes
following the "Apple_Driver" in pmParType. For ATA, an 'old' ROM is one that contains ATA Manager
1.0. All newer versions of ATA Manager use the %condary entry point. A 'new' ATA Manager will
always call the secondary entry point of the driver.

Note:

Computers withATA Manager 1.0in ROM are listed in the table below:

Base M odel |[Introduced |[and Derivatives? |
M acintosh Performa 630 [|July 1994 |yes |
M acintosh PowerBook 150 [|July 1994 |yes |
Macintosh LC 580 ||Apr 1995 |yes |
Power Macintosh 5200 ||Apr 1995 |yes |
Power Macintosh 6200 |[May 1995 |yes |
Power Macintosh 5300 ||Aug 1995 |yes |
Power Macintosh 6300 Oct 1995 yes, except 6360

Both entry points use register-based calling conventions. The register usage is shown in the table below:

A pointer to thefirst "Apple HFS' partition map entry
in the partition map. See step 5 above. Y ou do not own
AO Partition * _> |[thismemory and must neither changeiit nor freeit. This
i memory isnot guaranteed to be a standard Memory
Manager pointer block. This parameter is generally
ignored by drivers.
D3 [n/a ||-> ||See discussion below.
A specification of the device from which the driver was
D5 bus dependent -> |(loaded, in aformat that is bootable-bus dependent. See
the table and discussion below.
07 lon _> |[ThesbData field from the DDM. This parameter is
9 generally ignored by drivers.
DO OSErr or SInt32 ||<- [Seediscussion below.
Register D3

Old Apple SCSI drivers require that register D3 be set to a non-zero value in order to boot correctly. This
bug was fixed in September 1996 although, if you are writing a SCSI disk -mounting utility, you may
still encounter these old drivers.

Register D5

The datain register D5 depends on both the bootable bus and the entry point called. The following table
indicates the possible combinations.

Bootable Bus |[Entry Point |D5 Format |
SCS [Primary [0,0,0,SCSI D |
scs [Secondary [pevicerdent |
ATA || Primary [0, 0,0, Bus |
ATA Secondary DeviceldentATA

The format of DeviceldentATA is given below.

struct DeviceldentATA {
UInt8 diReserved;
UInt8 busNum;
UInt8 devNum;
UInt8 diReserved2;

}:

typedef struct DeviceldentATA DeviceldentATA;
typedef DeviceldentATA * DeviceldentATAPtr;
Note:

DeviceldentATA is hot the same asthe ataDeviceID structure defined in ATA 0/1 Software
Developers Guide, although it is easy to convert between the two.

The fields have the following meaning:

diReserved
Reserved. When calling adisk driver, the ROM sets thisto 0; however, in the case described
below, thisfield contains meaningful data.

busNum
The ATA bus number.

devNum
If the machine has ATA 0/1 support, thisis the device number of the device on that bus.
Otherwise, it must be zero.

diReserved2
Reserved. Set to 0.

In some cases (such as the entry point to a patch |oaded by the Apple patch driver), the diReserved field
is used to distinguish between aDeviceldent and DeviceldentATA. The appropriate values for this
field are given below.

enum {
kBusTypeSCSI
kBusTypeATA
kBusTypePCMCIA
kBusTypeMediaBay

L | A 1
WN PO

}:
IMPORTANT:
Values other than kBusTypeSCS1 (which indicates aDeviceldent) and kBusTypeATA (which indicates

aDeviceldentATA) are now deprecated. PC Card and media bay device are now handled through the
ATA Manager, modern versions of which handle multiple buses.

Note:
In times past, it was accepted practice to use various high bits of register D5 to hold various pieces of
state information. Specifically the following bits are used by various Apple and third party drivers.

enum {
kSecondaryEntryPointCalled = 29, // 1 => secondary entry point called
kDontMountVolumes = 30, // 1 => don"t mount any partitions

kAfterSystemStartupTime 31 // 1 => post-system startup load

3

However, in the circumstances described above, al bitsin register D5 can be used to hold information.
Therefore, DTS recommends that you discontinue the practice of storing flagsin the high bit of D5
where practical.

A good substitute for the kAfterSystemStartupTime flag is described in Disk Drivers and the System
Heap.

Register DO

The significance of register DO on return from your driver's entry point varies depending on the manager
that loaded your driver.

e For ATA Manager, your driver should return an error result in the low word of register DO and,
if the driver successfully installed, its driver reference number in the high word (or a high word
of zero otherwise). If you return an error value other than noErr, ATA Manager will unload
your driver code from memory.

e For SCSI Manager 4.3, the contents of register DO are always ignored. SCSI Manager 4.3 will
never unload your driver from memory. With some clever coding, you can unload the bulk of
your driver code upon afailed installation, if you feel that level of polish is necessary.

e For old SCSI Manager, the situation varies depending on the particular ROM.

o TheMac Pluswill treat register DO as an error result and unload your driver if you
return a non-zero value.

o Subsequent computers ignore the contents of register DO. If your driver faillsto instal
and you want its code to be unloaded, you can return to the return address plus 4 bytes,
which signalsthisto SCSI Manager. Doing this on a computer running SCSI
Manager 4.3 will crash the system.

Loading FireWire Drivers

This section is only available under non-disclosure agreement. Please contact DTSfor details.

Chaining Drivers and Patch Partitions

Booting acomputer is always atricky exercise. One of the perennia challengesisworking around problemsin
the ROM that prevent the OS from booting far enough to load patches in the normal way. On pre-ROM-in-RAM
Macintosh computers, this problem is solved by means of chaining drivers and patch partitions. Patches |oaded
in thisway have been used to:

e support booting from volumes larger than 2 GB on machines that don't have such support in the ROM
(for example, NuBus-based Power Macintoshes),

e fix bugsinthe ROM SCSI Manager that would otherwise prevent booting, and

e provide support for snag booting, where the user can hold down the C key to force the system to
boot from the CD-ROM device.

This section explains how chaining drivers and patch partitions are implemented, and how you can license
chaining drivers and patches suitable for inclusion in your own disk formatting utility.

Note:

The chaining driver architectureis only required for SCSI and ATA devices. All computers capable of
booting from modern 1/O buses (USB and FireWire) use the ROM-in-RAM architecture, where the
ROM isloaded from the "Mac OS ROM" file in the System Folder. On such machines, ROM patches
are effected by updating the "Mac OS ROM" file.

Background Material

This section presumes that you are familiar with the existing documentation on disk partitions and how
Mac OS loads a driver from the disk at startup time. Specifically, you should be familiar with:

e Inside Macintosh: Devices, Chapter 3"SCSI Manager” The Structure of Block Devices (page

3-12 through 3-15) and Data Structures, (page 3-23 through 3-27), and
e Inside Macintosh: Devices, Chapter 4 "SCSI Manager 4.3" Loading and Initializing a Driver

(page 4-11)
e Secrets of the Partition Map, earlier in this document.

Architecture Overview

When it boots from a block device, Mac OS loads the driver from the device itself. Thisdriver isheld in
adriver partition (whose pmParType startswith "Apple Driver") and is referenced by an entry in the
driver descriptor map (DDM), which is stored in the first device block on the disk. The ROM searches
the DDM to find the appropriate driver, loads that driver into memory, and calsit.

The chaining driver architecture works by installing a special driver in place of the standard disk driver.
Thischaining driver performsits operation (typically it applies a patch to the ROM) and then loads the
next suitable driver in the DDM, in exactly the same way as the ROM would have. The next driver may
be areal disk driver, or yet another chaining driver.

The sequence of driversloaded inthisway isknown asadriver chain. There may be more than one
driver chain on the disk; often, there is one for each bootable bus possible for that disk. For example, a
Zip disk may have achain of SCSI drivers (whose pmParType is"Apple Driver43") for use when the
Zip disk isinserted in a SCSI Zip device, and achain of ATA drivers (whose pmParType iS
"Apple_Driver_ ATA") for use when the Zip disk isinserted in an ATA Zip device.

Thelast driver in adriver chain does not need to support chaining because there is nothing to chain to.
This means that you don't need to modify your disk driver to support this architecture, aslong as the
disk driver isawaysinstalled last in the chain.

One specid kind of chaining driver isthe patch driver. Thisisadriver supplied by Applethat is
responsible for loading and executing system patches out of apatch partition. Each patch hasapatch
descriptor, which contains afour character code that uniquely identifies the patch. Once it has loaded
the patches, the patch driver chainsto the next driver, as any other chaining driver would.

In general, you do not need to write a patch driver, or the patches it installs. However, your formatting
utility must install the patch driver and the patch partition such that the right patches are loaded.

Available Patches
Apple supplies both patch drivers and patches to developers. The available patch drivers are listed below:

e "PatchChainDriver" -- This patch driver is used when booting from a SCSI device.

e "ATAPatchChainDriver" -- This patch driver is used when booting from an ATA device, such
asaninternal ATA hard disk.

e "ATAPIPatchChainDriver" -- This patch driver is used when booting from an ATAPI device,
such asan ATAPI CD-ROM.

The following patches are available.

e "mesh” -- This patch fixes abug in the ROM SCSI Manager's handling of the MESH chip. Itis
required to successfully boot on a machine with that chip.

e "scsi" -- This patch makes adjustments to the classic SCSI Manager to enable booting from
CD-ROM devices.

® "ruby" -- This patch installs support for volumes larger than 2 GB on machines that don't have
this support in the ROM.

® "snag” -- Thispatch implementsthe "To start up from this CD-ROM, hold down the C key as
the computer starts up” functionality used in many bootable CD-ROM products. It isonly
necessary on pre-ROM-in-RAM computers, ROM-in-RAM computers implement snag booting

in Open Firmware.

To legally include these patch drivers and patches in your formatting software, you must license the
patches from Apple. Contact Apple Software Licensing for details.

Note:
For experimental and debugging use, you can extract the relevant patch resources from Apple's Drive
Setup utility. Resources of type "ptDR" hold patch drivers, resources of type "pDES*™ hold patch

descriptors, and resources of type "ptch* hold patch code. However, production software must
license this resources from Apple for redistribution.

Advice for Formatting Utilities

Thefirst thing that aformatting utility must do is decide how many driver chains need to be constructed. Thisis
determined by the number of possible bootable buses for the disk. For example, a SCSI device can only be
attached via SCSl, so the utility need only construct one driver chain. In contrast, an removable cartridge disk
might be placed in either aSCSI or ATA mechanism, and therefore must contain two driver chains, one for
SCSI and onefor ATA. Moreover, a PowerBook internal ATA hard disk device needs to have a SCSI driver
chainif it isto work in target mode.

For each driver chain constructed, the formatting utility must first create a partition for the patch driver and then
create a partition for the disk driver itself. When creating partitions, the formatting utility must be careful to
write the driver signature into the pmPad field of the Partition record. Chaining drivers (including the patch
driver) need this signature to correctly find the next driver to load. The utility should aso be sure to set up the
pmPartStatus field according to the description in pmPartStatus Revealed.

In addition to creating the driver partitions, the formatting utility must also create entriesin the DDM with the
appropriate driver type. See New Driver Typesfor alist of driver types, and Architecturein Detail for an
explanation of the relationship between them.

The formatting utility must also construct the "Apple_Patches' partition. Some rules must be observed when
doing this.

The pmPartName field of the partition map entry should be "Patch Partition".

The pmParType field of the partition map entry must be "Apple_Patches'.

Thefirst block of the patch partition contains alist of the patchesin the partition.

Patches are run in order, so it is necessary to place patches that are critical to the correct operation of
later patches (like "mesh™ and "scsi ") before the less critical ones (like "snag™).

Patch descriptors contain aversion number. The formatting utility should not replace a newer patch
with an older one.

e Patch descriptors are variable length data structures. Y ou cannot index the list of patches as an array.

There are also some non-obvious factors when deciding whether to install a particular patch on a particular disk.

e The MESH patch ("mesh ™) should be installed on any disk which might be booted from via SCSI. In
particular, the MESH patch is required on the internal ATA hard disk on PowerBooks, becauseit is
possible they might be used to boot a machine while in target mode.

° Thlelarqe volume support patch (*ruby ") isonly required if any of the partitions on the disk are 2 GB
or larger.

e Donotingal the "snag® patch on hard disks! Doing so will prevent the user from snag booting a CD.
Thisis because, if the C key is held down, the hard disk "snag* patch prevents booting from the CD,
while the CD-ROM "snag" patch prevents booting from the hard disk.

Finally, formatting utilities should aim to leave some free space in the partition maps, driver partitions, and
patch partitions. Drivers and patches grow over time and wasting afew KB now may radically ease the job of
upgrading adriver or patch in the future.

IMPORTANT:

To be compatible with computers that have the classic SCSI Manager in ROM, al datathat is read by
the ROM must be within thefirst 1 GB of the disk. Thisis because the classic SCSI Manager driver
loading code uses 6-byte SCSI commands to read the driver.

Architecturein Detail

This section describes the chaining driver architecture in detail, including how chaining driversintercept the
driver loading process, the Apple patch driver, and the structure of the patchesit loads. To understand this
section, you need to understand how the ROM loads SCS| and ATA drivers.

Pre-Chaining Example

The following diagram shows how a partition map might be laid out prior to the introduction of chaining
drivers. This exampleincludes both ATA and SCSI drivers, a setup which isuseful for disks that can be
mounted in both ATA and SCSI mechanisms. Some salient features are:

e Thesample SCSI driver has adriver signature of *Qscz*, and the sample ATA driver hasadriver
signature of "QATA".

