

SystemSoft and Apple Confidential

Mac OS System PC Card Family 3.0
Developers Guide

Version 1.5.1

Prepared By:

SystemSoft Corporation

&

Apple Computer, Inc.

Creation Date:February 26, 1996
Modified Date:January 8, 1997
Copyright ©1995-1996
SystemSoft Corporation and Apple Computer, Inc.

1.0 Overview 5

2.0 Related Documents 6

3.0 About this Document 7

Figure 1 PC Card Family Architecture, Event Processing 8

4.0 Architectural Elements 9
4.1 Applications and/or Target Driver 9
4.2 PC Card Family Expert 9

4.2.1 Socket Monitoring Task 9
4.2.2 Administrative Task 10

Power Management 10
4.3 Card Enabler 10
4.4 Card Services Family Programming Interface 10
4.5 Card Enabler – the Generic Plug-In 11
4.6 Card Enabler Support Library 11
4.7 Internal Card Service Library 11

5.0 Goals & Non-Goals 12
5.1 Short Term Goals 12
5.2 Long Term Goals 12
5.3 Long Term Non-Goals 13

6.0 Terminology 14

Figure 2 PC Card Family Interface Calling Flow Diagram 15

7.0 External /Public Interfaces 16
7.1 PCCard Family Programming Interface 16

7.1.1 Client Services 17
PCCardGetCardServicesInfo 17
PCCardRegisterClient 17
PCCardDeregisterClient 19
PCCardSetEventMask 19
 PCCardGetEventMask 19
PCCardRegisterTimer 20
PCCardDeRegisterTimer 20
 PCCardGetStatus 20

7.1.2 Resource Management 21
 PCCardRequestWindow 21
 PCCardReleaseWindow 22
 PCCardModifyWindow [16-bit PC Card Memory Only] 22
 PCCardRequestConfiguration 23
PCCardReleaseConfiguration 24
 PCCardModifyConfiguration 24
 PCCardResetFunction 25

7.1.3 Client Utilities 25
 PCCardGetFirstTuple 25
January 8, 1997 SystemSoft and Apple Confidential 1 of 5

 PCCardGetNextTuple 26
7.1.4 AccessConfigurationRegister 27

 PCCardReadConfigurationRegister 27
 PCCardWriteConfigurationRegister 27

7.1.5 Miscellaneous Interfaces 28
PCCardGetCardInfo 28
 PCCardEject 29
 PCCardSetRingIndicate 29
PCCardEnableModemSound 29
PCCardEnableZoomedVideoSound 30
PCCardSetPowerLevel 30
PCCardGetCardRefFromDeviceRef 31
PCCardGetSocketAndDeviceFromDeviceRef 31
PCCardGetCardRef 32
PCCardGetSocketRef 32

8.0 Card Enabler Interface 32
8.1 Purpose 32
8.2 Overview 32
8.3 Plug-in File Type 32
8.4 DriverDescriptor 33
8.5 Card Enabler loading 33
8.6 Card Enabler Plug-in Entry Points. 34

8.6.1 Card Enabler Plug-in typedefs 34
8.6.2 Card Enabler Dispatch Table structure 35
8.6.3 initializeProc 36

Example Code of custom enabler table 36
8.6.4 cleanUpProc 37
8.6.5 validateHardwareProc 38
8.6.6 getFirstTuple 38
8.6.7 getNextTuple 39
8.6.8 handleEventProc 39
8.6.9 AddCardPropertiesProc 40
8.6.10 AddDevicePropertiesProc 40
8.6.11 getDeviceCount 41
8.6.12 getDeviceType 41
8.6.13 getDeviceTypeName 41
8.6.14 getDeviceName 42
8.6.15 getCardInfoProc 42
8.6.16 addDeviceProperties 43
8.6.17 cardInterruptHandlerFunction 43
8.6.18 cardInterruptEnableFunction 44
8.6.19 cardInterruptDisableFunction 44

8.7 Card Enabler Usage by the PC Card 3.0 Family 44
8.7.1 Card Insertion Processing 44
8.7.2 The Device Initialization 46
8.7.3 Card Ejection 47
8.7.4 Event Notification 47
8.7.5 Enabler Replacement 47

8.8 Card Enabler Support Library 47
2 of 5 SystemSoft and Apple Confidential January 8, 1997

8.8.1 Card Identification 47
CEGetCardType 47
CECompareCISTPL_VERS_1 48
CECompareCISTPL_MANFID 49
CECompareMemory 49

8.9 Internal Card Services 54
8.9.1 Purpose 54
8.9.2 Client Services 54

CSGetCardServicesInfo 54
CSRegisterClient 54
CSDeregisterClient 55
CSSetEventMask 55
CSGetEventMask 56
CSRegisterTimer 56
CSDeregisterTimer 57
CSNotifyClients 57
CSGetStatus 57

8.9.3 Window Services Interface 58
CSRequestWindow 58
CSReleaseWindow 59
CSModifyWindow [16-bit PC Card Only] 59

8.9.4 Configuration Services 60
 CSRequestConfiguration 60
CSReleaseConfiguration 61
CSModifyConfiguration 62
CSReadConfigRegister 62
CSWriteConfigRegister 63
CSResetFunction 64

8.9.5 CIS Services Interface 64
CSValidateCIS 64
CSGetDeviceCount 65
CSGetFirstTuple 65
CSGetNextTuple 66

8.9.6 Miscellaneous Services 67
CSGetDeviceCount 67
CSGetSocketDeviceFromIterator 67
CSCardEject 67
CSGetCardType 68
CSGetInterruptSetMember 68
CSSetInterrupt 69
CSSetRingIndicate 69
CSPowerManagement 69
CSReportStatusChange 70

8.10 Socket Services Plug-in Interface 66
8.10.1 Apple Specific Plug-in Interface 66

_SSValidateHardware 66
_SSInitialize 66
January 8, 1997 SystemSoft and Apple Confidential 3 of 5

_SSSuspend 67
_SSResume 67
_SSFinalize 67

8.10.2 Adapter Specific Interface 68
_SSInquireAdapter 68

8.10.3 Socket Specific Interface 68
_SSInquireSocket 68
_SSGetSocket 69
_SSSetSocket 70
_SSResetSocket 71
_SSGetStatus 71

8.10.4 Window Services Specific Interface 72
_SSInquireWindow 72
_SSGetWindow 72
_SSSetWindow 73
_SSGetWindowOffset 74
_SSSetWindowOffset 74

8.10.5 CardBus Specific calls 75
_SSWriteConfigurationSpace 75
_SSReadConfigurationSpace 76

8.10.6 Bridge Services Specific Interface 76
_SSInquireBridgeWindow 76
_SSGetBridgeWindow 77
_SSSetBridgeWindow 77

8.10.7 Platform Specific Service Interface 78
_SSEjectCard 78
_SSGetInterruptSetMember 78

8.10.8 Interrupt Source Tree Construction 79
Socket Service Driver Initialization: 79
Card Enabler Initialization: 80
Interrupt Processing 80

Figure 3 PC Card 3.0 IST Layout 82

9.0 Name Registry Properties for PC Cards 83
9.1 Socket Controller Node Properties 83
9.2 Card Enabler Node Properties 84
9.3 Functional Node Properties 85

Appendix A Data and Bit-Mask Definitions 89

Appendix A.1 PC Card Events (PCCardEvents and PCCardEventMask) 89
Table 4 Registered Client PCCard Events (interestingEvents) 89

Appendix A.2 Socket Status Bit definitions (PCCardSocketStatus) 90
Table 5 Socket status bit definitions 90

Appendix A.3 Window Attributes (PCCardWindowAttributes) 91
Table 6 Window attribute bit-mask definitions 91
4 of 5 SystemSoft and Apple Confidential January 8, 1997

Appendix A.4 Configuration Attributes (PCCardConfigOptions) 92
Table 7 Configuration Attributes 92

Appendix A.5 Interface Types (PCCardInterfaceType) 93

Appendix A.6 Supported device types and SubTypes (PCCardDevType and PC-
CardSubType) 93

Table 8 Interface types 93
Table 9 Supported device types (PcCardDevType/PCCardSubType)

93

Appendix A.7 Adapter capabilities mask (PCCardAdapterCapabilities 94
Table 10 Adapter capability bit-mask values 94

Appendix A.8 Socket Event mask (PCCardSCEvents) 95

Appendix A.9 PC Card 3.0 Hardware types (PCCardHardwareType) 95
Table 11 Socket Event Bit-mask 95
Table 12 Pc Card 3.0 Hardware types 95

Appendix B Card Service Mapping 96

Appendix B.1 Mapping to ‘classic’ Card and Socket Services 96

Appendix B.2 Mappings to the PC Card Standard 96

Appendix B.3 Functionally Equivalent 96

Appendix B.4 Tuple Functions 97

Appendix B.5 Block Memory Device Family 97

Appendix B.6 Client Registration 97

Appendix B.7 MacOS Environment 97

Appendix B.8 Not Relevant to Hardware 98

Appendix B.9 API Simplification 98
January 8, 1997 SystemSoft and Apple Confidential 5 of 5

1.0 Overview

The Macintosh PC Card Family architecture is a multi-layered architecture
designed for robustness, extensibility and ease of maintenance. The layers are
implemented as shared libraries, plug-ins or inits in order to make the best use
of the Mac OS 7.5.x (and future versions of the Mac OS.)

PCCard 3.0 is designed to work within the Macintosh environment and is not a
port of existing technology from other platforms. SystemSoft is applying what
has been learned from years of PC Card support on Intel platforms to build an
implementation that avoids the limitations of the DOS platform, but uses our
experience with many vendors PC Cards and interface hardware. Our imple-
mentation is designed to fully use the Macintosh environment and system ser-
vices.

PCCard 3.0 is designed to handle single and multi-function cards. Support for
well behaved cards is built into the system. There are options for adding support
for ill-behaved cards at a minimum cost using card enablers, refer to “Card
Enabler Interface” on page 32. Support for new technologies is implemented by
means of plug-in Card enabler modules.

Support for Macintosh User experience customizing is provided through cus-
tomizing card enabler plug-ins. Custom icons, card names and device names are
all be available to the card manufacturer.

PCCard 3.0 has been designed to ensure that adequate testing can be performed.
Automated test scripts will be created which will exercise all facets of the sys-
tem. We believe using automated scripts in conjunction with the system testing
by quality assurance engineers enables us to deliver a solid dependable prod-
uct.
5 of 33 SystemSoft and Apple Confidential January 8, 1997

2.0 Related Documents

Designing PCI Cards and Drivers for Power Macintosh Computers, Apple
Developer Press, 1995

Linux PCMCIA Programmers’s Guide, Version 1.24, David Hinds, 7/31/95

PC Card Expansion for PowerBooks Computers, Apple Developer Press, 6/
1/95

The PCMCIA Developer’s Guide, Second Edition, Mori Welder, SYCARD
Technologies, 1995

PCMCIA Primer, Larry Levine, M&T Books, 1995

PCMCIA System Architecture, Second Edition, Don Anderson, Mindshare,
Inc., 1995

PC Card Standard, November 1995 Draft Printing

CardSoftª Technical Reference Rev.2.0 (SystemSoft, 4/95)

Inside Macintosh, Devices

Inside Macintosh, Memory

Inside Macintosh, Inter-application Communication
January 8, 1997 SystemSoft and Apple Confidential 6 of 33

3.0 About this Document

It is the intent of this document to describe the interfaces of the PC Card 3.0
Family. It is not the intent to cover all aspects of the Mac OS that relates to
PC Card 3.0. Error codes returned by PC Card 3.0 described in this docu-
ment are specfic to PC Card 3.0 and does not cover the return codes that
may be returned by other parts of the Mac OS, example the name registry.
Many routines in PC Card 3.0 will return the error code of the name registry
or other parts of the Mac OS where it is appropriate.
7 of 33 SystemSoft and Apple Confidential January 8, 1997

FIGURE 1. PC Card Family Architecture, Event Processing

Socket Services
Support Utilities

SSReportStatusChange

Low Level Card Services

Version of card services which utilizes logical socket & function number instead
of RegEntryIDs. This is the passive portion of a fully compliant Card Services.

Card Enablers invoke these functions after potentially filtering calls made from
the higher-level API.

Default 16-bit Card
Enabler

Recognizes and configures
all fully compliant cards
16-bit PC Cards.

Card Enabler Utilities
Standard Enabler for a 16-bit PCCard

Custom Card Enabler(s)
Provided by third party to enable
recognition, configuration, and
event dispatching for “borderline”
PC cards.

PCCard Family Programming Interface

Socket Monitoring Thread(s)

PC Card Family Expert

Applications

and/or

Target Drivers

HARDWARE

Default CardBus
Enabler

Recognizes and configures
all fully compliant cards
32-bit PC Cards.

High-Level Card Services

Card Enabler Plug-in
Programming Interface

Socket Service Plug-in
Programming Interface

TI1130 Socket Service
(for Hooper Motherboard)

TI1130 Socket Service
(for Docking station)

TI1130 HAL

Implements device specific, yet motherboard independent
portions of the socket service.

Mac OS PC Card Family Architecture
System 7.5.x Implementation
January 8, 1997 SystemSoft and Apple Confidential 8 of 33

4.0 Architectural Elements

4.1 Applications and/or Target Driver

Devices which may be located on a PC Card will need a device driver. Ide-
ally drivers will be bus-agnostic. For instance, the built in IDE driver should
be able to service ATA cards without any PC Card specific modifications.
Drivers are loaded by the Driver Loader, they typically receive information
from the PC Card Family indirectly through the system Name Registry and
Device Notification systems. In order to be “PC Card-aware” target drivers
will have to handle power management and removability messages, but
need not be aware of the source.

In the rare case where a driver needs to be aware that the device is located on a
PC Card, we are providing the Card Services Family Programming Interface.

4.2 PC Card Family Expert

The PC Card Family Expert , supplied by SystemSoft, orchestrates the
interaction of the other components described below – Card Enablers, Card
Services and Socket Services.

During the boot process it supervises the initialization of the PC Card hardware
and software. When there is a hardware interrupt from the PC Card socket, the
Card Expert will assure that a PC Card is either properly inserted and readied
for use or ejected. Finally it is responsible for passing on events generated by
other parts of the operating system, such as Power Management events.

The PC Card Family Expert can be described as two tasks – a task that monitors
the PC Card sockets and an administrative task that monitors PC Card software
interaction with other parts of the system.

4.2.1 Socket Monitoring Task
The socket monitoring task listens for messages generated by the socket
service plug-in in response to hardware interrupts. The socket monitoring
task will load a card enabler (if necessary) and then call that card enabler to
get things done.

During the boot process, the PC Card Expert will be loaded along with other
family experts after the device drivers have been loaded and entered in the
Name Registry. Internal Card Service, upon being loaded, will search for socket
service plug-ins and initialize them. Internal Card Services will build a table
that will keep track of sockets, RegEntries and allow virtualization of the sock-
ets at the higher layers.

The PC Card Expert will register itself to be notified when hardware events
occur on any of the sockets. Finally if a card is found to be inserted in a socket
9 of 33 SystemSoft and Apple Confidential January 8, 1997

when the machine boots, then the PC Card Expert will call the Card Enabler to
make the card ready for use.

Once the system is up and running, the socket service plug-in will react to
hardware interrupts generated by any of the PC Card sockets. When it has
handled the interrupt, it will send a notification to the Card Expert. These
notifications will be received when: 1) a card has been inserted, 2) a status
change has occurred on a card, or 3) a card has been ejected. The Card
Expert will call the appropriate routines in the Card Enabler to process these
events.

4.2.2 Administrative Task
The administrative task is responsible for fielding messages from the Mac-
intosh operating system. It will subscribe to services within the Mac OS that
are relevant to the operation of the PC Card Family. These services include
power management and device notification. Apple will have to supply sev-
eral of these services since they do not already exist on System 7.5.2.

4.2.2.1 Power Management
It will be the responsibility of the administrative task to field messages from
the power management service and notify the Card Enabler of a change in
power states. These messages will include: 1) Battery Low, 2) Battery Dead,
3) System Sleep, and 4) System Shutdown.

4.3 Card Enabler

Enabler plug-ins are Code Fragments that have a well defined interface and
a defined purpose. The Enabler plug-ins provide extensions to the PCCard
family. Enablers are responsible for abstracting the intimate details of a
card, its device(s) type, configuring the device(s), and placing this informa-
tion into the name registry for target drivers to use when loading. The API
between the enabler is generic enough to support current multi-device
cards.

The enabler implements most of what would be the traditional Card Ser-
vices client, less the driver code and state machines. SystemSoft will pro-
vide a generic enabler for standard multi-function cards.

SystemSoft will also provide the internals of the standard enabler as a
shared library for writers of card-specific enablers. There will also be an
easy way for developers to extend the standard enabler with static data
(icons, card-specific settings, etc.).

4.4 Card Services Family Programming Interface

The Card Service Family Programming Interface(FPI) is the external card
service interface used by target drivers (if necessary) and other traditional
card service clients. The FPI is used to access and modify the configuration
of PC Card devices. The interface supports the PC Card Card Service Spec-
January 8, 1997 SystemSoft and Apple Confidential 10 of 33

ification. The MacOS binding designed by SystemSoft simplifies the card
service API for developers and removes the historical IBM-PC functionality
that is not necessary on the Macintosh.

The FPI mirrors the internal card service interface except that all FPI rou-
tines take a RegEntryRef as a parameter instead of a socket and device.
Error reporting will take place if a device is not associated with a PC Card.
Further, Device, Card and Socket RegEntry nodes may be interchanged
wherever appropriate. The FPI is a thin layer between a client and the inter-
nal card service library. The Card Services FPI uses a “PCCard” prefix.

4.5 Card Enabler – the Generic Plug-In

Card enablers exist to implement standard card behavior and to provide a
method of overloading standard card behavior with custom behavior. This is
useful for developers of non-compliant or custom cards. The duties of the
card enabler include card identification, card configuration, customizing of
card services. Each card enabler provides a bottleneck for card services
events.

4.6 Card Enabler Support Library

A collection of PC Card/Enabler utility routines (such as card identification
routines) are available to enablers to make the process of identifying and
processing cards easier to the developer.

4.7 Internal Card Service Library

All internal card services calls operate on a virtual socket and device id
parameters. Card Enablers are implicitly registered with card services
through the use of the PC Card expert and the name registry. All the tradi-
tional card service type functionality is handled by this library. Clients may
explicitly register to receive card events if they wish.
11 of 33 SystemSoft and Apple Confidential January 8, 1997

5.0 Goals & Non-Goals

5.1 Short Term Goals

1. Support for Multi-function cards
The PC Card Family will support multi-function cards by design with single
function cards treated as cards with one function.

2. Simplified API(s)
There are many places where the Card Services API, exposed by Opus,
requires that client applications and drivers implement state-machines and
handle interrupt-level callbacks to process simple asynchronous events.

The PC Card Family alleviates this chore by providing more natural shared
library calls which provide the same functionality.

3. Support for CardBus will be integrated by providing a single 32-bit API for
all functions1.

4. Clear Separation of Driver and PCMCIA specific code
Device driver code concentrates on handling a specific device regardless of
whether that device is located on the motherboard or a PC Card or a Card-
Bus Card. This required drivers to be aware of power management and
ejectability, but not specifically PCMCIA.

5. Minimize interrupt-level code
For performance as well as ease of programming and debugging, we want
to minimize the amount of interrupt-level client code required.

