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P R E F A C E
About This Book

This revision to Designing PCI Cards and Drivers for Power Macintosh Computers 
includes corrections to the material in the original document and incorporates 
information that PCI card and device driver developers need to know about the 
NewWorld architecture introduced in the iMac computer and incorporated in 
Macintosh computers released after the iMac.

The book describes the Macintosh implementation of the Peripheral 
Component Interconnect (PCI) local bus established by the PCI Special Interest 
Group. It also describes the Macintosh Open Firmware model, and provides the 
definitive reference for Power Macintosh native device drivers and the 
Macintosh Name Registry. 

The PCI local bus standard defines a high-performance interconnection method 
between plug-in expansion cards, integrated I/O controller chips, and a 
computer’s main processing and memory system.

The first generation of Power Macintosh computers—the Power Macintosh 
6100, 7100, and 8100 models—supported NuBus™ expansion cards. Subsequent 
Power Macintosh models support the PCI standard. This book contains useful 
information for developers who want to design PCI expansion cards and their 
associated software to be compatible with Macintosh computers.

The information about PowerPC native device drivers, the Macintosh Name 
Registry, and the Driver Services Library in Part 4 of this document is not 
specific to PCI cards. The reference material found in those chapters is useful to 
anyone interested in writing device drivers for peripherals connected to Power 
Macintosh computers released after the PCI bus architecture became part of the 
Macintosh hardware design. 

This book is general and does not provide model specific details. You should 
refer to the developer notes that accompany each Macintosh product release for 
exact details of that product’s PCI implementation. 

This document is written for professional hardware and software engineers. 
You should be generally familiar with existing Macintosh technology, including 
Mac OS (the Macintosh system software) and the Apple RISC technology based 
on the PowerPC microprocessor. For recommended reading material about 
Macintosh and PowerPC technology, see the documents listed in 
“Supplementary Documents” (page 26).
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P R E F A C E
Contents of This Book 0

This book is divided into three parts and contains 15 chapters.

PCI Bus Overview 0

Part 1, “The PCI Bus,” describes the PCI bus and tells you how it works with 
Power Macintosh computers:

■ Chapter 1, “PCI Bus Overview,” describes the PCI standard and summarizes 
the ways that Power Macintosh computers comply with it.

■ Chapter 2, “Data Formats and Memory Usage,” defines the formats in which 
data moves over the PCI bus and the memory spaces reserved for PCI use.

System Startup by Open Firmware 0

Part 2, “The Open Firmware Process,” describes the startup process in Power 
Macintosh computers that support devices attached to the PCI bus and run 
Mac OS. The first chapter in Part 2 describes how the Macintosh boot process 
has changed and how ROM and memory mapping differ since the introduction 
of the iMac computer. This is essential reading for PCI card and peripheral 
device developers interested in participating in the boot process on the latest 
Macintosh computer models.

■ Chapter 3, “Introduction to the NewWorld Architecture,” describes how the 
NewWorld Architecture works from an organizational and execution flow 
standpoint and describes differences from older architectures. 

■ Chapter 4, “Startup and System Configuration,” describes how 
PCI-compatible Macintosh computers recognize and configure peripheral 
devices connected to the PCI bus.

■ Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware drivers, 
which control PCI devices during the Open Firmware startup process.
24 



P R E F A C E
Native PowerPC Drivers 0

Part 4, “Native Device Drivers,” tells you how to design and write runtime PCI 
card drivers for Power Macintosh computers. These drivers are called native 
because they are written for execution by the native instruction set of the 
PowerPC microprocessor. Part 3 consists of these chapters:

■ Chapter 6, “Native Driver Overview,” presents the general concepts and 
framework applicable to PCI drivers for PowerPC Macintosh computers.

■ Chapter 7, “Finding, Initializing, and Replacing Drivers,” discusses what PCI 
driver and card designers can do to improve the compatibility of their 
products.

■ Chapter 8, “Writing Native Drivers,” gives you details of native driver 
design and coding, including how to use services provided by the Macintosh 
Driver Loader Library.

■ Chapter 9, “Driver Loader Library,” describes the Driver Loader Library 
(DLL), a CFM shared-library extension to the Macintosh Device Manager. 

■ Chapter 10, “Name Registry,” describes the Mac OS data structure that stores 
device information extracted from the PCI device tree.

■ Chapter 11, “Driver Services Library,” details the general support that 
Mac OS provides for device drivers, including interrupt and timing services.

■ Chapter 12, “Expansion Bus Manager,” discusses a collection of PCI 
bus-specific system services available to native device drivers.

■ Chapter 13, “Graphics Drivers,” describes the calls serviced by typical 
display drivers.

■ Chapter 14, “Network Drivers,” describes the construction of a sample 
network driver. 

■ Chapter 15, “SCSI Drivers,” describes the construction of a sample native 
SCSI Interface Module (SIM) compatible with Macintosh SCSI Manager 4.3.

Appendixes 0

Four appendixes follow the main part of this book.

■ Appendix A, “Big-Endian and Little-Endian Addressing,” discusses the 
theory and problems of handling mixed-endian formats.
25



P R E F A C E
■ Appendix B, “Graphic Memory Formats,” describes the ways that graphic 
information and video frames are stored in PCI-based Power Macintosh 
computers.

■ Appendix C, “PCI Header Files,” describes the PCI header files and lists all 
the routines and data structures documented in this book.

■ Appendix D, “Abbreviations,” lists the abbreviations and acronyms used in 
this book.

Supplementary Documents 0

The documents described in this section provide information that complements 
or extends the information in this book.

Apple Publications 0

Apple publishes a variety of books, software development kits (SDKs), and 
technical notes designed to help third-party developers design hardware and 
software products compatible with Apple computers. Apple publications and 
SDKs can be found on the Developer CD Series discs and on the Apple 
Developer website at

http://www.apple.com/developer/

For the latest documentation related to PCI and Open Firmware development, 
you should visit

http://bootrom.apple.com/

Other Publications 0

This book cites several documents that are not published by Apple. They are 
available from the organizations listed below.

American National Standards Institute

ANSI has prepared a standard called ANSI/IEEE X3.215-199x Programming 
Languages—Forth. It is a useful reference for the Forth language used in the 
Open Firmware process. You can contact ANSI at
26 
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American National Standards Institute
11 West 42nd Street
New York, NY 10036
Phone 212-642-4900
Fax 212-302-1286

http://web.ansi.org/

FirmWorks

FirmWorks has issued a book, Writing FCode Programs for PCI, that provides 
essential information for programmers designing Open Firmware drivers for 
PCI cards. This book is published by FirmWorks and is available by writing to

FirmWorks
480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218
Email info@firmworks.com
Phone 415-917-0100
Fax 415-917-6990

http://www.firmworks.com/ 

Institute of Electrical and Electronic Engineers

The essential IEEE document for designers of Macintosh-compatible PCI card 
firmware is 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, 
IEEE part number DS02683. It is referred to in this book as IEEE Standard 1275. 
You can order it from

IEEE Standards Department
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331
Phone 800-678-4333 (U.S.)
Phone 908-562-5432 (International)

http://standards.ieee.org/index.html

Note
The P1275 Working Group continues to work on new PCI 
bus and processor bindings, as well as extensions to IEEE 
Standard 1275. Current documents, including PCI Bus 
Binding to IEEE 1275-1994, are available on an anonymous 
Internet FTP site, donated by Sun Microsystems, at 
http://playground.sun.com/pub/p1275. ◆
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PCI Special Interest Group

The essential PCI standard document for designers of Macintosh-compatible 
PCI cards is PCI Local Bus Specification, Revision 2.0. It is available from

PCI Special Interest Group
P. O. Box 14070
Portland, OR 97214
Phone 800-433-5177 (U.S.)
Phone 503-797-4207 (International)
Fax 503-234-6762

http://www.pcisig.com/

The PCI SIG also publishes PCI Multimedia Design Guide and the PCI to PCI 
Bridge Architecture Specification.

SunSoft Press

SunSoft Press has issued a book, Writing FCode Programs, that provides useful 
background information about FCode. Its ISBN number is 0-13-107236-6. This 
book is published by PTR Prentice Hall and is available at most computer 
bookstores.

Conventions and Abbreviations 0

This book uses the following typographical conventions and abbreviations. 

Typographical Conventions 0

New terms appear in boldface where they are first defined. These terms also 
appear in the glossary (page 601).

Computer-language text—any text that is literally the same as it appears in 
computer input or output—appears in Letter Gothic font. 

Hexadecimal numbers are preceded by 0x. For example, the hexadecimal 
equivalent of decimal 16 is written as 0x10.
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Notes 0

The following three types of notes in this book are set apart from the text:

Note
A general note like this contains information that is 
interesting but not essential for an understanding of the 
subject. ◆ 

IMPORTANT

Important notes call your attention to information that you 
should not ignore. ▲

▲ W AR N I N G

Warnings tell you about potential problems that could 
result in system failure or loss of data. ▲

Abbreviations 0

Wherever possible, this book uses standard abbreviations for units of measure. 
It also supports readability by using acronyms for many technical terms. 
Appendix D, “Abbreviations,” contains a complete list of the abbreviations and 
acronyms used in this book.
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P A R T  O N E
The PCI Bus 1
This part of Designing PCI Cards and Drivers for Power Macintosh Computers 
describes the PCI bus and tells you how it works with Power Macintosh 
computers. It contains three chapters: 

■ Chapter 1, “PCI Bus Overview,” describes the PCI standard and summarizes 
the ways that Power Macintosh computers comply with it.

■ Chapter 2, “Data Formats and Memory Usage,” defines the formats in which 
data moves over the PCI bus and the memory spaces reserved for PCI use.

Later parts of this book cover the following topics:

■ Part 3, “The Open Firmware Process,” describes the startup process in Power 
Macintosh computers that support the PCI bus. This includes information 
about the startup process for the NewWorld architecture as well as earlier 
architectures. Part 2 begins on (page 67).

■ Part 4, “Native Device Drivers,” tells you how to design and write run-time 
native device drivers that support the PCI-bus compatible Power Macintosh 
architecture. Part 4 begins on (page 137).
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The PCI local bus standard defines a method for connecting both ASIC chips 
and plug-in expansion cards to a computer’s main memory and processing 
circuitry. Power Macintosh computers use the PCI bus or buses to communicate 
both with internal I/O chips and with plug-in expansion cards. This book 
discusses Apple’s implementation of the PCI bus for expansion cards. 

Apple’s underlying policy is to support the PCI standard, as expressed in PCI 
Local Bus Specification, Revision 2.1, referred to here as the PCI specification. 
This standard specifies the logical, electrical, and mechanical interface for 
expansion cards, so that any card that conforms to it should be compatible with 
any computer that supports it. Hence expansion cards designed to be compliant 
with the PCI specification are generally hardware compatible with Power 
Macintosh computers and with other computers that comply with PCI, 
including computers that do not use Mac OS. The PCI specification is listed 
under “Supplementary Documents,” in the preface.

Buses conforming to the PCI standard include the following main features:

■ operation independent of any particular microprocessor design

■ 32-bit standard bus width with a compatible 64-bit upgrade path

■ either 5 V or 3.3 V signal levels

■ bus clock rate up to 66 MHz

■ up to 132 MB per second transfer rate over the 32-bit bus

A PCI bus is typically connected to the computer’s processor and RAM system 
by an ASIC chip called a PCI bridge. Power Macintosh computers contain a 
proprietary bridge chip to connect their PCI buses to the PowerPC processor 
bus.

Benefits of PCI 1

PCI represents a needed standard in the desktop computer industry. Because 
the PCI bus uses the same architecture and protocols to communicate with I/O 
chips and with plug-in expansion cards, it reduces the cost and complexity of 
computer hardware. It lets CPU manufacturers provide expandability at 
minimum cost.

The establishment of the PCI bus standard has benefits for developers of 
peripheral equipment, too. These benefits include
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■ delivering a high level of bus performance, enough for most current I/O 
needs

■ letting peripheral equipment developers produce expansion cards that can 
operate with both Macintosh computers and computers that use other 
operating systems

■ encouraging the large-scale marketing of chips compatible with PCI, which 
tends to reduce the component cost of peripheral equipment

■ providing a relatively simple method for automatically configuring external 
devices into the user’s system during system startup

PCI and NuBus 1

This section provides some background about the differences between the PCI 
and NuBus architectures. The PCI bus exhibits a number of fundamental 
differences from NuBus™, the previous Macintosh bus standard. The most 
important of these differences are listed in Table 1-1.

Table 1-1 Comparison of NuBus and the PCI bus 

Feature NuBus PCI bus

Bus clock rate 10 MHz 33 MHz, 66 MHz

Addressing Geographic Dynamic

Signal loading No enforced rules One load per signal

Transaction length 
determination

Determined at start 
of transaction

Determined at end of 
transaction

Bus termination Resistor network Not required

Bus control arbitration Distributed Centralized

Addressing spaces Memory only Memory, I/O, and 
configuration

Wait-state generators Slave only Slave and master

Kinds of expansion Cards only Cards and ASIC chips
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The Macintosh Implementation of PCI 1

To achieve maximum compatibility with PCI-compliant devices and plug-in 
cards, the current line of Power Macintosh computers are designed to comply 
with the PCI Local Bus Specification, Revision 2.1. This support includes, as a 
minimum, the following general areas:

■ signal types and pin assignments

■ bus protocols, including arbitration

■ signal electrical characteristics and timing

■ configuration data and card expansion ROM formats

■ plug-in card mechanical specifications

As explained in “Address Allocations” (page 58), a Power Macintosh computer 
may contain as many as four separate PCI buses for expansion cards, although 
initial models contain fewer than four. 

The next sections contain clarifications and interpretations of the PCI 
specification that more fully specify the Macintosh implementation of PCI for 
expansion cards.

Power Macintosh PCI System Architecture 1

The initial implementation of the PCI bus on Power Macintosh computers 
supports up to four peer PCI bridge connections to the main processor bus. 
Figure 1-1 presents a general block diagram of the Power Macintosh system 
architecture with the PCI bus.

Timeout 255 bus clocks 5 bus clocks

Burst capability 8, 16, 32, or 64 bytes Any number of bytes

Power allocation 15 W per card 7.5, 15, or 25 W per card

Table 1-1 Comparison of NuBus and the PCI bus (continued)

Feature NuBus PCI bus
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Figure 1-1 PCI system architecture for Power Macintosh

The ARBus (Apple RISC bus) shown in Figure 1-1 is Apple’s implementation of 
the PowerPC processor bus for Power Macintosh computers. Also note that to 
date no more than two built-in PCI buses have been included in shipping 
Macintosh configuration.

PCI Bus Characteristics 1

The PCI bus on Power Macintosh follows the requirements of the PCI 
specification described on (page 28). However, the PCI specification allows 

PCI host
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PCI host
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PCI host
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for expansion
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Expansion
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for expansion
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for expansion
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certain options. Table 1-2 shows the specification options chosen for the first 
implementation of the PCI bus in Power Macintosh computers.

Notes
1 The Power Macintosh implementation does not support devices that address 
memory space below 1 MB.
2 The PCI specification allocates power per slot, but the Macintosh 
implementation contains one power allocation for all slots. For example, a 
three-slot Power Macintosh computer has 9 A of 5 V power or 6 A of 3.3 V 
power available for PCI cards, which can be installed in any combination 
among the slots. Apple recommends that cards stay within the proportional 
allotment: 3 A for 5 V and 2 A for 3.3 V cards. However, configurations with 

Table 1-2 PCI options chosen for Power Macintosh

Option Power Macintosh implementation

PCI clock rate 33 MHz (30 ns cycle time) and 66 MHz

Address/data bus width 32 bits and 64 bits

Signal voltage 5 V, 3.3 V

PCI address spaces supported Memory,1 I/O, and configuration 

Minimum power supplied 5 V rail: 3 A (15 W) per slot2 3.3 V rail: 2 A (6.6 W) per slot2 

PCI bus arbitration Fair, round-robin, all slots master-capable

Mechanical bracket ISA style

Plug-in card expansion ROM Highly recommended3

IDSEL signals Provided by resistive connections to AD lines 

Interrupt routing INTA#, INTB#, INTC#, INTD# wires combined by OR per 
slot to provide a unique slot interrupt for each card

LOCK# Not used by the Macintosh system4

PERR#, SERR# Not used by the Macintosh system

SBO#, SDONE Not used by the Macintosh system. No cache coherency 
(snooping) across the PCI bus

JTAG Not used by the Macintosh system
38 The Macintosh Implementation of PCI



C H A P T E R  1

PCI Bus Overview
fewer cards or lower-power cards can support other cards that need more 
power. These figures are minimum power allocations; some Power Macintosh 
models may provide more power for PCI cards.
3 While expansion ROMs are optional in the PCI specification, Apple strongly 
recommends their inclusion on plug-in cards. True “plug-and-play” operation 
(plug it in, turn it on, it is available during system boot) can be provided only 
when an expansion ROM contains both startup firmware and run-time driver 
code that supports the Open Firmware model for PCI cards. See Chapter 4, 
“Startup and System Configuration,” for more information on expansion ROM 
benefits, contents, and data formats.
4 LOCK# is an optional pin in the PCI specification. 

Semaphores must be maintained in main system memory through processor 
control, using the routines described in “Atomic Memory Operations” 
beginning on page 426. Power Macintosh does not support the use of 
semaphores in PCI memory space.

PCI Topology 1

The Power Macintosh PCI implementation supports a PCI subsystem with the 
following general restrictions:

■ Not more than one PCI-to-ISA bridge can be implemented.

■ In systems with two host bridges, ISA bus DMA masters located behind a 
PCI-to-ISA bridge may target only main memory for DMA transactions, not 
PCI space.

■ In systems with two host bridges, PCI masters located behind one host 
bridge may not access PCI locations that are mapped behind a PCI-to-PCI 
bridge located behind the second host bridge.

PCI Host Bridge Operation 1

The most basic function of the PCI host bridge is to translate between PowerPC 
processor bus cycles and PCI bus cycles. The bridge in the first implementation 
of PCI on Power Macintosh provides the following features:

■ It supports asynchronous clock operation up to 50 MHz on the PowerPC bus 
and up to 33 MHz on the PCI bus. The system architecture in Macintosh 
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PowerPC G3 computers supports asynchronous clock operation up to 100 
MHz on the PowerPC bus and up to 66 MHz on the PCI bus.

■ It supports split-transaction PowerPC bus implementations.

■ It provides dual alternating 32-byte data transaction buffers, one set for bus 
master transactions initiated by the PowerPC processor bus and one set for 
bus master transactions initiated by the PCI bus.

■ The PowerPC bus can be used in big-endian or little-endian modes. PCI data 
is always little-endian, and is correctly translated by the PCI host bridge to 
and from the PowerPC bus in conformance to the PowerPC mode setting. 
Mac OS is big-endian, so the PowerPC mode setting is big-endian while 
running Mac OS. For information on translating big-endian and little-endian 
data formats, see “Addressing Modes” (page 60).

■ It supports concurrent PowerPC bus and PCI bus activity.

■ Posted writes are always enabled from both PowerPC and PCI masters.

■ It supports a 32-byte cache line size.

■ It supports and optimizes for the cycle types memory read line and memory 
write and invalidate. The bridge also accepts memory read multiple cycles 
from PCI masters and treats them the same as memory read line cycles.

■ The longest burst generated as a master or accepted before disconnecting as a 
target is 32 bytes, the Power Macintosh cache line size.

■ It uses medium device select (DEVSEL) timing when operating as a PCI 
target.

Table 1-3 lists the commands that the Macintosh PCI host bridge supports for all 
PCI cycle types (all encodings of lines C/BE#[3:0]). The third and fourth 
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columns show whether the bridge can generate the cycle on the PCI bus as a 
master and whether it can respond to the cycle as a target.

PCI memory space is supported through the bridge transparently—it requires 
no software abstraction layer to provide functionality. Because the PCI 
specification defines cycle types that are not directly supported by the PowerPC 
processor, the Macintosh PCI host bridge provides means to create I/O, 
configuration, interrupt acknowledge, and special cycles. The bridge generates 
these cycles in response to the system interface routines described in “PCI 
Nonmemory Space Cycle Generation” (page 453). To ensure compatibility with 

Table 1-3 Bridge support for PCI cycle types 

Lines 
C/BE#[3:0] Command

Supported as 
PCI master

Supported as 
PCI target

0000 (0x0) Interrupt acknowledge Yes No

0001 (0x1) Special cycle Yes No

0010 (0x2) I/O read Yes No

0011 (0x3) I/O write Yes No

0100 (0x4) Reserved n.a. n.a.

0101 (0x5) Reserved n.a. n.a.

0110 (0x6) Memory read Yes Yes

0111 (0x7) Memory write Yes Yes

1000 (0x8) Reserved n.a. n.a.

1001 (0x9) Reserved n.a. n.a.

1010 (0xA) Configuration read Yes Yes

1011 (0xB) Configuration write Yes Yes

1100 (0xC) Memory read multiple No Yes

1101 (0xD) Dual address cycle No No

1110 (0xE) Memory read line Yes Yes

1111 (0xF) Memory write and invalidate Yes Yes
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future Power Macintosh computers, software must use these routines to access 
PCI spaces other than PCI memory space.

I/O Space 1

The PCI Specification requires a 16-bit minimum size I/O space. The first 
implementation of the PCI bus for Power Macintosh provides a 23-bit I/O 
space, although the Macintosh address allocation software tries to fit all I/O 
address space requests within the 16-bit minimum size. The interface to I/O 
space uses a memory-mapped section in each PCI host bridge’s control space. 
The system determines which PCI host bridge and bridge area to use when 
accessing each specific card. 

Note
In the first PCI implementation for Power Macintosh 
computers, the bridge posts all PCI write transactions. If 
the target is in PCI memory space, the bridge writes data 
directly; otherwise, the bridge generates the necessary I/O, 
configuration, or special cycle to provide write access. The 
bridge acknowledges cycle completion even though the 
transaction may not have been completed at its destination. 
To check for final write completion, a driver may request a 
read transaction for the destination device. Verifying that 
the read transaction has finished will establish that the 
previous write cycle was flushed from the bridge, without 
the need to compare data. ◆

Because PCI allocations in I/O space are highly fragmented, high-performance 
interfaces should try to use the PCI memory space instead of I/O space. The 
programming interface for I/O cycles is described in “Fast I/O Space Cycle 
Generation” (page 454).

Configuration Space 1

The PCI host bridge generates configuration cycles in an indirect manner, 
similar to mechanism #1 suggested in the PCI specification, using configuration 
address and configuration data registers to create a single configuration cycle 
on the PCI bus. The system determines which PCI host bridge and bridge area 
to use when accessing each specific card. Because configuration cycles must go 
through a programming interface, high performance interfaces should try to 
use the PCI memory space instead of configuration space. The programming 
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interface for configuration cycles is described in “Configuration Space Cycle 
Generation” (page 460).

Interrupt Acknowledge Cycles 1

Mac OS does not use interrupt acknowledge cycles, but the Macintosh software 
supports their generation in case some PCI bus chips require them. If a driver 
needs interrupt acknowledge transactions to control its PCI device, it can use a 
programming interface that invokes an interrupt acknowledge (read) cycle on 
the PCI bus. The data returned will be the device’s response, traditionally an 
Intel-style interrupt vector number. The programming interface for interrupt 
acknowledge cycles is described in “Interrupt Acknowledge Cycle Generation” 
(page 466).

Special Cycles 1

Special cycles are generated by using a programming interface that causes a 
special cycle (write) on the PCI bus. The special cycle transmits the data 
message passed to the interface. The programming interface for special cycles is 
described in “Special Cycle Generation” (page 468).

Maximizing PCI Bus Performance 1

The guidelines in this section examine the PCI bus commands, the operation of 
the PowerPC processor to PCI interface bridge chip, achievable PCI bandwidth 
on PCI Power Macintosh computers, and finally, Mac OS services available to 
maximize PCI bandwidth. 

A good place to start addressing PCI performance on Power Macintosh CPUs is 
the PCI standard itself. The PCI Bus Specification features a 32-bit data path –– 
upgradeable to 64-bits –– with synchronous bus operation up to 33 Mhz, and 
the ability to transfer a data object on the raising edge of each PCI clock cycle. 
Assuming that neither the initiator nor the target inserts wait states during each 
data phase, the maximum theoretical bandwidth over a 32-bit bus is 132 
Mbytes/second. This also assumes continuous bursting with a 32-bit data object 
transferred on each PCI clock cycle. (Apple’s implementation incorporates a 
32-bit data bus.)
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Because the IB chip competes for system memory along with other system 
devices, continuous PCI bursting is not possible. Therefore, the achievable PCI 
bandwidth on Power Macintosh computers is less than the PCI theoretical 
maximum. Also, the bandwidth is dependent on the PCI target’s hardware 
design and the architecture of the driver software.

A PCI burst transfer is defined by one PCI bus transaction with a signal address 
phase followed by two or more data phases. One may ask, how can the bus 
master transfer a data object on each PCI clock cycle? To initiate a bus 
transaction, the PCI master only has to arbitrate for ownership of the bus one 
time. The master then issues the start address and transaction type during the 
address phase. It is the responsibility of the target device to latch the start 
address into an address counter and increment the addressing from data phase 
to data phase. (A single-beat read or write transaction is defined by a signal 
address phase followed by only one data phase.)

For data to be transferred between the PowerPC processor and the PCI target, 
or for the PCI target to transfer data between system memory, one of the 
commands shown in Table 1-4 is initiated.

The I/O Read and I/O Write commands are used to transfer data between the 
PowerPC processor and the target’s I/O space.

Table 1-4 Commands between PowerPC processor and PCI bus

PCI command Initiator

I/O Read Processor generated

I/O Write Processor generated

Configuration Read Processor generated

Configuration Write Processor generated

Memory Read Processor or PCI Master generated

Memory Read Line Processor or PCI Master generated

Memory Read Multiple Processor or PCI Master generated

Memory Write Processor or PCI Master generated

Memory Write and Invalidate Processor or PCI Master generated
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The Configuration Read and Configuration Write commands are used to 
transfer data between the PowerPC processor and the PCI target’s configuration 
registers during system initialization.

The Memory Read and Memory Write commands are used to transfer data 
between the PCI Master and the target’s memory space.

The Memory Read Line command is used by the PCI Master to transfer a cache 
line of data from the PCI target’s memory space.

The Memory Read Multiple command is used by the PCI Master to transfer 
more than one cache line of data from the PCI Target's memory space.

The Memory Write and Invalidate command is used by the PCI Master to 
transfer one or more complete cache lines of data to the PCI target's memory 
space.

A cache line is 32-bytes for Apple Power Macintosh computers.

PowerPC Processor and PCI Commands 1

The PowerPC processor has a 64-bit data bus and its system memory space 
defaults to write back cache mode, while the PCI bus is 32-bits wide and the 
PowerPC processor sets PCI address space to cache inhibit mode. For PowerPC 
initiated read and write transactions between PCI memory space, the IB chip 
(the PowerPC Processor to PCI Bridge) will initiate basically one of the three 
following types of PCI commands:

1. a single-beat Memory Read or Write command;

2. a Memory Read or Write command with two data phases –– defined as a 
burst transaction;

3. a Memory Read Line or Memory Write and Invalidate command that bursts 
a 32-byte cache line.

IMPORTANT

The PPC processor will not burst to or from address space 
marked cache inhibited. Therefore, under default cache 
settings, the IB chip will not initiate the Memory Read Line 
or Memory Write and Invalidate commands to a PCI target.

As per the PCI Specification, PCI Power Macintosh Computers support PCI I/O 
space. PCI I/O commands and Mac OS services available for them are 
addressed later in this Technote.
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Bursting from PowerPC to PCI 1

Provided software is written to utilize floating-point load and store instructions, 
as opposed to integer operations, the IB chip will burst a two-beat Memory 
Read or Memory Write command (two 4-byte data phases with one PCI 
transaction). The PowerPC floating-point data is 8-bytes wide and integer data 
is 4-bytes. Utilizing floating-point instructions in effect nearly doubles the PCI 
bandwidth over single-beat PCI Memory Read or Write commands. This is 
worth investigating for solutions where the PCI hardware does not support 
cache line bursting.

If the PCI target’s address space is set to write through cache mode, the IB chip 
will perform an eight-beat burst read on PCI with the Memory Read Line 
command. This translates to a cache line, eight 4-byte long words, i.e. 32-bytes.

If the PCI target’s address space is set to write back cache mode, the IB chip will 
perform an eight-beat burst write on PCI with the Memory Write and Invalidate 
command.

IMPORTANT

Extreme care must be taken for burst writes to PCI address 
space to perform appropriate cache flushing.

Bursting from PCI to PowerPC 1

If the address is aligned on an 8-byte boundary, the IB chip will respond to PCI 
Memory Read and Memory Write commands by a two-beat PCI transaction to 
align two 32-bit PCI data words to the 64-bit PowerPC bus. On 
non-8-byte-aligned addresses, single-beat transactions are implemented.

The PCI Memory Write and Invalidate command will perform an 8-beat 
transaction if the address is aligned on a 32-byte boundary.

The PCI Memory Read Line or Memory Read Multiple commands perform an 
eight-beat transaction if the address is aligned to an address less than or equal 
to 8-bytes less than the next 32-byte boundary. The PCI Memory Read Line and 
Memory Read Multiple commands are treated the same by the IB chip, in either 
command case the IB chip disconnects after an eight-beat transaction, which is 
one 32-byte cache line.
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Note
Keep in mind that the main memory space is set to write 
back cache mode.

As mentioned earlier, 132 Mbytes/sec is the maximum theoretical bandwidth 
across a 32-bit PCI bus at 33 Mhz. Table 1-5 and Table 1-6 show the maximum 
achievable bandwidth that can be expected, depending on the type of PCI 
transaction performed. The values shown are not guaranteed, but are realistic 
ranges that have been measured moving large buffers (many thousands of 
bytes) to average out PCI arbitration PCI wait states across a Power Macintosh 
Computer’s PCI bus.

The bandwidth performance numbers shown in Table 1-5 and Table 1-6 are 
based on the following assumptions:

Bus speed:

■ Processor Bus is running at minimally 40 Mhz

■ PCI Bus is running at 33 Mhz

PCI target responses during PowerPC processor to PCI transactions:

■ PCI targets are medium DevSel_ timing with NO inserted wait states for 
reads and writes.

■ PCI target does not assert Stop_ to disconnect bus.

PCI master requirements during PCI master with system memory 
transactions: 

■ PCI master is able to source data within one clock of Frame_ assertion with 
no inserted wait states for subsequent data phases.

■ PCI master is able to sink data with no inserted wait states for subsequent 
data phases once the host bridge asserts Trdy_.
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■ PCI master is able to start its next transaction within two clocks from the PCI 
bus returning to the Idle state from its previous transaction.

Table 1-6 shows the PCI master to system memory bandwidth measurements 
for a 33 MHz PCI bus in a system with a 40 MHz processor bus. 

Table 1-5 PowerPC processor to PCI maximum bandwidth summary 

Bus master
Transaction 
description

Bytes per
transaction

PCI
bandwidth,
MB/s

PowerPC 
setup

Processor Write To PCI 4 20 Integer Store

Processor Write To PCI 8 40 Floating Point Store

Processor Write To PCI 32 85 PCI Copyback

Processor Read from PCI 4 11 Integer Load

Processor Read from PCI 8 20 Floating point Load

Processor Read from PCI 32 40 PCI WriteThru

Table 1-6 PCI master to system memory maximum bandwidth summary

PCI master
Transaction
description

Bytes per
transaction

PCI
bandwidth,
MB/s

PowerPC 
command

PCI master Write to 
memory

4 20 Mem Write

PCI master Write to 
memory

8 35 Mem Write

PCI master Write to 
memory

32 80 Mem Write and 
Invalidate
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For number of bytes per transaction 4 indicates single-beat; 8 equals two-beats; 
and 32 is an 8-beat transaction.

Mac OS & Services That Maximize PCI Throughput 1

This section discusses the Mac OS services available to maximize PCI 
throughput. 

Beginning with the Mac OS version 7.5.2 release, a DSL (Driver Services 
Library) that implements all programming interface services is available for 
drivers. The complete API for the DSL is documented in Chapter 11, “Driver 
Services Library.”

To coordinate I/O operations that transfer buffers between system memory and 
PCI address space, the Macintosh OS provides two functions with the DSL: 
PrepareMemoryForIO, and CheckpointIO. The PrepareMemoryForIO function 
allocates resident system memory to buffers, provides logical and physical 
address information, and in conjunction with CheckpointIO manages coherency 
between system memory and the PowerPC caches. CheckpointIO is called after 
the buffer transfer is complete and either relinquishes the memory back to the 
OS and adjusts the processor caches for coherency, or prepares for another IO 
transfer.

Note
PrepareMemoryForIO should not be confused with PCI I/O 
space. It is for buffers whether they are located in PCI 
memory or PCI I/O space. ◆

PCI master Read from 
memory

4 10 Mem Read

PCI master Read from 
memory

8 15 Mem Read

PCI master Read from 
memory

32 30 Mem Read line 
multiple

Table 1-6 PCI master to system memory maximum bandwidth summary

PCI master
Transaction
description

Bytes per
transaction

PCI
bandwidth,
MB/s

PowerPC 
command
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PrepareMemoryForIO is an example of a service in the DSL; PCI cards that have 
DMA hardware should use PrepareMemoryForIO to locate physical addresses in 
system memory. Older I/O expansion cards would typically use the toolbox call 
GetPhysical to locate physical addresses in system memory. To be fully 
compatible with the present and future Mac OS releases, drivers should only 
use the DSL services described in Chapter 11, “Driver Services Library.”

Remembering that PCI address space defaults to cache inhibit mode, to enable 
the PowerPC to burst to areas of PCI memory space, that area must be set to 
cacheable. This can be done with the SetProcessorCacheMode function described 
in “SetProcessorCacheMode” (page 372). Set the desired PCI address space to 
kProcessorCacheModeCopyBack for cache line writes and 
kProcessorCacheModeWriteThrough for cache line reads.

IMPORTANT

Extreme care must be taken for burst writes to PCI address 
space to perform appropriate cache flushing. ▲

Be advised that the SetProcessorCacheMode has an undocumented limitation. 
The PowerPC address space is divided into sixteen 256-Mbyte segments that 
are distinguished by the upper 4-bits of the effective address. The 
SetProcessorCacheMode is only capable of changing the cache setting for one 
contiguous section of memory per 256-Mbyte segment. Therefore, if two PCI 
cards are configured where they both have PCI address assignments in the 
same segment only one card can change its address space cache setting.

For example, if two cards (card x and card y) have addresses mapped into 
segment 8, one at 0x80800000 and another at 0x80801000, the first call to 
SetProcessorCacheMode from the driver of card x to make a cacheable address 
space in segment 8 will work. A second call, say from the driver of card y, to 
modify the cache setting in segment 8 will not work nor will it report an error. 
This scenario will most likely result in a lower than expected performance for 
card y, because card y address space is actually cache inhibited which disables 
PCI transactions of 32-byte cache lines. If the two cards are mapped into 
different segments, such as 8 and A, then they both can modify the cache 
settings within their perspective segments. This limitation will be relaxed in the 
future.

Extensions to the BlockMove routine have been incorporated in the DSL that 
optimize performance on the PowerPC CPU family. In particular, BlockMoveData 
has been optimized for data that is cacheable and BlockMoveDataUncached for 
data that is cache inhibited. The difference between the cached and uncached 
versions of these instructions is that, for BlockMoveData, the PPC dcbz 
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instruction is used to avoid the logically unnecessary read of the destination 
cache blocks. BlockMoveDataUncached does not use the dcbz instruction because 
dcbz is extremely slow for address space marked cache inhibited or cache write 
thru.

The difference between BlockMove and BlockMoveData versions is whether or not 
the block being moved contains 68K instructions. If the data does contain 68K 
instructions BlockMove must be called which also flushes the DR (Dynamic 
Recompilation) Emulator’s cache. This is costly time-wise, so if the block does 
not contain 68K instructions, be sure to use BlockMoveData or 
BlockMoveDataUncached. Also with performance in mind, when appropriate the 
BlockMove routines will align the source and destination address to utilize 
floating-point load and store instructions.

For transfers of large buffers between PCI cards the BlockMoveData or 
BlockMoveDataUncached functions should be used, depending if the destination 
address space is marked write back cacheable or not. Native PCI drivers most 
likely will not need to consider the non-Data variant of the BlockMove routines 
because destination buffers either in PCI address space or system memory will 
probably not need to execute 68K code.

To initiate a PCI burst of a cache line, use the BlockMoveData function. Provided 
the PCI address space is marked cacheable as explained earlier, the 
BockMoveData function forces the IB chip to burst 32-byte cache lines –– 
eight-beat data phases per PCI command transaction.

To read or write PCI I/O space, the Expansion Bus Manager provides routines 
to transfer data –– byte, word, or long word (8, 16, or 32 bits, respectively) –– 
using PCI I/O Read and I/O Write commands. The Expansion Bus Manager is 
part of the ROM firmware in PCI Power Macintosh CPUs. These routines also 
perform appropriate byte swapping. For a further description, refer to Chapter 
12, “Expansion Bus Manager.”. PCI cards that are limited to I/O space, and do 
not incorporate PCI memory space, are limited to PCI I/O Read and I/O Write 
commands to transfer data between the PowerPC processor and PCI target. If 
PCI I/O data needs to be processed quickly, note there is a significant 
performance hit using Expansion Manager Routines. These routines are 
intended for PCI targets that have I/O registers or low bandwidth I/O buffers. 
The IB chip does not burst PCI I/O Read nor burst PCI I/O Write commands.

As described in “Fast I/O Space Cycle Generation” (page 454), the PCI property 
assigned-addresses provides vector entries that represent physical addresses on 
PCI cards. Using the APPL,address property, a driver can locate a logical address 
of a physical I/O resource. By accessing the logical I/O address, the IB chip 
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generates the appropriate PCI I/O command. Therefore a driver can generate 
PCI I/O commands without using the Expansion Bus Manager Routines; the 
same way it accesses PCI memory space. This provides the fastest way to access 
I/O space, but note it does not perform the byte swapping provided by the 
Expansion Bus Manager routines.

Also note, the Expansion Bus Manager provides OS services to generate PCI 
Configuration Read, Configuration Write, Interrupt Acknowledge, and Special 
Cycle commands. 

To maximize bus performance, utilize the services available in the Driver 
Services Library, and pay close attention to PCI chip selection, in particular, 
chips that can execute cache line burst transactions with Memory Read Line, 
Memory Read Multiple, and Memory Write and Invalidate commands. 

To maximize your PCI card’s performance on the Power Macintosh platform. 
As a PCI target, your card should

■ minimize the number of wait states

■ accept burst transactions of cache line size without disconnecting

■ support 8-byte burst transactions if it cannot support cache line size burst 
transactions 

As a PCI master, your card should

■ minimize the number of wait states for transactions and arbitration

■ support linear burst ordering and be able to read or write at least one whole 
cache line of data

■ support the memory read line or memory read multiple cycle types for read 
transactions

■ support the memory write and invalidate cycle type for write transactions

PCI Transaction Error Responses 1

The PCI host bridge responds to system error and exception conditions in a 
manner that prevents the system from hanging. The bridge tries to signal the 
error or exception and terminate the transaction gracefully. Buffers are made 
available for use after the exception or error. Error translations when the PCI 
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host bridge acts as a PCI master (that is, as an agent for the PowerPC bus 
master) are shown in Table 1-7.

Error translations when the PCI host bridge acts as a PCI target (that is, as an 
agent for the PowerPC bus target) are shown in Table 1-8.

Table 1-7 Bridge master errors

Transaction
PCI target 
response Result

Write No DEVSEL 
(master abort)

Data discarded after posting. Received 
master abort error interrupt generated.

Write Target abort Data discarded after posting. Received 
target abort error interrupt generated.

Read No DEVSEL 
(master abort)

Machine check exception (bus error) 
generated. Received master abort error 
interrupt generated.

Read Target abort Machine check exception (bus error) 
generated. Received target abort error 
interrupt generated.

Table 1-8 Bridge target errors

Transaction
PowerPC bus 
target response Result

Write Bus error Data discarded after posting. Signaled 
target abort error interrupt generated 
(though target abort is not signaled 
because the write was already posted).

Read Bus error Generate target abort. Signaled target abort 
error interrupt generated.
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PCI Card Characteristics 1

Every PCI expansion card should contain code in its expansion ROM 
conforming to IEEE Standard 1275. Among other tasks, this code helps build a 
configuration structure called a device tree. The requirements for this code (and 
the benefits of its inclusion in expansion ROMs) are discussed in “The Open 
Firmware Startup Process” (page 83).

▲ W AR N I N G

Expansion cards should follow the mechanical 
specifications given in 
PCI Local Bus Specification, Revision 2.0, exactly. In 
particular, short PCI cards for Macintosh computers should 
not be longer than the 6.875-inch (174.63 mm) dimension 
specified. In some Macintosh models, 6.875 inches 
represents the maximum length for a PCI card, while in 
other models cards may be any length up to 12.283 
inches. ▲

PCI Video and Display Card Characteristics 1

Frame buffers in PCI video cards must support the existing Macintosh 
big-endian pixel ordering. If accessible in more than one data format, frame 
buffers on cards should also support multiple views (called apertures) by being 
mapped in different formats to separate areas of memory. These concepts are 
described in “Frame Buffers” (page 64).

PCI video display cards in Power Macintosh computers should define certain 
properties in the device tree to let the cards function during system startup. 
These properties are discussed in Chapter 5, “PCI Open Firmware Drivers.”

PCI video display devices should provide an interrupt to mark vertical 
blanking intervals. Mac OS utilizes this interrupt to do cursor and screen 
updates to avoid flicker. If the hardware interrupt for vertical blanking is not 
provided, a time management task may be installed. For more information on 
this subject, see Chapter 13, “Graphics Drivers.”
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Power Macintosh computers support the ISA bracket for PCI expansion cards.

Hard Decoding Device Address Space 1

Hard decoding is a practice in which a PCI device does not employ the fully 
relocatable PCI base address method for defining its address spaces. Instead, it 
chooses an address space and decodes accesses to it, with no indication to the 
system that it has done so. 

While hard decoding is not recommended by the PCI specification, certain 
designs based on Intel microprocessor architecture have used it—for example, 
VGA and IDE expansion cards. Hard decoding cripples the ability of system 
software to resolve address conflicts between devices. A problem exists when 
multiple devices that hard decode the same address space are plugged into a 
system, or when a device does not notify the system that it has hard decoded 
portions of the address space. If the system knows the range of addresses that a 
device hard decodes, addresses can be assigned to fully relocatable devices 
around the spaces already taken. However, if two devices that hard decode the 
same space are installed in the system, address conflicts can be resolved only by 
the system turning off one of the devices.

You can never hard decode addresses below 1 MB (for example, VGA addresses 
A0000 through BFFFF) because the Power Macintosh implementation of PCI 
does not support devices that address this space. Moreover, it is very common 
for a user to plug in multiple display cards to use multiple monitors. If more 
than one of these cards hard decodes the VGA addresses, only one will be 
enabled, and it cannot be guaranteed which device that will be. It is essential, 
therefore, that devices which hard decode address spaces after reset provide a 
method to turn off their hard-decoding logic. The result of turning off hard 
decoding must mean that the device responds to accesses only in the address 
spaces that are assigned to it through the PCI base register interface. This 
method can be executed in FCode during startup, before the device enters its 
reg property into the device tree. See Chapter 4, “Startup and System 
Configuration,” for more details. 

To summarize, avoid hard decoding to ensure that your card will always be 
allocated address space. If a device cannot turn off hard decoding, its FCode 
must enter a fixed address reg property entry into the device tree.
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Nonvolatile RAM 1

Power Macintosh computers that support the PCI bus contain nonvolatile RAM 
(NVRAM) chips with a minimum capacity of 4 KB. A typical allocation of 
NVRAM space is described in “Typical NVRAM Structure” (page 443).

An important use of the Power Macintosh NVRAM is to store the 
little-endian? variable, discussed in “Addressing Mode Determination” 
(page 63). 

In Macintosh computers that support the New World architecture, hard-coded 
offsets to locations in NVRAM for Mac OS PRAM variables are no longer used 
in the same way. Instead, NVRAM is divided into variable-sized partitions that 
are available to the Mac OS, Open Firmware, or any other client. This 
partitioning scheme is based on the Common Hardware Reference Platform 
(CHRP) specification. 

Mac OS PRAM variables reside in the Mac OS partition in NVRAM, and API 
calls to modify PRAM refer to offsets within the Mac OS partition. The Mac OS 
also stores device configuration properties in NVRAM that are used by Open 
Firmware at startup time. These properties are stored in an Open Firmware 
config variable. The Mac OS uses Name Registry functions to load this 
information into NVRAM to provide device boot-time configuration services 
for Open Firmware drivers and Mac OS drivers during subsequent startup of 
the system. 

See, Chapter 3, “Introduction to the NewWorld Architecture,” for a discussion 
of the significant software changes implemented in the New World architecture. 
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This chapter describes the memory allocations that Power Macintosh computers 
reserve for PCI use and defines the data formats used with PCI buses. It 
discusses PCI bus cycles, big-endian and little-endian addressing modes, and 
the storage of data in frame buffers. 

Address Allocations 2

The first implementation of Power Macintosh computers that uses the PCI bus 
reserves specific areas of the overall 32-bit address space for use by PCI 
expansion cards. Address allocation in the first Macintosh PCI system follows 
these general principles:

■ A Power Macintosh system may contain up to four peer PowerPC–to–PCI 
host bridges. The functions of these bridges are described in “PCI Host 
Bridge Operation” (page 39).

■ After each PCI host bridge, PCI-to-PCI bridges may be added in any 
configuration to create up to 256 PCI buses in the Power Macintosh 
hardware, the maximum that the PCI specification allows. However, 
properties that must be stored on disk or in NVRAM between system 
startups can be addressed only to five levels of PCI-to-PCI bridges behind 
each host bridge. Therefore the number of hardware PCI buses that the 
system software supports fully is limited to six times the number of host 
bridges, or 24 buses maximum.

■ More than 1.8 GB of address space is allocated for PCI memory space.

■ Remaining regions of the Macintosh 32-bit address space are allocated to 
system RAM, ROM, and control.

The general memory allocation scheme for the first implementation of Power 
Macintosh computers with PCI buses is shown in Table 2-1. 
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IMPORTANT

The information in Table 2-1 is for illustrative purposes 
only. Neither hardware nor software should rely on the 
address map described therein.  

PCI Bus Cycles 2

Besides defining cycles for PCI memory space, which is directly addressable by 
the PowerPC processor, the PCI specification supports four other types of 
cycles—I/O space, configuration space, interrupt acknowledge, and special—
which are not directly supported by the PowerPC architecture. To provide a 
PCI-compliant interface, Macintosh bridges create these additional address 
spaces and cycle types by accessing memory-mapped regions of the bridge 
control space shown in Table 2-1. Because the additional spaces and cycle types 
are manufactured by the bridge, they are abstracted from driver code and 
expansion card firmware by the interface routines defined in Chapter 12, 
“Expansion Bus Manager.” Using these routines, you can create all types of data 
transactions on Macintosh PCI buses in a hardware-independent way.

Table 2-1 Power Macintosh memory allocations

Address range Usage

0x0000 0000–0x7FFF FFFF System RAM

0x8000 0000–0xEFFF FFFF Available to PCI expansion cards

0xF000 0000–0xF1FF FFFF PCI host bridge 0 control

0xF200 0000–0xF3FF FFFF PCI host bridge 1 control

0xF400 0000–0xF5FF FFFF PCI host bridge 2 control

0xF600 0000–0xF7FF FFFF PCI host bridge 3 control

0xF800 0000–0xF8FF FFFF System control

0xF900 0000–0xFEFF FFFF Available to PCI expansion cards

0xFF00 0000–0xFFFF FFFF System ROM
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Addressing Modes 2

There are two ways that multibyte data fields may be addressed: big-endian 
addressing, where the address for the field refers to its most significant byte, 
and little-endian addressing, where the address for the field refers to its least 
significant byte.

These two types of data organization are illustrated in Figure 2-1, which shows 
a region of memory containing successive fields that are 3, 4, and 2 bytes long. 
MSB and LSB indicate the most significant and least significant bytes in each 
field, respectively.

Figure 2-1 Big-endian and little-endian addressing

Since data fields are normally stored in RAM by writing from lower to higher 
addresses, big-endian addressing also means that the field’s lowest address in 
physical memory contains its most significant byte; little-endian addressing 
means that the field’s lowest address contains its least significant byte.
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If the Macintosh system always wrote and read multibyte data fields in one 
operation, it wouldn’t matter whether the fields were addressed in big-endian 
or little-endian mode. For example, if the hardware always transferred an 
8-byte field in a single transaction, using 64 bit-lines, it would be immaterial 
whether the location of the field were defined by referencing its most significant 
byte or its least significant byte. But when data fields are transferred over buses 
of limited width, they must often be divided into subfields that fit the capacity 
of the bus. For a more detailed discussion of endian issues, see Appendix A, 
“Big-Endian and Little-Endian Addressing.”

Addressing Mode Conversion 2

With the PCI bus (in the 32-bit version that Power Macintosh uses), fields more 
than 4 bytes long must be transferred in multiple operations. When writing a 
field from one location to another by means of multiple transfers, the bus must 
take into account the addressing modes of both the source and destination of 
the data so that it can disassemble and reassemble the field correctly. One way 
to convert data from one addressing mode to the other is to reverse the order of 
bytes within each field, so that a pointer to the most significant byte of a field 
will point to the least significant byte, and vice versa. Note that the addresses of 
the data bytes do not change. This technique, called address-invariant byte 
swapping, maintains the address invariants of data bytes. It is illustrated in 
Figure 2-2.

Figure 2-2 Big-endian to big-endian bus transfer

0 Big-endian
source

1 2 3 4 5 6 7

3 2 1 0
Two little-endian
PCI bus transfers    

0 Big-endian
destination

1 2 3 4 5 6 7

3 2 1 0
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Note
The difference between big-endian and little-endian 
formats applies only to data; the Macintosh system always 
transfers addresses as unbroken 32-bit quantities. ◆

PowerPC processors and processors of the Motorola 68000 family use 
big-endian addressing; Intel processors and the PCI bus use little-endian 
addressing. Different I/O chips, expansion card memories, and peripheral 
devices may use one addressing mode or the other, so data in versatile 
computing systems such as Power Macintosh must often be accessed in either 
form.

Figure 2-2 illustrates what happens when data from a big-endian source passes 
over the little-endian PCI bus and is written to a big-endian destination. The 
bytes in the source and destination are numbered from 0 to 7.

The Power Macintosh hardware supports both big-endian and little-endian 
addressing. To accommodate various combinations of source and destination 
byte formats, Power Macintosh systems contain two mechanisms that translate 
between these addressing modes:

■ A group of byte-reversed indexed load and store actions are included in the 
PowerPC instruction set—for example, the lwbrx (load word byte-reversed 
index) instruction. These instructions can convert either big-endian or 
little-endian data to the other format, because the two formats are 
complementary. C programs can perform the same operations by using 
endian swap routines.

■ The PowerPC processor supports a little-endian addressing mode that 
changes the way in which real addresses are used to access physical storage. 
It applies a logical exclusive-OR operation with a constant to the lowest 3 bits 
of the address, using a different constant for each size of data. This modifies 
each address to the value it would have if the PowerPC processor used 
little-endian addressing.

The PowerPC system software also contains a pair of utility routines that 
convert 16- and 32-bit values into the other endian format by means of byte 
swapping. These utilities are described in “Byte Swapping Routines” 
(page 469).

For more detailed information about endian conversion, see Appendix A, 
“Big-Endian and Little-Endian Addressing.”

Programs and subsystems that exchange data only internally can usually adopt 
either big-endian or little-endian addressing without taking into account the 
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difference between the two. As long as they operate consistently, they will 
always store and retrieve data correctly. Systems that exchange data with other 
devices or subsystems, however, including those that communicate over the 
PCI bus, may need to determine the addressing mode of the external system 
and adapt their data formats accordingly.

When designing PCI cards for Power Macintosh computers, including their 
associated software, observe the following general cautions about byte formats:

■ The PowerPC microprocessor and the PCI host bridges are set for big-endian 
addressing when running a big-endian operating system such as Mac OS.

■ Most compilers do not provide support for switching data from one 
addressing mode to another or for using the PowerPC mechanisms that 
switch modes. Such support can be provided, for example, by a set of C 
macros that redefine the access mechanisms for basic data types.

■ Frame buffers for video and graphics must support the Macintosh big-endian 
pixel format, as described in “Frame Buffers,” later in this chapter.

Addressing Mode Determination 2

It is possible to determine whether a system uses big-endian or little-endian 
addressing by comparing the way it arranges bytes in order of significance with 
the way it addresses fields. For example, the code shown in Listing 2-1 makes 
this test.

Listing 2-1 Endian addressing mode test

typedef unsigned short half;
typedef unsigned char byte;

union {
half H;
byte B[2];
} halfTrick;

halfTrick ht;
ht.H = 0x2223;
if (ht.B[0] == 0x22)
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printf("I'm big-endian");
else

printf("I'm little-endian");

An important global variable that the Power Macintosh startup firmware stores 
in nonvolatile RAM is called little-endian?. It contains a value of 0 if the last 
operating system run on the computer used big-endian addressing or –1 if the 
last operating system used little-endian addressing. Each time the Power 
Macintosh startup firmware loads an operating system, it checks to see whether 
the system’s big-endian or little-endian operation matches the value in 
little-endian?. If the match fails, the Power Macintosh startup firmware 
changes the value in little-endian? and begins the Open Firmware startup 
process again. The Power Macintosh nonvolatile RAM is described in 
“Nonvolatile RAM” (page 56).

Frame Buffers 2

Frame buffers in PCI video and graphics cards must support the existing ways 
that Power Macintosh computers handle graphical data, including the storage 
of pixel information in memory and the presentation of that information in 
various formats.

Pixel Storage 2

The Macintosh pixel storage format is big-endian. This format has the following 
general characteristics:

■ All the bits that define any single pixel on the screen (ranging from 1 to 32 
bits) are adjacent in memory.

■ The bit groups that define each pixel are successive and contiguous in 
memory, starting with the pixel at the upper-left corner of the screen and 
ending with the pixel in the lower-right corner of the screen.

For example, a frame buffer that defines a screen 640 pixels wide by 480 pixels 
high (307,200 pixels), using 1 bit per pixel, contains 38,400 bytes. The most 
significant bit of the first byte corresponds to pixel 0, located in the upper-left 
corner of the screen. The least significant bit of the last byte corresponds to pixel 
307199. This example is diagrammed in Figure 2-3.
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Figure 2-3 Sample frame buffer format

If the same frame buffer had a color depth of 8 bits (thereby containing 307,200 
bytes), all of the first byte would be used to store information about pixel 0 and 
all of the last byte would be used to store information about pixel 307199.

 For further information about Macintosh pixel formats, see Appendix B, 
“Graphic Memory Formats.”

Note
Data in PCI control, status, and configuration registers for 
PCI video cards on Power Macintosh computers must be in 
little-endian format. ◆

Frame Buffer Apertures 2

In some situations, a frame buffer on a PCI expansion card may need to support 
data accesses in more than one format. For example, a frame buffer may need to 

Bit that defines
pixel 307199

Bit that defines
pixel 0
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store frame buffer data from a big-endian source in three different formats—
RGB, a little-endian source in RGB, and a YUV data format. To provide multiple 
formats on the fly, a PCI card can create multiple apertures of its frame buffer.

An aperture is a logical view of the data in a frame buffer, organized in a 
specific way. The PCI card converts its frame buffer contents into the required 
format for each aperture, and maps each aperture into a different range of 
memory addresses.

Each aperture is defined by specifying its starting address in memory, its width 
and height in pixels, and the format and size of each pixel description. The 
aperture definition may also include a row bytes value, giving the address offset 
between successive rows. Although each aperture normally has a different pixel 
description, the arrangement of pixels in the frame is the same for all apertures; 
this arrangement starts with the upper-left pixel and proceeds as described in 
the previous section. An aperture may represent the whole frame buffer or any 
region within it.

One important use for apertures is to provide both big-endian and little-endian 
views of a frame buffer. Providing both views can eliminate the need for 
support of the byte-swapping operations. For example, in a PCI card’s memory 
space of 16 MB, 8 MB could be allocated for a big-endian aperture and registers 
and 8 MB could be allocated for a little-endian aperture and registers. Mac OS 
running on the PowerPC processor would access the big-endian aperture, while 
a frame-grabber PCI master card that supported a little-endian pixel format 
would access the little-endian aperture.

Apertures are supported by the device drivers associated with a PCI card, 
which must respond to calls that query and select the card’s aperture 
capabilities. Each aperture can be treated as a virtual device, to be opened and 
closed separately from other apertures. A driver can treat the physical 
organization of the frame buffer as an aperture as well, without subjecting it to 
mapping or format conversion.

For more information on apertures see PCI Multimedia Design Guide, published 
by the PCI SIG. You can contact the PCI SIG at the address given on (page 28).
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The Open Firmware Process 2
This part of Native Drivers for Power Macintosh Computers describes the Open 
Firmware process and tells you how it works with Power Macintosh computers 
running the Mac OS. It contains three chapters:

■ Chapter 3, “Introduction to the NewWorld Architecture,” describes how the 
NewWorld Architecture works from an organizational and execution flow 
standpoint, and describes differences from older architectures.

■ Chapter 4, “Startup and System Configuration,” describes how 
PCI-compatible Macintosh computers recognize and configure peripheral 
devices.

■ Chapter 5, “PCI Open Firmware Drivers,” discusses the general technical 
requirements for Open Firmware drivers for PCI devices—drivers that are 
used with the Open Firmware startup process. 

Part 4 of this book covers native device drivers that support the PCI-bus 
compatible Power Macintosh architecture. Part 4 begins on (page 137).

Chapter 5, “PCI Open Firmware Drivers,” discusses Open Firmware drivers, 
which control PCI and boot devices during the Open Firmware start-up 
process.
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The NewWorld architecture is the basis for Mac OS start-up and system ROM 
(read only memory) functionality for all new Macintosh computers, beginning 
with the iMac. 

This chapter describes how the NewWorld architecture works from an 
organizational and execution flow standpoint and describes differences from 
older architectures. It briefly covers the ROM organization prior to NewWorld 
as background, then explains the NewWorld architecture and execution flow. 

While the focus of the information contained in this chapter is on Mac OS 
behavior in the NewWorld architecture, the Macintosh on-board bootROM and 
Mac OS ROM image file components of the NewWorld architecture are 
operating system independent. The mechanisms behind the software 
engineering techniques used to support Mac OS in the NewWorld architecture 
can be applied to other operating systems. 

The Macintosh ROM and The NewWorld Architecture 3

Historically, the Macintosh ROM has been structured as one monolithic chunk 
of firmware in ROM, containing both low-level and high-level code. That is, it 
contained the routines needed by the computer at power-up time (hardware 
knowledge, initialization, diagnostics, drivers, and such), as well as quite a bit 
of higher level Mac OS code.

While a computer needs to have a ROM with hardware-specific code in order to 
boot, the higher level code was also included in the Macintosh ROM because 
the Macintosh ROM had its genesis in the original 128K Macintosh computer 
back in 1983. In those days, ROM was cheaper than RAM, and the available 
disk space (which was floppy based) was at a premium. These factors are 
certainly no longer valid reasons for keeping (permanently locking) everything 
in ROM. RAM is relatively inexpensive now and it is faster than ROM. 

The NewWorld architecture separates the hardware-specific and higher level 
system software into two logically distinct pieces. In the NewWorld model, one 
piece, the bootROM, holds most of the hardware-specific components needed to 
boot the specific logic board implementation, while the other, the Mac OS ROM 
image file, contains boot-time Mac OS routines and hardware-specific software 
components that are common to many Macintosh computers.

Low-level hardware-specific code still exists in firmware (ROM) in order to 
handle the computer’s start-up activities. This code fits into one ROM called the 
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bootROM. The bootROM has the hardware-specific code and description of the 
hardware needed to start up the computer and provide common hardware 
access services the operating system might require. Open Firmware is in the 
bootROM and provides access to the basic hardware subsystems and a Forth 
interpreter. Macintosh computers that support the NewWorld architecture have 
Open Firmware version 3.0 or later. Open Firmware is defined in Chapter 4, 
“Startup and System Configuration,” and Chapter 5, “PCI Open Firmware 
Drivers.”

The Macintosh Toolbox is no longer in the on-board ROM. Only Open 
Firmware boot services still exist in the on-board hardware ROM. The Toolbox 
and other services necessary to boot the operating system after hardware 
initialization has taken place are in a disk file called “Mac OS ROM.” The 
Mac OS ROM image file (also known as the bootinfo file) is loaded from a mass 
storage device. The contents of the Mac OS ROM file is decompressed and 
stitched into the memory map as if it were a firmware ROM (that is, it is write- 
protected in the memory map). This is where the term ROM-in-RAM comes 
from. 

Differences Introduced by the NewWorld Architecture 3

From a user and application developer point of view, the NewWorld 
architecture is implemented to be as compatible as possible with previous 
Macintosh system architectures. However, there are differences that developers, 
particularly developers interested in participating in the boot process, should be 
aware of. The information in the following sections briefly describes the key 
differences. The boot process is defined in “NewWorld Boot Process” (page 77), 
and in “Startup Sequence in the NewWorld Architecture” (page 92).

Boot Devices 3

Devices connected to third-party expansion cards that typically expect to 
participate in the boot process must provide Open Firmware boot drivers in 
the expansion ROM on the card. These drivers are written in FCode, the forth 
programming language. Without the FCode driver, devices are not recognized 
early in the startup process. Expansion cards without FCode are recognized 
only after the Mac OS has started and the associated runtime drivers are located 
on the disk. For example, a disk drive attached to a SCSI expansion card that 
does not include proper FCode in the expansion ROM is not able to boot, but 
the drive shows up on the desktop in the Finder after the SCSI card runtime 
driver is loaded from disk by the Mac OS. 
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Devices connected to Macintosh built-in I/O, such as ATA storage devices and 
on-board Ethernet ports, are supported by FCode in the Macintosh bootROM 
on the main logic board. Third-party PCI cards on the PCI bus, such as SCSI 
mass storage device controllers, Ethernet cards, and graphics display 
controllers, require Open Firmware FCode drivers in the PCI card expansion 
ROM in order for the devices connected to those cards to be recognized early in 
the boot process, before startup control switches from Open Firmware to the 
Mac OS. 

Open Firmware provides boot mechanisms and a description of the system 
hardware, in the form of a device tree. The IEEE Std 1275-1994: Standard for 
Boot (Initialization, Configuration) Firmware: Core Requirements and Practices 
documentation, along with associated bindings, provides the specification for 
Open Firmware. The current bindings are available at 

http://playground.sun.com/1275/home.html

or at Apple’s mirror site at:

http://bootrom.apple.com

The Macintosh implementation of Open Firmware is discussed in Chapter 4, 
“Startup and System Configuration.” NewWorld startup disk behavior is 
described in “Startup Disk Control Panel” (page 94). An introduction to Open 
Firmware drivers and the Open Firmware environment on the Macintosh is 
provided in “PCI Open Firmware Drivers” (page 111).

RAM 3

Another major difference introduced with the NewWorld architecture is that 
logical RAM and physical RAM are no longer mapped one-to-one, as they have 
been in previous PCI-based Macintosh computers. This means that 
well-behaved software must call the LogicalToPhysical or PrepareMemoryForIO 
functions, as described in “Memory Services Used During I/O Operations” 
(page 352). Software logic that assumes the logical and physical addresses are 
the same, even when virtual memory is not turned on, will fail to operate 
properly. 

Hardware Addresses 3

Hardware components, such as the PCI bridge and the interrupt controller, are 
not located at the same addresses as on previous PCI-based Macintosh 
computers. The Name Registry provides the addresses. For information about 
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the features of the Macintosh Name Registry, see “Using the Name Registry” 
(page 285). 

Macintosh Name Registry 3

The Macintosh Name Registry contains the information in the updated Open 
Firmware device tree. This functionality is unchanged by the NewWorld 
architecture except to provide new mechanisms that provide communication 
with Open Firmware. The Open Firmware config variables used by Open 
Firmware during boot are modifiable from the Mac OS by using the existing 
Name Registry API calls. Properties saved in NVRAM (nonvolatile RAM) by 
the Mac OS are available to Open Firmware FCode drivers as well as Mac OS 
runtime drivers. See “New Name Registry Functionality” (page 79) for more 
details. 

The gestaltMachineType Value 3

All NewWorld-based Macintosh computers return the same value (406 decimal) 
for the gestaltMachineType. Any software that depends on gestaltMachineType 
to verify that the current Macintosh computer is a valid CPU on which to 
execute needs to be changed to check for the existence of the required hardware 
nodes in the device tree. The Macintosh Name Registry provides routines for 
checking the device tree. The Name Registry is defined in Chapter 10, “Name 
Registry.”

Interrupt Handling 3

Although the API calls related to interrupt handling have not changed, the code 
that handles interrupts is very different in the NewWorld architecture. The new 
interrupt code allows for dynamic creation of the interrupt layout. In addition, 
the interrupt latency has been reduced to such an extent as to make it 
negligible. The description of the interrupt layout is now part of an Open 
Firmware interrupt tree that is interlaced within the Open Firmware device tree. 
The Trampoline code, which assists in transferring startup control from Open 
Firmware to the Mac OS, uses this interrupt tree to build the Mac OS native 
interrupt tree. 

ROM-in-RAM 3

The NewWorld architecture puts the Mac OS ROM image in RAM and marks it 
read-only. Although the image is 4 MB in size, not all of those 4 MB are in use. 
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The portion that is not used is returned to Mac OS for use as part of system 
RAM. At the time this document was written, about 3 MB of the 4 MB Mac OS 
ROM image are in use, allowing about 1 MB to be returned to Mac OS as 
available RAM. 

The fact that ROM is stitched into RAM is the reason that the logical and 
physical memory addresses are no longer mapped one-to-one. 

Runtime Abstraction Services (RTAS) 3

Certain hardware devices, such as custom I/O controllers, differ from 
Macintosh to Macintosh, but provide similar functions. RTAS communicates 
with the underlying hardware to provide services such as accessing the 
real-time clock, nonvolatile RAM (NVRAM), restart, shutdown, and PCI 
configuration cycles. The services provided by RTAS are not available to clients 
other than the Mac OS.

NVRAM and PRAM 3

Instead of using hard-coded offsets to locations in NVRAM for Mac OS PRAM 
and other information, NewWorld breaks NVRAM into variable-sized 
partitions that are used by the Mac OS, Open Firmware, and any other client. 
The partitioning scheme is part of the CHRP specification. PRAM resides in the 
Mac OS partition, and API calls to modify PRAM refer to offsets within that 
partition. Properties saved in NVRAM are saved in an Open Firmware config 
variable. See “New Name Registry Functionality” (page 79) section for 
additional details.

USB 3

The USB Manager is in a NewWorld Mac OS ROM image, along with class 
drivers for USB hubs, keyboards, and pointing devices. 

ADB 3

Macintosh computers no longer always include ADB hardware. For 
compatibility, the ADB Manager still functions, treating USB keyboards as a 
variant of an ADB keyboard. This added compatibility does not allow all ADB 
devices to work as if ADB hardware still exists, even if a USB-ADB conversion 
device is attached to a USB connector.
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Floppy Drives 3

The NewWorld architecture supports Macintosh computers with or without 
floppy drives. Apple does not support floppy-based copy protection on 
Macintosh computers that do not have Apple floppy drives. Providing 
functionality similar to the Apple floppy driver is the responsibility of the 
developer of the software for mass storage devices that can read and/or write 
floppy diskettes. The most expedient way to provide such functionality is to 
take over the Apple floppy driver slot in the drive queue.

Video Drivers 3

To present a seamless transition between the Open Firmware user interface and 
the user interface used by the Mac OS, the NewWorld architecture provides a 
mechanism for communication of the display mode, resolution, and so on, 
between the Open Firmware video driver and the Mac OS video driver. See 
“New Name Registry Functionality” (page 79) for additional details.

NewWorld Components 3

The three main areas of change, which can be thought of as new components, in 
the NewWorld architecture are the bootROM, the Mac OS ROM bootinfo file, 
and the changes in Mac OS system software. Before the NewWorld architecture, 
the Macintosh ROM contained all of the hardware-specific initialization code, 
the Mac OS—specific start-up code, and the Toolbox functions. The NewWorld 
architecture breaks up that monolithic Macintosh ROM into several pieces that 
are located in two places:

■ The bootROM is a physical part of the specific implementation of current 
Macintosh computers. It contains these pieces:

■ POST (Power-on Self Test), startup code without Mac OS—specific code
■ Open Firmware
■ RTAS (Runtime Abstraction Services)
■ Mac OS drivers (of type 'ndrv' and 'nlib') for logic board I/O controllers 

and devices needed at boot time

■ The Mac OS ROM image file is kept in the System Folder of the startup 
volume. It contains these pieces:

■ Mac OS—specific Open Firmware code and required bootinfo components
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■ Open Firmware—specific Mac OS code that takes care of transferring 
control from Open Firmware to the Mac OS ROM and system boot 
services 

■ a Mac OS ROM image, including among other things, the Macintosh 
Toolbox code

Other operating systems may also use the bootROM and a bootinfo file, but the 
contents of the bootinfo file are specific to the operating system that boots after 
logic board and hardware initialization by the code in the bootROM. The 
contents of the Mac OS ROM bootinfo file listed above are specific to Mac OS 
implementations. 

The bootinfo file exists on the boot device and has a localizable name. 
Identification information that leads to the file’s path is stored in the Open 
Firmware config variables in NVRAM. The search algorithm for a usable 
bootinfo file parallels the search mechanism across SCSI, ATA, and other 
interfaces used in the older Mac OS start-up implementations. The path is 
specified in a string that looks similar to this: 

/pci/mac-io@10/ide@20000/disk@0:5,\System%20Folder\:tbxi 

The elements that make up the node portion of the path, everything up to 
disk@0:, are defined in Section 3.2.2.1 “Node Names” in the IEEE 1275 
specification. The remaining elements in the path string are file specific. 

By default, the bootinfo file is located by using the blessed folder directory ID 
dirID in the master directory block, and then searching for a file with a file type 
of 'tbxi'. Searching by file type is done to allow localization of the filename. 
The name of the nonlocalized bootinfo file is currently Mac OS ROM. This name 
may change in the future. 

In order for a mass storage drive to be bootable, Open Firmware needs methods 
for accessing the device at the block level. The Open Firmware deblocker and 
disk-label packages are useful for providing boot-time services. For standard 
built-in devices, such as SCSI and ATA, methods are supplied by Open 
Firmware. For plug-in expansion cards, such as PCI cards, the Open Firmware 
methods must be supplied in the expansion ROM for the card and must follow 
the rules defined by the PCI Open Firmware binding specification. See “Sample 
FCode Drivers” (page 131) for a basic example of an FCode block device driver. 

Some versions of the Mac OS ROM bootinfo file also contain what has 
traditionally been part of an enabler. This is only to reduce the number of files 
in the System Folder, and Open Firmware does not use the enabler components 
in any way.
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A bootinfo file contains Open Firmware script, a description, information for 
individual operating systems, icons, and other information. A bootinfo file can 
be extended to contain non—Open Firmware information, which in the case of 
the Mac OS, is the addition of the Macintosh Toolbox and other code specifically 
for use by the Mac OS.

Note
The PowerPC™ Microprocessor Common Hardware 
Reference Platform (CHRP) System binding to: IEEE Std 
1275-1994: Standard for Boot (Initialization, Configuration) 
Firmware document provides additional information about 
how a bootinfo file is used. However, it is not the reference 
specification for the bootinfo file currently in use on the 
Macintosh platform. ◆

NewWorld Boot Process 3

The following list provides a high-level overview of the execution path taken 
when a NewWorld-based computer boots the Mac OS:

1. User presses power key. Between the time that the power key is pressed and 
the boot beep is heard, while the screen is still black, a ROM checksum is 
taken, the processor is checked, the interrupt controller is started, all the 
clocks are determined, the memory controller is initialized, NVRAM is 
checked, RAM is sized checked and initialized, and the L2 cache is sized and 
prepared (L2 cache is enabled in POST).

2. The POST code runs (preliminary diagnostics, boot beep, initialization, and 
setup). This is like similar code in an older Macintosh ROM, but it is different 
in that it does not contain code specific to an operating system.

3. Open Firmware initializes begins probing the hardware and the PCI bus to 
locate attached interfaces and hardware so that is can begin building the 
device tree.

4. Open Firmware loads the Mac OS ROM image file, based on defaults and the 
path settings found in NVRAM.

5. Open Firmware executes the Forth script in the bootinfo file, which contains 
information about the rest of the file and instructions to read both the 
Trampoline code and the Mac OS ROM file and place them into a temporary 
place in memory.
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6. The Forth script transfers control to the Trampoline code, which functions as 
the transition between Open Firmware and the beginning of the Mac OS 
execution.

7. The Trampoline code gathers information about the system from Open 
Firmware, creates data structures based on this information, terminates Open 
Firmware, and moves the contents of memory to an interim location in 
physical memory space. 

8. The Trampoline code transfers control to the Mac OS ROM initialization 
code.

The boot sequence, up to loading and execution of the Mac OS ROM bootinfo 
file, is controlled by Open Firmware. To provide a user experience like that of 
previous Macintosh computers, Open Firmware supports keyboard input for 
searching for possible boot devices, and user redirection of boot devices. The 
keyboard input is done by holding down a specific key or key combinations. 
These keys are referred to as snag keys. The supported snag keys are listed in 
Table 3-1.

Table 3-1 Snag keys supported by Macintosh Open Firmware

Key or key combination Definition

c Redirect booting to the device alias CD. If 
no bootable partition is found on the CD, 
display blinking folder.

d Redirect booting to the device alias hard 
drive. If no bootable partition is found on 
the hard drive, display blinking folder.

n Redirect booting to the device alias enet for 
BOOTP or TFTP network booting. 

z Redirect booting to the device alias ZIP. If 
no bootable partition is found on the Zip 
drive, display blinking folder.

Command-option-shift-delete Redirect booting to any device other than 
the device specified in the device alias 
boot-device. 
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When the user selects a startup device in the Startup Disk control panel, the 
control panel no longer sets a value in Mac OS PRAM, but rather generates an 
Open Firmware path to the device and saves that path in NVRAM as Open 
Firmware’s boot-device config variable. Open Firmware tries booting from the 
device specified by boot-device first. If this device is unavailable or the user has 
overridden the standard startup behavior with keyboard input, Open Firmware 
scans other devices looking for bootable drives. Once Open Firmware selects a 
device, it reports a path to that device in the bootpath property in the chosen 
device tree node. The bootpath property is what the Mac OS ROM 
subsequently uses to locate and load the Mac OS from disk.

Additional information about the requirements for participating in the boot 
process on a NewWorld-compatible Macintosh can be found in Chapter 4, 
“Startup and System Configuration.”

New Name Registry Functionality 3

NewWorld-compatible Macintosh computers have a greater dependence on 
Open Firmware and require additional functionality in the Mac OS. The Name 
Registry continues to provide a database that includes the device tree used by 
Open Firmware, Open Firmware drivers, Mac OS device services, and PowerPC 
native device drivers. NewWorld extends the Name Registry API to provide

■ a mechanism to update Open Firmware config variables

■ communication between Mac OS and Open Firmware drivers

Modifying Open Firmware Config Variables From the Mac OS 3

The Name Registry provides a mechanism to save and restore device tree 
properties in NVRAM. This mechanism has been fully augmented in the 
NewWorld architecture. Using the same mechanism, Mac OS and Open 
Firmware driver software can update Open Firmware config variables in the 
device tree. The mechanism creates and modifies the device tree properties and 
the RegistryPropertySetMod function, using the 
kRegPropertyValueIsSavedToNVRAM modifier bit. When the Name Registry calls 
are made to the properties in the “device-tree:options” node, the corresponding 
Open Firmware config variables in NVRAM are modified. 

For additional information about Name Registry properties, see “Property 
Management” (page 311). For information about the 
kRegPropertyValueIsSavedToNVRAM modifier bit, see “Data Structures and 
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Constants” (page 326). For a description of the RegistryPropertySetMod 
function, see “Property Modifier Retrieval and Assignment” (page 332).

Communication Between Mac OS and Open Firmware Drivers 3

In addition to providing access to Open Firmware config variables, the same 
Name Registry mechanism that saves and restores device tree properties in 
NVRAM has new functionality that allows communication between a Mac OS 
runtime driver and its corresponding Open Firmware driver. The Mac OS 
runtime driver sets a property in its device tree node by setting the 
kRegPropertyValueIsSavedToNVRAM modifier bit. This property is saved in a 
special Open Firmware config variable that is used by Open Firmware during 
boot to restore properties into the device tree. Since the properties exist when an 
Open Firmware driver is opened, such a property can be a message from the 
Mac OS runtime driver to the Open Firmware driver. The Mac OS driver will 
also find the property during its initialization. The new mechanism extends the 
size limitations for properties saved in NVRAM to 8 bytes for the name and 32 
bytes for the data.
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This chapter describes the Open Firmware startup process by which Power 
Macintosh computers recognize and configure peripheral devices connected to 
the PCI expansion card bus. The Open Firmware process provides flexibility in 
system software to match the flexibility that the PCI bus provides for expansion 
hardware.

The PCI bus architecture described in the PCI standard supports the 
autoconfiguration concept of system configuration, because it includes 
mechanisms for configuring devices during system startup and defines 
expansion ROMs for plug-in expansion cards. The two code types currently 
defined for PCI expansion card ROMs are an Intel-compatible BIOS (Basic Input 
and Output System) code type and the Open Firmware type. Apple has chosen 
the Open Firmware type because it allows Power Macintosh computers to run 
nearly any operating system.

The iMac and computers introduced after the iMac implement the NewWorld 
system architecture. The NewWorld architecture relies explicitly on the Open 
Firmware startup boot process for devices attached to the PCI bus and other 
I/O buses. Peripheral devices that need to participate in the boot process at 
startup time in NewWorld computers must support Open Firmware as 
described in this chapter. An introduction to the details of the NewWorld 
architecture is provided Chapter 3, “Introduction to the NewWorld 
Architecture.”

Peripheral Devices and Open Firmware 4

The PCI bus gives Power Macintosh computers a increased compatibility with 
third-party hardware devices. To provide equivalent software compatibility for 
all device I/O, Power Macintosh computers that implement the PCI bus 
standard, also support the IEEE standard Open Firmware process of system 
startup.

During the Open Firmware startup process, startup code in the Macintosh 
computer’s bootROM searches the PCI and other I/O buses, such as USB or 
FireWire, and generates a data structure called a device tree that lists all 
available peripheral devices. This data structure also stores information about 
the support software, including drivers, provided by each PCI expansion card. 
The startup code then finds information that points to an operating system 
either in ROM or on a mass storage device, loads it, and starts it running. The 
operating system does not need to be Mac OS. Hence it is possible for Power 
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Macintosh computers to operate PCI peripheral devices using either Macintosh 
or third-party system software.

A PCI card that wants to participate in the startup process of any operating 
system must include an expansion ROM containing an Open Firmware FCode 
driver, methods, and properties. Examples of expansion cards that need to 
operate in the Open Firmware startup process are SCSI cards, Ethernet cards, 
and display cards. The alternatives for FCode in expansion card ROMs are 
described in “Open Firmware FCode Options” (page 87).

The Open Firmware Startup Process 4

The Open Firmware startup process in Power Macintosh computers with a 
PCI bus conforms to IEEE Standard 1275 and to the PCI Bus Binding to IEEE 
1275-1994 specification. These standards evolved from the OpenBoot firmware 
architecture introduced by Sun Microsystems. The PCI Bus Binding to IEEE 
1275-1994 specification is available at http://bootrom.apple.com/1275/
home.html#OFDbusPCI. The IEEE Std 1275-1994: IEEE Standard for Boot 
Firmware (Initialization Configuration) Firmware: Core Requirements and Practices is 
available at http://standards.ieee.org/index.html.

Note
The 1275 Working Group continues to update the PCI Bus 
Binding to IEEE 1275-1994 specification. For latest 
information, you can access the FTP site listed in the note 
under “Institute of Electrical and Electronic Engineers” 
(page 27). ◆

Additional information about the Open Firmware startup process for PowerPC 
computers can be found in the PowerPC™ Microprocessor Common Hardware 
Reference Platform (CHRP™) System binding to: IEEE Std 1275-1994 Standard for 
Boot (Initialization, Configuration) Firmware, Revision: 1.8 [Approved Version] at 
http://bootrom.apple.com/1275/

Startup Firmware 4

The Open Firmware startup process is driven by startup firmware (also called 
boot firmware) in the Power Macintosh ROM and in memory chips on 
expansion cards, called expansion ROMs. 
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Note
Power Macintosh computers that implement the 
NewWorld architecture (iMac and later) have the startup 
code in a small bootROM. The remainder of what has been 
traditionally referred to as the Macintosh Toolbox is loaded 
from a file, called Mac OS ROM, located on disk, and then 
stitched into RAM to appear as one contiguous read-only 
ROM. Power Macintosh computers built before the 
NewWorld implementation have the startup code and the 
Macintosh Toolbox code in a larger ROM, usually on the 
order of 4 MB in size. ◆

While the Open Firmware startup code is running, the Power Macintosh 
computer starts up and configures its on-board hardware, including all 
peripheral devices the startup code knows about or has config variables for, 
independently of any operating system. The computer then finds an operating 
system in ROM or on a mass storage device, loads it into RAM, and terminates 
the Open Firmware startup process by giving the operating system control of 
the PowerPC processor. The operating system may be Mac OS or a different 
system, provided it uses the PowerPC instruction set.

The Open Firmware startup process includes these specific features:

■ Startup firmware, as defined by IEEE Standard 1275, is written in the Forth 
language. Firmware code is stored in an abbreviated representation called 
FCode, a version of Forth in which most Forth words are replaced by single 
bytes or 2-byte groups. The startup firmware in the Power Macintosh ROM 
provides an FCode loader that installs FCode in system RAM that the Open 
Firmware Forth interpreter executes. Expansion card firmware can modify 
the Open Firmware startup process by supplying a FCode boot driver that 
the computer’s startup firmware loads and runs before launching an 
operating system. The expansion card startup firmware can also include a 
minimal run-time driver that works in the Open Firmware environment and 
is replaced by a comprehensive driver later in the boot process. 

■ The Macintosh startup firmware creates a hierarchical data structure of nodes 
called a device tree, in which each device is described by a property list, 
and optional properties and methods. The device tree is stored in system 
RAM. The nodes, which are also called packages, contain properties and 
methods. Properties are attributes that describe the hardware and driver. 
Methods do work much like subroutines or procedures. The operating 
system that is ultimately installed and launched can search the device tree to 
determine what hardware is available. For example, Mac OS extracts 
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information from the device tree to create the device portion of the 
Macintosh Name Registry, described in Chapter 10. The full list of standard 
device tree properties is given in IEEE Standard 1275; the properties that 
Mac OS uses are listed in Table 10-1 (page 322). An example of a device node 
in a device tree is given in Listing 10-1 (page 284).

■ Device drivers that are required during system startup are also written in 
FCode. Plug-in expansion cards for startup devices must contain all the 
driver code required during startup in the expansion ROM on the card and 
may also need to provide other driver support resources such as fonts. The 
startup firmware in the Power Macintosh ROM installs Open Firmware boot 
drivers in system RAM and the Open Firmware Forth interpreter executes 
the driver FCode. Examples of devices needed during system startup include 
display, keyboard, and mouse devices; storage devices such as SCSI, IDE, 
floppy disk, and magneto-optical drives; and network interfaces if the target 
OS supports network booting.

You can write PCI expansion ROM code in standard Forth words and then 
reduce the result to FCode by using an FCode tokenizer, a program that 
translates Forth words into FCodes. The Forth vocabulary that you can use is 
presented in IEEE Standard 1275. For a description of the Open Firmware user 
interface, see “Open Firmware User Interface” (page 114). 

Device Drivers 4

The Open Firmware startup process and all possible operating systems 
constitute separate device environments. A separate driver is normally 
required for each device environment in which a device is expected to work. In 
rare cases, an operating system may be written so that it uses an Open 
Firmware driver or a driver for another operating system. 

The following rules govern the requirements for device drivers in Power 
Macintosh computers that support the Open Firmware startup process:

■ As explained in the previous section, Open Firmware drivers must be stored 
as FCode in a card’s expansion ROM and must conform to IEEE Standard 
1275.

■ A card’s expansion ROM should also contain all the run-time drivers for 
different operating systems that might use or support the card.

■ If an operating system preserves and uses the Open Firmware device tree or 
a data structure derived from it, it should store all device drivers specific to 
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that environment in the device tree as properties of the devices they support. 
Otherwise the operating system must load device drivers as part of its 
initialization. 

■ Drivers that work with Mac OS must be compiled to native PowerPC code. 
For further information, see Chapter 8, “Writing Native Drivers.”

Chapter 5, “PCI Open Firmware Drivers,” provides guidelines for writing 
device drivers to operate with the Open Firmware startup process. 

PowerPC Addressing and Alignment 4

In general, PCI expansion cards that run code directly on PowerPC processors 
in Power Macintosh computers must use 32-bit mode even when the processor 
supports 64-bit mode. PCI cards must observe the access sizes and byte 
alignments shown in Table 4-1.

Device Configuration 4

PCI cards should supply Open Firmware boot code in PCI type 1 containers in 
their expansion ROMs, as defined in the PCI specification. This section 
describes how the contents of PCI expansion ROMs contribute to the Open 
Firmware startup process.

Table 4-1 PowerPC processor addressing

Open Firmware 
Address type

Access 
size (bits)

Alignment
(bytes)

a-addr 32 4

q-addr 32 4

w-addr 16 2
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Open Firmware FCode Options 4

Cards that may be required during Open Firmware startup include display, 
keyboard, and mouse devices, mass storage devices such as SCSI, IDE, floppy 
disk, and magneto-optical drives, and network interfaces. If Open Firmware 
FCode is not included in such a card’s expansion ROM, the card will not be 
usable until the operating system loads its supporting software from a mass 
storage device after startup. 

This section describes the possible ways that a device with a valid PCI 
expansion ROM can be configured. They range from full Open Firmware 
support, in which the card is usable during startup, to no support.

Full Open Firmware Support 4

The recommended option is for every PCI card to include an expansion ROM 
containing run-time drivers and full Open Firmware support, including Open 
Firmware properties and FCode boot driver software that supports the startup 
process. With this option, the associated device can be used at startup time by 
Open Firmware and by any operating system for which the PCI card’s 
expansion ROM provides a native run-time driver. 

IMPORTANT

Full Open Firmware support in the expansion ROM is 
mandatory for PCI cards supporting devices that expect to 
participate in the startup boot process on Macintosh 
computers designed around the NewWorld architecture. ▲ 

An expansion ROM that supports Open Firmware booting delivers these 
benefits:

■ full plug-and-play performance with any operating system for which the 
card provides a run-time driver

■ unambiguous matching of each run-time driver to its device

Support for Mac OS and Open Firmware 4

A less desirable option is for the PCI card to include an expansion ROM 
containing a Mac OS run-time driver and minimum Open Firmware support, 
including Open Firmware properties. This option lets the card work during 
startup with Mac OS running on PCI-based Power Macintosh computers 
introduced prior to the iMac, where startup is controlled by the Macintosh 
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ROM. The card will not work during startup on current Power Macintosh 
models. This option delivers these benefits:

■ full plug-and-play performance with the Mac OS

■ unambiguous matching of the Mac OS run-time driver to the device

Minimum Open Firmware Support 4

The minimum recommended option is for the PCI card to include an expansion 
ROM that provides minimal Open Firmware support, including the Open 
Firmware properties name, reg, and device type. This option provides enough 
information to allow Open Firmware to build a name property for the device 
that is guaranteed to be unique, so the Mac OS can match it unambiguously to a 
run-time driver that it loads from the Extensions folder. This option does not 
include a FCode driver to allow your device to provide any services at boot 
time before the operating system is running. 

No Open Firmware Support 4

The least desirable option is for the PCI card to include an expansion ROM with 
no FCode, or no expansion ROM at all. At system startup time, the card is 
recognized and address space is allocated for the device, but no peripheral 
initialization or driver code is loaded. The operating system must load driver 
code from a mass storage device before the card can be used. Most importantly, 
there is no distinct name property for the device; this makes unambiguous 
run-time driver matching less certain when several card manufacturers support 
the same device. Driver matching issues are discussed in “Matching Drivers 
With Devices” (page 164).

Note
Because future Macintosh computers may run a variety of 
operating systems, full Open Firmware support is 
particularly important for PCI-based graphics devices. If a 
PCI device is the user’s only display, it should operate 
during the Open Firmware startup process and should 
deliver plug-and-play performance with the user’s choice 
of operating system. The Open Firmware driver does not 
need to be sophisticated; if it can initialize the device to 
8-bit color mode and publish the frame buffer address, 
Open Firmware in the bootROM will control the device 
and perform the required image rendering. ◆
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Open Firmware Driver Support 4

As explained in “Startup Firmware” (page 83), Open Firmware drivers are 
stored as FCode in expansion ROMs and copied into system RAM during the 
Open Firmware startup process. When the startup firmware in the Power 
Macintosh ROM opens an Open Firmware driver, it acquires a handle to the 
driver code so it can communicate directly with it. The Power Macintosh 
firmware provides three kinds of memory for the driver to use:

■ The device tree stores properties and routines that are intrinsic to the driver; 
these permanent attributes are always available to the driver and other code.

