



Technical Publications
© Apple Computer, Inc. 1999



Locales API Preliminary
Documentation

For Mac OS 8.6 and 9.0

Preliminary Draft

© Apple Computer, Inc. 11/9/99



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Mac are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Cocoa and Finder are trademarks of
Apple Computer, Inc.
Java is a trademark of Sun
Microsystems, Inc.
UNIX is a registered trademark in
the United States and other

countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Locales in Mac OS 8.6 and Mac OS 9.0

Important
This is a preliminary document. Although it has been reviewed for technical
accuracy, it is not final. Apple Computer, Inc. is supplying this information
to help you plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to change, and
software implemented according to this document should be tested with final
operating system software and final documentation.

You can check
<http://developer.apple.com/techpubs/macos8/SiteInfo/whatsnew.html> for
information about updates to this and other developer documents. To receive
notification of documentation updates, you can sign up for ADC's free
Online Program and receive their weekly Apple Developer Connection News
e-mail newsletter. (See <http://developer.apple.com/membership/index.html>
for more details about the Online Program.)

Many text operations—e.g. collation, text break determination, and formatting of dates, times, and
numbers—have behavior that can depend on the conventions of a language and/or geographical
region. These locale-sensitive operations need:

• A way to specify the language and/or region whose conventions are to be used; this is a locale
tag. This can be a numeric value, a string, etc.

• A way to obtain, for the specified language and/or region, the locale data that will enable the text
operation to behave appropriately.

A locale system is primarily a set of protocols, with only a thin layer of supporting code.

I. Background

A. Specifying locales - discussion
There are several types of information that are needed to indicate language and region.
1. Language: A human language; there are something like 5000-10000 living languages, plus

many more extinct ones. ISO 639 defines a list of standard language codes consisting of 2 or 3
ASCII letters (case insensitive, but typically shown in lower case). There are currently 2-letter
codes for about 140 languages, and 3-letter codes for about 430 (including all the languages
that also have a 2-letter code). The 2-letter codes are typically used for specifying language in
UNIX, Java, and on the Internet (Windows uses its own enumeration of numeric codes).
However, many languages do not have a code; moreover, some of the existing codes are too
general, such as 'zh' for Chinese.

2. Language variant: For some languages specified with ISO 639 codes, it may be necessary to
further specify a variant (if this would affect computer handling of the language)—for example,
the distinction between bokmål and nynorsk for Norwegian, or the distinction among the
various Chinese “dialects” (really separate languages): Mandarin, Wu/Shanghainese,
Cantonese, Fujienese, Hakka, etc.

3. Script: Generally computers deal with written language, even in text-to-speech or vice versa
(where the text is being converted to or from written form). Thus in addition to language we
may need information on the script in which a language is written. This cannot always be
inferred from language—for example, the Azerbaijani language can be written in Arabic or

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 3

may need information on the script in which a language is written. This cannot always be
inferred from language—for example, the Azerbaijani language can be written in Arabic or
Cyrillic script; Malay can be written in Arabic or Latin, and even when a language has only one
“natural” script, it may be written in transliterated form (e.g. Japanese or Russian in Latin
script). A draft standard ISO 15924 defines 2-letter (and 3-letter) codes for about 90 scripts,
and suggests another 90 or so that might need codes (although several of these are
questionable). Han, Hiragana, Katakana, Bopomofo, and Hangul are all treated as separate
scripts, but the ISO codes provide aliases for sets of these, e.g. Ja for Han + Hiragana +
Katakana.

4. Script variant: As with language, the ISO script codes do not provide enough information to
discriminate among all of the script variants that affect computer processing—for example, the
distinction between use of simplified or traditional characters for Chinese; the distinction
between monotonic and polytonic Greek.

5. Region: A country, territory, or region. ISO 3166 defines a list of codes consisting of two or
three ASCII letters (usually shown in upper case). There are currently ISO codes for about 240
countries, territories, and other regions (covering all existing countries); ISO updates the list
periodically as countries split or merge. The 2-letter codes are used to specify country in UNIX
and Java; they are used to specify a regional language variant (such as U.S. English versus
Canadian English versus British English) in Internet language tags (in this case they are
supposedly being used as language variant specifiers rather than region specifiers, although
their interpretation is often overloaded to imply region as well). The region specifier can affect
choices such as local currency symbol which are independent of language.

