
ð

T E C H N O T E :
A Print Loop That Cares…
The Sequel

Revised by Ingrid Kelly
By Ginger Jernigan, Pete “Luke” Alexander and Matt Deatherage

inge@apple.com
Apple Developer Technical Support (DTS)

This Technote, originally Technote PR 10 - A Printing Loop That Cares, discusses
how and why your application should add a generic printing loop in order to be
compatible with today’s printer drivers.

This revised Technote reflects the current Macintosh Printing Manager and
discusses proper opening and closing of the Macintosh Printing Manager with
calls to PrOpen and PrClose. It also shows how your application should handle
errors at print time and lists the latest error codes.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 1 of 14

The Old Way of Handling Printing
In the past (pre-System 7), Apple recommended that developers call PrOpen at the
beginning of your application and PrClose at the end before returning to the Finder.
This recommendation was appropriate when your application only had to deal
with a single printer driver. However, as more printers became available on the
market, it became important that your application took into account the presence
of other launched applications and multiple printer drivers.

For instance, the user could open the Chooser at any time and change the current
printer driver without the current application’s knowledge. If an application
followed the old philosophy and a user changed the current printer driver while
running the application, the next time the user attempted to print, the wrong
driver would be open, the Printing Manager would not be able to find the
necessary resources, and the user would get an error.

The original Technote described a method of printing that allowed applications to
circumvent all of these problems; this revised Note shows you an even better
method.

The New Way: a C Print Loop

The following code snippet, PrintStuff, represents a simple print loop that your
application should use to print. It works as follows:

1. It calls all of the necessary Print Manager calls to print a document.
2. It checks PrError after each Print Manager call.
3. If an error is found, all of the Print Manager open calls (i.e., PrOpen, PrOpenDoc...)
have a corresponding close call before posting an error.

You should use the error-checking method in Step #3 to make sure the Print
Manager closes properly and that all temporary memory is released.

Note:
Apple Developer Technical Support currently recommends that applications open
and close the printer driver each time your application uses the Printing Manager.
We also highly recommend appropriate error checking, as demonstrated in this
snippet of code.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 2 of 14

The PrintStuff Print Loop

void PrintStuff ()
{
 GrafPtr oldPort;
 short copies,
 firstPage,
 lastPage,
 numberOfCopies,
 printmgrsResFile,
 realNumberOfPagesinDoc,
 pageNumber,
 PrintError;
 THPrint thePrRecHdl;
 TPPrPort thePrPort;
 TPrStatus theStatus;

 GetPort(&oldPort);

thePrRecHdl = (THPrint) NewHandle (sizeof (TPrint));

 /**
 Check to make sure that the memory manager did not produce an error
 when it allocated the print record handle and make sure it did not pass
 back a nil handle.
 **/

 if (thePrRecHdl != NULL && MemError() == noErr)
 {
 PrOpen();

 if (PrError() == noErr)
 {
 /** Save the current resource file (i.e., the printer driver's) so
 the driver will not lose its resources upon return from the pIdleProc.
 **/
 printmgrsResFile = CurResFile();
 PrintDefault(thePrRecHdl);

 if (PrError() == noErr)
 {
 if (PrJobDialog(thePrRecHdl))
 {
 /**
 DetermineNumberOfPagesinDoc determines the number of pages
 contained in the document by comparing the size of the

document with rPage from the TPrInfo record (Inside

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 3 of 14

Macintosh: Imaging With QuickDraw p.9-46).
It returns the number of pages required to print the
document for the currently selected printer.

 **/

 realNumberOfPagesinDoc = DetermineNumberOfPagesinDoc
 ((**thePrRecHdl).prInfo.rPage);

 if (PrJobDialog(thePrRecHdl))
 {
 /**
 Get the number of copies of the document that the

user wants printed from iCopies of the TPrJob record
(Inside Macintosh: Imaging With QuickDraw p.9-47).

