

ð

2

T E C H N O T E :
Understanding the
DMA Serial Driver 2

by Craig Prouse & Godfrey DiGiorgi (ramarren@apple.com)

Apple Developer Technical Support (DTS)

This Technote describes the Macintosh DMA Serial Driver, also known as
SerialDMA 2.0. The SerialDMA driver is a replacement for the standard set of
Macintosh serial device drivers often referred to by their driver names: .AIn,
.AOut, .BIn, and .BOut. SerialDMA is applicable only to those Macintosh
models which incorporate DMA channels servicing the standard Z8530 Serial
Communications Controller.

Every attempt has been made to ensure compatibility with the classic
Macintosh serial driver which does not support DMA operation. While some
minor behavioral differences exist, the primary differences are:

■ significantly enhanced serial throughput capabilities

■ longstanding bugs fixed, and

■ a few additional features.

Since the SerialDMA driver has undergone a major architectural revision
during its lifetime, it is important to understand how it has evolved. This
Technote primarily describes the second-generation SerialDMA driver, while
the first-generation driver is described largely for context.
1 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

You should be familiar with Macintosh device drivers in general, and with the
classic Macintosh serial driver in particular. For reference, see Inside Macintosh:
Devices, chapters 1 and 7.

About the SerialDMA Driver 2

The SerialDMA driver which shipped in the system software of each
DMA-capable Macintosh from the Macintosh Centris 660AV through the Power
Macintosh 8100/110 (1993-1994) was Apple’s first-generation DMA serial
driver. This driver was cursed by some architectural flaws. The flaws exhibited
themselves primarily as latency problems, which affected software
handshaking and certain kinds of read-write operation.

The original version of SerialDMA is identifiable as Serial Driver version 8. As
Apple and several third-parties have discovered, version 8 may simply be
unsuitable for some categories of applications.

In response, Apple is now providing a second-generation SerialDMA driver
(version 9), which corrects the design flaws in the first version, increases
compatibility with the classic serial driver to the greatest extent possible, and
optimizes performance to realize the full potential of the available DMA
hardware. The effects of this re-architecture include

■ a much smaller driver footprint (over 30% smaller) in memory for the 68K
version

■ native performance in the PowerPC version

■ significantly higher reliablility

■ better potential throughput, and

■ minimal latency in response to read requests and XOn/XOff handshaking
characters.

Three overriding goals guided the development of the second-generation
SerialDMA driver. Certain of these goals were inherited from the original
SerialDMA development effort, but customer feedback warranted a complete
reassessment of the weight assigned to each of these goals and their priorities
for subsequent releases.
2 of 14 About the SerialDMA Driver

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

Goal #1: Compatibility 2

It should be virtually impossible to distinguish SerialDMA 2.0 from the classic
serial driver except that certain bugs are fixed and throughput is far superior.
The SCC itself is programmed slightly differently when data is transferred by a
DMA controller and, as a result, the standard transmit and receive interrupt
handlers are rarely invoked. The classic SCC interrupt handler API is fully
supported, however. Software which depends on replacing the serial drivers’
SCC interrupt handlers while the driver is open will probably not function as
expected. The DMA interrupt handler interface is private to Apple Computer,
Inc.

On the other hand, completion routines are now called with interrupts masked
rather than at deferred task time, which eliminates one source of compatibility
problems with ill-behaved client software.

During an asynchronous I/O request, driver clients cannot depend on the
parameter block’s ioActCount field to increment because the processor does not
intervene in the transfer.

Goal #2: Responsiveness 2

The greatest flaw in the first-generation driver was that the DMA controller
was not programmed to interrupt at the precise moment when an XOn/XOff
character arrived, nor at the precise moment when a read request became
satisfied. Instead, there was a semi-customizable timeout latency before
responding to such events. The result was very high interrupt latency tolerance
at the expense of very poor performance for certain clients more interested in
response time than throughput.

