Mac OS System PC Card Family 3.0
Developers Guide

| Version 1.5.1

Prepared By:

SystemSoft Corporation
&
Apple Computer, Inc.

Creation Date:February 26, 1996
| Modified Date:January 8, 1997
Copyright ©1995-1996
SystemSoft Corporation and Apple Computer, Inc.

SystemSoft and Apple Confidential

1.0
2.0
3.0

4.0

5.0

6.0

7.0

Overview 5
Related Documents 6
About thisDocument 7

Figure 1 PC Card Family Architecture, Event Processing 8

Architectural Elements 9
4.1 Applications and/or Target Driver 9
4.2 PC Card Family Expert 9

4.2.1 Socket Monitoring Task 9
4.2.2 Administrative Task 10

Power Management 10
4.3 Card Enabler 10
4.4 Card Services Family Programming Interface 10
4.5 Card Enabler —the Generic Plug-In 11
4.6 Card Enabler Support Library 11
4.7 Internal Card ServicelLibrary 11

Goals & Non-Goals 12
5.1 Short Term Goals 12

5.2 Long Term Goals 12

5.3 Long Term Non-Goals 13

Terminology 14
Figure 2 PC Card Family Interface Calling Flow Diagram 15

External /Public Interfaces 16
7.1 PCCard Family Programming Interface 16
7.1.1 Client Services 17
PCCardGetCardServicesinfo 17
PCCardRegisterClient 17
PCCardDeregisterClient 19
PCCardSetEventMask 19
PCCardGetEventMask 19
PCCardRegisterTimer 20
PCCardDeRegisterTimer 20
PCCardGetStatus 20
7.1.2 Resource Management 21
PCCardRequestWindow 21
PCCardReleaseWindow 22
PCCardModifyWindow [16-bit PC Card Memory Only] 22
PCCardRequestConfiguration 23
PCCardRel easeConfiguration 24
PCCardModifyConfiguration 24

PCCardResetFunction 25
7.1.3 Client Utilities 25
PCCardGetFirstTuple 25

January 8, 1997

SystemSoft and Apple Confidential lof5

PCCardGetNextTuple 26

7.1.4 AccessConfigurationRegister 27
PCCardReadConfigurationRegister 27
PCCardWriteConfigurationRegister 27

7.1.5 Miscellaneous Interfaces 28
PCCardGetCardinfo 28
PCCardEject 29
PCCardSetRinglndicate 29
PCCardEnableM odemSound 29
PCCardEnableZoomedVideoSound 30
PCCardSetPowerLevel 30
PCCardGetCardRefFromDeviceRef 31
PCCardGetSocketAndDeviceFromDeviceRef 31
PCCardGetCardRef 32

PCCardGetSocketRef 32
8.0 Card Enabler Interface 32
8.1 Purpose 32

8.2 Overview 32
8.3 Plug-inFileType 32
8.4 DriverDescriptor 33
8.5 Card Enabler loading 33
8.6 Card Enabler Plug-in Entry Points. 34
8.6.1 Card Enabler Plug-in typedefs 34
8.6.2 Card Enabler Dispatch Table structure 35
8.6.3 initializeProc 36
Example Code of custom enabler table 36
8.6.4 cleanUpProc 37
8.6.5 validateHardwareProc 38
8.6.6 getFirstTuple 38
8.6.7 getNextTuple 39
8.6.8 handleEventProc 39
8.6.9 AddCardPropertiesProc 40
8.6.10 AddDevicePropertiesProc 40
8.6.11 getDeviceCount 41
8.6.12 getDeviceType 41
8.6.13 getDeviceTypeName 41
8.6.14 getDeviceName 42
8.6.15 getCardinfoProc 42
8.6.16 addDeviceProperties 43
8.6.17 cardinterruptHandlerFunction 43
8.6.18 cardInterruptEnableFunction 44
8.6.19 cardInterruptDisableFunction 44
8.7 Card Enabler Usage by the PC Card 3.0 Family 44
8.7.1 Card Insertion Processing 44
8.7.2 The DeviceInitidization 46
8.7.3 Card Ejection 47
8.7.4 Event Notification 47
8.7.5 Enabler Replacement 47
8.8 Card Enabler Support Library 47

20f5 SystemSoft and Apple Confidential January 8, 1997

8.8.1 Card ldentification 47
CEGetCardType 47
CECompareCISTPL_VERS 148
CECompareCISTPL_MANFID 49
CECompareMemory 49

8.9 Internal Card Services 54

8.9.1 Purpose 54
8.9.2 Client Services 54

CSGetCardServicesinfo 54
CSRegisterClient 54
CSDeregisterClient 55
CSSetEventMask 55
CSGetEventMask 56
CSRegisterTimer 56
CSDeregisterTimer 57
CSNotifyClients 57
CSGetStatus 57

8.9.3 Window Services Interface 58
CSRequestWindow 58
CSReleaseWindow 59
CSModifyWindow [16-bit PC Card Only] 59

8.9.4 Configuration Services 60

CSRequestConfiguration 60

CSReleaseConfiguration 61
CSModifyConfiguration 62
CSReadConfigRegister 62
CSWriteConfigRegister 63
CSResetFunction 64

8.9.5 CISServicesInterface 64
CSvalidateCIS 64
CSGetDeviceCount 65
CSGetFirstTuple 65
CSGetNextTuple 66

8.9.6 Miscellaneous Services 67
CSGetDeviceCount 67
CSGetSocketDeviceFromiterator 67
CSCardEject 67
CSGetCardType 68
CSGetlnterruptSetM ember 68
CSSetInterrupt 69
CSSetRinglIndicate 69
CSPowerManagement 69
CSReportStatusChange 70

8.10 Socket Services Plug-in Interface 66

8.10.1 Apple Specific Plug-in Interface 66
_SSVaidateHardware 66
_SSlnitialize 66

January 8, 1997 SystemSoft and Apple Confidential 3of5

_SSSuspend 67
_SSResume 67
_SSFinalize 67

8.10.2 Adapter Specific Interface 68
_SSInquireAdapter 68

8.10.3 Socket Specific Interface 68
_SSInquireSocket 68
_SSGetSocket 69
_ SSSetSocket 70
_ SSResetSocket 71
_SSGetStatus 71

8.10.4 Window Services Specific Interface 72
_SSInquireWindow 72
_SSGetWindow 72
_SSSetWindow 73
_SSGetWindowOffset 74
_ SSSetWindowOffset 74

8.10.5 CardBus Specificcalls 75
_ SSWriteConfigurationSpace 75
_ SSReadConfigurationSpace 76

8.10.6 Bridge Services Specific Interface 76
_SSInquireBridgeWindow 76
_ SSGetBridgeWindow 77
_SSSetBridgeWindow 77

8.10.7 Platform Specific Service Interface 78
_SSEjectCard 78
_ SSGetlInterruptSetMember 78

8.10.8 Interrupt Source Tree Construction 79
Socket Service Driver Initialization: 79
Card Enabler Initialization: 80
Interrupt Processing 80

Figure 3 PC Card 3.0 IST Layout 82
9.0 Name Registry Propertiesfor PC Cards 83
9.1 Socket Controller Node Properties 83

9.2 Card Enabler Node Properties 84
9.3 Functional Node Properties 85

Appendix A Data and Bit-Mask Definitions 89

Appendix A.1 PC Card Events (PCCardEvents and PCCardEventMask) 89
Table 4 Registered Client PCCard Events (interestingEvents) 89

Appendix A.2 Socket Status Bit definitions (PCCardSocketStatus) 90
Table 5 Socket status bit definitions 90

Appendix A.3 Window Attributes (PCCardWindowAttributes) 91
Table 6 Window attribute bit-mask definitions 91

4 0of 5 SystemSoft and Apple Confidential January 8, 1997

Appendix A.4 Configuration Attributes (PCCardConfigOptions) 92
Table 7 Configuration Attributes 92

Appendix A.5 Interface Types (PCCardinterfaceType) 93

Appendix A.6 Supported device types and SubTypes (PCCardDevType and PC-
CardSubType) 93

Table 8 Interface types 93
Table 9 Supported device types (PcCardDevType/PCCardSubType)
93

Appendix A.7 Adapter capabilities mask (PCCardAdapterCapabilities 94
Table 10 Adapter capability bit-mask values 94

Appendix A.8 Socket Event mask (PCCardSCEvents) 95

Appendix A.9 PC Card 3.0 Hardware types (PCCardHardwareType) 95

Table 11 Socket Event Bit-mask 95
Table 12 Pc Card 3.0 Hardware types 95

Appendix B Card Service Mapping 96

Appendix B.1 Mapping to ‘classic’ Card and Socket Services 96
Appendix B.2 Mappings to the PC Card Standard 96

Appendix B.3 Functionally Equivalent 96

Appendix B.4 Tuple Functions 97

Appendix B.5 Block Memory Device Family 97

Appendix B.6 Client Registration 97

Appendix B.7 MacOS Environment 97

Appendix B.8 Not Relevant to Hardware 98

Appendix B.9 APl Simplification 98

January 8, 1997 SystemSoft and Apple Confidential 50f 5

1.0 Overview

The Macintosh PC Card Family architecture is a multi-layered architecture
designed for robustness, extensibility and ease of maintenance. The layers are
implemented as shared libraries, plug-ins or initsin order to make the best use
of the Mac OS 7.5.x (and future versions of the Mac OS.)

PCCard 3.0 is designed to work within the Macintosh environment and is not a
port of existing technology from other platforms. SystemSoft is applying what
has been learned from years of PC Card support on Intel platformsto build an
implementation that avoids the limitations of the DOS platform, but uses our
experience with many vendors PC Cards and interface hardware. Our imple-
mentation is designed to fully use the Macintosh environment and system ser-
vices.

PCCard 3.0 is designed to handle single and multi-function cards. Support for
well behaved cardsis built into the system. There are options for adding support
for ill-behaved cards at a minimum cost using card enablers, refer to “ Card
Enabler Interface” on page 32. Support for new technologies isimplemented by
means of plug-in Card enabler modules.

Support for Macintosh User experience customizing is provided through cus-
tomizing card enabler plug-ins. Custom icons, card names and device names are
all be available to the card manufacturer.

PCCard 3.0 has been designed to ensure that adequate testing can be performed.
Automated test scripts will be created which will exercise all facets of the sys-
tem. We believe using automated scripts in conjunction with the system testing
by quality assurance engineers enables usto deliver a solid dependable prod-
uct.

5 of 33

SystemSoft and Apple Confidential January 8, 1997

2.0 Related Documents

Designing PCI Cards and Drivers for Power Macintosh Computers, Apple
Developer Press, 1995
Linux PCMCIA Programmers's Guide, Version 1.24, David Hinds, 7/31/95

PC Card Expansion for PowerBooks Computers, Apple Developer Press, 6/
1/95

The PCMCIA Developer’s Guide, Second Edition, Mori Welder, SY CARD
Technologies, 1995
PCMCIA Primer, Larry Levine, M& T Books, 1995

PCMCIA System Architecture, Second Edition, Don Anderson, Mindshare,
Inc., 1995

PC Card Sandard, November 1995 Draft Printing
CardSoft® Technical Reference Rev.2.0 (SystemSoft, 4/95)
Inside Macintosh, Devices

Inside Macintosh, Memory

Inside Macintosh, Inter-application Communication

January 8, 1997 SystemSoft and Apple Confidential 6 of 33

3.0 About this Document

Itistheintent of this document to describe the interfaces of the PC Card 3.0
Family. Itisnot theintent to cover all aspects of the Mac OS that relates to
PC Card 3.0. Error codes returned by PC Card 3.0 described in this docu-
ment are specfic to PC Card 3.0 and does not cover the return codes that
may be returned by other parts of the Mac OS, example the name registry.
Many routinesin PC Card 3.0 will return the error code of the name registry
or other parts of the Mac OS where it is appropriate.

7 of 33 SystemSoft and Apple Confidential January 8, 1997

FIGURE 1.

PC Card Family Architecture, Event Processing

Mac OS PC Card Family Architecture

System 7.5.x Implementation

and/or

Applications

Target Drivers

PC Card Family Expert

Socket Monitoring Thread(s)

A

A

PCCard Family Programming Interface

High-Level Card Services

A

A

v

v

A 4

Default 16-bit Card
Enabler

Recognizes and configures

Default CardBus
Enabler

Recognizes and configures
all fully compliant cards

Custom Card Enabler(s)

Provided by third party to enable
recognition, configuration, and
event dispatching for “borderline”

Programming Interface

all fully compliant cards
16-bit PC Cards. 32-bit PC Cards. PC cards. :
I
Card Enabler Plug-in
g Card Enabler Utilities

St Shange Svent Sion

Standard Enabler for a 16-bit PCCard

Low Level Card Services

the higher-level API.

Version of card services which utilizes logical socket & function number instead
of RegEntryIDs. This is the passive portion of a fully compliant Card Services.

Card Enablers invoke these functions after potentially filtering calls made from

Socket Services

Socket Service Plug-in
Programming Interface

Support Utilities

SSReportStatusChange

A

TI1130 Socket Service
(for Hooper Motherboard)

TI11130 Socket Service
(for Docking station)

TI1130 HAL

Implements device specific, yet motherboard independent
portions of the socket service.

HARDWARE

January 8, 1997

SystemSoft and Apple Confidential

8 of 33

4.0

Architectural Elements

4.1

4.2

42.1

Applications and/or Target Driver

Devices which may be located on a PC Card will need a device driver. |de-
ally driverswill be bus-agnostic. For instance, the built in IDE driver should
be able to service ATA cards without any PC Card specific modifications.
Drivers are loaded by the Driver Loader, they typically receive information
from the PC Card Family indirectly through the system Name Registry and
Device Notification systems. In order to be “PC Card-aware” target drivers
will have to handle power management and removability messages, but
need not be aware of the source.

In the rare case where a driver needs to be aware that the device islocated on a
PC Card, we are providing the Card Services Family Programming Interface.

PC Card Family Expert

The PC Card Family Expert , supplied by SystemSoft, orchestrates the
interaction of the other components described below — Card Enablers, Card
Services and Socket Services.

During the boot process it supervises the initialization of the PC Card hardware
and software. When there is a hardware interrupt from the PC Card socket, the
Card Expert will assure that a PC Card is either properly inserted and readied
for use or gjected. Findlly it is responsible for passing on events generated by
other parts of the operating system, such as Power Management events.

The PC Card Family Expert can be described as two tasks— atask that monitors
the PC Card sockets and an administrative task that monitors PC Card software
interaction with other parts of the system.

Socket Monitoring Task

The socket monitoring task listens for messages generated by the socket
service plug-in in response to hardware interrupts. The socket monitoring
task will load a card enabler (if necessary) and then call that card enabler to
get things done.

During the boot process, the PC Card Expert will be loaded along with other
family experts after the device drivers have been loaded and entered in the
Name Registry. Internal Card Service, upon being loaded, will search for socket
service plug-ins and initialize them. Internal Card Services will build atable
that will keep track of sockets, RegEntries and allow virtualization of the sock-
ets at the higher layers.

The PC Card Expert will register itself to be notified when hardware events
occur on any of the sockets. Finally if acard isfound to be inserted in a socket

9 of 33

SystemSoft and Apple Confidential January 8, 1997

4.2.2

4221

4.3

4.4

when the machine boots, then the PC Card Expert will call the Card Enabler to
make the card ready for use.

Once the system is up and running, the socket service plug-in will react to
hardware interrupts generated by any of the PC Card sockets. When it has
handled the interrupt, it will send a notification to the Card Expert. These
notifications will be received when: 1) acard has been inserted, 2) a status
change has occurred on acard, or 3) a card has been gjected. The Card
Expert will call the appropriate routinesin the Card Enabler to process these
events.

Administrative Task

The administrative task is responsible for fielding messages from the Mac-

intosh operating system. It will subscribeto serviceswithin the Mac OS that
are relevant to the operation of the PC Card Family. These servicesinclude
power management and device notification. Apple will have to supply sev-

eral of these services since they do not already exist on System 7.5.2.

Power Management

It will be the responsibility of the administrative task to field messages from
the power management service and notify the Card Enabler of a changein
power states. These messageswill include: 1) Battery Low, 2) Battery Dead,
3) System Sleep, and 4) System Shutdown.

Card Enabler

Enabler plug-ins are Code Fragments that have awell defined interface and
adefined purpose. The Enabler plug-ins provide extensions to the PCCard
family. Enablers are responsible for abstracting the intimate details of a
card, its device(s) type, configuring the device(s), and placing this informa-
tion into the name registry for target drivers to use when loading. The API
between the enabler is generic enough to support current multi-device
cards.

The enabler implements most of what would be the traditional Card Ser-
vices client, less the driver code and state machines. SystemSoft will pro-
vide ageneric enabler for standard multi-function cards.

SystemSoft will also provide the internals of the standard enabler as a
shared library for writers of card-specific enablers. There will aso be an
easy way for developersto extend the standard enabler with static data
(icons, card-specific settings, etc.).

Card Services Family Programming Interface

The Card Service Family Programming Interface(FPI) is the external card
service interface used by target drivers (if necessary) and other traditional
card service clients. The FPI is used to access and modify the configuration
of PC Card devices. The interface supports the PC Card Card Service Spec-

January 8, 1997

SystemSoft and Apple Confidential 10 of 33

ification. The MacOS binding designed by SystemSoft simplifies the card
service API for developers and removes the historical IBM-PC functionality
that is not necessary on the Macintosh.

The FPI mirrorstheinternal card service interface except that all FPI rou-
tines take a RegEntryRef as a parameter instead of a socket and device.
Error reporting will take place if adevice is not associated with a PC Card.
Further, Device, Card and Socket RegEntry nodes may be interchanged
wherever appropriate. The FPI isathin layer between a client and the inter-
nal card service library. The Card Services FPI uses a*“PCCard” prefix.

4.5 Card Enabler —the Generic Plug-In

Card enablers exist to implement standard card behavior and to provide a
method of overloading standard card behavior with custom behavior. Thisis
useful for developers of non-compliant or custom cards. The duties of the
card enabler include card identification, card configuration, customizing of
card services. Each card enabler provides a bottleneck for card services
events.

4.6 Card Enabler Support Library

A collection of PC Card/Enabler utility routines (such as card identification
routines) are available to enablers to make the process of identifying and
processing cards easier to the developer.

4.7 Internal Card Service Library

All internal card services calls operate on a virtual socket and deviceid
parameters. Card Enablers areimplicitly registered with card services
through the use of the PC Card expert and the name registry. All the tradi-
tional card service type functionality is handled by this library. Clients may
explicitly register to receive card eventsif they wish.

11 of 33 SystemSoft and Apple Confidential January 8, 1997

5.0 Goals & Non-Goals

5.1

5.2

Short Term Goals

1. Support for Multi-function cards
The PC Card Family will support multi-function cards by design with single
function cards treated as cards with one function.

2. Simplified API(S)

There are many places where the Card Services API, exposed by Opus,
requires that client applications and drivers implement state-machines and
handle interrupt-level callbacks to process simple asynchronous events.

The PC Card Family alleviates this chore by providing more natural shared
library calls which provide the same functionality.

3. Support for CardBus will be integrated by providing a single 32-bit API for
all functions.

4. Clear Separation of Driver and PCMCIA specific code

Device driver code concentrates on handling a specific device regardless of
whether that device is located on the motherboard or a PC Card or a Card-
Bus Card. Thisrequired driversto be aware of power management and
gjectability, but not specifically PCMCIA.

5. Minimize interrupt-level code
For performance as well as ease of programming and debugging, we want
to minimize the amount of interrupt-level client code required.

Long Term Goals

1. Forward compatibility
Clients written to the PC Card FPI will be forward compatible with future
Mac OS 1/0 model.

2. CardBus support
CardBus cards will be fully supported by the PC Card Family.

3. Busagnostic Device Drivers

Ideally target device drivers can be written in away that they do not have to
be concerned how their deviceis physically connected to the computer.
They need only retrieve information from the devices tree and be able to
handle notifications regarding power management and g ection.

1. While CardBus will be explicitly supported in the design, the first implementation may not be
required to handle CardBus cards due to lack of hardware.

January 8, 1997

SystemSoft and Apple Confidential 12 of 33

5.3 Long Term Non-Goals

1. Compatibility with existing Card Services clients (System 7)
Since current client drivers cannot be supported on the target platform and
most future hardware there is no need to provide support for current Card

Services clientst.

