

ð

2

T E C H N O T E :
Inside Macintosh: Files
Errata

By Jim Luther
Revised by Jim Luther & Pete Gontier
gurgle@apple.com

Apple Developer Technical Support (DTS)

This Technote discusses known errors and omissions in Inside Macintosh: Files.

Topics 2

■ Volume Control Blocks vcbXTAlBks and vcbCTAlBks field descriptions are
wrong, February 1996

■ Description of default directory upon launch wrong, February 1996

■ Volume cache control bit in vcbAtrb, June 1995

■ ioACUser is filler2 in some interface files, June 1995

■ dQDrvSiz fields not used on 3.5” floppy disks, June 1995

■ Clarification of ioFlAttrib bits in ParamBlockRec, HParamBlockRec, and
CInfoPBRec, June 1995

■ ioPosMode usage by PBRead and PBWrite requests, June 1995

■ Warning for DIXZero and the mediaStatus parameter, June 1995

■ Pathname rules are not fully explained, February 1995
1 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

■ Missing Row in Table 2-10, February 1995

■ Master Directory Blocks drXTFlSize and drCTFlSize field descriptions are
wrong, February 1995

■ Map records in map nodes occupy 492 bytes (not 494 bytes), February 1995

■ The VolMountInfoHeader data structure includes flags word, February 1995

■ Additional Considerations for GetVInfo, February 1995

■ Additional Special Considerations for PBHGetVInfo, February 1995

■ FSpGetFInfo does not work with directories, February 1995

■ FSpSetFInfo does not work with directories, February 1995

■ FSpExchangeFiles and PBExchangeFiles— What is exchanged, February 1995

■ HOpenDF, PBHOpenDF and the paramErr result code, February 1995

■ Parameter blocks missing ioFVersNum field, February 1995

■ Parameter blocks missing ioMisc field, February 1995

■ PBGetCatInfo ioFDirIndex usage rules, February 1995

■ Parameter blocks missing ioNamePtr field, February 1995

■ toForeignPrivIDirID is LongInt in PBGetForeignPrivs and PBSetForeignPrivs,
February 1995

■ Request execution order, February 1995

■ Volume Parameter Variant offsets are off by 2, February 1995

■ Default Standard File current directory, February 1995

■ Activation Procedures Need to call TECalText, February 1995

■ Listing 3-15 does not set sfScript field, February 1995

■ ResolveAlias updates minimal aliases, February 1995

■ usrCanceledErr should be userCanceledErr, February 1995

■ kARMSearchMore and memory available to AliasFilterProc warning,
February 1995

■ Extended Disk Initialization Package, February 1995
2 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Chapter 1 - Introduction to File Management 2

FSpExchangeFiles and PBExchangeFiles— What is exchanged 2

Page 1-53, FSpExchangeFiles

See the discussion of this topic in the corrections for Chapter 2.

Additional Considerations for GetVInfo 2

Page 1-56, GetVInfo

See the discussion of this topic in the corrections for Chapter 2.

Chapter 2 - File Manager 2

Pathname rules are not fully explained 2

Pages 2-27 through 2-28, Names and Pathnames

The following characteristics of Macintosh pathnames should be noted:

■ A full pathname never begins with a colon, but must contain at least one
colon.

■ A partial pathname always begins with a colon separator except in the case
where the file partial pathname is a simple file or directory name.

■ Single trailing separator colons in full or partial pathnames are ignored
except in the case of full pathnames to volumes.

■ In full pathnames to volumes, the trailing separator colon is required.

■ Consecutive separator colons can be used to ascend a level from a directory
to its parent directory. Two consecutive separator colons will ascend one
level, three consecutive separator colons will ascend two levels, and so on.
Ascending can only occur from a directory; not a file.
Chapter 1 - Introduction to File Management 3 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

To summarize, if the first character of a pathname is a colon, or if the pathname
contains no colons, it must be a partial pathname; otherwise, it is a full
pathname.

Missing Row in Table 2-10 2

Page 2-35, Creating File System Specification Records

Add the following row to Table 2-10:

Description of default directory upon launch wrong 2

Page 2-36, Manipulating the Default Volume and Directory

Replace the last sentence in the first paragraph with the following:

“When an application starts up, its default directory is set to the directory in
which the application resides. Thereafter, the application can designate any
directory as its default directory.”

Master Directory Blocks drXTFlSize and drCTFlSize field descriptions
are wrong 2

Page 2-62, Master Directory Blocks

Change the field descriptions to:

drXTFlSize The size (in bytes) of the extents overflow file.

drCTFlSize The size (in bytes) of the catalog file.

Map records in map nodes occupy 492 bytes (not 494 bytes) 2

Page 2-69, Map Nodes

Replace the second and third paragraphs in the Map Nodes section with the
following:

“A map node consists of a node descriptor and a single map record. The map
record is a continuation of the map record contained in the header node and

Working directory
reference number

Directory ID Empty string
or NIL

The target object is the
directory specified by
the directory ID in
dirID
4 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

occupies 492 bytes (512 bytes in the node, less 14 bytes for the node descriptor,
2 bytes for each of the two record offsets at the end of the node, and rounded
down to a multiple of a longword). (Note: The HFS file system’s B*-tree
manager reads the bitmap information a longword at a time.) A map node can
therefore contain mapping information for an additional 3936 nodes.

