Technote 1041

Inside M acintosh: Files Errata

By Jim Luther
Revised by Jim Luther, Pete Gontier and Deric Horn
Apple Worldwide Developer Technical Support

This Technote discusses known errors and omissionsin | nside Macintosh: Files.

CONTENTS

Chapter 1 - Introduction to File Management

FSpExchangeFi les and PBExchangeFi les - What is exchanged
Additional Considerations for GetVInfo
Checking errors returned by GetVRefNum

Chapter 2 - File Manager

Pathname rules are not fully explained

Missing Row in Table 2-10

Description of default directory upon launch wrong

Master Directory Blocks drXTFISize and drCTFISi ze field descriptions are wrong
Map records in map nodes occupy 492 bytes (not 494 bytes)

Volume cache control bit in vebAtrb

Volume Control Blocks vebXTAIBks and vebCTAIBks field descriptions are wrong
dobrvSiz fields not used on 3.5" floppy disks

Clarification of ioFl1Attrib bitsinParamBlockRec, HParamBlockRec, and ClnfoPBRec
ioACUser is filler2 in someinterfacefiles

TheVolMountlInfoHeader data structure includes flags word

ioPosMode usage by PBRead and PBWr i te requests

Additional Considerations for GetVInfo

Parameter blocks have unnecessary ioCompletion field

Additional Special Considerations for PBHGetVInfo

FSpGetFInfo does not work with directories

FSpSetFInfo does not work with directories

FSpExchangeFi les and PBExchangeFi les - What is exchanged

HOpenDF, PBHOpenDF and theparamErr result code

Parameter blocks missing ioFVersNum field

Parameter blocks missing ioMisc field

PBGetCatlnfo ioFDirlndex usage rules

Parameter blocks missing ioNamePtr field

ioForeignPrivIDirlD iSLonglnt in PBGetForeignPrivs and PBSetForeignPrivs
Request execution order

Volume Parameter Variant offsets are off by 2

Detecting if avolume is formatted Macintosh File System (MES), Hierarchical File System
(HES), or HFS Plus

PBXGetVol Info

PBGetXCatlnfo

Chapter 3 - Standard File Package

e Activation Procedures Need to call TECal Text
e Default Standard File current directory
o Listing 3-15 does not set sfScript field

Chapter 4 - Alias Manager

® ResolveAlias updates minimal aliases
® usrCanceledErr should be userCanceledErr
® kARMSearchMore and memory availableto AliasFilterProc warning

Chapter 5 - Disk Initialization Manager

Extended Disk Initialization Package

Extended Disk Initialization User Interface
Extended Low-Level DisK Initialization Routines
DIXFormat

DIXZero

DIReformat

Formatting HES and HFS Plus Volumes

Chapter 9 - Desktop Manager

e PBDTGetComment requires ioDTReqCount beinitialized

Further References

Downloadables

Chapter 1 - Introduction to File Management
FSpExchangeFi les and PBExchangeFiles - What is exchanged
Page 1-53, FSpExchangeFiles

See thediscussion of thistopic in the corrections for Chapter 2.

Additional Considerations for GetVinfo
Page 1-56, GetVInfo

See thediscussion of thistopic in the corrections for Chapter 2.

Checking errorsreturned by GetVRefNum
Page 1-65, GetVRefNum

The refNum passed in as a parameter to GetVRefNum must be arefNum of an open file. If the file has
already been closed, GetvRefNum will return noErr, and an invalid vRefNum.

Back to top

Chapter 2 - File Manager

Pathname rules are not fully explained
Pages 2-27 through 2-28, Names and Pathnames
The following characteristics of Macintosh pathnames should be noted:

e A full pathname never begins with a colon, but must contain at least one colon.

e A partia pathname always begins with a colon separator except in the case where the file partial
pathname is asimple file or directory name.

e Singletrailing separator colonsin full or partial pathnames are ignored except in the case of full
pathnames to volumes.

e Infull pathnamesto volumes, the trailing separator colon is required.

e Consecutive separator colons can be used to ascend alevel from adirectory to its parent
directory. Two consecutive separator colons will ascend one level, three consecutive separator
colons will ascend two levels, and so on. Ascending can only occur from adirectory; not afile.

To summarize, if the first character of a pathname isacolon, or if the pathname contains no colons, it
must be a partial pathname; otherwise, itisafull pathname.

Missing Row in Table 2-10
Page 2-35, Creating File System Specification Records

Add the following row to Table 2-10:

Working directory Directory ||[Empty string || The target object is the directory specified by
reference number ID or NIL thedirectory ID indiriD

Description of default directory upon launch wrong
Page 2-36, Manipulating the Default Volume and Directory
Replace the last sentence in the first paragraph with the following:

"When an application starts up, its default directory is set to the directory in which the application
resides. Thereafter, the application can designate any directory asits default directory.”

Master Directory Blocks drXTFISize and drCTFISize field descriptions
are wrong

Page 2-62, Master Directory Blocks

Change the field descriptions to:

drxTFISize | Thesize (in bytes) of the extents overflow file.|
drCTFISize || The size (in bytes) of the catalog file.

Map recordsin map nodes occupy 492 bytes (not 494 bytes)
Page 2-69, Map Nodes

Replace the second and third paragraphs in the Map Nodes section with the following:

"A map node consists of a node descriptor and a single map record. The map record is a continuation of
the map record contained in the header node and occupies 492 bytes (512 bytesin the node, less 14 bytes
for the node descriptor, 2 bytes for each of the two record offsets at the end of the node, and rounded
down to amultiple of alongword). (Note: The HFS file system's B*-tree manager reads the bitmap
information alongword at atime.) A map node can therefore contain mapping information for an
additional 3936 nodes.

If a B*-tree contains more than 5984 nodes (that is, 2048 + 3936, enough for around 25,000 files), the
File Manager uses a second map node, the node number of which is stored in the ndFLink field of the
node descriptor of the first map node. If more map nodes are required, each additional map nodeis
similarly linked to the previous one."

Volume cache control bit in vcbAtrb
Page 2-79, Volume Control Blocks

Add the following bit definition to vcbAtrb for System 7.5 or later:

|Bit| Meaning |
Set if the volume's blocks should not be cached (System 7.5 and later only). This allows access
10 [t RAM disk volumes to bypass the File Manager cache. It has the same affect as setting the

noCache bit (bit 5 of ioPosMode) for all File Manager reads and writes to the volume.
Non-block aligned requests may still be accessed through the cache.

When a HFS volume is mounted with System 7.5 or later, the File Manager callsthe disk driver with a
"Return Drive Info" _Control call (csCode=23). Then if there are no errors, it looks at the low-byte
(bits 0-7) of csParam to seeif the drive typeis ramDiskType (16, $10) or romDiskType (17, $11) and if
S0, setsthe vebAtDontCache bit in the VCB's vebAtrb field. This allows accessto RAM or ROM disk
volumes to bypass the File Manager cache. It has the same affect as setting the noCache bit (bit 5 of
ioPosMode) for al File Manager reads and writes to the volume. Non-block aligned requests may till be
accessed through the cache.

Driver Note: Drivers should not directly modify the vebAtDontCache bit in vebAtrb. If the driver isfor
aRAM or ROM disk, it should support _Control csCode 23 and say that itisaRAM or ROM disk by
returning ramDiskType (16, $10) or romDiskType (17, $11) in the low-byte of csParam. Other disk
drivers should not set the vebAtDontCache bit because any future improvements made to the File
Manager cache will be lost on those drives.

