
 

ð

 

 

       
2

T E C H N O T E :
Strategies for Dealing with
Low-Memory Conditions 

By Andrew Wulf
devsupport@applelink.apple.com

Apple Developer Technical Support (DTS)

One of the constants in writing software for the Macintosh is that sooner or 
later your application will run out of available memory. While applications 
running on other operating systems may use memory allocated from a global 
pool (backed by virtual memory), and can thus draw on an apparently limitless 
supply, each Mac application must work to avoid exhausting the fixed amount 
of memory the Process Manager gave it. Since Toolbox calls share the same 
heap with application calls, and parts of the Toolbox are notoriously poor at 
dealing with failed allocations, it’s essential that you put into place a robust 
strategy to manage the problem. Applications that fail under low-memory 
conditions are not very friendly.

This Technote describes various strategies your application might take in 
dealing with low-memory conditions. It is also useful as a 
1 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



               
memory-management primer for those developers starting out on the 
Macintosh, or porting applications from other platforms.

This Technote expands on the chapter “Introduction to Memory Management” 
in Inside Macintosh:Memory. You should read at least pages 1-37 through 1-49 as 
a background to this Technote. Also, information on 68K segmentation assumes 
that you’ve read chapter 7 of Inside Macintosh:Processes.

Maintaining a Memory Reserve 2

The primary strategy for dealing with low-memory conditions is to maintain a 
memory reserve. Out of this reserve you can supply sufficient memory for 
small to moderate-sized allocations, as well as provide information to the rest 
of your application. By checking your reserve, you can determine the status of 
your memory supply. As the reserve supply dwindles, your app can gracefully 
restrict what the user can do by limiting her choices, in addition to informing 
the user that she’s running out of memory. 

Using A Purgeable Cushion 2

The advantage of using a purgeable cushion technique lies in its simplicity: 
there’s little code to write. The disadvantage is that it can be difficult to ensure 
total safety when large portions of your application’s memory is allocated 
indirectly by the Toolbox.

To create the memory reserve, allocate a handle early in your app’s startup 
code. This handle should be in the range of 32K to 64K bytes in size, and 
should be marked as purgeable. When the Memory Manager later needs to 
create more free space, it will automatically purge any purgeable handles or 
resources. 

During the main event loop, the application can check to see if the handle has 
been purged (if its master pointer is zero, it’s been purged), and attempt to 
reallocate it with ReallocateHandle back to the original size. If this fails, then 
there is less than that amount of contiguous memory remaining, and the 
application can set a global flag to indicate that there is not enough memory to 
continue running as usual. It could then respond by warning the user to close 
documents, disabling menus that lead to memory-hungry functionality or in 
general keeping the user from pushing the limits of memory. When the handle 
2 of 12 Maintaining a Memory Reserve

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



 

 

            
can be reallocated again, the application can clear the global flag and reverse 
the steps it took earlier.

A useful technique is to only clear the global flag if you can recover the original 
memory plus an extra amount, as illustrated in the following code snippet: 

extern Handle gReserveHandle; 
if (*gReserveHandle == nil) 

{
ReallocateHandle(gReserveHandle, kReserveSize + kSlopFactor);
if (MemError()!= noErr) 

{
SetHandleSize(gReserveHandle, kReserveSize);
HPurge(gReserveHandle);
SetReserveWasRecoveredFlag();
}

}

If the application is running right at the edge of the low-memory condition, 
using a “slop factor” can keep the warnings to the user from reappearing too 
frequently as the application “teeters on the edge.”

How large to make the handle depends on your application’s needs. If large 
Toolbox data structures, such as GWorlds or pictures, can routinely consume all 
available memory, then a size larger than 64K may be necessary. The only way 
to know is to experiment with different sizes and test your application’s 
features near the limits of memory. If it dies, increase the reserve size; if it 
survives gracefully, you may try to lower the size.