Zoomed In Yiews Overall Disk Layout Zoomed In Yiews
Cnot to scale) Cnot to scale) [not to scale)
Block O 0 \\\\ Partition
sbSig = 'ER' 0 Driver Desc. prnSig = P
sbBIkSize = 512 Map pratlapBIkCht = 5
sbEkCount = 2000 1 — prnPyFPartStart = 1
_ Fartition _
sbDrwrCount = 2 prnPartElkCnt = 53
1 ddElack = 64 e priFartMame = "apple”
ddSize = 40 prnPar Type = "dpple_partition_map”
ddType = $0001 ca prnLgCataStart = 0
2 ddBlock = 104 ; prnlataCnt = 63
ddSize = 45 SCS1 Driver prFartStatus = O
ddType = $0701 priBootChksum = 0
priProcessor = "
prnPad = 0
104 FaT & Driver
Partition
pransig = 'Pr1’
priftapBIkCnt = 5
143 prPyPartStart = €4
HF praoFPartBElkCnt = 40
Fartition proFartMarme = "Macintosh"

praoFarType = “Apple_Driverd3"
praoLglataStart = 0

proCataCnt = 40

prPartStatuz = $7F
prBootChksum = $wxye
proProcessor = "&E000"

prnFad = 'QSCE'
Partition
pmSig = ‘P’

prifapBIkCnt = 5
proPywFPartStart = 104
prinFartBlkCnt = 45
prioFartMame = "Macintosh"
priFarType = “&pple_Driver_4T&"
praoLglataStart = 0

1990

Chaining Drivers

1290

2000

Free Space

prnPyFPartStart = 104
prnPartElkCnt = 45
proPartMarme = "Macintosh ™
prPar Type = "dpple_Driver AT A"
prnLglataStart = 0

prnlataCnt = 45

pmPartStatus = $7F

prBootCksum = $wxye
prProcessor = "&8000"

prnFad = "QaTa’
Partition 4
prinSig = 'Pr1’

prifapBIkCnt = 5
prinPywFPartStart = 149
pranFartBlkCnt = 1241
prioFartMame = "Macintosh HL
prinFarType = "Apple_HFS"
praoLglataStart = 0

praCrataCnt = 1241
proPartStatus = $CO0000FF
prinBaoctCksurn = O
prioProcessor = "

pranFad =0

Partition >

prnsig = 'Pr°
protapBIkCnt = 5
priPywFPartStart = 13990
pranFPartBlkCnt = 10
priFartMarne = "Extra”
prioFarType = “bpple_Free™
praoLglataStart = 0
proCataCnt = 10
proFartStatus = 0
priBactCksurn = O
praoProcessar = "
prinFad =0

The basic idea behind chaining driversisvery smple. A chaining driver appears to the ROM as the actual disk
driver. It hasaDDM entry of the appropriate type (kDriverTypeMacSCSI for SCSI, kDriverTypeMacATA for
ATA) and it has a partition with the appropriate type ("Apple_Driver43" for SCSI, "Apple Driver ATA" for
ATA). The ROM finds, loads, and executes the chaining driver asif it wasthe real disk driver. The chaining
driver does its operation (patching, password protection, and so on) and then finds, loads and executes the next
driver in the driver chain. This processis repeated once for each driver in the chain.

Thefirst chaining driver in adriver chain always has the ddType expected by the ROM (kDriverTypeMacSCS|
for SCSI, kDriverTypeMacATA for ATA). Subsequent driversin the driver chain have their ddType et to the
two's complement of the standard value (kDriverTypeMacSCSIChained for SCSI,

kDriverTypeMacATAChained for ATA).

There are anumber of important implementation details for chaining drivers.

e All driversin the chain, except the first, must have the kPartitionlsChainCompatible bit set in the
pmPartStatus field of thelr partition map entriesto indicate that they can be chained to (they don't
have to be loaded directly by the ROM). The first driver may have this bit set, although it is not

required.

e A chaning driver must always have the kPartitionCanChainToNext bit set in the pmPartStatus
field of its partition map entry. While this bit is not actually needed for the chaining driver to be loaded,

formatting utilities may use the bit to determine the required order of driversin the DDM.

e A chaining driver may also contain the rea disk driver. If it does, it should have the
kPartitionlsRealDeviceDriver bit setinthe pmPartStatus field of its partition map entry.

e The ROM loads the chaining driver exactly asit would anormal driver. Therefore, if achaining SCSI
driver wants to have its checksum validated by the ROM, it must set the first four bytes of its partition
map entry pmPartName field to "Maci".

e A chaining driver must find the next driver to load using the following agorithm.

1. First, the chaining driver should search the partition map for its own partition map entry. It can
distinguish itself from other drivers by looking for its driver signature in the pmPad field.

2. Then, the driver should look up its entry in the DDM. It can find itself by matching the
pmPyPartStart field of its partition map entry to the ddBlock field of its DDMap.

3. It can then find the DDMap of the next driver in the driver chain by searching onwards from its
own DDMap for abbMap with the appropriate ddType. In this case, appropriate is either the
two's complement of the chaining driver'sddType (if the chaining driver isfirst in the chain),
or the same ddType asthe chaining driver (if the chaining driver is subsequent in the chain).

e There may be no next driver to load. The chaining driver should treat this as an error, and handle it as
described below.

e A chaining driver must load and execute the next driver exactly asthe ROM would have. The exact
details are covered in the previous section. Note that the chaining driver must:

1. checksum the driver, as described in Driver Checksums, and

2. remember which of its entry point was called (primary or secondary) and call the same entry
point for the next driver, and

3. cdl the next driver with registers AO, D5, and D7 set exactly as they were when the chaining
driver was called.

4. handle any error returned by the next driver as described below.

e A chaining driver may need to increase the size of the system heap to allow it to alocate enough
memory to load the next driver. See Disk Drivers and the System Heap for details on doing this.

How the chaining driver handles errors depends on whether the chaining driver precedes the disk driver in the
driver chain. If the chaining driver precedes the disk driver, any error loading the next driver, or any error
returned by the next driver's entry point, isfatal. The chaining driver should return ioErr from its entry point.
However, if the chaining driver isthe disk driver (both kPartitionCanChainToNext and
kPartitionlsRealDeviceDriver are set in itspmPartStatus) or comes after the disk driver, any error
loading the next driver is not fatal, and the chaining driver should return noErr regardless of any error loading
the next driver in the chain.

The following diagram shows how a partition map might be laid out for a disk that can only be booted on an
ATA bus and which has a chaining driver. Some salient features are:

e The DDM hasthe chaining driver first, followed by the disk driver (with a negated ddType).
e Thechaining flags are set in the pmPartStatus fields of the chaining driver's and the disk driver's

partition map entry.
Zoomed In Yiews Overall Dizsk Layout Zoomed In YViews
Cnot to scale) Cnot to scale) not to scale)
Elock O 1] \\\\ FPartition 1
sbSig = 'ER’ o D iwver Desc. prinSig = 'Pr1’
sbElkSize = 512 Map prifapBIkCnt = 5
zbE kCount = 2000 1 — priPywFPartStart = 1
shDrvrCount = 2 Partition priPartElkCnt = 63
1 ddBlack = 64 Map priPartMarme = "apple”
ddSize = 20 priFarType = “&pple_partition_rnap"
ddType = 0701 praoLglataStart = 0
2 ddBlack = 24 e prlataCnt = 63
ddSize = 45 Do prPartStatus = 0
ddType = $FSFF prnBootChksum = 0
a4 AT A Driver prioProcessor = "
pranFad =0
Partition 2

Ml e — et

ddType = $FSFF

The Apple Patch Driver

¢

129

1290

2000

Driver

&Td Driver

primar Lalalida = U
prnBootCksurm = 0
prProcessor = "
prnPad = 0

HF=
Fartition

Partition

prinSig = 'Pr1’
protapBIkCnt = 5

priPywFPartStart = 64
prinFartBlkCnt = 20

prioFartMame = "Macintosh_Chaining”
priFarType = “&pple_Driver_4T&"
praoLglataStart = 0

praCrataCnt = 20

prPartStatus = $077F
prBootChksum = $wxyz
proProcessor = "&E000"

Free Space

prmPad = "QCHN'
Partition
pransig = 'Pr1’

protapBIkCnt = 5

priPywFPartStart = 24

prioFPartBIkCnt = 45
proFartMarme = "Macintosh ™
prioFParType = “Spple_Driver_&4T 4"
praoLglataStart = 0

prnlataCnt = 45

priFPartStatus = $0ZTF
prnBootChkaurm = $wxyz
proProcessar = 2000

praPad = ‘QATA'
Partition
prnSig = 'Pr°

pratlapBIkCht = 5

prnPyFPartStart = 129

prnPartBEIkCnt = 12861
proPartMarme = "Macintosh HL
prnPar Type = "dpple_HFS"
prnLgCataStart = 0

prnlataCnt = 1541
priPartStatus = $CO00007F
prnBootCksurm = O
priProcessor = "

prnPad = 0

Partition

prnSig = 'Pr°
profapBIkCnt = 5

praoPwFartStart = 1990
prnPartElkCnt = 10

prnPartMarme = "Extra®
prnPar Type = "dpple_Free"
prnLglataStart = 0
prnlataCnt = 10
prnPartStatus = 0
prnBootCksurm = 0
prProcessor = "

prnPad = 0

The Apple patch driver isachaining driver supplied by Apple that |oads patches from a specia partition on the
disk. Y ou must license the patch driver and its accompanying patches for inclusion with your disk driver
software. This section describes the operation of the patch driver insofar asis necessary for you to write a
formatting utility that correctly installs the patches.

Typically, the patch driver isinstalled first in the driver chain. It finds the patch partition by searching the
partition map for an entry whose type is"Apple_Patches'. It then walks the patch partition, loading and
executing the patches. Finally, it chains to the next driver.

The patch partition is structured to contain multiple patches. The first block of the patch partition contains a
patch list, adescription of al the patchesin the partition. The patch list is defined by the PatchList structure.

struct PatchList {
Ulntl6 numPatchBlocks;
Ulntl6 numPatches;
PatchDescriptor thePatch[1];

}:
typedef struct PatchList PatchList;
typedef PatchList * PatchListPtr;

The fields have the following meaning:

numPatchBlock
The number of device blocks used to hold the patch list. The patch driver must load this many blocks
from the start of the patch partition to ensure that it has all the patch descriptors.
numPatches
The number of patch descriptors contained in the patch list.
thePatch
The patch descriptor describing the first patch in the patch list.

IMPORTANT:
Each patch descriptor is of variable size, so you can't index thePatch as an array.

Each patch in the patch list is described by the PatchDescriptor datatype.

struct PatchDescriptor {
OSType patchSig;
Ulntl6 majorVers;
Ulntl6 minorVers;
ulnt32 flags;
Ulnt32 patchOffset;
UInt32 patchSize;
Ulnt32 patchCRC;
UInt32 patchDescriptorlLen;
Str32 patchName;
Ulnt8 patchVendor[1];

}:
typedef struct PatchDescriptor PatchDescriptor;
typedef PatchDescriptor * PatchDescriptorPtr;

typedef PatchDescriptorPtr * PatchDescriptorHandle;

enum {
kRequiredPatch = 0x00000001;

};

The fields have the following meaning:

patchSig
A four-character code that uniquely identifies the patch. If you create your own patches, you must use a
registered creator code.

majorVers
A mgor version number. Typicaly thisis 1.

minorVers
A minor version number. Typically thisis 0. This combines with the major version number to indicate
aversion of theform 1.0, 1.1, and so on.

flags
A set of flagsfor the patch. The only bit currently defined is kRequi redPatch. If thisis set, the patch
must succeed for the system to continue booting. See the section on error handling below. All other
bits are reserved and must be set to zero.

patchOffset
The offset, in device blocks, from the beginning of the patch partition to the patch code.

patchSize
The actual size of the patch code in bytes.

patchCRC
A checksum for the patch. Thisis calculated using the 16-bit driver checksum algorithm.

patchDescriptorLen
Thetotal length, in bytes, of this patch descriptor. The minimum value for thisfield is
sizeof(PatchDescriptor), which is 62 bytes. Thisvalue of thisfield must be even.

patchName
A human-readable name for the patch. This name is never displayed to users or used by the system. It
is present for debugging and diagnosis only.

patchVendor
A human-readabl e description of the patch vendor. This name is never displayed to users or used by
the system. It is present for debugging and diagnosis only. This string may be followed by an arbitrary
amount of patch-specific data.

IMPORTANT:

Previous versions of the patch partition documentation described patchName as asStr31 (actually, an
array of 32 UInt8s), which implied that patchvendor started at offset 60 in the structure. Thisis
incorrect. The patchName field isaStr32 and patchvendor starts at offset 61. Note that thisis an

exception to the genera rule that Pascal strings are not supposed to be placed at odd offsetsin a
structure.

In addition, because of the aforementioned error, the minimum value for the patchDescriptorLen
field is62, not 61 as previously documented.

IMPORTANT:
Previous versions of the patch partition documentation stated that patchDescriptorLen must be a
multiple of 4. Thisis contradicted by observed behavior.

Note:

Apple patches generally use "\pApple Computer, Inc.” in the patchvendor field and have no
patch-specific data. Thisresultsin apatchDescriptorLen of 82, whichis 62 +
PLstrlen(patchVendor).

When the patch driver executes a patch, it does so by creating a new pointer block in the system heap which is
large enough to hold the patch, reading the patch code into that block, and then calling the patch entry point (the
first byte of the memory block) using the calling conventions described in the next section.

As part of its operation, the patch driver increases the size of the system heap to accommodate the size of the
patches |loaded.

Patch Driver Error Handling

Error handling in the patch driver follows the general outline for error handling in chaining drivers.
Specifically, an error is classified as either fatal or non-fatal. For afatal error, the patch driver discards the

current patch descriptor and patch code (if any) and returns ioErr from its entry point, which indicatesto the
system that this disk is unusable. Fatal errorsinclude:

e failuretoload arequired patch (one whose patch descriptor's flags field haskRequi redPatch set),

e apositive result from arequired patch,

e anegative error result from any patch, and

e failureto load the next driver (the patch driver is aways loaded first in the driver chain, so afailure to
load the next driver is always afata error).

