



11/1/99
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Display Manager



 Apple Computer, Inc. 11/1/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
AppleTalk, ColorSync, HyperCard,
LaserWriter, Mac, Macintosh, MPW,
QuickDraw, QuickTime, SANE, and
WorldScript are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Balloon Help, Finder, and Sound
Manager are trademarks of Apple
Computer, Inc.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modiÞcation,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

Contents

Introduction 9
About the Display Manager 10

When the User Removes a Display 11
Display Manager Problems Moving Windows 13
When the User Moves the Menu Bar 16
Display Modes 18

Using the Display Manager 23
Handling Events in Response to Display Manager Changes 24
Handling the Display Notice Event as a High-Level Event 29
Handling the Display Notice Event Outside of an Event Loop 32
Managing Windows In Response to the Display Notice Event 32
Determining the Characteristics of the Video Devices 34
Setting ConÞgurations and Display Modes for Video Devices 35

Display Manager Reference 41
Gestalt Constants 41

Determining Display Manager Version 41
Determining Display Manager Attributes 41

Functions 42
Getting Video Devices 43

.DMGetFirstScreenDevice 43
DMGetNextScreenDevice 44
DMGetNextMirroredDevice 45
DMGetDisplayIDByGDevice 45
DMGetGDeviceByDisplayID 46

Determining Display Modes and Display ConÞgurations 47
DMCheckDisplayMode 47
DMQDIsMirroringCapable 48
DMCanMirrorNow 49
DMIsMirroringOn 49
DMGetNameByAVID 50
DMGetGraphicInfoByAVID 51
DMGetAVPowerState 52
DMSetAVPowerState 52
DMGetDisplayMode 53
DMSaveScreenPrefs 54
iii
  Apple Computer, Inc. 10/31/99

Changing Display Modes and Display ConÞgurations 55
DMBeginConfigureDisplays 55
DMSetDisplayMode 56
DMMoveDisplay 57
DMDisableDisplay 58
DMEnableDisplay 60
DMSetMainDisplay 61
DMMirrorDevices 62
DMUnmirrorDevices 63
DMBlockMirroring 64
DMUnblockMirroring 64
DMEndConfigureDisplays 65

Adding and Removing Video Devices From the Device List 65
DMNewDisplay 66
DMAddDisplay 67
DMRemoveDisplay 69
DMDisposeDisplay 70
DMNewDisplayModeList 71
DMGetIndexedDisplayModeFromList 72
DMDisposeList 73

 Registering and Unregistering Your Program 73
DMRegisterExtendedNotifyProc 74
DMRemoveExtendedNotifyProc 75
DMSendDependentNotification 76

Application-DeÞned Functions 77
MyExtendedNotificationProc 77

Data Types 79
AVIDType 79
AVLocationRec 79
AVPowerStateRec 80
DependentNotifyRec 80
DisplayIDType 81
DMDepthInfoBlockRec 81
DMDepthInfoRec 82
DMDisplayModeListEntryRec 83
DMDisplayTimingInfoRec 85
DMListType 86
DMListIndexType 86
DMMakeAndModelRec 86
DMDisplayModeListIteratorProcPtr 87
DMExtendedNotificationProcPtr 88
iv
  Apple Computer, Inc. 10/31/99

Constants 88
Active Device Only Values 88
Apple Event NotiÞcation Keywords 89
Dependent NotiÞcation Constants 93
Display/Device ID Constants 94
Display Mode Flags 94
Display Version Values 95
NotiÞcation Messages 95
NotiÞcation Types 97
Switch Flags 98
Video Depth Mode Values 99

Result Codes 100
v
  Apple Computer, Inc. 10/31/99

vi
  Apple Computer, Inc. 10/31/99

C H A P T E R 1

Contents



 Apple Computer, Inc. 11/1/99

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 About the Display Manager
Introduction 9
About the Display Manager 10

When the User Removes a Display 11
Display Manager Problems Moving Windows 13
When the User Moves the Menu Bar 16
Display Modes 18
7

C H A P T E R 1

8 Contents

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager 1

Introduction 1

This chapter explains how the Display Manager allows users to dynamically
change the arrangement and display modes of the monitors attached to their
computers. For example, users can move their displays, add or remove
displays, switch displays to higher or lower screen resolutions, and move the
menu bar from one display to anotherÑall without restarting their computers.
When the user changes the display environment (as when disconnecting a
display, for example), the Display Manager further assists the user by
repositioning standard windows so that the user can Þnd them in the new
display environment.

This chapter helps you determine whether your application must move its own
windows instead of relying on the Display Manager to move them. For
example, if your application implements a tool palette that lacks a title bar, and
the user disconnects the monitor that displays the tool palette, your application
must move your tool palette to the main screen where the user can Þnd it.
Because the Display Manager never resizes windows, this chapter helps you
determine whether to resize your applicationÕs windows after a display
conÞguration change.

The Display Manager is available on all Power Macintosh computers and on
color-capable Macintosh computers running system software version 7.5 and
later. Applications that use only the standard window deÞnition functions
provided by the Window Manager generally do not need to use the Display
Manager.

Users indirectly inform the Display Manager of changes they wish to make to
their display environment by using the Monitors control panel or by adding
and removing additional displays. The Monitors control panel in turn calls the
Display Manager to change the display environment. The Display Manager
sends an Apple eventÑthe Display Notice eventÑto notify applications that it
changed the display environment. In addition, the Display Manager generates
an update event to notify all current applications to update their windows.

The Display Manager provides your application with functions that obtain
GDevice structures for the video devices controlling the displays connected to
the userÕs computer system. When repositioning a window, for example, your
Introduction 9
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

application can use the GDevice structures stored in the device list to determine
which video device supports the largest display area or the greatest pixel depth.

This chapter explains the capabilities of the Display Manager and describes its
default behavior when repositioning windows. This chapter helps determine
whether your application needs to perform its own window positioning or
sizing. If your application needs to perform its own window management in a
changing environment, the next chapter, ÒUsing the Display Manager,Ó
discusses how your application can determine if the user changed the display
environment and how to manage its windows accordingly.

About the Display Manager 1

The Display Manager is a set of system software functions that support
dynamic changes to the arrangement and display modes of the displays
attached to a userÕs computer. (This book uses the term displays to represent
output devicesÑsuch as video monitors and ßat-panel displaysÑon which
applications can show interactive visual information to the user. A video device
is the hardware, such as the plug-in video card or the built-in video interface,
that controls a display.)

The Monitors control panel mostly uses the Display Manager functions. After
opening the Monitors control panel, the user can choose to

■ move displays

■ switch multiple-resolution displays to use higher or lower screen resolutions

■ move the menu bar from one display to another

■ select different pixel depths for video devices that support multiple depths

For example, a user can use a PowerBook computer that comes with an external
video port to attach a second display. After the user opens the Monitors control
panel, the user can move the menu bar from one display to another and the
menu bar immediately moves to the userÕs desired location without the user
restarting the computer.
10 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-1 The Monitors control panel

The user can also add or remove displays without restarting the computer. For
example, a user can attach an external monitor to a sleeping PowerBook
computer, wake the computer, and use both the external and built-in displays. If
the user puts the PowerBook computer to sleep, detaches the external monitor,
then wakes the computer, the Display Manager automatically moves windows
that previously appeared on the external monitor onto the PowerBook built-in
display.

The next several sections illustrate the default window positioning behaviors of
the Display Manager.

When the User Removes a Display 1

When a user removes a display, the Display Manager moves the windows that
previously appeared on the disconnected display to the next closest display.

The Display Manager attempts to center the window of an alert or modal dialog
box on the next closest display. If the alert or modal dialog box is larger than the
screen, the Display Manager aligns its lower-left corner with the lower-left
corner of the next closest display, thereby providing access to the area of the
alert or modal dialog box with the OK and Cancel buttons.
About the Display Manager 11
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

The Display Manager assumes that any other type of window has a standard
title bar. As illustrated in Figure 1-2 and Figure 1-3, the Display Manager then
moves the window to the closest display by the shortest distance necessary to
show the entire title bar.

Figure 1-2 Default window repositioning when the user removes the right display

As shown in Figure 1-3, the content region of the window may still lie offscreen;
but in a standard window, the user has access to the drag region of the title bar
and to the zoom box. The user can therefore easily move the entire window
onto the screen.

If the window is wider than the screen, the Display Manager Þts the area in the
title bar where the close box should appear onscreen.

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View
12 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-3 Default window repositioning when the user removes the bottom display

Display Manager Problems Moving Windows 1

When repositioning any window other than a window of type dBoxProc, the
Display Manager assumes that the window has a standard title bar and moves
the window to the closest display so that the title bar appears to the user.
However, if the window does not have a title bar, the Display Manager may
move the window to a position where the user cannot see it.

For example, on the left side of Figure 1-4 a window containing a tool palette
and a nonstandard drag region appears in the lower display. When the user
removes the lower display, as shown in the right side of the Þgure, the Display
Manager moves the tool palette onto the main screen by the shortest distance
necessary to display a standard title bar for the window. However, the window
does not have a standard title bar, and so no part of the window appears
onscreen. Applications that use windows without standard title bars must
reposition their own windows as described in the chapter ÒUsing the Display
Manager.Ó

Help 9:56 AMColorFile Edit View
Help 9:56 AMColorFile Edit View
About the Display Manager 13
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-4 A problem with repositioning a nonstandard window

The Display Manager makes no attempt to stack or tile windows so that the
user can see all of their titles bars simultaneously. Multiple windows
repositioned by the Display Manager may obscure each otherÕs title bars.

The Display Manager never resizes windows. Because of this, Þxed size
windows can present a problem. If a Þxed size window appears on a large
display, and the user removes that display, only part of the window appears
when the Display Manager repositions it on a smaller display. Figure 1-5
illustrates how the Display Manager might reposition the window of a game
that draws into a Þxed size window.

Help 9:56 AMColorFile Edit View Help 9:56 AMColorFile Edit View
14 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-5 Default repositioning of a fixed-size window

When the user adds a display, the Display Manager does not move any
windows to that display. For example, in Figure 1-6 either the user or the
application must move the window on the main screen to the display added on
the right. If your application works best on the largest available screen or on the
one displaying the greatest number of colors, you may want your application to
move its windows to the added display.

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View
About the Display Manager 15
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-6 Default window positioning when the user adds a display

When the User Moves the Menu Bar 1

On a computer with multiple screens, the user can use the Monitors control
panel to change the main screenÑthat is, the one that contains the menu bar.
Color QuickDraw maps the (0,0) origin point of the global coordinate system to
the main screenÕs upper-left corner, and other screens are positioned adjacent to
it. The Window Manager automatically maintains window positions according
to this global coordinate system.

When the user changes the main screen, the upper-left corner of the new main
screen becomes the (0,0) origin point of QuickDrawÕs global coordinate system,
and all windows initially maintain their position relative to this new origin
point. When a user moves the menu bar, the user sees the windows that
previously appeared beneath the menu bar on one display moved to the display
that now contains the menu bar.

Help 9:56 AMColor
File

Edit View

Help 9:56 AMColorFile Edit View
16 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-7 Default window positioning when the user moves the menu bar

For example, the top of Figure 1-7 shows a window on the left display. The left
display is the main screen, and the upper-left corner of the window is at
coordinates (50,50) on the global coordinate system. At the bottom of the Þgure,
the user moves the menu bar to the right display. The window retains its
upper-left coordinates of (50,50), but because the (0,0) origin of the global
coordinate system moved to the right screen, the window now appears in the
right display.

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View

(0,0)

(50,50)

(0,0)

(50,50)
About the Display Manager 17
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

If the Display Manager Þnds that any windows move offscreen after the user
moves the menu bar, the Display Manager repositions the windows as
previously describedÑthat is, it tries to move the title bar onto the closest
screen or it tries to center the alert or modal dialog box on the closest screen.

Display Modes 1

The Display Manager allows users to choose from the various display modes
available on their displays. A display mode is a combination of several
interrelated capabilities that you can alter using the Display Manager to affect
the display. You can characterize a display mode by

■ the screen resolution, which determines the number of pixels that appear on
the display screen

■ the horizontal and vertical scan timings in use by the display

■ the displayÕs refresh rate

In addition to these capabilities, a display mode may also support multiple
pixel depths, which determine the number of colors available on the display.
You refer to the pixel depths available for a display mode as depth modes, and
in various Display Manager data structures, depth modes are represented by
constants or by their values from an enumerated list. A depth mode is also
called a video mode.

Single-resolution grayscale or color monitors support multiple pixel depths
only. Some multiple-resolution displays support display modes that change
only the screen resolution and the pixel depth. For example, by choosing a
lower screen resolution, a user with limited RAM can set the display to show a
greater number of colors. Multiple-scan displays, however, are also capable of
operating at multiple horizontal and vertical scan timings and at different
refresh rates.