5.2 Long Term Goals

1. Forward compatibility
Clients written to the PC Card FPI will be forward compatible with future
Mac OS I/O model.

2. CardBus support
CardBus cards will be fully supported by the PC Card Family.

3. Bus agnostic Device Drivers
Ideally target device drivers can be written in a way that they do not have to
be concerned how their device is physically connected to the computer.
They need only retrieve information from the devices tree and be able to
handle notifications regarding power management and ejection.

1. While CardBus will be explicitly supported in the design, the first implementation may not be
required to handle CardBus cards due to lack of hardware.
January 8, 1997 SystemSoft and Apple Confidential 12 of 33

5.3 Long Term Non-Goals

1. Compatibility with existing Card Services clients (System 7)
Since current client drivers cannot be supported on the target platform and
most future hardware there is no need to provide support for current Card
Services clients1.

1. The reason for this is that, because the TREX controller guarantees a unique IO address space
for each card, the RequestIO/ReleaseIO calls were omitted from the Opus API – unfortunately
industry standard controllers do not allow us to make that assumption.
13 of 33 SystemSoft and Apple Confidential January 8, 1997

6.0 Terminology

• Attribute Memory - This address space contains the CIS and configuration
registers for a card. Only the even bytes are implemented.

• CardBus - The CardBus cards have 32 bit data and address lines (shared).
The CardBus uses the PCI bus protocol and supports bus mastering. The
CardBus supports common, IO, configuration and expansion spaces.

• Card Enabler -the ‘low level’ expert, also known a card services client, this
is a plug-in to the PcCard16 family expert.

• Card Services - Interface used by family expert and card enabler to config-
ure the PC cards. It is also callable from target drivers through the FPI.

• CIS - Card Information Structure, the PcCard16 card configuration informa-
tion. The CIS data is located on the card in attribute memory.

• Common Memory - The address space supports read and write memory
access in 8 and 16 bit quantities.

• Configuration Memory - CardBus cards support special bus cycles to get to
configuration registers and their CIS.

• Mac OS 8 - The external code name of the successor version of the MacOS
which will follow system version 7.5.x.

• HBA - Host bus adapter, i.e. the PC Card socket controller.
• IO Memory- This address space supports the IO access to a card.
• PCMCIA - Personal Computer Memory Card International Association
• PC Card - PcCard16 and CardBus cards, it is about the size of credit card
• PcCard16 - The PcCard16 card supports data buses of 8 and 16 bits. It has

an address space of 26 bits (64Mb) and supports common memory, attribute
memory, and IO space. The bus protocol is ISA like

• PcCard16 Family - both the Card Services interface and family expert
• PcCard16 Family Expert - the high level expert it controls the HBA.
• Socket controller - the HBA that drives the PC Card sockets, controls mem-

ory and IO window mapping
• Socket Services -the PcCard16 family plug-in, it drives the HBA, it has a

standard interface to card services.
• Target Driver Plug-in - The plug-in that drives a function on a PC Card.
January 8, 1997 SystemSoft and Apple Confidential 14 of 33

FIGURE 2. PC Card Family Interface Calling Flow Diagram

Socket Services
Support Utilities

Low Level Card Services

Version of card services which utilizes logical socket & function number instead
of RegEntryIDs. This is the passive portion of a fully compliant Card
Services.Card Enablers invoke these functions after potentially filtering calls
made from the higher-level API.

Default 16-bit Card
Enabler

Recognizes and configures
all fully compliant cards
16-bit PC Cards.

Card Enabler Utilities
Standard Enabler for a 16-bit PCCard

Custom Card Enabler(s)
Provided by third party to enable
recognition, configuration, and
event dispatching for “borderline”
PC cards.

PCCard Family Programming Interface

Socket Monitoring Thread(s)

PC Card Family Expert

Applications
and/or

Target Drivers

Default CardBus
Enabler

Recognizes and configures
all fully compliant cards
32-bit PC Cards.

High-Level Card Services

Card Enabler Plug-in
Programming Interface

Socket Service Plug-in
Programming Interface

TI1130 Socket
Service(for Hooper

Motherboard)

TI1130 Socket
Service(for Docking station)

TI1130 HAL Implements device specific, yet
motherboard independent portions of the socket service.

 PC Card Family Interface Flow

Calling flow

Key

HARDWARE
15 of 33 SystemSoft and Apple Confidential January 8, 1997

7.0 External /Public Interfaces

The following sections cover in detail the public interfaces that are available
to developers. The first section describes the PCCard Family Programming
Interface (FPI). The second section is the Enabler support library interface
which is available to developers who may need to develop a custom enabler
to support non-compliant cards.

7.1 PCCard Family Programming Interface

The PCCard Family Programming Interface (PCCard FPI) is a thin PCCard
Card Service binding layer that is exposed to the rest of the world. Target Driv-
ers and other applications that wish to register with card service for event notifi-
cation use the PCCard FPI to register and communicate with the PCCard family.

The Card Services interface as defined by PCMCIA forms the foundation of
the PC Card Family Programming Interface. This standard interface has
been adapted to Macintosh platform by adopting Mac OS I/O architectural
elements wherever possible.

The Card Services programming interface can be divided into five main sec-
tions, as described in PC Card Standard: Card Services Specfication:

• Client Services
• Resource Management
• Client Utilities
• Bulk Memory Services
• Advanced Client Services

The major difference between this binding, and that which is provided in
existing PCs, is that Card Services clients are now bound to the card, and
not registered in a global list. Because drivers are instantiated on demand
and replicated for each instance of a device, there is no need to keep a single
global list of active clients.

Bulk Memory Services are NOT supported by Mac OS Card Services, as
this functionality is better suited for use in a specialized Block Storage
plug-in developed for linear flash arrays and/or other memory devices.

In addition to these change, several entry points have been removed and/or
simplified to eliminate “DOS-isms” from the programming model.

The details of these differences are completely described in Section D.
January 8, 1997 SystemSoft and Apple Confidential 16 of 33

7.1.1 Client Services

7.1.1.1 PCCardGetCardServicesInfo
The PCCardGetCardServicesInfo control call returns the current version
information. The Card Services PC Card Standard compliance level for this
specification is 0x0510.

OSStatus PCCardGetCardServicesInfo (
ItemCount * socketCount,
UInt32 * complianceLevel,
UInt32 * version);

Parameters:
← socketCount - Current Number of Sockets
← complianceLevel - Binary Coded Decimal value of the Card

 Services PCCard Standard Compliance Level
← version - Binary Coded Decimal value of the Card

 Services implementation’s version number

Return Codes:

noErr

7.1.1.2 PCCardRegisterClient
PCCardRegisterClient is provided to allow target drivers to register interest
in PC Card status changes. When a PC Card status change occurs, the func-
tion provided in clientCallback is invoked.

NOTE: Unlike the x86/DOS binding, clients are registered for either a spe-
cific card in a socket or on all sockets in the system.

OSStatus PCCardRegisterClient(
const RegEntryRef* deviceID,
PCCardEventMask interestingEvents,
PCCardEventHandler clientCallback,
void * clientParam,
PCCardClientID * clientID)

Parameters:
→ deviceID - Device identifier, enter

a nil regentyref if you desire
all sockets by creating a new regentryref.

→ interestingEvents - Bit mask which events are interesting
Table C.1

→ clientCallback - Client supplied event handling function
→ clientParam - Client supplied parameter passed

 to clientCallback
← clientID - “ClientHandle”
17 of 33 SystemSoft and Apple Confidential January 8, 1997

Return Codes:

noErr - If no error occured
kBadSocketErr - if the socket is invalid

The clientCallback has the following format:

OSStatus (*PCCardEventHandler)(
PCCardEvent theEvent,
PCCardSocket vSocket,
UInt32 device,
UInt32 info,
UInt32 MTDRequest,
UInt32* buffer,
UInt32 misc,
UInt32 status,
void * clientParam)

Parameters:
← theEvent - The event that occurred, could be

multiple events
← vSocket - The virtual socket number of the card

where the event occurred
← device - The device number where the event

occurred
← info - information specific to the event being

reported, refer to the PC Card Standard
Card Service Specification for more
details

← MTDRequest - Specifically for MTD support(not
supported by the PC Card 3.0)

← buffer - Pointer to a buffer for modification by
the client (not supported by the PC Card
3.0)

← misc - argument used for miscellaneous
information, refer to the PC Card
Standard Card Service Specification
for more details (Not used in Pc Card 3.0)

← status - used by callback handlers to return
information to Card Services

← clientParam - Client parameter returned

A client event handler must perserve all callback entry arguments unless
otherwise indicated. This ensures other callback handlers receive the same
information and that Card Services may rely on the information when han-
dlers have completed processing so it may perform any additional process-
ing.
January 8, 1997 SystemSoft and Apple Confidential 18 of 33

7.1.1.3 PCCardDeregisterClient
PCCardDeregisterClient is provided to unregister interest in PC Card status
changes.

OSStatus PCCardDeregisterClient(
PCCardClientID clientID);

Parameters:
→ clientID - “ClientHandle”

Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id is invalid

7.1.1.4 PCCardSetEventMask
PCCardSetEventMask allows the event mask to be changed

OSStatus PCCardSetEventMask(
PCCardClientID clientID,

 PCCardEventMask interestingEvents)

Parameters:
→ clientID -“ClientHandle”
→ interestingEvents -Bit mask which events are interesting

Table C.1

Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id is invalid

7.1.1.5 PCCardGetEventMask

 PCCardGetEventMask allows the client to check the event mask.

OSStatus PCCardGetEventMask (
PCCardClientID clientID,
PCCardEventMask * interestingEvents);

Parameters:
→ clientID - “ClientHandle”
← interestingEvents - Bit mask which events are interesting

Table C.1

Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id is invalid
19 of 33 SystemSoft and Apple Confidential January 8, 1997

7.1.1.6 PCCardRegisterTimer
The PCCardRegisterTimer call registers a callback structure with Card Ser-
vices. Based on a tick count provided, Card Services calls the client back
when the time period has elapsed and the Card Services interface is avail-
able. The client callback registered will be called when the timer elapses. A
valid client handle must be obtained from calling PCCardRegisterClient.

OSStatus PCCardRegisterTimer(
PCCardClientID registeredClientID,
PCCardTimerID *lpNewTimerID,
long delay)

Parameters:
→ registerclientID - “ClientHandle”
← lpNewTimerID - Timer ID
→ delay - the number of ticks to wait,

approximately 1 ms/tick.

Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id is invalid
paramErr - Bad parameter

7.1.1.7 PCCardDeRegisterTimer
PCCardDeRegisterTimer is provided to unregister timer clients.

OSStatus PCCardDeRegisterTimer(
PCCardTimerID timerID);

Parameters:
→ timerID - “timerID”

Return Codes:
noErr - If no error occured
kNoClientTableErr - The client table has not be initialized yet
kInvalidCSClientErr - Card Services ClientID is not registered

7.1.1.8 PCCardGetStatus
The PCCardGetStatus control call returns the current status of a PC Card of
the specified DeviceID.

OSStatus PCCardGetStatus (
const RegEntryRef* deviceID,
UInt32 * currentState,
UInt32 * changedState,
PCCardVoltage* Vcc,
PCCardVoltage* Vpp);
January 8, 1997 SystemSoft and Apple Confidential 20 of 33

Parameters:
→ deviceID - Device identifier
← currentState - current state of the socket
← changedState - delta between the last time the socket service

getstatus call was made, note that this will not be
from the last time a particular client called
Table C.2

← Vcc - Vcc power applied to the socket
← Vpp - Vpp power applied to the socket

Return Codes:
noErr - if socket and function numbers are valid
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoCardErr - if a card is not present
paramErr - if a parameter is incorrect

7.1.2 Resource Management

7.1.2.1 PCCardRequestWindow
The PCCardRequestWindow control call allocates a range of system
address space to a PC Card of the specified DeviceID.

When an IO address range is requested, the IO range is only allocated and
reserved. The PCCardRequestConfiguration control call must be invoked to
enable access to the IO range.

OSStatus PCCardRequestWindow (
const RegEntryRef* deviceID,
PCCardWindowAttributes windowAttributes,
LogicalAddress * windowBase,
ByteCount* windowSize,
PCCardAccessSpeed* windowSpeed,
PCCardWindowOffset* windowOffset
PCCardWindowID * windowID);

Parameters:
→ deviceID - Device identifier
→ windowAttributes-window attributes

Table C.3
↔ windowBase -Window base address in bytes
↔ windowSize -Minimum window size in bytes

 (Used as input for 16-bit PC Cards only)
↔ windowSpeed - Window speed

 (16-bit PC Cards only)
← windowID - Window Identifier
21 of 33 SystemSoft and Apple Confidential January 8, 1997

Return Codes:
noErr - if all parameters are valid and request can

be serviced
paramErr - if a parameter is incorrect
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kBadSizeErr - if the requested window size cannot be

accommodated
kBadSpeedErr - if the requested access speed is invalid or

cannot be accommodated
kBadAttributeErr - if any attributes are invalid, conflicting, or

cannot be accommodated
kOutOfResourceErr - if no system address range is available to

accommodate the request
kNoCardErr - if no PC Card is present in the socket

7.1.2.2 PCCardReleaseWindow
The PCCardReleaseWindow control call disables and deallocates the sys-
tem address space previously assigned to a PC Card by the PCCardRequest-
Window control call.

OSStatus PCCardReleaseWindow (
PCCardWindowID windowID);

Parameters:
→ windowID - Window Identifier

Return Codes:
noErr - if window handle is valid
kBadHandleErr - if window handle is invalid

7.1.2.3 PCCardModifyWindow [16-bit PC Card Memory Only]

The PCCardModifyWindow control call allows the Access Speed and/or
Card Offset of a 16-bit PC Card memory window to be modified.

OSStatus PCCardModifyWindow (
PCCardWindowID windowID,
PCCardWindowAttributes windowAttributes,
PCCardAccessSpeed windowSpeed,
January 8, 1997 SystemSoft and Apple Confidential 22 of 33

PCCardWindowOffset windowOffset);

Parameters:
→ windowID -Window Identifier
→windowAttributes - Window attributes

Table C.3
→windowSpeed - Window speed
→windowOffset - PC Card memory offset

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadHandleErr - if window handle is invalid
kBadAttributeErr - if any attributes are invalid
kBadSpeedErr - if the requested access speed is invalid or

cannot be accommodated
kBadOffsetErr - if the card offset is invalid
kNoCardErr - if no PC Card is present in the socket

7.1.2.4 PCCardRequestConfiguration
The RequestConfiguration control call configures the PC Card of the speci-
fied DeviceID.

All IO windows previously assigned by PCCardRequestWindow are
enabled for access.

OSStatus PCCardRequestConfiguration (
const RegEntryRef* deviceID,
PCCardConfigOptions configOptions,
PCCardInterfaceType ifType,
PCCardCustomInterfaceID ifCustomType,
PCCardVoltage vcc,
PCCardVoltage vpp,
LogicalAddress configRegistersBase,
PCCardConfigPresentMask configRegistersPresent,
PCCardFunctionConfigReg * configRegisterValues);

Parameters:
→deviceID - Device identifier
→configOptions - configuration attributes

Table C.4
→ifType - Interface type

Table C.5
→ifCustomType - interface ID (for CustomIF)
→vcc - Vcc voltage in tenths of volts
→vpp - Vpp voltage in tenths of volts
→configRegistersBase - 16-bit Card base address for registers
→configRegistersPresent- 16-bit Card register values present bitmap
→configRegisterValues - 16-bit Card register values byte array
23 of 33 SystemSoft and Apple Confidential January 8, 1997

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kBadAttributeErr - if any attributes are invalid, conflicting, or

cannot be accommodated
kBadTypeErr - if the interface type is invalid
kBadVccErr - if Vcc is invalid or unsupported
kBadVppErr - if Vpp is invalid, unsupported or

incompatible with Vcc
kBadArgsErr - if the Custom ID is invalid
kNoCardErr - if no PC Card is present in the socket

7.1.2.5 PCCardReleaseConfiguration
The PCCardReleaseConfiguration control call deconfigures the PC Card
and socket.

All IO windows previously assigned by PCCardRequestWindow are dis-
abled.

OSStatus PCCardReleaseConfiguration (
const RegEntryRef* deviceID);

Parameters:
→deviceID - Device identifier

Return Codes:
noErr - if the socket and function numbers are valid and

there is a configuration to release
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device or no configuration to release

7.1.2.6 PCCardModifyConfiguration
The PCCardModifyConfiguration control call allows a PC Card configura-
tion to be modified without having to issue PCCardRequestConfiguration
and PCCardReleaseConfiguration calls.

OSStatus PCCardModifyConfiguration(
const RegEntryRef* deviceID,
PCCardConfigOptions configOptions,
PCCardVoltage vpp);

Parameters:
→deviceID - Device identifier
→configOptions - Changed Attributes

Table C.4
January 8, 1997 SystemSoft and Apple Confidential 24 of 33

→vpp - Vpp voltage in tenths of volts

Note: It is not valid to change anything but Vpp using PCCardModifyCon-
figuration.

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kBadAttributeErr - if any attributes are invalid, conflicting, or

cannot be accommodated
kBadVppErr - if Vpp is invalid or unsupported
kNoCardErr - if no PC Card is present in the socket

7.1.2.7 PCCardResetFunction
The PCCardResetFunction does a soft reset on the device specified.

OSStatus PCCardResetFunction (
const RegEntryRef* deviceID);

Parameters:
→deviceID - Device identifier

Return Codes:
noErr - valid deviceID and reset successful
kInvalidDeviceNumber - invalid deviceID

7.1.3 Client Utilities

7.1.3.1 PCCardGetFirstTuple
The PCCardGetFirstTuple allows the tuples of the Card Information Struc-
ture to be read. To read any tuple, the desired tuple ID must be set to 0FFh.
If no tuple data is required, the Data Buffer Length parameter must be set to
zero. If the buffer supplied is not sufficient to handle the data to be returned
the call will fill the buffer supplied with the tuple data without returning an
error.

Note: If data is not returned then the tuple iterator is not advanced.

OSStatus PCCardGetFirstTuple (
const RegEntryRef* deviceID,
PCCardTupleKind desiredTuple,
PCCardTupleIterator tupleIterator,
void * dataBuffer,
UInt32* dataBufferSize,
PCCardTupleKind * foundTuple,
25 of 33 SystemSoft and Apple Confidential January 8, 1997

UInt32 * foundTupleSize);

Parameters:
→deviceID - Device identifier
→desiredTuple - FFh for any Tuple
↔tupleIterator - Card Services Internal Use Only
→dataBuffer - Pointer to Tuple data buffer
→dataBufferSize - Length of Tuple data buffer in bytes
←foundTuple - Tuple ID Found
←foundTupleSize - Length of Tuple data found in CIS

Return Codes:
noErr - if parameters are valid and request was serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoMoreItemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

7.1.3.2 PCCardGetNextTuple
The PCCardGetNextTuple control call allows the tuples of the Card Infor-
mation Structure to be read. To read any tuple, the desired tuple ID must be
set to 0FFh. If no tuple data is required, the Data Buffer Length parameter
must be set to zero. If the buffer supplied is not sufficient to handle the data
to be returned the call will fill the buffer supplied with the tuple data with-
out returning an error.

If an error occurs, the tuple interator IS NOT advanced.