1. Thereason for thisisthat, because the TREX controller guarantees a unique |O address space
for each card, the Requestl O/Releasel O calls were omitted from the Opus APl — unfortunately
industry standard controllers do not allow usto make that assumption.

13 of 33 SystemSoft and Apple Confidential January 8, 1997

6.0 Terminology

Attribute Memory - This address space contains the CI'S and configuration
registersfor a card. Only the even bytes are implemented.

CardBus - The CardBus cards have 32 bit data and address lines (shared).
The CardBus uses the PCI bus protocol and supports bus mastering. The
CardBus supports common, 10, configuration and expansion spaces.

Card Enabler -the ‘low level’ expert, also known a card services client, this
isaplug-in to the PcCard16 family expert.

Card Services - Interface used by family expert and card enabler to config-
ure the PC cards. It is also callable from target drivers through the FPI.
CIS- Card Information Structure, the PcCard16 card configuration informa-
tion. The CIS dataislocated on the card in attribute memory.

Common Memory - The address space supports read and write memory
accessin 8 and 16 hit quantities.

Configuration Memory - CardBus cards support specia bus cyclesto get to
configuration registers and their CIS.

Mac OS 8 - The external code name of the successor version of the MacOS
which will follow system version 7.5.x.

HBA - Host bus adapter, i.e. the PC Card socket controller.

IO Memory- This address space supports the 10 access to a card.

PCMCIA - Personal Computer Memory Card International Association

PC Card - PcCard16 and CardBus cards, it is about the size of credit card
PcCard16 - The PcCard16 card supports data buses of 8 and 16 hits. It has
an address space of 26 bits (64Mb) and supports common memory, attribute
memory, and 10 space. The bus protocol is|SA like

PcCard16 Family - both the Card Services interface and family expert
PcCard16 Family Expert - the high level expert it controls the HBA.
Socket controller - the HBA that drives the PC Card sockets, controls mem-
ory and IO window mapping

Socket Services -the PcCard16 family plug-in, it drivesthe HBA, it hasa
standard interface to card services.

Target Driver Plug-in - The plug-in that drives a function on a PC Card.

January 8, 1997

SystemSoft and Apple Confidential 14 of 33

FIGURE 2.

PC Card Family Interface Calling Flow Diagram

PC Card Family Interface Flow

== Calling flow

Key

Applications
and/or
Target Drivers

PC Card Family Expert

Socket Monitoring Thread(s)

PCCard Family Programming Interface

High-Level Card Services

v

v
v

Default 16-bit Card
Enabler

Recognizes and configures

all fully compliant cards
16-bit PC Cards.

Default CardBus
Enabler

Recognizes and configures

all fully compliant cards
32-bit PC Cards.

Custom Card Enabler(s)

Provided by third party to enable
recognition, configuration, and

PC cards.

event dispatching for “borderline”

Card Enabler Plug-in
Programming Interface

A/

Card Enabler Utilities

Standard Enabler for a 16-bit PCCard

Low Level Card Services

made from the higher-level API.

Version of card services which utilizes logical socket & function number instead
of RegEntryIDs. This is the passive portion of a fully compliant Card
Services.Card Enablers invoke these functions after potentially filtering calls

-

L J

Socket Service Plug-in
Programming Interface

Socket Services
Support Utilities

 J

TI1130 Socket
Service(for Hooper

TI11130 Socket
Service(for Docking station)

Motherboard)
TI11130 HAL Implements device specific, yet

motherboard independent portions of the socket service.

HARDWARE

15 of 33

SystemSoft and Apple Confidential

January 8, 1997

7.0 External /Public Interfaces

Thefollowing sections cover in detail the public interfacesthat are available
to devel opers. The first section describes the PCCard Family Programming
Interface (FPI). The second section is the Enabler support library interface

which isavailable to devel opers who may need to develop a custom enabler
to support non-compliant cards.

7.1 PCCard Family Programming Interface

The PCCard Family Programming Interface (PCCard FPI) is athin PCCard

Card Service binding layer that is exposed to the rest of the world. Target Driv-
ers and other applications that wish to register with card service for event notifi-
cation use the PCCard FPI to register and communicate with the PCCard family.

The Card Servicesinterface as defined by PCMCIA formsthe foundation of
the PC Card Family Programming Interface. This standard interface has
been adapted to Macintosh platform by adopting Mac OS I/O architectural
elements wherever possible.

The Card Services programming interface can be divided into five main sec-
tions, as described in PC Card Standard: Card Services Specfication:

» Client Services

¢ Resource Management

e Client Utilities

e Bulk Memory Services

* Advanced Client Services

The major difference between this binding, and that which is provided in
existing PCs, isthat Card Services clients are now bound to the card, and
not registered in aglobal list. Because drivers are instantiated on demand
and replicated for each instance of adevice, thereisno need to keep asingle
global list of active clients.

Bulk Memory Services are NOT supported by Mac OS Card Services, as
this functionality is better suited for use in a specialized Block Storage
plug-in developed for linear flash arrays and/or other memory devices.

In addition to these change, several entry points have been removed and/or
simplified to eliminate “DOS-isms” from the programming model.

The details of these differences are completely described in Section D.

January 8, 1997 SystemSoft and Apple Confidential 16 of 33

7.1.1 Client Services

7.1.1.1 PCCardGetCardServicesinfo
The PCCardGetCardServicesinfo control call returns the current version
information. The Card Services PC Card Standard compliance level for this
specification is 0x0510.

OSStatus PCCardGetCardServicesInfo (
ItemCount * socketCount,

Ulnt32 * complianceLevel,
Ulnt32 * version);
Parameters:
— socket Count - Current Number of Sockets
— conpl i anceLevel - Binary Coded Decimal value of the Card
Services PCCard Standard Compliance Level
— version - Binary Coded Decimal value of the Card

Services implementation’s version number
Return Codes:

noErr

7.1.1.2 PCCardRegisterClient
PCCardRegisterClient is provided to allow target driversto register interest
in PC Card status changes. When a PC Card status change occurs, the func-
tion provided incl i ent Cal | back isinvoked.

NOTE: Unlike the x86/DOS binding, clients are registered for either a spe-
cific card in a socket or on al socketsin the system.

OSStatus PCCardRegisterClient(

const RegEntryRef* devicelD,
PCCardEventMask interestingEvents,
PCCardEventHandler clientCallback,
void * clientParam,
PCCardClientID * clientID)
Parameters:
— devicel D - Device identifier, enter

a nil regentyref if you desire
all sockets by creating a new regentryref.
— interestingEvents - Bitmask which events are interesting

Table C.1
— clientCall back - Client supplied event handling function
- client Param - Client supplied parameter passed

to clientCallback
—clientID - “ClientHandle”

17 of 33 SystemSoft and Apple Confidential January 8, 1997

Return Codes:

noErr - If no error occured
kBadSocketErr - if the socket is invalid

The clientCallback has the following format:

OSStatus (*PCCardEventHandler)(
PCCardEvent theEvent,
PCCardSocket vSocket,
Ulnt32 device,
Ulnt32 info,
Ulnt32 MTDRequest,
Ulnt32* buffer,
Ulnt32 misc,
Ulnt32 status,
void * clientParam)
Parameters:
— theEvent - The event that occurred, could be
multiple events
— vSocket - The virtual socket number of the card
where the event occurred
~ device - The device number where the event
occurred
~info - information specific to the event being
reported, refer to the PC Card Standard
Card Service Specification for more
details
~ MIDRequest - Specifically for MTD support(not
supported by the PC Card 3.0)
— buffer - Pointer to a buffer for modification by
the client (not supported by the PC Card
3.0)
— msc - argument used for miscellaneous
information, refer to the PC Card
Standard Card Service Specification
for more details (Not used in Pc Card 3.0)

~ status - used by callback handlers to return
information to Card Services
« clientParam - Client parameter returned

A client event handler must perserve all callback entry arguments unless

otherwise indicated. This ensures other callback handlers receive the same
information and that Card Services may rely on the information when han-
dlers have completed processing so it may perform any additional process-

ing.

January 8, 1997

SystemSoft and Apple Confidential 18 of 33

7.1.1.3 PCCardDeregisterClient
PCCardDeregisterClient is provided to unregister interest in PC Card status
changes.

OSStatus PCCardDeregisterClient(
PCCardClientID clientID);

Parameters:
S clientID - “ClientHandle”

Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id 1is invalid

7.1.1.4 PCCardSetEventMask
PCCardSetEventMask allows the event mask to be changed

OSStatus PCCardSetEventMask(
PCCardClientID clientID,
PCCardEventMask interestingEvents)

Parameters:
S clientID -“ClientHandle”
— interestingEvents -Bit mask which events are interesting
Table C.1
Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id is invalid

7.1.1.5 PCCardGetEventMask

PCCardGetEventMask allows the client to check the event mask.

OSStatus PCCardGetEventMask (
PCCardClientID clientID,
PCCardEventMask * interestingEvents);

Parameters:
~clientID - “ClientHandle”
— interestingEvents - Bit mask which events are interesting
Table C.1
Return Codes:
noErr - If no error occured
kInvalidCSClientErr - if the client Id 1is invalid

19 of 33 SystemSoft and Apple Confidential January 8, 1997

7.1.1.6 PCCardRegisterTimer
The PCCardRegisterTimer call registers a callback structure with Card Ser-
vices. Based on atick count provided, Card Services calls the client back
when the time period has elapsed and the Card Servicesinterfaceis avail-
able. Theclient callback registered will be called when the timer elapses. A
valid client handle must be obtained from calling PCCardRegisterClient.

OSStatus PCCardRegister Timer(
PCCardClientID registeredClientID,
PCCardTimerID *lpNewTimerID,

long delay)
Parameters:
~registerclientID - “ClientHandle”
— | pNewTi ner | D - Timer ID
— del ay - the number of ticks to wait,

approximately 1 ms/tick.

Return Codes:

noErr - If no error occured
klnvalidCSClientErr - if the client Id is invalid
paramErr - Bad parameter

7.1.1.7 PCCardDeRegisterTimer
PCCardDeRegisterTimer is provided to unregister timer clients.

OSStatus PCCardDeRegister Timer(
PCCardTimerID timerID);

Parameters:
~timerlD - “timerID”

Return Codes:

noErr - If no error occured
kNoClientTableErr - The client table has not be initialized yet
kInvalidCSClientErr - Card Services ClientID is not registered

7.1.1.8 PCCardGetStatus
The PCCardGetStatus control call returns the current status of a PC Card of
the specified Devicel D.

OSStatus PCCardGetStatus (
const RegEntryRef* devicelD,
Ulnt32 * currentState,
Ulnt32 * changedState,
PCCardVoltage* Vee,
PCCardVoltage* Vpp);

January 8, 1997 SystemSoft and Apple Confidential 20 of 33

Parameters:

—

—

—

devi cel D
current State
changedSt at e

Vcc
Vpp

Return Codes:
noErr
kBadSocketErr

kNoCardErr
paramErr

- Device identifier

- current state of the socket

- delta between the last time the socket service
getstatus call was made, note that this will not be
from the last time a particular client called

Table C.2

- Vcc power applied to the socket
- Vpp power applied to the socket

- 1f socket and function numbers are valid

- if the device Identifier does not refer to a valid
socket or device

- if a card is not present

- if a parameter is incorrect

7.1.2 Resource Management

7.1.2.1 PCCardRequestWindow

The PCCardRequestWindow control call allocates arange of system
address space to a PC Card of the specified DevicelD.

When an 10 address range is requested, the 10 range is only allocated and

reserved. The PCCardRequestConfiguration control call must be invoked to

enable access to the 1O range.

OSStatus PCCardRequestWindow (

const RegEntryRef* devicelD,
PCCardWindowAttributes =~ windowAttributes,
LogicalAddress * windowBase,
ByteCount* windowSize,
PCCardAccessSpeed* windowSpeed,
PCCardWindowOffset™ windowOffset
PCCardWindowlID * windowlID);

Parameters:

— devicel D

- Device identifier

— W ndowAt t ri but es-window attributes

« W ndowBase
« W ndowSi ze

< W ndowSpeed

« w ndowl D

Table C.3

-Window base address in bytes
-Minimum window size in bytes

(Used as input for 16-bit PC Cards only)
- Window speed

(16-bit PC Cards only)

- Window Identifier

21 of 33

SystemSoft and Apple Confidential January 8, 1997

Return Codes:

noErr - if all parameters are valid and request can
be serviced

paramErr - if a parameter is incorrect

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kBadSizeErr - if the requested window size cannot be
accommodated

kBadSpeedErr - if the requested access speed is invalid or
cannot be accommodated

kBadAttributeErr - if any attributes are invalid, conflicting, or
cannot be accommodated

kOutOfResourceErr - if no system address range is available to
accommodate the request

kNoCardErr - if no PC Card is present in the socket

7.1.2.2 PCCardReleaseWindow
The PCCardRel easeWindow control call disables and deallocates the sys-
tem address space previously assigned to a PC Card by the PCCardRequest-
Window control call.

OSStatus PCCardReleaseWindow (
PCCardWindowID windowID);

Parameters:
- wi ndowl D - Window Identifier

Return Codes:
noErr - if window handle is valid
kBadHandleErr - if window handle is invalid

7.1.2.3 PCCardModifyWindow [16-bit PC Card Memory Only]

The PCCardM odifyWindow control call allows the Access Speed and/or
Card Offset of a16-bit PC Card memory window to be modified.

OSStatus PCCardModifyWindow (

PCCardWindowID windowID,
PCCardWindowAttributes windowAttributes,
PCCardAccessSpeed windowSpeed,

January 8, 1997 SystemSoft and Apple Confidential 22 of 33

PCCardWindowOffset windowOffset);

Parameters:
— Wi ndowl D -Window Identifier
—wi ndowAt tri butes - Window attributes
Table C.3
— Wi ndowSpeed - Window speed
— W ndowdf f set - PC Card memory offset
Return Codes:
noErr - if all parameters are valid and request can
be serviced
kBadHandleErr - if window handle is invalid
kBadAttributeErr - if any attributes are invalid
kBadSpeedErr - if the requested access speed is invalid or
cannot be accommodated
kBadOffsetErr - if the card offset is invalid
kNoCardErr - if no PC Card is present in the socket

7.1.2.4 PCCardRequestConfiguration
The RequestConfiguration control call configures the PC Card of the speci-
fied Devicel D.

All 10 windows previously assigned by PCCardRequestWindow are
enabled for access.

OSStatus PCCardRequestConfiguration (

const RegEntryRef* devicelD,
PCCardConfigOptions configOptions,
PCCardInterfaceType ifType,
PCCardCustomlInterfaceID ifCustomType,
PCCardVoltage vee,

PCCardVoltage vpp,

Logical Address configRegistersBase,

PCCardConfigPresentMask configRegistersPresent,
PCCardFunctionConfigReg * configRegisterValues);

Parameters:
—devicel D - Device identifier
—configOptions - configuration attributes
Table C.4
—ifType - Interface type
Table C.5
—i f Cust oniType - interface ID (for CustomIF)
—vce - Vcece voltage in tenths of volts
—Vpp - Vpp voltage in tenths of volts
—configRegi stersBase - 16-bit Card base address for registers

—confi gRegi st er sPresent - 16-bit Card register values present bitmap
—configRegi sterVal ues - 16-bit Card register values byte array

23 of 33

SystemSoft and Apple Confidential January 8, 1997

Return Codes:

noErr - if all parameters are valid and request can
be serviced

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kBadAttributeErr - if any attributes are invalid, conflicting, or
cannot be accommodated

kBadTypeErr - if the interface type is invalid

kBadVccErr - if Vcc is invalid or unsupported

kBadVppErr - if Vpp is invalid, unsupported or
incompatible with Vce

kBadArgsErr - if the Custom ID is invalid

kNoCardErr - if no PC Card is present in the socket

7.1.2.5 PCCardReleaseConfiguration
The PCCardRel easeConfiguration control call deconfigures the PC Card
and socket.

All 10 windows previously assigned by PCCardRequestWindow are dis-
abled.

OSStatus PCCardReleaseConfiguration (
const RegEntryRef* devicelD);

Parameters:
~devicelD - Device identifier

Return Codes:

noErr - if the socket and function numbers are valid and
there is a configuration to release
kBadSocketErr - if the device Identifier does not refer to a valid

socket or device or no configuration to release

7.1.2.6 PCCardModifyConfiguration
The PCCardModifyConfiguration control call allows aPC Card configura-
tion to be modified without having to issue PCCardRequestConfiguration
and PCCardReleaseConfiguration calls.

OSStatus PCCardModifyConfiguration(
const RegEntryRef* devicelD,
PCCardConfigOptions configOptions,

PCCardVoltage vpp);
Parameters:
—devicelD - Device identifier
—configOptions - Changed Attributes
Table C.4

January 8, 1997 SystemSoft and Apple Confidential 24 of 33

- Vpp - Vpp voltage in tenths of volts

Note: It is not valid to change anything but V pp using PCCardM odifyCon-
figuration.

Return Codes:

noErr - if all parameters are valid and request can
be serviced

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kBadAttributeErr - if any attributes are invalid, conflicting, or
cannot be accommodated

kBadVppErr - if Vpp is invalid or unsupported

kNoCardErr - if no PC Card is present in the socket

7.1.2.7 PCCardResetFunction
The PCCardResetFunction does a soft reset on the device specified.

OSStatus PCCardResetFunction (
const RegEntryRef* devicelD);

Parameters:
_devicelD - Device identifier

Return Codes:
noErr - valid devicelD and reset successful
kInvalidDeviceNumber - invalid devicelD

7.1.3 Client Utilities

7.1.3.1 PCCardGetFirstTuple
The PCCardGetFirstTuple allows the tuples of the Card Information Struc-
ture to be read. To read any tuple, the desired tuple ID must be set to OFFh.
If no tuple dataisrequired, the Data Buffer Length parameter must be set to
zero. If the buffer supplied is not sufficient to handle the data to be returned
the call will fill the buffer supplied with the tuple data without returning an
error.

Note: If datais not returned then the tuple iterator is not advanced.

OSStatus PCCardGetFirstTuple (

const RegEntryRef* devicelD,
PCCardTupleKind desiredTuple,
PCCardTuplelterator tuplelterator,
void * dataBuffer,
Ulnt32* dataBufferSize,
PCCardTupleKind * foundTuple,

25 of 33

SystemSoft and Apple Confidential January 8, 1997

Ulnt32 * foundTupleSize);

Parameters:
—devicel D - Device identifier
—desiredTupl e - FFh for any Tuple
~tuplelterator - Card Services Internal Use Only
—dat aBuf f er - Pointer to Tuple data buffer
—dat aBuf fer Si ze - Length of Tuple data buffer in bytes
~foundTupl e - Tuple ID Found
~foundTupl eSi ze - Length of Tuple data found in CIS
Return Codes:
noErr - if parameters are valid and request was serviced
kBadSocketErr - if the device Identifier does not refer to a valid
socket or device
kNoMoreltemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

7.1.3.2 PCCardGetNextTuple
The PCCardGetNextTuple control call allows the tuples of the Card Infor-
mation Structure to be read. To read any tuple, the desired tuple ID must be
set to OFFh. If no tuple datais required, the Data Buffer Length parameter
must be set to zero. If the buffer supplied is not sufficient to handle the data
to be returned the call will fill the buffer supplied with the tuple data with-
out returning an error.

If an error occurs, the tupleinterator 1S NOT advanced.

OSStatus PCCardGetNextTuple (

const RegEntryRef* devicelD,
PCCardTupleKind desiredTuple,
PCCardTuplelterator tuplelterator,
void * dataBuffer,
Ulnt32* dataBufferSize,
PCCardTupleKind * foundTuple,
Ulnt32 * foundTupleSize);
Parameters:
—devicel D - Device identifier
—desiredTupl e - FFh for any Tuple
~tuplelterator - Card Services Internal Use Only
Must be NULL for first Tuple ID read
Must be preserved for subsequent Tuple ID reads
—dat aBuf f er - Pointer to Tuple data buffer
—dat aBuf fer Si ze - Length of Tuple data buffer in bytes
~foundTupl e - Tuple ID Found
~foundTupl eSi ze - Length of Tuple data found in CIS

January 8, 1997 SystemSoft and Apple Confidential 26 of 33

Return Codes:

noErr - if parameters are valid and request was serviced

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kNoMoreltemsErr - if specified tuple was not found

kNoCardErr - if no PC Card is present in the socket

7.1.4 AccessConfigurationRegister

AccessConfigurationRegister has been replaced by two calls to help reduce
programmer error.

