





InformixEOAdaptor Framework

Objective–C API Reference



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

F R A M E W O R K

InformixEOAdaptor

Framework:

System/Library/Frameworks/InformixEOAdaptor.framework

Header File Directories:

System/Library/Frameworks/InformixEOAdaptor.framework/
Headers

Introduction

The InformixEOAdaptor framework is a set of classes that allow your programs to connect to an
Informix server. These classes provide Informix-specific method implementations for the
EOAccess framework’s EOAdaptor, EOAdaptorChannel, EOAdaptorContext, and
EOSQLExpression abstract classes.

The following table lists the classes in the InformixEOAdaptor Framework and provides a brief
description of each class.

Class Description

InformixAdaptor Represents a single connection to a Informix database server, and is
responsible for keeping login and model information, performing
Informix-specific formatting of SQL expressions, and reporting errors.

InformixChannel Represents an independent communication channel to the database
server its InformixAdaptor is connected to.

InformixContext Represents a single transaction scope on the database server to which
its adaptor object is connected.

InformixSQLExpression Defines how to build SQL statements for InformixChannels.

4

F R A M E W O R K I n f o r m i x E O A d a p t o r

The Connection Dictionary

The connection dictionary contains items needed to connect to an Informix server, such as the
database name (it's common to omit the user name and password from the connection
dictionary, and prompt users to enter those values in a login panel). The keys of this dictionary
identify the information the server expects, and the values of those keys are the values that the
adaptor uses when trying to connect to the server.

The Informix adaptor defines string constants for use as connection dictionary keys:

�

dbNameKey

�

userNameKey

�

passwordKey

See the InformixAdaptor class specification for more information on the connection dictionary
key constants.

Locking

All adaptors use the database server's native locking facilities to lock rows on the server. In the
Informix adaptor locking is determined by the isolation level, which is implemented in
InformixChannel. Locking occurs when:

�

You send the adaptor channel a

selectAttributes:fetchSpecification:lock:entity:

message with

YES

 specified as the value for the

lock:

 parameter.

�

You explicitly lock an object’s row with the EODatabaseContext’s

lockObjectWithGlobalID:
editingContext:

 message.

�

You set pessimistic locking at the database level and fetch objects.

F R A M E W O R K I n f o r m i x E O A d a p t o r

5

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to
which a database value will be coerced when it’s fetched from the database. The following table
lists the mapping used by InformixAdaptor.

The type mapping methods—

externalTypesWithModel:

,

internalTypeForExternalType:model:

,
and

isValidQualifierType:model:

—allow for an adaptor to supplement its set of type mappings
with additional mappings for user-defined database types. InformixAdaptor does not make use
of the model argument if one is provided.

Informix Data Type Java Data Type

VARCHAR

NSString

NVARCHAR

NSString

DECIMAL

NSDecimalNumber

MONEY

NSDecimalNumber

BYTE

NSData

TEXT

NSString

DATE

NSCalendarDate

INTEGER

NSNumber

SMALLINT

NSNumber

NCHAR

NSString

CHAR

NSNumber

SERIAL

NSNumber

FLOAT

NSNumber

SMALLFLOAT

NSNumber

DATETIME YEAR TO SECOND

NSCalendarDate

INTERVAL

NSString

6

F R A M E W O R K I n f o r m i x E O A d a p t o r

Prototype Attributes

The InformixEOAdaptor Framework provides the following set of prototype attributes:

Name External
Type

Value Class Name Other Attributes

binaryID BYTE

NSData

city VARCHAR

NSString

columnName = CITY

width = 50

date DATETIME YEAR
TO SECOND

NSCalendarDate

columnName = ““

longText TEXT

NSString

money INTEGER

NSDecimalNumber

columnName = “”

phoneNumber VARCHAR

NSString

columnName = PHONE

width = 20

rawImage BYTE

NSData

columnName = RAW_IMAGE

state VARCHAR

NSString

columnName = STATE

width = 2

streetAddress VARCHAR

NSString

columnName = STREET_ADDRESS

width = 100

F R A M E W O R K I n f o r m i x E O A d a p t o r

7

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method

primaryKeyForNewRowWithEntity:

 for generating primary keys. The InformixChannel’s
implementation uses a table named

eo_sequence_table

 to keep track of the next available
primary key value for a given table. The table contains a row for each table for which the adaptor
provides primary key values. The statement used to create the

eo_sequence_table

 is:

create table eo_sequence_table (
table_name varchar(32,0),
counter integer

)