■ Each node of the device tree has its own static variables, available to drivers, 
which are preserved throughout the Open Firmware startup process.

■ Memory for buffers and other driver requirements is allocated each time a 
driver is opened and is maintained until the driver is closed.

Open Firmware drivers are expected to perform their work (such as drawing 
characters on a screen) without operating-system support. However, the startup 
firmware in some Power Macintosh ROMs may contain hardware-specific 
support packages that Open Firmware drivers can use for common tasks. The 
supported packages are located in the node /packages. The Macintosh Open 
Firmware does not provide interrupt service routines (ISR) for handling 
hardware interrupts; Open Firmware drivers must detect external events by 
polling devices.

Startup Sequence 4

This section defines the startup sequence for Power Macintosh computers built 
prior to the iMac. The iMac and all Macintosh computers built after the 
introduction of the iMac are designed to support the NewWorld architecture. 
The startup sequence for NewWorld based computer models differs from that 
of previous Macintosh computers. And, it does so at no loss of software 
compatibility with well behaved applications. See “Startup Sequence in the 
NewWorld Architecture” (page 92) for a high-level description of the 
NewWorld startup sequence.

Although the startup sequence for PCI-based Power Macintosh computers is 
different for each model, a typical sequence for a Power Macintosh computer 
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running Mac OS can be summarized as follows, starting with the power coming 
on:

1. System-specific firmware performs initialization and self-testing on memory 
and other hardware systems.

2. The startup firmware in the Power Macintosh ROM probes each PCI bus, 
generates a device tree node for each device, and when it finds a device 
executes the FCode (if any) found in each PCI card’s expansion ROM.

3. The startup firmware in the Power Macintosh ROM finds an operating 
system in ROM or on a mass storage device; it loads it into RAM and 
transfers processor control to it.

4. Mac OS completes the startup sequence.

The rest of this section describes these steps in more detail.

Initializing the Hardware 4

In response to power coming on, firmware in the Power Macintosh ROM 
performs initialization and self-testing on the basic system memory, including 
RAM and cache memory. 

Running Open Firmware 4

The Open Firmware Process begins as the startup firmware builds the device 
tree for built-in I/O devices and then searches expansion areas for other 
devices. The firmware polls the computer’s PCI buses, interrogating addresses 
where devices might be found. Each time it finds a device with an Open 
Firmware expansion ROM, it copies the FCode from that ROM into system 
RAM and executes it, using the system’s FCode loader. As it runs, the FCode 
program enters the properties of the device it represents into the current device 
tree node established by the Open Firmware program and stored in system 
RAM. 

An important set of device tree properties include Open Firmware drivers for 
PCI devices. Run-time drivers, which are stored as properties of the device 
node in the device tree, may be required for the startup process and for each 
operating system that may be launched. Other properties include operating 
characteristics of video cards and information used to install interrupt handlers.
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Open Firmware queries PCI cards that contain no FCode and creates basic node 
entries for them in the device tree. These nodes contain only the properties that 
can be generated by accessing a card’s standard PCI configuration registers. 
Open Firmware creates reg and assigned-addresses properties, making the card 
accessible to operating-system code (although not to Open Firmware). These 
properties provide the card’s unit address and permit address space allocation 
based on the card’s PCI base register support. PCI properties are discussed in 
“Standard Properties” (page 322).

Starting the Operating System 4

After constructing the device tree in system RAM, the Power Macintosh startup 
firmware selects some or all of the following startup devices, based on an order 
of priority stored in the system hardware and on the presence of suitable device 
properties in the device tree:

■ a keyboard (or other input device)

■ a display (or other output device)

■ a boot device (mass storage or ROM, indicated by the boot path environment 
variable) that contains operating-system code

The Open Firmware code normally loads the operating system into memory 
and starts it using the Forth go command. In the case of Mac OS, Open 
Firmware transfers processor control to the Mac OS ROM, which begins the 
Mac OS startup process. If the Open Firmware user interface is invoked, 
however, the Open Firmware code will continuously poll the input device for 
characters and write output characters to the display, using the FCode drivers 
previously installed. This can let the user choose an operating system or 
perform other OS-independent configuration tasks. For further details, see 
“Open Firmware User Interface” (page 114).

For further details of the normal Macintosh startup sequence, see Chapter 10 of 
Technical Introduction to the Macintosh Family, described in “Supplementary 
Documents,” in the preface.
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Startup Sequence in the NewWorld Architecture 4

Here is a high-level view of the execution path taken when a NewWorld-based 
computer starts up.

1. The POST code runs (preliminary diagnostics, boot beep, initialization, and 
setup), with possible intervention in the mini nub, a small debugging tool. 

2. Open Firmware initializes and begins execution, including building the 
device tree and the interrupt trees.

3. Open Firmware loads the Mac OS ROM file, based on defaults and NVRAM 
settings.

4. Open Firmware executes the Forth script in the Mac OS ROM file, which 
contains instructions to read both the Trampoline code and the compressed 
Mac OS ROM image and place them into a temporary place in memory. 

5. The Forth script transfers control to the Trampoline code, which functions as 
the transition between Open Firmware and the beginning of the Mac OS 
execution.

6. The Trampoline code decompresses the Mac OS ROM image, gathers 
information about the system from Open Firmware, creates data structures 
based on this information, terminates Open Firmware, and rearranges the 
contents of memory to an interim location in physical memory space. 

7. The Trampoline code transfers control to the HardwareInit routine in the Mac 
OS ROM bootinfo file.

8. The HardwareInit routine copies data structures to their correct places in 
memory, and then calls the NanoKernel.

9. The NanoKernel fills in its data structures and then calls the 68K emulator.

10. The 68K emulator initializes itself, then transfers control to the startup 
initialization code.

11. The startup initialization code begins execution, initializing data structures 
and managers, and booting the Mac OS.

All functions found in the old Mac OS ROM are present in the NewWorld boot 
process, but occur at different times and places. To accomplish this, the code in 
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the Mac OS ROM Image and POST is simplified, while the Trampoline code 
addresses the new functionality. 

What Is Different 4

Even though ROM-in-RAM involves a fundamental change to the construction 
of the product-specific part of the Mac OS, the changes in the code and its 
execution are not that large. Many components are in changed locations, but 
their functions with respect to boot time and run time have not greatly changed. 
Many Mac OS components remain untouched. 

Interrupt Handling 4

Interrupt handling is very different with the NewWorld approach. The 
interrupt code has been rewritten to allow for dynamic creation of the interrupt 
layout. In addition, interrupt latency has been reduced to such an extent as to 
make it negligible. The description of the interrupt layout is now part of an 
Open Firmware interrupt tree that is interlaced within the Open Firmware 
device tree. The Trampoline code uses this interrupt tree to build the Mac OS 
native interrupt tree.

RAM Footprint 4

The NewWorld architecture puts the Mac OS ROM Image in RAM, and marks it 
read-only. Although the image is 4 megabytes in size, not all of it is in use. The 
portion that is not used is returned to the Mac OS for use as part of system 
RAM. At the time this document was written, less than 3 megabytes of the 4 
megabyte Mac OS ROM Image are in use, allowing more than 1 megabyte to be 
returned to the Mac OS. 

Run-Time Abstraction Services (RTAS) 4

Certain hardware devices differ from machine to machine, but provide similar 
functions. RTAS provides such hardware-specific functions, including functions 
for accessing the real-time clock, nonvolatile RAM (NVRAM), restart, 
shutdown, and PCI configuration cycles. RTAS is not available to clients other 
than the Mac OS.
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NVRAM 4

Instead of using hard-coded offsets to locations in NVRAM for Mac OS 
NVRAM and other information, the Trampoline code breaks NVRAM into 
variable-sized partitions that are used by Mac OS, Open Firmware, and any 
other client. PRAM resides in the Mac OS partition. The partitioning scheme is 
defined in part by the Common Hardware Reference Platform (CHRP) 
specification.

Startup Disk Control Panel 4

Open Firmware now bears responsibility for locating a startup device. This is 
very different from previous Mac OS systems where the Mac OS ROM had 
responsibility for locating the startup device. On the Power Macintosh G3 
computer, the Mac OS ROM image itself comes from the startup disk, so 
decisions regarding startup device must be made earlier in the startup process. 
Open Firmware recreates as much as possible the user experience of earlier 
systems but the implementation is very different.

Previous systems stored the user’s selected startup device in PRAM. The 
startup device was set in NVRAM when the user selected a device in the 
Startup Disk control panel. This device was honored by the Mac OS ROM 
unless the selected device was unavailable or was overridden by the user.

The startup disk routine for the NewWorld computers sets an Open Firmware 
configuration variable called boot-device, rather than setting Mac OS PRAM. 
This setting is honored by Open Firmware unless the selected device was 
unavailable or was overridden by the user. 

The following keys can be used to override the selected startup device.

■ Command-Option-Shift-Delete: ignore the boot-device setting and scan for 
alternate devices.

■ C: force the internal CD-ROM drive to be the startup device

■ D: force the internal hard disk to be the startup device

■ N: force boot using BOOTP and TFTP over the Ethernet

■ Z: force the internal Zip drive to be the startup device

Once Open Firmware locates a startup device and successfully loads a Mac OS 
ROM image, it passes information about the chosen device in the bootpath 
variable. This information, rather than that previously set in PRAM, is 
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subsequently used by the Mac OS ROM to locate the device containing the 
startup System Folder. 

IMPORTANT

The previous API for controlling the startup device 
selection, using _GetDefaultStartup and 
_SetDefaultStartup, is not effective on computers that 
support the NewWorld architecture. ▲ 

PCI Bus Configuration 4

This section describes how the Power Macintosh Open Firmware code 
configures the computer’s PCI buses during the Open Firmware startup 
process.

Configuration Tasks 4

Macintosh Open Firmware code performs the following tasks to help the PCI 
system support the devices previously found by the Open Firmware startup 
process:

■ It programs certain configuration bits in the 64-byte standard PCI header 
portion of PCI configuration space.

■ It determines the resource requirements (memory and I/O space) of each 
device, based on the device’s reg property. The reg property is created either 
by executing the FCode in the card’s expansion ROM, or if FCode is not 
present, the system Open Firmware code creates a reg property for the 
device by querying the device’s PCI configuration base registers.

■ After accumulating the resource requirements for all devices in the system, 
the system Open Firmware code constructs a conflict-free address map and 
adds the resulting assigned-addresses property to each PCI device’s node in 
the device tree.

Configuration Registers 4

Figure 4-1 presents a map of the PCI configuration registers that system 
firmware reads or writes to during the Open Firmware startup process. In 
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Figure 4-1, read-only registers are shaded; all other registers are read/write. The 
next section describes the actions taken for each register.

Figure 4-1 PCI configuration register map

Register Actions 4

This section describes the actions that the Macintosh Open Firmware performs 
on the PCI configuration registers listed in Figure 4-1 during startup.

Vendor ID 4

The Vendor ID register is read and its value stored in the property vendor-id. If 
the card has no FCode, the Vendor ID value makes up the xxxx portion of the 
"pcixxxx,yyyy" default name property for the node.
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Device ID 4

The Device ID register is read and its value stored in the property device-id. If 
the card has no FCode and no subsystem ID, the Device ID value makes up the 
yyyy portion of the "pcixxxx,yyyy" default name property for the node.

Command 4

The following bits in the Command register are set with the meanings shown:

■ Bit 9, Fast Back-to-Back Enable, is set to 1 if all PCI devices are fast 
back-to-back capable (if all devices have a fast-back-to-back property stored 
in their device node); otherwise, it is cleared to 0.

■ Bit 8, SERR Enable, is cleared to 0 for all devices because the Power 
Macintosh system doesn’t respond to SERRs.

■ Bit 7, Wait Cycle Control, is cleared to 0 for all devices.

■ Bit 6, Parity Error Response, is cleared to 0 for all devices.

■ Bit 5, VGA Palette Snoop, is cleared to 0 for all devices.

■ Bit 4, Memory Write and Invalidate Enable, is set to 1 for all devices because 
the Power Macintosh system fully supports this command type and 
optimizes for it.

■ Bit 3, Special Cycle Enable, is set to 1 for all devices because the Power 
Macintosh system can generate special cycles.

■ Bit 2, Bus Master Enable, is set to 1 for all devices because the Power 
Macintosh system supports masters in all PCI locations.

■ Bit 1, Memory Space Enable, is cleared to 0 for all devices before an operating 
system is loaded. Hence, the initialization routines of all run-time drivers 
must set this bit to 1 if they wish to access their device in memory space. 
However, the decision to write a 1 in this location must be made after 
checking that the memory resources required for correct operation appear in 
the device’s assigned-addresses property; otherwise, the driver should leave 
this bit to cleared to 0.

■ Bit 0, I/O Space Enable, is cleared to 0 for all devices before an operating 
system is loaded. Hence, the initialization routines of all run-time drivers 
must set this bit to 1 if they wish to access their device in I/O space. 
However, the decision to write a 1 in this location must be made after 
checking that the I/O space resources required for correct operation appear 
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in the device’s assigned-addresses property; otherwise, the driver should 
leave this bit to cleared to 0.

Status 4

The following bits are read in the Status register:

The value of bits 10–9, DEVSEL Speed, is stored in the node’s devsel-speed 
property.

The value of bit 7, Fast Back-to-Back Capable, is noted for each PCI device. If 
the value is nonzero, the property fast-back-to-back is created for the node. See 
the previous section for information about the Fast Back-to-Back Enable bit.

No specific action is taken for the remaining bits in the Status register.

Revision ID 4

The Revision ID register is read and its value stored in the property 
revision-id.

Class Code 4

The Class Code register is read and its value stored in the property class-code.

Cache Line Size 4

The Cache Line Size register is set for all devices as specified in the PCI 
Specification 2.1. This value may change from Macintosh platform to Macintosh 
platform for various performance reasons. 

Latency Timer 4

The Latency Timer register is set for all devices as specified in the PCI 
Specification 2.1. This value may change from Macintosh platform to Macintosh 
platform for various performance reasons. 

Header Type 4

The Header Type register is read, starting with bits 6–0. If the value of bits 6–0 is 
0x00, the configuration space has a standard header layout for configuration 
addresses 0x10 through 0x3F; if the value is 0x01, it has a PCI-to-PCI bridge 
header layout for that section.
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Note
The PCI bus behavior described in this section is that 
corresponding to a standard header. ◆

If bit 7 of the Header Type register is set to 1, the system Open Firmware probes 
for multiple functions; otherwise, it assumes the device is a single-function 
device.

BIST 4

No action is taken on the BIST register.

Base Registers 4

If FCode is present in the card’s expansion ROM, the system Open Firmware 
creates an assigned-addresses property for the node, provided the card’s FCode 
presents a reg property with entries referencing at least one base register and 
the system was able to provide the resources requested in the reg property 
corresponding to the base registers referenced. For each base register that has a 
corresponding entry in the assigned-addresses property, the system Open 
Firmware programs that base register with the address value stored in the 
assigned-addresses property. 

If FCode is not present for the node, the system Open Firmware creates a reg 
property for the device. To create a reg entry for each base register that is 
implemented, the system Open Firmware writes all 1s to each base register 
location. It then reads the locations to see how many of the 1s are still there. If 
the register reads back as all 0s, then the register is not implemented and a reg 
entry is not made for it. If the register contains a value other than 0, the system 
Open Firmware notes which bits are 1s and thereby determines whether the 
register is of type memory or I/O, the amount of address space required, 
whether it is a 64-bit address, whether it is prefetchable, and whether it must be 
located below 1 MB. This information is then encoded appropriately into the 
reg entry for the base register. After all base registers are queried in this manner, 
the full reg property is stored in the device’s node. Refer to the PCI specification 
and PCI Bus Binding to IEEE 1275-1994 (described in “Other Publications” 
(page 26)) for more details. Once the reg property is stored in the node, Open 
Firmware clears the Base registers to all 0s. It then follows the process of writing 
the registers with assigned-addresses values, as described above for devices 
that have FCode.
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Subsystem Vendor ID 4

If the value of the Subsystem Vendor ID register is nonzero, a 
subsystem-vendor-id property is created with the register’s value. If the 
property is created and no FCode is present on the card, the Subsystem Vendor 
ID value makes up the xxxx portion of the "pcixxxx,yyyy" default name 
property for the node.

The Subsystem Vendor ID register is described in Revision 2.1 of the PCI 
Specification.

Subsystem ID 4

If the value of the Subsystem ID register is nonzero and a subsystem-vendor-id 
property exists for the device, a subsystem-id property is created with the 
register’s value. If the property is created and no FCode is present on the card, 
the Subsystem Vendor ID value makes up the yyyy portion of the 
"pcixxxx,yyyy" default name property for the node.

The Subsystem ID register is described in Revision 2.1 of the PCI Specification.

Expansion ROM Base 4

The system Open Firmware uses the Expansion ROM Base register at probe 
time to determine whether a card has FCode present. It queries the register to 
see whether the register is implemented, following the procedure described 
above for other base registers. If the register is implemented, Open Firmware 
temporarily maps in an amount of memory space equal to the requirement 
found from the base register query and then programs that value into the base 
register. It also enables the expansion ROM by an OR operation with 1 on bit 0 
of the register and enables the card’s memory space by writing a 1 to the correct 
bit in the Command register. It then reads the expansion ROM’s first locations, 
by accessing the space temporarily mapped in, looking for the PCI signature 
(0x55AA). If it finds the signature, it continues to look for an Open Firmware 
ROM image signature. If it finds that signature, it locates the FCode, copies it to 
RAM, and executes it. After the card’s FCode has finished executing, or if it was 
determined that there was no FCode, the system Open Firmware disables the 
card’s memory space and expansion ROM and clears the Expansion ROM Base 
register to 0s.

If FCode was present in the card’s expansion ROM and the FCode presented a 
reg property with an entry for the Expansion ROM Base register, and if the 
system was able to provide the resources for this entry, then the system Open 
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Firmware creates a corresponding entry in the assigned-addresses property and 
writes the address value to the Expansion ROM Base register. 

If FCode is not present for the node, the system Open Firmware creates a reg 
property for the device and determines whether to create an entry for the 
Expansion ROM Base register following the procedure for other base registers 
described above. The procedure for writing the register if FCode is present is 
the same as that in the preceding paragraph.

IMPORTANT

Bit 0 of the Expansion ROM Base register, which is defined 
as the Expansion ROM Enable bit, is left as 0 (disabled) by 
the system Open Firmware. If the run-time driver is 
interested in accessing the PCI Expansion ROM, it must 
first check that it has received an assigned-addresses entry, 
and then it must enable both its memory space (Memory 
Space Enable bit of the Command register) and its ROM 
(Expansion ROM Enable bit of the Expansion ROM Base 
register). As with all writable configuration registers, such 
operations must be performed with read-modify-write 
code sequences so as not to disturb the existing values of 
other bits in the registers. ▲

Interrupt Line 4

No action is taken on the Interrupt Line register. It has no meaning for Power 
Macintosh computers because interrupts are OR-combined per slot in 
hardware, creating a unique interrupt for each PCI card accessible to the system 
interrupt controller. This register contains no useful information for drivers.

Interrupt Pin 4

The Interrupt Pin register is read. If its value is nonzero, the value appears in 
the property interrupts. This register contains no useful information for drivers 
for the reasons explained in the previous section.

Min_Gnt 4

The Min_Gnt register is read and its value stored in the property min-grant.
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Max_Lat 4

The Max_Lat register is read and its value stored in the property max-latency.

PCI-To-PCI Bridges 4

The second generation of Power Macintosh computers implements PCI-to-PCI 
bridges in conformance with the PCI specification listed in “PCI Special Interest 
Group” (page 28).

Configuration Header 4

For PCI-to-PCI bridges, the standard PCI configuration header (the first 64 
bytes of PCI configuration space) is different from that of standard PCI devices. 
Figure 4-2 gives a map of the registers in the portion of a PCI-to-PCI bridge’s 
configuration space defined by the PCI specification. In Figure 4-2, read-only 
registers are shaded; all other registers are read/write.
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Figure 4-2 PCI-to-PCI bridge register map

Register Settings 4

PCI-to-PCI bridges have specific configuration needs that are different from 
those of standard PCI devices. The system Open Firmware code is responsible 
for configuring the PCI-to-PCI bridge components. The following field 
descriptions list the standard settings for the registers shown in Figure 4-2.
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fast-back-to-back property stored in their device nodes); 
otherwise written 0.
Bit 8, SERR Enable, is written 0 for all devices; the Power 
Macintosh system doesn’t respond to SERRs.
Bit 7, Wait Cycle Control, is written 0 for all devices.
Bit 6, Parity Error Response, is written 0 for all devices.
Bit 5, VGA Palette Snoop, is written 0 for all devices.
Bit 4, Memory Write and Invalidate Enable. PCI-to-PCI 
Bridges consider this a read-only bit and will always return 
0 when read. They act only as agents for masters behind 
them and will propagate Memory Write and Invalidate 
commands if a PCI Master on either side generates such a 
cycle.
Bit 3, Special Cycle Enable. PCI-to-PCI Bridges consider 
this a read-only bit and will always return 0 when read, 
because they cannot respond to Special Cycles.
Bit 2, Bus Master Enable, is written 1 for all devices; the 
Power Macintosh system supports masters in all PCI 
locations.
Bit 1, Memory Space Enable, is written 1 for PCI-to-PCI 
bridges to enable memory cycles to pass through the bridge 
transparently, based on the programming of the Memory 
Base and Limit registers.
Bit 0, I/O Space Enable, is written 1 for PCI-to-PCI bridges 
to enable I/O cycles to pass through the bridge 
transparently based on the programming of the I/O Base 
and Limit registers.

Status The following bits are read in the Status register:
Bits 10-9, DEVSEL speed, value stored in the node’s 
devsel-speed property.
Bit 7, Fast Back to Back Capable, value noted for each PCI 
device. If the value is nonzero, the property 
fast-back-to-back is created for the node (see Command 
register explanation of Fast Back to Back Enable bit).
No specific action taken based on values of the remaining 
bits in the Status Register.
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Revision ID Read by system Open Firmware and stored in property 
revision-id.

Class Code Read by system Open Firmware and stored in property 
class-code. The name property for PCI-to-PCI bridges 
defaults to pci-bridge, based on the class code matching 
PCI-to-PCI bridge encoding (0x060400).

Cache Line Size Written by system Open Firmware. Set to 0x08 for all 
devices, which corresponds to the PowerPC family cache 
line size of 32 bytes.

Latency Timer Written by system Open Firmware. Set to 0x20 for all 
devices, which corresponds to 32 PCI clock intervals.

Header Type Read by system Open Firmware. First, bits 6 through 0 are 
examined. If the value is 0x00, the configuration space has a 
standard header layout for configuration addresses 
0x10–0x3F; if the value is 0x01, it has a PCI-to-PCI bridge 
header layout for that section. Described in this section is 
the behavior taken for a PCI-to-PCI header.

BIST No action is taken by the system Open Firmware on this 
register.

base registers 0-1 Open Firmware does not set the Base Registers for 
PCI-to-PCI bridges. It is assumed that they are 
programmed only through PCI configuration space.

Primary Bus Number
Written by system Open Firmware with the appropriate 
PCI Bus number corresponding to this bridge’s primary 
bus location (closer to main memory side) in the system 
topology.

Secondary Bus Number
Written by system Open Firmware with the appropriate 
PCI Bus number corresponding to this bridge’s secondary 
bus location (farther from main memory side) in the system 
topology. This value is stored in the device tree as the first 
datum in the PCI-to-PCI Bridge’s bus-range property. 

Subordinate Bus Number
Written by system Open Firmware with the appropriate 
PCI Bus number corresponding to the highest numbered 
PCI bus that is located behind (subordinate to, or farthest 
from main memory) this PCI-to-PCI bridge. This value is 
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stored in the device tree as the second datum in the 
PCI-to-PCI Bridge’s bus-range property.

Secondary Latency Timer
Written by system Open Firmware. Set to 0x20 for all 
devices, which corresponds to 32 PCI clock intervals.

I/O Base Written by system Open Firmware. If devices found behind 
the PCI-to-PCI bridge require I/O space address allocation, 
this byte-wide register is written with the appropriate 
values corresponding to the base of I/O space located 
behind the PCI-to-PCI bridge. See the PCI-to-PCI bridge 
architecture specification (described in “PCI Special Interest 
Group” on (page 28)) for details on this register. If no I/O 
space is requested behind the PCI-to-PCI Bridge, the I/O 
Base Register is written with a value greater than the I/O 
Limit value, thereby disabling any decoding of I/O space 
behind a PCI-to-PCI bridge.

I/O Limit Written by system Open Firmware. If devices found behind 
the PCI-to-PCI bridge require I/O space address allocation, 
this byte-wide register is written with the appropriate 
values corresponding to the base of I/O space plus the 
amount of space required located behind the PCI-to-PCI 
bridge. See the PCI-to-PCI bridge architecture specification 
for details on this register. If no I/O space is requested 
behind the PCI-to-PCI Bridge, the I/O Base Register is 
written with a value greater than the I/O Limit value, 
thereby disabling any decoding of I/O space behind a 
PCI-to-PCI bridge.

Secondary Status Read by Open Firmware. Bit specifics:
Bits 10-9, DEVSEL speed, the value stored in the node’s 
devsel-speed property.
Bit 7, Fast Back to Back capable, a value set for each PCI 
device. If the value is non-zero, the property 
fast-back-to-back is created for the node (see Command 
register explanation of Fast Back to Back Enable bit).
No specific action is taken based on values of the remaining 
bits in the Secondary Status Register.

Memory Base Written by system Open Firmware. If devices found behind 
the PCI-to-PCI bridge require memory space address 
allocation, this byte-wide register is written with the values 
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corresponding to the base of memory space located behind 
the PCI-to-PCI bridge. See the PCI-to-PCI bridge 
architecture specification for details on this register. If no 
memory space is requested behind the PCI-to-PCI bridge, 
the Memory Base Register is written with a value greater 
than the Memory Limit value, thereby disabling any 
decoding of memory space behind a PCI-to-PCI bridge.

Memory Limit Written by system Open Firmware. If devices found behind 
the PCI-to-PCI bridge require memory space address 
allocation, this byte-wide register is written with values 
corresponding to the base of memory space plus the 
amount of space required behind the PCI-to-PCI bridge. 
See the PCI-to-PCI bridge architecture specification for 
details on this register. If no memory space is requested 
behind the PCI-to-PCI bridge, the Memory Base Register is 
written with a value greater than the Memory Limit value, 
thereby disabling any decoding of memory space behind a 
PCI-to-PCI bridge.

Prefetchable Memory Base
Written by system Open Firmware. All memory space 
allocated behind a PCI-to-PCI bridge in PCI Power 
Macintosh systems is defined as non-prefetchable. 
Therefore, the Prefetchable Memory Base register is always 
written with a value that is greater than the Prefetchable 
Memory Limit value. This disables any decoding of 
Prefetchable Memory behind a PCI-to-PCI bridge.

Prefetchable Memory Limit
Written by system Open Firmware. All memory space 
allocated behind a PCI-to-PCI bridge is defined as 
non-prefetchable. Therefore, the Prefetchable Memory Base 
register is always written with a value that is greater than 
the Prefetchable Memory Limit value. This disables any 
decoding of Prefetchable Memory behind a PCI-to-PCI 
bridge.

Prefetchable Base Upper 32 bits
Written by system Open Firmware with all 0s, because the 
PCI Power Macintosh computers have a 32-bit address 
space.

Prefetchable Limit Upper 32 bits
Written by system Open Firmware with all 0s, because the 
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PCI Power Macintosh computers have a 32-bit address 
space.

I/O Base Upper 16 bits
Written by system Open Firmware with all 0s, because the 
PCI Power Macintosh computers utilize a 16-bit I/O 
address space behind PCI-to-PCI bridges.

I/O Limit Upper 16 bits
Written by system Open Firmware with all 0s, because the 
PCI Power Macintosh computers utilize a 16-bit I/O 
address space behind PCI-to-PCI bridges.

Expansion ROM Base Register
Open Firmware takes no action with this register. It is 
assumed that PCI-to-PCI bridges have no FCode in their 
ROMs.

Interrupt Line No action taken on this register. The value in this register 
has no meaning for the Power Macintosh computers, 
because interrupts are OR-combined per slot in hardware, 
creating a unique interrupt for each PCI card accessible to 
the system interrupt controller. No useful information for 
Power Macintosh driver writers exists in this register.

Interrupt Pin Read by system Open Firmware. If the value is nonzero, it 
appears in the property interrupts. It has no meaning for 
Power Macintosh, for the reasons given in the preceding 
paragraph.

Bridge Control Written by system Open Firmware. Bit specifics:
Bit 7, Fast Back to Back Enable, is written 1 if all PCI 
devices on the secondary side of the PCI-to-PCI bridge are 
Fast Back to Back capable (if all devices have a 
fast-back-to-back property stored in their device node); 
otherwise, it is written 0.
Bit 6, Secondary Bus Reset, is written 0 so as not to cause a 
separate reset on the secondary bus from the regular PCI 
hardware reset, which is passed automatically by the 
PCI-to-PCI bridge hardware.
Bit 5, Master Abort Mode, is written 0 so that all Master 
Aborts on the Secondary bus return all Fs on read actions.
Bit 4, Reserved.
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Bit 3, VGA Enable, is written 0, which disallows the 
forwarding of VGA hard decoding addresses to the 
secondary bus.
Bit 2, ISA Enable, is written 1, which blocks forwarding of 
traditional hard-decoded addresses (top 768 bytes for each 
1K block of I/O space) from the primary to the secondary 
PCI bus.
Bit 1, SERR# Enable, is written 0, because the Power 
Macintosh system doesn’t respond to SERR signals.
Bit 0, Parity Error Response, is written 0.
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As explained in Chapter 4, “Startup and System Configuration,” PCI expansion 
cards in Power Macintosh computers may need to operate during the Open 
Firmware startup process, before any operating system is present. The drivers 
for such cards are called Open Firmware drivers. Other drivers, called run-time 
drivers, are used only after an operating system has been loaded and has taken 
control of the main processor. Read “Open Firmware FCode Options” (page 87), 
for help in deciding whether or not your PCI card needs an Open Firmware 
driver.

This chapter discusses the general technical requirements for Open Firmware 
drivers for PCI devices—drivers that are used with the Open Firmware startup 
process. Run-time drivers for PCI devices used with Mac OS and other 
operating systems are discussed in Part 3, “Native Device Drivers.”

General Requirements 5

Any Open Firmware driver must be stored in a PCI card’s expansion ROM so 
that the Macintosh firmware can load and run the driver prior to the invocation 
of the disk-based operating system. Open Firmware drivers are written in 
FCode. For further information about FCode, see Writing FCode Programs for 
PCI. This book is listed in “Other Publications” (page 26).

Other general requirements for Open Firmware drivers include the following:

■ They must be able to acquire any software resources they need from the PCI 
card’s expansion ROM or from the Macintosh firmware. For example, a 
display card must be able to access a font in the expansion ROM if it is 
required to write characters on the screen during startup.

■ The card hardware may not address system space below 1 MB. In Power 
Macintosh computers, PCI cards that request space below 1 MB in a reg 
property will not receive a corresponding assigned-addresses entry.

■ PCI expansion cards and their drivers should avoid hard address decoding, 
as discussed in “Hard Decoding Device Address Space” (page 55).
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Driver Interfaces 5

Open Firmware driver code typically supports two interfaces:

■ a hardware interface, through which the driver controls its associated device

■ a client interface, through which the driver cooperates with an operating 
system

Discussion of the hardware interface for Open Firmware driver code is beyond 
the scope of this book; it is assumed that the relation between a driver and its 
associated hardware is entirely controlled by the internal design of the PCI 
expansion card. 

This book also does not try to discuss the general client interface for Open 
Firmware drivers, which is of interest primarily to engineers designing an 
operating system. For details about the specific client interface between drivers 
and Mac OS, see Part 3, “Native Device Drivers” (page 137).

The next section discusses how PCI card expansion ROMs export properties to 
the Open Firmware device tree. This process lets the card’s Open Firmware 
drivers (if any) work with the Power Macintosh firmware during the 
computer’s startup process, before an operating system is present. 

IMPORTANT

To participate in the boot process, PCI expansion cards 
installed in Macintosh computers that support the 
NewWorld system architecture must include Open 
Firmware drivers in the PCI card expansion ROM. ▲

Open Firmware Driver Properties 5

When the Open Firmware startup process finds a PCI expansion card, it looks 
in the card’s expansion ROM for an Open Firmware signature and succeeding 
FCode. When it finds FCode, the Open Firmware startup process loads it into 
RAM and interprets and executes it. The code must fill in the part of the device 
tree applicable to its device node; it must also create property nodes required by 
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the startup firmware and by any operating system that may use the driver in 
the future.

The standard property nodes for PCI devices working with the Open Firmware 
startup process are defined in PCI Bus Binding to IEEE 1275-1994. For 
information about obtaining this document see the note under “Institute of 
Electrical and Electronic Engineers” (page 27).

The call interface to PCI Open Firmware drivers and the data format for the 
Open Firmware signature are defined in IEEE Standard 1275. This book is listed 
in “Supplementary Documents” (page 26).

Standard device properties for PCI expansion cards and run-time drivers used 
with Mac OS are listed in Table 10-1 (page 322). The same properties are used 
with boot devices and Open Firmware drivers for Power Macintosh computers. 
Other properties, described in IEEE Standard 1275, may be required if a PCI 
card is to support operating systems other than Mac OS, or be compatible with 
computers besides Power Macintosh.

Open Firmware User Interface 5

Open Firmware is the process that controls the microprocessor after hardware 
initialization and diagnostics are performed, but before the main operating 
system is passed control. Open Firmware is responsible for, among other things, 
building the device tree and probing the expansion slots for I/O devices. Open 
Firmware queries PCI devices for address space requirements and dynamically 
assigns the needed address space to each device. It is during this probing 
process that each device and ASIC on the logic board is given a node in the 
device tree. Hardware and software engineers can use the Open Firmware user 
interface to debug their device and driver, respectively. See Technote 1044, 
Understanding PCI Expansion Choices for Mac OS 8, Part III in the Open 
Firmware Technote Series, for details about properties and methods for various 
devices. You must be able to traverse the device tree to get to your device node 
and then to edit and debug that node.

The Macintosh implementation of Open Firmware includes the user interface 
described in IEEE Standard 1275. The user interface provides an interactive 
terminal environment that is useful in viewing and manipulating Open 
Firmware data structures and other system-level resources, such as memory 
and device registers, in the absence of a running operating system. On Power 
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Macintosh PCI computers that don’t support the NewWorld architecture, the 
default implementation operates from a remote terminal connected by a serial 
communication link to the modem port of the target PCI-based Power 
Macintosh computer. On Power Macintosh computers that support the 
NewWorld architecture, the default implementation operates in a one machine 
mode, and can be set to remote serial mode. The serial link’s default settings are 
as follows: 

Open Firmware version 1.0 and 2.0 use 38400 baud 
Open Firmware version 3.0 uses 57600 baud 
No parity
8 data bits
1 stop bit
XON/XOFF handshake
ANSI/VT102 terminal protocol

In addition to the remote terminal method of accessing Open Firmware, Power 
Macintosh G3 computers support invocation of the user interface on the current 
machine without the need for a remote serial connection. See “Invoking the 
User Interface On the Current Machine” (page 118), for additional information.

Invoking the User Interface Via Remote Connection 5

To enter the Open Firmware user interface, restart the target Power Macintosh 
computer while you immediately and simultaneously press the Command, 
Option, O, and F keys on its keyboard. (O and F represent Open Firmware.) 
Release the keys after you see the Open Firmware prompt on the screen or in 
the case of pre-NewWorld computers, the remote terminal. It should look 
similar to the following example:

Open Firmware, 3.1.0
To continue booting the MacOS type:
BYE<return>
To continue booting from the default boot device type:
BOOT<return>
ok
0 > 

The Open Firmware version number varies upon the target. Macintosh 
computers that support the New World architecture have Open Firmware 
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version 3.0.x. or greater. Older PCI-based Power Macintosh computers include 
Open Firmware versions up to 2.0.x. 

The “ok” means the Open Firmware Forth interpreter is waiting for keyboard 
input. The 0 indicates the top of the stack.

If you see the Mac OS boot screen, “Welcome to Macintosh,” on the target 
computer, you may have failed to press the keys quickly enough and should try 
again.

The Command, Option, O, and F key action just described causes the Macintosh 
startup firmware to enter the Open Firmware user interface at the point just 
before initiating an operating system startup process. At this point all FCode 
that was present on PCI cards has been executed and the assigned-addresses 
and other standard properties have been added to the device tree. When the 
user interface is invoked, it sends a bell character and a string identifying Open 
Firmware and its version number to the remote terminal. It then awaits input 
from the terminal. The default routes for both output and input devices are 
through the serial terminal connection.

To move from two machine to one machine mode during an individual session, 
enter the following redirection words:

0 > " pci2/@f" output \ the path must point to your display node
0 > " kbd" input \ the alias kdb could be " keyboard"

Note: " kbd" is an alias supported on some the machines, others may use 
" keyboard" instead. But there is no standard alias for display screen. The 
redirection of output is specific to pre-New World machines with Open 
Firmware version 2.0 or later. You will have to decide what is the display for the 
target machine and use that path name.

After the output is directed to the target machine, what you enter at the host for 
the second word (i.e., input) does not appear on the host display, but on the 
target display. You can now enter your session on the target machine until you 
restart your target. Once you restart, your input and output capabilities will 
again be at the host. To make the redirection change permanent, use the 
printenv and setenv words. Listing 5-1 shows an example of the display output 
produced after entering the printenv word and pressing the retun key. 

The output shown Listing 5-1 is representative of what you would see if you 
entered printenv on a current Power Macintosh G3 computer. There are two 
columns displaying values for the configuration variables; the left column 
displays current setting; the right column displays the default setting. You must 
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change the environmental variables called input-device and output-device to 
contain the path name to your keyboard and display, respectively. You use the 
setenv word followed by the variable name and a new value to change the 
variables. Then, when you restart your target, you will always be in one 
machine mode. Of course, since these variables are stored in NVRAM, you can 
reset them to the default behavior using the Option-Command-P-R keys upon 
restart. 

If the Open Firmware configuration variable auto-boot? is set to false, the 
Macintosh startup firmware enters the user interface automatically after 
subsequent system restarts. This makes the Command-Option-O-F key 
combination unnecessary. 

Listing 5-1 Example of printenv output

0 > printenv
-------------- Partition: common -------- Signature: 0x70 ---------------
little-endian? false false
real-mode? false false
auto-boot? false true
diag-switch? false false
fcode-debug? false false
oem-banner? false false
oem-logo? false false
use-nvramrc? false false
use-generic? false false
default-mac-address? false false
real-base -1 -1
real-size -1 -1
load-base 0x800000 0x800000
virt-base -1 -1
virt-size -1 -1
pci-probe-mask -1 -1
screen-#columns 100 100
screen-#rows 40 40
selftest-#megs 0 0
boot-device hd:5,\\:tbxi hd:5,\\:tbxi
boot-file
boot-screen
console-screen
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diag-device floppy floppy
diag-file diags diags
input-device keyboard keyboard
output-device screen screen
mouse-device mouse mouse
oem-banner
oem-logo
nvramrc
boot-command mac-boot mac-boot
forced-boot
fw-scsicfg
fw-boot-path
default-client-ip
default-server-ip
default-gateway-ip
default-subnet-mask
default-router-ip
boot-script
aapl,pci Use PRINT-AAPL,PCI to view
ASVP 30313036 30333030 31373030
 ok 
0 > 

Invoking the User Interface On the Current Machine 5

Starting with the PowerBook 3400 and desktop Power Macintosh G3 
computers, you can enter the Open Firmware user interface on the current 
machine via the keyboard and display without setting up a remote serial 
connection with a second computer. The process for invoking the Open 
Firmware user interface on the current machine is the same. 

Startup the computer and simultaneously press the Command, Option, O, and 
F keys on its keyboard. Release the keys after you hear the boot sound from the 
computer and see the Open Firmware prompt. Power Macintosh G3 computers 
equipped with external serial ports also support remote connection to the Open 
Firmware user interface, as described in “Invoking the User Interface Via 
Remote Connection” (page 115). 
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User Interface Environment 5

The user interface operates as an interactive Forth environment, with necessary 
omissions and additions as appropriate to Open Firmware. The interface should 
be used to develop and debug the Forth source code that will eventually be 
converted into FCode and stored in a PCI card’s expansion ROM. To create 
FCode, which is a tokenized representation of the Forth source, you must use 
an FCode tokenizer. Apple provides the standalone tokenizer in the PCI driver 
development kit (DDK). Special tokenizer words automatically generate a ROM 
image with the correct signatures and formats for a PCI card expansion ROM 
with FCode.

The Open Firmware interface interprets common Forth words as well as user 
defined words. The following sections list some of the common Forth 
commands that are available for Open Firmware driver development and 
debugging. The Forth language interpreter and Open Firmware 
implementation details are well defined in the documentation listed in “Other 
Publications” (page 26). This chapter provides only a brief introduction the 
features available in the Open Firmware environment. 

Note
While testing your forth code in the Open Firmware 
interface, you may get stuck in a situation that causes an 
infinite loop. You can get out of this situation by shutting 
down Open Firmware with a press of the Power key on the 
keyboard.
User Interface Environment 119



C H A P T E R  5  

PCI Open Firmware Drivers
Open Firmware Forth Language Symbols 5

Table 5-1 lists a few of the common symbols used in Open Firmware Forth code. 
See “Open Firmware Forth Usage Examples” (page 126), for examples that use 
some of the symbols listed here. 

Defining Forth Words 5

The : (colon) and “;” (semicolon) are used when defining forth words (word in 
this case is not the same as the term word defined in Table 5-1). To start a Forth 
word definition use the colon <:> symbol, to end a word definition, use the <;> 
semicolon. Here is an example of a word definition:

: HI ." Hello New World";

The example also uses the word ." (dot quote) within the HI colon definintion. 
The word ." (dot quote) tells the interpreter to collect the characters that follow 
it until reaching a closing " (quote) character. Words are often combinations of 
other words that provide the functions needed to accomplish the required 
result. In this case, the definition of the HI specifies that the interpreter is to 
collect the text, Hello New World. If you enter the above definition, press the 
Return key, and then type HI and press the Return key again, the characters 
Hello New World followed by the prompt are displayed.

The following section lists, and briefly defines, commonly used Forth 
commands.

Table 5-1 Open Firmware common symbols

Symbol Meaning Usage

@ fetch get the contents of address

! store store data at address

c char 8 bit datum

w word 6 bit datum

l long 32 bit datum

adr 32 bit address
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Forth Commands (Words) 5

The tables in this section list some of the common Forth commands that you 
may find useful while developing and debugging PCI card Open Firmware 
FCode drivers.

Table 5-2 lists some of the common Forth language number base commands. 

Table 5-3 lists common Forth language commands used for operations on the 
stack. 

Table 5-2 Forth number base commands

Command Definition

decimal ( -- ) Set number base to ten

d# number ( -- n) Interpret the next number as decimal

hex ( -- ) Set number base to 16

h# number ( -- n) Interpret the next number as hex

.d (n -- ) Display n in decimal without changing base

.h (n -- ) Display n in hex without changing base

.u (n -- ) Display unsigned number

Table 5-3 Forth stack commands 

Command Definition

. (n -- ) Display contents of top of stack in current base

.s ( -- ) Display contents of the stack

clear Empty the contents of the stack

drop (n -- ) Remove the top item on the stack

dup (n -- nn ) Copy the top item on the stack
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Table 5-4 lists common Forth language arithmetic commands.

over (n1 n2 -- n1 n2 n1 ) Copy top 2nd item to the top of the stack

rot (n1 n2 n3 -- n2 n3 n1 ) Rotate top 3 items on the stack

swap (n1 n2 -- n2 n1) Swap top 2 items

Table 5-4 Forth arithmetic commands

Command Definition

* (n1 n2 -- n3 ) Multiply

+ (n1 n2 -- n3 ) Add

- (n1 n2 -- n3 ) Subtract

/ (n1 n2 -- n3 ) Divide

<< (n1 n2 -- n3 ) Shift left n1 by n2 bits

>> (n1 n2 -- n3 ) Shift right n1 by n2 bits

and (n1 n2 -- n3 ) Bitwise AND operation

mod (n1 n2 -- n3 ) Remainder of n1/n2

not (n1 -- n2 ) Bitwise inversion

or (n1 n2 -- n3 ) Bitwise OR

xor (n1 n2 -- n3 ) Bitwise XOR

Table 5-3 Forth stack commands (continued)

Command Definition
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Table 5-5 lists common Forth language conditional commands. 

Table 5-6 lists common Forth language commands for loop operations. 

Table 5-5 Forth conditional commands

Command Definition

if (? -- ) Execute the following if the flag is true

then ( -- ) Terminate IF

else ( -- ) Execute the following if the flag is false

Table 5-6 Forth commands for loop operations 

Command Definition

do (end start -- ) Begin a do loop (ex: 10 0 do i . loop)

loop ( -- ) End a do loop construct

+loop (n -- ) End a do loop construct adding n each pass

begin ( -- ) Start non indexed loop

again ( -- ) End a non indexed loop construct

until ( ? -- ) End a begin loop when flag is true

begin ( -- ) Start non-indexed loop

while ( ? -- ) End a non-indexed loop construct

repeat ( -- ) End of loop construct
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Table 5-7 lists common Forth language keyboard commands. 

Table 5-8 lists common Forth language commands for memory mapping 
operations. 

Open Firmware User Interface Commands and Examples 5

A short list of commands available through the Open Firmware user interface is 
shown in Table 5-9. Included within some of the command descriptions are 
examples that further illustrate command usage. Note that several of the 
commands are combinations of commands that can be used separately. The 

Table 5-7 Forth commands for keyboard operations

Command Definition

key? ( -- n ) Returns true/false if key has been typed

key ( -- n) Read a key from keyboard

cr ( -- ) Go to next line on display

Table 5-8 Forth Memory mapping commands

Command Definition

do-map (phys virt size mode -- ) Map a region of 32 bit physical address space 
to virtual memory space. 

Mode = 0 for memory, 0x28 for I/O.

Space must be mapped before access is 
possible.

do-unmap (virt size -- ) Unmap previously mapped space
124 User Interface Environment



C H A P T E R  5

PCI Open Firmware Drivers
Open Firmware IEEE 1275 specification defines all of the commands and 
keywords. 

Table 5-9 Commonly used Open Firmware user interface commands 

Commands Definition

assign-addresses Emulates the regular Open Firmware startup process of 
querying the system for resource requirements and adding 
an assigned-addresses property to the node that is the 
current package.

boot Performs the startup process, using the currently chosen 
device. 

ls

dev / ls

List the children of the current node.

Selects the root node and lists its children recursively, 
effectively dumping a name view of the device tree. Press 
Control-S to stop the text from scrolling off the screen. 
Restart the scrolling with Control-Q. 

devalias Show currently defined device aliases

dev <dev pathname>

dev /bandit/gc .properties

Selects the specified device in pathname and makes it the 
current node.

Selects gc (the node representing the Bandit ASIC, which 
controls many Macintosh I/O features) as the active package 
and displays its properties. Bandit is used in the first 
PCI-based Power Macintosh models but may not be present 
in future models. For an illustration of its position in the 
device tree, see Listing 10-1 (page 284).

show-devs <dev pathname> Show devices beneath the device node specified in 
pathname.

dl Sets the terminal emulator for downloading Forth code to 
RAM. Press Control-D to end the downloading process.

dump-device-tree Lists properties and methods of all the device tree nodes.

FFC00000 100 dump Dumps 0x100 bytes from virtual address 0xFFC00000, if that 
address is currently mapped in.

init-nvram Resets data in NVRAM to default values.
User Interface Environment 125



C H A P T E R  5  

PCI Open Firmware Drivers
Open Firmware Forth Usage Examples 5

Here are a few short examples that show what can be done with the Forth 
language while in the Open Firmware interface.

The following example maps the physical address 8000 to virtual memory space 
for 0x1000 bytes for access.

8000 8000 1000 0 do-map

The next example dumps the contents of address 8000 continuously until any 
key press.

properties Show the names and values of the current device node 
properties.

make-properties Emulates the regular Open Firmware startup process of 
querying the device’s configuration space and adding the 
standard PCI properties to the node that is the current 
package.

printenv Shows the current environment and default settings of Open 
Firmware configuration variables stored in NVRAM.

setenv param val Sets the current environment parameter to the specified 
value. The value set by setenv persist across restarts. 

setenv auto-boot? 
false

Sets the environment variable auto-boot? stored in NVRAM 
to false. This causes the computer to invoke the Open 
Firmware user interface automatically after subsequent 
restarts.

shut-down Powers down the computer.

pwd Displays the pathname of the current package.

reset-all Resets the target computer.

see word Displays the Forth source code for the word entered.

words Lists variables, constants, and methods of the active package 
(as in Forth, but in the scope of the current package only).

Table 5-9 Commonly used Open Firmware user interface commands (continued)

Commands Definition
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begin 8000 l@ . key? until

The next example stores 0x12345678 at location 8000.

12345678 8000 l!

The next example dumps 16 longs starting from location 8000.

8000 40 bounds do cr i u. i l@ . 4 +loop

The next example writes 0xaa55 to location 8000 until keypress. 

begin aa55 8000 l! key? until

Terminal Emulation in Graphics Drivers 5

For details of Open Firmware driver design for most standard boot devices, 
including Open Firmware graphics drivers, see IEEE Standard 1275 and Writing 
FCode Programs. These books are listed in “Other Publications” (page 26).

Besides their generic requirements, Open Firmware drivers for PCI graphics 
cards in Power Macintosh computers must provide terminal emulation support. 
IEEE Standard 1275 defines the behavior of a terminal emulator support 
package, including the implementation of certain escape sequences defined by 
ANSI Standard X3.64. The Macintosh package, described here, conforms to ISO 
Standard 6429-1983. The Macintosh implementation of Open Firmware for 
PowerPC supports additional graphic renditions, through Select Graphic 
Rendition (SGR) escape sequences, beyond those specified in the Open 
Firmware standard.

For the Macintosh terminal emulation extensions to be used, the FCode device 
driver for a display device (a device whose device_type property has the value 
display) must initialize the first 16 entries of its color table to appropriate 
values, as described below. These values assume that the color is represented by 
the low-order 3 bits of the color index and that the bit corresponding to a value 
of 8 represents the intensity. The ISO Standard 6429-1983 provides parameter 
values to control the color of foreground (30–37) and background (40–47) 
independently. The intensity is set separately (1–2), and must be issued before 
the color control; 1 -> color, 2 -> color+8.
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In the Macintosh terminal emulator, there are current background and 
foreground colors whose values range from 0 through 15, corresponding to the 
first 16 entries of the color table. In positive image mode, pixels corresponding 
to a font or logo bit set to a value of 1 are set to the foreground color; pixels 
corresponding to a font or logo bit cleared to 0 are set to the background color. 
When in negative image mode, the roles of foreground and background are 
reversed.

The default rendition is positive image mode, with background set to 15 and the 
foreground set to 0, thus producing black characters on a bright white 
background.

Table 5-10 lists the effects of executing SGR escape sequences with various 
parameters.

Table 5-10 SGR escape sequence parameters 

Parameter Interpretation

0 Default rendition

1 Bold (increased intensity)

2 Faint (decreased intensity)

7 Negative image

27 Positive image

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background
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The next sections define the additional behavior of display devices for Open 
Firmware implementations that support the terminal emulator extensions.

Color Table Initialization 5

The core specification of Open Firmware defines a terminal emulation support 
package that does not include support for colors. The Macintosh Open 
Firmware implementation supports additional SGR parameters to allow client 
programs to display characters and logos in a 16-color model.

For this expanded terminal emulation support to work, Open Firmware device 
drivers for display devices must initialize the first 16 entries of their color table 
to values defined in Table 5-11, where values are defined in terms of the fraction 
of full saturation required for each of the primary red-green-blue (RGB) colors.

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

Table 5-11 Color table values 

Index Red Green Blue Color

0 0 0 0 Black

1 0 0 2/3 Blue

2 0 2/3 0 Green

3 0 2/3 2/3 Cyan

4 2/3 0 0 Red

Table 5-10 SGR escape sequence parameters (continued)

Parameter Interpretation
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Display Device Standard Properties 5

In addition to the standard properties defined by Open Firmware for display 
devices, the following device properties, encoded as with encode-int, must be 
supported:

width Visible width of the display, in pixels.
height Visible height of the display, in pixels.
linebytes Address offset between a pixel on one scan line and the 

same horizontal pixel position on the next scan line.
depth Number of bits in each pixel.

Display Device Standard Methods 5

This section defines additional methods that display devices should implement 
to be compliant with the Macintosh terminal emulator extensions. These 
methods assume that the device supports at least 16 colors using the RGB color 
model and that a color lookup table (CLUT) exists that can be read and written 
to. The model assumes 8-bit values for each of the RGB components of the 

5 2/3 0 2/3 Magenta

6 2/3 1/3 0 Brown

7 2/3 2/3 2/3 White

8 1/3 1/3 1/3 Gray

9 1/3 1/3 1 Light blue

10 1/3 1 1/3 Light green

11 1/3 1 1 Light cyan

12 1 1/3 1/3 Light red

13 1 1/3 1 Light magenta

14 1 1 1/3 Light yellow

15 1 1 1 Bright white

Table 5-11 Color table values (continued)

Index Red Green Blue Color
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colors, where 0x00 implies no color and 0xFF indicates full saturation of the 
component. If fewer bits are available, the corresponding entries should be 
scaled appropriately.

Individual color entries are specified by their RGB values, using 8 bits for each. 
Each color is represented by an index. The index values for the 16-color 
extension are in the range 0 through 15; however, most display hardware will 
support at least 256 colors.

The following methods allow access to the CLUT from client programs, as well 
as the user interface described in the next section.

set-colors ( adr index #indices -- )
Allows setting a number of consecutive colors, starting at 
index, for #indices colors. The adr parameter is the address 
of a table of packed RGB components.

get-colors ( adr index #indices -- )
Allows reading a number of consecutive colors, starting at 
index, for #indices colors. The adr parameter is the address 
of a table that will be filled in with packed RGB 
components.

color! ( r g b index -- )
Allows setting a single color value, specified by index. The 
r, g, and b parameters are values to be placed into the red, 
green, and blue components, respectively.

color@ ( index -- r g b )
Allows reading the color components of a single color 
value, specified by index. The r, g, and b parameters are the 
values of the red, green, and blue components, respectively.

Sample FCode Drivers 5

Listing 5-2 shows an example of minimal FCode support for a PCI SCSI card. 
The FCode in the example provides identifying information in its device node 
and creates a property that contains the run-time driver to be loaded into the 
Macintosh system heap by the Expansion Bus Manager.
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Listing 5-2 Minimal PCI SCSI card FCode support

/  push arguments on the stack for pci-header:
/  *** THESE MUST MATCH THE CONFIG REGISTERS FOR YOUR ***
/  *** FCODE TO BE RECOGNIZED BY OPEN FIRMWARE ***
/  vendor #, device #, class-code = SCSI bus controller

/ vendorID deviceID classCode
tokenizer[ hex 1000 0003 010000  ]tokenizer

/ generate proper PCI image header
pci-header             

/ generate proper FCode header (within PCI image)
fcode-version2      
hex

/ encode name property 
/ refer to IEEE 1275-1994, page 162
/ refer to PCI bus binding to IEEE 1275-1994 Revision 2.0,
/ Section 2.5 FCode Evaluation Semantics, page 9, line 36

"AAPL,scsi" encode-string " name" property

/ encode compatibility property
/ refer to IEEE 1275-1995, page 127
/ refer to Open Firmware Recommended Pratice, Generic Names, version 1.4,
/ Section 3 Generic Names, page 5, Guidline 2

"APPL,SYN53C875J" encode-string " compatibility" property

/ encode device_type property
/ Ref : IEEE Std 1275-1994 : page 208
" scsi-2" encode-string " device_type" property

/ encode reg property
/ Ref : IEEE Std 1275-1994 : page 174
/ Ref : Writting FCode Programs For PCI : page 84

/ generate a "reg" property which lists our configuration space at the start 
/ of the assigned space, with 0 size (as required by the PCI Binding 
/ Supplement)
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/ PCI Configuration Space entry of the reg property
my-address my-space encode-phys \ configuration space
0 encode-int encode+ 0 encode-int encode+ \ size ( 0 )

/ Base Address Zero entry of the reg property
my-address my-space 01000010 or encode-phys encode+ \ I/O space
0 encode-int encode+ 100 encode-int encode+ \ size ( 256 )

/ Base Address One entry of the reg property
my-address my-space 02000014 or encode-phys encode+ \ memory space
0 encode-int encode+ 100 encode-int encode+ \ size ( 256 )

/ Base Address Two entry of the reg property
my-address my-space 02000018 or encode-phys encode+ \ memory space
0 encode-int encode+ 1000 encode-int encode+ \ size ( 4K )

/ PCI Expansion ROM entry of the reg property
my-address my-space 02000030 or encode-phys encode+ \ expansion rom
0 encode-int encode+ 10000 encode-int encode+ \ size ( 64K )

" reg" property

/ "power-consumption" property which lists standby and full-on power 
/ consumtion for various power rails in microwatts would go here; if you
/ don't create this property, Open Firmware creates one by filling in the
/ "unspecified" rail entries from the PRSNT pins (if you don’t know the
/ power consumption values, you can fill the "unspecified" entries with
/ zeros)

0 encode-int 0 encode-int encode+ / "unspecified"
d# 7500000 encode-int d# 7500000 encode-int encode+ encode+ / +5V
0 encode-int 0 encode-int encode+ encode+ / +3V
d# 8100000 encode-int d# 8100000 encode-int encode+ encode+ / I/O power
/ remaining entries are 0 and can be omitted
0 encode-int 0 encode-int encode+ encode+ / reserved

"power-consumption" property

/ the following properties will automatically be generated for this card by 
/ Open Firmware from the PCI Configuration Space Header. 
/ Ref : PCI Bus Binding to : IEEE Std 1275-1994 Revision 2.0, Section 2.5, 
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/ FCode Evaluation Semantics : page 8 : lines 14 - 57.
/ "has-fcode"
/ "vendor-id"  
/ "device-id"  
/ "revision-id"  
/ "class-code"  
/ "interrupts"  
/ "min-grant" - unless header is type 01h
/ "max-latency" - unless header is type 01h
/ "devsel-speed" 
/ "fast-back-to-back" 
/ "subsystem-id" 
/ "cache-line-size" 
/ "66MHz-capable" 
/ "udf-supported" 
/  "assigned-addresses"

/ there is enough information for the runtime driver to be able to locate the card, 
/ however a complete FCode implementation would also provide boot-time I/O services

/ include an image of the runtime driver, and have it assigned as the value of a 
/ property that the Mac OS will read at startup

fcode-end            / end FCode header
pci-end              / end PCI header

Listing 5-3 Minimal network FCode driver support

/ Network drivers should support the 
/ TFTP Booting Extension Recommened Pratice
/ [promiscous], [speed= n], [duplex= mode], [bootp], [siaddr], [filename], 
/ [ciaddr], [giaddr], [bootp-retries], [tftp-retries]
/ See the PCI DDK 3.0 for a complete Network driver example

" ethernet" device-name
" network" device-type
" ethernet" encode-string " network-type" property
" network" encode-string " removable" property
" net" encode-string " category" property
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Listing 5-4 Minimal display FCode driver support

/ See the PCI DDK 3.0 for a complete display driver example
" display" device-type / defines the device type as display

: my-open ( -- )
... initialize device / your device initialization
... monitor sense / monitor sense code
;

: my-close ( -- )
... / close code goes here
;

[‘] my-open is-install
/ You could put fcode in this area that puts up boot time options or a logo
/ in a terminal emulator. 
/ here is a prototype example
: open ( -- true )

...
my-open
;

: write ( adr len -- actual )
...
;

: draw-logo ( l# a w h -- )
...
;

: restore
;

[’] my-close is-remove
: close ( -- )

my-close
;

/ If you want to draw with color, you should support the 
/ Open Firmware 8-bit graphics extensions recommended pratice. See also, 
/ “Terminal Emulation in Graphics Drivers” (page 127).
/ The basic requirements are:

/ draw-rectangle ( adr x y w h -- )
/ fill-rectangle ( index x y w h -- )
/ read-rectangle ( adr x y w h -- )
/ color! ( r g b index -- )
Sample FCode Drivers 135



C H A P T E R  5  

PCI Open Firmware Drivers
/ color@ ( index -- r g b )
/ set-colors ( adr index #indices -- )
/ get-colors ( adr index #indices -- )
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Native Device Drivers 3
This part of Designing PCI Cards and Drivers for Power Macintosh Computers tells 
you how to design and write run-time native device drivers that support the 
PCI-bus compatible Power Macintosh architecture. These drivers are called 
native because they are written for execution by the native instruction set of the 
PowerPC microprocessor. This part consists of the following chapters:

■ Chapter 6, “Native Driver Overview,” presents the general concepts and 
framework applicable to native drivers for PowerPC Macintosh computers.

■ Chapter 7, “Finding, Initializing, and Replacing Drivers,” describes how the 
Macintosh hardware and software architecture determine how drivers and 
devices are matched, and discusses what driver and card designers can do to 
improve the compatibility of their products on the Macintosh platform.

■ Chapter 8, “Writing Native Drivers,” gives you details of native driver 
design and coding, including how to use services provided by the Mac OS 
Driver Loader Library.

■ Chapter 9, “Driver Loader Library,” describes the Driver Loader Library 
(DLL), a CFM shared-library extension to the Macintosh Device Manager. 

■ Chapter 10, “Name Registry,” describes the Mac OS data structure that stores 
device information extracted from the PCI device tree.

■ Chapter 11, “Driver Services Library,” details the general support that 
Mac OS provides for device drivers, including interrupt and timing services.

■ Chapter 12, “Expansion Bus Manager,” discusses a collection of PCI 
bus-specific system services available to native device drivers.

■ Chapter 13, “Graphics Drivers,” describes the calls serviced by typical 
display drivers.

■ Chapter 14, “Network Drivers,” describes how to construct a sample 
network driver.

■ Chapter 15, “SCSI Drivers,” describes how to construct a sample native SCSI 
Interface Module (SIM) compatible with SCSI Manager 4.3. 
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This chapter presents an overview of the native driver environment and 
services, or I/O architecture, available in the Mac OS for Power Macintosh 
computers that include a PCI bus. It covers concepts and terminology that are 
introduced with this I/O architecture. It also provides a high-level summary of 
the new driver interfaces, packaging, and support. The discussion in this 
chapter applies to run-time drivers, which run after the system startup steps 
detailed in Chapter 4, “Startup and System Configuration.”

The previous Macintosh I/O architecture was based on resources of type 'DRVR' 
and their associated system software, including the Device Manager. Mac OS 
now supports a more general concept of driver software. In the new I/O 
architecture, a driver is any PowerPC native code that controls a physical or 
virtual device. This definition includes resources of type 'ndrv' but excludes 
resources of type 'DRVR', protocol modules, control panels, resources of type 
'INIT', and application code.

Native device drivers are now isolated from application-level interfaces and 
services; in particular, main driver code must run without access to the 
Macintosh Toolbox. This concept is discussed further in “Separation of 
Application and Driver Services” (page 144).

To understand this chapter, you should have some experience developing 
drivers or similar software designed to work with Mac OS. For recommended 
reading material about Macintosh technology, see the documents listed in 
“Supplementary Documents” (page 26).

Macintosh System Evolution 6

For their the second generation, Power Macintosh computers are switching 
from NuBus to the more standard PCI bus. This change means that many useful 
new PCI-based peripheral devices will become available for Macintosh 
computers. 

To provide improved I/O support in Mac OS, Apple is introducing a native I/
O framework that includes a set of driver services and mechanisms separate 
from those available to previous Macintosh device drivers. The native I/O 
framework includes these new features:

■ native PowerPC execution of all driver code

■ support modern types such as PCI bus and Card Bus
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■ new Device Manager support for concurrent operations

■ improved interrupt mechanisms

■ driver support services

■ a Name Registry

Mac OS provides these features only for native device drivers. Existing drivers 
written in code for MC68000-family microprocessors (called 68K drivers) will 
continue to work as they have in the past, but inclusion of the new I/O 
framework marks the beginning of the transition of all Mac OS drivers to the 
native model described in this chapter. The model standardizes Mac OS driver 
design so that PCI and non-PCI device drivers can be written to a single 
specification.

Terminology 6

The following list defines new terms used in the rest of this book:

■ Application programming interface (API): The API is the rich set of 
Mac OS services available to application-level software, including the 
Macintosh Toolbox routines. Drivers do not have access to this set of services.

■ Code Fragment Manager (CFM): The CFM is the part of Mac OS that loads 
code fragments into RAM and prepares them for execution. The CFM is 
described in Inside Macintosh: PowerPC System Software.

■ Disk-based driver: Disk-based drivers are drivers that are stored in the Mac 
OS file system, in the Extensions folder. Disk-based drivers are CFM 
fragments in files of type 'ndrv' with an unknown creator. A disk-based 
driver may replace a ROM-based driver if it is a newer version. Disk-based 
drivers are not available during system startup, before the file system is 
working.

■ Expert: The code that connects a class or family of devices to the operating 
system is called an expert. Low-level experts and family experts are defined 
below.

■ Family: A device family is a collection of devices that provide the same kind 
of I/O functionality. One example of a family is the set of Open Transport 
devices with their corresponding Open Transport Data Link Provider 
Interface (DLPI) drivers. Another example is the family of display devices.
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■ Family expert: A family expert, or high-level expert, is the code responsible 
for locating, initializing, and monitoring all entries in the Name Registry that 
are associated with devices in its family or service type. Hence, a family 
expert is the device administrator for a family. Family experts run when 
devices are connected to the system (usually at system startup time), but they 
are not part of the primary data paths to the devices.

■ Family programming interface (FPI): An FPI is a set of services used 
between a family expert and the devices in the expert’s family. For example, 
Open Transport exports the routine freemsg as part of its FPI. This routine 
returns a STREAMS buffer to the general memory pool maintained by the 
Open Transport subsystem. The freemsg call is not accessible to software 
outside the Open Transport family. Each FPI is supported by routines in a 
family library.

■ Low-level expert: Low-level experts are software utilities that install entries 
in the Name Registry for specific devices. Low-level experts may reside in 
system firmware, PCI card firmware, or Mac OS and may run at any time. A 
low-level expert’s task is to install enough information in each Name 
Registry entry to permit device control and driver matching. The information 
must be presented to Registry clients in a generalized form, independent of 
hardware configuration. Primary clients of the Registry at present are 
run-time device drivers and family experts (defined below).

■ Name Registry: The Name Registry is a high-level Mac OS service that 
stores the names and relations of hardware and software components in the 
system that is currently running. In the second generation of Power 
Macintosh, the Name Registry is used only for I/O device and driver 
information, serving as a rendezvous point between low-level or 
hardware-specific experts and family experts. The Registry supports both 
name entry management and information retrieval.

■ Physical device: A physical device is a piece of hardware that performs an 
I/O function and is controlled by a device driver. An example of a physical 
device is a video graphics card.

■ Property: Each piece of information associated with an entry in the Name 
Registry is called a property. For example, a driver-descriptor property is 
associated in the Registry with each device that has a unique associated 
driver. It contains the driver description data structure described in “Native 
Driver Package” (page 197). 

■ ROM-based driver: ROM-based drivers are FCode drivers that are stored in 
an expansion ROM. They are the only kind of drivers that are usable when 
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the system is starting up and the file system is not yet available, as described 
in Chapter 5, “PCI Open Firmware Drivers.” Expansion ROMs may in 
addition to a basic FCode driver contain a native run-time driver for Mac OS, 
stored as a CFM fragment; run-time drivers are described in Chapter 8, 
“Writing Native Drivers.”

■ Scanning: Scanning is the process of matching a device with its 
corresponding driver. Scanning to determine device location and driver 
selection is one of the topics discussed in this chapter.

■ Driver services: The driver services are a set of services that Mac OS 
provides for drivers or other pieces of software that are installed and run in 
the operating system. For example, QueueSecondaryInterruptHandler is a 
driver services routine in Mac OS that defers interrupt processing. 
Application-level software does not generally have access to the driver 
services. For more information about the Macintosh driver services for PCI 
cards, see Chapter 11, “Driver Services Library.”

■ Virtual device: A virtual device is a piece of code that provides an I/O 
capability independently of specific hardware. An example of a virtual 
device is a RAM disk. A RAM disk performs disk drive functions but is 
actually just code that reads and writes data in the system’s physical 
memory.

Concepts 6

To prepare for changes in current and future releases of Mac OS, Apple is 
introducing several new or modified concepts in the second generation of 
Power Macintosh computers. The concepts include

■ separation of application and system services

■ common packaging of loadable software

■ the Name Registry

■ families of devices

■ ROM-based and disk-based drivers

■ noninterrupt and interrupt-level execution 

■ generic and family drivers
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■ driver descriptions

These concepts are discussed in the next sections.

Separation of Application and Driver Services 6

Previous versions of Mac OS had only one kind of operating-system interface, 
an application programming interface (API). This meant that all Mac OS 
services were available to all varieties of Macintosh software. With the 
introduction of Power Macintosh computers with the PCI bus, Apple starts 
distinguishing between APIs and driver services. The distinction must be made 
because programming contexts are becoming increasingly specialized as 
Mac OS evolves.

In the native driver model, Toolbox services (for example, the ModalDialog 
function and Menu Manager calls) are not available to drivers. Drivers operate 
outside the user interface and the application software environment.

Note
The Device Manager presents an API for generic drivers, as 
described in “Generic and Family Drivers” (page 151). ◆

Family services required by device drivers are provided by family experts, 
using family libraries. These services are also not available to applications. 

The separation of application and driver services in Mac OS is a big change that 
starts with the Power Macintosh computers with the PCI bus architecture. The 
difference between the old API model and the new API/driver services model 
is diagrammed in Figure 6-1 (page 145).

To help ensure compatibility with future releases of the Mac OS, native drivers 
should not use Mac OS Toolbox APIs. However, there may be instances where 
use of such calls is difficult to avoid, but native drivers using Toolbox calls may 
not work in the future. An example of using the new native driver APIs as 
opposed to the Toolbox APIs would be to use the Name Registry functions to 
store device configuration information rather than the Resource Manager. See 
“Driver Migration” (page 177) and “Device Configuration” (page 182) for 
additional information. 
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Figure 6-1 New system model

Common Packaging of Loadable Software 6

Native device drivers are created as CFM fragments. Each CFM fragment 
exports a driver description structure that the system uses to locate, load, and 
initialize the driver. Previously, device drivers were created as Mac OS 
resources.

Hence native drivers are packaged differently from previous Mac OS drivers. 
Because they are CFM fragments, they have easy access to global data storage, 
and they can be written in a high-level language without assembly-language 
headers. Each instance of a single driver has private static data and shares code 
with every other instance of that driver. The CFM is responsible for maintaining 
the driver context (similar to the “A5 world” in previous Macintosh 
programming). A device driver no longer locates its private data by means of a 
field in its device unit table entry. 
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One consequence of drivers as CFM code fragments is that a single device 
driver no longer controls multiple devices. Normally there is an instance of the 
driver for each device, although only one copy of the driver’s code is loaded 
into memory.

The Name Registry 6

The Mac OS Name Registry is a database of system information. The native 
I/O framework uses the Registry as a general storage and retrieval mechanism 
for family experts and low-level experts. Device scanning code and the Name 
Registry help separate system initialization and device driver initialization in a 
well-defined way, as illustrated in Figure 6-2. The Name Registry is more fully 
described in Chapter 10, “Name Registry.”.

Figure 6-2 Typical role of the Name Registry
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Although it does not drive the startup process, the Name Registry assists 
system startup by providing a structure for storing information. It does this in 
several ways:

■ During the computer’s startup process, low-level experts in the Mac OS 
ROM and in expansion ROMs install and update system information in the 
Name Registry.

■ Other software in the startup process can then use the Name Registry to 
locate devices required to initialize the system.

■ System firmware installs disk-based drivers and other system components in 
the Name Registry when the file system becomes available.

■ Disk-based experts can then use information in the Name Registry to locate 
and initialize family devices.

■ When device initialization driver code is called, the Name Registry provides 
configuration information for device drivers and family experts.

These processes are marked by steps in Figure 6-2. In Step 1, low-level experts 
scan the PCI bus for their device types and create name entries in the Name 
Registry that identify device properties and contain device drivers. In Step 2, 
family experts locate all name entries that match their service categories. In Step 
3, family experts obtain device drivers and call the drivers’ initialization 
routines.

To make driver design easier, the Name Registry lets all types of device drivers 
be written identically, whether they are located in expansion ROMs, system 
firmware, or elsewhere. Drivers can expect basic hardware information to be 
available in the Registry and are not required to locate or hard code this data.

The Name Registry supports a comprehensive driver replacement capability, 
described in Chapter 7, “Finding, Initializing, and Replacing Drivers.” All 
device entries and their corresponding code drivers exist in the device portion 
of the Name Registry and are available for this process.

Families of Devices 6

Families are groups or categories of devices that provide similar or the same 
functionality and have the same basic software interface requirements. An 
example of a device family is the set of devices that provide networking 
services to the system. These devices are not the same—for example, Ethernet is 
not the same as LocalTalk—but they all run within the Open Transport family 
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and use the Open Transport libraries to augment the driver services provided 
by Mac OS. A second example of a device family is the set of all display devices. 
The concept of device family is critical to the native driver model because it 
allows the needs of each device family to be met independently of the needs of 
other families. 

Mac OS provides built-in support for device families such as the display family 
and the network family. Each of these device families has access to services that 
isolate system and application software from particular device characteristics. 
For example, the Display Manager provides a uniform programming 
interface—a family programming interface (FPI)—for display devices 
regardless of their physical form. Similarly, the Open Transport subsystem 
isolates the remainder of the system and applications from the particular 
characteristics of network devices. These FPIs are provided by family libraries 
in Mac OS.

The Display Manager and video drivers illustrate how a family of devices can 
provide and utilize family-specific services. These services are complementary 
to the services provided by the system software, because they are used by the 
family but are not duplicated by the system and are not available to other 
components of the system or to Macintosh applications. For a fuller discussion, 
see Chapter 13, “Graphics Drivers.”

A family expert such as the Open Transport expert interrogates the Name 
Registry for devices of a certain service category, verifying only that they are of 
the right category. For example, a software loopback virtual device could 
appear in the Name Registry, the driver for which would take data from a 
source and return it back to the same source. To install a loop-back Name 
Registry entry, the loopback configuration software would call the Name 
Registry to create an entry and to add the driver descriptor property with its 
driver information containing the appropriate service category. In networking, 
the service category for a loopback device is 'otan'. Installing the loopback 
entry would be the work of a low-level expert for loopback devices. The family 
expert for Open Transport would locate the loopback entry using Registry calls, 
and it would initialize the driver in the Open Transport subsystem using 
family-specific initialization mechanisms. 

ROM-Based and Disk-Based Drivers 6

ROM-based drivers are stored in expansion ROMs. Disk-based drivers are 
located in the Mac OS file system, in the Extensions folder.
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ROM-based drivers with the correct information in their driver description 
structures are installed and opened by the Macintosh firmware, acting as the 
driver’s client. These are the only drivers available at the beginning of system 
startup. 

Disk-based drivers are located and opened as needed. Once the file system is 
working, Mac OS can replace outdated ROM-based drivers with disk-based 
drivers. Experts that control disk-based drivers locate and initialize their drivers 
soon after. Drivers that are disk-based but not under expert control, and that are 
not needed by Mac OS during startup, remain uninitialized and unopened until 
a specific client requests access to the device associated with the driver. 

Noninterrupt and Interrupt-Level Execution 6

In prior releases of Mac OS there has been no clear distinction between 
application-level programming and system-level programming. Restrictions 
about when certain system services can be used and when they cannot are not 
fully defined. 

In native driver model, different execution levels have different restrictions. 
Noninterrupt (task level) execution may make use of nearly any 
operating-system or Mac OS ROM Toolbox service. Secondary interrupt 
routines and hardware interrupt handlers are allowed only a small subset of 
those services.

The discussion in this book uses the following definitions for execution levels:

■ Task level: the noninterrupt level on which most code, including 
applications, is executed.

■ Hardware interrupt level: the execution level of concern to driver writers. 
Hardware interrupt-level execution happens as a direct result of a hardware 
interrupt request. The software executed at hardware interrupt level includes 
installable interrupt handlers for PCI and other devices as well as interrupt 
handlers supplied by Apple.

■ Secondary interrupt level: the execution level similar to deferred task 
execution in previous versions of Mac OS. The secondary interrupt queue is 
filled with requests to execute subroutines that are posted for execution by 
hardware interrupt handlers. The handlers need to perform certain actions 
but choose to defer the execution of those actions to minimize interrupt-level 
execution. Unlike hardware interrupt handlers, which can be interrupted by 
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hardware interrupts and can nest, secondary interrupt handlers always run 
serially.

Symmetric Multiprocessing 6

In future Power Macintosh computers that feature symmetric multiprocessing 
(SMP), a device driver will not be able to assume that hardware or secondary 
interrupt level execution preempts all task level execution. In a four-processor 
system, for example, one processor might be running a hardware interrupt 
handler, another running a secondary interrupt handler, and the other two 
running tasks. This behavior is different from that of a uniprocessor system, 
where an interrupt handler normally runs to completion between two task-level 
instructions. The difference is illustrated in Figure 6-3.

Figure 6-3 Uniprocessing and multiprocessing execution
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task can be running while your interrupt handler runs, your code will break 
on a multiprocessor system.

■ If your driver disables interrupts for its device while running at task level, an 
interrupt for a different device can still occur. The second interrupt may run 
concurrently with your task-level device driver as shown in Figure 6-3.

Disabling hardware interrupts for synchronization purposes works safely in an 
SMP environment. Disabling hardware interrupts on one processor guarantees 
that interrupts are off on every processor and that no other processor can 
execute code that runs with interrupts off. If another processor tries to disable 
interrupts, it will loop while waiting for the first processor to turn interrupts on 
again. This feature makes it critical that interrupts be disabled for very short 
periods of time.

Similarly, in an SMP environment only one processor at a time can run at 
secondary interrupt level. Other processors trying to run at secondary interrupt 
level will do no useful work until the first processor exits that level. For this 
reason, secondary interrupt level should be used as sparingly as possible.

Generic and Family Drivers 6

The Macintosh native driver model defines a new driver packaging format, 
described in “Driver Package,” later in this chapter. The driver package may 
contain a generic driver or a driver that is specific to a family of devices. 
Generic drivers have a family type of 'ndrv' and are controlled by the Device 
Manager (described in Inside Macintosh: Devices). Family drivers have other type 
designations and do not act as Device Manager clients. They are not installed in 
the Device Manager unit table and do not export the generic driver call 
interface. The generic driver call interface and runtime framework are described 
in “Generic Driver Framework” (page 153).

Currently most drivers are generic, but this will not be true in future versions of 
the Mac OS. Some drivers belong to device families with special characteristics 
that do not fit into the generic driver model; they are drivers controlled by 
family experts. Examples of this type of driver are FireWire SBP-2 drivers, USB 
drivers, and networking device drivers for the Open Transport environment. 
Networking device drivers under Open Transport are STREAMS drivers that 
provide industry standard STREAMS/DLPI interfaces to Mac OS. Open 
Transport drivers are discussed in Chapter 14, “Network Drivers.” USB drivers 
are discussed in the documentation included in the Mac OS USB DDK. 
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Drivers controlled by family experts use family programming interfaces (FPIs), 
which are defined for each family and are not accessible to Macintosh 
applications. 

All drivers with driver family service interfaces must export well-defined driver 
family service names for both family expert data and family expert functions. 
Clients of family drivers load the CFM-based driver and call the exported 
names. The CFM connects the driver client to the CFM device driver exports. 
Native device drivers that provide private family interfaces need not provide an 
additional generic driver interface to Mac OS.

As an example of a family interface, Open Transport requires a family data 
structure called install_info and a driver family service function whose name 
is GetOTInstallInfo. The install_info structure is used by Open Transport to 
create stream to STREAMS device drivers. The Open Transport family expert 
calls the device driver family expert GetOTInstallInfo function as part of the 
installation process for native drivers of the 'otan' service category. See 
Chapter 14, “Network Drivers,” for more details on Open Transport driver 
requirements.

Other family drivers are described in Chapter 13, “Graphics Drivers,” and 
Chapter 15, “SCSI Drivers.”.

Note
Device drivers need to provide only one family interface. If 
a device driver chooses to provide more than one service 
category programming interface, however, it must conform 
to the standards of each interface. ◆

Driver Descriptions 6

Drivers are CFM code fragments and must export driver description structures 
to characterize their functionality and origin. The structures must be exported 
through the CFM’s symbol mechanism, using the symbol name 
TheDriverDescription. The complete structure is defined in Chapter 9, “Driver 
Loader Library.” It is based on the driver-descriptor property associated with 
device entries in the Name Registry, described in Chapter 10, “Name Registry.”

Note
Open Firmware uses the driver-descriptor property and 
the Mac OS uses TheDriverDescription symbol to refer to 
the same structure. ◆ 
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The DriverDescription structure is used by scanning code to

■ match Registry entries to drivers

■ identify device entries by service type or family

■ provide driver version information

■ provide driver initialization information

■ allow replacement of ROM-based drivers with newer disk-based drivers

By providing a common structure to describe drivers, the system is able to 
regularize the mechanisms used to locate, load, initialize, and replace them. 
Details of how this works are given in Chapter 7, “Finding, Initializing, and 
Replacing Drivers.”

Mac OS treats any CFM code fragment that exports a driver description 
structure as a native driver.

Generic Driver Framework 6

This section describes the system software framework in the second generation 
of Power Macintosh for generic run-time drivers—that is, drivers of family type 
'ndrv'.

Device Manager 6

The traditional Mac OS Device Manager controls the exchange of information 
between applications and hardware devices by providing a common 
programming interface for applications and other software to use when 
communicating with generic device drivers. Normally, applications don’t 
communicate directly with generic drivers; instead, they call Device Manager 
functions or call the functions of another manager that calls the Device 
Manager.

In the second generation of Power Macintosh, two significant additions have 
been made to the Device Manager. First, drivers can now process more than one 
request simultaneously. Such drivers are called concurrent drivers. Second, a 
new entry point has been added, similar to IODone. It is called 
IOCommandIsComplete. Details on concurrent drivers and their use of 
IOCommandIsComplete are given in “Completing an I/O Request” (page 191).
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Driver Package 6

The native driver model defines a new driver packaging format. This package 
may contain generic drivers or family drivers, as explained in “Generic and 
Family Drivers,” earlier in this chapter.

The native driver package is a CFM code fragment that may reside in the 
Macintosh ROM, in an expansion ROM, or in the data fork of a Preferred 
Execution Format (PEF)file. File-based generic and family driver fragments do 
not need a resource fork, have a file type of 'ndrv', and have an unspecified file 
creator. ROM-based PCI drivers may be replaced by disk-based versions of the 
driver located in the Extensions folder. PEF and the CFM are described in Inside 
Macintosh: PowerPC System Software.

A native driver package must define and export at least one data symbol 
through the CFM’s export mechanism. This symbol must be named 
TheDriverDescription; it is a data structure that describes the drivers type, 
functionality, and characteristics. This data structure is described in “Driver 
Description Structure” (page 198).

Depending on the type of driver, additional symbols may need to be exported. 
The generic 'ndrv' driver type requires that the CFM package export a single 
code entry point called DoDriverIO, which passes all driver I/O requests. 
DoDriverIO must respond to the kOpenCommand, kCloseCommand, kReadCommand, 
kWriteCommand, kControlCommand, kStatusCommand, kKillIOCommand, 
kInitializeCommand, and kFinalizeCommand commands. Other driver types for 
device families export and import symbols and entry points defined by the 
device family or device expert.

Driver Services Library 6

The native driver framework includes a Driver Services Library (DSL) that 
supplies the driver services required by most generic drivers. Driver services 
are described in “Separation of Application and Driver Services” (page 144). 
The driver loader links the DSL automatically to each generic driver at load 
time. Mac OS may provide additional services to drivers in certain families or 
categories. 

The types of services represented in the Driver Services Library include

■ request processing services

■ memory management services
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■ interrupt management services

■ secondary interrupt handlers

■ atomic operation services

■ timing services

■ operating system utilities

The calls supplied by the DSL and the family support libraries constitute the 
complete set of services provided to device drivers. The calls in the DSL are the 
only driver interfaces guaranteed to be maintained in subsequent releases of 
Mac OS. Calls to services outside of the DSL and the family support libraries 
(for example, calls to Toolbox traps, low-memory globals, and similar vectors) 
will result in driver failure. 

Converting Previous Mac OS Drivers 6

This section introduces the issues involved in the conversion of 68K Mac OS 
drivers to native drivers. 

Restricted Access to Services 6

As mentioned in “Separation of Application and Driver Services” (page 144), 
the native driver model distinguishes between APIs and driver services. 
Services such as modal dialog displays or Menu Manager calls are not available 
to native drivers; instead, drivers will use only the interfaces provided by the 
Driver Services Library and driver family expert interfaces for the device. Those 
parts of a 68K driver that require services provided by the Macintosh Toolbox 
must be removed from the driver and placed in a standalone application or 
control panel.

In addition to restricting the types of Toolbox calls drivers are able to make, 
there are changes to existing mechanisms that will allow drivers written for the 
second generation of Power Macintosh to be used unchanged in the subsequent 
releases of Mac OS. 

The section “Driver Migration” (page 177) documents the programming 
interface changes between previous Mac OS driver calls and the native driver 
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services provided for PCI drivers. It also lists the replacement calls for existing 
mechanisms.

Error Returns 6

As is always the case with programming interfaces, native driver code should 
check the error returns from calls to system services. The new driver model 
includes the following 32-bit error return type:

typedef long OSStatus;

The lower 16 bits of OSStatus are equivalent to the existing OSErr type, 
described in Inside Macintosh: Overview. In current versions of Mac OS, the 
upper 16 bits contain the sign extension of the lower 16 bits. At present there are 
just two possible values for the upper 16 bits, all 1s or all 0s; other values are 
reserved for future use by Apple.

Ensuring Future Compatibility 6

You should take steps to ensure that your driver is compatible with current and 
future releases of Mac OS. Two steps you can take are as follows:

■ Substantial changes in task execution and interrupt handling affect native 
drivers. The tasking model and interrupt handling mechanisms will be 
increasingly hidden behind the Driver Services Library, the Driver Loader 
Library, and the Name Registry. Drivers that do not use the native libraries 
provided with the current release of Mac OS may not work with subsequent 
releases.

■ In the current Mac OS environment there is one address space, which all 
applications, Toolbox services, and drivers share. In future versions of 
Mac OS there may be many address spaces, and applications and their 
associated data may exist outside the address space in which the kernel, 
driver services, and drivers exist. It is not possible to verify correct address 
space usage using the current version of Mac OS, but strict adherence to the 
rules outlined below will guarantee compatibility with future releases.

Task execution and interrupt handling are discussed in detail in various 
sections of Chapters 8 through 11. Toolbox services that are not available to 
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native drivers are listed in “Driver Services That Have No Replacement” 
(page 177). Addressing problems are discussed next.

Copying Data 6

To allow compatible driver development on the current version of Mac OS, 
future releases of Mac OS will give drivers that are managed by the Device 
Manager a restricted set of facilities for mapping address spaces and copying 
data from one space to another. Device families, such as video displays, will 
have additional family-specific facilities to address their data transfer needs. 
Hence, drivers that exchange data with applications via the Device Manager 
must do so via PBRead and PBWrite calls. Depending on the size of the data 
buffer, the Device Manager will copy or map the IOParamBlockRec data structure 
for these calls and will copy or map the associated ioBuffer up to ioReqCount 
bytes. 

PBOpen, PBClose, PBControl, PBStatus, and PBKillIO calls will keep the 
IOParamBlockRec and CntrlParam data structures accessible; however, no 
referenced data will be copied or mapped. This means that the csParam fields of 
the CntrlParam block must not contain buffer pointers to additional data, and 
the ioBuffer field will be ignored for Device Manager calls (such as PBOpen and 
PBClose) for which it is not a documented input parameter. The Device Manager 
will not copy or map data pointed to by either of these fields.

In the past, applications and device drivers have extended the size of the 
IOParamBlockRec and CntrlParam structures to tag additional information into a 
device driver request. This was possible because applications and device 
drivers shared a single address space. In future releases of Mac OS, the Device 
Manager will copy only the IOParamBlockRec and CntrlParam structures as 
defined in Inside Macintosh: Devices.