7.1.4.1 PCCardReadConfigurationRegister
The PCCardReadConfigurationRegister control call alowsthe PC Card
configuration registers to be read.

OSStatus PCCardReadConfigurationRegister (
const RegEntryRef* devicelD,
PCCardConfigRegisterIndex whichRegister,
PCCardConfigRegisterOffset offset,

Ulnt8 * value);
Parameters:
— devicel D - Device identifier
— whi chRegi st er - which register index to read
- of f set - Memory Register Offset
~ val ue - Read Value

Return Codes:

noErr - if all parameters are valid and request can
be serviced

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kBadArgsErr - if the register type or memory register offset
is invalid

kNoCardErr - if no PC Card is present in the socket

7.1.4.2 PCCardWriteConfigurationRegister
The WriteConfigurationRegister control cal allows the PC Card configura-
tion registers to be written.

OSStatus PCCardWriteConfigurationRegister (
const RegEntryRef* devicelD,
PCCardConfigRegIndex whichRegister,
PCCardConfigRegOffset offset,

Ulnt32 value);

Parameters:
— devicel D - Device identifier

27 of 33

SystemSoft and Apple Confidential January 8, 1997

— whi chRegi st er - Which register indes to modify
- of f set - Memory Register Offset
- val ue - Read Value

Return Codes:

noErr - if all parameters are valid and request can
be serviced

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kBadArgsErr - if the register type or memory register offset
is invalid

kNoCardErr - if no PC Card is present in the socket

7.1.5 Miscellaneous Interfaces

7.1.5.1 PCCardGetCardInfo

The PCCardGetCardInfo call returns information about the card such
as type, sub-type, card name and vendor name.

OSStatus PCCardGetCardInfo(
const RegEntryRef * cardRef,
PCCardDevType * cardType,
PCCardSubType * cardSubType,

StringPtr cardName,
StringPtr vendorName)
Parameters:
— car dRef -Card identifier
~ cardType - type of card
~ cardSubType - subtype of card
« cardName - Name fo the card
— vendorName - name of the vendor
Return Codes:
noErr - Success
paramErr - if the card regentry ID is invalid

kInvalidRegEntryErr - if no PC Card is present in the socket or the
Card Identifier is invalid for the socket

January 8, 1997

SystemSoft and Apple Confidential 28 of 33

7.1.5.2 PCCardEject
The PCCardEjectcontrol call physically g ects the PC Card of the specified
Devicel D from the socket.

OSStatus PCCardEject(
const RegEntryRef* devicelD);

Parameters:
= devicel D -Device identifier

Return Codes:

noErr - if ejection completed successfully
kInUseErr - if card is still in use and eject request was denied
kNoCardErr - if no PC Card is present in the socket

7.1.5.3 PCCardSetRingIndicate
The PCCardSetRinglIndicate control call setsthe ring indicate bit on and off
on amodem card that supports it. 1

OSStatus PCCardSetRingIndicate(
const RegEntryRef * deviceRef,
Boolean setRinglndicate)

Parameters:
— devi ceRef -Device identifier
— setRingindicate -Boolean to turn the RingIndicate bit on and off
on a modem card that supports Ring indicate

Return Codes:

noErr - if operation completed successfully

kBadSocketErr - if the device Identifier does not refer to a valid
socket or device

kNoCardErr - if no PC Card is present in the socket

kUnsupportedModeErr - If the card does not support Ring indicate

7.1.5.4 PCCardEnableModemSound
The PCCardEnableM odemSound control call enables the client or driver to
turn modem sound on or off.

OSStatus PCCardEnableModemSound(

1. PCCardSetRinglIndicate this call may not be supported for all Mac
OS platforms.

29 of 33 SystemSoft and Apple Confidential January 8, 1997

const RegEntryRef * cardRef,

Boolean enableSound)
Parameters:
- car dRef -Device identifier
- enabl eSound -Boolean to turn the sound off and on.
Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid
socket or device
kNoCardErr - if no PC Card is present in the socket

kUnsupportedModeErr - If the card does not support sound

7.1.5.5 PCCardEnableZoomedVideoSound
The PCCardEnableZoomedVideoSound control call enablesthe client or
driver to turn zoom video sound on or off.

OSStatus PCCardEnableZoomedVideoSound(
const RegEntryRef * cardRef,

Boolean enableSound)
Parameters:
— car dRef -Device identifier
— enabl eSound -Boolean to turn the sound off and on.
Return Codes:
noErr - if operation completed successfully
kBadSocketErr - if the device Identifier does not refer to a valid
socket or device
kNoCardErr - if no PC Card is present in the socket

kUnsupportedModeErr - If the card does not support sound

7.1.5.6 PCCardSetPowerLevel
The PCCardSetPowerLevel control call to set the power level of adevice.
PC Card 3.0 only knows and handles the kPCCardPowerOn and kPCCard-
PowerOff state. |f a developer wants to support low power state a custom
enabler must be written to handle the kPCCardPowerL ow state to handle
the details of placing the card into low power.!

OSStatus PCCardSetPowerLevel(

1. PCCardSetPowerLevel call may not be supported for all platforms

January 8, 1997

SystemSoft and Apple Confidential 30 of 33

const RegEntryRef * cardRef,
PCCardPowerOptions powerLevel)

Parameters:
— car dRef
- powerLevel

Return Codes:
noErr
kBadSocketErr

kNoCardErr

kUnsupportedModeErr

-Device or card identifier
-Power Level to place the device or card

- if operation completed successfully

- if the device Identifier does not refer to a valid
socket or device

- if no PC Card is present in the socket

- If the card does not support sound

7.1.5.7 PCCardGetCardRefFromDeviceRef
The PCCardGetCardRef FromDeviceRef returns the RegEntryRef of the
card given the device RegEntryRef. The card RegentryRef isthe parent
node of the device RegEntry created by the PC Card 3.0 software.

OSStatus PCCardGetCardRefFromDeviceRef(
const RegEntryRef * deviceRef,
RegEntryRef * cardRef)

Parameters:
— devi ceRef
«— car dRef

Return Codes:
noErr

kBadSocketErr
paramErr

kNoCardErr
kInvalidRegEntryErr

- pointer to device RegEntryRef
- pointer to card RegEntryRef

- if all parameters are valid and request can

be serviced

- if the device Identifier does not refer to a valid
socket or device

- if the register type or memory register offset
is invalid

- if no PC Card is present in the socket

- The RegEntryRef for the device is invalid

7.1.5.8 PCCardGetSocketAndDeviceFromDeviceRef

The PCCardGetSocketAndDeviceFromDeviceRef call returns the virtual
socket number and device number given the RegEntrytRef of a device.

OSStatus PCCardGetSocketAndDeviceFromDeviceRef(

31 of 33

SystemSoft and Apple Confidential January 8, 1997

const RegEntryRef * deviceRef,
PCCardSocket * vSocket,

Ulnt32 * device)
Parameters:
— devi ceRef - pointer to device RegEntryRef
— vSocket - pointer to the virtual socket
~ device - pointer to the device number
Return Codes:
noErr - if all parameters are valid and request can
be serviced
kBadSocketErr - if the device Identifier does not refer to a valid
socket or device
paramErr - if the register type or memory register offset
is invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

7.1.5.9 PCCardGetCardRef
The PCCardGetCardRef call returns the card RegEntryRef given a virtual
socket number.

OSStatus PCCardGetCardRef(

PCCardSocket vSocket,
RegEntryRef * cardRef)
Parameters:
— vSocket - virtual socket number
~ car dRef - pointer to the card RegEntryRef
Return Codes:
noErr - if all parameters are valid and request can
be serviced
kBadSocketErr - if the socket is invalid
paramErr - If the parameters car invalid
kNoCardErr - if no PC Card is present in the socket
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

7.1.5.10 PCCardGetSocketRef
The PCCardGetSocketRef call returns the socket RegEntryRef given a vir-
tual socket number.

OSStatus PCCardGetSocketRef{(

January 8, 1997 SystemSoft and Apple Confidential 32 of 33

PCCardSocket vSocket,

RegEntryRef * socketRef)

Parameters:

- vSocket - virtual socket number

— socket Ref - pointer to the socket RegEntryRef
Return Codes:

noErr - if all parameters are valid and request can

be serviced

kBadSocketErr - if the socket is invalid

paramErr - If the parameters car invalid

kNoCardErr - if no PC Card is present in the socket

kInvalidRegEntryErr - The RegEntryRef for the device is invalid

33 of 33 SystemSoft and Apple Confidential January 8, 1997

8.0 CardEnabler Interface

8.1 Purpose

Card enablers exist to implement standard card behavior and to provide a
method of overloading standard card behavior with custom behavior. Thisis
useful for developers of non-compliant or custom cards. The duties of the
card enabler include card identification, card configuration, and customiza-
tion of card services. Each card enabler provides a bottleneck for card ser-
vices events so that card specific event processing may be preformed by the
enabler before the device driver is notified. It isthe intention that a card ven-
dor will not have to override any Card Enabler function but in certain cases
were ClSinformation is not adequate on a card. A custom card enabler can
correct information present in the card’s the CIS information making the
card appear to be compliant with the PC Card Standard.

It isimportant that the guidelines outlined in the following sections be followed
exactly to ensure proper configuration of cards and of the Mac OS. Described in
each call isthe appropriate Card Enabler Support call to be used. They will be
categorized as mandatory, optional or “do not call” for custom enablers
overriding theroutine.

8.2 Overview

Each Card Enabler Plug-inisan ‘ndrv’ (Native Driver). The ndrv must
export a descriptor and a function table populated with custom entry points
or Nils. The descriptor serves to identify the plug-in to facilitate matching
of PC Cardswith their card enablers. Card Enabler entry points are accessed
through the Card Enabler Interface (_El) layer. It isthe responsibility of the
Card Enabler to provide an interface for the PCCard FPI and Card Expert.

8.3 Plug-in FileType

All card enabler plug-ins must have afile type of ‘ndrv’.

January 8, 1997 SystemSoft Confidential 32 of 50

8.4 DriverDescriptor

The DriverDescriptor will be used to match a card enabler with a PC Card.

DriverDescription TheDriverDescription = {

/*

* Signature info

*/
kTheDescri pti onSi gnat ure, /* OBType driverDescSi gnat ure*/
ki nitial DriverDescriptor, /* DriverDescVersion driverDescVersion*/
/*

* DriverType driverType - these are defined in

*/
kConpat i bl ePl ugi nNane, /* Nane of hardware */
kVer si onMgj or, kVersi onM nor, /* NunVersion version */

kVer si onSt age, kVer si onNonRel ,

/*

* DriverOSRuntine driver GSRunti nel nfo

*/

0

/* RuntimeQptions driverRunti me*/

| (0 * KkDriverlsLoadedUponDi scovery)/* Loader runtine options*/

| (0 * KDriverl sCpenedUponLoad) /* Qpened when | oaded */
| (1 * kDriverlsUnderExpertControl) /* I/0O expert handl es | oads/ opens*/

| (0 * kDriverlsConcurrent) /* Not concurrent yet */
| (0 * KkDriver Queuesl CPB), /* Not internally queued yet*/
kConpat i bl ePl ugi nNane, [* Str31 driverName(QpenDriver paranj*/
0o, 0 0, O, O, O O, O, [* Unt32 driverDescReserved[8] */

/*

* DriverG8Service Information. This section contains a vector count
* foll oned by

* a vector of structures, each defining a driver service.

*/

1, /* Servi ceCount nServi ces */
/*
* DriverServicelnfo service[0]
*/
kPQCar dSer vi ceCat egory, /* OBType serviceCat egory */
kPQCar dCar dEnabl er Ser vi ceType, /* CBType serviceType */
1, O, devel opStage, 1 /* version of the Qpen Transport */
/* programmng interface that this */
/* driver supports */

/* shoul d be kOrTDri ver APl Ver si on */

8.5 Card Enabler loading

The PC Card 3.0 Family utilizes the Driver Loader library to load the
appropriate card enabler for acard inserted in the system. Using the utilities
supplied by the Driver Loader Library the PC Card 3.0 Family scans the

33 of 50

SystemSoft Confidential January 8, 1997

extensions folder for all appropriate drivers with service types ‘ndrv’. The
best candidate is based on the card node name created by the PC Card 3.0
Family.

8.6 Card Enabler Plug-in Entry Points.

Entry points to the card enabler plug-in have been defined. These entry
points provide the services required to match plug-ins with cards, get card
information, prepare a card, and handle card events.

Plug-ins are required to fill in afunction table. Thisfunction tableis used to per-
form all actions required to set up a card. The current structure of this function
tableisasfollows:

8.6.1 Card Enabler Plug-in typedefs

enum {
kSer vi ceTypePQCar dEnabl er =' card'
kPQCar dEnabl er Pl ugi nVer si on= 0x00000001,
kPCCar dEnabl er Pl ugi nQurrent Ver si on = kPCCar dEnabl er Pl ugi nVer si on

H
/* Card Enabl er Entrypoints*/
typedef O8Status (*CEVal i dateHar dwar eProc) (const RegEntryRef *cardRef);

typedef O8Status (*CEl nitializeProc)(const RegEntryRef *cardRef,
Bool ean repl aci ngd d);

typedef C8Status (*CEQ eanupProc) (const RegEntryRef *cardRef,
Bool ean bei ngRepl aced) ;

t ypedef OBStatus (*CEPower Managenent Proc) (const RegEntryRef *|pCardEntry,
PCCar dPower Qpt i ons power Level) ;

typedef C8Status (*CEHandl eEvent Proc) (const RegEntryRef *cardRef,
PCCar dEvent t heEvent);

typedef OBStatus (*CEGet Cardl nfoProc)(const RegEntryRef *cardRef,
PCCar dDevType *cardType, PCCar dSubType *car dSubType,
StringPtr cardName, StringPtr vendor Nare);

typedef OBStatus (*CEAddCar dPropertiesProc)(const RegEntryRef *cardRef);

typedef OBStatus (*CEGet Devi ceCount Proc) (const RegEntryRef *cardRef,
It enCount *nunber C Devi ces) ;

typedef OBStatus (*CECet Devi ceNaneProc) (U nt 32 socket Number, U nt 32 devi ceNunber,
char *devi ceNane);

typedef OBStatus (*CEGet Devi ceConpati bl eProc) (const RegEntryRef *devi ceRef,
U nt 32 socket Nunber, U nt32 devi ceNunber, char *nane);

January 8, 1997 SystemSoft Confidential 34 of 50

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

t ypedef

CBSt at us (* CEGet Devi ceTypeProc) (const RegEnt ryRef *devi ceRef,

U nt 32 socket Nunber, U nt 32 devi ceNunber,
PCDevi ceType *| pDevi ceType);

GBSt at us (* CEGet Devi ceTypeNanePr oc) (const RegEntryRef *devi ceRef,

U nt 32 socket Nunber, U nt32 devi ceNunber, char *nane);

CBSt at us (* CEAddDevi ceProperti esProc) (const RegEntryRef *devi ceRef,

U nt 32 device);

GBSt at us (*CEConfi gur eDevi ceProc) (const RegEntryRef *devi ceRef,

U nt 32 devi ceNunber) ;

CBSt at us (*CEFi nal i zeDevi ceProc) (U nt 32 socket, U nt32 devi ce,

const RegEntryRef *devi ceRef);

CBStatus (*CEVal i dat e SProc) (U nt 32 socket, U nt32 device,

U nt 32 *| pA SChai nCount) ;

CBSt at us (* CEGet Fi rst Tupl eProc) (U nt 32 socket, U nt32 device,

PQCardTupl el teratorPtr | pTupl el terator,
Byt e desiredTupl e, void *| ptupl eDat a,
U nt32 *| pTupl eBuf f er Si ze, Byte *| pFoundTupl e);

CBSt at us (* CEGet Next Tupl eProc) (PCCardTupl el teratorPtr | pTupl elterator,

Byt e desiredTupl e, void *| ptupl eDat a,
U nt32 *| pTupl eBuf f er Si ze, Byte *| pFoundTupl e);

8.6.2 Card Enabler Dispatch Table structure

struct PCCar dEnabl er Pl ugi nHeader {

}

U nt 32
U nt 32
U nt 32
U nt 32

pl ugi nD spat chTabl eVer si on;
Reservedl;
reserved2;
reserved3;

typedef struct PCCar dEnabl er Pl ugi nHeader PQCCar dEnabl er Pl ugi nHeader ;

struct PCCar dEnabl er Pl ugi nD spat chTabl e {
PCCar dEnabl er Pl ugi nHeader header ;

/* CGeneral functions*/

CEVal i dat eHar dwar ePr oc val i dat eHar dwar ePr oc;
CElnitializeProc initializeProc;

CEA eanupPr oc cl eanUpPr oc;

CEPower Managenent Pr oc set PCCar dPower Level ;
/* Card functions*/

CEHandl eEvent Pr oc handl eEvent Pr oc;
CEGet Car dI nf oPr oc get Car dl nf oPr oc;
CEAddCar dPr operti esProc addCar dPr operti es;
CEGet Devi ceCount Pr oc get Devi ceCount ;

/* Device functions*/

CEGet Devi ceNanePr oc get Devi ceNarre;

CEGet Devi ceConpat i bl eProc get Devi ceConpat i bl eNarres;
CEGet Devi ceTypePr oc get Devi ceType;

35 of 50

SystemSoft Confidential January 8, 1997

CEGet Devi ceTypeNanePr oc
CEAddDevi ceProperti esProc
CEConf i gur eDevi ceProc
CEFi nal i zeDevi ceProc

/* Card Services Overrides..

CEVal i dat eCl SProc
CEGet Fi r st Tupl eProc
CEGet Next Tupl eProc

/* InterruptHandlers...*/
I nt errupt Handl er

I nt err upt Enabl er

I nterrupt D sabl er

}

get Devi ceTypeNane;
addDevi ceProperti es;
confi gur eDevi ce;
finalizeDevice;

)

validated S
get Fi rst Tupl e;
get Next Tupl e;

cardl nt errupt Handl er Functi on;
cardl nt er r upt Enabl eFuncti on;
cardl nt er rupt D sabl eFuncti on;

t ypedef struct PCCar dEnabl er Pl ugi nD spat chTabl e PCCar dEnabl er Pl ugi nDi spat chTabl e;

t ypedef PQCCar dEnabl er Pl ugi nD spat chTabl e * PCCar dEnabl er Pl ugi nDi spat chTabl ePtr;

8.6.3 initializeProc

Thisroutineis called to popul ate the name registry for all devices on acard.
Thetable of function pointers which is handed in, contains the pointersto
custom routines supplied by the enabler or default routines supplied by the
CardEnablerLib, a shared library supplied by SystemSoft.

Mandatory that CElnitializeCard is called before performing custom
enabler specific code.

OSStatus initializePr oc(const RegEntryRef * cardRef,
Boolean replacingOld);

Parameters.
— car dRef
— replacingdd

- Deviceidentifier

the replacement process.

Return Codes:
noErr - Success
paramErr - Bad parameter
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

8.6.3.1 Example Code of custom enabler table

PCCar dEnabl er Pl ugi nD spat chTabl e ThePl ugi nD spat chTabl e =

{
/* PQCar dEnabl er Pl ugi nHeader */

January 8, 1997

SystemSoft Confidential

-Boolean stating if the call is being called during

36 of 50

{ kPQCCar dEnabl er Pl ugi nQurrent Versi on, 0, 0, 0},

/* CEVal i dat eHar dwar ePr oc */ M/Val i dat eHar dwar ePr oc,
/* CElnitializeProc */ CElnitializeCard,
/* CEQ eanupProc */ CEFi nal i zeCar d,
/* CEPower Managerment Pr oc */ CEPower Managenent ,
/* CEHand| eEvent Pr oc */ CEHandl eCar dEvent ,
/* CEGet Car dl nf oProc */ CEGet Car dI nf o,
/* CEAddCar dPropertiesProc */ CEAddCar dProperti es,
/* CEGet Devi ceCount Proc */ CECet Devi ceCount
/* CECet Devi ceNanePr oc */ M/Get Devi ceNane,
/* CEGet Devi ceConpat i bl eProc */
CEGet Devi ceConpat i bl eNanes,
/* CEGet Devi ceTypeProc */ M/Cet Devi ceType,
/* CEGet Devi ceTypeNanmePr oc */ M/Get Devi ceTypeNane,
/* CEAddDevi ceProperti esProc */ CEAddDevi ceProperti es,
/* CEConfi gur eDevi ceProc */ CEConf i gur eDevi ce,
/* CEFi nal i zeDevi ceProc */ CEFi nal i zeDevi ce,
/* CEVal i dat ed SProc */ CEVal i dated S,
/* CEGet First Tupl eProc */ CSGet Fi r st Tupl e,
/* CEGet Next Tupl eProc */ CSGet Next Tupl e,
/* I nterruptHandl er */
CEDef aul t I nt errupt Handl er,
/* I nterrupt Enabl er */ NULL,
/* InterruptD sabl er */ NULL
b

8.6.4 cleanUpProc

Thisentry point is called immediately before the plug-in is unloaded and
alows the enabler devel oper to perform any necessary clean up before the
plug inisremoved. Thiscall isonly made if the card enabler plug-in was
successfully matched with a card.