Installing A Grow Zone Procedure 2

A slightly more complicated technique is to install a grow zone procedure 
using SetGrowZone. This procedure is called by the Memory Manager after it has 
exhausted all other strategies for finding free space, including purging 
purgeable handles and resources and compacting the heap. The grow zone 
procedure is called as the last resort. Often the grow zone procedure will have 
no idea whose allocation triggered the problem: it could be application code 
which will handle out-of-memory errors gracefully or Toolbox routines that fail 
to do any checking at all.
Maintaining a Memory Reserve 3 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



                           
Grow Zone Proc Strategies 2

The grow zone procedure can attempt to provide additional memory by simply 
freeing or marking purgeable a single “cushion” memory block and allowing 
the main event loop to attempt to reallocate it, as previously described. The 
grow zone proc could also shrink the cushion handle with SetHandleSize and 
attempt to grow it in the main event loop. 

The grow zone procedure can also undertake more complex and intelligent 
strategies to make memory available than the simple cushion techniques. The 
application may use buffers that can be shrunk or eliminated, or free up data 
structures stored in handles or pointers, or even mark additional resources as 
purgeable. It can also reduce its memory requirements in a gradual manner. 
Because the application may have knowledge of what blocks of memory and 
resources represent, it can free, shrink, or mark purgeable buffers to make 
memory available that cannot be made available automatically by the Memory 
Manager. 

If the grow zone procedure returns with an indication that some memory was 
freed, the Memory Manager will again attempt another cycle of purging and 
compaction. It will continue calling the Grow Zone proc and purging and 
compacting until either memory becomes available or the Grow Zone proc 
returns zero. In the latter case, the Memory Manager will give up and return 
‘memFullErr’ to the code which attempted the allocation. 

During the main event loop, attempts should be made to recover the memory. 
As the reserve is used and then recovered, a global variable or state could keep 
track of what level of reserves remain, and make this information available to 
the rest of the application.

A List of Safe Memory Manager Calls 2

The following are the only Memory Manager calls that you can safely call 
inside the grow zone procedure: 

■ SetHandleSize, but only to a smaller size

■ SetPtrSize, but only to a smaller size

■ DisposeHandle

■ DisposePtr

■ EmptyHandle

■ HPurge or the equivalent HSetState
4 of 12 Maintaining a Memory Reserve

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



 

 

                          
■ HUnlock or the equivalent HSetState

In 68K applications, you can also call UnloadSeg on segments not in the current 
call chain. See also the section “Dealing With 68K Segments” later in this 
Technote.

GZSaveHnd 2

You need to always call GZSaveHnd, which returns the handle on which the 
Memory Manager is currently operating, and not make any of the above calls 
with this handle.

What A Grow Zone Procedure Should Not Do 2

Basically, you can’t make any calls that may directly or indirectly move 
memory or trigger additional requests for more free memory. These may result 
in recursive calls to the Memory Manager and to the grow zone procedure. The 
Memory Manager is not  reentrant. Forcing it to rearrange the heap while it is 
already rearranging the heap is likely to cause unpredictable results, all of them 
unpleasant.

Examples of Things to Avoid in Grow Zone Procedures 2

Bearing in mind the caveat mentioned in the previous paragraph, here are 
some examples of things to avoid doing in grow zone procedures. Many of 
these problems originally came from developer questions over the years. 

Don’t allocate memory 2

This seems rather obvious but can be triggered indirectly by a variety of things. 
Most of the following problems are ultimately caused by allocating memory or 
causing the heap to be rearranged. You can never be completely sure that 
sufficient memory is available for even a small block. It’s better to not risk 
confusing the Memory Manager.

Don’t do synchronous file I/O 2

File Manager calls are  only guaranteed to not move memory when called 
asynchronously. Unfortunately, doing asynchronous file I/O won’t help the 
immediate need for releasing memory, so it isn’t possible to make more room 
available by saving data to disk.
Maintaining a Memory Reserve 5 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



                   
Don’t update resources 2

Calls to ChangedResource and many other Resource Manager calls should be 
avoided because the Resource Manager uses the Memory Manager without 
taking into account the possibility that it might be called from the grow zone. 