Volume Control Blocks vcbXTAIBks and vcbCTAIBks field descriptions
are wrong

Page 2-81, VVolume Control Blocks

Change the field descriptions to:

vcbXTAIBks [Thesize (in allocation blocks) of the extents overflow file. |
vchCTAIBks || The size (in allocation blocks) of the catalog file.

dQDrvSiz fields not used on 3.5" floppy disks

Page 2-85, The Drive Queue

Note:

If the volumeis a3 1/2-inch floppy disk owned by the .Sony driver, the dQDrvSiz and dQDrvSiz2
fields are not valid. To get the size of a3 1/2-inch floppy disk owned by the .Sony driver, first try the
Return Format List (csCode= 6) Status call and if Return Format List failswith astatusErr (-18), use
DriveStatus and check the twoSideFmt field of the DrvSts record to determineif the disk has 800
blocks (twoSideFmt = 0) or 1600 blocks (twoSideFmt = -1). See the Technical Note "DV 17 - Sony

Driver : What Y our Sony Drives For Y ou" for more information concerning the Return Format List
Status call.

Clarification of ioF1Attrib bitsin ParamBlockRec, HParamBlockRec,
and ClnfoPBRec

Page 2-90, Basic File Manager Parameter Block, field descriptions for the fi leParam variant.
Page 2-96, HFS Parameter Block, field descriptions for the fi leParam variant.
Page 2-102, Catalog Information Parameter Blocks, field descriptions common to both variants.

For files, the bitsin ioF1Attrib have the following meanings.

Bit | M eaning

Set if fileislocked. Can be changed with the PBHSetFLock or PBHRstFLock functions.

Reserved.

Set if datafork is open.

Set if directory. (Always clear for files.)

|
I
|| Set if resource fork is open.
I
I
I

Reserved.

when the server sets the CopyProtect bit returned by afpGetFileDirParms.

Set if AppleShare server "copy-protects' the file. Set by the AppleShare foreign file system code

Set if file (either fork) is open.

For directories, the bitsin ioF1Attrib have the following meanings.

Bit | Meaning

when volume is shared.

Set if the directory islocked. Can be changed with the PBHSetFLock or PBHRstFLock functions

Reserved.

Set if the directory is within a shared area of the directory hierarchy.

Set if the directory is a share point that is mounted by some user.

Set if directory. (Always set for directories.)

Set if the directory is ashare point. Can be set or cleared by PBShare and PBUnshare.

Reserved.

~N|| O Gff B W N || O

Reserved.

ioACUser isfiller2 in some interface files

Page 2-100 and 2-103, Catalog Information Parameter Blocks
Page 2-191, PBGetCatInfo

Note:

TheioAcUser fidd isat offset 31 ($1F) in theCinfoPBRec parameter block. In most versions of the
Filesinterfaces (Files.h, Files.p, etc.), the field at offset 31 isfiller2. This problem isfixed in newer
versions of the Files interfaces.

The VolMountlnfoHeader data structure includes flags word
Page 2-110, Volume Mounting Information Records

TheVvolMountiInfoHeader data structure has been extended to include aflags word. The data structure is
now defined as:

struct VolMountInfoHeader

{
short length; /* length of location data (including self) */
VolumeType media; /* type of media */
short flags; /* high-byte reserved for Apple, */
/* low-byte reserved for file system
specific use */
/* Variable length data follows */
}:

In the flags word, bits 14 and 15 have been defined. All other bits in the high-byte of the flags word
should be left clear. Bitsin the low-byte of the flags word are file- system specific. For example, the
AppleShare foreign file system uses bit O to determine if server greeting messages should be shown or
suppressed.

Bit 15 in the flags word tells the file system that accepts a volumeMount request if user interaction can be
performed. If Bit 15 is set, the file system must not perform user interaction. If Bit 15 isclear, thefile
system may perform user interaction through the mechanism supplied by the File System Manager
(FSM).

Bit 14 in the flags word allows afile system to indicate to the caller of volumeMount that although the
VolumeMount request was successful, the VolMountInfo record passed needs to be updated. Programs
should ensure bit 14 of the flagsword is clear before calling VolumeMount and if bit 14 isreturned set,
the VolMountiInfo record should be updated by calling PBGetVolMountInfoSize and
PBGetVolMountiInfo. If VolumeMount is unsuccessful, bit 14 in the flags word should be ignored.

Observant readers will note that the Alias Manager needs to use bits 14 and 15 in the flags word to
interact with file systems when responding to aMatchAl ias function call.

ioPosMode usage by PBRead and PBWrite requests

Page 2-121, PBRead
Page 2-122, PBWrite

ThePBRead and PBWri te functions give programs much more control over read and write operations

than the high-level FSRead and FSWrite functions because PBRead and PBWrite alow accessto the
ioPosMode field.

Bits 0 and 1 of ioPosMode indicate where to start reading or writing datain the file. The values allowed
in ioPosMode to set bitsOand 1 are;

constant |value| description |
fsAtMark | 0 | ioPosOffset isignored. Operation starts at current mark.|
fsFromStart | 1 | ioPosOffset is an offset from the beginning of file. |
fsFromLEOF |:2 | ioPosOffset isan offset from the logical end-of-file. |
fsFromMark 3 [ioPosoffset isan offset from the current mark.

Bits4 and 5 of ioPosMode are cache usage hints passed on to the file system that handles requests to the
volumethefileison. Bit 4 isarequest that the data be cached (i.e., please cache this). Bit 5 isarequest
that the data not be cached (i.e., please do not cache this). Bits 4 and 5 are mutually exclusive - only one
should be set at atime. However, if neither is set, then the program has indicated that it doesn't careif

the datais cached or not. The values allowed in ioPosMode to set bits4 and 5 are:

constant [value | description |
| don't careif thisrequest is cached or not cached.|

Please, cache this request if possible. |
Please, I'd rather you didn't cache this request.

(no constant) I

pleaseCacheMask[lG

N

noCacheMask 3

Note:
A particular file system may choose to ignore one or both of the cache usage hint bits. File systems may

cache when you set the noCache bit, may not cache when you set the pleaseCache bit, may cache
everything, or may cache nothing. However, if a program leaves both bits clear, then file systems
which do respect these bits have no way of knowing if the data being read or written will be needed

again by your program.

Bit 6 (rdverify) of ioPosMode isarequest that reads (not writes) come directly from the source of the
data and be verified against the datain memory. So, if afile system gets aread request with rdverify
set, it should flush any cache it might have of that data and ask its data source (in the case of local
volumes, that would be the disk driver) for the data again. If the data sourceis adisk driver, then thefile
system should pass the rdverify request on to the disk driver and the disk driver should do the same
thing --flush any cache it has of that data (including any cache on the disk hardware) and ask its source
(the disk hardware) for the data again. The ideabehind rdverify isthat a program could write datato a
volume, then ask the file system to compare the data from the disk volume to the data in the write buffer.
The Finder uses this technique when copying files only when copying files to floppy disks.

WARNING:
There'sabug in current version of the HFS file system that affects rdverify requests. Instead of just

comparing the datafrom a disk to the datain memory, the HFS file system actually reads any full
512-byte blocksin the request from the source device into the buffer overwriting the origina data
instead of comparing it. In most cases, thisis exactly the same data that was just written to the device,
but if any data corruption occurs because of media or hardware failures, your origina write data buffer
could be corrupted. Y our code can work around this problem by first making a copy of the write data
buffer, then performing the rdverify operation against the copy instead of the origina data buffer, and

finally comparing the copy and original data buffersto ensure the data written is the same as the data
just read.

Bit 7 of ioPosMode isarequest for newLine mode. If bit 7 is set, then the high-byte of ioPosMode isthe
newLine character - even if that character isnull ($00). When bit 7 is set, the read should stop when any
one of these conditionsis met:

® ioReqCount bytes have been read.

e End-of-fileisreached.