OSStatus PCCardGetNextTuple (
const RegEntryRef* deviceID,
PCCardTupleKind desiredTuple,
PCCardTupleIterator tupleIterator,
void * dataBuffer,
UInt32* dataBufferSize,
PCCardTupleKind * foundTuple,
UInt32 * foundTupleSize);

Parameters:
→deviceID - Device identifier
→desiredTuple - FFh for any Tuple
↔tupleIterator - Card Services Internal Use Only

Must be NULL for first Tuple ID read
Must be preserved for subsequent Tuple ID reads

→dataBuffer - Pointer to Tuple data buffer
→dataBufferSize - Length of Tuple data buffer in bytes
←foundTuple - Tuple ID Found
←foundTupleSize - Length of Tuple data found in CIS
January 8, 1997 SystemSoft and Apple Confidential 26 of 33

Return Codes:
noErr - if parameters are valid and request was serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoMoreItemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

7.1.4 AccessConfigurationRegister
AccessConfigurationRegister has been replaced by two calls to help reduce
programmer error.

7.1.4.1 PCCardReadConfigurationRegister
The PCCardReadConfigurationRegister control call allows the PC Card
configuration registers to be read.

OSStatus PCCardReadConfigurationRegister (
const RegEntryRef* deviceID,
PCCardConfigRegisterIndex whichRegister,
PCCardConfigRegisterOffset offset,
UInt8 * value);

Parameters:
→ deviceID - Device identifier
→ whichRegister - which register index to read
→ offset - Memory Register Offset
← value - Read Value

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kBadArgsErr - if the register type or memory register offset

is invalid
kNoCardErr - if no PC Card is present in the socket

7.1.4.2 PCCardWriteConfigurationRegister
The WriteConfigurationRegister control call allows the PC Card configura-
tion registers to be written.

OSStatus PCCardWriteConfigurationRegister (
const RegEntryRef* deviceID,
PCCardConfigRegIndex whichRegister,
PCCardConfigRegOffset offset,
UInt32 value);

Parameters:
→ deviceID - Device identifier
27 of 33 SystemSoft and Apple Confidential January 8, 1997

→ whichRegister - Which register indes to modify
→ offset - Memory Register Offset
→ value - Read Value

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kBadArgsErr - if the register type or memory register offset

is invalid
kNoCardErr - if no PC Card is present in the socket

7.1.5 Miscellaneous Interfaces

7.1.5.1 PCCardGetCardInfo
The PCCardGetCardInfo call returns information about the card such
as type, sub-type, card name and vendor name.

OSStatus PCCardGetCardInfo(
const RegEntryRef * cardRef,

 PCCardDevType * cardType,
 PCCardSubType * cardSubType,
 StringPtr cardName,
 StringPtr vendorName)

Parameters:
→ cardRef -Card identifier
← cardType - type of card
← cardSubType - subtype of card
← cardName - Name fo the card
← vendorName - name of the vendor

Return Codes:
noErr - Success
paramErr - if the card regentry ID is invalid
kInvalidRegEntryErr - if no PC Card is present in the socket or the

Card Identifier is invalid for the socket
January 8, 1997 SystemSoft and Apple Confidential 28 of 33

7.1.5.2 PCCardEject
The PCCardEjectcontrol call physically ejects the PC Card of the specified
DeviceID from the socket.

OSStatus PCCardEject(
const RegEntryRef* deviceID);

Parameters:
→ deviceID -Device identifier

Return Codes:
noErr - if ejection completed successfully
kInUseErr - if card is still in use and eject request was denied
kNoCardErr - if no PC Card is present in the socket

7.1.5.3 PCCardSetRingIndicate
The PCCardSetRingIndicate control call sets the ring indicate bit on and off
on a modem card that supports it. 1

OSStatus PCCardSetRingIndicate(
const RegEntryRef * deviceRef,
Boolean setRingIndicate)

Parameters:
→ deviceRef -Device identifier
→ setRingindicate -Boolean to turn the RingIndicate bit on and off

on a modem card that supports Ring indicate

Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoCardErr - if no PC Card is present in the socket
kUnsupportedModeErr - If the card does not support Ring indicate

7.1.5.4 PCCardEnableModemSound
The PCCardEnableModemSound control call enables the client or driver to
turn modem sound on or off.

OSStatus PCCardEnableModemSound(

1. PCCardSetRingIndicate this call may not be supported for all Mac
OS platforms.
29 of 33 SystemSoft and Apple Confidential January 8, 1997

const RegEntryRef * cardRef,
Boolean enableSound)

Parameters:
→ cardRef -Device identifier
→ enableSound -Boolean to turn the sound off and on.

Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoCardErr - if no PC Card is present in the socket
kUnsupportedModeErr - If the card does not support sound

7.1.5.5 PCCardEnableZoomedVideoSound
The PCCardEnableZoomedVideoSound control call enables the client or
driver to turn zoom video sound on or off.

OSStatus PCCardEnableZoomedVideoSound(
const RegEntryRef * cardRef,
Boolean enableSound)

Parameters:
→ cardRef -Device identifier
→ enableSound -Boolean to turn the sound off and on.

Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoCardErr - if no PC Card is present in the socket
kUnsupportedModeErr - If the card does not support sound

7.1.5.6 PCCardSetPowerLevel
The PCCardSetPowerLevel control call to set the power level of a device.
PC Card 3.0 only knows and handles the kPCCardPowerOn and kPCCard-
PowerOff state. If a developer wants to support low power state a custom
enabler must be written to handle the kPCCardPowerLow state to handle
the details of placing the card into low power.1

OSStatus PCCardSetPowerLevel(

1. PCCardSetPowerLevel call may not be supported for all platforms
January 8, 1997 SystemSoft and Apple Confidential 30 of 33

const RegEntryRef * cardRef,
PCCardPowerOptions powerLevel)

Parameters:
→ cardRef -Device or card identifier
→ powerLevel -Power Level to place the device or card

Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
kNoCardErr - if no PC Card is present in the socket
kUnsupportedModeErr - If the card does not support sound

7.1.5.7 PCCardGetCardRefFromDeviceRef
The PCCardGetCardRefFromDeviceRef returns the RegEntryRef of the
card given the device RegEntryRef. The card RegentryRef is the parent
node of the device RegEntry created by the PC Card 3.0 software.

OSStatus PCCardGetCardRefFromDeviceRef(
const RegEntryRef * deviceRef,
RegEntryRef * cardRef)

Parameters:
→ deviceRef - pointer to device RegEntryRef
← cardRef - pointer to card RegEntryRef

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
paramErr - if the register type or memory register offset

is invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

7.1.5.8 PCCardGetSocketAndDeviceFromDeviceRef
The PCCardGetSocketAndDeviceFromDeviceRef call returns the virtual
socket number and device number given the RegEntrytRef of a device.

OSStatus PCCardGetSocketAndDeviceFromDeviceRef(
31 of 33 SystemSoft and Apple Confidential January 8, 1997

const RegEntryRef * deviceRef,
PCCardSocket * vSocket,
UInt32 * device)

Parameters:
→ deviceRef - pointer to device RegEntryRef
← vSocket - pointer to the virtual socket
← device - pointer to the device number

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device
paramErr - if the register type or memory register offset

is invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

7.1.5.9 PCCardGetCardRef
The PCCardGetCardRef call returns the card RegEntryRef given a virtual
socket number.

OSStatus PCCardGetCardRef(
PCCardSocket vSocket,
RegEntryRef * cardRef)

Parameters:
→ vSocket - virtual socket number
← cardRef - pointer to the card RegEntryRef

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
paramErr - If the parameters car invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

7.1.5.10 PCCardGetSocketRef
The PCCardGetSocketRef call returns the socket RegEntryRef given a vir-
tual socket number.

OSStatus PCCardGetSocketRef(
January 8, 1997 SystemSoft and Apple Confidential 32 of 33

PCCardSocket vSocket,
RegEntryRef * socketRef)

Parameters:
→ vSocket - virtual socket number
← socketRef - pointer to the socket RegEntryRef

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
paramErr - If the parameters car invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid
33 of 33 SystemSoft and Apple Confidential January 8, 1997

8.0 Card Enabler Interface

8.1 Purpose

Card enablers exist to implement standard card behavior and to provide a
method of overloading standard card behavior with custom behavior. This is
useful for developers of non-compliant or custom cards. The duties of the
card enabler include card identification, card configuration, and customiza-
tion of card services. Each card enabler provides a bottleneck for card ser-
vices events so that card specific event processing may be preformed by the
enabler before the device driver is notified. It is the intention that a card ven-
dor will not have to override any Card Enabler function but in certain cases
were CIS information is not adequate on a card. A custom card enabler can
correct information present in the card’s the CIS information making the
card appear to be compliant with the PC Card Standard.

It is important that the guidelines outlined in the following sections be followed
exactly to ensure proper configuration of cards and of the Mac OS. Described in
each call is the appropriate Card Enabler Support call to be used. They will be
categorized as mandatory, optional or “do not call” for custom enablers
overriding the routine.

8.2 Overview

Each Card Enabler Plug-in is an ‘ndrv’ (Native Driver). The ndrv must
export a descriptor and a function table populated with custom entry points
or Nils. The descriptor serves to identify the plug-in to facilitate matching
of PC Cards with their card enablers. Card Enabler entry points are accessed
through the Card Enabler Interface (_EI) layer. It is the responsibility of the
Card Enabler to provide an interface for the PCCard FPI and Card Expert.

8.3 Plug-in File Type

All card enabler plug-ins must have a file type of ‘ndrv’.
January 8, 1997 SystemSoft Confidential 32 of 50

8.4 DriverDescriptor

The DriverDescriptor will be used to match a card enabler with a PC Card.

DriverDescription TheDriverDescription = {
/*
 * Signature info
 */
kTheDescriptionSignature, /* OSType driverDescSignature*/
kInitialDriverDescriptor, /* DriverDescVersion driverDescVersion*/
/*
 * DriverType driverType - these are defined in
 */
kCompatiblePluginName, /* Name of hardware */
kVersionMajor, kVersionMinor, /* NumVersion version */
kVersionStage, kVersionNonRel,

/*
 * DriverOSRuntime driverOSRuntimeInfo
 */
0
/* RuntimeOptions driverRuntime*/
| (0 * kDriverIsLoadedUponDiscovery)/* Loader runtime options*/
| (0 * kDriverIsOpenedUponLoad) /* Opened when loaded */
| (1 * kDriverIsUnderExpertControl) /* I/O expert handles loads/opens*/
| (0 * kDriverIsConcurrent) /* Not concurrent yet */
| (0 * kDriverQueuesIOPB), /* Not internally queued yet*/
kCompatiblePluginName, /* Str31 driverName(OpenDriver param)*/
0, 0, 0, 0, 0, 0, 0, 0, /* UInt32 driverDescReserved[8]*/

/*
 * DriverOSService Information. This section contains a vector count
 * followed by
 * a vector of structures, each defining a driver service.
 */
1, /* ServiceCount nServices */

/*
 * DriverServiceInfo service[0]
 */
kPCCardServiceCategory, /* OSType serviceCategory */
kPCCardCardEnablerServiceType, /* OSType serviceType */

1, 0,developStage, 1 /* version of the Open Transport */
/* programming interface that this */
/* driver supports */
/* should be kOTDriverAPIVersion */

};

8.5 Card Enabler loading

 The PC Card 3.0 Family utilizes the Driver Loader library to load the
appropriate card enabler for a card inserted in the system. Using the utilities
supplied by the Driver Loader Library the PC Card 3.0 Family scans the
33 of 50 SystemSoft Confidential January 8, 1997

extensions folder for all appropriate drivers with service types ‘ndrv’. The
best candidate is based on the card node name created by the PC Card 3.0
Family.

8.6 Card Enabler Plug-in Entry Points.

Entry points to the card enabler plug-in have been defined. These entry
points provide the services required to match plug-ins with cards, get card
information, prepare a card, and handle card events.

Plug-ins are required to fill in a function table. This function table is used to per-
form all actions required to set up a card. The current structure of this function
table is as follows:

8.6.1 Card Enabler Plug-in typedefs

enum {
kServiceTypePCCardEnabler='card',
kPCCardEnablerPluginVersion= 0x00000001,
kPCCardEnablerPluginCurrentVersion = kPCCardEnablerPluginVersion

};

/* Card Enabler Entrypoints*/

typedef OSStatus (*CEValidateHardwareProc)(const RegEntryRef *cardRef);

typedef OSStatus (*CEInitializeProc)(const RegEntryRef *cardRef,
Boolean replacingOld);

typedef OSStatus (*CECleanupProc)(const RegEntryRef *cardRef,
Boolean beingReplaced);

typedef OSStatus (*CEPowerManagementProc)(const RegEntryRef *lpCardEntry,
PCCardPowerOptions powerLevel);

typedef OSStatus (*CEHandleEventProc)(const RegEntryRef *cardRef,
PCCardEvent theEvent);

typedef OSStatus (*CEGetCardInfoProc)(const RegEntryRef *cardRef,
PCCardDevType *cardType, PCCardSubType *cardSubType,

 StringPtr cardName, StringPtr vendorName);

typedef OSStatus (*CEAddCardPropertiesProc)(const RegEntryRef *cardRef);

typedef OSStatus (*CEGetDeviceCountProc)(const RegEntryRef *cardRef,
ItemCount *numberOfDevices);

typedef OSStatus (*CEGetDeviceNameProc)(UInt32 socketNumber, UInt32 deviceNumber,
 char *deviceName);

typedef OSStatus (*CEGetDeviceCompatibleProc)(const RegEntryRef *deviceRef,
 UInt32 socketNumber, UInt32 deviceNumber, char *name);
January 8, 1997 SystemSoft Confidential 34 of 50

typedef OSStatus (*CEGetDeviceTypeProc)(const RegEntryRef *deviceRef,
UInt32 socketNumber, UInt32 deviceNumber,
PCDeviceType *lpDeviceType);

typedef OSStatus (*CEGetDeviceTypeNameProc)(const RegEntryRef *deviceRef,
UInt32 socketNumber, UInt32 deviceNumber, char *name);

typedef OSStatus (*CEAddDevicePropertiesProc)(const RegEntryRef *deviceRef,
 UInt32 device);

typedef OSStatus (*CEConfigureDeviceProc)(const RegEntryRef *deviceRef,
UInt32 deviceNumber);

typedef OSStatus (*CEFinalizeDeviceProc)(UInt32 socket, UInt32 device,
 const RegEntryRef *deviceRef);

typedef OSStatus (*CEValidateCISProc)(UInt32 socket, UInt32 device,
UInt32 *lpCISChainCount);

typedef OSStatus (*CEGetFirstTupleProc)(UInt32 socket, UInt32 device,
PCCardTupleIteratorPtr lpTupleIterator,
Byte desiredTuple, void *lptupleData,
UInt32 *lpTupleBufferSize, Byte *lpFoundTuple);

typedef OSStatus (*CEGetNextTupleProc)(PCCardTupleIteratorPtr lpTupleIterator,
Byte desiredTuple, void *lptupleData,
UInt32 *lpTupleBufferSize, Byte *lpFoundTuple);

8.6.2 Card Enabler Dispatch Table structure

struct PCCardEnablerPluginHeader {
UInt32 pluginDispatchTableVersion;
UInt32 Reserved1;
UInt32 reserved2;
UInt32 reserved3;

};
typedef struct PCCardEnablerPluginHeader PCCardEnablerPluginHeader;

struct PCCardEnablerPluginDispatchTable {
PCCardEnablerPluginHeader header;

/* General functions*/
CEValidateHardwareProc validateHardwareProc;
CEInitializeProc initializeProc;
CECleanupProc cleanUpProc;
CEPowerManagementProc setPCCardPowerLevel;

/* Card functions*/
CEHandleEventProc handleEventProc;
CEGetCardInfoProc getCardInfoProc;
CEAddCardPropertiesProc addCardProperties;
CEGetDeviceCountProc getDeviceCount;

/* Device functions*/
CEGetDeviceNameProc getDeviceName;
CEGetDeviceCompatibleProc getDeviceCompatibleNames;
CEGetDeviceTypeProc getDeviceType;
35 of 50 SystemSoft Confidential January 8, 1997

CEGetDeviceTypeNameProc getDeviceTypeName;
CEAddDevicePropertiesProc addDeviceProperties;
CEConfigureDeviceProc configureDevice;
CEFinalizeDeviceProc finalizeDevice;

/* Card Services Overrides...*/
CEValidateCISProc validateCIS;
CEGetFirstTupleProc getFirstTuple;
CEGetNextTupleProc getNextTuple;

/* InterruptHandlers...*/
InterruptHandler cardInterruptHandlerFunction;
InterruptEnabler cardInterruptEnableFunction;
InterruptDisabler cardInterruptDisableFunction;

};

typedef struct PCCardEnablerPluginDispatchTable PCCardEnablerPluginDispatchTable;

typedef PCCardEnablerPluginDispatchTable *PCCardEnablerPluginDispatchTablePtr;

8.6.3 initializeProc
This routine is called to populate the name registry for all devices on a card.
The table of function pointers which is handed in, contains the pointers to
custom routines supplied by the enabler or default routines supplied by the
CardEnablerLib, a shared library supplied by SystemSoft.

Mandatory that CEInitializeCard is called before performing custom
enabler specific code.

OSStatus initializeProc(const RegEntryRef *cardRef,
Boolean replacingOld);

Parameters:
→ cardRef - Device identifier
→ replacingOld -Boolean stating if the call is being called during

 the replacement process.

Return Codes:

noErr - Success
paramErr - Bad parameter
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

8.6.3.1 Example Code of custom enabler table

PCCardEnablerPluginDispatchTable ThePluginDispatchTable =
{
/* PCCardEnablerPluginHeader */
January 8, 1997 SystemSoft Confidential 36 of 50

{kPCCardEnablerPluginCurrentVersion, 0, 0, 0},

/* CEValidateHardwareProc */ MyValidateHardwareProc,
/* CEInitializeProc */ CEInitializeCard,
/* CECleanupProc */ CEFinalizeCard,
/* CEPowerManagementProc */ CEPowerManagement,

/* CEHandleEventProc */ CEHandleCardEvent,
/* CEGetCardInfoProc */ CEGetCardInfo,
/* CEAddCardPropertiesProc */ CEAddCardProperties,
/* CEGetDeviceCountProc */ CEGetDeviceCount,

/* CEGetDeviceNameProc */ MyGetDeviceName,
/* CEGetDeviceCompatibleProc */

CEGetDeviceCompatibleNames,
/* CEGetDeviceTypeProc */ MyGetDeviceType,
/* CEGetDeviceTypeNameProc */ MyGetDeviceTypeName,
/* CEAddDevicePropertiesProc */ CEAddDeviceProperties,
/* CEConfigureDeviceProc */ CEConfigureDevice,
/* CEFinalizeDeviceProc */ CEFinalizeDevice,

/* CEValidateCISProc */ CEValidateCIS,
/* CEGetFirstTupleProc */ CSGetFirstTuple,
/* CEGetNextTupleProc */ CSGetNextTuple,

/* InterruptHandler */
CEDefaultInterruptHandler,

/* InterruptEnabler */ NULL,
/* InterruptDisabler */ NULL
};

8.6.4 cleanUpProc
This entry point is called immediately before the plug-in is unloaded and
allows the enabler developer to perform any necessary clean up before the
plug in is removed. This call is only made if the card enabler plug-in was
successfully matched with a card.

Mandatory that CEFinalizeCard is called after the enabler cleans up.

OSStatus cleanUpProc (
const RegEntryRef *cardRef,
Boolean beingReplaced);

Parameters:
→ cardRef - Device identifier
→ replacingOld -Boolean stating if the call is being called during

 the replacement process.

Return Codes:

noErr - Success
37 of 50 SystemSoft Confidential January 8, 1997

paramErr - Bad parameter
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

8.6.5 validateHardwareProc
Determine whether the card in question is supported by the enabler.