If a B*-tree contains more than 5984 nodes (that is, 2048 + 3936, enough for
around 25,000 files), the File Manager uses a second map node, the node
number of which is stored in the ndFLink field of the node descriptor of the
first map node. If more map nodes are required, each additional map node is
similarly linked to the previous one.”

Volume cache control bit in vcbAtrb 2

Page 2-79, Volume Control Blocks

Add the following bit definition to vcbAtrb for System 7.5 or later:

Bit Meaning

10 Set if the volume’s blocks should not be cached
(System 7.5 and later only). This allows access to
RAM disk volumes to bypass the File Manager
cache. It has the same affect as setting the
noCache bit (bit 5 of ioPosMode) for all File
Manager reads and writes to the volume.
Non-block aligned requests may still be accessed
through the cache.

Volume Control Blocks vcbXTAlBks and vcbCTAlBks field
descriptions are wrong 2

Page 2-81, Volume Control Blocks

Change the field descriptions to:

vcbXTAlBks The size (in allocation blocks) of the extents overflow file.

vcbCTAlBks The size (in allocation blocks) of the catalog file.

dQDrvSiz fields not used on 3.5” floppy disks 2

Page 2-85, The Drive Queue
Chapter 2 - File Manager 5 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Note
If the volume is a 3 1/2-inch floppy disk owned by the
.Sony driver, the dQDrvSiz and dQDrvSiz2 fields are not
valid. To get the size of a 3 1/2-inch floppy disk owned by
the .Sony driver, first try the Return Format List (csCode=
6) Status call and if Return Format List fails with a
statusErr (-18), use DriveStatus and check the twoSideFmt
field of the DrvSts record to determine if the disk has 800
blocks (twoSideFmt = 0) or 1600 blocks (twoSideFmt = -1).
See the Technical Note “DV 17 - Sony Driver : What Your
Sony Drives For You” for more information concerning the
Return Format List Status call. ◆

Clarification of ioFlAttrib bits in ParamBlockRec, HParamBlockRec, and
CInfoPBRec 2

Page 2-90, Basic File Manager Parameter Block, field descriptions for the
fileParam variant.
Page 2-96, HFS Parameter Block, field descriptions for the fileParam variant.
Page 2-102, Catalog Information Parameter Blocks, field descriptions common
to both variants.

For files, the bits in ioFlAttrib have the following meanings:

Bit Meaning

0 Set if file is locked. Can be changed with the
PBHSetFLock or PBHRstFLock functions.

1 Reserved.

2 Set if resource fork is open.

3 Set if data fork is open.

4 Set if directory. (Always clear for files.)

5 Reserved.

6 Set if AppleShare server "copy-protects" the file.
Set by the AppleShare foreign file system code
when the server sets the CopyProtect bit
returned by afpGetFileDirParms.

7 Set if file (either fork) is open.
6 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

For directories, the bits in ioFlAttrib have the following meanings:

Bit Meaning

0 Set if the directory is locked. Can be changed
with the PBHSetFLock or PBHRstFLock functions
when volume is shared.

1 Reserved

2 Set if the directory is within a shared area of the
directory hierarchy.

3 Set if the directory is a share point that is
mounted by some user.

4 Set if directory. (Always set for directories.)

5 Set if the directory is a share point. Can be set or
cleared by PBShare and PBUnshare.

6-7 Reserved

The VolMountInfoHeader data structure includes flags word 2

Page 2-110, Volume Mounting Information Records

The VolMountInfoHeader data structure has been extended to include a flags
word. The data structure is now defined as:

struct VolMountInfoHeader
{

short length; /* length of location data (including self) */
VolumeType media; /* type of media */
short flags; /* high-byte reserved for Apple, */

/* low-byte reserved for file system specific
use */

/* Variable length data follows */
};

In the flags word, bits 14 and 15 have been defined. All other bits in the
high-byte of the flags word should be left clear. Bits in the low-byte of the
flags word are file system specific. For, example, the AppleShare foreign file
system uses bit 0 to determine if server greeting messages should be shown or
suppressed.
Chapter 2 - File Manager 7 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Bit 15 in the flags word tells the file system that accepts a VolumeMount request
if user interaction can be performed. If Bit 15 is set, the file system must not
perform user interaction. If Bit 15 is clear, the file system may perform user
interaction through the mechanism supplied by the File System Manager (FSM).

Bit 14 in the flags word allows a file system to indicate to the caller of
VolumeMount that although the VolumeMount request was successful, the
VolMountInfo record passed needs to be updated. Programs should ensure bit
14 of the flags word is clear before calling VolumeMount and if bit 14 is returned
set, the VolMountInfo record should be updated by calling
PBGetVolMountInfoSize and PBGetVolMountInfo. If VolumeMount is unsuccessful,
bit 14 in the flags word should be ignored.