6. Region variant: Any necessary variant. This could be used. for example, to subdivide
countries by time zones, or to distinguish regions without separate ISO codes.

Elements 1-4 specify a “writing system”. Language tagging of text could use either a writing
system tag or a language tag (elements 1-2), since in the latter case the script could be inferred from
the characters themselves.

Language, script and region can be treated independently; any combination is theoretically possible.
For example: Yiddish language in Hebrew script with U.S. formats for numbers and currency,
Yiddish language in Latin script with U.S. formats, Yiddish language in Katakana script with
Japanese formats, etc.

Locale tags need not specify all of the elements listed above; default values can be inferred for many
of the elements. For example, if the language is English and the script is not specified, then Latin
script can be assumed for output, and for existing text the script of the actual characters can be
used. Furthermore, many locale-sensitive operations do not depend on some of the locale elements.
For example, number formatting may only be sensitive to region; collation may only be sensitive to
language.

On the other hand, some classes of locale-sensitive operations require additional specifiers beyond
the six elements above. For example, several types of collation may be available for some
languages. For western languages these might include dictionary order, bibliographic order,
telephone book order, etc. For Han character sorting in East Asian languages these might include
code order, radical-stroke order, stroke-radical order, and pronunciation order (several options for
this in Japanese). Date and time formatting may allow specification of calendar, which in turn may
provide several formatting options. These are operation-specific variants.

B. Specifying locales - examples
1. UNIX (POSIX, X/Open): A string of the form "ll_CC.charset" where "ll" is an ISO-639

2-letter code, "CC" is an ISO 3166 country code, and "charset" specifies a particular character
encoding (no ISO standard for this): for example, "en_CA.ISO8859-1" . For certain operation

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 4

operation classes, variants can be specified by appending "@" followed by the variant name: e.g.
(for collation) "en_CA.ISO8859-1@dictionary" .

2. Java: A string of the form "ll_CC_variant" in which "_variant" is optional and possibly
implementation-specific. For Java, of course, the charset is Unicode.

3. Internet: RFC 1766 specifies a mechanism for language tags (the mechanism is sometimes
overloaded and also interpreted as a region specifier). The tag is an ASCII string consisting of a
primary tag (1-8 letters) and optional subtags separated by hyphen. Usually the primary tag is a
2-letter code from ISO 639 and the first subtag is a 2-letter country code from ISO 3166. Non-
country-code subtags can also be used to distinguish dialects, script, etc. The primary tag may
be "x-" (private tag) or "i-" (IANA tag), in which case the next tag may be a non-ISO
language specifier. Examples: "en-US" , "i-cherokee" , "az-arabic" vs. "az-cyrillic" ,
"no-nynorsk" .

4. Windows: Win32 uses a 16-bit language ID (LANGID) consisting of a 10-bit primary
language ID and a 6-bit secondary language ID. The secondary language may imply dialect,
country, script, or encoding. The full LANGID always implies a particular set of encodings.
Win32 also uses a 32-bit locale ID (LCID) consisting of a LANGID plus a 4-bit sort ID (i.e. a
sorting variant) and 12 reserved bits.

C. Locale data organization and use - examples
Here we need some examples before the general discussion.

1. UNIX

In UNIX a locale is a collection of certain types of data which apply to a language and region. This
data is located in one or more text files in particular directories (which depend on the specific UNIX
implementation). UNIX defines the categories of data and the formats in which it is specified. Two
categories are worth special mention:

• UNIX locales specify a particular character encoding, and one category of UNIX locale data is
character classification (e.g. identifying a particular character as whitespace, digit, letter, etc.).
This is something that is not really dependent on language or region per se, so putting it in the
locale data is dubious. It is also irrelevant for a Unicode-based approach.