For example, a multiple-scan display might support display modes with screen
resolutions of 640 by 480 pixels and 1152 by 870 pixels. The left side of Figure
1-8 illustrates a multiple-scan display operating at a screen resolution of 640 by
480 pixels. The right side of the Þgure illustrates the same display after it has
been switched to a screen resolution of 1152 by 870 pixels.
18 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

Figure 1-8 Lower and higher screen resolutions on a multiple-scan monitor

When editing a bitmap image with a paint application, a user might wish to use
the lower screen resolution, which, compared to the higher resolution, displays
fewer pixels on the screen but displays them at a larger size. When using a
spreadsheet application, however, the user might then want to switch to the
higher resolution to increase the number of onscreen pixels and thereby view a
greater number of cells in a spreadsheet.

To change the screen resolution, the user opens the Monitors control panel and
selects the display mode for that resolution. The Display Manager then sends
the video device driver a control request to switch the display to the newly
selected display mode.

All required display modes appear when the user opens the Monitors control
panel. For a particular type of display (for example, a 21-inch video monitor), a
required display mode is one that Apple requires the display to support. A
multiple-scan display must support several required display modes, one of
which is designated to be the default display mode. The default display mode
appears the Þrst time a user turns on a display. For example, the Þrst time a user
connects and starts a 21-inch video monitor, it should use a mode displaying
1152 by 870 pixels. However, a 21-inch multiple-scan display is also required to
support display modes with resolutions of 640 by 480 pixels, 832 by 624 pixels,
and 1024 by 768 pixels, which the user can select with the Monitors control
panel.

Using Display Manager functions, your application can change the display
mode and the pixel depth of any display for the user, but your application
should do so only with the consent of the user. The Monitors control panel is
the user interface for changing the pixel depth, color capabilities, and positions
of video devices. Because the user can control the capabilities of the video

Help 9:56 AMColorFile Edit View Help 9:56 AMColorFile Edit View
About the Display Manager 19
  Apple Computer, Inc. 11/1/99

C H A P T E R 1

About the Display Manager

devices, your application should be ßexible. Although it may have a preferred
pixel depth, your application should do its best to accommodate less than ideal
conditions.

However, if your application must have a speciÞc pixel depth, or a particular
screen resolution, it can display a dialog box that offers the user a choice
between changing to that depth or canceling display of the image. This dialog
box saves the user the trouble of going to the Monitors control panel before
returning to your application. Your application can then use Display Manager
functions to change the display mode or pixel depth of a display.
20 About the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Contents



 Apple Computer, Inc. 11/1/99

Contents

Figure 2-0
Listing 2-0
Table 2-0
2 Using the Display Manager
Using the Display Manager 23
Handling Events in Response to Display Manager Changes 24
Handling the Display Notice Event as a High-Level Event 29
Handling the Display Notice Event Outside of an Event Loop 32
Managing Windows In Response to the Display Notice Event 32
Determining the Characteristics of the Video Devices 34
Setting ConÞgurations and Display Modes for Video Devices 35
21

C H A P T E R 2
22 Contents

  Apple Computer, Inc. 11/1/99

C H A P T E R 2
Using the Display Manager 2

Using the Display Manager 2

The previous chapter explains how the Display Manager automatically
repositions windows if necessary to ensure that windows are accessible when
the user changes the display environment. If the Display Manager moves
windows in a manner inappropriate for your application, your application
should reposition them instead. Applications that use only the standard
window deÞnition functions provided by the Window Manager generally do
not need to use the Display Manager.

However, you may need or want your application to perform its own window
positioning under various circumstances, such as when

■ your application beneÞts by displaying windows and their contents on the
display controlled by the video device with the greatest pixel depth

■ your application beneÞts by displaying windows on the largest available
display

■ your application uses nonstandard window deÞnition functions that draw
windows lacking title bars; examples include Þxed-sized windows without
title bars (games often use such windows), tool palettes with drag regions on
the left sides of their windows, and ßoating windows

When necessary, the Display Manager automatically repositions windows of
type dBoxProc (that is, alert boxes and modal dialog boxes) so that the lower-left
corners of the windows appear onscreen. This gives users access to the area
with the OK and Cancel buttons.

In addition, your application should respond to Display Manager changes if
your application relies on display information that it stores internally. For
example, if your application caches display positions, GDevice structures for
displays other than the main screen, or the value in the screenBits.bounds Þeld
of the screenBits global variable, this information may become invalid after the
user changes the display conÞguration. Therefore, your application should
update its internal values accordingly after a display conÞguration change.

To determine whether the Display Manager is available, use the Gestalt
function with the gestaltDisplayMgrAttr selector. Test the bit Þeld indicated by
the gestaltDisplayMgrPresent constant in the response parameter. If the bit is
set, then the Display Manager is present.
Using the Display Manager 23
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Presence of the Display Manager does not guarantee that a computer also
supports video mirroring. To determine whether QuickDraw supports video
mirroring on the userÕs computer system, use the DMQDIsMirroringCapable
function.

Handling Events in Response to Display Manager Changes 2

Users indirectly inform the Display Manager of changes they wish to make to
their display environment by using the Monitors control panel, or by attaching
or removing additional displays. The Display Manager in turn sends an Apple
eventÑthe Display Notice eventÑto notify applications that the display
environment has changed.

After changing the display environment, the Display Manager also generates an
update event to notify all current applications to update their windows.

Your application should always handle update events for its windows.
However, your application needs to respond to the Display Notice event only if
your application repositions its own windows, uses nonstandard windows, or
must update any display information that it stores internally.

To receive the Display Notice event informing you of changes to the userÕs
display conÞguration, you must either

■ handle the Display Notice event as a high-level event in your applicationÕs
normal event loop; or

■ use the DMRegisterExtendedNotifyProc function to register a function that
handles the Display Notice event as soon as the Display Manager issues it

If you write a utilityÑsuch as a control panelÑthat does not handle events
through a normal event loop, or if you want your application to handle the
Display Notice event as soon as it is issued instead of waiting for it to appear in
the event queue, you should use the DMRegisterExtendedNotifyProc function.

Here is a summary of the Display Notice event (remember that you must use
Apple Event Manager functions to obtain the information contained in Apple
events such as this):

Display NoticeÑrespond to display conÞguration changes

Event class kCoreEventClass

Event ID kAESystemConfigNotice

Required parameter
24 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
 Keyword: kAEDisplayNotice

 Descriptor type: AEDesc

 Data: A list of descriptor structures, each speciÞed by the keyword
kDisplayID. Each kDisplayID descriptor structure contains
information about a video device attached to the userÕs
system. Within each kDisplayID descriptor structure are a
pair of additional keyword-speciÞed descriptor structures:
keyDisplayOldConfig and keyDisplayNewConfig. A
description of the video deviceÕs previous state is saved in
the keyDisplayOldConfig descriptor structure, and a
description of the video deviceÕs current state is saved in
the keyDisplayNewConfig descriptor structure.

Descriptions of these keyword-speciÞed descriptor structures
are in Table 2-1.

Requested action
Ensure that all windows appear to the user, and update
any necessary display information that your application or
utility stores internally.
Using the Display Manager 25
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Table 2-1 Keyword-speciÞed descriptor structures.

Keyword Value Type Description
keyDeviceDepthMode 'dddm' typeLongInteger The depth mode

for the video
device; that is,
the value of the
gdMode Þeld in
the GDevice
structure for the
device

keyDeviceFlags 'dddf' typeShortInteger The attributes
for the video
device as
maintained in
the gdFlags Þeld
of the GDevice
structure for the
device

keyDeviceRect 'dddr' typeQDRectangle The boundary
rectangle of the
video device;
that is, the value
of the gdRect
Þeld in the
GDevice
structure for the
device

keyDisplayDevice 'dmdd' typeLongInteger A handle to the
GDevice
structure for the
video device

keyDisplayID 'dmid' typeLongInteger The display ID
for the video
device

keyDisplayMode 'dmdm' typeLongInteger The sResource
number from
the video device
for this display
mode
26 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
keyDMConfigVersion 'dmcv' typeLongInteger The version
number for this
Display Notice
event

keyPixMapAlignment 'dppa' typeLongInteger Reserved for
future use

keyPixMapCmpCount 'dpcc' typeShortInteger The number of
components
used to
represent a color
for a pixel; that
is, the value of
the cmpCount
Þeld in the
PixMap structure
for the GDevice
structure for the
device

keyPixMapCmpSize 'dpcs' typeShortInteger The size in bits
of each
component for a
pixel; that is, the
value of the
cmpSize Þeld in
the PixMap
structure for the
GDevice
structure for the
device

keyPixMapColorTableSeed 'dpct' typeLongInteger The value of the
ctSeed Þeld of
the ColorTable
structure for the
PixMap structure
for the GDevice
structure for the
video device

Keyword Value Type Description
Using the Display Manager 27
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
keyPixMapHResolution 'dphr' typeFixed he horizontal
resolution of the
pixel image in
the PixMap
structure for the
GDevice
structure for the
video device

keyPixMapPixelSize 'dpps' typeShortInteger Pixel depth for
the device; that
is, the value of
the pixelSize
Þeld in the
PixMap structure
for the GDevice
structure for the
video device

keyPixMapPixelType 'dppt' typeShortInteger The storage
format for the
pixel image on
the device; that
is, the value of
the pixelType
Þeld in the
PixMap structure
for the GDevice
structure for the
video device

keyPixMapRect 'dpdr' typeQDRectangle The boundary
rectangle into
which
QuickDraw can
draw; that is, the
bounds Þeld in
the PixMap
structure for the
GDevice
structure for the
video device

Keyword Value Type Description
28 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Handling the Display Notice Event as a High-Level Event 2

To handle the Display Notice event as a high-level event like any other Apple
event, you need to

■ set the isHighLevelEventAware bit in your applicationÕs 'SIZE' resource to
indicate that your application supports high-level events (in which case your
application must also support the four required Apple events)

■ include code to handle high-level events in your main event loop (as
illustrated in Listing 2-1)

■ write a function that handles the Display Notice event (as illustrated in
Listing 2-2)

■ use the AEInstallEventHandler function to install the entry for handling the
Display Notice event in your applicationÕs Apple event dispatch table

If you want your application to handle all window positioning itself (that is, if
you do not want the Display Manager to automatically move any of your
windows), you should also set the isDisplayManagerAware bit in the 'SIZE'
resource.

Listing 2-1 Handling Apple events in the event loop

void MyDoEvent(EventRecord *event)

{

keyPixMapReserved 'dppr' typeLongInteger Reserved for
future use

keyPixMapResReserved 'dprr' typeLongInteger Reserved for
future use

keyPixMapVResolution 'dpvr' typeFixed The vertical
resolution of the
pixel image in
the PixMap
structure for the
GDevice
structure for the
video device

Keyword Value Type Description
Using the Display Manager 29
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
short part, err;

WindowPtr window;

char key;

switch (event->what) {

/* here, handle null, mouse down, key down, update, and

other necessary events */

case kHighLevelEvent:

DoHighLevelEvent(event);

break;

}

}

void DoHighLevelEvent(EventRecord *event)

{

OSErr myErr;

/* handling only Apple-event types of high-level events */

myErr = AEProcessAppleEvent(event);

}

Your application must use the AEInstallEventHandler function to add an entry
to your applicationÕs Apple event dispatch table. This entry is the function that
responds to the Display Notice event. For example, the following code fragment
illustrates how to use AEInstallEventHandler to install an application-deÞned
function called DoAEDisplayUpdate.

err = AEInstallEventHandler (kCoreEventClass,

 kAESystemConfigNotice,

(ProcPtr)DoAEDisplayUpdate, 0, false);

Listing 2-2 shows an application-deÞned function called DoAEDisplayUpdate that
uses Apple Event Manager functions to obtain information about the various
video devices reported by the Display Notice event. The function
DoAEDisplayUpdate uses this information to update its internal data structures
for its windows and then calls another application-deÞned function that
ensures that its windows are displayed optimally in the new conÞguration
environment.
30 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Listing 2-2 Responding to the Display Notice event

pascal OSErr DoAEDisplayUpdate

(AppleEvent theAE,AppleEvent reply,long ref) {

#pragma unused(theAE,reply,ref)

AEDescList DisplayList;

AEDescList DisplayID;

AERecord OldConfig,NewConfig;

AEKeyword tempWord;

AEDesc returnType;

OSErr myErr;

long result;

long count;

Rect oldRect, newRect;

Size actualSizeUnused;

/* get a list of the displays from the Display Notice event */

myErr =

AEGetParamDesc(&theAE,kAEDisplayNotice,typeWildCard,&DisplayList);

/* count the elements in the list */

myErr = AECountItems(&DisplayList,&count);

while (count >0) /* decode the Display Notice event */

{

myErr = AEGetNthDesc(&DisplayList, count, typeWildCard,

&tempWord, &DisplayID);

myErr = AEGetNthDesc(&DisplayID, 1, typeWildCard, &tempWord,

&OldConfig);

myErr = AEGetKeyPtr(&OldConfig, keyDeviceRect, typeWildCard,

&returnType, &oldRect, 8, actualSizeUnused);

myErr = AEGetNthDesc(&DisplayID, 2, typeWildCard, &tempWord,

&NewConfig);

myErr = AEGetKeyPtr(&NewConfig, keyDeviceRect, typeWildCard,

&returnType, &newRect, 8, actualSizeUnused);

/* update internal info about the gdRects for the devices */

MyUpdateWindowStructures(oldRect, newRect);

count--;

}

/* move and resize windows as necessary*/

MyDisplayWindows();
Using the Display Manager 31
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
return (noErr);

}

Handling the Display Notice Event Outside of an Event Loop 2

You may want your application to handle the Display Notice event as soon as it
is issued instead of waiting for it to appear in the event queue. You can use the
DMRegisterExtendedNotifyProc function to register a function to which the
Display Manager directly sends the Display Notice event. By using
DMRegisterExtendedNotifyProc, and by not setting the isHighLevelEventAware bit
in the 'SIZE' resource, you cause the Display Manager to send a Display Notice
event directly to your handling function; your application or utility then
receives no high-level Display Notice event.