Mandatory that CEFinalizeCard iscalled after the enabler cleansup.

OSStatus cleanUpProc (
const RegEntryRef * cardRef,
Boolean beingReplaced);
Parameters:
- car dRef - Deviceidentifier
- repl aci ngd d -Boolean stating if the call is being called during
the replacement process.
Return Codes:
noErr - Success

37 of 50 SystemSoft Confidential January 8, 1997

paramErr - Bad parameter
kInvalidRegEntryErr - The RegEntryRef for the device is invalid

8.6.5 validateHardwareProc
Determine whether the card in question is supported by the enabler.

Every custom enabler must have a validateH ar dwar eProc the Card Enabler
support library does not supply a default CEValidateHardware call.

OSStatus validateH ar dwar ePr oc(

const RegEntryRef * cardRef)
Parameters:
— car dRef - Deviceidentifier
Return Codes:
noErr - Success, the card will be handled by the enabler
kNotMyCardErr - The card will not be handled by the enabler

8.6.6 getFirstTuple

This function allows enabler writers to override the default card services
function “ CSGetFirstTuple”

CEGetFirstTupleisoptional, it is suggested that this call be used only to fix
known tuple processing problems such as missing tuples.

OSStatus getFirstTuple (

PCCardSocket socket,
Ulnt32 device,
PCCardTuplelteratorPtr IpTuplelterator,
Byte desiredTuple,
void * IptupleData,
Uint32 * IpTupleBufferSize,
Byte * IpFoundTuple)
Parameters:
- socket - socket number
- devi ce - device number
— | pTupl el terat or - A tuple iterator for card services to use
— desiredTupl e - The tuple code for the desired tuple
| ptupl eDat a - A pointer to a buffer to fill or nil
~ | pTupl eBuf fer Si ze - A pointer to aUInt32 to receive the data size
— | pFoundTupl e - A pointer to receive the kind of tuple returned.

January 8, 1997 SystemSoft Confidential 38 of 50

Return Codes:

NoErr - Success

8.6.7 getNextTuple

This function allows enabler writers to override the default card services
function “ CSGetNextTuple.”

CSGetNextTupleisoptiona, it is suggested that this call be used only to fix

known tuple processing problems such as missing tuples.

OSStatus getNextTuple (

PCCardTuplelteratorPtr IpTuplelterator,
Byte desiredTuple,
void * IptupleData,
Uint32 * IpTupleBufferSize,
Byte * IpFoundTuple)
Parameters:
— | pTupl el terat or - A tuple iterator for card services to use
— desiredTupl e - The tuple code for the desired tuple
| ptupl eDat a - A pointer to a buffer to fill or nil
~ | pTupl eBuf fer Si ze - A pointer to aUInt32 to receive the data size
— | pFoundTupl e - A pointer to receive the kind of tuple returned.
Return Codes:
noErr - Success

8.6.8 handleEventProc

Thisentry point is called in response to card events. This entry point will
only be called in response to card events identified by the enabler descrip-
tor's EventMask field.

It is mandatory to call CEHandleEvent unlessthe custom enabler wantsto

stop the event from being processed.

OSStatus handleEventProc(
const RegEntryRef* devicelD,
PCCardEvent theEvent)

handleEventProc is responsible for delivering events to the device
driver(s) loaded for it's particular card. This allows the normalization of
events for misbehaved cards by it's enabler.

39 of 50

SystemSoft Confidential January 8, 1997

Parameters:

- devicel D - Deviceidentifier
— theEvent - Card event from Socket Services
TableC.1
Return Codes:
NoErr - Success

8.6.9 AddCardPropertiesProc

Thisisthe main entry point used to populate the name registry for all
devices on a card. The name registry must be completely populated if this
entry point returns successfully.

There is no mandatory call for this routine.

OSStatus CEAddCardPropertiesProc(
const RegEntryRef * cardRef)

Parameters:

— car dRef - Card identifier
Return Codes:

NoErr - Success

8.6.10 AddDevicePropertiesProc

This function must completely populate the name registry for the specified
device on a card. The name registry must be completely populated for the
deviceif this entry point returns successfully.

There is no mandatory call for this routine.

OSStatus AddDevicePr oper tiesPr oc(
const RegEntryRef * deviceRef,

Uint32 device);
Parameters:
- devi ceRef - deviceidentifier
- devi ceNunber - index of deviceto set up
Return Codes:
NoErr - Success

January 8, 1997 SystemSoft Confidential 40 of 50

8.6.11 getDeviceCount
This function returns the number of devices on a card.

It is optional that CEGetDeviceCount be called.

OSStatus getDeviceCount(
const RegEntryRef* cardiD,
Uint32 * pDeviceCount)
Parameters:
— cardl D - Card identifier
— pDevi ceCount - Number of devices on card
Return Codes:
noErr - Success

8.6.12 getDeviceType
This function returns the type of adevice on a card.

It isoptional that CEGetDeviceType be called.

OSStatus getDeviceType(
const RegEntryRef* deviceRef,
PCCardSocket socket,
Uint32 device,
PCDeviceType pDeviceType);
Parameters:
- devi ceRef - deviceidentifier
- socket - socket number
- device - device number
— pDevi ceType - type of device
TableC.6
Return Codes:
NoErr - Success

8.6.13 getDeviceTypeName
This function returns the name of the type of device on a card.

It isoptional that CEGetDeviceTypeName be called.

41 of 50 SystemSoft Confidential January 8, 1997

OSStatus getDeviceTypeName(
const RegEntryRef *
PCCardSocket
Ulnt32
char *

Parameters.
— devi ceRef
— VSocket
— devi ce
« name

Return Codes:

NoErr - Success

8.6.14 getDeviceName

deviceRef,
vSocket,
device,
name;

- device identifier

- socket number

- device number

- name of devicetype

This function returns the name of the device on a card.

It isoptional that CEGetDeviceName be called.

OSStatus getDeviceName(
PCCardSocket
UInt32
char *

Parameters.
— VSocket
— devi ce
« nane

Return Codes:

NoErr - Success

8.6.15 getCardlinfoProc

vSocket,
device,
name);

- socket number
- device number
- name of devicetype

This functions returns information about the card to be used by the finder
extension for display of the cards icon and information of the card.

It is optional that the CEGetCardinfo be called.

OSStatus CEGetCardinfo(
const RegEntryRef *
PCCardDevType *

cardRef,
cardType,

January 8, 1997

SystemSoft Confidential

42 of 50

PCCardSubType * cardSubType,

StringPtr cardName,
StringPtr vendorName)
Parameters:
— car dRef - card identifier
~ cardType -type of card
— cardSubType - sub type of card
~ cardNarme - name of card
~ vendorNane - name of vendor
Return Codes:
NoErr - Success
paramErr - parameter error

8.6.16 addDeviceProperties

Thisfunction is required to configure the specified device on the card and
populate the name registry with memory window information in the
assigned-address and APPL ,address fields.

There is no mandatory call for this routine.
OSStatus addDevicePr oper ties(

const RegEntryRef * deviceRef,
Ulnt32 device);
Parameters:
— devicel D - Deviceidentifier
—device - device number
Return Codes:
NoErr - Success

8.6.17 cardinterruptHandler Function

Thisfunction is of type InterruptHandler and is responsible for processing
card interrupts as defined in Interrupts.h.

43 of 50 SystemSoft Confidential January 8, 1997

8.6.18 cardinterruptEnableFunction

Thisfunction is of type InterruptEnabler and is responsible for processing
card interrupts as defined in Interrupts.h.

8.6.19 cardinterruptDisableFunction

Thisfunction is of type InterruptDisabler and is responsible for processing
card interrupts as defined in Interrupts.h.

8.7 Card Enabler Usage by the PC Card 3.0 Family

This section will explain the usage and control flow of a custom card
enabler in detail. There are four stagesin the life of an enabler, card inser-
tion, card gjection, replacement and event notification. In each of these
stages different routines are called at specific timesto alow an enabler to
perform defined tasks. The following information is supplied as a guide to
assist the developer in designing custom card enablers. It isimportant to
note that the PC Card family will read tuples using getFirstTuple only, it
will use the getNextTuple cal only when looking for multiple
CISTPL_CFTABLE_ENTRY s entries.

8.7.1 Card Insertion Processing

When a card isinserted the PC Card 3.0 family is notified and starts to pro-
cess the card. The PC Card Family will create a card entry in the name reg-
istry for the card inserted.

First the expert will call CSValidateClIS - thiswill insure that your enabler
can read the CIS on the inserted card. (Ironically, akBadClI SErr is not con-
sidered afatal error, so we will ignore invalid checksums - However if the
card does not come ready, or some other error prevents us from reading all
of the CIS tuples, then the card recognition process will be terminated.)

Next the expert will seek to generate a card name which will be used for the
Name Registry Entry. The expert will look for aCISTPL_MANFID tuple
and will transform it into a name using an algorithm that is described bel ow.
If there isno MANFID, the expert seeks to generate a name from the manu-
facturer namein the CISTPL_VERS 1 tuple. If thereisno VERSL tuple
either, the name will be "pccard”. You need not be concerned with the algo-
rithm since then name will appear in the name registry in two places. If the
generated nameis "pccard12,403", the Card registry entry will be named
"Devices.device-tree:bandit:ti1130: pccard12,403" and it will havea"name"
property which will have avalue of "pccard12,403". The Card registry entry
will also have a"compatible" property which will be used later on to find an
enabler.

After the Card registry entry has been created, the expert will look for card
enablers that might want to handle this card. The enablers are opened in

January 8, 1997 SystemSoft Confidential 44 of 50

order and thefirst enabler that indicates it can handle the card will be given
control and the search will be ended.

First the expert looks for an enabler that matches the "name" property in the
Card RegEntry. The name must exactly match the driverName field of the
DriverOSRuntime portion of the DriverDescription structure that is
exported by your enabler. (See DriverFamilyMatching.h for the details, or
look at the custom enabler samplein the SDK.) If adriver with an exact
name match is found, then the driver isloaded and the validateHar dwar e-
Proc in the PCCardEnabler PluginDispatchTable is called. Your enabler
should examine the card's CI S to assure that you want to handleit. If you do
want to handle the card, then return noErr from your validateHardware-
Proc. If you do not want to handle it, return an error code - kUnsuppor ted-
CardErr would be agood choice. If your enabler returns nokrr, then it
will be kept loaded and the search for enablers will terminate. If your
enabler returns an error, it will be unloaded and the search continues.

If there is no exact name match card enabler or it refuses to handle the card,
we continue searching using the "compatible" property of the Card
RegEntry. The compatible property has two zero terminated stringsin it.

If no Custom Enabler has accepted the card (or none exist), then the search
will proceed to the "compatible" property. The "DefaultPCCardEnabler" is
part of the system software and it's validateHar dwar eProc will always
return noErr.

Once an enabler has been selected, the expert continues the card recognition
and configuration process. TheinitializeProc of selected enabler iscalled.
A Device Registry entry (or entries) will be created and the devices config-
ured. All access to the card will be done through the PCCar dEnabler Plug-
inDispatchTable of the card enabler - so your enabler can override the CIS
information that exists on the card.

Once the expert has finished the configuration process, it will load target
drivers for each of the devices that were found on the card. It will usea
driver matching algorithm that first looks at the "name" property of the
device RegEntry and the "compatible" property.

The devices on the card are now ready to use by the Finder and/or applica
tions.

notes:

1) if an error code is returned to the expert, an "AAPL ,pccard-error” prop-
erty will be added to the Card RegEntry. The value will be the first error
code returned to the expert.

2) hereis an example of the algorithm used to generate a card name for the
registry
Suppose a card hasa MANFID of 12000304

- separate fields 1200 and 0304

45 of 50

SystemSoft Confidential January 8, 1997

8.7.2

- byte swap them, yielding 0012 and 0403
- suppress leading zeros, yielding 12 and 403
- build aname string, "pccard12,403"

The Device I nitialization

At this point there exists a card node RegEntry and the card enabler is
loaded. The PC Card Family then starts to process the devices on the card.
The family determines the number of devices on the card by calling getDe-
viceCount.

The PC Card Family then gets information from the card to store in the
card entry by calling getFir stTupleProc looking for the following tuples:
CISTPL_VERS 1, CISTPL_FUNCID and CISTPL_FUNCE. Thereason
we need to do thisisthat many older cards “lose” their CIS once they are
configured. A call is aso made to getDeviceTypeProc. The information
gathered during this process is stored in the card RegEntry using the name
‘PCCardinfo’. This datais used when the finder calls PCCardGetCardinfo
and actually can be overridden by the getCar dl nfoProc enabler call.

At thispoint, theloaded enabler getscalled using theaddCar dPropertiescalls.
This allows the enabler to add any RegEntry fields to the card node. The default
behavior at this point isto do nothing,

The PC Card Family is finished with the card node and starts to process the
devices on the card. It first creates the device node calling getDeviceNameto
name the device and use the name in the name property. It determines the com-
patible field using the getFir st Tuple looking for the CISTPL_FUNCID and
CISTPL_FUNCE tuples, if they are not found then the card is assumed to be an
SRAM card. The device type name is determined by calling getDeviceType-
Name, the default call usesthe CISTPL_VERS 1 and CISTPL_FUNCID tuple
to determine the device type name.

The PC Card Family then calls addDeviceProperties so a custom enabler can
add properties to the device node in the name registry. The card is not config-
ured at this time because some cards may not allow access to the CI'S once con-
figured.

The next step isto configure the card. The PC Card Family calls configureDe-
viceto start the configuration process. The CEConfigureDevicecall in the Card
Enabler Support Library should be called first in a custom enabler that overrides
thiscall. CEConfigureDevice call looksfor the CISTPL_CONFIG tupletofill
inainternal configuration table. It then gets al of the
CISTPL_CFTABLE_ENTRYsusing getNextTuple. It will parse, store and sort
the CISTPL_CFTABLE_ENTRY entriesin priority order. The PC Card Family
will then attempt to configure the device/card using this information.

If the CISTPL_CONFIG tuple does not exist the device is considered unconfig-
urable. When a card is unconfigurable the support library call will attempt to

January 8, 1997

SystemSoft Confidential 46 of 50

8.7.3

8.74

8.75

8.8

881

8811

identify the device by calling getDeviceType. If the device typeis memory it
will attempt to determine the memory type and speed using the

CISTPL_DEVICE tuple. If thisfails the attempt to configure the card stops and
an error code is returned.

Card Ejection

During acard gjection all clientsfor the particular device, socket or card are
notified and have a chance to stop the card gjection if necessary, Note that if
acard ispaper clipped a client has no chanceto stop it. The PC Card Family
unloads the target driver for a card, powers the card down and gjects the
card. It then will call CleanUpProc to give the enabler achance to clean up
the name registry before unloading it.

Event Notification

A custom card enabler may override the handleEventProc. The han-
dleEventProc receives the PC Card eventsthat will be sent to the clients reg-
istered for a particular socket, card, or device. Thiswill allow a custom
enabler to filter events or perform tasks that may be required before a client
isnotified. It isimportant that a custom enabler calls CSNotifyClientsif it
wants to ensure that registered clients get notified.

Enabler Replacement

ThefinalizeDevice enabler plug in call is used during replacement which
will only occur with enablers that are in the system ROM.

Card Enabler Support Library

The Card Enabler Support Library is designed to support an enabler in card
detection, assist in managing other clients of the card, and help maintaining
the device information in the name registry and interrupt trees and to trans-
parently provide default function table behavior.

Card I dentification

One of the tasks delegated to the card enabler is card identification. This
task typically involves examining the Card Information Structure (CIS). To
assist the Card Enabler in this process, several Card | dentification subrou-
tines are provided in by the PC Card family.

CEGetCardType

This function provides a mechanism of identifying what type of PC Card is
inserted in aPC Card dot (e.g., 16-bit memory card, 16-bit 1/0 card,
Zoomed Video device, or CardBus card).

47 of 50

SystemSoft Confidential January 8, 1997

OSStatus CEGetCardType(

RegEntryRef

PCCardType*

Parameters
cardEntry
cardType

Return codes

NOErr

cardEntry,
cardType);

- RegEntry 1D of the card
- pointer to card type
Table C.6

- compare succeeded

8.8.1.2 CECompareCISTPL_VERS 1

PCCompareCISTPL_VERS 1 comparesthe CISTPL_VERS 1 tuple with
the specified parameters. All supplied parameters must match; you may pass

nil to ignore a parameter.

OSStatus CECompareCISTPL_VERS 1(

RegEntryRef
Byte

Byte

const char*
const char*
const char*
const char*

Parameters

cardEntry

nmaj or Ver si on
m nor Ver si on
manuf act ur er
pr oduct Name

i nfol

i nfo2

Return codes

NoErr

cardEntry,
majorVersion,
minorVersion,
manufacturer,
productName,
infol,

info2);

- RegEntry 1D of the card
- Magjor rev of card

- Minor rev of card

- manufacturer of card

- hame of product

- extrainfo

- extrainfo

- compare succeeded

kPCCCompareFailedErr - compare failed

January 8, 1997

SystemSoft Confidential

48 of 50

8.8.1.3 CECompareCISTPL_MANFID
PCCompareCISTPL_MANFID Comparesthe CISTPL_MANFID tuple

with the specified parameters. All supplied parameters must match; you
may pass nil to ignore a parameter.

OSStatus CECompareCISTPL_MANFID(

RegEntryRef devicelD,
Uint1l6 manufacturerCode,
Uint1l6 manufacturerinfo);
Parameters
devi cel D - PC Card's registry entry
manuf act ur er Code - manufacturer code bytes
manuf act urer i nfo - manufacturer info bytes
Return codes
noErr - compare succeeded

kPCCompareFailedErr - compare failed

8.8.1.4 CECompareMemory

PCCompareMemory compares a block of memory on a PC Card with a
block of user supplied data In the case of attribute memory, offset must be
even and every other byte is compared. This routine is intended to be used
asa'last resort’ for PC Cards which cannot be identified using standard
tuple processing techniques.

OSStatus CECompareMemory (
RegEntryRef devicelD,
PCCardMemoryType memType,
ByteCount offset,
ByteCount length,
Byte * dataToCompare);

Parameters

devi cel D - PC Card'sregistry entry

menfype - 1/0, Attribute, memory space

offset - Offset from beginning of address space

length - Length of datato compare

49 of 50 SystemSoft Confidential January 8, 1997

dataToCompare - Datato compare

Return codes

noErr - compare succeeded
kPCCompareFailedErr - compare failed

January 8, 1997 SystemSoft Confidential 50 of 50

8.9 Internal Card Services

8.9.1 Purpose

Internal Card Services supplies the lowest level programming interface to
the card serviceslibrary. The Internal Card Services programming inter-
faces require alogical socket number and a device number to identify a
device. This differs from the Card Services Family Programming Interface
which requires a RegEntryID to identify adevice. These routines are either
called directly or inderectly viaacard enabler driver by the PC CardFamily
Programming Interface. Client programs should not call the internal card
service API directly.

8.9.2 Client Services

The client servicesinterface consists of routines for client management and
event notification. Clients consist of target drivers or applications that
reguire event notification for a particular device or socket.

8.9.2.1 CSGetCardServices nfo
The GetCardServicesinfo control cal returns the current version informa-
tion. The Card Services PC Card Standard compliance level for this specifi-
cation is 0x0501, see page 59 of PC Card Socket Services specification,
dated November 95.

OSStatus CSGetCar dServicesinfo (

ItemCount * socketCount,
Uint32* compliancelevel,
Uint32* Version)
Parameters:
— socket Count - Current Number of Sockets
~ conpl i ancelLevel - Binary Coded Decimal value of the Card
Services PCCard Standard Compliance Level
~ version - Binary Coded Decimal value of the Card
Services implementation’ s version number
Return Codes:
noErr - Success

8.9.2.2 CSRegisterClient
CSRegisterClient is provided to allow target drivers to register interest in
PC Card status changes. When a PC Card status change occurs, the function
providedincl i ent Cal | back isinvoked.