The second-generation driver implements sophisticated DMA channel
management to arrive at a better compromise between the demands of
responsiveness and latency tolerance. Responsiveness should now be
indistinguishable from the classic serial driver. Latency tolerance should still
provide ample margins.

Goal #3: Performance 2

Transmission throughput was already nearly optimal, but may have been
improved slightly in some implementations as a result of more sophisticated
DMA channel management.
About the SerialDMA Driver 3 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

Receive bandwidth has received special attention. Receive DMA channel
availalability is maintained at the highest possible level consistent with
responsive behavior toward driver clients. While exact channel availability
characteristics depend on the specifics of the DMA controller, the possibility is
very small that the DMA controller will exhaust its transfer count and allow
the SCC to overrun.

The bandwidth of memory and typical system interrupt latencies provide for
support of the maximum 230.4K bps data stream, provided that exceptional
events do not deplete the available DMA resources and provided the client
manipulates the driver in an efficient manner. New driver Control codes make
115.2K and 230.4K bps modes easily accessible to client software without
difficult or risky hacks and workarounds.

Working with the SerialDMA Driver 2

When looking for a certain function in the serial driver, it is usually correct to
simply make the appropriate Control or Status call and check the result. If a
function is not supported, the call returns controlErr or statusErr. It is only
appropriate to make decisions based on the driver version when general driver
characteristics are known for a specific driver version in advance. This is
difficult since serial drivers can and will be revised without changing the
version number. However, Apple guarantees that the first-generation
SerialDMA driver is obsolete and will not be maintained further.

For development purposes, the easiest and quickest way to check the serial
driver version installed on a system is with the MacsBug drvr dcmd. This
dcmd displays all the drivers installed on a system with their respective
version numbers (if specified).

New Capabilities 2

Thanks to the high-performance DMA controllers available on the machines
supported by SerialDMA, higher serial data rates are possible than ever before.
With conscientious use of the enhanced serial driver API and an understanding
of issues that may stress the drivers’ performance, it is feasible to maintain
connections in excess of the traditional 57,600 bps limitation. It should even be
possible to sustain connections with 28,800 bps V.34 modems using a 230.4K
bps DTE rate.
4 of 14 Working with the SerialDMA Driver

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

Please read the section on Additional Details for an explanation of how the
client may affect the performance and the potential throughput of the
SerialDMA driver.

Identifying the First-Generation Driver 2

It may be useful to identify the first-generation SerialDMA driver
programmatically in applications where this driver is unsuitable due to bugs or
unacceptable response times. Note that it is not the DMA nature of the driver
which should be implicated but the implementation of the driver itself, so
logically the test is not whether the driver uses DMA, but whether it is the
first-generation DMA driver.

This driver may be identified in one of two ways. The client may make a Status
call to the serial driver with a csCode of 9 to retrieve the driver’s version. The
first-generation driver returns the value 8 in the first byte of csParam.
Alternatively, the client may issue a Control call with a csCode of 17987 and
inspect the result; no other version of the serial driver implements this csCode
and therefore only this version returns a result of noErr (other versions return
controlErr by default). This special Control call, which was unique to the
first-generation SerialDMA driver, allowed customization of the DMA timeout
latency between one and 65,535 ticks. The latency must be specified in the first
16-bit csParam word when issuing the Control call; a value of 1 is safe and
provides best performance although it is somewhat inefficient.

Note
In some cases, applications sensitive to serial driver
response time may be made to work with the
first-generation driver through the use of this special
csCode. Because the second-generation driver is now
available, however, this hack is best avoided. ◆

Identifying the Second-Generation Driver 2

Ideally, of course, all versions of the serial driver should be compatible, which
means virtually indistinguishable. It is the stated compatibility goal of
SerialDMA 2.0 that no one should know the difference between it and the
classic non-DMA Serial Driver or first-generation DMA Serial Driver. But if by
chance it is desired to identify specifically the second-generation SerialDMA
driver, the only direct method is through examination of the driver version
Working with the SerialDMA Driver 5 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

number. This is available to the client as the result of a Status call with csCode
9 as desribed above. The second-generation driver returns a value of 9 as its
version.