To remove your Display Notice event-handling function, use the
DMRemoveExtendedNotifyProc function.

Managing Windows In Response to the Display Notice Event 2

Using the Monitors control panel, the user can switch displays to use a different
display mode and to change the display conÞgurations. When your application
receives the Display Notice event as described in the previous section, your
application must determine whether it needs to reposition and perhaps resize
its windows.

Listing 2-3 illustrates how an application can check whether its nonstandard
window appears onscreen after Display Manager conÞguration changes have
occurred. In this example, the application has a window with a title bar on its
left side, as shown in the tool palette illustrated in Figure 1-4. After receiving
the Display Notice event as shown in Listing 2-2, the application calls its
MyDisplayWindows function, which in turn calls its MyMakeToolWindowVisible
function. If MyMakeToolWindowVisible determines that the nonstandard title bar
does not appear on any displays (in which case the user cannot move the
window), MyMakeToolWindowVisible moves the entire window to the main screen
where the user has access to the window.

Listing 2-3 Ensuring that a nonstandard window appears onscreen

static pascal OSErr MyMakeToolWindowVisible (WindowPeek window) {

if (window->windowKind == applicationFloatKind) {
32 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Rect checkRect;

Rect mainRect;

GDHandle maxAreaDevice;

short theWVariant;

Rect windowRect;

theWVariant = GetWVariant(&window->port);

MyGetWindowGlobalRect(window, &windowRect);

/*get rectangle of window, in global coordinates, here */

if (0 != (kVerBarFW & theWVariant))

/* check if this is the window with a vertical title bar */

{

/* following line gets the rectangle of the title bar */

SetRect(&checkRect, windowRect.left-kMyVertTitleWidth+kMyMinVisX,

 windowRect.top+kkMyMinVisV,

 windowRect.left-1-kMyMinVisX,

 windowRect.bottom-kMyMinVisV);

/* following line calls an application-defined function that

 determines which screen contains the largest amount of the title

bar */

maxAreaDevice = MyFindMaxCoverageDevice(&checkRect);

if (nil == maxAreaDevice)

/* if the title bar doesn't appear on any screen, move window to

the main screen */

{ mainRect = (*GetMainDevice()) -> gdRect;

MoveWindow(&Window->port, mainRect.left+10+kMyVertTitleWidth,

mainRect.bottom-10-(windowRect.bottom-windowRec.top, FALSE);

} }

MyKeepWindowOnscreen(window, nil);

/* handle other nonstandard window variants here */

}

return noErr;

}

Your application may Þnd it useful to resize a window after moving it, or to
optimize the color for its newly conÞgured video device. You can use Display
Manager functions to determine the characteristics of video devices, as
explained in the next section.
Using the Display Manager 33
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
Determining the Characteristics of the Video Devices 2

To determine the characteristics of available video devices, your application can
use the DMGetFirstScreenDevice function to obtain a handle to the GDevice
structure for the Þrst video device in the device list. The
DMGetFirstScreenDevice function is similar to the QuickDraw function
GetDeviceList, except that when returning GDevice structures, GetDeviceList
does not distinguish between the GDevice structures for video devices and the
GDevice structures associated with no video devices. (For example, if system
software uses the function DMDisableDisplay to disable the last remaining device
in the device list, then DMDisableDisplay inserts into the device list a GDevice
structure that is not associated with any video device. The
DMGetFirstScreenDevice function will not return this GDevice structure, but
GetDeviceList might.)

After using the DMGetFirstScreenDevice function to obtain a handle to the Þrst
GDevice structure for a display in the device list, your application can use the
DMGetNextScreenDevice function to loop through all of the video devices in the
device list. The DMGetNextScreenDevice function is similar to the QuickDraw
function GetNextDevice, except that when returning GDevice structures,
GetNextDevice does not distinguish between the GDevice structures for video
devices and the GDevice structures associated with no video devices.

Another important difference between these two Display Manager functions
(DMGetFirstScreenDevice and DMGetNextScreenDevice) and their related
QuickDraw functions (GetDeviceList and GetNextDevice) is that with both
Display Manager functions, your application can specify that the Display
Manager return handles only to active video devices. (An active device is a
video device whose display area is included in the userÕs desktop; the display
area of an inactive device does not appear on the userÕs desktop.)

To get a handle to the GDevice structure for a video device that mirrors another,
your application can use the DMGetNextMirroredDevice function.

Your application can pass the GDevice handle returned for any of these video
devices to a QuickDraw function like TestDeviceAttribute or HasDepth to
determine various characteristics of the video device, or your application can
examine the gdRect Þeld of the GDevice structure to determine the dimensions of
the screen it represents.

Macintosh system software uses the DMCheckDisplayMode function to determine
whether a video device supports a particular display mode and pixel depth.
Typically, your application does not need to know whether a display mode is
34 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
supported, but only whether a speciÞc pixel depth is supported, in which case
your application can use the Color QuickDraw function HasDepth.

To determine whether QuickDraw supports video mirroring on the userÕs
computer system, your application can use the DMQDIsMirroringCapable
function. Your application can use the DMCanMirrorNow function to determine
whether video mirroring can activate. And to determine whether the userÕs
computer system currently uses video mirroring, your application can use the
DMIsMirroringOn function.

Finally, your application can use the DMGetDisplayIDByGDevice function to
determine the display ID for a video device. A display ID is a long integer used
by the Display Manager to uniquely identify a video device. Associating a
display by its display ID is helpful when using functions such as
DMRemoveDisplay that could change the GDevice structure associated with a video
device. You can Þrst determine the display ID for a device by using the
DMGetDisplayIDByGDevice function. To later retrieve that deviceÕs GDevice
structure after calling various Display Manager functions, your application can
use the DMGetGDeviceByDisplayID function. Display IDs are not guaranteed to be
persistent across reboots or sleep.

Setting Configurations and Display Modes for Video Devices 2

The Monitors control panel is the user interface for changing the pixel depth,
color capabilities, and positions of video devices. Because the user can control
the capabilities of the video devices, your application should be ßexible. For
instance, although your application may have a preferred pixel depth, it should
do its best to accommodate less than ideal conditions.

Your application can use Display Manager functions to change the display
mode and display conÞguration of the userÕs video devices, but your
application should do so only with the consent of the user.

If your application must have a speciÞc pixel depth, for example, it can display
a dialog box that offers the user a choice between changing to that depth or
canceling display of the image. This dialog box saves the user the trouble of
going to the control panel before returning to your application. If it is absolutely
necessary for your application to draw on a video device of a speciÞc pixel
depth, your application can then use either the SetDepth function or the
DMSetDisplayMode function.

With the possible exception of the DMSetDisplayMode function and the
DMMirrorDevices and DMUnmirrorDevice functions, applications should not need
Using the Display Manager 35
  Apple Computer, Inc. 11/1/99

C H A P T E R 2

Using the Display Manager
to use any of the Display Manager functions that change the userÕs display
conÞguration. However, they are described for completeness, in case you Þnd a
compelling need for your application to change the userÕs display
conÞguration. If your application must use multiple Display Manager calls that
conÞgure the userÕs displays, your application should Þrst use the
DMBeginConfigureDisplays function to postpone Display Manager conÞguration
checking, the rebuilding of desktop regions, and Apple event notiÞcation of
Display Manager changes. When Þnished conÞguring the userÕs displays, use
the DMEndConfigureDisplays function. Using DMBeginConfigureDisplays and
DMEndConfigureDisplays allows your application to wait until it has made all
display changes before managing its windows in response to a single Display
Notice event. It is important to pass the displayState variable obtained in
DMBeginConfigureDisplays to the DMEndConfigureDisplays function.
36 Using the Display Manager

  Apple Computer, Inc. 11/1/99

C H A P T E R 3

Contents

  Apple Computer, Inc. 11/1/99

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Display Manager Reference
Display Manager Reference 41
Gestalt Constants 41

Determining Display Manager Version 41
Determining Display Manager Attributes 41

Functions 42
Getting Video Devices 43

.DMGetFirstScreenDevice 43
DMGetNextScreenDevice 44
DMGetNextMirroredDevice 45
DMGetDisplayIDByGDevice 45
DMGetGDeviceByDisplayID 46

Determining Display Modes and Display ConÞgurations 47
DMCheckDisplayMode 47
DMQDIsMirroringCapable 48
DMCanMirrorNow 49
DMIsMirroringOn 49
DMGetNameByAVID 50
DMGetGraphicInfoByAVID 51
DMGetAVPowerState 52
DMSetAVPowerState 52
DMGetDisplayMode 53
DMSaveScreenPrefs 54

Changing Display Modes and Display ConÞgurations 55
DMBeginConfigureDisplays 55
DMSetDisplayMode 56
DMMoveDisplay 57
DMDisableDisplay 58
37

C H A P T E R 3
DMEnableDisplay 60
DMSetMainDisplay 61
DMMirrorDevices 62
DMUnmirrorDevices 63
DMBlockMirroring 64
DMUnblockMirroring 64
DMEndConfigureDisplays 65

Adding and Removing Video Devices From the Device List 65
DMNewDisplay 66
DMAddDisplay 67
DMRemoveDisplay 69
DMDisposeDisplay 70
DMNewDisplayModeList 71
DMGetIndexedDisplayModeFromList 72
DMDisposeList 73

 Registering and Unregistering Your Program 73
DMRegisterExtendedNotifyProc 74
DMRemoveExtendedNotifyProc 75
DMSendDependentNotification 76

Application-DeÞned Functions 77
MyExtendedNotificationProc 77

Data Types 79
AVIDType 79
AVLocationRec 79
AVPowerStateRec 80
DependentNotifyRec 80
DisplayIDType 81
DMDepthInfoBlockRec 81
DMDepthInfoRec 82
DMDisplayModeListEntryRec 83
DMDisplayTimingInfoRec 85
DMListType 86
DMListIndexType 86
DMMakeAndModelRec 86
DMDisplayModeListIteratorProcPtr 87
DMExtendedNotificationProcPtr 88
38 Contents

  Apple Computer, Inc. 11/1/99

C H A P T E R 3
Constants 88
Active Device Only Values 88
Apple Event NotiÞcation Keywords 89
Dependent NotiÞcation Constants 93
Display/Device ID Constants 94
Display Mode Flags 94
Display Version Values 95
NotiÞcation Messages 95
NotiÞcation Types 97
Switch Flags 98
Video Depth Mode Values 99

Result Codes 100
Contents 39
  Apple Computer, Inc. 11/1/99

C H A P T E R 3
40 Contents

  Apple Computer, Inc. 11/1/99

C H A P T E R 3
Display Manager Reference 3

Display Manager Reference 3

This document describes the functions, data types, and constants provided by
the Display Manager. With the Display Manager, your application can conÞgure
display settings and allow users to move and reconÞgure displays without
losing windows or rebooting.

Gestalt Constants
You can use the Display Manager Gestalt Constants to determine the version
and attributes of the current Display Manager.

Determining Display Manager Version

To determine the version of the current Display Manager, your application
should pass the selector gestaltDisplayMgrVers to the Gestalt function.

enum {
 = FOUR_CHAR_CODE('dplv')

};

Constant description

'dplv' The selector you pass to determine what version of the
Display Manager is present. For example, a Gestalt result
may be 0x00020500, which means that the Display Manager
version 2.5 is present.