54 of 70

SystemSoft Confidential January 8, 1997

NOTE: Unlike the x86/DOS hinding, clients are registered for eventsin a
specific socket, rather than all status changesin the system. Passing kCSNo-
tifyAllSockets as the socket of interest will register for all sockets.

OSStatus CSRegister Client (
PCCardSocket vSocket,
PCCardEventMask interestingEvents,
PCCardEventHandler clientCallback,
void * clientParam,
PCCardClientID * registeredClient)

Parameters:
— vSocket - which socket, or kCSNotifyAllSockets for all
sockets.
— interestingEvents - Bit mask which eventsareinteresting
TableC.1
- clientCall back - Client supplied event handling function
- cl i ent Param - Client supplied parameter passed
to clientCallback
~ registereddient -“ClientHandle”
Return Codes:
NoErr - if socket and function numbers are valid
kBadSocketErr - if the socket isinvalid
kBadDeviceErr - if the device number isinvalid

8.9.2.3 CSDeregisterClient
CSDeregisterClient is provided to unregister interest in PC Card status
changes.

OSStatus CSDer egister Client(PCCardClientI D clientI D)

Parameters:
—clientID - “ClientHandle”

Return Codes:
noErr - if socket and function numbers are valid
kBadClientIl DErr -if theclient ID isinvalid

8.9.24 CSSetEventMask
SetEventMask allows the event mask to be changed

OSStatus CSSetEventM ask (
PCCardClientID clientID,
PCCardEventMask interestingEvents)

Parameters:
—clientlD -“ClientHandle’

January 8, 1997

SystemSoft Confidential 55 of 70

— interestingEvents -Bit mask which events are interesting

TableC.1
Return Codes:
NoErr - Success
kBadClientl DErr -if theclient ID isinvalid

8.9.25 CSGetEventMask

GetEventMask allows the client to check the event mask.

OSStatus CSGetEventM ask (
PCCardClientID clientID,
PCCardEventMask * interestingEvents)

Parameters:
- clientlD - “ClientHandle”
— interestingEvents - Bit mask which eventsareinteresting
TableC.1

Return Codes:
NoErr -Success
kBadClientl DErr -if theclient ID isinvalid

8.9.2.6 CSRegister Timer
CSRegisterTimer is provided to allow target drivers to register atimer with
card servicesto be notified via the callback registered in the registerClient
call. A valid client handle must be first obtained from calling register client.

OSStatus CSRegister Timer (
PCCardClientID registeredClientl D,
PCCardTimerID* IpNewTimerID,

long delay)
Parameters:
s registerdientiD -“ClientHandle” from CSRegisterClient
call.
— | pNewTi mer | D - “TimerClientHandle”
- del ay - number of milliseconds to expire before the
registered callback is called.
Return Codes:
noErr - if socket and function numbers are valid
paramErr - if the parameters are not valid
kBadSocketErr - if the socket number isinvalid

56 of 70 SystemSoft Confidential January 8, 1997

8.9.2.7 CSDeregister Timer
CSDeregisterTimeris provided to unregister timer.

OSStatus CSDer egister Client(PCCardTimerI D clientI D)

Parameters:
—clientID - “TimerClientHandle”

Return Codes:
noErr - if socket and function numbers are valid
kBadClientIl DErr -if theclient ID isinvalid

8.9.2.8 CSNatifyClients

CSNotifyClientswill look through all of the registered clients and will exe-
cute the client callback routines for al clients which are registered for this
socket and which have an event mask that includes the event.

If any client callback returns anything other than noErr, no further client call-
backs will be executed and CSNotifyClients will return that error code,

OSStatus CSNotifyClients (
PCCardSocket vSocket,
PCCardEvent * theEvent)

Parameters:
— vSocket - the virtual socket
— t heEvent - the Event bit(s) Table C.1

Return Codes:
noErr - if al client callbacks returned noErr
(or there were no clients registered)

8.9.2.9 CSGetStatus
The GetStatus control call returns the current status of a PC Card.

OSStatus CSGet Status (
PCCardSocket vSocket,
PCCardSocketStatus * currentState,
PCCardSocketStatus * changedState,
PCCardVoltage * Vce,
PCCardVoltage * Vpp)
Parameters:
- socket - Virtual socket number
— currentState - Current state of the socket
Table C.2
— changedSt at e - delta bits of the socket since last cleared
TableC.2

January 8, 1997

SystemSoft Confidential 57 of 70

~ Vcc - Vcc setting of the socket

— Vpp - Vpp setting of the socket

Return Codes:
noErr - if socket and function numbers are valid
kBadSocketErr - if the socket isinvalid

8.9.3 Window Services I nterface

8.9.3.1 CSRequestWindow
The RequestWindow call assigns arange of system address spacetoa PC
Card of the specified Device.

When addressing the system memory range, the windowSpeed parameter is
used as the requested access speed. The windowOffset parameter is the off-
set in the PC Card space. WindowOffset is adjusted by CSRequestWindow,
if the requested offset is not on an alignment boundary. The windowBase is
the host memory space and is returned to the calling program. The window-
Size parameter is adjusted to the next largest alignment requirement, if
needed. The memory window requested isimmediately allocated and
enabled, if no error isreturned. The windowAdttributes parameter must state
that a memory window is being requested.

When an 10 address range is requested, the 10 range is only allocated and
reserved, not enabled. The RequestConfiguration control call must be invoked
to enable access to the | O range. The windowSpeed parameter is used to pass
the number of 1/0 decode lines. The windowBase is the host 1/0 space and is
returned to the calling program. The windowSize parameter is adjusted to the
next largest alignment requirement, if needed. The windowA ttributes parameter
must state that an 1/0 window is being requested.

The requestedWindow parameter returns the window handle that is used in sub-
sequent window calls. To release amemory window, call CSReleaseWindow. To
release an 1/0 window the CSReleaseConfiguration call must be called. This
ensures that the 1/0 windows are released and the socket interface is corrected,
if needed.

OSStatus CSRequestWindow(

PCCardSocket vSocket,

Ulint32 device,
PCCardWindowAttributes windowAttributes,
PCCardA ccessSpeed windowSpeed,
LogicalAddress * windowBase,
PCCardWindowSize* windowSize,
PCCardWindowOffset * windowOffset,
PCCardWindowID * requestedWindow)

58 of 70 SystemSoft Confidential January 8, 1997

Parameters:

- socket - Virtual socket number
- devi ce - PC Card device number
~ windowAttributes -WindowState bitmask Table C.3
- wi ndowSpeed - Memory access speed or ioDecodel ines
— W ndowBase - Window base address in bytes
o Wi ndowSi ze - Minimum window size in bytes
(input 16-bit only)
—windowOffset - PC Card memory offset

— request edW ndow - Window |dentifier

Return Codes:

noErr - if al parameters are valid and request can be
serviced

kBadDeviceErr - if the device number isinvalid

kBadSocketErr - if the socket isinvalid

kBadSizeErr - if the requested window size cannot be
accommodated

kBadSpeedErr - if the requested access speed isinvalid or
cannot be accommodated

kBadAttributeErr - if any attributes are invalid, conflicting,

or cannot be accommodated

8.9.3.2 CSReeaseWindow
The ReleaseWindow call disables the memory window assigned to the
adapter and deall ocates the host memory space previously assigned to a PC
Card by the RequestWindow control call. Thiscall only releases memory
windows, not 1/0O windows.

OSStatus CSReleaseWindow(

PCCardWindowlID windowToRelease)
Parameters:
— Wi ndowToRel ease - Window Handle
Return Codes:
noErr - if window handleisvalid
kBadHandleErr - if window handleisinvalid

kConfigurationLockedErr - if the PC Card function is already configured
(10 windows only)

8.9.3.3 CSModifyWindow [16-bit PC Card Only]
The ModifyWindow control call allows the Access Speed and/or Card Off-
set of a 16-bit PC Card memory window to be modified.

OSStatus CSM odifyWindow(

January 8, 1997

SystemSoft Confidential 59 of 70

PCCardWindow!|D windowToM o odify,
PCCardWindowAttributes windowAttributes,
PCCardA ccessSpeed memory Speed,
PCCardWindowOffset* windowOffset)

Parameters:
— Wi ndowToModi fy - Window Identifier
— W ndowAt t ri but es - WindowState bitmask
Table C.3
— menor ySpeed - Requested memory access speed
— wi ndow(X f set - PC Card memory offset
Return Codes:
noErr - if al parameters are valid and request can be serviced

kBadHandleErr - if window handleisinvalid
kBadAttributeErr - if any attributes areinvalid
kBadSpeedErr - if the requested access speed isinvalid or cannot be

accommodated
kBadOffsetErr - if the card offset isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.4 Configuration Services

8.9.41 CSReqguestConfiguration
The ReguestConfiguration control call configures the requested device on
the PC Card. This call also sets up the socket interface to be a either an 1/0
or memory type. Thisis controlled by the socketlnterface parameter. The
configRegPresentMask states which configRegValues are present. The con-
figRegValues relates to the Function Configuration Register(s) on the PC
Card, see electrical specification.

All 10 windows previously assigned by RequestWindow are enabled for access.
Any DMA channel previously assigned by RequestDMA is enabled if so speci-
fied in the attributes field.

OSStatus CSRequestConfiguration (

PCCardSocket vSocket,

UInt32 device,
PCCardConfigOptions configOptions,
PCCardinterfaceType socketlnterface,
PCCardinterfacel D custominterface,
PCCardVoltage vCC,

PCCardVoltage vpp,

PCCardIRQ IRQ,

PCCardDMA DMA,

Uint32 configRegBaseAddress;

PCCardConfigPresentMask configRegPresentMask,
PCCardFunctionConfigReg * configRegV alues)

60 of 70 SystemSoft Confidential January 8, 1997

Parameters:

— vSocket - Virtual socket number

- devi ce - PC Card device number

- configAttributes - Placedinfunction config option register
TableC.4

- socketInterface -Interfacetype (1/0, Memory, custom)
Table C.5

- custom nterface - Custom interface type (zoom Video)

- vce - Vcc voltage in tenths of volts

- vpp - Vpp voltage in tenths of volts

~ IRQ — kIRQEnable signifies that PC Card interrupts
are enabled.

~ DvA - reserved for future use, not applicable to the
Mac

— confi gRegBaseAddr ess - Base address for configuration

— confi gRegPr esent Mask - 16-bit Card config register bitmap

- confi gRegVal ues - 16-bit Card config register values

Return Codes:
noErr - if al parameters are valid and request can be
serviced

kBadDeviceErr - if the device number isinvalid

kBadSocketErr - if the socket isinvalid

kBadAttributeErr - if any attributes are invalid, conflicting, or

cannot be accommodated

kBadTypeErr - if the interface typeisinvalid

kBadV ccErr - if Vccisinvalid or unsupported

kBadV ppErr - if Vppisinvalid or unsupported

kBadArgsErr - if the Custom ID isinvalid

kConfigurationLockedErr - if the PC Card function is aready configured

kNoCardErr - if no PC Card is present in the socket

8.9.4.2 CSReeaseConfiguration
The ReleaseConfiguration control call deconfigures the device on the PC
Card. If no I/O configurations exist on the PC Card, the socket interfaceis
placed back into amemory interface.

All 10O windows previously assigned by RequestWindow are disabled. Any
DMA channel previously assigned by RequestDMA and enabled by
RequestConfiguration or ModifyConfiguration is disabled.

OSStatus CSReleaseConfiguration (

PCCardSocket vSocket,
UInt32 device)
Parameters:
— vSocket - Virtual socket number
- device - PC Card device number

January 8, 1997

SystemSoft Confidential 61 of 70

Return Codes:

noErr - if the socket and function numbers are valid

and there is a configuration to release
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid

8.9.4.3 CSMadifyConfiguration

The ModifyConfiguration control call allows aPC Card configuration to be
maodified without having to issue RequestConfiguration and ReleaseConfig-
uration calls.

OSStatus CSM odifyConfigur ation(

PCCardSocket vSocket,
UInt32 device,
PCCardConfigOptions modifyAttributes,
PCCardIRQ IRQ,
PCCardDMA DMA,
PCCardVoltage vpp)
Parameters:
- vSocket - Virtual socket number
- devi ce - PC Card device number
- modi fyAttributes - Modify configuration attributes
TableC.4
~ IRQ - kIRQEnable signifies that PC Card interrupts
are enabled.
~ DVA - reserved for future use, not applicable to the
Mac
- vpp - Vpp voltage in tenths of volts
Return Codes:
noErr - if all parameters are valid and request can be
serviced
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kBadAttributeErr - if any attributes are invalid, conflicting, or
cannot be accommodated
kBadV ppErr - if Vpp isinvalid or unsupported
kNoCardErr - if no PC Card is present in the socket

8.9.4.4 CSReadConfigRegister

The ReadConfigRegister control call alows the PC Card device configura-
tion registers to be read. The whichRegister parameter selects the function
configuration register to be read.

OSStatus CSReadConfigurationRegister (

62 of 70

SystemSoft Confidential January 8, 1997

PCCardSocket vSocket,

Uint32 device,
PCCardConfigPresentMask whichRegister,
Uint32 configRegBaseA ddress,
Uint8 * value)
Parameters:
- vSocket - Virtual socket number
- devi ce - PC Card device number
— whi chRegi st er - FCR register index
- configRegBaseAddress- FCR base address
~ val ue - Vaueread from FCR
Return Codes:
noErr - if al parameters are valid and request can be
serviced
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kBadArgsErr - if the register type or memory register offset
isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.45 CSWriteConfigRegister

The WriteConfigRegister control call allows the PC Card device configura-
tion registers to be written. The whichRegister parameter selects the func-
tion configuration register to be read.

OSStatus CSWriteConfigurationRegister (

PCCardSocket vSocket,
Uint32 device,
PCCardConfigPresentMask whichRegister,
Uint32 configRegBaseAddress,
Uint8 value)
Parameters:
- vSocket - Virtual socket number
- devi ce - PC Card device number
— whi chRegi st er - FCR register index
- configRegBaseAddress- FCR base address
- val ue - Vaue written to FCR
Return Codes:
noErr - if all parameters are valid and request can be
serviced
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kBadArgsErr - if the register type or memory register offset
January 8, 1997 SystemSoft Confidential 63 of 70

isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.4.6 CSResetFunction
The ResetFunction control call resets the specified function. Clients are
notified if the function reset can be preformed. If any one client rejects the
reset request the reset will not occur. The client requesting the reset function
must save the device's configuration or request a new configuration. Device
notification is performed when the reset is compl ete.

OSStatus CSResetFunction (

PCCardSocket vSocket,
Uint32 device)
Parameters
— vSocket - Virtual socket number
- devi ce - PC Card device number
Return Codes:
noErr - if al parameters are valid and request can be
serviced
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kInUseErr - if the PC Card function is configured
kNoCardErr - if no PC Card is present in the socket

8.9.5 CIS ServicesInterface

8.9.5.1 CSvalidateClS
The CSValidateCl S control call validatesthe Card Information Structure for
the specified Socket and Device. It returns the number of valid tuple chains
in the device CIS. If achecksum tupleis present it will validate the check-

sum.
OSStatus CSValidateCl §(
PCCardSocket vSocket,
UlInt32 device,
UInt32 * cisChainCount)
Parameters:
- vSocket - Virtual socket number
- device - PC Card device number
«~ ci sChai nCount - Number of valid tuple chainslocated
inCIS
Return Codes:
noErr - if al parameters are valid and request can
be serviced
kBadDeviceErr - if the device number isinvalid

64 of 70

SystemSoft Confidential January 8, 1997

kBadSocketErr
kNoCardErr

8.9.5.2 CSGetDeviceCount

- if the socket isinvalid
- if no PC Card is present in the socket

The CSGetDeviceCount control call examines the Card Information Struc-
ture for the number of devices present on the PC Card. It returns the number
of devicesin deviceCount.

OSStatus CSGetDeviceCount(

PCCardSocket

Uint32 *

Parameters
— vSocket
« devi ceCount

vSocket,
deviceCount)

- Virtual socket number
- Number of devices on PC Card

Return Codes.
noErr - if al parameters are valid and request can
be serviced
kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.5.3 CSGetFirstTuple

The CSGetFirstTuple control call allows the tuples of the Card Information
Structure to be read. To retrieve a specific tuple, set desiredTuple to the spe-
cific tuple code. To read thefirst tuplein the CIS, set the desiredTuple to
OFFh. If no tuple dataiis required, tupleBufferSize must be set to zero. If
tupleBufferSize is greater then zero, the tuple data will be placed into the
tupleDataBuffer. The length of the tuple data returned is passed back in the
tupleBufferSize. This call always initializes the tuplelterator to the begin-
ning of the CIS before searching for tuples. The tuplelterator must be pre-

served for subsequent tuple reads.

OSStatus CSGetFirstTuple(
Socket vSocket,
Uint32 device,
PCCardTuplelteratorPtr tuplelterator,
Byte desiredTuple,
void * tupleData,
ByteCount * tupleBufferSize,
Byte * foundTuple)

Parameters
— vSUI nt 32ocket - Virtual socket number

- PC Card device number

- Card Services Internal Use Only

- First occurrence of specific tuple code
OR FFh for thefirst tuplein CIS

— device
< tuplelterator
— desiredTupl e

January 8, 1997 SystemSoft Confidential 65 of 70

— tupl eDat a - Pointer to tuple data buffer
o tupleBufferSize - Lengthof Tupledatabuffer (in bytes)
and length returned

~ foundTupl e - tuple code found in the CIS

Return Codes:
noErr - if al parameters are valid and request can

be serviced

kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kNoM oreltemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

8.9.54 CSGetNextTuple
The CSGetNextTuple control call alowsthe tuples of the Card Information
Structure to be read. To retrieve a specific tuple, set desiredTuple to the spe-
cific tuple code. To read the next tuplein the CIS, set the desiredTupleto
OFFh. If no tuple dataiis required, tupleBufferSize must be set to zero. If
tupleBufferSize is greater then zero, the tuple datawill be placed into the
tupleDataBuffer. The length of the tuple data returned is passed back in the
tupleBufferSize. The next tuple examined is based on the CIS pointer that is
stored in the tuplelterator. The CIS pointer is incremented to the next tuple,
after a successful read.

OSStatus CSGetNextTuple(
PCCardTuplelteratorPtr tuplelterator,

Byte desiredTuple,
void * tupleData,
ByteCount * tupleBufferSize,
Byte * foundTuple)
Parameters:
o tuplelterator - Card Services Internal Use Only
— desiredTupl e - Next occurrence of specific tuple code
OR FFh for thefirst tuplein CIS
— tupl eDat a - Pointer to tuple data buffer

o tupleBufferSize - Lengthof Tupledatabuffer (in bytes)
and length returned

~ foundTupl e - tuple code found in the CIS

Return codes
noErr - if al parameters are valid and request can

be serviced

kBadDeviceErr - if the device number isinvalid
kBadSocketErr - if the socket isinvalid
kNoM oreltemsErr - if specified tuple was not found
kNoCardErr - if no PC Card is present in the socket

66 of 70 SystemSoft Confidential January 8, 1997

8.9.6 Miscelaneous Services

8.9.6.1 CSGetDeviceCount
The CSGetDeviceCount call returns the number if devices found on a card.

OSStatus CSGetDeviceCount(
PCCardSocket vSocket,
Uint32 * deviceCount)
Parameters:
— vSocket - virtual socket number
— deviceCount - number of devices on the card in the socket
Return codes
noErr - if al parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.2 CSGetSocketDeviceFromlterator

The CSGetSocketDeviceFromlterator call returns the number if devices
found on a card.

OSStatus CSGet SocketDeviceFromlterator (

PCCardSocket * vSocket,
Ulint32 * device,
PCCardTuplelteratorPtr tuplelterator)
Parameters:
« vSocket - virtual socket number
— device - device number
- tuplelterator - tuple iterator
Return codes
noErr - if al parameters are valid and request can
be serviced

8.9.6.3 CSCardEject
The CSCardEject call gectsthe card in the particular socket.

OSStatus CSCardEj ect(
PCCardSocket * vSocket)

Parameters:
— vSocket - virtual socket number

January 8, 1997

SystemSoft Confidential 67 of 70

Return codes

noErr - if al parameters are valid and request can
be serviced

kBadSocketErr - if the socket isinvalid

kNoCardErr - if no PC Card is present in the socket

8.9.6.4 CSGetCardType
The CSGetCardType call returns the card type.

OSStatus CSGetCardType(
PCCardSocket vSocket,
PCCardHardwareType * cardType)
Parameters:
- vSocket - virtual socket number
~ cardType - card type, cardBus or 16bit card
Table C.9
Return codes
noErr - if al parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.5 CSGetlnterruptSetM ember

The CSGetInterruptSetMember calls socket services to get the Interrupt
Set Member and pass it back to the calling function.