InformixChannel uses a stored procedure named

eo_pk_for_table

 to access and maintain the
primary key counter in

eo_sequence_table

. The stored procedure is defined as follows:

create procedure
eo_pk_for_table (tname varchar(32))
returning int;

define cntr int;

update EO_SEQUENCE_TABLE
set COUNTER = COUNTER + 1
where TABLE_NAME = tname;

tiffImage BYTE

NSImage

adaptorValueConversionMethodName =
 TIFFRepresentation

columnName = PHOTO

valueFactoryMethodName =
“imageWithData:”

uniqueID INTEGER

NSNumber

columnName = “”

valueType = i

zipCode VARCHAR

NSString

columnName = ZIP

width = 10

Name External
Type

Value Class Name Other Attributes

8

F R A M E W O R K I n f o r m i x E O A d a p t o r

select COUNTER into cntr
from EO_SEQUENCE_TABLE
where TABLE_NAME = tname;

return cntr;
end procedure;

The stored procedure increments the counter in the

eo_sequence_table

 row for the specified
table, selects the counter value, and returns it. InformixChannel executes this

eo_pk_for_table

stored procedure from

primaryKeyForNewRowWithEntity:

 and returns the stored procedure’s
return value.

To use InformixChannel’s database-specific primary key generation mechanism, be sure that
your database accommodates the adaptor’s scheme. To modify your database so that it supports
the adaptor’s mechanism for generating primary keys, use EOModeler. For more information on
this topic, see

Enterprise Objects Framework Developer’s Guide

.

Bind Variables

The InformixAdaptor uses bind variables. A bind variable is a placeholder used in an SQL
statement that is replaced with an actual value after the database server determines an execution
plan. You use the following methods to operate on bind variables:

�

bindVariableDictionaryForAttribute:value:

�

mustUseBindVariableForAttribute:

�

shouldUseBindVariableForAttribute:

9

C L A S S

InformixAdaptor

Inherits from:

EOAdaptor : NSObject

Declared in:

InformixEOAdaptor/InformixAdaptor.h

Class Description

An InformixAdaptor represents a single connection to an Informix database server, and is
responsible for keeping login and model information, performing Informix-specific formatting
of SQL expressions, and reporting errors.

The InformixAdaptor doesn't support full outer joins.

Constants

InformixAdaptor defines the following string constants for use as connection dictionary keys.

Constant Corresponding value in the connection dictionary

dbNameKey

The name of the database.

userNameKey

The name of the user to log in as.

passwordKey

The user’s password.

10

C L A S S I n f o r m i x A d a p t o r

It defines a string constant for use as a key in an exception’s userInfo dictionary (see

raiseInformixError:

).

InformixAdaptor also defines a string constant to identify the user defaults domain for the
Informix adaptor.

Method Types

Mapping external types to internal types

+ externalToInternalTypeMap

Getting information from the connection dictionary

– informixConnectionString

– informixDefaultForKey:

– informixPassword

– informixUserName

– connectionKeys

Error handling

– raiseInformixError:

Preparing to connect

– prepareEnvironmentForConnect

– resetEnvironmentAfterConnect

Constant Corresponding value in an exception’s userInfo dictionary

InformixErrorKey

The error code raised in the Informix server. The value is an NSNumber
with the error code as its

long

 value, typically a negative number.

Constant Description

EOF_INFORMIX_ADAPTOR

The name of the user defaults domain for the Informix adaptor.

C L A S S I n f o r m i x A d a p t o r

11

Callback methods

– informixContextDidDisconnect:

– informixContextWillConnect:

Getting adaptor-specific classes

– adaptorContextClass

– adaptorChannelClass

– defaultExpressionClass

Class Methods

externalToInternalTypeMap

+ (NSDictionary *)externalToInternalTypeMap

Returns the mapping between each predefined external (database) type known by the adaptor
to a default internal type. For information on the mapping, see the section in the
InformixEOAdaptor Framework introduction titled “Data Type Mapping” (page 5).