Power Management 6

The Mac OS Power Manager API is still being defined and is likely to change in 
future releases of Mac OS. You are encouraged to make use of the power 
management facilities in family experts and device specific managers instead. If 
you must use the Power Manager, be careful to use only its published API.
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Summary 6

The I/O architecture defined in this chapter sets a durable standard for writing 
Mac OS device drivers. This standard is supportable in future releases of 
Mac OS, and device drivers that conform to it may work unmodified and 
efficiently with those releases. Successful execution of this strategy, which 
allows native device drivers to work portably and effectively across future 
Mac OS releases, depends upon the successful adoption of the guidelines 
summarized in this section. 

Use the System Programming Interfaces 6

The use of driver services is essential to a driver’s portability to future Mac OS 
releases. These are the programming interfaces for device drivers that are 
guaranteed to be common across Mac OS system versions. They consist of

■ The Name Registry library NameRegistryLib

■ The Driver Services library DriverServicesLib

■ A service library specific to each high-level device family

When writing a device driver, never use Toolbox API calls. Doing so will 
prevent your device driver from being compatible with future Mac OS releases. 
Instead, use the functionality provided by the corresponding drivers services 
APIs, for example when working with USB devices, use the USB Services 
Library (USL) and USB Manager. The driver services calls let you deal more 
naturally with device driver issues that the Toolbox API does, because the 
Toolbox is intended for applications.

You can ensure compliance with the foregoing rule by not letting your driver 
link with application libraries such as InterfaceLib, MathLib, StdCLib, and so on. 
Any necessary Toolbox functionality, such as driving a graphical user interface, 
should be accomplished by separate application-level software on behalf of the 
device driver.
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Use the Name Registry 6

The Name Registry provides a unified way of identifying or obtaining 
information about many system resources, not just about devices. When writing 
a device driver, never acquire information from low memory or through 
Toolbox API calls because doing so may prevent your driver from being 
compatible with future Mac OS releases. Instead, use the Name Registry to 
acquire the information. During driver initialization, family experts facilitate 
this process by passing each driver a RegEntryID representing its physical 
device. By using the RegEntryID and the Name Registry a device driver can find 
all the information it is likely to need.

For further information about the Name Registry, see Chapter 10, “Name 
Registry.”
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The native driver framework in PCI-based Power Macintosh computers 
tolerates a wide range of variations in system configuration. Although drivers 
and expansion cards may be designed and updated independently, the system 
autoconfiguration firmware offers several techniques for making them work 
together. This chapter discusses what PCI driver and card designers can do to 
improve the compatibility of their products.

Device Properties 7

A PCI device is required to provide a set of properties in its PCI configuration 
space. It may optionally supply FCode and run-time driver code in its 
expansion ROM. PCI devices without FCode and run-time driver code in ROM 
cannot be used during system startup. 

The required device properties in PCI configuration space are

■ vendor-ID

■ device-ID

■ class-code

■ revision-number

For PCI boot devices there must be an additional property:

driver,AAPL,MacOS,PowerPC

This property contains a pointer to the boot driver’s image in the PCI card’s 
expansion ROM. It is used in conjunction with the fcode-rom-offset property. 

The Open Firmware FCode in a PCI device’s expansion ROM must provide and 
install a driver property, as shown above, to have its driver appear in the Name 
Registry and be useful to the system during startup. It must also add its 
expansion ROM’s base register to the reg property, so that system firmware can 
allocate address space when installing the driver.

To facilitate driver matching for devices with disk-based drivers, the FCode 
should provide a unique name property that conforms to the PCI specification. 
For further information, see Chapter 5, “PCI Open Firmware Drivers.”
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PCI Boot Sequence 7

To better explain the concepts and mechanisms for finding, initializing, and 
replacing PCI drivers, below is a short description of the PCI boot sequence. 
The boot sequence applies to machines built prior to the introduction of the 
NewWorld architecture in the iMac and later Power Macintosh G3 computers. 
The boot sequence is similar for all Macintosh computers, however the steps are 
not identical. For information about the steps in the NewWorld boot sequence, 
see Chapter 3, “Introduction to the NewWorld Architecture,” and “Startup 
Sequence in the NewWorld Architecture” (page 92).

1. Hardware is reset.

2. Open Firmware creates the device tree. This device tree is composed of all 
the devices found by the Open Firmware code, including all properties 
associated with those devices.

3. The Name Registry device tree is created by copying the Macintosh-relevant 
nodes and properties from the Open Firmware device tree.

4. The Code Fragment Manager and the interrupt tree are initialized.

5. Device properties that are persistent across system startups and are located 
in NVRAM are restored to their proper location in the Name Registry device 
tree.

6. The Name Registry device tree is searched for PCI expansion ROM device 
drivers associated with device nodes. 

7. PCI expansion ROM device drivers required for booting are loaded and 
initialized. 

8. If a PCI ROM device driver is marked as kDriverIsLoadedUponDiscovery, the 
driver is installed in the Device Manager unit table.

9. If a PCI ROM device driver is marked as kDriverIsOpenedUponLoad, the driver 
is initialized and opened, and the driver-ref property is created for the 
driver’s device node.

10. The Display Manager is initialized.

11. The ATA Manager is initialized.

12. The SCSI Manager is initialized.
PCI Boot Sequence 163



C H A P T E R  7  

Finding, Initializing, and Replacing Drivers
13. The File Manager and Resource Manager are initialized.

14. Device properties that are persistent across system startups and located in 
the Preferences folder in the System Folder are restored to their proper 
location in the Name Registry device tree.

Device drivers under family expert control are processed next. The following 
steps load disk-based experts and disk-based drivers:

1. Scan the Extensions folder for drivers (file type 'ndrv'), updating the 
Registry with new versions of drivers as appropriate. For each driver added 
or updated in the tree, a driver description property is added or updated as 
well.

2. For each driver that is replaced, and already open, use the driver 
replacement mechanism.

3. Run 'INIT' resources for virtual devices. Virtual devices are discussed in 
“Real and Virtual Devices” (page 285).

4. Scan the Extensions folder for experts; load, initialize, and run each expert.

5. Run experts to scan the registry, using the driver description property 
associated with each node to determine which families the devices belong to. 

6. Load and initialize appropriate devices based on family characteristics.

At that point all devices in use by the system and family subsystems are 
initialized. Uninitialized and unopened devices or services that may be used by 
client applications are located, initialized, and opened at the time that a client 
makes a request for the devices or services.

Note
Native device drivers are ordered to switch from 
low-power to high-power mode when their devices are 
opened. ◆

Matching Drivers With Devices 7

Mac OS matches drivers to devices by using the following algorithm:
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■ When a device node has a driver in ROM, no driver matching is required. 
Mac OS uses the driver name and compares the version numbers of 
ROM-based and disk-based drivers to select the newest version of the driver.

■ When a device node has a name property that was supplied by the FCode in a 
device’s expansion ROM, Mac OS checks the name property against all 
disk-based drivers and finds the first matching driver with the latest version 
number. If there is no match against the name property, then Mac OS attempts 
a match against each name string in the device’s compatible property. The 
comparison is always against the nameInfoStr parameter in the driver 
description structure for each disk-based driver. The first match is used. If no 
match is found against name or compatible strings, the device is not usable.

■ When a device node has no FCode, Mac OS tries to match the device with a 
driver based on the generated name pcixxxx,yyyy where xxxx is the vendor 
ID and yyyy is the device ID. Both these ID values must be hexadecimal 
numbers, without leading 0s, that use lower case for the letters A through F 
and are rendered as ASCII characters. If a match is found, but the first 
initialization call to the driver fails, then the code that is attempting to use 
the driver must call the Driver Loader Library’s best match routine (again) to 
find the next-best driver.

Note
Each device node should have just one compatible 
property, containing one or more C-formatted name strings 
as its value. The strings must be packed in sequence with 
no unused bytes between them and should be arranged 
with the more compatible names first. ◆

The DLL routines GetDriverForDevice, InstallDriverForDevice, and 
FindDriversForDevice use the following algorithm to match or install the “best” 
driver for a device:

1. Find all candidate drivers for the device. A driver is a candidate if its 
nameInfoStr value matches either the device’s name or one of the names 
found in the device’s compatible property.

2. Sort this list based on whether the driver matched using the device’s name or 
a compatible name. Those matched with the device name are put at the head 
of the list. Ties are broken using the driver’s version number (See 
“HigherDriverVersion” (page 269).) Pseudo code for file-based driver sorting 
is shown in Listing 7-1. The code returns 0 if two drivers are equally 
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compatible, a negative number if driver1 is less compatible than driver2, 
and a positive number if driver1 is more compatible than driver2.

3. If not installing the driver, return the driver at the head of the candidate list 
and discard any remaining candidates.

If you still have candidates with which to attempt an installation, do the 
following:

1. Load and install the driver located at the head of the list.

2. The driver should probe the device, using DSL services, to verify the match. 
If the driver did not successfully initialize itself, discard it and return to 
step 1.

3. Discard any remaining candidates.

The routines that use this algorithm are described in detail in the sections that 
start with “Loading and Unloading” (page 248).

Listing 7-1 File-based driver sorting

SInt16 CandidateCompareRoutine
(FileBasedDriverInfoPtr Driver1,
 FileBasedDriverInfoPtr Driver2,
 StringPtr CompatibleNames,
 ItemCount nCompatibleNames)

{
SInt16 matchResults = 0;

if ( Driver1 and Driver2 matched using same property (name or compatible))
{

if ( both drivers matched using compatible property )
{

if ( drivers not matched with identical compatible name )
{

// Which compatible name (by number) did driver1/driver2 match?
Driver1CompatibleName = WhichCompatibleName(Driver1,...);
Driver2CompatibleName = WhichCompatibleName(Driver2,...);
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if ( Driver1CompatibleName != Driver2CompatibleName )
{

if ( Driver1CompatibleName < Driver2CompatibleName )
return  1; // driver1 is "more compatible"

else
return -1; // driver2 is "more compatible"

}
}

}

// Break tie with version numbers, if possible.
matchResults = HigherDriverVersion (&Driver1 ->
info.theType.version, &Driver2 -> info.theType.version);

// Same version number too?
if ( matchResults == 0 )

{
// Final tie breaker is their filenames
// (Reverse the compare with RelString)
matchResults = RelString (Driver2 -> info.theSpec.name,

Driver1 -> info.theSpec.name, true, true );
}

return matchResults;
}
// Matched using different property
if ( Driver1 matched using compatible property )
return -1; // driver 2 is higher
return 1; // else driver 1 is higher

}

Driver Initialization and Resource Verification 7

After finding a match between a hardware device and its driver, the driver 
initialization code must check to make sure that all needed resources are 
available. This section describes a typical algorithm for resource verification. 
Driver initialization code should perform this algorithm for two reasons:
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■ The driver may not have all the address resources it requires. This event is 
unlikely, but the driver should check.

■ If the PCI card expansion ROM doesn’t contain FCode, the driver may need 
to perform a diagnostic to make sure the card it has been matched with is 
actually the card it is designed to control. This problem is discussed in “Open 
Firmware FCode Options” (page 87).

IMPORTANT

The driver must enable the card’s address space for a PCI 
device to be usable. ▲

The following is a typical resource verification and card address enabling 
procedure:

1. Check for existence of an assigned-addresses property for the device. If no 
assigned-addresses property exists, exit the driver initialization routine with 
an error message (address resources not available). The assigned-addresses 
property is discussed in “Standard Properties” (page 322). If an 
assigned-addresses property exists, go to step 2.

2. Check the assigned-addresses property for the existence of the base registers 
required for full operation of the driver. Do this by looking at the last byte of 
the first long word of each assigned-addresses entry that is required. A 
typical assigned-addresses entry looks like this:

If the required base registers are not present, exit the driver initialization 
routine with an error message (address resources not available). If the 
required base registers are present, continue.

3. Note where in the assigned-addresses property the entries for the required 
base registers are located. The first entry is 0, the next is 1, and so on. That 
same order will be preserved in the AAPL,address property, which is an array 
of 32-bit values corresponding to the logical address for your base register's 
physical address. For more information about the AAPL,address property, see 
“Fast I/O Space Cycle Generation” (page 454). A typical AAPL,address 
property looks like this:

If the driver uses Expansion Bus Manager routines (such as 

82006810 00000000 80000000 000000000 00008000
81006814 00000000 00000400 000000000 00000100

80000000 F2000400
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ExpMgrIOReadByte) it must pass the physical address for the I/O base register, 
which it gets from the assigned-addresses property. The Expansion Bus 
Manager does byte swapping and EIEIO synchronization for the driver, but 
it’s node-based and it’s slow. The AAPL,address version just uses a pointer, so 
it’s as fast as accessing memory space.

4. If the driver can be confused with another driver—if, for example, the card 
doesn’t have FCode and another vendor uses the same PCI ASIC on a 
different card—the driver must perform a diagnostic routine on the card to 
make sure that it has been matched correctly. The DeviceProbe function, 
described below, helps a driver determine if a device is present at an address. 
If the diagnostic routine fails, the driver must exit its initialization routine 
with an error message (not my card). If the driver verifies that the card is 
correct, continue.

5. The driver must read or write to the device’s configuration command 
register to enable its PCI spaces. Listing 7-2 presents typical code for doing 
this. It uses the ExpMgrConfigReadWord routine (page 462).

Listing 7-2 Enabling PCI spaces

ExpMgrConfigReadWord (yourNode, 4, &yourvalue);
yourvalue = yourvalue | yourEnables; /* if I/O space, bit 0;
 if memory space, bit 1 */
ExpMgrConfigWriteWord (yourNode, 4, yourvalue);

Listing 7-3 shows a routine that extracts a device’s logical address by using its 
assigned-addresses and AAPL,address properties. It accepts as input the offsets 
into PCI configuration space that match the device’s space request. For 
example, an Ethernet card may want two address spaces, I/O and memory. The 
card is designed so that offset 0x10 in configuration space corresponds to the I/
O space and 0x14 corresponds to the memory space.

Listing 7-3 Getting a device’s logical address

// The following values are valid for offsetValues (:
//
// #define kPCIConfigBase10Offset 0x10
// #define kPCIConfigBase14Offset 0x14
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// #define kPCIConfigBase18Offset 0x18
// #define kPCIConfigBase1COffset 0x1C
// #define kPCIConfigBase20Offset 0x20
// #define kPCIConfigBase24Offset 0x24
// #define kPCIConfigBaseROM30Offset 0x30

// Input:
// theID - the NameRegistry ID for a PCI card
// baseRegAddress - no input value
// offsetValue - config base offset, determines which address space
// logical address is returned
// spaceAllocated - no input value

// Output:
// if err = kOTNoError, *baseRegAddress - contains the logical address of a PCI 
// address space, also spaceAllocated is a byte count for the amount of space
// that was allocated
// returns various errors
//
//----------------------------------------------------------------------------------

OSStatus GetPCICardBaseAddress(RegEntryID *theID, UInt32 *baseRegAddress, 
 UInt8 offsetValue, UInt32 *spaceAllocated)  

{
OSStatus osStatus;
PCIAssignedAddress *assignedArray; 
RegPropertyValueSize propertySize;
UInt32 numberOfElements, *virtualArray;
Boolean foundMatch;
UInt16 index;

*baseRegAddress = NULL; // default value
foundMatch = kFalse;

osStatus = GetAProperty(theID, kPCIAssignedAddressProperty,(void **)&assignedArray,
 &propertySize);

if ((osStatus == kOTNoError) && propertySize)
   {
   numberOfElements = propertySize/sizeof(PCIAssignedAddress);
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   osStatus = GetAProperty(theID, kAAPLDeviceLogicalAddress,(void **)&virtualArray,
                           &propertySize);

   if ((osStatus == kOTNoError) && propertySize)
       {
     // search through the assigned addresses property looking for base register

       for (index = 0; (index != numberOfElements) && !foundMatch; ++index)
           {
           if (assignedArray[index].registerNumber == offsetValue)

               {
               *spaceAllocated = assignedArray[index].size.lo;
               *baseRegAddress = virtualArray[index];
               foundMatch = kTrue;
               }
           }
       DisposeProperty((void **)&virtualArray);
       }
   else
       osStatus = kENXIOErr;

   DisposeProperty((void **)&assignedArray);
   }
else           
   osStatus = kENXIOErr;

return osStatus;
}

DeviceProbe 7

DeviceProbe is used to determine if a hardware device is present at the indicated 
address.

OSStatus DeviceProbe (
void *theSrc,
void *theDest,
UInt32 AccessType);
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theSrc The address of the device to be accessed.

theDest The destination of the contents of theSrc.

AccessType How theSrc is to be accessed: k8BitAccess, k16BitAccess, or 
k32BitAccess.

DESCRIPTION

DeviceProbe accesses the indicated address and stores the contents at theDest 
using AccessType to determine whether it should be an 8-bit, 16-bit or 32-bit 
access. Upon success it returns noErr. If the device is not present, that is, if a bus 
error or a machine check is generated, it returns noHardwareErr.

If a PCI card contains no FCode, and therefore is assigned a generic name of the 
form pcixxxx,yyyy, it is important for a driver to provide diagnostic code in its 
Initialize routine. When a driver is matched with a card that has a generic 
name property, it may be the wrong driver. In that case, diagnostic code probing 
for a unique characteristic of the card not only may fail a data compare 
operation but may also cause an unrecoverable machine check exception. 
DeviceProbe allows a driver to explore its hardware in a recoverable manner. It 
provides a safe read operation, which can gracefully recover from a machine 
check and return an error to the caller. If DeviceProbe fails, the driver should 
return an error from its Initialize command. This return may cause the DLL to 
continue its driver-to-device matching process until a suitable driver is found.

RESULT CODES

Opening Devices 7

There is a clear distinction between device initialization and device opening. A 
device opening action is a connection-oriented response to client requests. 
Device drivers should expect to run with multiple Open and Close commands. 
This means that each driver is responsible for counting open requests from 
clients, and must not close itself until all clients have issued close requests. 
Initialization can occur independently of client requests—for example at startup 

noErr 0 Device present
noHardwareErr –200 Device not present
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time, or (in the case of PCMCIA devices) when a device is hot-swapped into or 
out of the system.

Initialization of native driver–controlled devices is handled in phases as 
described in the previous section. It is necessary to make a distinction here 
between PCI drivers and 68K drivers because the 68K driver initialization path 
has not changed.

The first phase of native driver initialization consists of searching the device 
portion of the Name Registry for boot devices. Boot device nodes should be 
flagged as kDriverIsLoadedUponDiscovery and kDriverIsOpenedUponLoad in the 
driver-descriptor property associated with the device node. The contents of 
the driver-descriptor property is a TheDriverDescription structure. Boot 
devices are loaded, initialized, and opened by the system. Their drivers, which 
must be in ROM, should be passive code controlled by the system starting up. 

The second phase of startup comes after the Mac OS file system is available. In 
this second phase the Extensions folder is scanned for family experts, which are 
run as they are located. Their job is to locate and initialize all devices of their 
particular service category in the Name Registry. The family experts are 
initialized and run before their service category devices are initialized because 
the family expert extends the system facilities to provide services to their 
service category devices. For example, the Display Manager extends the system 
to provide VBL capabilities to 'disp' service category drivers. In the past, VBL 
services have been provided by the Slot Manager; but with native drivers, 
family-specific services such as VBL services move from being a part of bus 
software to being a part of family software.

A family expert, whether ROM based or disk based, scans the Name Registry 
for devices of a particular service category. Each device entered in the Registry 
with the specified service category is initialized and installed in the system in a 
family-specific way.

Note that startup steps 10 and 11 listed on (page 163) initialize the Display 
Manager and the SCSI Manager. The Display Manager and SCSI Manager are 
both family experts. These are ROM-based experts that look for service category 
'disp' ('ndrv' for current display devices) and service category 'blok' 
respectively. The SCSI Manager loads and activates PCI SIMs in the way 
described in Inside Macintosh: Devices and in “SIMs for Current Versions of 
Mac OS” (page 561). The Display Manager loads, initializes, and opens display 
devices. Disk-based experts perform exactly the same task as ROM-based 
experts, but disk-based experts are run after the file system is available. For 
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more information about the Display Manager, see Display Device Driver Guide, 
listed in “Apple Publications” (page 26).

Driver Replacement 7

Suppose you are shipping your PCI card and have discovered an obscure bug 
in your expansion ROM driver. This section describes the mechanism that 
Apple supplies to allow you to update your ROM-based driver with a newer 
disk-based version.

As described earlier in this chapter, the Name Registry is populated with device 
nodes that have driver,AAPL,MacOS,PowerPC properties and driver-descriptor 
properties. These properties are loaded from the expansion ROM and 
configuration space, installed by the Open Firmware code, and pruned by the 
Expansion Manager. 

After the Registry is populated with device nodes, the Macintosh startup 
sequence initializes the devices. For every device node in the Registry there are 
two questions that require answers before the system can complete a client 
request to use the device. The client may be the system itself or an application. 
The questions are

■ Is there a driver for this node?

■ Where is the most current version of the driver for this node?

If there is a driver in ROM for a device, the driver,AAPL,MacOS,PowerPC property 
is available in the Name Registry whenever a client request is made to use that 
device. However, after the operating system is running and the file system is 
available, the ROM driver may not be the driver of choice. In this case, the 
ROM-based driver is replaced with a newer version of the driver on disk by the 
following means.

In the system startup sequence, as soon as the file system is available Mac OS 
searches the Extensions folder and matches drivers in that folder with device 
nodes in the Name Registry. For a discussion of driver matching, see “Matching 
Drivers With Devices” (page 164). The driverInfoStr and version fields of the 
DriverType fields of the two driver description structures are compared, and the 
newer version of the driver is installed in the tree. When the driver is updated, 
the driver-descriptor property and all other properties associated with the 
node whose names begin with Driver are updated in the Name Registry.
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If the driver associated with a node is open (that is, if it was used in the system 
startup sequence) and if the driver is to be replaced, the system must first close 
the open driver, using the driver-ref property in the Name Registry to locate it. 
The system must then update the Registry and reinstall and reopen the driver. If 
the close or finalize action fails, the driver will not be replaced.

The native driver model does not provide automatic replacement of 68K 
drivers. It is possible to replace a 68K driver, but it requires some work on your 
part. If you want to replace a 68K driver with a native driver dynamically, you 
must close the open 68K driver, extract its state information, and load and 
install the native driver using the Driver Loader Library. The native driver must 
occupy the same DCE slot as the 68K driver and use the same reference number. 
After being opened, it must start running with the state information that was 
extracted from the 68K driver.

Applications and other software can use the ReplaceDriverWithFragment 
function to replace one driver with another and RenameDriver to change a 
driver’s name. These routines are described next.

ReplaceDriverWithFragment 7

ReplaceDriverWithFragment replaces a driver that is already installed with a new 
driver contained in a CFM fragment. It sends replace and superseded calls to 
the drivers, as described in “Replace and Superseded Routines” (page 218).

OSErr sReplaceDriverWithFragment(
DriverRefNum theRefNum, 
CFragConnectionID fragmentConnID);

theRefNum Reference number of the driver to be replaced.

fragmentConnID
CFM connection ID for the new driver fragment.

DESCRIPTION

Given the unit table reference number of an installed driver in theRefNum, 
ReplaceDriverWithFragment replaces that driver with a new driver contained in 
a CFM fragment identified by fragmentConnID. It sends replace and superseded 
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calls to both drivers, as described in “Replace and Superseded Routines” 
(page 218).

Note
The CFM fragmentConnID variable should be freed when 
the driver is unloaded. ◆

RESULT CODES

RenameDriver 7

RenameDriver changes the name of a driver.

OSErr RenameDriver(
DriverRefNum refNum,
StringPtr newDriverName);

refNum Reference number of the driver to be renamed.

newDriverName Pointer to the driver’s new name in a Pascal string.

DESCRIPTION

Given the unit table reference number of an installed driver in refNum, 
RenameDriver changes the driver’s name to the contents of a string pointed to by 
newDriverName.

noErr 0 No error
All CFM errors (See Inside Macintosh: PowerPC System Software)
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RESULT CODES

Driver Migration 7

Driver migration is the process of converting current 68K drivers to native 
driver equivalents. 

Resources of type 'DRVR' in Mac OS are used to solve a broad variety of 
problems. Some 'DRVR' resources drive devices as part of the I/O subsytem. For 
example, SCSI disk device drivers use the SCSI Manager’s I/O interface to 
access disks on the SCSI bus. These I/O manager–based resources need not 
migrate to the new services and run-time model. However, the 'DRVR' resources 
that control physical devices attached to a PCI bus must operate in a new, more 
restrictive environment.

This section covers changes to existing driver mechanisms, as well as the 
replacement calls. Please note that these are guidelines; for exact calling 
sequences and parameter descriptions you must refer to the chapters that cover 
each of the new routines. 

Driver Services That Have No Replacement 7

The services described in this section are limited or not available for native 
driver use.

Device Manager 7

Native drivers are no longer part of the Toolbox environment. The implication 
of this change is that while 68K drivers can make PBOpen, PBClose, and 
PBControl calls, these services are not available to drivers in the native device 
driver environment. Drivers can make calls to other drivers through the Device 
Manager. Subsystems designed to communicate in this way must be 
reimplemented. 

In the AppleTalk implementation prior to the introduction of Open Transport, 
the AppleTalk protocol modules are layered on top of networking device 

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number
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drivers using the Device Manager as the interface mechanism between these 
cooperating pieces of software. The native AppleTalk implementation uses 
UNIX®-standard STREAMs communication mechanisms to stack protocol 
modules on top of drivers. Network drivers are written to conform with the 
native device driver model and operate within the Open Transport family of 
devices. For further information, see Chapter 14, “Network Drivers.”

Exception Manager 7

Native device drivers must not make calls to the Exception Manager. In the 
past, drivers made use of the microprocessor’s bus error mechanism to probe 
for hardware. Drivers should instead use the Name Registry to find all devices 
and their properties.

Gestalt Manager 7

Gestalt calls are available only to applications, not to drivers. Drivers may 
provide driverGestalt services via the Status selector to DoDriverIO or may 
alternatively present device information through the Name Registry. The Name 
Registry is a unifying mechanism and is the preferred means for representing 
system information. See “Driver Gestalt” (page 221) for additional information 
about the driver Gestalt services. 

Mixed Mode Manager 7

Native device drivers must be written entirely in native PowerPC code. Calls to 
the Mixed Mode Manager are not allowed. Future releases of Mac OS may not 
provide emulation facilities for device drivers.

Notification Manager 7

The Notification Manager is not currently available to native drivers, but will be 
available in future versions of Mac OS. 

Power Manager 7

In general, native driver writers should exercise caution using the Macintosh 
Power Manager, because doing so may limit the driver’s compatibility with 
future releases of Mac OS. In some cases, native experts provide power 
management facilities for client drivers, in which case native drivers should 
support such expert functionality.
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Resource Manager 7

Resource Manager calls are not permitted, not even in the driver initialization 
routine. Instead, drivers use the Name Registry to manage initialization and 
configuration. The CFM provides dynamic loading of code fragments. See the 
discussion in Chapter 9, “Driver Loader Library.”

Segment Loader 7

No Segment Loader calls are allowed. The Segment Loader is replaced by the 
Code Fragment Manager, which provides a mechanism for dynamically loading 
and unloading code fragments. 

Shutdown Manager 7

Shutdown queue routines are no longer needed. The driver’s CFM termination 
routine is called before shutdown.

Slot Manager 7

The Name Registry replaces the Slot Manager in most cases. For special 
bus-specific I/O requests, see Chapter 12, “Expansion Bus Manager.”

Vertical Retrace Manager 7

Vertical blanking (VBL) facilities are intended to provide support to graphics 
and video display devices. This functionality is provided to video devices by 
the video display expert that is responsible for the display family. Devices 
outside the display family may not make VBL calls. Timing services are 
provided to all devices.

Native Driver Services 7

This section describes services that the Mac OS provides for native drivers.

Registry Services 7

Chapter 10, “Name Registry,” introduces the concept of the Name Registry. The 
Registry interface provides new mechanisms for drivers to expose information. 
Any data that might be of use to a configuration or debugging utility may be 
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installed in the Registry and is directly available to the configuration 
application through the Registry programming interface. 

▲ W AR N I N G

Only a small set of Registry services are available at 
hardware or secondary interrupt level. The set of services 
available at nontask level are gets and sets of properties 
associated with a single device entry. For further 
information, see “Service Limitations” (page 434). ▲

Operating-System Services 7

A standard set of operating-system utilities is provided in the Driver Services 
Library. These services include

■ SysDebug and SysDebugStr

■ PBEnqueue and PBDequeue

■ C and Pascal string manipulation routines

■ Memory copying and clearing

For a more complete set of driver services, see Chapter 11, “Driver Services 
Library.”

Timing Services 7

The Time Manager calls InsTime, PrimeTime, and RmvTime have been replaced 
with a new set of services, described in “Timing Services” (page 416). The 
timing routines available are

■ SetInterruptTimer

■ CancelTimer

■ UpTime

■ TimeBaseInfo

In the past, there have been special services provided to 68K drivers to allow for 
delayed processing. These mechanisms, such as dNeedTime, drvrDelay, and 
accRun, are specific to the Macintosh Toolbox and the Process Manager. These 
facilities will continue to be provided for Toolbox code resources; drivers 
written to be compatible with the native driver specification will never run in a 
Toolbox context and hence may not make use of these facilities.
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Memory Management Services 7

Native drivers may not call Toolbox memory management routines, 
particularly

■ NewPtr

■ NewPtrSys

■ NewHandle

■ SetZone

Memory allocation requests should use either a device family–specific 
allocation mechanism or the new memory management services. The memory 
management allocation and deallocation routines are

■ PoolAllocateResident

■ PoolDeallocate 

An example of a family specific allocation mechanism is allocb for STREAMS 
drivers. allocb is an exported allocation mechanism provided to all STREAMS 
drivers and protocol modules. allocb uses the appropriate memory 
management services to its underlying operating system.

The Macintosh native driver memory management services are listed and 
described in Chapter 11, “Driver Services Library.” 

Hardware Interrupt Mechanisms 7

To install an interrupt handler, you use InstallInterruptFunctions, which 
replaces the earlier Slot Manager routine SIntInstall.

The interrupt set ID and interrupt member number values are available as 
driver-ist properties associated with each device entry in the Name Registry. 
For a complete discussion of native driver interrupt handling, see “Interrupt 
Management” (page 381). 

Secondary Interrupt Services 7

The Deferred Task Manager call DTInstall is replaced by 
QueueSecondaryInterruptHandler and CallSecondaryInterruptHandler2. These 
routines are discussed in “Secondary Interrupt Handlers” (page 409).

The Deferred Task Manager maintains a queue of deferred tasks that run after 
hardware interrupts but before the return to the application level. The new 
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mechanisms allow a deferred task, now called a secondary interrupt handler, to be 
queued or run on the fly. The operating-system mechanisms used to manage 
secondary interrupts are no longer visible to clients of the scheduling routines. 
The deferred task structure itself is no longer allocated by the requesting 
application.

Device Configuration 7

All device configuration information is stored in the Name Registry. All 
resources required by the driver will be provided to device drivers in a 
family-specific way or through the Name Registry. Device driver writers must 
follow these rules:

■ Do not use the Resource Manager.

■ Do not use the file system.

■ Do not use the PRAM utilities.

Support for these mechanisms is not available to drivers after the first 
generation of Power Macintosh computers. The Name Registry provides two 
kinds of persistent storage; see Chapter 10, “Name Registry,” for details on how 
these facilities are used. In short and in general, do not use the Macintosh 
Toolbox from main driver code. 

All information required by device drivers is located in the Name Registry. 
Native driver initialization routines are passed a Name Registry node pointer 
that identifies the corresponding device. The Name Registry programming 
interface provides access routines to the interesting properties required by 
devices. See “Standard Properties” (page 322), for names and values of 
properties of interest to PCI drivers for use with Mac OS.

Native drivers should not make calls to, or expect data from, the Resource 
Manager. There are two reasons for this rule:

■ The Resource Manager is an application service, not a system service.

■ Information stored in resources is unwieldy because it is impossible to 
distinguish code from data resources in a paging-protected or 
memory-protected way.

Configuration data must be supplied by the expert controlling the device or 
stored as property data in the Name Registry.
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This chapter tells you about Macintosh native run-time drivers in the second 
generation of Power Macintosh computers. It covers the following subjects:

■ how generic native drivers interact with the Device Manager

■ how native drivers operate concurrently

■ the context in which driver code is executed

■ how to write a native device driver 

■ the Driver Loader Library

■ finding, initializing, and replacing drivers

■ migrating a 68K driver to the native driver environment 

You need to understand the information in this chapter if you are going to write 
or adapt a driver to work with Mac OS. This chapter assumes that you are 
generally familiar with programming Power Macintosh computers, particularly 
with using the Device Manager and the Code Fragment Manager.

Note
The discussions of the Device Manager and the Driver 
Loader Library in this chapter apply only to generic 
drivers. For a description of generic drivers, see “Generic 
Driver Framework” (page 153). ◆

Native Driver Framework 8

All native (PowerPC) device drivers are Code Fragment Manager (CFM) 
fragments with the following general features:

■ CFM container format

■ CFM programming interfaces exported from the driver to Mac OS

■ CFM programming interfaces imported by the driver from Mac OS

Generic drivers are CFM fragments that work with the Device Manager and the 
Driver Loader Library; family drivers are CFM fragments that use other 
mechanisms. Generic and family drivers are distinguished in “Generic and 
Family Drivers” (page 151). The general characteristics of both kinds of native 
drivers are briefly summarized in the next sections.
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Native Driver CFM Container Format 8

The Code Fragment Manager CFM format provides the mechanisms for drivers 
to import and export data and code symbols, is integrated with Mac OS, and is 
documented in Inside Macintosh: PowerPC System Software.

Native Driver Data Exports 8

All native drivers, both generic and family, must export a single data symbol 
that characterizes the driver’s functionality and origin. This symbol, called 
TheDriverDescription, must be exported as a CFM symbol. It is documented in 
“Driver Description Structure” (page 198).

The driver description information helps match drivers with devices. This 
includes letting the Device Manager or device Family Expert pick the best 
driver among multiple candidates. The Device Manager uses the information in 
the driver description to determine whether a disk-based device driver is a 
better match for a device than a device driver that is in the Mac OS ROM. For 
example, a USB class driver in the Mac OS ROM for the mouse may be a valid 
match for some generic aspects of a third-party mouse device. However, the 
driver description for the third-party device driver installed on the disk should 
provide vendor ID, product ID, and other data to ensure the USB Manager/
Family Expert replaces the Mac OS ROM driver when the third-party mouse is 
detected.

Generic Native Driver Code Exports 8

Previous Macintosh drivers exported five callable routines: Open, Close, Prime, 
Control, and Status. Generic native device drivers export a single code entry 
point, called DoDriverIO, that handles all Device Manager operations. It is a 
selector-based entry point with command codes that specify the I/O action to 
be performed. The device driver can determine the nature of the I/O request 
from the command code (kInitializeCommand, kFinalizeCommand, kOpenCommand, 
kCloseCommand, kReadCommand, kWriteCommand, kControlCommand, kStatusCommand, 
kKillIOCommand, kReplaceCommand, or kSupersededCommand) and command kind 
(kIOSynchronousKind, kIOAsynchronousKind, or kIOImmediateKind). DoDriverIO is 
described in “DoDriverIO Entry Point” (page 204).
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Native Driver Imports 8

The CFM requires that a fragment import any libraries that it is dependent on. 
Generic drivers link to the Driver Services Library; family drivers may also be 
linked to family libraries. The linking lets the fragment’s symbols be bound at 
load time. The Driver Services Library or a family library should be used 
instead of a Toolbox-based library when linking a device driver.

IMPORTANT

Native device drivers should use the CFM’s import library 
mechanism to share code or data. With this technique, the 
CFM creates an import library fragment when the first 
driver is loaded. When another driver is loaded, it 
establishes a connection to the existing library, letting the 
two drivers share code or data. For further information 
about the CFM, see Inside Macintosh: PowerPC System 
Software. This book is listed in “Apple Publications” 
(page 26). ▲

In the past, driver imports have not always been rigidly characterized. The 
reason for now explicitly specifying the system entry points available to native 
drivers is to guarantee compatibility of drivers with future releases of Mac OS. 
For a further discussion, see “Driver Services Library” (page 154). See also the 
family-specific information in Chapters 13, 14, and 15.

Drivers for Multiple Cards 8

This section describes two cases where drivers have to deal with multiple cards. 
They are the following:

The first case in which a driver may need to support multiple instances of the 
same PCI expansion card. In that case, the CFM and Driver Loader Library 
(DLL)do all the work and you will get a separate CFM instance of the driver for 
each card. The CFM links instances of the native driver on the fly when the 
driver is loaded by the DLL.

The second case where a driver needs to support different, but related PCI 
expansion cards (or multiple functions on one card). In this case the driver 
should use the Code Fragment Manager to import a shared library for both 
code and data. 

Follow these design guidelines:
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■ Put the shared library in the Extensions folder in the System Folder.

■ Separate your code and data into card-specific and card-independent 
portions. Card-specific portions go into the driver, and card-independent 
portions go into the library.

■ Some family experts like the OpenTransport and the USB version 1.2 or 
greater experts support the extended 'cfrg' resource. The extended resource 
allows merging of multiple drivers files in a single 'ndrv' file. See the 
documentation for the specific device family for further information about 
how this is done.

You can construct a driver that exports services for different families, such as 
both 'ndrv' and 'otan', using a driver description structure with multiple 
service categories defined.

Note
The driver is responsible for synchronizing accesses to the 
shared library in such a way that it protects shared data 
structures. You can use DSL mechanisms to help with 
synchronization. ◆

The Device Manager and Generic Drivers 8

The Device Manager is part of the Mac OS that provides communication 
between applications and devices. The Device Manager calls generic device 
drivers; it doesn’t manipulate devices directly. Generic drivers accept calls from 
the Device Manager and either cause device actions or respond by sending back 
data generated by devices. For further general information about drivers and 
the Device Manager, see Inside Macintosh: Devices.

For 68K drivers, the Device Manager’s capabilities and services remain 
unchanged. For generic native drivers, the Device Manager has changed to 
support PowerPC driver code and to permit drivers to operate concurrently. 

Native Driver Differences 8

For detailed information about constructing native device drivers, see “Writing 
a Generic Device Driver,” later in this chapter. If you are already familiar with 
writing 68K device drivers, the following are highlights of the principal 
differences:
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■ A native driver receives its parameters through the single DoDriverIO entry 
point, subject to the calling conventions specified by the PowerPC run-time 
architecture. If a DoDriverIo routine is written in C, the correct behavior is 
guaranteed. This is a fundamental change from the way 68K drivers received 
parameters.

■ A native driver doesn’t have access to its driver control entry (DCE) in the 
unit table.

■ ImmediateIOCommandKind is passed in the ioKind parameter to specify that a 
request must be executed immediately. If so, the driver must process the 
request completely and the result of the process must be reflected in the 
return value from the driver. kInitializeCommand, kFinalizeCommand, 
kOpenCommand, kCloseCommand, kKillIOCommand, kReplaceCommand, and 
kSupersededCommand calls are always immediate.

■ If the ioKind parameter is either SynchronousIOCommandKind or 
AsynchronousIOCommandKind, the return value from the driver is ignored. The 
driver must call IOCommandIsComplete at some future time. 

■ The Initialize and Finalize commands are sent to the driver as its first and 
last commands. Initialize gives the driver information it needs to start up. 
Finalize informs the driver that the system needs to unload it.

■ Drivers now receive all OpenDriver and CloseDriver calls, which connect the 
driver independently of initialization and finalization. In the past, the first 
(and only) OpenDriver and CloseDriver calls were used as the initialization 
and finalization mechanism. 

■ All native drivers must accept and respond to all command codes. The 
Read_Enable, Write_Enable, Control_Enable, and Status_Enable bits in the 
DCE are ignored. Native drivers must keep track of I/O permissions for each 
instance of multiple open actions and return error codes if the permissions 
are violated.

■ The Device Manager processes zero-length reads and writes on behalf of the 
68K driver. Native drivers must accept zero-length read and write 
commands and respond to them in an intelligent way without crashing.

■ KillIO is no longer a control call; it is now its own command. For backward 
compatibility, the Device Manager converts KillIO traps into KillIO 
commands. It passes the old csKillcode control call (csCode = 1) without 
acting on it.
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■ The Code Fragment Manager sends CFM initialization and termination calls 
to a driver when the driver is loaded and unloaded. The CFM initialization 
routine, if present, will run prior to the driver being initialized by the Device 
Manager. It is possible that the driver will be loaded and its CFM 
initialization routine run even though it is never opened and, therefore, 
never closed. It is important that any processing done by a CFM initialization 
routine be undone by the CFM termination routine. The Device Manager 
may load a number of drivers looking for the best candidate for a particular 
device. Only the best driver is opened and remains loaded. All other CFM 
connections are closed, causing the CFM termination routine to run.

■ Native drivers never jump to the IODone routine. To finish processing an I/O 
request, a generic native driver must call IOCommandIsComplete to notify the 
Device Manager that a given request has been completed.

■ To determine the kind of request or kind of command, the ioTrap field of the 
old Device Manager parameter block has been replaced with routine 
parameters called theCode and theKind. Native drivers do not need to read or 
modify this field. 

■ A native driver must be reentrant to the extent that during any call from the 
driver to IOCommandIsComplete the driver may be reentered with another 
request. 68K device drivers would typically JMP to to IODone and therefore 
technically never be re-entered. 

■ A native device driver does not have any sort of header. It must however, 
export a data symbol called TheDriverDescription. A driver uses this data 
structure to give header-like information to the Device Manager. The Device 
Manager uses the information in TheDriverDescription to set the dCtlFlags 
field in the driver’s DCE. 

■ Native drivers should never look at or modify directly the iodesrbl field of 
the Device Manager parameter block. (what’s that field?)

■ A native device driver cannot make use of the dCtlEMask and dCtlMenu fields 
of its DCE.

■ If you set the ioBuffer field in an I/O parameter block to NULL, the Device 
Manager will not pass the buffer to a native driver (but it will not return an 
error either).

■ Native drivers cannot be used for creating desk accessories.
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IMPORTANT

Native drivers may use only those services provided by the 
Driver Services Library or family libraries. The Driver 
Services Library is described in Chapter 11. ▲

Native Driver Limitations 8

The ability of Mac OS to support generic native drivers does not mean that 
Mac OS contains a fully native I/O subsystem; at present the Device Manager 
still runs in 68K code. In addition, the 68K emulator can service interrupts only 
on 68K instruction boundaries. As a result, the performance of a native device 
driver may be greater or less than the performance of its 68K equivalent. At this 
time, Apple has made no commitment to furnish either a native version of the 
Device Manager or a combined native-68K version (fat version).

The discussions of generic native drivers in the previous sections apply only to 
drivers managed by the Device Manager. Other driver-like things, such as 
Apple Desktop Bus drivers, which are not managed by the Device Manager, 
realize no benefit from the Device Manager’s concurrency features. These 
features are discussed in the next section.

Concurrent Generic Drivers 8

Previously, the Device Manager let drivers process only one request at a time. 
Although multiple requests could be pending for a driver, the Device Manager 
passed each new request to the driver only when the previous request was 
done.

Many clients of the present Device Manager contain work arounds that let the 
driver handle multiple requests concurrently. The Device Manager now lets 
native device drivers handle concurrent tasks more simply. 

Drivers that support simultaneous requests should set the kDriverIsConcurrent 
bit of the driverRuntime flags word in the driver description structure. When 
dealing with a concurrent device, the Device Manager alters its request 
management as follows:

■ All I/O requests it receives are immediately forwarded to the appropriate 
driver.
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■ The drvrActive bit (bit 7) in the dCtlFlags field of the device control block is 
never set.

■ When a driver chooses to do standard Device Manager queuing, the 
parameter blocks corresponding to its requests are placed onto the device’s 
request queue rooted by the dCtlQHdr field of the device control block.

■ A driver that chooses to queue requests to an internal queue should set the 
kdriverQueuesIOPB bit in the driverRuntime flags word in the 
DriverDescriptor structure. This bit prevents the Device Manager from 
queueing the request to the DCE request queue. Drivers using the 
kdriverQueuesIOPB option bit must dequeue the I/O parameter block (IOPB) 
from any internal queues before calling IOCommandIsComplete.

■ A driver must use the IOCommandIsComplete service to complete a request. It 
may not use the original IODone service. IOCommandIsComplete is described in 
the next section.

■ A driver is responsible for ensuring that all requests have been completed 
prior to returning from a Finalize request. Once a Finalize request has been 
made to a concurrent driver, no further requests will be made to the driver 
until the driver has completed the Finalize request and the driver is again 
initialized.

Completing an I/O Request 8

To replace the IODone routine and its associated low memory global jIODone, a 
new routine has been added to the Device Manager called IOCommandIsComplete. 
The difference between IODone and IOCommandIsComplete is that while IODone 
initiates request completion processing for a request that is implicitly 
designated by the request queue head, a caller of IOCommandIsComplete must 
explicitly specify the request that is to be completed.

After a nonimmediate IOCommandKind command has been accepted, the driver 
performs the actions implied by the command and the IO parameter block 
contents. When the command has been processed, the driver must complete the 
command. 

The driver must identify the command it is completing; this is done by passing 
the command ID to IOCommandIsComplete. The command ID is provided to a 
driver as the first parameter to its I/O entry point, as well as being stored in the 
IO parameter block’s ioCmdAddr field ( ThePb -> ioParam.ioCmdAddr ). 
Concurrent Generic Drivers 191



C H A P T E R  8  

Writing Native Drivers
As a result of a completion, the Device Manager takes several actions. If the 
command was performed synchronously, the I/O trap finishes. If the command 
was performed asynchronously, the requested I/O completion routine is 
invoked. The routine IOCommandIsComplete stores the status value in the I/O 
parameter block result field. It also starts the next request if the driver isn’t 
concurrent and there is a request queued. The driver should never try to modify 
result. 

Note
Under current versions of the Mac OS command ID == 
&param block. Your driver should not rely on this always 
being true. ◆

IOCommandIsComplete 8

IOCommandIsComplete lets a driver tell the Device Manager that an I/O request 
has been completed.

OSStatus IOCommandIsComplete(
IOCommandID ID,
OSErr result);

ID Specifies the ID of a command.

result The status value to place in the IO parameter block. This value 
must be a non-negative value.

DESCRIPTION

The parameter ID specifies the ID of a command being completed. The value of 
this ID is opaque and may be dependent on the operating system version, as 
discussed in the note on (page 349). The parameter result specifies the status 
value to place in the IO parameter block. The driver must make sure that the 
request that corresponds to Command is not queued internally when it calls 
IOCommandIsComplete, and it may not access the parameter block afterward.
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EXECUTION CONTEXT

IOCommandIsComplete may be called from task level or secondary interrupt level, 
but not from hardware interrupt level. For a list of the execution contexts of 
other system routines that support native drivers, see “Service Limitations” 
(page 434).

RESULT CODES

Note
The OSStatus type is described in “Error Returns” 
(page 156). ◆

Concurrent I/O Request Flow 8

The movement of multiple driver I/O requests from clients through the Device 
Manager to concurrent drivers and back again follows these steps:

1. A client issues an I/O request.

2. The request (in the form of an I/O parameter block) is passed to the Device 
Manager.

3. The Device Manager uses the refNum in the I/O parameter block to locate the 
appropriate driver.

4. The Device Manager checks the kdriverQueuesIOPB option bit. If the value of 
the bit is false, the Device Manager adds the I/O parameter block to the 
driver’s DCE-based request queue.

5. The Device Manager invokes the driver’s DoDriverIO entry point.

6. The driver may choose to leave the request on the DCE queue; alternately, if 
it is using the kdriverQueuesIOPB bit, the driver may put the request into a 
privately managed queue.

7. The driver starts the I/O action; if it is truly asynchronous, it returns to the 
Device Manager without calling IOCommandIsComplete.

8. If the client issued the request synchronously, the Device Manager waits for 
the completion of the request; otherwise, it returns control to the client.

noErr 0 No error
paramErr –50 Bad parameter
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9. Some time later, the driver determines (through a hardware or secondary 
interrupt routine) that the device I/O action has finished. At this time, the 
driver scans its private queue looking for the I/O parameter block 
representing the I/O action.

10. The driver uses the I/O parameter block commandID stored at (ThePb -> 
ioParam.ioCmdAddr) to issue an IOCommandIsComplete call. Drivers using the 
kdriverQueuesIOPB bit must make sure the I/O parameter block is not on any 
queue when calling IOCommandIsComplete.

11. The Device Manager places the result in the I/O parameter block.

12. If the I/O request was issued synchronously, control returns to the client. If 
the I/O request was issued asynchronously, the Device Manager invokes the 
client’s completion routine (if one exists).

13. Control returns to the driver. The driver should not attempt to access the I/O 
parameter block after calling IOCommandIsComplete.

Driver Execution Contexts 8

This section discusses the general concepts and rules covering driver execution 
in Mac OS. You must understand these rules to ensure that your code will be 
compatible with future versions of Mac OS.

Code Execution in General 8

The environments in which code execution can occur are described in 
“Noninterrupt and Interrupt-Level Execution” (page 149) and may be 
summarized as follows:

■ Task level is where applications and most other code are executed.

■ Hardware interrupt level execution occurs as a direct result of a hardware 
interrupt request. The software executed at hardware interrupt level includes 
installable interrupt handlers for PCI and other devices as well as 
Apple-supplied interrupt handlers.

■ Secondary interrupt level is similar to the deferred task environment. The 
secondary interrupt queue is filled with requests to execute subroutines 
posted for execution by hardware interrupt handlers. Secondary interrupt 
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handlers always execute sequentially. For synchronization purposes, code 
running at task level may also post secondary interrupt handlers for 
execution; these are processed synchronously from the perspective of the task 
level, but are serialized with all other secondary interrupt handlers.

IMPORTANT

Hardware interrupt handlers can nest on current versions 
of the Mac OS, but may not be able to in future products. ▲

Different execution levels have different restrictions. Task-level execution may 
make use of nearly any operating-system or Toolbox service, but secondary 
interrupt tasks and hardware interrupt handlers are allowed only a subset of 
those services. Eventhough a service may be described as callable from task 
level, you can’t call it from any task-level code. For example, drivers are not 
allowed to call the Toolbox.

Note
Some confusion in System 7 programming results from ad 
hoc rules governing execution contexts. In System 7, 
applications have one set of rules while their VBL tasks, 
Time Manager tasks, and I/O completion routines all have 
their own rules. Rules that establish when certain system 
services can and cannot be used are difficult to understand 
and are not fully established. For further discussion of this 
topic, see the discussion in Technote 1104, “Interrupt Safe 
Routines.” ◆

Driver Execution 8

The asynchronous I/O model requires that a generic driver’s responses to its 
Read, Write, Control, and Status entry points comply with the requirements of 
hardware interrupt level execution. This is because the Device Manager initiates 
requests that have been queued for the driver only after previously queued 
requests finish. Routine initiation and completion are both possible at the 
hardware interrupt level.
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IMPORTANT

A driver’s Open, Close, Initialize, Finalize, Replace, and 
Superseded entry points are always invoked at task level. 
This is the only opportunity that a driver has to allocate 
memory or use other services that are only available at the 
task level. For memory allocation guidelines, see “Memory 
Management Services” (page 349). ▲

“Service Limitations” (page 434) indicates which Mac OS services are available 
to drivers at hardware interrupt level and at secondary interrupt level. It is the 
responsibility of the driver writer to conform to these limitations. Drivers that 
violate the limitations will not work with future releases of Mac OS.

Writing a Generic Device Driver 8

This section discusses writing a generic native driver—one that can respond to 
Device Manager requests in the second generation of Power Macintosh 
computers. Although drivers may contain PowerPC assembly-language 
internal code, a native driver’s interface should be written in C.

Before you decide to write your own device driver, you should consider 
whether your task can be more easily accomplished using one of the standard 
Macintosh drivers described in Inside Macintosh. In general, you should 
consider writing a device driver only if your hardware device or system service 
needs to be accessed at unpredictable times or by more than one application. 
For example, if you develop a new output device that you want to make 
available to any application, you might need to write a custom driver.

This section describes the Native Driver package and tells you how to

■ create a driver description structure

■ write native driver code to respond appropriately to Device Manager 
requests

■ handle the special requirements of asynchronous I/O

■ install and initialize the driver
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Note
Only generic drivers interact with the Device Manager. The 
only part of this section that applies to family drivers is 
“Driver Description Structure” (page 198). ◆

Native Driver Package 8

The driver model in the second generation of Power Macintosh defines a new 
driver packaging format. This package may contain generic drivers that have 
the generic driver call interface or may contain device family drivers that have 
call interfaces specific to the device family.

The Native Driver package is a CFM code fragment. It may reside in the 
Macintosh ROM, in an expansion ROM, or in the data fork of a file. File-based 
native driver code fragments contain no resource fork and have a file type of 
'ndrv'. The DLL ignores the file’s creator; by specifying a custom creator value 
registered with Apple, you can use this value to distinguish one driver from 
another. For a discussion of this technique, see “Using NVRAM to Store Name 
Registry Properties” (page 444).

The Native Driver package may house various types of drivers. The driver is 
expected to support services defined for the particular device family. One 
predefined driver type is a generic type and is called 'ndrv' (not to be confused 
with the Native Driver file type 'ndrv').

The Native Driver package requires that at least one symbol be defined and 
exported by the CFM’s export mechanism. This symbol must be named 
TheDriverDescription; it is a data structure that describes the driver’s type, 
functionality, and characteristics.

Depending on the type of driver, additional symbols must be exported. The 
generic driver must export a single code entry point, DoDriverIO, which is 
passed to all driver I/O requests. DoDriverIO must respond to the kOpenCommand, 
kCloseCommand, kReadCommand, kWriteCommand, kControlCommand, kStatusCommand, 
kKillIOCommand, kInitializeCommand, kFinalizeCommand, kReplaceCommand, and 
kSupersededCommand commands. Native drivers must also keep track of I/O 
permissions for each instance of multiple open actions and return error codes if 
permissions are violated. Other driver types that support device families must 
export the symbols and entry points defined by the device family or device 
expert.
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IMPORTANT

Native drivers must handle a new type of error return 
code, OSStatus. This data type is described in “Error 
Returns” (page 156). ▲

Driver Description Structure 8

The structure DriverDescription is used to match drivers with devices, set up 
and maintain a driver’s run-time environment, and declare a driver’s 
supported services.

struct DriverDescription {
OSType driverDescSignature;
DriverDescVersion driverDescVersion;
DriverType driverType;
DriverOSRuntime driverOSRuntimeInfo;
DriverOSService driverServices;
};

typedef struct DriverDescription DriverDescription;
typedef struct DriverDescription *DriverDescriptionPtr;

enum {kTheDescriptionSignature = 'mtej' /*first long word of 
DriverDescription*/
};

typedef UInt32 DriverDescVersion;
enum {
kInitialDriverDescriptor = 0  /*first version of
DriverDescription*/
};

Field descriptions
driverDescSignature

Signature of this DriverDescription structure; currently 
'mtej' is used for all. Replace with the constant 
kTheDescriptionSignature

driverDescVersion Version of this driver description structure, used to 
distinguish different versions of DriverDescription that 
have the same driverDescSignature value. 
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driverType Structure that contains driver name and version.
driverOSRuntimeInfo

Structure that contains driver run-time information, which 
determines how a driver is handled when Mac OS finds it. 
This structure also provides the driver’s name to Mac OS 
and specifies the driver’s ability to support concurrent 
requests.

driverServices Structure used to declare the driver’s supported 
programming interfaces.

The driverType, driverOSRuntimeInfo, and driverServices structures are 
described in the next sections. A typical driver description is shown in 
Listing 8-1. 

Listing 8-1 Typical driver description

DriverDescription TheDriverDescription =
{

// signature info
kTheDescriptionSignature, // signature always first
kInitialDriverDescriptor, // version second

// type info
{

"\pAAPL,Viper", // device's name (must match
// name in Name Registry)

0x1,0x0,0x40,0x2, // Rev 1.0.0a2
},

// OS run-time requirements
{

kDriverIsUnderExpertControl // run-time options
| kDriverIsOpenedUponLoad,
"\p.Display_Video_Apple_Viper",

},

// OS run-time info
{

1, // number of service categories
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{
kServiceCategoryNdrvDriver, // we support 'ndrv' categor
kNdrvTypeIsVideo, // video type

// Version of service
1, 0, 0, 0 // major, minor, stage, rev

}
}

};

Driver Type Structure 8

The DriverType structure contains name and version information about a driver, 
which is used to match the driver to a specific device. For further information 
about driver matching, see “Matching Drivers With Devices” (page 164).

struct DriverType {
Str31 nameInfoStr;
NumVersion version;
} 

typedef UInt32 DeviceTypeMember;

typedef struct DriverType DriverType;

typede struct DriverType *DriverTypePtr;

Field descriptions
nameInfoStr Name used to identify the driver and distinguish between 

various versions of the driver when an expert is searching 
for drivers. This string of type Str31 is used to match the 
name property in the Name Registry.

version Version resource used to obtain the newest driver when 
several identically named drivers (that is, drivers with the 
same value of nameInfoStr) are available. 
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Driver Run-Time Structure 8

The DriverOSRuntime structure contains information that controls how the 
driver is used at run time.

struct DriverOSRuntime {
RuntimeOptions driverRuntime;
Str31 driverName;
UInt32 driverDescReserved[8];
};

typedef OptionBits RuntimeOptions;

typedef struct DriverOSRuntime DriverOSRuntime;

typedef struct DriverOSRuntime *DriverOSRuntimePtr;
enum { /*DriverOSRuntime bit constants*/ 
kDriverIsLoadedUponDiscovery = 1,  /*auto-load 
  driverwhen discovered*/
kDriverIsOpenedUponLoad = 2, /*auto-open driver when 
  it is loaded*/
kDriverIsUnderExpertControl = 4, /*I/O expert 
  handles loads and opens*/
kDriverIsConcurrent = 8,/*supports concurrent
  requests*/
kDriverQueuesIOPB = 0x10 /*Device Manager shouldn't
  queue IOPB*/
};

Field descriptions
driverRuntime Options used to determine run-time behavior of the driver. 

The bits in this field have these meanings:

Bit Meaning

0 System loads driver when driver is discovered.

1 System opens driver when driver is loaded.
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driverName Driver name used by Mac OS if driver type is ndrv. Mac OS 
copies this name to the area pointed to by the dNamePtr field 
of the DCE. This field is unused for other driver types.

driverDescReserved
Reserved for future use. Set to 0.

Driver Services Structure 8

The DriverOSService structure describes the services supported by the driver 
that are available to other software. Each device family has a particular set of 
required and supported services. A driver may support more than one set of 
services. In such cases, nServices should be set to indicate the number of 
different sets of services that the driver supports.

struct DriverOSService {
ServiceCount nServices;
DriverServiceInfo service[1];
};

typedef UInt32 ServiceCount;

typedef struct DriverOSService DriverOSService;

typedef struct DriverOSService *DriverOSServicePtr;

Field descriptions
nServices The number of services supported by this driver. This field 

is used to determine the size of the service array that 
follows.

service An array of DriverServiceInfo structures that specifies the 
supported programming interface sets.

2 Device family expert handles driver loads and 
opens.

3 Driver is capable of handling concurrent requests

4 The Device Manager should not queue the I/O 
parameter block (IOPB) in the DCE before calling 
the driver.
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Driver Services Information Structure 8

The DriverServiceInfo structure describes the category, type, and version of a 
driver’s programming interface services.

struct DriverServiceInfo {
OSType serviceCategory;
OSType serviceType;
NumVersion serviceVersion;
};

typedef struct DriverServiceInfo DriverServiceInfo;

typedef struct DriverServiceInfo *DriverServiceInfoPtr;

enum { /*used in serviceCategory*/
kServiceCategoryDisplay = 'disp', /*display*/
kServiceCategoryOpentransport = 'otan',/*Open
  Transport*/
kServiceCategoryBlockstorage = 'blok', /*block
  storage*/
kServiceCategorySCSISim = 'scsi', /*SCSI SIM*/
kServiceCategoryndrvdriver = 'ndrv' /*generic*/
};

Note
Current display devices use the generic device type 
'ndrv'. ◆

Field descriptions
serviceCategory Specifies driver support services for given device family. 

The following device families are currently defined:

Name Supports services defined for

'blok' block drivers family

'disp' video display family

'ndrv' generic native driver devices

'otan' Open Transport

'scsi' SCSI Interface Module
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serviceType Subcategory (meaningful only in a given service category).
serviceVersion Version resource ('vers') used to specify the version of a 

set of services. It lets interfaces be modified over time.

DoDriverIO Entry Point 8

Generic 'ndrv' drivers must provide a single code entry point DoDriverIO, 
which responds to kOpenCommand, kCloseCommand, kReadCommand, kWriteCommand, 
kControlCommand, kStatusCommand, kKillIOCommand, kInitializeCommand, 
kFinalizeCommand, kReplaceCommand, and kSupersededCommand commands.

OSErr DoDriverIO (
AddressSpaceID spaceID,
IOCommandID ID,
IOCommandContents contents,
IOCommandCode code,
IOCommandKind kind);

typedef KernelID AddressSpaceID;

spaceID The address space containing the buffer to be prepared. Mac OS 
7.5 and later provide only one address space 
(kCurrentAddressSpaceID), which it automatically passes to 
native drivers. 

ID Command ID.

contents An IOCommandContents I/O parameter block. Use the 
InitializationInfo union member when calling to initialize the 
driver, FinalizationInfo when removing the driver, 
DriverReplaceInfo when replacing, DriverSupersededInfo when 
superseding, and ParmBlkPtr for all other I/O actions.

code Selector used to determine I/O actions.
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kind Options used to determine how I/O actions are performed. The 
bits in this field have these meanings:

DoDriverIO Parameter Data Structures 8

The data types and structures that the DoDriverIO entry point uses have the 
following declarations:

typedef struct OpaqueRef *KernelID;

enum{
kInvalidID = 0
};
typedef KernelID IOCommandID;

Type KernelID is a 32-bit opaque identifier used to identify various operating 
system resources. Mac OS I/O services that create or allocate a resource return 
an ID. The ID is later used to specify the resource to perform operations on it or 
delete it. With type OpaqueRef, the value of the ID tells you nothing—you can’t 
tell which resource it identifies without calling Mac OS. You also can’t tell what 
ID you’ll get back the next time you create a resource, and you can’t tell the 
relationship between any two resources by the relationship between their IDs. 
When a resource is deleted, its ID becomes invalid for a long time. If you 
accidentally use an ID for a resource that has been deleted, chances are you’ll 
get an error instead of accessing a different resource.

union IOCommandContents { /* contents are command specific*/
ParmBlkPtr pb;
DriverInitInfoPtr initialInfo;
DriverFinalInfoPtr finalInfo;

Bit Meaning

0 synchronous I/O

1 asynchronous I/O

2 immediate I/O
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DriverReplaceInfoPtr replaceInfo;
DriverSupersededInfoPtr supersededInfo;
};

typedef union IOCommandContents IOCommandContents;

typedef UInt32 IOCommandCode;

enum{ /*'ndrv' driver services*/
kOpenCommand, /*open command*/
kCloseCommand, /*close command*/
kReadCommand, /*read command*/
kWriteCommand, /*write command*/
kControlCommand, /*control command*/
kStatusCommand, /*status command*/
kKillIOCommand, /*kill I/O command*/
kInitializeCommand, /*initialize command*/
kFinalizeCommand, /*finalize command*/
kReplaceCommand, /*replace driver command*/
kSupersededCommand /*driver superseded command*/
};

typedef UInt32 IOCommandKind;

enum{
kSynchronousIOCommandKind = 1,
kAsynchronousIOCommandKind = 2,
kImmediateIOCommandKind = 4
};

struct DriverInitInfo {
DriverRefNum refNum;
RegEntryID deviceEntry;
};

struct DriverFinalInfo {
DriverRefNum refNum;
RegEntryID deviceEntry;
};
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typedef struct DriverInitInfo DriverInitInfo, *DriverInitInfoPtr;

typedef struct DriverInitInfo DriverReplaceInfo,
*DriverReplaceInfoPtr;

typedef struct DriverFinalInfo DriverFinalInfo,
*DriverFinalInfoPtr;

typedef struct DriverFinalInfo DriverSupersededInfo,
*DriverSupersededInfoPtr;

struct InitializationInfo {
refNum refNum;
RegEntryID deviceEntry;
};

struct FinalizationInfo {
refNum refNum;
RegEntryID deviceEntry;
};

typedef struct InitializationInfo InitializationInfo;

typedef struct InitializationInfo *InitializationInfoPtr;

typedef struct FinalizationInfo FinalizationInfo;

typedef struct FinalizationInfo *FinalizationInfoPtr;

Sample Handler Framework 8

A typical driver code framework for responding to DoDriverIO is shown in 
Listing 8-2.

Listing 8-2 Driver handler for DoDriverIO

OSErr
DoDriverIO( AddressSpaceID      spaceID,
            IOCommandID         theID,
            IOCommandContents   theContents,
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            IOCommandCode       theCode,
            IOCommandKind       theKind )
{
   OSErr   result;

   switch ( theCode )
   {
       case    kInitializeCommand:
       case    kReplaceCommand:
               result = DoInitializeCmd    
                         ( theContents.initialInfo->refNum,
                           &theContents.initialInfo->deviceEntry);
               break;
       case    kFinalizeCommand:
       case    kSupersededCommand:
               result = DoFinalizeCmd      
                          ( theContents.finalInfo->refNum,
                            &theContents.finalInfo->deviceEntry);
               break;

       case    kOpenCommand:
               result = DoOpenCmd          ( theContents.pb );
               break;
       case    kCloseCommand:
               result = DoCloseCmd         ( theContents.pb );
               break;
       case    kKillIOCommand:
               result = DoKillIOCmd        ( theContents.pb );
               break;

       case    kReadCommand:
               result = DoReadCmd          ( theContents.pb );
               break;
       case    kWriteCommand:
               result = DoWriteCmd         ( theContents.pb );
               break;

       case    kControlCommand:
               result = DoControlCmd       ( theContents.pb );
               break;
       case    kStatusCommand:
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               result = DoStatusCmd        ( theContents.pb );
               break;
       default:
               result = paramErr;
               break;
   }

   // if an immediate command make sure result = a valid result
 if ((ioCommandKind & kImmediateIOCommandKind) != 0) {
       return (result);/* immediate commands return the operation 

status   */
   }
   else if (status == kIOBusyStatus) {
       /*
        * An asynchronous operation is in progress. The driver

  * handler promises to call IOCommandIsComplete when the
  * operation concludes.

        */
       return (noErr);
   }
   else {

/*
        * Normal command that completed synchronously. Complete 

* the operation and return. 
*/

       return (IOCommandIsComplete(ioCommandID, status));
   }

Getting Command Information 8

Any command in progress that the Device Manager has sent to a native driver 
can be examined using GetIOCommandInfo. 
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GetIOCommandInfo 8

OSErr GetIOCommandInfo(
IOCommandID ID,
IOCommandContents *contents,
IOCommandCode *command,
IOCommandKind *kind);

ID Command ID.

contents Pointer to the I/O parameter block or Initialize/Finalize 
contents.

command Command code.

kind Command kind (synchronous, asynchronous, or immediate).

DESCRIPTION

GetIOCommandInfo returns information about the active native driver I/O 
command identified by ID. GetIOCommandInfo will not work after a driver has 
completed a request.

EXECUTION CONTEXT

GetIOCommandInfo may be called from task level or secondary interrupt level, but 
not from hardware interrupt level.

RESULT CODES

Responding to Device Manager Requests 8

As explained in “Generic Native Driver Code Exports” (page 185), native 
drivers respond to Device Manager requests by handling a single call, 
DoDriverIO. Native drivers must also be aware of what kind of request can be 

noErr 0 No error
paramErr –50 Bad parameter
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made, and at what execution level the request can be made. Table 8-1 shows the 
kind and execution levels for Device Manager requests. 

The DoDriverIO call interface is described in the previous section. The following 
sections discuss some of the internal routines a driver needs to service 
DoDriverIO requests. 

Table 8-1 Kind and execution levels for Device Manager requests

Request command name
Kind of request 
supported Execution level for request 

kInitializeCommand immediate task

kFinalizeCommand immediate task

kOpenCommand immediate task

kCloseCommand immediate task

kReplaceCommand immediate task

kSupercededCommand immediate task

kReadCommand immediate, 
asynchronous, or 
synchronous

task, hardware interrupt, or 
secondary interrupt

kWriteCommand immediate, 
asynchronous, or 
synchronous

task, hardware interrupt, or 
secondary interrupt

kControlCommand immediate, 
asynchronous, or 
synchronous

task, hardware interrupt, or 
secondary interrupt

kStatusCommand immediate, 
asynchronous, or 
synchronous

task, hardware interrupt, or 
secondary interrupt

kKillIOCommand immediate task, hardware interrupt, or 
secondary interrupt
Writing a Generic Device Driver 211



C H A P T E R  8  

Writing Native Drivers
Initialization and Finalization Routines 8

The Device Manager sends kInitializeCommand and kFinalizeCommand 
commands to a native driver as its first and last commands. The 
kInitializeCommand command gives the driver startup information; the 
kFinalizeCommand command informs the driver that the system would like to 
unload it. 

A typical framework for a generic driver handler for Device Manager 
finalization and CFM initialization and termination commands is shown in 
Listing 8-3.

Listing 8-3 Initialization, finalization, and termination handlers

refNum gMyReferenceNumber;
RegEntryID gMyDeviceID;

OSErr DoInitializeCommand
( refNum myRefNum, regEntryIDPtr myDevice )

{
// remember our refNum and Registry entry spec
gMyReferenceNumber = myRefNum;
gMyDeviceID = *myDevice;
return noErr;

}

OSErr DoFinalizeCommand
( refNum myRefNum, RegEntryIDPtr myDevice )

{
#pragma unused ( myRefNum , myDevice )

return noErr;
}

CFMInitialize ()
{

return noErr;
}
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CFMTerminate ()
{

return noErr;
}

The driver's initialization routine should perform the following functions:

1. Check the device’s AAPL,address property to see that needed resources have 
been allocated. The AAPL,address property is described in “Fast I/O Space 
Cycle Generation” (page 454).

2. Enable PCI memory or I/O space, or both, using the logic illustrated in 
Listing 8-4.

Listing 8-4 Enabling PCI spaces

OSErr InitPCIMemorySpace (RegEntryIDPtr DeviceID,
 LogicalAddress addr )

{
UInt16 cmdWord;
OSErr status;

status = ExpMgrConfigReadWord (DeviceID,addr,&cmdWord );
if ( status != noErr )

return status;

cmdWord |= cwCommandEnableMemorySpace |
cwCommandEnableIOSpace;

return ExpMgrConfigWriteWord (DeviceID,addr,cmdWord );
}

3. Probe the device to verify the driver’s match to it, as illustrated in Listing 8-5.
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Listing 8-5 Device probing

OSErr ProbePCIMemorySpace ( LogicalAddress addr )
{

UInt8 ctest3;
OSErr status;

status = DeviceProbe(
(void *) (((UInt32)addr) + CTEST3),
&ctest3,
k8BitAccess
);

if ( status != noErr )
return status;

}

The initialization code should also allocate any private storage the driver 
requires and place a pointer to it in its global variables. After allocating 
memory, the initialization routine should perform any other preparation 
required by the driver. If the handler fails to allocate memory for private 
storage, it should return an appropriate error code to notify the Device Manager 
that the driver did not initialize itself.

If the Open Firmware FCode in the device’s expansion ROM does not furnish 
either a "driver,AAPL,MacOS,PowerPC" property or a unique name property, or if 
the driver’s PCI vendor-id and device-id properties are generic, then the 
initialization routine must always check that the device is the correct one for the 
driver. If the driver has been incorrectly matched, the initialization routine must 
return an error code so the Device Manager can attempt to make a match. 
Driver matching is discussed in “Matching Drivers With Devices” (page 164). 
PCI vendor-id and device-id properties are discussed in Chapter 7, “Finding, 
Initializing, and Replacing Drivers.”

The driver’s finalization routine must reverse the effects of the initialization 
routine by releasing any memory allocated by the driver, removing interrupt 
handlers, and canceling outstanding timers. If the finalization routine cannot 
complete the finalization request, it can return an error result code. In any 
event, however, the driver will be removed.

If the initialization routine needs to install an interrupt handler, see the 
discussion in “Interrupt Management” (page 381).

Initialization, finalization, and termination calls are always immediate.
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Open and Close Routines 8

You must provide both an open routine and a close routine for a native device 
driver. The current Mac OS does not require that these routines perform any 
specific tasks; however, the driver should keep track of open calls to match 
them with close calls. Open and close calls are always immediate.

Typical code for keeping track of kOpenCommand and kCloseCommand commands is 
shown in Listing 8-6.

Listing 8-6 Managing open and close commands

long gMyOpenCount;

OSErr DoOpenCommand (ParmBlkPtr thePb)
{
gMyOpenCount++;
return noErr;
}

OSErr DoCloseCommand (ParmBlkPtr thePb)
{
gMyOpenCount--;
return noErr;
}

Read and Write Routines 8

Driver read and write routines implement I/O requests. You can make read and 
write routines execute synchronously or asynchronously. A synchronous read 
or write routine must complete an entire I/O request before returning to the 
Device Manager; an asynchronous read or write routine can begin an I/O 
transaction and then return to the Device Manager before the request is 
complete. In this case, the I/O request continues to be executed, typically when 
more data is available, by other routines such as interrupt handlers or 
completion routines. “Handling Asynchronous I/O” (page 219) discusses how 
to complete an asynchronous read or write routine. 

One rule you can always follow regarding synchronous and asynchronous 
operation is:
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If your device driver can be called asynchronously and you call another device 
driver, you must call it asynchronously. And, if your device driver can be called 
asynchronously, always operate as if you are being called asynchronously.

In other words, you should not test to see whether an operation is synchronous 
or asynchronous, and do different things in each case. 

Listing 8-7 shows a sample read routine. 

Listing 8-7 Sample driver read routine 

OSErr DoReadCommand (IOpb pb)
{
long numBytes;
short myErr;

numbytes = pb -> IORegCount;
{

/* do the read into pb -> iobuffer */
}

return(myErr);
}

Control and Status Routines 8

Control and status routines are normally used to send and receive 
driver-specific information. However, you can use these routines for any kind of 
data transfer as long as you implement the minimum functionality described in 
this section. Control and status routines can execute synchronously or 
asynchronously, or immediate. 

Listing 8-8 shows a sample control routine, DoControlCommand. 

Listing 8-8 Sample driver control routine 

MyDriverGlobalsPtr gStore;

OSErr DoControlCommand (ParamBlkPtr pb)
{

switch (pb->csCode)
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{
case kClearAll:

gStore->byteCount = 0;
gStore->lastErr = 0;
return(noErr);

default: /* always return controlErr for unknown csCode */
return(controlErr);

}
}

The control routine must return controlErr for any csCode values that are not 
supported. The status routine should work in a similar manner. The Device 
Manager uses the csCode field to specify the type of status information 
requested. The status routine should respond to whatever requests are 
appropriate for the driver and return the error code statusErr for any 
unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a 
special case. When the Device Manager receives such a status request, it returns 
a handle to the driver’s device control entry. The driver’s status routine never 
receives this request.

Listing 8-9 shows a sample status routine, DoStatusCommand.

Listing 8-9 Sample driver status routine 

MyDriverGlobalsPtr gStore;

OSErr DoStatusCommand (ParamBlkPtr pb)
{

switch (pb->csCode)
{

case kByteCount:
pb->csParam[0] = gStore->byteCount;
return(noErr);

case kLastErr:
pb->csParam[0] = gStore->lastErr;
return(noErr);

default: /* always return statusErr for unknown csCode */
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return(statusErr);
}

}

You can define driver-specific csCode values if necessary, as long as they are 
within the range 0x80 through 0x7FFF.

KillIO Routine 8

Native driver killIO routines take the following form:

OSErr DoKillIOCommand (ParmBlkPtr thePb)
/* check internal queue for request to be killed; */
/* if found, remove from queue and free request */
{
return noErr;
}
/* else, if no request located */
return abortErr;

thePb Pointer to a Device Manager parameter block.

When the Device Manager receives a KillIO request, it removes the specified 
parameter block from the driver I/O queue. If the driver responds to any 
requests asynchronously, the part of the driver that completes asynchronous 
requests (such as an interrupt handler) might expect the parameter block for the 
pending request to be at the head of the queue. The Device Manager notifies the 
driver of KillIO requests so it can take the appropriate actions to stop work on 
any pending requests. After processing the KillIO call, the driver should check 
whether the kImmediateIOCommandKind bit is set in the IOCommandKind parameter 
and return the KillIO result to the Device Manager. Listing 8-2 shows an 
example in which the DoKillIOCmd case shows correct handling of the killIO 
routine.

Replace and Superseded Routines 8

Under certain conditions, it may be desirable to replace an installed driver. For 
example, a display card may use a temporary driver during system startup and 
then replace it with a better version from disk once the file system is running 
and initialized.
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Replacing an installed driver is a two-step process. First, the driver to be 
replaced is requested to give up control of the device. Second, the new driver is 
installed and directed to take over management of the device. Two native driver 
commands are reserved for these tasks.

The kSupersededCommand selector tells the outgoing driver to begin the 
replacement process. The command contents are the same as with 
kFinalizeCommand. The outgoing driver should take the following actions:

■ If it is a concurrent driver, it should wait for current I/O actions to finish.

■ Place the device in a “quiet” state. The definition of this state is device 
specific, but it may involve such tasks as disabling device interrupts.

■ Remove any installed interrupt handlers.

■ Store the driver and the device state in the Name Registry as one or more 
properties attached to the device entry.

■ Return noErr to indicate that the driver is ready to be replaced.

The kReplaceCommand selector tells the incoming driver to assume control of the 
device. The command contents are the same as those of kInitializeCommand. 
The incoming driver should take the following actions:

■ Retrieve the state stored in the Name Registry and delete the properties 
stored by kSupersededCommand.

■ Install interrupt handlers.

■ Place the device in an active state.

■ Return noErr to indicate that the driver is ready to be used.

Note
When replacing concurrent generic drivers, the Device 
Manager halts new commands until the replacement 
process is complete. ◆

Handling Asynchronous I/O 8

If you design any of your driver routines to execute asynchronously, you must 
provide a mechanism for the driver to complete the requests. Some examples of 
routines that you might use are the following:
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■ Completion routines: Completion routines are provided by Device 
Manager clients to let the Device Manager notify the client when an I/O 
process is finished.

■ Interrupt handlers: If the driver serves a hardware device that generates 
interrupts, you can create an interrupt handler that responds to these 
interrupts. The interrupt handler must clear the source of the interrupt and 
return as quickly as possible. For more information about interrupts and how 
to install an interrupt handler, see “Interrupt Management” (page 381).

Clients of the Device Manager that make asynchronous calls should observe 
these guidelines when using asynchronous routines:

■ Once you pass a parameter block to an asynchronous routine, it is out of 
your control. You should not examine or change the parameter block until 
the completion routine is called because you have no way of knowing the 
state of the parameter block.

■ Do not dispose of or reuse a parameter block until the asynchronous request 
is completed. For example, if you declare the parameter block as a local 
variable, the function cannot return until the request is complete because 
local variables are allocated on the stack and released when a function 
returns.

■ Use a completion routine to determine when an asynchronous routine has 
completed, rather than polling the ioResult field of the parameter block. 
Polling the ioResult field is not efficient and defeats the purpose of 
asynchronous operation. 

Installing a Device Driver 8

There are ways to install a device driver, depending on where the driver code is 
stored and how much control you want over the installation process. 

■ You can store the device driver in an expansion ROM, as described in 
Chapter 4, “Startup and System Configuration.”

■ You can store the device driver on disk in a file of type 'ndrv' in the 
Extensions folder.

■ Use the DLL

The first option, storing the driver in the card’s expansion ROM, is the normal 
practice because it gives the card autoconfiguration capabilities, as described in 
Chapter 4, “Startup and System Configuration.”
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See Chapter 7, “Finding, Initializing, and Replacing Drivers,” for driver loading 
and installation details. Chapter 9, “Driver Loader Library,” provides details of 
the mechanisms available for installing and removing drivers that are listed in 
the Device Manager unit table.

Table 8-2 lists the driver unit numbers that are reserved for specific purposes.

Driver Gestalt 8

Every device driver has a unique set of family-specific configuration and state 
information that it maintains. This configuration information often needs to be 
passed between the family expert and the device drivers it manages. To aid in 
this communication process, the native driver architecture provides a driver 
gestalt mechanism. Driver gestalt provides a common, unified mechanism for 
both native and 68K device drivers by which clients (such as applications) or 
family subsystem managers (such as the SCSI Manager or the Display Manager) 
can access family-specific configuration and state information about the driver.

For instance, the Start Manager uses driverGestalt to interrogate SCSI drivers 
for family-specific information to determine from which SCSI device to boot. 
The information communicated back to the Start Manager is family specific 
(specific to the SCSI Manager) and contains necessary data for system startup— 
SCSI bus ID, device ID, and disk partition. Each I/O subsystem defines unique 

Table 8-2 Reserved unit numbers

Unit number 
range

Reference 
number range Purpose

0 through 11 –1 through –12 Reserved for serial, disk, AppleTalk, printer, and 
other drivers

12 through 31 –13 through –32 Available for desk accessories

32 through 38 –33 through –39 Available for old SCSI devices

39 through 47 –40 through –48 Reserved 

48 through 127 –49 through –128 Available for PCI and other drivers
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driverGestaltSelector and driverGestaltResponse formats. The SCSI Manager 
driver gestalt formats are SCSI based, the Display Manager formats convey 
video information, and so on. Cross-device-family driverGestalt calls are not 
advised; for example, don’t make SCSI Manager driver gestalt calls to video 
drivers.

Note
Support for driver gestalt is optional, but it is highly 
recommended. If a PCI device driver does not support 
driver gestalt, it may not work with some applications or in 
certain system configurations. ◆

For general information about the Mac OS gestalt mechanism, see Inside 
Macintosh: Operating System Utilities. The driver gestalt and Mac OS gestalt 
mechanisms differ in that the driver gestalt provides a way for the Mac OS to 
get information about device drivers and the traditional Mac OS gestalt 
provides a way for device drivers to get information about the Mac OS. 

System gestalt for PCI-based Macintosh computers, which is different from 
driver gestalt, is described in “Macintosh System Gestalt” (page 334).

Supporting and Testing Driver Gestalt 8

DriverGestaltOn, DriverGestaltOff, and DriverGestaltIsOn, described in this 
section, let driver code and other software communicate about the driver’s 
support for driver gestalt.

DriverGestaltOn and DriverGestaltOff 8

DriverGestaltOn and DriverGestaltOff let driver code indicate to other software 
that it does or does not support driver gestalt.

OSErr DriverGestaltOn(DriverRefNum refNum);

OSErr DriverGestaltOff(DriverRefNum refNum);

refNum Unit table reference number.
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DESCRIPTION

DriverGestaltOn and DriverGestaltOff set and clear bit 2 in the device control 
entry (DCE) flags word. 

RESULT CODES

DriverGestaltIsOn 8

DriverGestaltIsOn lets other code test whether or not a driver supports driver 
gestalt.

Boolean DriverGestaltIsOn (DriverFlags flags);

flags The flags word in the driver’s DCE.

DESCRIPTION

DriverGestaltIsOn returns true if bit 2 in the DCE flags word is set, false 
otherwise.

Implementing Driver Gestalt 8

If a native driver has indicated support for driver gestalt, as described in the 
previous section, it must conform to these rules:

■ It must respond to all unsupported status csCode values with a statusErr 
value, and to all unsupported control csCode values with a controlErr value. 
This rule is the most important for drivers to follow after calling 
DriverGestaltOn.

■ It should be capable of closing properly and of removing vertical blanking 
(VBL) tasks, Time Manager tasks, drive queue elements, and so on. Drivers 
that can close should return noErr in response to Close requests. If it is 
absolutely not possible for the driver to close, it must respond with closErr 
and continue to function as if the Close request had not been issued.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number
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■ It must implement the csCode values listed in Table 8-3 and described in the 
rest of this section. Driver clients seeing the DriverGestaltEnable bit set will 
assume that these calls will either produce the required actions or result in a 
statusErr or controlErr. 

■ It must not use private csCodes with values lower than 128. All codes must 
be allocated withing the range 128 to 32767.

Note
The kcsDriverGestalt and kcsDriverConfigure codes 
produce the principal functionality of the native driver 
model. For historical reasons, setting the 
DriverGestaltEnable bit also requires that the other calls 
listed in Table 8-3 either be supported or return an error 
code. Future control or status calls for all native PCI drivers 
will be implemented using only selectors through 
DriverGestalt and DriverConfigure.

Table 8-3 Driver gestalt codes

Name Value Description

Status codes

kcsDriverGestalt 43 General status information

kcsGetPowerMode 70 Returns card power mode*

* For a discussion of power modes, see “Card Power Controls” (page 469).

kcsReturnDeviceID 120 Returns SCSI device ID in csParam[0]

Control codes

kcsDriverConfigure 43 General configuration commands

kcsSetStartupDrive 44 Designates partition as a boot partition

kcsSetPowerMode 70 Sets card power mode*
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DCE Flags 8

DCE bit 2 indicates that a driver supports the driver gestalt interface defined in 
the next section. The complete list of DCE bits in the dCtlflags word is given in 
Table 8-4. 

Table 8-4 DCE bits in dCtlflags word 

Name Value Description

VMImmune 0 This bit indicates that your device 
driver is VM safe.

reserved 1 This bit is reserved.

kmDriverGestaltEnableMask 2 This bit is set if the driver supports 
the Driver Gestalt mechanism.

Native Driver 3 Set if the driver is a native driver 
(ndrv). The system sets this bit when 
it loads your native driver.

Concurrent 4 Set if the native driver supports 
concurrent operation. When loading 
a native driver, the system sets this 
bit based on the kDriverIsConcurrent 
field of the 
driverOSRuntimeInfo.driverRuntime 
field of your DriverDescription. 

dOpenedMask 5 This bit is set if the driver is open.

dRAMBasedMask 6 (Not used with native drivers) This 
bit is set if the dCtlDriver field is a 
DRVRHeaderHandle rather than 
aDRVRHeaderPtr.

drvrActiveMask 7 This bit is set if the driver is 
currently processing a request.

dReadEnableMask 8 This bit is set if the driver handles 
_Read requests.

dWriteEnableMask 9 This bit is set if the driver handles 
_Write requests.
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Using DriverGestalt and DriverConfigure 8

Status code csCode 43 (0x2B) is defined as DriverGestalt. It takes two 
parameters, at csParam and csParam+4, that contain a gestalt-like selector and 
long word output. Similarly, control csCode 43 is defined as DriverConfigure. It 
also takes two parameters, an OSType selector that specifies the requested 
operation and a long word. The parameter blocks have these structures:

struct DriverGestaltParam {
QElemPtr qLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OSErr ioResult;
StringPtr ioNamePtr;
short ioVRefNum;
short ioCRefNum; /* refNum for I/O operation*/
short csCode; /* == kDriverGestaltCode */
OSType driverGestaltSelector;

dCtlEnableMask 10 This bit is set if the driver handles 
_Control requests.

dStatEnableMask 11 This bit is set if the driver handles 
_Status requests.

dNeedGoodbyeMask 12 This bit is set if the driver needs a 
"goodbye" _Control call before the 
application heap is reinitialized.

dNeedTimeMask 13 This bit is set if the driver wants 
periodic SystemTask time through 
the "accRun" _Control call.

dNeedLockMask 14 This bit is set if the driver requires 
that its DCE and code be locked at all 
times while the driver is open.

reserved 15 This bit is reserved.

Table 8-4 DCE bits in dCtlflags word (continued)

Name Value Description
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UInt32 driverGestaltResponse; /* Could be a */
/* pointer, bit field or */
/* other format */

UInt32 driverGestaltResponse1; /* Could be a */
/* pointer, bit field or */
/* other format */

UInt32 driverGestaltResponse2; /* Could be a */
/* pointer, bit field or */
/* other format */

UInt32 driverGestaltResponse3; /* Could be a */
/* pointer, bit field or */
/* other format */

UInt16 driverGestaltfiller; /* To pad out to the */
/* size of a controlPB */

};

struct DriverConfigParam {
QElemPtr qLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
IOCompletionUPP ioCompletion;
OSErr ioResult;
StringPtr ioNamePtr;
short ioVRefNum;
short ioCRefNum; /* refNum for I/O operation*/
short csCode; /* == driverConfigureCode*/
OSType driverConfigureSelector;
UInt32 driverConfigureParameter;

};

The OSType selectors for DriverGestalt and DriverConfigure are defined 
according to the rules of gestalt selector definition set forth in Inside Macintosh: 
Operating System Utilities. In particular, Apple reserves all four-character 
sequences consisting entirely of lowercase letters and nonalphabetic characters.
Driver Gestalt 227



C H A P T E R  8  

Writing Native Drivers
DriverGestalt Selectors 8

Currently defined selectors for the DriverGestalt status call are listed in 
Table 8-5.

Table 8-5 DriverGestalt selectors 

Selector Description Response type

'boot' Parameter RAM value to designate this driver/drive BootResponse

'dAPI' API support for PC Exchange APIResponse

'devt' Type of device the driver is driving DevTResponse

'dics' [call sync only] icon suite for disk driver physical drive 
(formerly in csCode 22)

'ejec' Eject options for shutdown/restart, as defined for the 
Shutdown Manager

EjectResponse

'flus' Determine if disk driver supports flush and if it needs 
a flush. 

