

TECHNOTE: System 7.5.5

Technote 1069 SEPTEMBER 1996

By Brian Bechtel
devsupport@apple.com
Apple Developer Technical Support (DTS)

System 7.5.5 includes changes to the Virtual Memory Manager, some substantial Code
Fragment Manager improvements, and a variety of enhancements and improvements. We
recommend this update for all Macintosh computers running System 7.5.3. System 7.5.5
will only install on a Macintosh or Mac OS- compatible computer running some version of
System 7.5.3. If you are running an earlier version of System Software, you need to upgrade
to System 7.5.3 before you can install System 7.5.5.

CONTENTS

About System 7.5.5 Features
Future System Software Support
What Happened to System 7.5.4?
Detecting System 7.5.5

About System 7.5.5 Features

Virtual Memory

We rewrote parts of the Virtual Memory Manager for all machines that can support virtual
memory. Performance using virtual memory should be substantially improved. When
compared to the currently shipping virtual memory, when VM is turned on, the system
boots up faster, Power Macintosh applications launch faster, and QuickTime movies play
smoother. The following sections describe some of the features of this new VM.

VM Performance Issues

We improved the page aging algorithm.

Every 8 page faults, we aged the physical RAM pages and refilled the "victim" list
consisting of the pages that are to be replaced in the next 8 page faults. The function
which did this could take up to 46 ms to age 48 MB of RAM on a Power Macintosh
7500.
We replaced the algorithm used by this function with a much simpler and faster
algorithm. Worst case for the new algorithm is about the same as the current
algorithm because it only has to look at every physical page about once. The pause

every 8 page faults is gone.

Pages are written to disk multiple times because the act of writing a page to disk marks the
virtual memory page dirty.

When a dirty logical page is replaced, a virtual memory optimization finds up to 6
additional dirty pages contiguous in the virtual memory backing store file, marks
the pages clean, and then writes them out to disk with a single write request. Since
it's likely that dirty logical pages close to a dirty logical page will have a similar "age"
and thus will likely be replaced in the near future, too, this optimization will likely
make future page faults faster.

However, LockMemory marks all of the pages locked as dirty and since LockMemory
is called on pages written by DMA I/O devices, the just-cleaned pages are dirtied
when they are written. That results in an I/O trace to the virtual memory backing
store file that can look something like "write 7 pages, read one page, write 7 pages,
read one page " instead of the intended "write 7 pages, read 1 page, read 1 page, read 1
page, read 1 page, read 1 page, read 1 page, read 1 page, write 7 pages, read 1 page..."

New VM API call

A new API call, LockMemoryForOutput, has been added to the _MemoryDispatch trap. This
new routine works exactly like LockMemory except that it does not dirty the locked pages.
LockMemoryForOutput is meant to be used for DMA operations that just read memory.
DMA operations that write to memory must use LockMemory to ensure that the pages are
marked dirty. LockMemoryForOutput is called through the _MemoryDispatch trap using
selector 10.

The following glue will be added to Memory.h for the new call:

/* Lock memory for output */
#pragma parameter __D0 LockMemoryForOutput(__A0, __S1)
extern pascal OSErr LockMemoryForOutput(void *address, unsigned long count)
TWOWORDINLINE(0x700A, 0xA05C);

Developers can determine if LockMemoryForOutput is available by testing for the
gestaltVMHasLockMemoryForOutput bit (bit 1) in the gestaltVMAttr Gestalt selector. If bit 1
is set, LockMemoryForOutput is available.

VM Bug Fixes

System stability improvements

We fixed several internal calls which had the potential of hanging or crashing your
machine when passed invalid arguments. Because of a bug in VM, CFM could
occasionally leave a file open when it should not be left open. Several crashing
conditions in HoldMemory and LockMemory were repaired. Other fixes which had

previously been made in PowerPC VM were rolled into 68K VM as well.

Added two new SysError values

If VM's deferred user function table ran out of entries, VM would trash low memory
starting at location 0. We now call SysError with dsVMDeferredFuncTableFull (112)
instead of trashing memory off of a NULL pointer. You can get this error in several
ways. One way is to defer already-deferred i/o requests. Another way is to install a
Time Manager task which has already been installed.
VM was ignoring all errors while reading or writing to the "VM Storage" backing
store file. If there was an error, the system would likely crash later with a seemingly
unrelated problem. There's no way to continue or recover if this happens, so VM
now calls SysError with dsVMBadBackingStore (113) instead of continuing on with a
bad page or memory. This error can happen whenever your backing store volume
returns an error. Examples can be genuine disk i/o errors, losing battery power on a
SCSI-disk-mode PowerBook, turning off an external hard disk which contains your
backing store, and so forth.