Determining Display Manager Attributes

Before calling any function dependent upon the Display Manager, your
application should pass the selector to the Gestalt function to determine the
Display Manager attributes that are present.
Display Manager Reference 41
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
enum {

 = FOUR_CHAR_CODE('dply'),

 = 0,

 = 2,

 = 3,

 = 4,

 = 5

};

Constant descriptions

'dply' The Gestalt selector you pass to determine which
Display Manager attributes are present.

0 If true , the Display Manager is present.
2 If true , the Display Manager can switch modes on

mirrored displays.
3 If true , and you have registered for notiÞcation and you

will be notiÞed of depth mode changes.
4 Not yet supported. Most commonly comes up for display

modes that are not marked . There is currently no system
support for trying an unsafe mode and then restoring if the
user does not conÞrm. When this is supported, this bit will
be set.

5 If true , Display Manager supports proÞles for displays.

Functions
Because all Display Manager functions may move or purge memory blocks or
access handles, your application cannot call them at interrupt time.
42 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Getting Video Devices

.DMGetFirstScreenDevice

Returns a handle for the Þrst video device in the device list.

pascal GDHandle DMGetFirstScreenDevice (Boolean

activeOnly);

activeOnly If true , the DMGetFirstScreenDevice function returns a
handle to the Þrst of all active video devices. If false , the
function returns a handle to the Þrst of all video devices, active
or not. You may use the Active Device Constants in this
parameter. See "Active Device Only Values" (page 88).

function result If activeOnly is true , a handle to the GDevice structure for
the first active video device. If activeOnly is false , a handle
to the GDevice structure for the first video device.

DISCUSSION

The DMGetFirstScreenDevice function is useful if you want to Þnd out
more about the current mode.

You can use the function DMGetNextScreenDevice (page 44) to loop
through all of the video devices in the device list.

The DMGetFirstScreenDevice function is similar to the QuickDraw
function GetDeviceList , except that when returning GDevice structures,
GetDeviceList does not distinguish between inactive and active video
devices or between the GDevice structures for video devices and the GDevice
structures associated with no video devices.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 43
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMGetNextScreenDevice

Returns a handle for the next video device in the device list.

pascal GDHandle DMGetNextScreenDevice (

GDHandle theDevice,

Boolean activeOnly);

theDevice A handle to the GDevice structure at which you want the
function to begin. You can supply the handle returned by the
function DMGetFirstScreenDevice or
DMGetNextScreenDevice .

activeOnly If true , the DMGetNextScreenDevice function returns a
handle for the next active video device. If false ,
DMGetNextScreenDevice returns a handle for the next video
device, active or not. You may use the Active Device Constants
in this parameter. See "Active Device Only Values" (page 88).

function result
If activeOnly is true , a handle to the next GDevice
structure for an active video device. If activeOnly is false , a
handle to the next GDevice structure for a video device. If there
are no more GDevice structures in the list,
DMGetNextScreenDevice returns NULL.

DISCUSSION

The DMGetNextScreenDevice function is similar to the QuickDraw function
GetNextDevice , except that when returning GDevice structures,
GetNextDevice does not distinguish between inactive and active video
devices or between the GDevice structures for video devices and the GDevice
structures associated with no video devices.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
44 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMGetNextMirroredDevice

Obtains a handle for a video device that mirrors another speciÞed video device.

pascal OSErr DMGetNextMirroredDevice (

GDHandle gDevice,

GDHandle *mirroredDevice);

gDevice A handle to the GDevice structure for the video device that
another video device mirrors.

mirroredDevice
On return, a pointer to the handle for the video device that
displays a mirror image of the device speciÞed in the gDevice
parameter.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMGetDisplayIDByGDevice

Obtains the display ID number for a video device.

pascal OSErr DMGetDisplayIDByGDevice (

GDHandle displayDevice,

DisplayIDType *displayID,

Boolean failToMain);

displayDevice
A handle to the GDevice structure for the video device whose
display ID you wish to obtain.
Display Manager Reference 45
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
displayID On return, a pointer to the display ID for the video device
speciÞed by the displayDevice parameter.

failToMain If true and the speciÞed video device does not have a display
ID, on return the function sets the displayID parameter to a
pointer to the display ID of the video device for the main screen.
If false and the speciÞed video device does not have a display
ID, the function returns the kDMDisplayNotFoundErr result
code.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMGetGDeviceByDisplayID

Obtains a handle for the video device with a speciÞed display ID.

pascal OSErr DMGetGDeviceByDisplayID (

DisplayIDType displayID,

GDHandle *displayDevice,

Boolean failToMain);

displayID The display ID for the video device whose handle you wish to
obtain.

displayDevice
On return, a pointer to the handle to the GDevice structure for
the video device speciÞed by the displayID parameter.

failToMain If true and there is no video device associated with the
displayID parameter, on return the function sets
displayDevice to a pointer to the handle for the video device
for the main screen. If false and there is no video device
associated with the displayID parameter, the function returns
the kDMDisplayNotFoundErr result code.
46 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

Determining Display Modes and Display ConÞgurations

The following functions allow your application to determine the display modes
and other display conÞgurations of the userÕs system.

DMCheckDisplayMode

Determines if a video device supports a particular display mode and pixel
depth.

pascal OSErr DMCheckDisplayMode (

GDHandle theDevice,

unsigned long mode,

unsigned long depthMode,

unsigned long *switchFlags,

unsigned long reserved,

Boolean *modeOk);

theDevice A handle to the GDevice structure for the video device whose
display mode and pixel depth you wish to check.

mode The display mode you wish to check. You get a list of display
modes by calling DMGetDisplayMode (page 53)

depthMode The pixel depth you wish to check. See ÒVideo Depth Mode
ValuesÓ (page 99) for list of possible values.
Display Manager Reference 47
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
switchFlags On return, a pointer to a long integer that indicates if a video
device will support the mode speciÞed by the mode parameter
and the pixel depth speciÞed by the depthMode parameter. See
ÒSwitch FlagsÓ (page 98) for a description.

reserved Reserved for future expansion. Pass NULL in this parameter.

modeOk On return, a pointer to a Boolean . If modeOk points to a value
of true , the user or your application can switch the display
mode for the video device to the one speciÞed by mode.

function result

DISCUSSION

Usually, your application only needs to know if a video device supports a
speciÞc pixel depth. Thus your application can use the Color QuickDraw
function HasDepth . The function DMCheckDisplayMode is essentially
obsolete, and is here for completeness.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMQDIsMirroringCapable

Determines if QuickDraw supports video mirroring on the userÕs system.

pascal OSErr DMQDIsMirroringCapable (Boolean

*qdIsMirroringCapable);

qdIsMirroringCapable
On return, a pointer to the value true if QuickDraw supports
video mirroring; otherwise, a pointer to the value false .

function result
48 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMCanMirrorNow

Determines if video mirroring can operate on the userÕs system.

pascal OSErr DMCanMirrorNow (Boolean *canMirrorNow);

canMirrorNow
On return, a pointer to a Boolean value; true indicates that
mirroring can operate; false indicates it cannot.

function result

DISCUSSION

When the canMirrorNow parameter points to a value of true , the computer
uses a version of QuickDraw that supports video mirroring, has at least two
mirrorable displays, and does not have mirror blocking in effect.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMIsMirroringOn

Determines if video mirroring is active.

pascal OSErr DMIsMirroringOn (Boolean *isMirroringOn);
Display Manager Reference 49
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
isMirroringOn
On return, a pointer to a Boolean value; true indicates that
mirroring is on; false indicates it is not.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMGetNameByAVID

Obtains the name of a display device.

pascal OSErr DMGetNameByAVID (

AVIDType theID,

unsigned long nameFlags,

Str255 name);

theID The ID number of the display device whose name you want to
obtain.

nameFlags Reserved for future expansion. Pass NULL in this parameter.

name On return, a string containing the name of the display device
speciÞed by the parameter theID .

function result

DISCUSSION

An AVID is really a display ID as an AVID references a video display just like a
display ID. Developers planned to use AVIDs for an extended set of devices,
however, they never did this.
50 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMGetGraphicInfoByAVID

Obtains information about the graphic display of an display device.

pascal OSErr DMGetGraphicInfoByAVID (

AVIDType theID,

PicHandle *theAVPcit,

Handle *theAVIconSuite,

AVLocationRec *theAVLocation);

theID The ID number of the display device whose information you
want to obtain.

theAVPcit On return, a pointer to the handle for the picture structure you
want to get.

theAVIconSuite
On return, a pointer to a handle whose structure reports the icon
suite for a display device.

theAVLocation
On return, a pointer to the location structure for the device you
want information about.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 51
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMGetAVPowerState

Obtains the current power state of a display.

pascal OSErr DMGetAVPowerState (

AVIDType theID,

AVPowerStatePtr getPowerState,

unsigned long reserved1);

 theID The ID number of the display device whose power state you
want to obtain.

getPowerState
A pointer to type AVPowerStateRec (page 80). On return, this
parameter points to a value specifying the current power state
of display device.

reserved1 Reserved for future expansion. Pass NULL in this parameter.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMSetAVPowerState

Sets the power state of an display device.

pascal OSErr DMSetAVPowerState (

AVIDType theID,

AVPowerStatePtr setPowerState,

unsigned long powerFlags,

Handle displayState);
52 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
theID The ID number of the display device whose power state you
want to change.

setPowerState
On return, this parameter points to a value that your application
can use to set the power state of a display device.

powerFlags A value that speciÞes the power state to which a display device
can be set.

displayState
A handle to internal Display Manager information about the
current display state.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMGetDisplayMode

Obtains the current display mode of a speciÞed video display.

pascal OSErr DMGetDisplayMode (

GDHandle theDevice,

VDSwitchInfoPtr switchInfo);

theDevice A handle to the GDevice structure for the video device whose
display mode you wish to obtain.

switchInfo On return, a pointer to an internal Display Manager structure
containing display mode information.

function result
Display Manager Reference 53
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMSaveScreenPrefs

Saves the userÕs screen conÞguration preferences.

pascal OSErr DMSaveScreenPrefs (

unsigned long reserved1,

unsigned long saveFlags,

unsigned long reserved2);

reserved1 Reserved for future expansion. Pass NULL in this parameter.

saveFlags Reserved for future expansion. Pass NULL in this parameter.

reserved2 Reserved for future expansion. Pass NULL in this parameter.

function result

DISCUSSION

Usually when you change screen properties such as pixel depth, the changes
will only be temporary and will usually reset after restarting. However, the
function DMSaveScreenPrefs makes the current screen properties
permanent.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
54 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Changing Display Modes and Display ConÞgurations

With the possible exception of the DMSetDisplayMode , DMMirrorDevices
and DMUnmirrorDevice functions, applications should generally never need
to use any of the following Display Manager functions that change the userÕs
display conÞguration. In case you Þnd a compelling need to change the userÕs
display conÞguration, all Display Manager functions that change display
conÞgurations are described here for completeness.

Note that if your application uses Display Manager functions to change the
display conÞguration of the userÕs video devices, your application should make
these changes only with the consent of the user. If your application must have a
speciÞc pixel depth, for example, it should display a dialog box that offers the
user a choice between changing to that depth or canceling display of the image.

DMBeginConÞgureDisplays

Allows your application to conÞgure displays.

pascal OSErr DMBeginConfigureDisplays (Handle

*displayState);

displayState
On return, a pointer to a handle to internal Display Manager
information about the current display state. The
DMEndConfigureDisplays (page 65) function and many
other functions require this parameter.

function result

DISCUSSION

The DMBeginConfigureDisplays function tells the Display Manager to
postpone Display Manager conÞguration checking, the rebuilding of desktop
regions, and Apple event notiÞcation of Display Manager changes until your
application uses the DMEndConfigureDisplays function.

You should call the function DMBeginConfigureDisplays before calling
other Display Manager functions that conÞgure the userÕs display. When calling
Display Manager Reference 55
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
functions that conÞgure displays, you should pass the handle obtained by the
DMBeginConfigureDisplays function. DMBeginConfigureDisplays
causes system software to wait for your application to complete display
changes before managing additional Display Manager events. When your
application completes conÞguring the display environment, call the function
DMEndConfigureDisplays .