Observant readers will note that the Alias Manager needs to use bits 14 and 15
in the flags word to interact with file systems when responding to a MatchAlias
function call.

ioPosMode usage by PBRead and PBWrite requests 2

Page 2-121, PBRead
Page 2-122, PBWrite

The PBRead and PBWrite functions give programs much more control over read
and write operations than the high-level FSRead and FSWrite functions because
PBRead and PBWrite allow access to the ioPosMode field.

Bits 0 and 1 of ioPosMode indicate where to start reading or writing data in the
file. The values allowed in ioPosMode to set bits 0 and 1 are:

Bits 4 and 5 of ioPosMode are cache usage hints passed on to the file system that
handles requests to the volume the file is on. Bit 4 is a request that the data be
cached (i.e., please cache this). Bit 5 is a request that the data not be cached (i.e.,

constant value description

fsAtMark 0 ioPosOffset is ignored. Operation starts
at current mark.

fsFromStart 1 ioPosOffset is an offset from the
beginning of file.

fsFromLEOF 2 ioPosOffset is an offset from the logical
end-of-file.

fsFromMark 3 ioPosOffset is an offset from the current
mark.
8 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

please do not cache this). Bits 4 and 5 are mutually exclusive - only one should
be set at a time. However, if neither is set, then the program has indicated that
it doesn't care if the data is cached or not. The values allowed in ioPosMode to
set bits 4 and 5 are:

Note
A particular file system may choose to ignore one or both
of the cache usage hint bits. File systems may cache when
you set bit 5, may not cache when you set the bit 4, may
cache everything, or may cache nothing. However, if a
program leaves both bits clear, then file systems which do
respect these bits have no way of knowing if the data being
read or written will be needed again by your program. ◆

Bit 6 (rdVerify) of ioPosMode is a request that reads (not writes) come directly
from the source of the data and be verified against the data in memory. So, if a
file system gets a read request with rdVerify set, it should flush any cache it
might have of that data and ask its data source (in the case of local volumes,
that would be the disk driver) for the data again. If the data source is a disk
driver, then the file system should pass the rdVerify request on to the disk
driver and the disk driver should do the same thing - flush any cache it has of
that data (including any cache on the disk hardware) and ask its source (the
disk hardware) for the data again. The idea behind rdVerify is that a program
could write data to a volume, then ask the file system to compare the data from
the disk volume to the data in the write buffer. The Finder uses this technique
when copying files only when copying files to floppy disks.

value description

0 I don’t care if this request is cached or not
cached.

16 Please, cache this request if possible.
32 Please, I’d rather you didn’t cache this

request.
Chapter 2 - File Manager 9 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

▲ W A R N I N G

There’s a bug in current version of the HFS file system that
affects rdVerify requests. Instead of just comparing the
data from a disk to the data in memory, the HFS file
system actually reads any full 512-byte blocks in the
request from the source device into the buffer overwriting
the original data instead of comparing it. In most cases,
this is exactly the same data that was just written to the
device, but if any data corruption occurs because of media
or hardware failures, your original write data buffer could
be corrupted. Your code can work-around this problem by
first making a copy of the write data buffer, then
performing the rdVerify operation against the copy
instead of the original data buffer, and finally comparing
the copy and original data buffers to ensure the data
written is the same as the data just read. ▲

Bit 7 of ioPosMode is a request for newLine mode. If bit 7 is set, then the
high-byte of ioPosMode is the newLine character - even if that character is null
($00). When bit 7 is set, the read should stop when any one of these conditions
is met:

■ ioReqCount bytes have been read.

■ End-of-file is reached.

■ The newLine character has been read. If the newLine character is found, it
will be the last character put into ioBuffer and ioActCount will include it.

When using newLine mode, the HFS file system reads the file one block
(512-bytes) at a time into a file system cache block (not the user buffer pointed
to by ioBuffer) and then copies the data into the user buffer one byte at a
time looking at each byte for the newLine character. Since a file read with
newLine mode is read one block at a time, newLine mode is about the slowest
way you can read a file.

Additional Considerations for GetVInfo 2

Page 2-137, GetVInfo

The drvNum parameter, which specifies the volume, can be a drive number,
volume reference number, 0 (the default volume), or a working directory
number. The volName parameter must point to a Str27 buffer or must be set to
10 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

NIL. The freeBytes parameter will not be accurate on volumes with over 2 GB
of free space.

Additional Special Considerations for PBHGetVInfo 2

Page 2-145, PBHGetVInfo

SPECIAL CONSIDERATIONS

Add the following:

If the value of ioVolIndex is negative, the File Manager uses ioNamePtr and
ioVRefNum in the standard way to determine the volume. However, because
PBHGetVInfo returns the volume name in the buffer whose address you passed
in ioNamePtr, your input pathname will be modified. If you don’t want your
input pathname modified, make a copy of it and pass the copy to PBHGetVInfo.

The volume name returned by PBHGetVInfo is not a full pathname to the
volume because it does not contain a colon.