Calls which may be deferred to VM safe time

The following parts of the system are patched by virtual memory so that they may
possibly be deferred to VM safe time:

PostEvent
Time Manager tasks
Read, Write, Control, & Status driver calls
VBL tasks
Slot VBL tasks
ADBOp
SCSIDispatch

Inside Macintosh:Memory page 3-11 has a discussion of page faults and deferring user
code while the driver of the paging device in busy. The list on page 3-12 is
incomplete; the types of code listed above are a more complete list, based on the
current VM sources.

VM now holds some stack for Control and Status calls

VM now holds 2K of stack for all _Control and _Status calls. This 2K of stack was
previously being held for _Read and _Write calls.

These changes apply to all machines which can run virtual memory (i.e., all machines
except the Macintosh Plus, SE, Classic, LC, Portable, PowerBook 100, or Macintosh II without
a PMMU).

Code Fragment Manager

We now load libraries better in low memory situations when virtual memory is off. This
should help products which use a fair amount of memory (e.g., multimedia games) on small
memory configuration entry-level Macintosh computers. In particular, a "private copy" of
the code for a shared library is now placed in the application heap if there is sufficient room
in the application heap, but there is no room in temporary memory or the system heap. The
Code Fragment Manager will use no more than the difference between the minimum
memory partition size and the actual memory partition size for this private copy.

We bypass the file system cache (using the technique documented in Inside Macintosh:Files
on page 2-95) when reading fragments in memory. We use BlockMoveData in more places.
These changes result in faster application loading.

A possible confusing issue for developers is that the Code Fragment Manager may return
different error codes under System 7.5.5 than it did under System 7.5.3 or earlier, especially
in the case of a missing weakly imported library (called a soft import in Inside
Macintosh:PowerPC System Software.) The error code returned will depend upon the
options passed to GetSharedLibrary. In particular the errors cfragNoLibraryErr (-2804) and
cfragLibConnErr (-2817) might be returned for very similar reasons. Developers should treat
these errors as interchangeable. You should check for the existence of weakly imported
symbol by using the code in Inside Macintosh: PowerPC System Software on page 1-25, rather
than by calling GetSharedLibrary and depending upon a specific error code being returned.

These changes apply to all PowerPC based Macintosh computers. There are no changes to the
68K version of the Code Fragment Manager in this release.

Modern Memory Manager

If an application tried to allocate a small negative amount of memory it would crash with a
type 11 error. Inside the Modern Memory Manager, we changed a local variable from signed
long to unsigned long, and added checking for overflow from high positive numbers to low
negative ones. This affects all PowerPC Macintosh computers.

Background-Only Applications

If two (or more) background-only applications were running and both called MaxApplZone,
the system would hang, because the Process Manager was not correctly saving and restoring
the process state for each application. (This is the bug documented in Technote PS 2,
"Background Only Applications.") This bug had existed since the introduction of faceless
background applications. We now correctly save and restore the process state for each
application. This affects all machines.

Floppy disk insertion and asynchronous i/o bug

On a Macintosh 6100, 7100, or 8100 machine, when a floppy disk was inserted and there was

asynchronous file system activity going on, the machine could hang. An internal routine
was incorrect because the ROM was finalized while some experimentation was going on
with how the file system works. Machines with later ROMs are fine. We patch the
6100/7100/8100 ROM to bring this ROM family up to date. This only affects these three
classes of machine. It affects them at any clock speed.

Floppy disk formatting

On fast processors (180 Mhz or better, 604e), floppy disk formatting would sometimes fail
because the code didn't wait long enough to switch heads to the second side. This left the
second side unformatted. We changed the timing in the floppy disk formatting routines for
this case, and now format floppies correctly. Some machines may have an extension called
"PowerMac Format Patch" which does the same thing. If System 7.5.5 installer detects this
extension, it should delete it. (The extension will not install its code under System 7.5.5 or
later.)