OSStatus CSGetl nter ruptSetM ember (

PCCardSocket vSocket,
InterruptSetM ember * | STMember)
Parameters:
- vSocket - virtual socket number
~ ISTMember - ISTMember number of socket services
Return codes
noErr - if all parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

68 of 70 SystemSoft Confidential January 8, 1997

8.9.6.6 CSSetlInterrupt

The CSSetInterrupt calls socket services to enable the functional inter-
rupts. Thisis called when the target drivert calls the enablefunction routine
that PcCard 3.0 overrides so that Pc Card 3.0 knows when to route func-
tiona interrupts.

OSStatus CSSetl nterrupt(

PCCardSocket vSocket,
Boolean IRQENable)
Parameters:
- vSocket - virtual socket number
- IRQEnable - Boolean to turn functional interrupts off and on.
Return codes
noErr - if al parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.7 CSSetRinglndicate
The CSSetRinglIndicate calls socket services to enableringl ndicate func-
tioanlalty of amodem card.

OSStatus CSSetRingl ndicate(

PCCardSocket vSocket,
Boolean setRinglndicate)
Parameters:
- vSocket - virtual socket number
- setRinglndicate - Boolean to turn ring indicate off and on.
Return codes
noErr - if all parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.8 CSPower Management

The CSPowerManagement call is used by the system whne the system is
powered down during sleep

OSStatus CSPower M anagement (

PCCardSocket vSocket,
PCCardPowerOptions powerM anagementOptions)
Parameters:
— vSocket - virtual socket number
January 8, 1997 SystemSoft Confidential 69 of 70

- powerManagementOptions - aflag that tell sthe system what power state
to place the device. The supported power
states are kPCCardPowerOff,
kPCCardL owPower, kPCCardPowerOn.

Return codes
noErr - if al parameters are valid and request can
be serviced
kBadSocketErr - if the socket isinvalid
kNoCardErr - if no PC Card is present in the socket

8.9.6.9 CSReportStatusChange

The CSReportStatusChangeis called by socket servicesto notify the
expert of a status change interrupt.

OSStatus CSReportStatusChange(

const RegEntryRef * adapterRef,
PCCardSocket whichSocket,
PCCardSCEvents statusChange,
PCCardSocketStatus socketStatus)
Parameters:
— adapt er Ref - RegEntryRef of the adapter
reporting the status change.
- whichSocket - The socket number that caused the
status change interrupt.
- statusChange - status change interrupt that occured.
- socketStatus - The socket status at the time of calling.
Return codes
noErr - if al parameters are valid and request can
be serviced
kinvalidNodeErr - if the RegEntryRef isnot valid
paramErr - if aparameter isnot valid
kPostCardEventErr - if an error occured during posting the event to

the PCCard Expert.

1. At the present time KPCCardL owPower is not supported

70 of 70

SystemSoft Confidential January 8, 1997

8.10 Socket Services Plug-in Interface

The Socket Service interface is a statel ess device driver that is responsible
for accessing the PC Card Hardware. It consists of a Socket Service Plug-in
interface and a hardware abstraction layer that handles common hardware
functions. Thiswill allow Socket Service Plug-ins to share the common
hardware abstraction DLL while allowing machine specific differences to
be handled in the plug-in.

8.10.1 Apple Specific Plug-in Interface

The plug-in architecture defined by the Mac OS 8 architecture specification
defines the following standard interface for al plug-ins.

8.10.1.1 _SSvalidateHardware
The _SSvalidateHardware call is a standard Apple family programming
interface to allow family plug-ins a chance to ensure that the hardwareis
really compatible with the driver.

OSStatus _SSValidateHar dwar e(const RegEntryRef * devicel D)

Parameters

- devicel D - RegEntry 1D for the socket hardware
Return codes

noErr - if al parametersare valid

-1 - Valid socket Hardware is not present

8.10.1.2 _SSinitialize
The _SSnitialize cal is used by the family programming interface to the
socket service driver globals and install it'sinterrupts. If _SSnitialize is
called with replacingOldDriver equal to trueit is assumed that the
driver is being replaced and has saved data to the name registry to
restore the state of the driver so that the new driver can restore the

data.
OSStatus _SSl nitialize(
RegEntryl DPtr devicelD,
Boolean replacingOldDriver);

January 8, 1997 SystemSoft Confidential 66 of 98

Parameters

- devicel D - RegEntry 1D for the socket hardware
— repl aci ngd dDri ver - boolean signifying if thisis a replacement
operation.

Return codes

noErr - if al parametersare valid
kGeneralFailurekrr-

8.10.1.3 _SSSuspend
The _SSSuspend call will place the socket adapter into low power mode.

OSStatus _SSSuspend(
const RegEntryRef * devicel D);

Parameters
- devicel D - RegEntry 1D for the socket hardware

Return codes
noErr - if al parameters are valid

8.10.1.4 _SSResume

The SSResume call will power the socket adapter back up after a
_ SSSuspend.

OSStatus _SSResume(
const RegEntryRef *devicel D)

Parameters
- devicel D - RegEntry 1D for the socket hardware

Return codes
noErr - if al parametersare valid

8.10.1.5 _SSFinalize
The _SSFinalize call will place the socket service adapter into a shutdown
state. _SSFinalize when called with replacingOldDriver equal to true

will save al the necessary datato the name registry so that a replace-
ment driver take it’s place.

OSStatus _SSFinalize(
RegEntryl DPtr devicelD,
Boolean replacingOldDriver);

67 of 98

SystemSoft Confidential January 8, 1997

Parameters

- devicel D - RegEntry 1D for the socket hardware
— repl aci ngd dDri ver - boolean signifying if thisis a replacement
operation.

Return codes

noErr - if al parametersare valid
kGeneralFailurekrr-

8.10.2 Adapter Specific Interface

8.10.2.1 _SSInquireAdapter

The SSnquireAdapter control call returns the hardware capabilities of the
adapter.

OSStatus _SSInquireAdapter (
PCCardSocket * socket,
PCCardWindow* window,
PCCardWindow * bridgeWindow,
PCCardAdapterCapabilities * CMask);

Parameters
—socket - number of sockets
—wi ndows - number of windows
—bri dgeW ndow - number of bridge windows
~ CMVask - bit-mask used to return the capabilities of the
adapter
Table C.7

Return codes
noErr - if adapter isvalid
kBadAdapterErr - if adapter isinvalid

8.10.3 Socket Specific Interface

8.10.3.1 _SSInquireSocket

The _SSnquireSocket control call returns the capabilities of a socket.

January 8, 1997

SystemSoft Confidential 68 of 98

The card Events bit-mask indicates the card events that can be generated by
the socket.

OSStatus _SSInquireSocket (
PCCardSocket socket,
PCCardWindow * window,
PCCardSocketStatus * socketStatus,
PCCardSCEvents* cardEvents);

Parameters
—socket - socket number (0 based)
—Ww ndow - number of windows
—socket St at us - bit-mask of supported status bits Table C.2
—cardEvents - bit-mask of supported card events (these can

trigger status change events) Table C.8
Return codes

noErr - if socket isvalid
kBadSocketErr - if socket isinvalid

8.10.3.2 _SSGetSocket

The _SSGetSocket control call returns the current parameter settings of a

socket.

OSStatus _ SSGet Socket (
PCCardSocket socket,
PCCardVoltage * VCC,
PCCardVoltage * vpp,
PCCardVoltage * VS,
PCCardinterfaceType * socketl F,
PCCardCustominterfacel D * customlFID,
PCCardSocketStatus * socketStatus,
PCCardSCEvents* cardEvents,
PCCardIRQ * IRQ,
PCCardDMA * DMA);

Parameters

— socket - socket number (0 based)

~ vce - supply voltage

— vpp - programming voltage

PERVES - voltage sense

~ socket | F - iolF, memorylF, customl F

TableC.5

~ custom FID - ZoomVideolD, etc...

— socket St at us - Status of the socket Table C.2

~ cardEvents — bit-mask of enabled card events

69 of 98 SystemSoft Confidential January 8, 1997

TableC.8

~ IRQ — kIRQEnable signifies that PC Card interrupts
are enabled.

~ DvA — reserved for future use, not applicable to the
Mac

Return codes
noErr - if socket isvalid
kBadSocketErr - if socket isinvalid

8.10.3.3 _SSSetSocket

The _SSSetSocket control call programs socket parameters. The driver
avoids reprogramming a parameter when the new val ue matches the current
Setting.

The cardEvents parameter specifies which card events are enabled.

A vcc value of zero isinterpreted as a request to remove (power down) the
socket; the driver removes power from both the vce and vpp pins.

Note: The Socket Services Plug-in will always enable the Ringlndicate
capabilities of the socket. It isthe responsibility of the Power Management
Utility to enable/disable it from it’s hardware.

OSStatus _SSSet Sock et (
PCCardSocket socket,
PCCardVoltage Vcc,
PCCardVoltage Vpp,
PCCardinterfaceType socketlF,
PCCardCustomlInterfacel D customlFID,
PCCardSCEvents cardEvents,

PCCardIRQ * IRQ,
PCCardDMA * DMA);
Parameters
- socket - socket number (0 based)
- Vcce - supply voltage
- Vpp - programming voltage
— socket | F - iolF, memorylF, customlF
TableC.5
— custom FID - ZoomVideolD, etc...
- cardEvents - bit-mask of enabled card events
Table C.8
- IRQ — kIRQEnable signifies that PC Card interrupts
are enabled.
- DVA - reserved for future use, not applicable to the

January 8, 1997

SystemSoft Confidential 70 of 98

Mac

Return codes
noErr - if socket isvalid
kBadSocketErr - if socket isinvalid
kCardBusCardErr - if the Card isa CardBus card
(only until CardBus is implemented)

kBadTypeErr - if IFType not supported
kBadV ccErr -if Vcclevel isinvalid
kBadV ppErr -if Vppl or Vpp2 level isinvalid

8.10.3.4 _SSResetSocket

The _SSResetSocket control call resets the PC CARD hardware.
OSStatus _ SSReset Socket (PCCardSocket socket);

Parameters:
- socket - socket number (0 based)

Return codes
noErr - if socket isvalid
kBadSocketErr - if socket isinvalid
kCardBusCardEtr - if the Card isa CardBus card (only until CardBusis
implemented)

8.10.3.5 _SSGetStatus

The _SSGetCardStatus control call returns a bit-mask of the current status
associated with a PC CARD.

OSStatus _ SSGetStatus(
PCCardSocket socket,
PCCardSocketStatus * socketStatus);

Parameters
- socket - socket number (0 based)
—socket St at us - socket status bit-mask Table C.2

Return codes
noErr - if socket isvalid
kBadSocketErr - if socket isinvalid

71 of 98 SystemSoft Confidential January 8, 1997

8.10.4 Window Services Specific Interface

8.10.4.1 _SSInquireWindow

The _SS nquirelindow control call returns the hardware capabilities of a
window. WindowType is an indication of the mapping capabilities of the
window. Datawidth is abit-mask representing the data sizing capabilities of
the window. The window number is always an absolute window.

OSStatus _SSI nquirewWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
PCCardWindowSize *windowSize,
PCCardWindowAlign *windowAlign);

Parameters

~ socket - socket number (0 based)

- W ndow - window number (0 based)

— W ndowSt at e - Type:l/O, common/attribute
- width:8,16,32 bits
- enabled:window may be disabled and enabled
without reprogramming it’s characteristics
write protect: window supports write protect
TableC.3

— W ndowSi ze - maximum window size (bytes)

— W ndowAl i gn - window alignment boundary

Return codes
noErr - if socket isvalid
kBadWindowErr - if window isinvalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.2 _SSGetWindow

The _SSGet\Window control call returns the current parameter settings of a
window. The window number is always an absolute window.

OSStatus _ SSGetWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
LogicalAddress * startAddress,
PCCardWindowSize *windowSize,
PCCardWindowOffset *windowOffset,
PCCardA ccessSpeed * memSpeed);

Parameters

January 8, 1997 SystemSoft Confidential 72 of 98

— socket - socket number (0 based)

- W ndow - window number (O based)
— W ndowSt at e - Type:l/O, common/attribute
width:8,16,32 bits

enabled:enabled state of the window
write protect: write protect state of the window

TableC.3
~ startAddress - host base logical address
— W ndowSi ze - window size (bytes)
— wi ndowdX f set - PC Card window offset address
~ menSpeed - memory access speed

Return codes
noErr - if socket isvalid
kBadWindowErr - if window isinvalid
kCardBusCardErr - if aCardBus PC Card is present

8.10.4.3 _SSSetWindow

The _SSSetWindow control call programs a windows parameters.

If the adapter does not support the requested access speed, the driver selects
the fastest access speed that does not exceed the requested speed.

OSStatus _ SSSetWindow(
PCCardSocket socket,
PCCardWindow window,
PCCardWindowState windowState,
LogicalAddress startAddress,
PCCardWindowSize windowSize,
PCCardWindowOffset windowOffset,
PCCardAccessSpeed memSpeed);

Parameters

— socket - socket number (0 based)

- W ndow - window number (0 based)

— W ndowSt at e - Type:l/O, common/attribute
width:8,16,32 bits
enabled:enabled state of the window
write protect: write protect state of the window
TableC.3

~ start Addr ess - host base logical address

- W ndowSi ze - window size (bytes)

— W ndow(X f set - PC Card window offset address

- menSpeed - memory access speed

Return codes
noErr - if al parametersare valid
kBadSocketErr - if socket isinvalid for window

73 of 98 SystemSoft Confidential January 8, 1997

kBadWindowErr - if window isinvalid
kBadAttributeErr - if requested State does not match the
windows capabilities
kBadBaseErr - if the start addressis not valid
kBadSizeErr -if szeisinvalid
kBadSpeedErr - if memSpeed isinvalid
kBadOffsetErr - If offset addressis bad
kCardBusCardErr - if a CardBus PC Card is present

8.10.4.4 _SSGetWindowOffset

The _SSGetWindowOffset control call returns the current configuration of
the memory window by the input parameters. The window number is
aways an absolute window.

OSStatus _SSGetWindowOffset(
PCCardSocket socket,
PCCardwWindow window,
PCCardWindowState * windowState,
PCCardWindowOffset * windowOffset);

Parameters
— socket - socket number (0 based)
- W ndow - window number (O based)
— W ndowSt at e - state of the window, write-protected,
enabled etc... TableC.3
— wi ndowX f set - PC CARD window offset address

Return codes
noErr - if al parametersare valid
kBadSocketErr - if socket isinvalid for window
kBadWindowErr - if window isinvalid
kCardBusCardEtrr - if a CardBus PC Card is present

8.104.5 _SSSetWindowOffset

The _SSSetWindowOffset control call configures the page specified by the
input parameters. It isonly valid for memory windows. Thiswill be unsup-
ported for CardBus PC Cards. The window number is always an absolute
window.

OSStatus _SSSetWindowOffset(
PCCardSocket socket,
PCCardWindow window,
PCCardWindowState windowState,
PCCardWindowOffset windowOffset);

Parameters

January 8, 1997 SystemSoft Confidential 74 of 98

- socket - socket number (0 based)

- W ndow - window number (O based)

— W ndowSt at e - state of the window, write-protected,
enabled etc... Table C.3

— wi ndow(X f set - PC CARD window offset address

Return codes
noErr - if al parametersare valid
kBadSocketErr - if socket isinvalid for window
kBadWindowErr - if window isinvalid
kBadAttributeErr - if stateisinvalid
kBadOffsetErr - if offset isinvalid
kCardBusCardErr - if a CardBus PC Card is present

8.10.5 CardBus Specific calls

The following calls are specific to CardBus controllers and are not required
for PC Card 16 controllers.

8.10.5.1 _SSWriteConfigurationSpace

The _SSWriteConfigurationSpace call allows card services to write to a CardBus
card’s configuration space.

OSStatus _SSwriteConfigur ationSpace(
const RegEntryRef* devicel D,

PCCardSocket socket,

Uint32 device,

Uint32 offset,

void* data,

Uint32 size);

Parameters

- devicel D - Deviceidentifier
- socket - socket number (O based)
- devi ce - device number (0 based)
- of f set - offset into configuration space
- data - data buffer pointer
- size - Size of datato be written

Return codes
noErr - if al parametersare valid
kBadOffsetErr - if offsetisinvalid
kBadSocketErr - if socket isinvalid for window
k16BitCardErr - if the card present is a 16-bit card

75 of 98 SystemSoft Confidential January 8, 1997

8.10.5.2 _SSReadConfigurationSpace

The _SSReadConfigurationSpace call allows card services to read from the Card-
Bus card's configuration space.

OSStatus _SSReadConfigur ationSpace(
const RegEntryRef* devicelD,

PCCardSocket socket,

Uint32 device,

Uint32 offset,

void* data,

Uint32 size);

Parameters

— devicel D - Deviceidentifier
- socket - socket number (0 based)
- devi ce - device number (O based)
- of f set - offset into configuration space
- data - data buffer pointer
- size - size of datato be read

Return codes
noErr - if al parametersare valid
kBadOffsetErr - if offset isinvalid
kBadSocketErr - if socket isinvalid for window
k16BitCardErr - if the card present is a 16-bit card

8.10.6 Bridge Services Specific I nterface

8.10.6.1 _SSInquireBridgeWindow

The _SSnguireBridgeWindow service returns information about the capa-
bilities of the bridge window specified by the input parameters. The window
number is aways an absolute window.

OSStatus _SSInquireBridgeWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
PCCardWindowSize *windowSize,
PCCardWindowAlign *windowAlign);

Parameters

January 8, 1997 SystemSoft Confidential 76 of 98

socket - socket number (0 based)

- W ndow - window number (O based)

— W ndowSt at e - type:l/O, memory Table C.3

~ wi ndowSi ze - maximum window size in bytes
— wi ndowAl i gn - window alignment boundary

Return codes
noErr - if al parametersare valid
kBadWindowErr - if window isinvalid
kBadAttributeErr - if stateisinvalid
kBadOffsetErr - if offsetisinvalid
kBadSocketErr - if socket isinvalid for window

8.10.6.2 _SSGetBridgeWindow

The _SSGetBridgeWindow service returns information about the current
configuration of the bridge window. The window number is always an
absolute window.

OSStatus _ SSGetBridgeWindow(
PCCardSocket * socket,
PCCardWindow window,
PCCardWindowState *windowState,
LogicalAddress * startAddress,
PCCardWindowSize *windowSize);

Parameters
~ socket - socket number (0 based)
- W ndow - window number (0 based)
— W ndowSt at e - state of the window, 10, enabled, prefetch
cachable TableC.3
~ startAddress - base address of bridge window
~ wi ndowSi ze - size of the bridge window in bytes

Return codes
noErr - if al parametersare valid
kBadWindowErr - if window isinvalid
kBadAttributeErr - if stateisinvalid
kBadOffsetErr - if offset isinvalid
k16BitCardErr - if the card present is a 16-bit card

8.10.6.3 _SSSetBridgewWindow
The _SSSetBridgeWindow service returns information about the current
configuration of the bridge window

OSStatus _SSSetBridgeWindow(
PCCardSocket socket,

77 of 98 SystemSoft Confidential January 8, 1997

Parameters

- socket - socket number (0 based)

- W ndow - window number (O based)

— W ndowSt at e - state of the window, 10, enabled

Table C.3

- start Addr ess - host start address of the bridge window

- W ndowSi ze - size of bridge window in bytes
Return codes

noErr - if al parametersare valid

PCCardWindow window,
PCCardWindowState windowState,
LogicalAddress startAddress,
PCCardWindowSize windowsSize);

kBadWindowErr - if window isinvalid
kBadAttributeErr - if stateisinvalid
k16BitCardErr - if thecard is a16-bit card
kBadBaseErr - if the base addressisinvalid
kBadSizeErr -if thesizeisinvalid

8.10.7 Platform Specific Service Interface

Thefollowing calls are handled directly by the Socket Service Plug-in since
there may be specific system hardware algorithms that will be applied to

complete the calls.

8.10.7.1 _SSEjectCard

The _SSEjectCard control call physically gects a card from a socket.