® ThenewLine character has been read. If the newLine character isfound, it will bethelast
character put into ioBuffer and ioActCount will includeit.

When using newL ine mode, the HFS file system reads the file one block (512-bytes) at atimeinto afile
system cache block (not the user buffer pointed to by ioBuffer) and then copies the data into the user
buffer one byte at atime looking at each byte for the newLine character. Since afile read with newLine
mode is read one block at atime, newLine mode is about the slowest way you can read afile.

Additional Considerations for GetVIinfo
Page 2-137, GetVIinfo

The drvNum parameter, which specifies the volume, can be a drive number, volume reference number, 0
(the default volume), or aworking directory number. The volIName parameter must point to asStr27
buffer or must be set to NIL. The freeBytes parameter will not be accurate on volumes with over 2 GB
of free space.

Parameter blocks have unnecessary ioCompletion field
Page 2-142, PBOffLine

Page 2-219, PBGetVolMountiInfoSize

Page 2-220, PBGetVolMountinfo

Page 2-223, PBVolumeMount

The parameter blocks for these routines unnecessarily list the ioCompletion field asan input field.
These routines can only be executed synchronously, so the ioCompletion field is awaysignored.

Additional Special Considerations for PBHGetVInfo

Page 2-145, PBHGetVInfo

Add these " Specia Considerations':

If the value of ioVol Index is negative, the File Manager uses ioNamePtr and ioVRefNum in the
standard way to determine the volume. However, because PBHGetV Info returns the volume namein the
buffer whose address you passed in ioNamePtr, your input pathname will be modified. If you don't
want your input pathname modified, make a copy of it and pass the copy to PBHGetV Info.

The volume name returned by PBHGetVInfo isnot afull pathname to the volume because it does not
contain acolon.

For compatibility with older programs, some values returned by PBHGetV Info are not what is stored in
the volume's Volume Control Block (VCB). Specificaly:

e ioVNmAIBIks and ioVFrBIk are pinned to values which when multiplied by ioVAIBIKkSiz
aways are less than 2 Gigabytes.

e ioVNmAIBIks may not include the allocation blocks used by the catalog and extents overflow
files.
® $4244 isreturned in iovSigWord for both HFS and HFS Plus volumes.

For unpinned total and free byte counts, and for the real iovSigWord, use PBXGetVollnfo instead of
PBHGetVInfo.

FSpGetFInfo does not work with directories

Page 2-160, FSpGetFInfo

Y ou can use the FSpGetFInfo function to obtain the Finder information about afile, but not a directory.
FSpSetFInfo does not work with directories

Page 2-160, FSpSetFInfo

Y ou can use the FSpSetF Info function to set the Finder information about afile, but not a directory.
FSpExchangeFi les and PBExchangeFiles - What is exchanged

Page 2-165, FSpExchangeFi les
Page 2-206, PBExchangeFi les

TheFSpExchangeFi les function swaps the datain two files by changing the information in the
volume's catalog and, if either of the files are open, in the file control blocks. Specifically, the following
changes are made:

The following fieldsin the two files volume catalog entries are exchanged (as seen by PBGetCatInfo):

ioFIStBIk |[Thefirstalocation block of thedatafork |
ioFlLgLen |[Thelogical end-of-file of the data fork |
ioFIPyLen |Thephysical end-of-file of the datafork |
ioFIRStBIK [Thefirst allocation block of the resource fork|
ioFIRLgLen | Thelogical end-of-file of theresourcefork |
ioFIRPyLen | The physical end-of-file of the resource fork |
ioFIMdDat | The date and time of the last modification

Both the data and resource forks of the two files are exchanged.

Thefollowing fields in any open file control blocks to the two files are exchanged:

fcbF INum [Thefile ID number |
fcbDir 1D || The file's parent directory ID|
fcbCName || The file's name

Note:
Y our application will have to swap any open reference numbers to the two files because the file's name
and parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your
application should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
FSpExchangeFi les. Exclusive read/write access to both files will ensure that FSpExchangeFi les
doesn't affect another application because it prevents other applications from obtaining write access to
one or both of the files exchanged.

Note:

FSpExchangeFi les does not respect the file-locked attribute; it will perform the exchange even if one
or both of thefiles are locked. Obtaining exclusive read/write access to both files before calling
FSpExchangeFi les ensures that the files are unlocked because locked files cannot be opened with write
access.

HOpenDF, PBHOpenDF and the paramErr result code

Page 2-169, HOpenDF
Page 2-169, PBHOpenDF

If the HOpenDF or PBHOpenDF function fail with aparamerr result code (indicating that the HopenDF or
PBHOpenDF function is not available), you should retry your request passing the same parameters to
HOpen Or PBHOpen. For example:

error = HOpenDF(vRefNum, dirlD, FileName, permission, &refNum);
it (error == paramErr)
{

/* HOpenDF not supported, so try HOpen */

error = HOpen(vRefNum, dirlD, FfileName, permission, &refNum);

Parameter blocks missing ioFVersNum field

Page 2-183, PBHOpenDF
Page 2-184, PBHOpenRF
Page 2-185, PBHOpen
Page 2-187, PBHCreate
Page 2-189, PBHDelete
Page 2-194, PBHGetFInfo
Page 2-196, PBHSetFInfo
Page 2-197, PBHSetFLock
Page 2-198, PBHRstFLock
Page 2-199, PBHRename

The parameter blocks are missing the ioFversNum field. ioFVersNum should beinitialized to zero
because these callswill fall through to the now-obsolete Macintosh File System (MFS) code if the
volume accessed is an MFS volume.

Parameter blocks missing ioMisc field

Page 2-183, PHHOpenDF
Page 2-184, PHHOpenRF

Page 2-185, PBHOpen

The parameter blocks are missing the ioMisc field. ioMisc must be initialized to zero before calling
PHHOpenDF, PHHOpenRF, or PBHOpen. Failureto initialize ioMisc to zero on some Macintosh models
will cause the system to crash.

PBGetCatInfo ioFDirlIndex usage rules

Page 2-191, PBGetCatinfo

Change the description of PBGetCatInfo's ioFDirlIndex usage rulesto:
ThePBGetCatlInfo function selects afile or directory according to these rules:

e If thevalueof ioFDirlIndex is positive, ioNamePtr isnot used as an input parameter and
PBGetCatlInfo returns information about the file or directory whose directory index is
ioFDirIndex inthe directory specified by ioVRefNum and ioDir 1D (thiswill be the root
directory if ioVRefNum isavolume reference number or adrive number and ioDirlID is0). If
ioNamePtr isnot NIL, then it must point to astr31 buffer where the file or directory name will
be returned.

e If thevaueof ioFDirlIndex iSO, PBGetCatInfo returnsinformation about thefile or directory
specified by ioNamePtr in the directory specified by ioVRefNum and ioDirID (again, thiswill
be t;1e root directory if iovRefNum isavolume reference number or adrive number and ioDirID
is0).

e If thevalue of ioFDirlIndex IS negative, ioNamePtr isnot used as an input parameter and
PBGetCatInfo returns information about the directory specified by ioVRefNum and ioDrDirID
(again, thiswill betheroot directory if iovVRefNum isavolume reference number or adrive
number and ioDrDirID is0). If ioNamePtr isnot NIL, then it must point to aStr31 buffer
where the directory name will be returned.