Emulator cache flush bug

If the emulator was requested to flush a non-existing memory range, the emulator could get
stuck in an infinite loop. We now check the range to be flushed and exit if invalid memory
is specified. This fix affects the PowerBook 5300, 2300, and PCI-based desktop Macintosh
computers.

CalcCMask

When color searchprocs were used with CalcCMask the resulting bit mask was randomly
shifted to the left creating a jagged edge. This shifting effect was caused by a logic error in an
internal QuickDraw macro. The macro returned incorrect mask values (0 / 0xFF instead of 0
/ 1) to CalcCMask when the destination pixel depth was 1 bit.

File Manager flush bug

The File Manager was making a request to flush a non-existing memory range. Because of
the Emulator cache flush bug described above, the emulator would get stuck in an infinite
loop. We patch _GetFPos, _SetFPos, and _Read to fix this problem. This fix affects the
PowerBook 5300, 2300, and PCI-based desktop Macintosh computers.

Infrared Remote

On machines which support Infrared Remote Control, there were two problems which
could arise. If the CPU was powered up using the remote control, further remote control
commands were ignored. If the CPU was powered up normally via the keyboard, the
remote control commands would work correctly. However if the volume up or down
button was held down (causing repeated Infrared Remote commands) for a sufficient length
of time, infrared commands would stop working. This was caused by a patch which wasn't
getting installed under some circumstances. This fix applies to all machines which support
Infrared Remote Control.

LocalTalk DMA

Fixes a potential data corruption problem when the Macintosh 5400/120 is configured as
follows: as a server with multiple clients connected, and simultaneously as an Apple
Remote Access server with at least one Apple Remote Access client connected and that client
is logged onto a server via Apple Remote Access. When lots of traffic was being generated,
the clients could experience data corruption when copying files to or from the Macintosh
5400/120 server. We also fixed a problem where LocalTalk DMA 1.0 would load on machines
without the proper hardware.

IR Talk

System 7.5.3 Revision 2 forgot to include the control panel and driver for IR Talk, so a
machine which shipped with System 7.5.3 installed and upgraded directly to System 7.5.3
Revision 2 did not have the same IR Talk drivers as a machine which had System 7.5
Update 2.0 installed, or a machine which had System 7.5 Version 7.5.3 installed.

Ethernet on 5400/6400

On the Macintosh 5400 and 6400 models, the Ethernet support had a bug which manifested
itself on very busy Ethernets. These models could have slow communications because of
dropped packets. This was due to an internal setting which gave higher priority to certain
kinds of packets. Now all packets have the same priority.

SCSI Manager

Added a call to LockMemoryForOutput() as described in the Virtual Memory paragraph.

We changed the interrupt level at which SCSI completion routines get executed from level 2
to level 1. Because the interrupt level was at level 2 the SCSI completion routines slowed the
performance of expansion cards (such as video capture and sound cards) whose interrupt
level was also at level 2. This affects only PowerPC machines running a native version of
SCSI Manager 4.3.

We corrected several errors with the MESH SCSI Controller (found on the desktop PowerPC
Macintosh computers.) ACK could be released before REQ. There was a disconnect/reconnect
bug with reads on old tape drives. We could misread interrupts from the MESH chip.

We fixed two bugs related to the internal SCSI bus on PCI Macs with Fast SCSI. First, we
could occasionally mishandle a reconnect if it came in at precisely the same instant we were
attempting a new command on the bus. Second, there was a bug in the Mesh controller
which could cause it to give a command done interrupt before the target had released REQ.
On a fast machine it was possible to issue a new command to the chip while REQ was still on
the bus. The controller interpreted this as a new byte and we transferred it twice. This only
happens on asynchronous in phases such as message in, asynchronous data in or status
phase. The usual result of this bug was a hang. We now wait for REQ to be removed by the
device before issuing a new command to the chip.

Sharing printers

Under some conditions involving a blank name in Sharing Setup and the use of shared
printers, you could fail to print with a "Resource Not Found" error. This was because System

7.5 Update 2.0 deleted the blank Pascal string used by Sharing Setup. We reinstall the blank
user name string if it is missing. This would only affect some Performa users and some users
who had never set their user name, but upgraded with System 7.5 Update 2.0.

