

ð

2

T E C H N O T E :
The Notification Manager:
Problems & Fixes 2

by Pete Gontier
gurgle@apple.com

Apple Macintosh Developer Technical Support (DTS)

This Technote describes two serious problems in the Notification Manager
(NM), one having to do with activate events and the other with update events.
These problems can cause windows in your application to be drawn
redundantly or not at all. This Technote provides a workaround for the active
event problem and some sample code, with explanations, for fixing the update
event problem.

If you’re an application or app framework developer and want to ensure the
windows in your application(s) are always updated and activated properly,
you should read this Note.

This Technote augments the information presented in three chapters of Inside
Macintosh: “Event Manager” (Chapter 2) and “Window Manager” (Chapter 4)
of Macintosh Toolbox Essentials and “Notification Manager” (Chapter 5) of
Processes.
1 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

Defining Notification Manager Problems 2

You can use the Notification Manager to present the user with a modal dialog
(alert) that opens in front of the windows of all applications. This dialog
actually appears in the window list of the frontmost application during its call
to WaitNextEvent.

IMPORTANT

Your application should not depend on the details of the
way Notification Manager presents its dialog, including
but not limited to the fact that NM uses Dialog Manager.
The information is presented here only in order to provide
a full understanding of the problem at hand. ◆

The first thing to know is that Notification Manager calls the Dialog Manager
to manage the dialog. More specifically, NM calls ModalDialog with a dialog
filter which in turn calls the standard dialog filter as obtained by
GetStdFilterProc.

The fact that Dialog Manager, and in particular ModalDialog and the standard
dialog filter, provide imperfect event handling means that some
window-oriented events are “swallowed” (i.e., never provided to your app)
while the dialog is present.

Swallowed Deactivate Events (and Redundant Activate
Events) 2

Your application does not receive a deactivate event for the (soon-to-be-former)
front window when the Notification Manager’s dialog appears. This is because
ModalDialog has its own event loop (partially implemented by the standard
dialog filter) and has no way of passing the deactivate event off to your app's
event loop.

When the user dismisses NM’s dialog, your app receives a redundant activate
event for the (recently-reinstated) front window. Your app can make sure it
doesn't logically activate a window (i.e., enable text fields, etc.) redundantly by
simply checking to see if the window is already active before logically
activating it.
2 of 12 Defining Notification Manager Problems

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

Swallowed Update Events 2

In order to understand how update events get swallowed, you need to
understand how they would have been generated in the first place.

Each window has a region, expressed in global coordinates, which describes
the portion of the window that needs redrawing. This is called the window’s
update region. During WaitNextEvent, the Event Manager, Window Manager,
and Process Manager collaborate in walking the current window list. If the
update region of a window is found to be non-empty, they generate an update
event for that window.

When your application receives the update event, it calls BeginUpdate,
(re)draws the image for the window, and calls EndUpdate. The BeginUpdate/
EndUpdate pair of calls empties the update region for the window so that
subsequent searches for windows which need updating do not find that
window.

These update regions are the key to understanding how the Notification
Manager swallows update events.

The standard dialog filter, to which NM's dialog filter passes control, wants to
ensure that background apps get processing time by “solving” the problem
described in Macintosh Technical Note TB37, “Pending Update Perils.” The
standard filter simply calls BeginUpdate and EndUpdate every time it's given
an update event, regardless of the window for which the event is bound.

This results in all windows in the current window list having their update
regions emptied almost immediately. As a consequence, no update events are
generated for those windows, even though they need to be (re)drawn. When
the user dismisses NM's dialog, only the windows covered by NM's dialog get
update events, and then only for the region covered by NM’s dialog.

There is nothing straightforward your app can do to prevent swallowed update
events. While your app innocently waits for a call to WaitNextEvent to return,
NM suddenly puts up its dialog and seizes control of the event loop until the
user dismisses the dialog. Your app can’t even predict when this will happen,
much less prevent it or easily work around it.
Defining Notification Manager Problems 3 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

Using the Sample Code Library “UpdateRegionSaver” to
Work Around the Problem 2

Although Apple may fix both of these problems in a future system software
release, you might consider using some of the sample code presented here as a
workaround. The sample code will continue to work even if there is a fix to the
system software.