Don’t put up dialogs 2

If you need to inform the user that memory is low, you should set a global flag 
and check it in your main event loop. Calling any user interface code during 
GrowZone is likely to allocate memory. Allowing the user to save documents 
from inside the grow zone procedure has been attempted, but without much 
success. Don’t even think about it.

On 68K Macintoshes, don’t call any routine that may force a segment to be loaded2

This one can occur in very subtle ways. For example, in C++ you may decide to 
delete some objects that contain member variables that are Memory Manager 
heap handles or pointers, and thus free up some space. You call delete  on the 
object. Unfortunately the destructor for the object’s class, or a destructor for a 
superclass, resides in a code segment that is currently not in memory. Calling 
this code to free up some space actually consumes more space, leading to 
recursive calls to your grow zone procedure and probable crashes. Make sure 
everything that can be called from your grow zone procedure is kept in 
resident segments.

Checking for Memory Allocations 2

Even with a low-memory strategy in place, it is still very important to always 
determine if memory allocations have succeeded. However, careful use of 
purgeable cushions or grow zone procedures can greatly simplify the handling 
of failed allocations. If you have a global flag or function which returns the 
current state of the cushion or memory reserve, you can quickly check to see if 
you have sufficient memory to perform a task or operation in your application. 
If the reserves are low, you can abort the task at the start. If the reserves are 
intact, then there is at least that much memory available, and you can proceed 
with confidence. 

You can avoid checking some allocations for failure, as long as you can be 
certain your memory state indicates the reserve or cushion will supply 
6 of 12 Checking for Memory Allocations

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



 

 

            
whatever memory is needed. You should avoid making potentially 
time-consuming calls such as PurgeSpace to determine if enough memory is 
available. This type of call could be saved until you need to check a memory 
requirement larger than could be supplied by the reserve or cushion.

Informing the User of Low-Memory Conditions 2

Letting the user know that memory is running low is a delicate art. If the 
application is running with very little memory, it may be possible to get into a 
state where the “out of memory” alert arrives continuously, which is highly 
annoying. 

Developing a Two-Stage Plan 2

A good thing to do is to wait a fixed amount of time between warnings in order 
to allow the user time to quit, close documents, or perform other actions. It is 
also useful to have a two-stage plan:

1. A warning that memory is becoming low (which could be shown when the 
memory reserve is shrunk, then reallocated)

2. A more serious indication that there is no memory remaining (when the 
memory reserve cannot be recovered) 

At the second stage, most program functions should be made unavailable, 
except for those involved in closing documents, saving, etc. It’s always better to 
keep the user from reaching the absolute limit than to sadly inform her that 
“the application is out of memory, and will have to quit now,” or even greet her 
with a rude bomb alert.
Informing the User of Low-Memory Conditions 7 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



               
IMPORTANT

Since memory alerts appear when there isn’t very much 
memory left to work with, the resources and code needed 
to display them should be resident in memory. Many 
applications collect alert strings into a single STR# 
resource. If the Out of Memory message is in such a large 
resource, it may not be possible to load the resource to 
extract the individual string. It’s better to keep these alerts 
resident in memory as much as possible with the string as 
a static item in the alert. ◆

Guaranteeing the User Can Save Documents 2

You always want to guarantee that the user can save documents when the 
application is running with low memory. This seems fairly obvious, but saving 
documents can use varying amounts of memory to convert in-memory data to 
a file format, or save resources, such as edition records or preview images. It 
may be necessary to keep a separate reserve of memory strictly for saving 
documents.

You may also want to inform the user when a low memory crisis has been 
averted, i.e., now the user can relax because she’s closed the necessary 
documents. 