Parameter blocks missing 1oNamePtr field
Page 2-219, PBGetVolMountiInfoSize
Page 2-220, PBGetVolMountinfo

Page 2-223,PBHGetLogInInfo

The parameter block is missing the ioNamePtr field. ioNamePtr and ioVRefNum are both used to
specify the volume.

ioForeignPrivIDirlID is LongInt in PBGetForeignPrivs and
PBSetForeignPrivs

Pages 2-233 and 2-234

The parameter blocks shows ioForeignPrivIDirlID asalnteger whenitisreally aLongint.

Request execution order
Page 2-239, new information after MyCompletionProc

The File Manager, when the File Sharing or AppleShare file server is active, will execute requestsin
arbitrary order. That meansthat if thereis arequest that depends on the completion of a previous request,
itisan error for your program to issue the second request until the completion of the first request. For
example, issuing awrite request and then issuing aread request for the same data isn't guaranteed to read

back what was written unless the read request isn't made until after the write request compl etes.

Request order can also change if acall resultsin adisk switch dialog to bring an offline volume back
online.

Volume Parameter Variant offsets are off by 2
Page 2-293, Assembly-L anguage Summary, Data Structures

The offsets for the Volume Parameter Variant are off by 2 starting at iovClpSiz because ioVAIBIkSiz
isalong, not aword. So, the offset for iovCIpSiz should be 52, the offset for ioA1BISt should be 56,
etc.

Detecting if a volume is formatted M acintosh File System (MFS),
Hierarchical File System (HFS), or HFS Plus

Three volume formats have been supported by the Mac OSfile system: MFS, HFS, and HFS Plus.
System software 7.0 through Mac OS 8.0 supported the MFS and HFS volume formats. Mac OS 8.1
and later support HFS and HFS Plus volumes. All three volume formats use the local File System ID,
zero (0). So how do you tell them apart? By the volume's signature word returned by PBX GetVolInfo
(or PBHGetVInfo if PBXGetVol Info isnot available) inthe iovSigword field. MFS volumes have a
signature of $02D7; HFS volumes have a signature of $4244; HFS Plus volumes have a signature of
$482B.

| mportant:
For compatibility with some programs, PBGetVInfo and PBHGetVInfo return $4244 in
iovSigWord for both HFS and HFS Plus volumes. Y ou should always use PBXGetVol Info if it
isavailable.

The following code can be used to get the volume signature and file system ID:

OSErr GetVSigWord(short vRefNum, short *vSigWord, short *fsid)

{
OSErr result;

long response;
XVolumeParam pb;

pb.1oVRefNum = vRefNum;

pb.ioXVersion = 0; // this XVolumeParam version (0)
pb.1oNamePtr = NULL;
pb.ioVollndex = O; // use i1oVRefNum only

// 1s PBXGetVollInfo available?
if ((Gestalt(gestaltFSAttr, &response) == noErr) &&
((response & (1L << gestaltFSSupports2TBVols)) = 0))

// Yes, so use it
result = PBXGetVol InfoSync(&pb);
}

else
{
// No, fall back on PBHGetVInfo
result = PBHGetVInfoSync((HParmBIkPtr)&pb);
}
// return the volume®s signature word and FSID
*vSigWord = pb.ioVSigWord;
*fsid = pb.10oVFSID;
// return the File Manager®s result

return (result);

}

PBXGetVol Info

Y ou can use the PBXGetVol Info function to get detailed information about a volume. It can report

volume size information for volumes up to 2 terabytes.

pascal OSErr PBXGetVolInfoSync(XVolumeParamPtr paramBlock);
pascal OSErr PBXGetVolInfoAsync(XVolumeParamPtr paramBlock);

paramBlock

A pointer to an extended volume parameter block.

XVolumeParam | | | |
-> |[iocompletion |[ProcPtr [Pointer to acompletion routine |
< |iorResult ||oSErr |[Resuilt code of the function |
<-> | ioNamePtr | StringPtr | Pointer to the volume's name. |
<> fovRefiun | shor ol reereca e
-> ioXVersion unsigned long X/erﬁ'gr:lcg)?(VolumeParam

> iovol Index short {/rc])(ljﬁ)r(n léssed for indexing through al mounted

< [iovcrpate [[unsignediong |[Date and time of initialization. |
< || iovLsMod [[unsigned fong |[Date and time of last modification. |
<- [iovatrb [[short [[Volume attributes. |
<- [iovNmFIs [[unsigned short |[Number of filesin the root directory. |
< [iovBitmMap [[unsigned short |[First block of the volume bitmap. |
= |iovAIIocPtr | unsigned short || Block where the next new file starts. |
< [iovnmalBIks [[unsigned short [Number of allocation blocks: |
< [iovalBiksiz [unsignediong [[Size of allocation blocks: |
<- [iovcipsiz [[unsignediong |[Default clump size. |
< [ioAlBISE [[unsigned short |[First biock in the volume block map. |
<- [iovnxtcniD |lunsigned long |[Next unused catalog node ID. |
<- [iovFrBIK |[unsigned short || Number of unused allocation blocks. |
< [iovsigwora [[unsigned short |[Volume signature. |
< |iovbrvinfo |[short [Drive number |
<- [iovDrefNum | short |[Driver reference number. |
- - EENT o \ljgli srr}:giem ID for the file system handling this
<- [iovBKUp [[unsigned Tong |[Date and time of Iast backup. |
<- || iovseqnum ||short ||Used internally. |
< [iovwrent [[unsigned Tong [V olume write count. |

<- |[iovFilCnt lunsigned long ||Number of files on the volume. |
< [iovbircnt [lunsignedlong |Number of directories on the volume. |
<- [iovFndrinfo ||[8] long [Used by the Finder. |
<- | iovTotalBytes |[Unsignedwide | Total number of bytes on the volume. |
<- ioVFreeBytes [Unsignedwide | Number of free bytes on the volume.

ThePBXGetVol Info function returns information about the specified volume. It is similar to the
PBHGetV Info function described in Inside Macintosh: Files except that it returns additional volume space
information in 64-bit integers and does not modify the information copied from the volume's Volume
Control Block (VCB). Systems that support PBXGetVol Info will have the
gestaltFSSupports2TBVols hit set in the response returned by the gestal tFSAttr Gestalt selector.

Assembly-L anguage I nfor mation

The trap macro and routine selector for PBXGetVol Info are:

Trap macro ||Selector |
_HFSDispatch [|$0012

Result Codes

noErr |[0 || Successful completion, no error occurred|
nsvErr [&endash35|(No such volume |
paramerr ||&endash50 |No default volume

PBGetXCatlnfo

Y ou can use the PBGetXCatInfo function to get the short name (MS-DOS format name) and ProDOS
information for files and directories.

pascal OSErr PBGetXCatlnfoSync(XCInfoPBPtr paramBlock);
pascal OSErr PBGetXCatlnfoAsync(XCInfoPBPtr paramBlock);

paramBlock Contains a pointer to a XCInfoPBRec.

XCInfoPBRec | | | |
Contains a pointer to PBGetXCatInfoAsync's

-> i i . :
ioCompletion ProcPtr completion routine.

<- l[ioresult losErr [PBGetxXcatinfo placesitsresult codeinto thisfield. |
i _ Contains a pointer to the object name, or nil when

-> ioNamePtr StringPtr

ioDirlD specifies adirectory that's the object.
-> || iovRefNum [[short [[Contains avolume specification. |

Contains a pointer to a Pascal string buffer
(minimum 13 bytes). PBGetXCatInfo placesthe

<> ioShortNamePtr "StringPtr

short name into the field referred to by this
parameter. ioShortNamePtr cannot be nil.

: - PBGetXCatlInfo placesthe ProDOS file typeinto
< -oPIITy g short thisfield.

= § OPDAUXTYpe long Fr?tgetﬁfscﬁgl [g.fo places the ProDOS auxiliary type

-> ioDirlD long Contains adirectory ID.