 **/

 numberOfCopies = (**thePrRecHdl).prJob.iCopies;

 /**
 Get the first and last pages of the document that
 were requested to be printed by the user from FstPage
 and iLastPage from the TPrJob record (Inside

Macintosh: Imaging With QuickDraw p.9-47).
 **/

 firstPage = (**thePrRecHdl).prJob.iFstPage;
 lastPage = (**thePrRecHdl).prJob.iLstPage;

 /**
 Print "all" pages in the print loop
 **/

 (**thePrRecHdl).prJob.iFstPage = 1;
 (**thePrRecHdl).prJob.iLstPage = 9999;

 /**
 Determine the "real" number of pages contained in the

document. Without this test, you would print 9999
pages.

 **/

 if (realNumberOfPagesinDoc < lastPage)
 lastPage = realNumberOfPagesinDoc;

 PrintingStatusDialog = GetNewDialog(rPrintingDialogID, nil, (WindowPtr) -1);

 /**
 Print the number of copies of the document
 requested by the user from the Print Job Dialog.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 4 of 14

 **/
 for (copies = 1; copies <= numberOfCopies; copies++)
 {
 /**
 Install a pointer to your pIdle proc in my print

record.
 **/
 (**thePrRecHdl).prJob.pIdleProc = checkMyPrintDialogButton();
 /**
 Restore the resource file to the printer driver's.
 **/

 UseResFile(printmgrsResFile);
 thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

 if (PrError() == noErr)
 {

 /**
 Print the range of pages of the document
 requested by the user from the Print Job

Dialog.
 **/
 pageNumber = firstPage;
 while (pageNumber <= lastPage && PrError() == noErr)
 {

 /**
 If we've crossed a 128-page boundary,
 close the current print file, send it
 to the printer if necessary, and open a
 new document.

 **/

 if ((pageNumber - firstPage) % iPFMaxPgs == 0)
 {
 if (pageNumber != firstPage)
 {
 PrCloseDoc(thePrPort);
 if (((**thePrRecHdl).prJob.bJDocLoop ==

 bSpoolLoop) && (PrError() == noErr))
 PrPicFile(thePrRecHdl, nil, nil, nil,
 &theStatus);

 thePrPort = PrOpenDoc(thePrRecHdl, nil,
 nil);
 }
 }

 PrOpenPage(thePrPort, nil);

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 5 of 14

 if (PrError() == noErr)
 {
 /**
 rPage (Inside Macintosh: Imaging With

QuickDraw p.9-46) is the printable area
 for the currently selected printer. By

passing the current port to the draw
routine, enables your app to use the
same routine to draw to the screen and
the printer's GrafPort.

 **/
 DrawStuff ((**thePrRecHdl).prInfo.rPage,
 (GrafPtr) thePrPort, pageNumber);
 }

 PrClosePage(thePrPort);
 pageNumber++;
 } /** End pageNumber loop **/
 }
 PrCloseDoc(thePrPort);
 } /** End copies loop **/
 }
 /**
 The printing job is being canceled by the request of the
 user from the Print Style Dialog or the Print Job Dialog.
 PrError will be set to PrAbort to tell the Print Manager

to abort the current printing job.
 **/
 else
 PrSetError (iPrAbort); /** cancel from the job dialog **/
 }
 else
 PrSetError (iPrAbort); /** cancel from the style dialog **/
 }
 }

 if (((**thePrRecHdl).prJob.bJDocLoop == bSpoolLoop) && (PrError() == noErr))
 PrPicFile(thePrRecHdl, nil, nil, nil, &theStatus);

 /**
 Grab the printing error -- once you close the Printing Manager,

PrError doesn't return a valid result anymore.
 **/

 PrintError = PrError();

 PrClose();

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 6 of 14

 /**
 You do not want to report any printing errors until you have fallen
 through the printing loop. This will make sure that ALL of the Print
 Manager's open calls have their corresponding close calls, thereby
 enabling the Print Manager to close properly and that all temporary
 memory allocations are released.
 **/
 if (PrintError != noErr)
 PostPrintingErrors (PrintError);
 }

 if (thePrRecHdl != NULL)
 DisposeHandle((Handle) thePrRecHdl);

 if (PrintingStatusDialog != NULL)
 DisposeDialog(PrintingStatusDialog);

 SetPort(oldPort);
} /** PrintStuff **/

Checking For Error Conditions While Printing
Your application should always check for error conditions while printing. You can
do this by calling PrError. PrError returns errors from the Printing Manager (and
some AppleTalk and OS errors) that may occur during printing.