For anon-fatal error, the patch driver smply discards the patch descriptor and patch code for the patch and
continues trying to load the next patch (if any) or the next driver in the driver chain. Non-fatal errorsinclude:

e inability to load a non-required patch, and
e apositive error result from anon-required patch.

Patch Execution

The prototype for a patch's entry point is given below.

extern pascal OSErr MyPatch(PatchDescriptorPtr myPatch,
Deviceldent myDevID);

IMPORTANT:
Previous versions of the patch partition documentation incorrectly documented this prototype as using
C calling conventions and having a long return result. This documentation is correct.

The parametersto the entry point are:

myPatch
A pointer to the patch's patch descriptor. The patch can use this pointer to extract patch-specific
information from patchvendor part of the patch descriptor. The memory containing the patch
descriptor will be deallocated after the patch returns; the patch is responsible for copying any
information it needsto retain.

myDevID
A deviceidentifier which identifies the device from which the patch was loaded. The diReserved field
of this parameter can be used to distinguish whether thisisa SCSI Deviceldent or a
DeviceldentATA.

result
noErr, if the patch was successful. The patch driver will dispose of the patch descriptor but leave the
patch code in memory. A positive error code, if the patch encountered a non-fatal error. A negative
Srrorlcode, if the patch encountered afatal error. See the description of patch driver error handling for

etails.

The patch's code is aways loaded in the system heap. The patch's entry point is always called at system task
time.

IMPORTANT:
A patch must try to minimize any assumptions about its environment. Specifically:

e A patch should not assume that it was loaded from an ATA or SCSI device. For example, a
SCSl-specific patch should behave correctly if it isloaded from an ATA device. Thiscan
happen if the patch isinstalled on aremovable cartridge disk that can be mounted in both ATA
or SCSI devices.

e A patch should not assume the existence of optional system software capabilities. For example,
a SCSl Manager 4.3 specific patch should not assume that SCSI Manager 4.3 is present. It is
possible for an external device to be moved from a machine with SCSI Manager 4.3to a
machine without it, and vice versa.

e Because of the above, patches should avoid loading data from the disk. If your patch needs
data, you should add the data after the patchvendor field of your patch descriptor.
e Patches areloaded very early in the startup sequence and must allocate memory as outlined in

Disk Drivers and the System Heap.
e A patch should work correctly eveniif it isloaded twice. For example, if the same patchis

installed on multiple SCSI devices, both patches will be executed at startup time and the
patches must coordinate to avoid any conflicts.

Note:
ThemyDevID parameter is atrue device identifier, even if the patch is being loaded on a system without

SCSI Manager 4.3 in the ROM. In that case, the patch driver isresponsible for synthesizing the device
identifier from the SCSI ID. A full explanation of the driver's various entry pointsis given in an earlier

section.
Because a patch's code is always loaded in a pointer block in the system heap, it can reduce its size in memory

using clever code sorting and SetPtrSize. For example, imagine a patch that has 5 KB of install code and 25
KB of resident code. The patch can reduce its memory footprint by sorting the code as shown below.

Low Memory

+ 0 KE Residant M'_-,-'F'atch
Code
+ 25 KB My lnstall
Inztall Code
+ 30 KB
High Memory

The following code snippet shows how this might be achieved in C.

extern pascal OSErr MyPatch(PatchDescriptorPtr myPatch,
Deviceldent myDevID)

{
OSErr err;
err = Mylnstall(myPatch, myDevID);
SetPtrSize((Ptr) &MyPatch,
UInt32) &Mylnstall - (UInt32) &MyPatch
):
return err;
}

WARNING:

If you use this technique, be sure to generate alink map and check that the code order matches your
expectations. Y our devel opment environment might reorder code in an unexpected way.

Putting It All Together
The following diagram shows the layout of adisk that can be booted via SCSl and ATA.

e The DDM has two patch chains, one for ATA booting and one for SCSI booting.

e Each patch chain starts with the appropriate Apple patch driver.

e Thefirst block of the"Apple_Patches' partition contains alist of patches to be installed on the machine.
The remaining blocks contain the code for the patches themselves.

e The mesh" patch isinstalled to ensure correct operation when booted via SCSl on a machine with the
MESH chip.

e The "ruby" patchisinstalled to allow booting on machines without large volume support in ROM.
Note that the total disk size in thisexampleis5 GB. On the smaller disks used in the previous
examples, the " ruby " patch would not be necessary.

Zoomed In Yiews Overall Dizsk Layout Zoomed In Yiews
[not to zcale) [not to zcale) [not to scale)
EBlock O o \\\ Partition 1
sbSig = 'ER’ o Criver Desc. prnSig = 'Fr’
sbBlkSize = 512 Map proflapE kCnt = 2
zhEkCount = 10425760 1 — prinPyFartStart = 1
shDrvrCount = 2 Partition proPartBIkCnt = 63
1 ddBlack = 64 Map priPartMarme = "Apple”
ddSize = 20 priFarType = “Spple_partition_rnap™
ddType = $0701 prnLgCrataStart = 0
2 ddBlack = 54 &4 ——— prilataCnt = 63
ddSize = 45 Driwr‘a © prPartStatus = 0
ddType = $FSFF prBootChkzum = 0
Z ddBlock = 129 a4 AT & Driver prProcessar = "
ddSize = 20 prnFad = 0
ddType = $0001
4 ddBlock = 149 Partition Z
ddSize = 40 123 prnZig = ‘PH°
ddType = $FFFF eeclinetel proMapBIkCnt = 2
Driver priPyFartStart = 64
1449 : prmPartBlkCnt = 20
SCS1 Driver prPartMarne = "Macintosh"
prmParType = "Apple_Driver _aTA&"
priLglatasStart =0
1849 prlataCnt = 20
Fatch pmPartStatus = $077F
Fartition priBoctChksum = $wxwz
pmProcessor = "&2000"
pmPad = ‘pibE"
Partition S
prSig = 'FPr°
praflapE kCnt = 2
359 prPyPartStart = 84
s prFartElkCnt = 45

Fartition priPartMame = "Macintosh"

prmParType = "Apple_Driver _ATA"
pruLgCataStart =0

prnlataCnt = 45

prmPartStatus = $037F
prEootCkzum = $wxwe
prmProcessor = "e2000"

o g = 3

prnLglratastart = U
prlataCnt = 45
prPartStatus = $03Z7F
prnEootChzum = $wxwe
proProcessor = "e2000"

10425730
Free Space

10455760

FatchList 189

nurnPatchBlocks = 1
nurnPatches = 2
1 patchSig = 'mesh’
rma joriers = 1
rinoriers = 0
flags = $0001
patchOffset = 1
patchSize = 5932
patchCRC = $wxyz
patchDescriptorlen = 22
patchMarne = “MMesh It Patch™
patchVendor = "apple Cornputer, Inc."
1 patchSig = 'ruby’
rma joriers = 1
rinoriers = 0
flags = $0001
patchOffset = 13
patchSize = 4262
patchCRC = $wxyz
patchDescriptarlen = 82
patchMarne = "Large Valurne"
patchVendor = "apple Cornputer, Inc."

MeshPatchEntry 120

RubyPatchEntry 2035

prioFPad = ‘AT &'
Partition
prSig = 'FPr°

praflapE kCnt = 2
prPyFPartStart = 129
prmPartBlkCnt = 20
prPartMarne = "Macintosh™
pmParType = "Apple_Driverd43"
pruLgCataStart =0

prlataCnt = 20

prPartStatus = $07TF
priBoctCksum = $wxwe
prmProcessor = "e2000"

prmPad = ‘pibRE"
Partition
prSig = 'FPr°

profapE kCnt = &
prPyFPartStart = 149
prmPartBlkCnt = 40
prPartMarne = "Macintosh™
pmParType = "Apple_Driverd43"
prLglataStart =0

prlataCnt = 40

prmPartStatus = $037F
prEootCkzum = $wxwe
pmProcessor = "e2000"

prnFad = 'QJSCE’
Partition
prnSig = ‘P

proflapE kCnt = 2
prnPyFartStart = 129
prFartBlkCnt = 200
prnFartMarme = "Patch Partition'
prnFarType = “Apple_Patches"
prnLgCrataStart = 0

proCataCnt = 200

priFartStatus = 0
prnBootClksurm = 0

prProcessar = "

prnFad = 0

Partition
prnSig = ‘Fr’
proflapE kCnt = 2
priPyFPartStart = 229
proFartBElkCnt = 10435361
proPartMarne = "Macintosh HC
prnFarType = “Apple_HFS"
praoLglrataStart = 0
proCrataCnt = 1241
prPartStatuz = $CO00007FF
priBootClksurm = 0
pronProcessar = "
prnFad = 0

Partition
prSig = 'FPr°
praflapE kCnt = 2
ormPvFartStart = 10435750 |

il = W

Partition
prnSig = ‘Fr’
proflapE kCnt = 2

priPyFPartStart = 10425750
prnFPartBlkCnt = 10

priFartMarme = "Extra”
priFarType = “bpple_Free”
praoLglrataStart = 0
praCataCnt = 10
priFartStatus = 0
priBootClksurm = 0
prFrocessar = "

prnFad = 0

Disk Drivers and the System Heap

Disk driverstypically allocate their memory in the system heap. A disk driver must use one of three
techniques to allocate system heap space, depending on the execution context. There are three relevant
execution contexts for your driver:

1. Driver Load Time -- If you driver isbootable, it is called at driver load time to install itself in the
unit table.

2. System Startup -- It is possible for your driver to be called at system startup time, after driver
load time but before system startup is complete. For example, if your driver sets dNeedTime and
some startup code (for example, an " INI1T*) brings up adiaog, your driver will receive accRun
requests.

3. After System Startup -- System startup time finishes when the Process Manager starts and
launches the Finder.

The best way to detect whether system startup is complete isto compare the first byte (the length) of the
Pascal string returned by LMGetCurApName to $FF. If the first byte is$FF, the system is still starting up.
If it isany other value, system startup is complete.

Thereis no good way to distinguish between driver load time and system startup time. Y our driver must
remember internally whether it is executing as aresult of itsinstall routine being called.

Driver Load Time

At driver load time, adriver that needsto allocate alarge amount of memory must grow the system heap
using SetApplBase. This system routine is documented as Inside Macintosh: Memory, along with a
warning that applications should not use it. However, it is expected that disk drivers which need to
expand the system heap will use thisroutine.

A simple example of calling SetApplBase is shown below.

static void ExpandSystemHeap(Size bytesToGrow)
{

THz currentZone;

// Only try to expand the system heap iIf we"re at startup time,
// ie the CurApName is still filled with $FFs.

assert(LMGetCurApName()[0] == OxFF); // from <assert.h>
currentZone = GetZone();

// Round up the request to 512 bytes.

bytesToGrow = (bytesToGrow + Ox01FF) & ~OxO1FF;
// Set the system heap to the specified size.
SetApplBase((Ptr) ((UInt32) (LMGetSysZone())->bkLim + bytesToGrow));

SetZone(currentZone);

}

IMPORTANT:

Disk drivers should not attempt to grow the system heap too much using this mechanism. How much is
too much? It depends on alot of factors, including the machine's ROM software, the system version,
whether virtual memory is turned on, which patches are being loaded, and which other device drivers
areinstalled.

For example, on Mac OS 8.1 the system heap can grow to a maximum of 4 MB during this early phase
of the startup process and this limit was exceeded when certain PCI RAID cards were installed. While
this problem was worked around before Mac OS 8.1 shipped, it is an important lesson for developers
of software that runs during the early startup process. There is a system heap limit and thereis no
allocation policy for what memory is available.

In the absence of aformal policy, DTS recommends that each individual developer limit their system
heap expansion to less than 256 KB during this early startup phase. Thisincludes the expansion done
by the system to load your code. If necessary, you must compromise on the speed of your driver to
achieve this goal. If you need more memory to improve performance, you must either:

e install asystem extension with an " INIT" resource, which grows the system heap (as
described below), and turns that memory over to your driver, or
e wait until your driver receives an accRun Control request and allocate your extra memory then.

System Startup

Disk driversthat load as part of the " INIT" loading process should request that the system heap be
grown using a "sysz" resource, as documented in Inside Macintosh: Memory and Inside Macintosh:
Operating System Utilities, and amended in Technote IM 2 Inside Macintosh: Memory Errata.

IMPORTANT:

"INIT" resources should not expand the system heap using SetApplBase. The Start Manager has open
resource files whose resource maps reside in the application zone and there is no supported way to
close and reopen these resourcefiles.

After Startup Time

After the system has started up, adisk driver should allocate its system heap memory using NewPtrSys,
or NewHandleSys. The system heap will automatically expand to meet these requirements.

Power PC Native Disk Drivers

Many developers wish to implement their disk driversin PowerPC native code. However, thereis no
well-defined architecture for native disk drivers. There are a number of consequences and drawbacks,
which this section discussesin detail.

The Need for Speed

Most drivers are I/O bound. They spend a small amount of time setting up an 1/0 request and a
proportionally much larger amount of time waiting for the underlying hardware to compl ete that request.
Such driversreceive very little benefit from executing as native code. Moreover, the benefit varies
depending on the ratio of small 1/0 requests (which tend to be CPU bound) to large 1/0 requests (which
tend to be I/O bound).

On the other hand, some drivers are CPU bound. For example, adriver that encrypts data asit transfers
it to the disk may spend a significant amount of time executing driver code. This may even betruefor a
complex, but still 1/0 focused driver, such asaRAID driver or acaching disk driver. These drivers may
receive significant benefit from "going native."

The only good way to tell whether your driver receives a benefit from conversion to native code, and
that the benefit is enough to overcome the difficultiesin doing so, is to actually profile the code. Y ou
may be able to do this quickly by profiling the driver code in an application framework before facing the
challenges of creating aworking native driver.

Difficulties with Taking Your Driver Native

The primary difficulty in creating anative disk driver isthat there is no well-defined architecture for it.
The PCI-native driver model has a number of drawbacks for disk driver developers.