PCI startup hang

On 180 Mhz and faster PCI Macs, there was a bug initializing the PCI bridge chip. This made
the PCI bus inaccessible during system startup, resulting in a hang. We now initialize the PCI
bridge chip more reliably.

Interrupt Service Routines

If you exit an interrupt service routine at a lower interrupt level than that set when you
entered the routine, the interrupt level isn't cleared properly, and you won't process any
interrupts of lower priority until an interrupt of the original priority or higher is
encountered. This affects PCI Macs and Macs with PowerPC upgrade cards installed. The
work around for developers is to ensure that you exit any interrupt service routine at the
same priority as that which was set when you entered the routine. We fixed a Sound
Manager interrupt service routine which was doing this on desktop Macs with PowerPC
upgrade cards.

Control Panels and Shared Libraries

This was noticed during the testing of System 7.5.5. We discovered a third party control
panel which was linked with MathLib (probably because it linked with CLib.) Because
MathLib is also in ROM, space was allocated for the MathLib globals twice. Because control
panels run in the Finder process space, the MathLib globals space was allocated in the
Finder's application heap, not in the system heap.

On most machines, the MathLibs globals allocated by the ROM combined with the 22K of
MathLib globals allocated by the linked MathLib library are small enough to fit in the free
and purgable space left in the Finder's application heap. But on the PowerMac
7500/8500/9500, the MathLib globals allocated by the ROM are also 22K, and the combined
44K of MathLib globals uses all but a few bytes of the Finder's application heap. This results
in repeated "Out Of Memory" warnings whenever you try to do anything in the Finder.

Future System Software Support

With the release of System 7.5.5 Update, Apple is delivering its final system software release
for the Macintosh Plus, SE, Classic, Portable, PowerBook 100, SE FDHD, SE/30, LC, II, IIx, and
IIcx. These computers were not designed to support 32-bit memory addressing. Future Mac
OS releases will require 32-bit memory addressing, which is supported by all other
Macintosh models.

What Happened to 7.5.4?

System 7.5.4 was declared finished. Distribution to seed sites had already begun. A problem
was found which led to us halting distribution and revising the product. Rather than having
to struggle with two versions of 7.5.4 and the resulting confusion this would cause, we
decided to revise the product version number to 7.5.5.

The differences between 7.5.4 and 7.5.5 are

a revision to the IR Talk for the Macintosh 5400 and 6400 families
we save the VM preferences and chosen desktop pattern when installing on the
Macintosh 5400 and 6400 families
a minor revision of the Energy Saver control panel.

Detecting System 7.5.5

To distinguish between the multiple versions of system software, the 'sysu' Gestalt selector
has been provided. It returns the version number of the currently installed system update,
formatted according to the same conventions as the version numbering used in 'vers'
resources, as illustrated in Figure 1.

Figure 1

The format of the Gestalt response for the 'sysu' selector.

The presence of the 'sysu' Gestalt selector allows application programs to determine if the
current installed system software version was established using the system update. The
'sysu' Gestalt selector will only be defined if a system update package was used to establish
the current system version: the 'sysu' selector is not defined on machines shipped with
System 7.5.3 preinstalled, nor on system software versions earlier than 7.5.3.

Using the 'sysv' and 'sysu' Gestalt Selectors

Here is how you can use the 'sysv' and the 'sysu' Gestalt selectors to establish information
about System 7.5.5:

long response, updateversion;
OSErr err;
Boolean seven_five_five;
Boolean is_an_update;

seven_five_five = false;
is_an_update = false;

err = Gestalt(gestaltSystemVersion, &response);
if (err == noErr) {
 seven_five_five = (response == 0x00000755);
 if (seven_five_five) {
 err = Gestalt('sysu', &updateversion);

 is_an_update = (err == noErr);
 }
}
/* at this point, seven_five_five will be true if system 7.5.5
is the current operating system, and is_an_update will be true
if the current system version was established by update. if
is_an_update is true, updateversion will contain the System
update's version number (0x02068000 for 7.5.5). */

Acknowledgments

Thanks to Douglas Clarke, Jim Luther, Alan Lillich, Pete Gontier, Peter Bickford, Wayne
Flansburg, Matt Mora, Mike Bitz, Cameron Esfahani, Bo3b Johnson, Nitin Ganatra, Tim
Swihart, Quinn, John W. Baxter, Todd McDaniel, Kevin R. Boyce, and Bill Hofmann.