DMSetDisplayMode

Sets the display mode and pixel depth for a video device.

pascal OSErr DMSetDisplayMode (

GDHandle theDevice,

unsigned long mode,

unsigned long *depthMode,

unsigned long reserved,

Handle displayState);

theDevice A handle to the GDevice structure for the video device whose
display mode and pixel depth you wish to set.

mode The number used by a video device to identify its display mode.
If you supply the value 0 in this parameter,
DMSetDisplayMode uses the current display mode. To specify
another display mode, use the function
DMNewDisplayModeList (page 71).

depthMode A pointer to the desired pixel depth for the video device
speciÞed by theDevice . If you pass a pointer to 0,
DMSetDisplayMode attempts to keep the current depth. If you
pass a pointer to 1, 2, 4, 8, 16, or 32, DMSetDisplayMode
attempts to set the device to use your speciÞed pixel depth. If
you supply a pointer to a value of 128 or greater, then
DMSetDisplayMode sets the depth to the depth mode
represented by the Video Depth Mode values. See ÒVideo Depth
Mode ValuesÓ (page 99) for more information.
56 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
On return, this parameter contains a pointer to the new pixel
depth. This value represents the depth mode closest to the one
you requested when calling DMSetDisplayMode .

reserved Reserved for future expansion. Pass NULL in this parameter.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMMoveDisplay

Moves the boundary rectangle for a video device.

pascal OSErr DMMoveDisplay (

GDHandle moveDevice,

short x,

short y,

Handle displayState);

moveDevice A handle to the GDevice structure for the video device whose
boundary rectangle you wish to move.

x The horizontal coordinate on the QuickDraw global coordinate
plane for the point to which you want to move the upper-left
corner of the boundary rectangle.

y The vertical coordinate on the QuickDraw global coordinate
plane for the point to which you want to move the upper-left
corner of the boundary rectangle.
Display Manager Reference 57
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

The DMMoveDisplay function moves the boundary rectangle for the speciÞed
video device to the point (x,y) in the QuickDraw global coordinate plane. If the
video device controls the main screen, which always has the global coordinates
(0,0), then all other video devices are offset by horizontal distance x and
vertical distance y .

A boundary rectangle is the rectangle that links the local coordinate system of a
graphics port to QuickDrawÕs global coordinate system and deÞnes the area of
the pixel image or bit image into which QuickDraw can draw. The boundary
rectangle is stored in either the pixel map or the bitmap contained in a GDevice
structure.

The Display Manager will reposition overlapped or discontiguous boundary
rects to create a non-overlapping contiguous desktop space.

DMDisableDisplay

Makes a video device inactive by removing its display area from the desktop.

pascal OSErr DMDisableDisplay (

GDHandle disableDevice,

Handle displayState);

disableDevice
A handle to the GDevice structure for the video device whose
display you wish to disable.
58 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

You are not allowed to disable the last remaining display. Doing so will simply
re-enable it. If you want to remove the last remaining display, thereby enabling
the GDevice structure not associated with any video device, call the function
DMRemoveDisplay (page 69).

If you specify the device for the main screen in the disableDevice parameter,
then DMDisableDisplay picks another device and makes it the new main
screen.

If DMDisableDisplay results in setting a new main screen, the handle you
pass in the disableDevice parameter does not point to the same GDevice
structure after DMDisableDisplay completes; instead, it points to the
GDevice structure for the new main screen. If you need to recover the
GDevice structure for the device you disabled, determine its display ID by
using the function DMGetDisplayIDByGDevice (page 45) before calling
DMDisableDisplay . Then use the function DMGetGDeviceByDisplayID
(page 46) to obtain its structure.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 59
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMEnableDisplay

Reactivates a display made inactive with the function DMDisableDisplay
(page 58).

pascal OSErr DMEnableDisplay (

GDHandle enableDevice,

Handle displayState);

enableDevice
A handle to the GDevice structure for the video device whose
display you wish to make active.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

The function DMEnableDisplay reactivates the speciÞed video device by
adding to the desktop its display area.

If you add a display with the function DMAddDisplay (page 67) and there are
no active displays, the Display Manager will enable the added display.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
60 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMSetMainDisplay

Sets a display to be the main screen.

pascal OSErr DMSetMainDisplay (

GDHandle newMainDevice,

Handle displayState);

newMainDevice

A handle to the GDevice structure for the video device whose
display you wish to make the main screen.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

After a call to the function DMSetMainDisplay , the handle speciÞed by the
parameter newMainDevice will point to the GDevice structure for the video
device whose display, before calling DMSetMainDisplay , was the main screen.
To obtain a handle to the main screen, you can use the Color QuickDraw
function GetMainDevice .

DMSetMainDisplay moves the menu bar to the display for the video device
speciÞed by newMainDevice . QuickDraw maps the (0,0) origin point of the
global coordinate system to the main screenÕs upper-left corner, and other
screens are positioned adjacent to it.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 61
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMMirrorDevices

 Turns on video mirroring.

pascal OSErr DMMirrorDevices (

GDHandle gD1,

GDHandle gD2,

Handle displayState);

gD1 A handle to the GDevice structure for the video device whose
pixel image you want duplicated on another device.

gD2 A handle to the GDevice structure for the video device on
which you want to duplicate the pixel image speciÞed in the
gD1 parameter.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

Your application should leave control of video mirroring to the user. However,
if video mirroring is useful for your application (for example, if your
application displays on-screen presentations), you might provide a control so
that the user can switch to video mirroring directly from your application. In
this case, DMMirrorDevices is useful to your application. Your control should
also allow the user to turn video mirroring off; the function
DMUnmirrorDevices (page 63) supports this.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
62 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMUnmirrorDevices

Turns off video mirroring.

pascal OSErr DMUnmirrorDevice (

GDHandle gDevice,

Handle displayState);

gDevice A handle to the GDevice structure for the video device on
which you no longer wish to mirror the pixel image of another
device.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

When the function DMUnmirrorDevice completes, the display controlled by
the video device speciÞed in the gDevice parameter no longer contains the
mirror image of another display.

Your application should leave control of video mirroring to the user. However,
if video mirroring is useful for your application (for example, if your
application displays on-screen presentations), you might provide a control so
that the user can switch to video mirroring directly from your application. In
this case, the function DMMirrorDevices (page 62) is useful for switching
video mirroring on, and DMUnmirrorDevice function is useful for switching it
off again.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 63
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMBlockMirroring

Disables video mirroring.

pascal OSErr DMBlockMirroring (void);

function result

DISCUSSION

The function DMBlockMirroring disables video mirroring until the user
restarts the computer or until an application calls the function
DMUnblockMirroring (page 64).

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMUnblockMirroring

Reenables video mirroring disabled by the function DMBlockMirroring (page
64).

pascal OSErr DMUnblockMirroring (void);

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
64 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMEndConÞgureDisplays

Ends conÞguration begun by DMBeginConfigureDisplays (page 55).

pascal OSErr DMEndConfigureDisplays (Handle displayState);

displayState
Supply this parameter with the handle obtained by the
DMBeginConfigureDisplays (page 55) function.

function result

DISCUSSION

The function DMEndConfigureDisplays resumes Display Manager
conÞguration checking, the rebuilding of desktop regions, and Apple event
notiÞcation of Display Manager changes, all of which are postponed when you
use the function DMBeginConfigureDisplays (page 55). Your application
will then receive a single Display Notice event notifying your application of
Display Manager changes, and your application can manage its windows
accordingly.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

Adding and Removing Video Devices From the Device List

This section describes the Display Manager functions for manipulating the
device list. Generally, your application should not use these functions, but
should instead allow system software to maintain the device list. These
functions are described here for completeness only.
Display Manager Reference 65
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMNewDisplay

Adds a video device to the device list and makes the device active.

pascal OSErr DMNewDisplay (

GDHandle *newDevice,

short driverRefNum,

unsigned long mode,

unsigned long reserved,

DisplayIDType displayID,

Component displayComponent,

Handle displayState);

newDevice A pointer to a handle to a GDevice structure for the video
device that you want to add to the device list.

driverRefNum
The reference number of the video device which you are adding
to the device list. This information is usually set at system
startup. The function DMAddDisplay (page 67) passes the value
supplied here to the InitGDevice function in its gdRefNum
parameter.

mode The depth mode. Used by the video device driver, this value sets
the pixel depth and speciÞes color. The function
DMAddDisplay (page 67) passes the value supplied here to the
function InitGDevice in its mode parameter.

reserved Reserved for future expansion. Pass NULL in this parameter.

displayID A unique identiÞcation for the display. For new displays, supply
this parameter with the value 0, which causes the Display
Manager to generate a unique display ID for this device. If this
display was removed, then pass the display ID of the current
display in this parameter.

displayComponent
Reserved for future expansion. Pass NULL in this parameter.
66 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMAddDisplay

Adds the GDevice structure for a video device to the device list.

pascal OSErr DMAddDisplay (

GDHandle newDevice,

short driver,

unsigned long mode,

unsigned long reserved,

unsigned long displayID,

ComponentInstance displayComponent,

Handle displayState);

newDevice A handle to the GDevice structure for the video device you
want to add to the device list. The function DMNewDisplay
(page 66) usually initializes this structure.

driver The reference number of the graphics device which you are
adding to the device list. For most video devices, this
information is set at system startup. The function
DMAddDisplay passes the number supplied in this parameter
to the InitGDevice function in its gdRefNum parameter.
Display Manager Reference 67
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
mode The depth mode. Used by the video device driver, this value sets
the pixel depth and speciÞes color. The function
DMAddDisplay (page 67) passes the value supplied here to the
function InitGDevice in its mode parameter.

reserved Reserved for future expansion. Pass NULL in this parameter.

displayID A unique identiÞcation for the display. For new displays, supply
this parameter with the value 0, which causes the Display
Manager to generate a unique display ID for this device. If this
display was removed, then pass the display ID number of the
current display in this parameter.

displayComponent
Reserved for future expansion. Pass NULL in this parameter.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

The DMAddDisplay function adds the display speciÞed by the newDevice
parameter as inactive. However, if the speciÞed display is the only display, the
Display Manager automatically makes it active. Otherwise, you must call the
function DMEnableDisplay (page 60) to make the speciÞed display active.

The function DMNewDisplay (page 66) automatically calls DMAddDisplay and
DMEnableDisplay (page 60). The only time you ned to call DMAddDisplay
directly is after the device has been removed by DMRemoveDisplay (page 69)
but not yet disposed of by DMDisposeDisplay (page 70).

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
68 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMRemoveDisplay

Removes a video device from the device list.

pascal OSErr DMRemoveDisplay (

GDHandle removeDevice,

Handle displayState);

removeDevice

A handle to the GDevice structure for the video device you
want to remove from the device list. The function
DMRemoveDisplay does not actually dispose of this structure,
but instead removes it from the device list.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

function result

DISCUSSION

The function DMRemoveDisplay may call the function DMSetMainDisplay
(page 61), which causes the removeDevice parameter to contain a handle to
the GDevice structure for the new main screen, not the video device whose
handle was passed to DMRemoveDisplay . To recover the GDevice structure
for the disabled device, determine its display ID by using the function
DMGetDisplayIDByGDevice (page 45) before calling DMRemoveDisplay .
Then use the function DMGetGDeviceByDisplayID (page 46) to obtain the
GDevice structure for the speciÞed device.

You are not allowed to disable the last remaining display. Doing so will simply
re-enable it. If you want to remove the last remaining display, thereby enabling
the GDevice structure not associated with any video device, call
DMRemoveDisplay .
Display Manager Reference 69
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMDisposeDisplay

 Disposes of the GDevice structure for a video device.

pascal OSErr DMDisposeDisplay (

GDHandle disposeDevice,

Handle displayState);

disposeDevice
A handle to the GDevice structure for a video device you want
to delete.

displayState
If your application called DMBeginConfigureDisplays (page
55), you must pass the displayState handle obtained.
Otherwise pass NULL in this parameter.