Instance Methods

adaptorChannelClass

– (Class)adaptorChannelClass

Returns the InformixChannel class.

12

C L A S S I n f o r m i x A d a p t o r

adaptorContextClass

– (Class)adaptorContextClass

Returns the InformixContext class.

connectionKeys

– (NSArray *)connectionKeys

Returns an NSArray containing the keys in the receiver’s connection dictionary. You can use this
method to prompt the user to supply values for the connection dictionary.

defaultExpressionClass

– (Class)defaultExpressionClass

Returns the InformixSQLExpression class.

informixConnectionString

– (NSString *)informixConnectionString

Returns the user name, password, and database name as a string suitable to be supplied as an
argument to db_connect().

informixContextDidDisconnect:

– (void)informixContextDidDisconnect:(InformixContext *)

logon

Callback method that is invoked after the associated Informix context disconnects.

informixContextWillConnect:

– (void)informixContextWillConnect:(InformixContext *)

logon

Callback method that is invoked just before the associated Informix context disconnects.

C L A S S I n f o r m i x A d a p t o r

13

informixDefaultForKey:

– (NSString *)informixDefaultForKey:(NSString *)key

Returns the user default setting for key. To get this information it first checks the user defaults,
and then the adaptor’s internal defaults dictionary.

informixPassword

– (NSString *)informixPassword

Returns the password in the connection dictionary.

informixUserName

– (NSString *)informixUserName

Returns the user name in the connection dictionary.

prepareEnvironmentForConnect

– (void)prepareEnvironmentForConnect

Prepares the user environment for connection to an Informix server. Preserves existing
environment variables, replacing them with values obtained from the adaptor’s connection
dictionary. Unset variables are set to values obtained from informixDefaultForKey:, if any.

See Also: – resetEnvironmentAfterConnect

raiseInformixError:

– (void)raiseInformixError:(NSString *)sqlString

Examines Informix structures for error flags and raises an exception if one is found. Extracts the
error information in the connection structure and uses it to build and raise an exception. The
error code is available in the exception’s user info dictionary in the entry for the key,
InformixErrorKey.

14

C L A S S I n f o r m i x A d a p t o r

resetEnvironmentAfterConnect

– (void)resetEnvironmentAfterConnect

Restores any environment variables overwritten by prepareEnvironmentForConnect.

15

C L A S S

InformixChannel

Inherits from: EOAdaptorChannel : NSObject

Declared in: InformixEOAdaptor/InformixChannel.h
InformixEOAdaptor/InformixDescription.h

Class Description

An InformixChannel represents an independent communication channel to the database server
its InformixAdaptor is connected to. All of an InformixChannel’s operations take place within
the context of transactions controlled or tracked by its InformixContext. An InformixContext can
manage multiple InformixChannels, and a channel is associated with only one context.

The features InformixChannel adds to EOAdaptorChannel are as follows:

� Informix-specific error handling (see InformixChannel Delegate)

� The ability to configure the fetch buffer

� The ability to read a list of table names from the database

16

C L A S S I n f o r m i x C h a n n e l

Method Types

Finding table names

– setInformixTableNamesSQL:

– informixTableNamesSQL

Getting the cursor data area

– cursorDataArea

Setting the isolation level

– informixSetIsolationTo:

Setting the fetch buffer length

– setFetchBufferLength:

– fetchBufferLength

Instance Methods

cursorDataArea

– (struct informix_cursor *)cursorDataArea

If the channel is connected, returns an Informix-specific data structure describing characteristics
of the channel. Otherwise, returns NULL.

fetchBufferLength

– (unsigned)fetchBufferLength

Returns the size, in bytes, of the fetch buffer. The larger the buffer, the more rows can be returned
for each round trip to the server.

C L A S S I n f o r m i x C h a n n e l

17

informixSetIsolationTo:

– (void)informixSetIsolationTo:(InformixIsolationLevel)isolationLevel

Sets the isolation transaction level of the connection represented by the receiver to
isolationLevel.

informixTableNamesSQL

– (NSString *)informixTableNamesSQL

Returns the SQL statement the receiver uses to find table names. The user default
InformixTableNamesSQL overrides a statement set with setInformixTableNamesSQL:.

setFetchBufferLength:

– (void)setFetchBufferLength:(unsigned)length

Sets the size (in bytes) of the fetch buffer to length. The larger the buffer, the more rows can be
returned for each round trip to the server.

setInformixTableNamesSQL:

– (void)setInformixTableNamesSQL:(NSString *)sql

Set the SQL statement the receiver uses to find table names to sql.