FSpGetFInfo does not work with directories 2

Page 2-160, FSpGetFInfo

You can use the FSpGetFInfo function to obtain the Finder information about a
file, but not a directory.

FSpSetFInfo does not work with directories 2

Page 2-160, FSpSetFInfo

You can use the FSpSetFInfo function to set the Finder information about a file,
but not a directory.

FSpExchangeFiles and PBExchangeFiles— What is exchanged 2

Page 2-165, FSpExchangeFiles
Page 2-206, PBExchangeFiles

The FSpExchangeFiles function swaps the data in two files by changing the
information in the volume’s catalog and, if either of the files are open, in the file
control blocks. Specifically, the following changes are made.
Chapter 2 - File Manager 11 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

The following fields in the two files’ volume catalog enteries are exchanged (as
seen by PBGetCatInfo):

ioFlStBlk The first allocation block of the data fork

ioFlLgLen The logical end-of-file of the data fork

ioFlPyLen The physical end-of-file of the data fork

ioFlRStBlk The first allocation block of the resource fork

ioFlRLgLen The logical end-of-file of the resource fork

ioFlRPyLen The physical end-of-file of the resource fork

ioFlMdDat The date and time of the last modification

Both the data and resource forks of the two files are exchanged.

The following fields in any open file control blocks to the two files are
exchanged:

fcbFlNum The file ID number

fcbDirID The file’s parent directory ID

fcbCName The file’s name

Note
Your application will have to swap any open reference
numbers to the two files because the file’s name and parent
directory ID are exchanged in the file control blocks. ◆

Because other programs may have access paths open to one or both of the files
exchanged, your application should have exclusive read/write access
permission (fsRdWrPerm) to both files before calling FSpExchangeFiles. Exclusive
read/write access to both files will ensure that FSpExchangeFiles doesn’t affect
another application because it prevents other applications from obtaining write
access to one or both of the files exchanged.

Note
FSpExchangeFiles does not respect the file locked attribute;
it will perform the exchange even if one or both of the files
are locked. Obtaining exclusive read/write access to both
files before calling FSpExchangeFiles ensures that the files
are unlocked because locked files cannot be opened with
write access. ◆
12 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

HOpenDF, PBHOpenDF and the paramErr result code 2

Page 2-169, HOpenDF
Page 2-169, PBHOpenDF

If the HOpenDF or PBHOpenDF function fail with a paramErr result code (indicating
that the HOpenDF or PBHOpenDF function is not available), you should retry your
request passing the same parameters to HOpen or PBHOpen. For example:

error = HOpenDF(vRefNum, dirID, fileName, permission, &refNum);
if (error == paramErr)

/* HOpenDF not supported, so try HOpen */
error = HOpen(vRefNum, dirID, fileName, permission, &refNum);

Parameter blocks missing ioFVersNum field 2

Page 2-183, PBHOpenDF
Page 2-184, PBHOpenRF
Page 2-185, PBHOpen
Page 2-187, PBHCreate
Page 2-189, PBHDelete
Page 2-194, PBHGetFInfo
Page 2-196, PBHSetFInfo
Page 2-197, PBHSetFLock
Page 2-198, PBHRstFLock
Page 2-199, PBHRename

The parameter blocks are missing the ioFVersNum field. ioFVersNum should be
initialized to zero because these calls will fall through to the now-obsolete
Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Parameter blocks missing ioMisc field 2

Page 2-183, PHHOpenDF
Page 2-184, PHHOpenRF
Page 2-185, PBHOpen

The parameter blocks are missing the ioMisc field. ioMisc must be initialized to
zero before calling PHHOpenDF, PHHOpenRF, or PBHOpen. Failure to initialize ioMisc
to zero on some Macintosh models will cause the system to crash.
Chapter 2 - File Manager 13 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

PBGetCatInfo ioFDirIndex usage rules 2

Page 2-191, PBGetCatInfo

Change the description of PBGetCatInfo’s ioFDirIndex usage rules to:

The PBGetCatInfo function selects a file or directory according to these rules:

■ If the value of ioFDirIndex is positive, ioNamePtr is not used as an input
parameter and PBGetCatInfo returns information about the file or directory
whose directory index is ioFDirIndex in the directory specified by ioVRefNum
and ioDirID (this will be the root directory if ioVRefNum is a volume reference
number or a drive number and ioDirID is 0). If ioNamePtr is not NIL, then it
must point to a Str31 buffer where the file or directory name will be
returned.

■ If the value of ioFDirIndex is 0, PBGetCatInfo returns information about the
file or directory specified by ioNamePtr in the directory specified by
ioVRefNum and ioDirID (again, this will be the root directory if ioVRefNum is a
volume reference number or a drive number and ioDirID is 0).

