





SybaseEOAdaptor Framework

Java API Reference



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

F R A M E W O R K

SybaseEOAdaptor Framework

Package:

com.apple.yellow.sybaseeoadaptor

Introduction

The SybaseEOAdaptor framework is a set of classes that allow your programs to connect to a
Sybase server. These classes provide Sybase-specific method implementations for the EOAccess
framework’s EOAdaptor, EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression
abstract classes.

The following table lists the classes in the SybaseEOAdaptor Framework and provides a brief
description of each class.

Class Description

SybaseAdaptor Represents a single connection to a Sybase database server, and is
responsible for keeping login and model information, performing
Sybase-specific formatting of SQL expressions, and reporting errors.

SybaseChannel Represents an independent communication channel to the database
server its SybaseAdaptor is connected to.

SybaseContext Represents a single transaction scope on the database server to which
its adaptor object is connected.

SybaseSQLExpression Defines how to build SQL statements for SybaseChannels.

4

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

The Connection Dictionary

The connection dictionary contains items needed to connect to a Sybase server, such as the server
name and database (it’s common to omit the user name and password from the connection
dictionary, and prompt users to enter those values in a login panel). The keys of this dictionary
identify the information the server expects, and the values of those keys are the values that the
adaptor uses when trying to connect to the server.

The Sybase adaptor defines string constants for use as connection dictionary keys:

�

HOSTNAME

�

DATABASENAME

�

USERNAME

�

PASSWORD

�

LC_ALL_KEY

�

ENCRYPTPASSWORD

�

PRIMITIVE_TYPE_MAP

The last three keys are optional. The

ENCRYPTPASSWORD

 key provides support for Sybase password
encryption. A value for the

LC_ALL_KEY

 declares to the Sybase server the character set being used
by the client (such as eucjis, ascii7, or iso_1). For a complete list of types available for this field,
see your Sybase documentation. The

PRIMITIVE_TYPE_MAP

 entry describes the mapping of
user-defined data types to their base Sybase type (such as varchar or datetime). For more
information on user-defined data types, see “Data Type Mapping” (page 6).

To add any of these optional keys and appropriate values to your connection dictionary, you can
manually edit your model file. For example:

connectionDictionary = {databaseName = People;
hostName = “”;
LC_ALL = eucjis;
password = “”;
primitiveTypeMap = {id = varchar; ssn = char(9); };
sybasePasswordEncryption = YES;
userName = “”;

};

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

5

Subsequently changing the connection dictionary in your model file using the Set Adaptor Info
command in EOModeler has no effect on these keys and their values—they are preserved unless
you edit the file to remove them. Alternatively you can add the optional keys to a model’s
connection dictionary programmatically.

The default character set for non-Japanese systems is iso_1 (that is, ISO Latin 1), while the default
character set for Japanese systems is eucjis. You only need to add the LC_ALL key to your
connection dictionary if you are using a character set other than your system’s default.

See the SybaseAdaptor class specification for more information on the connection dictionary key
constants.

Error Handling

SybaseAdaptor, SybaseContext, and SybaseChannel can raise exceptions due to programming
errors that result in invalid argument values or internal inconsistencies. In addition, messages,
errors, and failure status returned from the Sybase SQL Server and client libraries can also result
in EOGeneralAdaptorExceptions. When an exception results from a callback to the
CS_CLIENTMSG_CB (Sybase ClientMessage callback) or the CS_SERVERMSG_CB (Sybase
ServerMessage callback), all of the information passed into this routine is available in the
userInfo dictionary contained by the exception. When an exception is raised in response to a
Sybase ClientMessage callback, you can get the information provided by the client library as
follows:

clientMsgDict =
localException().userInfo().objectForKey(“sybaseClientMessageDictionary”);

The

clientMsgDict

 contains the following keys which have values corresponding to those sent
in the callback function that raised the exception:

msgstring

,

osstring

,

sqlstate

,

severity

,

msgnumber

,

osnumber

,

status

.