Every custom enabler must have a validateHardwareProc the Card Enabler
support library does not supply a default CEValidateHardware call.

OSStatus validateHardwareProc(
const RegEntryRef *cardRef)

Parameters:
→ cardRef - Device identifier

Return Codes:

noErr - Success, the card will be handled by the enabler
kNotMyCardErr - The card will not be handled by the enabler

8.6.6 getFirstTuple
This function allows enabler writers to override the default card services
function “CSGetFirstTuple.”

CEGetFirstTuple is optional, it is suggested that this call be used only to fix
known tuple processing problems such as missing tuples.

OSStatus getFirstTuple (
PCCardSocket socket,
UInt32 device,
PCCardTupleIteratorPtr lpTupleIterator,
Byte desiredTuple,
void * lptupleData,
UInt32 * lpTupleBufferSize,
Byte * lpFoundTuple)

Parameters:
→ socket - socket number
→ device - device number
→ lpTupleIterator - A tuple iterator for card services to use
→ desiredTuple - The tuple code for the desired tuple
↔ lptupleData - A pointer to a buffer to fill or nil
↔ lpTupleBufferSize - A pointer to a UInt32 to receive the data size
← lpFoundTuple - A pointer to receive the kind of tuple returned.
January 8, 1997 SystemSoft Confidential 38 of 50

Return Codes:

noErr - Success

8.6.7 getNextTuple
This function allows enabler writers to override the default card services
function “CSGetNextTuple.”

CSGetNextTuple is optional, it is suggested that this call be used only to fix
known tuple processing problems such as missing tuples.

OSStatus getNextTuple (
PCCardTupleIteratorPtr lpTupleIterator,
Byte desiredTuple,
void * lptupleData,

 UInt32 * lpTupleBufferSize,
Byte * lpFoundTuple)

Parameters:
→ lpTupleIterator - A tuple iterator for card services to use
→ desiredTuple - The tuple code for the desired tuple
↔ lptupleData - A pointer to a buffer to fill or nil
↔ lpTupleBufferSize - A pointer to a UInt32 to receive the data size
← lpFoundTuple - A pointer to receive the kind of tuple returned.

Return Codes:

noErr - Success

8.6.8 handleEventProc

This entry point is called in response to card events. This entry point will
only be called in response to card events identified by the enabler descrip-
tor's EventMask field.

It is mandatory to call CEHandleEvent unless the custom enabler wants to
stop the event from being processed.

OSStatus handleEventProc(
const RegEntryRef* deviceID,
PCCardEvent theEvent)

handleEventProc is responsible for delivering events to the device
driver(s) loaded for it’s particular card. This allows the normalization of
events for misbehaved cards by it’s enabler.
39 of 50 SystemSoft Confidential January 8, 1997

Parameters:
→ deviceID - Device identifier
← theEvent - Card event from Socket Services

Table C.1

Return Codes:

noErr - Success

8.6.9 AddCardPropertiesProc
This is the main entry point used to populate the name registry for all
devices on a card. The name registry must be completely populated if this
entry point returns successfully.

There is no mandatory call for this routine.

OSStatus CEAddCardPropertiesProc(
const RegEntryRef * cardRef)

Parameters:
→ cardRef - Card identifier

Return Codes:

noErr - Success

8.6.10 AddDevicePropertiesProc
This function must completely populate the name registry for the specified
device on a card.The name registry must be completely populated for the
device if this entry point returns successfully.

There is no mandatory call for this routine.

OSStatus AddDevicePropertiesProc(
const RegEntryRef * deviceRef,
UInt32 device);

Parameters:
→ deviceRef - device identifier
→ deviceNumber - index of device to set up

Return Codes:

noErr - Success
January 8, 1997 SystemSoft Confidential 40 of 50

8.6.11 getDeviceCount
This function returns the number of devices on a card.

It is optional that CEGetDeviceCount be called.

OSStatus getDeviceCount(
const RegEntryRef* cardID,
UInt32 * pDeviceCount)

Parameters:
→ cardID - Card identifier
← pDeviceCount - Number of devices on card

Return Codes:

noErr - Success

8.6.12 getDeviceType
This function returns the type of a device on a card.

It is optional that CEGetDeviceType be called.

OSStatus getDeviceType(
const RegEntryRef* deviceRef,
PCCardSocket socket,
UInt32 device,
PCDeviceType pDeviceType);

Parameters:
→ deviceRef - device identifier
→ socket - socket number
→ device - device number
← pDeviceType - type of device

Table C.6

Return Codes:

noErr - Success

8.6.13 getDeviceTypeName
This function returns the name of the type of device on a card.

It is optional that CEGetDeviceTypeName be called.
41 of 50 SystemSoft Confidential January 8, 1997

OSStatus getDeviceTypeName(
const RegEntryRef * deviceRef,
PCCardSocket vSocket,
UInt32 device,
char * name;

Parameters:
→ deviceRef - device identifier
→ vSocket - socket number
→ device - device number
← name - name of device type

Return Codes:

noErr - Success

8.6.14 getDeviceName
This function returns the name of the device on a card.

It is optional that CEGetDeviceName be called.

OSStatus getDeviceName(
PCCardSocket vSocket,
UInt32 device,
char * name);

Parameters:
→ vSocket - socket number
→ device - device number
← name - name of device type

Return Codes:

noErr - Success

8.6.15 getCardInfoProc
This functions returns information about the card to be used by the finder
extension for display of the cards icon and information of the card.

It is optional that the CEGetCardInfo be called.

OSStatus CEGetCardInfo(
const RegEntryRef * cardRef,
PCCardDevType * cardType,
January 8, 1997 SystemSoft Confidential 42 of 50

PCCardSubType * cardSubType,
StringPtr cardName,
StringPtr vendorName)

Parameters:
→ cardRef - card identifier
← cardType -type of card
← cardSubType - sub type of card
← cardName - name of card
← vendorName - name of vendor

Return Codes:

noErr - Success
paramErr - parameter error

8.6.16 addDeviceProperties
This function is required to configure the specified device on the card and
populate the name registry with memory window information in the
assigned-address and APPL,address fields.

There is no mandatory call for this routine.

OSStatus addDeviceProperties(
const RegEntryRef * deviceRef,
UInt32 device);

Parameters:
→ deviceID - Device identifier
→device - device number

Return Codes:

noErr - Success

8.6.17 cardInterruptHandlerFunction
This function is of type InterruptHandler and is responsible for processing
card interrupts as defined in Interrupts.h.
43 of 50 SystemSoft Confidential January 8, 1997

8.6.18 cardInterruptEnableFunction
This function is of type InterruptEnabler and is responsible for processing
card interrupts as defined in Interrupts.h.

8.6.19 cardInterruptDisableFunction
This function is of type InterruptDisabler and is responsible for processing
card interrupts as defined in Interrupts.h.

8.7 Card Enabler Usage by the PC Card 3.0 Family

This section will explain the usage and control flow of a custom card
enabler in detail. There are four stages in the life of an enabler, card inser-
tion, card ejection, replacement and event notification. In each of these
stages different routines are called at specific times to allow an enabler to
perform defined tasks. The following information is supplied as a guide to
assist the developer in designing custom card enablers. It is important to
note that the PC Card family will read tuples using getFirstTuple only, it
will use the getNextTuple call only when looking for multiple
CISTPL_CFTABLE_ENTRYs entries.

8.7.1 Card Insertion Processing
When a card is inserted the PC Card 3.0 family is notified and starts to pro-
cess the card. The PC Card Family will create a card entry in the name reg-
istry for the card inserted.

First the expert will call CSValidateCIS - this will insure that your enabler
can read the CIS on the inserted card. (Ironically, a kBadCISErr is not con-
sidered a fatal error, so we will ignore invalid checksums - However if the
card does not come ready, or some other error prevents us from reading all
of the CIS tuples, then the card recognition process will be terminated.)

Next the expert will seek to generate a card name which will be used for the
Name Registry Entry. The expert will look for a CISTPL_MANFID tuple
and will transform it into a name using an algorithm that is described below.
If there is no MANFID, the expert seeks to generate a name from the manu-
facturer name in the CISTPL_VERS_1 tuple. If there is no VERS1 tuple
either, the name will be "pccard". You need not be concerned with the algo-
rithm since then name will appear in the name registry in two places. If the
generated name is "pccard12,403", the Card registry entry will be named
"Devices:device-tree:bandit:ti1130:pccard12,403" and it will have a "name"
property which will have a value of "pccard12,403". The Card registry entry
will also have a "compatible" property which will be used later on to find an
enabler.

After the Card registry entry has been created, the expert will look for card
enablers that might want to handle this card. The enablers are opened in
January 8, 1997 SystemSoft Confidential 44 of 50

order and the first enabler that indicates it can handle the card will be given
control and the search will be ended.

First the expert looks for an enabler that matches the "name" property in the
Card RegEntry. The name must exactly match the driverName field of the
DriverOSRuntime portion of the DriverDescription structure that is
exported by your enabler. (See DriverFamilyMatching.h for the details, or
look at the custom enabler sample in the SDK.) If a driver with an exact
name match is found, then the driver is loaded and the validateHardware-
Proc in the PCCardEnablerPluginDispatchTable is called. Your enabler
should examine the card's CIS to assure that you want to handle it. If you do
want to handle the card, then return noErr from your validateHardware-
Proc. If you do not want to handle it, return an error code - kUnsupported-
CardErr would be a good choice. If your enabler returns noErr, then it
will be kept loaded and the search for enablers will terminate. If your
enabler returns an error, it will be unloaded and the search continues.

If there is no exact name match card enabler or it refuses to handle the card,
we continue searching using the "compatible" property of the Card
RegEntry. The compatible property has two zero terminated strings in it.

If no Custom Enabler has accepted the card (or none exist), then the search
will proceed to the "compatible" property. The "DefaultPCCardEnabler" is
part of the system software and it's validateHardwareProc will always
return noErr.

Once an enabler has been selected, the expert continues the card recognition
and configuration process. The initializeProc of selected enabler is called.
A Device Registry entry (or entries) will be created and the devices config-
ured. All access to the card will be done through the PCCardEnablerPlug-
inDispatchTable of the card enabler - so your enabler can override the CIS
information that exists on the card.

Once the expert has finished the configuration process, it will load target
drivers for each of the devices that were found on the card. It will use a
driver matching algorithm that first looks at the "name" property of the
device RegEntry and the "compatible" property.

The devices on the card are now ready to use by the Finder and/or applica-
tions.

notes:

1) if an error code is returned to the expert, an "AAPL,pccard-error" prop-
erty will be added to the Card RegEntry. The value will be the first error
code returned to the expert.

2) here is an example of the algorithm used to generate a card name for the
registry

Suppose a card has a MANFID of 12000304

- separate fields 1200 and 0304
45 of 50 SystemSoft Confidential January 8, 1997

- byte swap them, yielding 0012 and 0403

- suppress leading zeros, yielding 12 and 403

- build a name string, "pccard12,403"

8.7.2 The Device Initialization
At this point there exists a card node RegEntry and the card enabler is
loaded. The PC Card Family then starts to process the devices on the card.
The family determines the number of devices on the card by calling getDe-
viceCount.

 The PC Card Family then gets information from the card to store in the
card entry by calling getFirstTupleProc looking for the following tuples:
CISTPL_VERS_1, CISTPL_FUNCID and CISTPL_FUNCE. The reason
we need to do this is that many older cards “lose” their CIS once they are
configured. A call is also made to getDeviceTypeProc. The information
gathered during this process is stored in the card RegEntry using the name
‘PCCardInfo’. This data is used when the finder calls PCCardGetCardInfo
and actually can be overridden by the getCardInfoProc enabler call.

At this point, the loaded enabler gets called using the addCardProperties calls.
This allows the enabler to add any RegEntry fields to the card node. The default
behavior at this point is to do nothing,

The PC Card Family is finished with the card node and starts to process the
devices on the card. It first creates the device node calling getDeviceName to
name the device and use the name in the name property. It determines the com-
patible field using the getFirstTuple looking for the CISTPL_FUNCID and
CISTPL_FUNCE tuples, if they are not found then the card is assumed to be an
SRAM card. The device type name is determined by calling getDeviceType-
Name, the default call uses the CISTPL_VERS_1 and CISTPL_FUNCID tuple
to determine the device type name.

The PC Card Family then calls addDeviceProperties so a custom enabler can
add properties to the device node in the name registry. The card is not config-
ured at this time because some cards may not allow access to the CIS once con-
figured.

The next step is to configure the card. The PC Card Family calls configureDe-
vice to start the configuration process. The CEConfigureDevice call in the Card
Enabler Support Library should be called first in a custom enabler that overrides
this call. CEConfigureDevice call looks for the CISTPL_CONFIG tuple to fill
in a internal configuration table. It then gets all of the
CISTPL_CFTABLE_ENTRYs using getNextTuple. It will parse, store and sort
the CISTPL_CFTABLE_ENTRY entries in priority order. The PC Card Family
will then attempt to configure the device/card using this information.

 If the CISTPL_CONFIG tuple does not exist the device is considered unconfig-
urable. When a card is unconfigurable the support library call will attempt to
January 8, 1997 SystemSoft Confidential 46 of 50

identify the device by calling getDeviceType. If the device type is memory it
will attempt to determine the memory type and speed using the
CISTPL_DEVICE tuple. If this fails the attempt to configure the card stops and
an error code is returned.

8.7.3 Card Ejection
During a card ejection all clients for the particular device, socket or card are
notified and have a chance to stop the card ejection if necessary, Note that if
a card is paper clipped a client has no chance to stop it. The PC Card Family
unloads the target driver for a card, powers the card down and ejects the
card. It then will call CleanUpProc to give the enabler a chance to clean up
the name registry before unloading it.

8.7.4 Event Notification
A custom card enabler may override the handleEventProc. The han-
dleEventProc receives the PC Card events that will be sent to the clients reg-
istered for a particular socket, card, or device. This will allow a custom
enabler to filter events or perform tasks that may be required before a client
is notified. It is important that a custom enabler calls CSNotifyClients if it
wants to ensure that registered clients get notified.

8.7.5 Enabler Replacement
The finalizeDevice enabler plug in call is used during replacement which
will only occur with enablers that are in the system ROM.

8.8 Card Enabler Support Library
The Card Enabler Support Library is designed to support an enabler in card
detection, assist in managing other clients of the card, and help maintaining
the device information in the name registry and interrupt trees and to trans-
parently provide default function table behavior.

8.8.1 Card Identification
One of the tasks delegated to the card enabler is card identification. This
task typically involves examining the Card Information Structure (CIS). To
assist the Card Enabler in this process, several Card Identification subrou-
tines are provided in by the PC Card family.

8.8.1.1 CEGetCardType
This function provides a mechanism of identifying what type of PC Card is
inserted in a PC Card slot (e.g., 16-bit memory card, 16-bit I/O card,
Zoomed Video device, or CardBus card).
47 of 50 SystemSoft Confidential January 8, 1997

OSStatus CEGetCardType(
RegEntryRef cardEntry,
PCCardType* cardType);

Parameters

cardEntry - RegEntry ID of the card
cardType - pointer to card type

Table C.6

Return codes

 noErr - compare succeeded

8.8.1.2 CECompareCISTPL_VERS_1

PCCompareCISTPL_VERS_1 compares the CISTPL_VERS_1 tuple with
the specified parameters. All supplied parameters must match; you may pass
nil to ignore a parameter.

OSStatus CECompareCISTPL_VERS_1(
RegEntryRef cardEntry,
Byte majorVersion,
Byte minorVersion,
const char* manufacturer,
const char* productName,
const char* info1,
const char* info2);

Parameters

cardEntry - RegEntry ID of the card
majorVersion - Major rev of card
minorVersion - Minor rev of card
manufacturer - manufacturer of card
productName - name of product
info1 - extra info
info2 - extra info

Return codes

 noErr - compare succeeded
 kPCCCompareFailedErr - compare failed
January 8, 1997 SystemSoft Confidential 48 of 50

8.8.1.3 CECompareCISTPL_MANFID

PCCompareCISTPL_MANFID Compares the CISTPL_MANFID tuple
with the specified parameters. All supplied parameters must match; you
may pass nil to ignore a parameter.

OSStatus CECompareCISTPL_MANFID(
RegEntryRef deviceID,
UInt16 manufacturerCode,
UInt16 manufacturerInfo);

Parameters

deviceID - PC Card's registry entry
manufacturerCode - manufacturer code bytes
manufacturerInfo - manufacturer info bytes

Return codes

 noErr - compare succeeded
 kPCCompareFailedErr - compare failed

8.8.1.4 CECompareMemory

PCCompareMemory compares a block of memory on a PC Card with a
block of user supplied data In the case of attribute memory, offset must be
even and every other byte is compared. This routine is intended to be used
as a ‘last resort’ for PC Cards which cannot be identified using standard
tuple processing techniques.

OSStatus CECompareMemory (
RegEntryRef deviceID,
PCCardMemoryType memType,
ByteCount offset,
ByteCount length,
Byte * dataToCompare);

 Parameters

deviceID - PC Card's registry entry
memType - I/O, Attribute, memory space
offset - Offset from beginning of address space
length - Length of data to compare
49 of 50 SystemSoft Confidential January 8, 1997

dataToCompare - Data to compare

Return codes

 noErr - compare succeeded
 kPCCompareFailedErr - compare failed
January 8, 1997 SystemSoft Confidential 50 of 50

8.9 Internal Card Services

8.9.1 Purpose
Internal Card Services supplies the lowest level programming interface to
the card services library. The Internal Card Services programming inter-
faces require a logical socket number and a device number to identify a
device. This differs from the Card Services Family Programming Interface
which requires a RegEntryID to identify a device. These routines are either
called directly or inderectly via a card enabler driver by the PC CardFamily
Programming Interface. Client programs should not call the internal card
service API directly.

8.9.2 Client Services
The client services interface consists of routines for client management and
event notification. Clients consist of target drivers or applications that
require event notification for a particular device or socket.

8.9.2.1 CSGetCardServicesInfo
The GetCardServicesInfo control call returns the current version informa-
tion. The Card Services PC Card Standard compliance level for this specifi-
cation is 0x0501, see page 59 of PC Card Socket Services specification,
dated November 95.

OSStatus CSGetCardServicesInfo (
ItemCount * socketCount,
UInt32 * complianceLevel,
UInt32 * version)

Parameters:
← socketCount - Current Number of Sockets
← complianceLevel - Binary Coded Decimal value of the Card

 Services PCCard Standard Compliance Level
← version - Binary Coded Decimal value of the Card

 Services implementation’s version number

Return Codes:
noErr - Success

8.9.2.2 CSRegisterClient
CSRegisterClient is provided to allow target drivers to register interest in
PC Card status changes. When a PC Card status change occurs, the function
provided in clientCallback is invoked.
54 of 70 SystemSoft Confidential January 8, 1997

NOTE: Unlike the x86/DOS binding, clients are registered for events in a
specific socket, rather than all status changes in the system. Passing kCSNo-
tifyAllSockets as the socket of interest will register for all sockets.