18

C L A S S I n f o r m i x C h a n n e l

19

C L A S S

InformixContext

Inherits from: EOAdaptorContext : NSObject

Declared in: InformixEOAdaptor/InformixContext.h

Class Description

An InformixContext represents a single transaction scope on the database server to which its
adaptor object is connected. If the server supports multiple concurrent transaction sessions, the
adaptor may have several adaptor contexts. An InformixContext may in turn have several
InformixChannels, which handle actual access to the data on the server.

The features the InformixContext class adds to EOAdaptorContext are methods for setting
Informix-specific characteristics for the context.

Method Types

Managing a connection to the server

– connect

– connection

– disconnect

20

C L A S S I n f o r m i x C o n t e x t

– isConnected

Returning information about an InformixContext

– fetchesInProgress

– hasTransactions

Returns information about the server

– isOnLine

Instance Methods

connect

– (void)connect

Opens a connection to the database server. An InformixChannel sends this message to its
InformixContext when the channel is about to open a connection to the server.

See Also: – disconnect

connection

– (long)connection

Returns an identifier for the receiver's connection to the server.

disconnect

– (void)disconnect

Closes a connection to the database server. An InformixChannel sends this message to its
InformixContext when the channel is about to close a connection to the server.

See Also: – connect

C L A S S I n f o r m i x C o n t e x t

21

fetchesInProgress

– (unsigned)fetchesInProgress

Returns the number of fetches the receiver has in progress.

hasTransactions

– (BOOL)hasTransactions

Returns YES to indicate that the receiver has transactions in process, NO otherwise.

isConnected

– (BOOL)isConnected

Returns YES if the receiver has an open connection to the database, NO otherwise.

See Also: – connect, – disconnect

isOnLine

– (BOOL)isOnLine

Returns YES if the server is an Informix online server, NO otherwise.

22

C L A S S I n f o r m i x C o n t e x t

23

C L A S S

InformixSQLExpression

Inherits from: EOSQLExpression : NSObject

Declared in: InformixEOAdaptor/InformixSQLExpression.h

Class Description

InformixSQLExpression defines how to build SQL statements for InformixChannels.

Bind Variables
The InformixAdaptor uses bind variables. A bind variable is a placeholder used in an SQL
statement that is replaced with an actual value after the database server determines an execution
plan. You use the following methods to operate on bind variables:

� bindVariableDictionaryForAttribute:value:

� mustUseBindVariableForAttribute:

� shouldUseBindVariableForAttribute:

For more information on using bind variables, see the EOSQLExpression class specification.

24

C L A S S I n f o r m i x S Q L E x p r e s s i o n

Class Methods

serverTypeIdForName

+ (int)serverTypeIdForName:(NSString *)typeName

Returns the Informix type code (such as InfDecimal, InfDate, or InfCHAR) for typeName (such as
“DECIMAL”, “DATE”, or “CHAR”).

Instance Methods

lockClause

- (NSString *)lockClause

Overrides the EOSQLExpression method lockClause to return the SQL string used in a SELECT
statement to lock selected rows, which is @“FOR UPDATE OF”.

25

P R O T O C O L

InformixChannel Delegate

(informal protocol)

Declared in: InformixEOAdaptor/InformixChannel.h

Protocol Description

InformixChannel’s delegate allows you to process errors that occur in the Informix server.

Instance Methods

informixChannel:willReportDatabaseError:

– (BOOL)informixChannel:(InformixChannel *)channel
willReportDatabaseError:(NSString *)error

Invoked whenever channel encounters an error reported by the Informix server. The error
argument is the text of the Informix error message which will be sent to the adaptor’s
reportError: method. The delegate can return NO to prevent the channel from calling
reportError:.

26

P R O T O C O L I n f o r m i x C h a n n e l D e l e g a t e

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

	SybaseAdaptor class:specification
	InformixAdaptor
	InformixChannel
	InformixContext
	InformixSQLExpression
	InformixChannel class:specification