OSStatus _SSEjectCar d(PCCardSocket socket);

Parameters
- socket - socket number (O based)
Return codes
noErr - if al parametersare valid
kBadSocketErr - if Socket isinvalid
kNoCardErr - if socket is empty

kGeneralFailureErr- if card did not successfully gect

8.10.7.2 _SSGetlnterruptSetMember

January 8, 1997

SystemSoft Confidential

78 of 98

The _SSGetInterruptSetMember call is used to retrieve the interrupt SetlD and
member of the card interrupt set that the socket service driver created at initial-
ization.

OSStatus _SSGetlnterruptSetMember (
PCCardSocket socket,
InterruptSetMember * | STMember)

Parameters
- socket - socket number (0 based)
~ | STMenber - Interrupt set member structure containing

the SetID and member numbers

Return codes
noErr - if al parameters are valid
kBadSocketErr - if Socketisinvalid

8.10.8 Interrupt Source Tree Construction

8.10.8.1 Socket Service Driver Initialization:

1. Get the InterruptSetM ember (setID, member) for Set A, member from the
Name Registry.

2. Get the current Interrupt Functions for this InterruptSetM ember.
3. Invoke the current InterruptDisableRoutine (IDR).

4. Initialize the saved copy of interruptCount to nil. ThisinterruptCount will
later be used to determine when the ISR is re-invoked.

5. Install it's own InterruptServiceRoutine (ISR) in Interrupt Set A, member
1.

6. Create Interrupt Set B, which will contain 1 member for each socket the
driver supports. This Interrupt Set needs to be created by the Socket Ser-
vices Driver, because it knows how many sockets it supports, and therefore
how many membersto create. This Interrupt Set will be created with the
kReturnToParentWhenNotComplete option. Thiswill cause the Driver ISR
to bere-invoked if it's child (a member of Interrupt Set B) returnsklsrls-
NotComplete. Thiswill allow the Driver to also return klsrisNotCompl ete if
the Card ISR could not process the interrupt. If this option was not set, the
ISR of the next member in Interrupt Set B (for the next Card) would auto-
matically (and incorrectly) be invoked when the first member returned
klsrisNotComplete.

7. Invoke the current InterruptEnableRoutine (1ER).

79 of 98 SystemSoft Confidential January 8, 1997

8.10.8.2 Card Enabler Initialization:

1. Create the “card” node in the Name Registry.

2. Get the InterruptSetMember (setlD, member) for the Card (socket). This
is done viathe Card Services function CSGetInterruptSetM ember. Which
calls the Socket Services function SSGetlnterruptSetMember.

3. Get the current Interrupt Functions for this InterruptSetMember.
4. Invoke the current InterruptDisableRoutine (IDR).

5. Initialize the saved copy of interruptCount to nil. ThisinterruptCount will
later be used to determine when the ISR is re-invoked.

6. Install it’s own InterruptServiceRoutine (1SR) in the Interrupt Set.

7. Add a“driver-ist” property containing the card's InterruptSetMember to
the “card” node in the Name Registry.

8. Create Interrupt Set C, which will contain 1 member for each device
(function) on the PC Card. This Interrupt Set needs to be created by the
Card Enabler, because it knows how many devices the PC Card has, and
therefore how many members to create. This Interrupt Set will be created
with the kReturnToParentWhenNotComplete option. Thiswill cause the
Card ISR to bere-invoked if it's child (a member of Interrupt Set C) returns
KlsrlsNotComplete. Thiswill allow the Card ISR to also return KlsrlsNot-
Completeif there are no more Device ISR’sto invoke, or if it determined
that the interrupt was for that specific Device ISR and the Device ISR was
unable to successfully service the interrupt. If this option was not set, the
next member in Interrupt Set C would automatically be invoked when the
previous member returned klsrlsNotComplete. This could cause the ISR for
the next Device (function) to get invoked for an interrupt that was not gener-
ated by that device.

9. Create adriver-ist entry in the Name Registry for the Device node(s).
10. Invoke the current InterruptEnableRoutine (1ER).

8.10.8.3 Interrupt Processing

1. Aninterrupt is generated, this invokes Interrupt Set A, member 1.

2. Interrupt Set A, member 1 isthe Socket Service Driver ISR. It determine
whether the interrupt is a Card Status Change interrupt or a Functional
interrupt. If it isa Card Status Change Interrupt, the Socket Service Driver

January 8, 1997 SystemSoft Confidential 80 of 98

ISR handlesit and returns klsrlsComplete. If it isa Functional Interrupt, the
Driver ISR determines which socket caused the interrupt and returns that
member number. Thiswill invoke the returned member number of Interrupt
Set B.

3. Interrupt Set B, member x isa Card (socket) ISR. It determines which
device caused the interrupt and returns that member number. This will
invoke the returned member number of Interrupt Set C.

4. Interrupt Set C, member x isaDevice (function) ISR. It will attempt to
service the interrupt and return kisrlsComplete if successful, thiswill end
interrupt processing. If the interrupt was not successfully serviced, the
Device ISR will return klsrlsNotComplete.

5. The parent member in Interrupt Set B isre-invoked if the Device ISR
returned klsrlsNotComplete. The Card ISR will then attempt to invoke the
next child member (in Set C) by returning it's member number, or return
KlsrisNotComplete if there are no more members to invoke.

6. The parent member in Set A (the Driver ISR) isre-invoked if the Card
ISR returned klsrisNotComplete. The Driver ISR will return klsrlsNotCom-
pleteif it isinvoked a second time while processing the same interrupt.

81 of 98 SystemSoft Confidential January 8, 1997

FIGURE 3. PC Card 3.0 IST Layout

Example Example 2 Example 3
1 socket 1 socket 2 socket s

TUAAl A
el e

\ o/
1006 0] 06

January 8, 1997 SystemSoft Confidential 82 of 98

9.0 Name Registry Propertiesfor PC Cards

This section is broken up into three sections, controller, card and card func-
tions. The node for the controllers will be built by either Open Firmware,
the motherboard expert, or bus families. The card nodes are built by the PC
Card expert. The device nodes will be built by the card enablers. All proper-
ties created by the PC Card family that are defined in the PC Card binding
for Open Firmware should be created following that specification.

On machines that have Open Firmware, the PC Card family should check if
the nodes have already been created. Since Open Firmware will have allo-
cated physical hardware ranges, the family can either use them or free them
and create its own. Since Open Firmware will not create all of the properties
that we want the PC Card Family will haveto at least add to anode. The PC
Card family should not trust Open Firmware to set things up correctly, and
it may have to fix things.

The purpose of Open Firmware and the card enablersis the same. The dif-
ferenceisthat Open Firmware isfor boot devices and enablers are for
deviceseither don’t need Open Firmware (not needed for boot) or have been
hot plugged.

9.1 Socket Controller Node Properties

Property: name
Example: “TREX@12345678" or “pcixxxx,yyyy”
Source: Open Firmware, the motherboard expert or another bus family.?

Purpose: Standard prop-name to specify the implemented interface.

Property: reg
Example: see PC card OF binding
Source: Open Firmware, the motherboard expert or another bus family.?

Purpose: Standard prop-name to define the package’s unit address.

Property: assigned-addresses

Source: Motherboard expert or another bus family.

83 of 98 SystemSoft Confidential January 8, 1997

Purpose: Assigned physical address ranges for the device

Property: AAPL ,addresses
Example:
Source: Motherboard expert or another bus family.

Purpose: Provide LOGICAL addresses which corresponds to assigned-
addresses property.

Property: driver-ist

Source: Motherboard expert or another bus family.

Purpose: Interrupt source tree node.

Property: SocketNumber
Example: 1

Source: PCCardSupportLibrary.
Purpose: Provide a virtual socket number.

9.2 Card Enabler Node Properties

Property: name

Example: “pccard104c,ac12’

Source: CISTPL_MANFID and/or CISTPL_VERS 1

Purpose: Standard prop-name to specify the implemented interface.

pccardvVVVV,DDDD whereVVVYV isthe manufacturesid field and DDDD
is the manufactures information field as defined below:

-VVVV string is defined by the Field ‘TPLMID_MANF in Tuple
‘CISTPL_MANFID’.

- DDDD string as defined by the Field ‘“ TPLMID_CARD’ in Tuple
‘CISTPL_MANFID'.

January 8, 1997 SystemSoft Confidential 84 of 98

TheVVVV and DDDD strings are ASCII hexadecimal, lower case, and
without leading zeros.

If no CISTPL_MANFID tupleisfound, the string “pccard” should be used.

Property: compatible

Example: “AAPL,GenericPCCardPlugin”

Source: created by Expert

Purpose: Defines aternate name property values, can be used by DFM for
matching card enablers. See the “matching” property.

The name “AAPL,GenericPCCardPlugin” is reserved for use by Apple Com-
puter, Inc.

Property: SocketNumber
Example: 1
Source; created by Expert

Purpose: Defines which socket into which a card has been inserted.

Property: PCCardNodeType

Example: ‘pcec’

Source: created by Expert

Purpose: Defines that the node is a card handled by the PCCard Expert.

Property: driver-ist

Source: Created by Socket Services Library. Populated by Expert.

Purpose: Defines the interrupt enabler, disabler and handler functions. Note
that the card level and device lever I ST nodes are closely dependent. If a
developer wishesto install an interrupt handler in the card IST, he should
save the existing interrupt handler, call the handler at interrupt time (to
ensure that the device node(s) are called, return the value from the handler
and reinstall the handler when he removes his custom handler. Failure to do
this may lead to unserviced interrupts.

9.3 Functional Node Properties

85 of 98 SystemSoft Confidential January 8, 1997

Property: name
Example: pc-uart
Source: Card Enabler, CIS

Purpose: Used to match target driver to function node of PC Card. The
name should exactly match the name in the descriptor of the driver which
supports the device.

Property: compatible

Source: Card Enabler

Purpose: Defines alternate driver names which support device.

Property: PCCardNodeType

Example: ‘pced’

Source: Card Enabler

Purpose: Demonstrates that the node is handled by a card enabler.

Property: assigned-addr esses

Source; Card Enabler

Purpose: Encoded physical address ranges for the device. This property
defines the type of memory access, size and location of the addresses
defined in the AAPL ,address property and is comprised of an array of
PCI AssignedAddress structures.

Property: AAPL ,address
Example: ----
Source; Created by Card Enabler

Purpose: Provide LOGICAL addresses which corresponds to assigned-
addresses property. These are the addresses one reads and writes to access
memory locations on the PC Card. The type of memory defined by these

January 8, 1997

SystemSoft Confidential 86 of 98

addresses are described in the assigned-addresses property above. This
property is comprised of an array of 32 bit addresses.

Property: driver-ist

Source: Created by Card Enabler

Purpose: Interrupt source tree node.

Note that the interrupt enabler and disabler functions present in the driver-ist are
closely related and dependent on the card node driver-ist and should be saved
and replaced by custom interrupt enabler/disabler functions. The existing inter-
rupt enabler/disabler functions should be called by any custom enabler/disabler
functions to preserve default behavior.

Property: DeviceNumber
Example: 8
Source; Created by Card Enabler

Purpose: 0 based index of device on card.

Property: SocketNumber

Example: 1

Source: Created by Card Enabler

Purpose: 0 based index of virtual socket number of card.

Property: card serviceswindows

Source: Created by Card Enabler

Purpose: List of window handles allocated on card configuration. Used to
release windows on card removal.

Property: device-configured

Source: Created by Card Enabler

87 of 98

SystemSoft Confidential January 8, 1997

Purpose: Defines that a device needs to rel ease configuration on card
removal.

Property: 16bitcard

Purpose: prop-name, existsif the node implements the 16-bit PC Card inter-
face.

Property: CardBus

Source: CISTPL_FUNCID, etc.

Purpose: prop-name, exists if the node implements CardBus.

Property: device _type
Example: “pccard-serial”
Source: Card enabler

Purpose: devices the type of device described.

Property: device-id
Example: “pccard-serial”
Source: Card enabler

Purpose: Defines the vendor 1D of the device.

Property: revision-id
Example: 00000005
Source: Card enabler

Purpose: Defines the revision of the card as per the Vers 1 tuple.

January 8, 1997

SystemSoft Confidential 88 of 98

Appendix C Dataand Bit-Mask Definitions
The following appendix contains the bit-mask defined by the PC Card 3.0 impli-
mentation
C.1 PC Card Events (PCCardEvents and PCCardEventM ask)
TABLE 1. Registered Client PCCard Events (interestingEvents)
Event Name Description
kPCCardlnsertionM essage card has been inserted into the socket
kPCCardRemoval M essage card has been removed from the socket
kPCCardEj ectionRequestM essage user or other client is requesting a card
gection
kPCCardEj ectionFailedM essage gject failure due to electrical/mechanical
problems
kPCCardPM ResumeM essage power management resume
kPCCardPM SuspendM essage power management suspend
kPCCardPM SuspendRequest power management sleep request
kPCCardPM SuspendRevoke power management sleep revoke
kPCCardResetRequestM essage physical reset has been requested by acli-
ent
kPCCardResetCompl eteM essage reset has completed
kPCCardBatteryDeadM essage battery is no longer usable, datawill be
lost
kPCCardBatteryL owM essage battery is weak and should be replaced
kPCCardWriteProtectM essage card is now write protected
kPCCardWriteEnabledM essage card is now write enabled
kPCCardTimerExpiredM essage message sent when requested time has
expired
kPCCardNullMessage no messages pending (not sent to clients)
kPCCardL ockMessage card is locked into the socket with a
mechanical latch
kPCCardUnlockM essage card is no longer locked into the socket
kPCCardReadyM essage card is ready to be accessed (not sent to
clients)
kPCCardResetM essage physical reset has completed (not sent to
clients)
89 of 98 SystemSoft Confidential January 8, 1997

TABLE 1. Registered Client PCCard Events (interestingEvents)

Event Name Description

kPCCardl nsertionRequestM essage request to insert a card using insertion
motor (not sent to clients)

kPCCardlnsertionCompleteM essage insertion motor has finished inserting a
card (not sent to clients)

kPCCardEjectionCompl eteM essage card gjection succeeded- do not touch
hardware!

kPCCardResetPhysical M essage physical reset is about to occur on this
card (not sent to clients)

kPCCardClientInfoMessage client isto return client information (not
sent to clients)

kPCCardSSUpdatedM essage AddSocketServices/ReplaceSocket ser-
vices has changed SS support (not sent to
clients)

kPCCardFunctionl nterruptM essage card function interrupt (not sent to clients)

kPCCardAccessErrorMessage client bus errored on access to socket (not
sent to clients)

kPCCardUnconfiguredM essage aCARD_READY wasdelivered to al cli-
ents and no client (not sent to clients)

kPCCardStatusChangedM essage reguested a configuration for the socket
(not sent to clients)

kPCCardRequestAttentionM essage (not sent to clients)

kPCCardEraseCompl eteM essage (not sent to clients)

kPCCardRegistrationCompl eteM essage (not sent to clients)

C.2 Socket StatusBit definitions (PCCar dSocketStatus)
TABLE 2. Socket status bit definitions

Socket State Description
kSTBatteryDead battery dead
kSTBatteryL ow battery low
kSTBatteryGood battery good
kSTPower power is applied
kST16bit 16-bit PC Card present

January 8, 1997

SystemSoft Confidential

90 of 98

TABLE 2.

C3

Socket status bit definitions

Socket State
kSTCardBus
kSTMemoryCard
kSTIOCard
kSTNotACard
kSTWriteProtect
kSTRinglndicate
kSTReady
kSTDatalost

kSTReserved

Description

CardBus PC Card present
memory card present

1/O card present

unrecognizable PC Card detected
card is write-protected

ring indicator is active

ready

data may have been lost due to
card removal

Reserved

Window Attributes (PCCardWindowAttributes)

TABLE 3. Window attribute bit-mask definitions
Window Attribute Description
kwWSCommon common memory window
kKWSAttribute attribute memory window
kwSIO I/0O window
kKWSTypeMask window type mask
kwWS8hit 8-bit data width window
kKWS16bit 16-bit data width window
kW S32bit 32-bit data width window (cardbus only)
kKWSWidthMask window data width mask
kW SEnabled window enabled
kWSProtected window write protected
kWSPrefetchable bridge window prefetchable (CardBus only)
kWSCardBus CardBus bridge window
kWSAUutoSize auto-size data width window
91 of 98 SystemSoft Confidential January 8, 1997

TABLE 3.

Cc4

Window attribute bit-mask

Window Attribute

kW SPageShared
kW SWindowSizeOff set
kW SChangeA ccessSpeed

definitions

Description

page register is shared

Used by CSModifyWindow only
Used by CSModifyWindow only

Configuration Attributes (PCCar dConfigOptions)

TABLE 4.

Configuration Attributes

Configuration attributes

kReservedBit0
kEnablelRQSteering

kIRQChangeValid

kReservedBit3
kVppChangeValid
kReservedBit5
kEnableDMA Channel

kDMAChangeValid

kReservedBit8
kVSOverride

description

Reserved

Enable IRQ steering (not used
on the Mac OS implementation)

IRQ Change valid (not used on
the Mac OS implementation)

Reserved
Vppl change valid
Reserved

Enable DMA channel (not used
on the Mac OS implementation)

DMA change valid (not used on
the Mac OS implementation)

Reserved

Vsoverridevalid

January 8, 1997

SystemSoft Confidential

92 of 98

C.5 Interface Types (PCCardlnterfaceType)
TABLE 5. Interface types
Interface types description
KIFTypeMask 10 & memory type mask
kIFCardBus if bits0 & 1 are zero then
cardbus interface
kIFMemory if bit 0 set memory IF
KIFIO if bit1setlOIF
KIFReserved bits0 and 1 set isreserved
KIFDMA if bit 3 set DMA supported
KIFV SKey if bit 4 set supportslow Volt-
age key
kIF33vCC if bit 5 set socket supports
3.3v
KIFXXVCC if bit 6 set socket supports
X.X voltage
C.6 Supported devicetypesand SubTypes (PCCardDevType and PCCardSubType)
TABLE 6. Supported device types (PcCardDevType/PCCardSubType)
Devicetype description
kPCCardUnknownDeviceType unknown device
kPCCardMultiFunctionType Multi-Function device
kPCCardVideoAdaptorType display device
kPCCardFixedDiskType Fixed disk
kPCCardUnknownFixedDiskType unknown Fixed disk type
kPCCardNetworkAdaptorType Network device
kPCCardSerial PortType Serial device (modem)
kPCCardParallel PortType Parallel device type
93 of 98 SystemSoft Confidential January 8, 1997

TABLE 6. Supported device types (PcCardDevType/PCCardSubType)

Devicetype description
kPCCardMemoryType Memory device (sram)
kPCCardAIMSType AIMS device
kPCCardSCSI Type SCSI Device
kPCCardSerial OnlySubType serial only device
kPCCardDataM odemSubType Data modem sub type
kPCCardFaxModemSubType Fax modem sub type
kPCCardFaxAndDataM odemMask Data Fax modem
kPCCardVoiceEncodingSubType voice encoding type
kPCCardATAInterfaceDiskSubType ATA disk sub type
kPCCardRotatingDeviceSubType Rotating mediam sub type
kPCCardSiliconDevice Silicon device

C.7 Adapter capabilities mask (PCCardAdapter Capabilities

TABLE 7. Adapter capability bit-mask values

Capabilities Description

SS ADPT_FLG IND indicators for write-protect, card lock,bat-
tery status, busy status, and XIP are shared
for all sockets

SS ADPT_FLG_PWR if set indicates that the sockets share the
same power control

SS ADPT_FLG_DBW all windows on the adapter must use the
same Data Bus Width

SS ADPT_FLG_CARDBUS all sockets are CardBus PC Card capable

SS ADPT_FLG_DMA the adapter has DMA capability bits for
adapter power characteristics

SS ADPT_FLG V33 adapter supports 3.3 volt power to socket

SS ADPT_FLG V50 adapter supports 5.0 volt power to socket

SS ADPT_FLG V12 adapter supports 12 volt power to socket

January 8, 1997 SystemSoft Confidential 94 of 98

C.8 Socket Event mask (PCCar dSCEvents)

TABLE 8. Socket Event Bit-mask
Event Description
kSCBatteryDead battery dead
kSCBatteryLow battery low
kSCReady ready
kSCCardDetect Card Detect Status Change
kSCCardEjected Card Ejected
kSCStatusChange PC Card Status Change Signal Asserted
kSCRinglIndicate PC Card Ring Indicate Signal Asserted

C.9 PC Card 3.0Hardwaretypes (PCCardHardwareType)

TABLE 9. Pc Card 3.0 Hardware types
Hardware types Description
kPCCard16HardwareType PC Card-16 hardware
kCardBusHardwareType CardBus Hardware

95 of 98 SystemSoft Confidential January 8, 1997

Appendix D Card Service Mapping

D.1 Mappingto ‘classic’ Card and Socket Services

The PC Card Family supports asimplified version of the Card & Socket
Services version of the API described in 5.1 Card Services PC Card Stan-
dard. The following sections group calls defined in The Standard with
descriptions of how they are implemented in the PC Card Family.