• UNIX locales also specify the text of system messages. This is really user-interface localization
data, and does not affect the operation of locale-sensitive text operations. Having this
information in the locale is also questionable.

For each category, UNIX provides an environment variable that users (or programs) can set to a
particular locale in order to specify the behavior for operations that depend on that category:

• LC_CTYPE: Character classification, case conversion, etc. (depends on encoding).
• LC_COLLATE: Collation (depends on language).
• LC_TIME: Formats for dates and times (depends on region); includes month and day names

(and so depends on language too).
• LC_NUMERIC and LC_MONETARY: Formats for numbers and currency amounts

(depends on region).
• LC_MESSAGES: Localized text for system messages (depends on language); does not affect

the behavior of text operations.
There are several environment variables that determine which locale is used for a particular
operation; these variables can be set to particular locales by users with the setenv command, or by
programs with the setlocale() function. If the variable LC_ALL is set to a locale, then all
operations use that locale. Otherwise, if the relevant category variable for an operation is set to a
particular locale, the operation uses that locale. If none of these variables are set, the operation uses
the locale specified by the LANG variable. Using different locales for different categories can be

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 5

problematic, since there is some interdependence (especially between LC_CTYPE and the other
categories).

Locale-sensitive functions such as strcoll() do not have a locale parameter, they use the locale
determined by the above procedure.

2. Java

From the Java 1.1 Internationalization Specification and the Java Locale class description:

“In Java, a locale is simply an identifier for a particular combination of language and
region. It is not a collection of locale-specific attributes. Instead, each locale-sensitive class
maintains its own locale-specific information…A locale is the mechanism for identifying the
kind of object [e.g. Collator, NumberFomat] that you would like to get. The locale is just a
mechanism for identifying objects, not a container for the objects themselves.
“Java programs are not assigned a single global locale. All locale-sensitive operations may
be explicitly given a locale as an argument…While a global locale is not enforced, a system
wide default locale is available for programs that do not wish to manage locales explicitly. A
default locale also makes it possible to affect the behavior of the entire presentation with a
single choice.”

There are functions to return user-visible names in a specified language for each part of a locale
identifier—language code, country code, or variant string—as well as for the whole locale.

“Each class that performs locale-sensitive operations allows you to get all the available
objects of that type. You can sift through these objects by language, country, or variant, and
use the display names to present a menu to the user.”

For example, the Collator() class includes (1) a getAvailableLocales() method to get the set of
Locales for which Collators are installed; (2) a getInstance(opt Locale) method which gets the
Collator for the specified locale if the optional Locale parameter is present, or gets the Collator for
the current default Locale if the Locale parameter is not present.

“Java’s design means that there does not have to be a single set of supported locales, since
each class maintains its own localizations.”

3. Mac OS X

The locale mechanism for OS X Core Foundation and Cocoa is not finalized. However, one
proposal is to use the CFDictionary type. Locale primitives would return a CFDictionary that
corresponds to a particular language or to a particular region. Locale-sensitive operations would
have a CFDictionaryRef parameter; clients could also extract the values for particular locale items
from the CFDictionary.

The language-specific data and region-specific data would be stored in files in known directories.
The information they contain may be overridden by user and corporate preferences in files in other
known directories.

4. Windows

The full LANGID always implies a particular set of encodings (as in UNIX). LANGIDs can be
used to retrieve language-specific user-interface elements (also as in UNIX).

Win 95 and NT both have the notion of a “system locale” and a “user’s default locale”; the latter
can be changed by a user using the International control panel. This control panel lets a user set
their default country, language, keyboard layout, measurement unit, and various formats. NT also
has the notion of a thread locale, which can be set programmatically; this is the locale that is
supposedly used in retrieving language-specific user interface elements in NT.

Locale-sensitive APIs have a LCID parameter.

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 6

Locale-sensitive APIs have a LCID parameter.

The EnumSystemLocales function is an overall enumerator for installed locales, while the
GetLocaleInfo function can be used to obtain information about a specific locale (such as its default
Windows code page).

D. Locale data organization and use - discussion
From the above examples we can extract some relevant points of similarity and axes of
differentiation about various locale approaches.