OSStatus CSRegisterClient (
PCCardSocket vSocket,
PCCardEventMask interestingEvents,
PCCardEventHandler clientCallback,
void * clientParam,
PCCardClientID * registeredClient)

Parameters:
→ vSocket - which socket, or kCSNotifyAllSockets for all

sockets.
→ interestingEvents - Bit mask which events are interesting

Table C.1
→ clientCallback - Client supplied event handling function
→ clientParam - Client supplied parameter passed

 to clientCallback
← registeredClient - “ClientHandle”

Return Codes:
noErr - if socket and function numbers are valid
kBadSocketErr - if the socket is invalid
kBadDeviceErr - if the device number is invalid

8.9.2.3 CSDeregisterClient
CSDeregisterClient is provided to unregister interest in PC Card status
changes.

OSStatus CSDeregisterClient(PCCardClientID clientID)

Parameters:
→ clientID - “ClientHandle”

Return Codes:
noErr - if socket and function numbers are valid
kBadClientIDErr - if the client ID is invalid

8.9.2.4 CSSetEventMask
SetEventMask allows the event mask to be changed

OSStatus CSSetEventMask(
PCCardClientID clientID,

 PCCardEventMask interestingEvents)

Parameters:
→ clientID -“ClientHandle”
January 8, 1997 SystemSoft Confidential 55 of 70

→ interestingEvents -Bit mask which events are interesting
Table C.1

Return Codes:
noErr - Success
kBadClientIDErr - if the client ID is invalid

8.9.2.5 CSGetEventMask

GetEventMask allows the client to check the event mask.

OSStatus CSGetEventMask (
PCCardClientID clientID,
PCCardEventMask * interestingEvents)

Parameters:
→ clientID - “ClientHandle”
← interestingEvents - Bit mask which events are interesting

Table C.1

Return Codes:
noErr -Success
kBadClientIDErr - if the client ID is invalid

8.9.2.6 CSRegisterTimer
CSRegisterTimer is provided to allow target drivers to register a timer with
card services to be notified via the callback registered in the registerClient
call. A valid client handle must be first obtained from calling register client.

OSStatus CSRegisterTimer (
PCCardClientID registeredClientID,
PCCardTimerID* lpNewTimerID,
long delay)

Parameters:
→ registerClientID - “ClientHandle” from CSRegisterClient

call.
← lpNewTimerID - “TimerClientHandle”

→ delay - number of milliseconds to expire before the
registered callback is called.

Return Codes:
noErr - if socket and function numbers are valid
paramErr - if the parameters are not valid
kBadSocketErr - if the socket number is invalid
56 of 70 SystemSoft Confidential January 8, 1997

8.9.2.7 CSDeregisterTimer
CSDeregisterTimeris provided to unregister timer.

OSStatus CSDeregisterClient(PCCardTimerID clientID)

Parameters:
→ clientID - “TimerClientHandle”

Return Codes:
noErr - if socket and function numbers are valid
kBadClientIDErr - if the client ID is invalid

8.9.2.8 CSNotifyClients

CSNotifyClients will look through all of the registered clients and will exe-
cute the client callback routines for all clients which are registered for this
socket and which have an event mask that includes the event.

If any client callback returns anything other than noErr, no further client call-
backs will be executed and CSNotifyClients will return that error code,

OSStatus CSNotifyClients (
PCCardSocket vSocket,
PCCardEvent * theEvent)

Parameters:
→ vSocket - the virtual socket
→ theEvent - the Event bit(s) Table C.1

Return Codes:
noErr - if all client callbacks returned noErr

 (or there were no clients registered)

8.9.2.9 CSGetStatus
The GetStatus control call returns the current status of a PC Card.

OSStatus CSGetStatus (
PCCardSocket vSocket,
PCCardSocketStatus * currentState,
PCCardSocketStatus * changedState,
PCCardVoltage * Vcc,
PCCardVoltage * Vpp)

Parameters:
→ socket - Virtual socket number
← currentState - Current state of the socket

Table C.2
← changedState - delta bits of the socket since last cleared

Table C.2
January 8, 1997 SystemSoft Confidential 57 of 70

← Vcc - Vcc setting of the socket
← Vpp - Vpp setting of the socket

Return Codes:
noErr - if socket and function numbers are valid
kBadSocketErr - if the socket is invalid

8.9.3 Window Services Interface

8.9.3.1 CSRequestWindow
The RequestWindow call assigns a range of system address space to a PC
Card of the specified Device.

When addressing the system memory range, the windowSpeed parameter is
used as the requested access speed. The windowOffset parameter is the off-
set in the PC Card space. WindowOffset is adjusted by CSRequestWindow,
if the requested offset is not on an alignment boundary. The windowBase is
the host memory space and is returned to the calling program. The window-
Size parameter is adjusted to the next largest alignment requirement, if
needed. The memory window requested is immediately allocated and
enabled, if no error is returned. The windowAttributes parameter must state
that a memory window is being requested.

When an IO address range is requested, the IO range is only allocated and
reserved, not enabled. The RequestConfiguration control call must be invoked
to enable access to the IO range. The windowSpeed parameter is used to pass
the number of I/O decode lines. The windowBase is the host I/O space and is
returned to the calling program. The windowSize parameter is adjusted to the
next largest alignment requirement, if needed. The windowAttributes parameter
must state that an I/O window is being requested.

The requestedWindow parameter returns the window handle that is used in sub-
sequent window calls. To release a memory window, call CSReleaseWindow. To
release an I/O window the CSReleaseConfiguration call must be called. This
ensures that the I/O windows are released and the socket interface is corrected,
if needed.

OSStatus CSRequestWindow(

PCCardSocket vSocket,
UInt32 device,
PCCardWindowAttributes windowAttributes,
PCCardAccessSpeed windowSpeed,
LogicalAddress * windowBase,
PCCardWindowSize* windowSize,
PCCardWindowOffset * windowOffset,
PCCardWindowID * requestedWindow)
58 of 70 SystemSoft Confidential January 8, 1997

Parameters:
→ socket - Virtual socket number
→ device - PC Card device number
↔ windowAttributes - WindowState bitmask Table C.3
↔ windowSpeed - Memory access speed or ioDecodeLines
← windowBase - Window base address in bytes
↔ windowSize - Minimum window size in bytes

 (input 16-bit only)
 →windowOffset - PC Card memory offset

← requestedWindow - Window Identifier

Return Codes:
noErr - if all parameters are valid and request can be

 serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kBadSizeErr - if the requested window size cannot be

 accommodated
kBadSpeedErr - if the requested access speed is invalid or

 cannot be accommodated
kBadAttributeErr - if any attributes are invalid, conflicting,

 or cannot be accommodated

8.9.3.2 CSReleaseWindow
The ReleaseWindow call disables the memory window assigned to the
adapter and deallocates the host memory space previously assigned to a PC
Card by the RequestWindow control call. This call only releases memory
windows, not I/O windows.

OSStatus CSReleaseWindow(
PCCardWindowID windowToRelease)

Parameters:
→ windowToRelease - Window Handle

Return Codes:
noErr - if window handle is valid
kBadHandleErr - if window handle is invalid
kConfigurationLockedErr - if the PC Card function is already configured

 (IO windows only)

8.9.3.3 CSModifyWindow [16-bit PC Card Only]
The ModifyWindow control call allows the Access Speed and/or Card Off-
set of a 16-bit PC Card memory window to be modified.

OSStatus CSModifyWindow(
January 8, 1997 SystemSoft Confidential 59 of 70

PCCardWindowID windowToModify,
PCCardWindowAttributes windowAttributes,
PCCardAccessSpeed memorySpeed,
PCCardWindowOffset* windowOffset)

Parameters:
→ windowToModify - Window Identifier
→ windowAttributes - WindowState bitmask

Table C.3
→ memorySpeed - Requested memory access speed
→ windowOffset - PC Card memory offset

Return Codes:
noErr - if all parameters are valid and request can be serviced
kBadHandleErr - if window handle is invalid
kBadAttributeErr - if any attributes are invalid
kBadSpeedErr - if the requested access speed is invalid or cannot be

 accommodated
kBadOffsetErr - if the card offset is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.4 Configuration Services

8.9.4.1 CSRequestConfiguration
The RequestConfiguration control call configures the requested device on
the PC Card. This call also sets up the socket interface to be a either an I/O
or memory type. This is controlled by the socketInterface parameter. The
configRegPresentMask states which configRegValues are present. The con-
figRegValues relates to the Function Configuration Register(s) on the PC
Card, see electrical specification.

All IO windows previously assigned by RequestWindow are enabled for access.
Any DMA channel previously assigned by RequestDMA is enabled if so speci-
fied in the attributes field.

OSStatus CSRequestConfiguration (
PCCardSocket vSocket,
UInt32 device,
PCCardConfigOptions configOptions,
PCCardInterfaceType socketInterface,
PCCardInterfaceID customInterface,
PCCardVoltage vcc,
PCCardVoltage vpp,
PCCardIRQ IRQ,
PCCardDMA DMA,
UInt32 configRegBaseAddress;
PCCardConfigPresentMask configRegPresentMask,
PCCardFunctionConfigReg * configRegValues)
60 of 70 SystemSoft Confidential January 8, 1997

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
→ configAttributes - Placed in function config option register

Table C.4
→ socketInterface -Interface type (I/O, Memory, custom)

Table C.5
→ customInterface - Custom interface type (zoom Video)
→ vcc - Vcc voltage in tenths of volts
→ vpp - Vpp voltage in tenths of volts
← IRQ − kIRQEnable signifies that PC Card interrupts

are enabled.
← DMA − reserved for future use, not applicable to the

Mac
→ configRegBaseAddress - Base address for configuration
→ configRegPresentMask - 16-bit Card config register bitmap
→ configRegValues - 16-bit Card config register values

Return Codes:
noErr - if all parameters are valid and request can be

 serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kBadAttributeErr - if any attributes are invalid, conflicting, or

 cannot be accommodated
kBadTypeErr - if the interface type is invalid
kBadVccErr - if Vcc is invalid or unsupported
kBadVppErr - if Vpp is invalid or unsupported
kBadArgsErr - if the Custom ID is invalid
kConfigurationLockedErr - if the PC Card function is already configured
kNoCardErr - if no PC Card is present in the socket

8.9.4.2 CSReleaseConfiguration
The ReleaseConfiguration control call deconfigures the device on the PC
Card. If no I/O configurations exist on the PC Card, the socket interface is
placed back into a memory interface.

All IO windows previously assigned by RequestWindow are disabled. Any
DMA channel previously assigned by RequestDMA and enabled by
RequestConfiguration or ModifyConfiguration is disabled.

OSStatus CSReleaseConfiguration (
PCCardSocket vSocket,
UInt32 device)

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
January 8, 1997 SystemSoft Confidential 61 of 70

Return Codes:
noErr - if the socket and function numbers are valid

 and there is a configuration to release
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid

8.9.4.3 CSModifyConfiguration
The ModifyConfiguration control call allows a PC Card configuration to be
modified without having to issue RequestConfiguration and ReleaseConfig-
uration calls.

OSStatus CSModifyConfiguration(
PCCardSocket vSocket,
UInt32 device,
PCCardConfigOptions modifyAttributes,
PCCardIRQ IRQ,
PCCardDMA DMA,
PCCardVoltage vpp)

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
→ modifyAttributes - Modify configuration attributes

Table C.4
← IRQ − kIRQEnable signifies that PC Card interrupts

are enabled.
← DMA − reserved for future use, not applicable to the

Mac
→ vpp - Vpp voltage in tenths of volts

Return Codes:
noErr - if all parameters are valid and request can be

serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kBadAttributeErr - if any attributes are invalid, conflicting, or

 cannot be accommodated
kBadVppErr - if Vpp is invalid or unsupported
kNoCardErr - if no PC Card is present in the socket

8.9.4.4 CSReadConfigRegister
The ReadConfigRegister control call allows the PC Card device configura-
tion registers to be read. The whichRegister parameter selects the function
configuration register to be read.

OSStatus CSReadConfigurationRegister (
62 of 70 SystemSoft Confidential January 8, 1997

PCCardSocket vSocket,
UInt32 device,
PCCardConfigPresentMask whichRegister,
UInt32 configRegBaseAddress,
UInt8 * value)

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
→ whichRegister - FCR register index
→ configRegBaseAddress- FCR base address
← value - Value read from FCR

Return Codes:
noErr - if all parameters are valid and request can be

 serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kBadArgsErr - if the register type or memory register offset

 is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.4.5 CSWriteConfigRegister
The WriteConfigRegister control call allows the PC Card device configura-
tion registers to be written. The whichRegister parameter selects the func-
tion configuration register to be read.

OSStatus CSWriteConfigurationRegister (
PCCardSocket vSocket,
UInt32 device,
PCCardConfigPresentMask whichRegister,
UInt32 configRegBaseAddress,
UInt8 value)

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
→ whichRegister - FCR register index
→ configRegBaseAddress- FCR base address
→ value - Value written to FCR

Return Codes:
noErr - if all parameters are valid and request can be

serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kBadArgsErr - if the register type or memory register offset
January 8, 1997 SystemSoft Confidential 63 of 70

is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.4.6 CSResetFunction
The ResetFunction control call resets the specified function. Clients are
notified if the function reset can be preformed. If any one client rejects the
reset request the reset will not occur. The client requesting the reset function
must save the device’s configuration or request a new configuration. Device
notification is performed when the reset is complete.

OSStatus CSResetFunction (
PCCardSocket vSocket,
UInt32 device)

Parameters
→ vSocket - Virtual socket number
→ device - PC Card device number

Return Codes:
noErr - if all parameters are valid and request can be

serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kInUseErr - if the PC Card function is configured
kNoCardErr - if no PC Card is present in the socket

8.9.5 CIS Services Interface

8.9.5.1 CSValidateCIS
The CSValidateCIS control call validates the Card Information Structure for
the specified Socket and Device. It returns the number of valid tuple chains
in the device CIS. If a checksum tuple is present it will validate the check-
sum.

OSStatus CSValidateCIS(
PCCardSocket vSocket,
UInt32 device,
UInt32 * cisChainCount)

Parameters:
→ vSocket - Virtual socket number
→ device - PC Card device number
← cisChainCount - Number of valid tuple chains located

 in CIS

Return Codes:
noErr - if all parameters are valid and request can

 be serviced
kBadDeviceErr - if the device number is invalid
64 of 70 SystemSoft Confidential January 8, 1997

kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.5.2 CSGetDeviceCount
The CSGetDeviceCount control call examines the Card Information Struc-
ture for the number of devices present on the PC Card. It returns the number
of devices in deviceCount.

OSStatus CSGetDeviceCount(
PCCardSocket vSocket,
UInt32 * deviceCount)

Parameters
→ vSocket - Virtual socket number
← deviceCount - Number of devices on PC Card

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.5.3 CSGetFirstTuple
The CSGetFirstTuple control call allows the tuples of the Card Information
Structure to be read. To retrieve a specific tuple, set desiredTuple to the spe-
cific tuple code. To read the first tuple in the CIS, set the desiredTuple to
0FFh. If no tuple data is required, tupleBufferSize must be set to zero. If
tupleBufferSize is greater then zero, the tuple data will be placed into the
tupleDataBuffer. The length of the tuple data returned is passed back in the
tupleBufferSize. This call always initializes the tupleIterator to the begin-
ning of the CIS before searching for tuples. The tupleIterator must be pre-
served for subsequent tuple reads.

OSStatus CSGetFirstTuple(
Socket vSocket,
UInt32 device,
PCCardTupleIteratorPtr tupleIterator,
Byte desiredTuple,
void * tupleData,
ByteCount * tupleBufferSize,
Byte * foundTuple)

Parameters
→ vSUInt32ocket - Virtual socket number
→ device - PC Card device number
↔ tupleIterator - Card Services Internal Use Only
→ desiredTuple - First occurrence of specific tuple code

 OR FFh for the first tuple in CIS
January 8, 1997 SystemSoft Confidential 65 of 70

← tupleData - Pointer to tuple data buffer
↔ tupleBufferSize - Length of Tuple data buffer (in bytes)

 and length returned
← foundTuple - tuple code found in the CIS

Return Codes:
noErr - if all parameters are valid and request can

be serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kNoMoreItemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

8.9.5.4 CSGetNextTuple
The CSGetNextTuple control call allows the tuples of the Card Information
Structure to be read. To retrieve a specific tuple, set desiredTuple to the spe-
cific tuple code. To read the next tuple in the CIS, set the desiredTuple to
0FFh. If no tuple data is required, tupleBufferSize must be set to zero. If
tupleBufferSize is greater then zero, the tuple data will be placed into the
tupleDataBuffer. The length of the tuple data returned is passed back in the
tupleBufferSize. The next tuple examined is based on the CIS pointer that is
stored in the tupleIterator. The CIS pointer is incremented to the next tuple,
after a successful read.

OSStatus CSGetNextTuple(
PCCardTupleIteratorPtr tupleIterator,
Byte desiredTuple,
void * tupleData,
ByteCount * tupleBufferSize,
Byte * foundTuple)

Parameters:
↔ tupleIterator - Card Services Internal Use Only
→ desiredTuple - Next occurrence of specific tuple code

 OR FFh for the first tuple in CIS
← tupleData - Pointer to tuple data buffer
↔ tupleBufferSize - Length of Tuple data buffer (in bytes)

 and length returned
← foundTuple - tuple code found in the CIS

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadDeviceErr - if the device number is invalid
kBadSocketErr - if the socket is invalid
kNoMoreItemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket
66 of 70 SystemSoft Confidential January 8, 1997

8.9.6 Miscellaneous Services

8.9.6.1 CSGetDeviceCount
The CSGetDeviceCount call returns the number if devices found on a card.

OSStatus CSGetDeviceCount(
PCCardSocket vSocket,
UInt32 * deviceCount)

Parameters:
→ vSocket - virtual socket number
← deviceCount - number of devices on the card in the socket

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.2 CSGetSocketDeviceFromIterator
The CSGetSocketDeviceFromIterator call returns the number if devices
found on a card.

OSStatus CSGetSocketDeviceFromIterator(
PCCardSocket * vSocket,
UInt32 * device,
PCCardTupleIteratorPtr tupleIterator)

Parameters:
← vSocket - virtual socket number
← device - device number
→tupleIterator - tuple iterator

Return codes
noErr - if all parameters are valid and request can

be serviced

8.9.6.3 CSCardEject
The CSCardEject call ejects the card in the particular socket.

 OSStatus CSCardEject(
PCCardSocket * vSocket)

Parameters:
← vSocket - virtual socket number
January 8, 1997 SystemSoft Confidential 67 of 70

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.4 CSGetCardType
The CSGetCardType call returns the card type.

OSStatus CSGetCardType(
PCCardSocket vSocket,
PCCardHardwareType * cardType)

Parameters:
→ vSocket - virtual socket number
← cardType - card type, cardBus or 16bit card

Table C.9

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.5 CSGetInterruptSetMember
The CSGetInterruptSetMember calls socket services to get the Interrupt
Set Member and pass it back to the calling function.

OSStatus CSGetInterruptSetMember(
PCCardSocket vSocket,
InterruptSetMember * ISTMember)

Parameters:
→ vSocket - virtual socket number
← ISTMember - ISTMember number of socket services

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket
68 of 70 SystemSoft Confidential January 8, 1997

8.9.6.6 CSSetInterrupt
The CSSetInterrupt calls socket services to enable the functional inter-
rupts. This is called when the target drivert calls the enablefunction routine
that PcCard 3.0 overrides so that Pc Card 3.0 knows when to route func-
tional interrupts.

OSStatus CSSetInterrupt(
PCCardSocket vSocket,
Boolean IRQEnable)

Parameters:
→ vSocket - virtual socket number
→ IRQEnable - Boolean to turn functional interrupts off and on.

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.7 CSSetRingIndicate
The CSSetRingIndicate calls socket services to enableringIndicate func-
tioanlalty of a modem card.