■ If the value of ioFDirIndex is negative, ioNamePtr is not used as an input
parameter and PBGetCatInfo returns information about the directory
specified by ioVRefNum and ioDrDirID (again, this will be the root directory if
ioVRefNum is a volume reference number or a drive number and ioDrDirID is
0). If ioNamePtr is not NIL, then it must point to a Str31 buffer where the
directory name will be returned.

ioACUser is filler2 in some interface files 2

Page 2-100 and 2-103, Catalog Information Parameter Blocks
Page 2-191, PBGetCatInfo

Note
The ioACUser field is at offset 31 ($1F) in the CInfoPBRec
parameter block. In most versions of the Files interfaces
(Files.h, Files.p, etc.), the field at offset 31 is filler2. This
problem is fixed in newer versions of the Files interfaces. ◆

Parameter blocks missing ioNamePtr field 2

Page 2-219, PBGetVolMountInfoSize
Page 2-220, PBGetVolMountInfo
Page 2-223, PBHGetLogInInfo
14 of 28 Chapter 2 - File Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

The parameter block is missing the ioNamePtr field. ioNamePtr and ioVRefNum
are both used to specify the volume.

ioForeignPrivIDirID is LongInt in PBGetForeignPrivs and
PBSetForeignPrivs 2

Pages 2-233 and 2-234

The parameter blocks shows ioForeignPrivIDirID as a Integer when it is really
a LongInt.

Request execution order 2

Page 2-239, new information after MyCompletionProc

The File Manager, when the File Sharing or AppleShare file server is active, will
execute requests in arbitrary order. That means that if there is a request that
depends on the completion of a previous request, it is an error for your
program to issue the second request until the completion of the first request.
For example, issuing a write request and then issuing a read request for the
same data isn’t guaranteed to read back what was written unless the read
request isn’t made until after the write request completes.

Request order can also change if a call results in a disk switch dialog to bring
an offline volume back online.

Volume Parameter Variant offsets are off by 2 2

Page 2-293, Assembly-Language Summary, Data Structures

The offsets for the Volume Parameter Variant are off by 2 starting at ioVClpSiz
because ioVAlBlkSiz is a long, not a word. So, the offset for ioVClpSiz should be
52, the offset for ioAlBlSt should be 56, etc.

Chapter 3 - Standard File Package 2

Default Standard File current directory 2

Page 3-31, Setting the Current Directory
Chapter 3 - Standard File Package 15 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Replace the two bullet points with the following three bullet points:

■ If the user launched your application directly (perhaps by double-clicking its
icon in the Finder), the default directory is the directory in which your
application is located.

■ If the user launched your application indirectly (perhaps by double-clicking
one of your application's document icons) and your application is high-level
event aware, your application is passed the list of documents to open or
print in a kAEOpenDocument or kAEPrintDocument Apple event; there is no
Finder information (AppParmHandle will be NIL) and the default directory is
the directory in which your application is located.

■ If the user launched your application indirectly (perhaps by double-clicking
one of your application's document icons) and your application is not
high-level event aware, your application is passed Finder information and
the default directory is the directory of the last document in listed in the
Finder information. The Finder information is the data referenced by
AppParmHandle and accessed by the Segment Loader routines CountAppFiles,
GetAppFiles, ClrAppFiles, and GetAppParms.

Activation Procedures Need to call TECalText 2

Pages 3-30 to 3-31, Writing an Activation Procedure
Page 3-59, MyActivateProc

Pages 3-30 to 3-31 and 3-59 discuss activation of additional user interface
elements in custom standard file dialogs. The parts of that discussion that refer
to having multiple edit-text items omit mention that it is necessary for the
activation procedure to call TECalText, set myTEHandle^^.crOnly to 1, and call
TESetSelect to work properly, as in the code snippet below.

IF (activating) THEN
BEGIN

{Note DialogPeek not WindowPeek used}
dlgPeek := DialogPeek(theDialog);

{Access TEHandle shared in common by all the editText items in }
{the dialog. This field current at activate time.}
myTEHandle:= dlgPeek^.textH;

{Must redo lineStarts on activation}
TECalText(myTEHandle);
16 of 28 Chapter 3 - Standard File Package

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

{Must set crOnly on activation}
myTEHandle^^.crOnly := 1;

{Ensure proper setting of selection}
myTECharLength := myTEHandle^^.teLength;
selectionLen := myTEHandle^^.selEnd - myTEHandle^^.selStart + 1;
If (myTECharLength > selectionLen) THEN
TESetSelect(0,myTECharLength,myTEHandle);

END;

Listing 3-15 does not set sfScript field 2

Page 3-33, Listing 3-15, Setting the current directory

The code listing does not set the sfScript field of the StandardFileReply record
when returning the pseudo-item sfHookChangeSelection. This can cause
Standard File to always set the selection to the last file in the directory. Adding
the line:

myReplyPtr^.sfScript := smSystemScript;

before the line:

MyDlgHook := sfHookChangeSelection;

will fix the problem.

Chapter 4 - Alias Manager 2

ResolveAlias updates minimal aliases 2

Page 4-19

At the bottom of page 4-19, it is stated that ResolveAlias never updates a
minimal alias. This is not true.