1. Locale tags: Number or string?

While it is convenient to use a number to represent a language or locale, as with the Windows
LANGID and LCID or with the current Mac OS language and region codes, this implies
maintaining a custom enumeration of these codes. ISO already has the task of providing a standard
way to identify languages and regions, and there is no need to duplicate this effort.

Most of the inconvenience associated with using a string can be avoided by having a way to convert
locale tag strings into a temporary scalar value that is valid for at least the life of a program, and
using this instead.

2. Locales: System-wide data collections or not?

In UNIX (and potentially Mac OS X), a locale is explicitly a collection of data which is used for
various locale-sensitive operations; the CFDictionary in Mac OS X would even provide a type for
referencing this collection. With this model, it is possible to provide a system-wide enumeration of
locales. This corresponds to a column-oriented view of the diagram below.

In Java, a locale is explicitly just the tag used to specify the behavior of a class of operations. Each
class may support a different set of locales, and each class is responsible for managing the storage
of its own locale data. There is no collection type for locale data. It is possible to enumerate the
supported locales for a particular operation class only. This corresponds to a row-oriented view of
the diagram below.

fr_FR jp_JPLocale tag

GetCollator

en_US

string string string

Collator * Collator * Collator *

GetCurrencySymbol

In either case, data may be stored in text files or binary files, with a public or private format; it may
be stored in a single file or in a set of files, in a declared location or not.

Relevant issues for deciding among these approaches are:
• Is it easy to add support for new types of locale-sensitive operations, which require new types

of data (operation extensibility)?
• Is it easy for users to add support for new locales (locale extensibility)?
• Many locales will differ in only a small way from some other locale. Can locales inherit from

other locales or specify a parent locale? This can help minimize redundant data.
• Does the mechanism integrate smoothly with mechanisms for user preferences and defaults

(after all, choosing preferred locales is one aspect of user preferences, along with choosing user
interface localization, etc.)?

3. Locale defaults

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 7

A locale system must provide a way to establish defaults. These can include:
• A system default.
• A user default or user preference. This may be global (i.e. they specify an entire locale that

overrides the system default) or individual (they specify preferences for individual items, which
override the values from the system default).

• A program preference. A program can specify a preferred locale for all of its operations (e.g.
UNIX setlocale), or can specify a locale for each locale-sensitive operation (as in Java).

4. Using locales in APIs

There are several ways in which locales can be handled in APIs for locale-sensitive operations such
as collation. The first three can be used with any locale model.

a) No locale parameter (as in UNIX strcoll); API uses a default established some other way.
b) API takes a locale tag:

CompareStrings(string1, string2, localeTag);
c) API takes an object specific to operation and locale tag: One API obtains an object (immutable)

or creates an object (mutable) that is specific to the locale tag and operation class, another API
uses that object to perform the desired operation. This can be faster if several similar operations
will be performed. Also, if the object is mutable, there can be additional APIs that operate on the
object to customize or tailor it in various ways.

collatorObject = GetCollator(localeTag); // or CreateCollator
// Here we could have functions that operate on the collatorObject
CompareStrings(string1, string2, collatorObject);
// we may need to dispose the collatorObject if mutable

UNIX uses approach (a) above, Java uses approaches (b) and (c), Windows mainly uses (b).

If locales are system-wide collections and if there is a type—such as a locale object—that refers to
this collection, then the following approaches are also possible.

d) API takes a locale object:
localeObject = GetLocale(localeTag);
CompareStrings(string1, string2, localeObject);

e) API takes an object specific to operation and locale object:
localeObject = GetLocale(localeTag);
collatorObject = GetCollator(localeObject);
CompareStrings(string1, string2, collatorObject);

II. Mac OS 8.6 and 9.0 implementation information

A. General approach
1. Goals

The locale system for Mac OS 8.6 and 9.0 is intended to be adequate for the needs of the Unicode
Utilities in those releases, while allowing enough future flexibility to be adaptable to the various
“virtual platforms” supported on Mac OS X: Java, Cocoa, etc. It may be layered on top of these
platforms or layered underneath them (i.e. used to support those platforms). Thus we have the
following principles:

• Do not have APIs inconsistent with the Java approach to locales.
• For now, do not expose formats for locale data, so that these can be changed easily in the future.
• In the longer term, strive for sharing of locale data among as many virtual platforms as possible.