Most users of UpdateRegionSaver will only need to make three very simple
calls. In this sample, the names of the calls are underlined.

#ifndef __EVENTS__
include <Events.h>
#endif

#include "UpdateRegionSaver.h"

pascal Boolean WaitNextEventWithNMSafeUpdates
(EventMask eventMask, EventRecord *theEvent,

UInt32 sleep, RgnHandle mouseRgn)
{

UpdateRegionSaver *root = SaveUpdateRegions ();
EventRecord event;
Boolean result = WaitNextEvent

(eventMask,theEvent,sleep,mouseRgn);
RestoreUpdateRegions (root);
DeleteSavedUpdateRegions (root);
root = nil;
return result;

}

For a full listing of each of the three calls, refer to Appendix A at the end of this
Technote.
4 of 12 Using the Sample Code Library “UpdateRegionSaver” to Work Around the Problem

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

UpdateRegionSaver Reference 2

This section describes the data structures and routines specific to the
UpdateRegionSaver library.

Data Structures 2

The UpdateRegionSaver library manipulates a data structure of type
UpdateRegionSaver.

typedef struct UpdateRegionSaver
{

RgnHandle fRgnH;
WindowRef fRef;
struct UpdateRegionSaver*fNext;

}
UpdateRegionSaver;

Field descriptions

fRgnH A region copied from the update region of a window. It is
in global coordinates (as is the update region itself). Before
being restored to the window, it will be copied and
converted to the local coordinates of the window.

fRef The address of the window from which the copy of the
update region came. Before restoring the region,
UpdateRegionSaver verifies that there is still a window at
this address in the window list. (This is not a perfect test,
but it is the best test that can be made without patching a
trap or three.)

fNext The address of the next structure in the linked list. The last
node in the list has a 0 here.
UpdateRegionSaver Reference 5 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

UpdateRegionSaver Routines 2

To get a list of update regions associated with the windows in the current
window list, call SaveUpdateRegions. To restore the regions to their owning
windows, call RestoreUpdateRegions. To destroy the list of regions, call
DeleteSavedUpdateRegions.

SaveUpdateRegions 2

To save the update regions associated with the windows in your application’s
window list, call SaveUpdateRegions.

SaveUpdateRegions returns a pointer to the root of simple singly-linked list
which contains a node for each window. In each node your app will find a
window pointer, a copy of the window’s update region, and a pointer to the
next node.

RestoreUpdateRegions 2

To restore a list of saved update regions to the windows from which they came,
call RestoreUpdateRegions.

RestoreUpdateRegions copies the regions in the list and converts the copies to
the local coordinates of each window before calling InvalRgn to merge the
region into any update region which may already be there.

DeleteSavedUpdateRegions 2

To delete a list of saved update regions, call DeleteSavedUpdateRegions.
6 of 12 UpdateRegionSaver Reference

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

Summary 2

The Notification Manager (NM) may present a Dialog Manager dialog
whenever your application calls WaitNextEvent. This impedes the flow of
window-related events (such as update or activate) to your application’s event
loop. Make sure your app doesn’t logically activate a window which is already
active. Use the UpdateRegionSaver library (or something like it) to ensure your
app will always get the update events it requires.

Further Reference 2

Macintosh Technical Note TB 37, “Pending Update Perils,” has a discussion of
the problem Notification Manager “solves,” as mentioned previously.

Chapter 6, “Dialog Manager,” Inside Macintosh: Macintosh Toolbox Essentials has
a description of the operation of ModalDialog and the standard dialog filter.

Acknowledgments 2

Thanks to Brian Bechtel and Matt Mora.

Appendix A 2

UpdateRegionSaver.h 2

#pragma once

#ifndef __WINDOWS__
include <Windows.h>
#endif

typedef struct UpdateRegionSaver
{

Summary 7 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

// We don't care about alignment since this is an internal
// runtime-only structure.