ResolveAlias calls MatchAlias to resolve the alias and if MatchAlias returns with
needsUpdate set to true, then ResolveAlias updates the alias by calling
UpdateAlias (which makes it a full alias) and returns with wasChanged set to
Chapter 4 - Alias Manager 17 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

true. If you require that minimal aliases stay minimal aliases, you can either
call MatchAlias (which does not update aliases),or you can create a copy of the
alias record with HandToHand, pass the copy of the alias record to ResolveAlias,
and then dispose of the (possibly updated) copy of the alias record.

usrCanceledErr should be userCanceledErr 2

Page 4-20, ResolveAlias
Page 4-23, MatchAlias

Just a typo… the title of this says it all.

kARMSearchMore and memory available to AliasFilterProc warning 2

Page 4-23, MatchAlias

Page 4-25, MyMatchAliasFilter

Add this warning:

▲ W A R N I N G

A call to MatchAlias using the kARMSearchMore rule will
result in a recursive search using PBGetCatInfo if the
volume being searched doesn’t support PBCatSearch. Your
application should insure there is a reasonable amount of
stack space available before calling MatchAlias using the
kARMSearchMore rule, and if a AliasFilterProc is used, the
AliasFilterProc should not use large amounts of stack
space. You can eliminate most stack usage in your
AliasFilterProc by passing a structure containing any
large data structures the AliasFilterProc might need in
the yourDataPtr parameter to MatchAlias. ▲

Chapter 5 - Disk Initialization Manager 2

Extended Disk Initialization Package 2

An extended Disk Initialization Package is available with System Software 7.5,
with Macintosh PC Exchange 2.0 or later, and with the File System Manager.
18 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

The extended Disk Initialization Package includes three functions not found in
Chapter 5 of Inside Macintosh: Files.

The existing application program interface to the Disk Initialization Package as
described in Inside Macintosh: Files will continue to be supported by the
enhanced Disk Initialization Package. Applications which wish to initialize
only Macintosh disks will continue to work and will require no changes.
However, if an application wants to initialize non-Macintosh disks, it must use
the new extended DIXFormat and DIXZero calls.

The Extended Disk Initialization User Interface 2

The Finder and the Standard File Package both handle disk-inserted events for
uninitialized disks by presenting a disk initialization dialog box asking the user
whether the disk should be ejected or initialized. Your application too can
easily call a Disk Initialization Manager routine that generates such a dialog
box when the user inserts an invalid disk. Figure 5-1 illustrates the dialog box.

Figure 5-1 The disk initialization dialog box

The disk initialization dialog box allows the user to name and specify the
format of the new disk. The appearance of the disk initialization dialog box
changes to reflect changing conditions. For example, the icon changes to show
which drive contains the disk. The Format menu items change to show what
disk formats can be used with the disk and disk drive combination. Also, the
text of the dialog box changes according to what is wrong with the disk. The
text might read “This disk's format cannot be read by this drive” if the Disk
Initialization Manager detects that the disk drive cannot use a disk’s format
(for example, if a double-sided disk is inserted in a single-sided disk drive, or a
Chapter 5 - Disk Initialization Manager 19 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

high-density disk formatted using GCR instead of MFM is inserted in an Apple
SuperDrive).

Regardless of the initial appearance of the disk initialization dialog box, it
disappears if the user clicks Eject or Cancel. If, however, the user decides to
initialize the disk, the text in the dialog box changes to warn the user that
initialization erases any previous data on the disk, as illustrated in Figure 5-2.

Figure 5-2 The disk initialization warning

If the user selects continue, the Disk Initialization Manager attempts to
initialize it. If an error occurs and the initialization fails, an alert box notifies the
user, and the disk is ejected.

The extended Disk Initialization Manager also provides a mechanism for using
the standard interface to reinitialize (reformat) disks that are already formatted.
(This mechanism is useful, for example, when the user wants to reinitialize a
disk with a different disk format.) The Finder takes advantage of this
mechanism with its Erase Disk command, illustrated in Figure 5-3. After the
user selects the erase operation from this dialog box, the reinitialization begins
immediately, without further warnings. If desired, your application can use
this same standard interface to allow users to reinitialize mounted disks (other
than the startup volume). Your application can customize the text to be
displayed in such a dialog box. Note that only a few utility applications
actually need to provide users with this capability.
20 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Figure 5-3 The Reformat dialog box

If you are writing a utility program such as a disk-copying application, you
might wish to initialize new disks or reinitialize valid disks without displaying
the standard disk initialization dialog box. For example, your application
might allow users to initialize multiple disks without having to respond to the
standard dialog box each time. The Disk Initialization Manager provides
low-level routines that allow you to do so. Unless you are writing a utility
program of this type, you don’t need to use these routines.

Extended Low-Level Disk Initialization Routines 2

Extended programmatic interfaces to media formatting and volume
initialization functions are required such that applications may specify
additional information for the overall formatting operation. This information
corresponds to the file system type and disk size information presented in the
“Format” menu in the disk initialization dialog box described above. The
extended programmatic interface adds three new functions to the Disk
Initialization Package: DIXFormat and DIXZero (for extended DIFormat and
DIZero), and DIReformat.
Chapter 5 - Disk Initialization Manager 21 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

▲ W A R N I N G

Applications should insure that the extended Disk
Initialization Package functions are present before making
the DIXFormat, DIXZero, or DIReformat calls. This is done by
calling Gestalt with the gestaltFSAttr selector. The
extended Disk Initialization Package functions is available
if the Gestalt function returns a result of noErr and the
gestaltHasExtendedDiskInitbit (bit 6) is set in the response
parameter. Due to the nature of older versions of the Disk
Initialization Package, making the extended requests when
they are not available may cause a system crash. ▲

The following code llustrates how you use Gestalt to determine if the extended
Disk Initialization Package functions are available.