1. It doesnot include adisk driver I/O family expert. It is possible to write a generic native driver
(kServiceCategoryNdrvDriver) which actsasadisk driver, but it is not possible to do so
within the native driver architecture. Specifically, adisk driver must link to Interfacelib to
access routines like AddDrive. Linking to Interfacelib works just fine on the current Mac OS,
but it isnot lega within the native driver model and guarantees that your driver will not be
compatible with any future Mac OS that emulates this model on a non-traditional framework.

2. The PCI native driver model is not available on older, non-PCl-based, Power Macintosh
computers.

Another possible approach isto implement a partially native driver, where code that you know to take a
long time isimplemented as native code. This makes alot of sensein some cases, such as an encryption
driver, where the lengthy codeis easily isolated from the rest of the driver.

It is also possible to implement avirtually fully native driver without the PCI native driver module,
using only atiny amount of 68K glue code to provide the driver header and an interface to 10Done. In
generd, this approach is not recommended by DTS because of the complexitiesinvolved in
transitioning from 68K to native code and back.

When taking adisk driver native, it isimportant to remember that the primary client of the disk driver is
the File Manager, which isnot native. Whileit islikely that adisk driver will incur Mixed Mode
switches regardless of whether it is native or not (the SCSI Manager and ATA Manager are native),
taking the driver native shifts the line where the switches occur, and may increase or decrease the
number of switches depending on how your driver works. So, to guarantee an overall speed
improvement, it isimportant that the native driver be significantly faster than the emulated one.

Native Drivers and accRun

Before implementing a disk driver as anative driver, you must read DTS Q&A DV 35, "Native Drivers
(*ndrv"s) and dNeedTime", which describes an incompatibility between native drivers and dNeedTime.

Therest of this technote assumes that you are building a 68K driver, and thus you can set dNeedTime in
dCtlFlags to get system task time viathe accRun Control request. If you are building a native driver
and you need system task time, you must implement one of the aternative mechanisms described in the
Q&A.

68K drivers should continue to use dNeedTime as always.

Recommendations

DTS does not recommend that developers implement disk driversin PowerPC native code unless there
is clear evidence that doing so improves the performance significantly. Typically thisisonly for drivers
that are CPU bound, such as encrypting drivers. A standard SCSI or ATA driver is /O bound, and
receives little benefit from running native.

The easiest way to implement a PowerPC native driver is using the native driver model, introduced with
the PCI-based Power Macintosh computers. However, this approach will not work on older Power
Macintosh computers. Another recommended aternative is to implement a partially native driver, where
core functionality (such as an encryption engine) isin native code.

Installing and Removing Drivers and Drives

Over the course of the past 15 years, Mac OS has evolved from arelatively static environment -- aMac
with one or two floppy drives that needed to be connected at startup time -- to a highly dynamic system,
where devices and disks come and go at runtime. The Mac OS disk driver architecture has, to alarge
extent, coped with this evolution, as long as driver writers play by the rules. This section explains these
rulesin detail.

Installing and Removing Drivers
There are anumber of waysto install your disk driver.

1. If you'rewriting a native driver that controls areal piece of hardware (a FireWire device, or a
PCI RAM disk card, for example), you can set up your DriverDescription o that the system
automatically finds and opens your device driver. See Designing PCI Cards and Driversfor
Power Macintosh Computers for details.

2. If you're writing a native driver with no corresponding hardware, you can use DriverLoaderLib
to install your driver directly. See Designing PCI Cards and Drivers for Power Macintosh
Computersfor details.

3. If yourewriting a68K driver, you should use TradDriverLoaderLib to install your driver.
Installing adriver in the unit table is easy to do half right but tricky to do exactly right, whichis
why DTS strongly recommends that devel opers use TradDriverLoaderLib. The only exception
is boot disk drivers, where the limited scope of the task makes the genera nature of
TradDriverLoaderLib seem alittle too much. See Code Sharing for more details on this.

Note:
TradDriverLoaderLibisa DTS sample that provides smilar functionality to DriverLoaderLib, except
that it works for 68K drivers rather than native drivers. Y ou can download the sample via FTP.

WARNING:

Disk drivers, which can be called at interrupt time, must never be installed as RAM-based drivers
(dRAMBased must not be set in dCtlFlags); paradoxically, disk drivers are always "ROM-based.”
TradDriverLoaderLib takes care of this and many other details of loading adriver.

To remove adisk driver from the unit table, you have anumber of choices.

1. If thedriver isanativedriver, you must use the DriverLoaderLib routine RemoveDriver to
removeit.

2. If thedriver isa68K driver, you should haveinstalled it using TradDriverLoaderLib. If SO,
you can remove it using the TradRemoveDriver routine provided by that library.

3. If thedriver was not installed using TradDriverLoaderLib (either because it was a boot disk
driver or because it wasn't installed by your software), you should follow the procedure
described in the Hostile Takeovers section of this document.

WARNING:
You must never remove a driver that hasdrivesin the drive queue. Doing so will cause the
system to crash.

Code Sharing

Code sharing is atechnique used by some third-party disk driversto share the device driver code
between multiple driversin the unit table. Code sharing is alegal technique, although it is not
implemented by Apple disk drivers and is not recommended by DTS. Before shipping adriver that uses
code sharing, you need to understand the costs and benefits of the technique.

How Code Sharing Works
The basic algorithm for code sharing is as follows:

1. When your driver installsitsdlf, it first scans the unit table to see whether another instance of it
isaready installed.

2. If thereis an existing instance, you must check its version number to determine whether to use
its code or replace its code with the code in your driver. Y ou can get the driver'sversion using a
Driver Gestalt kdgVersion regquest.

3. If theexisting driver is older, you must somehow dispose of its code and replace it with yours.
Asthereis no Apple-defined way of replacing *DRVR"S, you must use a private hand-off
technique built in to your driver. Alternatively, you might consider not sharing code in this case.

4. If the existing driver is newer, you must somehow inform it that another instance of it is being
created. Again, there is no Apple-defined technique for this; thisinformation exchangeis private
to your driver.

In addition, driversthat implement code sharing must reference count the code in order to support close
and purge correctly.

The Pros and Cons of Code Sharing

Code sharing has one big advantage: it reduces memory usage if two devices controlled by your driver
are attached to the system. This may be especially significant for acomplex device driver, such asa
RAID driver.

The disadvantages of code sharing include:

e Thestandard library for installing *DRVR*s, TradDriverL oaderLib does not support code
sharing. If you implement code sharing, you must do this leg work yourself.

e Supporting code sharing significantly complicates the installation code path of your driver. As
the installation code isrun very early in the startup sequence, bugsin that code are often very
hard to debug.

e Driversthat use code sharing cannot be reopened.

Managing Drive Queue Elements

The Basics

The drive queue and its associated drive queue elements are documented in Inside Macintosh: Files, page
2-85. However, that document does not describe how drive queue elements are created, installed,
removed, and destroyed.

Your disk driver must add a drive queue element for each file system partition on each disk it controls.
The strategy you use for managing drive queue elementsis largely up to you, within some basic

congtraints. Drive queue e ements must be allocated in the system heap, primarily so that they persist
throughout the life of the system but also, in the case of paging devices, so that they are held resident in
memory. Typically, your driver isresponsible for creating and disposing the drive queue elements under
your control.

One popular technique for managing drive queue e ementsisto extend the DrvQEI data structure with the
extra per-drive storage needed by your driver. This makesit easy for you to find your per-drive storage
structure given either the DrvQEIPtr (just cast the DrvQEIPtr to apointer to your per-drive storage
structure) or the drive number (search the drive queue looking for that drive number, which gives you
theDrvQEIPtr, and then proceed as before).

Another important thing to remember about drive queue e ementsis that the system requires that you
implement four flag bytes immediately before the first field of the DrvQEI. Y ou can choose to either
define these flags as part of your per-drive storage structure (which complicates the cast between it and a
DrvQEIPtr), or just handle those flags as a special case.

When creating a drive queue element, you must first decide on the drive number for the new drive. The
algorithm to find a free drive number is very simple: start with drive number 5 (or, by convention, 8 if
you're ahard disk driver), check to see whether it isin use, and if so, increment the number and try

again.

IMPORTANT:
This algorithm must be run at system task time to work reliably.

Note:

Drive numbers below 5 are reserved. A third-party disk driver should not use drive numbers less than 5
except in specia circumstances. As an example, afloppy disk driver that provides high-fidelity
emulation of Apple's™.Sony" driver, might want to use drive number 1.

Once your driver has created a drive queue element, it can put it in the drive queue with the system
routineAddDrive. AddDrive isavery thin wrapper around GetDrvQHdr and Enqueue. It isnot strictly
necessary to use thisroutine, but it may be convenient.

IMPORTANT:

Prior to Mac OS 8.5, the PowerPC glue for AddDrive in Interfacel ib was broken. The
Morelnterfacel ib module of the DTS Morel sBetter sample shows how to correctly call AddDrive from
PowerPC code.

Once your driver has created a drive queue e ement, it should inform the system of its existence, as
described in Cooperating with File System Manager.

Removing a Drive Queue Element

Removing a drive queue element is somewhat more convoluted than adding one. The basics are very
simple. The system doesn't define aRemoveDrive routine; you must remove a drive queue element
using the code shown below. Compilable source is available as part of the MoreDisks module of the
DTS sample code library Morel sBetter.

extern pascal OSErr MoreRemoveDrive(DrvQEIPtr drvQEI)

{
OSStatus err;

it (MoreVolumeMountedOnDrive(drvQEI->dQDrive, false) == 0) {
err = Dequeue((QElemPtr) drvQEl, GetDrvQHdrQ));

} else {
err = volOnLinErr;

}

return err;
he
WARNING:
You must never remove a drive queue element for a drive which has mounted volumes.
Doing so will cause the system to crash, with possible data | oss.

WARNING:

You shouldnever add or remove drive queue elements at interrupt time. For a start,
AddDrive is not documented to be interrupt safe. Furthermore, system task time code may be walking
the drive queue, looking at elementsin the queue. If your interrupt-time code removes the drive queue
element while system task time code islooking at it, the system may crash.

It is also important to remember that, if your disk driver can be called asynchronoudly, it is possible for
even synchronous requests to be executed at interrupt time. See Technote 1067, "Traditiona Device
Drivers. Sync or Swim."

Consequently, your driver should never add or remove a drive queue element except in its Open or
Close entry point, or in response to an immediate request that it knows was made at system task time,
such as an accRun Control request. In particular, itisnot safe for your disk driver to remove a
drive queue element as part of handling an kEject Control request.

If your disk driver needs to remove a drive queue el ement, it must mark the drive queue element as "to
be removed" and set dNeedTime initsdCtlFlags. When it receives the accRun Control request, it
must walk the drive queue looking for drives it owns that are marked as "to be removed" and remove
them there. The DTS sample AsyncDriverSample shows a correct implementation of this.

Drive Queue Strategies

While removing adrive queue e ement isrelatively simple, deciding on a strategy for when to remove the
drive queue element is not. The key is how you handle the kEject Control request. The two common
strategies are described below.

Real Block Device

If your disk driver controls some real piece of hardware (for example, afloppy drive, a SCS| gectable
disk device, a SCSI fixed disk device), you should not remove the drive queue element when the user
giectsthe disk. Y ou should leave the drive queue element in the queue so that, when the user reinserts
the disk, you can post a"disk inserted” event for it. This simplifies your life and ensures that your
drive's drive number isrelatively stable.

This approach may seem alittle strange for fixed disks, but it works just fine. Fixed disks are typically
not marked as gjectable, so the user can not really gect afixed disk; they smply unmount the volume
mounted on it. Thisis useful for programs (for example, adisk recovery program) which want to
unmount avolume, perform some low-level activity on the disk, and then remount the volume. To
remount the volume, the program can simply call PBMountVol for the old drive number. Thistechnique
would not be possibleif the fixed disk driver removed its drive queue elements when the disk was
gjected.

Note:

The Alias Manager remounts volumes in this way, which is very convenient for the user. The user can
unmount avolume by dragging it to the Trash and later remount it by simply double-clicking an diasto
the volume.

So leaving fixed disk drive queue elements in the drive queue is not only safe, it isaso convenient.

IMPORTANT:

One important exception to the above is removable disks with multiple partitions. For example, if the
users gjects adisk with three partitions and then inserts adisk with a single partition, you should
remove the two extra drive queue e ements (at system task time) before informing the system about the
new disk.

Virtual Block Device

If you are writing adisk driver for some virtua block device (likeaRAM disk, or adisk image, or a
block-oriented network protocol), your job is more complex. In the smple case, if the disk is gected
when there is no volume mounted on it, you should remove the drive queue el ement, as explained in the
previous section.

However, if the disk is gected while there is still a volume mounted on it, you must take special action to
avoid the disk switch dialog asking the user to insert the virtual disk. [The "Pleaseinsert disk RAM
Disk" disk switch dialog is particularly amusing or annoying depending on how much caffeine you've
had that day.] There are two common ways to prevent this:

1. Non-Ejectable -- Y ou can mark your virtual drive as non-gectable. Thisis probably the easiest
and most sensible approach. It can; however, have problems when running with virtual memory
enabled on older systems. Old versions of the Virtua Memory Manager assume that any local,
non-gjectable drive is igible for paging. This may not be true for your virtual block device
driver (especialy if it relies on the network). Modern versions of the Virtual Memory Manager
(starting with Mac OS 8.1) query the drive, via Driver Gestalt (kdgvMOptions), to see whether
the drive isreally suitable for paging. However, for older systems, the only recourse you have
isto make your drive as g ectable.

2. Auto Reinsert -- If you are forced to mark your virtual drive as gectable, the following
algorithm will ensure that you remove the drive queue element when appropriate and never have
an gected drive with avolume mounted on it:

1. When you receive the kEject Control request, mark the drive as not having adisk in
place and set the dNeedTime bit inthedCtlFlags.