FlushResponse

'intf' Immediate location (or interface) for device IntfResponse

'lpwr' True if driver supports power switching Boolean

'mics' [call sync only] icon suite for disk driver media 
(formerly in csCode 21)

'mnam' Pascal string describing the disk driver (formerly in 
csCode 21)

'pmn3' Minimum power consumption at 3.3 V unsigned long*

'pmn5' Minimum power consumption at 5 V unsigned long*

'pmx3' Maximum power consumption at 3.3 V unsigned long*

'pmx5' Maximum power consumption at 5 V unsigned long*

'psta' True if device is currently in high power mode Boolean

'psup' True if driver supports power control calls PowerResponse

'purg' True if driver has purge permission PurgeResponse

'sync' True if driver only behaves synchronously SyncResponse
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Note
For some types of devices, DriverGestalt responses may be 
dependent upon fields other than the selector field. For 
instance, the 'boot' selector returns a startup value that 
identifies a particular drive in the drive queue instead of a 
particular device or driver. A driver handling a partitioned 
disk, with each HFS partition representing a separate drive, 
returns a result appropriate for a particular partition, as 
specified by drive number in the ioVRefNum field. ◆

Table lists the four character codes and corresponding constants for the 
DriverGestalt selectors. 

'vers' The version number of the driver NumVersion†

'vmop' The disk drive’s Virtual Memory options VMOptionsResponse

'wide' True if driver supports the ioWPosOffset for 64-bit 
addressing

WideResponse

* Represents power consumed in microwatts.
† The NumVersion data structure is described on (page 269).

Table 8-6 DriverGestalt selector four character codes and constants 

Four character 
code selector Selector constants

'boot' kdgBoot

'dAPI' kdgAPI

'devt' kdgDeviceType

'dics' kdgPhysDriveIconSuite

'ejec' kdgEject

'flus' kdgFlush

'intf' kdgInterface

Table 8-5 DriverGestalt selectors (continued)

Selector Description Response type
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The following response buffers are defined for some of the driver gestalt 
selectors listed in Table 8-5:

struct DriverGestaltSyncResponse
{

Boolean behavesSynchronously;
UInt8 pad[3]

};

struct DriverGestaltBootResponse
{

UInt8 extDev; /*  packed target (upper 5 bits)
 LUN (lower 3 bits) */

UInt8 partition; /*  partition */

'lpwr' kdgSupportsSwitching

'mics' kdgMediaIconSuite

'mnam' kdgMediaName

'pmn3' kdgMin3VPower

'pmn5' kdgMin5VPower

'pmx3' kdgMax3VPower

'pmx5' kdgMax5VPower

'psta' kdgInHighPower

'psup' kdgSupportsPowerCtl

'purg' kdgPurge

'sync' kdgSync

'vers' kdgVersion

'vmop' kdgVMOptions

'wide' kdgWide

Table 8-6 DriverGestalt selector four character codes and constants (continued)

Four character 
code selector Selector constants
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UInt8 SIMSlot; /*  slot */
UInt8 SIMsRSRC; /*  sRsrcID */

};

struct DriverGestaltDevTResponse
{

OSType deviceType;
};
enum {

kdgDiskType = 'disk', /* standard r/w disk drive */
kdgTapeType = 'tape', /* tape drive */
kdgPrinterType = 'prnt', /* printer */
kdgProcessorType = 'proc', /* processor */
kdgWormType = 'worm', /* write-once */
kdgCDType = 'cdrm', /* cd-rom drive */
kdgFloppyType = 'flop', /* floppy disk drive */
kdgScannerType = 'scan', /* scanner */
kdgFileType = 'file', /* logical partition based on a

file (drive Container) */
kdgRemovableType = 'rdsk' /* removable media hard disk */

};

struct DriverGestaltIntfResponse
{

OSType interfaceType;
};
enum {

kdgScsiIntf = 'scsi', /* SCSI interface */
kdgPcmciaIntf = 'pcmc', /* PCMCIA interface */
kdgATAIntf = 'ata ', /* ATA/ATAPI interface */
kdgFireWireIntf = 'fire', /* FireWire 1394 interface */
kdgExtBus = 'card' /* Card Bus interface */

};

struct DriverGestaltAPIResponse 
{

short partitionCmds; /* if bit 0 is nonzero, */
/* supports partition */
/* control and status calls */

/* prohibitMounting (control, kProhibitMounting) */
/* partitionToVRef (status, kGetPartitionStatus) */
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/* getPartitionInfo (status, kGetPartInfo) */
short unused1; /* All the unused fields */

/* should be zero */
short unused2;
short unused3;
short unused4;
short unused5;
short unused6;
short unused7;
short unused8;
short unused9;
short unused10;

};

struct DriverGestaltPowerResponse {
unsigned long powerValue; /* Power consumed in µWatts */

};

struct DriverGestaltFlushResponse 
{

Boolean canFlush; /* Return true if driver */
/* supports the kdcFlush */
/* driver configure _Control */
/* call */

Boolean needsFlush; /* Return true if */
/* driver/device has */
/* data cached */
/* and needs to be flushed *
/* when the disk volume */
/* is flushed by the */
/* File Manager */

UInt8 pad[2];
};

/* Flags for purge permissions */
enum {

kbCloseOk = 0, /* Ok to call Close */
kbRemoveOk = 1, /* Ok to call RemoveDrvr */
kbPurgeOk = 2, /* Ok to call DisposePtr */
kmNoCloseNoPurge = 0,
kmOkCloseNoPurge = (1 << kbCloseOk) + (1 << kbRemoveOk),
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kmOkCloseOkPurge = (1 << kbCloseOk) + (1 << kbRemoveOk) + (1 
<< kbPurgeOk)
};

struct DriverGestaltPurgeResponse 
{

UInt16 purgePermission; /* 0 = Do not change */
/* the state of the driver */
/* 3 = Do Close() and */
/* DrvrRemove() this driver */

/* but don't deallocate */
/* driver code */
/* 7 = Do Close(), */
/* DrvrRemove(), and */
/* DisposePtr() */

UInt16 purgeReserved;
Ptr purgeDriverPointer;/* pointer to the start of */

/* the driver block (valid */
/* only if DisposePtr */
/* permission is given */

};

struct DriverGestaltEjectResponse {
UInt32 ejectFeatures; /* Features field */

};

/* Flags for Ejection Features field */
enum {

kRestartDontEject = 0, /* Dont Want eject */
/* during Restart */

kShutDownDontEject = 1, /* Dont Want eject */
/* during Shutdown */

kRestartDontEject_Mask = 1 << kRestartDontEject,
kShutDownDontEject_Mask = 1 << kShutDownDontEject

};

struct DriverGestaltWideResponse
{

Boolean supportsWide;
};
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Using the 'boot' Selector 8

The 'boot' DriverGestalt status call is made both by the Startup Disk control 
panel when the user selects a device and by the Start Manager when the ROM is 
trying to match a device in the drive queue with the device specified in PRAM. 
The DriveNum of the device’s DrvQEl is placed in the ioVRefNum field of 
DriverGestaltParam. In the case of a SCSI device, it is necessary to return the 
data in a particular format so that the startup code knows on which SCSI bus, 
ID, and LUN the boot device can be found. It needs this information so that it 
can attempt to load that driver first. A SCSI driver can return the following 
data:

biPB.scsiHBAslotNumber -> driverGestaltBootResponse.slot
biPB.scsiSIMsRsrcID -> driverGestaltBootResponse.sRSRC
targetID<<3 + LUN -> driverGestaltBootResponse.extDev
partition number -> driverGestaltBootResponse.partition

As shown, the disk driver can copy the values found in BusInquiry into the slot 
and sRSRC fields and can generate the extDev field by left-shifting the target ID 
by 3 bits (0 to 31 range) and adding the logical unit number (0 to 8 range). The 
partition field enables the selection of a single partition on a multiply 
partitioned device as the boot device. It is not interpreted by the ROM or the 
startup disk 'cdev', so the driver can choose a meaning and a value for this 
field. Typically the driver would enumerate the partitions laid out on a disk and 
return the number of the partition for the drive specified in the ioVRefNum field.

Other Control and Status Requests 8

This section discusses how native drivers should respond to driver gestalt 
control and status requests other than DriverConfigure and DriverGestalt—that 
is, calls with csCode values other than 43.

Startup Drive Control Request 8

The basic idea for both pre- and post-PCI Power Macintosh computers is that 
the boot partition has kPartitionIsStartup set in its pmStatus field. At startup 
time, the driver searches for this partition and adds its drive queue element to 
the drive queue before the other partitions. When the system subsequently 
searches for a disk to boot from, it will find this drive queue element and boot 
from it.
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The change with the PCI-based Power Macintosh computers is that the Startup 
Disk control panel allows the user to choose a startup partition. When the 
control panel opens, it sends a kdgBoot Driver Gestalt request to the driver of 
each volume. The result from this request uniquely identifies the partition 
containing that volume. When the user chooses a startup volume, the control 
panel sends a kcsSetStartupDrive (csCode 44) control request to the driver. The 
driver responds to this by modifying the partition map to set the 
kPartitionIsStartup bit on the partition containing the volume and clear the bit 
on all other partitions.

Note
The startup drive mechanism is slightly different for Apple 
computers, such as the iMac computer, that support the 
NewWorld architecture. The final details were still being 
ironed out when this document was written. When the 
information is available, it will be incorporated into the 
appropriate sections in the documentation that discuss disk 
drivers and boot issues. 

SetStartupDrive Control Request 8

The kcsSetStartupDrive control call (csCode = 44) results when a user selects a 
drive from the Startup Device control panel in the current version of Mac OS. It 
indicates to the driver that a volume controlled by that driver (that is, one with 
its drive number in the ioVRefNum field) is the chosen startup drive. This lets a 
specific partition selected by the user on a multiply partitioned disk be the 
startup volume by allowing the driver to control which partition is inserted into 
the drive queue first. Mass storage drivers (those that control elements in the 
drive queue) that set the driverGestaltEnable bit must implement this control 
request or return controlErr.

Disk Partition Control and Status Requests and File Exchange 8

The control and status requests defined in this section are primarily used by 
drivers to support the Apple File Exchange application, previously known as 
PC Exchange. 

The partition information record is a structure used to store information about a 
partition on a device. The fields of the structure are:

SCSIID
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If the device is connected via a SCSI interface, this field holds the SCSI Manager 
DeviceIdent of the device. If the device is connected via an ATA interface, this 
field holds the ATA Manager ataDeviceID. Devices connected via other 
interfaces can use whatever value makes sense to uniquely identify the device 
on that bus. If no value makes sense, a device must clear this field. 

physPartitionLoc

The block number of the first block in the partition. 

partitionNumber 

The size (in blocks) of the partition. 

Note
You can determine the interface used by the device issuing 
the kdgInterface Driver Gestalt query. Drivers that support 
File Exchange should also support this Driver Gestalt 
selector. For more information about the ataDeviceID 
structure, consult the ATA Device 0/1 Software Developer 
Guide. 

GetADrive Control Call 8

The kGetADrive control call (csCode = 51) asks the driver to create a new drive 
queue element. This control call supports synchronous and asynchronous 
operation. 

On input, DrvQElPtr contains the address of a drive queue element pointer. The 
call creates a new drive queue element based on the supplied drive queue 
element and places a pointer to the new drive queue element in the supplied 
address.

The following describes how the fields of the new drive queue element must be 
filled out: 

Field name Description

drive flags (the 4 bytes prior to qLink) Inherited from the supplied 
drive queue element.

qLink Set up when you add the drive to the drive queue using 
AddDrive.

qType Inherited from the supplied drive queue element. 

dQDrive Must be set to a new unique drive number.
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Your driver must return the new drive queue element in the memory pointed 
by csParam[0..1]. You must not post a disk inserted event for the new drive, or 
send the fsmDrvQElChangedMessage message to the File System Manager.

RegisterPartition Control Call 8

The kRegisterPartition control call (csCode = 50) registers a non-Macintosh 
partition found on a disk. This control call supports synchronous and 
asynchrous operation. The driver should fill in csParam as follows:

csParam[0..1] DrvQElPtr /* The drive queue element whose */
/* partition is to be changed */

(UInt32) csParam[2..3] /* The block number of the first */
/* block in the partition */

(UInt32) csParam[4..5] /* Size of partition in blocks */

In response to this call, your disk driver must retarget the specified drive queue 
element to represent the given partition on the disk. After this call, the drive 
queue element must represent a partition that starts at the block specified by 
csParam[2..3] and is of the size specified by csParam[4..5].

You must not post a disk inserted event for the new drive, or send the 
fsmDrvQElChangedMessage message to the File System Manager.

IMPORTANT

The effects of this call are limited to the drive queue 
element in memory. This call must not change the 
partitioning scheme on disk. ▲ 

dQRefNum Must be set to your driver's reference number.

dQFSID Inherited from the supplied drive queue element.

dQDrvSz Inherited from the supplied drive queue element.

dQDrvSz2 Inherited from the supplied drive queue element.

partition offset  (typically held in extra bytes beyond dQDrvSz2)  Inherited 
from the supplied drive queue element.

Field name Description
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ProhibitMounting Control Call 8

The kProhibitMounting control call (csCode = 52) prevents the mounting of a 
partition. This control call supports synchronous and asynchrous operation. 

In response to this call, your disk driver must mark the partition specified in 
csParam[0..1] so that it isn’t mounted at system startup. The csParam[0..1] 
field contains a valid partInfoRecPtr, a pointer to a partInfoRec structure that 
contains information about a partition:

typedef struct partInfoRec
{

DeviceIdent SCSIID; // DeviceIdent for the device
unsigned long physPartitionLoc; // physical block number of

beginning of partition
unsigned long partitionNumber; // partition number of this

partition
} partInfoRec, *partInfoRecPtr;

Modern versions of File Exchange do not require your driver to support this 
call. If you decide not to support it, make sure to return controlErr. 

The partition is completely determined by the fields of the partition information 
record, not by the ioVRefNum field of the parameter block.

IMPORTANT

The effects of this call are permanently applied to the 
partition map on disk. 

GetPartInfo Status Call 8

The kGetPartInfo status call (csCode = 51) returns information about a partition 
in the partInfoRec structure described earlier in “ProhibitMounting Control 
Call.” This status call supports synchronous and asynchronous operation. 

In response to this call, your disk driver must place partition information about 
the specified drive in the partition information record pointed to by 
csParam[0..1].

The driver fills in the partInfoRec structure as follows:

*(partInfoRecPtr)csParam.SCSIID <- /* DeviceIdent for */
/* the device */

*(partInfoRecPtr)csParam.physPartitionLoc <- /* physical block */
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/* number of partition start */
*(partInfoRecPtr)csParam.partitionNumber 

/* partition number of this partition */

GetPartitionStatus Status Call 8

The kGetPartitionStatus status call (csCode = 50) retrieves the status of a 
partition. This status call supports synchronous and asynchronous operation. 

(long *)csParam[0..1] /* partInfoRecPtr for partition */
(SInt16 *)csParam[2..3] /* address of a short for response */

In response to this call, the disk driver must determine whether the partition 
described by the partition information record pointed to by csParam[0..1] is 
mounted and return the volume reference number, VRefNum, of the volume in 
the SInt16 pointed to by csParam[2..3], or 0 if the partition is not mounted.

For SCSI and ATA devices, you can create a partInfoRec from scratch, for other 
types of devices, you have to get one back from the driver using kGetPartInfo 
and then use the returned SCSIID field to fill in the SCSIID field of your 
partInfoRec

SCSIID field is only valid if the driver returns kdgScsiIntf in response to a 
kdgInterface Driver Gestalt query.

Low Power Mode Support Calls 8

Control and status calls with csCode = 70 are optional for all drivers. Making a 
control call with csCode = 70 sets the device’s power-saving mode, while a 
status call returns it. Information is passed in the following structure in 
csParam[0]:

enum {
kcsGetPowerMode = 70 /* returns the current power mode*/
kcsSetPowerMode = 70 /* sets the current power mode*/

};

enum {
pmActive = 0, /* normal operation */
pmStandby = 1, /* minimal energy saving state; can go active

in 5 seconds */
pmIdle = 2, /* substantial energy savings; can go active 
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 in 15 seconds */
pmSleep = 3  /* maximum energy savings; device may be

turned off */
};

struct LowPowerMode
{

unsigned char mode;
};

The differences among these low power modes are the amount of energy 
savings and the time it takes to return to the active state. Each device driver 
must determine the appropriate level of energy saving support for the device 
that it drives. If the device can go into active state in all possible low power 
states within 5 seconds, it should map both pmIdle and pmSleep to pmStandby. If 
the device takes a minimum of 10 seconds to go into active state from a low 
power state, then it should map pmStandby to pmActive. All device drivers 
should support these four modes; they should never return an error because 
they do not support a particular mode. Low power modes that are not possible 
on a given device should be mapped to other appropriate modes.

For the device to become active, it is not required that the device driver get a 
control call telling it to make the device active. Any operation that requires the 
device to become active is sufficient. For example, if a hard disk driver currently 
has its drive in sleep mode and it gets a read call, it should automatically wake 
up the drive and respond to the read request. Once the drive is made active, the 
device driver requires a control call telling it to put the device into some other 
mode. It should not put the device into an inactive mode automatically unless it 
is managing the device’s power state independently of the Mac OS Power 
Manager.

Drivers that support low power mode calls should return true to the 'lpwr' 
DriverGestalt call listed in Table 8-5 (page 228). Drivers that do not support 
these calls should return false to the 'lpwr' DriverGestalt call, return 
controlErr to the SetPowerMode (csCode = 70) control call, and return statusErr 
to the GetPowerMode (csCode = 70) status call.

Device-Specific Status Calls 8

This section describes two device-specific driver gestalt status calls, 
ReturnDeviceID and GetCDDeviceInfo.
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ReturnDeviceID Status Call 8

A status call with a csCode value of 120 returns the DeviceIdent value for the 
primary SCSI device being controlled by a driver. SCSI drivers that set the 
driverGestaltEnable bit must implement this csCode value as described or 
return statusErr.

GetCDDeviceInfo Status Call 8

A status call with a csCode value of 121 determines the features of a particular 
CD-ROM drive. Before Apple’s CD-ROM driver version 5.0, this was done 
using the GetDriveType status call, which returned a specific model of CD-ROM 
drive. This makes client code difficult to maintain since it must be modified 
each time a new CD-ROM drive is introduced. To alleviate this problem, the 
features of the device have been encoded in testable bits. An integer containing 
the sustained transfer rate of the drive relative to an AppleCD 150 is also 
included. This information is returned in the CDDeviceCharacteristics 
structure. CD-ROM drivers that set the driverGestaltEnable bit must either 
implement this csCode value or return statusErr.

struct CDDeviceCharacteristics
{

UInt8 speedMajor; /* high byte of fixed-point 
number

for drive speed */
UInt8 speedMinor; /* low byte of "" CD 300 == 2.2,

CD_SC == 1.0 etc. */
UInt16 cdFeatures; /* flags for features of drive */

};

enum /* flags for CD features field (cdFeatures) */
{

cdPowerInject = 0, /* supports power inject of media */
cdNotPowerEject = 1, /* no power eject of media */
cdMute = 2, /* audio channels can be muted; 

audio play mode = 00xxb or xx00b */
/* bits 3 and 4 are reserved */

cdLeftPlusRight = 5, /* left, right channels can be mixed;
 audio play mode = 11xxb or xx11b 

*/
/* bits 6 through 9 are reserved */

cdSCSI2 = 10, /* supports SCSI-2 CD-ROM cmd set */
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cdStereoVolume = 11, /* supports independent volume levels 
 for each audio channel */

cdDisconnect = 12, /* drive supports SCSI disconnect/
 reconnect */

cdWriteOnce = 13, /* drive is a write/once (CD-R) type;
  bits 14 and 15 are reserved */

cdPowerInjectMask = 1 << cdPowerInject,
cdNotPowerEjectMask = 1 << cdNotPowerEject,
cdMuteMask = 1 << cdMute,
cdLeftPlusRightMask = 1 << cdLeftPlusRight,
cdSCSI2Mask = 1 << cdSCSI_2,
cdStereoVolumeMask = 1 << cdStereoVolume,
cdDisconnectMask = 1 << cdDisconnect,
cdWriteOnceMask = 1 << cdWriteOnce

};

Implementing Private Control and Status Calls 8

If you define private Control and Status calls for communication with your 
device driver, you must follow certain rules to ensure reliable operation. This 
section outlines these rules.

Private csCode Selection 8

If your driver claims to supports Driver Gestalt, it must not use any csCode 
below 128 for a private Control or Status call. All private csCode must be 
allocated from the range 128 to 32767.

Synchronous Does Not Equal System Task Time 8

Calling a device driver synchronously does not guarantee that the driver’s 
entry point will run at system task time. If you are defining a Control or Status 
call for which your driver must do something that is not interrupt safe, you 
must define the call to be executed immediately.

Private Calls and Virtual Memory 8

If your driver supports virtual memory (you can use the kdgVMOptions Driver 
Gestalt selector to indicate this), you must be careful to avoid fatal page faults 
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when fielding private control calls. Specifically, your driver must not cause a 
page fault while it is fielding a queued (that is, synchronous or asynchronous) 
request.

The Virtual Memory Manager holds the entire ParamBlockRec passed to all 
queued _Read, _Write, _Control, and _Status calls. In addition, VM holds the 
I/O buffer (pointed to by ioBuffer, for length ioReqCount). Therefore your 
driver can safely access this memory without causing a fatal page fault.

The problem comes when you define a private control call whose 
ParamBlockRec contains a pointer to another piece of memory. If your driver 
accesses that memory, it may cause a page fault. If your driver supports virtual 
memory, that page fault will be fatal (because a page fault while any paging 
device is busy is fatal).

There are a number of ways to avoid this problem.

1. Always include all information inline in the parameter block. Remember that 
the parameter block is automatically held for you by the Virtual Memory 
Manager. 

2. If you must include pointers in your parameter block, define your private 
control call interface to be called immediate. Immediate calls to a driver do 
not mark the driver as busy, and hence any page faults they cause will not be 
fatal. However, your driver must be written to support immediate calls of 
this kind. 

3. If none of the above are suitable, you must require that your clients hold any 
buffers pointed to by the parameter block. 

If you make a Control or Status call to a device driver which supports paging 
and the parameter block contains pointers to other data structures, you should 
hold those data structures, just to be sure.

For more background about how the Mac OS Virtual Memory Manager 
prevents fatal page faults, see DTS Technote 1094, “Virtual Memory Application 
Compatibility.” 
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This chapter describes the Driver Loader Library (DLL), a CFM 
shared-library extension to the Macintosh Device Manager. The DLL provides 
services to locate, install, and remove drivers.

IMPORTANT

Family experts and the Mac OS startup firmware are the 
primary clients of the DLL. It offers services that control 
every aspect of driver-to-device matching and driver 
loading and installation. Driver loading is normally an 
automatic process that frees drivers from having to match 
themselves with devices. In some situations, however, 
drivers may need to perform the match themselves. ▲

The installation and removal services are provided for drivers that are called 
through the Device Manager. Typically, these drivers are of service type 'ndrv'. 
Clients that expect to call drivers through the Device Manager should utilize 
these services to locate the driver, load it, install it in the unit table, and remove 
it.

Clients of device drivers that belong to a well-defined family type (such as 
networking devices within Open Transport) need not use the installation and 
removal services, since these drivers are not callable via the Device Manager 
and hence do not reside in the unit table. These clients may choose to use the 
standard CFM services to load their drivers and may use the loader utilities to 
do driver matching before using the CFM. 

The Driver Loader Library services provide several major functions for drivers:

■ loading and memory space management

■ installation in the unit table

■ removal from the unit table

■ providing information about installed drivers

■ driver matching

Figure 9-1 shows the roles and relationships of the Device Manager, the ROM 
(all Macintosh system software other than the Device Manager), and the Driver 
Loader Library.
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Figure 9-1 Position of Driver Loader Library

Figure 9-2 shows the relationship of the Driver Loader Library’s main functions.
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Figure 9-2 Driver Loader Library functions

Loading and Unloading 9

A driver may be loaded from any CFM container (in memory, files, or 
resources) as well as from a device’s driver property in the Name Registry. The 
following services are provided for this purpose.

■ GetDriverMemoryFragment loads a driver from a memory range.

■ GetDriverDiskFragment loads a driver from a file.

■ FindDriverCandidates and ScanDriverCandidates prepare a list of file-based 
drivers that potentially match a device.
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■ FindDriversForDevice finds the “best” drivers for a device, searching both 
ROM and disk, without making a CFM connection.

■ GetDriverForDevice finds the “best” driver for a device and returns its CFM 
connection ID.

■ SetDriverClosureMemory holds or releases a driver’s memory, including any 
associated libraries.

The only circumstance in which FindDriversForDevice or GetDriverForDevice is 
required is when there is a device node in the device tree that does not have an 
associated driver. One instance when this might happen is if a PCI card is 
entered in the device tree after system startup. FindDriversForDevice does not 
create a CFM connection for the driver it finds; this service is useful if you want 
to browse potential drivers for a device without loading them. 
GetDriverForDevice finds the driver and creates a CFM connection for it.

The successful load of a driver yields the following results:

■ a CFM ConnectionID

■ a pointer to the driver description

■ in the case of a generic native driver, a pointer to its DoDriverIO entry point

If the driver has a CFM initialization routine, it will be executed. The 
initialization routine should return noErr to indicate a successful load. Note that 
multiple drivers may be loaded in order to determine the best device-to-driver 
match. Therefore, a driver’s CFM initialization routine should not allocate 
resources that cannot be released in its termination routine.

The services listed above do not affect the Device Manager’s unit table. They 
are discussed in the next sections.

Note
Holding down the Shift, Command, N, and D keys 
simultaneously during Mac OS startup disables the loading 
of file-based drivers. ◆
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GetDriverMemoryFragment 9

GetDriverMemoryFragment loads a code fragment driver from an area of memory.

OSErr GetDriverMemoryFragment (
Ptr memAddr,
long length,
ConstStr63Param fragName,
CFragConnectionID *fragmentConnID,
DriverEntryPointPtr *fragmentMain,
DriverDescriptionPtr *DriverDesc);

memAddr Pointer to the beginning of the fragment in memory.

length Length of the fragment in memory.

fragName Optional name of the fragment (primarily used by debugger).

fragmentConnID
Resulting CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO (may be nil).

DriverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given a pointer to the beginning of a driver code fragment in memAddr and the 
length of that fragment in length, GetDriverMemoryFragment loads the driver. It 
returns the loaded driver’s CFM connectionID value in fragmentConnID, a 
pointer to its DoDriverIO entry point in fragmentMain, and a pointer to its driver 
description structure in DriverDesc.

Note
The CFM connectionID variable should be closed when the 
driver is unloaded. ◆
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RESULT CODES

GetDriverDiskFragment 9

GetDriverDiskFragment loads a native driver from a file.

OSErr GetDriverDiskFragment(
FSSpecPtr fragmentSpec,
CFragConnectionID *fragmentConnID,
DriverEntryPointPtr *fragmentMain,
DriverDescriptionPtr driverDesc);

fragmentSpec Pointer to a file system specification.

fragmentConnID
Resulting CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO.

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given a pointer to a CFM container file system specification, 
GetDriverDiskFragment uses the CFM to find and load a driver code fragment. It 
returns the loaded driver’s CFM connectionID value in fragmentConnID, a 
pointer to its DoDriverIO entry point in fragmentMain, and a pointer to its driver 
description in driverDesc.

noErr 0 No error
paramErr –50 Bad parameter
All CFM errors (see Inside Macintosh: PowerPC System Software)
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RESULT CODES

FindDriverCandidates 9

OSErr FindDriverCandidates (
RegEntryIDPtr deviceID,
Ptr *propBasedDriver,
RegPropertyValueSize *propBasedDriverSize,
StringPtr deviceName,
DriverType *propBasedDriverType,
Boolean *gotPropBasedDriver,
FileBasedDriverRecordPtr fileBasedDrivers,
ItemCount *nFileBasedDrivers);

deviceID Name Registry ID of target device.

propBasedDriver
Address of property-based driver.

propBasedDriverSize
Size of property-based driver.

deviceName Returned name of the device.

propBasedDriverType
Type of property-based driver.

gotPropBasedDriver
Value is true if property-based driver was found.

fileBasedDrivers
List of sorted file-based driver records.

nFileBasedDrivers
Count of file-based driver records.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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DESCRIPTION

Given the name entry ID of a device, FindDriverCandidates constructs a list of 
file-based drivers that match the device name or one of the device-compatible 
names. The list is sorted from best match to least favorable match. Drivers that 
match the device name are listed before drivers that match a compatible name. 
Each of these groups are further sorted by version numbers, using the 
HigherDriverVersion service (page 269). Property-based drivers are always 
matched using the device name and are returned separately from file-based 
drivers. An I/O expert can determine a property-based driver’s ranking using 
the HigherDriverVersion service. 

If a nil list output buffer is passed, only the count of matched file-based drivers 
is returned. An I/O expert can call FindDriverCandidates first with a nil buffer, 
allocate a buffer large enough for the list, and then call FindDriverCandidates 
again with the appropriately sized buffer.

If a nil value is passed in deviceID, all drivers from the Extensions folder are 
returned. When using this option, pass nil values for all parameters except 
fileBasedDrivers and nFileBasedDrivers.

The list of matched drivers consists of an array of file-based driver records: 

struct FileBasedDriverRecord {
FSSpec theSpec; /* file specification*/
DriverType theType; /* nameInfoStr & version 

number*/
Boolean compatibleProp; /* true if matched using a

compatible name*/
UInt8 pad[3]; /* alignment*/

};

typedef struct FileBasedDriverRecord 
FileBasedDriverRecord,*FileBasedDriverRecordPtr;

A file-based driver consists of a file specification, the driver’s type, and whether 
the driver was matched using the device name or a compatible device name.

An I/O expert can use the program logic summarized in Listing 9-1 to cycle 
through a list of file-based candidates.
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Listing 9-1 Finding file-based driver candidates

FindDriverCandidates();  /* get list of candidates for a device*/
while (Candidates in the list)

   {
      GetDriverFromFile ( FSSpec_in_Record, &driverConnectionID );
      if (InitializeThisDriver(Candidate) != NoErr))

{
   // unhold this failed driver's memory
  //  and close its CFM connection

  UnloadTheDriver  ( driverConnectionID );

 // advance to next position in the list

             GetNextCandidate();
         }
         else
             break; // driver loaded and initialized
    }

RESULT CODES

ScanDriverCandidates 9

OSErr ScanDriverCandidates(
RegEntryIDPtr deviceID,
FileBasedDriverRecordPtr fileBasedDrivers,
ItemCount nFileBasedDrivers,
FileBasedDriverRecordPtr matchingDrivers,
ItemCount *nMatchingDrivers);

deviceID Name Registry ID of target device.

fileBasedDrivers
List of sorted file-based driver records.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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nFileBasedDrivers
Count of file-based driver records.

matchingDrivers
File-based driver records (a subset of fileBasedDrivers).

nMatchingDrivers
Count of driver records (<= nFileBasedDrivers).

DESCRIPTION

Given the name entry ID of a device and a list of FileBasedDriverRecord 
elements, ScanDriverCandidates constructs a list of matching file-based drivers 
that match the device name or one of the device-compatible names. The list is 
sorted from best match to least favorable match. Input to this service is an array 
of FileBasedDriverRecord elements, described in “FindDriverCandidates” 
(page 252). Clients can use ScanDriverCandidates to match drivers from a static 
list of candidates without having to incur the overhead of disk I/O operations.

RESULT CODES

FindDriversForDevice 9

FindDriversForDevice finds the driver from a file and from a device tree 
property that represents the “best” driver for a device—that is, the latest 
version of the most appropriate driver, regardless of whether it is file-based or 
property-based. The algorithm for determining the best driver is described in 
“Matching Drivers With Devices” (page 164).

OSErr FindDriversForDevice(
RegEntryIDPtr device,
FSSpec *fragmentSpec,
DriverDescription *fileDriverDesc,
Ptr *memAddr,

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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long *length,
StringPtr fragName,
DriverDescription *memDriverDesc);

device Device ID.

fragmentSpec Pointer to a file system specification.

fileDriverDesc
Pointer to the driver description of driver in a file.

memAddr Pointer to driver address.

length Length of driver code.

fragName Name of driver fragment.

memDriverDesc Pointer to the driver description of driver in memory.

DESCRIPTION

Given a pointer to the RegEntryID value of a device, FindDriversForDevice finds 
the most suitable driver for that device. If the driver is located in a file, it returns 
a pointer to the driver’s file system specification in fragmentSpec and a pointer 
to its driver description in fileDriverDesc. If the driver is a fragment located in 
memory, FindDriversForDevice returns a pointer to its address in memAddr, its 
length in length, its name in fragName, and a pointer to its driver description in 
memDriverDesc. FindDriversForDevice initializes all outputs to nil before 
searching for drivers.

The fragName parameter that FindDriversForDevice returns can be passed to 
GetDriverMemoryFragment (page 250) or GetDriverDiskFragment (page 251).
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RESULT CODES

GetDriverForDevice 9

GetDriverForDevice loads the “best” driver for a device from memory. The 
algorithm for determining the best driver is described in “Matching Drivers 
With Devices” (page 164).

OSErr GetDriverForDevice(
RegEntryIDPtr device,
CFragConnectionID *fragmentConnID,
DriverEntryPointPtr *fragmentMain,
DriverDescriptionPtr *driverDesc);

device Device ID.

fragmentConnID
Pointer to a fragment connection ID.

fragmentMain Pointer to DoDriverIO.

driverDesc Pointer to the driver description of driver.

DESCRIPTION

Given a pointer to the RegEntryID value of a device, GetDriverForDevice loads 
from memory the most suitable driver for that device. It returns the loaded 
driver’s CFM connectionID value in fragmentConnID, a pointer to its DoDriverIO 
entry point in fragmentMain, and a pointer to its driver description in 
driverDesc.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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RESULT CODES

SetDriverClosureMemory 9

OSErr SetDriverClosureMemory(
CFragConnectionID fragmentConnID,
Boolean holdDriverMemory);

fragmentConnID
ID of driver closure (returned from other DLL loading services).

holdDriverMemory
Pass true to hold a driver closure; false to free it.

DESCRIPTION

A driver and all its libraries is called a driver closure. When a driver is loaded 
and prepared for initialization by the DLL, memory for its closure is held as the 
final step in implementing GetDriverMemoryFragment and 
GetDriverDiskFragment. Closure memory is held by default to prevent page 
faults at primary and secondary interrupt level.

SetDriverClosureMemory lets you hold closure memory by setting the 
holdDriverMemory parameter to true. It can also be use to free memory held 
(unhold) for a driver closure by setting the holdDriverMemory parameter to 
false.

To undo the effects of GetDriverMemoryFragment or GetDriverDiskFragment, an I/
O expert can call SetDriverMemoryClosureMemory (cfmID, false) followed by 
CloseConnection (&cfmID). This has the effect of unloading the driver. Listing 9-2 
shows a sample of code to perform this task.

noErr 0 No error
fnfErr –43 File not found
All CFM errors (See Inside Macintosh: PowerPC System Software)
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Listing 9-2 Unloading a driver

void UnloadTheDriver ( CFragConnectionID  fragID )
{

OSErr Status;
THz theCurrentZone = GetZone();

// make sure the fragment is attached to the system context
// (CFM keys context from the current heap zone)

SetZone ( SystemZone() );

Status = SetDriverClosureMemory (fragID,false);
if ( Status != noErr )
  printf("Couldn't unhold pages of Driver Closure! 

(Err==%x)\n",Status);

Status = CloseConnection(&fragID);
if ( Status != noErr )
  printf("Couldn't close Driver Connection!

(Err==%x)\n",Status);

// reset the zone
SetZone ( theCurrentZone );

}

Note that you must switch the current heap to the system heap before calling 
CloseConnection.

Installation 9

Once loaded, a driver must be installed in the unit table to become available to 
Device Manager clients. This process begins with a CFM fragment connection 
ID and results in a refNum value.

The installing software can specify a desired range of unit numbers in the unit 
table. For example, pre-version 4.3 SCSI drivers use the range 32 through 38 as a 
convention to their clients. If the driver cannot be installed within that range, an 
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error is returned. The unit table may grow to accommodate the new driver, 
however. For the rules of this growth, see the note on (page 262).

When installing a native driver, the caller also passes the RegEntryIDPtr value of 
the device that the driver is to manage. This pointer (along with the refNum 
value) is given to the driver as a parameter in the initialization command. The 
driver may use this pointer to iterate through a device’s property list, as an aid 
to initialization. The native driver should return noErr to indicate a successful 
initialization command.

These functions, described in the next sections, operate on a loaded driver 
fragment:

■ VerifyFragmentAsDriver verifies fragment contents as driver.

■ InstallDriverFromFragment places a driver fragment in the unit table.

■ InstallDriverFromDisk places a disk-based driver in the unit table.

■ OpenInstalledDriver opens a driver that is already installed in the unit table.

VerifyFragmentAsDriver 9

VerifyFragmentAsDriver makes sure there is a driver in a given fragment.

OSErr VerifyFragmentAsDriver(
CFragConnectionID fragmentConnID,
DriverEntryPointPtr fragmentMain,
DriverDescriptionPtr driverDesc);

fragmentConnID
CFM connectionID.

fragmentMain Resulting pointer to DoDriverIO. 

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given a CFM connectionID value for a code fragment, VerifyFragmentAsDriver 
verifies that the fragment is a driver. It returns a pointer to the driver’s 
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DoDriverIO entry point in fragmentMain and a pointer to its driver description in 
driverDesc.

RESULT CODES

InstallDriverFromFragment 9

InstallDriverFromFragment installs a driver fragment in the unit table.

OSErr InstallDriverFromFragment(
CFragConnectionID fragmentConnID,
RegEntryIDPtr device,
UnitNumber beginningUnit,
UnitNumber endingUnit,
refNum *refNum);

fragmentConnID
CFM connectionID.

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromFragment installs a driver that is located in a CFM code 
fragment anywhere within the specified unit number range of the unit table. It 
invokes the driver’s Initialize command, passing the RegEntryIDPtr value to 
it. The driver’s initialization code must return noErr for 
InstallDriverFromFragment to complete successfully. This function returns the 
driver’s refNum value but it does not open the driver.

noErr 0 No error
All CFM errors (see Inside Macintosh: PowerPC System Software)
Installation 261



C H A P T E R  9  

Driver Loader Library
IMPORTANT

If the unit table is filled throughout the range from 
beginningUnit to the value returned by HighestUnitNumber 
(page 272), and the table has not already grown to its 
maximum size, it can expand to accept the new driver. To 
use this feature, set endingUnit larger than the value 
returned by the HighestUnitNumber function. If endingUnit 
is less than or equals the returned value under these 
conditions, unitTblFullErr will be returned and the driver 
will not be installed. ▲

RESULT CODES

InstallDriverFromDisk 9

InstallDriverFromDisk locates a file in the Extensions folder, verifies that the file 
contains a native driver, and loads and installs the driver.

OSErr InstallDriverFromDisk(
Ptr theDriverName,
RegEntryIDPtr theDevice,
UnitNumber theBeginningUnit,
UnitNumber theEndingUnit,
DriverRefNum *theRefNum);

theDriverName Name of a disk file containing a driver.

theDevice Pointer to entry in the Name Registry.

theBeginningUnit
First unit table number of range acceptable for installation.

theEndingUnit Last unit table number of range acceptable for installation.

theRefNum Reference number returned by InstallDriverFromDisk.

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
Specific returns from Initialize, Replace, Superseded
All CFM errors (see Inside Macintosh: PowerPC System Software)
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DESCRIPTION

InstallDriverFromDisk installs a driver that is located on disk anywhere within 
the specified unit number range of the unit table and invokes the driver’s 
Initialize command, passing the RegEntryIDPtr value to it. The driver’s 
initialization code must return noErr for InstallDriverFromDisk to complete 
successfully. This function returns the driver’s refNum value but it does not open 
the driver. 

If the unit table is filled throughout the range from beginningUnit to the value 
returned by HighestUnitNumber (page 272), and the table has not already grown 
to its maximum size, it can expand to accept the new driver. To use this feature, 
set endingUnit larger than the value returned by the HighestUnitNumber 
function. 

Note
InstallDriverFromDisk uses GetDriverMemoryFragment to 
load the driver, which then calls SetDriverClosureMemory to 
hold the driver’s closure memory. ◆

RESULT CODES

OpenInstalledDriver 9

OpenInstalledDriver opens a driver that is already installed in the unit table.

OSErr OpenInstalledDriver(
DriverRefNum refNum,
SInt8 ioPermission);

refNum Unit table reference number.

ioPermission I/O permission code:

fsCurPerm 0  use the current permission

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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fsRdPerm 1  allow read actions only

fsWrPerm 2  allow write actions only

fsRdWrPerm 3  allow both read and write actions

DESCRIPTION

Given an installed driver’s unit table reference number, OpenInstalledDriver 
opens the driver. The Device Manager ignores the ioPermission parameter; it is 
included only to provide easy communication with the driver.

IMPORTANT

Native drivers may keep track of I/O permissions for each 
instance of multiple open actions and return error codes if 
permissions are violated. ▲

RESULT CODES

Load and Install Option 9

Clients wishing to combine the loading and installation process in one service 
may want to use one of the following functions, described in the next sections:

■ InstallDriverFromFile loads and installs a file-based driver.

■ InstallDriverFromMemory loads and installs a memory-based driver.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number
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InstallDriverFromFile 9

InstallDriverFromFile loads a driver from a file and installs it.

OSErr InstallDriverFromFile(
FSSpecPtr fragmentSpec,
RegEntryIDPtr device,
UnitNumber beginningUnit,
UnitNumber endingUnit,
DriverRefNum *refNum);

fragmentSpec Pointer to a file system specification.

device Pointer to Name Registry specification (may be nil).

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromFile installs a driver that is located on disk anywhere within 
the specified unit number range of the unit table and invokes the driver’s 
Initialize command, passing the RegEntryIDPtr value to it. The driver’s 
initialization code must return noErr for InstallDriverFromFile to complete 
successfully. This function returns the driver’s refNum value but it does not open 
the driver. 

If the unit table is filled throughout the range from beginningUnit to the value 
returned by HighestUnitNumber (page 272), and the table has not already grown 
to its maximum size, it can expand to accept the new driver. To use this feature, 
set endingUnit larger than the value retuned by the HighestUnitNumber function.

Note
InstallDriverFromFile uses GetDriverDiskFragment to load 
the driver, which then calls SetDriverClosureMemory to hold 
the driver’s closure memory. ◆
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RESULT CODES

InstallDriverFromMemory 9

InstallDriverFromMemory loads a driver from a range of memory and installs it.

OSErr InstallDriverFromMemory (
Ptr memory,
long length,
ConstStr63Param fragName,
RegEntryIDPtr device,
UnitNumber beginningUnit,
UnitNumber endingUnit,
DriverRefNum *refNum);

memory Pointer to beginning of fragment in memory.

length Length of fragment in memory.

fragName An optional name of the fragment (used primarily by 
debugger).

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverFromMemory installs a driver that is located in a CFM code 
fragment anywhere within the specified unit number range of the unit table. It 
invokes the driver’s Initialize command, passing the RegEntryIDPtr value to 
it. The driver’s initialization code must return noErr for 

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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InstallDriverFromMemory to complete successfully. This function returns the 
driver’s refNum value but it does not open the driver. 

If the unit table is filled throughout the range from beginningUnit to the value 
returned by HighestUnitNumber (page 272), and the table has not already grown 
to its maximum size, it can expand to accept the new driver. To use this feature, 
set endingUnit larger than HighestUnitNumber().

Note
InstallDriverFromMemory uses GetDriverMemoryFragment to 
load the driver, which then calls SetDriverClosureMemory to 
hold the driver’s closure memory. ◆

RESULT CODES

Match, Load, and Install 9

Clients wishing to combine the matching of the best driver for a device, with 
the loading and installation process in one service, may use 
InstallDriverForDevice and HigherDriverVersion, described in this section. The 
DriverDescription data structure is used to compare a driver’s functionality 
with a device’s needs. See the discussion of the native driver container package 
in “Driver Loader Library” (page 245).

The Driver Loader Library picks the best driver for the device by looking for 
drivers in the Extensions folder and comparing those against drivers in the 
device’s property list.

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
paramErr –50 Bad parameter
All CFM errors (see Inside Macintosh: PowerPC System Software)
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InstallDriverForDevice 9

InstallDriverForDevice installs the “best” driver for a device. The algorithm for 
determining the best driver is described in “Matching Drivers With Devices” 
(page 164).

OSErr InstallDriverForDevice(
RegEntryIDPtr device,
UnitNumber beginningUnit,
UnitNumber endingUnit,
DriverRefNum *refNum);

device Pointer to Name Registry specification.

beginningUnit Low unit number in unit table range.

endingUnit High unit number in unit table range.

refNum Resulting unit table refNum value.

DESCRIPTION

InstallDriverForDevice finds, loads, and installs the best driver for a device 
identified by its RegEntryID value. It installs the driver anywhere within the 
specified unit number range of the unit table and invokes its Initialize 
command, passing the RegEntryIDPtr value to it. The driver’s initialization code 
must return noErr for InstallDriverForDevice to complete successfully. This 
function returns the driver’s refNum value but it does not open the driver. 

If the unit table is filled throughout the range from beginningUnit to the value 
returned by HighestUnitNumber  (page 272), and the table has not already grown 
to its maximum size, it can expand to accept the new driver. To use this feature, 
set endingUnit larger than HighestUnitNumber().
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RESULT CODES

HigherDriverVersion 9

HigherDriverVersion compares two driver version numbers, normally the 
values in their DriverDescription structures. It returns a value that indicates 
which driver is the latest version. This service may be used by any software that 
loads or evaluates drivers.

short HigherDriverVersion (
NumVersion *driverVersion1,
NumVersion *driverVersion2);

struct NumVersion {
UInt8 majorRev; /* 1st part of version number */

/* in BCD */
UInt8 minorAndBugRev; /* 2nd and 3rd part of version

/* number share a byte */
UInt8 stage; /* stage code: dev, alpha, */

/* beta, final */
UInt8 nonRelRev; /* rev level of nonreleased */

/* version */
};

driverVersion1
First version number being compared.

driverVersion2
Second version number being compared.

DESCRIPTION

HigherDriverVersion returns 0 if driverVersion1 and driverVersion2 are equal. 
It returns a negative number if driverVersion1 < driverVersion2 and a positive 

noErr 0 No error
badUnitErr –21 Bad unit number
unitTblFullErr –29 Unit table or requested range full
fnfErr –43 File not found
All CFM errors (see Inside Macintosh: PowerPC System Software)
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number greater than 0 if driverVersion1 > driverVersion2. If both drivers have 
stage values of final, a nonRelRev value of 0 is evaluated as greater than any 
nonzero number.

Stage codes are the following:

developStage = 0x20
alphaStage = 0x40
betaStage = 0x60
finalStage = 0x80

Driver Removal 9

Clients wishing to remove an installed driver should use RemoveDriver.

RemoveDriver 9

RemoveDriver removes an installed driver.

OSErr RemoveDriver(
DriverRefNum refNum,
Boolean Immediate);

refNum Reference number of driver to remove.

Immediate Value of true means don’t wait for driver to become idle.

DESCRIPTION

RemoveDriver accepts a refNum value and unloads a code fragment driver from 
the unit table. It invokes the driver’s Finalize command. If called as immediate, 
it doesn’t wait for driver to become inactive.
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RESULT CODES

Getting Driver Information 9

Clients wishing to acquire information about an installed driver should use 
GetDriverInformation.

GetDriverInformation 9

GetDriverInformation returns a number of pieces of information about an 
installed driver.

OSErr GetDriverInformation(
DriverRefNum refNum,
UnitNumber *unitNum,
DriverFlags *flags,
DriverOpenCount *count,
StringPtr name,
RegEntryID *device,
CFragHFSLocator *driverLoadLocation,
CFragConnectionID *fragmentConnID,
DriverEntryPointPtr *fragmentMain,
DriverDescription *driverDesc);

refNum Reference number of driver to examine.

unitNum Resulting unit number.

flags Resulting DCE flag bits.

count Number of times driver has been opened.

name Resulting driver name.

device Resulting Name Registry device specification.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number
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driverLoadLocation
Resulting CFM fragment locator from which driver was loaded.

fragmentConnID
Resulting CFM connection ID.

fragmentMain Resulting pointer to DoDriverIO. 

driverDesc Resulting pointer to DriverDescription.

DESCRIPTION

Given the unit table reference number of an installed driver, 
GetDriverInformation returns the driver’s unit number in unitNum, its DCE flags 
in flags, the number of times it has been opened in count, its name in name, its 
RegEntryID value in device, its CFM fragment locator in driverLoadLocation, its 
CFM connection ID in fragmentConnID, its DoDriverIO entry point in 
fragmentMain, and its driver description in driverDesc.

Code that calls GetDriverInformation must always supply an FSSpec file 
specification with the CFM locator. For an example, see Listing 9-3 (page 274).

Note
With 68K drivers, GetDriverInformation returns 
meaningful information in only the unitNum, flags, count, 
and name parameters. ◆

RESULT CODES

Searching for Drivers 9

The routines described in this section help clients iterate through the unit table, 
locating installed drivers.

noErr 0 No error
badUnitErr –21 Bad unit number
unitEmptyErr –22 Empty unit number
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HighestUnitNumber 9

HighestUnitNumber returns the currently highest valid unit number in the unit 
table.

UnitNumber HighestUnitNumber (void);

DESCRIPTION

HighestUnitNumber takes no parameters. It returns a UnitNumber value that 
represents the highest unit number in the unit table.

LookupDrivers 9

LookupDrivers is used to iterate through the contents of the unit table.

OSErr LookupDrivers(
UnitNumber beginningUnit,
UnitNumber endingUnit,
Boolean emptyUnits,
ItemCount *returnedRefNums,
DriverRefNum *refNums);

beginningUnit First unit in range of units to scan.

endingUnit Last unit in range of units to scan.

emptyUnits A value of true means return available units; a value of false 
means return allocated units.

returnedRefNums
Maximum number of reference numbers to return; on 
completion, contains actual number of reference numbers 
returned.

refNums Resulting array of returned reference numbers.
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DESCRIPTION

Given the first and last unit numbers to scan, LookupDrivers returns the 
reference numbers of both native and 68K drivers. The emptyUnits parameter 
tells it to return either available or allocated units, and returnedRefNums tells it 
the maximum number of reference numbers to return. When LookupDrivers 
finishes, returnedRefNums contains the actual number of reference numbers 
returned.

The sample code shown in Listing 9-3 uses HighestUnitNumber and 
LookupDrivers to print out the reference numbers of all installed drivers and 
obtain driver information.

RESULT CODES

Listing 9-3 Using the LookupDrivers function

OSStatus FindAllDrivers (void)
{

ItemCount theCount = 1;
UnitNumber theUnit = 0;
DriverRefNum theRefNum, *fullSizedRefNumBuffer;

// method #1: iterate with a small output buffer

while ( (theUnit <= HighestUnitNumber()) &&
 (LookupDrivers (theUnit, theUnit, false, &theCount, &theRefNum) ==noErr))
{

if (theCount == 1) printf ("Refnum #%d is allocated.\n",theRefNum);
theCount = 1;
theUnit++;

}

//  method #2: get all refnums with one call

noErr 0 No error
badUnitErr –21 Bad unit number
paramErr –50 Bad parameter
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fullSizedRefNumBuffer = NewPtr ((HighestUnitNumber() + 1) *
 sizeof(DriverRefNum));
theCount = (HighestUnitNumber() + 1);
LookupDrivers (0, HighestUnitNumber(), false, &theCount,
 fullSizedRefNumBuffer);

for(theUnit=0,theUnit <theCount;theUnit++)
{

printf("Refnum #%d is allocated.\n", fullSizedRefNumBuffer [theUnit]);
ShowDriverInfo (fullSizedRefNumBuffer [theUnit]);

}
DisposePtr(fullSizedRefNumBuffer);
return noErr;

}

ShowDriverInfo (DriverRefNum *refNum)
{

UnitNumber theUnit;
DriverRefNum aRefNum;
DriverFlags theFlags;
FSSpec driverFileSpec;
RegEntryID theDevice;
CFragHFSLocator theLoc;
Str255 theName;
CFragConnectionID fragmentConnID;
DriverOpenCount theOpenCount;
DriverEntryPointPtr fragmentMain;
DriverDescription theDriverDescription;

theLoc.u.onDisk.fileSpec = &driverFileSpec; /* See note below */

GetDriverInformation ( aRefNum,
&theUnit,
&theFlags,
&theOpenCount,
theName,
&theDevice,
&theLoc,
&fragmentConnID,
&fragmentMain,
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&theDriverDescription);
printf ("Driver's flags are:  %x\n", theFlags);

}

IMPORTANT

When calling GetDriverInformation, always supply an 
FSSpec file specification as shown in the preceding sample. 
Failure to do so may cause the DLL or the CFM to crash the 
system or overwrite the system heap. ▲

Note
You can also use the DLL to load a native driver without 
any associated hardware device. Just pass nil in 
RegEntryIDPtr to the DLL installation service. ◆
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Figure 10-0
Listing 10-0
Table 10-0
Name Registry 10
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This chapter describes the Name Registry, a data structure maintained by 
Mac OS that stores hardware and software configuration information in the 
second generation of Power Macintosh computers. 

This chapter presents general concepts followed by a detailed discussion of the 
Name Registry programming interface. Because native device drivers must 
access the Registry, developers writing new device drivers or upgrading 
existing drivers should read this chapter.

Concepts 10

People identify things by giving them names. In computer systems, names are 
used to identify machines, files, users, devices, and so on. The Name Registry 
provides a way for device drivers and system software to store names. The 
Registry does not store the things named, just important pieces of information 
about the things. The information stored is determined by the creator of the 
name entry and may include such data as the physical location of the thing, 
technical descriptions of it, and logical addresses.

Name entries are created in the Name Registry by expert software. Each expert 
owns specific entries and is responsible for removing them when they are no 
longer needed. Clients search for entries the expert has placed in the Registry, 
making the Registry a rendezvous point for clients and experts. The Registry 
does not provide general communication between clients and experts; it only 
helps clients and experts find each other. After clients and experts find each 
other, different software helps them communicate directly.

The Name Registry is similar to the name services used in some other 
computing environments. In concept it resembles the X.500 or BIND (named) 
network name services. However, the present implementation of the Name 
Registry is less general; it is optimized for the specific needs of hardware and 
device driver configuration.

The Name Tree 10

Name entries in the Name Registry are connected together in a tree. 
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Note
Code must not depend on the order in which name entries 
are found in the Registry. ◆

Software finds name entries in the Registry by locating the ones that it already 
knows about and then examining entries found nearby. By knowing to what a 
name entry refers, a program can find other entries that might be used for a 
similar or related purpose.

The name Registry is based on an origin entry called the root. All name entries 
in the tree may be described by a pathway through the tree starting from the 
root. 

Name Properties 10

Each name entry in the Registry is accompanied by a set of properties. Each 
property has a name and a value. By looking at the properties associated with a 
name entry, software can determine what the entry identifies and what its uses 
are.

Software uses Registry properties to find other software. For example, if a user 
specifies a name while running an application, the application may look up the 
name in the Registry and use the properties associated with it to determine 
what the name represents in the system. For example, a distributed application 
could ask the user to choose a network interface. From the properties that 
accompany the name of the interface in the Registry, the application could find 
the device driver that controls the network interface and the parameters needed 
to open the network device, as diagrammed in Figure 10-1.
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Figure 10-1 Using name properties

How the Registry Is Built 10

During system startup, the Open Firmware support code in the Macintosh 
ROM 
creates a device tree, as described in Chapter 4, “Startup and System 
Configuration.” When Mac OS is launched, it extracts device information from 
the device tree in the following steps:

1. Search for devices.

2. Add a name entry and a set of properties to the Registry for each device.

3. Find a driver for each device.

4. Initialize the driver.

Connections between name entries are formed when the entries are added to 
the Registry. The connections have direction and point from an existing entry to 
the new one.

The Expansion Bus Manager places most of the name entries in the Registry 
during system startup. However, some hardware provides standard ways to 

Jon's Frubar
  Properties:
    Name = "Jon's Frubar"
    Location = "Cafeteria"
    Address = "129.484.1234"
    Driver = "Frubar Driver"

Frubars
  Properties:
    Name = "Frubars"
    Frubar Root = ""

Jan's Frubar
  Properties:
    Name = "Jan's Frubar"
    Location = "Jan's Office"
    Address = "129.468.1111"
    Driver = "Frubar Driver"

Frubar Driver
280 Concepts



C H A P T E R  1 0

Name Registry
probe for devices and return information describing them. In this case, the 
low-level expert responsible for that variety of hardware finds the devices and 
adds their names to the Registry. The low-level expert attaches descriptive 
information for each device to the name entry as properties. Low-level experts 
are described in “Terminology” (page 141). In a few cases, drivers may enter 
names and properties in the Registry directly.

The software entity that creates a name entry owns it, whether it is the 
Expansion Bus Manager, a low-level expert, or a device driver. Only the owner 
should remove a name entry. Since most device drivers do not create entries in 
the Registry, most drivers never remove them.

Name Registry Overview 10

This section summarizes the scope, design goals, limitations, and terminology 
of the Name Registry.

Scope 10

The naming services provided by the Name Registry are intended to serve local 
clients on a single computer only. Experts that create name entries include the 
low-level experts and the Expansion Bus Manager. Clients include device 
drivers, control panels, family experts, and other device management software.

Limitations 10

The Name Registry supports a relatively small number of entries. Other 
limitations include the following:

■ Because all Registry contents reside in RAM, the number of name entries 
supported is limited by the available RAM space. 

■ Name entry creation and searching processes do not have to be fast.

■ The Registry’s information is volatile; information in it is lost when the 
system is restarted unless the information is saved to NVRAM or disk 
storage.
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Terminology 10

The Name Registry uses these special terms:

■ name: a null-terminated character string representing a thing or a concept

■ name entry: the representation of a name in the Name Registry. Name entries 
are connected to form a name tree.

■ entry ID: a unique ID that Mac OS gives to a name entry

■ path: a sequence of colon-separated names

■ property: a name-and-value pair associated with a name entry, which 
describes some characteristic of the thing represented by the entry

■ modifier: hardware- or implementation-specific information associated with a 
name entry or property. Modifier information is stored as bits in a 32-bit 
word.

Registry Topology 10

The topology of the Name Registry can be summarized as follows:

■ An unnamed root exists at the top of the Registry tree.

■ A Devices name entry exists under the root. It represents the I/O universe for 
the computer.

■ The device tree exists as a descendant (child) of the Devices name entry, with 
a new name device-tree, which is machine independent. This descendant 
represents the Power Macintosh I/O hardware.

■ The Gestalt entry is another child of the root, making it a peer to Devices. 
This entry is not guaranteed to be available in future Macintosh computer 
implementations. 

These relationships are diagrammed in Figure 10-2.
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Figure 10-2 Typical Name Registry structure

The Device Tree 10

The device tree is a data structure that the Macintosh startup firmware creates 
in system RAM to provide information about configured devices to other 
software, including firmware on PCI cards. Attached to it are the drivers and 
support software that devices need to operate. The device tree in 
PCI-compatible Power Macintosh computers is similar to the sResource table 
previously used in NuBus-compatible Macintosh computers. For further 
information, see “Startup Firmware” (page 83).

The device tree is the structure from which Mac OS extracts the original 
information to create the device portion of the Name Registry. A device tree 
entry may be a device node (a entry that serves one hardware device) or a 
property entry (a list of name-and-value pairs associated with a device entry). 
Device nodes may have child device nodes, creating a branching tree structure; 
however, the tree begins with a single root entry. Device nodes in the single 
systemwide device tree may serve devices that are connected to the PowerPC 
processor bus through different bridges. Each device entry in the tree has one or 
more property nodes. An important use of property nodes is to store drivers 
associated with PCI card devices.

"hammerhead" "bandit"

"device-tree"

"Devices" "Gestalt"

Unnamed
root
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You can view the Name Registry generally as a global tree structure with a large 
branch equal to the original Open Firmware device tree plus and minus a few 
properties. When bringing the Open Firmware device tree to Mac OS through 
the Open Firmware client interface, the only pruning of the original tree is to 
delete drivers for other operating systems that may be stored there. All drivers 
with a driver,AAPL,MacOS,PowerPC property are brought into the Mac OS Name 
Registry.

The device tree for a pre-NewWorld PCI-based Power Macintosh computer (the 
Power Macintosh 9500) is shown in Listing 10-1. Note that the Bandit and 
Hammerhead ASICs are also shown in Figure 10-2. Listing X shows the device 
tree for a Power Macintosh G3 Pro.

Listing 10-1 A typical device tree

/bandit@F2000000
   /gc@10
     /53c94@10000
       /sd@0,0
     /mace@11000
     /escc@13020
     /escc@13000
     /awacs@14000
     /swim3@15000
     /via-cuda@16000
       /adb@0,0
         /keyboard@0,0
         /mouse@1,0
       /pram@0,0
       /rtc@0,0
       /power-mgt@0,0
     /mesh@18000
       /sd@0,0
   /bandit@B
   /AAPL,8250@E
 /bandit@F4000000
   /bandit@B
   /ATY,mach64@E
 /hammerhead@F8000000
284 Name Registry Overview



C H A P T E R  1 0

Name Registry
Real and Virtual Devices 10

Name entries can be associated with many different things, including real 
devices and virtual devices. A virtual device is represented by a name entry for 
which there is no hardware. Any piece of software can add a virtual device just 
by creating a new entry in the Devices section of the Name Registry. It can 
mimic hardware to any degree by its selection of properties and its location in 
the tree topology. For example, a virtual device might enter only a logical 
address, using an AAPL,address property, or it might enter a full set of properties 
to mimic the behavior of a real device such as a SCSI controller.

Future versions of Mac OS will use the Name Registry to store information 
about many kinds of system components besides devices.

Using the Name Registry 10

This section describes the Name Registry programming interface available to 
device drivers and other device control software in the second generation of 
Power Macintosh computers.

Determining If the Name Registry Exists 10

You can use the Gestalt Manager to determine if the Name Registry exists in the 
user’s version of Mac OS, using the gestalt selector 'nreg'. Check the routine’s 
error return first; Gestalt will return gestaltUndefSelectorErr if the Name 
Registry is not present. If the routine was successful, check the gestalt return for 
the Name Registry version number (currently 0). The Gestalt Manager is 
discussed in Inside Macintosh: Operating System Utilities. Its use in the second 
generation of Power Macintosh computers is described in “Macintosh System 
Gestalt” (page 334).

If the Name Registry is not present, the computer does not support PCI cards. 
The converse is not true. For example, the iMac computer does not have a PCI 
bus for expansion cards, but it does utilize and support the Name Registry. 
Using the Name Registry 285



C H A P T E R  1 0  

Name Registry
PCI Bus Identification 10

When the user’s system is running Mac OS, you can use the Name Registry to 
determine if a PCI bus exists in it. Use the RegistryEntrySearch routine, 
described on (page 301), to locate a name entry that has a property named 
"device-type" with a property value "pci". If the routine returns noErr and its 
done parameter returns false, then a PCI bus exists.

Name Entry Management 10

The name graph is based on an anonymous, unnamed root entry under which 
all other entries live. This root does not appear in pathnames, and it can be 
referenced only indirectly, using null for its parent entryID value.

Given a parent entryID value and the pathname :aaaa:bbbb, aaaa is a child of 
the specified parent name entry. If the specified parent name entry is null, the 
root entry is assumed to be the parent and the path is equivalent to an absolute 
path.

Names for the entries just below the root (children of the root) are generic 
names representing categories of things such as devices, processes, volumes, 
and so on. As you move down the tree the things become more specific, 
depending on their organization within each category.

Name Entry Identifiers 10

Each name entry in the Name Registry is given a unique ID, of type RegEntryID, 
that code can use to reference the entry. The structure of this ID is opaque—it is 
accessible only to system code and may change in future releases of Mac OS. 
For a discussion of opaque IDs, see the note on (page 349).

Name entry identifiers might contain allocated data, so Mac OS includes 
operations to copy and dispose of them. See “ID Management” (page 291).

Pathnames 10

Name Registry paths are colon-separated lists of name components. Name 
components may not contain colons themselves.

Paths and name components are presented as null-terminated character strings.
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Paths follow parsing rules similar to Apple file system absolute and relative 
pathnames. However, the Apple double colon (::) parent directory syntax is not 
currently supported.

Absolute pathnames are assumed to be rooted to the anonymous root. For 
example, in the pathname aaaa:bbbb, aaaa is a child of the root and bbbb is a 
child of aaaa. Relative pathnames are rooted to a specified parent name entry 
identified using an entryID value.

Pathnames, both absolute and relative, should not be hard coded in expert or 
driver code unless it is certain that the subset of the tree represented by the 
pathnames will remain static. The location of things in the tree can and will 
change over time, thus changing the pathnames. For example, a card can be 
inserted into one of several slots and potentially change the parent name entry 
that represents the slot. However, pathnames are useful for displaying the 
current topology of the tree or subtree or for referencing static portions of the 
tree.

Finding Name Registry Components 10

Objects in the Name Registry should be located by means of search or iterate 
calls using properties to identify and match the desired entry. Code can search 
for properties (name and value combinations) that uniquely identify the 
required name entry. Searching for generic names such as "SCSI" or "ADB" is not 
a good idea because a generic name search can find many unrelated entries.

Using Iterate Routines 10

Writing code to interate through a set of names consists of a call to begin the 
iteration, the iteration loop, and a call to end the iteration. The call to end the 
iteration should be made even in the case of an error, so that allocated data 
structures can be freed. Here is the basic code structure for traversing names in 
the Name Registry:

Create(...)
Set(...) // optional
do {

Iterate(...); // or Search(...);
} while (!done);
Dispose(...);
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Two different name entry iterations are provided, direction oriented and search 
oriented. The type of iteration is indicated by the call used to retrieve the next 
name entry. All the Mac OS routines used are described in “Name Iteration and 
Searching” (page 297). Rules for direction iteration are given below; rules for 
search iteration are given in the next section.

■ RegistryEntryIterate, described on (page 299), is used to traverse and 
explore the Name Registry. An iteration operation begins at a starting entry 
and moves in a direction defined by the relationship parameter. The 
relationship determines which entries relative to the starting entry are to be 
included in the search—children, parents, siblings, or descendants. Each 
iterate call returns the next entry encountered along the designated path. You 
can change the direction at any time by specifying a new relationship 
parameter in your next iterate call. You can continue in the current direction 
by specifying kRegIterContinue for the relationship parameter. Remember 
that the direction is relative to the last entry returned from the previous 
iterate call.

■ When an entry iterator is created via RegistryEntryIterateCreate, it is 
initialized to the default starting entry root and with a relationship of 
kRegIterDescendants. This lets you iterate over the entire Name Registry.

■ You can use RegistryEntryIterateSet to set the iterator to some name entry 
other than the root, limiting the iteration to some subset of the Name 
Registry. To change the default relationship, specify a new relationship as a 
parameter to your first iterate call.

■ An iteration sequence is complete when either it finds what it is looking for 
or the done parameter returns true, indicating that there are no more entries 
in the specified direction. When done is true no error code is returned and the 
contents of foundEntry are indeterminate. The iterator must be reset, using 
RegistryEntryIterateSet, before it can be used again for a subsequent search 
or iterate operation.

■ Each iterate call should describe the next relationship of interest.

■ Don’t mix iterators for iterate and search routines without reinitializing the 
iterator value by means of RegistryEntryIterateSet.

Here are some hints for using relationships while iterating:

■ To iterate through all the descendants of an entry, specify 
kRegIterDescendants on the first iterate call and then specify 
kRegIterContinue until done is true. 
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■ To iterate through the children of an entry, specify kRegIterChildren on the 
first iterate call and then specify kRegIterContinue until done is true.

■ To iterate through the siblings of an entry, specify kRegIterSiblings on the 
first iterate call and then specify kRegIterContinue until done is true. Siblings 
do not include the current entry.

■ To iterate through the parents of an entry, specify kRegIterParents on the first 
iterate call and then specify kRegIterContinue until done is true. Note that 
there is only one parent in the current implementation of the Name Registry.

■ To navigate down the registry hierarchy, specify kRegIterChildren until you 
find the level you are looking for or until done is true (which indicates that 
you have reached the bottom). The latter case is useful when deleting a 
subtree, because you must delete the children before you can delete a parent.

■ To navigate up the Name Registry hierarchy, specify kRegIterParents until 
you find the level you are looking for or until done is true (which indicates 
that you have reached the root). 

Using Search Routines 10

RegistryEntrySearch, RegistryEntryPropertyMod, and RegistryEntryMod are used 
to search the Name Registry for entries having a specific property or set of 
modifiers. The set of entries to be searched is defined by a starting entry and a 
relationship. The relationship determines which entries relative to the starting 
entry are to be included in the search—children, parents, siblings, or 
descendants.

Follow these rules when using search routines:

■ When an entry iterator is created via RegistryEntryIterateCreate, it is 
initialized to the default starting entry root and to the relationship of the 
kRegIterDescendants parameter. A subsequent search call using these default 
values will include all entries in the Name Registry.

■ You can use RegistryEntryIterateSet to set the iterator to some name entry 
other than the root, limiting the iteration to some subset of the Name 
Registry. To change the default relationship, specify a new relationship as a 
parameter to your first search call.

■ Search routines are designed to be iterative, allowing you to search for 
multiple instances of the same thing within a set of entries. To continue a 
search, make the same call again, specifying kRegIterContinue as the 
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relationship. The routine will continue where it left off and will find new 
entries that meet the same search criteria.

■ To change the search criteria (property name, value, or modifiers) or the set 
of entries to be searched, reset the iterator. Use RegistryEntryIterateSet to 
set a new starting entry and then specify a new relationship in the next 
search call.

■ A search operation is complete when either it finds what it is looking for or 
the done parameter returns true, indicating that there are no more name 
entries that meet the search criteria. When done is true no error code is 
returned and the contents of foundEntry are indeterminate. The iterator must 
be reset, using RegistryEntryIterateSet, before it can be used again for a 
subsequent search or iterate operation.

Here is a typical search sequence:

1. Get an iterator.

2. Set the starting point if it is other than the root.

3. Set the relationship in the first search call.

4. Do the search call.

5. Repeat the search call with the relationship set to kRegIterContinue.

Data Structures and Constants 10

Pathnames may be of any length, but components of a pathname are limited as 
follows:

enum
{

kRegCStrMaxEntryNameLength = 31
kRegMaximumPropertyNameLength = 31

};

typedef char  RegCStrPathName;

typedef unsigned long
RegPathNameSize;
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typedef char  RegCStrEntryName,
*RegCStrEntryNamePtr
RegCStrEntryNameBuf[kRegCStrMaxEntryNameLength];

typedef char  RegPropertyName,
*RegPropertyNamePtr
RegPropertyNameBuf[kRegMaximumPropertyNameLength];

struct RegEntryID {
UInt8 opaque[16];

};

typedef struct RegEntryID RegEntryID, *RegEntryIDPtr;

Software must use directed moves when examining a neighborhood in the 
Registry’s name tree. The following constants indicate the direction of 
movement during traversals of the hierarchical Registry tree:

typedef unsigned long
RegIterationOp;

typedef RegIterationOp
RegEntryIterationOp;

enum
{

kRegIterRoot = 0x2L, // absolute locations
kRegIterParents = 0x3L, // include all parent(s) of entry
kRegIterChildren = 0x4L, // include all children
kRegIterDescendants = 0x5L, // include all subtrees of entry
kRegIterSibling = 0x6L, // include all siblings
kRegIterContinue = 0x1L // keep doing the same thing

};

ID Management 10

Mac OS provides several routines, described in this section, to create and 
manage name entry IDs. These IDs are discussed in “Name Entry Identifiers” 
(page 286).
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RegistryEntryIDInit 10

RegistryEntryIDInit initializes a RegEntryID structure to a known, invalid state.

OSStatus RegistryEntryIDInit (RegEntryID *id);

--> id Pointer to an identifier to be initialized. 

DESCRIPTION

Since RegEntryID values are allocated on the stack, it is not possible to determine 
whether one contains a valid reference or uninitialized data from the stack. 
RegistryEntryIDInit corrects this problem. It should be called before a 
RegEntryID structure is used. 

EXECUTION CONTEXT

RegistryEntryIDInit may be called from task level or secondary and hardware 
interrupt level.

RESULT CODES

RegistryEntryIDCompare 10

RegistryEntryIDCompare compares RegEntryID values to see if they are equal. It 
can also be used to determine if a RegEntryID value is set to an invalid state.

Boolean RegistryEntryIDCompare(
const RegEntryID *id1,
const RegEntryID *id2);

--> id1 Pointer to the first identifier.

--> id2 Pointer to the second identifier.

noErr 0 No error
paramErr –50 Bad parameter
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DESCRIPTION

RegistryEntryIDCompare is useful for comparing two RegEntryID values to see 
whether they reference the same name entry as well as to check if a RegEntryID 
value is a valid reference. It returns true if the two ID values are equal.

If a null value is passed in either id1 or id2, RegistryEntryIDCompare compares 
the other ID with the initialized value returned by RegistryEntryIDInit. If both 
ID values are null, RegistryEntryIDCompare returns true.

EXECUTION CONTEXT

RegistryEntryIDCompare may be called from any execution level.

RESULT CODES

RegistryEntryIDCopy 10

RegistryEntryIDCopy copies the identifier for a name entry, including any 
internally allocated data.

void RegistryEntryIDCopy(
const RegEntryID *src,
RegEntryID *dst);

--> src Pointer to ID to be copied.

--> dst Pointer to the destination ID.

DESCRIPTION

Given an existing RegEntryID value, RegistryEntryIDCopy sets another 
RegEntryID to be functionally the same.

EXECUTION CONTEXT

RegistryEntryIDCopy may be called from any execution level.

false 0 ID values different
true 1 ID values equal
Using the Name Registry 293



C H A P T E R  1 0  

Name Registry
RESULT CODES

RegistryEntryIDDispose 10

RegistryEntryIDDispose disposes of a Name Registry identifier.

void RegistryEntryIDDispose (RegEntryID *id);

--> id Pointer to the RegEntryID value to be disposed of.

DESCRIPTION

RegistryEntryIDDispose disposes of the identifier for a name entry pointed to 
by id, including its allocated data.

EXECUTION CONTEXT

RegistryEntryIDDispose may be called from any execution level. If memory is 
disposed of it must be called at task level.

RESULT CODES

Name Creation and Deletion 10

The following routines add new name entries to the Name Registry and remove 
existing name entries from it.

noErr 0 No error
paramErr –50 Bad parameter

noErr 0 No error
paramErr –50 Bad parameter
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RegistryCStrEntryCreate 10

RegistryCStrEntryCreate creates a new child name entry in the Name Registry.

OSStatus RegistryCStrEntryCreate(
const RegEntryID *parentEntry,
const RegCStrPathName *name,
RegEntryID *newEntry);

--> parentEntry
Pointer to RegEntryID value that identifies the parent name 
entry.

--> name Pointer to the pathname of the new entry relative to the parent, 
as a C string.

<-- newEntry Pointer to the returned RegEntryID value of the new name entry.

DESCRIPTION

Given the RegEntryID value of a parent name entry, RegistryCStrEntryCreate 
creates a new entry that is a descendant of the parent, with the C string 
pathname name. It returns the RegEntryID value that identifies the new name 
entry.

The rules for composing pathnames are given in “Pathnames” (page 286). Note 
that the pathname in name includes the name of the new entry. If parentEntry is 
NULL, name is a pathname relative to the root.

EXECUTION CONTEXT

RegistryCStrEntryCreate may be called only from task level.
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RESULT CODES

CODE SAMPLE

Listing 10-2 shows code that uses RegistryCStrEntryCreate to add a name entry 
for a new child device to the Name Registry.

Listing 10-2 Adding a name entry to the Name Registry

OSStatus
AddDevice(
   const RegEntryID            *parentEntry,
   const RegCStrEntryName      *deviceName,
   RegEntryID                  *deviceEntry
   )

{
   RegCStrPathName     devicePathBuf[kRegCStrMaxEntryNameLength + 2]
                           = {kRegPathNameSeparator,kRegPathNameTerminator};
   RegCStrPathName     *devicePath = &devicePathBuf[0];
   OSStatus            err = noErr;

   /*
    * Need to construct a relative path name since we are not
    * attaching the new entry to the root.
    */  
   devicePath = strcat(devicePath, deviceName);

   err = RegistryCStrEntryCreate(parentEntry, devicePath, deviceEntry);
   return err;
}

noErr 0 No error
paramErr –50 Bad parameter
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathNotFound –2539 Path component lookup failed
nrNotCreatedErr –2540 Entry or property could not be created
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RegistryEntryDelete 10

RegistryEntryDelete deletes a name entry from the Name Registry.

OSStatus RegistryEntryDelete (const RegEntryID id);

--> id Pointer to the RegEntryID value of name entry to delete.

DESCRIPTION

Given the RegEntryID value of a name entry in the Name Registry, 
RegistryEntryDelete deletes it. If the name entry node is deleted, the iterator 
and RegEntryID are no longer valid and cannot be used for subsequent 
iterations. 

EXECUTION CONTEXT

RegistryEntryDelete may be called only from task level.

RESULT CODES

Note
In the current Mac OS, all children of a parent entry are 
removed when the parent is removed. Removing a parent 
entry, thereby creating orphan entries, may not be 
supported in future releases. ◆

Name Iteration and Searching 10

The Name Registry name entry iteration functions communicate through an 
iterator parameter with the following type:

typedef struct RegEntryIter { void *opaque; }
RegEntryIter, *RegEntryIterPtr;

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property is locked
nrInvalidNodeErr –2538 RegEntryID value not valid
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RegistryEntryIterateCreate 10

RegistryEntryIterateCreate creates an iterator named cookie that is used by 
iterate and search routines. The iterator is initialized to the default starting 
entry root and to the relationship kRegIterDescendants, so it can be used to 
access the whole Name Registry.

OSStatus RegistryEntryIterateCreate (RegEntryIter *cookie);

--> cookie Pointer to the iterator used by iterate and search routines.

DESCRIPTION

RegistryEntryIterateCreate sets up the iteration process for finding device 
names in the Name Registry and returns an iterator in cookie that is used by 
RegistryEntryIterate or RegistryEntrySearch.

EXECUTION CONTEXT

RegistryEntryIterateCreate may be called only from task level.

RESULT CODES

RegistryEntryIterateSet 10

RegistryEntryIterateSet sets a cookie value to identify a specified starting 
name entry. 

OSStatus RegistryEntryIterateSet(
RegEntryIter *cookie,
const RegEntryID *startEntryID);

--> cookie Pointer to iterator used by iterate and search routines.

noErr 0 No error
paramErr –50 Bad parameter
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--> startEntryID
Pointer to the RegEntryID value that identifies the name entry to 
start iteration.

DESCRIPTION

When an iterator is first created, it is set to the root of the Name Registry with a 
relation of kRegIterDescendants. RegistryEntryIterateSet lets you adjust this 
starting point to a known name entry so you can iterate or search over a subset 
of the device tree.

The relation part of the iterator can be set by specifying a new relation in a 
subsequent iterate or search call.

EXECUTION CONTEXT

RegistryEntryIterateSet may be called only from task level.

RESULT CODES

RegistryEntryIterate 10

One kind of iteration call, RegistryEntryIterate, retrieves the next name entry 
in the Name Registry by moving in a specified direction.

OSStatus RegistryEntryIterate(
RegEntryIter *cookie,
RegEntryIterationOp relationship,
RegEntryID *foundEntry,
Boolean *done);

--> cookie Pointer to the iterator used by iterate and search routines.

--> relationship
The iteration direction (values defined on (page 291)).

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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<-- foundEntry
Pointer to the ID of the next name entry found.

<-- done Pointer to the interation result. A value of true means iteration 
is completed.

DESCRIPTION

RegistryEntryIterate moves from entry to entry in the Name Registry, marking 
its position by changing the value of cookie. The direction of movement is 
indicated by relationship. RegistryEntryIterate returns the RegEntryID value 
that identifies the next name entry found in foundEntry, or true in done if all 
name entries have been found.

EXECUTION CONTEXT

RegistryEntryIterate may be called from any execution level.

RESULT CODES

CODE SAMPLE

Listing 10-3 shows code using RegistryEntryIterate and RegistryEntryDelete 
that finds and removes all immediate child entries of a given parent entry. 
Deleting a name entry invalidates the iterator and RegEntryID for that name 
entry. 

Listing 10-3 Finding and removing child entries

OSStatus
RemoveDevices(
   const RegEntryID        *parentEntry
   )
{
   RegEntryID              entry;
   RegEntryIter            cookie;

noErr 0 No error
paramErr –50 Bad parameter
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   RegEntryIterationOp     iterOp;
   Boolean                 done;
   OSStatus                err = noErr;

   RegistryEntryIDInit(&entry);

   err = RegistryEntryIterateCreate(&cookie);
   if (err != noErr)
       return err;

   /* Reset iterator to point to our parent entry */
   err = RegistryEntryIterateSet(&cookie, parentEntry);

   if (err == noErr)   {

       /* Include just immediate chidren, not all descendants */
       iterOp = kRegIterChildren;
       do  {
           err = RegistryEntryIterate(&cookie, iterOp, &entry, &done);         
           if (!done && err == noErr)  {
               err = RegistryEntryDelete(&entry);
               RegistryEntryIDDispose(&entry);
           }
           iterOp = kRegIterChildren;

       } while (!done && err == noErr);
   }   
   RegistryEntryIterateDispose(&cookie);   
   return err;
}

RegistryEntrySearch 10

Another kind of iteration call, RegistryEntrySearch, retrieves the next name 
entry in the Name Registry that has a specified matching property.

OSStatus RegistryEntrySearch(
RegEntryIter *cookie,
RegEntryIterationOp relationship,
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RegEntryID *foundEntry,
Boolean *done,
const RegPropertyName *propertyName,
const void *propertyValue,
RegPropertyValueSize propertySize);

--> cookie Pointer to the iterator used by iterate and search routines.

--> relationship
The search direction (values defined on (page 291)).

<-- foundEntry
Pointer to the ID of the next name entry found.

<-- done Pointer to the search result. A value of true means searching is 
completed.

--> propertyName
Pointer to name of property to be matched.

--> propertyValue
Pointer to value of property to be matched.

--> propertySize
Size of property to be matched.

DESCRIPTION

RegistryEntrySearch searches for a name entry with a property that matches 
certain criteria and returns the RegEntryID value that identifies that entry in 
foundEntry, or true in done if all matching name entries have been found.

RegistryEntrySearch returns only entries with properties that simultaneously 
match the values of propertyName, propertyValue, and propertySize. If the 
propertyValue pointer is null or propertySize is 0, then any property value is 
considered a match.

EXECUTION CONTEXT

RegistryEntrySearch may be called from any execution level.
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RESULT CODES

CODE SAMPLE

Listing 10-4 shows code that uses RegistryEntrySearch to count the number of 
SCSI interface devices for a given parent device.

Listing 10-4 Using RegistryEntrySearch

OSStatus
FindSCSIDevices(
   const RegEntryID        *parentEntry,
   int                     *numberOfSCSIDevices
   )
{
   RegEntryIter            cookie;
   RegEntryID              SCSIEntry;
   RegEntryIterationOp     iterOp;
   Boolean                 done;
   OSStatus                err = noErr;

   #define kSCSIDeviceType     "scsi"

   RegistryEntryIDInit(&SCSIEntry);
   *numberOfSCSIDevices = 0;

   err = RegistryEntryIterateCreate(&cookie);
   if (err != noErr)
       return err;

   /*
    * Reset iterator to point to our parent entry
    */
   err = RegistryEntryIterateSet(&cookie, parentEntry);

noErr 0 No error
paramErr –50 Bad parameter
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   if (err == noErr)   {
       /*
        * Search all descendants of the parent device. 
        */
       iterOp = kRegIterDescendants;
       do  {
           err = RegistryEntrySearch(&cookie, iterOp, &SCSIEntry, &done,
                   "device_type", kSCSIDeviceType, sizeof(kSCSIDeviceType));

           if (!done && err == noErr)  {
               *numberOfSCSIDevices += 1;
               RegistryEntryIDDispose(&SCSIEntry);
           }
           iterOp = kRegIterContinue;

       } while (!done && err == noErr);
   }
   RegistryEntryIterateDispose(&cookie);   
   return err;
}

RegistryEntryIterateDispose 10

RegistryEntryIterateDispose disposes of the iteration structure after searching 
is finished.

void RegistryEntryIterateDispose (RegEntryIter *cookie);

--> cookie Pointer to the iterator used by the iterate and search routines.

DESCRIPTION

Given the cookie value used previously, RegistryEntryIterateDispose disposes 
of resources used for iterating or searching.

EXECUTION CONTEXT

RegistryEntryIterateDispose may be called only from task level.
304 Using the Name Registry



C H A P T E R  1 0

Name Registry
RESULT CODES

Name Lookup 10

RegistryCStrEntryLookup provides a fast, direct mechanism for finding a name 
entry in the Registry.

RegistryCStrEntryLookup 10

RegistryCStrEntryLookup finds a name entry in the Name Registry by starting 
from a designated point and traversing a defined path. This makes it faster than 
most search or iterate routines.

OSStatus RegistryCStrEntryLookup(
const RegEntryID *searchPointID,
const RegCStrPathName *pathName,
RegEntryID *foundEntry);

--> searchPointID
Pointer to the RegEntryID value that identifies starting point of 
search.

--> pathName Pointer to the pathname of entry to be found.

<-- foundEntry
Pointer to the RegEntryID value of found name entry.

DESCRIPTION

RegistryCStrEntryLookup finds a name entry in the Registry based on pathName, 
starting from the entry designated by searchPointID.

If searchPointID is NULL, the path is assumed to be a rooted path and pathName 
must contain an absolute pathname. If the pathname begins with a colon, the 
path is relative to searchPointID and pathName must contain a relative 
pathname. If the pathname does not begin with a colon, the path is a rooted 
path and pathName must contain an absolute pathname.

noErr 0 No error
paramErr –50 Bad parameter
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After using RegistryCStrEntryLookup, dispose of the foundEntry ID by calling 
RegistryEntryIDDispose.

Note
A reverse lookup mechanism has not been provided 
because some name services may not provide a fast, 
general algorithm. To perform reverse lookup, the process 
described in “Name Iteration and Searching” (page 297) 
should be used. ◆

EXECUTION CONTEXT

RegistryCStrEntryLookup may be called only from task level.

RESULT CODES

CODE SAMPLE

Listing 10-5 shows code that uses RegistryCStrEntryLookup to obtain the entry 
ID for a child device.

Listing 10-5 Obtaining an entry ID

OSStatus
LocateChildDevice(
   const RegEntryID            *parentEntry,
   const RegCStrEntryName      *deviceName,
   RegEntryID                  *deviceEntry
   )
{
   RegCStrPathName     devicePathBuf[kRegCStrMaxEntryNameLength + 2]
                           = {kRegPathNameSeparator,kRegPathNameTerminator};
   RegCStrPathName     *devicePath = &devicePathBuf[0];
   OSStatus            err = noErr;

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathNotFound –2539 Path component lookup failed
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   /*
    * Need to construct a relative path name from the parent entry.
    */  
   devicePath = strcat(devicePath, deviceName);

   err = RegistryCStrEntryLookup(parentEntry, devicePath, deviceEntry);
   return err;
}

Pathname Parsing 10

The routines defined in this section convert a RegEntryID value to the equivalent 
full pathname, give the pathname’s length, and parse the pathname into its 
components.

RegistryEntryToPathSize 10

RegistryEntryToPathSize returns the size of the pathname to a specified name 
entry.

OSStatus RegistryEntryToPathSize(
const RegEntryID *entryID,
RegPathNameSize *pathSize);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

<-- pathSize Pointer to the returned size in bytes of the pathname to the 
entry.

DESCRIPTION

RegistryEntryToPathSize returns in pathSize the length (in bytes) of the 
absolute pathname of the name entry designated by entryID, including the 
pathname’s terminating character.
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RESULT CODES

RegistryCStrEntryToPath 10

RegistryCStrEntryToPath returns the pathname of a name entry in the Name 
Registry.

OSStatus RegistryCStrEntryToPath (
const RegEntryID *entryID,
RegCStrPathName *pathName,
RegPathNameSize pathSize);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

<-- pathName Pointer to the returned pathname to the entry.

<-- pathSize The size in bytes of the pathname buffer pointed to by pathName.

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryCStrEntryToPath 
returns its pathname in pathName. If the buffer provided is too small, it returns 
nrPathBufferTooSmall.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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RESULT CODES

RegistryCStrEntryToName 10

RegistryCStrEntryToName retrieves the name component of a name entry and 
returns the ID of the entry’s parent.

OSStatus RegistryCStrEntryToName (
const RegEntryID *entryID,
RegEntryID *parentEntry,
RegCStrEntryName *nameComponent,
Boolean *done);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

<-- parentEntry
Pointer to the returned RegEntryID value of the entry’s parent 
entry.

<-- nameComponent
Pointer to the returned name of the entry as a C string.