In addition, we have the following general goals:

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 8

possible.
In addition, we have the following general goals:

• Make it easy to add new locales, modify existing locales, or add information to existing locales
(in order to support new operation classes, for example).

• Minimize duplication of data in multiple locales: provide a mechanism so data can be used by
multiple locales, or so locales can inherit data from a parent locale.

2. Locale tags

Locales are specified using the six-part scheme described in section I.A, in which some parts may
be empty. There are two types of locale tags, a locale part string and an opaque LocaleRef.

The locale part string is an ASCII string whose full form is “lan-var.sc-v_rg-v”, where “lan-var”
specifies the language and variant, “.sc-v” specifies the script & variant, and “_rg-v” specifies the
region and variant. Any of those three parts can be omitted; furthermore, the variant part “-var” or
“-v” within any of those parts may be omitted. This string format is generally consistent with both
the Internet language tag format and the POSIX/Java locale string format, except that the script part
of a locale part string replaces the charset part of a POSIX locale string (since often the POSIX
charset also serves to indicate script, and since the Mac OS locale system only supports utilities that
use Unicode). The locale part string can be used to tag or specify language or locale in persistent
storage. In APIs it is passed as

const char localeString[]

A LocaleRef is an opaque type which—in different system versions—could be a pointer, handle, or
offset. It has the following typedef:

typedef struct OpaqueLocaleRef* LocaleRef;

It is valid at least during the lifetime of an application. However, it is not suitable for use in
persistent storage, since it is not necessarily meaningful across multiple launches of an application.

There are functions to convert a locale part string—or an Internet language tag or POSIX/Java
locale string—to a LocaleRef (there are also functions to convert Mac OS language or region codes
to a LocaleRef). The LocaleRef is more convenient to pass in APIs, and the locale-sensitive
Unicode Utilities APIs typically take a LocaleRef parameter. There are also functions to convert a
LocaleRef back to a locale part string for persistent storage.

During the lifetime of a single boot there is a one-to-one relationship between a particular locale and
a particular LocaleRef; two LocaleRefs constructed from equivalent source (e.g. equivalent strings)
will be identical. Applications should never save LocaleRefs in a file or other persistent storage;
instead, applications can save the original number or string used to construct the LocaleRef, or they
can convert a LocaleRef to a locale part string containing the parts they care about and save the
locale part string.

3. Locale-sensitive operation classes and locale variants

Locale-sensitive Unicode Utilities operations fall into several classes, such as collation, text break
determination, date and time formatting, etc. The LocaleOperationClass type is used to specify such
as class:

typedef FourCharCode LocaleOperationClass;

The specific LocaleOperationClass values depend on the Locales client. Examples (from Unicode
Utilities) include:

kUnicodeCollationClass = 'ucol'
kUnicodeTextBreakClass = 'ubrk'

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 9

For some of these classes (such as collation), an operation-specific variant field can be used in
addition to the LocaleRef. For collation, this might specify dictionary vs. bibliographic, or radical-
stroke vs. pinyin, etc. This is analogous to the “@variant” part of a POSIX locale string or the
final “_VARIANT” part of a Java locale string.

typedef FourCharCode LocaleOperationVariant;

4. Locale data

A new special folder for locale data was introduced with Mac OS 8.6. The English name of this
folder is “Language & Region Support”; it is located at the top level of the System folder. It is
supported by the Folder Manager, and has the folder type kLocalesFolderType = 'ƒloc' .
Locale data is mainly in files of type 'lcfl' , with creator 'lcal' ; such files are autorouted to the
Language & Region Support folder.

A fallback locale in the System resource map provides default data for each supported locale-
sensitive operation: collation, text break location, and so on. It also provides the localized names for
operation classes.