DISCUSSION

The DMDisposeDisplay function disposes of a GDevice structure, releases
the space allocated for it, and disposes of all the data structures allocated for it.
The Display Manager calls this function when appropriate.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
70 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMNewDisplayModeList

Builds a new display mode list for a speciÞed video device.

pascal OSErr DMNewDisplayModeList (

DisplayIDType displayID,

unsigned long modeListFlags,

unsigned long reserved,

DMListIndexType theListCount,

DMListType theList);

displayID The display ID for the video device that will have a new display
mode list.

modeListFlags
Reserved for future expansion. Pass NULL in this parameter.

reserved Reserved for future expansion. Pass NULL in this parameter.

theListCount
The number of entries in the display mode list speciÞed by the
theList parameter.

theList
The display mode list for the speciÞed video device. You can
access entries with the function
DMGetIndexedDisplayModeFromList (page 72)

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
Display Manager Reference 71
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMGetIndexedDisplayModeFromList

Obtains a display mode from the display mode list built by
DMNewDisplayModeList (page 71).

pascal OSErr DMGetIndexedDisplayModeFromList (

DMListType theList,

DMListIndexType theListCount,

unsigned long reserved,

DMDisplayModeListIteratorUPP listIterator,

void *userData);

theList A value that speciÞes the list from which to obtain information
about the display modes created by the function
DMNewDisplayModeList (page 71).

theListCount
A value that speciÞes the index of the display mode you wish to
obtain.

reserved Reserved for future expansion. Pass NULL in this parameter.

listIterator
A universal procedure pointer. The iterator this pointer speciÞes
supplies the function to be called with the information about the
display mode speciÞed by theListCount .

userData A pointer you pass for listIterator usually used to obtain
information about the display mode from the UPP to the caller
of DMGetIndexedDisplayModeFromList .

function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
72 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMDisposeList

Disposes of a display mode list built by DMNewDisplayModeList (page 71).

pascal OSErr DMDisposeList (

DMListType theList);

theList A value that speciÞes the display mode list you want to delete.

function result

DISCUSSION

You should call the DMDisposeList function after you have itterated the
mode list.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

 Registering and Unregistering Your Program

This section describes the functions for registering and removing a function that
responds to Display Manager changes.
Display Manager Reference 73
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMRegisterExtendedNotifyProc

Registers a function that responds to a Display Notice event outside of an event
loop.

pascal OSErr DMRegisterExtendedNotifyProc (

DMExtendedNotificationUPP notifyProc,

void *notifyUserData,

unsigned short notifyOnFlags,

ProcessSerialNumberPtr whichPSN);

notifyProc A pointer to your function that handles a Display Notice event.

notifyUserData
A pointer to caller-speciÞc information which the Display
Manager will return to your application when you request it.

notifyOnFlags
Reserved for future expansion. Pass NULL in this parameter.

whichPSN A pointer to the Process Serial Number associated with your
Display Notice event-handling function. If this process
terminates, the Display Notice event-handling function is
automatically removed. For example, the Monitors control panel
supplies the FinderÕs process number when registering its
Display Notice event-handling function.

function result

DISCUSSION

Your Display Notice event-handling function should take one parameter, the
Apple event describing the changes made to the display conÞguration, as
shown here:

typedef pascal void (*DMNotificationProcPtr) (AppleEvent

*theEvent);
74 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
When the Display Manager sends your function the Display Notice event, your
application or utility should respond by moving or resizing its windows and
update any internally-maintained video device information as appropriate.

When you are Þnished with your notiÞcation function, remove it by calling
DMRemoveExtendedNotifyProc (page 75).

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMRemoveExtendedNotifyProc

Removes your Display Notice event-handling function registered in
DMRegisterExtendedNotifyProc (page 74).

pascal OSErr DMRemoveExtendedNotifyProc (

DMExtendedNotificationUPP notifyProc,

void *notifyUserData,

unsigned short removeFlags,

ProcessSerialNumberPtr whichPSN);

notifyProc A pointer to your function you want to remove that handles a
Display Notice event.

notifyUserData
A pointer to caller-speciÞc information which the Display
Manager will return to your application when you request it.

removeFlags Reserved for future expansion. Pass NULL in this parameter.

whichPSN A pointer to the Process Serial Number associated with your
Display Notice event-handling function. If this process
terminates, the Display Notice event-handling function is
automatically removed. For example, the Monitors control panel
supplies the FinderÕs process number when registering its
Display Notice event-handling function.
Display Manager Reference 75
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
function result

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

DMSendDependentNotiÞcation

NotiÞes dependent displays of changes in depth mode or conÞguration.

pascal OSErr DMSendDependentNotification (

ResType notifyType,

ResType notifyClass,

AVIDType displayID,

ComponentInstance notifyComponent);

notifyType The resource type that identiÞes the engine that made the
change. Examples might be component engines that control
brightness, contrast, or screen size. You may pass zero in this
parameter. See DependentNotifyRec (page 80) for more
information.

notifyClass The resource type that identiÞes the class of change the user or
engine has made, such as color depth, pixel size, or screen size.
See DependentNotifyRec (page 80) for more information.

displayID The ID number of the dependent display which you want to
notify of Display Manager events. On return, the Display
Manager sets the notifyPortID constant of the
DependentNotifyRec (page 80) structure. See
ÒDisplay/Device ID ConstantsÓ (page 94) for more information.

notifyComponent
A value that notiÞes the display component what engine, if any,
caused a change in a dependent display. You may pass 0 in this
parameter.
76 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
function result

DISCUSSION

The Display Manager uses the DMSendDependentNotification function to
send notiÞcations to registered Display Notice event-handling functions. This
function uses all its parameters to supply values for the
DependentNotifyRec (page 80) structure which is sent out to registrants.
Generally, your application does not need to use this function.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.

Application-DeÞned Functions
Display Manager notiÞcation functions call the following application-deÞned
functions when your application needs to know when certain events have
occurred. The system software may implement these events or follow a user
action. When these events occur, the Display Manager will send notiÞcation
messages to registrants.

MyExtendedNotiÞcationProc

Allows application-deÞned extended notiÞcation procedures.

pascal void MyExtendedNotificationProc (

void *userData,

short theMessage,

void *notifyData);

userData A pointer you passed into DMRegisterExtendedNotifyProc
(page 74).
Display Manager Reference 77
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
theMessage A message selector. See ÒNotiÞcation MessagesÓ (page 95) for
information on speciÞc message selectors.

notifyData A pointer to message-speciÞc information data provided by the
the Display Manager, described in ÒNotiÞcation MessagesÓ
(page 95).

function result

DISCUSSION

When you implement this function, the pointer you pass to the
DMRegisterExtendedNotifyProc (page 74) function should be a universal
procedure pointer with the following type deÞnition:

typedef (DMExtendedNotificationProcPtr)

DMExtendedNotificationUPP;

To create a universal procedure pointer for your application-deÞned function,
you should use the NewDMExtendedNotificationProc macro as follows:

DMExtendedNotificationUPP MyExtendedNotificationUPP;

MyExtendedNotificationUPP = NewDMExtendedNotificationProc
(MyExtendedNotificationProc);

You can then pass MyExtendedNotificationUPP in the notifyProc
parameter of the DMRegisterExtendedNotifyProc (page 74) function.
When you no longer need notiÞcations, you should remove it using the
DMRemoveExtendedNotifyProc (page 75) function.

Using this call ensures that the call is made through a universal procedure
pointer.

SPECIAL CONSIDERATIONS

Because this function may move or purge memory blocks or access handles,
you cannot call it at interrupt time.
78 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Data Types
This section discussses the general-purpose data types deÞned by the Display
Manager.

AVIDType

The functions DMGetNameByAVID (page 50), DMGetGraphicInfoByAVID
(page 51), DMGetAVPowerState (page 52), DMSetAVPowerState (page 52),
and DMGetDisplayMode (page 53) use this type for one of their parameters to
indicate the ID number of a particular audio video device. The function
DMSendDependentNotification (page 76) also contains a parameter of type
AVIDType which indentiÞes a display.

typedef unsigned longAVIDType;

AVLocationRec

The function DMGetGraphicInfoByAVID (page 51) uses the AVLocationRec
structure to get information about graphic displays.

struct AVLocationRec {

unsigned long locationConstant;

};

typedef struct AVLocationRec AVLocationRec;

typedef AVLocationRec *AVLocationPtr;

Field descriptions
locationConstant Reserved for future expansion. Set this Þeld to zero.
Display Manager Reference 79
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
AVPowerStateRec

The functions DMGetAVPowerState (page 52) and DMSetAVPowerState
(page 52) contain a parameter that is a pointer to the AVPowerStateRec data
type, which in turn corresponds to the AVPowerStateRec data type.

typedef VDPowerStateRec AVPowerStateRec;

typedef VDPowerStateRec *AVPowerStatePtr;

DependentNotifyRec

The function DMSendDependentNotification (page 76) uses the
notifyType and notifyClass Þelds of the DependentNotifyRec
structure.

struct DependentNotifyRec {

ResType notifyType;

ResType notifyClass;

DisplayIDType notifyPortID;

 ComponentInstance notifyComponent;

 unsigned long notifyVersion;

unsigned long notifyFlags;

unsigned long notifyReserved;

unsigned long notifyFuture;

};

typedef struct DependentNotifyRec DependentNotifyRec;

typedef DependentNotifyRec *DependentNotifyPtr;

Field descriptions
notifyType A value that speciÞes the type of engine, if any, that made

the change. The Display Manager may set this Þeld to zero.
notifyClass A value specifying the class of change that occurred: for

instance, color or screen size. This Þeld uses a value
80 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
supplied by the constant described under ÒDependent
NotiÞcation ConstantsÓ (page 93) to specify the class of
change that has occurred in a dependent display.

notifyPortID SpeciÞes which device was touched
(kInvalidDisplayID speciÞes all or none).

notifyComponent A value that indentiÞes the engine that made the change.
The Display Manager may set this Þeld to zero.

notifyVersion Reserved for future expansion. The Display Manager sets
this Þeld to zero.

notifyFlags Reserved for future expansion. The Display Manager sets
this Þeld to zero.

notifyReserved Reserved for future expansion. The Display Manager sets
this Þeld to zero.

notifyFuture Reserved for future expansion. The Display Manager sets
this Þeld to zero.

DisplayIDType

The functions DMNewDisplayModeList (page 71),
DMGetDisplayIDByGDevice (page 45), and DMGetGDeviceByDisplayID
(page 46) use this data type to specify a video device.

typedef unsigned longAVIDType;

typedef AVIDTypeDisplayIDType;

DMDepthInfoBlockRec

When you call the function DMGetIndexedDisplayModeFromList (page 72),
the Display Manager passes the structure DMDisplayModeListEntryRec
(page 83) to your application. Its Þeld displayModeDepthBlockInfo is a
pointer to the DMDepthInfoBlockRec (page 81) structure.
Display Manager Reference 81
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
struct DMDepthInfoBlockRec {

unsigned long depthBlockCount;

DMDepthInfoPtr depthVPBlock;

unsigned long depthBlockFlags;

unsigned long depthBlockReserved1;

unsigned long depthBlockReserved2;

};

typedef struct DMDepthInfoBlockRec DMDepthInfoBlockRec;

typedef DMDepthInfoBlockRec *DMDepthInfoBlockPtr;

Field descriptions

depthBlockCount SpeciÞes the number of mode depths available.
depthVPBlock Array of DMDepthInfoRec (page 82).
depthBlockFlags Reserved for future expansion.
depthBlockReserved1

Reserved for future expansion.
depthBlockReserved2

Reserved for future expansion.

DMDepthInfoRec

This structure provides information that the structure DMDepthInfoBlockRec
(page 81) supplies to the function DMGetIndexedDisplayModeFromList
(page 72).

struct DMDepthInfoRec {

VDSwitchInfoPtr depthSwitchInfo;

VPBlockPtr depthVPBlock;

UInt32 depthFlags;

UInt32 depthReserved1;

UInt32 depthReserved2;
82 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
};

typedef struct DMDepthInfoRec DMDepthInfoRec;

typedef DMDepthInfoRec *DMDepthInfoPtr;

Field descriptions

depthSwitchInfo A pointer to the structure VDSwitchInfoRec , which
contains values that specify information on video switch
modes and data. You can use this to call the function
DMSetDisplayMode (page 56)

depthVPBlock A pointer to the structure VPBlock, which supplies
information about size, depth and format.

depthFlags Values from the video structure
VDVideoParametersInfoRec , which specify color, size,
and depth.

depthReserved1 Reserved for future expansion.
depthReserved2 Reserved for future expansion.