<-- done Pointer, returns true when parentEntry is the root.

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryCStrEntryToName 
returns the RegEntryID value that identifies its parent entry in parentEntry and 
the name component of the name entry in nameComponent. 
RegistryCStrEntryToName is useful for locating the parent of a name entry and 
for constructing a relative pathname from the parent to the entry.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrPathBufferTooSmall –2543 Buffer for pathname too small
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RESULT CODES

CODE SAMPLE

Listing 10-6 shows code that uses RegistryCStrEntryToName to obtain the parent 
entry for a given child entry.

Listing 10-6 Obtaining a parent entry

OSStatus
LocateParentDevice(
   const RegEntryID        *deviceEntry,
   RegEntryID              *parentEntry
   )
{
   RegCStrEntryName        deviceNameBuf[kRegCStrMaxEntryNameLength+1];
   Boolean                 done;
   OSStatus                err = noErr;

   err = RegistryCStrEntryToName(deviceEntry, parentEntry,
                                 &deviceNameBuf[0], &done);
   if (err != noErr)
       return err;

   /*
    * If done == true, we have reached the root, there is no parent!
    */     
   if (done)
       err = kNotFoundErr;

   return err;
}

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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Property Management 10

Properties describe what a name entry represents or how it may be used. Each 
name entry has a set of named properties, which may be empty. Each property 
consists of a name string and a value. The value consists of 0 or more 
contiguous bytes. Property names are null-terminated strings of at most 
kRegMaximumPropertyNameLength bytes (31 bytes). Name property data structures 
and constants are listed in “Data Structures and Constants” (page 290).

Creation and Deletion 10

The routines described in this section add new properties to or remove existing 
properties from a name entry in the Name Registry.

RegistryPropertyCreate 10

RegistryPropertyCreate adds a new property to a name entry.

OSStatus RegistryPropertyCreate (
const RegEntryID *entryID,
const RegPropertyName *propertyName,
const void *propertyValue,
RegPropertyValueSize propertySize);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

--> propertyName
Pointer to the name of the property to be created.

--> propertyValue
Pointer to the value to create for the new property.

--> propertySize
The size in bytes of the new property.

DESCRIPTION

Given a RegEntryID value that identifies a name entry, RegistryPropertyCreate 
adds a new property to that entry with name propertyName and value 
propertyValue. The entryID parameter may not be null.
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The propertySize parameter must be set to the size (in bytes) of propertyValue.

Property names may be any alphanumeric strings but may not contain slash (/) 
or colon (:) characters.

RESULT CODES

CODE SAMPLE

In Listing 10-7, RegistryPropertyCreate, RegistryPropertyGetSize,and 
RegistryPropertySet are used to update the value of a given property of a name 
entry. If the property exists, its value is updated. If it doesn’t exist, a new 
property is created.

Listing 10-7 Updating or creating a property

OSStatus
UpdateDeviceProperty(
   const RegEntryID            *deviceEntry,
   const RegPropertyName       *propertyName,
   const void                  *newPropertyValue,
   const RegPropertyValueSize  newPropertySize
   )
{
   RegPropertyValueSize    PrevPropertySize;
   OSStatus                err = noErr;

   /*
    * RegistryPropertyGetSize used here to see if the property exists.
    */
   err = RegistryPropertyGetSize(deviceEntry,propertyName,&PrevPropertySize);

noErr 0 No error
paramErr –50 Bad parameter
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotCreatedErr –2540 Entry or property could not be created
nrNameErr –2541 Name invalid, too long, or not terminated
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   if (err == noErr) {
       err = RegistryPropertySet(deviceEntry, propertyName, 
               newPropertyValue, newPropertySize);
       return err;     

   } else if (err == nrNotFoundErr)
       err = RegistryPropertyCreate(deviceEntry, propertyName, 
               newPropertyValue, newPropertySize);

   return err;
}

RegistryPropertyDelete 10

RegistryPropertyDelete deletes a property from the Name Registry.

OSStatus RegistryPropertyDelete (
const RegEntryID *entryID,
const RegPropertyName *propertyName);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

--> propertyName
Pointer to the name of the property to be deleted.

DESCRIPTION

RegistryPropertyDelete deletes the property named propertyName from the 
name entry identified by entryID.
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RESULT CODES

Property Iteration 10

Traversing the set of properties associated with a name entry is similar to 
iteration over names in the Registry, described in “Name Iteration and 
Searching” (page 297). 

Only one form of property iteration is provided—iteration over the set of 
properties associated with a single name entry.

A property iteration loop has this general form:

Create(...)
do {

Iterate(...);
} while (!done);
Dispose(...);

Property iteration functions communicate by means of an iterator parameter 
that is a RegPropertyIter data structure:

typedef struct  RegPropertyIter { void *opaque; } 
RegPropertyIter,
*RegPropertyIterPtr;

RegistryPropertyIterateCreate 10

The starting routine RegistryPropertyIterateCreate creates an iterator for all 
the properties associated with a name entry.

OSStatus RegistryPropertyIterateCreate (
const RegEntryID *entry,
RegPropertyIter *cookie);

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property locked
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
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--> entry Pointer to the RegEntryID value that identifies a Name Registry 
name entry.

<-- cookie Pointer to the iterator used by property iterate routines.

DESCRIPTION

RegistryPropertyIterateCreate creates a property iterator (cookie) that can be 
used to iterate the properties of the name entry identified by entry. The value it 
returns in cookie is used by RegistryPropertyIterate, described next.

RESULT CODES

RegistryPropertyIterate 10

Repeated calls to RegistryPropertyIterate use the iterator returned by 
RegistryPropertyIterateCreate to iterate through a succession of properties.

OSStatus RegistryPropertyIterate (
RegPropertyIter *cookie,
RegPropertyName *foundProperty,
Boolean *done);

--> cookie Pointer to the iterator used by property iterate routines.

<-- foundProperty
Pointer to the name of the property found.

<-- done Pointer, returns true when all properties have been found.

DESCRIPTION

RegistryPropertyIterate moves from property to property among the 
properties of the name entry specified in a prior RegistryPropertyIterateCreate 
call (see previous section). It returns the name of the next property in 
foundProperty, or true in done if all properties have been iterated through.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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RESULT CODES

CODE SAMPLE

Listing 10-8 shows code that uses RegistryPropertyIterate to iterate through all 
the properties for a given name entry.

Listing 10-8 Iterating through properties

OSStatus
IterateDeviceProperties(
   const RegEntryID        *deviceEntry
   )
{
   RegPropertyNameBuf      propertyName;
   RegPropertyIter         cookie;
   Boolean                 done;
   OSStatus                err = noErr;

   err = RegistryPropertyIterateCreate(deviceEntry, &cookie);

   if (err != noErr)   {
       do  {   
           err = RegistryPropertyIterate(&cookie, &propertyName[0], &done);
           if (err != noErr)
               break;

           /*
            * Do something with the property, given the property name
            * you can use RegistryPropertyGetSize to determine the size
            * of the value and and RegistryPropertyGet to retrieve the value.
            */     

noErr 0 No error
paramErr –50 Bad parameter
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       } while (!done && err == noErr);
   }
   RegistryPropertyIterateDispose(&cookie);        
   return err;
}

RegistryPropertyIterateDispose 10

RegistryPropertyIterateDispose completes the property iteration process.

void RegistryPropertyIterateDispose (RegPropertyIter *cookie);

--> cookie Pointer to the iterator used by iterate and search routines.

DESCRIPTION

RegistryPropertyIterateDispose disposes of the iterator used to find properties. 
It should be called even in the case of an error, so that allocated data structures 
can be freed.

RESULT CODES

Property Retrieval and Assignment 10

The value of an existing property may be retrieved or modified using the 
routines defined in this section.

noErr 0 No error
paramErr –50 Bad parameter
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RegistryPropertyGetSize 10

A property’s value may have any length. If the length of a property’s value is 
not known, use RegistryPropertyGetSize to determine its size so you can 
allocate space for it.

OSStatus RegistryPropertyGetSize (
const RegEntryID *entryID,
const RegPropertyName *propertyName,
RegPropertyValueSize *propertySize);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

--> propertyName
Pointer to the name of the property.

<-- propertySize
Pointer to the size in bytes returned for the property’s value.

DESCRIPTION

RegistryPropertyGetSize returns in propertySize the length (in bytes) of the 
property named propertyName and associated with the name entry identified 
by entryID.

EXECUTION CONTEXT

RegistryPropertyGetSize may be called from task level or secondary interrupt 
level.

RESULT CODES

CODE SAMPLE

In Listing 10-9, RegistryPropertyGetSize and RegistryPropertyGet are used to 
obtain the value of a property.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
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Listing 10-9 Obtaining a property value

OSStatus
GetDeviceProperty(
   const RegEntryID        *deviceEntry,
   const RegPropertyName   *propertyName,
   RegPropertyValue        propertyValue,
   RegPropertyValueSize    *propertySize   
   )
{
   RegPropertyValueSize    size;   
   OSStatus                err = noErr;

   /*
    * Get the size of the value first to see if our buffer is big enough.
    */
   err = RegistryPropertyGetSize(deviceEntry, propertyName, &size);
   if (err == noErr) {
       if (size > *propertySize)
           return kPropBufferTooSmall;
       /*
        * Note, we return the actual property size.
        */
       err = RegistryPropertyGet(deviceEntry, propertyName, propertyValue, 
                   propertySize);
   }
   return err;
}

RegistryPropertyGet 10

RegistryPropertyGet retrieves the value of a property in the Name Registry.

OSStatus RegistryPropertyGet (
const RegEntryID *entryID,
const RegPropertyName *propertyName,
void *propertyValue,
RegPropertyValueSize *propertySize);
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--> entryID Pointer to the RegEntryID value that identifies a name entry.

--> propertyName
Pointer to the name of the property.

<-- propertyValue
Pointer containing the returned value for the property.

<--> propertySize
On input a pointer to the size in bytes of the property buffer. 
Upon return a pointer to the actual size in bytes of the 
property’s value.

DESCRIPTION

RegistryPropertyGet retrieves the value of the property named propertyName 
and associated with the name entry identified by entryID. The propertySize 
parameter must be set to the size in bytes of the buffer pointed to by 
propertyValue. Upon return, the value of propertySize will be the actual length 
of the value in bytes.

EXECUTION CONTEXT

RegistryPropertyGet may be called from task level or outside the task level 
context.

RESULT CODES

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
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RegistryPropertySet 10

RegistryPropertySet sets the value of a property in the Name Registry.

OSStatus RegistryPropertySet (
const RegEntryID *entryID,
const RegPropertyName *propertyName,
const void *propertyValue,
RegPropertyValueSize propertySize);

--> entryID Pointer to the RegEntryID value that identifies a name entry.

--> propertyName
Pointer to the name of the property. For computers built prior to 
the iMac, this value cannot exceed 4 bytes. For the iMac and 
later Macintosh models, this value cannot exceed 8 bytes.

--> propertyValue
Pointer to the value to which to set the property.

--> propertySize
Pointer to the size in bytes of the property. For computers built 
prior to the iMac, this value cannot exceed 8 bytes. For the iMac 
and later Macintosh models, this value cannot exceed 32 bytes. 

DESCRIPTION

RegistryPropertySet sets the value of the property named propertyName and 
associated with the name entry identified by entryID. The propertySize 
parameter must be set to the size (in bytes) of the value pointed to by 
propertyValue.

EXECUTION CONTEXT

RegistryPropertySet may be called from task level only, not from secondary 
interrupt level or hardware interrupt level. This restriction is due to the fact that 
a call to RegistryPropertySet allocates memory in NVRAM. 
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RESULT CODES

Standard Properties 10

Some standard Name Registry properties names are specified for device entries. 
These names should not be used for other purposes. Standard reserved 
property names used by PCI expansion cards are listed in Table 10-1. Property 
names beginning with APPL are reserved for Apple use. 

noErr 0 No error
paramErr –50 Bad parameter
nrLockedErr –2536 Entry or property locked
nrNotEnoughMemoryErr –2537 Not enough space in the system heap
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
nrNameErr –2541 Name invalid, too long, or not terminated
nrOverrunErr This error is only possible if the property 

has the kRegPropertyValueIsSavedToNVRAM 
modifier

nrTypeMismatchErr This error is only possible if the property 
has the kRegPropertyValueIsSavedToNVRAM 
modifier

Table 10-1 Reserved Name Registry property names 

Name Description

Open Firmware standard properties

address Defines large virtual address regions

compatible Defines alternate name property values*

device_type The implemented interface

fcode-rom-offset Location of node’s FCode in the expansion ROM

interrupts Defines the interrupts used

model Defines a manufacturer’s model

name Name of the name entry (nameString); see (page 252)

reg The package’s physical address space request

status Indicates the device’s operations status
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Properties defined by PCI binding to Open Firmware

alternate-reg Alternate access paths for addressable regions

assigned-addresses Assigned physical addresses

class-code Value from corresponding PCI configuration register

device-id Value from corresponding PCI configuration register

devsel-speed Value from corresponding PCI configuration register

driver,xxx,yyy,zzz Driver code for xxx,yyy,zzz platform

driver-reg,xxx,yyy,zzz Descriptor of location for driver code for xxx,yyy,zzz platform 
(not supported by Mac OS)

fast-back-to-back Value from corresponding PCI configuration register

max-latency Value from corresponding PCI configuration register

min-grant Value from corresponding PCI configuration register

power-consumption Function’s power requirements

revision-id Value from corresponding PCI configuration register

vendor-id Value from corresponding PCI configuration register

Properties specific to the Power Macintosh platform

AAPL,address Vector to logical address pointers†

AAPL,interrupts Internal interrupt number

AAPL,slot-name Physical slot identifier

depth Color depth of each pixel (for display device node only)

driver,AAPL,MacOS,PowerPC Driver code for Mac OS

driver-descriptor Property that contains the driver description structure

driver-ist IST member and set value, used to install interrupts‡

driver-ptr Memory address of driver code

driver-ref Reference to driver controlling a specific name entry

Table 10-1 Reserved Name Registry property names (continued)

Name Description
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Normally, the device tree shows several properties attached to each device. 
Most of these properties are created and used by Open Firmware and are 
described fully in IEEE Standard 1275, described on (page 27). Some properties 
are Apple specific and are required only by Power Macintosh computers or 
Mac OS. Following are some notes on the properties listed in Table 10-1:

■ Manufacturers of PCI cards should use their United States stock symbol (if 
they are a publicly traded company) as the hardware manufacturer’s ID in 
the name property. Otherwise, they can ask the IEEE to assign a 24-bit ID 
number by contacting

Registration Authority Committee
IEEE, Inc.
445 Hoes Lane
Piscataway, NJ 08855-1331
Telephone 809-562-3812

■ Mac OS native drivers should use the following value for their driver 
property:

driver,AAPL,MacOS,PowerPC

■ A standard property that is important to native drivers is the 
assigned-addresses property defined in PCI Bus Binding to IEEE 1275-1994, 
currently available from the IEEE as described in a note on (page 27). The 
assigned-addresses property tells the driver where a card’s relocatable 
address locations have been placed in physical memory. With all routines 
except the Expansion Bus Manager I/O functions, driver code must resolve 
assigned-addresses values to AAPL,address values before using them. Sample 
code that retrieves an assigned-addresses property from the Name Registry 
is shown in Listing 9-3 (page 274).

height Height in pixels (for display device node only)

linebytes Number of bytes in each line (for display device node only)

width Width in pixels (for display device node only)

* See “Matching Drivers With Devices” (page 164).
† See “Fast I/O Space Cycle Generation” (page 454).
‡ See “Interrupts and the Name Registry” (page 391).

Table 10-1 Reserved Name Registry property names (continued)

Name Description
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■ Drivers can use the vendor-id, device-id, class-code, and revision-id 
properties to distinguish one card from another. However, these values 
typically refer to the controller on the card rather than the card itself. For 
example, software will be unable to use these properties to distinguish 
between two video cards that use the same controller chip. Driver writers 
can make the cards distinct by giving different names to them in their FCode 
assignments.

■ The fcode-rom-offset property contains the location in the PCI card’s 
expansion ROM at which the FCode that produces the node is found. The 
FCode tokenizer tool can use the value of this property to determine the 
values of other properties, such as driver. If a card’s expansion ROM 
contains no FCode, the fcode-rom-offset property will be absent from the 
card’s Name Registry entry.

■ The driver-ref pointer can be important. This property is created by the 
system when a device driver is installed; it is the driver reference as defined 
by Inside Macintosh: Devices. The property is removed when the driver is 
removed. The presence of this property can be used to determine whether a 
particular device is open.

■ The driver-descriptor property is a structure taken from the driver header; 
it defines various characteristics of the device. The contents of this property 
are defined in “Driver Description Structure” (page 198).

■ The AAPL,address property is a vector to an array of logical address pointers, 
as described in “Fast I/O Space Cycle Generation” (page 454).

■ The AAPL,interrupts property is an internal interrupt number that the Open 
Firmware startup process creates before any FCode is read from the card. 
This property is implementation dependent and does not necessarily reflect 
the actual interrupt bit number in the interrupt controller. 

■ The AAPL,slot-name property is an identifier for the hardware slot in which 
the card is plugged. This property is created by the Open Firmware startup 
process before any FCode is read from the card. Its value may be different 
with different Power Macintosh models.

■ The height, width, linebytes, and depth properties are attached to the Name 
Registry entries of graphic display devices to define each display’s 
characteristics.

■ The property driver,xxx,yyy,zzz provides access to driver code. An 
expansion card ROM may contain a number of different drivers suited to 
different operating systems and machine architectures. The value of xxx 
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specifies the manufacturer of the hardware (AAPL for Apple Computer, Inc.), 
yyy specifies the operating system (MacOS), and zzz specifies the instruction 
set architecture (PowerPC). The value of driver,xxx,yyy,zzz is the driver code 
itself, which can be quite large; there is no defined upper limit to the size of a 
property’s data. Although a PCI card may define a number of drivers, only 
drivers appropriate to an available operating system will be placed in the 
device tree, and therefore only these drivers can be accessed through the 
Name Registry.

Modifier Management 10

Modifiers, described in this section, convey special characteristics of names 
and properties. They are provided for use by low-level experts designed for 
specific platforms. Modifiers may be supported for some names and not others. 
Support may change from one hardware platform to another. Hence, device 
drivers should not rely on modifiers to determine device functionality. 

Data Structures and Constants 10

Modifiers are specified as bits in a 32-bit word. The low-order 16 bits are 
reserved for modifiers applicable to both names and properties. The next 8 bits 
are reserved by the name space and are redefined for each name space. The 
high-order 8 bits are reserved for each name and property set and are redefined 
for each name entry.

The following types are used to declare modifier words:

typedef unsigned long RegModifiers;

typedef RegModifiers RegEntryModifiers;

typedef RegModifiers RegPropertyModifiers;

The following constants are used to mask bits in modifier words:

Name Value Description

kRegNoModifiers 0x00000000 No entry modifiers in place
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The following constants have meaning for property modifiers:

Modifier-Based Searching 10

Mac OS provides two routines to simplify searching for name entries or 
properties that have particular modifiers.

RegistryEntryMod 10

RegistryEntryMod searches for name entries that have specified modifiers.

OSStatus RegistryEntryMod (
RegEntryIter *cookie,
RegEntryIterationOp relationship,
RegEntryID *foundEntry,
Boolean *done,
RegEntryModifiers matchingModifiers);

--> cookie Pointer to the iterator returned by the RegistryIterateCreate 
function for the name entry iterate and search routines.

--> relationship
The search relationship (values defined on (page 291)).

<-- foundEntry
Pointer to the ID returned for the next name entry found.

<-- done Pointer, contains true if searching is completed.

kRegUniversalModifierMask 0x0000FFFF Modifiers to all entries

kRegNameSpaceModifierMask 0x00FF0000 Modifiers to all entries within 
the name space

kRegModifierMask 0xFF000000 Modifiers to just this entry

Name Value Description

kRegPropertyValueIsSavedToNVRAM 0x00000001 Saved in NVRAM

kRegPropertyValueIsSavedToDisk 0x00000002 Saved to disk

Name Value Description
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<-- matchingModifiers
The modifiers to be matched.

DESCRIPTION

RegistryEntryMod searches for name entries, using the relation indicated by 
relationship, that have a specified modifier. RegistryEntryMod returns the 
RegEntryID value that identifies the next name entry found in foundEntry, or 
true in done if all entries have been exhausted.

RegistryEntryMod returns only name entries with modifiers that match the value 
of matchingModifiers. It uses a bit AND operation to determine when the bits 
set in matchingModifiers are also set in the entry.

RESULT CODES

RegistryEntryPropertyMod 10

RegistryEntryPropertyMod searches for name entries that have a property with a 
specified modifier.

OSStatus RegistryEntryPropertyMod (
RegEntryIter *cookie,
RegEntryIterationOp relationship,
RegEntryID *foundEntry,
Boolean *done,
RegEntryModifiers matchingModifiers);

--> cookie Pointer to the iterator returned by the RegistryIterateCreate 
function for the name entry iterate and search routines.

--> relationship
The search relationship (values defined on (page 291)).

<-- foundEntry
Pointer to the ID of the next name entry found.

noErr 0 No error
paramErr –50 Bad parameter
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<-- done Pointer, contains a value of true when searching is completed.

--> matchingModifiers
Pointer to the modifiers to be matched.

DESCRIPTION

RegistryEntryPropertyMod searches for name entries, using the relation 
indicated by relationship, that have a property with a specified modifier. It 
returns the RegEntryID value that identifies the next name entry found in 
foundEntry, or true in done if all entries have been exhausted. 

RegistryEntryPropertyMod returns only name entries with properties that have 
modifiers that match the value of matchingModifiers. It uses a bit AND 
operation to determine when the bits set in matchingModifiers are also set in the 
property.

RESULT CODES

Name Modifier Retrieval and Assignment 10

Existing name entries and properties may have their modifier word’s value set 
or retrieved. Code can accomplish this by using the routines described in this 
section.

IMPORTANT

In the current implementation of the Name Registry, the 
only modifiers that you can change are 
kRegPropertyValueIsSavedToNVRAM and 
kRegPropertyValueIsSavedToDisk. Changing other modifiers 
is reserved for future versions of Mac OS. ▲

noErr 0 No error
paramErr –50 Bad parameter
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RegistryEntryGetMod 10

RegistryEntryGetMod fetches the modifiers for a name entry in the Registry.

OSStatus RegistryEntryGetMod (
const RegEntryID *entry,
RegEntryModifiers *modifiers);

--> entry Pointer to the RegEntryID value that identifies a name entry.

<-- modifiers Upon return contains the value of modifiers for the specified 
entry.

DESCRIPTION

RegistryEntryGetMod returns in modifiers the current modifiers for the name 
entry identified by entry.

RESULT CODES

CODE SAMPLE

In Listing 10-10, RegistryEntryGetMod and RegistryEntrySetMod are used to save 
a property to disk.

Listing 10-10 Saving a property to disk

OSStatus
SaveDeviceProperty(
   const RegEntryID        *deviceEntry,
   const RegPropertyName   *propertyName
   )
{
   RegPropertyModifiers    propertyModifiers;
   OSStatus                err = noErr;

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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   /*
    * Get the existing modifiers first.
    */
  err = RegistryPropertyGetMod (deviceEntry,propertyName,&propertyModifiers);

   if (err == noErr)   {
       /*
        * Set the save-to-disk modifier preserving the 
        * already existing ones.
        */
       propertyModifiers = propertyModifiers 
                           & kRegPropertyValueIsSavedToDisk; 
       err = RegistryPropertySetMod 
             (deviceEntry, propertyName, propertyModifiers);
   }
   return err;
}

RegistryEntrySetMod 10

RegistryEntrySetMod sets the modifiers for a name entry in the Registry.

OSStatus RegistryEntrySetMod (
const RegEntryID *entry,
const RegEntryModifiers modifiers);

--> entry Pointer to the RegEntryID value that identifies a name entry.

<-- modifiers Pointer to the value of modifiers to set.

DESCRIPTION

RegistryEntrySetMod sets the modifiers specified in modifiers for the name 
entry identified by entry. The caller is responsible for preserving bits that 
should remain set by reading the current modifier value, changing it, and then 
assigning the new value.
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RESULT CODES

Property Modifier Retrieval and Assignment 10

The two routines described in this section retrieve and assign property 
modifiers.

RegistryPropertyGetMod 10

RegistryPropertyGetMod fetches the modifiers for a property in the Registry.

OSStatus RegistryPropertyGetMod (
const RegEntryID *entry,
const RegPropertyName *name,
RegPropertyModifiers *modifiers);

--> entry Pointer to the RegEntryID value that identifies a name entry.

--> name Pointer to the property name.

<-- modifiers Pointer to the value returned for the property modifiers.

DESCRIPTION

RegistryPropertyGetMod returns in modifiers the current modifiers for the 
property with name name in the name entry identified by entry.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
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RESULT CODES

RegistryPropertySetMod 10

RegistryPropertySetMod sets the modifiers for a property in the Registry.

OSStatus RegistryPropertySetMod (
const RegEntryID *entry,
const RegPropertyName *name,
RegPropertyModifiers modifiers);

--> entry Pointer to the RegEntryID value that identifies a name entry.

--> name Pointer to the property name.

--> modifiers Pointer to the value of property modifiers to set.

DESCRIPTION

RegistryPropertySetMod sets the modifiers specified in modifiers for the 
property with name name in the name entry identified by entry. The caller is 
responsible for preserving bits that should remain set by reading the current 
modifier value, changing it, and then assigning the new value.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria
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RESULT CODES

Macintosh System Gestalt 10

When it builds the device tree, the Macintosh ROM installs a node at its root, 
called the gestalt node, that contains information about the Macintosh system 
on which it is running. The names of the properties of this node are the 
standard Macintosh gestalt selectors, as described in Inside Macintosh: Operating 
System Utilities. This book is described in “Supplementary Documents” 
(page 26). Some of the available Gestalt properties of interest to PCI drivers are 
shown in Table 10-2.

noErr 0 No error
paramErr –50 Bad parameter
nrInvalidNodeErr –2538 RegEntryID value not valid
nrNotFoundErr –2539 Search failed to match criteria

Table 10-2 Gestalt properties 

Name Description

"fpu " Floating-point unit type

"hdwr" Low-level hardware configuration attributes

"kbd " Keyboard type

"lram" Logical RAM size

"mach" Macintosh model code

"mmu " Memory management unit type

"nreg" Name Registry version

"pgsz" Logical page size

"proc" Microprocessor type

"prty" Parity attributes

"ram " Physical RAM size

"rom " System ROM size
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Note
Specific Macintosh computer models may lack some of the 
gestalt values listed in Table 10-2, so the corresponding 
properties will not appear in the gestalt node. Macintosh 
computers introduced after the iMac do not include the 
gestalt node. ◆

PCI expansion card firmware and driver code can explore the gestalt name 
entry in the Name Registry to determine the hardware and firmware 
environment available to it. For example, Listing 10-11 shows typical code to 
extract the 32-bit value of the Macintosh virtual memory attributes from the 
"vm  " property of the gestalt name entry.

Listing 10-11 Sample code to fetch virtual memory gestalt

RegEntryIter cookie;
RegEntryID gestaltEntry;
RegPropertyValueSize gestaltEntrySize = sizeof(UInt32);
Boolean done;
OSErr err;

err = RegistryEntryIterateCreate(&cookie);
if ( err != noErr )

return err;

"romv" System ROM version

"ser " Serial hardware attributes

"snd " Sound attributes

"tv  " TV support version

"vers" Gestalt version

"vm  " Virtual memory attributes

Table 10-2 Gestalt properties (continued)

Name Description
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err = RegistryEntrySearch ( &cookie,
kRegIterRoot,
&gestaltEntry,
&done,
"vm  ",
nil,
0 );

if ( err != noErr )
return err;

err = RegistryPropertyGet ( &gestaltEntry,
"vm  ",
&vmIsOn,
&gestaltEntrySize );

if ( err != noErr )
return err;

RegistryEntryIterateDispose (&cookie);

Code Samples 10

This section contains code samples that illustrate common Name Registry 
operations.

Adding a Device Entry 10

For all physical devices, adding a device entry to the Name Registry is handled 
by the device’s expert. Device drivers normally do not need to add their devices 
to the Registry.

Adding a new device to the system consists of entering a new name entry in the 
Registry and setting the appropriate property values. The example shown in 
Listing 10-12 adds a new name entry to the Registry with a single property.
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Listing 10-12 Adding a name entry to the Name Registry

#include <NameRegistry.h>

OSStatus JoePro_AddName(
const RegCStrPathName *name,
const RegPropertyName  *prop,
const void *val,
const RegPropertyValueSize len
)

{
OSStatus err = noErr;
RegEntryID where, new_entry;

err = JoePro_FigureOutWhere(&where);
if (err == noErr) {

err = JoePro_EnterName(&where, name, &new_entry);
RegistryEntryIDDispose(&where);

}
if (err == noErr) {

err = JoePro_AddProperties(&new_entry, prop, val, len);
RegistryEntryIDDispose(&new_entry);

}
return err;

}

OSStatus
JoePro_FigureOutWhere(RegEntryID *where)
{

OSErr err = noErr;
RegEntryIter cookie;
Boolean done = FALSE;

/*
 * We want to search all the names, which is
 * the default, so we just need to continue.
 */
RegEntryIterationOp op = kRegIterContinue;
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/*
 * For this example, the existence of the
 * “Joe Pro Root” property is used to find
 * out where to put the “Joe Pro” devices.
 * Initialization code will need to have
 * created this entry.
 */
RegPropertyNameBuf name;
RegPropertyValue val = NULL;
RegPropertyValueSize siz = 0;
strncpy(name, "Joe Pro Root", sizeof(name));

/*
 * Figure out where to put the driver.
 *

 * By convention, there is one “Joe Pro Root”
 * so we don’t need to loop.
 */
err = RegistryEntryIterateCreate(&cookie);
if (err == noErr) {

err = RegistyEntrySearch(&cookie, op, &where, &done,
name, val, siz);

}
RegistryEntryIterateDispose(&cookie);

/*
 * Check if we completed the search without
 * finding the “Joe Pro Root”.
 */
assert(err != noErr || !done);
return err;

}

OSStatus JoePro_EnterName(
const RegEntryID *where,
const RegCStrPathName *name,
RegEntryID *entry
)

{
/*
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 * Assumption: This call will return an error
 * if the name entry is already in the Registry.
 */
return RegistryCStrEntryCreate(where, name, entry);

}

OSStatus
JoePro_AddProperties(

const RegEntryID  *entry,
const RegPropertyName  *prop,
const void  *val,
const RegPropertyValueSize  siz
)

{
return RegistryPropertyCreate(entry, prop, val, siz);

}

Since all name entries in the registry are connected to at least one other entry, 
either an existing name entry must be provided when creating a new entry or it 
will be assumed that the path is specified relative to the root entry.

The creator of a name entry must determine where in the tree it should appear. 
This is typically determined by convention.

Finding a Device Entry 10

Every device driver typically needs to retrieve information about the device 
from the Name Registry. The example in Listing 10-13 retrieves the value of a 
single property for a specified name entry in the Name Registry.

Listing 10-13 Retrieving the value of a property

#include <NameRegistry.h>

OSStatus
JoePro_LookupProperty(

const RegCStrPathName *name,
const RegPropertyName *prop,
RegPropertyValue *val,
RegPropertyValueSize *siz
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)
{

OSErr err = noErr;
RegEntryID entry;

err = JoePro_FindEntry(name, &entry);
if (err == noErr) {

err = JoePro_GetProperty(&entry, prop, val, siz);
RegistryEntryIDDispose(&entry);

}
return err;

}

OSStatus JoePro_FindEntry(
const RegCStrPathName *name,
RegEntryID *entry
)

{
return RegistryCStrEntryLookup(

NULL /* start root */, name, entry);
}

OSStatus JoePro_GetProperty(
RegEntryID *entry,
RegPropertyName *prop,
RegPropertyValue *val,
RegPropertyValueSize *siz
)

{

OSErr err = noErr;

/*
 * Figure out how big a buffer we need for the value
 */
err = RegistryPropertyGetSize(entry, prop, siz);
if (err == noErr) {

*val = (RegPropertyValue) malloc(*siz);

assert(*val != NULL);
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err = RegistryPropertyGet(entry, prop, val, siz);
if (err != noErr) {

free(*val);
*val = NULL;

}
}
return err;

}

Removing a Device Entry 10

When a device is permanently removed from the system, the information 
pertaining to the device must be removed from the Name Registry. When a 
name entry is removed from the Registry, all properties associated with that 
entry are automatically removed as well. Listing 10-14 illustrates removing a 
device entry from the Registry.

Note
In the current Mac OS, all children of a parent entry are 
removed when the parent is removed. Removing a parent 
entry, thereby creating orphan entries, may not be 
supported in future releases. ◆

Listing 10-14 Removing a device entry from the Name Registry

#include <NameRegistry.h>

OSStatus
JoePro_RemName(const RegCStrPathName *name)
{

OSErr err = noErr;
RegEntryID entry;

/* from previous example */
err = JoePro_FindEntry(name, &entry);
if (err == noErr) {

err = JoePro_RemEntry(&entry);
RegistryEntryIDDispose(&entry);
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}
return err;

}

OSStatus
JoePro_RemEntry(RegEntryID *entry)
{

return RegistryEntryDelete(entry);
}

Listing Devices 10

Expert software must be able to find various devices in the system. The example 
shown in Listing 10-15 contains two procedures. The first loops through name 
entries, invoking a callback function for each one. The second loops through the 
properties for a name entry, invoking a callback function for each property. It is 
up to the caller to determine what the callback functions will do, but they could 
(for example) display a graph of names and properties in a window or identify 
all name entries that match a complex set of search criteria.

Listing 10-15 Listing names and properties

#include <NameRegistry.h>

OSStatus JoePro_ListDevices(
void (*callback) (

RegCStrPathName *name,
RegEntryID *entry
)

)
{

OSErr err = noErr;
RegEntryIter cookie;
Boolean done;

/*
 * Entry iterators are created pointing to the root
 * with a RegEntryIterationOp of kRegIterDescendants.
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 * So, we just need to continue.
 */
RegEntryIterationOp op = kRegIterContinue;

err = RegistryEntryIterateCreate(&cookie);
if (err == noErr) do {

RegEntryID entry;

err = RegistryEntryIterate(&cookie, op, &entry, &done);
if (!done) {

RegCStrPathName *name;
RegPathNameSize len;

err = RegistryCStrEntryToPathSize(&entry, &len);
if (err == noErr) {

name = (RegCStrPathName*) malloc(len);

assert(name != NULL);

err = RegistryCStrEntryToPath(&entry, name, len);
if (err == noErr) {

(*callback)(name, &entry);
}
free(name);

}
RegistryEntryIDDispose(&entry);

}
} while (!done);
RegistryEntryIterateDispose(&cookie);
return err;

}

OSStatus JoePro_ListProperties(
const RegCStrPathName *name,
const RegEntryID *entry,
void (*callback)(

 RegPropertyName*,
 RegPropertyValue,
 RegPropertyValueSize
 )

)
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{
OSErr err = noErr;
RegPropertyIter cookie;
Boolean done;

err = RegistryPropertyIterateCreate(entry, &cookie);
if (err == noErr) do {

RegPropertyNameBuf property;

err = RegistryPropertyIterate(&cookie, property, &done);
if (!done) {

RegPropertyValue val;
RegPropertyValueSize siz;

err = JoePro_GetProperty(entry, property, &val, &siz);
if (err == noErr) {

(*callback)(property, val, siz);
}

}
} while (!done);
RegistryPropertyIterateDispose(&cookie);
return err;

}
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This chapter describes the routines that are provided for every native driver by 
the Mac OS Driver Services Library. The routines included in the Driver 
Services Library implement all the programming interfaces that Mac OS 
provides for drivers. Additional functionality may be made available to drivers 
within certain families or categories through family programming interfaces 
(FPIs) maintained by family experts.

As described in the next section, device drivers run in their own environment 
without access to the Mac OS Toolbox. This chapter describes the services 
available in the device driver run-time environment. The services are 
categorized as follows:

■ memory management

■ interrupt management

■ timing services

■ atomic operations

■ queue operations

■ string operations

■ debugging support

■ service limitations

These services are also available to family drivers to support their basic needs. 
Mac OS provides some added family-specific services that are not discussed in 
this chapter. For further information about family-specific services, see 
Chapters 13 through 15.

Device Driver Execution Contexts 11

As explained in “Noninterrupt and Interrupt-Level Execution” (page 149), code 
in PCI-based Macintosh computers may run in any of three execution contexts:

■ Hardware interrupt level is the execution context provided to a device 
driver’s interrupt handler. Hardware interrupts occur as a direct result of a 
hardware interrupt requests. Page faults are not allowed at this context. 
Hardware interrupt level is also known as primary interrupt level.
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■ Secondary interrupt level is the execution context similar in concept to the 
previous Mac OS deferred task environment, which allows drivers to defer 
complex processing in order to minimize interrupt latency. Page faults are 
not allowed at this context.

■ Noninterrupt level, usually called task level, is the context where all other 
code is executed. Page faults are allowed at this context.

Additional information about interrupts contexts can be found in 
Technote 1104, “Interrupt-Safe Routines.” Technotes are available on the 
Developer CD and at the Apple Developer web site. 

Note
Many device driver services are available in only one or 
two of the execution contexts just listed. It is the 
responsibility of the driver writer to conform to these 
limitations. Drivers that violate them will not work with 
future releases of Mac OS. For lists of service availability, 
see “Service Limitations” (page 434). ◆

CurrentExecutionLevel 11

The function CurrentExecutionLevel lets code determine its execution context.

ExecutionLevel CurrentExecutionLevel (void);

DESCRIPTION

CurrentExecutionLevel returns one of the result codes shown below.

EXECUTION CONTEXT

CurrentExecutionLevel may be called from task level, software interrupt level, 
or hardware interrupt level.
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RESULT CODES

Miscellaneous Types 11

This section introduces some basic data types that are used throughout the 
Driver Services Library.

typedef unsigned long ByteCount;

typedef unsigned long ItemCount;

typedef long OSStatus;

typedef unsigned long OptionBits;

For a description of OSStatus, see “Error Returns” (page 156).

The constant kNilOptions (= 0) is provided for clarity.

IDs are used whenever you create, manipulate, or destroy a object. All IDs are 
derived from the type KernelID:

typedef struct OpaqueRef *KernelID;

You should use the derived ID types whenever possible to make your code 
more readable.

kTaskLevel 0 Noninterrupt level
kSecondaryInterruptLevel 5 Secondary interrupt level
kHardwareInterruptLevel 6 Hardware interrupt level
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Note
Derived ID types are all 32-bit opaque identifiers that 
specify various kernel resources. There is a separate ID 
type for each kind of resource—for example, separate types 
for TaskID and AddressSpaceID. All kernel services that 
create or allocate a resource return an ID; the ID is later 
used to specify the resource to perform operations on it or 
delete it. These IDs are opaque because the value of the ID 
tells you nothing—you can’t tell from an ID which resource 
it identifies without calling the kernel, you can’t tell what 
ID you’ll get back the next time you create a resource, and 
you can’t tell the relationship between any two resources 
by the relationship between their IDs. When a resource is 
deleted, its ID usually becomes invalid for a long time. This 
helps your code catch errors, because if you accidentally 
use an ID for a resource that has been deleted, chances are 
you’ll get an error instead of doing something to a different 
resource. ◆

The value kInvalidID (= 0) is reserved to mean no ID.

Memory Management Services 11

This section describes the memory management services that the Driver 
Services Library provides to drivers.

Addressing 11

Current versions of the Mac OS provide a single address space that is used by 
all software. Future versions of Mac OS may provide memory protection and 
separate address spaces for different software entities. The services described in 
this chapter are designed to be compatible with multiple address spaces, and 
drivers using these services may eventually run in a multiple address space 
environment.

One concept that applies to multiple address spaces is that of static logical 
mapping, the ability to address client buffers logically regardless of the current 
address space. Static logical mapping is important because drivers in a multiple 
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address space environment cannot depend on the client buffer’s logical address 
to remain directly accessible for the duration of an I/O operation.

Another concept that applies to multiple address spaces is that of memory 
protection, the ability to prevent inadvertent access to data. Drivers must respect 
the protection of client buffers, even though they may access the buffers 
through means such as hardware direct memory access.

Note
Restrictions on the execution contexts in which memory 
allocation and deallocation services can be used are given 
in “Service Limitations” (page 434). ◆

I/O Operations and Memory 11

Several aspects of the operating system, the main processor, cache memory, and 
the memory hardware must be coordinated when an I/O operation is 
performed between an external device and a buffer in system memory:

■ Memory protection: The I/O operation must not violate the access restrictions 
of 
the buffer.

■ Residency: The I/O operation must not generate unsafe page faults when 
accessing the buffer. Typically a buffer must have physical memory assigned 
to it for the duration of the I/O operation.

■ Addressability: When using DMA hardware to perform an I/O operation, it is 
necessary to convert a logical buffer specification into a physical 
specification. When using programmed I/O, it is necessary to convert the 
buffer specification (either logical or physical) to a logical specification that is 
addressable regardless of the current address space.

■ Memory coherency: Coherency ensures that the data being moved is not stale 
and that the effects of the data movement are apparent to the processor and 
any associated data caches. Guaranteed coherency potentially applies to 
cache operations before and after the I/O operation.

The DSL provides services that ensure this coordination. One service assigns 
physical memory to the buffer, generates an appropriate buffer specification, 
and performs all necessary cache manipulations prior to the I/O operation. 
Another routine cleans up following the I/O operation. These services operate 
according to the computer’s cache topology, taking into account whether the 
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caches are logical or physical and whether the overall hardware architecture 
guarantees coherency. This shields drivers from having to compensate for the 
system memory architecture.

Memory Management Types 11

This section defines some types and values that are fundamental to memory 
management for native drivers.

Values of type LogicalAddress represent a location in an address space:

typedef void *LogicalAddress;

Values of type PhysicalAddress represent location in physical memory. They are 
used primarily with DMA I/O operations:

typedef void *PhysicalAddress;

A LogicalAddressRange structure is a description of a single logically addressed 
buffer:

struct LogicalAddressRange
{

LogicalAddress address;
ByteCount count;

};

typedef struct LogicalAddressRange LogicalAddressRange;
typedef struct LogicalAddressRange *LogicalAddressRangePtr;

A PhysicalAddressRange structure is a description of a single physically 
addressed buffer:

struct PhysicalAddressRange
{

PhysicalAddress address;
ByteCount count;

};

typedef struct PhysicalAddressRange PhysicalAddressRange;
typedef struct PhysicalAddressRange *PhysicalAddressRangePtr;
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An AddressRange structure is a description of a single buffer, in which the buffer 
address may be either logical or physical:

struct AddressRange
{

void *base;
ByteCount length;

};

typedef struct AddressRange AddressRange;

Address spaces are referred to by values of type AddressSpaceID. The value 
kCurrentAddressSpaceID refers to the current address space:

typedef KernelID AddressSpaceID;
enum
{

kCurrentAddressSpaceID = 0
};

Memory Services Used During I/O Operations 11

The DSL provides two routines that help drivers coordinate I/O software with 
system memory:

■ The PrepareMemoryForIO function tells Mac OS that a particular buffer will be 
used for I/O transfers. It checks memory protection, assigns physical 
memory to the buffer, provides addressing information, and prepares the 
processor’s caches for the transfer. 

■ The CheckpointIO function tells the operating system that the previously 
started transfer is complete. It assures processor cache coherency and either 
prepares for further transfers or, if its parameters specify that no more 
transfers will be made, deallocates the resources associated with the buffer 
preparation. Once the preparation’s resources have been deallocated, 
subsequent I/O operations with the buffer must be preceded by another call 
to PrepareMemoryForIO.

The memory coordination that these routines provide is summarized in “I/O 
Operations and Memory” (page 350).
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▲ W AR N I N G

Failure to use these I/O related services properly can result 
in data corruption or fatal system errors. Correct system 
behavior is the responsibility of the operating system and 
all I/O components including hardware, drivers, and other 
software. ▲

Preparing Memory for I/O 11

This section describes the PrepareMemoryForIO function and its associated data 
structures. Different ways of employing PrepareMemoryForIO are discussed in 
“Using PrepareMemoryForIO” (page 360).

PrepareMemoryForIO Data Structures 11

The PrepareMemoryForIO function has a single parameter, a pointer to an 
IOPreparationTable structure.

Some fields of the IOPreparationTable structure contain pointers to subsidiary 
structures. There are three types of subsidiary structures:

■ A LogicalMappingTablePtr value is a pointer to an array of LogicalAddress 
values. The LogicalAddress table is where PrepareMemoryForIO returns the 
static logical addresses the driver can use to logically access the client buffer:

typedef LogicalAddress *LogicalMappingTablePtr;

■ A PhysicalMappingTablePtr value is a pointer to an array of PhysicalAddress 
values. The PhysicalAddress table is where PrepareMemoryForIO returns the 
physical addresses the driver can use to access the client buffer physically:

typedef PhysicalAddress *PhysicalMappingTablePtr;

■ An AddressRangeTablePtr value is a pointer to an array of AddressRange 
specifications. All ranges in a given AddressRange array are of the same kind, 
either all logical or all physical. The AddressRange table is where the driver 
can specify a user buffer that consists of multiple ranges (that is, a 
scatter-gather buffer as described in “Scatter-Gather Client Buffers” 
(page 363):

typedef struct AddressRange *AddressRangeTablePtr;
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The IOPreparationTable structure and its subsidiary structures are diagrammed 
in Figure 11-1 (page 356). 

Note
In Figure 11-1, gray areas are filled in by the 
PrepareMemoryForIO function and white areas are filled in 
by the calling software. The preparationID field is used 
both ways. ◆

The IOPreparationTable structure is defined as follows:

struct IOPreparationTable
{

IOPreparationOptions options;
IOPreparationState state;
IOPreparationID preparationID;
AddressSpaceID addressSpace;
ByteCount granularity;
ByteCount firstPrepared;
ByteCount lengthPrepared;
ItemCount mappingEntryCount;
LogicalMappingTablePtr logicalMapping;
PhysicalMappingTablePtr physicalMapping;
union
{
AddressRange range;
MultipleAddressRange multipleRanges;
} rangeInfo;

};

typedef struct IOPreparationTable IOPreparationTable;

typedef OptionBits IOPreparationOptions;
enum {

kIOMultipleRanges = 0x00000001,
kIOLogicalRanges = 0x00000002,
kIOMinimalLogicalMapping = 0x00000004,
kIOShareMappingTables = 0x00000008,
kIOIsInput = 0x00000010,
kIOIsOutput = 0x00000020,
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kIOCoherentDataPath = 0x00000040,
kIOClientIsUserMode = 0x00000080

};
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Figure 11-1 IOPreparationTable structure
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typedef OptionBits IOPreparationState;
enum {

kIOStateDone = 0x00000001
};

typedef struct MultipleAddressRange MultipleAddressRange;

struct MultipleAddressRange
{

ItemCount entryCount;
AddressRangeTablePtr rangeTable;

};

The IOPreparationTable structure specifies the buffer to be prepared and 
provides storage for the mapping and other information that are returned. Its 
fields contain the following information:

options Optional characteristics of the IOPreparationTable structure 
and the transfer process. Possible values in this field are 
discussed in “IOPreparationTable Options” (page 358).

state Filled in by PrepareMemoryForIO to indicate the state of the 
IOPreparationTable structure. The kIOStateDone flag 
indicates that the buffer has been prepared up to the end of 
the specified range. See “Partial Preparation” (page 365).

preparationID Filled in by PrepareMemoryForIO to indicate the identifier 
that represents the I/O transaction. When the I/O operation 
is completed or abandoned, the IOPreparationID value is 
used to finish the transaction, as described in
“Finishing I/O Transactions” (page 366).

addressSpace The address space containing the buffer to be prepared. 
Current versions of the Mac OS provide only one address 
space, which it automatically passes to native drivers 
through DoDriverIO. In general, a driver should always 
pass the address space it received as a parameter to its 
DoDriverIO routine in this field. Otherwise, this field must 
be specified as kCurrentAddressSpaceID.

granularity Information to reduce the memory usage of partial 
preparations. See “Partial Preparation” (page 365).

firstPrepared The byte offset into the buffer at which to begin 
preparation. See “Partial Preparation” (page 365).
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lengthPrepared Filled in by PrepareMemoryForIO to indicate how much of 
the buffer was successfully prepared, beginning at 
firstPrepared. See “Partial Preparation” (page 365).

mappingEntryCount Number of entries in the logical and physical mapping 
tables supplied. Normally, the driver should allocate as 
many entries as there are pages in the buffer. The number 
of pages in a memory range can be calculated from the 
range’s base address and length. If there are not enough 
entries, a partial preparation is performed within the limit 
of the tables. See “Partial Preparation” (page 365).

logicalMapping The address of an array of LogicalAddress values. 
PrepareMemoryForIO fills the logical mapping table with the 
static logical mappings for the specified buffer. This table is 
optional. Mapping tables are discussed in “Mapping 
Tables” (page 362).

physicalMapping The address of an array of PhysicalAddress values. 
PrepareMemoryForIO fills the physical mapping table with 
the physical addresses corresponding to the specified 
buffer. This table is optional. Mapping tables are discussed 
in “Mapping Tables” (page 362).

rangeInfo The buffer to prepare. A simple buffer is represented by a 
single AddressRange value. A scatter-gather buffer is 
specified by a MultipleAddressRange structure. If the 
kIOMultipleRanges flag is omitted from options, rangeInfo 
is interpreted as an AddressRange value named range. If 
kIOMultipleRanges is specified in options, rangeInfo is 
interpreted as a MultipleAddressRange structure named 
multipleRanges. Scatter-gather buffers are discussed in 
“Scatter-Gather Client Buffers” (page 363). Because there 
might be insufficient resources to prepare the entire buffer, 
the buffer can be prepared in pieces. This procedure is 
discussed in “Partial Preparation” (page 365).

IOPreparationTable Options 11

This options field of the IOPreparationTable structure contains flags that have 
the following meanings:

■ kIOMultipleRanges specifies that the rangeInfo field is to be interpreted as 
MultipleAddressRange, enabling a scatter-gather memory specification.
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■ kIOLogicalRanges specifies that the base fields of the AddressRange structures 
are logical addresses. If this option is omitted, the addresses are treated as 
physical addresses. Current versions of the Mac OS do not support 
specifying physical buffers, so the driver must always specify this option.

■ kIOMinimalLogicalMapping specifies that the LogicalMappingTable structure is 
to be filled in with just the first and last mappings of each range, arranged in 
pairs. Minimal logical mappings are discussed in “DMA Alignment 
Requirements” (page 364).

■ kIOShareMappingTables specifies that the system can use the driver’s 
mapping tables instead of maintaining its own copies of the tables. Sharing 
mapping tables is discussed in “Reducing Memory Usage” (page 363).

■ kIOIsInput specifies that data will be moved into main memory.

■ kIOIsOutput specifies that data will be moved out of main memory. 

■ kIOCoherentDataPath indicates that the data path that will be used to access 
memory during the I/O operation is fully coherent with the main processor’s 
data caches, making data cache manipulations unnecessary. Memory 
coherency with the instruction cache is not implied, however, so the 
appropriate instruction cache manipulations are performed regardless. This 
option is useful when the overall hardware architecture is not coherent, but 
the driver knows that the transfer will occur on a particular hardware path 
that is coherent. (PrepareMemoryForIO operates according to the overall 
architecture and has no implicit way of knowing about individual data 
paths.) When in doubt, omit this option. Incorrectly omitting it merely slows 
operation, whereas incorrectly specifying this option can result in erroneous 
behavior and crashes.

■ kIOClientIsUserMode indicates that PrepareMemoryForIO is being called on 
behalf of a nonprivileged client. If this option is specified, the memory ranges 
are checked for user-mode accessibility. If this option is omitted, the memory 
ranges are checked for privileged-level accessibility. Drivers can obtain the 
client’s execution mode through the device’s family programming interface 
(FPI). This option is not implemented in current versions of Mac OS. For 
compatibility with future Mac OS releases, drivers should omit it from the 
options. The FPI will perform the buffer access level checks on behalf of the 
driver.
Memory Management Services 359



C H A P T E R  1 1  

Driver Services Library
Using PrepareMemoryForIO 11

PrepareMemoryForIO coordinates data transfers between devices and one or more 
memory ranges in the system, the main processor caches, and other memory 
facilities. Preparation includes ensuring that physical memory remains assigned 
to the memory ranges until CheckpointIO relinquishes it. Depending on the I/O 
direction and data path coherence that are specified, Mac OS manipulates the 
contents of the processor’s caches, if any, and may make parts of physical 
memory noncacheable.

PrepareMemoryForIO 11

OSStatus

PrepareMemoryForIO (IOPreparationTable *theIOPreparationTable);

--> theIOPreparationTable
Pointer to an IOPreparationTable structure

DESCRIPTION

PrepareMemoryForIO coordinates data transfers between devices and one or more 
memory ranges with the operating system, the main processor caches, and 
other data buffers. Preparation includes ensuring that physical memory remains 
assigned to the memory ranges until CheckpointIO relinquishes it. Depending 
on the I/O direction and data path coherence that are specified, Mac OS 
manipulates the contents of the processor’s caches, if any, and may make parts 
of the ranges noncacheable.

A native driver can call PrepareMemoryForIO from its DoDriverIO handler. The 
DoDriverIO entry point is discussed in “DoDriverIO Entry Point” (page 204).

The driver or other software must perform I/O preparation before permitting 
data movement. For operations with block-oriented devices, preparation is best 
done just before moving the data, typically by the driver. For operations upon 
buffers such as memory shared between the main processor and a coprocessor, 
frame buffers, or buffers internal to a driver, preparation is best performed 
when the buffer is allocated. This technique is discussed more fully in “Multiple 
Transfers” (page 363). The PCI Card Device Driver Kit contains code samples 
that use PrepareMemoryForIO.
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Calls to PrepareMemoryForIO should be matched with calls to CheckpointIO, even 
if the I/O operation was aborted. In addition to applying finishing operations 
to the memory range, CheckpointIO deallocates resources used in preparing the 
range.

The IOPreparationTable must remain allocated until the last CheckPointIO is 
called. 

EXECUTION CONTEXT

PrepareMemoryForIO may be called only at task level from a driver’s DoDriverIO 
routine or from a subroutine called by DoDriverIO.

RESULT CODES

Logical and Physical Memory Preparation 11

The two most common PrepareMemoryForIO operations are preparing logical or 
physical I/O when the client has specified a single, logically-addressed buffer. 
The following lists show how the driver would set up the IOPreparationTable 
for these cases. The only difference between the two cases is which mapping 
table is supplied. PrepareMemoryForIO infers whether the transfer will be 
physical (DMA) or logical (programmed I/O) based on whether the mapping 
table is physical or logical.

To perform logical I/O with single logical buffer, set IOPreparationTable as 
follows:

noErr 0 No error
paramErr –50 Bad parameter

options kIOLogicalRanges and either kIOIsInput or kIOIsOutput

addressSpace address parameter used in the DoDriverIO call (page 357)

granularity 0

firstPrepared 0

mappingEntryCount Number of pages in buffer

logicalMapping Address of table containing mappingEntryCount entries
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For physical I/O with single logical buffer, set IOPreparationTable as follows:

Mapping Tables 11

The logical and physical mapping tables are where PrepareMemoryForIO returns 
the addresses the driver can use to access the client’s buffer. The first entry of a 
range’s mappings will be the exact mapping of the first prepared address in that 
range, regardless of page alignment, while the remaining entries will be page 
aligned. If multiple address ranges were specified, the mapping table is a 
concatenation, in order, of the mappings for each range. 

There are no explicit length fields in the mapping tables. Instead, entry lengths 
are implied by the entry’s position in the range’s mappings, the overall range 
length, and the page size. The length of the first entry generally runs to the next 
page alignment, the length of the intermediate entries (if any) is the page size, 
and the length of the last element in the range is what remains by subtracting 
the previous lengths from the overall range length. If the prepared range fits 
within a single page, there is only one prepared entry and its length is equal to 
the range length. 

physicalMapping nil

range.base Buffer address

range.length Buffer length

options kIOLogicalRanges and either kIOIsInput or kIOIsOutput

addressSpace address parameter used in the DoDriverIO call 

granularity 0

firstPrepared 0

mappingEntryCount Number of pages in buffer

logicalMapping nil

physicalMapping Address of table containing mappingEntryCount entries

range.base Buffer address

range.length Buffer length
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Scatter-Gather Client Buffers 11

Drivers may be asked to transfer data from buffers that are not contiguous. In 
this case, the client buffer may be specified as a MultipleAddressRange 
scatter-gather list.

A MultipleAddressRange structure specifies an array of AddressRange entries. Its 
fields have the following meanings:

The options and addressSpace specifications apply equally to each range.

The granularity, firstPrepared, and lengthPrepared fields apply to the overall 
buffer. These fields are discussed in “Partial Preparation” (page 365).

The resulting mapping tables concatenate, in order, the mappings for each 
range.

Multiple Transfers 11

This DSL memory management services allow efficient coordination for both 
single and multiple I/O transactions to a given buffer. A single transaction—
such as reading page-faulted data into a client’s memory—uses a 
PrepareMemoryForIO call before the transfer and a single CheckpointIO call when 
the transfer is complete. A multiple transaction scenario—such as a network 
driver that transfers from its own buffers and divides blocks in and out of the 
client buffer—uses a single PrepareMemoryForIO call during driver initialization 
and a CheckpointIO call before and after each transfer. The intermediate calls to 
CheckpointIO would include the kIOMoreTransfers option, so the memory 
preparation remains in effect. 

Reducing Memory Usage 11

PrepareMemoryForIO normally keeps its own copy of the mapping tables in 
addition to the tables the driver has allocated. Hence, memory usage can be 
reduced if the driver shares its mapping tables with the operating system. The 
kIOShareMappingTables option specifies that PrepareMemoryForIO can use the 
driver’s mapping tables rather than maintain its own copies. The shared 

entryCount The number of entries in the rangeTable structure.

rangeTable The address of an array of AddressRange elements (an 
AddressRangeTable structure). See the description of 
AddressRange in “PrepareMemoryForIO Data Structures” 
(page 353). The specified ranges may overlap.
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mapping tables must be located in logical memory that cannot page fault until 
the final CheckpointIO call finishes (that is, the memory is locked). In addition, 
the mapping tables must remain allocated and the entries unaltered until after 
the final CheckpointIO call. It is not necessary for the driver to provide both 
tables.

A full-sized mapping table contains as many entries as there are pages in the 
client buffer. However, the driver can use a smaller table if it calls 
PrepareMemoryForIO more than once for a given client buffer. This technique is 
discussed in “Partial Preparation” (page 365).

The granularity specification can reduce memory usage in the event of a partial 
preparation. Granularity is discussed in “Partial Preparation” (page 365).

Certain DMA transactions require both mapping tables. However, the size of 
the logical mapping table can be easily reduced. The kIOMinimalLogicalMapping 
option is discussed in “DMA Alignment Requirements” (page 364).

Reducing Execution Overhead 11

If memory must be prepared long in advance of the transfer, the driver can 
reduce the execution overhead by postponing cache manipulations. This is 
because cache manipulations are wasted if the buffer will be accessed normally 
before the transfer. By omitting both kIOIsInput and kIOIsOutput from the 
options field, the driver prevents PrepareMemoryForIO from manipulating the 
caches at that time. Later, the driver calls CheckpointIO just prior to the transfer 
to prepare the caches. This is part of the technique discussed in the “Multiple 
Transfers” (page 363).

DMA Alignment Requirements 11

A variation on the physical transfer of data occurs when the client’s buffer does 
not meet the alignment requirements of the DMA hardware. In this case, the 
driver needs to supply a logical mapping table in addition to the physical 
mapping table, so that programmed I/O can be performed in the unaligned 
beginning and/or end of the buffer. Otherwise, the driver would have to 
prepare the beginning and end separately from the middle portion.

Because only the beginning and the end of the buffer will be transferred with 
programmed I/O, only the first and last logical mapping table entries are 
actually needed—the middle entries are page aligned, which is usually 
sufficient for any DMA engine. To reduce memory usage, the driver may limit 
the size of the logical mapping table to just two entries per range and may 
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specify the kIOMinimalLogicalMapping option. PrepareMemoryForIO will fill in the 
first logical mapping table entry of each range as usual and will fill the second 
entry with the static logical mapping of the last page in the range. Two entries 
per range are used, regardless of the range sizes. However, the value of the 
second entry of the pair is undefined if the range is contained within a single 
page.

Partial Preparation 11

If insufficient resources are available to prepare the whole range of memory that 
is specified, PrepareMemoryForIO will prepare as much as possible, indicate to 
the driver how much memory was prepared, clear the kIOStateDone bit in 
tableState, and return noErr. This is called a partial preparation.

Examples of resources that may limit the preparation are insufficient physical 
page frames to make the buffer resident, mapping table size too small, and not 
enough operating-system pool space. Because not all of these resources are 
under the control of the driver, every driver that calls PrepareMemoryForIO must 
be written to handle a partial preparation. One possibility is to make the 
terminating CheckpointIO call to deallocate the preparation’s resources and 
return an error to the client. Another possibility is to perform the transfer as a 
series of partial transfers.

The firstPrepared, lengthPrepared, and granularity fields of the 
IOPreparationTable structure (shown in Figure 11-1 (page 356)) control partial 
preparations. When calling PrepareMemoryForIO the first time, specify 0 for 
firstPrepared. If the resulting tableState value does not indicate kIOStateDone, 
a partial preparation was performed, and lengthPrepared indicates how much 
memory was successfully prepared. After the data transfer and final call to 
CheckpointIO, another PrepareMemoryForIO call can be made to prepare as much 
as possible of the ranges that remain. This time, firstPrepared should be the 
sum of the current firstPrepared and lengthPrepared. This sequence prepare, 
transfer, and final checkpoint can be repeated until IOPreparationState 
indicates kIOStateDone.

The granularity field gives a hint to PrepareMemoryForIO for partial preparation. 
It is useful for transfers with devices that operate on fixed-length buffers. The 
length prepared will be 0 (with an error status returned) or a multiple of 
granularity rounded up to the next greatest page alignment. This prevents 
preparing more memory than the driver is willing to use. A value of 0 for 
granularity specifies no granularity. No check is made for whether the specified 
range lengths are multiples of granularity.
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Finishing I/O Transactions 11

This section describes the CheckpointIO function and its options.

CheckpointIO 11

OSStatus CheckpointIO(
IOPreparationID theIOPreparation,
IOCheckpointOptions theOptions);

--> theIOPreparation
Value from the IOPreparationID field in the IOPreparationTable 
structure.

--> theOptions
Options value, as defined in OptionBits.

typedef OptionBits IOPreparationOptions;
enum{

kNextIOIsInput = 0x00000001,
kNextIOIsOutput = 0x00000002,
kMoreIOTransfers = 0x00000004

};

DESCRIPTION

CheckpointIO performs the necessary follow-up operations for a device I/O 
transfer and optionally prepares for a new transfer or reclaims the system 
resources associated with memory preparation. To reclaim resources, 
CheckpointIO should be called even if the I/O operation was abandoned.

Mac OS supports multiple concurrent preparations of memory ranges or 
portions of memory ranges. In this case, cache actions are appropriate and 
individual pages are not unlocked until all transactions have been finalized.

The theIOPreparation parameter is the IOPreparationID value for the I/O 
operation, as returned by a previous call to PrepareMemoryForIO. This ID is not 
valid following CheckpointIO if the kMoreTransfers option is omitted.

The Options parameter specifies optional operations. Values for this field are the 
following:
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kNextIOIsInput Data will be moved into main memory.
kNextIOIsOutput Data will be moved out of main memory.
kMoreIOTransfers Further I/O transfers will occur to or from the buffer. If 

kMoreIOTransfers is omitted, the buffer is allowed to page 
and IOPreparationID is invalidated.

The IOPreparationTable must remain allocated until the last CheckPointIO is 
called. 

EXECUTION CONTEXT

CheckpointIO may be called from task level or secondary interrupt level but not 
from hardware interrupt level.

RESULT CODES

Cache Operations 11

Unlike some previous Macintosh drivers, native drivers do not need to flush the 
PowerPC processor cache in the case of normal I/O operations. The Power 
Macintosh hardware supports processor cache snooping, which guarantees that 
the RAM and cache memory domain is coherent. The PrepareMemoryForIO 
routine takes care of maintaining cache coherency inherent in PCI-based 
Macintosh computers. 

Nevertheless, driver writers may want to perform cache manipulation to 
improve driver performance. The Driver Services Library provides several 
routines and data types, described in this section, that allow drivers to get 
information about cache, alter the default cache modes, and flush the processor 
cache.The SetProcessorCacheMode function, described on (page 372), forces the 
cache mode for selected pages of memory. The FlushProcessorCache function, 
described on (page 374), forces data from cache out to main memory. These 
functions lets special-purpose drivers optimize their I/O performance. 

noErr 0 No error
paramErr –50 Bad parameter
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▲ W AR N I N G

Take care when using the SetProcessorCacheMode and 
FlushProcessorCache functions, because they may conflict 
with the cache mode operations of Mac OS. Most drivers 
need use only PrepareMemoryForIO and CheckPointIO. ▲

Getting Cache Information 11

The functions described in this section let you determine the structure of the 
processor cache. GetLogicalPageSize and GetDataCacheLineSize define the 
structure of the cache, and GetPageInformation returns information about each 
logical page in an address range.

GetLogicalPageSize 11

ByteCount GetLogicalPageSize (void);

DESCRIPTION

The GetLogicalPageSize function returns the logical page size of the cache, in 
bytes. If you need this value often, call it once at startup and store the value in a 
global. The value of the logical page size of the cache cannot change until the 
system reboots.

EXECUTION CONTEXT

GetLogicalPageSize may be called from task level, software interrupt level, or 
hardware interrupt level.

GetDataCacheLineSize 11

ByteCount GetDataCacheLineSize (void);
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DESCRIPTION

The GetDataCacheLineSize function returns the line size of the cache, in bytes.

EXECUTION CONTEXT

GetDataCacheLineSize may be called from task level, software interrupt level, or 
hardware interrupt level.

GetPageInformation 11

OSStatus GetPageInformation(
AddressSpaceID theAddressSpace,
LogicalAddress theBase,
ByteCount theLength,
PBVersion theVersion,
PageInformation *thePageInfo);

--> theAddressSpace
ID of address space to be examined.

--> theBase Starting address in address space.

--> theLength Length of address range, in bytes.

--> theVersion
Version of the page information structure.

<-- thePageInfo
Pointer to the page information structure.

struct PageInformation
{

AreaID area;
ItemCount count;
PageStateInformation information [1];

};

typedef unsigned long PageStateInformation;
enum {

kPageIsProtected = 0x00000001,
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kPageIsProtectedPrivileged = 0x00000002,
kPageIsModified = 0x00000004,
kPageIsReferenced = 0x00000008,
kPageIsLocked = 0x00000010,
kPageIsResident = 0x00000020,
kPageIsShared = 0x00000040,
kPageIsWriteThroughCached = 0x00000080,
kPageIsCopyBackCached = 0x00000100

};

typedef struct PageInformation PageInformation,
*PageInformationPtr;

DESCRIPTION

The GetPageInformation function returns information about each logical page in 
a specified range. Parameter theAddressSpace specifies the address space 
containing the range of interest. Parameter theBase is the first logical address of 
interest. Parameter theLength specifies the number of bytes of logical address 
space, starting at theBase, about which information is to be returned.

Parameter theVersion specifies the version number of the PageInformation type 
to be returned, thereby providing backward compatibility. 

Parameter thePageInfo is filled in with information about each logical page. 
This buffer must be large enough to contain information about the entire range. 
The page information fields are the following:

■ The Mac OS currently sets this field to kNoAreaID.

■ count indicates the number of entries in which information was returned.

■ information contains one PageStateInformation entry for each logical page.

The bits of PageStateInformation are the following:

■ pageIsProtected: the page is write-protected against unprivileged software.

■ pageIsProtectedPrivileged: the page is write-protected against privileged 
software.

■ pageIsModified: the page has been modified since the last time it was 
mapped in or its data was released.
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■ pageIsReferenced: the page has been accessed (by either a load or a store 
operation) since the last time the memory system’s paging operation checked 
the page.

■ pageIsLocked: the page is ineligible for replacement (it is nonpageable) 
because there is at least one outstanding PrepareMemoryForIO or 
SetPagingMode (of kPagingModeResident) request outstanding that uses it.

■ pageIsShared: the page’s underlying physical page is mapped into additional 
logical pages.

RESULT CODES

EXECUTION CONTEXT

GetPageInformation may be called only from task level, not from secondary or 
hardware interrupt level.

Setting Cache Modes 11

Mac OS assigns default cache modes to various kinds of memory. Main 
memory defaults to copyback cache mode; PCI memory space defaults to 
cache-inhibited mode

With these settings, drivers do not need to perform specific cache flushing. 
However, drivers may wish to alter a memory section’s default cache mode to 
create the highest performance data transfer rate for their application. For 
example, the PowerPC processor performs burst bus transactions to memory in 
copyback or writethrough cache modes.

Drivers may also want to set areas of PCI memory space to a cacheable setting, 
thereby causing the PowerPC to burst to that space; however, extreme care 
must be taken to perform appropriate cache flushing when operating on 
cacheable PCI memory space. Drivers that control PCI master devices may wish 
to experiment with different cache modes for their DMA buffer spaces to 
determine the optimal setting.

noErr 0 No error
paramErr –50 Bad parameter
Memory Management Services 371



C H A P T E R  1 1  

Driver Services Library
SetProcessorCacheMode 11

OSStatus SetProcessorCacheMode(
AddressSpaceID theAddressSpace,
void *theBase,
ByteCount theLength,
ProcessorCacheMode theMode);

--> theAddressSpace
Address space ID of address space.

--> theBase Pointer to the starting address in address space.

--> theLength Length of address range, in bytes.

--> theMode Cache mode to be set, as defined in ProcessorCacheMode.

typedef unsigned long ProcessorCacheMode;
enum {

kProcessorCacheModeDefault = 0,
kProcessorCacheModeInhibited = 1,
kProcessorCacheModeWriteThrough = 2,
kProcessorCacheModeCopyBack = 3

};

DESCRIPTION

The SetProcessorCacheMode function sets the cache mode of a specified range of 
address space. The theAddressSpace parameter specifies the address space 
containing the logical ranges to be set. Current versions of the Mac OS provide 
only one address space, which it automatically passes to native drivers through 
DoDriverIO. In general, a driver should always pass the address space it 
received as a parameter to its DoDriverIO routine in this field. Otherwise, the 
address space must be specified as kCurrentAddressSpaceID.

In early versions of the PCI-based Mac OS, SetProcessorCacheMode can be used 
on only one card in any given 256 MB segment of the effective address space 
above 0x7FFF FFFF. For example, if two PCI cards were configured at addresses 
0x8001 2000 and 0x8034 5000, SetProcessorCacheMode could set the cache mode 
of only one card’s address space. However, it could also set the mode of a card 
at 0xA001 0000, because that card’s space lies in a different 256 MB segment of 
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the system’s effective address space. This restriction will be relaxed in future 
versions of Mac OS.

EXECUTION CONTEXT

SetProcessorCacheMode may be called only from task level, not from secondary 
or hardware interrupt level.

RESULT CODES

Synchronizing I/O 11

To synchronize I/O accesses use the SynchronizeIO routine. You can call it either 
before or after accesses—the object is simply to separate the accesses by eieio 
actions. 

SynchronizeIO 11

void SynchronizeIO (void)

DESCRIPTION

The SynchronizeIO routine performs the necessary operations to ensure orderly 
code execution between accesses to noncached devices. 

▲ W AR N I N G

Failure to use SynchronizeIO between I/O accesses can 
misorder load and store operations, with unpredictable 
results for program execution. ▲

EXECUTION CONTEXT

SynchronizeIO may be called from task level, secondary interrupt level, or 
hardware interrupt level.

noErr 0 No error
paramErr –50 Bad parameter
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Flushing the Processor Cache 11

As explained in “Cache Operations” (page 367), drivers normally do not need 
to flush the processor cache. The function described in this section is used only 
in rare cases to improve performance.

FlushProcessorCache 11

OSStatus FlushProcessorCache(
AddressSpaceID spaceID,
LogicalAddress base,
By teCount length);

--> spaceID Target address space identifier.

--> base Starting address in address space.

--> length Length of address range, in bytes.

DESCRIPTION

The FlushProcessorCache function forces data from cache out to main memory. 
The spaceID parameter specifies the address space containing the logical ranges 
prepared. Current versions of the Mac OS provide only one address space, 
which it automatically passes to native drivers through DoDriverIO. In general, a 
driver should always pass the address space it received as a parameter to its 
DoDriverIO routine in this field. Otherwise, the address space must be specified 
as kCurrentAddressSpaceID. 

EXECUTION CONTEXT

FlushProcessorCache may be called from task level, secondary interrupt level, or 
hardware interrupt level.
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RESULT CODES

Memory Allocation and Deallocation 11

The Driver Services Library provides services to allocate and free system 
memory for device drivers. The PoolAllocateResident and PoolDeallocate 
functions allocate and deallocate resident memory. 
MemAllocatePhysicallyContiguous and MemDeallocatePhysicallyContiguous 
allocate and deallocate memory that is resident and physically unbroken. You 
should always use these services to obtain dynamic memory.

PCI drivers that allocate memory may need to increase the size of the system 
heap. They can do this by adding a 'sysz' resource to the driver resource file, 
thereby extending the system heap at startup. Typical code is shown in 
Listing 11-1.

Listing 11-1 Adding a 'sysz' resource to the system heap

type 'sysz' {
longint;

};
resource 'sysz' (0, "256 Kb") {

256 * 1024 /* 1/4 MB of system heap */
};

Memory allocations can be performed only at noninterrupt execution level. 
Memory deallocations can be performed at task execution level. Execution 
levels are discussed in “Driver Execution Contexts” (page 194).

PoolAllocateResident 11

void PoolAllocateResident(
ByteCount byteSize,
Boolean clear);

noErr 0 No error
paramErr –50 Bad parameter
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--> byteSize The number of bytes of memory to allocate.

--> clear Whether or not the allocated memory is to be zeroed.

DESCRIPTION

The PoolAllocateResident function allocates resident memory byteSize in 
length. The memory address is returned as the result of the call. A nil result 
indicates that the pool is exhausted.

EXECUTION CONTEXT

PoolAllocateResident may be called only from task level, not from secondary or 
hardware interrupt level.

RESULT CODES

MemAllocatePhysicallyContiguous 11

LogicalAddress MemAllocatePhysicallyContiguous (
ByteCount byteSize,
Boolean clear);

--> byteSize The number of bytes of memory to allocate.

--> clear Whether or not the allocated memory is to be zeroed.

DESCRIPTION

MemAllocatePhysicallyContiguous allocates a buffer that is resident and is 
guaranteed to be physically uninterrupted. It returns the buffer’s logical 
address.

Driver code can pass the address returned by MemAllocatePhysicallyContiguous 
to PrepareMemoryForIO  (page 360) to obtain the buffer’s physical location.

noErr 0 No error
qErr –1 Queue element not found
memFullErr –108 Not enough room in heap
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EXECUTION CONTEXT

MemAllocatePhysicallyContiguous may be called only from task level, not from 
secondary or hardware interrupt level. Requesting a larger size especially 
anytime after your driver initially starts up is unlikely to succeed. 

RESULT CODES

PoolDeallocate 11

OSStatus PoolDeallocate (LogicalAddress address);

--> address Address of pool memory chunk to deallocate.

DESCRIPTION

The PoolDeallocate routine returns the chunk of memory at address to the pool 
from which it was allocated. It can be used to deallocate memory that was 
allocated with PoolAllocateResident.

EXECUTION CONTEXT

PoolDeallocate may be called only from task level, not from secondary or 
hardware interrupt level.

RESULT CODES

CODE SAMPLE

The code shown in Listing 11-2 uses PoolDeallocate to dispose of a property 
that was obtained by calling the RegistryPropertyGet function.

noErr 0 No error
paramErr –50 Bad parameter
memFullErr –108 Not enough room in heap

noErr 0 No error
qErr –1 Queue element not found
memFullErr –108 Not enough room in heap
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Listing 11-2 Disposing of a property

void DisposeThisProperty(
       RegPropertyValue        *regPropertyValuePtr
   )
{
       if (*regPropertyValuePtr != NULL) {
           PoolDeallocate(*regPropertyValuePtr);
           *regPropertyValuePtr = NULL;
       }
}

MemDeallocatePhysicallyContiguous 11

OSStatus MemDeallocatePhysicallyContiguous(
LogicalAddress address);

--> address Address of the memory block to free.

DESCRIPTION

The MemDeallocatePhysicallyContiguous function deallocates memory allocated 
by MemAllocatePhysicallyContiguous.

EXECUTION CONTEXT

MemDeallocatePhysicallyContiguous may be called only from task level, not 
from secondary or hardware interrupt level.
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RESULT CODES

Memory Copying Routines 11

The DSL provides a general routine, BlockCopy, for copying the contents of 
memory from one location to another. It also provides several BlockMove 
routines that drivers may use to more precisely control the copying process and 
its effects on memory coherency.

BlockCopy 11

BlockCopy copies the contents of memory from one location to another.

void BlockCopy (const void *srcPtr,
void *destPtr,
Size byteCount);

srcPtr Address of source to copy.

destPtr Address of destination to copy into.

byteCount Number of bytes to copy.

DESCRIPTION

The BlockCopy routine copies the chunk of memory at srcPtr to destPtr. 
Parameter byteCount specifies how many bytes are copied. 

BlockCopy calls BlockMove, using the most appropriate version for the current 
execution environment and copying task. However, drivers may bypass 
BlockCopy and call BlockMove directly. 

EXECUTION CONTEXT

BlockCopy may be called from task level, software interrupt level, or hardware 
interrupt level.

noErr 0 No error
paramErr –50 Bad parameter
notLockedErr –623 Specified memory range is not locked
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BlockMove 11

The DSL includes new extensions to the BlockMove routine that deliver 
improved performance for software running in native mode. The original 
BlockMove routine is described in Inside Macintosh: Memory. 

Table 11-1 lists the different versions of the BlockMove function that are in the 
DSL. It indicates for each routine what memory contents it is designed for and 
whether it can be used with buffers or other destinations that are not level-one 
cached. 

DESCRIPTION

The BlockMove extensions provide a way to handle cache-inhibited address 
spaces and are able to flush the dynamic recompilation emulator’s cache, and 
include high-speed routines for setting memory to 0.

The BlockMove extensions use 8-byte floating-point registers for large blocks and 
assume a data cache block size of 32 bytes. They may not work if the 8-byte 
floating point hardware is disabled or absent or if cache blocks are larger than 
32 bytes. They do not use lswx and stswx instructions, which are slow on 
Macintosh models other than those using the PowerPC 601.

Except for BlockZero and BlockZeroUncached, the BlockMove extensions use the 
same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached have 
only two parameters, a pointer and a length, which are the same as the second 
and third parameters of BlockMove. 

Table 11-1 BlockMove versions 

Version Use with what memory contents Can be used with buffers

BlockMove Contains some 68K code, L1 cached No

BlockMoveData No 68K code, L1 cached (fastest) No

BlockMoveDataUncached No 68K code, uncached Yes

BlockMoveUncached Some 68K code, uncached (slowest) Yes

BlockZero Set memory to zero, L1 cached No

BlockZeroUncached Set memory to zero, uncached Yes
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IMPORTANT

The BlockMove versions for cacheable data use the PowerPC 
dcbz instruction to avoid unnecessary prefetching of 
destination cache blocks. For uncacheable data, you should 
avoid using those routines because the dcbz instruction 
faults on uncacheable or write through locations, making 
execution extremely slow. ▲ 

EXECUTION CONTEXT

The BlockMove routines may be called from task level, software interrupt level, 
or hardware interrupt level.

Interrupt Management 11

This section discusses interrupt management for native drivers in PCI-based 
Power Macintosh computers. A general description of the new interrupt model 
is given first, followed by a detailed description of its programming interface. 
Interrupt timing services are described in “Interrupt Timers” (page 422).

Definitions 11

A hardware interrupt is a physical device’s method for requesting attention 
from a computer. The physical device capable of interrupting the computer is 
known as an interrupt source. The device’s request for attention is usually 
asynchronous with respect to the computer’s execution of code. 

An interrupt handler is a piece of code invoked to satisfy a hardware 
interrupt. Interrupt handlers are installed and removed by drivers and act as 
subroutines of the driver. A typical interrupt handler consists of two parts: a 
hardware interrupt handler and a secondary interrupt handler. The hardware 
interrupt handler is the code that services the immediate needs of the device 
that caused the interrupt, performing actions that must be synchronized with it. 
The secondary interrupt handler is the code that perform the remainder of the 
work associated with the interrupt. Secondary interrupt handlers are executed 
at a lower priority than hardware interrupt handlers.
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Interrupt handler registration is the process of associating an interrupt source 
with an interrupt handler. Interrupt dispatching is the sequence of steps 
necessary to invoke an interrupt handler in response to an interrupt.

Execution contexts for interrupt handling are discussed in “Noninterrupt and 
Interrupt-Level Execution” (page 149).

Interrupt Model 11

Interrupt dispatching and control hardware may be designed in a variety of 
styles and capabilities. In some hardware systems, software must do most of the 
work of determining which devices that generate interrupts need to be serviced 
and in what order the system must service them. Other hardware systems may 
contain specific vectorization and priority schemes that force the software to 
respond in predetermined ways. 

Designing a driver so that it can respond to the details of every interrupt 
mechanism in every hardware system limits the driver’s portability and 
increases its complexity. As a result, the native driver interrupt model for 
PCI-based Macintosh computers was introduced and replaces the traditional 
interrupt-handling mechanisms used in previous Macintosh computers without 
a PCI bus. This new model provides a more standardized execution 
environment for interrupt processing by using two key strategies:

■ The native driver model formalizes the concept of hardware and secondary 
interrupt levels for processing interrupts. Hardware interrupt level execution 
happens as a direct result of a hardware interrupt request. Secondary 
interrupt level provides a way to defer noncritical interrupt processing until 
after all hardware interrupts have been serviced, thereby reducing hardware 
interrupt latency.

■ The control and propagation of hardware interrupts are abstracted from the 
driver software. An interrupt source for a device is represented by a node in 
a hierarchical tree, called an interrupt source tree (IST). Generally the leaf 
nodes of the tree represent interrupt sources for devices and the parent nodes 
represent dispatching or demultiplexing points. This removes the need for 
drivers to respond in detail to hardware interrupt mechanisms; they need 
only contain interrupt-handling code specific to the devices they control. 
Driver writers no longer need to know how interrupts are multiplexed by a 
particular hardware platform (such as through versatile interface adapters 
[VIAs), or handle CPU-specific low memory interrupt vectors.
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IMPORTANT

A consequence of abstracting the interrupt-handling 
process from its hardware implementation is that interrupt 
service routines (ISRs) may be called when their devices 
did not cause the interrupt. To minimize processing 
overhead, each interrupt service routine must quickly 
determine if it is needed and return immediately if it is 
not. ▲

A rule that native drivers can follow to minimize interrupt processing overhead 
is as follows: When a driver determines that its associated device did not 
generate an interrupt, return kIsrIsNotComplete. If a driver does not know if its 
device generated an interrupt, return kIsrIsComplete. The interrupt dispatch 
handler will determine if the device is still issuing and interrupt and continue 
searching until is finds a match to service the interrupt. A discussion about how 
kIsrIsComplete and kIsrIsNotComplete are used can be found in “Interrupt 
Dispatching” (page 386).

A more detailed description of interrupt concepts follows. 

Hardware and Secondary Interrupt Levels 11

Hardware interrupt level execution happens as a direct result of a hardware 
interrupt request. To insure maximum system performance, hardware interrupt 
handlers perform only those actions that must be synchronized with the 
external device that caused the interrupt and then queue a secondary interrupt 
handler to perform the remainder of the work associated with the interruption. 
Hardware interrupt handlers must operate within the restrictions of the 
interrupt execution model by not causing page faults and by using a limited set 
of operating-system services. Those services available to hardware interrupt 
handlers are listed in Table 11-2 (page 435).

Secondary interrupt level is similar to the deferred task concept in previous 
versions of Mac OS; conceptually, it exists between the hardware interrupt level 
and the application level. A secondary interrupt queue is filled with requests to 
execute subroutines that are posted for execution by hardware interrupt 
handlers. These handlers need to perform certain actions, but choose to defer 
the execution of the actions in the interest of minimizing hardware interrupt 
level execution. The execution of secondary interrupt handlers is serialized. For 
synchronization purposes, noninterrupt level execution may also post 
secondary interrupt handlers for execution; they are processed synchronously 
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from the prospective of noninterrupt level but are serialized with all other 
secondary interrupt handlers.

Like hardware interrupt handlers, secondary interrupt handlers must also 
operate within the restrictions of the interrupt execution model by not causing 
page faults and by using a limited set of operating-system services. Those 
services available to secondary interrupt handlers are listed in Table 11-2 
(page 435).

Note
The execution of secondary interrupt handlers may be 
interrupted by hardware interrupts. ◆

When writing device drivers that handle hardware interrupts, it is important to 
balance the amount of processing done within the hardware and secondary 
interrupt handlers with that done by the driver’s tasks at noninterrupt level. 
The driver writer should make every effort to shift processing time from 
hardware interrupt level to secondary interrupt level and from secondary 
interrupt level to the driver’s job of supporting its device. Doing this allows the 
system to be tuned so that the driver does not seize an undue amount of 
processing time from applications and other drivers.

Interrupt Source Tree Composition 11

An interrupt source tree is composed of hierarchically arranged nodes. Each 
node represents a distinct hardware interrupt source. Nodes are called interrupt 
members and are arranged in interrupt sets. 

An interrupt set is identified by an InterruptSetID value and is characterized 
as the logical grouping of all of the direct child nodes of a parent node. An 
InterruptSetID value has no meaning other than being unique among all 
InterruptSetID values. An interrupt member is identified by an 
InterruptMemberNumber value, which lies in the range from 1 to the number of 
members in the interrupt set to which the interrupt member belongs. Together, 
an InterruptSetID and InterruptMemberNumber group form an 
InterruptSetMember identifier that uniquely identifies a node in the IST.

Each interrupt set in the hierarchy represents a finer categorization of an 
interrupt source. The top of the tree consists of a single interrupt member that 
has no parent members and is referred to as the root member. The rest of the 
interrupt members in the tree branch down from the root member with each 
interrupt member acting as a child member to the interrupt members above it, 
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and as a parent member to the interrupt members below it. When an interrupt 
member has no child members, it is referred to as a leaf member. 

An interrupt source tree can have any number of branches, and any branch can 
have any number of levels. Figure 11-2 illustrates a simplified example of an 
interrupt source tree.

Figure 11-2 Interrupt source tree example

Interrupt Registration 11

An interrupt member (a node in the IST) can have four kinds of information 
attached 
to it:

■ a pointer to an interrupt service routine (ISR)

■ a pointer to an interrupt enabler routine (IER)
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■ a pointer to an interrupt disabler routine (IDR)

■ a reference constant (refCon)

Installation of this information is done by drivers and I/O experts during 
initialization. The process of attachment is called registration. Once registered 
to an interrupt member, the information persists until the next system startup.

There are two types of ISRs. The first type, called a transversal ISR, routes 
interrupt processing from a member to one of its child members. Transversal 
ISRs are always attached to root or parent/child members. The second type of 
ISR directly handles a device’s request for service. This type, called a handler 
ISR, is always attached to a leaf member. Transversal ISRs never directly handle 
a device’s request for service, and handler ISRs never directly route the 
processing of an interrupt.

When a handler ISR is invoked, it is supplied with three parameters. The first 
parameter indicates the source of the interrupt and consists of an 
InterruptSetID and InterruptMemberNumber, forming the InterruptSetMember 
parameter. This allows a single ISR that has been registered with multiple 
interrupt sources to determine which source caused the current interrupt. The 
second parameter is the reference constant value that was registered along with 
the ISR. The reference constant is not used by the system; its use is completely 
up to the driver writer. The third parameter is a numeric value that tells an ISR 
whether it has been invoked more than once in a single interrupt tree traversal 
process. See “InterruptHandler” (page 397) for more information.

An IER turns on an interrupt source’s ability to generate a hardware 
interruption. Enabling a root member or parent/child member also allows any 
pending interrupt requests from any hierarchically lower child to propagate.

An IDR turns off an interrupt source’s ability to generate a hardware 
interruption. It returns the previous state of the interrupt source (enabled or 
disabled), which can be used to decide if subsequent enable operations are 
required. Disabling a root member or parent/child member also prevents any 
pending interrupt requests from any hierarchically lower child from 
propagating.

Interrupt Dispatching 11

ISRs do all of the actual processing to service a hardware interrupt. When a 
device generates a hardware interrupt request, the interrupt dispatching 
process designates the root member of the IST the current parent member and 
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invokes its ISR routine. The ISR decides which of the root member’s child 
members should be designated as the current parent member for continued 
categorization of the interrupt and returns the InterruptMemberNumber value of 
that child member. As each subsequent child member is designated as the 
current parent member, its ISR is invoked to decide which of its child members 
should next be designated in the same way. Ultimately a leaf member is 
reached, which represents the specific interrupt source. When the leaf member’s 
ISR is invoked, it services the specific requesting interrupt source. It then signals 
that processing for the interrupt is completed by returning the kIsrIsComplete 
constant. If there is no ISR attached to the leaf member, the interrupt request is 
dismissed as a spurious interrupt and system error is returned.