PBGetXCatInfo returns the short name (MS-DOS format name) and ProDOS file/auxiliary type
information for files and directories on volumes that support this function. Volumes that support
PBGetXCatInfo will have the bHasShortName bit set in the vMAttrib field returned by
PBHGetVolParms.

For more information about short names and ProDOS file/auxiliary types, see Inside AppleTalk, second
edition, Chapter 13 AppleTalk Filing Protocol, and the Apple Il File Type Notes.

Assembly-L anguage I nformation

The trap macro and routine selector for PBXGetVol Info are:

Trap macro |Selector |
_HFSDispatch || $003A

Result Codes

noErr |0 |[Successful completion, no error occurred|
nsvErr [&endash35|(No such volume |
fnfErr ||&endash43|[File not found |
paramErr ||&endash50|(No default volume |
dirNFErr ||-120 Directory not found

Back to top

Chapter 3 - Standard File Package

Activation Procedures Need to call TECalText

Pages 3-30 to 3-31, Writing an Activation Procedure
Page 3-59, MyActivateProc

Pages 3-30 to 3-31 and 3-59 discuss activation of additional user interface elementsin custom standard
filedialogs. The parts of that discussion that refer to having multiple edit-text items omit mention that it
is necessary for the activation procedureto call TECal Text, Set myTEHandle~ .crOnly to 1, and call
TESetSelect to work properly, asin the code snippet below:

IF (activating) THEN

BEGIN
{Note DialogPeek not WindowPeek used}
dlgPeek := DialogPeek(theDialog);

{Access TEHandle shared in common by all the editText }
{ items iIn the dialog. This field current at activate time.}
myTEHandle:= dlgPeek”.textH;

{Must redo lineStarts on activation}
TECalText(myTEHandle) ;

{Must set crOnly on activation}
myTEHandle™ _.crOnly := 1;

{Ensure proper setting of selection}
myTECharLength := myTEHandle”™ _telLength;
selectionLen := myTEHandle™.selEnd - myTEHandle”™ .selStart
+ 1;
IT (myTECharLength > selectionLen) THEN
TESetSelect(0,myTECharLength,myTEHandle);
END;

Default Standard File current directory
Page 3-31, Setting the Current Directory
Replace the two bullet points with the following three bullet points:

e |f the user launched your application directly (perhaps by double-clicking itsicon in the
Finder), the default directory is the directory in which your application islocated.

e |f the user launched your application indirectly (perhaps by double-clicking one of your
application's document icons) and your application is high-level event aware, your application
is passed the list of documents to open or print in a kAEOpenDocument Of KAEPrintDocument
Apple event; thereisno Finder information (AppParmHandle will be NIL) and the default
directory isthe directory in which your application is located.

e If the user launched your application indirectly (perhaps by double-clicking one of your
application's document icons) and your application is not high-level event aware, your
application is passed Finder information and the default directory isthe directory of the last
document in listed in the Finder information. The Finder information is the data referenced by
AppParmHandle and accessed by the Segment Loader routines CountAppFi les,
GetAppFiles, ClrAppFiles, and GetAppParms.

Listing 3-15 does not set sfScript field
Page 3-33, Listing 3-15, Setting the current directory
The code listing does not set the sfscript field of the StandardFi leReply record when returning the

pseudo-item sfHookChangeSelection. This can cause Standard File to aways set the selection to the
last filein the directory. Adding the line:

myReplyPtr~.sfScript := smSystemScript;

beforetheline:

MyDIgHook := sfHookChangeSelection;

will fix the problem.
Back to top

Chapter 4 - Alias Manager

ResolveAlias updates minimal aliases
Page 4-19
At the bottom of page 4-19, it is stated that ResolveAl ias never updates aminimal alias. Thisis not true.

ResolveAlias calsMatchAlias to resolvethe dlias and if MatchAlias returns with needsUpdate Set
to true, then ResolveAlias updatesthe alias by calling UpdateAlias (which makesit afull aias) and
returns withwasChanged set to true. If you require that minimal aliases stay minimal aliases, you can
either call MatchAlias (which does not update aliases),or you can create a copy of the alias record with
HandToHand, pass the copy of the alias record to ResolveAlias, and then dispose of the (possibly
updated) copy of the alias record.

usrCanceledErr should be userCanceledErr
Page 4-20, ResolveAlias 4-23, MatchAlias

Just atypo... thetitle of thissaysit all.

kARMSearchMore and memory available to AliasFilterProc warning

Page 4-23, MatchAlias
Page 4-25, MyMatchAliasFilter

Add thiswarning:

WARNING:

A call to MatchAl ias using the kARMSearchMore rule will result in arecursive search using
PBGetCatlInfo if the volume being searched doesn't support PBCatSearch. Y our application should
insure there is a reasonable amount of stack space available before calling MatchAl ias using the
kARMSearchMore rule, and if aAliasFilterProc isused, the AliasFi lterProc should not use large
amounts of stack space. Y ou can eliminate most stack usage in your AliasFilterProc by passing a
structure containing any large data structures the AliasFi I terProc might need in the yourDataPtr
parameter to MatchAlias.

Back to top

I _ . . r ™~ _1_ 0 __ 2 _ 01 _ _ ' _ _ ANAm_

Ccnapter o - DISK InitialiZation ivianager

Extended Disk Initialization Package

An extended Disk Initiaization Package is available with System Software 7.5, with Macintosh PC
Exchange 2.0 or later, and with the File System Manager. The extended Disk Initialization Package
includes three functions not found in Chapter 5 of Inside Macintosh: Files.

The existing application program interface to the Disk Initialization Package as described in Inside
Macintosh: Fileswill continue to be supported by the enhanced Disk Initialization Package. Applications
which wish to initialize only Macintosh disks will continue to work and will require no changes.
However, if an application wants to initialize non-Macintosh disks, it must use the new extended
DIXFormat and DIXZero calls.

The Extended Disk Initialization User I nterface

The Finder and the Standard File Package both handle disk-inserted events for uninitialized disks by
presenting adisk initialization dialog box asking the user whether the disk should be gjected or initialized.
Y our application too can easily call aDisk Initiaization Manager routine that generates such a dialog box
when the user inserts an invalid disk. Figure 5-1 illustrates the dialog box:

Figure 5-1 Thedisk initialization dialog box

The disk initialization dialog box allows the user to name and specify the format of the new disk. The
appearance of the disk initialization dialog box changes to reflect changing conditions. For example, the
icon changes to show which drive contains the disk. The Format menu items change to show what disk
formats can be used with the disk and disk drive combination. Also, the text of the dialog box changes
according to what iswrong with the disk. The text might read "This disk's format cannot be read by this
drive" if the Disk Initialization Manager detects that the disk drive cannot use a disk's format (for
example, if adouble-sided disk isinserted in asingle-sided disk drive, or ahigh-density disk formatted
using GCR instead of MFM isinserted in an Apple SuperDrive).

Regardless of theinitial appearance of the disk initialization dialog box, it disappearsif the user clicks
Eject or Cancel. If, however, the user decidesto initialize the disk, the text in the dialog box changes to
warn the user that initialization erases any previous data on the disk, asillustrated in Figure 5-2.

Figure 5-2 Thedisk initialization warning

Fig5-2

If the user selects continue, the Disk Initialization Manager attemptsto initidizeit. If an error occurs and
theinitialization fails, an aert box notifies the user, and the disk is gjected.