The second-generation SerialDMA driver is the first serial driver to support
csCodes to invoke 115.2K bps mode and 230.4K bps mode, so in some sense the
driver version could be detected that way, but in the future, other driver
versions may also support these calls. Therefore, if these functions are desired,
make the Control calls without regard to the driver version.

IMPORTANT

Do not make any assumptions based on the numerical
sequence of serial driver versions. Each version number is
essentially an ID for a driver architecture as opposed to a
chronological version number. Version 10, for example,
may be a completely different design than SerialDMA, it
may or may not support DMA at all, and so forth. ▲

SerialDMA Driver Reference 2

This section documents control codes new to the SerialDMA driver, relative to
the classic non-DMA driver.

Low-Level Routines 2

The SerialDMA driver supports csCode 15, which was designed to help
support MIDI externally clocked data rates. This csCode has been implemented
previously in the IOP serial driver of the Macintosh IIfx, Quadra 900, and
Quadra 950. It has not been officially documented because a large majority of
the installed base does not implement the call.

The SerialDMA driver supports two new csCodes, 115 and 230, by which its
Control routine can switch the driver to high-speed modes. These csCodes
support 115.2K baud and 230.4K baud rates. The correct time to make these
calls is after a normal SerReset call using some other (lower) baud rate. The
reason for this is SerReset performs a number of configuration tasks but
assumes that the baud rate is a function of the SCC baud rate generator. In
order to achieve these two higher speeds, the baud rate generator must be
6 of 14 SerialDMA Driver Reference

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

bypassed, using the standard 3.672 MHz SCC clock and one of a very limited
number of rate divisors. These csCodes effect the task of bypassing the baud
rate generator and setting the clock divisor to achieve the specified rate.

Note
If the SCC is externally clocked on the GPi line rather than
using the internal RTxC clock, these two control calls will
have the effect of selecting a baud rate as a fraction of the
GPi clock rate, where the divisor is 32 for csCode 115 and
the divisor is 16 for csCode 230. ◆

Set MIDI Clocking[control code 15] 2

csCode = 15 csParam = byte

This call is designed to place the serial driver into a quasi-MIDI mode. It is
similar to a SerReset, but it always leaves the serial driver in a mode of eight
data bits and one stop bit. Hardware handshaking is disabled. Clocking is
required externally at the CTS pin. The parameter byte represents the factor by
which the external clock frequency exceeds the data rate according to the
following table. The rate multiplier is encoded in the two most significant bits
of the parameter byte, while all other bits are reserved and should be zero.

Table 1 csCode 15 rate multiplier encodings

Encoding Rate multiplier Example
0x00 × 1
0x40 × 16 250K baud 8× MIDI rate @ 4 MHz
0x80 × 32 125K baud 4x MIDI rate @ 4 MHz
0xC0 × 64 31.25K baud standard MIDI rate @

2 MHz
SerialDMA Driver Reference 7 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

Set 115.2K Baud Rate[control code 115] 2

csCode = 115

This call is designed for high-speed modems. It typically requires DMA
hardware on the receive channel to be successful. It is similar to the clock
selection function available through csCode = 16, but it instead forces the serial
driver to take its baud rate clock directly from the internal 3.672 MHz RTxC
clock source with a rate multiplier of 32. The result is to force transmit and
receive baud rates of nominally 115.2K baud. Other configuration parameters
are not affected.

Set 230.4K Baud Rate[control code 230] 2

csCode = 230

This call is designed for high-speed modems. It typically requires DMA
hardware on the receive channel to be successful. It is similar to the clock
selection function available through csCode = 16, but it instead forces the serial
driver to take its baud rate clock directly from the internal 3.672 MHz RTxC
clock source with a rate multiplier of 16. The result is to force transmit and
receive baud rates of nominally 230.4K baud. Other configuration parameters
are not affected.