Data for a particular locale can be spread among several files in this folder. Locale data such as a
collation table can be shared among several locales. The formats of locale files, resources, and tables
are currently private to provide flexibility for changes in future Mac OS releases.

The locale data in Mac OS 8.6 and 9.0 supports at least the following languages: Chinese
(Mandarin in both simplified and traditional characters), Danish, Dutch, English, Finnish, French,
German, Italian, Japanese, Korean, Norwegian, Spanish, Swedish.

5. Locale defaults

A LocaleRef of NULL implies system default locale. This is the locale associated with the system’s
user interface localization (i.e. the language of the Finder), updated by any selections the user has
made in the appropriate control panel. For example, the system default collation is affected by the
choice of text behaviors in the Text control panel.

6. Locale-sensitive APIs

The Unicode Utilities in Mac OS 8.6 and 9.0 use the API style described in I.D.4.c above: A create
API creates a mutable object that is specific to the locale tag and operation class, another API uses
that object to perform the desired operation, and finally a dispose API disposes the mutable object.

For example, to create a collator object for the French/France locale and for a particular variant:

status = LocaleRefFromLangOrRegionCode(langFrench, verFrance, &locale);
// or
status = LocaleRefFromLocaleString("fr_FR", &locale);
// then
status = UCCreateCollator(locale, opVariant , options, &collatorRef);

To create a collator object for the default locale, default variant:

status = UCCreateCollator(NULL, 0, options, &collatorRef);

To use the collator object and then dispose it:

status = UCCompareText(collatorRef, … /* strings & result pointer */);
status = UCDisposeCollator(&collatorRef);

7. Error codes

enum {

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 10

kLocalesBufferTooSmallErr = -30001,
kLocalesTableFormatErr = -30002,
kLocalesDefaultDisplayStatus = -30029

};

These are explained in relation to the functions that return them.

8. Interface files
• Include file: MacLocales.h.
• Stub library for linking: LocalesLib
• Implementation library: LocalesLib

B. Manipulating locale tags
These functions convert among LocaleRefs, locale strings, and numeric language and locale codes.

1. Converting Mac OS Language and Region codes to LocaleRefs

OSStatus LocaleRefFromLangOrRegionCode(LangCode lang, RegionCode region,
LocaleRef *locale);

Callers can specify either lang or region or both. The constant kTextLanguageDontCare is used
for an unspecified language, and the constant kTextRegionDontCare is used for an unspecified
region (these constants are in TextCommon.h).

LocaleRefFromLangOrRegionCode can move memory, so the locale parameter should not point to
memory that can move.

The function returns paramErr if neither lang nor region is specified, or if both are specified but
they are inconsistent, or if a specified lang or region is invalid. It also returns paramErr if the locale
parameter is NULL. It can also return memory errors or resource errors. Finally, if the resources
used for mapping language and region codes are invalid, it can return kLocalesTableFormatErr (in
Mac OS 8.6, paramErr is returned for this instead).

2. Converting strings to LocaleRefs

OSStatus LocaleRefFromLocaleString(const char localeString[],
LocaleRef *locale);

The localeString parameter is an ASCII string containing an Internet RFC 1766-style language tag,
or a POSIX-style or Java-style locale string, or a Mac OS locale part string.

LocaleRefFromLocaleString can move memory, so the locale parameter should not point to
memory that can move.

The function returns paramErr if the localeString or locale parameters are NULL, or if the
localeString is malformed. It can also return memory errors .

3. Converting LocaleRefs to locale part strings

The following API is for getting identifying information out of a LocaleRef in a standardized string
format (for program usage, not for user display):

typedef UInt32 LocalePartMask;
enum { // bit set requests the following:

kLocaleLanguageMask = 1L<<0, // ISO 639-1 or -2 language code
kLocaleLanguageVariantMask = 1L<<1, // custom string for language variant
kLocaleScriptMask = 1L<<2, // ISO 15924 script code
kLocaleScriptVariantMask = 1L<<3, // custom string for script variant