The extended Disk Initialization Manager aso provides a mechanism for using the standard interface to
reinitialize (reformat) disks that are aready formatted. (This mechanism is useful, for example, when the
user wantsto reinitialize a disk with adifferent disk format.) The Finder takes advantage of this
mechanism with its Erase Disk command, illustrated in Figure 5-3. After the user selects the erase
operation from this dialog box, the reinitialization begins immediately, without further warnings. If
desired, your application can use this same standard interface to allow users to reinitialize mounted disks
(other than the startup volume). Y our application can customize the text to be displayed in such adialog
box. Note that only afew utility applications actually need to provide users with this capability.

Figure 5-3 The Reformat dialog box

Fig5-3

If you are writing a utility program such as a disk-copying application, you might wish to initialize new
disksor reinitiaize valid disks without displaying the standard disk initialization dialog box. For
example, your application might allow usersto initialize multiple disks without having to respond to the
standard dialog box each time. The Disk Initialization Manager provides low-level routines that allow you
to do so. Unless you are writing a utility program of this type, you don't need to use these routines.

Extended Low-Level Disk Initialization Routines

Extended programmatic interfaces to media formatting and volume initiali zation functions are required
such that applications may specify additional information for the overall formatting operation. This
information corresponds to the file system type and disk size information presented in the "Format" menu
inthe disk initialization dialog box described above. The extended programmatic interface adds three new
functions to the Disk Initialization Package: DIxFormat and DIxZero (for extended DIFormat and
D1Zero), and DIReformat.

WARNING:

Applications should insure that the extended Disk Initialization Package functions are present before
making the DIXFormat, DIXZero, or DIReformat calls. Thisis done by calling Gestalt with the
gestal tFSAttr selector. The extended Disk Initialization Package functionsis available if the Gestal t
function returns aresult of noErr and thegestal tHasExtendedDiskInitbit (bit 6) issetinthe
response parameter. Due to the nature of older versions of the Disk Initialization Package, making the
extended requests when they are not available may cause a system crash.

The following code illustrates how you use Gestal t to determineif the extended Disk Initialization
Package functions are available.

Boolean HasExtendedDIFunctions(void)

{
long response;
if (Gestalt(gestaltFSAttr, &response) == noErr)
return ((response & (1L << gestaltHasExtendedDisklnit)) != 0);
else
return (false);
}
DIXFormat

TheDIXFormat function performs the same function as the DIFormat function except that drive size may
be specified.

pascal OSErr DIXFormat(short drvNum, Boolean fmtFlag,
unsigned long fmtArg, unsigned long *actSize);

ldrvNum [|Contains the driver number of the drive to format. |

| FmtFlag || Contains a boolean value which specifies the meaning of the fmtArg parameter. |

If fmtFlag istrue, fmtArg specifiesthe actual value to be passed to the disk driver in the
csParanm field of the parameter block when the "format" _Control cal ismadeto initidize
the disk media. (The valueis an index into the size list. For an explanation of appropriate
values for this parameter, see the Technical Note "What Y our Sony Drives For You".)

If fmtFlag isfalse, fmtArg specifies the desired size of the mediain number of 512-byte
blocks. The disk driver is caled to get possible sizes and the valuesin an to attempt to
match the requested size. If more than one sizelist entry exists for the same size, the first
entry in thelist returned by the driver that best matches the fmtArg parameter will be used.
For more information about the size list, see the Technical Note "What Y our Sony Drives
For You". If the specified Sizeis larger than the largest Size in the Size list returned by the
driver, then the largest size will be used and that sizeisreturned in actSize. If the
specified sizeis smaller than the smallest size in the size list returned by the driver, then the
smallest size will be used and that size isreturned in actSize. For aspecified valuethat is
in between and without an exact match, the value closest to and smaller than the requested
Sizeisused.

fmtArg

Contains a pointer to an unsigned long. Upon completion of a successful formatting
actSize ||operation, DIXFormat placesthe actual size of the formatted mediain number of 512-byte
blocksinto thefield referred to by this parameter.

The formatting of file systems requiring specific media formats should be done by specifying those
mediaformats explicitly and not by counting on disk size alone. Foreign file systems with specific media
requirements should use the driver specific information in the size list or should make appropriate driver
_Status calsfor additional information when called upon to "evaluate the size list".

AsinDIFormat, DIXFormat does not unmount the volume. Y ou have to unmount the volume before
issuing this call if necessary. If the volume has not been unmounted, then DIXFormat will return
volOnLinErr &ror.

Result Codes

noErr [© No error |
volOonLinErr || & endash55 [Volumeisonline |
lastDSKErr . . . FirstDskErr [|&endash64...-84 [Range of low-level disk errorg

DIXZero

TheDIXxzero function performs the same function as the D1zero function except that the file system,
format result, volume type, volume size and extended formatting information may be specified.

pascal OSErr DIXZero(short drvNum, ConstStr255Param volName,
short fsid, short mediaStatus,
short volTypeSelector, unsigned long volSize,
void *extendedInfoPtr);

drvNum | Contains the driver number of the drive to initiaize. |

volName || Contains a pointer to a Pascal string which specifies the name of the volume. |
Containsthe ID of the file system whose format should be written to the disk.

fsid Thefile system ID can be obtained using the File System Manager GetFSinfo
function.

Contains aflag to indicate the status of the disk media. Its valueis the result code
returned from the D1Verify function. If mediaStatus is hon-zero, then the disk
contains bad sectors and needs to be spared. If the file system specified doesn't
mediaStatus support bad block sparing, the Disk Initialization Package will just return this
value as the function result. If the file system supports bad block sparing, then
the Disk Initialization Package will gather the defect list and passit to the file
system.

Contains the volume type selector if the foreign file system supports more than
one volume type.

volTypeSelector

Contains the size in 512-byte blocks of the drive specified by drvNum. Thisisthe
sizereturned in the actSize field by DIXFormat--the amount of space usable by
volSize afile system on the specified drive asit is currently formatted. If the specified
size doesn't match with the current disk format size, DI1Xzero will return
diClVolSizeMismatchErr

Contains a pointer to the foreign file system's extended formatting information,
or nil.

fsParams

WARNING:

Early versions of the DIxXzero code calsthe Dialog Manager with anil DialogPtr when the

value passed in the mediaStatus parameter is not noErr. Thiswill almost aways cause a
system crash.

Y ou must check to ensure DIXZero supports bad block sparing before passing anything except
noErr asthemediaStatus parameter. The following function, DIXZeroSupportsBadBlocks,

shows how to make sure DIXZero supports bad block sparing.
Boolean DIXZeroSupportsBadBlocks(void)

{
enum
{
gestaltBugFixAttrsThree = "bugx”,
gestaltDIXZeroSupportsBadBlocks = 9
}:
long response;
if (Gestalt(gestaltBugFixAttrsThree , &response) == noErr)
return ((response & (1L << gestaltDIXZeroSupportsBadBlocks))
EE
else
return (false);
}

AsinDIZero, DIXZero does not unmount the volume but it will, however, mount the volume if the
operation is successful. Y ou have to unmount the volume before issuing thiscal if necessary. If the
volume is mounted when D1Zero or DIXZero iscaled, then avolonLinErr error will be returned.

Result Codes

NGELT 0 [No error |
dicIVolSizeMisnatchErr 124 gggclfled volume size doesn't match with formatted disk
ioErr | &endashSG| |/O error |
parameErr |[-50 || Drive number specified is bad |
volOnLinErr |[-55 [Volumeis aready online |
nsDrvErr ||-56 [No such drive |
firstDskErr. .. IastDskErrl -84...-64 | Range of low-level disk errors |
memFul IErr -108 Not enough memory

DIReformat
TheDIReformat function reformats disk volume.

pascal OSErr DIReformat(short drvNum, short fsid,
ConstStr255Param volName,
ConstStr255Param msgText);

drvNum ||Contains the driver number of the drive to format.

|| Containsthe ID of the file system whose format should be written to the disk. Thefile

fsid system ID can be obtained using the File System Manager GetFSInfo function. (Use
$0000 for the Macintosh HFS volume format.)

volName || Contains a pointer to a Pascal string which specifies the name of the volume. |

Contains apointer to a Pascal string which specifies the explanatory text to be displayed in
MSgTeXt lthe disk initialization dialog box.