DMDisplayModeListEntryRec

The DMDisplayModeListEntryRec structure contains information about a
display mode in a display mode list built by the function
DMNewDisplayModeList (page 71).

struct DMDisplayModeListEntryRec {

UInt32 displayModeFlags;

VDSwitchInfoPtr displayModeSwitchInfo;

VDResolutionInfoPtr displayModeResolutionInfo;

VDTimingInfoPtr displayModeTimingInfo;

DMDepthInfoBlockPtr displayModeDepthBlockInfo;

UInt32 displayModeVersion;

StringPtr displayModeName;

DMDisplayTimingInfoPtr displayModeDisplayInfo;

};
Display Manager Reference 83
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
typedef struct DMDisplayModeListEntryRec

DMDisplayModeListEntryRec;

typedef DMDisplayModeListEntryRec

*DMDisplayModeListEntryPtr;

Field descriptions

displayModeFlags
See ÒDisplay Mode FlagsÓ (page 94) for a description.

displayModeSwitchInfo
A pointer to video structure VDSwitchInfoRec , which
provides information you need to tell the driver how to
switch into different conÞgurations, bit depths, or
resolutions. See the function DMSetDisplayMode (page
56) for more information.

displayModeResolutionInfo
A pointer to a pointer to video structure
VDResolutionInfoRec , which provides information
about horizontal pixels, maximum depth modes, and the
vertical line of the speciÞed display mode.

displayModeTimingInfo
A pointer to a pointer to video structure
VDTimingInfoRec , which provides information about
timing, format of the speciÞed display mode.

displayModeDepthBlockInfo
A pointer to structure DMDepthInfoBlockRec (page 81),
which provides information about available pixel formats
and the VPBlock , including size and depth.

displayModeVersion
The version of this structure. Currently it is version
kDisplayTimingInfoVersionOne . See ÒDisplay
Version ValuesÓ (page 95) for more information.

displayModeName A string pointer giving the display mode name. For
example, Ò640 x 480, 67 HzÓ

displayModeDisplayInfo
A pointer to the DMDisplayTimingInfoRec (page 85)
data type. This data type supplies information about the
quality and default values of the timing.
84 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMDisplayTimingInfoRec

This structure supplies information about timing attributes, defaults and values
to the structure DMDisplayModeListEntryRec (page 83).

struct DMDisplayTimingInfoRec {

UInt32 timingInfoVersion;

UInt32 timingInfoAttributes;

SInt32 timingInfoRelativeQuality;

SInt32 timingInfoRelativeDefault;

UInt32 timingInfoReserved[16];

};

typedef struct DMDisplayTimingInfoRec

DMDisplayTimingInfoRec;

typedef DMDisplayTimingInfoRec *DMDisplayTimingInfoPtr;

Field descriptions
timingInfoVersion

An unsigned 32 bit integer that shows the timing version.
See ÒDisplay Version ValuesÓ (page 95) for timing version
values.

timingInfoAttributes
An unsigned 32 bit integer that the Display Manager sets to
show timing attributes.

timingInfoRelativeQuality
A signed 32 bit integer whose ßags the Display Manager
sets to provide information on the quality of the timing.

timingInfoRelativeDefault
A signed 32 bit integer the Display Manager sets that
speciÞes the relative default value of the timing.

timingInfoReserved[16]
Reserved for future expansion.
Display Manager Reference 85
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMListType

The functions DMDisposeList (page 73) and
DMGetIndexedDisplayModeFromList (page 72) use the DMListType data
type to help supply a list of display items.

typedef void *DMListType;

DMListIndexType

The function DMGetIndexedDisplayModeFromList (page 72) uses this data
type to supply a list of display modes from which you can obtain information
about a speciÞed display mode.

typedef unsigned longDMListIndexType;

DMMakeAndModelRec

This structure stores information about a speciÞed monitor or display. If you
need to keep track of conÞgurations and user preferences, you can store that
information in this structure.

struct DMMakeAndModelRec {

ResType manufacturer;

UInt32 model;

UInt32 serialNumber;

UInt32 manufactureDate;

UInt32 makeReserved[4];

};

typedef struct DMMakeAndModelRec DMMakeAndModelRec;

typedef DMMakeAndModelRec *DMMakeAndModelPtr;
86 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
manufacturer Represents the manufacturer of the speciÞed display.
model Represents the model name of the speciÞed display.
serialNumber Represents the serial number of the speciÞed display.
manufactureDate Represents the date of manufacture of the speciÞed display.
makeReserved[4] Reserved for future expansion.

DMDisplayModeListIteratorProcPtr

The function DMGetIndexedDisplayModeFromList (page 72) has a
parameter of type DMDisplayModeListIteratorUPP . The Display Manager
deÞnes the procedure pointer DMDisplayModeListIteratorProcPtr to use
for this parameter. This data type is usually used to return information to the
caller of DMGetIndexedDisplayModeFromList.
DMDisplayModeListIteratorProcPtr is deÞned as follows:

void DMExtendedNotificationProcPtr (

void *userData,

DMListIndexType theListCount,

DMDisplayModeListEntryPtr

displaymodeInfo);

userData A pointer to data about mode changes provided by the
user. This is data passed into
DMGetIndexedDisplayModeFromList (page 72)

theListCount SpeciÞes the list entry. See DMListIndexType (page 86)
for more information. This is the index passed into
DMGetIndexedDisplayModeFromList (page 72).

displaymodeInfo A pointer to a structure of type
DMDisplayModeListEntryRec (page 83) that provides
display mode information.
Display Manager Reference 87
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
DMExtendedNotiÞcationProcPtr

When you call the function DMRegisterExtendedNotifyProc (page 74) you
designate an application-deÞned function to handle the extended notiÞcation
procedure. DMExtendedNotificationProcPtr is deÞned as follows:

void DMExtendedNotificationProcPtr (

void *userData,

short theMessage,

void *notifyData);

userData A pointer you passed into
DMRegisterExtendedNotifyProc (page 74).

theMessage A message selector. See ÒNotiÞcation MessagesÓ (page 95)
for more information.

notifyData A pointer to message-speciÞc information data provided by
the Display Manager described in "NotiÞcation Messages"
(page 95). This is NULL for some messages.

Constants
Your application can use the following constants in Display Manager functions.

Active Device Only Values

The functions .DMGetFirstScreenDevice (page 43) and
DMGetNextScreenDevice (page 44) contain the parameter activeOnly
which you can specify with an Active Device Constant.

dmOnlyActiveDisplays = true,

dmAllDisplays = false
88 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Constant descriptions

dmOnlyActiveDisplays

Returns a handle to the GDevice structure for an active
device only.

dmAllDisplays Returns a handle to the GDevice structure for a device,
active or not.

Apple Event NotiÞcation Keywords

The Display Manager sends an Apple eventÑthe Display Notice eventÑto
notify applications that it has changed the display environment. The keywords
that specify the Display Notice event and its descriptor structures are described
here.

enum {

 kAESystemConfigNotice = FOUR_CHAR_CODE('cnfg'),

 kAEDisplayNotice = FOUR_CHAR_CODE('dspl'),

 kAEDisplaySummary = FOUR_CHAR_CODE('dsum'),

 keyDMConfigVersion = FOUR_CHAR_CODE('dmcv'),

 keyDMConfigFlags = FOUR_CHAR_CODE('dmcf'),

 keyDMConfigReserved = FOUR_CHAR_CODE('dmcr'),

 keyDisplayID = FOUR_CHAR_CODE('dmid'),

 keyDisplayComponent = FOUR_CHAR_CODE('dmdc'),

 keyDisplayDevice = FOUR_CHAR_CODE('dmdd'),

 keyDisplayFlags = FOUR_CHAR_CODE('dmdf'),

 keyDisplayMode = FOUR_CHAR_CODE('dmdm'),

 keyDisplayModeReserved = FOUR_CHAR_CODE('dmmr'),

 keyDisplayReserved = FOUR_CHAR_CODE('dmdr'),

 keyDisplayMirroredId = FOUR_CHAR_CODE('dmmi'),

 keyDeviceFlags = FOUR_CHAR_CODE('dddf'),

 keyDeviceDepthMode = FOUR_CHAR_CODE('dddm'),

 keyDeviceRect = FOUR_CHAR_CODE('dddr'),
Display Manager Reference 89
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
 keyPixMapRect = FOUR_CHAR_CODE('dpdr'),

 keyPixMapHResolution = FOUR_CHAR_CODE('dphr'),

 keyPixMapVResolution = FOUR_CHAR_CODE('dpvr'),

 keyPixMapPixelType = FOUR_CHAR_CODE('dppt'),

 keyPixMapPixelSize = FOUR_CHAR_CODE('dpps'),

 keyPixMapCmpCount = FOUR_CHAR_CODE('dpcc'),

 keyPixMapCmpSize = FOUR_CHAR_CODE('dpcs'),

 keyPixMapAlignment = FOUR_CHAR_CODE('dppa'),

 keyPixMapResReserved = FOUR_CHAR_CODE('dprr'),

 keyPixMapReserved = FOUR_CHAR_CODE('dppr'),

 keyPixMapColorTableSeed = FOUR_CHAR_CODE('dpct'),

 keySummaryMenubar = FOUR_CHAR_CODE('dsmb'),

 keySummaryChanges = FOUR_CHAR_CODE('dsch'),

 keyDisplayOldConfig = FOUR_CHAR_CODE('dold'),

 keyDisplayNewConfig = FOUR_CHAR_CODE('dnew')

};

Constant descriptions

kAESystemConfigNotice
Keyword for the Event ID for Display Notice event.

kAEDisplayNotice
Keyword for a required parameter to a Display Notice
event.

keyDMConfigVersion

Keyword for the descriptor structure describing the version
number for this Display Notice event.

keyDMConfigFlags
Reserved for future expansion. Internal use only.

keyDMConfigReserved
Reserved for future expansion. Internal use only.

keyDisplayID
Keyword for the descriptor structure describing the display
ID for the video device.
90 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
keyDMDisplayComponent
Unless you are disconnecting display components, this is
for internal use only.

keyDisplayDevice

Keyword for the descriptor structure containing a handle to
the GDevice structure for the video device.

keyDisplayFlags
Reserved for future expansion. Internal use only.

keyDisplayMode Keyword for the descriptor structure containing the
sResource number from the video device for this display
mode.

keyDisplayModeReserved
Reserved for future expansion. Internal use only.

keyDisplayReserved
Reserved for future expansion. Internal use only.

keyDisplayMirroredID

Keyword for the display this device is mirrored to.
keyDeviceFlags Keyword for the descriptor structure describing the

attributes for the video device as maintained in the
gdFlags Þeld of the GDevice structure for the device.

keyDeviceDepthMode

Keyword for the descriptor structure describing the depth
mode for the video device; that is, the value of the gdMode
Þeld in the GDevice structure for the device.

keyDeviceRect Keyword for the descriptor structure describing the
boundary rectangle of the video device; that is, the value of
the gdRect Þeld in the GDevice structure for the device.

keyPixMapRect Keyword for the descriptor structure describing the
boundary rectangle into which QuickDraw can draw; that
is, the bounds Þeld in the PixMap structure for the
GDevice structure for the video device.

keyPixMapHResolution

Keyword for the descriptor structure describing the
horizontal resolution of the pixel image in the PixMap
structure for the GDevice structure for the video device.

keyPixMapVResolution
Display Manager Reference 91
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Keyword for the descriptor structure describing the vertical
resolution of the pixel image in the PixMap structure for
the GDevice structure for the video device.

keyPixMapPixelType

Keyword for the descriptor structure describing the storage
format for the pixel image on the device; that is, the value
of the pixelType Þeld in the PixMap structure for the
GDevice structure for the video device.

keyPixMapPixelSize

Keyword for the descriptor structure describing the pixel
depth for the device; that is, the value of the pixelSize
Þeld in the PixMap structure for the GDevice structure for
the video device.

keyPixMapCmpCount

Keyword for the descriptor structure containing the
number of components used to represent a color for a pixel;
that is, the value of the cmpCount Þeld in the PixMap
structure for the GDevice structure for the device.

keyPixMapCmpSize

Keyword for the descriptor structure describing the size in
bits of each component for a pixel; that is, the value of the
cmpSize Þeld in the PixMap structure for the GDevice
structure for the device.

keyPixMapAlignment
Reserved for future expansion. Internal use only.

keyPixMapResReserved
Reserved for future expansion. Internal use only.

keyPixMapReserved
Reserved for future expansion. Internal use only.

keyPixMapColorTableSeed

Keyword for the descriptor structure containing the value
of the ctSeed Þeld of the ColorTable structure for the
PixMap structure for the GDevice structure for the video
device.

keySummaryMenubar
Reserved for future expansion. Internal use only.
92 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
keySummaryChanges
Reserved for future expansion. Internal use only.

keyDisplayOldConfig

Keyword for the descriptor structure describing the video
deviceÕs previous state.

keyDisplayNewConfig

Keyword for the descriptor structure describing the video
deviceÕs new state.

Dependent NotiÞcation Constants

The function DMSendDependentNotification (page 76) contains the
parameter notifyClass which you can specify with a Dependent NotiÞcation
Constant.

enum {

kDependentNotifyClassShowCursor = FOUR_CHAR_CODE('shcr'),

kDependentNotifyClassDriverOverride =
FOUR_CHAR_CODE('ndrv'),

kDependentNotifyClassDisplayMgrOverride =
FOUR_CHAR_CODE('dmgr'),

kDependentNotifyClassProfileChanged =
FOUR_CHAR_CODE('prof'),

};

Constant descriptions

kDependentNotifyClassShowCursor

The Display Manager sends an extended notiÞcation when
a hidden cursor shows during a display unmirror.

kDependentNotifyClassDriverOverride

The Display Manager sends notiÞcation that a video driver
has been overridden with a newer revision.

kDependentNotifyClassDisplayMgrOverride

The Display Manager sends notiÞcation that it has been
upgraded with a newer revision.
Display Manager Reference 93
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
kDependentNotifyClassProfileChanged

The Display Manager sends notiÞcation when the proÞle
associated with a display changes.