Consider an example using the simplified IST diagrammed in Figure 11-2 
(page 385). Assume that the interrupt source represented by the IST member set 
D, InterruptMemberNumber value 1, requests an interruption. Interrupt 
dispatching begins by invoking the ISR of member set A, 
InterruptMemberNumber value 1, which returns an InterruptMemberNumber value 
of 2. This invokes the ISR of member set B, InterruptMemberNumber value 2, 
which returns an InterruptMemberNumber value of 3. The ISR of member set C, 
InterruptMemberNumber 3 is then invoked, and it returns an 
InterruptMemberNumber of 1. Finally, the ISR of IST member set D, 
InterruptMemberNumber 1, is invoked, which tries to service the requesting 
device. The ISR returns kIsrIsComplete if the device was successfully serviced 
and kIsrIsNotComplete if it was not successfully serviced. 

Mac OS expects an ISR to return a value of kIsrIsComplete if it believes that the 
hardware associated with the ISR caused, or may have caused the interrupt. 
Only if an ISR is certain that its hardware did not cause the interrupt, should it 
return a value of kIsrIsNotComplete. This is true for all ISRs, unless a driver has 
created its own sub-tree that would allow the children of that tree to return 
whatever is desired by the parent node in that tree. The parent of that sub-tree 
is still required to follow the aforementioned rules regarding what the Mac OS 
expects from an ISR. 

At this point the dispatching process is not complete; the tree must now be 
traversed back to the root. This must be done because each interrupt member 
set can have dispatching options attached to the set that modifies dispatching 
behavior. Once a leaf member’s ISR has been invoked, the traversal path must 
be retraced toward the root to see if any parent members on the path belong to 
an interrupt set with dispatching options. These options can take two forms:

■ reinvoke a child’s parent ISR function when the child member returns 
kIsrIsComplete
Interrupt Management 387



C H A P T E R  1 1  

Driver Services Library
■ reinvoke a child’s parent ISR function when the child member returns 
kIsrIsNotComplete

Using kIsrIsComplete 11

An ISR returning kIsrIsComplete starts the dispatching process back toward the 
root. In the current example, assume that interrupt set C has its dispatching 
modifier option set to reinvoke the parent when kIsrIsComplete is returned. 
When the traversal toward the root encounters the InterruptMemberNumber 3 of 
member set C, parent set member B of InterruptMemberNumber 2 has its ISR 
reinvoked. This ISR might then, for example, return an InterruptMemberNumber 
value of 2, which would invoke the ISR of member set C, InterruptMemberNumber 
value 2. This ISR would service its device and returns kIsrIsComplete. Since no 
higher interrupt set has any dispatching modifier options, the dispatching 
process will arrive at the root and be finished. 

In this way, the kIsrIsComplete dispatching option is typically used to give a 
parent member a chance to service additional children without having to 
reenter the dispatching process.

Using kIsrIsNotComplete 11

An ISR returning kIsrIsNotComplete produces slightly more complex behavior. 
An ISR returns kIsrIsNotComplete only when its device was not the device 
requesting service. Even though a leaf ISR was invoked, the interrupt request is 
still outstanding and the ISR for the requesting device must be found. If the 
member set containing the ISR just invoked has no dispatching modifying 
options, then the next interrupt member in the set will have its ISR invoked. In 
the current example, the ISR of IST member set D, InterruptMemberNumber 2, 
would be invoked. Assuming that this ISR serviced its device and returned 
kIsrIsComplete, dispatching would be complete since no higher interrupt set 
had any dispatching modifier options set. 

If the ISR of IST member set D, InterruptMemberNumber 2, also returned 
kIsrIsNotComplete, however, the ISR of the next interrupt member in the parent 
set would be invoked. In the example, InterruptMemberNumber 3 of member set 
C is already the last member in set C, so this set is skipped and the next higher 
set is examined (in this case, set B). Set B is found to have higher members, 
resulting in the ISR of member set B, InterruptMemberNumber 3, being invoked. 
Assuming that this ISR serviced its device and returned kIsrIsComplete, 
dispatching would be finished. 
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The behavior just described is a classic left-branch recursive tree walk. It is 
employed when no means exist for directly identifying exactly which device is 
requesting service. Devices must be polled, by invoking their ISRs, to find and 
service the requesting device.

While this behavior will correctly poll for the requesting device, it is sometimes 
inappropriate to poll devices in the order that they appear in the member set. In 
the example, assume that interrupt set B has its dispatching modifier option set 
to reinvoke the parent ISR if kIsrIsNotComplete is returned. In the example just 
cited, when the traversal toward the root encounters InterruptMemberNumber 2 of 
member set B, the parent set member A, InterruptMemberNumber 1, has its ISR 
reinvoked. This ISR could then return InterruptMemberNumber 4 to invoke 
member set B, InterruptMemberNumber 4. In this way, kIsrIsNotComplete should 
be used when the priority of devices is not the same as the order in which 
devices appear in their member sets.

Interrupt Priority 11

Note that there is no explicit prioritization scheme reflected in this process, but 
that implied prioritization does take place. The fact that tree transversal 
proceeds from the root member toward leaf members gives members closer to 
the root a higher priority. Hence, the hierarchical structure of the IST determines 
the system’s fixed interrupt priority structure. Conversely, a transversal ISR is 
free to use any algorithm to decide which child member’s ISR should be 
invoked—for example, an anti-starvation algorithm or a priority based on the 
value of InterruptMemberNumber. Whatever method is used, transversal ISRs 
provide the dynamic aspect of system’s interrupt priority structure. 
Implementing the IST structure and ISR usage sets the implied prioritization of 
all interrupts.

The Mac OS does set priority for hardware interrupts, separately from the 
software interrupt dispatch mechanism. It is therefore possible for hardware 
interrupt priority to cause an ISR to be interrupts. 

Interrupt Source Tree Construction 11

The Mac OS startup process automatically performs the initial construction and 
maintenance of the IST for all built-in I/O ASICs, PCI expansion cards, and 
PCI-to-PCI bridges that use the default PCI bridge IST extensions.
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Note
Expansion card developers normally have no need to 
construct the IST but may need to extend it as described in 
“Explicit IST Extension” (page 394). The following 
description of the initial construction process is included 
for completeness. ◆

The interrupt tree is constructed by creating new sets of child members under 
existing child members, which thus become parent members. The preexisting 
root member is used as the parent member for the first layer of the tree. As each 
new child member is created, a null ISR is installed and its IER and IDR 
routines are inherited from the parent. If built-in interrupt controller hardware 
can enable and disable interrupts for each of the interrupt members in the new 
interrupt set, IERs and IDRs tailored to each interrupt member are installed. 
When a child member becomes a parent member, a transversal ISR is installed 
on top of the null ISR for dispatching its child members. This process is 
repeated for as many layers and IST members as required. Typically, the default 
IST originally created services all the fixed hardware devices and slots on the 
Power Macintosh main logic board.

Having child members inherit their parents’ IERs and IDRs allows devices that 
don’t have hardware enabling and disabling support to still use IER and IDR 
functions. Invoking an IER or IDR for such a device will transparently invoke 
the parent member’s IER or IDR. At some point up the interrupt tree, main logic 
board hardware will physically enable or disable interrupts intended for the 
device.

IMPORTANT

Default enablers, disablers, and transversal ISRs for all 
Macintosh built-in I/O devices are provided and installed 
by Apple I/O family experts. Drivers that use the family 
expert APIs are more portable and are more likely to be 
compatible with future Apple products. ▲

▲ W AR N I N G

The Apple built-in handlers can be overridden by other 
software. However, built-in interrupt enablers, disablers, 
and transversal ISRs are very specific to the hardware 
platform. Detailed knowledge of the built-in interrupt 
controller hardware is required to successfully override 
one. ▲
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Interrupts and the Name Registry 11

Once the IST is constructed and initialized, drivers need a mechanism to find 
the IST member that represents the interrupt source the driver is controlling. 
This is done through the Name Registry discussed in Chapter 10. As explained 
in “Initialization and Finalization Routines” (page 212), a driver’s initialization 
call contains a RegEntryID value that refers to the set of Name Registry 
properties for the device the driver controls. Besides the standard set of PCI 
properties, a number of Apple-specific properties are included, as shown in 
Table 10-1 (page 322). The Apple property used for interrupts is driver-ist, 
which contains an array of interrupt sources logically associated with a device.

Each driver-ist property is stored as type ISTProperty, which is an array of 
three InterruptSetMember values (see “Basic Data Types” (page 396)), and 
conforms to the following rules:

■ The first InterruptSetMember value contains the interrupt member for the 
device’s controller chip or hardware interrupt source—for example, a serial 
controller chip or a card in an expansion slot. This interrupt member must 
always be defined for hardware that is capable of requesting hardware 
interrupts. 

■ If the device is capable of generating direct memory access (DMA) output 
interrupts, the second InterruptSetMember value contains the interrupt 
member for the interrupt source of the device’s DMA output interrupts. 
Otherwise, it contains null values. 

■ If the device is capable of generating DMA input interrupts, the third 
InterruptSetMember value contains the interrupt member for the interrupt 
source of the device’s DMA input interrupts. Otherwise, it contains null 
values. 

■ If the device generates both DMA input and output interrupts with the same 
interrupt source, the second InterruptSetMember value contains the interrupt 
member for both DMA input and output interrupts. In this case, the third 
InterruptSetMember contains null values.

Note that grouping these interrupt members in one driver-ist property is 
purely a logically grouping. Any one of the three interrupt members can be 
located anywhere within the IST hierarchy.
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Extending the Interrupt Source Tree 11

This section discusses the ways that the IST can grow to accommodate PCI 
devices and bridges.

Automatic IST Extension 11

The construction process described in “Interrupt Source Tree Construction” 
(page 389) builds an IST for all devices that are connected directly to the main 
logic board’s PCI bus. This includes all devices on the Power Macintosh main 
logic board plus expansion slots that are populated with single-function 
expansion cards. However, additional devices may exist that are indirectly 
connected to the main logic board’s PCI bus by means of PCI-to-PCI bridges. 
Examples of such devices are PCI-to-PCI expansion chassis cards and 
multifunction expansion cards that use controller chips with built-in PCI 
interfaces.

A single-function device that is plugged into a main logic board slot will always 
have a pre-built IST member available because the slot is always present and 
accounted for when constructing the IST. Multifunction devices, based on 
PCI-to-PCI bridge devices, aren’t treated so simply. While the pre-built IST 
member for the slot is still available for use by the multifunction device, the 
number of devices on the other side of the PCI-to-PCI bridge is unknown and 
must be accounted for.

Therefore, Mac OS dynamically extends the IST and the Name Registry during 
system initialization for all PCI-to-PCI bridges and for all devices behind them. 
Each PCI-to-PCI bridge and functional device gets its own Name Registry entry 
and IST member. This makes each PCI-to-PCI bridge and functional device 
appear separately in the Name Registry and IST regardless of how many 
devices are physically bundled together on the same expansion card. This is 
convenient for expansion cards that contains more than one copy of a controller 
chip (for example a 4-port Ethernet card). The driver developer needs only 
develop a driver that knows how to control a single controller chip or port; 
Mac OS will automatically create an instance of the driver for each device that 
matches the driver. While the driver developer can choose to override the 
default mechanism, using this service can greatly decrease the complexity of 
some drivers.
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Automatic IST Extension Operation 11

The nature of the PCI-to-PCI bridge devices available on the market today 
imposes some limitations on automatic IST extensions. While today’s 
PCI-to-PCI bridge devices transparently handle the addressing aspects of PCI 
buses, they do not do the same for interrupt request signals. Also, there is no 
current standard among card vendors for providing hardware registers that 
indicate which device is requesting service. Hence, card vendors often simply 
wire the interrupt request signals from all devices together into a single signal 
and feed that directly to the main logic board’s slot. The IST that is constructed 
for the main logic board can tell that something wants service on the 
multifunction expansion card, but it cannot tell exactly which device. To 
accommodate this “lowest common denominator” behavior, the IST extensions 
from the slot IST member uses dispatching modification options to poll the 
extended IST members, as described in “InterruptHandler” (page 397).

When polling is used, certain actions must be observed by the ISRs, IERs, and 
IDRs attached to the extended IST members. Each PCI-to-PCI bridge’s IST 
member has a special bridge dispatching ISR installed. This transversal ISR 
handles all the devices requesting interrupt service during a single IST 
transversal. Once all of the device’s ISRs return kIsrIsNotComplete, the 
transversal ISR returns kIsrIsComplete to the dispatcher to indicate that 
interrupt processing is complete. The transversal ISR also implements a simple 
fairness algorithm that keeps any one device from dominating the interrupt 
service requests. It makes sure that the same device isn’t serviced twice in a row 
(unless only one device is requesting service), regardless of the number of IST 
transversals.

In addition, separate software flags are maintained for each extended IST 
member to enable and disable interrupt servicing. Invoking an extended IST 
member’s IDR and IER functions has two implicit effects. First, invoking the 
IDR only prevents the extended IST member’s ISR from being invoked; it does 
not disable the device’s ability to request an interrupt. It is the responsibility of 
the driver to disable interrupt requests from the actual device. Second, invoking 
the IER not only allows the extended IST member’s ISR to be invoked; it also 
traverses the IST back to the main logic board’s slot IST member, invoking the 
IER of each IST member encountered. Thus, a driver needs only invoke its 
device’s IER to allow interrupt requests through the IST.
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Explicit IST Extension 11

By the time the PCI devices built into the Macintosh system are initialized, an 
IST has been constructed and populated with nodes for every interrupt source 
within the system, including all PCI expansion cards and PCI-to-PCI bridges 
that use the default PCI bridge IST extensions. 

However, PCI expansion devices that cannot use the default PCI bridge IST 
extensions or that have special requirements will not automatically receive 
nodes in the IST. Examples of such devices are multifunction cards with 
non-PCI controller devices and PCI-to-NuBus expansion chassis. Because these 
devices still represent additions to the system hardware, the third-party driver 
writer needs to provide software that extends both the Name Registry and the 
Apple-provided IST. 

Note
PCI-to-NuBus expansion bus cards are a special case. 
NuBus devices are controlled by 68K drivers and so require 
the Macintosh facilities normally provided for NuBus 
devices. The interrupt handler for the PCI-to-NuBus bridge 
must use or provide Slot Manager dispatching and 
interrupt registration for NuBus device drivers. The 
initialization of a PCI-to-NuBus bridge does not need to 
extend the Registry or the IST. ◆

If you are extending the system by means of PCI bus slots or a multifunction 
device, the work to be done includes several basic steps: 

■ When the device initialization code is first invoked, it will be passed the 
RegEntryID value of the Registry node that represents the PCI expansion slot 
that the device occupies. Use the RegistryPropertyGet function to get the 
driver-ist property for the PCI expansion slot, which will have the 
InterruptSetMember value for the slot’s interrupts.

■ Pay particular attention to the fact that the parent (or bridge or 
multifunction) initialization code must be marked as initialize and open 
upon discovery. This is a requirement because extension devices must be 
available in the Name Registry before family experts are run. If this 
requirement is not met, extension devices may not be made available to the 
system because their child devices will not be found. Initialize and open 
upon discovery is described in “Driver Run-Time Structure” (page 201).

■ Use the GetInterruptFunctions function with the slot’s InterruptSetMember 
value to get the default IDR registered with the parent member. Call the IDR 
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to disable the parent member’s interrupt propagation. This keeps spurious 
interrupts from occurring before the IST extension is complete.

■ The device initialization code must extend the IST. Use the 
CreateInterruptSet function to create a new interrupt set with the slot’s 
InterruptSetMember value as the parent member. Make the interrupt set size 
the same as the number of new PCI bus slots or the number of functions (in a 
multifunction device). 

■ Register a transversal ISR with the parent member, using the slot’s 
InterruptSetMember value. When invoked, this transversal ISR should further 
route the slot interrupt to one of the interrupt members in the newly created 
interrupt set.

■ If the device’s interrupt controller hardware can enable and disable 
interrupts for each of the interrupt members in the new interrupt set, register 
tailored IERs and IDRs with each of the interrupt members. Otherwise, the 
IER and IDR that the interrupt members inherited from the parent member 
will moderate interrupts transparently to the caller.

■ For each additional device or function, a node must also be added to the 
Name Registry. Adding nodes to the Registry is described in “Name Creation 
and Deletion” (page 294). 

■ Each new child entry in the Registry requires a complete set of properties to 
allow the device to be located by its family experts. A complete set of 
properties is the set of properties described by and installed by Open 
Firmware. For details, see the Open Firmware standard and Table 10-1 
(page 322). 

■ In addition to the Open Firmware requirements, each new child entry in the 
Registry must also have a driver-ist property installed. This lets subsequent 
drivers that want to register an ISR with one of the newly created interrupt 
members find the correct InterruptSetMember value.

■ Create properties using the rules described in the previous section and in 
“Property Management” (page 311). For each new child entry in the Registry, 
create a driver-ist property with the corresponding new interrupt members 
that were used to extend the IST.

■ Call the IDR for each of the newly created interrupt members to keep 
spurious interrupts from occurring.

■ Call the IER for the parent member to enable interrupts for the system 
extension as a whole.
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Note
There will always be at least one new interrupt member 
created for each new child entry in the Name Registry. 
However, keep in mind that the driver-ist property is a 
logical grouping of interrupt members for a device or 
function. Because of this grouping, you might end up 
creating more interrupt members than child entries in the 
Registry. ◆

Native drivers can now be loaded against any of the new devices, as created by 
the extension to the IST and the Name Registry, just like other native drivers.

Basic Data Types 11

This section defines some data types and values that are fundamental to 
interrupt management.

typedef KernelID InterruptSetID;
typedef long InterruptMemberNumber;

enum {
kReturnToParentWhenComplete = 0x00000001,
kReturnToParentWhenNotComplete = 0x00000002
};

typedef struct InterruptSetMember {
InterruptSetID set;
InterruptMemberNumber member;

} InterruptSetMember;

enum{
kISTChipInterruptSource      = 0,
kISTOutputDMAInterruptSource = 1,
kISTInputDMAInterruptSource  = 2,
kISTPropertyMemberCount      = 3

};

typedef InterruptSetMember ISTProperty[ kISTPropertyMemberCount ];

#define kISTPropertyName "driver-ist"
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typedef long InterruptReturnValue;
enum
{

kFirstMemberNumber = 1,
kIsrIsComplete = 0
kIsrIsNotComplete = -1,
kMemberNumberParent = -2,

};

typedef Boolean InterruptSourceState;
enum
{

kSourceWasEnabled = true,
kSourceWasDisabled = false

};

Control Routines 11

This section describes three interrupt control routines, InterruptHandler, 
InterruptEnabler, and InterruptDisabler. Their use by native drivers is 
described in “Hardware Interrupt Mechanisms” (page 181). See also the sample 
code in Listing 11-3 (page 413).

InterruptHandler 11

InterruptMemberNumber InterruptHandler (
InterruptSetMember ISTmember,
void * refCon,
UInt32 theIntCount);

--> ISTmember Member set ID of the IST member requesting service.

--> refCon 32-bit reference constant registered with the IST member.

--> theIntCount
Count of the number of interrupts processed, including the 
current one.
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DESCRIPTION

When an ISR is invoked, member contains the ID of the IST member that is the 
currently interrupting source. Since an ISR can be registered with multiple IST 
members, the member parameter allows a single ISR to distinguish multiple 
interrupt sources. RefCon contains the reference constant that was installed 
along with the ISR.

If the ISR returns a positive number, the dispatcher uses that number to identify 
which child member should be invoked next.

If the ISR returns kIsrIsComplete, the interrupt dispatcher stops any further 
traversal of the IST and treats the interrupt request as serviced. See “Interrupt 
Dispatching” (page 386) for additional information about the interrupt service 
process. 

IMPORTANT

Since an ISR can be invoked when the device the ISR 
services is not requesting service, an ISR must be able to 
detect this situation and return kIsrIsNotComplete to the 
dispatcher. This lets the dispatcher continue looking for the 
actual ISR that will service the interrupt request. ▲

The theIntCount parameter can be used by transversal interrupt handlers to 
determine if they have been reinvoked by the dispatcher. On each new interrupt 
tree transversal, this value is unique. This means that theIntCount will be a 
different value the first time a transversal ISR is invoked. However, if the 
transversal ISR is reinvoked during the same transversal process, the 
theIntCount value will be the same as the first time it was invoked. By saving 
the value of theIntCount during the previous tree traversal and verifying that 
the current value is the same, a transversal ISR can tell when it is being 
reinvoked.

Note that the theIntCount value will never be equal to 0. On ISR installation, the 
ISR’s saved copy of theIntCount should be initialized to 0 so that the first 
invocations of the ISR can behave properly.

IMPORTANT

The actual value of theIntCount shouldn’t interpreted in 
any way. How this value is computed may change in the 
future. The only valid interpretation of theIntCount is that 
it is unique for each interrupt tree transversal process and 
that it will never be 0. ▲
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InterruptEnabler 11

void InterruptEnabler (
InterruptSetMember ISTmember,
void * refCon);

--> ISTmember Member set ID of the IST member requesting service.

<--> refCon 32-bit reference constant registered with the IST member.

DESCRIPTION

Invoking InterruptEnabler reenables the interrupt member’s ability to 
propagate interrupts to Mac OS. 

Note
Apple-defined enabler functions do not use the passed 
values of refCon and should therefore be passed nil. The 
refCon value lets user-defined enabler functions receive a 
reference constant of the programmer’s choice. 

InterruptDisabler 11

InterruptSourceState InterruptDisabler(
InterruptSetMember ISTmember,
void * refCon);

--> ISTmember Member set ID of the IST member requesting service.

<--> refCon 32-bit reference constant registered with the IST member.

DESCRIPTION

Invoking InterruptDisabler disables the interrupt member’s ability to 
propagate interrupts to Mac OS. This routine returns the member’s ability to 
propagate interrupts as it was before the routine was invoked. A returned value 
of kSourceWasEnabled means that the interrupt member’s propagation state was 
enabled; a returned value of kSourceWasDisabled means it was disabled.
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Note
Apple-defined enabler functions do not use the passed 
values of refCon and should therefore be passed nil. The 
refCon value lets user-defined enabler functions receive a 
reference constant of the programmer’s choice. ◆

Control Routine Installation and Examination 11

To install an interrupt handler, use InstallInterruptFunctions. This routine 
replaces the earlier Slot Manager routine SIntInstall. After an ISR has been 
installed, GetInterruptFunctions lets you examine it.

IMPORTANT

ISR functions are never explicitly removed. To deregister an 
ISR, reinstall the ISR function that was obtained by means 
of the GetInterruptFunctions routine before the ISR was 
originally installed. Then call the IST disabler function to 
keep any further interrupts from requesting service. ▲

The declarations for the interrupt handler, enabler, and disabler are the 
following:

typedef InterruptMemberNumber (*InterruptHandler)
(InterruptSetMember ISTmember,

  void * refCon,
UInt32 theIntCount);

typedef void (*InterruptEnabler)
(InterruptSetMember member,

  void * refCon);

typedef InterruptSourceState (*InterruptDisabler) 
(InterruptSetMember member,

  void * refCon);

The interrupt set ID and interrupt member number values are available as 
driver-ist properties associated with each device entry in the Name Registry. 
Hardware, secondary, and software interrupt mechanisms are described in 
“Interrupt Management” (page 381). 
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InstallInterruptFunctions 11

The InstallInterruptFunctions function installs interrupt service routines in an 
interrupt member. 

OSStatus InstallInterruptFunctions (
InterruptSetID setID,
InterruptMemberNumber member,
void *refCon,
InterruptHandler handlerFunction,
InterruptEnabler enableFunction,
InterruptDisabler disableFunction);

--> setID Interrupt set ID of the IST member to be installed.

--> member Set member number of the IST member to be installed.

<-- refCon 32-bit reference constant to be registered with the IST member.

--> handlerFunction
Pointer to interrupt service routine (ISR).

--> enableFunction
Pointer to interrupt enabler routine (IER).

--> disableFunction
Pointer to interrupt disabler routine (IDR).

DESCRIPTION

Given the ID of an interrupt set in the interrupt tree and the number of a 
member in that set, InstallInterruptFunctions installs the designated interrupt 
handler, enabler, and disabler routines. Interrupt sets and the interrupt tree are 
discussed in “Interrupt Management” (page 381).

Parameter refCon can be any 32-bit value. Mac OS does not use it; it is merely 
stored and passed to each invocation of the most recently installed ISR routine. 
Placing nil in a handlerFunction, enableFunction, or disableFunction parameter 
will not install a new routine—it will leave the current routine installed. 

InstallInterruptFunctions returns noErr if the installation succeeded.
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EXECUTION CONTEXT

InstallInterruptFunctions may be called only from task level, not from 
secondary or hardware interrupt level.

RESULT CODES

GetInterruptFunctions 11

OSStatus GetInterruptFunctions (
InterruptSetID setID,
InterruptMemberNumber member,
void **refCon,
InterruptHandler *handlerFunction,
InterruptEnabler *enableFunction,
InterruptDisabler *disableFunction);

--> setID Interrupt set ID of the IST member.

--> member Member set ID of the IST member.

<-- refCon Pointer to returned reference constant.

<-- handlerFunction
Pointer to returned interrupt handler.

<-- enableFunction
Pointer to returned interrupt enabler function.

<-- disableFunction
Pointer to returned interrupt disabler function.

DESCRIPTION

The GetInterruptFunctions function fetches interrupt control routines installed 
in an interrupt member. The caller passes the member set ID and the set 
member number in setID and member to uniquely identify the interrupt member 
in the tree.

noErr 0 No error
paramErr –50 Bad parameter
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Upon successful completion, GetInterruptFunctions returns the reference 
constant, the ISR, the IER, and the IDR to the caller.

EXECUTION CONTEXT

GetInterruptFunctions may be called only from task level, not from secondary 
or hardware interrupt level.

RESULT CODES

Interrupt Set Creation and Options 11

The routines described in this section deal with interrupt sets. 
CreateInterruptSet extends an IST by creating a new interrupt set. 
GetInterruptSetOptions helps an expert determine how the interrupt dispatcher 
will handle an interrupt set, and ChangeInterruptSetOptions helps it change that 
behavior.

IMPORTANT

The Mac OS IST for PCI cards is initialized and activated by 
Apple software. Third-party I/O software needs only to 
update member functions as necessary to support PCI 
cards. Extending the IST is required only for multifunction 
cards and bridges that don’t use the default PCI bridge IST 
extensions. ▲

CreateInterruptSet 11

OSStatus CreateInterruptSet (
InterruptSetID parentSet,
InterruptMemberNumber parentMember,
InterruptMemberNumber setSize,
InterruptSetID *setID,
InterruptSetOptions options);

noErr 0 No error
paramErr –50 Bad parameter
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--> parentSet Member set ID.

--> parentMember
Set member number.

--> setSize Number of child members to create.

<--> setID Interrupt set ID.

--> options Options:
kReturnToParentWhenComplete = 0x00000001 
kReturnToParentWhenNotComplete = 0x00000002 

DESCRIPTION

The CreateInterruptSet function extends an IST. When calling it, pass the 
member set ID and the set member number in parentSet and parentMember to 
uniquely identify which leaf member is to become the parent member. Pass the 
number of child members to create in setSize. Pass a pointer to a variable of 
type InterruptSetID in setID. CreateInterruptSet returns noErr if the creation 
process succeeded, and the variable pointed to by setID contains the member 
set ID of the new set’s child members.

The options parameter operates in these ways to modify the default interrupt 
dispatching behavior:

■ Option kReturnToParentWhenComplete modifies the behavior for successful 
interrupt completion. Any time a child in a set with this option returns 
kIsrIsComplete, the dispatcher reinvokes the parent’s transversal ISR. A 
parent can thus reevaluate its children’s interrupt requests and can have 
another child serviced immediately instead of having to traverse the entire 
interrupt tree again.

■ Option kReturnToParentWhenNotComplete modifies the behavior for 
unsuccessful interrupt completion. Any time a child in a set with this option 
returns kIsrIsNotComplete, the dispatcher reinvokes the parent’s transversal 
ISR. The parent can then invoke another child to try to service the interrupt 
request. This process is repeated until one of the children members returns 
kIsrIsComplete or the parent returns kIsrIsNotComplete. In the latter case, the 
dispatcher continues traversing the tree between the parent and the root, 
looking for an ISR to satisfy the interrupt request. If the root is reached, the 
interrupt request is treated as spurious.
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■ If no options are set, the dispatcher traverses the tree toward the root, 
looking for an IST member’s interrupt set that has options set, until it arrives 
at the root.

EXECUTION CONTEXT

CreateInterruptSet may be called only from task level, not from secondary or 
hardware interrupt level.

RESULT CODES

GetInterruptSetOptions 11

OSStatus GetInterruptSetOptions(
InterruptSetID setID,
InterruptSetOptions *options);

--> setID Interrupt set ID of the interrupt set.

<-- options Current dispatching options.

DESCRIPTION

GetInterruptSetOptions returns in options the dispatching behavior options for 
the interrupt set identified by setID. 

EXECUTION CONTEXT

GetInterruptSetOptions may be called only from task level, not from software 
or hardware interrupt level.

noErr 0 No error
paramErr –50 Bad parameter
memFullErr –108 Not enough room in heap
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RESULT CODES

ChangeInterruptSetOptions 11

OSStatus ChangeInterruptSetOptions(
InterruptSetID setID,
InterruptSetOptions *options);

--> setID Interrupt set ID of the interrupt set.

--> options New dispatching options.

DESCRIPTION

ChangeInterruptSetOptions lets an expert change the behavior of the interrupt 
dispatcher for a specified interrupt set. The default behavior for most set 
members is to return to the root. For a multifunction PCI card the desired 
behavior might be to return to the parent, so the interrupt dispatcher can revisit 
all set members to determine whether all interrupts have been serviced or there 
is another to handle.

EXECUTION CONTEXT

ChangeInterruptSetOptions may be called only from task level, not from 
secondary or hardware interrupt level.

RESULT CODES

Software Interrupts 11

The Driver Services Library provides several routines to create, run, and 
remove software interrupts. 

noErr 0 No error
paramErr –50 Bad parameter

noErr 0 No error
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CurrentTaskID 11

TaskID CurrentTaskID (void);

DESCRIPTION

CurrentTaskID returns the ID number of the currently running task. This routine 
can be called only from the noninterrupt execution level.

EXECUTION CONTEXT

CurrentTaskID may be called only from task level, not from secondary or 
hardware interrupt level.

CreateSoftwareInterrupt 11

OSStatus CreateSoftwareInterrupt(
SoftwareInterruptHandlerhandler,
TaskID task,
const void *p1,
Boolean persistent,
SoftwareInterruptID *softwareInterrupt)

--> handler Handler for the new software interrupt.

--> task Task ID.

--> p1 First parameter to be passed to the handler.

--> persistent
Indicates whether the ID of the software interrupt should be 
deleted when it is activated or should persist until deleted by 
DeleteSoftwareInterrupt. 

--> theSoftwareInterrupt
Software interrupt ID.
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DESCRIPTION

CreateSoftwareInterrupt creates a software interrupt for a specified task. It can 
be called either from noninterrupt or secondary execution level.

Persistent software interrupts may be sent multiple times but only once per 
activation; that is, the software interrupt must run before it can be sent again.

EXECUTION CONTEXT

CreateSoftwareInterrupt may be called from task level or secondary interrupt 
level but not from hardware interrupt level.

RESULT CODES

SendSoftwareInterrupt 11

OSStatus SendSoftwareInterrupt(
SoftwareInterruptID softwareInterrupt,
const void *p2);

--> softwareInterrupt
Software interrupt ID.

--> p2 First parameter to be passed to the handler.

DESCRIPTION

SendSoftwareInterrupt causes a task to run a software interrupt. It can be called 
from any execution level and acts as an asynchronous function.

IMPORTANT

Currently, SendSoftwareInterrupt calls the user back at the 
same execution level. In future versions of Mac OS it can be 
used to force execution of code that can’t be called at 
interrupt level. ▲

noErr 0 No error
paramErr –50 Bad parameter
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EXECUTION CONTEXT

SendSoftwareInterrupt may be called from task level or secondary interrupt 
level but not from hardware interrupt level.

RESULT CODES

DeleteSoftwareInterrupt 11

OSStatus DeleteSoftwareInterrupt (SoftwareInterruptID softwareInterrupt)

--> softwareInterrupt
Software interrupt ID.

DESCRIPTION

DeleteSoftwareInterrupt removes a software interrupt.

EXECUTION CONTEXT

DeleteSoftwareInterrupt may be called from task level or secondary interrupt 
level but not from hardware interrupt level.

RESULT CODES

Secondary Interrupt Handlers 11

Secondary interrupt handlers are the primary synchronization mechanism that 
a driver and its hardware interrupt handlers may use. Secondary interrupt 
handlers must conform to the interrupt execution environment rules, including 

noErr 0 No error
qErr –1 Queue element not found
paramErr –50 Bad parameter

noErr 0 No error
qErr –1 Queue element not found
paramErr –50 Bad parameter
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absence of page faults, severe restrictions on using system services, and so on. 
For further information, see “Device Driver Execution Contexts” (page 346).

The special characteristic of secondary interrupt handlers that makes them 
useful is that the operating system guarantees that at most one secondary 
handler is active at any time. This means that if you have a data structure that 
requires complex update operations and each of the operations uses secondary 
interrupt handlers to access or update the data structure, then all access to the 
data structure will be atomic even though hardware interrupts are enabled 
during the access.

The DSL provides timers that can run secondary interrupt handlers when they 
expire. See “Interrupt Timers” (page 422).

Note
Although interrupts are accepted during the execution of 
secondary interrupt handlers, no noninterrupt level 
execution can take place. This can lead to severely 
degraded system responsiveness. Use the secondary 
interrupt facility only when necessary. ◆

Secondary interrupt handlers have the form shown in the next section.

IMPORTANT

Secondary interrupts can’t be used on the page fault path 
with Mac OS prior to Mac OS 8.5. ▲

SecondaryInterruptHandlerProc2 11

typedef OSStatus (*SecondaryInterruptHandlerProc2) 
(void *p1,
 void *p2);

--> p1 First parameter.

--> p2 Second parameter.
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DESCRIPTION

The secondary interrupt handler you write must have the interface shown 
above, with two parameters. You must specify the values of the two parameters 
at the time you queue the handler. For queuing information, see the next 
section.

RESULT CODE REQUIRED

Queuing Secondary Interrupt Handlers 11

Secondary interrupt handlers are usually queued during the processing of a 
hardware interrupt. A secondary interrupt handler’s execution will be deferred 
until processing is about to move back to noninterrupt level. You may, however, 
queue secondary interrupt handlers from secondary interrupt level. In this case, 
the queued handler will be run after all other such queued handlers, including 
the current handler, have finished.

Secondary interrupt handlers that are queued from hardware interrupt 
handlers consume memory resources from the time they are queued until the 
time they finish execution. They do this regardless of the execution context (see 
“Device Driver Execution Contexts” (page 346)). You should make every 
attempt to limit the number of simultaneously queued secondary interrupt 
handlers because the memory resources available to them are limited. Only one 
kind of secondary interrupt handler, that with two parameters, may be queued.

QueueSecondaryInterruptHandler 11

OSStatus QueueSecondaryInterruptHandler(
SecondaryInterruptHandler2 handler,
ExceptionHandler exceptionHandler,
const void *p1,
const void *p2);

--> handler The handler to be queued.

noErr 0 No error
Err –1 Routine failed
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--> exceptionHandler
Exception handler (not currently implemented, pass nil).

--> p1 First handler parameter.

--> p2 Second handler parameter.

DESCRIPTION

QueueSecondaryInterruptHandler queues the secondary interrupt handler 
indicated by handler. Future versions of Mac OS may allow an exception 
handler to be associated with the interrupt handler; the exceptionHandler 
parameter is currently ignored, always pass nil.

EXECUTION CONTEXT

QueueSecondaryInterruptHandler may be called from task level, secondary 
interrupt level, or hardware interrupt level.

RESULT CODES

Calling Secondary Interrupt Handlers 11

Secondary interrupt handlers can be called synchronously by the function 
CallSecondaryInterruptHandler2. This service may be used from either 
noninterrupt level or secondary interrupt level but not from hardware interrupt 
level. 

CallSecondaryInterruptHandler2 11

OSStatus CallSecondaryInterruptHandler2(
SecondaryInterruptHandlerProc2 handler,
ExceptionHandler exceptionHandler,
const void *p1,
const void *p2);

noErr 0 No error
qErr –1 Queue element not found
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--> handler The handler to be queued.

--> exceptionHandler
Exception handler (not currently implemented).

--> p1 First handler parameter.

--> p2 Second handler parameter.

DESCRIPTION

CallSecondaryInterruptHandler2 calls the secondary interrupt handler indicated 
by handler. The secondary interrupt handler is invoked immediately; it is not 
queued.

EXECUTION CONTEXT

CallSecondaryInterruptHandler2 may be called from task level or secondary 
interrupt level, but not from hardware interrupt level.

RESULT CODES

Interrupt Code Example 11

The code sample in Listing 11-3 shows a typical interrupt registration process 
during driver initialization.

Listing 11-3 Interrupt registration

#include <Devices.h>
#include <Interrupts.h>
#include <NameRegistry.h>

// useful global data within my driver

noErr 0 No error
Err –1 Call failed
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DriverRefNum myDriverRefNum;
RegEntryID myRegEntryID;
InterruptSetMember myISTMember;
void * theDefaultRefCon;
InterruptHandler theDefaultHandlerFunction;
InterruptEnabler theDefaultEnableFunction;
InterruptDisabler theDefaultDisableFunction;

// the ISR function to be registered

InterruptMemberNumber
myISRHandler( InterruptSetMember member,

 void * refCon,
UInt32 theIntCount)

{

Boolean myDeviceWantsService( void );
void serviceMyDevice( void );

// see if your device was the one that requested an interrupt
if( myDeviceWantsService() == false )

return kIsrIsNotComplete

// do what ever is required to service your hardware here
serviceMyDevice();

// tell the system that this interrupt has been serviced
return kIsrIsComplete;
}

// the main entry point for interrupt initialization

OSErr
DoInitializeCommand( DriverRefNum myRefNum,

RegEntryID myRegID )
{
OSErr Status;
RegPropertyValueSize propertySize;
ISTProperty theISTProperty;
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// remember our RefNum and Registry Entry ID
myDriverRefNum = myRefNum;
myRegEntryID   = myRegID;

// get 'driver-ist' property from the Registry for my device
propertySize = sizeof( theISTProperty );

Status = RegistryPropertyGet( &myRegEntryID,
kISTPropertyName,
theISTProperty,
&propertySize );

// return if we got an error
if( Status != noErr )

return Status;

// remember the first InterruptSetMember in the 'driver-ist' 
// as the IST member that my driver is connected to
myISTMember.setID = theISTProperty[ kISTChipInterruptSource ].setID;
myISTMember.member = theISTProperty[ kISTChipInterruptSource ].member;

// get the default "enabler" function for my IST member
Status = GetInterruptFunctions( myISTMember.setID,

myISTMember.member,
&theDefaultRefCon,
&theDefaultHandlerFunction,
&theDefaultEnableFunction,
&theDefaultDisableFunction );

// return if we got an error
if( Status != noErr )

return Status;

// register my ISR with my IST member. Don't register an
// "enabler" or "disabler" function since the IST member
// my driver is connected to is a Macintosh on-board device.
Status = InstallInterruptFunctions( myISTMember.setID,

   myISTMember.member,
   0,
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(InterruptHandler)myISRHandler,
   (InterruptEnabler)0,
   (InterruptDisabler)0 );

// return if we got an error
if( Status != noErr )

return Status;

// make sure that interrupts are enabled for my IST member
theDefaultEnableFunction( myISTMember,

   0 );

return Status;
}

Timing Services 11

The timing services that the Driver Services Library provides to device drivers 
allow the precise measurement of elapsed time as well as the execution of 
secondary interrupt handlers at desired times.

The accuracy of timer operations is quite good. However, certain limitations are 
inherent in the timing mechanisms. These are described below.

Time Base 11

Timer hardware within the system is clocked at a rate that is model dependent. 
This rate is called the time base. The timing services isolate software from the 
time base by representing all times in AbsoluteTime values, the units required by 
the timing services. You may use conversion routines to convert from 
Nanoseconds or Duration values into AbsoluteTime system units. This conversion 
can introduce errors, but errors are typically limited to one unit of the time base.

Representing the time base is difficult; the value is typically an irrational 
number. Mac OS solves this problem by returning a representation of the time 
base in fractional form—two 32-bit integer values, a numerator and 
denominator. If you multiply an AbsoluteTime value by the value of numerator 
and divide the result by the value of denominator, the result is nanoseconds.
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When performing sensitive timing operations, it can be important to know the 
underlying time base. For example, if the time base is 10 milliseconds, there is 
little value in setting timers for 1 millisecond. You can determine the hardware 
time base by using GetTimeBaseInfo.

GetTimeBaseInfo 11

void GetTimeBaseInfo (
UInt32 *minAbsoluteTimeDelta,
UInt32 *theAbsoluteTimeToNanosecondNumerator,
UInt32 *theAbsoluteTimeToNanosecondDenominator,
UInt32 *theProcessorToAbsoluteTimeNumerator,
UInt32 *theProcessorToAbsoluteTimeDenominator);

<-- minAbsoluteTimeDelta
Minimum number of AbsoluteTime units between time changes.

<-- theAbsoluteTimeToNanosecondNumerator
Absolute to nanoseconds numerator.

<-- theAbsoluteTimeToNanosecondDenominator
Absolute to nanoseconds denominator.

<-- theProcessorToAbsoluteTimeNumerator
Processor time to absolute numerator.

<-- theProcessorToAbsoluteTimeDenominator
Processor time to absolute denominator.

DESCRIPTION

The GetTimeBase function returns information used to determine the current 
hardware time base in fractional form—two 32-bit integer values, a numerator 
and denominator. The minAbsoluteTimeDelta value is the minimum number of 
AbsoluteTime units that can change at any given time. If you multiply an 
AbsoluteTime value by the value of theAbsoluteTimeToNanosecondNumerator and 
divide the result by the value of theAbsoluteTimeToNanosecondDenominator, the 
result is nanoseconds.For example, if the Power Macintosh hardware changes 
the decrementer in quantities of 128, then the minAbsoluteTimeDelta value 
returned by GetTimeBaseInfo would be 128.
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EXECUTION CONTEXT

GetTimeBaseInfo may be called from task level, secondary interrupt level, or 
hardware interrupt level.

Measuring Elapsed Time 11

Measurement of elapsed time is done by simply obtaining the time before and 
after the event to be timed. The difference of these two values indicates the 
elapsed time. Time, in this context, refers to a 64-bit AbsoluteTime count 
maintained by Mac OS. The count is set to 0 by the operating system during its 
initialization at system startup time. Conversion routines are provided in a 
shared library to convert from AbsoluteTime to 64-bit Nanoseconds or 32-bit 
Duration values.

Basic Time Types 11

Callers wishing to specify a time relative to the present use the type Duration:

typedef long Duration;

Values of type Duration are 32 bits long. They are interpreted in a manner 
consistent with the Time Manager—positive values are in units of milliseconds, 
negative values are in units of microseconds. Therefore the value 1500 is 1500 
milliseconds or 1.5 seconds while the value –8000 is 8000 microseconds or 8 
milliseconds. Notice that many values can be expressed in two different ways. 
For example, 1000 and –1000000 both represent exactly one second. When two 
representations have equal value, they may be used interchangeably; neither is 
preferred or inherently more accurate.

Values of type Duration may express times as short as 1 microsecond or as long 
as 24 days. However, two values of type Duration are reserved and have special 
meaning. The value durationImmediate specifies no duration. The value 
durationForever, the largest positive 32-bit value, specifies that many 
milliseconds, or a very long time from the present.

The Driver Services Library provides the following definitions for use with 
values of type Duration:

enum
{

durationMicrosecond = -1,
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durationMillisecond = 1,
durationSecond = 1000,
durationMinute = 1000 * 60,
durationHour = 1000 * 60 * 60,
durationDay = 1000 * 60 * 60 * 24,
durationForever = 0x7FFFFFFF,
durationImmediate = 0,

};

Another form for representing time is in Nanoseconds, the values of which are 
represented by unsigned 64-bit integers:

typedef struct Nanoseconds
{

unsigned long hi;
unsigned long lo;

} Nanoseconds;

A second data type, AbsoluteTime, is used to specify absolute times in 
system-defined units 64 bits long. As discussed in “Time Base” (page 416), the 
real duration of AbsoluteTime units must be calculated.

typedef struct AbsoluteTime
{

unsigned long hi;
unsigned long lo;

} AbsoluteTime;

Obtaining the Time 11

You can read the internal representation of time to which all timer services are 
referenced. This value starts at 0 during operating-system initialization and 
increases throughout the system’s lifetime.

UpTime 11

AbsoluteTime UpTime (void);
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DESCRIPTION

UpTime returns the time since OS initialization in AbsoluteTime units.

EXECUTION CONTEXT

UpTime may be called from task level, secondary interrupt level, or hardware 
interrupt level.
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Time Conversion Routines 11

The Driver Services Library provides the following conversion routines to 
convert between Nanoseconds, Duration, and AbsoluteTime units:

Nanoseconds AbsoluteToNanoseconds (AbsoluteTime absoluteTime);

Nanoseconds DurationToNanoseconds (Duration duration);

Duration AbsoluteToDuration (AbsoluteTime absoluteTime);

AbsoluteTime NanosecondsToAbsolute (Nanoseconds nanoseconds);

AbsoluteTime DurationToAbsolute (Duration duration);

Duration NanosecondsToDuration (Nanoseconds nanoseconds);

AbsoluteTime AddAbsoluteToAbsolute(
AbsoluteTime absoluteTime1,
AbsoluteTime absoluteTime2);

AbsoluteTime SubAbsoluteFromAbsolute(
AbsoluteTime leftAbsoluteTime,
AbsoluteTime rightAbsoluteTime);

AbsoluteTime AddNanosecondsToAbsolute(
Nanoseconds nanoseconds,
AbsoluteTime absoluteTime);

AbsoluteTime AddDurationToAbsolute(
Duration duration,
AbsoluteTime absoluteTime);

AbsoluteTime SubNanosecondsFromAbsolute(
Nanoseconds nanoseconds,
AbsoluteTime absoluteTime);

AbsoluteTime SubDurationFromAbsolute(
Duration duration,
AbsoluteTime absoluteTime);
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Nanoseconds AbsoluteDeltaToNanoseconds(
AbsoluteTime leftAbsoluteTime,
AbsoluteTime rightAbsoluteTime);

Duration AbsoluteDeltaToDuration(
AbsoluteTime leftAbsoluteTime,
AbsoluteTime rightAbsoluteTime);

Note
The value of rightAbsoluteTime is usually larger than that 
of leftAbsoluteTime. However, if you subtract a 
rightAbsoluteTime value from a leftAbsoluteTime value, 
the result is 0, not a negative number. ◆

EXECUTION CONTEXT

The time conversion routines may be called from task level, secondary interrupt 
level, or hardware interrupt level.

Interrupt Timers 11

Interrupt timers allow you to specify that a secondary interrupt handler is to 
run when the timer expires. They are asynchronous in nature. 

Setting Interrupt Timers 11

You can set an interrupt timer from any driver execution context. Each interrupt 
timer is identified by a timer ID:

typedef KernelID TimerID;

IMPORTANT

Interrupt timers consume memory resources from the time 
they are invoked until the time they expire or are canceled. 
They do this regardless of the execution context (see 
“Device Driver Execution Contexts” (page 346)). You 
should make every attempt to limit the number of interrupt 
timers because the memory resources available to them are 
limited. ▲
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SetInterruptTimer 11

OSStatus SetInterruptTimer (
const AbsoluteTime *expirationTime,
SecondaryInterruptHandler2 handler,
void *p1,
TimerID *timer);

--> expirationTime
Time when the timer expires.

--> handler Address of a secondary interrupt handler.

--> p1 First parameter to be passed to handler.

<-- timer Timer ID.

DESCRIPTION

The parameter expirationTime is the current time plus the amount of time delay 
before calling the interrupt handler, expressed in AbsoluteTime units.

Parameter handler is the address of a secondary interrupt handler that is to be 
run when the specified time is reached. 

Parameter p1 is the value that is passed as the first parameter to the secondary 
interrupt handler when the timer expires. The value of the second parameter 
passed to the secondary interrupt handler is set to the current program counter 
at the time the timer expired. 

Parameter timer is updated with the ID of the timer that is created. This ID may 
be used in conjunction with CancelTimer, described on (page 425).

IMPORTANT

If you use SetInterruptTimer in your code, you must 
provide a copy of System Enabler version 1.0.1 to Power 
Macintosh 9500 users who have Enabler version 1.0. If 
Enabler version 1.0.1 or later is already installed, the 
installer should not replace it. Only the Power Macintosh 
9500 has a problem with SetInterruptTimer, and it occurs 
on only a few early units. Other Power Macintosh models 
are not affected. For further information, see the folder 
“New 9500 Enabler” in the PCI Device Driver Kit. ▲
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EXECUTION CONTEXT

SetInterruptTimer may be called from task level, secondary interrupt level, or 
hardware interrupt level.

RETURN CODE

DelayFor 11

OSStatus DelayFor (Duration expirationTime);

--> expirationTime
Amount of time to delay.

DESCRIPTION

DelayFor blocks execution for a given time. Parameter expirationTime is the 
amount of time to suspend execution, expressed as a positive number in 
milliseconds or as a negative number in microseconds. 

EXECUTION CONTEXT

DelayFor may be called only from task level, not from secondary or hardware 
interrupt level.

RETURN CODES

DelayForHardware 11

OSStatus DelayForHardware (AbsoluteTime absoluteTime);

noErr 0 No error

noErr 0 No error
Err –1 Routine failed
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--> absoluteTime
Amount of time to delay.

DESCRIPTION

DelayForHardware spins execution for a given time, so the computer does no 
useful work. Parameter absoluteTime is the amount of time to delay in 
processor-dependent units. You can call NanosecondsToAbsolute to obtain timing 
for the processor in your system. DelayForHardware may be called at any 
execution level.

EXECUTION CONTEXT

DelayForHardware may be called from task level, secondary interrupt level, or 
hardware interrupt level.

RETURN CODES

Canceling Interrupt Timers 11

Currently running asynchronous timers can be canceled. When you attempt to 
cancel an asynchronous timer a race condition begins between your cancellation 
request and expiration of the timer. It is therefore possible that the timer will 
expire and that your cancellation attempt will fail even though the timer had 
not yet expired at the instant the cancellation attempt was made.

With current versions of the Mac OS, if a primary interrupt handler queues a 
secondary handler that is to cancel a timer by calling CancelTimer, and if the 
secondary handler queues another secondary handler, the operating system 
guarantees that the timer will either execute or be canceled before the other 
secondary handler runs.

CancelTimer 11

OSStatus CancelTimer (TimerID timer, AbsoluteTime *timeRemaining);

noErr 0 No error
Err –1 Routine failed
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--> timer Timer ID.

<-- timeRemaining
Time left on timer when it was canceled.

DESCRIPTION

CancelTimer cancels a timer previously created by SetInterruptTimer, described 
on (page 423). It returns in timeRemaining the amount of time that was left in the 
timer when it was canceled. It returns an error if the timer has either already 
expired or been canceled.

EXECUTION CONTEXT

CancelTimer may be called from task level, secondary interrupt level, or 
hardware interrupt level.

RETURN CODES

Atomic Memory Operations 11

This section describes DSL functions that manipulate the contents of memory.

Byte Operations 11

The Driver Services Library provides several 32-, 16-, and 8-bit atomic memory 
operations for use by device drivers. These routines take logical address 
pointers and ensure that the operations are atomic with respect to all devices 
(for example, other processors and DMA engines) that participate in the 
coherency architecture of the Power Macintosh system.

IMPORTANT

Memory locations used by these operations must be long 
word aligned; if they are stored in a structure, you should 
use the compiler directive #pragma options align=power. ▲

noErr 0 No error
Err –1 Routine failed
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Boolean
CompareAndSwap (long oldValue, long newValue, long *Value);

SInt32 IncrementAtomic (SInt32 *value);
SInt32 DecrementAtomic (SInt32 *value);

SInt32 AddAtomic (SInt32 amount, SInt32 *value);

UInt32 BitAndAtomic (UInt32 mask, UInt32 *value);
UInt32 BitOrAtomic (UInt32 mask, UInt32 *value);
UInt32 BitXorAtomic (UInt32 mask, UInt32 *value);

SInt16 IncrementAtomic16 (SInt16 *value);
SInt16 DecrementAtomic16 (SInt16 *value);
SInt16 AddAtomic16 (SInt32 amount, SInt16 *value);
UInt16 BitAndAtomic16 (UInt32 mask, UInt16 *value);
UInt16 BitOrAtomic16 (UInt32 mask, UInt16 *value);
UInt16 BitXorAtomic16 (UInt32 mask, UInt16 *value);

SInt8 IncrementAtomic8 (SInt8 *value);
SInt8 DecrementAtomic8 (SInt8 *value);
SInt8 AddAtomic8 (SInt32 amount, SInt8 *value);
UInt8 BitAndAtomic8 (UInt32 mask, UInt8 *value);
UInt8 BitOrAtomic8 (UInt32 mask, UInt8 *value);
UInt8 BitXorAtomic8 (UInt32 mask, UInt8 *value);

DESCRIPTION

The atomic routines perform various operations on the memory address 
specified by value: 

■ The CompareAndSwap routine compares the value at the specified address with 
oldValue. The value of newValue is written to the specified address only if 
oldValue and the value at the specified address are equal. CompareAndSwap 
returns true if newValue is written to the specified address; otherwise, it 
returns false. A false return value does not imply that oldValue and the 
value at the specified address are not equal; it only implies that 
CompareAndSwap did not write newValue to the specified address.

■ IncrementAtomic increments the value by 1 and DecrementAtomic decrements 
it by 1. These functions return the value as it was before the change.
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■ AddAtomic adds the specified amount to the value at the specified address and 
returns the result. 

■ BitAndAtomic performs a logical and operation between the bits of the 
specified mask and the value at the specified address, returning the result. 
Similarly, BitOrAtomic performs a logical OR operation and BitXorAtomic 
performs a logical XOR operation.

EXECUTION CONTEXT

The atomic operation routines may be called from task level, secondary 
interrupt level, or hardware interrupt level.

Bit Operations 11

Boolean TestAndSet(
UInt32 bit
UInt8 *startAddress);

Boolean TestAndClear(
UInt32 bit
UInt8 *startAddress);

--> bit The bit number in the range 0 through 7.

--> startAddress
The address of the byte in which the bit is located.

DESCRIPTION

TestAndSet sets and TestAndClear clears a single bit in a byte at a specified 
address. They return true if the bit was already set or cleared respectively and 
false otherwise.

EXECUTION CONTEXT

TestAndSet and TestAndClear may be called from task level, secondary interrupt 
level, or hardware interrupt level.
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Queue Operations 11

The Driver Services Library provides the following I/O parameter block queue 
manipulation functions:

OSErr PBQueueCreate (QHdrPtr *qHeader);
OSErr PBQueueInit (QHdrPtr qHeader);
OSErr PBQueueDelete (QHdrPtr qHeader);

void  PBEnqueue (QElemPtr qElement, QHdrPtr qHeader);
OSErr PBEnqueueLast (QElemPtr qElement, QHdrPtr qHeader);
OSErr PBDequeue (QElemPtr qElement, QHdrPtr qHeader); 
OSErr PBDequeueFirst (QHdrPtr qHeader, QElemPtr 
*theFirstqElem);
OSErr PBDequeueLast (QHdrPtr qHeader, QElemPtr 
*theLastqElem);

DESCRIPTION

PBQueueCreate creates a new I/O parameter block queue. PBQueueInit initializes 
it and PBQueueDelete deletes it. PBEnqueue places the element pointed to by 
qElement next in the queue and PBEnqueueLast places it last. PBDequeue removes 
the next element in the queue. PBDequeueFirst removes the first element and 
PBDequeueLast removes the last element. For detailed information about the I/O 
parameter block queue, see Inside Macintosh: OS Utilities.

EXECUTION CONTEXT

The three queue routines, PBQueueInit, PBQueueCreate, and PBQueueDelete, may 
be called only from task level, not from software or hardware interrupt level.

The five queue element routines may be called from task level, secondary 
interrupt level, or hardware interrupt level.
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RETURN CODES (QUEUE ROUTINES)

RETURN CODES (ELEMENT ROUTINES)

String Operations 11

The DSL provides a number of C and Pascal string manipulation functions that 
are available to drivers.

EXECUTION CONTEXT

All the string operation routines may be called from task level, secondary 
interrupt level, or hardware interrupt level.

StrCopy 11

StringPtr PStrCopy (StringPtr dst, ConstStr255Param src);

char *CStrCopy (char *dst, const char *src);

DESCRIPTION

The PStrCopy function copies the Pascal string from src to dst. CStrCopy copies 
characters up to and including the null character from src to dst C strings. 
These routines assume that the two strings do not overlap.

noErr 0 No error
memFullErr –108 Not enough room in heap

noErr 0 No error
qErr –1 Queue element not found
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StrNCopy 11

StringPtr PStrNCopy (StringPtr dst, ConstStr255Param src, UInt32 max);

char *CStrNCopy (char *dst, const char *src, UInt32 max);

DESCRIPTION

PStrNCopy copies the Pascal string from src to dst. At most max chars are copied. 
CStrNCopy copies up to max characters from src to dst C strings. If src string is 
shorter than max, dst string will be padded with null characters. If src string is 
longer than max, dst string will not be null terminated.

StrCat 11

StringPtr PStrCat (StringPtr dst, ConstStr255Param src);

char *CStrCat (char *dst, const char *src);

DESCRIPTION

PStrCat appends characters from src to dst Pascal strings. CStrCat appends 
characters from src to dst C strings. The initial character of src overwrites the 
null character at the end of dst. A terminating null character is always 
appended.

StrNCat 11

StringPtr PStrNCat (StringPtr dst, ConstStr255Param src,UInt32 max);

char *CStrNCat (char *dst, const char *src, UInt32 max);
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DESCRIPTION

PStrNCat appends up to max characters from src to dst Pascal strings. CStrNCat 
appends up to max characters from src to dst C strings. The initial character of 
src overwrites the null character at the end of dst. A terminating null character 
is always appended. Thus, the maximum length of dst could be 
CStrLen(dst)+max+1.

StrCmp 11

short PStrCmp (ConstStr255Param str1, ConstStr255Param str2);

short CStrCmp (const char *str1, const char *str2);

DESCRIPTION

PStrCmp and CStrCmp compare the Pascal and C strings str1 and str2 by 
comparing the values of corresponding characters in each string. These 
functions treat variations of case, diacritical marks, or other localization factors 
as different characters.

RETURN CODES

StrNCmp 11

short PStrNCmp(ConstStr255Param str1, ConstStr255Param str2, UInt32 max);

short CStrNCmp (const char *str1, const char *str2, UInt32 max);

str1 less than str2 –1
str1 equals str2 0
str1 greater than str2 1
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DESCRIPTION

PStrNCmp and CStrNCmp compare the first max C and Pascal strings str1 and str2 
by comparing the values of corresponding characters in each string. These 
functions treat variations of case, diacritical marks, or other localization factors 
as different characters.

RETURN CODES

StrLen 11

UInt32 PStrLen (ConstStr255Param src);

UInt32 CStrLen (const char *src);

DESCRIPTION

CStrLen returns the length of the C string src in characters. This does not 
include the terminating null character. PStrLen returns the length of the Pascal 
string src in characters.

PStrToCStr and CStrToPStr 11

void PStrToCStr (char *dst, const Str255 src);

void CStrToPStr (Str255 dst, const char *src);

DESCRIPTION

PStrToCStr and CStrToPStr convert Pascal strings to C strings and vice versa.

str1 less than str2 –1
str1 equals str2 0
str1 greater than str2 1
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Debugging Support 11

The following debugging functions are available to driver writers.

void SysDebug (void);
void SysDebugStr (StringPtr str);

DESCRIPTION

SysDebug lets you enter the system debugger. SysDebugStr lets you enter the 
system debugger and display the Pascal string pointed to by str.

EXECUTION CONTEXT

The debugging routines may be called from task level, software interrupt level, 
or hardware interrupt level.

Service Limitations 11

Table 11-2 lists the DSL routines that can be called at the different interrupt 
levels described in “Device Driver Execution Contexts” (page 346). A dot (•) in 
the column indicates that the service is available at that level.

The righthand column in Table 11-2 identifies memory allocation services. 
These services can be called only from task level, and not from a software 
interrupt. Memory allocation and deallocation can occur when a native driver 
processes the any of following commands:

Close

Initialize

Finalize

Open

Replace
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Superseded

The Name Registry routines RegistryPropertyGet and RegistryPropertyGetSize 
are available at secondary interrupt level. All other Name Registry routines are 
available only at task level.

Applications can freely use the Name Registry and the Driver Loader Library, 
but with the current release of Mac OS only drivers should use the Driver 
Services Library.

IMPORTANT

It is the responsibility of the driver writer to conform to 
these limitations; code that violates them will not work 
with future releases of Mac OS. ▲

Table 11-2 Services available to drivers 

Routine
Task 
level

Secondary 
interrupt 
level

Hardware 
interrupt 
level

Memory 
allocation

AbsoluteDeltaToDuration • • •

AbsoluteDeltaToNanoseconds • • •

AbsoluteToDuration • • •

AbsoluteToNanoseconds • • •

AddAbsoluteToAbsolute • • •

AddAtomic • • •

AddAtomic8 • • •

AddAtomic16 • • •

AddDurationToAbsolute • • •

AddNanosecondsToAbsolute • • •

BitAndAtomic • • •

BitAndAtomic8 • • •

BitAndAtomic16 • • •

BitOrAtomic • • •
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BitOrAtomic8 • • •

BitOrAtomic16 • • •

BitXorAtomic • • •

BitXorAtomic8 • • •

BitXorAtomic16 • • •

BlockCopy • • •

BlockMove • • •

BlockMoveData • • •

BlockMoveDataUncached • • •

BlockMoveUncached • • •

BlockZero • • •

BlockZeroUncached • • •

CallSecondaryInterruptHandler2 • •

CancelTimer • • •

ChangeInterruptSetOptions •

CheckpointIO • •

CompareAndSwap • • •

CreateInterruptSet •

CreateSoftwareInterrupt • •

CStrCat • • •

CStrCmp • • •

CStrCopy • • •

CStrLen • • •

CStrNCat • • •

Table 11-2 Services available to drivers (continued)

Routine
Task 
level

Secondary 
interrupt 
level

Hardware 
interrupt 
level

Memory 
allocation
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CStrNCopy • • •

CStrToPStr • • •

CurrentExecutionLevel • • •

CurrentTaskID •

DecrementAtomic • • •

DecrementAtomic8 • • •

DecrementAtomic16 • • •

DelayFor •

DelayForHardware • • •

DeleteSoftwareInterrupt • •

DeviceProbe •

DurationToAbsolute • • •

DurationToNanoseconds • • •

FlushProcessorCache • • •

GetDataCacheLineSize • • •

GetInterruptFunctions •

GetInterruptSetOptions •

GetIOCommandInfo • •

GetLogicalPageSize • • •

GetPageInformation •

GetTimeBaseInfo • • •

IncrementAtomic • • •

IncrementAtomic8 • • •

IncrementAtomic16 • • •

Table 11-2 Services available to drivers (continued)

Routine
Task 
level

Secondary 
interrupt 
level

Hardware 
interrupt 
level

Memory 
allocation
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InstallInterruptFunctions •

IOCommandIsComplete • •

MemAllocatePhysicallyContiguous • •

MemDeallocatePhysicallyContiguous • •

NanosecondsToAbsolute • • •

NanosecondsToDuration • • •

PBDequeue • • •

PBDequeueFirst • • •

PBDequeueLast • • •

PBEnqueue • • •

PBEnqueueLast • • •

PBQueueCreate •

PBQueueDelete •

PBQueueInit •

PoolAllocateResident • •

PoolDeallocate • •

PrepareMemoryForIO* • •

PStrCat • • •

PStrCmp • • •

PStrCmp • • •

PStrCopy • • •

PStrLen • • •

PStrNCat • • •

PStrNCmp • • •

Table 11-2 Services available to drivers (continued)

Routine
Task 
level

Secondary 
interrupt 
level

Hardware 
interrupt 
level

Memory 
allocation
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PStrNCopy • • •

PStrToCStr • • •

QueueSecondaryInterruptHandler • • •

RegistryPropertyGet • •

RegistryPropertyGetSize • •

RegistryPropertySet† •

SendSoftwareInterrupt • •

SetInterruptTimer • • •

SetProcessorCacheMode •

SubAbsoluteFromAbsolute • • •

SubDurationFromAbsolute • • •

SubNanosecondsFromAbsolute • • •

SynchronizeIO • • •

SysDebug • • •

SysDebugStr • • •

TestAndClear • • •

TestAndSet • • •

UpTime • • •

* May be called from a native driver’s DoDriverIO routine and from any subroutine called from DoDriverIO
† The size of the property must not change.

Table 11-2 Services available to drivers (continued)

Routine
Task 
level

Secondary 
interrupt 
level

Hardware 
interrupt 
level

Memory 
allocation
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This chapter describes a number of services for PCI cards, collectively called the 
Expansion Bus Manager, that are included in the firmware and system 
software in the second generation of Power Macintosh computers. It is divided 
into the following major sections:

■ “Expansion ROM Contents” summarizes the attributes of a Macintosh 
compatible PCI card.

■ “Nonvolatile RAM” (page 442), illustrates how nonvolatile RAM is allocated 
in a typical Power Macintosh computer.

■ “PCI Nonmemory Space Cycle Generation” (page 453), lists routines that you 
can use to access memory in the various PCI address spaces.

■ “Card Power Controls” (page 469), describes calls that Mac OS uses to 
control PCI card power levels.

Expansion ROM Contents 12

The expansion ROM on a PCI card for Macintosh computers must conform to 
the format and information content defined in Chapter 6 of the PCI 
specification. The following notes apply to the required device identification 
fields when used with Macintosh computers:

■ The vendor ID must be the identification assigned by the PCI Special Interest 
Group.

■ The device and revision IDs must be assigned by the vendor and need not be 
registered with Apple.

■ The header type and class codes must conform to those specified in the PCI 
Local Bus Specification, Revision 2.0.

Nonvolatile RAM 12

Power Macintosh computers that support the PCI bus contain at least 8 KB of 
nonvolatile RAM (NVRAM). The NVRAM can be flash ROM, or RAM 
powered by the computer’s local battery, so that it retains data between system 
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startups. This section describes typical NVRAM configurations and discusses 
how you can store device properties in NVRAM. 

Typical NVRAM Structure 12

A typical example of allocating 8 KB of NVRAM memory space in a Power 
Macintosh computer built prior to Macintosh computers that implement the 
RAM in ROM NewWorld architecture is shown in Table 12-1. The memory 
space is partitioned into functional areas. 

The allocations shown in Table 12-1 provide permanent configuration data 
storage, both for Mac OS and for PCI expansion cards. The sections that follow 
describe how this storage is typically used.

Operating-System Partition 12

The first 4 KB of NVRAM space in a typical configuration may be reserved for 
use by operating systems other than Mac OS. The Macintosh firmware and 
system software does nothing with this space except to initialize the first 2 bytes 
to show that the available NVRAM size is 4 KB.

Table 12-1 Typical NVRAM space allocations

Length
(bytes) Description

4096 Operating-system partition

768 Reserved by Apple for diagnostics

256 Reserved by Apple for parameter RAM

1024 Reserved by Apple for Name Registry properties

2048 Open Firmware partition
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Note
Operating systems that use this space would need to 
provide their own protocols for allocating fields and for 
defining, updating, and checking data. In particular, they 
would need to follow rules for determining whether fields 
in the NVRAM operating-system partition use big-endian 
or little-endian addressing. ◆

Apple-Reserved Partitions 12

Apple typically reserves 2048 bytes of NVRAM space for use by Macintosh 
firmware and system software, as shown in Table 12-1. Part of this allocation 
constitutes the 256 bytes of parameter RAM (PRAM) that all Macintosh 
computers have traditionally provided for use by Mac OS.

Card firmware and application software can access some of the Macintosh 
PRAM space by using the Macintosh Toolbox routines described in Inside 
Macintosh: Operating System Utilities.

Open Firmware Partition 12

The remaining 2048 bytes of NVRAM space is used by the Open Firmware 
startup process to support PCI expansion cards.

The little-endian? variable, discussed in “Addressing Mode Determination” 
(page 63), is stored in the Open Firmware NVRAM space.

Using NVRAM to Store Name Registry Properties 12

NVRAM can be used to store device properties permanently. However, such 
storage is necessary only for devices used during Mac OS startup, because other 
devices can store an unlimited amount of permanent information on disk in the 
Preferences folder.

If the kRegPropertyValueIsSavedToNVRAM modifier of a property entry is set, the 
contents of that property entry will be preserved in NVRAM. During Mac OS 
startup, the Macintosh firmware will retrieve the entry value from NVRAM and 
place it in the device tree. This modifier is described in “Data Structures and 
Constants” (page 326).

Properties stored in NVRAM are available to boot devices before the devices 
have been installed. For example, properties stored in NVRAM can be used to 
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configure a primary display or to define the net address of a network boot 
device. In both cases, the device driver can access user-changeable information 
before disk storage services are available.

To provide facilities for multiple boot devices, each node in the Name Registry 
can store a single, small property in NVRAM. Depending on the version of the 
Name Registry the format of the information is different. Versions of the Name 
Registry prior to version 1.2 use the following format to store NVRAM 
properties:

■ device location (6 bytes), an absolute location within the PCI hardware I/O 
space of the current machine. The format of this value is not public, and its 
value is not visible to drivers. The device location is not used in Macintosh 
computers that support version 1.2 of the Name Registry.

■ property name (4 bytes), a 1-byte to 4-byte string that is a creator ID assigned 
by Apple Developer Technical Support. Creator IDs are assigned on a 
first-come, first-served basis and form unique labels for products such as 
applications and driver files. You can register a creator ID with Apple 
Developer Technical Support. In version 1.2 of the Name Registry, the proper 
name can be a string up to an 8-bytes on length, and does not have to be a 
creator ID, but the name can incorporate a creator ID. 

■ property value is a value that is stored by RegistryPropertySet or 
RegistryPropertyCreate (provided kRegPropertyValueIsSavedToNVRAM is set) 
and is retrieved by RegistryPropertyGet.The name is 8 bytes maximum for 
versions of the Name Registry prior to 1.2. In version 1.2 of the Name 
Registry the property value can be up to 32 bytes in size. 

There are two ways to determine of the version 1.2 Name Registry rules apply. 
Try and create a property that doesn’t follow the rules, for example create an 
8-byte name. If it succeeds, you know the 1.2 rules apply. Or, you can check the 
version number of the Name Registry.

Note
Using a creator ID (instead of a generic mnemonic) as the 
name of an NVRAM property value offers protection 
against acquiring the wrong value when a user configures a 
system and then moves a hardware device to a different 
slot or bus. If all drivers define their NVRAM property 
names with unique creator IDs, a driver can determine 
whether an NVRAM value is owned by its device. ◆
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Use the Name Registry routines described in Chapter 10 to access nodes saved 
to NVRAM. The Macintosh firmware will return an error message if a driver or 
application performs one of the following illegal actions:

■ Tries to store two properties in NVRAM for the same node. The application 
should enumerate its properties, fetch the property modifier, and remove 
incorrect (unknown) properties or clear their NVRAM bits.

■ Tries to store more than 8 bytes in an NVRAM property. 

■ Specifies a property name longer than 4 bytes in versions of the Name 
Registry prior to 1.2, 8 bytes in version 1.2 or later of the Name Registry.

Because only a single property may be stored in NVRAM for each device, 
drivers will need to protect themselves against accessing an old NVRAM 
property that may already be in place. The recommended algorithm is as 
follows:

1. Iterate to find all properties for the device.

2. If a property has the NVRAM modifier bit set, then check the property name.

3. If the property name is correct, use the property value.

4. If the property name is incorrect, delete the property and use default settings.

5. Exit and use the found property value. Use default settings if no property 
was set or an incorrectly named property was deleted.

Listing 12-1 shows four sample routines that are useful when manipulating 
NVRAM:

■ RetrieveDriverNVRAMParameter retrieves the single property stored in 
Macintosh NVRAM and checks it.

■ GetDriverNVRAMProperty looks at a driver property in NVRAM. This routine 
can be called outside an initialization context.

■ UpdateDriverNVRAMProperty updates a driver property in NVRAM.

■ CreateDriverNVRAMProperty creates a driver property that is stored in 
NVRAM.
446 Nonvolatile RAM



C H A P T E R  1 2

Expansion Bus Manager
Listing 12-1 Sample NVRAM manipulation code

#define CopyOSTypeToCString(osTypePtr, resultString) do {      \
       BlockCopy(osTypePtr, resultString, sizeof (OSType));    \
       resultString[sizeof (OSType)] = 0;                      \
   } while (0)

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * RetrieveDriverNVRAMParameter retrieves the single property stored in nonvolatile
 * memory (NVRAM). By convention, this property is named using our registered
 * creator code. Because the PCI system stores properties indexed by physical slot
 * number, we may retrieve an incorrect property if the user moves cards around.
 * To protect against this, we check the property name.
 *
 * This function must be called from an initialization context.
 *
 * Return status:
 * noErr           Success: the NVRAM property was retrieved.
 * nrNotFoundErr   Failure: there was no NVRAM property.
 * paramErr        Failure: there was an NVRAM property, but not ours.
 * other           Failure: unexpected Name Registry error.
 */
OSErr
RetrieveDriverNVRAMProperty(
       RegEntryIDPtr           regEntryIDPtr,      /* driver's Name Registry ID   */
       OSType                  driverCreatorID,    /* registered creator code      */
       UInt8                   driverNVRAMRecord[8]
   )
{
       OSErr                   status;
       RegPropertyIter         cookie;
       RegPropertyNameBuf      propertyName;
       RegPropertyValueSize    regPropertyValueSize;
       RegPropertyModifiers    propertyModifiers;
       Boolean                 done;
       char                    creatorNameString[sizeof (OSType) + 1];

       /*
        * search our properties for one with the NVRAM modifier set
        */
       status = RegistryPropertyIterateCreate(regEntryIDPtr, &cookie);
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       if (status == noErr) {
           while (status == noErr) {
               /*
                * Get the next property and check its modifier. Break if this is the
                * NVRAM property (there can be only one for our entry ID).
                */
               status = RegistryPropertyIterate(&cookie, propertyName, &done);
               if (status == noErr && done == FALSE) {
                   status = RegistryPropertyGetMod(
                               regEntryIDPtr,
                               propertyName,
                               &propertyModifiers
                           );
                   if (status == noErr
                    && (propertyModifiers & kRegPropertyValueIsSavedToNVRAM) != 0)
                       break;
               }
               /*
                * There was no NVRAM property. Return nrNotFoundErr by convention.
                */
               if (status == noErr && done)
                   status = nrNotFoundErr;
           }
           RegistryPropertyIterateDispose(&cookie);
           /*
            * If status == noErr, we have found an NVRAM property. Now,
            *  1. If it is our creator code, we have found the property, so
            *      we retrieve the values and store them in the driver's globals.
            *  2. If it was found with a different creator code, the user has
            *      moved our card to a slot that previously had a different card
            *      installed, so delete this property and return (noErr) to use
            *      the factory defaults.
            *  3. If it was not found, the property was not set, so we exit
            *      (noErr); the caller will have preset the values to
            *      "factory defaults."
            */
           if (status == noErr) {
               /*
                * Cases 1 or 2, check the property.
                */
               CopyOSTypeToCString(&driverCreatorID, creatorNameString);
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               if (CStrCmp(creatorNameString, propertyName) == 0) {    /* Match    */
                   status = RegistryPropertyGetSize(
                               regEntryIDPtr,
                               propertyName,
                               &regPropertyValueSize
                           );
                   if (status == noErr
                    && regPropertyValueSize == sizeof driverNVRAMRecord) {
                       status = RegistryPropertyGet(
                                   regEntryIDPtr,
                                   propertyName,
                                   driverNVRAMRecord,
                                   &regPropertyValueSize
                               );
                   }
               }
               else {
                   /*
                    * This is an NVRAM property, but it isn't ours. Delete the
                    * property and return an error status so the caller uses
                    * "factory settings"
                    */
                   status = RegistryPropertyDelete(
                               regEntryIDPtr,
                               propertyName
                           );
                   /*
                    * Since we're returning an error anyway, we ignore the
                    * status code.
                    */
                   status = paramErr;
               }
           }
       }
       return (status);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * Get the NVRAM property. Return an error if it does not exist, is the wrong size, 
 * or is not marked "store in NVRAM." This may be called from a
 * noninitialization context.
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 * Errors:
 * nrNotFoundErr       Not found in the registry
 * nrDataTruncatedErr  Wrong size
 * paramErr            Not marked "store in NVRAM"
 */
OSErr
GetDriverNVRAMProperty(
       RegEntryIDPtr           regEntryIDPtr,         /* driver's Name Registry ID */
       OSType                  driverCreatorID,       /* registered creator code   */
       UInt8                   driverNVRAMRecord[8]   /* mandated size             */
   )
{
       OSErr                   status;
       char                    creatorNameString[sizeof (OSType) + 1];
       RegPropertyValueSize    size;
       RegPropertyModifiers    modifiers;

       CopyOSTypeToCString(&driverCreatorID, creatorNameString);
       status = RegistryPropertyGetSize(
           regEntryIDPtr,
           creatorNameString,
           &size
       );
       if (status == noErr && size != sizeof driverNVRAMRecord)
           status = nrDataTruncatedErr;
       if (status == noErr) {
           status = RegistryPropertyGetMod(
                       regEntryIDPtr,
                       creatorNameString,
                       &modifiers
                   );
       }
       if (status == noErr
        && (modifiers & kRegPropertyValueIsSavedToNVRAM) == 0)
           status = paramErr;
       if (status == noErr) {
           status = RegistryPropertyGet(
                       regEntryIDPtr,
                       creatorNameString,
                       driverNVRAMRecord,
                       &size
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                   );
       }
       return (status);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * Update the NVRAM property. Return an error if it was not created. This may be
 * called from PBStatus (or other noninitialization context).
 */
OSErr
UpdateDriverNVRAMProperty(
       RegEntryIDPtr           regEntryIDPtr,       /* driver's Name Registry ID   */
       OSType                  driverCreatorID,      /* registered creator code    */
       UInt8                   driverNVRAMRecord[8]  /* mandated size              */
   )
{
       OSErr                   status;
       char                    creatorNameString[sizeof (OSType) + 1];

       CopyOSTypeToCString(&driverCreatorID, creatorNameString);
       /*
        * Replace the current value of the property with its new value. In this
        * example, we are replacing the entire value and, potentially, changing
        * its size. In production software, you may need to read an existing
        * property and modify its contents. This shouldn't be too hard to do.
        */
       status = RegistryPropertySet(       /* update existing value */
                   regEntryIDPtr,
                   creatorNameString,
                   driverNVRAMRecord,
                   sizeof driverNVRAMRecord
               );
       return (status);
}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * Create the NVRAM property. This must be called from the driver 
 * initialization function.
 */
OSErr
CreateDriverNVRAMProperty(
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       RegEntryIDPtr           regEntryIDPtr,        /* driver's Name Registry ID  */
       OSType                  driverCreatorID,      /* registered creator code    */
       UInt8                   driverNVRAMRecord[8]  /* mandated size              */
   )
{
       OSErr                   status;
       char                    creatorNameString[sizeof (OSType) + 1];
       RegPropertyValueSize    size;
       RegPropertyModifiers    modifiers;

       CopyOSTypeToCString(&driverCreatorID, creatorNameString);
       /*
        * Does the property currently exist (with the correct size)?
        */
       status = RegistryPropertyGetSize(       /
* returns noErr if the property exists */
                   regEntryIDPtr,
                   creatorNameString,
                   &size
               );
       if (status == noErr) {
           /*
            * Replace the current value of the property with its new value. In this
            * example, we are replacing the entire value and, potentially, changing
            * its size. In production software, you may need to read an existing
            * property and modify its contents. This shouldn't be too hard to do.
            */
           status = RegistryPropertySet(       /* update existing value */
                       regEntryIDPtr,
                       creatorNameString,
                       driverNVRAMRecord,
                       sizeof driverNVRAMRecord
                   );
       }
       else {
           status = RegistryPropertyCreate(    /* make a new property */
                       regEntryIDPtr,
                       creatorNameString,
                       driverNVRAMRecord,
                       sizeof driverNVRAMRecord
                   );
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       }
       /*
        * If status equals noErr, the property has been stored; set its "save to
        * nonvolatile RAM" bit.
        */
       if (status == noErr) {
           status = RegistryPropertyGetMod(
                       regEntryIDPtr,
                       creatorNameString,
                       &modifiers
                   );
       }
       if (status == noErr) {
           /*
            * Set the NVRAM bit and update the modifiers.
            */
           modifiers |= kRegPropertyValueIsSavedToNVRAM;
           status = RegistryPropertySetMod(
                       regEntryIDPtr,
                       creatorNameString,
                       modifiers
                   );
       }           
       return (status);
}

PCI Nonmemory Space Cycle Generation 12

“PCI Host Bridge Operation” (page 39), describes how the Macintosh 
implementation of PCI supports ordinary memory access cycles. Because some 
PCI cards may need to use other types of PCI cycles—I/O, configuration, 
interrupt acknowledge, or special cycles—the Expansion Manager includes 
routines that create these cycle types. These routines are described in the next 
sections.

All of the nonmemory access routines use the type RegEntryIDPtr to identify 
device nodes in the device tree, as described in Chapter 10, “Name Registry.” 
Drivers should use the RegEntryIDPtr value passed to them when they were 
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initialized. Using the RegEntryIDPtr type lets the system software determine the 
target device’s location in the device tree, select the appropriate PCI bus to 
access the device, and generate the correct cycle on that bus.

Fast I/O Space Cycle Generation 12

The PCI property assigned-addresses provides vector entries that represent the 
physical addresses of devices on expansion cards. Apple has added another 
property—AAPL,address—that provides a vector of 32-bit logical address values, 
where the nth value corresponds to the nth assigned-addresses vector entry. 
When accessing device functions located in memory space, you should use the 
corresponding AAPL,address property as the device’s base. The same technique 
is recommended when you are accessing high-performance device functions in 
I/O space. 

Using the AAPL,address property, a driver can find the logical address of an I/O 
resource. Accessing the logical address generates an I/O cycle on the PCI bus. 
Using the logical base address, a driver can generate a PCI I/O cycle in the 
same way it accesses a PCI device in memory space. This provides the fastest 
possible interface to I/O space. For sample code that illustrates this technique, 
see Listing 9-3 (page 274).

To access a register in memory or I/O space using an AAPL,address property, do 
the following:

1. At initialization, resolve the assigned-addresses and AAPL,address properties.

2. Search the assigned-addresses vector for an address range in I/O space.

3. Store the corresponding AAPL,address vector entry in a variable such as 

volatile UInt16 *gIORegisterBase;

4. To read the (16-bit) register at offset 0x04, you can then do

value = gIORegisterBase[0x04 / sizeof (UInt16)];

As with memory accesses, you will need to byte swap the returned value to 
obtain a Macintosh big-endian result. Byte swapping routines are described on 
(page 469).
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IMPORTANT

Between PCI I/O accesses, software must call the 
SynchronizeIO function (described on (page 373)) to ensure 
that the accesses affect the PCI device in the correct 
order. ▲

Slow I/O Space Cycle Generation 12

Alternatively, you can use the Expansion Bus Manager routines described in 
this section. They provide byte swapping, enforce in-order execution, and a 
node-based interface. These extra services add overhead; therefore, for 
transfer-intensive accesses, such as accessing FIFOs located in I/O space, it is 
better to use the logical address from the AAPL,address property.

The rest of this section describes six routines that let you read and write data to 
specific I/O addresses, using the base address found in the assigned-addresses 
property (not AAPL,address).

ExpMgrIOReadByte 12

You can use the ExpMgrIOReadByte function to read the byte value at a specific 
address in PCI I/O space. 

OSErr ExpMgrIOReadByte (
RegEntryIDPtr node,
LogicalAddress ioAddr,
UInt8 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOReadByte 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

valuePtr The returned 8-bit value.
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DESCRIPTION 

The ExpMgrIOReadByte function reads the byte at the I/O address for device 
node node determined by address ioAddr, returning its byte-swapped value in 
valuePtr. 

RESULT CODES

ExpMgrIOReadWord 12

You can use the ExpMgrIOReadWord function to read the word value at a specific 
address in PCI I/O space. 

OSErr ExpMgrIOReadWord (
RegEntryIDPtr node,
LogicalAddress ioAddr,
UInt16 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOReadWord 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

valuePtr The returned 16-bit value as it would appear on the PCI bus. 
The function performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrIOReadWord function reads the word at the I/O address for device 
node node determined by address ioAddr, returning its byte-swapped value in 
valuePtr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrIOReadLong 12

You can use the ExpMgrIOReadLong function to read the long word value at a 
specific address in PCI I/O space. 

OSErr ExpMgrIOReadLong (
RegEntryIDPtr node,
LogicalAddress ioAddr,
UInt32 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOReadLong 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

valuePtr The returned 32-bit value as it would appear on the PCI bus. 
The function performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrIOReadLong function reads the long word starting at the I/O address 
for device node node determined by address ioAddr, returning its byte-swapped 
value in valuePtr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrIOWriteByte 12

You can use the ExpMgrIOWriteByte function to write a byte to an address in PCI 
I/O space. 

OSErr ExpMgrIOWriteByte (
RegEntryIDPtr node,
LogicalAddress ioAddr,
UInt8 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOWriteByte 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

value The 8-bit value.

DESCRIPTION 

The ExpMgrIOWriteByte function writes the value of value to the I/O address for 
device node node determined by address ioAddr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrIOWriteWord 12

You can use the ExpMgrIOWriteWord function to write a word to an address in 
PCI I/O space.

OSErr ExpMgrIOWriteWord (RegEntryIDPtr node,
 LogicalAddress ioAddr,
 UInt16 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOWriteWord 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

value The 16-bit value as it would appear on the PCI bus. The function 
performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrIOWriteWord function writes the byte-swapped value of value to the 
I/O address for device node node determined by address ioAddr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrIOWriteLong 12

You can use the ExpMgrIOWriteLong function to write a long word to an address 
in PCI I/O space. 

OSErr ExpMgrIOWriteLong (
RegEntryIDPtr node,
LogicalAddress ioAddr,
UInt32 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrIOWriteLong 
returns a result code of deviceTreeInvalidNodeErr.

ioAddr The sum of the assigned-addresses base address of the device 
plus the offset to the desired I/O address.

value The 32-bit value as it would appear on the PCI bus. The function 
performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrIOWriteLong function writes the byte-swapped value of value to the 
I/O address for device node node starting at address ioAddr. 

RESULT CODES

Configuration Space Cycle Generation 12

The Expansion Bus Manager contains six routines that let you read and write 
data to specific addresses in the PCI configuration space for a specified device 
tree node. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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All of the configuration space access routines use the type RegEntryIDPtr to 
identify device nodes in the device tree, as described in Chapter 10, “Name 
Registry.” Using RegEntryIDPtr lets the system software and the bridge generate 
the correct PCI configuration cycle for the target device.

ExpMgrConfigReadByte 12

You can use the ExpMgrConfigReadByte function to read the byte value at a 
specific address in PCI configuration space. 

OSErr ExpMgrConfigReadByte (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt8 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrConfigReadByte 
returns a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 8-bit value.

DESCRIPTION 

The ExpMgrConfigReadByte function reads the byte at the address in PCI 
configuration space for device node node determined by offset configAddr, 
returning its value in valuePtr. 
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RESULT CODES

ExpMgrConfigReadWord 12

You can use the ExpMgrConfigReadWord function to read the word value at a 
specific address in PCI configuration space.

OSErr ExpMgrConfigReadWord (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt16 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrConfigReadWord 
returns a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 16-bit value as it would appear on the PCI bus. 
The function performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrConfigReadWord function reads the word at the address in PCI 
configuration space for device node node determined by offset configAddr, 
returning its byte-swapped value in valuePtr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrConfigReadLong 12

You can use the ExpMgrConfigReadLong function to read the long word value at a 
specific address in PCI configuration space. 

OSErr ExpMgrConfigReadLong (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt32 *valuePtr);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, ExpMgrConfigReadLong 
returns a result code of deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

valuePtr The returned 32-bit value as it would appear on the PCI bus. 
The function performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrConfigReadLong function reads the long word starting at the address 
in PCI configuration space for device node node determined by offset 
configAddr, returning its byte-swapped value in valuePtr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrConfigWriteByte 12

You can use the ExpMgrConfigWriteByte function to write a byte to an address in 
PCI configuration space. 