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 11

kLocaleRegionMask = 1L<<4, // ISO 3166 country/region code
kLocaleRegionVariantMask = 1L<<5, // custom string for region variant
kLocaleAllPartsMask = 0x0000003F // all of the above

};

OSStatus LocaleRefGetPartString(LocaleRef locale, LocalePartMask partMask,
ByteCount maxStringLen, char partString[]);

The bits set in partMask determine which parts will be included in the returned string. The caller
provides storage of at least maxStringLen bytes for partString; maxStringLen should be at least 4
times the number of parts requested. The full form of the returned string is “lan-var.sc-v_rg-v”
where “lan-var” specifies the language and variant, “.sc-v” specifies the script & variant, and
“_rg-v” specifies the region and variant. Fields not selected by the partMask (and any field
separator that precedes them) will not be included in the actual returned string.

The function returns paramErr if the partString parameter is NULL, or if the locale is invalid. It
returns kLocalesBufferTooSmallErr if maxStringLen is too small for the requested string.

4. Converting strings to Mac OS language and region codes

This function is only available in Mac OS 9.0 and later.

OSStatus LocaleStringToLangAndRegionCodes(const char localeString[],
LangCode *lang, RegionCode *region);

This API maps from a locale string (which may be a part string obtained from
LocaleRefGetPartString) to a combination of Mac OS language code and region code. Either the
lang or the region parameter (but not both) can be NULL if the caller is not interested in that value.

If the localeString parameter is NULL or the string cannot be mapped to an existing language code
and region code, the function returns paramErr . If the required resource is invalid, the function can
return kLocalesTableFormatErr . The function can also return Resource Manager errors.

C. Enumerating supported locales
There are no APIs that provide system-wide enumeration of all supported locales, since this is
inconsistent with the Java approach. The following APIs enumerate the supported locale & variant
combinations for a particular class of operations, such as collation.

Some applications may want to display the list of locales and corresponding operation variants
available for a given operation class, such as in a menu that permits users to choose desired
behavior. There are two approaches to doing this:

• As a flat list of all available locale and variant combinations
• As a hierarchical list in which the user first selects a locale and then selects from among the

variants available in this locale.
The functions below (as well as the name functions in the next section) return flat lists as in the first
approach above. However, it is fairly easy to construct a hierarchical list by parsing the flat list.

1. Count locale and variant combinations

This function counts the total number of locale and variant combinations available for a given
operation class. It should be called before LocaleOperationGetLocales in order to determine how
much memory to allocate for the list.

OSStatus LocaleOperationCountLocales(LocaleOperationClass opClass,
ItemCount *localeCount);

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 12

The function returns paramErr if opClass is 0 or if the localeCount parameter is NULL.

2. List locale and variant combinations

This function fills out a list of all the locale and variant combinations available for a given operation
class. The locale and variant combinations are specified using the LocaleAndVariant type (The
opVariant field of LocaleAndVariant may be 0 for entries that do not have a specific opVariant.).

struct LocaleAndVariant {
LocaleRef locale;
LocaleOperationVariant opVariant;

};

OSStatus LocaleOperationGetLocales(LocaleOperationClass opClass,
ItemCount maxLocaleCount,
ItemCount *actualLocaleCount,
LocaleAndVariant localeVariantList[]);

The caller allocates a LocaleAndVariant array of dimension maxLocaleCount and passes it to the
function; the caller should use LocaleOperationCountLocales to determine the size of array to
allocate.

If maxLocaleCount is too small for all of the locales, LocaleOperationGetLocales returns
kLocalesBufferTooSmallErr .

The function returns paramErr if opClass is 0 or if either the actualLocaleCount or localeVariantList
parameter is NULL.

D. Obtaining localized names for locales and operation classes
This section describes three groups of functions.

• For a particular locale and operation variant, there are functions to obtain the corresponding
name as localized for a particular display locale, or to iterate through all of the available display
locales for the corresponding names as localized in each of the display locales.

• For a particular operation class, there are functions to obtain the corresponding name as
localized for a particular display locale, or to iterate through all of the available display locales
for the corresponding names as localized in each of the display locales.