Display/Device ID Constants

The Display Manager uses these values to help with the conÞguration of the
display.

enum {

 kDummyDeviceID = 0x00FF,

 kInvalidDisplayID = 0x0000,

 kFirstDisplayID = 0x0100

};

Constant descriptions

kDummyDeviceID This is the ID of the dummy display, used when the last
ÒrealÓ display is removed.

kInvalidDisplayID This is the ID of the invalid display, which has been
removed from the active display list.

kFirstDisplayID When your application sets this bit it asks the Display
Manager to return the ID of the Þrst display device on the
active display list.

Display Mode Flags

The structure DMDisplayModeListEntryRec (page 83) uses these values for
its displayModeFlags Þeld.

kDisplayModeListNotPreferredBit = 0,

kDisplayModeListNotPreferredMask = 1
94 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Constant descriptions

kDisplayModeListNotPreferredBit
Indicates there is a better timing available and that this
timing should be shown only if the user wants to see all
options.

kDisplayModeListNotPreferredMask
(1 << kDisplayModeListNotPreferredBit)

Display Version Values

These values supply information to the structure
DMDisplayModeListEntryRec (page 83).

enum {

 kDisplayTimingInfoVersionZero = 1,

 kDisplayTimingInfoReservedCountVersionZero = 16,

 kDisplayModeEntryVersionZero = 0,

 kDisplayModeEntryVersionOne = 1

};

Constant descriptions

kDisplayTimingInfoVersionZero
This relative information is always NULL in this version.

kDisplayTimingInfoReservedCountVersionZero

This relative information is always NULL in this version.
kDisplayModeEntryVersionZero

This relative information is always NULL in this version.
kDisplayModeEntryVersionOne

This relative information is always NULL in this version.

NotiÞcation Messages

Display Manager functions needed for dependency notiÞcation and event
processing use the following notiÞcation message selectors in extended
application-deÞned functions. DMRegisterExtendedNotifyProc (page 74)
Display Manager Reference 95
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
gets all these messages. Applications should update all information about the
display conÞgurations at this point.

enum {

 kDMNotifyInstalled = 1,

 kDMNotifyEvent = 2,

 kDMNotifyRemoved = 3,

 kDMNotifyPrep = 4,

 kDMNotifyExtendEvent = 5,

 kDMNotifyDependents = 6,

 kDMNotifySuspendConfigure = 7,

 kDMNotifyResumeConfigure = 8

};

Constant descriptions

kDMNotifyInstalled

The Display Manager provides this message during a
callback function to if your application has installed an
extended notiÞcation procedure pointer for the Þrst time.
The Display Manager provides this message in the
notifyData parameter of
MyExtendedNotificationProc (page 77).

kDMNotifyEvent

The Display Manager provides this message when an
Apple event update occurs, after a display conÞguration
change is made. This is the only time non-extended
notiÞcations are called.

kDMNotifyRemoved

The Display Manager provides this message when the
function DMRemoveExtendedNotifyProc (page 75) is
called on your function.

kDMNotifyPrep

Before passing kDMSNotifyRemoved , the Display
Manager provides this message to indicate that it is about
96 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
to begin to conÞgure. Calling
DMBeginConfigureDisplays (page 55) tells the Display
Manager to send this message.

kDMNotifyDependents

The Display Manager provides this message to
DMSendDependentNotification (page 76).

kDMNotifySuspendConfigure

The Display Manager passes this selector to notify your
upp that conÞguration is temporarily suspended. For
instance, if a video game makes a temporary change to the
display conÞguration, the game is expected to resume
conÞguration and restore video before allowing other
applications to access the screen.

kDMNotifyResumeConfigure

The Display Manager passes this selector to notify your
application when previously suspended conÞguration is
resumed. Your application can then replace windows and
icons, and change depth mode if necessary.

NotiÞcation Types

The function DMSendDependentNotification (page 76) uses these values in
the notifyType parameter.

enum {

 kFullNotify = 0,

 kFullDependencyNotify = 1

};

Constant descriptions

 kFullNotify

The Display Manager sets this bit to provide the major
Apple notiÞcation event.

 kFullDependencyNotify

The Display Manager sets this bit to provide notiÞcation
only to those applications that need to know about
Display Manager Reference 97
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
interrelated functionality. It is used for updating the user
interface.

Switch Flags

In its switchFlags parameter, the function DMCheckDisplayMode (page 47)
returns a pointer to a long integer that speciÞes ßags in two of its bits. The
following constants represent bits that are set to 1. These bits are set by the
Display Manager, not your application

enum {

 kNoSwitchConfirmBit = 0,

 kDepthNotAvailableBit = 1,

 kShowModeBit = 3,

 kModeNotResizeBit = 4,

 kNeverShowModeBit = 5

};

Constant descriptions

kNoSwitchConfirmBit

If the Display Manager sets this bit the display mode is
required to function correctly. Your application does not
need to provide conÞrmation if the user switches to this
mode.

kDepthNotAvailableBit
If the Display Manager sets this bit the pixel depth of the
speciÞed device is not available for the speciÞed display
mode.

kShowModeBit If the Display Manager sets this bit your application should
display this mode to the user, even though it may require
conÞrmation.

kModeNotResizeBit
If the Display Manager sets this bit you should not use this
mode to resize a display; this mode drives a different
connector in cards than in a built-in display.

kNeverShowModeBit
98 Display Manager Reference

 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
If the Display Manager sets this bit you should not show
the mode in the user interface.

Video Depth Mode Values

The functions DMSetDisplayMode (page 56) and DMCheckDisplayMode
(page 47) use these values in the depthMode parameter, to set or check pixel
depth. A depth mode speciÞed by the firstVidMode constant represents the
lowest supported pixel depthÑminimally, 1 bit per pixel. A depth mode
speciÞed by the secondVidMode constant represents the next highest
supported pixel depthÑoften, but not necessarily, 2 bits per pixel. If a video
device supports 4 bits per pixel instead of 2 as its next highest pixel depth, then
its driver uses the secondVidMode constant to represent 4 bits per pixel. In this
manner, the remaining constants signifying depth modes specify an ordered set
of increasingly higher pixel depths.

enum {

 firstVidMode = 128,

 secondVidMode = 129,

 thirdVidMode = 130,

 fourthVidMode = 131,

 fifthVidMode = 132,

 sixthVidMode = 133

};

Constant descriptions

firstVidMode Represents lowest supported pixel depth.
secondVidMode Represents next highest supported pixel depth.
thirdVidMode Represents next highest supported pixel depth.
fourthVidMode Represents next highest supported pixel depth.
fifthVidMode Represents next highest supported pixel depth.
sixthVidMode Represents next highest supported pixel depth.
Display Manager Reference 99
 Apple Computer, Inc. 11/1/99

C H A P T E R 3

Display Manager Reference
Result Codes

noErr 0 No error
paramErr Ð50 Invalid value passed in a

parameter
kDMGenErr Ð6220 Indeterminate error
kDMMirroringOnAlready Ð6221 Video mirroring is already

enabled
kDMWrongNumberOfDisplays Ð6222 Wrong number of displays
kDMMirroringBlocked Ð6223 Video blocked
KDMCantBlock Ð6224 Video mirroring already

enabled and canÕt be
blocked; use
DMUnMirrorDevice , then
call DMBlockMIrroring
again.

kDMMirroringNotOn Ð6225 Video mirroring is not
currently enabled.

kSysSWTooOld Ð6226 Some piece of system
software is too old for the
Display Manager to
operate.

kDMSWNotInitializedErr Ð6227 Required pieces of system
software are not initialized.

kDMDriverNotDisplayMgrAw

areErr

Ð6228 The video driver for the
display does not support
the Display Manager.

kDMDisplayNotFoundErr Ð6229 There are no GDevice
structures for displays in
the device list.

kDMDisplayAlreadyInstall

edErr

Ð6230 The display is already in
the device list and canÕt be
added.

Ð6231 No deviceÐmain display
cannot move

Ð6232 Item found
100 Display Manager Reference

 Apple Computer, Inc. 11/1/99

	Display Manager
	Chapter 1
	Introduction
	About the Display Manager
	Figure�1-1 The Monitors control panel
	When the User Removes a Display
	Figure�1-2 Default window repositioning when the user removes the right display
	Figure�1-3 Default window repositioning when the user removes the bottom display

	Display Manager Problems Moving Windows
	Figure�1-4 A problem with repositioning a nonstandard window
	Figure�1-5 Default repositioning of a fixed-size window
	Figure�1-6 Default window positioning when the user adds a display

	When the User Moves the Menu Bar
	Figure�1-7 Default window positioning when the user moves the menu bar

	Display Modes
	Figure�1-8 Lower and higher screen resolutions on a multiple-scan monitor

	Chapter 2
	Using the Display Manager
	Handling Events in Response to Display Manager Changes
	Handling the Display Notice Event as a High-Level Event
	Listing�2-1 Handling Apple events in the event loop
	Listing�2-2 Responding to the Display Notice event

	Handling the Display Notice Event Outside of an Event Loop
	Managing Windows In Response to the Display Notice Event
	Listing�2-3 Ensuring that a nonstandard window appears onscreen

	Determining the Characteristics of the Video Devices
	Setting Configurations and Display Modes for Video Devices

	Chapter 3
	Display Manager Reference
	Gestalt Constants
	Determining Display Manager Version
	Constant description

	Determining Display Manager Attributes
	Constant descriptions

	Functions
	Getting Video Devices
	.DMGetFirstScreenDevice
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMGetNextScreenDevice
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMGetNextMirroredDevice
	SPECIAL CONSIDERATIONS

	DMGetDisplayIDByGDevice
	SPECIAL CONSIDERATIONS

	DMGetGDeviceByDisplayID
	SPECIAL CONSIDERATIONS

	Determining Display Modes and Display Configurations
	DMCheckDisplayMode
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMQDIsMirroringCapable
	SPECIAL CONSIDERATIONS

	DMCanMirrorNow
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMIsMirroringOn
	SPECIAL CONSIDERATIONS

	DMGetNameByAVID
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMGetGraphicInfoByAVID
	SPECIAL CONSIDERATIONS

	DMGetAVPowerState
	SPECIAL CONSIDERATIONS

	DMSetAVPowerState
	SPECIAL CONSIDERATIONS

	DMGetDisplayMode
	SPECIAL CONSIDERATIONS

	DMSaveScreenPrefs
	DISCUSSION
	SPECIAL CONSIDERATIONS

	Changing Display Modes and Display Configurations
	DMBeginConfigureDisplays
	DISCUSSION

	DMSetDisplayMode
	SPECIAL CONSIDERATIONS

	DMMoveDisplay
	DISCUSSION

	DMDisableDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMEnableDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMSetMainDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMMirrorDevices
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMUnmirrorDevices
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMBlockMirroring
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMUnblockMirroring
	SPECIAL CONSIDERATIONS

	DMEndConfigureDisplays
	DISCUSSION
	SPECIAL CONSIDERATIONS

	Adding and Removing Video Devices From the Device List
	DMNewDisplay
	SPECIAL CONSIDERATIONS

	DMAddDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMRemoveDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMDisposeDisplay
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMNewDisplayModeList
	SPECIAL CONSIDERATIONS

	DMGetIndexedDisplayModeFromList
	SPECIAL CONSIDERATIONS

	DMDisposeList
	DISCUSSION
	SPECIAL CONSIDERATIONS

	Registering and Unregistering Your Program
	DMRegisterExtendedNotifyProc
	DISCUSSION
	SPECIAL CONSIDERATIONS

	DMRemoveExtendedNotifyProc
	SPECIAL CONSIDERATIONS

	DMSendDependentNotification
	DISCUSSION
	SPECIAL CONSIDERATIONS

	Application-Defined Functions
	MyExtendedNotificationProc
	DISCUSSION
	SPECIAL CONSIDERATIONS

	Data Types
	AVIDType
	AVLocationRec
	AVPowerStateRec
	DependentNotifyRec
	DisplayIDType
	DMDepthInfoBlockRec
	Field descriptions

	DMDepthInfoRec
	Field descriptions

	DMDisplayModeListEntryRec
	Field descriptions

	DMDisplayTimingInfoRec
	DMListType
	DMListIndexType
	DMMakeAndModelRec
	DMDisplayModeListIteratorProcPtr
	DMExtendedNotificationProcPtr

	Constants
	Active Device Only Values
	Constant descriptions

	Apple Event Notification Keywords
	Constant descriptions

	Dependent Notification Constants
	Constant descriptions

	Display/Device ID Constants
	Constant descriptions

	Display Mode Flags
	Constant descriptions

	Display Version Values
	Constant descriptions

	Notification Messages
	Constant descriptions

	Notification Types
	Constant descriptions

	Switch Flags
	Constant descriptions

	Video Depth Mode Values
	Constant descriptions

	Result Codes