RgnHandle fRgnH;
WindowRef fRef;
struct UpdateRegionSaver *fNext;

}
UpdateRegionSaver;

// I can't figure why this next #ifdef would be necessary for
// pascal funcs,but CW7 for PPC says it is.

#ifdef __cplusplus
extern "C" {
#endif

pascal void RestoreUpdateRegions (UpdateRegionSaver *);
pascal void DeleteSavedUpdateRegions (UpdateRegionSaver *);
pascal UpdateRegionSaver * SaveUpdateRegions (void);

#ifdef __cplusplus
}
#endif

UpdateRegionSaver.c 2

#ifndef __LOWMEM__
include <LowMem.h>
#endif

#include "UpdateRegionSaver.h"

static pascal Boolean IsWindowStillAround (WindowRef ref)
{

WindowRef scan = LMGetWindowList ();

while (scan)
{

if (scan == ref) break;
8 of 12 Appendix A

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

scan = GetNextWindow (scan);
}

return !!scan;
}

pascal void RestoreUpdateRegions (UpdateRegionSaver *ursp)
{

while (ursp)
{

if (!EmptyRgn (ursp->fRgnH) && IsWindowStillAround (ursp->fRef))

{
RgnHandle localUpdateRgn = NewRgn ();
if (localUpdateRgn)
{

Point zero;
GrafPtr keep = qd.thePort;
SetPort (ursp->fRef);
zero.h = qd.thePort->portRect.left;
zero.v = qd.thePort->portRect.top;
GlobalToLocal (&zero);
CopyRgn (ursp->fRgnH,localUpdateRgn);
OffsetRgn (localUpdateRgn,zero.h,zero.v);
InvalRgn (localUpdateRgn);
SetPort (keep);
DisposeRgn (localUpdateRgn);

}
}

ursp = ursp->fNext;
}

}

pascal void DeleteSavedUpdateRegions (UpdateRegionSaver *ursp)
{

while (ursp)
{

UpdateRegionSaver *next = ursp->fNext;
DisposeRgn (ursp->fRgnH);
DisposePtr ((Ptr) ursp);
Appendix A 9 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

ursp = next;
}

}

pascal UpdateRegionSaver * SaveUpdateRegions (void)
{

//
// This function saves as many update regions as it can.
// If for some reason memory is so low that some regions
// cannot be saved, this function makes a best effort.
// (Its best effort is rather stupid, but it does try.)
//

UpdateRegionSaver *root = nil;
WindowRef scan = LMGetWindowList ();

while (scan)
{

UpdateRegionSaver *newUpdateRegionSaver =
(UpdateRegionSaver *) NewPtr (sizeof (UpdateRegionSaver));

if (!MemError ())
{

RgnHandle rgnH = NewRgn ();

if (!rgnH)
{

DisposePtr ((Ptr) newUpdateRegionSaver);
newUpdateRegionSaver = nil;

}
else
{

GetWindowUpdateRgn (scan,rgnH);

newUpdateRegionSaver->fRgnH = rgnH;
newUpdateRegionSaver->fRef = scan;
newUpdateRegionSaver->fNext = root;

root = newUpdateRegionSaver;
}

}

10 of 12 Appendix A

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

scan = GetNextWindow (scan);
}

return root;
}

Appendix A 11 of 12
Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

T E C H N O T E : The Notification Manager: Problems & Fixes

12 of 12 Appendix A

Technote 1026 - Release 1.1  Apple Computer, Inc. 4/3/96

	T E C H N O T E : The Notification Manager: Proble...
	Defining Notification Manager Problems
	Swallowed Deactivate Events (and Redundant Activat...
	Swallowed Update Events

	Using the Sample Code Library “UpdateRegionSaver” ...
	UpdateRegionSaver Reference
	Data Structures
	UpdateRegionSaver Routines
	SaveUpdateRegions
	RestoreUpdateRegions
	DeleteSavedUpdateRegions

	Summary
	Further Reference
	Acknowledgments

	Appendix A
	UpdateRegionSaver.h
	UpdateRegionSaver.c