Cosmetic differences are not mentioned N such as the format of various

attributes bitmap definitions. In other cases, bit-mapped parameters have
been combined where practical and reserved fields have been eliminated
since there are no backward compatibility issues.

One functional difference which applies to many of the callsisthat Client
handles are not used for any call. Thisis because management of clientsis
implemented by the family itself.

Also, all block memory services will be broken out into a separate library
which is not available at thistime.

D.2 Mappingstothe PC Card Standard

The functions are listed here with descriptions of how they differ from the
Intel Card Services PC Card Standard. However, cosmetic differences are
not mentioned. Such differences would include the format of various
attributes bitmap definitions. In other cases, bitmapped parameters have
been combined where practical and reserved fields have been eliminated
since there are no backward compatibility issues. Only functional differ-
ences are called out in this section.

One functional difference which appliesto many of the calls, isthat Client
handles are not used for any call. In fact, Client registration is not required.

D.3 Functionally Equivalent

The following calls are implemented in a manner functionally equivalent to
the PC Card Standard.

* GetStatus

* ReleaseConfiguration
* ReleaseWindow

* RequestDMA

e VadidateCIS

January 8, 1997 SystemSoft Confidential 96 of 98

D.4

D.5

D.6

D.7

Tuple Functions
The following APIs have been combined into asingle call GetTuple:

e GetTupleData

Block Memory Device Family

Thefollowing calls have been omitted from Card Service under the MacOS
since they would normally be supported under the block memory device
plug-in:

* CheckEraseQueue

* CloseMemory

¢ CopyMemory

e DeregisterEraseQueue
* GetFirstPartition

* GetFirstRegion

* GetNextPartition

» GetNextRegion

¢ OpenMemory

¢ ReadMemory

* RegisterEraseQueue
* RegisterMTD

e SetRegion

* WriteMemory

Client Registration

Client registration is used solely for registering event callback addresses
and for specifying event masks to perform client event notification. The fol-
lowing calls are not used within the scope of registering clientsin this
model since Card Services clients are limited to event notification:

e GetClientinfo

* GetFirstClient

* GetNextClient

* ReleaseExclusive

» ReleaseSocketMask
¢ ReguestExclusive

* ReguestSocketMask

M acOS Environment

The following calls have been omitted because they have been identified as
unnecessary on the MacOS. Many of these callsare IBM PC centric used to

97 of 98

SystemSoft Confidential January 8, 1997

work around deficiancies in operating system and are used as a debugging
interface during development.

» AdjustResourcelnfo

» GetCardServicesinfo
» GetConfigurationinfo
* GetFirstWindow

e GetNextWindow

e MapLogSocket

* MapLogWindow

e MapPhySocket

e MapPhyWindow

* RegisterTimer

* ReleaseDMA

* ReleaselO

¢ ReleaselRQ

» ReplaceSocketServices
* RequestlO

* RequestiRQ

* ReturnSSEntry

D.8 Not Relevant to Hardware

Several functions deal with hardware features that are not relevant to our
hardware environment, or to features which have been obsoleted by Card-
Bus.

o GetMemPage

* MapMemPage

* ModifyWindow
* RequestWindow

D.9 API Simplification

In severa cases we have been able to replace functions with asimplified
API.

» AccessConfigurationRegister
* AddSocketServices

* ModifyConfiguration

* RequestConfiguration

* ResetFunction

January 8, 1997 SystemSoft Confidential 98 of 98

	ReportTitle - Mac OS System PC Card Family 3.0 Developers Guide
	Heading1TOC - 1.0 Overview�5
	Heading1TOC - 2.0 Related Documents�6
	Heading1TOC - 3.0 About this Document�7
	FigureTOC - Figure 1 PC Card Family Architecture, Event Proces...

	Heading1TOC - 4.0 Architectural Elements�9
	Heading1TOC - 5.0 Goals & Non-Goals�12
	Heading1TOC - 6.0 Terminology�14
	FigureTOC - Figure 2 PC Card Family Interface Calling Flow Dia...

	Heading1TOC - 7.0 External /Public Interfaces�16
	Heading1TOC - 8.0 Card Enabler Interface�32
	FigureTOC - Figure 3 PC Card 3.0 IST Layout 82

	Heading1TOC - 9.0 Name Registry Properties for PC Cards�83
	AppendixHeading1TOC - Appendix A Data and Bit-Mask Definitions 89
	AppendixHeading2TOC - Appendix A.1 PC Card Events (PCCardEvents and PCCa...
	TableTitleTOC - Table 4 Registered Client PCCard Events (interesti...

	AppendixHeading2TOC - Appendix A.2 Socket Status Bit definitions (PCCard...
	TableTitleTOC - Table 5 Socket status bit definitions 90

	AppendixHeading2TOC - Appendix A.3 Window Attributes (PCCardWindowAttrib...
	TableTitleTOC - Table 6 Window attribute bit-mask definitions 91

	AppendixHeading2TOC - Appendix A.4 Configuration Attributes (PCCardConfi...
	TableTitleTOC - Table 7 Configuration Attributes 92

	AppendixHeading2TOC - Appendix A.5 Interface Types (PCCardInterfaceType)...
	AppendixHeading2TOC - Appendix A.6 Supported device types and SubTypes (...
	TableTitleTOC - Table 8 Interface types 93
	TableTitleTOC - Table 9 Supported device types (PcCardDevType/PCCa...

	AppendixHeading2TOC - Appendix A.7 Adapter capabilities mask (PCCardAdap...
	TableTitleTOC - Table 10 Adapter capability bit-mask values 94

	AppendixHeading2TOC - Appendix A.8 Socket Event mask (PCCardSCEvents) 95...
	AppendixHeading2TOC - Appendix A.9 PC Card 3.0 Hardware types (PCCardHar...
	TableTitleTOC - Table 11 Socket Event Bit-mask 95
	TableTitleTOC - Table 12 Pc Card 3.0 Hardware types 95

	AppendixHeading1TOC - Appendix B Card Service Mapping 96
	AppendixHeading2TOC - Appendix B.1 Mapping to ‘classic’ Card and Socket ...
	AppendixHeading2TOC - Appendix B.2 Mappings to the PC Card Standard 96
	AppendixHeading2TOC - Appendix B.3 Functionally Equivalent 96
	AppendixHeading2TOC - Appendix B.4 Tuple Functions 97
	AppendixHeading2TOC - Appendix B.5 Block Memory Device Family 97
	AppendixHeading2TOC - Appendix B.6 Client Registration 97
	AppendixHeading2TOC - Appendix B.7 MacOS Environment 97
	AppendixHeading2TOC - Appendix B.8 Not Relevant to Hardware 98
	AppendixHeading2TOC - Appendix B.9 API Simplification 98

	Heading1 - 1.0 Overview
	Heading1 - 2.0 Related Documents
	Heading1 - 3.0 About this Document
	Figure - FIGURE 1. PC Card Family Architecture, Event Proce...

	Heading1 - 4.0 Architectural Elements
	Heading2 - 4.1 Applications and/or Target Driver
	Heading2 - 4.2 PC Card Family Expert
	Heading3 - 4.2.1 Socket Monitoring Task
	Heading3 - 4.2.2 Administrative Task
	Heading4 - 4.2.2.1 Power Management
	Heading2 - 4.3 Card Enabler
	Heading2 - 4.4 Card Services Family Programming Interface
	Heading2 - 4.5 Card Enabler – the Generic Plug-In
	Heading2 - 4.6 Card Enabler Support Library
	Heading2 - 4.7 Internal Card Service Library

	Heading1 - 5.0 Goals & Non-Goals
	Heading2 - 5.1 Short Term Goals
	Numbered1 - 1. Support for Multi-function cards
	Numbered - 2. Simplified API(s)
	Numbered - 3. Support for CardBus will be integrated by provi...
	Numbered - 4. Clear Separation of Driver and PCMCIA specific ...
	Numbered - 5. Minimize interrupt-level code

	Heading2 - 5.2 Long Term Goals
	Numbered1 - 1. Forward compatibility
	Numbered - 2. CardBus support
	Numbered - 3. Bus agnostic Device Drivers

	Heading2 - 5.3 Long Term Non-Goals
	Numbered1 - 1. Compatibility with existing Card Services clien...

	Heading1 - 6.0 Terminology
	Figure - FIGURE 2. PC Card Family Interface Calling Flow Di...

	Heading1 - 7.0 External /Public Interfaces
	Heading2 - 7.1 PCCard Family Programming Interface
	Heading3 - 7.1.1 Client Services
	Heading4 - 7.1.1.1 PCCardGetCardServicesInfo
	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 7.1.1.2 PCCardRegisterClient

	Test - Parameters:
	Test - Return Codes:
	Test -
	Test - Parameters:
	Heading4 - 7.1.1.3 PCCardDeregisterClient

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.4 PCCardSetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.5 PCCardGetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.6 PCCardRegisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.7 PCCardDeRegisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.1.8 PCCardGetStatus

	Test - Parameters:
	Test - Return Codes:

	Heading3 - 7.1.2 Resource Management
	Heading4 - 7.1.2.1 PCCardRequestWindow
	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.2.2 PCCardReleaseWindow

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.2.3 PCCardModifyWindow [16-bit PC Card Memory ...

	Test - Return Codes:
	Heading4 - 7.1.2.4 PCCardRequestConfiguration
	Heading4 - 7.1.2.5 PCCardReleaseConfiguration
	Heading4 - 7.1.2.6 PCCardModifyConfiguration
	Heading4 - 7.1.2.7 PCCardResetFunction

	Heading3 - 7.1.3 Client Utilities
	Heading4 - 7.1.3.1 PCCardGetFirstTuple
	Heading4 - 7.1.3.2 PCCardGetNextTuple

	Heading3 - 7.1.4 AccessConfigurationRegister
	Heading4 - 7.1.4.1 PCCardReadConfigurationRegister
	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.4.2 PCCardWriteConfigurationRegister

	Test - Parameters:

	Heading3 - 7.1.5 Miscellaneous Interfaces
	Heading4 - 7.1.5.1 PCCardGetCardInfo
	Heading4 - 7.1.5.2 PCCardEject
	Heading4 - 7.1.5.3 PCCardSetRingIndicate
	Heading4 - 7.1.5.4 PCCardEnableModemSound
	Heading4 - 7.1.5.5 PCCardEnableZoomedVideoSound
	Heading4 - 7.1.5.6 PCCardSetPowerLevel
	Heading4 - 7.1.5.7 PCCardGetCardRefFromDeviceRef
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.5.8 PCCardGetSocketAndDeviceFromDeviceRef

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 7.1.5.9 PCCardGetCardRef

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 7.1.5.10 PCCardGetSocketRef

	Test - Parameters:
	Test -
	Test - Return Codes:

	Heading1 - 8.0 Card Enabler Interface
	Heading2 - 8.1 Purpose
	Heading2 - 8.2 Overview
	Heading2 - 8.3 Plug-in File Type
	Heading2 - 8.4 DriverDescriptor
	Heading2 - 8.5 Card Enabler loading
	Heading2 - 8.6 Card Enabler Plug-in Entry Points.
	Heading3 - 8.6.1 Card Enabler Plug-in typedefs
	Heading3 - 8.6.2 Card Enabler Dispatch Table structure
	Heading3 - 8.6.3 initializeProc
	Test -
	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 8.6.3.1 Example Code of custom enabler table

	Heading3 - 8.6.4 cleanUpProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.5 validateHardwareProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.6 getFirstTuple
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.7 getNextTuple
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.8 handleEventProc
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.9 AddCardPropertiesProc
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.10 AddDevicePropertiesProc
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.11 getDeviceCount
	Test - Parameters:
	Test -
	Test - Return Codes:
	Test -

	Heading3 - 8.6.12 getDeviceType
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.13 getDeviceTypeName
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.14 getDeviceName
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.15 getCardInfoProc
	Test -
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.16 addDeviceProperties
	Test - Parameters:
	Test - Return Codes:
	Test -

	Heading3 - 8.6.17 cardInterruptHandlerFunction
	Heading3 - 8.6.18 cardInterruptEnableFunction
	Heading3 - 8.6.19 cardInterruptDisableFunction
	Heading2 - 8.7 Card Enabler Usage by the PC Card 3.0 Family

	Heading3 - 8.7.1 Card Insertion Processing
	Heading3 - 8.7.2 The Device Initialization
	Heading3 - 8.7.3 Card Ejection
	Heading3 - 8.7.4 Event Notification
	Heading3 - 8.7.5 Enabler Replacement
	Heading2 - 8.8 Card Enabler Support Library

	Heading3 - 8.8.1 Card Identification
	Heading4 - 8.8.1.1 CEGetCardType
	Heading4 - 8.8.1.2 CECompareCISTPL_VERS_1
	Heading4 - 8.8.1.3 CECompareCISTPL_MANFID
	Heading4 - 8.8.1.4 CECompareMemory
	Heading2 - 8.9 Internal Card Services

	Heading3 - 8.9.1 Purpose
	Heading3 - 8.9.2 Client Services
	Heading4 - 8.9.2.1 CSGetCardServicesInfo
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.2 CSRegisterClient

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.3 CSDeregisterClient

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.4 CSSetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.5 CSGetEventMask

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.6 CSRegisterTimer

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.2.7 CSDeregisterTimer

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.8 CSNotifyClients

	Test - Parameters:
	Test -
	Test - Return Codes:
	Heading4 - 8.9.2.9 CSGetStatus

	Test - Parameters:
	Test - Return Codes:

	Heading3 - 8.9.3 Window Services Interface
	Heading4 - 8.9.3.1 CSRequestWindow
	Test - Return Codes:
	Heading4 - 8.9.3.2 CSReleaseWindow

	Test - Return Codes:
	Heading4 - 8.9.3.3 CSModifyWindow [16-bit PC Card Only]

	Test - Return Codes:

	Heading3 - 8.9.4 Configuration Services
	Heading4 - 8.9.4.1 CSRequestConfiguration
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.2 CSReleaseConfiguration

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.3 CSModifyConfiguration

	Test - Parameters:
	Test - Return Codes:
	Test -
	Heading4 - 8.9.4.4 CSReadConfigRegister

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.5 CSWriteConfigRegister

	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.4.6 CSResetFunction

	Test - Parameters
	Test - Return Codes:

	Heading3 - 8.9.5 CIS Services Interface
	Heading4 - 8.9.5.1 CSValidateCIS
	Test - Parameters:
	Test - Return Codes:
	Heading4 - 8.9.5.2 CSGetDeviceCount

	Test - Parameters
	Test - Return Codes:
	Heading4 - 8.9.5.3 CSGetFirstTuple

	Test - Parameters
	Test - Return Codes:
	Heading4 - 8.9.5.4 CSGetNextTuple

	Test - Parameters:
	Test - Return codes

	Heading3 - 8.9.6 Miscellaneous Services
	Heading4 - 8.9.6.1 CSGetDeviceCount
	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.2 CSGetSocketDeviceFromIterator

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.3 CSCardEject

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.4 CSGetCardType

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.5 CSGetInterruptSetMember

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.6 CSSetInterrupt

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.7 CSSetRingIndicate

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.8 CSPowerManagement

	Test - Parameters:
	Test - Return codes
	Heading4 - 8.9.6.9 CSReportStatusChange

	Test - Parameters:
	Test - Return codes
	Heading2 - 8.10 Socket Services Plug-in Interface

	Heading3 - 8.10.1 Apple Specific Plug-in Interface
	Heading4 - 8.10.1.1 _SSValidateHardware
	Heading4 - 8.10.1.2 _SSInitialize
	Heading4 - 8.10.1.3 _SSSuspend
	Heading4 - 8.10.1.4 _SSResume
	Heading4 - 8.10.1.5 _SSFinalize

	Heading3 - 8.10.2 Adapter Specific Interface
	Heading4 - 8.10.2.1 _SSInquireAdapter

	Heading3 - 8.10.3 Socket Specific Interface
	Heading4 - 8.10.3.1 _SSInquireSocket
	Heading4 - 8.10.3.2 _SSGetSocket
	Heading4 - 8.10.3.3 _SSSetSocket
	Heading4 - 8.10.3.4 _SSResetSocket
	Heading4 - 8.10.3.5 _SSGetStatus

	Heading3 - 8.10.4 Window Services Specific Interface
	Heading4 - 8.10.4.1 _SSInquireWindow
	Heading4 - 8.10.4.2 _SSGetWindow
	Heading4 - 8.10.4.3 _SSSetWindow
	Heading4 - 8.10.4.4 _SSGetWindowOffset
	Heading4 - 8.10.4.5 _SSSetWindowOffset

	Heading3 - 8.10.5 CardBus Specific calls
	Heading4 - 8.10.5.1 _SSWriteConfigurationSpace
	Heading4 - 8.10.5.2 _SSReadConfigurationSpace

	Heading3 - 8.10.6 Bridge Services Specific Interface
	Heading4 - 8.10.6.1 _SSInquireBridgeWindow
	Heading4 - 8.10.6.2 _SSGetBridgeWindow
	Heading4 - 8.10.6.3 _SSSetBridgeWindow

	Heading3 - 8.10.7 Platform Specific Service Interface
	Heading4 - 8.10.7.1 _SSEjectCard
	Heading4 - 8.10.7.2 _SSGetInterruptSetMember

	Heading3 - 8.10.8 Interrupt Source Tree Construction
	Heading4 - 8.10.8.1 Socket Service Driver Initialization:
	Heading4 - 8.10.8.2 Card Enabler Initialization:
	Heading4 - 8.10.8.3 Interrupt Processing
	Figure - FIGURE 3. PC Card 3.0 IST Layout

	Heading1 - 9.0 Name Registry Properties for PC Cards
	Heading2 - 9.1 Socket Controller Node Properties
	Heading2 - 9.2 Card Enabler Node Properties
	Heading2 - 9.3 Functional Node Properties
	AppendixHeading1 - Appendix C Data and Bit-Mask Definitions
	AppendixHeading2 - C.1 PC Card Events (PCCardEvents and PCCardEventMa...
	TableTitle - TABLE 1. Registered Client PCCard Events (interest...

	AppendixHeading2 - C.2 Socket Status Bit definitions (PCCardSocketSta...
	TableTitle - TABLE 2. Socket status bit definitions

	AppendixHeading2 - C.3 Window Attributes (PCCardWindowAttributes)
	TableTitle - TABLE 3. Window attribute bit-mask definitions

	AppendixHeading2 - C.4 Configuration Attributes (PCCardConfigOptions)...
	TableTitle - TABLE 4. Configuration Attributes

	AppendixHeading2 - C.5 Interface Types (PCCardInterfaceType)
	TableTitle - TABLE 5. Interface types

	AppendixHeading2 - C.6 Supported device types and SubTypes (PCCardDev...
	TableTitle - TABLE 6. Supported device types (PcCardDevType/PCC...

	AppendixHeading2 - C.7 Adapter capabilities mask (PCCardAdapterCapabi...
	TableTitle - TABLE 7. Adapter capability bit-mask values

	AppendixHeading2 - C.8 Socket Event mask (PCCardSCEvents)
	TableTitle - TABLE 8. Socket Event Bit-mask

	AppendixHeading2 - C.9 PC Card 3.0 Hardware types (PCCardHardwareType...
	TableTitle - TABLE 9. Pc Card 3.0 Hardware types

	AppendixHeading1 - Appendix D Card Service Mapping
	AppendixHeading2 - D.1 Mapping to ‘classic’ Card and Socket Services
	AppendixHeading2 - D.2 Mappings to the PC Card Standard
	AppendixHeading2 - D.3 Functionally Equivalent
	AppendixHeading2 - D.4 Tuple Functions
	AppendixHeading2 - D.5 Block Memory Device Family
	AppendixHeading2 - D.6 Client Registration
	AppendixHeading2 - D.7 MacOS Environment
	AppendixHeading2 - D.8 Not Relevant to Hardware
	AppendixHeading2 - D.9 API Simplification