OSStatus CSSetRingIndicate(
PCCardSocket vSocket,
Boolean setRingIndicate)

Parameters:
→ vSocket - virtual socket number
→ setRingIndicate - Boolean to turn ring indicate off and on.

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.8 CSPowerManagement
The CSPowerManagement call is used by the system whne the system is
powered down during sleep

OSStatus CSPowerManagement(
PCCardSocket vSocket,
PCCardPowerOptions powerManagementOptions)

Parameters:
→ vSocket - virtual socket number
January 8, 1997 SystemSoft Confidential 69 of 70

→ powerManagementOptions - a flag that tells the system what power state
to place the device. The supported power
states are kPCCardPowerOff,
kPCCardLowPower1,kPCCardPowerOn.

Return codes
noErr - if all parameters are valid and request can

be serviced
kBadSocketErr - if the socket is invalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.9 CSReportStatusChange
The CSReportStatusChange is called by socket services to notify the
expert of a status change interrupt.

OSStatus CSReportStatusChange(
const RegEntryRef * adapterRef,
PCCardSocket whichSocket,
PCCardSCEvents statusChange,
PCCardSocketStatus socketStatus)

Parameters:
→ adapterRef - RegEntryRef of the adapter

reporting the status change.
→ whichSocket - The socket number that caused the

status change interrupt.
→ statusChange - status change interrupt that occured.
→ socketStatus - The socket status at the time of calling.

Return codes
noErr - if all parameters are valid and request can

be serviced
kInvalidNodeErr - if the RegEntryRef is not valid
paramErr - if a parameter is not valid
kPostCardEventErr - if an error occured during posting the event to

the PCCard Expert.

1. At the present time kPCCardLowPower is not supported
70 of 70 SystemSoft Confidential January 8, 1997

8.10 Socket Services Plug-in Interface

The Socket Service interface is a stateless device driver that is responsible
for accessing the PC Card Hardware. It consists of a Socket Service Plug-in
interface and a hardware abstraction layer that handles common hardware
functions. This will allow Socket Service Plug-ins to share the common
hardware abstraction DLL while allowing machine specific differences to
be handled in the plug-in.

8.10.1 Apple Specific Plug-in Interface

The plug-in architecture defined by the Mac OS 8 architecture specification
defines the following standard interface for all plug-ins.

8.10.1.1 _SSValidateHardware
The _SSValidateHardware call is a standard Apple family programming
interface to allow family plug-ins a chance to ensure that the hardware is
really compatible with the driver.

OSStatus _SSValidateHardware(const RegEntryRef *deviceID)

Parameters
→ deviceID - RegEntry ID for the socket hardware

Return codes
noErr - if all parameters are valid
-1 - Valid socket Hardware is not present

8.10.1.2 _SSInitialize
The _SSInitialize call is used by the family programming interface to the
socket service driver globals and install it’s interrupts. If _SSInitialize is
called with replacingOldDriver equal to true it is assumed that the
driver is being replaced and has saved data to the name registry to
restore the state of the driver so that the new driver can restore the
data.

OSStatus _SSInitialize(
RegEntryIDPtr deviceID,
Boolean replacingOldDriver);
January 8, 1997 SystemSoft Confidential 66 of 98

Parameters
→ deviceID - RegEntry ID for the socket hardware
→ replacingOldDriver - boolean signifying if this is a replacement

operation.

Return codes
noErr - if all parameters are valid
kGeneralFailureErr-

8.10.1.3 _SSSuspend
The _SSSuspend call will place the socket adapter into low power mode.

OSStatus _SSSuspend(
const RegEntryRef *deviceID);

Parameters
→ deviceID - RegEntry ID for the socket hardware

Return codes
noErr - if all parameters are valid

8.10.1.4 _SSResume
The _SSResume call will power the socket adapter back up after a
_SSSuspend.

OSStatus _SSResume(
const RegEntryRef *deviceID)

Parameters
→ deviceID - RegEntry ID for the socket hardware

Return codes
noErr - if all parameters are valid

8.10.1.5 _SSFinalize
The _SSFinalize call will place the socket service adapter into a shutdown
state. _SSFinalize when called with replacingOldDriver equal to true
will save all the necessary data to the name registry so that a replace-
ment driver take it’s place.

OSStatus _SSFinalize(
RegEntryIDPtr deviceID,
Boolean replacingOldDriver);
67 of 98 SystemSoft Confidential January 8, 1997

Parameters
→ deviceID - RegEntry ID for the socket hardware
→ replacingOldDriver - boolean signifying if this is a replacement

 operation.

Return codes
noErr - if all parameters are valid
kGeneralFailureErr-

8.10.2 Adapter Specific Interface

8.10.2.1 _SSInquireAdapter

The SSInquireAdapter control call returns the hardware capabilities of the
adapter.

OSStatus _SSInquireAdapter (
PCCardSocket * socket,
PCCardWindow* window,
PCCardWindow * bridgeWindow,
PCCardAdapterCapabilities *CMask);

Parameters
←socket - number of sockets
←windows - number of windows
←bridgeWindow - number of bridge windows
←CMask - bit-mask used to return the capabilities of the

 adapter
 Table C.7

Return codes
noErr - if adapter is valid
kBadAdapterErr - if adapter is invalid

8.10.3 Socket Specific Interface

8.10.3.1 _SSInquireSocket

The _SSInquireSocket control call returns the capabilities of a socket.
January 8, 1997 SystemSoft Confidential 68 of 98

The card Events bit-mask indicates the card events that can be generated by
the socket.

OSStatus _SSInquireSocket(
PCCardSocket socket,
PCCardWindow * window,
PCCardSocketStatus *socketStatus,
PCCardSCEvents * cardEvents);

Parameters
→socket - socket number (0 based)
←window - number of windows
←socketStatus - bit-mask of supported status bits Table C.2
←cardEvents - bit-mask of supported card events (these can

 trigger status change events) Table C.8

Return codes

noErr - if socket is valid
kBadSocketErr - if socket is invalid

8.10.3.2 _SSGetSocket

The _SSGetSocket control call returns the current parameter settings of a
socket.

OSStatus _SSGetSocket(
PCCardSocket socket,
PCCardVoltage * vcc,
PCCardVoltage * vpp,
PCCardVoltage * vs,
PCCardInterfaceType *socketIF,
PCCardCustomInterfaceID *customIFID,
PCCardSocketStatus *socketStatus,
PCCardSCEvents * cardEvents,
PCCardIRQ * IRQ,
PCCardDMA * DMA);

Parameters
→ socket - socket number (0 based)
← vcc - supply voltage
← vpp - programming voltage
← vs - voltage sense
← socketIF - ioIF, memoryIF, customIF

 Table C.5
← customIFID - ZoomVideoID, etc...
← socketStatus - Status of the socket Table C.2
← cardEvents − bit-mask of enabled card events
69 of 98 SystemSoft Confidential January 8, 1997

 Table C.8
← IRQ − kIRQEnable signifies that PC Card interrupts

are enabled.
← DMA − reserved for future use, not applicable to the

Mac

Return codes
noErr - if socket is valid
kBadSocketErr - if socket is invalid

8.10.3.3 _SSSetSocket

The _SSSetSocket control call programs socket parameters. The driver
avoids reprogramming a parameter when the new value matches the current
setting.

The cardEvents parameter specifies which card events are enabled.

 A vcc value of zero is interpreted as a request to remove (power down) the
socket; the driver removes power from both the vcc and vpp pins.

Note: The Socket Services Plug-in will always enable the RingIndicate
capabilities of the socket. It is the responsibility of the Power Management
Utility to enable/disable it from it’s hardware.

OSStatus _SSSetSocket(
PCCardSocket socket,
PCCardVoltage Vcc,
PCCardVoltage Vpp,
PCCardInterfaceType socketIF,
PCCardCustomInterfaceID customIFID,
PCCardSCEvents cardEvents,
PCCardIRQ * IRQ,
PCCardDMA * DMA);

Parameters
→ socket - socket number (0 based)
→ Vcc - supply voltage
→ Vpp - programming voltage
→ socketIF - ioIF, memoryIF, customIF

 Table C.5
→ customIFID - ZoomVideoID, etc...
→ cardEvents - bit-mask of enabled card events

 Table C.8
→ IRQ − kIRQEnable signifies that PC Card interrupts

are enabled.
→ DMA − reserved for future use, not applicable to the
January 8, 1997 SystemSoft Confidential 70 of 98

Mac

Return codes
noErr - if socket is valid
kBadSocketErr - if socket is invalid
kCardBusCardErr - if the Card is a CardBus card

 (only until CardBus is implemented)
kBadTypeErr - if IFType not supported
kBadVccErr - if Vcc level is invalid
kBadVppErr - if Vpp1 or Vpp2 level is invalid

8.10.3.4 _SSResetSocket

The _SSResetSocket control call resets the PC CARD hardware.

OSStatus _SSResetSocket (PCCardSocket socket);

Parameters:
→ socket - socket number (0 based)

Return codes
noErr - if socket is valid
kBadSocketErr - if socket is invalid
kCardBusCardErr - if the Card is a CardBus card (only until CardBus is

 implemented)

8.10.3.5 _SSGetStatus

The _SSGetCardStatus control call returns a bit-mask of the current status
associated with a PC CARD.

OSStatus _SSGetStatus(
PCCardSocket socket,
PCCardSocketStatus * socketStatus);

Parameters
→ socket - socket number (0 based)
←socketStatus - socket status bit-mask Table C.2

Return codes
noErr - if socket is valid
kBadSocketErr - if socket is invalid
71 of 98 SystemSoft Confidential January 8, 1997

8.10.4 Window Services Specific Interface

8.10.4.1 _SSInquireWindow

The _SSInquireWindow control call returns the hardware capabilities of a
window. WindowType is an indication of the mapping capabilities of the
window. DataWidth is a bit-mask representing the data sizing capabilities of
the window. The window number is always an absolute window.

OSStatus _SSInquireWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
PCCardWindowSize *windowSize,
PCCardWindowAlign *windowAlign);

Parameters
← socket - socket number (0 based)
→ window - window number (0 based)
← windowState - Type:I/O, common/attribute

- width:8,16,32 bits
- enabled:window may be disabled and enabled
 without reprogramming it’s characteristics
 write protect: window supports write protect
 Table C.3

← windowSize - maximum window size (bytes)
← windowAlign - window alignment boundary

Return codes
noErr - if socket is valid
kBadWindowErr - if window is invalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.2 _SSGetWindow

The _SSGetWindow control call returns the current parameter settings of a
window. The window number is always an absolute window.

OSStatus _SSGetWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
LogicalAddress * startAddress,
PCCardWindowSize *windowSize,
PCCardWindowOffset *windowOffset,
PCCardAccessSpeed *memSpeed);

Parameters
January 8, 1997 SystemSoft Confidential 72 of 98

← socket - socket number (0 based)
→ window - window number (0 based)
← windowState - Type:I/O, common/attribute

 width:8,16,32 bits
 enabled:enabled state of the window
 write protect: write protect state of the window
 Table C.3

← startAddress - host base logical address
← windowSize - window size (bytes)
← windowOffset - PC Card window offset address
← memSpeed - memory access speed

Return codes
noErr - if socket is valid
kBadWindowErr - if window is invalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.3 _SSSetWindow

The _SSSetWindow control call programs a windows parameters.

If the adapter does not support the requested access speed, the driver selects
the fastest access speed that does not exceed the requested speed.

OSStatus _SSSetWindow(
PCCardSocket socket,
PCCardWindow window,
PCCardWindowState windowState,
LogicalAddress startAddress,
PCCardWindowSize windowSize,
PCCardWindowOffset windowOffset,
PCCardAccessSpeed memSpeed);

Parameters
→ socket - socket number (0 based)
→ window - window number (0 based)
→ windowState - Type:I/O, common/attribute

 width:8,16,32 bits
 enabled:enabled state of the window
 write protect: write protect state of the window
 Table C.3

↔ startAddress - host base logical address
→ windowSize - window size (bytes)
→ windowOffset - PC Card window offset address
→ memSpeed - memory access speed

Return codes
noErr - if all parameters are valid
kBadSocketErr - if socket is invalid for window
73 of 98 SystemSoft Confidential January 8, 1997

kBadWindowErr - if window is invalid
kBadAttributeErr - if requested State does not match the

 windows capabilities
kBadBaseErr - if the start address is not valid
kBadSizeErr - if size is invalid
kBadSpeedErr - if memSpeed is invalid
kBadOffsetErr - If offset address is bad
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.4 _SSGetWindowOffset

The _SSGetWindowOffset control call returns the current configuration of
the memory window by the input parameters. The window number is
always an absolute window.

OSStatus _SSGetWindowOffset(
PCCardSocket socket,
PCCardWindow window,
PCCardWindowState *windowState,
PCCardWindowOffset *windowOffset);

Parameters
← socket - socket number (0 based)
→ window - window number (0 based)
← windowState - state of the window, write-protected,

 enabled etc... Table C.3
← windowOffset - PC CARD window offset address

Return codes
noErr - if all parameters are valid
kBadSocketErr - if socket is invalid for window
kBadWindowErr - if window is invalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.5 _SSSetWindowOffset

The _SSSetWindowOffset control call configures the page specified by the
input parameters. It is only valid for memory windows. This will be unsup-
ported for CardBus PC Cards. The window number is always an absolute
window.

OSStatus _SSSetWindowOffset(
PCCardSocket socket,
PCCardWindow window,
PCCardWindowState windowState,
PCCardWindowOffset windowOffset);

Parameters
January 8, 1997 SystemSoft Confidential 74 of 98

→ socket - socket number (0 based)
→ window - window number (0 based)
→ windowState - state of the window, write-protected,

 enabled etc... Table C.3
→ windowOffset - PC CARD window offset address

Return codes
noErr - if all parameters are valid
kBadSocketErr - if socket is invalid for window
kBadWindowErr - if window is invalid
kBadAttributeErr - if state is invalid
kBadOffsetErr - if offset is invalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.5 CardBus Specific calls
The following calls are specific to CardBus controllers and are not required
for PC Card 16 controllers.

8.10.5.1 _SSWriteConfigurationSpace
The _SSWriteConfigurationSpace call allows card services to write to a CardBus
card’s configuration space.

OSStatus _SSWriteConfigurationSpace(
const RegEntryRef* deviceID,
PCCardSocket socket,
UInt32 device,
UInt32 offset,
void* data,
UInt32 size);

Parameters
→ deviceID - Device identifier
→ socket - socket number (0 based)
→ device - device number (0 based)
→ offset - offset into configuration space
→ data - data buffer pointer
→ size - size of data to be written

Return codes
noErr - if all parameters are valid
kBadOffsetErr - if offset is invalid
kBadSocketErr - if socket is invalid for window
k16BitCardErr - if the card present is a 16-bit card
75 of 98 SystemSoft Confidential January 8, 1997

8.10.5.2 _SSReadConfigurationSpace
The _SSReadConfigurationSpace call allows card services to read from the Card-
Bus card’s configuration space.

OSStatus _SSReadConfigurationSpace(
const RegEntryRef* deviceID,
PCCardSocket socket,
UInt32 device,
UInt32 offset,
void* data,
UInt32 size);

Parameters
→ deviceID - Device identifier
→ socket - socket number (0 based)
→ device - device number (0 based)
→ offset - offset into configuration space
→ data - data buffer pointer
→ size - size of data to be read

Return codes
noErr - if all parameters are valid
kBadOffsetErr - if offset is invalid
kBadSocketErr - if socket is invalid for window
k16BitCardErr - if the card present is a 16-bit card

8.10.6 Bridge Services Specific Interface

8.10.6.1 _SSInquireBridgeWindow

The _SSInquireBridgeWindow service returns information about the capa-
bilities of the bridge window specified by the input parameters. The window
number is always an absolute window.

OSStatus _SSInquireBridgeWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
PCCardWindowSize *windowSize,
PCCardWindowAlign *windowAlign);

Parameters
January 8, 1997 SystemSoft Confidential 76 of 98

← socket - socket number (0 based)
→ window - window number (0 based)
← windowState - type:I/O, memory Table C.3
← windowSize - maximum window size in bytes
← windowAlign - window alignment boundary

Return codes
noErr - if all parameters are valid
kBadWindowErr - if window is invalid
kBadAttributeErr - if state is invalid
kBadOffsetErr - if offset is invalid
kBadSocketErr - if socket is invalid for window

8.10.6.2 _SSGetBridgeWindow

The _SSGetBridgeWindow service returns information about the current
configuration of the bridge window. The window number is always an
absolute window.

OSStatus _SSGetBridgeWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
LogicalAddress * startAddress,
PCCardWindowSize *windowSize);

Parameters
← socket - socket number (0 based)
→ window - window number (0 based)
← windowState - state of the window, IO, enabled, prefetch

 cachable Table C.3
← startAddress - base address of bridge window
← windowSize - size of the bridge window in bytes

Return codes
noErr - if all parameters are valid
kBadWindowErr - if window is invalid
kBadAttributeErr - if state is invalid
kBadOffsetErr - if offset is invalid
k16BitCardErr - if the card present is a 16-bit card

8.10.6.3 _SSSetBridgeWindow

The _SSSetBridgeWindow service returns information about the current
configuration of the bridge window

OSStatus _SSSetBridgeWindow(
PCCardSocket socket,
77 of 98 SystemSoft Confidential January 8, 1997

PCCardWindow window,
PCCardWindowState windowState,
LogicalAddress startAddress,
PCCardWindowSize windowSize);

Parameters
→ socket - socket number (0 based)
→ window - window number (0 based)
→ windowState - state of the window, IO, enabled

 Table C.3
→ startAddress - host start address of the bridge window
→ windowSize - size of bridge window in bytes

Return codes
noErr - if all parameters are valid
kBadWindowErr - if window is invalid
kBadAttributeErr - if state is invalid
k16BitCardErr - if the card is a 16-bit card
kBadBaseErr - if the base address is invalid
kBadSizeErr - if the size is invalid

8.10.7 Platform Specific Service Interface

The following calls are handled directly by the Socket Service Plug-in since
there may be specific system hardware algorithms that will be applied to
complete the calls.

8.10.7.1 _SSEjectCard

The _SSEjectCard control call physically ejects a card from a socket.

OSStatus _SSEjectCard(PCCardSocket socket);

Parameters
→ socket - socket number (0 based)

Return codes
noErr - if all parameters are valid
kBadSocketErr - if Socket is invalid
kNoCardErr - if socket is empty
kGeneralFailureErr- if card did not successfully eject

8.10.7.2 _SSGetInterruptSetMember
January 8, 1997 SystemSoft Confidential 78 of 98

The _SSGetInterruptSetMember call is used to retrieve the interrupt SetID and
member of the card interrupt set that the socket service driver created at initial-
ization.

OSStatus _SSGetInterruptSetMember (
PCCardSocket socket,
InterruptSetMember * ISTMember)

Parameters
→ socket - socket number (0 based)
← ISTMember - Interrupt set member structure containing

the SetID and member numbers

Return codes
noErr - if all parameters are valid
kBadSocketErr - if Socket is invalid

8.10.8 Interrupt Source Tree Construction

8.10.8.1 Socket Service Driver Initialization:

1. Get the InterruptSetMember (setID, member) for Set A, member from the
Name Registry.

2. Get the current Interrupt Functions for this InterruptSetMember.

3. Invoke the current InterruptDisableRoutine (IDR).

4. Initialize the saved copy of interruptCount to nil. This interruptCount will
later be used to determine when the ISR is re-invoked.