Boolean HasExtendedDIFunctions(void)
{

long response;

if (Gestalt(gestaltFSAttr, &response) == noErr)
return ((response & (1L << gestaltHasExtendedDiskInit)) != 0);

else
return (false);

}

DIXFormat 2

The DIXFormat function performs the same function as the DIFormat function
except that drive size may be specified.

pascal OSErr DIXFormat(short drvNum, Boolean fmtFlag, unsigned long
fmtArg, unsigned long *actSize);

drvNum Contains the driver number of the drive to format.

fmtFlag Contains a boolean value which specifies the meaning of the
fmtArg paramter.

fmtArg If fmtFlag is true, fmtArg specifies the actual value to be passed
to the disk driver in the csParam field of the parameter block
when the “format” _Control call is made to initialize the disk
media. (The value is an index into the size list. For an
explanation of appropriate values for this parameter, see the
22 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Technical Note “What Your Sony Drives For You”.)

If fmtFlag is false, fmtArg specifies the desired size of the media
in number of 512-byte blocks. The disk driver is called to get
possible sizes and the values in an to attempt to match the
requested size. If more than one size list entry exists for the
same size, the first entry in the list returned by the driver that
best matches the fmtArg parameter will be used. For more
information about the size list, see the Technical Note “What
Your Sony Drives For You”. If the specified size is larger than
the largest size in the size list returned by the driver, then the
largest size will be used and that size is returned in actSize. If
the specified size is smaller than the smallest size in the size list
returned by the driver, then the smallest size will be used and
that size is returned in actSize. For a specified value that is in
between and without an exact match, the value closest to and
smaller than the requested size is used.

actSize Contains a pointer to an unsigned long. Upon completion of a
successful formatting operation, DIXFormat places the actual size
of the formatted media in number of 512-byte blocks into the
field referred to by this parameter.

The formatting of file systems requiring specific media formats should be done
by specifying those media formats explicitly and not by counting on disk size
alone. Foreign file systems with specific media requirements should use the
driver specific information in the size list or should make appropriate driver
_Status calls for additional information when called upon to “evaluate the size
list”.

As in DIFormat, DIXFormat does not unmount the volume. You have to unmount
the volume before issuing this call if necessary. If the volume has not been
unmounted, then DIXFormat will return volOnLinErr error.

RESULT CODES

noErr 0 No error

volOnLinErr -55 Volume is online

lastDskErr -64 Last of the range of low-level disk errors

…

Chapter 5 - Disk Initialization Manager 23 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

firstDskErr -84 First of the range of low-level disk errors

DIXZero 2

The DIXZero function performs the same function as the DIZero function except
that the file system, format result, volume type, volume size and extended
formatting information may be specified.

pascal OSErr DIXZero(short drvNum, ConstStr255Param volName, short fsid,
short mediaStatus, short volTypeSelector, unsigned
long volSize, void *extendedInfoPtr);

drvNum Contains the driver number of the drive to initialize.

volName Contains a pointer to a Pascal string which specifies the name
of the volume.

fsid Contains the ID of the file system whose format should be
written to the disk. The file system ID can be obtained using the
File System Manager GetFSInfo function.

mediaStatus
Contains a flag to indicate the status of the disk media. Its value
is the result code returned from the DIVerify function. If
mediaStatus is non-zero, then the disk contains bad sectors and
needs to be spared. If the file system specified doesn’t support
bad block sparing, the Disk Initialization Package will just
return this value as the function result. If the file system
supports bad block sparing, then the Disk Initialization Package
will gather the defect list and pass it to the file system.

volTypeSelector
Contains the volume type selector if the foreign file system
supports more than one volume type.

volSize Contains the size in 512-byte blocks of the file system that
should be written to the drive specified by drvNum. This is the
size returned in the actSize field by DIXFormat - the amount of
space usable by a file system on the specified drive as it is
currently formatted. If the specified size doesn't match with the
current disk format size, DIXZero will return
diCIVolSizeMismatchErr.
24 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

fsParams Contains a pointer to the foreign file system’s extended
formatting information, or nil.

▲ W A R N I N G

Early versions of the DIXZero code calls the Dialog
Manager with a nil DialogPtr when the value passed in the
mediaStatus parameter is not noErr. This will almost
always cause a system crash.