In the past, reformatting disk was accomplished by calling the D1BadMount function with the high word
of theevtMessage parameter set to noErr and the explanatory text was set with the ParamText function.
TheDIReformat function providesthe caller the ability to provide the explanatory text, the default file
system ID, and the default name for the reformatted disk.

Note:
The volume in the drive specified by drvNum must be mounted when calling DIReformat.

Result Codes

By [0 [No error |
diCINoMessageTextErr | 28 | msgText was not provided |
ioErr || & endash36 ||1/O error |
paramErr [[-50 || Drive number specified is bad |
nsDrvErr [-56 ||No such drive |
FirstDskErr. .. lastDSkErr | -84...-64 | Range of low-level disk errors|
memFul IErr -108 Not enough memory

Formatting HFS and HFS Plus Volumes

The Disk Initialization Package provides several ways aprogram can initialize adisk drive for use by a
file system. If the drive is not a mounted file system volume, a program can call D1BadMount and let the
Disk Initialization Package provide the user interface with the disk initialization dialog box (see The
Extended Disk Initialization User Interface). If the drive is aready formatted and mounted by thefile
system, a program can call DIReformat and let the Disk Initiaization Package provide the user interface
with the Reformat dialog box. If a program wantsto initialize or reinitialize a volume's data structures
with no user interface, if can use either Di1zero or DIXZero. DIZero aways formats the disk as an HFS
volume. If you want to initialize adisk as an HFS Plus volume, or initialize adisk for use by aforeign
file system, you must useDIXZero. Therest of topic describes how to initialize adisk asan HFS or
HFS Plus volume using DIXZero.

The fsid parameter tellsDIXzero which file system to use to initialize a volume. For both HFS and
HFS Plus volumes, pass $0000 (the file system ID of the local file system) asthe fsid parameter.

ThevolTypeSelector parameter isused to select between different volume types supported by asingle
file system. Pass 1 asthe vol TypeSelector parameter to create an HFS volume; pass 2 asthe
volTypeSelector parameter to create an HFS Plus volume.

TheextendedInfoPtr parameter isa pointer to an optional structure that adjusts how the volume is
formatted. When formatting an HFS volume, this should point to a structure of type HFSDefaults; for

an HFS Plus volume, this should point to a structure of type HFSPlusDefaults. Passing NIL asthe
extended InfoPtr parameter will cause the file system's default values to be used.

HFSDefaults

struct HFSDefaults {
char sigWord[2]; /* signature word */

long abSize; /* allocation block size in bytes */
long clpSize; /* clump size in bytes */

long nxFreeFN; /* next free file number */

long btCIpSize; /* B-Tree clump size in bytes */
short rsrvil; /* reserved */

short rsrv2; /* reserved */

short rsrv3; /* reserved */

}:
typedef struct HFSDefaults HFSDefaults;

TheHFsDefaults structure allows you to change severa of the parameters used when formatting an
HFS volume. For each of thefields, avaue of zero or aninvaid vaue indicates that the default value
should be used.

Set sigWord to the bytes $4244 ('BD").

Theabsize field sets the volume's allocation block size. This value must be a multiple of 512 bytes. The
default and minimum value is the smallest multiple of 512 bytes greater than or equal to the volume size
(in bytes) divided by 65535 ($FFFF).

TheclpSize field sets the volume's default clump size. This value is used when alocating space to
extend afile; the allocated space is rounded up to a multiple of the clump size if sufficient free spaceis
available. The clump size should be a multiple of the alocation block size. The default value is 4 times
the alocation block sizeif the allocation block sizeis 256K or less, or equal to the alocation block size
for larger alocation blocks.

ThenxFreeFN field setsthe drNxtCNID field of the MDB. It isthe starting value for catalog node IDs
allocated to files and folders on that volume. Thisvaueis actualy an unsigned 32-bit integer. The default
and minimum valueis fsUsrcNID (16), the minimum valid catalog node ID for user files and folders.

ThebtClpSize field sets both the clump size and initia space alocated to the catalog and extents
B-trees. This clump size should be a multiple of the alocation block size. The default value varies by
volume size, but istypically 1/128 of the volume size.

HFSPlusDefaults

enum {
kHFSPlusDefaultsVersion = 1

}:

struct HFSPlusDefaults {
Ulntl6é version; /* version of this structure */
uintle flags; /* currently undefined; pass zero */
Ulnt32 blockSize; /* allocation block size in bytes */
UInt32 rsrcClumpSize; /* clump size for resource forks */
Ulnt32 dataClumpSize; /* clump size for data forks */
UInt32 nextFreeFilelD; /* next free file number */

Ulnt32 catalogClumpSize; /* clump size for catalog B-tree */

Ulnt32 catalogNodeSize; /* node size for catalog B-tree */
Ulnt32 extentsClumpSize; /* clump size for extents B-tree */
UInt32 extentsNodeSize; /* node size for extents B-tree */
Ulnt32 attributesClumpSize; /* clump size for attributes B-tree */
UInt32 attributesNodeSize; /* node size for attributes B-tree */
Ulnt32 allocationClumpSize; /* clump size for allocation bitmap
file */
}:
typedef struct HFSPlusDefaults HFSPlusDefaults;

TheHFsPlusDefaul ts structure allows you to change severa of the parameters used when formatting a
Sequoiavolume. For each of thefields, avalue of zero or an invalid value indicates that the default value
should be used.

The version field indicates the version of the HFSPIusDefaul ts structure you are passing. The current
version iskHFSPlusDefaultsVersion. If the value passed islarger than that recognized by the current
implementation, parameErr will be returned. Implementations will typically support older versions of
HFSPlusDefaults.

Theflagsfield is currently reserved. If you pass a value other than zero, paramerr will be returned.

Theblocksize field sets the volume's allocation block size. Valid values are powers of two, and at |east
512. The default value varies with the volumes size & endash 512 bytes for volumes 256 MB or smaller,

up to 4K B for volumes over 1 GB. If the volume's device supports the GetMedialnfo control call, then
the default size will be greater than or equal to the device's block size.

Note:
Future versions of the HFS Plus file system will be performance-optimized for 4KB allocation blocks,
so the default should be used unless there's areally good reason to overrideit.

The rsrcClumpSize and dataClumpSize fields set the default values for clump sizes for resource and
data forks, respectively. The value must be a multiple of the allocation block size. For both, the default
value isfour times the alocation block size.

ThenextFreeFilelD field setsthefirst catalog node ID to be assigned to newly created files and
folders. The default and minimum value is fsUsrcNID (16), the minimum valid catalog node ID for user
filesand folders.

The catalogClumpSize and extentsClumpSize fields set the clump size and initially allocated space
for the catalog and extents B-trees, respectively. For both, the default value varies by volume size, but is
typicaly 1/128 of the volume size.

The catalogNodeSize and extentsNodeSize fields set the size of the B-tree nodes for the catalog and
extents B-trees, respectively. Valid values are powers of two, up to and including 32,768 (32 K). The
minimum and default Size for catalogNodeSize is4 KB. The minimum size for extentsNodeSize IS
512; the default is 1024.