Similarly, when the exception is raised in response to a Sybase ServerMessage callback, you can
get the information provided by the server as follows:

svrMsgDict = localException().userInfo().objectForKey(“sybaseServerMessageDictionary”);

The

svrMsgDict

 contains the following keys which have values corresponding to those sent in the
callback function that raised the exception:

text

,

svrname

,

proc

,

sqlstate

,

msgnumber

,

state

,

severity

,

line

,

status

.

6

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

Locking

All adaptors use the database server’s native locking facilities to lock rows on the server. The
Sybase adaptor locks a row by using the HOLDLOCK keyword in SELECT statements. This
occurs when:

�

You send the adaptor channel a

selectAttributes

 message with

true

 specified as the value
for the lock keyword.

�

You explicitly lock an object's row with the EODatabaseContext's

lockObjectWithGlobalID

message.

�

You set pessimistic locking at the database level and fetch objects.

The semantics of the HOLDLOCK keyword are such that when you lock a row other users can’t
update it, but it doesn’t guarantee that your update will succeed. This is because other users
could be holding a lock on the same row. However, you can still read rows that are locked by
other users.

Data Type Mapping

Every adaptor provides a mapping between each server data type (the

external

 type) and the
Java type (the

internal

 type) to which a database value will be coerced when it’s fetched from
the database. The following table lists the mapping used by SybaseAdaptor.

External Data Type Internal Data Type

binary

NSData

bit

Number

char

String

datetime

NSGregorianDate

datetimn

NSGregorianDate

decimal

BigDecimal

decimaln

BigDecimal

float

Number

floatn

Number

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

7

In addition, SybaseAdaptor provides a mapping for user-defined data types. For example, a
custom data type

partnumber

defined as

char(10)

 is mapped to String—the Java type to which

partnumber

’s base data type (

char

) is mapped. SybaseAdaptor’s implementation of

describeModelWithTableNames

 automatically creates mappings for user-defined data types and
saves them in the connection dictionary of the newly created model. Consequently, even models
created with EOModeler automatically include information about custom data types.

image

NSData

int

Number

intn

Number

money

BigDecimal

moneyn

BigDecimal

nchar

String

numeric

BigDecimal

numericn

BigDecimal

nvarchar

String

real

Number

smalldatetime

NSGregorianDate

smallint

Number

smallmoney

BigDecimal

sysname

String

text

String

timestamp

NSData

tinyint

Number

varbinary

NSData

varchar

String

External Data Type Internal Data Type

8

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

Since information about custom types is stored in a model’s connection dictionary, the type
mapping methods—

externalToInternalTypeMap

,

internalTypeForExternalType

, and

isValidQualifierType

—use the model argument if it is provided. If the model argument isn’t
provided, these methods don’t have user-defined data type information available to them.

Prototype Attributes

The SybaseEOAdaptor Framework provides the following set of prototype attributes:

Name External
Type

Value Class Name Other Attributes

binaryID varbinary

NSData

width = 12

city varchar

String

columnName = CITY

width = 50

date datetime

NSGregorianDate

columnName = ““

longText text

String

money money

BigNumber

columnName = ““

phoneNumber varchar

String

columnName = PHONE

width = 20

rawImage image

NSData

columnName = RAW_IMAGE

state varchar

String

columnName = STATE

width = 2

streetAddress varchar

String

columnName = STREET_ADDRESS

width = 100

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

9

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method

primaryKeyForNewRowWithEntity

 for generating primary keys. The SybaseChannel’s
implementation uses a table named

eo_sequence_table

 to keep track of the next available
primary key value for a given table. The table contains a row for each table for which the adaptor
provides primary key values. The statement used to create the

eo_sequence_table

 is:

create table eo_sequence_table (
table_name varchar(32),
counter int null

)

SybaseChannel uses a stored procedure named

eo_pk_for_table

 to access and maintain the
primary key counter in

eo_sequence_table

. The stored procedure is defined as follows:

create procedure
eo_pk_for_table @tname varchar(32) as
begin

define @max int

update eo_sequence_table
set counter = counter + 1
where table_name = @tname

tiffImage image NSImage adaptorValueConversionMethodName =
 TIFFRepresentation

columnName = PHOTO

valueFactoryMethodName =
 “imageWithData:”

uniqueID int Number columnName = ““

valueType = i

zipCode varchar String columnName = ZIP

width = 10

Name External
Type

Value Class Name Other Attributes

10

F R A M E W O R K S y b a s e E O A d a p t o r F r a m e w o r k

select counter
from eo_sequence_table
where table_name = @tname

end

The stored procedure increments the counter in the eo_sequence_table row for the specified
table, selects the counter value, and returns it. SybaseChannel executes this eo_pk_for_table
stored procedure from primaryKeyForNewRowWithEntity and returns the stored procedure’s
return value.

To use SybaseChannel’s database-specific primary key generation mechanism, be sure that your
database accommodates the adaptor’s scheme. To modify your database so that it supports the
adaptor’s mechanism for generating primary keys, use EOModeler. For more information on
this topic, see Enterprise Objects Framework Developer’s Guide.

11

C L A S S

SybaseAdaptor

Inherits from: EOAdaptor : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseAdaptor represents a single connection to a Sybase database server, and is responsible
for keeping login and model information, performing Sybase-specific formatting of SQL
expressions, and reporting errors.

The features SybaseAdaptor adds to EOAdaptor are as follows:

� The ability to specify a client character set and language

� Sybase password encryption

The SybaseAdaptor class has these restrictions: A context can only manage one channel at a time,
and the adaptor doesn’t support full outer joins because the Sybase server itself doesn’t support
them.

12

C L A S S S y b a s e A d a p t o r

Constants

SybaseAdaptor defines the following string constants for use as connection dictionary keys.

For more information on the connection dictionary, see “The Connection Dictionary” (page 4) in
the SybaseEOAdaptor framework introduction.

Constant Corresponding value in the connection dictionary

HOSTNAME The name of the machine on which the database server runs.

DATABASENAME The name of the database.

USERNAME The name of the user to log in as.

PASSWORD The user’s password.

LC_ALL_KEY The setting to LC_ALL, which is used to specify the language and
character set for server connections. On J systems this option defaults to
japanese.

ENCRYPTPASSWORD Either the string “Yes” or the string “No”. If the value is “Yes”, the
adaptor enables the System 10 password encryption feature before
attempting to open a connection.

PRIMITIVE_TYPE_MAP A dictionary representing the database’s primitive type map. Sybase
allows user defined types in a database that map onto primitive types.
For instance, you could define a user type, primary_key, and map it to
int. The primitive type map dictionary would then contain the key
“primary_key” with the value “int”.

C L A S S S y b a s e A d a p t o r

13

Method Types

Mapping external types to internal types

externalToInternalTypeMap

primitiveTypeForExternalTypeInModel

Getting information from the connection dictionary

connectionKeys

Bracketing calls to ct_connect()

prepareEnvironmentForConnect

resetEnvironmentAfterConnect

Callback methods

sybaseContextDidDisconnect

sybaseContextWillConnect

Static Methods

externalToInternalTypeMap

public static NSDictionary externalToInternalTypeMap()

Returns the mapping between each predefined external (database) type known by the adaptor
to a default internal type. For information on the mapping, see the section in the
SybaseEOAdaptorFramework introduction titled “Data Type Mapping” (page 6).

14

C L A S S S y b a s e A d a p t o r

primitiveTypeForExternalTypeInModel

public static String primitiveTypeForExternalTypeInModel(
String externalType,
com.apple.yellow.eoaccess.EOModel model)

Returns the primitive type on which a given custom type, defined on the server, is based.

Instance Methods

connectionKeys

public NSArray connectionKeys()

Returns an NSArray containing the keys in the receiver’s connection dictionary. You can use this
method to prompt the user to supply values for the connection dictionary.

prepareEnvironmentForConnect

public void prepareEnvironmentForConnect()

A call to this method should precede all calls to ct_connect() to set the LC_ALL environment
variable setting to the value specified in the model connection dictionary.

See Also: resetEnvironmentAfterConnect

resetEnvironmentAfterConnect

public void resetEnvironmentAfterConnect()

A call to this method should follow all calls to ct_connect() to set the LC_ALL environment
variable setting to the value specified in the model connection dictionary.

See Also: prepareEnvironmentForConnect

C L A S S S y b a s e A d a p t o r

15

sybaseContextDidDisconnect

public void sybaseContextDidDisconnect(SybaseContext aSybaseContext)

Callback method that is invoked after the associated Sybase context disconnects.

sybaseContextWillConnect

public void sybaseContextWillDisconnect(SybaseContext aSybaseContext)

Callback method that is invoked just before the associated Sybase context disconnects.

16

C L A S S S y b a s e A d a p t o r

17

C L A S S

SybaseChannel

Inherits from: EOAdaptorChannel : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseChannel represents an independent communication channel to the database server its
SybaseAdaptor is connected to. All of a SybaseChannel’s operations take place within the
context of transactions controlled or tracked by its SybaseContext. A Sybase adaptor context
manages one channel, and a channel is associated with only one context.

18

C L A S S S y b a s e C h a n n e l

19

C L A S S

SybaseContext

Inherits from: EOAdaptorContext : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseContext represents a single transaction scope on the database server to which its
adaptor object is connected. Since a Sybase server supports multiple concurrent transaction
sessions, the adaptor may have several adaptor contexts. A SybaseContext may in turn have a
SybaseChannel, which handles actual access to the data on the server.

The SybaseContext can have a delegate, which gives you access to all messages returned from
the Sybase client library or from the Sybase Server. See the SybaseContext.Delegate interface
specification for a complete description.

Method Types

Setting the login time out interval

loginTimeOutInterval

setLoginTimeOutInterval

20

C L A S S S y b a s e C o n t e x t

Setting the time out interval

setTimeOutInterval

timeOutInterval

Managing the connection

connect

currentChannel

disconnect

isConnected

setMaximumConnections

maximumConnections

Setting the max text size default

maxTextSizeDefault

setMaxTextSizeDefault

Setting the current exception

raiseCurrentException

setCurrentException

Static Methods

maximumConnections

public static int maximumConnections()

Returns the value for CS_MAX_CONNECT, the maximum number of database connections a
Sybase client process can have open simultaneously.

C L A S S S y b a s e C o n t e x t

21

loginTimeOutInterval

public static int loginTimeOutInterval()

Returns the login time out interval used by SybaseContext.

See Also: setLoginTimeOutInterval

setLoginTimeOutInterval

public static void setLoginTimeOutInterval(int seconds)

Sets the login time out interval value SybaseContext uses during the creation of new channels.
The default is 0, which means that there is no time out.

See Also: loginTimeOutInterval

setMaximumConnections

public static boolean setMaximumConnections(int value)

Sets CS_MAX_CONNECT, the maximum number of database connections a Sybase client
process can have open simultaneously. Returns true if the operation is successful. By default the
adaptor uses the Sybase client library default, which is normally sufficient. However, if your
application communicates with many databases or uses database authentication for each user,
you might need to raise the limit. It is possible to raise the limit after database connections have
been opened.

setTimeOutInterval

public static void setTimeOutInterval(int seconds)

Sets the time out interval value that the SybaseContext uses during the creation of new channels.
The default is 0, which means that there is no time out.

See Also: timeOutInterval

22

C L A S S S y b a s e C o n t e x t

timeOutInterval

public static int timeOutInterval()

Returns the time out interval used by SybaseContext.

Instance Methods

connect

public void connect()

Opens a connection to the database server. SybaseChannel sends this message to SybaseContext
when it (SybaseChannel) is about to open a channel to the server.

See Also: disconnect

currentChannel

public SybaseChannel currentChannel()

Returns the SybaseChannel currently associated with the receiving context.

disconnect

public void disconnect()

Closes a connection to the database server. SybaseChannel sends this message to SybaseContext
when it (SybaseChannel) has just closed a channel to the server.

See Also: connect

C L A S S S y b a s e C o n t e x t

23

isConnected

public boolean isConnected()

Returns true if the receiver has an open connection to the database, false otherwise.

See Also: connect, disconnect

maxTextSizeDefault

public int maxTextSizeDefault()

Returns the maximum number of bytes to be returned from a Sybase image to text field. The
default is set to INT_MAX, as defined for the host machine. This number can be overwritten on
a per-channel basis by sending the appropriate SQL to the channel using the evaluateExpression:
method.

raiseCurrentException

public void raiseCurrentException()

If the receiver has an exception, raises it.

See Also: setCurrentException

setCurrentException

public void setCurrentException(Throwable exception)

Sets the receiver’s current exception to exception.

When the SybaseAdaptor encounters an error, it uses the error message to build an NSException
and stores the exception in the SybaseContext using this method. The exception can then be
reviewed by other components to determine if the error is fatal.

See Also: raiseCurrentException

24

C L A S S S y b a s e C o n t e x t

setMaxTextSizeDefault

public void setMaxTextSizeDefault(int textSize)

Sets the receiver’s default text size to textSize. Any channels created after this method has been
invoked will use the newly specified text size.

25

C L A S S

SybaseSQLExpression

Inherits from: EOSQLExpression : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

SybaseSQLExpression defines how to build SQL statements for SybaseChannels.

Static Methods

serverTypeIdForName

public static int serverTypeIdForName(String typeName)

Returns the Sybase type code (such as 47, 56, or 55) for typeName (such as “char”, “int”, or
“decimal”).

26

C L A S S S y b a s e S Q L E x p r e s s i o n

Instance Methods

lockClause

public String lockClause()

Overrides the EOSQLExpression method lockClause to return the SQL string used in a SELECT
statement to lock selected rows, which is “HOLDLOCK”.

27

I N T E R F A C E

SybaseContext.Delegate

(informal interface)

Package: com.apple.yellow.sybaseeoadaptor

Interface Description

The SybaseContext delegate object allows developers access to all the messages returned from
the Sybase client library or the Sybase Server. If your implementation of these delegate methods
returns false, the SybaseContext will not report the message (or error). If your implementation
returns true, the SybaseContext will continue as usual. Most messages are reported in
exceptions, but messages with a severity of 0 are simply ignored.

Instance Methods

sybaseContextShouldReportClientMessage

public abstract boolean sybaseContextShouldReportClientMessage(
SybaseContext context,
NSDictionary clientMessage)

Invoked when an exception results from a callback to the CS_CLIENTMSG_CB (Sybase
ClientMessage callback). Gives the delegate the opportunity to substitute clientMessage as the
userInfo dictionary.

28

I N T E R F A C E S y b a s e C o n t e x t . D e l e g a t e

sybaseContextShouldReportServerMessage

public abstract boolean sybaseContextShouldReportServerMessage(
SybaseContext context,
NSDictionary serverMessage)

Invoked when an exception results from a callback to the CS_SERVERMSG_CB (Sybase
ServerMessage callback). Gives the delegate the opportunity to substitute serverMessage as the
userInfo dictionary.

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

	SybaseAdaptor class:specification
	SybaseAdaptor class:specification
	SybaseChannel class:specification
	SybaseContext class:specification
	SybaseSQLExpression class:specification
	SybaseContext class:specification