5. Install it’s own InterruptServiceRoutine (ISR) in Interrupt Set A, member
1.

6. Create Interrupt Set B, which will contain 1 member for each socket the
driver supports. This Interrupt Set needs to be created by the Socket Ser-
vices Driver, because it knows how many sockets it supports, and therefore
how many members to create. This Interrupt Set will be created with the
kReturnToParentWhenNotComplete option. This will cause the Driver ISR
to be re-invoked if it’s child (a member of Interrupt Set B) returns kIsrIs-
NotComplete. This will allow the Driver to also return kIsrIsNotComplete if
the Card ISR could not process the interrupt. If this option was not set, the
ISR of the next member in Interrupt Set B (for the next Card) would auto-
matically (and incorrectly) be invoked when the first member returned
kIsrIsNotComplete.

7. Invoke the current InterruptEnableRoutine (IER).
79 of 98 SystemSoft Confidential January 8, 1997

8.10.8.2 Card Enabler Initialization:

1. Create the “card” node in the Name Registry.

2. Get the InterruptSetMember (setID, member) for the Card (socket). This
is done via the Card Services function CSGetInterruptSetMember. Which
calls the Socket Services function SSGetInterruptSetMember.

3. Get the current Interrupt Functions for this InterruptSetMember.

4. Invoke the current InterruptDisableRoutine (IDR).

5. Initialize the saved copy of interruptCount to nil. This interruptCount will
later be used to determine when the ISR is re-invoked.

6. Install it’s own InterruptServiceRoutine (ISR) in the Interrupt Set.

7. Add a “driver-ist” property containing the card’s InterruptSetMember to
the “card” node in the Name Registry.

8. Create Interrupt Set C, which will contain 1 member for each device
(function) on the PC Card. This Interrupt Set needs to be created by the
Card Enabler, because it knows how many devices the PC Card has, and
therefore how many members to create. This Interrupt Set will be created
with the kReturnToParentWhenNotComplete option. This will cause the
Card ISR to be re-invoked if it’s child (a member of Interrupt Set C) returns
kIsrIsNotComplete. This will allow the Card ISR to also return kIsrIsNot-
Complete if there are no more Device ISR’s to invoke, or if it determined
that the interrupt was for that specific Device ISR and the Device ISR was
unable to successfully service the interrupt. If this option was not set, the
next member in Interrupt Set C would automatically be invoked when the
previous member returned kIsrIsNotComplete. This could cause the ISR for
the next Device (function) to get invoked for an interrupt that was not gener-
ated by that device.

9. Create a driver-ist entry in the Name Registry for the Device node(s).

10. Invoke the current InterruptEnableRoutine (IER).

8.10.8.3 Interrupt Processing

1. An interrupt is generated, this invokes Interrupt Set A, member 1.

2. Interrupt Set A, member 1 is the Socket Service Driver ISR. It determine
whether the interrupt is a Card Status Change interrupt or a Functional
interrupt. If it is a Card Status Change Interrupt, the Socket Service Driver
January 8, 1997 SystemSoft Confidential 80 of 98

ISR handles it and returns kIsrIsComplete. If it is a Functional Interrupt, the
Driver ISR determines which socket caused the interrupt and returns that
member number. This will invoke the returned member number of Interrupt
Set B.

3. Interrupt Set B, member x is a Card (socket) ISR. It determines which
device caused the interrupt and returns that member number. This will
invoke the returned member number of Interrupt Set C.

4. Interrupt Set C, member x is a Device (function) ISR. It will attempt to
service the interrupt and return kIsrIsComplete if successful, this will end
interrupt processing. If the interrupt was not successfully serviced, the
Device ISR will return kIsrIsNotComplete.

5. The parent member in Interrupt Set B is re-invoked if the Device ISR
returned kIsrIsNotComplete. The Card ISR will then attempt to invoke the
next child member (in Set C) by returning it’s member number, or return
kIsrIsNotComplete if there are no more members to invoke.

6. The parent member in Set A (the Driver ISR) is re-invoked if the Card
ISR returned kIsrIsNotComplete. The Driver ISR will return kIsrIsNotCom-
plete if it is invoked a second time while processing the same interrupt.
81 of 98 SystemSoft Confidential January 8, 1997

FIGURE 3. PC Card 3.0 IST Layout

1

1

1 2

1 21

1

1

2

1

1

1

1 socket 1 socket 2 sockets
Example 1Example 2 Example 3

Interrupt

Interrupt

Interrupt
January 8, 1997 SystemSoft Confidential 82 of 98

9.0 Name Registry Properties for PC Cards

This section is broken up into three sections, controller, card and card func-
tions. The node for the controllers will be built by either Open Firmware,
the motherboard expert, or bus families. The card nodes are built by the PC
Card expert. The device nodes will be built by the card enablers. All proper-
ties created by the PC Card family that are defined in the PC Card binding
for Open Firmware should be created following that specification.

On machines that have Open Firmware, the PC Card family should check if
the nodes have already been created. Since Open Firmware will have allo-
cated physical hardware ranges, the family can either use them or free them
and create its own. Since Open Firmware will not create all of the properties
that we want the PC Card Family will have to at least add to a node. The PC
Card family should not trust Open Firmware to set things up correctly, and
it may have to fix things.

The purpose of Open Firmware and the card enablers is the same. The dif-
ference is that Open Firmware is for boot devices and enablers are for
devices either don’t need Open Firmware (not needed for boot) or have been
hot plugged.

9.1 Socket Controller Node Properties

__

Property: name

Example: “TREX@12345678” or “pcixxxx,yyyy”

Source: Open Firmware, the motherboard expert or another bus family.?

Purpose: Standard prop-name to specify the implemented interface.

__

Property: reg

Example: see PC card OF binding

Source: Open Firmware, the motherboard expert or another bus family.?

Purpose: Standard prop-name to define the package’s unit address.

__

Property: assigned-addresses

Example: -----

Source: Motherboard expert or another bus family.
83 of 98 SystemSoft Confidential January 8, 1997

Purpose: Assigned physical address ranges for the device

__

Property: AAPL,addresses

Example:

Source: Motherboard expert or another bus family.

Purpose: Provide LOGICAL addresses which corresponds to assigned-
addresses property.

__

Property: driver-ist

Example: -----

Source: Motherboard expert or another bus family.

Purpose: Interrupt source tree node.

__

Property: SocketNumber

Example: 1

Source: PCCardSupportLibrary.

Purpose: Provide a virtual socket number.

9.2 Card Enabler Node Properties

__

Property: name

Example: “pccard104c,ac12”

Source: CISTPL_MANFID and/or CISTPL_VERS_1

Purpose: Standard prop-name to specify the implemented interface.

pccardVVVV,DDDD where VVVV is the manufactures id field and DDDD
is the manufactures information field as defined below:

- VVVV string is defined by the Field ‘TPLMID_MANF’ in Tuple
‘CISTPL_MANFID’.

- DDDD string as defined by the Field ‘TPLMID_CARD’ in Tuple
‘CISTPL_MANFID’.
January 8, 1997 SystemSoft Confidential 84 of 98

The VVVV and DDDD strings are ASCII hexadecimal, lower case, and
without leading zeros.

If no CISTPL_MANFID tuple is found, the string “pccard” should be used.

__

Property: compatible

Example: “AAPL,GenericPCCardPlugin”

Source: created by Expert

Purpose: Defines alternate name property values, can be used by DFM for
matching card enablers. See the “matching” property.

The name “AAPL,GenericPCCardPlugin” is reserved for use by Apple Com-
puter, Inc.

__

Property: SocketNumber

Example: 1

Source: created by Expert

Purpose: Defines which socket into which a card has been inserted.

__

Property: PCCardNodeType

Example: ‘pccc’

Source: created by Expert

Purpose: Defines that the node is a card handled by the PCCard Expert.

__

Property: driver-ist

Example: -----

Source: Created by Socket Services Library. Populated by Expert.

Purpose: Defines the interrupt enabler, disabler and handler functions. Note
that the card level and device lever IST nodes are closely dependent. If a
developer wishes to install an interrupt handler in the card IST, he should
save the existing interrupt handler, call the handler at interrupt time (to
ensure that the device node(s) are called, return the value from the handler
and reinstall the handler when he removes his custom handler. Failure to do
this may lead to unserviced interrupts.

9.3 Functional Node Properties
85 of 98 SystemSoft Confidential January 8, 1997

__

Property: name

Example: pc-uart

Source: Card Enabler, CIS

Purpose: Used to match target driver to function node of PC Card. The
name should exactly match the name in the descriptor of the driver which
supports the device.

__

Property: compatible

Example: -----

Source: Card Enabler

Purpose: Defines alternate driver names which support device.

__

Property: PCCardNodeType

Example: ‘pccd’

Source: Card Enabler

Purpose: Demonstrates that the node is handled by a card enabler.

__

Property: assigned-addresses

Example: -----

Source: Card Enabler

Purpose: Encoded physical address ranges for the device. This property
defines the type of memory access, size and location of the addresses
defined in the AAPL,address property and is comprised of an array of
PCIAssignedAddress structures.

__

Property: AAPL,address

Example: ----

Source: Created by Card Enabler

Purpose: Provide LOGICAL addresses which corresponds to assigned-
addresses property. These are the addresses one reads and writes to access
memory locations on the PC Card. The type of memory defined by these
January 8, 1997 SystemSoft Confidential 86 of 98

addresses are described in the assigned-addresses property above. This
property is comprised of an array of 32 bit addresses.

__

Property: driver-ist

Example: -----

Source: Created by Card Enabler

Purpose: Interrupt source tree node.

Note that the interrupt enabler and disabler functions present in the driver-ist are
closely related and dependent on the card node driver-ist and should be saved
and replaced by custom interrupt enabler/disabler functions. The existing inter-
rupt enabler/disabler functions should be called by any custom enabler/disabler
functions to preserve default behavior.

__

Property: DeviceNumber

Example: 8

Source: Created by Card Enabler

Purpose: 0 based index of device on card.

__

Property: SocketNumber

Example: 1

Source: Created by Card Enabler

Purpose: 0 based index of virtual socket number of card.

__

Property: card services windows

Example: -----

Source: Created by Card Enabler

Purpose: List of window handles allocated on card configuration. Used to
release windows on card removal.

__

Property: device-configured

Example: -----

Source: Created by Card Enabler
87 of 98 SystemSoft Confidential January 8, 1997

Purpose: Defines that a device needs to release configuration on card
removal.

 __

Property: 16bitcard

Example: -----

Source:

Purpose: prop-name, exists if the node implements the 16-bit PC Card inter-
face.

__

Property: CardBus

Example: -----

Source: CISTPL_FUNCID, etc.

Purpose: prop-name, exists if the node implements CardBus.

__

Property: device_type

Example: “pccard-serial”

Source: Card enabler

Purpose: devices the type of device described.

__

Property: device-id

Example: “pccard-serial”

Source: Card enabler

Purpose: Defines the vendor ID of the device.

__

Property: revision-id

Example: 00000005

Source: Card enabler

Purpose: Defines the revision of the card as per the Vers_1 tuple.
January 8, 1997 SystemSoft Confidential 88 of 98

Appendix C Data and Bit-Mask Definitions

The following appendix contains the bit-mask defined by the PC Card 3.0 impli-
mentation

C.1 PC Card Events (PCCardEvents and PCCardEventMask)

TABLE 1. Registered Client PCCard Events (interestingEvents)

Event Name Description

kPCCardInsertionMessage card has been inserted into the socket

kPCCardRemovalMessage card has been removed from the socket

kPCCardEjectionRequestMessage user or other client is requesting a card
ejection

kPCCardEjectionFailedMessage eject failure due to electrical/mechanical
problems

kPCCardPMResumeMessage power management resume

kPCCardPMSuspendMessage power management suspend

kPCCardPMSuspendRequest power management sleep request

kPCCardPMSuspendRevoke power management sleep revoke

kPCCardResetRequestMessage physical reset has been requested by a cli-
ent

kPCCardResetCompleteMessage reset has completed

kPCCardBatteryDeadMessage battery is no longer usable, data will be
lost

kPCCardBatteryLowMessage battery is weak and should be replaced

kPCCardWriteProtectMessage card is now write protected

kPCCardWriteEnabledMessage card is now write enabled

kPCCardTimerExpiredMessage message sent when requested time has
expired

kPCCardNullMessage no messages pending (not sent to clients)

kPCCardLockMessage card is locked into the socket with a
mechanical latch

kPCCardUnlockMessage card is no longer locked into the socket

kPCCardReadyMessage card is ready to be accessed (not sent to
clients)

kPCCardResetMessage physical reset has completed (not sent to
clients)
89 of 98 SystemSoft Confidential January 8, 1997

C.2 Socket Status Bit definitions (PCCardSocketStatus)

kPCCardInsertionRequestMessage request to insert a card using insertion
motor (not sent to clients)

kPCCardInsertionCompleteMessage insertion motor has finished inserting a
card (not sent to clients)

kPCCardEjectionCompleteMessage card ejection succeeded- do not touch
hardware!

kPCCardResetPhysicalMessage physical reset is about to occur on this
card (not sent to clients)

kPCCardClientInfoMessage client is to return client information (not
sent to clients)

kPCCardSSUpdatedMessage AddSocketServices/ReplaceSocket ser-
vices has changed SS support (not sent to
clients)

kPCCardFunctionInterruptMessage card function interrupt (not sent to clients)

kPCCardAccessErrorMessage client bus errored on access to socket (not
sent to clients)

kPCCardUnconfiguredMessage a CARD_READY was delivered to all cli-
ents and no client (not sent to clients)

kPCCardStatusChangedMessage requested a configuration for the socket
(not sent to clients)

kPCCardRequestAttentionMessage (not sent to clients)

kPCCardEraseCompleteMessage (not sent to clients)

kPCCardRegistrationCompleteMessage (not sent to clients)

TABLE 2. Socket status bit definitions

Socket State Description

kSTBatteryDead battery dead

kSTBatteryLow battery low

kSTBatteryGood battery good

kSTPower power is applied

kST16bit 16-bit PC Card present

TABLE 1. Registered Client PCCard Events (interestingEvents)

Event Name Description
January 8, 1997 SystemSoft Confidential 90 of 98

C.3 Window Attributes (PCCardWindowAttributes)

kSTCardBus CardBus PC Card present

kSTMemoryCard memory card present

kSTIOCard I/O card present

kSTNotACard unrecognizable PC Card detected

kSTWriteProtect card is write-protected

kSTRingIndicate ring indicator is active

kSTReady ready

kSTDataLost data may have been lost due to
card removal

kSTReserved Reserved

TABLE 3. Window attribute bit-mask definitions

Window Attribute Description

kWSCommon common memory window

kWSAttribute attribute memory window

kWSIO I/O window

kWSTypeMask window type mask

kWS8bit 8-bit data width window

kWS16bit 16-bit data width window

kWS32bit 32-bit data width window (cardbus only)

kWSWidthMask window data width mask

kWSEnabled window enabled

kWSProtected window write protected

kWSPrefetchable bridge window prefetchable (CardBus only)

kWSCardBus CardBus bridge window

kWSAutoSize auto-size data width window

TABLE 2. Socket status bit definitions

Socket State Description
91 of 98 SystemSoft Confidential January 8, 1997

C.4 Configuration Attributes (PCCardConfigOptions)

kWSPageShared page register is shared

kWSWindowSizeOffset Used by CSModifyWindow only

kWSChangeAccessSpeed Used by CSModifyWindow only

TABLE 4. Configuration Attributes

Configuration attributes description

kReservedBit0 Reserved

kEnableIRQSteering Enable IRQ steering (not used
on the Mac OS implementation)

kIRQChangeValid IRQ Change valid (not used on
the Mac OS implementation)

kReservedBit3 Reserved

kVppChangeValid Vpp1 change valid

kReservedBit5 Reserved

kEnableDMAChannel Enable DMA channel (not used
on the Mac OS implementation)

kDMAChangeValid DMA change valid (not used on
the Mac OS implementation)

kReservedBit8 Reserved

kVSOverride Vs override valid

TABLE 3. Window attribute bit-mask definitions

Window Attribute Description
January 8, 1997 SystemSoft Confidential 92 of 98

C.5 Interface Types (PCCardInterfaceType)

C.6 Supported device types and SubTypes (PCCardDevType and PCCardSubType)

TABLE 5. Interface types

Interface types description

kIFTypeMask IO & memory type mask

kIFCardBus if bits 0 & 1 are zero then
cardbus interface

kIFMemory if bit 0 set memory IF

kIFIO if bit 1 set IO IF

kIFReserved bits 0 and 1 set is reserved

kIFDMA if bit 3 set DMA supported

kIFVSKey if bit 4 set supports low Volt-
age key

kIF33VCC if bit 5 set socket supports
3.3v

kIFXXVCC if bit 6 set socket supports
X.X voltage

TABLE 6. Supported device types (PcCardDevType/PCCardSubType)

Device type description

kPCCardUnknownDeviceType unknown device

kPCCardMultiFunctionType Multi-Function device

kPCCardVideoAdaptorType display device

kPCCardFixedDiskType Fixed disk

kPCCardUnknownFixedDiskType unknown Fixed disk type

kPCCardNetworkAdaptorType Network device

kPCCardSerialPortType Serial device (modem)

kPCCardParallelPortType Parallel device type
93 of 98 SystemSoft Confidential January 8, 1997

C.7 Adapter capabilities mask (PCCardAdapterCapabilities

kPCCardMemoryType Memory device (sram)

kPCCardAIMSType AIMS device

kPCCardSCSIType SCSI Device

kPCCardSerialOnlySubType serial only device

kPCCardDataModemSubType Data modem sub type

kPCCardFaxModemSubType Fax modem sub type

kPCCardFaxAndDataModemMask Data Fax modem

kPCCardVoiceEncodingSubType voice encoding type

kPCCardATAInterfaceDiskSubType ATA disk sub type

kPCCardRotatingDeviceSubType Rotating mediam sub type

kPCCardSiliconDevice Silicon device

TABLE 7. Adapter capability bit-mask values

Capabilities Description

SS_ADPT_FLG_IND indicators for write-protect, card lock,bat-
tery status, busy status, and XIP are shared
for all sockets

SS_ADPT_FLG_PWR if set indicates that the sockets share the
same power control

SS_ADPT_FLG_DBW all windows on the adapter must use the
same Data Bus Width

SS_ADPT_FLG_CARDBUS all sockets are CardBus PC Card capable

SS_ADPT_FLG_DMA the adapter has DMA capability bits for
adapter power characteristics

SS_ADPT_FLG_V33 adapter supports 3.3 volt power to socket

SS_ADPT_FLG_V50 adapter supports 5.0 volt power to socket

SS_ADPT_FLG_V12 adapter supports 12 volt power to socket

TABLE 6. Supported device types (PcCardDevType/PCCardSubType)

Device type description
January 8, 1997 SystemSoft Confidential 94 of 98

C.8 Socket Event mask (PCCardSCEvents)

C.9 PC Card 3.0 Hardware types (PCCardHardwareType)

TABLE 8. Socket Event Bit-mask

Event Description

kSCBatteryDead battery dead

kSCBatteryLow battery low

kSCReady ready

kSCCardDetect Card Detect Status Change

kSCCardEjected Card Ejected

kSCStatusChange PC Card Status Change Signal Asserted

kSCRingIndicate PC Card Ring Indicate Signal Asserted

TABLE 9. Pc Card 3.0 Hardware types

Hardware types Description

kPCCard16HardwareType PC Card-16 hardware

kCardBusHardwareType CardBus Hardware
95 of 98 SystemSoft Confidential January 8, 1997

Appendix D Card Service Mapping

D.1 Mapping to ‘classic’ Card and Socket Services

The PC Card Family supports a simplified version of the Card & Socket
Services version of the API described in 5.1 Card Services PC Card Stan-
dard. The following sections group calls defined in The Standard with
descriptions of how they are implemented in the PC Card Family.