• There is a special convenience function that, for a particular Mac OS region code, returns the
name of the corresponding language in that language and in the non-Unicode Mac OS text
encoding used for that region.

In some languages, the name for a language or locale may have several different grammatical forms;
the correct form depends on the usage or context. For example, Swedish uses different forms of a
language name depending on whether the name is applied to a collation order, to text break rules, to
keyboard layouts, etc. The functions described here do not provide a way to specify such context
information, and only return one form of a language or locale name; this is typically the form that
would be used for the isolated language name. However, this form will not be the correct form for
some usages in some languages.

Addressing this in a future Mac OS release will require providing another group of functions that
combine the capabilities of the functions in the first two groups above.

1. Obtaining the localized name for a locale and/or variant

The following functions are for obtaining the localized name(s) for a locale, a locale and variant
combination, or a variant alone. The functions are somewhat similar in usage to the ATSUI

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 13

functions ATSUFindFontName, ATSUCountFontNames, ATSUGetIndFontName.

The LocaleNameMask type is used to specify which parts of the name are requested: The name of
the locale alone, the name of the operation variant alone, or the name for the combination.

typedef UInt32 LocaleNameMask;
enum { // bit set requests:

kLocaleNameMask = 1L<<0, // name of locale
kLocaleOperationVariantNameMask = 1L<<1, // name of LocaleOperationVariant
kLocaleAndVariantNameMask = 0x00000003 // all of the above

};

OSStatus LocaleGetName(LocaleRef locale, LocaleOperationVariant opVariant,
LocaleNameMask nameMask, LocaleRef displayLocale,
UniCharCount maxNameLen, UniCharCount *actualNameLen,
UniChar displayName[]);

The locale and opVariant parameters indicate the locale and operation variant for which the name is
requested. The displayLocale parameter indicates the requested language for the name. If
LocaleGetName cannot find a name that matches the requested displayLocale, it will use a name in a
default displayLocale and return kLocalesDefaultDisplayStatus .

If maxNameLen is too small for the requested string, then LocaleGetName returns
kLocalesBufferTooSmallErr .

To count and index through all available names, the following functions can be used.

OSStatus LocaleCountNames(LocaleRef locale, LocaleOperationVariant opVariant,
LocaleNameMask nameMask, ItemCount *nameCount);

OSStatus LocaleGetIndName(LocaleRef locale, LocaleOperationVariant opVariant,
LocaleNameMask nameMask, ItemCount nameIndex,
UniCharCount maxNameLen, UniCharCount *actualNameLen,
UniChar displayName[], LocaleRef *displayLocale);

For LocaleGetIndName, the nameIndex ranges from 0 to nameCount -1 as in
ATSUGetIndFontName; this is different from the index use in GetIndResource (for example). The
displayLocale parameter indicates the language of the current name.

If maxNameLen is too small for the requested string, then LocaleGetIndName returns
kLocalesBufferTooSmallErr .

All of the functions described in this section can move memory.

2. Obtaining the localized name for an operation class

There is a parallel set of functions to get the localized name(s) for an operation class.

OSStatus LocaleOperationGetName(LocaleOperationClass opClass,
LocaleRef displayLocale, UniCharCount maxNameLen,
UniCharCount *actualNameLen, UniChar displayName[]);

OSStatus LocaleOperationCountNames(LocaleOperationClass opClass,
ItemCount *nameCount);

OSStatus LocaleOperationGetIndName(LocaleOperationClass opClass,
ItemCount nameIndex, UniCharCount maxNameLen,
UniCharCount *actualNameLen, UniChar displayName[],
LocaleRef *displayLocale);

All of the functions described in this section can move memory.

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 14

3. Obtaining the localized language name for a region

This function is only available in Mac OS 9.0 and later.

OSStatus LocaleGetRegionLanguageName(RegionCode region, Str255 languageName)

Given a region code, this convenience API returns a string containing the name for the
corresponding language in that language and in the appropriate Mac OS encoding for that region.

This function can move memory.

11/2/99 Preliminary draft. © Apple Computer, Inc. Page 15