As the previous example code demonstrates, your application should call PrError
after each call to a Printing Manager function or procedure. By consistently
checking PrError after each call, your application will be able to catch any errors
created at print time and be able to report them to your user via a dialog box.

Some General Error-Handling Guidelines

The following section provides you with some general error-handling guidelines:

• Don’t call PrError within your pIdle procedure; errors that occur while it is
executing are usually temporary and serve only as internal flags for
communication within the printer driver — they are not intended for the
application. If you discover that you need to abort printing while in your idle
procedure, set a flag to signal yourself, and check your flag after each Printing
Manager function. If the flag is set, you can exit in the same manner as if an error
occurred.

• On detecting an error after the completion of a printing routine, stop drawing at
that point, and proceed to the next procedure to close any previously made open
calls. For example, if you detect an error after calling PrOpenDoc, skip to the next

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 7 of 14

PrCloseDoc. Or, if you get an error after calling PrOpenPage, skip to the next
PrClosePage and PrCloseDoc. Remember that if you have called PrOpen, then you must
call the corresponding PrClose to ensure that printing closes properly and that all
temporary memory allocations are released and returned to the heap.

• Don’t display any alert or dialog boxes to report an error until the end of the
printing loop. Once at the end, check for the error again; if there is no error,
assume that printing completed normally. If the error is still present, alert the user.

This procedure –– not displaying any alerts or dialog boxes –– is important for
two reasons.

1. If you display a dialog box in the middle of the printing loop, it could cause
errors that can terminate an otherwise normal job. For example, if the printer is an
AppleTalk printer, the connection can be terminated abnormally, since the driver
would be unable to respond to AppleTalk requests received from the printer while
the dialog box was waiting for input from the user. If the printer does not hear
from the Macintosh with a short period of time (e.g., 30 seconds), it times out,
assuming that the Macintosh is no longer there, which results in a prematurely
broken connection, causing another error to which the application must respond.

2. The driver may have already displayed its own dialog box in response to an
error. In this instance, the driver posts an error to let the application “know” that
something went wrong and it should abort printing. For example, when the
LaserWriter driver detects that the Laser Prep version which has been
downloaded to the LaserWriter is different than the version the user is trying to
print with, it displays the appropriate dialog box informing the user of the
situation and giving him or her the option of reinitializing the printer. If the user
chooses to cancel printing, the driver posts an error to let the application “know”
that it needs to abort, but since the driver has already taken care of the error by
displaying a dialog box, the error is reset to zero before the printing loop is
complete. Your application should check for the error again at the end of the
printing loop, and if it still indicates an error, your application can then display
the appropriate dialog box.

• If you’re using PrGeneral, be prepared to receive the following errors: NoSuchRsl,
OpNotImpl, and resNotFound. In all three cases, your application should be prepared
to continue printing without using the features of that particular opcode.

In the case of the resNotFound error, however, it means the current printer driver
does not support PrGeneral. This lack of support should not be a problem for
your application, but your application needs to be prepared to deal with this error.
If you receive a resNotFound error from PrError, clear the error with a call to
PrSetError(0); otherwise, PrError might still contain this error the next time you check
it, which would prevent your application from printing.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 8 of 14

Cancelling or Pausing the Printing Process

If you install a procedure for handling requests to cancel printing, with an option
to pause the printing process, beware of timeout problems when printing to
network printers. Communication between the Macintosh and a networked
printer must be maintained to prevent a job or a wait timeout. If there is no
communication for a period of time (roughly two minutes), the printer times out
and the print job terminates due to a wait timeout. Or, if the print job requires
more than three minutes to print, the print job terminates due to a job timeout.
Since there is no good method to determine to what type of printer an application
is printing, it is probably a good idea to document in your ReadMe the possibility
of a network printer timing out for a user who chooses to select “pause” for two
minutes or more.

Error Messages
The Printing Manager reports the error messages covered in this section. If an
error that does not belong to the Printing Manager occurs, the Printing Manager
puts it into low memory, where it can be retrieved with a call to PrError, and
terminates the printing loop, if necessary. As already documented, if you
encounter an error in the middle of a printing loop, don’t jump out; fall through
the loop and let the Printing Manager terminate properly.