IMPORTANT

The highest baud rates supported by this driver may be
quite demanding on the client software. Efficiency at the
client layer is critical to take advantage of the benefits of
serial DMA reception. Awkward or inefficient use of the
serial driver API may result in poor system performance
and failure to sustain the desired data rate. Please read the
performance considerations in the following section. ◆
8 of 14 SerialDMA Driver Reference

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

Additional Details 2

The basis of the second-generation SerialDMA driver is a rewrite of the classic
serial driver (which was written in 68K assembly language) using the C
language. There is a minimal amount of assembly language glue code (Mixed
Mode glue in the case of the native Power Macintosh version) to bind to the
68K Device Manager. The SCC generally is no longer responsible for generating
transmit or receive interrupts, although it still notifies the driver of external/
status changes and special receive conditions. All normal data transfer is
effected by DMA, and DMA interrupts keep the system synchronized with
transfer progress.

No attempt has been made to abstract the Z8530 Serial Communications
Controller hardware. The serial driver is intimately tied to this piece of legacy
hardware. However, the bulk of the driver is relatively independent of the
details of any specific DMA controller. A handful of primitive vectors are
installed when the driver is opened and all DMA operations are handled in a
device-independent manner by the main part of the SerialDMA driver.

Just to give an idea of the flexibility of the driver with respect to DMA models,
the DMA controller in the Quadra 840AV requires a pair of user-defined, linear
DMA buffers of arbitrary size and automatically ping-pongs between them
when the transfer count on each buffer goes to zero. The Power Macintosh 8100
contains a single system-defined, circular DMA buffer which interrupts when
the transfer count goes to zero and then optionally continues transferring
characters even while the interrupt awaits processing. The Power Macintosh
9500 uses a semi-intelligent DMA command processor which supports an
arbitrary number of buffers. The SerialDMA driver supports DMA models
with ease, using only eight brief, abstract primitives and three or four interrupt
handlers unique to each DMA controller.

PowerPC Native Implementation 2

For Power Macintosh, the SerialDMA driver is compiled native. This is not a
Marconi/Copland CFM driver. It is a traditional Macintosh DRVR compiled in
the native PowerPC instruction set. In order to bind the driver to the 68K
architecture Device Manager, the driver header offsets reference Mixed Mode
routine descriptors. All SCC and DMA interrupt handlers are native, and
Additional Details 9 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

pointers to routine descriptors are installed in applicable interrupt dispatch
tables. The driver calls 68K routines such as IODone and the LAP Manager
port B arbitration routines with CallUniversalProc and appropriate procedure
info constants.

It is understood that the Mixed Mode switches in the native PowerPC
SerialDMA driver incur costly overhead, but it is thought that native mode
execution of certain critical code sequences when DMA is suspended, or when
delivering large packets of data with interrupts disabled, provides an overall
win for the driver under the most challenging performance conditions.

The native version of the driver is packaged as a native code resource of type
'nsrd' with Mixed Mode calling conventions identical to that of the 'SERD'
resource. The 'SERD' resource is for 68K machines only. The 'nsrd'resource is
for PowerPC machines only.

Interrupts 2

The traditional Macintosh serial driver functions by responding to a system
interrupt each and every time a character arrives at the SCC receiver, leaves the
SCC transmitter, or when the state of the CTS input changes or a break
condition is detected. This provides an exceptional level of responsiveness
because the driver responds to every event occurring at the SCC with a delay
equivalent only to the system interrupt latency period. On the other hand, this
is also the greatest limitation of the traditional serial driver because the typical
system interrupt latency places an upper bound on the data throughput of the
driver. For example, at the rate of 230.4K bps, a new character may arrive at the
SCC every 43.4µs, or 1085 machine cycles (25 MHz CPU). Since a round trip
through the system interrupt handler and the driver’s interrupt service routine
may easily take several hundred machine cycles, it is apparent that this data
rate would consume a very large percentage of the CPU bandwidth resulting in
poor system performance and perhaps exceed it, resulting in dropped data.