Note
Applications that show memory availability in their About 
box should ensure that opening the About box when 
memory is very low does not exhaust what little memory 
remains. ◆

Using Temporary Memory 2

Temporary memory allocations can assist your application if it is running low 
on memory. If the app detects that memory is low, it can check to see if 
temporary memory is available, and switch some  allocations to using 
TempNewHandle. However, it should be stressed that this is only useful for items 
of a temporary nature, not data that will exist throughout the lifetime of the 
application. 
8 of 12 Using Temporary Memory

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



 

 

              
When you allocate memory in the temporary heap (actually the Process 
Manager heap), you may make it difficult for the user to launch additional 
applications, since the applications will be launched into this heap. Your 
application also can’t count on having any temporary memory available, so 
alternative strategies must always be designed for dealing with its absence.

Dealing With 68K Code Segments 2

Applications that continue to support the Motorola 68000 family have the 
additional burden of managing code segments. If the Segment Loader can’t 
load a segment (usually due to insufficient memory), you’ll get System Error 
#15. Another problem you may have is limiting the amount of memory used 
for code segments to the minimum amount necessary at any one time. 

Here are a few good strategies for dealing with 68K code segments. 

A Few Good Strategies 2

All strategies begin by dividing code into “resident” and “non-resident” 
segments. Resident segments contain the main event loop, the grow zone 
procedure, any interrupt time code, and any other code frequently referenced. 
The remaining segments should be based on an analysis of which sections of 
code get called together. 

The goal is to minimize the number of segments (and memory) needed for each 
operation or feature in the application. To accomplish this, you need to 
understand which parts of your app get called for each operation. A utility 
program such as Metrowerks’ ZoneRanger can let you watch where the 
memory segments reside as your application executes. 

Use a Single Segment 2

The simplest strategy is to build your application with an option like MPW’s 
model far and use a single segment. This way everything is in memory, and 
there is no code to write. If you can afford the memory footprint, it makes no 
sense to complicate memory management with segmentation. (In 
single-segment CFM applications, having all the code loaded all the time is the 
only option you get anyway, although virtual memory can help.)
Dealing With 68K Code Segments 9 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



                      
This may be ideal if your application is small, or memory requirements are not 
an issue –– e.g., for some vertical applications. 

Unload Segments in the Event Loop 2

The next simplest strategy is to call UnloadSeg with a routine from each 
non-resident segment each time through the event loop (after the event has 
been handled, or right before WaitNextEvent). If your application uses little 
memory beyond what is needed by the code, and especially if it makes only 
small permanent allocations from one call to WaitNextEvent to the next, then 
this may be sufficient by itself. Assuming that the division of code into 
segments was well done, the only problem is to determine a routine to use in 
calling UnloadSeg for each segment. Here are two examples:

1. Create a special routine in each segment with the name of the segment, and 
use that routine address in UnloadSeg. The segment contents can then be 
shifted around, without the need to search for a new routine to use, or worry 
if you’ve missed something.

2. Get the address directly by scanning the jump table for the first routine in 
each segment. This is highly dependent on the jump table format produced 
by your development environment. See the MacApp source file 
“USegments.cp” for an example.

Unload Segments at Any Time 2

At any point during the application’s execution, you could conceivably unload 
any code segments not currently in the call chain.

The way to determine this at runtime is to scan the stack for any addresses 
contained within loaded segments. The steps to take each time are:

1. Construct a table with entries for each segment, containing the current 
memory location and size for each segment in memory, and a ‘keep’ flag. 
Mark all resident segments’ flag with true; mark all others as false.

2. Starting at the current value of register A7, scan to the address returned by 
LMGetCurStackBase, skipping two bytes at a time. Consider each value as a 
pointer. If this value is contained within the application heap zone, check to 
see if it is contained within a segment (using the table you constructed in 
Step #1). If it is, set the keep flag to true for that segment. Here you are 
basically looking for return addresses put on the stack during subroutine 
calls, which would indicate code in the call chain.
10 of 12 Dealing With 68K Code Segments

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



 

 

                       
3. After scanning the entire stack, unload any segment with keep set to false 
(using the technique of your choice to obtain an address from the segment).

A somewhat complex example of this can also be found in the MacApp source 
file “USegments.cp”.