OSErr ExpMgrConfigWriteByte (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt8 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, 
ExpMgrConfigWriteByte returns a result code of 
deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 8-bit value.

DESCRIPTION 

The ExpMgrConfigWriteByte function writes the value of value to the address in 
PCI configuration space for device node node determined by offset configAddr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrConfigWriteWord 12

You can use the ExpMgrConfigWriteWord function to write a word to an address 
in PCI configuration space.

OSErr ExpMgrConfigWriteWord (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt16 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, 
ExpMgrConfigWriteWord returns a result code of 
deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 16-bit value as it would appear on the PCI bus. The function 
performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrConfigWriteWord function writes the byte-swapped value of value to 
the address in PCI configuration space for device node node determined by 
offset configAddr. 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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RESULT CODES

ExpMgrConfigWriteLong 12

You can use the ExpMgrConfigWriteLong function to write a long word to an 
address in PCI configuration space.

OSErr ExpMgrConfigWriteLong (
RegEntryIDPtr node,
LogicalAddress configAddr,
UInt32 value);

node A node identifier that identifies a device node. If you specify a 
node identifier that isn’t in the device tree, 
ExpMgrConfigWriteLong returns a result code of 
deviceTreeInvalidNodeErr.

configAddr The configuration address (a value between 0 and 255).

value The 32-bit value as it would appear on the PCI bus. The function 
performs the necessary byte swapping.

DESCRIPTION 

The ExpMgrConfigWriteLong function writes the byte-swapped value of value to 
the address in PCI configuration space for device node node starting at offset 
configAddr. 

RESULT CODES

Interrupt Acknowledge Cycle Generation 12

The routines described in this section generate interrupt acknowledge cycles on 
the PCI bus. All interrupt acknowledge routines use the type RegEntryIDPtr to 

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree

noErr 0 No error
deviceTreeInvalidNodeErr –2538 Device node not in the device tree
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identify device nodes in the device tree, as described in Chapter 10, “Name 
Registry.” Using RegEntryIDPtr lets the system software and the PCI bridge 
generate the correct PCI interrupt acknowledge cycle for the target device.

Note
Mac OS does not use PCI interrupt acknowledge cycles. 
The functionality is provided so that if a PCI device needs 
an interrupt acknowledge cycle the driver has a way to 
create the required cycle on the PCI bus. ◆

Interrupt acknowledge cycles for PCI are always read actions. The target node 
chosen for the functions described in this section should be the single node in 
the system capable of responding to interrupt acknowledge cycles.

ExpMgrInterruptAcknowledgeReadByte 12

You can use the ExpMgrInterruptAcknowledgeReadByte function to read the byte 
value resulting from a PCI interrupt acknowledge cycle. 

OSErr ExpMgrInterruptAcknowledgeReadByte (
RegEntryIDPtr entry,
UInt8 *valuePtr);

entry Pointer to a Name Registry entry ID.

valuePtr Pointer to a buffer to hold the value read.

ExpMgrInterruptAcknowledgeReadWord 12

You can use the ExpMgrInterruptAcknowledgeReadWord function to read the word 
value resulting from a PCI interrupt acknowledge cycle.

OSErr ExpMgrInterruptAcknowledgeReadWord (
RegEntryIDPtr entry,
UInt16 *valuePtr);

entry Pointer to a Name Registry entry ID.
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valuePtr Pointer to a buffer to hold the value read.

ExpMgrInterruptAcknowledgeReadLong 12

You can use the ExpMgrInterruptAcknowledgeReadLong function to read the long 
word value resulting from a PCI interrupt acknowledge cycle.

OSErr ExpMgrInterruptAcknowledgeReadLong (
RegEntryIDPtr entry,
UInt32 *valuePtr);

entry Pointer to a Name Registry entry ID.

valuePtr Pointer to a buffer to hold the value read.

Special Cycle Generation 12

The routines described in this section generate special cycles on the PCI bus.

Some special cycle routines use the type RegEntryIDPtr to identify device nodes 
in the device tree, as described in Chapter 10, “Name Registry.” Using 
RegEntryIDPtr lets the system software and the bridge generate the correct PCI 
special cycle for the target device.

Note
Special cycles on the PCI bus are broadcast-type cycles. 
They are always long word write actions. If a node 
interface is provided, the node chosen for these functions 
should be behind the bridge that defines the PCI bus on 
which the special cycle occurs. ◆

ExpMgrSpecialCycleBroadcastLong 12

You can use the ExpMgrSpecialCycleBroadcastLong function to broadcast the 
long word value in value to all PCI buses in the system.

OSErr ExpMgrSpecialCycleBroadcastLong (UInt32 value);
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value The value to be broadcast.

ExpMgrSpecialCycleWriteLong 12

You can use the ExpMgrSpecialCycleWriteLong function to write the long word 
value in value to the PCI bus that contains the device node identified by the 
name entry pointed to by entry.

OSErr ExpMgrSpecialCycleWriteLong (
RegEntryIDPtr entry,
UInt32 value);

entry Pointer to a Name Registry entry ID.

value The value to be written.

Byte Swapping Routines 12

Mac OS provides two routines that help you swap bytes between big-endian 
and little-endian data formats:

UInt16 EndianSwap16Bit (UInt16 data16);

UInt32 EndianSwap32Bit (UInt32 data32);

data16 2-byte input.

data32 4-byte input.

EndianSwap16Bit and EndianSwap32Bit return byte swapped versions of their 
input values, thereby converting big-endian data to little-endian or little-endian 
data to big-endian.

Card Power Controls 12

If a PCI expansion card normally consumes more than 3 A at 5 V or 2 A at 3.3 V, 
it should be capable of entering a low-power mode. It is generally useful for all 
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PCI cards to be able to enter a low-power mode so they will conform to 
energy-saving standards. Family experts are usually responsible for managing 
the power consumption characteristics of associated native drivers and may 
issue power commands or request power information at any time.

A card’s driver may elect to ignore power switching commands issued by a 
family expert by returning the DriverGestalt selector 'lpwr'. Driver Gestalt 
selectors are defined in Table 8-5 (page 228). It may also return an appropriate 
indication to the family expert if a switch from high power to low power might 
interrupt a current or pending operation.

Guidelines 12

Observe the following power management guidelines for specific classes of 
drivers:

■ As discussed in “Power Services” (page 547), networking drivers should 
conform to the Open Transport family expert’s power management 
guidelines. The expert handles all interactions with the Power Manager for 
the driver. 

■ As discussed in “Graphics Driver Routines” (page 476), graphics drivers 
should support the GetSync and SetSync status and control calls to implement 
the VESA DPMS standard for power management. The Display Manager 
will handle all interaction with the Power Manager on behalf of the driver.

■ SCSI drivers and other classes of drivers for which the family expert interface 
is not fully defined, or for which a family expert does not currently exist, 
may need to interact with the Power Manager directly to support power 
management on PCI-based Power Macintosh computers. However, the 
current Power Manager interface is not guaranteed to be compatible with 
future Mac OS releases. Specific issues in this area are discussed in “SCSI 
Device Power Management” (page 563).

Sample Code 12

Listing 12-2 shows sample code that retrieves power consumption information 
from a PCI device.
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Listing 12-2 Determining power consumption

/*
 * IEEE 1275 defines the "power-consumption" property.
 */
#define kDevicePowerProperty       "power-consumption"
/*
 * Power values are encoded in a vector of "maximum in microwatts." Unspecified
 * valuesshall be zero if other values are provided. Power consumption is 0 for
 * missing values. If the property is missing, the default value will be used.
 */
enum {
   kUnspecifiedStandby,
   kUnspecifiedFullPower,
   kFiveVoltStandby,
   kFiveVoltFullPower,
   kThreeVoltStandby,
   kThreeVoltFullPower,
   kIOPowerStandby,
   kIOPowerFullPower,
   kReservedStandby,
   kReservedFullPower
};

/*
 * The function uses this structure to equate registry entry values with
 * DriverGestalt selectors.
 */
typedef struct PowerInfo {
   OSType              driverGestaltSelector;
   short               correctIndex;
   short               fallbackIndex;
} PowerInfo;
static const PowerInfo gPowerInfo[] = {
   { kDriverGestalt5MaxHighPower,  kFiveVoltFullPower,     kUnspecifiedFullPower   },
   { kDriverGestalt5MaxLowPower,   kFiveVoltStandby,       kUnspecifiedStandby     },
   { kDriverGestalt3MaxHighPower,  kThreeVoltFullPower,    kUnspecifiedFullPower   },
   { kDriverGestalt3MaxLowPower,   kThreeVoltStandby,      kUnspecifiedStandby     },
   { 0,                            0,                      0                       }
};
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/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 * Retrieve the driver power consumption vector and search it for the desired power
 * consumption value. Return the desired value, or a default value if the desired
 * value is unavailable. This function does not allocate memory or return any errors.
 */
UInt32
GetDevicePowerConsumption(
       RegEntryIDPtr           regEntryIDPtr,          /
* driver's Name Registry ID   */
       OSType                  driverGestaltSelector,  /
* PBStatus parameter          */
       UInt32                  defaultPowerConsumption /
* default return value        */
   )
{
       OSErr                   status;
       UInt32                  result;
       short                   i;
       short                   index;
       ItemCount               nValues;
       RegPropertyValueSize    size;
       UInt32                  microWatts[kReservedFullPower];

       result = defaultPowerConsumption;
       status = RegistryPropertyGetSize(
                   regEntryIDPtr,
                   kDevicePowerProperty,
                   &size
               );

       if (status == noErr && size <= sizeof microWatts) {
           status = RegistryPropertyGet(
                       regEntryIDPtr,
                       kDevicePowerProperty,
                       (RegPropertyValue *) microWatts,
                       &size
                   );
       }
       if (status == noErr) {
           nValues = size / sizeof microWatts[0];
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           for (i = 0; gPowerInfo[i].driverGestaltSelector != 0; i++) {
               if (gPowerInfo[i].driverGestaltSelector == driverGestaltSelector) {
                   index = gPowerInfo[i].correctIndex;
                   if (index >= nValues)
                       index = gPowerInfo[i].fallbackIndex;
                   if (index < nValues)
                       result = microWatts[index];
                   break;
               }
           }
       }
       return (result);
}
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This chapter discusses the requirements for designing a native PCI graphics or 
video display driver for Mac OS on PCI-based Power Macintosh computers. 
PCI display drivers have a category of kServiceCategoryNdrvDriver and a 
service type of kNdrvTypeIsVideo. They export a driver description structure and 
use the DoDriverIO entry point.

For specific information about generic native drivers, see Chapter 8, “Writing 
Native Drivers.” You can also find general information about Macintosh drivers 
in Designing Cards and Drivers for the Macintosh Family, third edition, and Inside 
Macintosh: Devices. These books are listed in “Apple Publications” (page 26). For 
information about Macintosh pixel formats, see Appendix B, “Graphic Memory 
Formats.”

IEEE Standard 1275 includes graphics extensions that the P1275 Working Group 
continues to update. For latest information, you can access the FTP site listed in 
“Institute of Electrical and Electronic Engineers” (page 27).

Apple has revised the way that Macintosh computers automatically sense 
monitor characteristics. For more information see “Display Timing Modes” 
(page 506), and Macintosh New Technical Notes HW-30, which is available from 
Apple Developer Support.

Graphics Driver Description 13

For the Display Manager to load and install a driver, the run-time requirements 
should be set to kDriverIsOpenedUponLoad and kDriverIsUnderExpertControl. 
The device name is used as the name for installation in the unit table. Graphics 
drivers should report kServiceCategoryNdrvDriver as the OS run-time service 
category and kNdrvTypeIsVideo as the type within the category.

A typical driver description structure for a PCI graphics card driver is shown in 
Listing 8-1 (page 199).

Graphics Driver Routines 13

In the past, graphics drivers and Mac OS relied on a card’s NuBus declaration 
ROM to get information on the card’s capabilities. In PCI-based Power 
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Macintosh computers, the programming interface for PCI graphics drivers lets 
the drivers provide the same information to the Mac OS. 

Because of potential compilation problems, applications should avoid using 
high-level Device Manager routines when accessing PCI graphics drivers 
directly. Use the low-level PBOpen, PBClose, PBControlSync, and PBStatusSync 
routines (described in Inside Macintosh: Devices) instead of FSOpen, FSClose, 
Control, or Status.

The next sections detail the specific control and status calls to which a graphics 
driver must respond.

Control Calls 13

The following sections present the graphics driver control calls. Not all video or 
display drivers need to respond to every one of these calls.

Reset (csCode = 0) 13

The Reset routine is obsolete for graphics drivers in the PCI-based Power 
Macintosh computers. The driver should return controlErr.

KillIO (csCode = 1) 13

The optional KillIO routine stops any I/O requests currently being processed 
and removes any pending I/O requests. If the card does not support 
asynchronous calls it must return controlErr.
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SetMode (csCode =2) 13

The required SetMode routine sets the pixel depth of the screen.

OSErr = Control(theDeviceRefNum, cscSetMode, &theVDPageInfo );

--> csModeDesired relative bit depth
-- csData Unused
--> csPage Desired display page
<-- csBaseAddr Base address of video RAM for this csMode

To improve the screen appearance during mode changes, devices with settable 
color tables should set all entries of the Color Lookup table (CLUT) to 50 
percent gray before changing the mode. If the video card supports 16-bit or 
32-bit pixel depths, the SetMode routine should set an internal flag to indicate 
direct mode operations. 

SetEntries (csCode = 3) 13

The SetEntries control routine is required. If the video card is an indexed 
device, the SetEntries control routine should change the contents of the card’s 
CLUT.

OSErr = PBControl(theDeviceRefNum, cscSetEntries, &theVDSetEntryRecord);

--> csTable Pointer to ColorSpec array
--> csStart First entry in table
--> csCount Number of entries to set

If the value of csStart is 0 or positive, the routine must install csStart entries 
starting at that position. If it is –1, the routine must access the contents of the 
value field in csTable to determine which entries are to be changed. Both 
csStart and csCount are 0 based—their values are 1 less than the desired 
amount. For a description of a CLUT and the ColorSpec structure, see the Color 
QuickDraw section of Inside Macintosh: Imaging With QuickDraw.

If the card does not have a CLUT (that is, if the csDeviceType returned from 
GetVideoParameters does not equal clutType), the system should never issue a 
SetEntries control call. If it does, the SetEntries control routine should return 
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controlErr. With direct devices, the GrayPage and SetGamma routines are 
responsible for initializing the hardware properly.

SetGamma (csCode = 4) 13

The optional SetGamma control routine sets the gamma table in the driver that 
corrects RGB color values.

OSErr = Control(theDeviceRefNum, cscSetGamma, &theVDGammaRecord );

--> csGTable Pointer to gamma table

The gamma table compensates for nonlinearities in a display’s color response 
by providing either a function or a lookup value that associates each displayed 
color with an absolute RGB value.

To reduce visible flashes resulting from color table changes, the SetGamma 
routine works in conjunction with the SetEntries control routine on indexed 
devices. The SetGamma routine first loads new gamma correction data into the 
driver’s private storage; the next SetEntries control call applies the gamma 
correction as it changes the CLUT. SetGamma calls are always followed by 
SetEntries control calls on indexed devices.

For direct devices, the SetGamma routine first sets up the gamma correction data 
table. Next, it synthesizes a black-to-white linear ramp color table. Finally, it 
applies the new gamma correction to the color table and sets the data directly in 
the hardware. Proper correction is particularly important to image-processing 
applications running on direct devices.

Displays that do not use gamma table correction tend to look oversaturated and 
dark. Although determining the correct values for a gamma table can be 
difficult without special tools, the table’s contribution to image quality can be 
striking.

If NIL is passed for the csGTable value, the driver should build a linear ramp in 
the gamma table to allow for an uncorrected display. 

On a cathode ray tube, phosphors luminesce when they are struck by an 
electron beam. Unfortunately, there is not a direct correspondence between the 
luminance of the phosphors and the strength of the electron beam. To create a 
linear relationship, the actual response is measured and the inverse of its 
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deviation from linearity is applied as a correction factor. Figure 13-1 illustrates 
this process.

Figure 13-1 Luminosity and electron beam strength

Although this example is described in terms of electron beams and phosphors 
of a cathode ray tube, similar relationships exist between diode current and 
LED brightness in active matrix displays.

Gamma Table Implementation 13

The Power Macintosh gamma table structure is defined in the header file 
QuickDraw.h. Its definition is diagrammed in Figure 13-2.

Luminosity

Electron beam strength

Normal response
Inverted response
Resultant
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Figure 13-2 Gamma table structure

The gamma table is a variable length data structure. As shown in Figure 13-2, 
the structure GammaTbl sits at the front of a pool of memory that holds the data 
required to apply gamma correction.

The last member of the fixed-length portion of the structure gFormulaData is also 
the entry point to the variable-length portion of the structure. This 
variable-length portion is divided into two sets, formula data and correction 
data.

Field descriptions
gVersion The version of the GammaTbl data structure. gVersion == 0 is 

the only version of the GammaTbl data structure currently 
defined.

gType Since gamma tables are created empirically, they can either 
attempt to correct the response curve of a specific CLUT, a 
specific display, or a specific combination of CLUT and 
display. gType == 0 indicates that the curve is derived from 
a display, not a CLUT. In this case, two different hardware 
modules can share the same gamma table.

gFormulaSize See gFormulaData, below.
gChanCnt The number of tables of correction data. If there is more 

than one channel of correction data, the channels are 
ordered red, green, blue. If there is only one channel of 
correction data, the same correction is applied to the red, 
green, and blue channels of the hardware. The only valid 
values for gChanCnt are 1 and 3.

Fixed-size header

Formula data

Correction data

size = siz

size = gFo

size = gCh
    ((gDat

struct GammaTbl
{

short gVersion;
short gType;
short gFormulaSize;
short gChanCnt;
short gDataCnt;
short gDataWidth;
short gFormulaData[1];

};
typedef struct GammaTbl GammaTbl;
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gDataCnt The number of entries of correction information per 
channel. 

gDataWidth How many significant bits of information are available in 
each entry, packed to the next larger byte size.

gFormulaData The entry point to the variable-length portion of the 
gamma table, consisting of the formula data, if any, 
followed by the correction data. If a gamma table is 
hardware-invariant (gType == 0), then the formula data is 
never inspected. If a gamma table varies with the hardware 
(in which case gType is the ID of the frame buffer), and 
gFormulaSize != 0, then gFormulaData[0] is inspected to see 
if it is the ID of the monitor currently connected. If the 
monitor IDs match, the gamma table is considered valid; 
otherwise it is considered to be the wrong table.

Correction Data 13

The Correction Data area of the gamma table contains the gamma correction 
data. If more than one channel’s information is present, a block of information 
for each channel appears in red, green, blue order. There is no field of the 
GammaTbl structure that directly maps to the correction data; instead, correction 
data is appended to the gFormulaData field. To understand how correction data 
is organized, consider the QuickDraw representation of RGB color:

struct RGBColor
{

unsigned short red; // magnitude of red channel
unsigned short green; // magnitude of green channel
unsigned short blue; // magnitude of blue channe

};
typedef struct RGBColor RGBColor;

Effectively, the purpose of a gamma table is to map a red, green, or blue channel 
into another channel. This mapping serves two purposes: to move from 16 bits 
of significance to gDataWidth bits, and to apply luminance correction.

The mapping is usually accomplished by taking the most significant 8 bits of a 
given channel and using it as an index into that channel’s correction data. Two 
examples of this, with gDataWidth == 8, are illustrated in Figure 13-3.
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Figure 13-3 Examples of gamma table correction

Gamma Table Errors 13

Graphics drivers should return an error code if the following fields of GammaTbl 
do not contain these values:

gVersion == 0 This is currently the only defined version of the gamma 
table structure.

gType == 0 This indicates that the gamma table is not dependent on the 
frame buffer hardware. Few existing gamma tables are 
frame buffer–
specific. This field formerly contained a NuBus construct, 
drHWId, which is no longer applicable.

gChanCnt == 1 || gChanCnt == 3
Only one or three channels of correction data are 
supported.

GrayPage (csCode = 5) 13

The required GrayPage routine fills the specified video page with a dithered gray 
pattern in the current video mode. The page number is 0 based.

OSErr = Control(theDeviceRefNum, cscGrayPage, &theVDPageInfo );

02ab (16-bit QD channel magnitude)  (16-bit QD channel magnitude) fd38

(8-bit gamma corrected magnitude) 06 fe (8-bit gamma corrected magnitude)

Array Index 00 01 02 .... 80 81 82 .... fd fe ff

Correction Data [00 03 06 .... 9c 9d 9e .... fe ff ff]
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-- csMode Unused

--  csData Unused

--> csPage Desired display page to gray

-- csBaseAddr Unused

The purpose of the GrayPage routine is to eliminate visual artifacts on the screen 
during mode changes. When the mode changes, the contents of the frame buffer 
immediately acquire a new color meaning. To avoid annoying color flashes, two 
events must occur:

■ SetMode or SwitchMode sets the entire contents of the CLUT to 50 percent gray 
before changing the mode, so that all possible indexes in either the old or 
new depth appear the same.

■ GrayPage fills the frame buffer with one of these 50 percent dither patterns:

0xAAAAAAAA represents 32 pixels at 1 bpp

0xCCCCCCCC represents 16 pixels at 2 bpp

0xF0F0F0F0 represents 8 pixels at 4 bpp

0xFF00FF00 represents 4 pixels at 8 bpp

0xFFFF0000 represents 2 pixels at 16 bpp

0xFFFFFFF represents 1 pixel at 32 bpp (invert to get the next pixel)

For direct devices, GrayPage also builds a three-channel linear gray color table, 
gamma-corrects the table, and loads it into the color table hardware.

SetGray (csCode = 6) 13

The optional SetGray routine is used with indexed devices to specify whether 
subsequent SetEntries calls fill a card’s CLUT with actual colors or with the 
luminance-equivalent gray tones.

OSErr = Control(theDeviceRefNum, cscSetGray, &theVDGrayRecord );

--> csMode Enable or disable luminance mapping
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For actual colors (luminance mapping disabled), SetGray is passed a csMode 
value of 0; for gray tones (luminance mapping enabled), it is passed a csMode 
value of 1. Luminance equivalence should be determined by converting each 
RGB value into the hue-saturation-brightness system and then selecting a gray 
value of equal brightness. Mapping colors to luminance-equivalent gray tones 
lets a color monitor emulate a monochrome monitor exactly.

If a driver is told to disable luminance mapping and the connected display is 
known to be a monochrome device, the driver should set csMode to 1 and keep 
luminance mapping enabled.

A direct device should always save the csMode value. Luminance mapping, 
however, should never occur in control routines that modify the CLUT. 

SetInterrupt (csCode = 7) 13

The optional SetInterrupt routine controls the generation of VBL interrupts.

OSErr = Control(theDeviceRefNum, cscSetInterrupt, &theVDFlag Record );

--> csMode Enable or disable interrupts

-- filler Unused

To enable interrupts, pass a csMode value of 0; to disable interrupts, pass a 
csMode value of 1. The VDFlagRecord data structure is defined on (page 524).

DirectSetEntries (csCode = 8) 13

DirectSetEntries is optional. Normally, color table animation is not used on a 
direct device, but there are some special circumstances under which an 
application may want to change the color table hardware. The DirectSetEntries 
routine provides the direct device with indexed mode functionality identical to 
the regular SetEntries control routine.

OSErr = PBControl(theDeviceRefNum, cscDirectSetEntries, 
&theVDSetEntryRecord);
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--> csTable Pointer to ColorSpec array

--> csStart First entry in table

--> csCount Number of entries to set

The DirectSetEntries routine has exactly the same functions and parameters as 
the regular SetEntries routine, but it works only on a direct device. If this call is 
issued to an indexed device, it should return controlErr.

SetDefaultMode (csCode = 9) 13

The SetDefaultMode routine is obsolete for PCI-card graphics drivers in Power 
Macintosh computers. The driver should return controlErr. Graphics drivers 
should instead use the SavePreferredConfiguration routine described on 
(page 489).
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SwitchMode (csCode = 10) 13

The SwitchMode routine is required.

OSErr = Control(theDeviceRefNum, cscSwitchMode,
&theVDSwitchInfoRecord );

--> csMode Relative bit depth to switch to

--> csData DisplayModeID to switch into

--> csPage Video page number to switch into

<-- csBaseAddr
Base address of the new DisplayModeID

The VDSwitchInfoRec structure, described on (page 523), indicates what depth 
mode to switch to, the DisplayModeID  value for the new display mode, and 
the number of the video page to switch to. The driver uses the csBaseAddr field 
of VDSwitchInfoRec to return to the base address of the video page specified by 
csPage.

Note
Unlike NuBus declaration ROM–based drivers, the 
SwitchMode routine should not modify the driver’s AuxDCE 
dCtlSlotId field. ◆

SetSync (csCode = 11) 13

The optional SetSync routine complements GetSync, described on (page 496). It 
can be used to implement the VESA Device Power Management Standard 
(DPMS) as well as to enable a sync-on-green, sync-on-red, or sync-on-blue 
mode for a frame buffer. 

enum {
kDisableHorizontalSyncBit = 0,
kDisableVerticalSyncBit = 1,
kDisableCompositeSyncBit = 2,
kEnableSyncOnBlue = 3,
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kEnableSyncOnGreen = 4,
kEnableSyncOnRed = 5

}

The following illustrates a typical use of SetSync:

OSErr = Control(theDeviceRefNum, cscSetSync, &theVDSyncInfoRec);

Following is the information that the status routine must return in the fields of 
the VDSyncInfoRec record (page 496) passed by SetSync:

--> csMode Bit map of the sync bits that need to be disabled or enabled.
--> csFlag A mask of the bits that are valid in the csMode field. In this 

manner, a 1 in bit 2 of csFlag indicates that bit 2 in the 
csMode field is valid and the driver should set or clear the 
hardware bit accordingly. 

To preserve compatibility with the current Energy Saver control panel, the 
following special case should be implemented. If the csFlags parameter of a 
SetSync routine is 0, the routine should be interpreted as if the csFlags 
parameter were 0x3. This interpretation is necessary because the Energy Saver 
control panel sends a csMode value of 0 and a csFlags value of 0 in its parameter 
block when it wants the display to enable all the horizontal, vertical, and 
composite sync lines. With the new definition, this would have no effect; the 
result would be that the display would never come out of sleep mode.

The SetSync routine can be used to implement the VESA DPMS standard by 
disabling the horizontal or vertical sync lines, or both. The VESA DPMS 
standard specifies four software-controlled modes of operation: On, Standby, 
Suspend, and Off. Mode switches are accomplished by controlling the 
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horizontal and vertical sync signals. Table 13-1 illustrates the relationship 
between modes and signals.

In the case of a display using only the composite sync line, only the On and Off 
modes are possible.

SavePreferredConfiguration (csCode = 16) 13

The required SavePreferredConfiguration routine complements the 
GetPreferredConfiguration control routine described on (page 500). It is used by 
clients to save the preferred relative bit depth (depth mode) and display mode. 
This means that a PCI card should save this information in NVRAM so that it 
persists across system restarts. Note that NVRAM use is limited to 8 bytes. For 
more information about NVRAM in PCI-based of Power Macintosh computers, 
see “Typical NVRAM Structure” (page 443).

OSErr = Control(theDeviceRefNum, cscSavePreferredConfiguration,
&theVDSwitchInfo);

The Monitors control panel can use this routine to set the preferred resolution 
and update the resolution list displayed to the user. Following is the 
information that the control routine must return in the fields of the 
VDSwitchInfoRec record passed by SavePreferredConfiguration:

--> csMode Relative bit depth of preferred resolution
--> csData DisplayModeID of preferred resolution

Table 13-1 Implementing VESA DPMS modes with SetSync

Mode
Horizontal
sync

Vertical 
sync Video

Power 
savings Recovery period

On Pulses Pulses Active None n.a.

Standby No pulses Pulses Blanked Minimal Short or immediate

Suspend Pulses No pulses Blanked Significant Substantial

Off No pulses No pulses Blanked Maximum System dependent
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-- csPage Unused
-- csBaseAddr Unused

Note
The driver is not required to save any of the information 
across reboots. However, it is strongly recommended that 
the relative bit depth and the DisplayModeID value be saved 
in NVRAM. ◆

SetHardwareCursor (csCode = 22) 13

SetHardwareCursor is a required routine for drivers that support hardware 
cursors. QuickDraw uses the SetHardwareCursor control call to set up the 
hardware cursor and determine whether the hardware can support it. The 
driver must determine whether it can support the given cursor and, if so, 
program the hardware cursor frame buffer (or equivalent), set up the CLUT, 
and return noErr. If the driver cannot support the cursor it must return 
controlErr. The driver must remember whether this call was successful for 
subsequent GetHardwareCursorDrawState or DrawHardwareCursor calls, but should 
not change the cursor’s x or y coordinates or its visible state.

OSErr = Control (theDeviceRefNum, cscSetHardwareCursor,
&theVDSetHardwareCursorRec);

--> csCursorRef
Reference to cursor data

The driver should call the VSL routine VSLPrepareCursorForHardwareCursor with 
csCursorRef and the appropriate hardware cursor descriptor. This routine, 
described on (page 516), will do all the necessary conversion for the cursor 
passed in csCursorRef to match the hardware described in the hardware cursor 
descriptor. If the cursor passed in csCursorRef is compatible with the hardware 
cursor descriptor, the VSL call will return true; otherwise, it will return false. It 
will also pass back a cursor image at the appropriate bit depth and pixel format 
for the hardware and a CTabPtr color table that specifies the colors for the 
cursor.

The driver should be able to copy the cursor image passed back from 
VSLPrepareCursorForHardwareCursor directly into its hardware cursor frame 
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buffer (or equivalent) and program its CLUT, using the color table in a fashion 
similar to the SetEntries control call. As in the SetEntries control call, the 
driver must apply any gamma correction to the color table.

If a driver's hardware can support multiple hardware cursor formats, the driver 
can make multiple calls to VSLPrepareCursorForHardwareCursor with different 
hardware cursor descriptors until the call succeeds or all hardware cursor 
formats are exhausted.

If the driver must access the cursor data structure passed in csCursorRef, it can 
typecast it to a CursorImageRec defined in Quickdraw.h. However, the format of 
the cursor passed in with csCursorRef is subject to change in future releases of 
Mac OS; it is recommended that VSLPrepareCursorForHardwareCursor be used 
because it will be kept up to date with the format of csCursorRef.

DrawHardwareCursor (csCode = 23) 13

DrawHardwareCursor is a required routine for drivers that support hardware 
cursors. It sets the cursor’s x and y coordinates and visible state. If the cursor 
was successfully set by a previous call to SetHardwareCursor, the driver must 
program the hardware with the given x, y, and visible parameters and then 
return noErr. If the cursor was not successfully set by the last SetHardwareCursor 
call, the driver must return controlErr.

OSErr = Control (theDeviceRefNum, cscDrawHardwareCursor,
&theVDDrawHardwareCursorRec);

--> csCursorX X coordinate

--> csCursorY Y coordinate

--> csCursorVisible
true if the cursor must be visible

The client will have already accounted for the cursor’s hot spot, so the 
csCursorX and csCursorY values are the x and y coordinates of the upper left 
corner of the cursor image. Depending on the position of the hot spot, the upper 
left corner may be above or to the left of the visible screen; thus, csCursorX and 
csCursorY are signed values. The driver is responsible for ensuring proper 
clipping if the cursor lies partially off the screen.
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If csCursorVisible is false, the driver must make the cursor invisible; 
otherwise, the driver must make the cursor visible.

SetPowerState (csCode = 25) 13

The optional SetPowerState routine lets the display hardware be placed in 
various power states. 

OSErr = Control(theDeviceRefNum, cscSetPowerState,
 &theVDPowerStateRec );

--> powerState
Switch display hardware to this state

<-- powerFlags
Describes the status of the new state

The powerState constants correlate with the VESA Device Power Management 
Standards. The system pairs SetPowerState and SetSync calls. The display 
hardware should only be placed in a low power state if the graphics controller 
can also place the connected display in a low power state. In other words, never 
place the display hardware in a low power state that visibly disrupts video if 
the connected display would remain active after a corresponding SetSync call. 
The driver is responsible for restoring its state when full power is restored.

Set the kPowerStateNeedsRefreshBit bit in powerFlags if VRAM decays in the 
new powerState condition. When the driver transitions from a powerState 
condition in which VRAM decays to one in which VRAM is stable, the system 
will refresh the VRAM.

Status Calls 13

The following sections present the graphics driver status calls. Not all video or 
display drivers need to respond to every one of these calls.
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GetMode (csCode = 2) 13

The required GetMode routine returns the current relative bit depth, page, and 
base address.

OSErr = Status(theDeviceRefNum, cscGetMode, &theVDPageInfo );

<-- csMode Current relative bit depth

 -- csData Unused

<-- csPage Current display page

<-- csBaseAddr
Base address of video RAM for the current DisplayModeID and 
relative bit depth

GetEntries (csCode = 3) 13

The required GetEntries routine returns the specified number of consecutive 
CLUT entries, starting with the specified first entry.

OSErr = PBStatus(theDeviceRefNum, cscGetEntries, &theVDSetEntryRecord );

<-> csTable Pointer to ColorSpec array

--> csStart First entry in table

--> csCount Number of entries to set

If gamma correction is used, the values returned may not be the same as the 
values originally passed by the SetEntries control call. If the value of csStart is 
0 or positive, the routine must return csCount entries starting at that position. If 
the value of csStart is –1, the routine must access the contents of the Value 
fields in csTable to determine which entries are to be returned. Both csStart 
and csCount are 0 based; their values are 1 less than the desired amount.

Although direct devices do not have logical color tables, the GetEntries routine 
should continue to return the current contents of the CLUT, just as it would for 
an indexed device.
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GetPages (csCode = 4) 13

The required GetPages routine returns the total number of video pages available 
in the current video card mode, not the current page number. This is a counting 
number and is not 0 based.

OSErr = Status(theDeviceRefNum, cscGetPages, &theVDPageInfo );

-- csMode Unused

-- csData Unused

<-- csPage Number of display pages available

-- csBaseAddr Unused

GetBaseAddress (csCode = 5) 13

The required GetBaseAddress routine returns the base address of a specified 
page in the current mode. 

OSErr = Status(theDeviceRefNum, cscGetBaseAddr, &theVDPageInfo );

-- csMode Unused

-- csData Unused

--> csPage Desired page

<-- csBaseAddr
Base address of VRAM for the desired page

The GetBaseAddress routine lets video pages be written to even when they are 
not displayed.
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GetGray (csCode = 6) 13

The required GetGray routine describes the behavior of subsequent SetEntries 
control calls to indexed devices.

OSErr = Status(theDeviceRefNum, cscGetGray, &theVDGrayRecord );

<-- csMode Luminance mapping enabled or disabled

The csMode parameter returns 0 if luminance mapping is disabled or 1 if it is 
enabled.

GetInterrupt (csCode = 7) 13

The optional GetInterrupt status routine returns a value of 0 if VBL interrupts 
are enabled and a value of 1 if VBL interrupts are disabled.

OSErr = Status(theDeviceRefNum, cscGetInterrupt, &theVDFlagRecord );

<-- csMode Interrupts enabled or disabled

-- filler Unused

The VDFlagRecord data structure is defined on (page 524).

GetGamma (csCode = 8) 13

The GetGamma routine returns a pointer to the current gamma table.

OSErr = Status(theDeviceRefNum, cscGetGamma, &theVDGammaRecord );

<-- csGTable Pointer to gamma table

The calling application cannot preallocate memory because of the unknown size 
requirements of the gamma data structure.
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GetDefaultMode (csCode = 9) 13

The GetDefaultMode control call is obsolete for PCI card graphics drivers. The 
driver should return statusErr. PCI card graphics drivers for Power Macintosh 
computers use the GetPreferredConfiguration routine described on (page 500).

GetCurrentMode (csCode = 10) 13

The required GetCurrentMode routine uses a VDSwitchInfoRec structure.PCI 
graphics drivers return the current DisplayModeID value in the csData field.

OSErr = Status (theRefNum, cscGetCurMode, &theVDSwitchInfoRec );

<-- csMode Current relative bit depth

<-- csData DisplayModeID of current resolution

<-- csPage Current page

<-- csBaseAddr
Base address of current page

GetSync (csCode = 11) 13

The use of the optional GetSync and SetSync routines has been expanded to 
manage the settings of all synchronization-related parameters of a frame buffer 
controller, not just the horizontal and vertical syncs. GetSync and SetSync can be 
used to implement the VESA DPMS as well as enable a sync-on-green mode for 
the frame buffer. 

A VDSyncInfoRec  data structure has been defined for the GetSync and SetSync 
routines: 

struct VDSyncInfoRec {
unsigned char csMode;
unsigned char csFlags;

}

496 Graphics Driver Routines



C H A P T E R  1 3

Graphics Drivers
The csMode parameter specifies the state of the sync lines according to these bit 
definitions: 

enum {
kDisableHorizontalSyncBit = 0,
kDisableVerticalSyncBit = 1,
kDisableCompositeSyncBit = 2,
kEnableSyncOnBlue = 3,
kEnableSyncOnGreen = 4,
kEnableSyncOnRed = 5

};

To implement the DPMS standard, bits 0 and 1 of the csMode field should have 
the following values:

GetSync can be used in two ways: to get the current status of the hardware and 
to get the capabilities of the frame buffer controller. These two different kinds of 
information are discussed in the next sections.

Reporting the Frame Buffer Controller’s Capabilities 13

To find out what the frame buffer controller can do with its sync lines, the user 
of the GetSync routine passes a value of 0xFF in the csMode flag. The driver 
zeroes out those bits that represent a feature that is not supported by the frame 
buffer controller. The available bit values are those for the csMode parameter of 
VDSyncInfoRec (page 497).

For example, a driver that is capable of controlling the horizontal, vertical, and 
composite syncs, and can enable sync on red, would return a value of 0x27:

Bit 1 Bit 0 Status

0 0 Active

0 1 Standby

1 0 Idle

1 1 Off
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csMode = 0x0 |
( 1 << kDisableHorizontalSyncBit) |
( 1 << kDisableVerticalSyncBit) |
( 1 << kDisableCompositeSyncBit) |
( 1 << kEnableSyncOnRed)

An additional bit is defined to represent those frame buffers that are not capable 
of controlling the individual syncs separately but can control them as a group:

enum {
kNoSeparateSyncControlBit = 6

}

A driver that cannot control the syncs separately sets this bit to tell the client 
that the horizontal, vertical, and composite syncs are not independently 
controllable and can only be controlled as a group. Using the previous example, 
the driver reports a csMode of 0x47:

csMode = 0x0 |
( 1 << kDisableHorizontalSyncBit) |
( 1 << kDisableVerticalSyncBit) |
( 1 << kDisableCompositeSyncBit) |
( 1 << kEnableSyncOnRed) |
( 1 << kNoSeparateSyncControlBit)

Reporting the Current Sync Status 13

The other use of the GetSync status routine is to get the current status of the sync 
lines. The client passes 0x00 in the csMode field. The returned value represents 
the current status of the sync lines. Bit 6 (kNoSeparateSyncControlBit) has no 
meaning in this case.

GetConnection (csCode = 12) 13

The required GetConnection routine gathers information about the attached 
display.

OSErr = Status (yourDeviceRefNum, cscGetConnection,
&theVDDisplayConnectInfoRec);
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<-- csDisplayType
Display type of attached display

<-- csConnectTaggedType
Type of tagging

<-- csConnectTaggedData
Tagging data

<-- csConnectFlags
Connection flags

<-- csDisplayComponent
Return display component, if available

See “Responding to GetConnectionInfo” (page 507) for more information on 
how to implement the GetConnection routine.

GetModeTiming (csCode = 13) 13

The GetModeTiming routine is required to report timing information for the 
desired displayModeID. 

OSErr = Status(yourDeviceRefNum, cscGetModeTiming, &theVDTimingInfoRec);

--> csTimingMode
Desired DisplayModeID

<-- csTimingFormat
Format for timing info (kDeclROMtables)

<-- csTimingData
Scan timing for desired DisplayModeID

<-- csTimingFlags
Report whether this scan timing is optional or required

See “Display Timing Modes” (page 506) for more details on the GetModeTiming 
routine.
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GetModeBaseAddress 13

The GetModeBaseAddress call is obsolete in PCI-based Power Macintosh 
computers. The driver should return statusErr.

GetPreferredConfiguration (csCode = 16) 13

The required GetPreferredConfiguration routine complements 
SavePreferredConfiguration, described on (page 489). 
GetPreferredConfiguration returns the data that was set using 
SavePreferredConfiguration.

OSErr = Status(theDeviceRefNum, cscGetPreferredConfiguration, 
&theVDSwitchInfo);

<-- csMode Relative bit depth of preferred resolution

<-- csData DisplayModeID of preferred resolution

-- csPage Unused

-- csBaseAddr Unused

GetNextResolution (csCode = 17) 13

The required GetNextResolution routine reports all display resolutions that the 
driver supports.

OSErr = Status(theDeviceRefNum, cscGetNextResolution, 
&theVDResolutionInfoRec);

--> csPreviousDisplayModeID
ID of the previous display mode

<-- csDisplayModeID
ID of the display mode following csPreviousDisplayModeID.
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<-- csHorizontalPixels
Number of pixels in a horizontal line

<-- csVerticalLines
Number of lines in a screen

<-- csRefreshRate
Vertical refresh rate of the screen

<-- csMaxDepthMode
Max relative bit depth for this DisplayModeID

GetNextResolution passes a csPreviousDisplayModeID value and returns the next 
supported display mode. The csDisplayModeID field is updated and the 
csHorizontalPixels, csVerticalLines, and csRefreshRate fields are set. The 
csMaxDepthMode field is also set with the highest supported video bit depth. This 
uses the same convention as in the past; kDepthMode1 is the first relative bit 
depth supported, not necessarily 1 bit per pixel. For futher information about 
depth modes, see the next section.

Observe these cautions:

■ The DisplayModeID values used do not need to be the same as the ones Apple 
uses. However, the DisplayModeID value 0 and all values with the high bit set 
(0x80000000 through 0xFFFFFFFF) are reserved by Apple.

■ To get the first resolution supported by a display, the caller will pass a value 
of kDisplayModeIDFindFirstResolution in the csPreviousDisplayModeID field 
of the VDResolutionInfoRec structure. 

■ To get the second resolution, the caller will pass the csDisplayModeID value of 
the first resolution in the structure’s csPreviousDisplayModeID field.

■ When a call has the last supported resolution in the csPreviousDisplayModeID 
field, the driver should return a value of kDisplayModeIDNoMoreResolutions in 
the csDisplayModeID field. No error should be returned.

■ If an invalid value is passed in the csPreviousDisplayModeID field, the driver 
should return a paramErr value without modifying the structure.

■ If the csPreviousDisplayModeID field is kDisplayModeIDCurrent, the driver 
should return information about the current displayModeID.

The constants just described are defined in the file Video.h and are listed in 
“Data Structures” (page 521).
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GetVideoParameters (csCode = 18) 13

The required GetVideoParameters routine returns video parameter information.

OSErr = Status (theDeviceRefNum, cscGetVideoParameters, 
&theVDVideoParametersRec);

--> csDisplayModeID
ID of the desired DisplayModeID

--> csDepthMode
Relative bit depth

<-> *csVPBlockPtr
Pointer to a VPBlock

<-- csPageCount
Number of pages supported for resolution and relative bit depth

<-- csDeviceType
Direct, fixed, or CLUT

The GetVideoParameters  routine accepts csDisplayModeID, csDepthMode, and 
a pointer to a VPBlock structure, which it fills in with the data for the specified 
csDisplayModeID and csDepthMode. It also returns the pageCount for that 
particular bit depth, as well as the deviceType.

Note
In PCI-based graphics drivers, the 
csVPBlockPtr->vpBaseOffset is always 0. The base address 
of video RAM for the current page, is the BaseAddress value 
returned by the GetCurrentMode routine. ◆

GetGammaInfoList (csCode = 20) 13

The GetGammaInfoList routine is optional. Clients wishing to find a graphics 
card’s available gamma tables formerly accessed the Slot Manager data 
structures. PCI graphics drivers must return this information directly.

In the future, gamma tables will be part of the display’s domain, not the 
graphics driver’s domain. In the meantime, graphics drivers must still provide 
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support for them by responding to the GetGammaInfoList and 
RetrieveGammaTable calls. The GetGammaInfoList routine iterates over the gamma 
tables supported by the driver for the attached display. 

OSErr = Status(theDeviceRefNum, cscGetGammaInfoList, &theVDGammaListRec);

--> csPreviousGammaTableID
ID of the previous gamma table

<-- csGammaTableID
ID of the gamma table following csPreviousDisplayModeID

<-- csGammaTableSize
Size of the gamma table in bytes

<-- csGammaTableName
Gamma table name (C string)

The csGammaTableName parameter is a C string with a maximum of 31 characters. 
The driver needs to copy the name from its storage to the storage passed in by 
the caller. It can use CStrCopy, described on (page 430). The caller uses 
csGammaTableSize to allocate storage to read the entire structure, using the 
RetrieveGammaTable routine.

Observe these cautions:

■ A client will pass a csPreviousGammaTableID of kGammaTableIDFindFirst to get 
the first gamma table ID. The driver should return this value in the 
csGammaTableID field.

■ If the last gamma table ID is passed in the csPreviousGammaTableID field, the 
driver should put a kGammaTableIDNoMoreTables in the csGammaTableID field 
and return noErr.

■ If an invalid gamma table ID is passed in the csPreviousGammaTableID field, 
the driver should return paramErr and should not modify the data structure.

■ A client can pass csPreviousGammaTableID with a value of 
kGammaTableIDSpecific. This tells the driver that the csGammaTableID contains 
the ID of the table that the client wants information about. This is a way to 
bypass iteration through all the tables when the caller already knows the 
GammaTableID.

■ Although the GetGammaInfoList call appears to perform its iteration 
operations similarly to the GetNextResolution call, there is an important 
difference. GetGammaInfoList only returns information for gamma tables that 
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are applicable to the attached display; GetNextResolution returns the 
information regardless of what display is connected.

RetrieveGammaTable (csCode = 21) 13

The optional RetrieveGammaTable routine copies the designated gamma table 
into the designated location.

OSErr = Status (theDeviceRefNum, cscRetrieveGammaTable, 
&theVDRetrieveGammaRec);

--> csGammaTableID
ID of gamma table to retrieve

<-> csGammaTablePtr
Location to copy table into

RetrieveGammaTable is used after a client has used the GetGammaInfoList routine 
to iterate over the available gamma tables and subsequently decides to retrieve 
one. It is the responsibility of the client to allocate and dispose of the memory 
pointed to by csGammaTablePtr.

SupportsHardwareCursor (csCode = 22) 13

Graphics drivers that support hardware cursors must return true in response to 
the SupportsHardwareCursor status call.

OSErr = Status (theDeviceRefNum, cscSupportsHardwareCursor, 
&theVDSupportsHardwareCursorRec);

<-- csSupportsHardwareCursor
true if hardware cursor is supported
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GetHardwareCursorDrawState (csCode = 23) 13

GetHardwareCursorDrawState is a required routine for drivers that support 
hardware cursors.

OSErr = Status (theDeviceRefNum, cscGetHardwareCursorDrawState, 
&theVDHardwareCursorDrawStateRec);

<-- csCursorX
X coordinate from last DrawHardwareCursor call

<-- csCursorY
Y coordinate from last DrawHardwareCursor call

<-- csCursorVisible
true if the cursor is visible

<-- csCursorSet
true if cursor was successfully set by the last SetHardwareCursor 
call

The csCursorSet parameter should be true if the last SetHardwareCursor control 
call was successful and false otherwise. If csCursorSet is true, the csCursorX, 
csCursorY, and csCursorVisible values must match the parameters passed in to 
the last DrawHardwareCursor control call.

After driver initialization the cursor’s visible state and set state should be false. 
After a mode change the cursor should be made invisible but the set state 
should remain unchanged.

GetPowerState (csCode = 25) 13

The optional GetPowerState routine reports the display hardware’s current 
power state. 

OSErr = Status (theDeviceRefNum, cscGetPowerState, &theVDPowerStateRec );

<-- powerState
Current power state of display hardware
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<-- powerFlags
Status of current state

Set kPowerStateNeedsRefreshBit in powerFlags if VRAM decays in the current 
power state.

Display Timing Modes 13

Macintosh graphics drivers have always sensed the type of display attached to 
the graphics card. They did this with three lines on the connector to perform a 
hardware sense code algorithm. This algorithm is detailed in the Macintosh New 
Technical Note HW-30, described in “Apple Publications” (page 26). Once the 
sense code was determined, the graphics driver trimmed its list of available 
timing modes to those that it calculated were possible.

Having the driver determine which timing modes are possible is very 
unflexible. New displays have required new sense codes that old drivers do not 
recognize and new technologies, such as the Display Data Channel (DDC) 
technology, provide additional information that old drivers do not know how to 
interpret.

Thus, the graphics driver strategy for Mac OS changed in PCI-based Power 
Macintosh computers. This new strategy emphasizes timing mode decisions 
done through the Display Manager instead of the graphics driver. This 
approach has these advantages:

■ It gives display designers maximum flexibility to create displays that support 
multiple timing modes.

■ It lets card desgners focus on hardware and be less concerned with the 
display that is attached.

■ It supports the Video Electronics Standards Association (VESA) DDC 
standard (Level 2B), but does not force cards to interpret DDC content.

Display Manager Requirements 13

The Display Manager needs support from the graphics driver in order to 
implement the trimming of the available timing modes. In the past, the driver 
has trimmed these modes depending on the display that was sensed. Now the 
driver must perform the following functions:
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■ Report as available (that is, do not trim) all timing modes that are supported 
by the current graphics card hardware—for example, trim only those modes 
that require different amounts or configurations of VRAM. When responding 
to GetNextResolution calls, the driver must return all timing modes 
supported by the current frame buffer. Do this for DDC displays, multiple 
scan displays, and single-mode displays. 

■ If an unknown sense code is found, program the hardware as if a 13- or 
14-inch Monitor were sensed. 

■ If no display is sensed, return an error code from the Initialize or Open 
routine.

■ When responding to GetModeTiming, report as not valid and not safe those 
timing modes not validated by the sensing algorithm. Do this by clearing the 
modeValid and modeSafe flags.

■ When responding to GetConnectionInfo, perform the extended sense 
algorithm specified in the next section.

■ Support for DDC. 

Note
The reason for reporting invalid modes is that the Display 
Manager interfaces with smart displays and allows those 
displays to adjust the valid and safe flags monitor by 
monitor. The card has to know less about the actual 
capabilities of the display, and the display manufacturer 
has more flexibility about which modes will be active. ◆

Responding to GetConnectionInfo 13

The GetConnectionInfo call has been modified to support the new monitor 
sensing scheme described in the previous section. Specifically, changes have 
been made to a previously reserved field. This section describes the new 
functionality that graphics drivers need to support to be compatible with the 
new timing mode trimming procedure.

New Field and Bit Definitions 13

The csConnectTagged field, an unsigned short, in the previous definition has 
been split into two fields, csConnectTaggedType and csConnectTaggedData:
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struct VDDisplayConnectInfoRec {
unsigned short csDisplayType; /* type of display */
unsigned char csConnectTaggedType; /* type of tagging */
unsigned char csConnectTaggedData; /* tagging data */

unsigned long csConnectFlags; /* tells about the */
/* connection */

unsigned long csDisplayComponent; /* if the card has a */
/* direct connection to the display, it */
/* returns the display component here (future) */

unsigned long csConnectReserved; /* reserved*/
};

These two new fields are used to report monitor sensing information, as long as 
the bit kTaggingInfoNonStandard of the csConnectFlags field is not set (see next 
section). If that bit is set, then the csConnectTaggedType and csConnectTaggedData 
fields are private and Mac OS will not interpret them. Following are the bit 
definitions for the csConnectFlags field:

enum (
kAllModesValid = 0,
kAllModesSafe = 1,
kReportsTagging = 2, // driver reports tagging
kHasDirectConnection = 3,
kIsMonoDev = 4,
kUncertainConnection = 5,
kTaggingInfoNonStandard = 6,
kReportsDDCConnection = 7,
kHasDDCConnection = 8

};

Reporting csConnectTaggedType and csConnectTaggedData 13

GetConnectionInfo is designed to be a real-time call, particularly when it is used 
for tagging. When a driver receives this call, it should read the sense lines, 
obtaining the raw sense code and the extended sense code.

IMPORTANT

The driver is required to do this every time it gets this call. 
It cannot just report the codes it sensed during 
initialization. ▲
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When the kTaggingInfoNonStandard bit of csConnectFlags is cleared to 0, then 
csConnectTaggedType and csConnectTagged data are used to report the raw sense 
code and the extended sense code, respectively.

The following enumeration shows the constants used for csConnectTaggedType 
when kTaggingInfoNonStandard is 0:

typedef unsigned char RawSenseCode;
enum {

kRSCZero = 0,
kRSCOne = 1,
kRSCTwo = 2,
kRSCThree = 3,
kRSCFour = 4,
kRSCFive = 5,
kRSCSix = 6,
kRSCSeven = 7

};

The RawSenseCode data type contains constants for the possible raw sense code 
values when “standard” sense code hardware is implemented. For such sense 
code hardware, the raw sense is obtained as follows:

■ Instruct the frame buffer controller not to drive any of the monitor sense lines 
actively.

■ Read the state of the monitor sense lines 2, 1, and 0. Line 2 is the MSB, 0 the 
LSB.

IMPORTANT

When the kTaggingInfoNonStandard bit of csConnectFlags is 
false, then the RawSenseCode constants are valid 
csConnectTaggedType values in VDDisplayConnectInfo. ▲

The following enumeration shows the constants used for csConnectTaggedData 
when kTaggingInfoNonStandard is 0:

typedef unsigned char ExtendedSenseCode;
enum {

kESCZero21Inch = 0x00, /* 21" RGB */
kESCOnePortraitMono = 0x14, /* portrait monochrome */
kESCTwo12Inch = 0x21, /* 12" RGB */
kESCThree21InchRadius = 0x31, /* 21" RGB (Radius) */
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kESCThree21InchMonoRadius = 0x34, /* 21" monochrome (Radius) */
kESCThree21InchMono = 0x35, /* 21" monochrome */
kESCFourNTSC = 0x0A, /* NTSC */
kESCFivePortrait = 0x1E, /* Portrait RGB */
kESCSixMSB1 = 0x03, /* Multiscan band-1 (12" */

/* thru 16") */
kESCSixMSB2 = 0x0B, /* Multiscan band-2 (13" */

/* thru 19") */
kESCSixMSB3 = 0x23, /* Multiscan band-3 (13" */

/* thru 21") */
kESCSixStandard = 0x2B, /* 13" or 14" RGB or 12" */

/* monochrome*/
kESCSevenPAL = 0x00, /* PAL */
kESCSevenNTSC = 0x14, /* NTSC */
kESCSevenVGA = 0x17, /* VGA */
kESCSeven16Inch = 0x2D, /* 16" RGB (GoldFish) */
kESCSevenPALAlternate = 0x30, /* PAL (alternate) */
kESCSeven19Inch = 0x3A, /* Third-party 19” */
kESCSevenNoDisplay = 0x3F /* No display connected */

};

The ExtendedSenseCode data type contains enumerated constants for the values 
that are possible when the extended sense algorithm is applied to hardware that 
implements the “standard” sense code algorithm.

For such sense code hardware, the algorithm is as follows, where sense line A 
corresponds to 2, B to 1, and C to 0:

■ Drive sense line A low and read the values of B and C. 

■ Drive sense line B low and read the values of A and C.

■ Drive sense line C low and read the values of A and B.

In this way, a 6-bit number of the form BC/AC/AB is generated. 

IMPORTANT

When the kTaggingInfoNonStandard bit of csConnectFlags is 
false, then these constants are valid csConnectTaggedData 
values in VDDisplayConnectInfo. ▲
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Table 13-2 shows examples of csConnectTaggedType and csConnectTaggedData 
values for certain monitors.

Connection Information Flags 13

The following values have been added to the connection information flags to 
supply required information to the Display Manager:

■ kReportsDDCConnection = 7 means that the card supports the DDC and would 
report a connection if a DDC display were connected.

■ kHasDDCConnection = 8 means the card has a DDC connection to the display. 

■ kTaggingInfoNonStandard = 5 means that the information reported in 
csConnectTaggedType and csConnectTaggedData fields does not correspond to 
the Apple sense codes.

The flag kHasDirectConnect has been renamed kHasDirectConnection.

Timing Information 13

The file Video.h contains constants for Apple-defined timings. A driver returns 
the timing for a given display mode by GetTimingInfo. The csTimingData field of 
the VDTimingInfoRec contains the timing constant for the display mode. The 
Display Manager and smart monitors use it to adjust the valid and safe flags. 
The VDTimingInfoRec structure is described on (page 523).

Timing information should reflect the actual timing driving the display. For 
example, even if a card creates a large graphics device with hardware pan and 
zoom for a 13-inch RGB display, it should still return timingApple13.

Some Apple displays support display modes such as 640x480 on a 16-inch 
display. The display is being driven at 16-inch timing, but the graphics device is 

Table 13-2 Sample csConnectTaggedType and csConnectTaggedData values

Display csConnectTaggedType csConnectTaggedData

21" Apple RGB 0 0x00

20" Apple Multiscan 6 0x23

14" Apple RGB 6 0x2B
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built smaller. The timing information for that display mode should still be 
timingApple16.

Reporting Display Resolution Values 13

In the NuBus environment, the driver’s primary initialization routine trims the 
supported display resolutions (functional sResources) to those that are available 
on the display that is sensed. This makes it difficult to support new displays, as 
possible supported resolutions might have been deleted by the card’s primary 
initialization routine. The Display Manager now takes care of verifying that a 
particular resolution is supported by the current display, using 
GetModeConnection and GetTimingInfo. 

The following sections detail what the different routines should do to 
implement the reporting of all possible display resolutions. See the previous 
section, “Display Timing Modes” (page 506), for background information on 
timing modes.

Implementing the GetNextResolution Call 13

A driver should leave all modes (resolutions) supported by the current video 
card hardware (for example, trim the modes that correspond to different 
amounts of VRAM). The driver should do this for all displays, even 
single-mode displays. This will help to decouple the graphics driver from 
knowing the capabilities of new displays.

Implementing the GetModeConnection Call 13

The Display Manager uses GetModeConnection to ascertain the capabilities of a 
connected display. For this call, the driver should not attempt to determine 
whether the various modes are valid or safe. This means the kAllModesValid and 
kAllModesSafe bits of the csConnectFlags field should be set to 0. By setting 
these bit fields to 0, the driver forces the Display Manger to make a 
GetModeTiming status call for each timing mode instead of assuming that they all 
have the same state.
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Implementing the GetModeTiming Call 13

GetModeTiming is used by the Display Manager to gather scan timing 
information. If the driver does not believe the display is capable of being driven 
with the desired resolution, it marks the kModeValid and kModeSafe bits of the 
csTimingFlags field false. This indicates to the Display Manager that the driver 
doesn’t think the display can handle the resolution but will let the Display 
Manager make the final decision, possibly by asking another software module 
for more information.

Programming the Hardware 13

A graphics driver should program the hardware to a valid and safe resolution, 
according to the sensed display. It should still report data as defined in the 
previous sections. The driver could also program the hardware to its previous 
resolution (before the last system restart), assuming that this information is 
valid for the current display.

Supporting the Hardware Cursor 13

PCI-based Power Macintosh computers implement a hardware cursor 
capability that graphics drivers may support. The status and control calls that 
graphics drivers implementing hardware cursors must respond to are as 
following:

■ SupportsHardwareCursor status call (csCode = 22), described on (page 504)

■ GetHardwareCursorDrawState status call (csCode = 23), described on (page 505)

■ SetHardwareCursor control call (csCode = 22), described on (page 490)

■ DrawHardwareCursor control call (csCode = 23), described on (page 491)

Only drivers that provide a hardware cursor need to respond to these calls.

A utility routine, VSLPrepareCursorForHardwareCursor, helps drivers convert 
QuickDraw’s internal cursor representation into their hardware cursor’s format. 
This routine is described in “Hardware Cursor Utility” (page 516).
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Video Services Library 13

The Macintosh Video Services Library (VSL) provides video interrupt services 
for vertical blanking, horizontal blanking, and other tasks. It also contains a 
utility that can be used by graphics drivers that respond to hardware cursor 
calls as described in “Supporting the Hardware Cursor” (page 513).

Interrupt Services 13

This section describes functions in the VSL that help video drivers signal the 
Macintosh software to service display interrupts associated with the display 
attached to the frame buffer. 

A driver can create as many interrupt services as it supports. The model 
described here supports different types of video interrupts, such as horizontal 
blanking and frame interrupts. It opens the door for specialized interrupts for 
specific applications (such as broadcast). For each queue it supports, the driver 
is responsible for calling VSLDoInterruptService when the associated interrupt 
happens.

VSLNewInterruptService 13

OSErr VSLNewInterruptService(RegEntryIDPtr serviceOwner, 
InterruptServiceType serviceType, 
InterruptServiceId* serviceID);

serviceOwner
RegEntryIDPtr passed to the driver at install time.

serviceType Type of interrupt to be created.

serviceID Returned to specify the service for further calls to the VSL.

typedef unsigned long InterruptServiceId;
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typedef ResType InterruptServiceType;
enum {

kVBLService = 'vbl '; // vertical blanking
kHBLService = 'hbl '; // horizontal blanking
kFrameService = 'fram'; // interlace mode

};

DESCRIPTION

VSLNewInterruptService  creates a new interrupt for a graphics device. The 
service owner is the RegEntryIDPtr value passed to the driver at install time. 
This is used to identify the owner. The service type is a resType value indicating 
the type of interrupt to be created. At this time only one interrupt of a given 
type can be created by a driver. The serviceID value is returned by VSL and is 
used to specify the service for any further calls to VSL.

VSLNewInterruptService can be called only at driver install, open, and close 
times—times when memory management calls are safe.

VSLDoInterruptService 13

OSErr VSLDoInterruptService( InterruptServiceId serviceID );

serviceID Value returned by VSLNewInterruptService.

DESCRIPTION

VSLDoInterruptService executes tasks associated with an interrupt service. 
When a graphics driver gets an interrupt, it determines which service 
corresponds to that interrupt and calls VSLDoInterruptService with the 
serviceID value for that service. VSLDoInterruptService executes any tasks 
associated with the service.

VSLDisposeInterruptService 13

OSErr VSLDisposeInterruptService( InterruptServiceId serviceID );
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serviceID Value returned by VSLNewInterruptService.

DESCRIPTION

VSLDisposeInterruptService disposes of an interrupt service. When a graphics 
driver is closing for good, so that the card interrupt will no longer be serviced, it 
should call VSLDisposeInterruptService. The VSL will take over servicing any 
tasks still in the service.

VSLDisposeInterruptService can only be called at driver install, open, and close 
times—times when memory management calls are safe.

Hardware Cursor Utility 13

Drivers that support hardware cursors are passed a reference to a cursor stored 
in QuickDraw’s internal representation. This cursor format must be converted 
into the hardware cursor’s format. This conversion could include translating bit 
depths, interpreting the cursor mask, and matching colors.

To facilitate support for hardware cursors, the VSL provides a utility routine 
that performs the cursor conversion. By setting up a record that describes the 
hardware cursor’s format, a driver can call this routine to do the conversion for 
it.

VSLPrepareCursorForHardwareCursor 13

Boolean VSLPrepareCursorForHardwareCursor
(void *cursorRef,
HardwareCursorDescriptorPtr hardwareDescriptor,
HardwareCursorInfoPtr hwCursorInfo);

cursorRef Reference to the cursor passed in by QuickDraw.

hardwareDescriptor
Hardware cursor format.

hwCursorInfo Passed back to the driver to program the hardware cursor.
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DESCRIPTION

If the cursorRef passed to the driver is capable of being rendered by the 
hardware cursor, VSLPrepareCursorForHardwareCursor returns true; otherwise, it 
returns false. Cases where the routine returns false include a cursor needing 
more colors than the hardware can supply, a cursor that is too big, and a cursor 
requiring special pixel types that the hardware doesn’t support, such as 
inverted pixels.

The driver uses the following structure to describe its hardware cursor:

enum {
kTransparentEncoding = 0,
kInvertingEncoding

};

enum {
kTransparentEncodingShift = (kTransparentEncoding << 1),
kTransparentEncodedPixel  = (0x01 << 

kTransparentEncodingShift),
kInvertingEncodingShift = (kInvertingEncoding << 1),
kInvertingEncodedPixel = (0x01 << 

kInvertingEncodingShift),
};

enum {
kHardwareCursorDescriptorMajorVersion = 0x0001,
kHardwareCursorDescriptorMinorVersion = 0x0000

};

struct HardwareCursorDescriptorRec {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 height;
UInt32 width;
UInt32 bitDepth;
UInt32 maskBitDepth;
UInt32 numColors;
UInt32 *colorEncodings;
UInt32 flags;
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UInt32 supportedSpecialEncodings;
UInt32 specialEncodings[16];

};

typedef struct HardwareCursorDescriptorRec HardwareCursorDescriptorRec, 
*HardwareCursorDescriptorPtr;

The majorVersion and minorVersion fields describe the version of the descriptor 
record. The driver must set these to kHardwareCursorDescriptorMajorVersion 
and kHardwareCursorDescriptorMinorVersion. Doing so will provide 
compatibility with the conversion routine if the descriptor is changed in future 
releases of the VSL.

The height and width fields specify the maximum cursor height and width, in 
pixels, supported by the hardware.

The bitDepth field specifies the bit depth of the hardware cursor.

The maskBitDepth field is currently unused but reserved for future use. The 
driver must set this field to 0.

The numColors field specifies the number of colors supported by the hardware.

The colorEncodings field points to an array that specifies the hardware pixel 
encodings that map to the colors in the hardware cursor color table. The first 
entry in this array specifies the hardware cursor pixel value that corresponds to 
the first entry in the hardware cursor’s color table; the second entry in this array 
specifies the pixel value for the second entry in the hardware’s color table, and 
so on.

The flags field is used for extra information about the hardware. Currently, all 
flag bits are reserved and must be set to 0.

The supportedSpecialEncodings field specifies the type of special pixels 
supported by the hardware cursor and how they’re implemented.

The special pixel types supported by the descriptor are transparent pixels and 
inverting pixels. Transparent pixels are invisible, and the frame buffer pixel 
underneath a transparent hardware cursor pixel is seen. Inverting hardware 
cursor pixels invert the frame buffer pixel underneath.

The specialEncodings field is an array that specifies the pixel values for special 
encodings. Use the constants kTransparentEncoding and kInvertingEncoding to 
index into the array.
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EXAMPLES

The following hardware descriptor specifies a typical two-color hardware 
cursor:

UInt32  cursorColorEncodings[] =
{

0, 1
};

HardwareCursorDescriptorRec  hardwareCursorDescriptor =
{

kHardwareCursorDescriptorMajorVersion, // major version number
kHardwareCursorDescriptorMinorVersion, // minor version number
32, // height
32, // width
2, // pixel depth
0, // mask depth
2, // number of cursor colors
&cursorColorEncodings, // color pixel encodings
0, // flags
kTransparentEncodedPixel | // supports transparent pixels
kInvertingEncodedPixel, // supports inverting pixels
2, // transparent pixel encoding
3, // inverting pixel encoding
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // unused encodings

}

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 
by 32 pixels in size and supports transparent and inverting pixels. A cursor 
pixel value of 0 will display the first color in the cursor’s color map, and a pixel 
value of 1 will display the second color. A cursor pixel value of 2 will display 
the color of the screen pixel underneath the cursor. A cursor pixel value of 3 will 
display the inverse of the color of the screen pixel underneath the cursor.

The following hardware descriptor describes a three-color hardware cursor:

UInt32 cursorColorEncodings[] =
{

1, 2, 3
};
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HardwareCursorDescriptorRec  hardwareCursorDescriptor =
{

kHardwareCursorDescriptorMajorVersion, // major version number
kHardwareCursorDescriptorMinorVersion, // minor version number
32, // height
32, // width
2, // pixel depth
0, // mask depth
3, // number of cursor colors
&cursorColorEncodings, // color pixel encodings
0, // flags
kTransparentEncodedPixel, // supports transparent pixels
0, // transparent pixel encoding
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // unused encodings

};

The foregoing describes a 2-bit-per-pixel hardware cursor that can be up to 32 
by 32 pixels in size and supports transparent pixels. A cursor pixel value of 1 
displays the first color in the cursor’s color map, a pixel value of 2 displays the 
second color, and a pixel value of 3 displays the third color. A cursor pixel value 
of 0 displays the color of the screen pixel underneath the cursor. If the cursor 
requires inverting pixels (for example, the I-beam text edit cursor), a call to 
VSLPrepareCursorForHardwareCursor will return false and the driver should let 
the cursor be implemented in software.

The VSLPrepareCursorForHardwareCursor call will return the information that the 
driver needs to program the hardware cursor in the following data structure:

enum {
kHardwareCursorInfoMajorVersion = 0x0001,
kHardwareCursorInfoMinorVersion = 0x0000

};

struct HardwareCursorInfoRec {
UInt16 majorVersion;
UInt16 minorVersion;
UInt32 cursorHeight;
UInt32 cursorWidth;
CTabPtr colorMap;
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Ptr hardwareCursor;
UInt32 reserved[6];

};

typedef struct HardwareCursorInfoRec HardwareCursorInfoRec, 
*HardwareCursorInfoPtr;

The majorVersion and minorVersion fields describe what version of the info 
record is being used. The driver must set these to 
kHardwareCursorInfoMajorVersion and kHardwareCursorInfoMinorVersion. Doing 
so will provide compatibility with the conversion routine if the descriptor is 
changed in future releases of the VSL.

The cursorHeight and cursorWidth fields specify the height and width of the 
cursor passed in from QuickDraw.

The colorMap field is the table of colors that the cursor uses. A table big enough 
to hold all of the colors supported by the hardware cursor must be passed to the 
VSLPrepareCursorForHardwareCursor call, which will fill this table with the 
appropriate colors. These colors are taken from the color table in the gDevice 
record for the driver’s display. The driver must perform any required gamma 
correction on this color table.

The hardwareCursor field points to the buffer containing the converted image for 
the hardware cursor. A buffer big enough to hold the largest cursor supported 
by the hardware must be passed to the VSLPrepareCursorForHardwareCursor call, 
which will fill this buffer with the appropriate pixel values. The conversion call 
will not necessarily fill the entire buffer if the cursor passed from QuickDraw is 
smaller than the largest cursor supported by the hardware. The hardwareCursor 
buffer image’s row bytes will equal cursorWidth times the pixel depth of the 
hardware cursor. The driver must set the extra pixels to be transparent.

The reserved field is an array of reserved values, and the driver must set these 
to 0.

Data Structures 13

Mac OS uses the data structures listed in this section to communicate with 
graphics drivers. The interface file Video.h contains the latest information about 
these structures.
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struct VPBlock {
long vpBaseOffset; /*always 0 for Slot Mgr independent drivers*/
short vpRowBytes; /*width of each row of video memory*/
Rect pBounds; /*BoundsRect for the video display */
short vpVersion; /*PixelMap version number*/
short vpPackType;
long vpPackSize;
long vpHRes; /*horiz res of the device (pixels per inch)*/
long vpVRes; /*vert res of the device (pixels per inch)*/
short vpPixelType; /*defines the pixel type*/
short vpPixelSize; /*number of bits in pixel*/
short vpCmpCount; /*number of components in pixel*/
short vpCmpSize; /*number of bits per component*/
long vpPlaneBytes; /*offset from one plane to the next*/

};

In PCI-based graphics drivers, the vpBaseOffset is always 0. The base address of 
video RAM for the current page, is the BaseAddress value returned by the 
GetCurrentMode routine.

struct VDEntryRecord {
Ptr csTable; /*pointer to color table entry*/

};

struct VDGrayRecord {
Boolean csMode; /*same as GDDevType value (0=color, 1=mono)*/
SInt8 filler;

};

struct VDSetEntryRecord {
ColorSpec *csTable; /*pointer to an array of color specs*/
short csStart; /*which spec in array to start with, or -1*/
short csCount; /*number of color spec entries to set*/

};

struct VDGammaRecord {
Ptr csGTable; /*pointer to gamma table*/

};
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struct VDSwitchInfoRec {
UInt16 csMode; /*relative bit depth*/
UInt32 csData; /*display mode ID*/
UInt16 csPage; /*page to switch in*/
Ptr csBaseAddr; /*base address of page (return value)*/
UInt32 csReserved; /*reserved (set to 0) */

};

struct VDTimingInfoRec {
UInt32 csTimingMode; /* timing mode (a la InitGDevice) */
UInt32 csTimingReserved; /* reserved */
UInt32 csTimingFormat; /* what format is the timing info */
UInt32 csTimingData; /* data supplied by driver */
UInt32 csTimingFlags; /* information*/

};

struct VDDisplayConnectInfoRec {
UInt16 csDisplayType; /* type of display connected */
UInt8 csConnectTaggedType; /* type of tagging */
UInt8 csConnectTaggedData; /* tagging data */
UInt32 csConnectFlags; /* info about the connection */
UInt32 csDisplayComponent; /* display component if card has direct */

/* connection to display (future) */
UInt32 csConnectReserved; /* reserved */

};

struct VDPageInfo {
short csMode;
long csData;
short csPage;
Ptr csBaseAddr;

};

struct VDResolutionInfoRec {
DisplayModeID csPreviousDisplayModeID; /* ID of the previous resolution */

/* in a chain */
DisplayModeID csDisplayModeID; /* ID of the next resolution */
unsigned long csHorizontalPixels; /* # of pixels in a horizontal */

/* line at the max depth */
unsigned long csVerticalLines; /* # of lines in a screen at the */

/* max depth */
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Fixed csRefreshRate; /* vertical refresh rate, Hz */
DepthMode csMaxDepthMode; /* 0x80-based max bit depth */
unsigned long csResolutionFlags; /* flag bits */
unsigned long csReserved; /* reserved */

};

typedef struct VDResolutionInfoRec VDResolutionInfoRec;

/* csResolutionFlags bit flags for VDResolutionInfoRec*/
enum {

kResolutionHasMultipleDepthSizes = 0
/* this mode has different csHorizontalPixels, csVerticalLines at */
/* different depths (usually slightly larger at lower depths) */

};

struct VDVideoParametersInfoRec {
   DisplayModeID   csDisplayModeID;    /* ID of the target resolution */
   DepthMode       csDepthMode;        /* resolution’s relative bit depth */ 
   VPBlockPtr      csVPBlockPtr;       /* pointer to video parameter block */
   UInt32          csPageCount;        /* number of pages supported by the 
                                          resolution */
   VideoDeviceType csDeviceType;       /* direct, fixed, or CLUT */
   UInt32          csReserved;         /* reserved */
};

struct VDFlagRecord {
   SInt8    csMode;                    /* interrupts enabled or disabled */
   SInt8    filler;                    /* reserved */
};

struct VDGetGammaListRec {
   GammaTableID    csPreviousGammaTableID;   /* ID of previous gamma table */
   GammaTableID    csGammaTableID;           /* ID of gamma table following
                                                csPreviousDisplayModeID */
   UInt32      csGammaTableSize;         /* size of gamma table in bytes */
   char        csGammaTableName[32];     /* gamma table name (C string) */
};
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struct VDRetrieveGammaRec {
   GammaTableID   csGammaTableID;     /* ID of gamma table to retrieve */
   GammaTbl       *csGammaTablePtr;   /* location to copy desired gamma to */
};

struct VDSupportsHardwareCursorRec {
   Boolean     csSupportsHardwareCursor;   /* true if HW cursor supported */
   SInt8       filler;
};

struct VDSetHardwareCursorRec {
   void        *csCursorRef;
};

struct VDDrawHardwareCursorRec {
   SInt32      csCursorX;
   SInt32      csCursorY;
   SInt32      csCursorVisible;
};

struct VDSyncInfoRec {
   UInt8       csMode;
   UInt8       csFlags;
};

struct VDConvolutionInfoRec {
   DisplayModeID  csDisplayModeID;    /* ID of resolution we  want info on */
   DepthMode      csDepthMode;        /* Relative bit depth  */
   UInt32         csPage;
   UInt32         csFlags;
   UInt32         csReserved;
};

struct VDPowerStateRec {
unsigned long powerState;
unsigned long powerFlags;
unsigned long powerReserved1;
unsigned long powerReserved2;

};
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typedef UInt32    DisplayModeID;
typedef UInt32    VideoDeviceType;
typedef UInt32    GammaTableID;

/* Power Mode constants for VDPowerStateRec.powerState.*/
kAVPowerOff,
kAVPowerStandby,
kAVPowerSuspend,
kAVPowerOn

};

enum {
/* Power Mode constants for VDPowerStateRec.powerFlags.*/

kPowerStateNeedsRefreshBit= 0,
kPowerStateNeedsRefreshMask= (1L << 0)

};

/* bit definitions for the get/set sync call*/ 
enum {
   kDisableHorizontalSyncBit   = 0,
   kDisableVerticalSyncBit     = 1,
   kDisableCompositeSyncBit    = 2,
   kEnableSyncOnBlue           = 3,
   kEnableSyncOnGreen          = 4,
   kEnableSyncOnRed            = 5,
   kNoSeparateSyncControlBit   = 6,
   kHorizontalSyncMask         = 0x01,
   kVerticalSyncMask           = 0x02,
   kCompositeSyncMask          = 0x04,
   kDPMSSyncMask               = 0x7,
   kSyncOnBlueMask             = 0x08,
   kSyncOnGreenMask            = 0x10,
   kSyncOnRedMask              = 0x20,
   kSyncOnMask                 = 0x38
};

/* Bit definitions for the get/set convolution call*/ 
enum {
   kConvolved             = 0,
   kLiveVideoPassThru      = 1,
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   kConvolvedMask          = 0x01,
   kLiveVideoPassThruMask  = 0x02
};

/* csTimingFormat values in VDTimingInfo */
/* timing info follows DeclROM format */
enum {
   kDeclROMtables      = 'decl'
};
enum {

timingInvalid             = 0,   /* unknown timing; user must confirm*/
timingApple_512x384_60hz  = 130, /*  512x384  (60 Hz) Rubik timing*/
timingApple_560x384_60hz  = 135, /*  560x384  (60 Hz) Rubik-560 timing*/
timingApple_640x480_67hz  = 140, /*  640x480  (67 Hz) HR timing*/
timingApple_640x400_67hz  = 145, /*  640x400  (67 Hz) HR-400 timing*/
timingVESA_640x480_60hz   = 150, /*  640x480  (60 Hz) VGA timing*/
timingApple_640x870_75hz  = 160, /*  640x870  (75 Hz) FPD timing*/
timingApple_640x818_75hz  = 165, /*  640x818  (75 Hz) FPD-818 timing*/
timingApple_832x624_75hz  = 170, /*  832x624  (75 Hz) GoldFish timing*/
timingVESA_800x600_56hz   = 180, /*  800x600  (56 Hz) SVGA timing*/
timingVESA_800x600_60hz   = 182, /*  800x600  (60 Hz) SVGA timing*/
timingVESA_800x600_72hz   = 184, /*  800x600  (72 Hz) SVGA timing*/
timingVESA_800x600_75hz   = 186, /*  800x600  (75 Hz) SVGA timing*/
timingVESA_1024x768_60hz  = 190, /* 1024x768  (60 Hz) VESA 1K-60Hz*/
timingVESA_1024x768_70hz  = 200, /* 1024x768  (70 Hz) VESA 1K-70Hz*/
timingApple_1024x768_75hz = 210, /* 1024x768  (75 Hz) Apple 19" RGB*/
timingApple_1152x870_75hz = 220, /* 1152x870  (75 Hz) Apple 21" RGB*/
timingAppleNTSC_ST        = 230, /*  512x384  (60 Hz, interlaced,

 nonconvolved)*/
timingAppleNTSC_FF        = 232, /*  640x480  (60 Hz, interlaced,

 nonconvolved)*/
timingAppleNTSC_STconv    = 234, /*  512x384  (60 Hz, interlaced,

 nonconvolved)*/
timingAppleNTSC_FFconv    = 236, /*  640x480  (60 Hz, interlaced,

 nonconvolved)*/
timingApplePAL_ST         = 238, /*  640x480  (60 Hz, interlaced,

 nonconvolved)*/
timingApplePAL_FF         = 240, /*  768x576  (60 Hz, interlaced,

 nonconvolved)*/
timingApplePAL_STconv     = 242, /*  640x480  (60 Hz, interlaced,

 nonconvolved)*/
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timingApplePAL_FFconv     = 244, /*  768x576 (60 Hz, interlaced,
 nonconvolved)*/

timingVESA_1280x960_75hz   = 250, /* 1280x960  (75 Hz)*/
timingVESA_1280x1024_60hz  = 260, /* 1280x1024 (60 Hz)*/
timingVESA_1280x1024_75hz  = 262, /* 1280x1024 (75 Hz)*/
timingVESA_1600x1200_60hz  = 280, /* 1600x1200 (60 Hz) VESA proposed*/
timingVESA_1600x1200_65hz  = 282, /* 1600x1200 (65 Hz) VESA proposed*/
timingVESA_1600x1200_70hz  = 284, /* 1600x1200 (70 Hz) VESA proposed*/
timingVESA_1600x1200_75hz  = 286, /* 1600x1200 (75 Hz) VESA proposed*/
timingVESA_1600x1200_80hz  = 288  /* 1600x1200 (80 Hz) VESA proposed 

 (pixel clock is 216 Mhz dot 
clock)*/

/* csConnectFlags values in VDDisplayConnectInfo */
enum {
   kAllModesValid          = 0,    
   kAllModesSafe           = 1,    
   kReportsTagging         = 2,    
   kHasDirectConnection    = 3,
   kIsMonoDev              = 4,            
   kUncertainConnection    = 5,        
   kTaggingInfoNonStandard = 6,            
   kReportsDDCConnection   = 7,            
   kHasDDCConnection       = 8
};

/* csDisplayType values in VDDisplayConnectInfo */
enum {

kUnknownConnect = 1,  
kPanelConnect = 2, /* for use with fixed-in-place LCD panels 

*/
kPanelTFTConnect = 2, /* alias for kPanelConnect */
kFixedModeCRTConnect = 3, /* for use with fixed-mode

(i.e. very limited range) displays */
kMultiModeCRT1Connect = 4, /* 320x200 maybe, 12" maybe, 13" (default), 

16" certain, 19" maybe, 21" maybe */
kMultiModeCRT2Connect = 5, /* 320x200 maybe, 12" maybe, 13" certain,

16" 
(default), 19" certain, 21" maybe */

kMultiModeCRT3Connect = 6, /* 320x200 maybe, 12" maybe, 13" certain,
16" 
528 Data Structures



C H A P T E R  1 3

Graphics Drivers
certain, 19" default, 21" certain */
kMultiModeCRT4Connect = 7, /* expansion to large multimode

(not yet used) */
kModelessConnect = 8, /* expansion to modeless model 

(not yet used) */
kFullPageConnect = 9, /* 640x818 (to get 8bpp in 512K case) 

and 640x870 (these two only) */
kVGAConnect = 10, /* 640x480 VGA default-- 

question everything else */
kNTSCConnect = 11, /* NTSC ST (default), FF, STconv, FFconv */
kPALConnect = 12, /* PAL ST (default), FF, STconv, FFconv */
kHRConnect = 13, /* 640x400 (to get 8bpp in 256K case) 

and 640x480 (these two only) */
kPanelFSTNConnect = 14 /* for use with fixed-in-place LCD FSTN 

(aka "Supertwist") panels */
};

/* csTimingFlags values in VDTimingInfoRec */
enum {

kModeValid = 0, /* says that this mode should NOT be trimmed */
kModeSafe = 1, /* this mode does not need confirmation */
kModeDefault = 2, /* default mode for this type connection */
kModeShowNow = 3, /* this mode should always be shown (even 

though it may require a confirm) */
kModeNotResize = 4, /* should not be used to resize the display, 

e.g. mode selects different connector on card */
kModeRequiresPan = 5 /* has more pixels than are actually displayed */

};

typedef unsigned short DepthMode;
enum {
   kDepthMode1 = 128,
   kDepthMode2 = 129,
   kDepthMode3 = 130,
   kDepthMode4 = 131,
   kDepthMode5 = 132,
   kDepthMode6 = 133

typedef unsigned char RawSenseCode;
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enum {
   kRSCZero            = 0,
   kRSCOne             = 1,
   kRSCTwo             = 2,
   kRSCThree           = 3,
   kRSCFour            = 4,
   kRSCFive            = 5,
   kRSCSix             = 6,
   kRSCSeven           = 7
};

typedef unsigned char ExtendedSenseCode;
enum {

kESCZero21Inch  = 0x00, /* 21" RGB          */
kESCOnePortraitMono  = 0x14, /* portrait Monochrome      */
kESCTwo12Inch  = 0x21, /* 12" RGB          */
kESCThree21InchRadius  = 0x31, /* 21" RGB (Radius)     */
kESCThree21InchMonoRadius= 0x34, /* 21" monochrome (Radius)  */
kESCThree21InchMono  = 0x35, /* 21" monochrome           */
kESCFourNTSC  = 0x0A, /* NTSC                 */
kESCFivePortrait  = 0x1E, /* Portrait RGB         */
kESCSixMSB1  = 0x03, /

* Multiscan band-1 (13" thru 16") */
kESCSixMSB2  = 0x0B, /

* Multiscan band-2 (13" thru 19") */
kESCSixMSB3  = 0x23, /

* Multiscan band-3 (13" thru 21") */
kESCSixStandard  = 0x2B, /* 13"/

14" RGB or 12" Monochrome   */
kESCSevenPAL  = 0x00, /* PAL              */
kESCSevenNTSC  = 0x14, /* NTSC                 */
kESCSevenVGA  = 0x17, /* VGA              */
kESCSeven16Inch  = 0x2D, /* 16" RGB (GoldFish)       */
kESCSevenPALAlternate  = 0x30, /* PAL (alternate)      */
kESCSeven19Inch  = 0x3A, /* Third-party 19”      */
kESCSevenNoDisplay  = 0x3F /* No display connected         */

};

enum {
kDisplayModeIDCurrent = 0x0, // reference the current 

DisplayModeID
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kDisplayModeIDInvalid = 0xffffffff, // a bogus DisplayModeID in all 
cases

kDisplayModeIDFindFirstResolution = 0xfffffffe, // used in
// 

GetNextResolution to
// reset iterator

kDisplayModeIDNoMoreResolutions = 0xfffffffd // used in
// 

GetNextResolution to
// indicate end of 

list
}

enum {
kGammaTableIDFindFirst = 0xfffffffe, // get the first gamma table ID
kGammaTableIDNoMoreTables = 0xfffffffd, // used to indicate end of list
kGammaTableIDSpecific = 0x0    // return the info for the given table ID

}

Replacing Graphics Drivers 13

Mac OS is able to replace the ROM-based PCI graphics driver. You can use this 
feature to fix a bug or add additional functionality that was not found in the 
ROM-based driver. This section details several guidelines for replacing the 
driver. Prerequisite information is contained in “Driver Replacement” 
(page 174).

Note
Replacing a graphics driver may disrupt the user’s 
experience if the screen flashes or is redrawn. The 
following discussion suggests ways to prevent or control 
this. ◆

Starting with version 1.1 of the System Enabler, Mac OS issues a 
kSupersededCommand to the outgoing driver and a kReplaceCommand to the new 
driver. Note that a driver that gets the kSupersededCommand will not get a 
kFinalizeCommand. Similarly, the driver getting the kReplaceCommand will not get 
the kInitializeCommand.
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To implement these new calls, the ROM-based driver must support the 
kSuperseded command. In the call’s implementation, the driver must place in 
the Name Registry any information that will be needed by the new driver. It 
should not reset the video hardware (for example, by turning the video sync 
signals off).

A kCloseCommand will always be issued before kFinalizeCommand or 
kSupersedeCommand. When this command is received, the driver should turn off 
all interrupts and remove all VSL services. When responding to 
kFinalizeCommand and kSupersededCommand, it should remove the interrupt 
services.

The new driver needs to support the kReplaceCommand. After reading the state 
information from the Name Registry (which the old driver put there), it must 
make sure that all the current information is correctly initialized in the 
hardware. When responding to the kReplaceCommand it should not reprogram the 
hardware, because this might make the display flash.

The kReplaceCommand routine can ask Mac OS to redraw the screen by creating a 
property named needFullInit in the device node of the Name Registry. On 
finding that property, the Mac OS will redraw the screen and then delete the 
property. Redrawing the screen might be required if the new driver needed to 
change a parameter in the hardware (such as rowBytes) that is reflected in the 
OS data structures.
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This chapter describes what must be done to create STREAMS drivers for the 
Apple Open Transport networking architecture. It also describes the minimal 
functionality that must be supported by any driver that works with the Open 
Transport implementations of AppleTalk and TCP/IP. In this chapter, 
STREAMS drivers are also called port drivers. 

Open Transport uses the STREAMS model for implementing protocols and 
drivers to provide flexibility for mixing and matching protocols. This approach 
also allows a wide range of third-party STREAMS modules and drivers to be 
easily ported to the Open Transport environment.