The DMA engine offloads responsibility from the CPU for moving data
between the SCC and memory. In the best case, data throughput is limited not
by system interrupt latency but by the bandwidth of the memory system,
which is usually much higher than the rates achievable by common serial I/O
hardware. The DMA hardware generates interrupts only after a previously
specified number of characters have been transferred. Comparing this to the
non-DMA model, it is intuitive that the benefit of DMA transfer increases
approximately linearly with the average size of the DMA transfer count. Every
10 of 14 Additional Details

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver

character transferred without processor intervention saves valuable processor
time and improves response time for other interrupt-driven processes.

One factor which reduces the benefit of DMA is the increased complexity of the
DMA interrupt handler relative to the SCC single-character I/O interrupt
handler. It is important to overcome this brake on performance by taking
advantage of the DMA benefits described earlier. In general, it should only be
necessary to average a few characters per DMA block to overcome the
increased overhead of a generalized DMA block handler versus a
single-character handler. However, it should be understood that it is possible to
operate the DMA serial driver in ways that do not take advantage of DMA and
incur even greater overhead than the traditional interrupt-driven serial driver.
Every attempt should be made to avoid such inefficiencies when performance
is critical or data throughput is high by traditional Macintosh serial I/O
standards.

As previously stated, the DMA serial driver causes the hardware to generate
interrupts upon the completion of a DMA block transfer. It also responds to
status interrupts in exactly the same manner as the traditional Macintosh serial
driver, so each time the state of the CTS input changes or a break condition is
detected, an interrupt must be serviced. Furthermore, various serial driver API
calls invoke the drivers interrupt handler in order to synchronize the DMA
engine with pending I/O requests, handshaking thresholds, and so on. These
implicit interrupts which occur as a result of API calls are required to
approximate the responsiveness to certain events which are supported by the
Macintosh serial driver API.

Performance Considerations 2

A primary concern, based on customer feedback, was how to duplicate the
responsiveness of an interrupt-per-character serial driver in a DMA serial
driver which, by definition, interrupts only upon the completion of a block
transfer. The solution requires relatively sophisticated DMA receive channel
management and implicit interrupts in response to a number of driver API
calls. Each time a DMA interrupt occurs, and in various other circumstances, a
new DMA count must be calculated in order to generate the next interrupt at
the optimal moment based on the selected handshaking mode, read request,
and buffer size. The exact details of this calculation are beyond the scope of this
document, but extreme care has been taken to minimize the calculation time,
during which the DMA receive channel must remain inactive. However, it
Additional Details 11 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver
bears mentioning the effects that the client’s use of the serial driver can have
upon the driver’s DMA channel management.

XOn/XOff output handshaking is extraordinarily expensive to support within
a DMA serial driver. The reason for this is that in order to guarantee acceptable
response times to the reception of XOn and XOff characters, the driver must
suspend most of the benefits of DMA and interrupt on every single received
character, just like the non-DMA serial driver. Only it is worse because the
DMA interrupt handler is more complex and time consuming than a standard
receive character interrupt handler. Nevertheless, since the DMA driver cannot
support old-fashioned pollprocs for immunity to interrupt latency, use of the
DMA interrupt handler on every character is the only viable recourse. As a
result, XOn/XOff handshaking is not recommended at high data rates (as a
rule of thumb, 57,600 bps is probably too fast for efficient software
handshaking).

It is not quite as punishing, but any type of input handshaking may put a limit
on the DMA transfer count (and therefore available DMA resources) because it
is necessary to generate an interrupt and assert flow control when the buffer
threshold is reached.