Patch LoadSeg 2

Another alternative solution is to patch LoadSeg. The patch will check to see if 
sufficient memory exists to load the segment from disk (if it has been purged). 
(One way to do this is to simply load the segment resource with a call to 
GetResource.) If the patch finds room, it then calls the real LoadSeg. If there isn’t 
enough memory, the patch tries to make room available by performing the 
actions of a grow zone procedure such as releasing buffers, shrinking reserves, 
or unloading code segments not currently in use. Then the patch goes ahead 
and calls the real LoadSeg. This way a segment load will always succeed 
(provided the underlying reserve memory and segmentation scheme is sound).

For cases in which a segment cannot be loaded, you might want to throw a 
(C++) exception. 

Special Problems with malloc  and new 2

Applications written in C++, and applications using the standard C allocators 
(particularly those ported from other platforms) have special problems in 
mixing their memory allocations with the Memory Manager.

All C/C++ development environments provide versions of malloc and new 
which sub-allocate out of Memory Manager blocks created with NewPtr. These 
blocks are non-relocatable, and thus can severely fragment the heap, especially 
when memory is becoming scarce. 

An additional problem is that some of these implementations of new and 
malloc fail to release these NewPtr blocks when they no longer contain any 
sub-allocated information. As these blocks begin to fill up the heap, there is less 
and less space available for Toolbox items such as windows, menus, or 
resources. It is important to limit the growth of these blocks to keep sufficient 
room available for Memory Manager allocations. 

Some implementations of malloc and new allow you some control over their 
behavior; check your compiler's documentation for details. There are also 
Special Problems with malloc and new 11 of 12
Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96



commercially available alternative allocators, such as Smartheap, which may 
be of some help in dealing with this problem. Another possible solution is to 
create alternative heap zones within the application zone and keep all 
non-Memory Manager allocations within them.

Summary 2

Dealing with low-memory conditions is necessary for successful Macintosh 
application development. This Note outlines a number of strategies that you 
can follow in order to handle low-memory conditions. Maintaining a memory 
reserve, for example, is essential to keep your application from dying when it 
runs out of memory. Other strategies, such managing 68K code segments, or 
properly checking for failed memory allocations, are also important in building 
quality applications for the Macintosh. Failing to devise a proper memory 
strategy may result in a product that is badly behaved and frustrating to your 
customers. 

Further References 2

■ Inside Macintosh: Memory

■ Inside Macintosh: Processes

■ MacApp 3.3 on ETO #19 

Acknowledgments 2

Thanks to Pete Gontier, Albert Hui, Tom Maremaa, Matt Mora, Dave 
Polaschek, and Sunny Singha.
12 of 12 Summary

Technote 1042 -  Release 1.0   Apple Computer, Inc. 5/8/96


	Maintaining a Memory Reserve
	Using A Purgeable Cushion
	Installing A Grow Zone Procedure
	Grow Zone Proc Strategies
	A List of Safe Memory Manager Calls
	GZSaveHnd
	What A Grow Zone Procedure Should Not Do
	Examples of Things to Avoid in Grow Zone Procedure...
	Don’t allocate memory
	Don’t do synchronous file I/O
	Don’t update resources
	Don’t put up dialogs
	On 68K Macintoshes, don’t call any routine that ma...



	Checking for Memory Allocations
	Informing the User of Low-Memory Conditions
	Developing a Two-Stage Plan
	1. A warning that memory is becoming low (which co...
	2. A more serious indication that there is no memo...

	Guaranteeing the User Can Save Documents

	Using Temporary Memory
	Dealing With 68K Code Segments
	A Few Good Strategies
	Use a Single Segment
	Unload Segments in the Event Loop
	1. Create a special routine in each segment with t...
	2. Get the address directly by scanning the jump t...


	Unload Segments at Any Time
	1. Construct a table with entries for each segment...
	2. Starting at the current value of register A7, s...
	3. After scanning the entire stack, unload any seg...


	Patch LoadSeg


	Special Problems with malloc and new
	Summary
	Further References
	Acknowledgments