The most common error encountered is -4101, which is generated if the selected
LaserWriter is not available on the network. Since this error is so common, it’s a
good idea to display a dialog box requesting the user to select a printer from the
Chooser when this error is encountered.

Common Printing Manager and System Errors

The following table shows you common printing manager and system error codes.

Error Code Constant Description
----------- --------- ------------

0 noErr No error
 28 [don’t know] stack/heap collision. Too much stack usage

inside QuickDraw [not uncommon if you’re
calling DrawPicture on QT compressed
pictures]

128 iPrAbort Abort the printing process
(result of Command-period)

-1 iPrSavePFil Problem saving print file
-17 controlErr Unimplemented Control call

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 9 of 14

-27 iIOAbort I/O problems
-108 iMemFullErr Not enough heap space

PrGeneral Errors

PrGeneral is declared like this in C:
pascal void PrGeneral (Ptr pData);

The pData parameter is a pointer to a record called TGnlData. The first eight bytes comprise a
header shared by all the PrGeneral calls:

struct TGnlData {
short iOpCode;
short iError;
long lReserved;
} ;

After each call to PrGeneral, your application should check the value in the iError field. The
possible result codes that can be returned are:

 Error Code Constant Description
- - - - - - - - - - - -

0 noErr No Error
1 NoSuchRsl Unsupported Resolution
2 OpNotImpl Upsupported Opcode
- 1 9 2 resNotfound The current printer driver does not

support PrGeneral.

For further information on PrGeneral, you should read Meet PrGeneral in develop 3 by Pete
‘Luke’ Alexander.

LaserWriter Driver Family Errors

 Error Code Constant Description
- - - - - - - - - - - -

- 4 1 0 1 Printer not found or closed
- 4 1 0 0 Connection just closed
- 4 0 9 9 Write request too big
- 4 0 9 8 Request already active
- 4 0 9 7 Bad connection refnum
- 4 0 9 6 No free Connect Control Blocks

(CCBs) available

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 10 of 14

LaserWriter 8 Internal Errors

Note: The following error codes are internal LaserWriter 8 errors. They are useful for
debugging, but your application should NOT try to interpret or use these error codes
during runtime.

-8998 errNotAKey Couldn't find a key for the desired
font number.

-8997 errFaceListBad (NO LONGER USED)
-8996 errSizeListBad The size list was not consistant

with the face list
-8995 errFontNotFound A font query reply didn't match any

of the PostScript fonts
-8994 errUnknownPSLevel We asked for the printer's

PostScript level and got an answer
 we didn't expect.

-8993 errInLineTimeout We got tired of waiting for a
response from the printer

-8991 errNoProcSetRes While generating PostScript prolog,
we couldn't find the resource
containing the needed procedure sets

-8990 errBadSpoolFileVersion While foreground printing (pre-
LW8.4) we read the spool file, and
the header information was not good.

- 8 9 8 9errCouldNotMakeNumberedFilename
Couldn't make a unique spool file
name by adding numbers to the base
name. We ran out of numbers.

- 8 9 8 7errPSFileName While saving PS to disk, the
filename was bad

-8986 errBitmapFontMissing We tried to build a 1-bit bitmap,
but failed

-8985 errDidNotDownloadFont The PS outline couldn't be found,
and there's no 'sfnt'

-8984 errBadConverterIndex Couldn't find the entry matching the
selection in the "Save to Disk"
popup

-8983 errSpoolFolderIsAFile (NO LONGER USED)
-8982 errPSFileNameNull (NO LONGER USED)
-8981 errNullColorInfo GetColor was called with a NULL

handle
-8980 errNoPagesSpooled The app made a PrOpenDoc call and

PrCloseDoc, but didn't print any
pages

-8979 errBadConverterID The PDEF we wanted to run as a

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 11 of 14

converter wasn't there
-8978 errNoPattern We couldn't find or make a pixpat
-8977 errPSStateUnderFlow We tried to pop the topmost graphics

state. Oops
-8976 errChannelNotBinary Application wants binary data (via

PrGeneral), but the actual channel
to the printer isn't binary

-8975 errPrinterNotLevel2 Application wants to use Level 2 PS,
but the printer's not hip to Level 2