Some Sample Code

This sample shows how to use DIReformat to reinitialize adisk using the standard interface. When
DIReformat isavailable, this code can be used instead of the code shown in Listing 5-2 on page 5-11 of
Inside Macintosh: Files.

// Reinitializing a valid disk using the standard interface

OSErr ReformatDisk(short drvNum, ConstStr255Param msgText)
{

OSErr result;

Str255 volName;

short vRefNum;

long freeBytes;

DILoad();
// Get the current volume name
result = GetVIinfo(drvNum, volName, &vRefNum, &freeBytes);
if (result == noErr)
{
// Reformat using FSID $0000 (HFS or HFS Plus)
result = DIReformat(drvNum, 0x0000, volName, msgText);
}
DIUnload();
return (result);

This sample shows how to use DIXZero to reinitialize adisk without using the standard interface. It uses
DIXZero S0 that the volume can beinitialized with HFS Plusif possible.

// Reinitializing a valid disk without using the standard interface
OSErr ReinitializeDisk(short drvNum, Boolean tryHFSPIus)
{

OSErr result;

Str255 volName;

short vRefNum;

long freeBytes;

short mediaStatus;

UInt32 actSize;

DILoad();
// Get the current volume name
result = GetVIinfo(drvNum, volName, &vRefNum, &freeBytes);
it (result == noErr)
{
// Unmount the volume
result = UnmountVol (NULL, vRefNum);
if (result == noErr)
{
// Format the disk. (nhote: the actual disk size
result = DIXFormat(drvNum, false, 0, &actSize);
if (result == noErr)
{
// Verify the disk and use the result as the mediaStatus
mediaStatus = (short)DIVerify(drvNum);

// Should we try formatting HFS Plus?
if (tryHFSPlus)
{
// Yes, initialize using HFS Plus
// (fsid = 0; volTypeSelector = 2)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, O0x0000, mediaStatus, 2,
actSize, NULL);

}

// 1T HFS Plus wasn"t requested or the attempt with HFS Plus

// failed because the disk was too small (paramErr)

if ("tryHFSPlus || (result == paramErr))

{
// Initialize using HFS (fsid = 0; volTypeSelector = 1)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, Ox0000, mediaStatus, 1,

actSize, NULL);
}
}
}

}
DIUnload();

return (result);

}

This sample shows how to use DIxZero toinitialize adisk without using the standard interface. It uses
DIXZero S0 that the volume can beinitialized with HFS Plusif possible.

// Initializing an uninitialized disk without using the
// standard interface
OSErr InitializeDisk(short drvNum, ConstStr255Param volName,
Boolean tryHFSPlus)
{
OSErr result;
short mediaStatus;
Ulnt32 actSize;

DILoad();

// Format the disk

result = DIXFormat(drvNum, false, 0, &actSize);

if (result == noErr)

{
// Verify the disk and use the result as the mediaStatus
mediaStatus = (short)DIVerify(drvNum);

// Should we try formatting HFS Plus?
if (tryHFSPlus)
{
// Yes, initialize using HFS Plus
// (fsid = 0; volTypeSelector = 2)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.
result = DIXZero(drvNum, volName, Ox0000, mediaStatus, 2,
actSize, NULL);

}

// 1T HFS Plus wasn"t requested or the attempt with HFS Plus
// failed because the disk was too small (paramErr)
if ("tryHFSPlus || (result == paramErr))
{
// Initialize using HFS (fsid = 0; volTypeSelector = 1)
// The extendedInfoPtr is NULL so the default volume
// characteristics are used.

result = DIXZero(drvNum, volName, Ox0000, mediaStatus, 1,
actSize, NULL);

}

}
DiUnload();
return (result);

}

Back to top

Chapter 9 - Desktop M anager

PBDTGetComment requires ioDTReqCount be initialized

The ioDTReqCount field of the DTPBRec parameter block has been fully supported with the introduction
of Mac OS 8. Caling routines should initialize ioDTReqCount to the size of the buffer specified in
ioDTBuffer. Leaving ioDTReqCount uninitialized can produce inconsistent results.

Back to top

Further References

e Inside Macintosh: Files
e Guideto the File System Manager

Back to top

Downloadables

B

Acrobat version of this Note (147K).

Back to top

Change History

Overview
e Originally written in February 1995, as Technote 1041 -- Inside Macintosh: Files Errata by Jim Luther.
e In June 1995, this Technote was updated by Jim Luther to document more known errors and omissions.

e In February 1996, this Technote was updated by Jm Luther and Pete Gontier to document more known
errors and omissions.

e In February 1999, this Technote was reformated and updated by Jim Luther to include additional HFS
Plus information.

Specific

Chapter 1 - Introduction to File Management

FSpExchangeFi les and PBExchangeFi les-- What is exchanged, February 1995
Additional Considerations for GetVIinfo, February 1995
GetVRefNum returns noErr with closed refNum, October 1999

Chapter 2 - File Manager

Pathname rules are not fully explained, February 1995

Missing Row in Table 2-10, February 1995

Description of default directory upon launch wrong, February 1996

Master Directory Blocks drXTFISize and drCTFISize field descriptions are wrong, February 1995
Map records in map nodes occupy 492 bytes (not 494 bytes), February 1995

V olume cache control bit in vebAtrb, June 1995

Volume Control Blocks vebXTAIBks and vebCTAIBks field descriptions are wrong,

dQDrvsSiz fields not used on 3.5" floppy disks, June 1995 February 1996

Clarification of ioF1Attrib bitsinParamBlockRec, HParamBlockRec, and CInfoPBRec, June 1995
i0ACUser isfiller2 in some interface files, June 1995

TheVvolMountInfoHeader data structure includes flags word, February 1995

ioPosMode usage by PBRead and PBWri te requests, June 1995

Additional Considerationsfor GetVIinfo, February 1995

Additional Specia Considerations for PBHGetVInfo, February 1995

FSpGetF Info does not work with directories, February 1995

FSpSetFInfo does not work with directories, February 1995

HOpenDF, PBHOpenDF and theparamErr result code, February 1995

Parameter blocks missing ioFVersNum field, February 1995

Parameter blocks missing ioMisc field, February 1995

PBGetCatlInfo ioFDirIndex usage rules, February 1995

Parameter blocks missing ioNamePtr field, February 1995

ioForeignPrivIDirlID iSLonglnt in PBGetForeignPrivs and PBSetForeignPrivs, February 1995
Request execution order, February 1995

Volume Parameter Variant offsets are off by 2, February 1995

Detecting if avolume isformatted Macintosh File System (MFS), Hierarchical File System (HFS), or
HFS Plus, February 1999

PBXGetVol Info, February 1999

PBGetXCatlInfo, February 1999

Chapter 3 - Standard File Package

Activation Procedures Need to call TECalText, February 1995
Default Standard File current directory, February 1995
Listing 3-15 does not set sfScript field, February 1995

Chapter 4 - Alias Manager

ResolveAlias updates minimal aliases, February 1995
usrCanceledErr should be userCanceledErr, February 1995
kARMSearchMore and memory availableto AliasFi lterProc warning, February 1995

Chapter 5 - Disk Initialization Manager

Extended Disk Initialization Package, February 1995

Extended Disk Initialization User Interface, February 1999
Extended Low-Level Disk Initialization Routines, February 1999
DIXFormat, February 1999

DIXZero, February 1999

DIReformat, February 1999

Formatting HFS and HFS Plus Volumes, February 1999

Chapter 9 - Desktop Manager

® PBDTGetComment requires ioDTReqCount beinitialized, October 1999

Acknowledgments

Thanksto the usual suspects.

To contact us, please use the Contact Us page.
Updated: 1-February-99

Technotes | Contents
Previous Technote | Next Technote