Cosmetic differences are not mentioned Ñ such as the format of various
attributes bitmap definitions. In other cases, bit-mapped parameters have
been combined where practical and reserved fields have been eliminated
since there are no backward compatibility issues.

One functional difference which applies to many of the calls is that Client
handles are not used for any call. This is because management of clients is
implemented by the family itself.

Also, all block memory services will be broken out into a separate library
which is not available at this time.

D.2 Mappings to the PC Card Standard

The functions are listed here with descriptions of how they differ from the
Intel Card Services PC Card Standard. However, cosmetic differences are
not mentioned. Such differences would include the format of various
attributes bitmap definitions. In other cases, bitmapped parameters have
been combined where practical and reserved fields have been eliminated
since there are no backward compatibility issues. Only functional differ-
ences are called out in this section.

One functional difference which applies to many of the calls, is that Client
handles are not used for any call. In fact, Client registration is not required.

D.3 Functionally Equivalent

The following calls are implemented in a manner functionally equivalent to
the PC Card Standard.

• GetStatus
• ReleaseConfiguration
• ReleaseWindow
• RequestDMA
• ValidateCIS
January 8, 1997 SystemSoft Confidential 96 of 98

D.4 Tuple Functions

The following APIs have been combined into a single call GetTuple:

• GetTupleData

D.5 Block Memory Device Family

The following calls have been omitted from Card Service under the MacOS
since they would normally be supported under the block memory device
plug-in:

• CheckEraseQueue
• CloseMemory
• CopyMemory
• DeregisterEraseQueue
• GetFirstPartition
• GetFirstRegion
• GetNextPartition
• GetNextRegion
• OpenMemory
• ReadMemory
• RegisterEraseQueue
• RegisterMTD
• SetRegion
• WriteMemory

D.6 Client Registration

 Client registration is used solely for registering event callback addresses
and for specifying event masks to perform client event notification. The fol-
lowing calls are not used within the scope of registering clients in this
model since Card Services clients are limited to event notification:

• GetClientInfo
• GetFirstClient
• GetNextClient
• ReleaseExclusive
• ReleaseSocketMask
• RequestExclusive
• RequestSocketMask

D.7 MacOS Environment

The following calls have been omitted because they have been identified as
unnecessary on the MacOS. Many of these calls are IBM PC centric used to
97 of 98 SystemSoft Confidential January 8, 1997

work around deficiancies in operating system and are used as a debugging
interface during development.

• AdjustResourceInfo
• GetCardServicesInfo
• GetConfigurationInfo
• GetFirstWindow
• GetNextWindow
• MapLogSocket
• MapLogWindow
• MapPhySocket
• MapPhyWindow
• RegisterTimer
• ReleaseDMA
• ReleaseIO
• ReleaseIRQ
• ReplaceSocketServices
• RequestIO
• RequestIRQ
• ReturnSSEntry

D.8 Not Relevant to Hardware

Several functions deal with hardware features that are not relevant to our
hardware environment, or to features which have been obsoleted by Card-
Bus.

• GetMemPage
• MapMemPage
• ModifyWindow
• RequestWindow

D.9 API Simplification

In several cases we have been able to replace functions with a simplified
API.

• AccessConfigurationRegister
• AddSocketServices
• ModifyConfiguration
• RequestConfiguration
• ResetFunction
January 8, 1997 SystemSoft Confidential 98 of 98

	ReportTitle - Mac OS System PC Card Family 3.0 Developers Guide
	Heading1TOC - 1.0 Overview�5
	Heading1TOC - 2.0 Related Documents�6
	Heading1TOC - 3.0 About this Document�7
	FigureTOC - Figure 1 PC Card Family Architecture, Event Proces...

	Heading1TOC - 4.0 Architectural Elements�9
	Heading1TOC - 5.0 Goals & Non-Goals�12
	Heading1TOC - 6.0 Terminology�14
	FigureTOC - Figure 2 PC Card Family Interface Calling Flow Dia...

	Heading1TOC - 7.0 External /Public Interfaces�16
	Heading1TOC - 8.0 Card Enabler Interface�32
	FigureTOC - Figure 3 PC Card 3.0 IST Layout 82

	Heading1TOC - 9.0 Name Registry Properties for PC Cards�83
	AppendixHeading1TOC - Appendix A Data and Bit-Mask Definitions 89
	AppendixHeading2TOC - Appendix A.1 PC Card Events (PCCardEvents and PCCa...
	TableTitleTOC - Table 4 Registered Client PCCard Events (interesti...

	AppendixHeading2TOC - Appendix A.2 Socket Status Bit definitions (PCCard...
	TableTitleTOC - Table 5 Socket status bit definitions 90

	AppendixHeading2TOC - Appendix A.3 Window Attributes (PCCardWindowAttrib...
	TableTitleTOC - Table 6 Window attribute bit-mask definitions 91

	AppendixHeading2TOC - Appendix A.4 Configuration Attributes (PCCardConfi...
	TableTitleTOC - Table 7 Configuration Attributes 92

	AppendixHeading2TOC - Appendix A.5 Interface Types (PCCardInterfaceType)...
	AppendixHeading2TOC - Appendix A.6 Supported device types and SubTypes (...
	TableTitleTOC - Table 8 Interface types 93
	TableTitleTOC - Table 9 Supported device types (PcCardDevType/PCCa...

	AppendixHeading2TOC - Appendix A.7 Adapter capabilities mask (PCCardAdap...
	TableTitleTOC - Table 10 Adapter capability bit-mask values 94

	AppendixHeading2TOC - Appendix A.8 Socket Event mask (PCCardSCEvents) 95...
	AppendixHeading2TOC - Appendix A.9 PC Card 3.0 Hardware types (PCCardHar...
	TableTitleTOC - Table 11 Socket Event Bit-mask 95
	TableTitleTOC - Table 12 Pc Card 3.0 Hardware types 95

	AppendixHeading1TOC - Appendix B Card Service Mapping 96
	AppendixHeading2TOC - Appendix B.1 Mapping to ‘classic’ Card and Socket ...
	AppendixHeading2TOC - Appendix B.2 Mappings to the PC Card Standard 96
	AppendixHeading2TOC - Appendix B.3 Functionally Equivalent 96
	AppendixHeading2TOC - Appendix B.4 Tuple Functions 97
	AppendixHeading2TOC - Appendix B.5 Block Memory Device Family 97
	AppendixHeading2TOC - Appendix B.6 Client Registration 97
	AppendixHeading2TOC - Appendix B.7 MacOS Environment 97
	AppendixHeading2TOC - Appendix B.8 Not Relevant to Hardware 98
	AppendixHeading2TOC - Appendix B.9 API Simplification 98

	Heading1 - 1.0 Overview
	Heading1 - 2.0 Related Documents
	Heading1 - 3.0 About this Document
	Figure - FIGURE 1. PC Card Family Architecture, Event Proce...

	Heading1 - 4.0 Architectural Elements
	Heading2 - 4.1 Applications and/or Target Driver
	Heading2 - 4.2 PC Card Family Expert
	Heading3 - 4.2.1 Socket Monitoring Task
	Heading3 - 4.2.2 Administrative Task
	Heading4 - 4.2.2.1 Power Management
	Heading2 - 4.3 Card Enabler
	Heading2 - 4.4 Card Services Family Programming Interface
	Heading2 - 4.5 Card Enabler – the Generic Plug-In
	Heading2 - 4.6 Card Enabler Support Library
	Heading2 - 4.7 Internal Card Service Library

	Heading1 - 5.0 Goals & Non-Goals
	Heading2 - 5.1 Short Term Goals
	Numbered1 - 1. Support for Multi-function cards
	Numbered - 2. Simplified API(s)
	Numbered - 3. Support for CardBus will be integrated by provi...
	Numbered - 4. Clear Separation of Driver and PCMCIA specific ...
	Numbered - 5. Minimize interrupt-level code

	Heading2 - 5.2 Long Term Goals
	Numbered1 - 1. Forward compatibility
	Numbered - 2. CardBus support
	Numbered - 3. Bus agnostic Device Drivers

	Heading2 - 5.3 Long Term Non-Goals
	Numbered1 - 1. Compatibility with existing Card Services clien...

	Heading1 - 6.0 Terminology
	Figure - FIGURE 2. PC Card Family Interface Calling Flow Di...

	Heading1 - 7.0 External /Public Interfaces
	Heading2 - 7.1 PCCard Family Programming Interface
	Heading3 - 7.1.1 Client Services
	Heading4 - 7.1.1.1 PCCardGetCardServicesInfo
	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 7.1.1.2 PCCardRegisterClient

	Test - Parameters:
	Test - Return Codes:
	Test -
	Test - Parameters:
	Heading4 - 7.1.1.3 PCCardDeregisterClient

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.4 PCCardSetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.5 PCCardGetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.6 PCCardRegisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.7 PCCardDeRegisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.8 PCCardGetStatus

	Test - Parameters:
	Test - Return Codes:

	Heading3 - 7.1.2 Resource Management
	Heading4 - 7.1.2.1 PCCardRequestWindow
	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.2.2 PCCardReleaseWindow

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.2.3 PCCardModifyWindow [16-bit PC Card Memory ...

	Test - Return Codes:
	Heading4 - 7.1.2.4 PCCardRequestConfiguration
	Heading4 - 7.1.2.5 PCCardReleaseConfiguration
	Heading4 - 7.1.2.6 PCCardModifyConfiguration
	Heading4 - 7.1.2.7 PCCardResetFunction

	Heading3 - 7.1.3 Client Utilities
	Heading4 - 7.1.3.1 PCCardGetFirstTuple
	Heading4 - 7.1.3.2 PCCardGetNextTuple

	Heading3 - 7.1.4 AccessConfigurationRegister
	Heading4 - 7.1.4.1 PCCardReadConfigurationRegister
	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.4.2 PCCardWriteConfigurationRegister

	Test - Parameters:

	Heading3 - 7.1.5 Miscellaneous Interfaces
	Heading4 - 7.1.5.1 PCCardGetCardInfo
	Heading4 - 7.1.5.2 PCCardEject
	Heading4 - 7.1.5.3 PCCardSetRingIndicate
	Heading4 - 7.1.5.4 PCCardEnableModemSound
	Heading4 - 7.1.5.5 PCCardEnableZoomedVideoSound
	Heading4 - 7.1.5.6 PCCardSetPowerLevel
	Heading4 - 7.1.5.7 PCCardGetCardRefFromDeviceRef
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.5.8 PCCardGetSocketAndDeviceFromDeviceRef

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.5.9 PCCardGetCardRef

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.5.10 PCCardGetSocketRef

	Test - Parameters:
	Test -
	Test - Return Codes:

	Heading1 - 8.0 Card Enabler Interface
	Heading2 - 8.1 Purpose
	Heading2 - 8.2 Overview
	Heading2 - 8.3 Plug-in File Type
	Heading2 - 8.4 DriverDescriptor
	Heading2 - 8.5 Card Enabler loading
	Heading2 - 8.6 Card Enabler Plug-in Entry Points.
	Heading3 - 8.6.1 Card Enabler Plug-in typedefs
	Heading3 - 8.6.2 Card Enabler Dispatch Table structure
	Heading3 - 8.6.3 initializeProc
	Test -
	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 8.6.3.1 Example Code of custom enabler table

	Heading3 - 8.6.4 cleanUpProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.5 validateHardwareProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.6 getFirstTuple
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.7 getNextTuple
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.8 handleEventProc
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.9 AddCardPropertiesProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.10 AddDevicePropertiesProc
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.11 getDeviceCount
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.12 getDeviceType
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.13 getDeviceTypeName
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.14 getDeviceName
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.15 getCardInfoProc
	Test -
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.16 addDeviceProperties
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.17 cardInterruptHandlerFunction
	Heading3 - 8.6.18 cardInterruptEnableFunction
	Heading3 - 8.6.19 cardInterruptDisableFunction
	Heading2 - 8.7 Card Enabler Usage by the PC Card 3.0 Family

	Heading3 - 8.7.1 Card Insertion Processing
	Heading3 - 8.7.2 The Device Initialization
	Heading3 - 8.7.3 Card Ejection
	Heading3 - 8.7.4 Event Notification
	Heading3 - 8.7.5 Enabler Replacement
	Heading2 - 8.8 Card Enabler Support Library

	Heading3 - 8.8.1 Card Identification
	Heading4 - 8.8.1.1 CEGetCardType
	Heading4 - 8.8.1.2 CECompareCISTPL_VERS_1
	Heading4 - 8.8.1.3 CECompareCISTPL_MANFID
	Heading4 - 8.8.1.4 CECompareMemory
	Heading2 - 8.9 Internal Card Services

	Heading3 - 8.9.1 Purpose
	Heading3 - 8.9.2 Client Services
	Heading4 - 8.9.2.1 CSGetCardServicesInfo
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.2 CSRegisterClient

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.3 CSDeregisterClient

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.4 CSSetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.5 CSGetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.6 CSRegisterTimer

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.7 CSDeregisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.8 CSNotifyClients

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.9 CSGetStatus

	Test - Parameters:
	Test - Return Codes:

	Heading3 - 8.9.3 Window Services Interface
	Heading4 - 8.9.3.1 CSRequestWindow
	Test - Return Codes:
	Heading4 - 8.9.3.2 CSReleaseWindow

	Test - Return Codes:
	Heading4 - 8.9.3.3 CSModifyWindow [16-bit PC Card Only]

	Test - Return Codes:

	Heading3 - 8.9.4 Configuration Services
	Heading4 - 8.9.4.1 CSRequestConfiguration
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.2 CSReleaseConfiguration

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.3 CSModifyConfiguration

	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 8.9.4.4 CSReadConfigRegister

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.5 CSWriteConfigRegister

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.6 CSResetFunction

	Test - Parameters
	Test - Return Codes:

	Heading3 - 8.9.5 CIS Services Interface
	Heading4 - 8.9.5.1 CSValidateCIS
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.5.2 CSGetDeviceCount

	Test - Parameters
	Test - Return Codes:
	Heading4 - 8.9.5.3 CSGetFirstTuple

	Test - Parameters
	Test - Return Codes:
	Heading4 - 8.9.5.4 CSGetNextTuple

	Test - Parameters:
	Test - Return codes

	Heading3 - 8.9.6 Miscellaneous Services
	Heading4 - 8.9.6.1 CSGetDeviceCount
	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.2 CSGetSocketDeviceFromIterator

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.3 CSCardEject

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.4 CSGetCardType

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.5 CSGetInterruptSetMember

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.6 CSSetInterrupt

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.7 CSSetRingIndicate

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.8 CSPowerManagement

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.9 CSReportStatusChange

	Test - Parameters:
	Test - Return codes
	Heading2 - 8.10 Socket Services Plug-in Interface

	Heading3 - 8.10.1 Apple Specific Plug-in Interface
	Heading4 - 8.10.1.1 _SSValidateHardware
	Heading4 - 8.10.1.2 _SSInitialize
	Heading4 - 8.10.1.3 _SSSuspend
	Heading4 - 8.10.1.4 _SSResume
	Heading4 - 8.10.1.5 _SSFinalize

	Heading3 - 8.10.2 Adapter Specific Interface
	Heading4 - 8.10.2.1 _SSInquireAdapter

	Heading3 - 8.10.3 Socket Specific Interface
	Heading4 - 8.10.3.1 _SSInquireSocket
	Heading4 - 8.10.3.2 _SSGetSocket
	Heading4 - 8.10.3.3 _SSSetSocket
	Heading4 - 8.10.3.4 _SSResetSocket
	Heading4 - 8.10.3.5 _SSGetStatus

	Heading3 - 8.10.4 Window Services Specific Interface
	Heading4 - 8.10.4.1 _SSInquireWindow
	Heading4 - 8.10.4.2 _SSGetWindow
	Heading4 - 8.10.4.3 _SSSetWindow
	Heading4 - 8.10.4.4 _SSGetWindowOffset
	Heading4 - 8.10.4.5 _SSSetWindowOffset

	Heading3 - 8.10.5 CardBus Specific calls
	Heading4 - 8.10.5.1 _SSWriteConfigurationSpace
	Heading4 - 8.10.5.2 _SSReadConfigurationSpace

	Heading3 - 8.10.6 Bridge Services Specific Interface
	Heading4 - 8.10.6.1 _SSInquireBridgeWindow
	Heading4 - 8.10.6.2 _SSGetBridgeWindow
	Heading4 - 8.10.6.3 _SSSetBridgeWindow

	Heading3 - 8.10.7 Platform Specific Service Interface
	Heading4 - 8.10.7.1 _SSEjectCard
	Heading4 - 8.10.7.2 _SSGetInterruptSetMember

	Heading3 - 8.10.8 Interrupt Source Tree Construction
	Heading4 - 8.10.8.1 Socket Service Driver Initialization:
	Heading4 - 8.10.8.2 Card Enabler Initialization:
	Heading4 - 8.10.8.3 Interrupt Processing
	Figure - FIGURE 3. PC Card 3.0 IST Layout

	Heading1 - 9.0 Name Registry Properties for PC Cards
	Heading2 - 9.1 Socket Controller Node Properties
	Heading2 - 9.2 Card Enabler Node Properties
	Heading2 - 9.3 Functional Node Properties
	AppendixHeading1 - Appendix C Data and Bit-Mask Definitions
	AppendixHeading2 - C.1 PC Card Events (PCCardEvents and PCCardEventMa...
	TableTitle - TABLE 1. Registered Client PCCard Events (interest...

	AppendixHeading2 - C.2 Socket Status Bit definitions (PCCardSocketSta...
	TableTitle - TABLE 2. Socket status bit definitions

	AppendixHeading2 - C.3 Window Attributes (PCCardWindowAttributes)
	TableTitle - TABLE 3. Window attribute bit-mask definitions

	AppendixHeading2 - C.4 Configuration Attributes (PCCardConfigOptions)...
	TableTitle - TABLE 4. Configuration Attributes

	AppendixHeading2 - C.5 Interface Types (PCCardInterfaceType)
	TableTitle - TABLE 5. Interface types

	AppendixHeading2 - C.6 Supported device types and SubTypes (PCCardDev...
	TableTitle - TABLE 6. Supported device types (PcCardDevType/PCC...

	AppendixHeading2 - C.7 Adapter capabilities mask (PCCardAdapterCapabi...
	TableTitle - TABLE 7. Adapter capability bit-mask values

	AppendixHeading2 - C.8 Socket Event mask (PCCardSCEvents)
	TableTitle - TABLE 8. Socket Event Bit-mask

	AppendixHeading2 - C.9 PC Card 3.0 Hardware types (PCCardHardwareType...
	TableTitle - TABLE 9. Pc Card 3.0 Hardware types

	AppendixHeading1 - Appendix D Card Service Mapping
	AppendixHeading2 - D.1 Mapping to ‘classic’ Card and Socket Services
	AppendixHeading2 - D.2 Mappings to the PC Card Standard
	AppendixHeading2 - D.3 Functionally Equivalent
	AppendixHeading2 - D.4 Tuple Functions
	AppendixHeading2 - D.5 Block Memory Device Family
	AppendixHeading2 - D.6 Client Registration
	AppendixHeading2 - D.7 MacOS Environment
	AppendixHeading2 - D.8 Not Relevant to Hardware
	AppendixHeading2 - D.9 API Simplification