-8974 errBadFontKeyType The type of a font was not PS, TT or
bitmap

-8973 errFunctionNotAvailable (NO LONGER USED)
-8972 errNULLFormatString The format string passed to an

internal printf-like function was
nu l l

-8971 errNotAFolderAlias The alias that should point to the
"Print Monitor Documents" folder
isn't pointing to a folder

-8970 errMissingPAPA The PAPA resource we looked for
isn't there.

-8969 errMissingPrinterInfo The current printer does not have an
entry in the printer database -
usually because it hasn't been setup

-8968 errUnsupportedDestColorMode
The output colorspace isn't
supported

-8967 errUnknownColorUsage (NO LONGER USED)
-8966 errUnsupportedCodec Compressed pixmap wants a codec we

can't deal with
-8965 errInvalidPPD Tried to open the PPD and couldn’t

-8964 errBadColorSync2Comment The ColorSync2 PicComment wants a 4-
byte selector and we encountered a
smaller datasize than 4 bytes

-8963 errBadFlattenRefCon ColorSync gave us a NULL refcon in
the flatten proc

-8962 errGlyphsDontFit A single glyph either didn't end on
a 4-byte boundary(a bug in the font)
or was larger than 64k

-8961 errGenericComponentErr Generic error
-8960 errUnsupportedStream The PSStream type passed in to a

given library call is not supported
-8959 errProfileNotInList The internal temporary profile list

went bad
-8958 errUninitializedPort Uninitialized port
-8957 errHintWrongSize One of the converter's hints was an

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 12 of 14

unexpected size
-8956 errSystemProfileNotFound

We tried to use ColorSync, but
couldn't find the default System
Profi le

-8955 errCFM_EnablerNotPresent
We're trying to use CFM-68K, but the
enabler's not there

-8954 errCouldNotIDArchitecture
-8953 errPSStreamNullOutProc Got a bad function pointer for the

output routine
-8952 errTriedToWriteNullBuffer

This should never happen
-8951 errWhoTookThatOutBuffer We had a buffer that's gone now.

This seems bad.
-8950 errMoreDataToFlush There's still data to be dealt with

-8160 zoomRangeErr

-8152 noPrepErr
-8151 prepMismatchErr
-8150 noChosenPrinterErr

-8133 generalPSErr PostScript error during transmission
of data to printer. Most often
caused by a bug in the PostScript
code being downloaded

-8132 manualFeedTOErr Timeout occurred
- 8 1 3 1 Printer not responding

Summary

That’s all there is to it. Now your application can print properly with the
Macintosh Printing Manager by adhering to the rules specified in this Note and
by handling error messages appropriately.

Further Reference

• Inside Macintosh: Imaging With QuickDraw, Chapter 9
• StdFileSaver sample code, available on the Developer CD Series: Tool Chest
Edition.
• Technote PR02- Device-Independent Printing by Ginger Jernigan.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 13 of 14

• develop 3- Meet PrGeneral, the Trap That Makes the Most of the Printing Manager
by Pete “Luke” Alexander.
• develop 27 - Print Hints: The All-New LaserWriter Driver Version 8.4 by Dave
Polaschek.

Change History
Originally written in October 1990, as Technote PR10 -– A Printing Loop That
Cares... by Ginger Jernigan and Pete “Luke” Alexander.

Revised in January 1994 by Matt Deatherage, as Technote PR10 –– A Printing
Loop That Cares...

Accompanying code written and revised by Ginger Jernigan(1990), Pete “Luke”
Alexander (1990) and Matt Deatherage (1994).

In January 1997, this Technote was updated to reflect the current Macintosh
Printing Manager and to use C code. The Pascal code was removed. Updated
error codes were also added to the Error Messages section.

Acknowledgments
Special thanks to Rich Blanchard, Paul Danbold, and Dave Polaschek.

Technote 1092 /// Release 1.0 © 1996 Apple Computer, Inc. /// 2/5/97 /// Page 14 of 14