Regardless of the initially programmed DMA transfer count, special receive
conditions must terminate active DMA transfers (again, limiting the available
DMA resources) in order to support extraction of corrupted characters from the
data stream in accordance with the serial driver specification. Reception of
break sequences may also temporarily limit DMA resources, or even suspend
receive channel DMA during the break assertion.

Because DMA transfer counts are dependent upon the handshaking mode,
buffer size, read request size, and other factors, numerous Control and Status
calls require that DMA be stopped temporarily and restarted with new
parameters. This involves some overhead which can be avoided frequently
through more sophisticated use of the serial driver API. For example, rather
than polling SerGetBuf frequently, it is much more efficient to make a single
asynchronous Read request for some expected amount of data, and time out
the request with a KillIO sometime later if it is not forthcoming. There is no
overhead whatsoever to leave a pending read request while no data are being
transferred by the SCC, but there is a great deal of overhead polling SerGetBuf
in a loop. This is true of both DMA and non-DMA serial drivers.

Another performance-killer is the commonly-used small, chained read
algorithm. The purpose of DMA is to stream relatively large quantities of data
at high speed, and posing frequent, one-character read requests is very
12 of 14 Additional Details

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver
counterproductive. Each time a read completes, an interrupt must occur. Also,
each time a read is issued, an implicit interrupt results to synchronize the DMA
engine with the clients request count. The key to sustaining high data rates is in
limiting the number of system interrupts and reaping some economy of scale in
block data processing.

Hints for Optimizing Performance 2

So some hints for optimizing performance are:

■ Avoid the use of XOn/XOff handshaking to control driver data output at
high baud rates. This makes DMA worthless on the receive channel and
poses a worst-case performance scenario.

■ Avoid repeatedly polling the serial driver for status or buffer information.
This approach, while simple, is fully synchronous and particularly
inefficient for the DMA serial driver.

■ Use aynchronous requests whenever possible, for the full amount of data
expected in a transaction. Process the transaction all at once. You can and
should always time out a transaction with KillIO if things do not go
according to plan. On the other hand, it is never necessary to issue a KillIO
command unless it is possible that an asynchronous request has been left
pending.

■ Avoid requiring the serial driver to use its own buffer (its default or the one
set by SerSetBuf) when input data are expected. Keep an asynchronous read
pending instead. A client buffer is more efficient because handshaking
threshold checks are not required on client buffers.

■ If your completion routine performs complex processing (i.e., more than
setting or clearing a semaphore) or chained I/O, consider executing that
code as a deferred task in order to return control to the drivers’ interrupt
handler as soon as possible, freeing the system to process other interrupts.
The driver would prefer to call serial I/O completion routines as deferred
tasks in the first place, but this causes compatibility problems with certain
third-parties’ software which call the driver synchronously from VBLs, Time
Manager tasks, etc.
Additional Details 13 of 14
Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

T E C H N O T E : Understanding the DMA Serial Driver
Acknowledgments 2

Special thanks to the following individuals for their support and making
SerialDMA 2.0 possible: Rich Collyer, Mark Baumwell, Kevin McCoy, Bob
Crane, John Banner, and Werner Klemperer.
14 of 14 Additional Details

Technote 1018 - Release 1.0  Apple Computer, Inc. 1/22/96

	T E C H N O T E : Understanding the DMA Serial Dri...
	About the SerialDMA Driver
	Goal #1: Compatibility
	Goal #2: Responsiveness
	Goal #3: Performance

	Working with the SerialDMA Driver
	New Capabilities
	Identifying the First-Generation Driver
	Identifying the Second-Generation Driver

	SerialDMA Driver Reference
	Low-Level Routines
	Set MIDI Clocking [control code 15]
	Table 1 csCode 15 rate multiplier encodings

	Set 115.2K Baud Rate [control code 115]
	Set 230.4K Baud Rate [control code 230]

	Additional Details
	PowerPC Native Implementation
	Interrupts
	Performance Considerations
	Hints for Optimizing Performance
	Acknowledgments