Part of the flexibility of the STREAMS environment comes from its being a 
messaging interface with only a few well-defined messages. The most common 
types of messages are M_DATA (for sending raw data), M_PROTO (for sending 
normal commands), and M_PCPROTO (for sending high-priority commands). Since 
STREAMS does not define the content of M_PROTO or M_PCPROTO messages, it is 
necessary for modules to agree on a message format if they are to communicate. 
Apple uses the Transport Provider Interface (TPI) message format for most 
protocol modules and the Data Link Provider Interface (DLPI) for most 
STREAMS port drivers.

This document assumes familiarity with the STREAMS environment and with 
the set of STREAMS messages defined by the DLPI specification (Data Link 
Provider Interface Specification by Unix International, OSI Workgroup).

Dynamic Loading 14

Open Transport supports two methods of dynamically loading STREAMS 
modules. A STREAMS module may be written as an Apple Shared Library 
Manager (ASLM) shared library or as a Code Fragment Manager (CFM) code 
fragment. STREAMS modules written for 68000-family processors must use the 
ASLM. The CFM is the preferred mechanism for PowerPC modules, but the 
ASLM may also be used, especially if the module loads C++ classes 
dynamically. 

In this chapter, whenever a STREAMS module or driver is described as 
exporting a function it means that it exports the function using the named 
export method of the appropriate DLL. For the ASLM, this means using the 
extern keyword in front of the name of the function in the export file. For the 
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CFM, this means using the –export switch in MPW when linking a shared 
library.

IMPORTANT

PCI card port drivers for Power Macintosh computers must 
be written to conform to the new native driver architecture, 
using the CFM only. Open Transport will get all of the 
information it needs from the Macintosh Name Registry, 
described in Chapter 10. ▲

Finding the Driver 14

For Open Transport to be able to use a port driver, it needs to know that the 
driver exists. This is accomplished by having a port scanner register the port 
driver with Open Transport. On Power Macintosh computers with the native 
driver architecture, Open Transport provides this scanner, and driver writers 
only need to know how to set up the driver so that it can be found. With other 
computers, the driver writer may need to provide the port scanner.

Native Port Drivers 14

Open Transport provides the expert for drivers written for PCI-based Power 
Macintosh computers with the native driver architecture. For your driver to be 
automatically located and installed by the Open Transport expert, you must 
first define and export a DriverDescription structure as part of your driver so 
that your driver is added to the Name Registry. This structure is described in 
“Driver Description Structure” (page 198).

For Open Transport, the fields of the DriverDescription structure must be set as 
follows:

driverDescSignature
Must contain the value kTheDescriptionSignature.

driverDescVersion Must contain the value kInitialDriverDescriptor.
driverType.nameInfoStr

Fill in with the name of the driver. It must be exactly the 
same name as the module name pointed to by the 
streamtab structure of the driver (in the 
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qi_minfo->mi_idname field). The driver name may not end 
in a digit.

driverType.version
Fill in with the version number of the driver (not the 
version number of the device, which is stored in the 
driverDescVersion.revisionID field).

DriverOSRuntimeInfo.driverRuntime
This field must have the bit kdriverIsUnderExpertControl 
set. 

DriverOSRuntimeInfo.driverName
This field must contain one of the device names found in 
OpenTptLinks.h. These include kEnetName, kTokenRingName, 
kFDDIName, and so on. Remember that this field is a Pascal 
string, and the equates are for C strings, so you must use 
code such as "\p" kEnetName to get the desired effect.

DriverOSRuntimeInfo.driverDescReserved[8]
These are reserved fields and should be initialized to 0. 

DriverOSService.service[x].serviceCategory
At least one of your service categories must be filled in 
with the category kServiceCategoryopentransport. 

DriverOSService.service[x].serviceType
The service type field is a bit field that tells Open Transport 
about your device. It has this form:
xxxxdddd dddddddd cccccccc xxxxxxTD

where the d bits indicate the device type for Open 
Transport, the c bits indicate Ethernet framing options (the 
driver’s capability bits), the lower 2 bits (TD) state whether 
the driver is TPI or DLPI, and all other bits are 0 (shown by 
x). The macro
OTPCIServiceType(devType, capabilityBits, isTPI, isDLPI)
should be used to create this field. The list of device types 
available is found in the header file OpenTptLinks.h.

DriverOSService.service[x].serviceVersion
This field specifies the version of the Open Transport 
programming interface that your driver supports. It is in 
the standard NumVersion format (the format of a 4-byte 
'vers' resource). Currently, this field should be set to the 
constant kOTDriverAPIVersion. 
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Installing the Driver 14

Once your driver is registered with Open Transport, it is ready for Open 
Transport to install in a stream. This section describes the installation and 
loading processes.

Driver Initialization 14

 Any necessary driver initialization should be done by the port scanner before 
registering the driver. This insures that a device that is not usable does not get 
registered. For systems using the native driver architecture, Open Transport's 
port scanner will call ValidateHardware before registering your port.

OTResult ValidateHardware (RegEntryIDPtr)

The parameter passed to the ValidateHardware function depends on the port 
scanner being used. If the driver is able to change the power level of the device, 
it must use the ValidateHardware function, setting the device to either low 
power or no power.

Open Transport requires that ValidateHardware be exported. When this function 
is called, it should validate that the hardware is correct for the driver and is in 
good working order. If the function returns kENOENTErr, then the hardware is 
probably not the hardware for the driver and Open Transport will continue 
scanning for another driver. This is especially important for cards that do not 
have Open Firmware ROMs, because multiple vendors’ drivers may end up 
with the same name and appear to be usable with each other’s hardware.

For information about Mac OS services available to support ValidateHardware, 
see “Driver Initialization and Resource Verification” (page 167).

ValidateHardware should return one of the following values:

kOTNoError The hardware is OK. The device will be registered, and the 
driver may be unloaded from memory.

kOTPCINoErrorStayLoaded

The hardware is OK, the device will be registered, and the 
driver will not be unloaded from memory.
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If the ValidateHardware function is not exported, Open Transport will proceed 
as if the function returned kOTNoError.

Driver Loading 14

When a service requires the use of your driver, Open Transport will 
automatically load it and install it into the STREAMS module tables. In order to 
do this, your module must export a function named either GetOTInstallInfo or 
GetOTxxxxxInstallInfo (where xxxxx is the name of the module or driver).

install_info* GetOTInstallInfo(void);

This function returns the installation information that Open Transport needs to 
install the driver into the STREAMS tables, using the following data structure:

structure install_info
{
structure streamtab* install_str;
UInt32 install_flags;
UInt32 install_sqlvl;
char* install_buddy;
void* ref_load;
UInt32 ref_count;
};

Field descriptions
install_str This is a pointer to the driver’s streamtab structure.
install_flags This contains flags to inform Open Transport of your 

driver’s STREAMS module type. The install_flags should 

kENXIOErr The hardware is correct for the driver but is not OK. The port 
will not be registered, and the driver will be unloaded from 
memory.

kENOENTErr The hardware is probably not correct for the driver. The port 
will not be registered, and the driver will be unloaded. Open 
Transport will continue scanning for other drivers that might 
work with the hardware.

number < 0 Any appropriate error code (such as kENOMEMErr). The port will 
not be registered, and the driver will be unloaded.
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be set to kOTModIsDriver | kOTModIsPortDriver for 
STREAMS port drivers.

install_sqlvl This flag is set to the type of reentrancy your driver can 
handle. Possible values are the following:

install_buddy This field is currently not support by Open Transport. It 
should be set to NULL.

ref_load This field keeps a load reference to the driver. It should be 
initialized to 0 and then never touched.

ref_count This field monitors when a driver is first loaded and last 
unloaded. It should be initialized to 0 and then never 
touched. 

Whenever Open Transport loads your module or driver, and the ref_count field 
of the install_info structure is 0, Open Transport will call an optional 
initialization function exported by the module. This function must be named 
either InitStreamModule or InitxxxxxStreamModule (where xxxxx is the name of 
the module or driver).

Boolean InitStreamModule (void* systemDependent);

If InitStreamModule returns false to Open Transport, then the loading of the 
module will be aborted and an ENXIO error will be returned to the client. 
Otherwise, the module will be loaded and installed into a stream.

The systemDependent parameter is a pointer to the cookie value used when 
registering the port. For drivers loaded using the System registry, its value is 
RegEntryIDPtr.

SQLVL_QUEUE The driver can be entered once from 
the upper queue and once from the 
lower queue at the same time.

SQLVL_QUEUEPAIR The driver can be entered from 
either the upper queue or the lower 
queue, but not at the same time.

SQLVL_MODULE The driver can be entered only once 
per port, regardless of which 
instance of the module is entered.

SQLVL_GLOBAL Among all modules that use 
SQLVL_GLOBAL only one will be 
entered at a time.
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If the PCI device supports changing power levels, the InitStreamModule 
function should set the power level for normal operation.

Whenever Open Transport removes the last instance of a module or driver from 
the system, it calls an optional termination function exported by the module. 
This function must be named either TerminateStreamModule or 
TerminatexxxxxStreamModule (where xxxxx is the name of the module or driver).

void TerminateStreamModule (void);

If the PCI device supports changing power levels, the TerminateStreamModule 
function should set the power level to low power or no power, as appropriate.

Of course, modules and drivers may also use the initialization and termination 
features of their DLL technology. Both CFM and ASLM allow initialization and 
termination routines. However, only a call to InitStreamModule implies that the 
module is about to be loaded into a stream. Open Transport often loads a 
module just to call the GetOTInstallInfo information.

All memory allocations that do not use the Open Transport allocation routines 
(OTAllocMem and OTFreeMem) or any interrupt-safe allocators supplied by the 
interrupt subsystem must be performed from within the initialization and 
termination routines—that is, PoolAllocateResident and PoolDeallocate may be 
called only from them.

Once your port driver has been loaded, all communication with it will be 
through STREAMS messages and the entry points in the streamtab.

Note
Native drivers usually require a DoDriverIO export. Drivers 
that only support Open Transport do not need this export, 
and all references to it in the driver documentation may be 
safely ignored. ◆

Driver Operation 14

Once your driver is installed in a stream and opened, it is ready for action. 
From that point on, the driver will respond to messages according to the 
interface specifications (TPI or DLPI) that it supports.
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Drivers have one additional requirement they must observe. If they are running 
as a result of a primary interrupt, they must call the OTEnterInterrupt function 
before making any Open Transport calls. They must call OTLeaveInterrupt 
before exiting their current interrupt level, after they have made their final call 
to any Open Transport routines.

It is strongly suggested that the appropriate Open Transport functions be used 
for timing services and secondary interrupt services, so they will be most 
compatible with future versions of Mac OS. Open Transport is also compatible 
with current non-PCI Macintosh platforms.

 The Open Transport secondary interrupt services do not have the same 
restrictions as some other services, because any memory allocations needed are 
handled early. This prevents these functions from failing at inconvenient times.

Interrupt-Safe Functions 14

Open Transport provides many STREAMS services for module and driver 
writers, but not all of these services may be used at interrupt time.

The following STREAMS functions may be safely called at interrupt time:

allocb adjmsg copyb copymsg dupb

dupmsg esballoc freeb freemsg linkb

msgdsize msgpullup pullupmsg rmbv testb

unlinkb datamsg OTHERQ RD WR

bzero bcopy bcmp putq

IMPORTANT

The putq function may be used only to put a packet onto its 
lower (read) queue. No other put operation is allows at 
interrupt time. In particular, the canput function and its 
variants, as well as the queue enabling and put functions, 
cannot be called at primary interrupt time. ▲

The following Open Transport functions may be safely called at interrupt time:

OTCreateDeferredTask OTDestroyDeferredTask
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OTScheduleDeferredTask OTGetClockTimeInSecs

OTGetTimeStamp OTSubtractTimeStamps

OTTimeStampInMilliseconds OTTimeStampInMicroseconds

OTElapsedMilliseconds OTElapsedMicroseconds

cmn_err OTAllocMsg OTAllocMem

OTFreeMem mi_timer_alloc mi_timer_free

mi_timer mi_timer_cancel

In addition, all functions described in “Atomic Services” (page 544) may be 
called at interrupt time.

Secondary Interrupt Services 14

The functions described in this section are associated with Open Transport’s 
secondary interrupt services. 

typedef void (*OTProcessProcPtr)(void* contextInfo);

This typedef defines the deferred task callback function.

long OTCreateDeferredTask (
OTProcessProcPtr proc,
void *contextInfo);

This function creates a cookie (the returned long value) that can be used at a 
later time to schedule the function proc. At the time that proc is invoked, it will 
be passed the same contextInfo parameter that was passed to the 
OTCreateDeferredTask procedure.

void OTScheduleDeferredTask(long dtCookie);

This function is used to schedule the deferred procedure corresponding to the 
dtCookie value. It may be called multiple times before the deferred procedure 
actually being executed, but the deferred procedure will only be run once. Once 
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the deferred procedure has run, subsequent calls to OTScheduleDeferredTask will 
cause it to be scheduled to run again.

void OTDestroyDeferredTask(long dtCookie);

This function is used to destroy any resources associated with the deferred 
procedure; it should be called when the procedure is no longer needed.

Timer Services 14

Open Transport supplies robust timer services that are synchronized with the 
STREAMS environment and are supported by using special STREAMS 
messages. The function mi_timer_alloc creates one of these special STREAMS 
messages:

mblk_t* mi_timer_alloc(queue_t* targetQueue, size_t size);

Calling this function creates a STREAMS timer message of the requested size 
that is targeted to the specified STREAMS queue. Upper queues must be used 
as the targets of timer messages because timer messages enter target queues as 
M_PCSIG messages, which can never legitimately arrive from an upper queue but 
might legitimately arrive from a lower queue.

void mi_timer(mblk_t* timerMsg, unsigned long milliSeconds);

This function schedules the timerMsg (created using mi_timer_alloc) to be 
placed on the target STREAMS queue at a specified future time.

Note
To reset a timer, you need only call mi_timer with the new 
time. There is no need to call mi_timer_cancel. ◆

void mi_timer_cancel(mbk_t* timerMsg);

This function cancels an outstanding timer message. The timerMsg message is 
not destroyed but will no longer be delivered to the target queue. It may be 
rescheduled by using mi_timer at a later time.

void mi_timer_free (mblk_t* timerMsg);
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This function cancels and frees the specified timer message (mi_timer_cancel 
does not free the message). Never call freeb or freemsg for a timer message.

Boolean mi_timer_valid (mblk_t* timerMsg);

Timer messages enter the target queue as M_PCSIG messages. Whenever a queue 
that can receive a timer message receives an M_PCSIG message, it should call 
mi_timer_valid, passing the M_PCSIG message as a parameter. If the function 
returns true, then the timer message is valid and should be processed. If the 
function returns false, then the timer message was either deleted or canceled. 
In this case, ignore the message and don’t free it. 

▲ W AR N I N G

The mi_timer_valid function may not be called at interrupt 
time. ▲

mblk_t* mi_timer_qswitch 
(mblk_t* timerMsg, queue_t* q, mblk_t* newTimerMsg);

This function is called to change the target queue of a timer message. The caller 
must be in a context that blocks delivery of the timer message to the target 
queue’s put or service routine during the call. For example, the caller must 
already be in a put or service routine and won’t be processing a timer message 
reentrantly. 

The timerMsg parameter is the timer message that is to be moved to the new 
queue. The q parameter is the new target queue for the timer message. The 
newTimerMsg parameter is a copy of the timer message that is pointed to by 
timerMsg. The routine returns a pointer to the timer message that lives on—
either timerMsg or newTimerMsg. The other message is freed. If no new message is 
provided (newTimerMsg is null), but a message is required to do the switch 
successfully, a null pointer is returned. Both timerMsg and newTimerMsg are 
copies of the same message. On return, these pointers must be treated as invalid 
pointers and only the function return pointer can be considered valid.

Atomic Services 14

Open Transport supplies atomic services that help reduce the need for drivers 
to disable and enable interrupts.
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Note
Don’t confuse these services with the DSL atomic services 
described in Chapter 11. ◆

IMPORTANT

Many atomic services have strict alignment requirements. 
Be sure to heed the following warnings. The OTAllocMem 
and all STREAMS message blocks are guaranteed to be 
aligned to 32-bit boundaries. On STREAMS message 
blocks, this applies to the actual start of the message, not 
the b_rptr field itself, which may not be aligned at all. In 
16-bit operations, if the 16 bits cross a 32-bit boundary the 
atomic function will not work properly. In 32-bit functions, 
it is important that the variable being operated on be 
aligned on a 32-bit boundary. ▲

The first set of services atomically sets, clears, or tests a single bit in a byte. The 
first parameter is a pointer to a single byte, and the second is a bit number from 
0 to 7. The functions return the previous value of the bit. Bit 0 corresponds to a 
mask of 0x01, and bit 7 corresponds to a mask of 0x80.

Boolean OTAtomicSetBit (UInt8* theByte, size_t theBitNo);
Boolean OTAtomicClearBit (UInt8* theByte, size_t theBitNo);
Boolean OTAtomicTestBit (UInt8* theByte, size_t theBitNo);
Boolean OTAcquireLock (UInt8* theByte);
void    OTClearLock (UInt8* theByte);

OTAcquireLock is a faster equivalent of OTAtomicSetBit(theByte, 0). It returns 
true if the lock could be acquired (that is, if the bit was flipped from off to on). 
OTClearLock is a macro that just zeroes the byte.

The second set of services atomically add to a 32-, 16-, or 8-bit variable. By using 
a negative number, they can subtract. The return value is the new value of the 
variable 
as it is when the operation is completed.

SInt32 OTAtomicAdd32 (SInt32, SInt32* varToBeAddedTo);
SInt16 OTAtomicAdd16 (SInt16, SInt16* varToBeAddedTo);
SInt8  OTAtomicAdd8  (SInt8,  SInt8*  varToBeAddedTo);
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The third service is a general compare and swap. It determines if the value at 
where still contains the value oVal; if so, it substitutes the value nVal. If the 
compare and swap succeeds, the function returns true, otherwise false.

Boolean OTCompareAndSwap32
(UInt32 oVal, UInt32* nVal, UInt32** where);

Boolean OTCompareAndSwap16
(UInt16 oVal, UInt16* nVal, UInt16** where);

Boolean OTCompareAndSwap8
(UInt8 oVal,  UInt8* nVal,  UInt8** where);

The fourth set of services is an atomic last in, first out (LIFO) list. OTLIFOEnqueue 
and OTLIFODequeue are self-explanatory. OTLIFOStealList lets you remove all of 
the elements from the LIFO list atomically, so that the elements in the list can be 
iterated at your leisure by traditional means. OTLIFOReverseList is for those who 
find that LIFO lists are next to useless in networking. Once the OTLIFOStealList 
function has been executed, the result can be passed to OTLIFOReverseList, 
which can be used to flip the list into a first in, first out (FIFO) configuration. 
The OTLink and the OTLIFO parameters must both be aligned on 32-bit 
boundaries. Note that OTLIFOReverseList is not atomic.

struct OTLink
{

void* fNext;
};

struct OTLIFO
{

void* fLink;
};

void OTLIFOEnqueue (OTLIFO* list, OTLink* toAdd);
OTLink* OTLIFODequeue (OTLIFO* list);
OTLink* OTLIFOStealList (OTLIFO* list);
OTLink* OTReverseList (OTLink* firstInList);

The last set of services performs enqueueing and dequeueing from a LIFO list. 
It is used internally in the STREAMS implementation; it is exported so you can 
use it if it proves useful. If you look at the Open Transport LIFO 
implementation, it assumes that the structures being linked have their links 
pointing at the next link, and so on. Unfortunately, STREAMS messages (msgb 
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structures) are not linked this way internally (the b_cont field does not point to 
the b_cont field of the next message block but instead points to the actual 
message block itself). These two functions let you create a LIFO list where the 
head pointer of the list points to the actual object, but the next pointer in the 
object is at some arbitrary offset. It is important that the links and the list itself 
be aligned on 32-bit boundaries for these functions to work properly.

void* OTEnqueue
(void** list, void* newListHead, size_t offsetOfNextPtr);

void* OTDequeue
(void** theList, size_t offsetOfNextPtr);

Power Services 14

For those devices that can change their power usage, the STREAMS module 
must export the entry point OTSetPowerLevel. This lets the system set the 
device’s power level before its driver is installed into a stream.

void OTSetPowerLevel(UInt32 powerSelector);

In addition, devices that can change their power usage should support the 
I_OTSetPowerLevel IOCTL call. However, I_OTSetPowerLevel is used only 
if the driver is already installed into a stream.

Following are the four-byte selectors that can be passed to I_OTSetPowerLevel, 
with their return values:

'pmn3' Returns the card’s maximum power consumption in microwatts 
from the 3.3 V supply while in low power mode.

'pmn5' Returns the card’s maximum power consumption in microwatts 
from the 5 V supply while in low power mode.

'pmx3' Returns the card’s maximum power consumption in microwatts 
from the 3.3 V supply while in high power mode.

'pmx5' Returns the card’s maximum power consumption in microwatts 
from the 5 V supply while in high power mode.

'psta' Returns a value of 1 if the card is in high power mode.

'psup' Returns a value of 1 if the card supports power control, 0 if it does 
not.
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CSMA/CD Driver 14

The Open Transport CSMA/CD driver is a STREAMS driver that presents a 
DLPI to its clients. It is based on Revision 2.0.0 of the DLPI Specification, and is 
a Style 1 provider, supporting the connectionless mode primitives. Developers 
who wish to write CSMA/CD drivers that will interoperate with the Open 
Transport AppleTalk and TCP/IP implementations should use the information 
given in this section to guide their implementation.

Supported DLPI Primitives 14

The following DLPI primitives are supported by the Open Transport CSMA/
CD driver. The ones marked with a † are not required by either the Appletalk or 
TCP/IP stacks:

DL_BIND_ACK
DL_BIND_REQ
DL_DISABLEMULTI_REQ
DL_ENABLEMULTI_REQ
DL_ERROR_ACK
DL_INFO_ACK
DL_INFO_REQ
DL_OK_ACK
DL_PHYS_ADDR_ACK
DL_PHYS_ADDR_REQ
DL_SUBS_BIND_ACK
DL_SUBS_BIND_REQ
DL_TEST_CON †
DL_TEST_IND †
DL_TEST_REQ †

'ptog' Returns a value of 1 if the card supports switch between high and 
low power after initialization, 0 if it does not.

'sphi' Sets the card to high power mode. Returns a value of 0 if completed 
successfully, OSErr if not.

'splo' Sets the card to low power mode. Returns a value of 0 if completed 
successfully, OSErr if not.
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DL_TEST_RES †
DL_UNBIND_REQ
DL_UNITDATA_IND
DL_UNITDATA_REQ
DL_XID_CON †
DL_XID_IND †
DL_XID_REQ †
DL_XID_RES †

Future versions of the driver will also support these additional primitives: 
DL_GET_STATISTICS_ACK †
DL_GET_STATISTICS_REQ †
DL_PROMISCOFF_REQ†
DL_PROMISCON_REQ†

Extensions to the DLPI 14

In addition to supporting the DLPI primitives listed above, the Open Transport 
CSMA/CD driver includes extensions to support Fast Path mode (described in 
“Fast Path Mode” (page 557)). This includes the handling of M_IOCTL messages 
with a type of DL_IOC_HDR_INFO and special handling of M_DATA messages. It also 
defines several special M_IOCTL messages that enable the reception of raw 
packets and inform the CSMA/CD driver what kind of framing the client 
expects.

Packet Formats 14

The Open Transport CSMA/CD driver recognizes three packet formats. They 
are Ethernet, 802.2, and Novell “Raw 802.3,” a version of IPX. The details of the 
packet format are largely hidden from the client by the driver.

The type of packets the driver will handle is specified at bind time.

In all three packet formats, the first 6 bytes are the destination hardware 
address, and the next 6 bytes are the source hardware address. The first 6 bytes 
are followed by a protocol-dependent section, followed by the packet data.

The packet formats that the DSMA/CD driver can handle are diagrammed in 
Figure 14-1.
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Figure 14-1 Packet formats recognized by the CSMA/CD driver

Note
The 802.2 standard is described in Logical Link Control, 
ANSI/IEEE Standard 802.2-1985. ◆
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Ethernet Packets 14

In Ethernet packets, the protocol-dependent section consists of a 2-byte protocol 
type field. This field has a value in the range 1501 to 65535 (0x5DD to 0xFFFF).

802.2 Packets 14

In 802.2 packets, the protocol-dependent section consists of a 2-byte length 
word, a 1-byte destination service access point (DSAP), a 1-byte source service 
access point (SSAP), a control byte, and an optional 5-byte subnet access 
protocol (SNAP) field. Thus this section of the packet can be either 5 or 10 bytes 
long.

Note
The 802.3 specification guarantees that the value of the 
2-byte length word will always be less than 1501; therefore 
it is always possible to differentiate between Ethernet and 
802.2 packets by examining the value of this field. ◆

IPX Packets 14

IPX payloads may be carried in any one of three frames. In addition to Ethernet 
and 802.2, an IPX packet may be framed in what Novell calls a “Raw 802.3” 
packet. In this case, the protocol-dependent section consists only of a 2-byte 
length word. To distinguish these packets from 802.2 packets, Novell specifies 
that the first 2 bytes of the data section are always set to 0xFF.

Address Formats 14

Addresses used by the Open Transport CSMA/CD driver consist of two parts—
a hardware address and a protocol-dependent field. The hardware address is a 
6-byte Ethernet address. A hardware address of all 1s is the broadcast address. 
If a hardware address is not all 1s but the low bit of the first (left most) byte is 
set, then the address is a multicast address. The protocol address consists of a 
2-byte value called a data link service access point (DLSAP), which corresponds 
to the DLSAP defined in the DLPI specification. It is optionally followed by a 5- 
byte SNAP. The protocol address, when present, is appended to the hardware 
address.
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Ethernet 14

In Ethernet, the DLSAP corresponds to the protocol type field.

802.2 14

In 802.2 packets, the DLSAP corresponds to either

■ The SSAP (in a DL_BIND_REQ, DL_BIND_ACK, or in the source address field of a 
DL_UNITDATA_IND primitive) or 

■ The DSAP (in a DL_UNITDATA_REQ or in the destination address field of a 
DL_UNITDATA_IND primitive)

If the DLSAP is 0xAA, then it must be followed by a 5-byte SNAP.

IPX 14

In IPX packets, the DLSAP is always 0x00FF.

Binding 14

The information passed in a bind request is a function of the type of packets to 
be handled by this stream—Ethernet, 802.2, or IPX. In all three cases, the 
dl_max_conind field should be set to 0 and the dl_service_mode field must be set 
to the constant DL_CLDLS.

Note
The DLPI specification leaves open the possibility that 
several streams on the same hardware port could be bound 
to a single DLSAP. This feature is explicitly supported by 
the Open Transport CSMA/CD driver. If a packet arrives 
addressed to two or more streams simultaneously, each 
stream receives a copy of the packet. ◆
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Ethernet 14

To bind to an Ethernet protocol, the client sends a DL_BIND_REQ with the dl_sap 
field set to the protocol type. This is a value in the range 1501 to –65535 (0x5DD 
to 0xFFFF). The dl_xidtst_flg field is ignored.

802.2 14

To bind to an 802.2 address, the client sends a DL_BIND_REQ with the dl_sap field 
set to the SSAP. This is an even value in the range 0 to 254 (0x0 to 0xFE). The 
dl_xidtst_flg field may optionally have either or both of the DL_AUTO_XID or 
DL_AUTO_TEST bits set.

If the SSAP is 0xAA, then the client should follow the acknowledgment of the 
bind with a DL_SUBS_BIND_REQ with a 5-byte SNAP. The dl_subs_bind_class field 
should be set to DL_HIERARCHICAL_BIND. The message for enabling a SNAP is 
shown in Figure 14-2.

Figure 14-2 Message for enabling a SNAP

Note
Attempting to perform a hierarchical subs_bind operation 
to any service access point (SAP) value other than 0xAA 
will cause an error. ◆

After successfully binding to an 802.2 SAP, the client may enable a group SAP 
by sending a DL_SUBS_BIND_REQ with a 2-byte DLSAP containing the group SAP. 
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Valid group SAPs are odd numbers in the range 1 to 253 (0x1 to 0xFD). In this 
case, the dl_subs_bind_class field should be set to DL_PEER_BIND. Note that SAP 
255 (0xFF) is the global (broadcast) SAP and is always enabled. The message for 
enabling a group SAP is shown in Figure 14-3.

Figure 14-3 Message for enabling a group SAP

Note
For a description of group and global SAPs, see ANSI/IEEE 
Standard 802.2-1985. ◆

As a special case, a client may request that it receive all 802.2 packets that come 
in. It does so by sending a DL_SUBS_BIND_REQ with a 2-byte DLSAP set to 0. The 
dl_subs_bind_class field should be set to DL_PEER_BIND.

Note
When sending packets to DLSAP 0xFF, it is ambiguous 
whether the packet is destined for an 802.2 global SAP or 
an IPX SAP. The ambiguity is resolved by declaring that 
only an IPX endpoint can send to another IPX endpoint and 
an IPX endpoint cannot send to a global SAP. ◆

IPX 14

To bind to an IPX protocol, the client sends a DL_BIND_REQ with the dl_sap field 
set to 255 (0xFF). The dl_xidtst_flg field is ignored.
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Multicasts 14

A multicast address may be enabled on a driver with the DL_ENABMULTI_REQ 
message. The value must be a valid multicast address as defined in “Address 
Formats” (page 551). 

Similarly, a multicast address may be disabled on a driver with the 
DL_DISABMULTI_REQ message. The value must be a valid multicast address that 
was enabled on that particular stream with a prior DL_ENABMULTI_REQ.

Sending Packets 14

Packets are sent with the DL_UNITDATA_REQ message. If the destination has the 
same protocol address as the sender, it is only necessary to supply the hardware 
address of the destination; otherwise the full address must be used. Note that 
only a stream bound to the IPX SAP can send to another IPX stream.

To support Fast Path mode, the Open Transport CSMA/CD driver treats M_DATA 
messages as fully formed (“Raw”) packets, including all addresses and headers. 
The only modification made before sending the packet to the hardware is to 
check for a 0 in the 802.2 length field. If 0 is found, the length field is set to the 
appropriate value. Support of this feature is optional; see “Fast Path Mode” 
(page 557) for further information.

Receiving Packets 14

Incoming packets are passed to the client in DL_UNITDATA_IND messages. The 
dl_group_address field is set to 0 if the packet was addressed to a standard 
Ethernet address. It is set to keaMulticast if the packet was addressed to a 
multicast address and to keaBroadcast if the packet was addressed to a 
broadcast address, where kaeMulticast and kaeBroadcast are constants 
(currently 1 and 2, respectively).
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The data portion of the message consists of everything following the protocol- 
dependent section.

Raw Packets 14

Occasionally, a client may wish to send or receive “Raw” packets—packets with 
the link and protocol headers attached. To send raw packets, the client merely 
sends them as M_DATA messages, as described in “Fast Path Mode” (page 557).

A client that wishes to receive raw packets may send an M_IOCTL message with 
the ioc_cmd field set to kOTSetRawMode and its chained data block containing a 
UInt32 value. The value can be either kOTRawRcvOn or kOTRawRcvOff, to turn on or 
off the reception of raw packets. If the driver supports the delivery of raw 
packets, it responds with an M_IOCACK message; otherwise, with an M_IOCNAK 
message.

Raw packets received will have the kaeRawPacketBit set in the dl_group_address 
field of the corresponding dl_unitdata_ind_t.

Test and XID Packets 14

The driver includes support for 802.2 test and XID packets.

If the client requested automatic handling of test or XID packets by setting the 
DL_AUTO_TEST or DL_AUTO_XID bits in the dl_xidtest_flag field of the bind request 
when binding to an 802.2 DLSAP, then the driver will respond to incoming test 
or XID packets without notifying the client. If automatic handling has been 
requested, the client cannot send test or XID packets.

If the client did not request automatic handling of test or XID packets, then 
incoming test or XID packets will be passed up to the client as DL_TEST_IND or 
DL_XID_IND messages. The client should respond to them with DL_TEST_RES or 
DL_XID_RES messages.

If automatic handling has not been requested, the client may send test or XID 
packets with a DL_TEST_REQ or DL_XID_REQ message. Any responses are passed 
back to the client as DL_TEST_CON or DL_XID_CON messages.
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Attempts by non-802.2 streams to send DL_TEST_REQ, DL_XID_REQ, DL_TEST_RES, or 
DL_XID_RES messages are ignored.

Fast Path Mode 14

Fast Path is an optional optimization wherein the driver supplies the client with 
a precomputed packet header for a given destination. The client caches the 
header and copies it directly into packets addressed to that destination before 
passing them to the driver. The client first requests a header by sending the 
driver an M_IOCTL message with its ioc_cmd field set to DL_IOC_HDR_INFO and its 
chained data block containing the dl_unitdata_req_t structure that the client 
would normally use to send packets to that particular destination. If the driver 
does not support fast path, it simply responds with an N_IOCNAK message. 
STREAMS drivers respond with NAK to any IOCTL they can’t handle.

If the driver supports fast path, it responds with an M_IOCACK message with the 
chained data block containing the precomputed header. In the case of 802.2 
packets, the length field of the precomputed header is set to 0. The client 
prepends the header to outgoing packets and passes them to the driver as 
M_DATA messages. The driver then sends the packet as is, filling in the 802.2 
length field if necessary.

Note
The data block returned in the M_IOCACK should not be 
modified by the client, and it should always be copied with 
copyb rather than dupb, since the driver may modify it 
before sending the packet. ◆

Framing and DL_INFO_REQ 14

To support the TCP/IP stack available with Open Transport, CSMA/CD drivers 
must support both Ethernet and 802.2 framing (including full SAP/SNAP 
binding). Because the DLPI specification does not let a driver support multiple 
kinds of framing, it is ambiguous in specifying how to fill out the dl_mac_type 
field of a dl_info_ack_t. Open Transport has specified that the default value of 
this field should beDL_ETHER. Clients may send an M_IOCTL message with the 
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ioc_cmd field set to kOTSetFramingType and its chained data block containing a 
UInt32 value with a single bit set. If this value is the constant kOTFraming8022, 
then subsequent DL_INFO_REQ requests should set the dl_mac_type field to 
DL_CSMACD. If the value is not that constant, then subsequent DL_INFO_REQ 
requests should set the dl_mac_type field to DL_ETHER.

IMPORTANT

The only thing the foregoing M_IOCTL message affects is the 
contents of the DL_INFO_ACK. The framing that is actually 
used by the driver is specified in the bind. ▲

TokenRing and FDDI Drivers 14

Open Transport TokenRing and Fiber Distributed Data Interface (FDDI) drivers 
are identical to the CSMA/CD driver with only 802.2 packets and addressing 
supported. A hardware multicast in TokenRing is a hardware address with the 2 
high-order bits of the lef tmost byte set to 1.
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This chapter discusses the requirements for writing native driver code to 
support SCSI devices on PCI cards in PCI-based Power Macintosh computers. 

Macintosh SCSI devices are now supported by SCSI Manager 4.3, an enhanced 
version of the original Macintosh SCSI Manager. The new capabilities of SCSI 
Manager 4.3 include

■ support for asynchronous SCSI I/O

■ support for optional SCSI features such as disconnect and reconnect

■ a hardware-independent programming interface that minimizes the 
SCSI-specific tasks a device driver must perform

The hardware-independence features of SCSI Manager 4.3 mean that the 
equivalent of SCSI driver code is now a software entity called a SCSI Interface 
Module (SIM). This chapter discusses some of the requirements for writing 
and loading SIMs in PCI-based Power Macintosh computers.

Inside Macintosh: Devices, described in “Apple Publications” (page 26), contains 
a full discussion of SCSI Manager 4.3. You should read the material in Inside 
Macintosh first. This chapter covers only the changes from that information for 
SCSI devices based on PCI cards.

The SCSI Expert 15

The SCSI expert is supplied by Apple in the firmware of PCI-based Power 
Macintosh computers. For a discussion of experts, see “Terminology” 
(page 141).

The SCSI expert is simpler than some other experts and places fewer demands 
on Open Firmware and the native driver model. A PCI  card that wants to 
register a SIM with the SCSI Manager must place information in the device tree 
that includes its name and reg properties. To be recognized by SCSI Manager 4.3 
as a SCSI device, the device must have a device_type property of 'scsi'. This is 
important because it is the primary identifier that causes the SCSI expert to load 
the SIM. The device_type property is generated by the Mac OS startup code and 
is based on the PCI configuration space parameter class-code, which must have 
a value of "mass storage" (01). With the 
DriverOSService.service[x].serviceCategory value of "blok", the device_type 
property completely identifies the SIM code to the SCSI expert.
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SIMs for Current Versions of Mac OS 15

With current versions of Mac OS, you can write a native SIM by using the 
Mixed Mode Manager and passing universal procedure pointers to the 
transport (XPT) layer when registering the SIM. Native SIMs should also use 
CallUniversalProc when calling XPT routines.

PCI native SIMs are implemented similarly to other native drivers. The SIM 
installs a driver in the device tree with a driver,AAPL,MacOS,PowerPC property. 
Like other native drivers, SIMs export a driver description structure. The SCSI 
expert identifies a SIM by examining the service categories supported in the 
driver descriptor. SIMs have a serviceCategory of type 
kServiceCategoryScsiSIM. A driver supporting this service category should 
export a function named LoadSIM with the following interface:

OSErr LoadSIM (RegEntryIDPtr entry);

The SCSI expert  prepares the code fragment and calls this function after the 
SCSI transport layer is initialized. In response, the SIM should initialize itself 
the same way a NuBus SIM would by calling SCSIRegisterBus, as described in 
Inside Macintosh: Devices. Any nonzero result returned from LoadSIM causes the 
code fragment to be unloaded. Note that this is a ProcPtr-based interface, so 
you must pass UniversalProcPtr structures for all entry points. Those passed 
back by the XPT will also be UniversalProcPtr structures so native code should 
use CallUniversalProc when calling XPT layer procedures from the 
SIMInitRecord. 

An typical PCI-based SIM descriptor is shown in Listing 15-1.

Listing 15-1 SIM descriptor

DriverDescription TheDriverDescription = 
{

// signature information
kTheDescriptionSignature,
kInitialDriverDescriptor,

// type info
"\pFor Rent                        ",
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1,0,0,0, // major, minor, stage, rev
// OS runtime info

kDriverIsUnderExpertControl,
"\p.MySCSISIM                      ",
0,0,0,0,0,0,0,0, // reserve 8 longs

// OS service info
1, // number of service 

categories
kServiceCategoryScsiSIM,
0,
1,0,0,0 // major, minor, stage, rev

};

For the Startup Disk control panel to be able to select a boot device from a SIM 
correctly, the SCSIBusInquiry fields scsiHBAslotNumber and scsiSIMsRsrcID must 
uniquely identify the SIM from other SIMs and PCI cards. Each SIM should 
identify itself when registering with the system by placing a RegEntryID value in 
the SIMInitInfo parameter block. The XPT layer will calculate unique values for 
the SCSIBusInquiry fields and supply them to the SIMInit routine. From then on 
the SIM must return these values from SCSIBusInquiry. Three new fields—
simSlotNumber, simSRsrcID, and simRegEntry—have been defined in the 
SIMInitInfo parameter block to hold these values.  The new parameter block is 
defined as follows:

UInt8 *SIMstaticPtr;
long staticSize;
SIMInitUPP SIMInit;
SIMActionUPP SIMAction;
SCSIInterruptUPP SIM_ISR;
SCSIInterruptUPP SIMInterruptPoll;
SIMActionUPP NewOldCall;
UInt16 ioPBSize;
Boolean oldCallCapable;
UInt8 simInfoUnused1;
long simInternalUse;
SCSIUPP XPT_ISR;
SCSIUPP EnteringSIM;
SCSIUPP ExitingSIM;
SCSIMakeCallbackUPP MakeCallback;
UInt16 busID;
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UInt8 simSlotNumber; // output
UInt8 simSRsrcID; // output
RegEntryIDPtr simRegEntry; // input

Future Compatibility 15

The current SCSI Manager 4.3 interface is not guaranteed to be compatible with 
future Mac OS releases. At this time the SIM architecture is not fully defined 
and may be subject to change. However, it is possible to write a fully native SIM 
by passing universal procedure pointers to the XPT layer for the SIM’s entry 
points and by using CallUniversalProc in native code to call the XPT’s entry 
points. This approach is outlined in “SIMs for Current Versions of Mac OS” 
(page 561). Universal procedure pointers are described in Inside Macintosh: 
PowerPC System Software, listed in “Apple Publications” (page 26).

It is also possible to reduce the effort required to become compatible with future 
releases of Mac OS by following the rules set forth for other drivers in Chapter 
8, “Writing Native Drivers.” Primarily, you should limit communication with 
Mac OS to the calls documented in Chapter 11, “Driver Services Library.”

SCSI Device Power Management 15

Supporting power management in a SCSI driver unavoidably violates some of 
the guidelines set forth in “Card Power Controls” (page 469). This section 
discusses some of the issues and potential solutions.

At a minimum, SCSI storage device drivers should support driver gestalt as 
defined in “Driver Gestalt” (page 221). They should respond positively to the 
'lpwr' gestalt selector. Supporting driver gestalt mandates that the driver 
support csCode=70 for getting and setting the low power state (for spindle 
motor control, in most cases). The currently defined power modes are Active, 
Standby, Idle, and Sleep.

If a driver does not have to support multiple platforms (such as both Power 
Macintosh and PowerBook computers) and chooses to rely on the Power 
Manager’s internal timing semaphores, it should implement the following 
processes:
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■ Install code in the Power Manager’s HD Spindown, Sleep, and State 
Notification queues.

■ Make an UpdateSystemActivity call to notify the Power Manager of activity 
on the driver’s associated device.

When these processes are implemented, drivers registered with the Power 
Manager will not be ordered to enter a low power mode until all devices have 
been idle for a period of time set by the user. However, no individual device 
control will be available and more work will be required to make the driver 
compatible with future releases of Mac OS. 

To be compatible with both Power Macintosh and PowerBook computers, or to 
simply provide a more elegant solution to the user, the driver should maintain 
an internal timer specifically for the device it administers. If multiple devices 
are managed by a single driver, multiple timers should be managed as well. To 
provide this level of support, the following must be implemented:

■ Make an UpdateSystemActivity call to notify the Power Manager of activity 
on the driver’s associated device. This is required by the Power Manager to 
track idle time for system sleep correctly. 

■ Install code in the Power Manager State Notification queue requesting 
notification of spindown enable and disable changes, changes to the 
user-defined timeout period, and changes to the hard disk power state.

■ Keep an internal timer in the driver and provide some method to update the 
timer and invoke low power modes when appropriate. A VBL or Time 
Manager task may be used.

Drivers should not install code into the HD Spindown queue in this 
implementation. However, if the driver supports the main internal storage 
device on a PowerBook computer and requires device preparation before power 
is removed, Sleep and Wake and HD Spindown queue elements should be 
implemented.

With either Power Macintosh or PowerBook platforms, any access to a driver’s 
device or any driver request that requires the device to be at full power should 
cause the driver to wake the device before servicing that request. A control call 
to resume full power must be supported, but such a call is not required to wake 
the device.
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Note
Gestalt checks for the presence of the Power Manager 
should be made to decide whether to implement a low 
power solution upon a driver open or acknowledge request 
and to determine what kind of support is appropriate. ◆

The current Power Manager implementation supports a mixed environment 
where some clients are dependent on the Power Manager’s internal timing 
semaphore and others are self-sufficient. Drives supported by driver-based 
timers will spin down on a drive-by-drive basis. The internal timer will still 
trigger a spindown of those drives that rely on the Power Manager’s timing 
facilities. It would be wise in either implementation to respond intelligently to 
requests to enter a power mode that is already present.
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Appendixes

The following appendixes contain information that supplements the 
information in the previous chapters: 

■ Appendix A, “Big-Endian and Little-Endian Addressing,” discusses the 
theory and problems of handling mixed-endian formats.

■ Appendix B, “Graphic Memory Formats,” describes the ways that graphic 
information and video frames are stored in PCI-based Power Macintosh 
computers.

■ Appendix C, “PCI Header Files,” describes the PCI header files and lists all 
the routines and data structures documented in this book.

■ Appendix D, “Abbreviations,” lists the abbreviations and acronyms used in 
this book.
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Figure A-0
Listing A-0
Table A-0
Big-Endian and Little-Endian 
Addressing A

PCI-based Power Macintosh computers are mixed-endian because they 
support both big-endian and little-endian data formats. This appendix presents 
solutions to some of the problems that the computers encounter because they 
support both formats.

Although the natural addressing mode of the PowerPC microprocessor is 
big-endian, PCI-based Power Macintosh computers support little-endian 
addressing for several reasons:

■ because the PCI bus is little-endian 

■ so that they are compatible with expansion cards that store data in 
little-endian format

■ so that they can run operating systems (such as Windows NT) that require 
the underlying hardware to operate as if it were little-endian

This appendix first discusses the theory of big-endian and little-endian 
addressing and then examines how PCI-based Power Macintosh computers 
deal with the resulting problems and issues.

Note
The terms big-endian and little-endian come from Jonathan 
Swift’s eighteenth-century satire Gulliver’s Travels. The 
subjects of the empire of Blefuscu were divided into two 
factions: those who ate eggs starting from the big end and 
those who ate eggs starting from the little end. ◆

Endian Theory A

To give a concrete example around which to discuss endian format issues, 
consider writing code for a system that contains a DBDMA-like controller. The 
DMA code includes a descriptor format whose C definition might be as follows:
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struct {
UInt8 C; // "command" byte
UInt8 F; // "flags"
UInt16 L; // "length" (count)
UInt32 A; // "address"
UInt64 X; // "field64"

} DMA_Descriptor;

A compiler would assign offsets to the fields of the descriptor as follows:

C 0
F 1
L 2
A 4
X 8

Consider the diagram in Figure A-1, which presents the layout of the descriptor 
in a format that is neither big-endian nor little-endian. In Figure A-1, the 
numbers represent byte offsets to the descriptor’s fields.
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Figure A-1 Neutral descriptor layout

In Figure A-1 the byte offsets are associated with the “beginning” of each field. 
As discussed in the next sections, the primary difference between big-endian 
and little-endian addressing has to do with what is defined as the “beginning” 
of a field.

Big-Endian Addressing A

Figure A-2 shows what happens when the diagram in Figure A-1 is rotated 
counterclockwise.
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Note
In Figure A-2 and Figure A-3, the organization of memory 
is shown with the more significant bytes to the left and the 
less significant bytes to the right. This is consistent with 
standard numerical notation and most computer system 
documentation. Likewise, all bit-field and byte-field 
designations reference the most significant bit or byte 
number of the field first. ◆

Figure A-2 Big-endian descriptor layout

The diagram in Figure A-2 shows how a big-endian processor or memory 
system would organize the sample descriptor. In a big-endian system, physical 
memory is organized with the address of each byte increasing from most 
significant to least significant.

Endian order makes no difference for single-byte values. However, with 
multibyte values, the endian order determines the order in which bytes are 
addressed. As noted above, multibyte fields are interpreted with more 
significant bytes to the left and less significant bytes to the right. This means 
that the address of the most significant byte of the address field A is 4, while 
byte 7 corresponds to the least significant byte of A.

Bit ordering in a strictly big-endian architecture should naturally follow the 
ordering of bytes; that is, the most significant bit should be bit 0. This is true of 
PowerPC addressing. All bit numbering in this appendix follows the byte order, 
so the first bit designated in big-endian addressing (the most significant bit) has 
the lowest bit number.

Little-Endian Addressing A

Figure A-3 shows what happens when the diagram in Figure A-1 (page 571) is 
rotated clockwise.
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0 1 2 4 8

L A X
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Figure A-3 Little-endian descriptor layout

This diagram in Figure A-3 shows how a little-endian system would organize 
the descriptor. Notice which bytes constitute the “beginning” of each field. 
Instead of referring to the most significant byte of a field, the offsets refer to the 
least significant byte of each field. Hence, in this example, byte 4 refers to the 
least significant byte of the A field, while byte 7 refers to the most significant 
byte.

Bit numbering in a little-endian architecture naturally follows that of byte 
ordering; that is, bit 0 represents the least significant bit of a field. Thus, in 
little-endian bit field designations, the first bit shown (the most significant) has 
the highest bit number.

Scalar Accesses A

If all accesses to a data structure were done with read and write actions that 
transferred a whole field at a time, a program could not determine whether it 
was executing on a big-endian or little-endian system. For example, a 
word-sized access to field A in Figure A-1 (page 571) would always get the 
correct value.

Suppose that the code shown in Listing A-1 is used to initialize the descriptor 
shown in Figure A-1. The field values chosen in Listing A-1 are encoded: the 
first nibble gives the size of the field, and the other nibbles represent the byte 
offsets of each byte, assuming big-endian ordering. 

Listing A-1 Field value initializer

DMA_Descriptor aDescr;
aDescr.C = 0x10;
aDescr.F = 0x11;
aDescr.L = 0x2223;
aDescr.A = 0x44454647;
aDescr.X = 0x88898A8B8C8D8E8F;

CF

01248

LAX
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In Figure A-1, all accesses to field aDescr.L would yield identical results on 
either a big-endian or little-endian system, so it would normally be impossible 
to tell whether the system was big-endian or little-endian. However, certain 
code can detect the order of byte significance relative to the address of the fields 
initialized by the code shown in Listing A-1 and can thus tell whether the 
system addresses data in big-endian or little-endian mode. An example is 
shown in Listing A-2.

Listing A-2 Endian mode determination code 

union {
half H;
byte B[2];
} halfTrick;

halfTrick ht;
ht.H = aDescr.L;
if( ht.B[0] == 0x22 )

printf( "I'm on a big-endian system" );
else

printf( "I'm on a little-endian system" );

Address Invariance and Byte Swapping A

Address invariance (also called byte address consistency) guarantees that 
individual bytes are mapped across a data bridge according to their address (or 
byte lane number); the address of a byte is kept the same on both sides of the 
bridge.

For example, the little-endian NuBus maintains address invariance when 
passing data between the big-endian Macintosh II computer and an expansion 
card. To keep track of data movement, bytes are channeled into byte lanes. 
Thus, byte lane 0 of the Macintosh processor bus is mapped to byte lane 0 of 
NuBus, and so on. But when a 32-bit word passes to NuBus, the bytes are 
changed in significance by a process called byte swapping. The expansion card 
undoes the byte swap on its side of NuBus, so that data in memory on a card is 
organized exactly the same way it is on the Macintosh side. The diagram in 
Figure A-4 shows how data is mapped from the Macintosh II system across 
NuBus onto an expansion card.
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Figure A-4 Byte swapping in NuBus

Note
Byte-swapping is like parity. An even number of byte 
swaps produces the original ordering. ◆

Mixed-Endian Systems A

To use the PCI bus and achieve compatibility with a wide range of expansion 
card designs, PCI-based Power Macintosh computers are forced to be 
mixed-endian. This section discusses some of the issues that result from 
mixed-endian system design.

Transmitting Addresses A

In PCI-based Power Macintosh computers, addresses never require byte 
swapping. They are written and read as whole quantities and are passed 
directly across PCI bridges without byte swapping. However, some 
transformations may be required when transporting addresses across a 
bridge—for example, to encode byte lanes and transfer sizes. Addresses may 
also be altered by logical operations, as described in “Address Swizzling” 
(page 578).

0x40414243

3 2 1 0

0 1 2 3

0x43424140

0 1 2 3 0x40414243
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Byte-Swapping Issues A

Byte swapping of data is a natural consequence of address invariance. It occurs 
when data in one endian format is read by a system that uses the other endian 
format. For example, suppose the DMA descriptor values initialized by the 
code shown in Listing A-1 (page 573) are generated by a little-endian system 
and saved to disk. The data is then read from the disk by a big-endian system.

Assume that the data is written to disk in byte-address order, and that the disk 
memory is formatted in an 8-byte wide configuration. The little-endian disk 
memory image would look like Figure A-5.

Figure A-5 Little-endian memory image

When read by a big-endian system in byte-address order, the data would be 
stored in memory as shown in Figure A-6.

Figure A-6 Big-endian memory image

Notice that the byte offsets of each field are still correct. However, the data 
within each field has been swapped. If field aDescr.A was read with a 
little-endian word loading process, the data in memory would be 0x47464544, 
even though the original data was written as 0x44454647.

101144 45 4746 2322
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Byte Swapping and Frame Buffers A

Another example of byte swapping is what happens to multibyte pixels in a 
frame buffer. Macintosh software is compatible with several multibyte pixel 
formats, of which 16-bit pixels provide a good example of the effects of byte 
swapping. The Macintosh 16-bit RGB format interprets a half word as 
consisting of a 1-bit alpha value followed by three 5-bit red, green, and blue 
color components. The diagram in Figure A-7 shows how these pixels are 
packed into a word in big-endian memory.

Figure A-7 Big-endian RGB 16-bit pixel format

When this data is moved across the little-endian PCI bus, data swapping makes 
the data appear as shown in Figure A-8.

Figure A-8 Little-endian RGB 16-bit pixel format

Notice two effects of the byte swapping process:

■ The relative location of the pixels is correct for the little-endian PCI; this is a 
direct consequence of maintaining address invariance.

■ The data within the pixels has been partly rearranged. For example, the 
green component has been split into two pieces because it spans a byte 
boundary.
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Address Swizzling A

It is possible to make it appear that memory is organized in little-endian format, 
even though it is maintained by a microprocessor that is inherently big-endian, 
such as the PowerPC processor. This effect is desirable, for example, when 
Windows NT runs on a PCI-based Power Macintosh computer, because 
Windows NT requires memory to appear to be little-endian. It can be achieved 
by changing addresses without altering the layout of data in memory, a 
technique called address swizzling.

For example, refer to the DMA descriptor values initialized by the code shown 
in Listing A-1 (page 573). Little-endian software expects the descriptor to be 
arranged in memory as shown in Figure A-9.

Figure A-9 Little-endian descriptor in memory

A big-endian processor can maintain the memory image shown in Figure A-9 
by addressing it with big-endian byte lane assignments, as shown in Figure 
A-10. If a little-endian processor were maintaining the same image, it would 
assign byte lanes as shown in Figure A-5 (page 576). 

Figure A-10 Little-endian descriptor with big-endian addresses

Within fields, the byte ordering of the data image shown in Figure A-10 is 
correct, but the data addresses have been swizzled. For example, the field 
aDescr.C that is stored in byte lane 0 in the little-endian format shown in Figure 
A-5 (page 576) is now stored in byte lane 7 in Figure A-10. 
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Big-Endian and Little-Endian Addressing
Address swizzling is one technique by which the PowerPC processor provides 
little-endian addressing support. It is described more fully in “Little-Endian 
Processing Mode” (page 579).

PowerPC Little-Endian Support A

PowerPC microprocessors, which normally address data in big-endian format, 
provide two separate mechanisms to support little-endian and mixed-endian 
systems:

■ byte-reversed load and store instructions

■ little-endian processing mode

These mechanisms are discussed in this section.

Byte-Reversed Load and Store Instructions A

The PowerPC instruction set includes a class of load and store instructions that 
perform byte swapping based on the size of the data transferred. For example, 
the load word byte reversed indexed (lwbrx) instruction swaps a 4-byte value. 
The primary purpose of instructions such as lwbrx is to allow efficient access to 
data in little-endian format, without additional byte-swapping.

For an example, refer to the big-endian DMA descriptor value shown in Figure 
A-6. If a program uses a PowerPC lwbrx instruction to access field aDescr.A, it 
reads the value 0x44454647, which is the correct data in little-endian format.

Byte-reversed load and store instructions require more code than other load and 
store instructions, because they exist only in indexed form without update 
forms. Either addresses of fields within data structures must be explicitly 
calculated, or field offsets must be loaded into a register. Also, there is currently 
no C compiler mechanism available to generate these instructions.

Little-Endian Processing Mode A

The PowerPC microprocessor supports a little-endian processing mode, in 
which addresses are swizzled when they are used to access memory. The 
swizzle applies an XOR operation to the low-order 3 bits of an address with a 
constant that depends upon the size of the data being loaded or stored. Word 
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load and store actions use a value of 0b100, halves use 0b110, and bytes use 
0b111. The resulting addresses are used to make memory references to a 
big-endian memory system.

Note
The PowerPC’s effective address is not modified, only the 
interpretation used to access memory. For example, the 
update forms of load and store instructions alter the base 
register with the same value, regardless of the current 
endian mode. Thus, the address swizzle is completely 
transparent to software. ◆

Notice that the address swizzle in little-endian processing mode changes only 
the lower 3 bits. The number of address bits swizzled depends upon the 
maximum scalar data type that can be accessed by the system; it does not 
depend upon the width of the processor’s data path. In the case of PowerPC 
processor, the longest scalar is a double word—hence, swizzling 3 bits suffices 
to transform any address.

By swizzling the offsets in the big-endian DMA descriptor value shown in 
Figure A-10 (page 578), little-endian processing mode produces a new set of 
offsets. For example, the processor applies the calculation 0b000 XOR 0b100 to 
the 0 offset for the word field aDescr.A, producing the offset 0b100, or 4. 
Software can read the correct value of 0x44454647 at that offset. The result is 
that the whole descriptor appears to have the structure shown in Figure A-11.

Figure A-11 Descriptor swizzled by little-endian processing mode

Note
PowerPC little-endian mode does not support misaligned 
data accesses. Access to misaligned data must be done by 
code sequences or subroutines. As is the case with 
byte-reversed load and store instructions, there is currently 
no compiler support for handling misaligned data. ◆
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Figure B-0
Listing B-0
Table B-0
Graphic Memory Formats B

This appendix describes the various formats in which pixel information is 
stored in frame buffers in PCI-based Power Macintosh computers. It also 
includes information about transforming pixel information to convert it from 
big-endian to little-endian format and vice versa. For information about data 
formats, see Appendix A, “Big-Endian and Little-Endian Addressing.”

The drawings in this appendix that illustrate pixel formats are presented in 
three parts:

■ The top diagram (denoted by BIG) shows the pixel’s big-endian format, with 
the byte lanes numbered in big-endian order.

■ The middle diagram (denoted by GIB) shows the pixel value as it appears on 
the PCI bus, byte swapped to fulfill the PCI bridge’s address invariance. This 
diagram shows the little-endian PCI byte lane numbering.

■ The bottom diagram (denoted by LITTLE) shows the little-endian format, 
with the byte lanes numbered in little-endian order.

Note
All pixel formats shown in this appendix conform to the 
PCI Multimedia Design Guide, listed in “Other Publications” 
(page 26). ◆

RGB Pixel Formats B

The following sections describe the red-green-blue (RGB) pixel formats that are 
directly supported by QuickDraw in Mac OS. Where the formats are affected by 
endian formatting, the BIG, GIB and LITTLE formats are shown.

1, 2, 4, and 8 Bits Per Pixel B

With pixel formats 1 byte long or less, no pixel transformation is required, 
because the bridge’s address-invariant byte swapping does not affect data 
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below the byte level. However, it is important to recognize that PCI-based 
Power Macintosh computers assume that pixels are packed into bytes in 
left-to-right order. For example, in 1-bit mode the most significant bit of a byte 
is the leftmost visible pixel on the screen. This is consistent with existing VGA 
pixel formats. 

Figure B-1 shows 1-bit-per-pixel mode. The 2-bit, 4-bit, and 8-bit cases are 
similar.

Figure B-1 1-bit-per-pixel formats

16 Bits Per Pixel B

16-bit pixel encoding includes a 1-bit alpha value and three 5-bit red, green, and 
blue color components, as shown in Figure B-2. 
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Figure B-2 16-bits-per-pixel formats

24 and 32 Bits Per Pixel B

The format of 24- and 32-bit pixels is shown in Figure B-3. In 24-bit mode, the 
data value of the alpha byte is undefined; however, space is always reserved for 
it. The 24-bit and 32-bit pixels are always contained within 32-bit words.
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Figure B-3 24- and 32-bits-per-pixel formats

YUV Pixel Formats B

YUV pixel formats are typically generated by video input hardware from video 
cameras, videocassette recorders, and so on; they are not normally generated by 
software. Although there are various YUV formats possible, determined by the 
ratio and size of luminance samples (Y) and chroma (U and V) values, 
PCI-based Power Macintosh computers support only the 4-2-2 format. This 
format includes two 8-bit Y samples for each pair of 8-bit U and V samples. 
While 2 pixels (even-odd pairs) are packed into a 32-bit word, each pixel can be 
thought of as being composed of a luminance component (Y) and a chroma 
component (U or V) packed into 16-bit values.

The transformations of YUV pixels across a PCI bridge from BIG to GIB format 
are similar to those of 16-bit pixels. Figure B-4 shows the YUV 4-2-2 pixel 
formats. As is the case with 16-bit pixels, the pixels in YUV GIB format are in 
the correct positions but the bytes within each pixel have been swapped.
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Figure B-4 YUV pixel formats

Definitions of Pixel Formats in C B

Another way to describe the pixel formats in PCI-based Power Macintosh 
computers is by C struct definitions. The bit packing and bit ordering of packed 
bit structure fields in C match the endian formats of the target architecture. 

Big-endian C compilers pack bits from left to right, while little-endian C 
compilers pack the bits from right to left. Hence different data structures must 
be used to describe a given pixel format, depending upon whether the target 
code is big-endian or little-endian.

Listing B-1 shows how the pixel formats described in this appendix can be 
defined in C for big-endian and little-endian bit ordering.
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Listing B-1 C structures for pixel formats

typedef struct { /* big-endian pixel formats */
u_int alpha:1;
u_int red:5;
u_int green:5;
u_int blue:5;
} RGB_15_alpha;

typedef struct {
u_int alpha:8;
u_int red:8;
u_int green:8;
u_int blue:8;
} RGB_24_alpha;

typedef struct { /* little-endian pixel formats */
u_int blue:5;
u_int green:5;
u_int red:5;
u_int alpha:1;
} RGB_15_alpha;

typedef struct {
u_int blue:8;
u_int green:8;
u_int red:8;
u_int alpha:8;
} RGB_24_alpha;
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Figure C-0
Listing C-0
Table C-0
PCI Header Files C

Apple supplies a large number of C-language header files of interest to 
Macintosh developers. They include interfaces to both Mac OS system software 
and ROM-based Macintosh startup firmware.

Among these header files are those you need to compile drivers and other 
PCI-related software for the second generation of Power Macintosh computers. 
Table C-1 lists them and gives references to the sections of this book where each 
file’s content is discussed.

Table C-1 Header files for Macintosh PCI development 

File name Book reference

Devices.h Chapter 8, “Writing Native Drivers”

DriverServices.h Chapter 11, “Driver Services Library”

DriverGestalt.h “Driver Gestalt” (page 221)

Interrupts.h “Interrupt Management” (page 381)

Kernel.h Chapter 11, “Driver Services Library”

NameRegistry.h Chapter 10, “Name Registry”

PCI.h Chapter 12, “Expansion Bus Manager”

Video.h Chapter 13, “Graphics Drivers”
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Table C-2 lists the functions and data structures that the header files listed in 
Table C-1 support. For each one it gives the name of the supporting file and the 
page number in this book where the function or data structure is documented.

Table C-2 PCI-related functions and data structures 

Function or data structure Header file Page

AbsoluteDeltaToDuration DriverServices.h 422

AbsoluteDeltaToNanoseconds DriverServices.h 422

AbsoluteTime DriverServices.h 419

AbsoluteToDuration DriverServices.h 421

AbsoluteToNanoseconds DriverServices.h 421

AddAbsoluteToAbsolute DriverServices.h 421

AddAtomic DriverServices.h 427

AddDurationToAbsolute DriverServices.h 421

AddNanosecondsToAbsolute DriverServices.h 421

BitAndAtomic DriverServices.h 427

BitOrAtomic DriverServices.h 427

BitXorAtomic DriverServices.h 427

BlockCopy DriverServices.h 379

CallSecondaryInterruptHandler2 Kernel.h 412

CancelTimer Kernel.h 425

CDDeviceCharacteristics DriverGestalt.h 241

ChangeInterruptSetOptions Interrupts.h 406

CheckpointIO Kernel.h 366

CompareAndSwap DriverServices.h 427

CreateInterruptSet Interrupts.h 403

CreateSoftwareInterrupt Kernel.h 407

CStrCat DriverServices.h 431
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CStrCmp DriverServices.h 432

CStrCopy DriverServices.h 430

CStrLen DriverServices.h 433

CStrNCat DriverServices.h 431

CStrNCmp DriverServices.h 432

CStrNCopy DriverServices.h 431

CStrToPStr DriverServices.h 433

CurrentExecutionLevel Kernel.h 347

CurrentTaskID Kernel.h 407

DecrementAtomic DriverServices.h 427

DelayFor Kernel.h 424

DelayForHardware Kernel.h 424

DeleteSoftwareInterrupt Kernel.h 409

DeviceProbe DriverServices.h 171

DriverDescription Devices.h 198

DriverFinalInfo Devices.h 206

DriverGestaltBootResponse DriverGestalt.h 230

DriverGestaltDevTResponse DriverGestalt.h 231

DriverGestaltIntfResponse DriverGestalt.h 231

DriverGestaltIsOn Devices.h 222

DriverGestaltOff Devices.h 222

DriverGestaltOn Devices.h 222

DriverGestaltParam DriverGestalt.h 226

DriverGestaltSyncResponse DriverGestalt.h 230

DriverGestaltWideResponse DriverGestalt.h 233

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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DriverInitInfo Devices.h 206

DriverOSRuntime Devices.h 201

DriverOSService Devices.h 202

DriverServiceInfo Devices.h 203

DriverType Devices.h 200

DurationToAbsolute DriverServices.h 421

DurationToNanoseconds DriverServices.h 421

ExpMgrConfigReadByte PCI.h 461

ExpMgrConfigReadLong PCI.h 463

ExpMgrConfigReadWord PCI.h 462

ExpMgrConfigWriteByte PCI.h 464

ExpMgrConfigWriteLong PCI.h 466

ExpMgrConfigWriteWord PCI.h 465

ExpMgrInterruptAcknowledgeReadByte PCI.h 467

ExpMgrInterruptAcknowledgeReadLong PCI.h 468

ExpMgrInterruptAcknowledgeReadWord PCI.h 467

ExpMgrIOReadByte PCI.h 455

ExpMgrIOReadLong PCI.h 457

ExpMgrIOReadWord PCI.h 456

ExpMgrIOWriteByte PCI.h 458

ExpMgrIOWriteLong PCI.h 460

ExpMgrIOWriteWord PCI.h 459

ExpMgrSpecialCycleBroadcastLong PCI.h 468

ExpMgrSpecialCycleWriteLong PCI.h 469

FindDriverCandidates Devices.h 252

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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FindDriversForDevice Devices.h 255

FlushProcessorCache DriverServices.h 374

GetDataCacheLineSize DriverServices.h 368

GetDriverDiskFragment Devices.h 251

GetDriverForDevice Devices.h 257

GetDriverInformation Devices.h 271

GetDriverMemoryFragment Devices.h 250

GetInterruptFunctions Interrupts.h 402

GetInterruptSetOptions Interrupts.h 405

GetIOCommandInfo DriverServices.h 210

GetLogicalPageSize DriverServices.h 368

GetPageInformation Kernel.h 369

GetTimeBaseInfo DriverServices.h 417

HigherDriverVersion Devices.h 269

HighestUnitNumber Devices.h 273

IncrementAtomic DriverServices.h 427

InstallDriverForDevice Devices.h 268

InstallDriverFromDisk Devices.h 262

InstallDriverFromFile Devices.h 265

InstallDriverFromFragment Devices.h 261

InstallDriverFromMemory Devices.h 266

InstallInterruptFunctions Interrupts.h 401

InterruptDisabler Interrupts.h 399

InterruptEnabler Interrupts.h 399

InterruptHandler Interrupts.h 397

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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InterruptSetMember Interrupts.h 396

IOCommandIsComplete DriverServices.h 192

IOPreparationTable Kernel.h 354

LookupDrivers Devices.h 273

MemAllocatePhysicallyContiguous DriverServices.h 376

MemDeallocatePhysicallyContiguous DriverServices.h 378

NanosecondsToAbsolute DriverServices.h 421

NanosecondsToDuration DriverServices.h 421

OpenInstalledDriver Devices.h 263

PageInformation Kernel.h 369

PBDequeue DriverServices.h 429

PBDequeueFirst DriverServices.h 429

PBDequeueLast DriverServices.h 429

PBEnqueue DriverServices.h 429

PBEnqueueLast DriverServices.h 429

PBQueueCreate DriverServices.h 429

PBQueueDelete DriverServices.h 429

PBQueueInit DriverServices.h 429

PoolAllocateResident DriverServices.h 375

PoolDeallocate DriverServices.h 377

PrepareMemoryForIO Kernel.h 360

PStrCat DriverServices.h 431

PStrCmp DriverServices.h 432

PStrCopy DriverServices.h 430

PStrLen DriverServices.h 433

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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PStrNCat DriverServices.h 431

PStrNCmp DriverServices.h 432

PStrNCopy DriverServices.h 431

PStrToCStr DriverServices.h 433

QueueSecondaryInterruptHandler Kernel.h 411

RegEntryID NameRegistry.h 291

RegEntryIter NameRegistry.h 297

RegistryCStrEntryCreate NameRegistry.h 295

RegistryCStrEntryLookup NameRegistry.h 305

RegistryCStrEntryToName NameRegistry.h 309

RegistryCStrEntryToPath NameRegistry.h 308

RegistryEntryDelete NameRegistry.h 297

RegistryEntryGetMod NameRegistry.h 330

RegistryEntryIDCompare NameRegistry.h 292

RegistryEntryIDCopy NameRegistry.h 293

RegistryEntryIDDispose NameRegistry.h 294

RegistryEntryIDInit NameRegistry.h 292

RegistryEntryIterate NameRegistry.h 299

RegistryEntryIterateCreate NameRegistry.h 298

RegistryEntryIterateDispose NameRegistry.h 304

RegistryEntryIterateSet NameRegistry.h 298

RegistryEntryMod NameRegistry.h 327

RegistryEntryPropertyMod NameRegistry.h 328

RegistryEntrySearch NameRegistry.h 301

RegistryEntrySetMod NameRegistry.h 331

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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RegistryEntryToPathSize NameRegistry.h 307

RegistryPropertyCreate NameRegistry.h 311

RegistryPropertyDelete NameRegistry.h 313

RegistryPropertyGet NameRegistry.h 319

RegistryPropertyGetMod NameRegistry.h 332

RegistryPropertyGetSize NameRegistry.h 318

RegistryPropertyIterate NameRegistry.h 315

RegistryPropertyIterateCreate NameRegistry.h 314

RegistryPropertyIterateDispose NameRegistry.h 317

RegistryPropertySet NameRegistry.h 321

RegistryPropertySetMod NameRegistry.h 333

RegPropertyIter NameRegistry.h 314

RemoveDriver Devices.h 270

RenameDriver Devices.h 176

ReplaceDriverWithFragment Devices.h 175

ScanDriverCandidates Devices.h 254

SendSoftwareInterrupt Kernel.h 408

SetDriverClosureMemory Devices.h 258

SetInterruptTimer Kernel.h 423

SetProcessorCacheMode Kernel.h 372

SubAbsoluteFromAbsolute DriverServices.h 421

SubDurationFromAbsolute DriverServices.h 421

SubNanosecondsFromAbsolute DriverServices.h 421

SynchronizeIO DriverServices.h 373

SysDebug Kernel.h 434

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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SysDebugStr Kernel.h 434

TestAndClear DriverServices.h 428

TestAndSet DriverServices.h 428

UpTime DriverServices.h 419

VDDisplayConnectInfoRec Video.h 508

VDSyncInfoRec Video.h 496

VerifyFragmentAsDriver Devices.h 260

VSLDisposeInterruptService Video.h 515

VSLDoInterruptService Video.h 515

VSLNewInterruptService Video.h 514

VSLPrepareCursorForHardwareCursor Video.h 516

Table C-2 PCI-related functions and data structures (continued)

Function or data structure Header file Page
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Figure D-0
Listing D-0
Table D-0
Abbreviations D

Abbreviations for units of measure used in this book include

Other abbreviations used in this book include

A amperes MHz megahertz

cm centimeters mm millimeters

dB decibels ms milliseconds

GB gigabytes mV millivolts

Hz Hertz ns nanoseconds

KB kilobytes pF picofarads

Kbit kilobits sec. seconds

kHz kilohertz V volts

kΩ kilohms W watts

mA milliamperes µF microfarads

MB megabytes µs microseconds

Mbit megabits Ω ohms

ADC analog-to-digital converter

ANSI American National Standards Institute

AOCE Apple Open Collaborative Environment

API application programming interface

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

ASLM Apple Shared Library Manager

AV audio/video

BIOS basic I/O system

CD-ROM compact disc ROM

CFM Code Fragment Manager

CLUT color lookup table
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CPU central processing unit

DAC digital-to-analog converter

DAV digital audio/video

DCE device control entry

DDC Display Data Channel

DEVSEL device select

DLL Driver Loader Library

DLPI Data Link Provider Interface

DLSAP data link service access point

DMA direct memory access

DPMS Device Power Management Standard

DSAP destination service access point

DSL Driver Services Library

FDDI Fiber Distributed Data Interface

FIFO first in, first out

FPI family programming interface

FTP file transfer protocol

HFS hierarchical file system

IC integrated circuit

ID identifier

IDE Integrated Drive Electronics

IDR interrupt disabler routine

IEEE Institute of Electrical and Electronics Engineers

IER interrupt enabler routine

IIC inter-IC control (also called I2C)

I/O input/output

IOPB I/O parameter block

IPX Internet Packet Exchange

ISA Instrument Society of America

ISR interrupt service routine

IST interrupt source tree
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LIFO last in, first out

LSB least significant byte

LUN logical unit number

MPEG Motion Picture Expert Group

MPW Macintosh Programmer’s Workshop

MSB most significant byte

n.a. not applicable

NC no connection

NTSC National Television System Committee

NVRAM nonvolatile RAM

PAL Phased Alternate Lines

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association

PEF Preferred Execution Format

PLL phase-locked loop

PRAM parameter RAM

RAM random-access memory

RGB red-green-blue

RISC reduced instruction set computing

ROM read-only memory

SAP service access point

SCSI Small Computer System Interface

SECAM Système Electronique Couleur avec Mémoire

SGR Select Graphic Rendition

SIG special interest group

SIM SCSI Interface Module

SNAP subnet access protocol

SNR signal-to-noise ratio

SPI system programming interface

SSAP source service access point

TCP/IP Transmission Control Protocol/Internet Protocol
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TPI Transport Provider Interface

VBL vertical blanking

VCR videocassette recorder

VESA Video Electronics Standards Association

VGA video graphics adapter

VIA versatile interface adapter

VRAM video RAM

VSL Video Services Library

XID exchange identifier

XPT transport
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Glossary
address invariance A feature of a data 
bridge (such as a PCI bridge) by which the 
address of any byte transferred across the 
bridge remains the same on both sides of the 
bridge.

address-invariant byte swapping A 
technique for changing data between 
big-endian and little-endian formats that 
preserves address invariance.

address space The domain of addresses in 
memory that can be directly referenced by 
the processor at any given moment.

address swizzling A technique for 
producing address invariance in 
mixed-endian systems by making small 
changes in the addresses of multibyte fields 
without altering the field formats—that is, 
without byte swapping.

APDA Apple’s worldwide direct 
distribution channel for Apple and 
third-party development tools and 
documentation products.

aperture A logical view of the data in a 
frame buffer, organized in a specific way 
and mapped to a separate area of memory. 
For example, a frame buffer may have a 
big-endian aperture and a little-endian 
aperture, providing instant access to the 
buffer in either addressing mode.

Apple AV technologies A set of 
advanced I/O features for Macintosh 
computers that includes versatile 
telecommunications, video I/O, and 16-bit 
stereo sound I/O.

Apple GeoPort interface A serial I/O 
interface through which Macintosh 
computers can communicate with a variety 
of ISDN and other telephone transmission 
facilities by using external pods.

application programming interface 
(API) A set of services in Mac OS that 
supports application software. See system 
programming interface.

autoconfiguration A method of 
integrating peripheral devices into a 
computer system that includes mechanisms 
for configuring devices during system 
startup and requires that vendors include 
expansion ROMs on plug-in cards.

AV technologies See Apple AV 
technologies.

big-endian Used to describe data 
formatting in which each field is addressed 
by referring to its most significant byte. See 
also little-endian.

BIOS The Basic Input/Output System in 
ROM that used by Intel-compatible 
computers to configure devices at system 
startup time.
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boot driver An FCode device driver that 
is used during the Open Firmware startup 
process. It is loaded from the expansion 
ROM on a PCI card.

bootROM A small read-only-memory 
(ROM) device that contains the 
hardware-specific code needed to start up 
the computer. Open Firmware is in the 
bootROM. 

bridge See PCI bridge.

byte lane An 8-bit channel of a data 
bridge that passes individual bytes of data. 

byte swapping A technique of changing 
the order of byte lanes as they pass through 
a data bridge (such as a PCI bridge) that 
produces address invariance in a 
mixed-endian system.

CFM See Code Fragment Manager.

Code Fragment Manager (CFM) A part 
of Mac OS that loads pieces of code into 
RAM and prepares them for execution.

coherency See memory coherency.

color depth The number of bits required 
to encode the color of each pixel in a display.

completion routine A routine provided 
by a Device Manager client that lets the 
Device Manager notify the client that an I/O 
process has finished.

concurrent drivers Drivers that can 
process more than one request at a time.

configuration The process of modifying 
the software of a computer so it can 
communicate with various hardware 
components.

cookie A parameter in programming that 
is used only to transfer a value from one 
routine to another.

Data Link Provider Interface 
(DLPI) The standard interface Apple uses 
for Open Transport drivers.

device environment A software 
environment with which a device operates, 
such as the Open Firmware startup 
process or an operating system.

Device Manager Part of Mac OS that 
installs device drivers and communicates 
with them.

device node In a device tree, a node that 
serves one hardware device.

device tree A software structure, 
generated during the Open Firmware 
startup process, that assigns nodes to all 
devices available to the system. Mac OS 
extracts information from the device tree to 
construct the device parts of the Macintosh 
Name Registry.

direct memory access (DMA) A means 
of transferring data rapidly into or out of 
RAM without passing it through the 
microprocessor.

disk-based driver A driver typically 
located in the Mac OS Extensions folder.

digital audio/video (DAV) interface A 
connector in certain Power Macintosh 
models that lets expansion cards 
communicate directly with the system’s 
audio and video signal streams.

Display Manager A part of Mac OS that 
provides a uniform family programming 
interface for display devices.
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DLPI See Data Link Provider Interface.

driver The code that controls a physical 
device such as a PCI card device.

driver closure A driver and all its 
associated libraries, for which memory may 
be held or released.

driver gestalt call A status call to a 
device driver that returns information such 
as the driver’s revision level or the device’s 
power consumption.

Driver Loader Library (DLL) A CFM 
shared library extension to the Device 
Manager, which installs and removes 
drivers.

Driver Services Library (DSL) A CFM 
shared library that supplies most of the 
programming interfaces required by native 
drivers. The family programming 
interfaces (FPI) provide the additional 
expert functions necessary for a family of 
devices. For example, FireWire devices 
belong to the FireWire family of devices, and 
have a FireWire FPI. 

dynamic random-access memory 
(DRAM) Random-access memory in which 
each storage address must be periodically 
accessed (“refreshed”) to maintain its value.

Expansion Bus Manager The part of the 
Mac OS startup software that provides 
access to I/O memory and manages the 
storage of certain information in 
nonvolatile RAM.

expansion ROM A ROM on a PCI 
expansion card that supplies the computer 
with information about the card and any 
associated peripheral devices during the 
configuration process. Also called a 

declaration ROM or a configuration ROM. The 
expansion ROM can contain FCode which is 
used by Open Firmware during the 
Macintosh startup process. 

expert The code that connects a family of 
devices to the native I/O framework.

family A collection of devices that 
provide the same kind of functionality, such 
as the set of Open Transport devices.

family administrator Code that sends 
configuration information to a family of 
devices.

family expert An expert that uses the 
Name Registry to find device entries of its 
family service type.

family library A set of routines that a 
family expert uses to support PCI devices 
of its family service type.

family programming interface (FPI) A 
set of system services that mediate between 
family experts and the devices within a 
family.

Fast Path An optional optimization of 
Open Transport wherein the driver 
supplies the client with a precomputed 
packet header for a given destination.

FCode A tokenized version of the Forth 
programming language. For example, FCode 
is used in PCI card expansion ROMs. The 
elements of FCode are all 1 or 2 bytes long.

FCode tokenizer A utility program that 
translates lines of Forth source code into 
FCode.

frame buffer Memory that stores one or 
more frames of video information for 
display on a screen.
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gestalt node A node at the root of the 
device tree that contains information about 
the Macintosh system.

GeoPort See Apple GeoPort interface.

hard decoding The practice by which an 
expansion card defines PCI address spaces, 
instead of letting the Macintosh system 
assign relocatable base addresses.

hardware interrupt A physical device’s 
method for requesting attention from a 
computer.

hardware interrupt handler The part of 
an interrupt handler that responds directly 
to a hardware interrupt. It usually satisfies 
the source of the interrupt and queues a 
secondary interrupt handler to perform 
the bulk of the interrupt servicing.

hardware interrupt level The execution 
context provided to a device driver’s 
hardware interrupt handler. In this 
context hardware interrupts of the same or 
lower priority are disabled.

IEEE Institute of Electrical and Electronics 
Engineers.

input/output (I/O) Parts of a computer 
system that transfer data to or from 
peripheral devices.

installation Of an interrupt, the process 
of associating an interrupt source with an 
interrupt handler.

interrupt dispatching The process of 
invoking an interrupt handler in response 
to an interrupt.

interrupt handler Code that performs 
tasks required by a hardware interrupt.

interrupt registration The process of 
attaching an interrupt handler to the 
interrupt source tree.

interrupt set One level in an interrupt 
tree.

interrupt source A physical device that is 
able to interrupt the process flow of the 
computer.

interrupt source tree (IST) A data 
structure associated with a hardware 
interrupt source that contains the interrupt 
handling routines that the Macintosh system 
may execute.

little-endian Used to describe data 
formatting in which each field is addressed 
by referring to its least significant byte. See 
also big-endian.

low-level expert An expert that places 
information about devices in the Name 
Registry.

Macintosh Programmer’s Workshop 
(MPW) A complete software development 
environment that runs on Macintosh 
computers.

Mac OS Apple’s operating system 
software for Macintosh and 
Macintosh-compatible computers. 
Previously called Macintosh system software.

methods In the context of this document, 
methods are parts of an Open Firmware 
device package that perform operations like 
a function, subroutine, or procedure.

memory coherency The property of a 
range or kind of memory by which all parts 
of the computing system access the same 
values. Memory coherency ensures that data 
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being moved into or out of memory does 
not appear to have different values when 
accessed by the processor and PCI bridges.

mixed-endian The ability of a computer 
system, such as Power Macintosh, to 
support both big-endian and little-endian 
data formats.

modifier Information associated with a 
name or property that is hardware or 
implementation specific, such as whether or 
not the name or property is saved to 
nonvolatile RAM.

name entry An element of the Name 
Registry. Name entries are connected 
hierarchically to other name entries and 
have properties.

Name Registry A high-level Mac OS 
system service that stores the names of 
software objects and the relations among the 
names. The Name Registry extracts device 
information from the device tree and 
makes it available to Macintosh run-time 
drivers.

native driver A driver that is written in 
PowerPC code and that uses the native I/O 
framework in PCI-based Power Macintosh 
computers.

native driver package A CFM code 
fragment that contains the driver software 
for a family of devices.

native I/O framework The set of services 
in Mac OS that support native run-time 
drivers.

noninterrupt level See task level.

nonvolatile RAM (NVRAM) Memory, in 
either flash ROM or battery-powered RAM, 
that retains data between system startups.

Open Firmware driver An FCode driver 
utilized to support devices during the 
Macintosh startup process. See boot driver.

Open Firmware startup process The 
startup process by which PCI-compatible 
Macintosh computers recognize and 
configure peripheral devices connected to 
the PCI local bus. It conforms to an IEEE 
standard 1275.

Open Transport A device family that 
handles network devices such as LocalTalk 
and Ethernet.

pass-through memory cycle A PCI data 
transfer cycle in which the PCI bridge 
passes the original PowerPC word address 
to the PCI bus.

PCI Abbreviation for Peripheral Component 
Interconnect.

PCI bridge An ASIC chip that 
communicates between the computer’s 
microprocessor and a PCI local bus.

PCI local bus A bus architecture for 
connecting ASICs and plug-in PCI 
expansion cards to a computer’s main 
processor and memory. It is defined by the 
PCI specification.

PCI specification PCI Local Bus 
Specification, Revision 2.0, a document issued 
and maintained by the PCI Special Interest 
Group.

physical device A piece of computer 
hardware that performs an I/O function and 
is controlled by a driver.
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pixel A single dot on a screen display.

port driver A driver for Open Transport.

PowerPC A family of RISC 
microprocessors. 

property A piece of descriptive 
information associated with a node in the 
device tree or with a name entry in the 
Name Registry.

property list The collection of properties 
associated with a device.

reduced instruction set computing 
(RISC) A technology of microprocessor 
design in which all machine instructions are 
uniformly formatted and are processed 
through the same steps.

RISC See reduced instruction set 
computing.

ROM-based driver A driver located in 
the expansion ROM of a PCI expansion 
card.

run-time driver A device driver that is 
used by an operating system after the Open 
Firmware startup process has finished. It 
may be supplied by the operating system, 
contained in an expansion ROM on a PCI 
expansion card, or a disk-based driver. 

scanning The process of matching a 
device with its corresponding driver.

scatter-gather buffer A buffer that stores 
data in several discontiguous ranges of 
memory.

scatter-gather list The set of physical 
address ranges corresponding to a transfer 
buffer. 

SCSI Interface Module (SIM) A driver 
for a SCSI-bus host adapter that is 
compatible with SCSI Manager 4.3. There 
are also SCSI drivers and SCSI disk drivers.

secondary interrupt handler An 
interrupt handler that is queued for 
execution after the hardware interrupt 
handler has responded to the interrupt. 
Secondary interrupt handlers can be 
interrupted and execute serially when the 
system is not otherwise busy.

secondary interrupt level The execution 
context provided to a device driver’s 
secondary interrupt handler. In this 
context hardware interrupts are enabled and 
additional interrupts may occur.

transversal interrupt service routine 
(ISR) routes interrupt processing from a 
member to one of its child members. 
Transversal ISRs are always attached to root 
or parent/child members.

SIM See SCSI Interface Module.

SPI See system programming interface.

startup firmware Code in the Macintosh 
ROM that implements the Open Firmware 
startup process. The NewWorld 
architecture implements a bootROM that 
contains Open Firmware FCode that 
performs the startup process.

task level The execution environment for 
applications and other programs that do not 
service interrupts. Also called noninterrupt 
level.

time base The model-dependent rate on 
which real-time timing operations are based 
in the Driver Services Library (DSL).
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vertical blanking task A task that 
executes during a display device’s vertical 
retrace intervals.

virtual device I/O code that provides a 
capability that is not hardware specific—for 
example, a RAM disk.

YUV A format for representing video 
data. 
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Deferred Task Manager 181
DelayForHardware function 425
depth display device property 130
desk accessories 189
device configuration 182
device control entry 188
device driver 85, 112

asynchronous routines 219
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DeviceProbe function 171
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Driver Loader Library 246

DriverOSRuntime data structure 201
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driver-ref property 323
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close 215
control 216
open 215
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driver services 143
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FirmWorks 27
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gestaltMachineType value 73
Gestalt Manager 178
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GetDriverDiskFragment function 251
GetDriverForDevice function 257
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H

hard decoding 55
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hardware interface to boot drivers 113
hardware interrupt level execution 149, 346, 383
hardware interrupts 381
header for driver 189
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interrupt dispatching 382, 386
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interrupt handler 181, 220, 381, 400
interrupt handling 73
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Interrupt Pin register 101, 108
interrupts 89, 93, 381–416
interrupt set 384
InterruptSourceState function 399
Interrupt Source Tree 382, 394
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kProhibitMounting control call 238

L

Latency Timer register 98, 105
linebytes display device property 130
little-endian? global variable 64
little-endian addressing 60–63
LOCK# PCI bus signal 39
LookupDrivers function 273

M

Macintosh Operating System 444
Macintosh startup firmware 83
Macintosh Toolbox 155
Mac OS 87
Mac OS ROM image 71
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memory allocations 58
Memory Base register 106
Memory Limit register 107
memory management 181
memory mapping 72
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Mixed Mode Manager 178
modifiers 282, 326–333
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name properties 279
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native device drivers 184
native driver package 154, 197
'ndrv' driver type 151, 197
NewWorld architecture 70
NewWorld boot process 72, 92
NewWorld software architecture

boot process 93
RAM footprint 93
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nodes 283
noninterrupt level execution 347
nonvolatile RAM (NVRAM) 56, 64, 443
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OpenBoot firmware architecture 83
Open Firmware 72
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user interface for 91, 114
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P
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RegisterPartition control call 237
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Resource Manager 179, 182
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run-time drivers 90
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sequences 127–129
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Shutdown Manager 179
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TerminateStreamModule function 540
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Time Manager 180
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