2. When the system sends you an accRun, walk the drive queue looking for any of your
drives which are marked as not having adisk in place.

3. For those drives, walk the system VCB queue looking for a volume that has been

4

gected but was previously mounted on that drive.
. If you find such avolume, post a"disk inserted" event for that drive. Thiswill remount
the volume back on the drive.
5. If you don't find such avolume, remove the drive queue element for that drive.
The DTS sample AsyncDriverSample implements this algorithm.

Hot Swapping

The Mac OS 1/0 subsystem is evolving towards more support for hot-swappable devices. Modern I/O
buses, like USB and FireWire, fully support the addition and removal of devices while the systemis
running.

Unfortunately, other parts of Mac OS are not as friendly to the hot swapping of devices. For disk
devices, hot swapping isarelatively new idea, and Mac OS support for hot swappable disk devicesis
limited. Whileit is possible to add new drives on the fly, removing a drive while thereis avolume
mounted on it will cause the system to crash, with possible loss of user data.

There are two basic strategies for handling adisk device being unplugged unexpectedly.

1. Put It Back -- If possible, your disk driver should stop the system and post adialog telling the
user to replace the disk device. This dialog should have no OK or Cancel buttons; the user must
replace the device to continue using the system and the dial og should auto-dismiss when the
deviceisreattached. Thisistricky to implement, for the following reasons.

o Inmost cases, the notification that a device has been removed happens at interrupt time,
and it is unsafe to pose a standard Dialog Manager dialog at interrupt time. Y ou can
defer the dialog until your next accRun, but you may receive I/O requests before you
are issued an accRun, and you must be prepared to handle those I/O requests at
interrupt time.

o Some1/O families are not capable of handling reconnections at interrupt time.

o Some block devices are not tagged with aunique ID so, even if the deviceis
reconnected, there is no way to guarantee that it is the same device.

2. Error Everything -- Y our device driver should simply fail all 1/0 requests with the error
driverHardwareGoneErr (-503). In Mac OS 9.0 and higher, the File Manager recognizesthis
error and responds in the following way.

o It setsthekVCBFlagsHardwareGoneBit in thevcbFlags field of the Volume Control
Block (vCB).

o It posts aNotification Manager alert saying, "The device for disk 'MyDiskName' was
unexpectedly disconnected. To prevent data loss, aways use the Finder to 'Put Away'
adisk before disconnecting its disk device."

o At system task time, it walks the volume list looking for volumes that have the
kVCBF lagsHardwareGoneBit bit set and puts them offline.

3. Thisapproach is similar to that taken by the AppleShare external file system when the
connection to the server tears.

In some cases, your |/O family may provide support for the hot unplugging of disk devices. For
example, if your device is connected via the media bay, the system will automatically put up a"put it
back" dialog for you, and if your device is connected via FireWire, you can use the

FWwai tForDeviceRePlug routine to wait for a device to be reconnected.

Note:
The media bay uses the System Error Handler to display its dialogs. The system error codes used by
the mediabay are documented in "Errors.h”, namely:

System Error Code	[English Text (Mac OS 8.5)	
dsMBFIpySysError		Please reinsert the Floppy Drive module now.
dSMBATASySError	[Please reinsert the Disk Drive module now.	
dSMBATAPISysError	[Please reinsert the CD-ROM module now.	
IdsMBExternFIpySysError || Please reconnect the Floppy Drive module now. |

Y ou might think to use the same technique as the media bay but thisis unsatisfactory for a number of
reasons:

e Itisnot supported by DTS.

e The System Error Handler uses QuickDraw to display its dialogs. Calling QuickDraw at
interrupt timeisillegal, and therefore calling SysError at interrupt timeisillegal. Thisisa
known compromisein the design of SysError and is acceptable because, when you're
handling areal system error, the system is already in a precarious state. However, using
SysError as part of the standard operation of your disk driver isasking for trouble.

In the absence of an /O family-specific solution, the best compromise solution isto implement the
following algorithm:

e When you are notified of a device being disconnected, check whether there is a volume mounted
on any of itsdrives. If thereisn't a volume mounted on any of itsdrives, al iswell; you can
simply wait for the next accRun to remove the device's drive queue elements. If thereisa
volume mounted, set aflag in your per-drive storage.

e If you receive an I/O request while that flag is set, fail the request with

driverHardwareGoneErr error. On Mac OS 9.0 or above, thisis a sufficient response. On
earlier systems, you should also:
o AtaccRun time, look through for drives owned by your driver which have the flag set.
For each missing device, post a Dialog Manager dialog that requires the user to reattach
thhe gf,'\/l ce. Once the deviceis reattached, clear the flag and return from your accRun
andler.
o Post aNoatification Manager aert like that described above.

Close and Purge

For maximum friendliness, your driver must support being closed. This section explains how to support
the Close request properly in you disk driver and how aformatting utility might use thisto alow adisk
to be reformatted without rebooting.

Supporting Close in Your Driver

Y our driver must support the Close request properly. This requirement was documented a long time ago
and isastruetoday asit ever was.

Y our driver's Close entry point should attempt to undo al the things that its Open entry point did,
including the tasks listed below.

1. Check to see whether there are volumes mounted in any of the drives controlled by the driver.
Code for doing thisis shown below. If there are, the Close should fail with aclosErr.

extern pascal SIntl6 MoreVolumeMountedOnDrive(SIntl6 drive,
Boolean ejectedlsMounted)
{
SIntl6 result;
VCBPtr thisVCB;

result = 0;
thisVCB = (VCBPtr) GetVCBQHdr()->gHead;
while (thisVCB != nil && result == 0) {
if (thisVCB->vcbDrvNum == drive ||
(ejectedlisMounted &&
thisVCB->vcbDrvNum == 0 &&
thisVCB->vcbDRefNum == drive

)
) {
result = thisVCB->vcbVRefNum;

} else {
thisVCB = (VCBPtr) thisVCB->gLink;
}

}

return result;

1. Terminate al asynchronous operations and remove any interrupt handlers. Y our Close entry
point is always called immediately at system task time, so it is safe to "spin wait" (that is,
synchronously wait) for asynchronous operations to complete.

2. Remove all of its drive queue elements from the drive queue. The system supplies aroutine for
adding a drive queue elements (AddDrive), but not one to remove them. The code for removing
adrive queue element is shown earlier.

3. Unregister with any system services with which it registered. Typically, thisincludes SCSI
Manager or ATA Manager, Power Manager, and Shutdown Manager.

4. Freeany memory alocated by the driver, including the dCtlStorage.

If it is absolutely impossible to complete any of these steps, the driver should return closErr and
continue as if the close had not been requested.

In addition, your driver may choose to implement the kdgPurge Driver Gestalt selector. The response to
this selector isaDriverGestaltPurgeResponse, as shown below.

struct DriverGestaltPurgeResponse {
UIntl6é purgePermission;
UIntl6é purgeReserved;
Ptr purgeDriverPointer;

}:

typedef struct DriverGestaltPurgeResponse DriverGestaltPurgeResponse;

If your driver responds to this selector, it must fill out the fields of the response as follows:

purgePermission
Three bitsin thisfield are defined below. Y ou should set them as appropriate for your driver.
The remaining bits are reserved and must be set to zero.

purgeReserved
Reserved. Must be set to zero.

purgeDriverPointer
A pointer to the memory block containing your driver's code. Y ou must set thisto avalid
Memory Manager pointer if you return kmOkCloseOkPurge in thepurgePermission field.

The bitsin the purgePermission field are defined as follows:

kbCloseOk
Set thisbit if your driver correctly handles the Close request, as described above.

kbRemoveOk
Set this bit if your driver can be removed from the unit table with DriverRemove. Usually this
issafeif you installed your driver using Driverlinstall or Driverlinstal IReserveMem
(assuming your driver is pointer based, which al disk drivers should be).

kbPurgeOk
Set thishit if you can supply a pointer to a single Memory Manager pointer block that contains
your driver code and that can be disposed to free the memory used by your driver's code. If you
set this bit, you must set purgeDriverPointer to bethat pointer. If your driver supports code
shari gbgl you must only set this bit if thereis only one instance of your driver remaining in the
unit table.

Of the eight possible combinations of these three bits, only three make any real sense. There are
symbolic constants for these three useful combinations (knNoCloseNoPurge, kmOkCloseNoPurge and
kmOkCloseOkPurge).

Note:

If you set kbRemoveOk without setting kbPurgeOk, anyone closing your driver is guaranteed to leak the
memory containing your driver's code (unless you use code sharing).

Supporting Reopen

If your driver supports close, it should also support being reopened. There are circumstances under
which third party software wants to close your driver, take control of the device, and then restore the
normal function of your driver. Thisisonly possibleif your driver supports reopen.

IMPORTANT:

Most existing SCSI and ATA drivers do not support reopen. There is no well-documented way of
determining whether adriver supports reopen. Software that relies on the ability to reopen disk drivers
should warn the user that the reopen may not work, preferably before closing the driver.

Most existing disk drivers perform their driver initidlization code in their Install routine and do nothing in
their Open entry point. A typical SCSI driver'sinitialization codeis asfollows.

on install
install driver into unit table
scan partition map
create a drive queue element for each partition
"open® driver by marking it open in the DCE
end install

on open
return noErr
end open

The problem with this approach isthat it does not alow clients to reopen the driver after closing it. A
better approach is shown below.

on install
install driver into unit table
rename driver to a unique name
open driver using OpenDriver
end install

on open
scan partition map
create a drive queue element for each partition
end open

WARNING:

SCSI disk driver lore requires that a driver's install ation routine not use the OpenDriver routine to
open the driver. Instead, the driver installation routine was expected to put the driver in the unit table
and then mark the driver as open by setting the dopened bit of the DCE'sdCtlFlags. Thiswas
because the implementation of OpenDriver in old ROM's would touch the Resource Manager (and
hence the File Manager) even when the driver already existed in the unit table. DTS believesthat thisis
only necessary on ancient Macintosh ROMs and modern drivers should install themselves using
OpenDriver.

Note:

Many device driver writers guard against their Open entry point being called multiple times. Thisis
unnecessary for 68K drivers. Once your 68K driver is marked as open (bit dopened is set in the DCE's
dCtlFlags), further callstoOpenDriver will simply return noErr without calling your driver's Open
entry point.

Thisisnot true for native drivers, where opens and closes are reference counted by the Device
Manager. For a native driver, asecond call to openDriver will result in your driver being sent another
kOpenCommand request.

Note:

If your driver uses code sharing, it isimpossible to support reopen properly because all instances of
your driver in the unit table will have the same name, and the OpenDriver routine only allows you to
open adriver by name.

Hostile Takeovers

There are circumstances under which software wants to remove the driver for adisk at runtime. For
example, aformatting utility might want to reformat a disk which was previoudly controlled by another
driver. If the driver controlling the disk iswritten by you, it is easy to coordinate this takeover. On the
other hand, if the driver controlling the disk is unknown to you, taking over the disk istricky to do
safely. This processisknown asahostile takeover.

Note:
Do not use the term "hostile takeover” in your user interface. It islikely to scare and confuse users.

Toinitiate a hostile takeover of adevice, you must take the following steps.

1. Warn the user that you are attempting something that risks both crashing and data | oss.

2. Veify that there are no volumes mounted on drives controlled by the device. Do this by iterating
through the mounted volumes (by making indexed calls to PBHGetVInfo) checking that
ioVDRefNum iSnot equal to the driver reference number of the driver in question. If there are
volumes mounted using the driver, you may want to unmount the volumes yourself using
PBUnmountVol.

3. If thedriver supports Driver Gestalt, issue akdgPurge Driver Gestalt request. If this succeeds,
you can check the purgePermission to see whether the driver supports the Close request. If it
doesn't, a hostile takeover is not possible without restarting.

4. Cal CcloseDriver to closethe driver, which returns one of the following results.

1. noErr -- The driver closed successfully. Continue with the next step.
2. closErr (or any other error) -- The driver could not be closed. A hostile takeover is not
possible without restarting.

Note:

Never close adriver with FSClose or PBClose. If you're closing adriver, always use CloseDriver.
Similarly, if you're opening a driver, always use OpenDriver. These routines provide the correct glue
to the_open and _Close trapsto ensure that you are acting on adriver, not afile, or adesk accessory,
or aslot driver.

1. Just to be certain, you should check whether any drive queue elements belonging to the driver
remain in the drive queue. If there are, the driver's implementation of the Close request is
broken and a hostile takeover is not possible without restarting.

2. If you issued akdgPurge request (step 3 above) and kbRemoveOk was set in the
purgePermission response, you can call DriverRemove to remove the driver from the unit
table. If the driver doesn't support Driver Gestalt, or kbRemoveOk is hot set, the hostile takeover
iscomplete. The driver istill installed in the unit table but it should be arelatively benign
memory leak.

3. If youissued akdgPurge request (step 3 above) and kbPurgeOk was set in the
purgePermission response, you can call DisposePtr On purgeDriverPointer to remove the
driver's code from memory. If the driver doesn't support Driver Gestalt, or kbPurgeOk is not
set, the hostile takeover is complete. The driver code is still in memory but it should be a
relatively benign memory leak.

Note:

Y ou might think that you can just dispose dCtIDriver, but that is not correct. dCtIDriver may not be
avalid Memory Manager pointer. Specifically, for SCSI and ATA drivers, dctiDriver typicaly
points some number of bytes into the pointer block.

If ahostile takeover is not possible without restarting -- or the user declines your offer to attempt one --
you are forced to restart the computer to take over the disk. Y ou can overwrite the DDM to eliminate all
foreign drivers from the disk and then restart the computer. Because there are no driversin the DDM, the
disk will not be mounted and you will be freeto use it as you wish.

IMPORTANT:

Do not expect any data on the disk to survive this operation. While most drivers use the standard
partition format, there are some non-standard partition formats (such as RAID striping) for which the
driver isthe only thing that "holdsit all together”. In those cases, eliminating the driver typically
eliminates the data. The only way around thisisto treat each of the common RAID formats as a special
case in your hostile takeover software.

Note:

Some third-party formatting utilities implement a more powerful but less safe approach to hostile
takeovers. Specificaly, if the check for orphaned drive queue elements (step 5 above) fails, the utility
simply degueues the orphaned drive queue elements and unregisters the drives with the appropriate
manager. This technique worksin most cases, athough it leaks memory (the orphaned drive queue
elements) and may potentially cause a system crash. If you implement this technique, be sure to warn
the user of the possible consequences.

File Exchange (né PC Exchange)

Foreign file systems (such as File Exchange) require your disk driver to do extrawork to support the
mounting of non-HFS volumes. While this extrawork is not hard, it has been poorly documented. This
section explains the correct way to support foreign file systemsin your disk driver.

Note:
For an in-depth explanation of the whole volume mounting process, see Partition Handling:
Background and Rationale later in this section.

Cooperating with File System Manager

There are two steps you must take to fully support File System Manager in your disk driver. The first
step isto support the File Exchange interface, which is described in the next section. The second step is
related to the way your disk driver scans a bus and creates drive queue elements for devices on that bus.
Y our current algorithm might look something like that shown below.

on scanForDevices
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMountedAtStartup is set in pmPartStatus
if the partition is of type "Apple_ HFS"
create a drive queue element with FSID of O
post a "'disk inserted" event
end-if
end-if
end-for
end-if
end-for
end scanForDevices

To cooperate with FSM, you should modify this algorithm to the one shown below.

on scanForDevices
clear InformFSM flag
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMountedAtStartup is set in pmPartStatus
if the partition is of type "Apple_HFS"
create a drive queue element with FSID of O
post a "'disk inserted" event
else if the partition is of a known non-disk type
do nothing
else
create a drive queue element with FSID of fsmGenericFSID
set InformFSM flag
end-if
end-if
end-for
else
create a drive queue element with FSID of fsmGenericFSID \
that encompasses the entire drive
set InformFSM flag
end-if
end-for
if InformFSM flag
call InformFSM(FfsmDrvQEIChangedMessage)
end-if
end scanForDevices

IMPORTANT:
InformFSM is ageneric utility routine by which your disk driver can send messagesto FSM. Itis
documented in Guide to the File System Manager.

The basic algorithm, as shown above, is surprisingly easy. However, complications arise if your disk
driver might load before FSM. This can happen in the following circumstances:

1. If your disk driver isloaded out of adriver partition in a partition map.

2. If your disk driver loads from a system extension on an old system. Systems prior to System
7.5 did not have FSM in the System file, so FSM loaded at INIT time. The system extension
which loads your driver might run before the one loading FSM.

Note:
There are two common cases where FSM might load from a system extension:

1. Early versions of PC Exchange contain an equally early version of FSM embedded in the
extension. When PC Exchange loads, it checks to see whether FSM is already present in the
system. If it isn't, it loads the embedded version of FSM.

2. FSM plug-in developers can license a system extension, "File System Manager”, to install with
their FSM plug-in on older systems.

If your disk driver loads before FSM, the above agorithm has a number of problems. Firstly,
InformFSM is not implemented until FSM loads, so calling it would be bad. Secondly, the support for
fsmGenericFSID isimplemented by FSM, so creating a drive queue element with that FSID isabad
ideaunless FSM isinstalled.

The solution to thisisto defer both activities until FSM loads. If system startup compl etes without FSM
loading, you simply do not perform these steps. Y ou can poll for both of these eventsin your driver's
accRun handler. The new algorithm is shown below.

on scanForDevices
determine whether FSM is installed
clear InformFSM flag
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMountedAtStartup is set in pmPartStatus
if the partition is of type "Apple_HFS"
create a drive queue element with FSID of O
post a "‘disk inserted" event
else if the partition is of a known non-disk type
do nothing
else
iT FSM available
create a drive queue element with FSID of fsmGenericFSID
end-if
set InformFSM flag
end-if
end-if
end-for
else
iT FSM available
create a drive queue element with FSID of fsmGenericFSID \
that encompasses the entire drive
end-if
set InformFSM flag
end-if
end-for
if InformFSM flag

if FSM available
call InformFSM(fsmDrvQEIChangedMessage)

else
set gPollIForkFSm
set dNeedTime in dCtlFlags

end-if

end-if
end scanForDevices

on accRun
if gPollIForFSM
iT FSM available then
call scanForDevices again
clear gPollForFsSMm
clear dNeedTime in dCtlFlags (unless you need it for other reasons)
else if startup time is over
clear gPollForFsSMm
clear dNeedTime in dCtlFlags (unless you need it for other reasons)
end-if
end-if
end accRun

Note:
Y ou can determine whether system startup is complete using the technique described in Disk Drivers
and the System Heap.

For more information about why this algorithm is necessary, see Partition Handling: Background and
Rationale.

Finally, if you mount alarge number of disks simultaneously, you may run afoul of the system event
gueue's size limit. On current systems (Mac OS 9.0), the system event queueis limited to 48 events. If
the system event queue isfull and you post a"disk inserted” event, the event isignored. There are two
aspects to this problem:

1. If you explicitly posted the "disk inserted” event by calling PostEvent, you will find that an
event posted while the event queue isfull will cause the first event in the queue to be dropped.
PostEvent will not return an error to indicate that an event was dropped.

2. You aso receive no notification that the event queue isfull if you implicitly post "disk inserted”
events by caling InformFSM with the fsmDrvQE IChangedVessage Selector.

Thereisasimple agorithm that handles both of these cases:

1. When adriveisready for operation (its disk has just been inserted, or you detected it during
your initial scan for devices), set aflag in your per-drive storage to indicate that a"disk inserted"
event is pending.

2. Inform the system that the disk was inserted as described above (either by posting a "disk
inserted” event or by caling InformFsSM with the fsmDrvQE IChangedMessage Selector).

3. When any 1/0O isdone to the drive, clear the disk inserted pending flag. 1/0O to the drive indicates
that some file system has queried the drive to determine whether to mount avolume on it, which
implies that the "disk inserted" event was successfully processed.

4. AtaccRun time, check for any drives with the disk inserted pending flag till set. If you find
oneitislikely that the "disk inserted" event was lost, so you should reinform the system of the
disk insertion.

I mplementing File Exchange Support

This section describes how you should implement the File Exchange interface in your disk driver.

Note:

The requests described here have been documented in anumber of places, including Designing PCI
Cards and Drivers for Power Macintosh Computers, page 114, and "PCX and Large Volume Drivers."
However, none of the previous descriptions are sufficiently detailed for you to implement the requests
correctly.

Implementing Driver Gestalt kdgAPI

A disk driver that supports the following Control and Status requests must implement the kdgAP 1
sdlector to indicate that it does. For more information about Driver Gestalt, see the Driver Gestalt section
of thistechnote.

Partition I nformation Record

The partition information record (partinfoRec) isa structure used to store information about a partition
on adisk. Thefields of the structure are:

SCSIID
If the underlying device is connected viaa SCSI interface, thisfield holds the SCSI Manager
Deviceldent of the device. If the device is connected viaan ATA interface, thisfield holds the
ATA Manager ataDevicelD (astructure defined in ATA 0/1 Software Devel opers Guide).
Devices connected via other interfaces can use whatever value makes sense to uniquely identify
the device on that bus (typically thisis the same 32-bit number returned by the
kdgDeviceReference Driver Gestalt selector). If no value makes sense, adriver must clear this
field.

physPartitionlLoc
The block number of the first block in the partition.

partitionNumber
The physical block number of the partition map entry of this partition.

Note:

Y ou can determine the interface used by the device issuing the kdg Interface Driver Gestalt query.
Driversthat support File Exchange should also support this Driver Gestalt selector.

Note:
For more information about the ataDevice D structure, consult the ATA Device 0/1 Software
Developer Guide. This structure is not the same as the Devi ce ldentATA structure, defined above.

Creating a New Drive Queue Element

|Trap H_Control
IMode | Synch, Async, Immediate |

|csCode HSInth |k> HkGetADrive(Sl)

On input, contains the address of a drive queue
element pointer. The request creates anew drive
csParam[0..1] |[DrvQEIPtr * -> |[queue element based on the supplied drive queue
element and places a pointer to the new drive queue
element in the supplied address.

In response to this request, your disk driver must create a new drive queue element. The fields of the
new drive queue element must be filled out as described below.

drive flags (the 4 bytes prior to gLink)

Inherited from the supplied drive queue element.
gLink

Set up when you add the drive to the drive queue using AddDr ive.
qType

Inherited from the supplied drive queue element.
dQDrive

Must be set to a new unique drive number.
dQRefNum

Must be set to your driver's reference number.
dQFSID

Inherited from the supplied drive queue element.
dQDrvSz

Inherited from the supplied drive queue element.
dQDrvSz2

Inherited from the supplied drive queue element.
partition offset (typically held in extra bytes beyond dQDrvSz2)

Inherited from the supplied drive queue element.

Y our driver must return the new drive queue element in the memory pointed by csParam[0..1]. You
must not post a"disk inserted" event for the new drive, or send the fsmDrvQEIChangedMessage
message to FSM.

IMPORTANT:

Thisrequest istypically issued as a synchronous request, which can cause problemsif your driver
needs to allocate memory to create the new drive queue e ement. To avoid this problem, DTS
recommends that all clientsissue this as an immediate request. However, to work with old clients, your
driver should be prepared to handle all possible request modes.

IMPORTANT:

Y our driver should be prepared for the incoming value of the drive queue element pointed to by
csParam[0. .1] being nil, or some other value which is not a pointer to one of your driver'sdrive
gueue elements. In that case, your driver should initialize the fields of the new drive queue element to
default values.

Changing the Partition of a Drive Queue Element

|Trap “_Control
IMode | Synch, Async |

|csCode “Slnt16 ”-> “kRegisterPartition(SO) |
csParam[0..1] |DrvQelPtr [->|[The drive queue efement whose partition is to be changed|
csParam[2..3] |uInt32 [-> |[The block number of the first block in the partition |

csParam[4..5] |uInt32 [-> |[The size (in blocks) of the partition

In response to this request, your disk driver must retarget the specified drive queue element to represent
the given partition on the disk. After this request, the drive queue element must represent a partition that
starts at the block specified by csParam[2. .3] and is of the size specified by csParam[4. .5].

Y ou must not post a"disk inserted" event for the drive, or send the fsmDrvQEIChangedMessage
message to FSM.

IMPORTANT:
The effects of thisrequest are limited to the drive queue element in memory. This request must not
change the partitioning scheme on the disk.

Preventing a Partition from Mounting

Trap | _Control |
Mode |[Synch, Async |
csCode | SIntl16 | -> | kProhibitMounting (52) |
A pointer to apartinfoRec that describes the
* -> s . .
csParam[0..1] fipartinfoRec partition which is not to be mounted at startup

In response to this request, your disk driver must mark the partition specified csParam[0. . 1] such that
itisn't mounted at system startup.

IMPORTANT:
The effects of this request are permanently applied to the partition map on the disk.

Note:
Modern versions of File Exchange do not require your driver to support this request (partly because it
isfunctionally equivaent to kClearPartitionMount). If you decide not to support it, make sure to return

controlErr.

Note:

The partition is completely determined by the fields of the partition information record, not by the
ioVRefNum field of the parameter block.

Determining the Partition of a Drive

Trap | _Status |
Mode |Synch, Async |
csCode | SIntl16 | -> | kGetPartinfo (51)
i The drive number of the drive whose partition
ToVRefNum Sintié "> |linformation is requested
A pointer to a partinfoRec Where the partition
* > || s
csParam[0..1] |[[partInfoRec information is placed

In response to this request, your disk driver must place partition information about the specified drivein
the partition information record pointed to by csParam[0. .1].

Note:

Y our driver's response to this request has a non-obvious effect on the Disk Initialization Package,
especialy the DIReformat cal. The Disk Initiaization Package prevents the user changing the file
system on adrive that exists on a partitioned disk. It does thisto prevent the data on the partition getting
out of sync with the partition type (pmParType) in the partition map entry. For example, if the user
could reformat an existing HFS partition to be in DOS FAT format, the partition data would be in DOS
FAT format while the pmParType would till be "Apple HFS'. Thisis obviously not a good thing (the
ROM might attempt to boot from a DOS FAT partition!), so the Disk Initialization Package preventsit.

This raises the question, how does the Disk Initialization Package know whether adriveisapartition
on adisk. The algorithm used is shown below.

on drivelsAPartition drive
if drive"s driver supports File Exchange requests (kdgAPl)
and kGetPartInfo on drive succeeds then

return physPartitionLoc != 0
else

return drive"s driver"s unit number in [32..39]
end-if

end drivelsAPartition

The gist of thisalgorithm isthat, if your driver supports File Exchange requests, the drive's partition
must start at the beginning of the disk for the Disk Initialization Package to alow a change of format.
Alternatively, if your driver does not support File Exchange requests, it is considered to have partitions
if its unit number fallsin the range reserved for classic SCSI Manager drivers.

If other demands on your driver prevent it from being reformatted by the above algorithm, you will
probably need to include reformat support in your formatting utility.

DTS has requested a better solution to this problem [Radar ID 2287925].

Deter mining Whether a Partition is Mounted

|Trap H_Status
IMode | Synch, Async |

|csCode “Slnt16 |k> “kGetPartitionStatus(SO) |

_> ||A pointer to apartinfoRec that describesthe
partition to be queried

A pointer to an SInt16. On return, this holds the
vRefNum of the volume represented by this
partition, or O if no volume is represented by this
partition.

csParam[0..1] |[[partinfoRec *

csParam[2..3] |[[SIntl6 * ->

In response to this request, your disk driver must determine whether the partition described by the
partition information record pointed to by csParam[0. -1] is mounted and return the volume reference
number of the volumein the Sint16 pointed by csParam[2..3], or O if the partition is not mounted.

Note:
The partition is completely determined by the fields of the partition information record, not by the
ioVRefNum field of the parameter block.

Using These Requests

This section explains how you might utilize the File Exchange driver requests in your application (or
FSM plug-in) to access portions of a partitioned disk that lie outside of the HFS partitions.

WARNING:

Many of the File Exchange driver requests require you to pass a pointer to a buffer. As explained in
Private Requests and Virtua Memory, you must hold these buffers (in the VM sense) to prevent fatal
page faults.

Note:

This section contains a number of routines which demonstrate the use of the File Exchange interface.
Some of the details have been removed for brevity. Moreover, the routines rely on other utility routines
that are not included here. The full source code for these routines is available in the MoreDisks module
of the DTS Morel sBetter sample code library.

Thefirst step of using the File Exchange interface isto create a drive queue element that targets the
section of the disk you wish to read or write. The following code snippet shows how this might be done.

extern pascal OSErr MoreCreateNewDriveQueueElement(SIntl6 driveToClone,
Ulnt32 firstBlock, UInt32 sizelnBlocks, SIntl6 *newDrive)

// See comment in interface part.
{

OSErr err;

CntrilParam pb;

DrvQEIPtr drvQEl;

// First check that the driver supports the File Exchange
// interface.

err = noErr;
if (! MoreDriveSupportFileExchange(driveToClone)) {
err = controlErr;

}

// Find the drive queue element associated with
// driveToClone. This is an input parameter to
// kGetADrive.

it (err == noErr) {
err = MoreUTFindDriveQ(driveToClone, &drvQEIl);
}

// Make the kGetADrive request to the driver. Because

// we pass a pointer to memory outside of the parameter

// block (drvQEl) and the driver might be a paging device,
// we must hold drvQEl (and make sure to unhold it laterl!).

it (err == noErr) {
err = SafeHoldMemory(&drvQEl, sizeof(drvQEl));
it (err == noErr) {
pb.ioVRefNum = driveToClone;
pb.i1oCRefNum = MoreGetDriveRefNum(driveToClone);
pb.csCode = kGetADrive;
*((DrvQEIPtr **) é&pb.csParam[0]) = &drvQEIl;

err = PBControlSync((ParmBIkPtr) &pb);
it (err == noErr) {
*newDrive = drvQEIl->dQDrive;

}
(void) SafeUnholdMemory(&drvQEl, sizeof(drvQEl));

+

// Now retarget the new drive to the partition on the
// disk specified by firstBlock and sizelnBlocks. We do
// this in the create call because some disk drivers

// don"t always inherit the partition information from
// the drive that was cloned.

if (err == noErr) {
err = MoreSetDrivePartition(*newDrive, firstBlock, sizelnBlocks);

+

return err;

}

Thisroutine worksin two parts. First, it finds the drive queue element associated with driveToClone
and clonesit using a kGetADrive request to the driver. Then, it sets the new drive's partition location
and size usingMoreSetDrivePartition, which is shown below.

extern pascal OSErr MoreSetDrivePartition(SIntl6 drive, UInt32 firstBlock,
UInt32 sizelnBlocks)
// See comment in interface part.

OSErr err;
CntrilParam pb;
DrvQEIPtr drvQEl;

// First check that the driver supports the File Exchange
// interface.

err = nokrr;
if (! MoreDriveSupportFileExchange(drive)) {
err = controlErr;

¥

// Find the drive queue element associated with
// drive. This is an input parameter to
// kRegisterPartition.

if (err == noErr) {
err = MoreUTFindDriveQ(drive, &drvQEl);
}

// Make the kRegisterPartition Control request. We
// don"t need to hold any memory because all the
// parameters to this Control request are entirely
// contained within the parameter block.

it (err == noErr) {
pb.ioVRefNum = drive;
pb.1oCRefNum = MoreGetDriveRefNum(drive);
pb.csCode = kRegisterPartition;

*((DrvQEIPtr *) &pb.csParam[0]) = drvQEIl;
*(UInt32 *) &pb.csParam[2]) = firstBlock;
*(UInt32 *) &pb.csParam[4]) = sizelnBlocks;

err = PBControlSync((ParmBIkPtr) &pb);
}

return err;

}

Once you have a drive queue element that spans the blocks you're interested in, you can read and write

those blocks using standard Device Manager routines, for example, PBReadSync. The next listing shows
how this might be done.

static OSErr ReadBlock(SIntl6 drive, UInt32 blockNumber, void *blockBuffer)
{

OSErr err;
I0Param pb;

pb.ioVRefNum = drive;

pb.i1oRefNum = MoreGetDriveRefNum(drive);
pb.i1ioBuffer = blockBuffer;

pb.ioReqCount = 512;

pb.i1oPosMode = fsFromStart;
pb.i1oPosOffset = blockNumber * 512;

err = PBReadSync((ParmBIkPtr) é&pb);
return err;

}

Partition Handling: Background and Rationale

To understand the current disk driver architecture, you really need to understand the history of how it
evolved, starting with the floppy disk drives on the Mac 128.

Mac 128 Disk Driver

When the original Mac shipped all disks were floppy disks, which did not support partitions. The floppy
disk driver would create a single drive queue element that represented the entire disk, and the File
Manager used this drive as the entire volume. There was a one-to-one trandation between logical blocks
on the volume (blocks that the File Manager requests) and physical blocks on the disk.

For example, on afloppy disk, if the File Manager requests block 64, the disk driver would simply
return block 64.

Disk insertion was handled with the following a gorithm:

1. Thedisk driver created a drive queue element for each physically attached floppy drive.

2. When the user inserted a disk in adrive, the driver posted adisk inserted (diskEvt) event for
that drive.

3. The next time the application called GetNextEvent (a predecessor to Wai tNextEvent), the
(Toolbox) Event Manager got the "disk inserted” event and called _MountVvol.

4. _MountVol only recognized built-in file systems, such as MFS and HFS. An attempt to mount
an unsupported file system would cause _MountVol to return an error.

5. The (Toolbox) Event Manager put the error result from _MountVvol into the high word of the
message field of the EventRecord, and returned the "disk inserted” event to the application.

6. The application saw the "disk inserted” event and examined the high word of the event's
message field. If the value was not zero, the "disk inserted” event was "bad" and the application
called the Disk Initialization Package's D1BadMount routine. D1BadMount would give the user
the opportunity to initialize or gect the disk.

SCSI and Partitions

The introduction of SCSI hard disk devices on the Mac Plus made this situation more complex. Hard
disk devices support multiple partitions. The File Manager was not changed to recognize these partitions,
so the burden of supporting partitions fell on the disk driver. When adisk is partitioned, the disk driver
must read the partition map and creates a drive queue element for each HFS partition (a partition whose
pmParType is"Apple_HFS') on the disk.

Thus, each drive queue element on a partitioned disk contains an implicit trandation from logical blocks
to physical blocks. For example, if you have a partition that starts at block 1024 and continues for 4096
blocks, the driver creates adrive queue element for a drive whose size is 4096 blocks. When the system
reads logical block 64 on that volume, the driver knows that it must trandate that to physical block 1088
(that is, 1024 + 64) on the disk.

The new disk insertion algorithm was:

1. The ROM or a system extension loaded the disk driver.

2. Thedisk driver parsed the partition map looking for all the partitions of type "Apple_ HFS". For
each found partition, the driver would create a drive queue element and post a "disk inserted"
event.

3. If thedriver was being loaded at system startup, the Start Manager would call _MountVol to
mount the startup volume. It would then boot from that volume. Later, when the Finder
launched and started calling GetNextEvent, the "disk inserted” events for other partitions
would be processed.

4. If the driver was being loaded after system startup, the process would proceed as from step 3
above.

Thisworks just fine for disks with the Apple partition map and HFS partitions, where the driver
recognizes both the partition map format and the "Apple HFS' partition map entries, and creates the
appropriate drive queue elements. However, it doesn't allow foreign disk formats to be handled
correctly, in two important cases.

1. The partition map contains non-HFS partitions (such as"Apple PRODOS" or
"Apple_ UNIX_SVR2" (A/UX) partitions) -- When confronted by a non-HFS partition, the
driver has adifficult choice. If it creates a drive queue element for the partition and a suitable
foreign file systemis not installed, the system asks the user whether they want to initialize the
partition. Probably not good. On the other hand, if it doesn't create a drive queue element for the
partition, thereis no way for aforeign file system to access the data on the partition. To
safeguard user data, most drivers choose the second alternative.

2. The partition map format is unrecognized -- AsMac OS loads disk driversfrom a
partition on the disk, it israre that adisk driver isloaded for anon-Apple partitioned disk.
However, if adriver isloaded (by a system extension, for example) for adisk with an
unrecognized partition map (such as a DOS partition map), it faces the same difficult choice
described above. Most drivers resolve this issue by smply not creating any drive queue
elements for disks with an unrecognized partition map.

A foreign file system (such as a File System Manager plug-in) isresponsible for controlling avolume
mounted on a particular drive (represented by a drive queue element). If thereis no drive queue el ement
for a partition, there is no obvious way to create one. Similarly, if thereisno driver for a particular disk
(because the disk doesn't have an Apple partition map to load it from), there is no easy way for the
foreign file system to read from or write to the disk.

File System Manager

When File System Manager was introduced, it defined anew way for disk drivers to announce the
arrival of new drive queue elements. This mechanism allows disk driversto create drive queue elements
for non-Apple partitions, free from the fear of the dreaded "Thisis not a Macintosh disk. Would you like
toinitidizeit?" diaog.

The new a gorithm works as described below:

1. When the disk driver loads, it parses the partition map. For each partition of type "Apple HFS",
the driver creates a drive queue element and posts a"disk inserted” event. For other partition
types, the disk driver creates a drive queue element whose FSID is fsmGenericFSID and calls
InformFSM with the fsmDrvQEIChangedMessage message. If it can't recognize the partition
map, the driver just creates a single drive queue element whose FSID is fsmGenericFSID and
calls InformFsm with the fsmDrvQEIChangedMessage message.

2. When InformFsM is called with the fsmDrvQE IChangedMessage message, FSM posts a"disk
inserted” event for the driveif al the following conditions are met:

o thedrive'sFSID is not zero,

o thedrives FSID is not fsmignoreFSID,

o thedrive does not aready have avolume mounted on it, and

o thedrivesFSID is fsmGenericFSID or the drive's FSID matches the FSID of one of
theinstalled FSM plug-ins.

3. Each"disk inserted” event is handled as before, except:

1. FSM passes _MountVol requests to externa file systems, which have the opportunity
to claim the drive as aforeign volume.

2. FSM tail patches _MountVvol. If _MountVol fails and the drive on which the mount was
attempted has the FSID of fsmGenericFSID, FSM causes _MountVol to return
nsDrvErr. Thiserror code, when passed back to the application and hence on to
DIBadMount, causes DI1BadMount to not display the disk initialization dialog.

The effect of these changesisthat disk drivers are now free to create adrive queue element for any
partition and will not trigger the Disk Initialization Package aslong asthey set the FSID of the driveto
fsmGenericFSID. This goes some way to addressing problem 1, described above.

File Exchange

The final part of the solution for problem 1 isthe File Exchange interface for disk drivers, as defined
above To mount non-HFS partitions in an Apple partition map, File Exchange (and by extension any
FSM plug-in) uses thisinterface in the following way.

1. Itfirst creates anew drive queue element by cloning an existing drive queue element using
kGetADrive.

2. It then retargets that drive queue element to represent the partition map for the disk using
kRegisterPartition. For an Apple partition map, thisis atwo-step process. First it must set
the partition to start at block 0 and be 2 blocks long. This gives access to the driver descriptor
map (DDM) and to the first partition map entry. It then uses the first partition map entry to
determine the size of the partition map. It then retargets the drive to represent the entire DDM
and partition map.

3. It then reads through the partition map looking for the required partition type. For each found
partition, it creates anew drive queue element (using kGetADrive) and sets that drive queue
element to represent the partition's data. It can then mount a volume on that drive queue element.

A similar technigue can be used for non-Apple partition maps.

File Exchange aso includes a partia solution to problem 2 in that it contains a generic SCSI disk driver.
At startup time, File Exchange scans the SCSI bus looking for devices that contain DOS partition maps.
When it finds such adevice, it loads its generic SCSI driver for the device. Obviously that driver
supports the File Exchange interface, which File Exchange then uses (in asimilar processto that
described above) to read through the DOS partition map and create drives for al the mountable DOS
partitions on the disk.

Thisisonly apartial solution because (a) it only supports SCSI and ATA devices (the system includes a
generic ATA device driver), but not any other block devices, and (b) the mechanism for loading the
generic SCSI driver is not documented to developers. However, as adisk driver writer, you can craft
your driver to guarantee atotal solution to problem 2, as described in Cooperating with File System

Manager.

Private Control and Status Requests

If you define private Control and Status requests for communication with your device driver, you must
follow certain rules to ensure their reliable operation. This section outlines these rules.

Private csCode Selection

If your driver claims to supports Driver Gestalt, it must not use any csCode below 128 for a private
Control or Status request. All private csCodes must be allocated from the range 128 to 32767.

Private M eans Private

If you implement a Control or Status request that is private to your driver, you must issueit only to
your driver. Do not issue your private Control and Status requests to other drivers, because the other
driver might use the private csCode for acompletely different purpose, one that is potentially fatal to
user data (such as rewriting the partition map!).

At aminimum, you must check the driver name before issuing a private Control or Status request. Y ou
may also want to perform other checks (such as verifying a signature in the driver header, or issuing a
private Driver Gestalt) just to be sure.

Synchronous != System Task Time

Asdescribed in DTS Technote 1067, "Traditional Device Drivers. Sync or Swim," calling a device
driver synchronously does not guarantee that the driver's entry point will run at system task time. If
you are defining a Control or Status request for which your driver must do something that is not
interrupt safe, you must define the request to be executed immediately.

Private Requests and Virtual Memory

If your driver supports virtual memory (you can use the kdgvMOptions Driver Gestalt selector to
indicate this), you must be careful to avoid fatal page faults when fielding private Control or Status
requests. Specifically, your driver must not cause a page fault while it isfielding aqueued (that is,
synchronous or asynchronous) request.

The Virtual Memory Manager holds the entire ParamBlockRec (80 bytes) passed to al queued _Read,
_Write, _Control, and _Status calls. In addition, VM holdsthe I/O buffer (pointed to by ioBuffer,
for length ioReqCount) for _Read and _Write requests. Thus your driver can safely accessthis
memory without causing afatal page fault.

The problem comes when you define a private Control or Status request whose ParamBlockRec
contains a pointer to another piece of memory. If your driver accesses that memory, it may cause a page
fault. If your driver supports virtual memory, that page fault will be fatal (because a page fault while
any paging deviceis busy isfatal).

There are anumber of ways to avoid this problem.

1. Alwaysinclude all information "inline" in the parameter block. Remember that the parameter
block isautomatically held for you by the Virtual Memory Manager.

2. If you must include pointersin your parameter block, define your private Control or Status
interface to be called immediately. Immediate requeststo adriver do not mark the driver as
busy, and hence any page faults they cause will not be fatal. However, your driver must be
written to support immediate requests of this kind.

3. If none of the above are suitable, you must require that your clients hold any buffers pointed to
by the parameter block.

If you're making a queued Control or Status request to a device driver which supports paging and the
parameter block contains pointersto other data structures, you should hold those data structures, just to
be sure.

For more background about how the Mac OS Virtual Memory Manager prevents fatal page faults, see
DTS Technote 1094, "Virtua Memory Application Compatibility."

Read-Verify Mode

Very few disk driver writers support read-verify mode in their drivers, perhaps on the mistaken
assumption that it is difficult to do. This may be because the historical definition of read-verify modein
the".Sony" driver istricky to implement for any DM A-based peripheral. This section explains the
current definition of read-verify mode, the best way to support it in your driver, and the best way for
application software to useit.

Read-Verify Mode Explained

Read-verify mode is engaged by setting rdverifyMask in the ioPosMode field of the I/O parameter
block passed to adevice driver. The original definition of read-verify mode isthat the driver should do a
byte-for-byte comparison of the data buffer (pointed to be ioBuffer and ioRegCount) with the data on
disk. If they are the same, the operation would succeed. If they are different, the operation would fall
with an ioErr.

This was easy to implement in the classic ".Sony" driver because the driver polled all bytesin to and out
of memory. So implementing read-verify mode was a smple as changing the original copy |oop:

while (err == noErr && ioActCount != ioReqCount) {
err = GetByte(ioBuffer + ioActCount);
it (err == noErr) {
ioActCount += 1;
s
s
to averify loop:

while (err == noErr && ioActCount != ioReqCount) {
err = GetByte(&tmp);
if (err == noErr && tmp !'= *(ioBuffer + ioActCount)) {
err = i0Err;
by
it (err == noErr) {
ioActCount += 1;
s
s

Thisform of read-verify modeistricky to implement in modern disk drivers, which typicaly use a
DMA engineto transfer the data. So the definition of read-verify mode has changed, as explained in the
next section.

Implementing Read-Verify Modein Your Driver

The new definition of read-verify mode is simple to explain, and to implement in your driver. If your
driver gets aread-verify request, it should treat it exactly like aread request except that it must disable
all cachesfor the request. The data transferred into memory must have originated from the physica
medium itself.

This new definition of read-verify mode still alows applications to perform read-verify operations, as
explained in the next section.

Using Read-Verify Mode in an Application

It is easy to write software that uses read-verify mode in way that is compatible with both the old and
new definitions. TheFswriteVerify routineinthe DTS sample "MoreFiles' is an excellent example.
The basic algorithm is as follows.

1. Write the datato the disk in the traditional way.

2. Copy the datato atemporary buffer.

3. Read the data back into the temporary buffer.

4. Compare the temporary buffer to the origina data.

This works because:

e if the driver implements read-verify mode in the old way, any errors will be detected at step 3,
and
e if the driver implements read-verify mode in the new way, any errors will be detected at step 4.

Color Icons

A classic problem with disk driversisthat the mechanism for returning icons from a disk driver (Control
requests kDrivelcon (21) and kMedialcon (22), documented in Technote DV 17, "Sony Driver: What
Y our Sony Drivesfor You") islimited to black-and-white icons. In Mac OS 8, the Finder was changed
to look at the drive and apply special-case color icons, but there was still no generic way for adisk driver
to return acolor icon.

Mac OS 8.5 and later allow disk driversto return color icons. Thisis done through two new Driver
Gestalt selectors, kdgPhysDrivelconSuite (equivaent to the kDrivelcon (21) Control request) and
kdgMedialconSuite (egquivalent to the kMedialcon (22) Control request). To give your drives a color
icon, you must respond to these Driver Gestalt requests by putting a pointer to anicon family (*icns*)
indriverGestaltResponse. Theicon family alowsyou to return any number of icon sizes and depths
in one data structure.

Y ou can build an icon family in a number of ways.

e Manually -- The format is documented in "IconServices.r”. This approach is most suitable for
boot disk drivers which typically staticaly link the icon into the driver code resource.

e Resource Editor -- Modern resource editors have been updated to edit these structures directly.

e Programatically -- The Icon Services programming interface allows you to create an icon family
from an icon suite, as shown in the code sample below. This approach is more suitable for disk
driversthat are loaded after the machine has started to boot, for example, network or disk image
drivers.

static lconFamilyPtr GetRamDisklconFamily(void)
{

OSErr err;

OSErr junk;

IconFamilyPtr result;
IconSuiteRef iconSuite;
IconFami lyHandle iconFamily;
Size iconFamilySize;

result = nil;
iconSuite = nil;
iconFamily = nil;

err = GetlconSuite(&iconSuite, 128, kSelectorAllAvailableData);
it (err == noErr) {

err = lconSuiteTolconFamily(iconSuite, kSelectorAllAvailableData, &iconFamily);
}

it (err == noErr) {
iconFamilySize = GetHandleSize((Handle) iconFamily);

result = (lconFamilyPtr) NewPtrSys(iconFamilySize);
err = MemError(Q);
it (err == noErr && result == nil) {
err = memFullErr;
}
}

if (err == noErr) {
BlockMoveData(*iconFamily, result, iconFamilySize);
}

// Clean up.

if (iconSuite I= nil) {
(void) DisposelconSuite(iconSuite, false);
}

it (iconFamily I= nil) {
DisposeHandle((Handle) iconFamily);
}

return result;

}

IMPORTANT:

Icon Services always requests icons using an immediate request at system task time. Y our driver can
move or purge memory in response to these requests. Be warned; however, that this immediate request
can cause your driver to be reentered.

IMPORTANT:
If an application issues these Driver Gestalt requests, it must follow Icon Services and issue them using
an immediate request at system task time.

Disk Driver Power Management

This section is not yet finished and has been omitted in the interests of shipping an initia version of the
technote. A future revision of this technote will cover disk driver power management. In the meantime,
you can consult the following references:

o Inside Macintosh: Devices, Power Manager
e DTS Technote 1046, "Inside Macintosh: Devices, Power Manager Addenda’
e DTS Technote 1039, "File Access and the Power Manager™"

Target Mode

Most PowerBooks support tar get mode (commonly known as"SCSI disk mode"), in which the
attachment of a specia cable causes the PowerBook to makeitsinternal hard disk device available asa
SCSl target device. For PowerBooks that use internal SCSI hard disk devices, support for target mode
requires no special work by the disk driver. The PowerBook smply stays off of the SCSI bus and the
host computer has free access to the PowerBook's internal hard disk device. However, for PowerBooks
that use an internal ATA hard disk device, the implementation of target mode is somewhat more
complex, and requires explicit support by the ATA disk driver.

When a PowerBook with an internal ATA hard disk device boots in target mode, the CPU runs specia
target mode software. This software loads the ATA driver for the internal hard disk device and then puts
the built-in SCSI controller into target mode, listening for incoming SCSI requests. When such a request
is made, the CPU servicesthat request by interpreting the incoming SCSI command. If the command
requires disk 1/0O, the CPU makes an appropriate I/O request to the ATA disk driver to satisfy that 1/0.

In order to support target mode, your ATA disk driver must support some additional Control and Status
requests that allow the target mode software to do itsjob. These requests are described in the remainder
of this section.

Target Mode Checklist

If your ATA disk driver is having trouble when used in target mode, check that you support the
following items.

e Y ou must support the kdgBoot (*boot") Driver Gestalt selector as described above.

® You must return kdgDiskType ("disk") in response to the kdgDeviceType ("devt”) Driver
Gestalt selector.

e You must support the kPhysical 10Code (17) Control request, described below.

Y ou must support the kGetDriveCapacity (125) Status request, described below.

e You must support the kSetPowerMode (70) Control request, described in Designing PCI Cards
and Drivers for Power Macintosh Computers.

e You may choose to support the kGetErrorinfo (123) and kGetDrivelnfo (124) Status
requests, athough the system will accommodate you not supporting them. See below for details
of how to support these Status requests.

Required Control and Status Requests

Your ATA driver must support the Control and Status requests described in this section in order to work
in target mode.

Switching to Physical 1/0 Mode

|Trap || Control

|M ode ||Synch Async |

csCode |Slnt16 | -> |kPhyS|caIIOCode (a7

ioVRefNum SInt16 l[-> ||A drive number of adrive controlled by your driver

Contains either 1 to specify physical I/0O mode, or 0 to

csParan[0] UInti6 "> || specify logical 1/0 mode

In response to this request, your disk driver must change how it does logical-to-physical block
trandation on the drive specified by ioVRefNum. If csParam[0] is 1, your driver must disable
logical-to-physical block trandations on the drive for subsequent 1/0 requests. In thismode, an I/0O
request for logical block X will always access physical block X. If csParam[0] iSO, your driver must
re-enable logical-to-physical block trandation. In this mode, an 1/O request for logical block X will
access physical block X + Y, where Y isthe offset from the beginning of the disk of the partition
represented by the drive.

For more details on logical-to-physical block trandation, see Block Trandation.

If iovVRefNum isnot adrive number controlled by your driver, it must return nsDrvErr.

Returning Disk Size

Trap | _Status |
Mode | Synch, Async |

csCode | SInt16 | -> | kGetDriveCapacity (125) |
ioVRefNum | SIntl6 | -> | TheatabDevicelD of your device |
Your disk driver must set this to the bottom 16 bits of
csParam[0] uintié <~ |l/the number of physical blocks on the device
Your disk driver must set thisto the top 16 bits of the
csParam[1] uintié <= |[number of physical blocks on the device

In response to this request, your disk driver must return the physical size (in 512-byte blocks) of the
disk in the device.

IMPORTANT:
In thisrequest, ioVRefNum is an atabDevicelD, not the more typical drive number.

If ioVRefNum isnot an ataDevicelD of adevice controlled by your driver, it must return nsDrvErr.

Optional Status Requests

Your ATA driver may support the following Status requests to improve the fidelity of SCS| target
emulation.

Returning Error Information

Trap | _Status |
Mode |[Synch, Async |

csCode | SInt16 | -> | kGetErrorinfo (123)

ioVRefNum [sint16 |-> ||A drive number of adrive controlled by your driver |

Y our disk driver must set thisto thelast error that
occurred on the drive

Y our disk driver must set this to the number of bytes
that were transferred in the |/O request that caused the
|ast error on the drive

csParam[2] OSErr

K
1 1

csParam[3..4] |UInt32

In response to this request, your disk driver must return the information described above about the last
error that occurred on the drive.

If ioVRefNum isnot a drive number controlled by your driver, it must return nsDrvErr.

Getting Information About the Drive

Trap || _status |
Mode |[Synch, Async |
csCode | SInt16 | -> | kGetDrivelnfo (124) |
i oVRefFNUm [sint1e [> [Theatapevice1p of your device |
[|[Your disk driver must set this to a pointer to a 20-byte
structure containing ASCI| text describing the attached
csParam[0..1] [void * <- ||drive; thefirst 16 bytes should be the model number,
the next 4 bytes should be the firmware revision
number

In response to this request, your disk driver must return the information described above about the
attached drive. The target mode software uses this information to satisfy a SCSI Inquiry ($12) command.

Note:
The Apple ATA driver extracts this information from the results of an ATA kATAcmdDriveldentify

($EC) command to the device. The model number is extracted from bytes 27 through 42 of the
response. The firmware revision number is extracted from bytes 23 through 26 of the response.

IMPORTANT:
In thisrequest, ioVRefNum is an atabDevicelD, not the more typical drive number.

If ioVRefNum isnot an ataDevicelD of adevice controlled by your driver, it must return nsDrvErr.

Summary

When the war of the giantsis over, the war of the pygmieswill begin.
Winston S. Churchill

This technote is the summary!

Further References

o SeetheExisting Information section of the technote.

Downloadables

IEAcrobat version of this Note (392K).

ol
W
ol

Data Structure to Aid Security and Recovery Software (49K).

PartitionExtras.h (49K).

Morel sBetter (contains MoreDisks module) (486K).

Acknowledgments

Thanks to Roger Bates, Clinton Bauder, Jon Becker, Peter Bierman, John Brisbin, Marvin Carlberg,
Garth Cummings, Ken FitzGerald-Smith, Norman Fong, Byron Han, Thane Henninger, Benjamin
Herrenschmidt, Jim Kately, Jerry Katzung, Brent Knight, Chris Karr, Craig Keithley, Jm Luther,
Vinnie Moscaritolo, Tim McLeod, Dave Radcliffe, Anton Rang, Ron Searls, David Shayer, Tim Shaw,
Thomas Tempelmann, and Drew Thaler.

To contact us, please use the Contact Us page.
Updated: 22-November-1999

Technotes | Contents
Previous Technote | Next Technote