You must check to ensure DIXZero supports bad block
sparing before passing anything except noErr as the
mediaStatus parameter. The following function,
DIXZeroSupportsBadBlocks, shows how to make sure
DIXZero supports bad block sparing. ▲

Boolean DIXZeroSupportsBadBlocks(void)
{

enum
{

gestaltBugFixAttrsThree = 'bugx',
gestaltDIXZeroSupportsBadBlocks = 9

};
long response;

if (Gestalt(gestaltBugFixAttrsThree , &response) == noErr)
return ((response & (1L << gestaltDIXZeroSupportsBadBlocks)) !=

0);
else

return (false);
}

As in DIZero, DIXZero does not unmount the volume but it will, however,
mount the volume if the operation is successful. You have to unmount the
volume before issuing this call if necessary. If the volume is mounted when
DIZero or DIXZero is called, then a volOnLinErr error will be returned.

RESULT CODES

noErr 0 No error
Chapter 5 - Disk Initialization Manager 25 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

diCIVolSizeMismatchErr
24 Specified volume size doesn’t match with

formatted disk size

ioErr -36 I/O error

paramErr -50 Drive number specified is bad

volOnLinErr -55 Volume is already online

nsDrvErr -56 No such drive

lastDskErr -64 Last of the range of low-level disk errors

…

firstDskErr -84 First of the range of low-level disk errors

memFullErr -108 Not enough memory

DIReformat 2

The DIReformat function reformats disk volume.

pascal OSErr DIReformat(short drvNum, short fsid, ConstStr255Param
volName, ConstStr255Param msgText);

drvNum Contains the driver number of the drive to format.

fsid Contains the ID of the file system whose format should be
written to the disk. The file system ID can be obtained using the
File System Manager GetFSInfo function. (Use $0000 for the
Macintosh HFS voluime format.)

volName Contains a pointer to a Pascal string which specifies the name
of the volume.

msgText Contains a pointer to a Pascal string which specifies the
explanatory text to be displayed in the disk initialization dialog
box.

In the past, reformatting disk was accomplished by calling the DIBadMount
function with the high word of the evtMessage parameter set to noErr and the
explanatory text was set with the ParamText function. The DIReformat function
provides the caller the ability to provide the explanatory text, the default file
system ID, and the default name for the reformatted disk.
26 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

Note
The volume in the drive specified by drvNum must be
mounted when calling DIReformat. ◆

RESULT CODES

noErr 0 No error

diCINoMessageTextErr
28 msgText was not provided

paramErr -50 Drive number specified is bad

nsDrvErr -56 No such drive

lastDskErr -64 Last of the range of low-level disk errors

…

firstDskErr -84 First of the range of low-level disk errors

memFullErr -108 Not enough memory

Further Reference: 2

■ Inside Macintosh: Files

■ Guide - File System Manager
Chapter 5 - Disk Initialization Manager 27 of 28
Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

28 of 28 Chapter 5 - Disk Initialization Manager

Technote 1041 - Release 1.0  Apple Computer, Inc. 3/18/96

	Topics
	Chapter 1 - Introduction to File Management
	FSpExchangeFiles and PBExchangeFiles— What is exch...
	Additional Considerations for GetVInfo

	Chapter 2 - File Manager
	Pathname rules are not fully explained
	Missing Row in Table 2-10
	Description of default directory upon launch wrong...
	Master Directory Blocks drXTFlSize and drCTFlSize ...
	Map records in map nodes occupy 492 bytes (not 494...
	Volume cache control bit in vcbAtrb
	Volume Control Blocks vcbXTAlBks and vcbCTAlBks fi...
	dQDrvSiz fields not used on 3.5” floppy disks
	Clarification of ioFlAttrib bits in ParamBlockRec,...
	The VolMountInfoHeader data structure includes fla...
	ioPosMode usage by PBRead and PBWrite requests
	Additional Considerations for GetVInfo
	Additional Special Considerations for PBHGetVInfo
	SPECIAL CONSIDERATIONS

	FSpGetFInfo does not work with directories
	FSpSetFInfo does not work with directories
	FSpExchangeFiles and PBExchangeFiles— What is exch...
	HOpenDF, PBHOpenDF and the paramErr result code
	Parameter blocks missing ioFVersNum field
	Parameter blocks missing ioMisc field
	PBGetCatInfo ioFDirIndex usage rules
	ioACUser is filler2 in some interface files
	Parameter blocks missing ioNamePtr field
	ioForeignPrivIDirID is LongInt in PBGetForeignPriv...
	Request execution order
	Volume Parameter Variant offsets are off by 2

	Chapter 3 - Standard File Package
	Default Standard File current directory
	Activation Procedures Need to call TECalText
	Listing 3-15 does not set sfScript field

	Chapter 4 - Alias Manager
	ResolveAlias updates minimal aliases
	usrCanceledErr should be userCanceledErr
	kARMSearchMore and memory available to AliasFilter...

	Chapter 5 - Disk Initialization Manager
	Extended Disk Initialization Package
	The Extended Disk Initialization User Interface
	Figure�5-1 The disk initialization dialog box
	Figure�5-2 The disk initialization warning
	Figure�5-3 The Reformat dialog box

	Extended Low-Level Disk Initialization Routines
	DIXFormat
	RESULT CODES

	DIXZero
	RESULT CODES

	DIReformat
	RESULT CODES

	Further Reference:

