





ODBCEOAdaptor Framework

Objective–C API Reference



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

F R A M E W O R K

ODBCEOAdaptor Framework

Framework:

System/Library/Frameworks/ODBCEOAdaptor.framework

Header File Directories:

System/Library/Frameworks/ODBCEOAdaptor.framework/
Headers

Introduction

The ODBCEOAdaptor framework is a set of classes that allow your programs to connect to an
ODBC server. These classes provide ODBC-specific method implementations for the EOAccess
framework’s EOAdaptor, EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression
abstract classes.

ODBC (Open Data Base Connectivity) defines a standard interface that Windows applications
can use to access any data source. Unlike the other Enterprise Objects Frameworks adaptors that
support a single type of database, the ODBC adaptor supports any data source that has an ODBC
driver. Consequently, in addition to having standard adaptor features, the ODBC adaptor also
manages information relating to the driver and to the data types defined by the data source the
driver supports.

4

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

The following table lists the classes in the ODBCEOAdaptor Framework and provides a brief
description of each class.

The Connection Dictionary

The connection dictionary contains items needed to connect to an ODBC server, such as the data
source (it’s common to omit the user name and password from the connection dictionary, and
prompt users to enter those values in a login panel). The keys of this dictionary identify the
information the server expects, and the values of those keys are the values that the adaptor uses
when trying to connect to the server.

The ODBC adaptor defines string constants for use as connection dictionary keys:

�

dataSourceKey

�

userNameKey

�

passwordKey

�

connectionStringKey

�

typeInfoKey

�

driverInfoKey

The value for the

connectionStringKey

 contains the user name, password, and data source. If an
entry for

connectionStringKey

 is present in the connection dictionary, the other login keys
(

dataSourceKey

,

userNameKey

, and

passwordKey

) are ignored and the value for

connectionStringKey

 is used to connect to the database.

Class Description

ODBCAdaptor Represents a single connection to a ODBC database server, and is
responsible for keeping login and model information, performing
ODBC-specific formatting of SQL expressions, and reporting errors.

ODBCChannel Represents an independent communication channel to the database
server its ODBCAdaptor is connected to.

ODBCContext Represents a single transaction scope on the database server to which
its adaptor object is connected.

ODBCSQLExpression Defines how to build SQL statements for ODBCChannels.

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

5

The value for the

typeInfoKey

 is a dictionary that is used to cache type information. This is done
because different ODBC drivers work with different data types. Caching type information in the
connection dictionary avoids costly connections to the driver and the database. The dictionary
for the

typeInfoKey

 contains the following information for every type in your database:

defaultODBCType = (<CHAR/TIMESTAMP/BIT/...>, ...)
precision = <precision>
minScale = <minScale>
maxScale = <maxScale>
isUnsigned = <YES/NO>
isNullable = <YES/NO>
isSearchable = <YES/NO>
createParams = <0/1/2>

The value for the

driverInfoKey

 is a dictionary that stores information about the driver, such as
its name and version.

For more information on the connection dictionary key constants, see the ODBCAdaptor class
specification.

Locking

All adaptors use the database server’s native locking facilities to lock rows on the server. If
you’re using the Microsoft SQL Server, the ODBC adaptor locks a row by using the HOLDLOCK
keyword in SELECT statements. In all other cases it uses the SELECT... FOR UPDATE...
statement. Locking occurs when:

�

You send the adaptor channel a

selectAttributes:fetchSpecification:lock:entity:

message with

YES

 specified as the value for the

lock:

 keyword.

�

You explicitly lock an object’s row with the EODatabaseContext’s

lockObjectWithGlobalID:
editingContext:

 message.

�

You set pessimistic locking at the database level and fetch objects.

6

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to
which a database value will be coerced when it’s fetched from the database. ODBC adds an
intermediate layer: the generic ODBC type (identifier) to which each database data type maps.

For example, the following table shows the mapping from some of the Microsoft Access
database data types to ODBC to Objective-C:

The following table lists the mapping between generic ODBC types and Objective-C types.

Microsoft Access Database
Type

Generic ODBC Type Objective-C Type

TEXT SQL_VARCHAR

NSString

CURRENCY SQL_NUMERIC

NSDecimalNumber

BINARY SQL_BINARY

NSData

DATETIME SQL_TIMESTAMP

NSCalendarDate

ODBC Data Type Objective-C Data Type

SQL_VARCHAR

NSString

SQL_CHAR

NSString

SQL_LONGVARCHAR

NSString

SQL_DECIMAL

NSDecimalNumber

SQL_NUMERIC

NSDecimalNumber

SQL_BIGINT

NSNumber

SQL_SMALLINT

NSNumber

SQL_INTEGER

NSNumber

SQL_REAL

NSNumber

SQL_FLOAT

NSNumber

SQL_DOUBLE

NSNumber

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

7

Since ODBCAdaptor’s type information is stored in a model’s connection dictionary, the type
mapping methods—

externalTypesWithModel:

,

internalTypeForExternalType:model:

, and

isValidQualifierType:model:

—use the model argument if it is provided. If the model argument
isn’t provided, these methods don’t have data type information available to them.

Prototype Attributes

The ODBCEOAdaptor Framework provides the following set of prototype attributes:

SQL_BIT

NSNumber

SQL_TINYINT

NSNumber

SQL_VARBINARY

NSData

SQL_BINARY

NSData

SQL_LONGVARBINARY

NSData

SQL_TIMESTAMP

NSCalendarDate

SQL_DATE

NSCalendarDate

SQL_TIME

NSCalendarDate

Name External
Type

Value Class Name Other Attributes

binaryID BINARY

NSData

width = 12

city CHAR

NSString

columnName = CITY

width = 50

date DATETIME

NSCalendarDate

columnName = ““

longText LONGTEXT

NSString

money CURRENCY

NSDecimalNumber

columnName = ““

phoneNumber CHAR

NSString

columnName = PHONE

width = 20

ODBC Data Type Objective-C Data Type

8

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method

primaryKeyForNewRowWithEntity:

 for generating primary keys. The ODBCChannel’s
implementation uses a table named

EO_PK_TABLE

 to keep track of the next available primary key
value for a given table. The table contains a row for each table for which the adaptor provides
primary key values.

ODBCChannel’s implementation of

primaryKeyForNewRowWithEntity:

 attempts to select a value
from the

EO_PK_TABLE

 for the new row’s table. If the attempt fails because the table doesn’t exist,
the adaptor creates the table using the following SQL statement:

CREATE TABLE EO_PK_TABLE (
NAME TEXT_TYPE(40),
PK NUMBER_TYPE

)

rawImage LONGBINARY

NSData

columnName = RAW_IMAGE

state CHAR

NSString

columnName = STATE

width = 2

streetAddress CHAR

NSString

columnName = STREET_ADDRESS

width = 100

tiffImage LONGBINARY

NSImage

adaptorValueConversionMethodName =
 TIFFRepresentation

columnName = PHOTO

valueFactoryMethodName =
 “imageWithData:”

uniqueID LONG

NSNumber

columnName = ““

valueType = i

zipCode CHAR

NSString

columnName = ZIP

width = 10

Name External
Type

Value Class Name Other Attributes

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

9

where

TEXT_TYPE

 is the external (database) type for characters and

NUMBER_TYPE

 is the external
type for the table’s primary key attribute. The ODBC adaptor sets the PK value for each row to
the corresponding table’s maximum primary key value plus one. After determining a primary
key value for the new row, the ODBC adaptor updates the counter in the corresponding row in

EO_PK_TABLE

.

For more information on this topic, see

Enterprise Objects Framework Developer’s Guide

.

Bind Variables

The ODBCAdaptor uses bind variables. A bind variable is a placeholder used in an SQL
statement that is replaced with an actual value after the database server determines an execution
plan. You use the following ODBCSQLExpression methods to operate on bind variables:

�

– bindVariableDictionaryForAttribute:value:

�

– mustUseBindVariableForAttribute:

�

– shouldUseBindVariableForAttribute:

10

F R A M E W O R K O D B C E O A d a p t o r F r a m e w o r k

11

C L A S S

ODBCAdaptor

Inherits from:

EOAdaptor : NSObject

Declared in:

ODBCEOAdaptor/ODBCAdaptor.h

Class Description

An ODBCAdaptor represents a single connection to an ODBC database server, and is
responsible for keeping login and model information, performing ODBC-specific formatting of
SQL expressions, and reporting errors.

ODBC (Open Data Base Connectivity) defines a standard interface that Windows applications
can use to access any data source. Unlike the other Enterprise Objects Frameworks adaptors that
support a single type of database, the ODBC adaptor supports any data source that has an ODBC
driver. Consequently, in addition to having standard adaptor features, the ODBC adaptor also
manages information relating to the driver and to the data types defined by the data source the
driver supports.

The ODBCAdaptor class doesn’t support nested transactions.

12

C L A S S O D B C A d a p t o r

Constants

ODBCAdaptor defines the following string constants for use as connection dictionary keys.

For more information on the connection dictionary, see “The Connection Dictionary” (page 4) in
the ODBCEOAdaptor Framework introduction.

Additionally, ODBCAdaptor defines a string constant for use as a key in an exception’s userInfo
dictionary.

Constant Corresponding value in the connection dictionary

dataSourceKey

The name of the data source to connect to.

userNameKey

The name of the user to log in as.

passwordKey

The user’s password.

connectionStringKey

The complete string used to connect to the database. If this key is present
in the dictionary,

dataSourceKey

,

userNameKey

, and

passwordKey

 are
ignored.

typeInfoKey

Information about the types supported by the driver.

driverInfoKey

Information about driver, including the driver name, version, and so on.

Constant Corresponding value in an exception’s userInfo dictionary

SQLStatesKey An array of strings. Each string is a five character code corresponding to
an ODBC SQL state.

C L A S S O D B C A d a p t o r

13

Method Types

Mapping external types to internal types

+ assignExternalTypeForAttribute:

+ externalTypeForOdbcType:model:

+ getOdbcInfoWithConnectionDictionary:

+ odbcTypeForExternalType:model:

+ odbcTypeForStringRepresentation:

+ resetOdbcInfoWithConnectionDictionary:

+ stringRepresentationForOdbcType:

Access information in the connection dictionary

– odbcConnectionString

+ driverInfoForModel:

+ typeInfoForModel:

– driverInfo

– typeInfo

Getting the default Expression Class

– defaultExpressionClass

Getting ODBC environment information

– odbcEnvironment

14

C L A S S O D B C A d a p t o r

Class Methods

assignExternalTypeForAttribute:

+ (void)assignExternalTypeForAttribute:(EOAttribute *)attribute

Sets the external information for attribute based on the internal type, precision, and width.

driverInfoForModel:

+ (NSDictionary *)driverInfoForModel:(EOModel *)model

Returns an NSDictionary containing the driver information cached in the connection dictionary
of model. If the information is not yet cached in model, connects to the database to get it.

See Also: + typeInfoForModel:, – driverInfo, – typeInfo

externalTypeForOdbcType:model:

+ (NSString *)externalTypeForOdbcType:(int)type
model:(EOModel *)model

Returns the external type that represents the best match for an ODBC type in model.

getOdbcInfoWithConnectionDictionary:

+ (NSDictionary *)getOdbcInfoWithConnectionDictionary:
(NSDictionary *)connectionDictionary

Sets up the typeInfo and driverInfo dictionaries in connectionDictionary, and returns an
updated connection dictionary. Creates an ODBCAdaptor, ODBCContext, and ODBCChannel, and
connects to the database to get the information for the typeInfo and driverInfo dictionaries.

C L A S S O D B C A d a p t o r

15

odbcTypeForExternalType:model:

+ (NSString *)odbcTypeForExternalType:(NSString *)externalType
model:(EOModel *)model

Returns the ODBC type for externalType, as defined in the typeInfo dictionary in model’s
connection dictionary.

odbcTypeForStringRepresentation:

+ (int)odbcTypeForStringRepresentation:(NSString *)type

Returns the ODBC type (such as SQL_CHAR) for type (such as @“CHAR”). The method
stringRepresentationForOdbcType: performs the opposite function: returning a string for a
specified ODBC type. These methods are used in conjunction to encode ODBC types in the
typeInfo dictionary.

resetOdbcInfoWithConnectionDictionary:

+ (NSDictionary *)resetOdbcInfoWithConnectionDictionary:
(NSDictionary *)connectionDictionary

Removes the typeInfo and driverInfo dictionaries from a copy of connectionDictionary and
returns the modified connection dictionary.

stringRepresentationForOdbcType:

+ (NSString *)stringRepresentationForOdbcType:(int)type

Returns the string representation of type—for example, for the type SQL_CHAR this method
would return the string @“CHAR”. The method odbcTypeForStringRepresentation: performs
the opposite function: returning the ODBC type for a specified string. These methods are used
in conjunction to encode ODBC types in the typeInfo dictionary.

16

C L A S S O D B C A d a p t o r

typeInfoForModel:

+ (NSDictionary *)typeInfoForModel:(EOModel *)model

Returns an NSDictionary containing the type information cached in the connection dictionary of
model. If the information is not yet cached in model, connects to the database to get it.

See Also: + driverInfoForModel:, – driverInfo, – typeInfo

Instance Methods

defaultExpressionClass

– (Class)defaultExpressionClass

Returns the ODBCSQLExpression class.

driverInfo

– (NSDictionary *)driverInfo

Returns an NSDictionary containing the driver information cached in the receiver’s model’s
connection dictionary. If the information is not yet cached in the model, connects to the database
to get it.

See Also: – typeInfo

odbcConnectionString

– (NSString *)odbcConnectionString

Returns the user name, password, and data source as a string that’s used to connect to the
database.

C L A S S O D B C A d a p t o r

17

odbcEnvironment

– (void *)odbcEnvironment

Returns the ODBC Environment Handle HENV as a void*; to work with it, you must cast it to
HENV.

typeInfo

– (NSDictionary *)typeInfo

Returns an NSDictionary containing the type information cached in the receiver’s model’s
connection dictionary. If the information is not yet cached in the model, connects to the database
to get it.

See Also: – driverInfo, + driverInfoForModel:, + typeInfoForModel:

18

C L A S S O D B C A d a p t o r

19

C L A S S

ODBCChannel

Inherits from: EOAdaptorChannel : NSObject

Declared in: ODBCEOAdaptor/ODBCChannel.h

Class Description

An ODBCChannel represents an independent communication channel to the database server its
ODBCAdaptor is connected to. All of an ODBCChannel’s operations take place within the
context of transactions controlled or tracked by its ODBCContext. An ODBCContext can manage
multiple ODBCChannels, and a channel is associated with only one context.

The features ODBCChannel adds to EOAdaptorChannel are methods for returning the ODBC
Statement Handle (HSTMT), and for returning a dictionary-formatted result from
SQLTypeInfo().

20

C L A S S O D B C C h a n n e l

Instance Methods

closeChannel

– (void)closeChannel

Overrides the EOAdaptorChannel method closeChannel to close the channel so that it can’t
perform operations with the server. Any fetch in progress is canceled. This method has the side
effect of closing the receiver’s adaptor context’s connection with the database if the receiver is its
adaptor context’s last open channel.

odbcStatement

– (void *)odbcStatement

Returns the ODBC Statement Handle HSTMT as a void*; you must cast the returned value to
HSTMT to work with it.

odbcTypeInfo

– (NSDictionary *)odbcTypeInfo

Returns the result from SQLTypeInfo(), formatted in an NSDictionary ready to incorporate into
a model file.

21

C L A S S

ODBCContext

Inherits from: EOAdaptorContext : NSObject

Declared in: ODBCEOAdaptor/ODBCContext.h

Class Description

An ODBCContext represents a single transaction scope on the database server to which its
adaptor object is connected. If the server supports multiple concurrent transaction sessions, the
adaptor may have several adaptor contexts. An ODBCContext may in turn have several
ODBCChannels, which handle actual access to the data on the server.

The features the ODBCContext class adds to EOAdaptorContext are methods for managing
ODBC connections and for getting information about the driver.

Instance Methods

odbcConnect

– (void)odbcConnect

Opens a connection to the database server. ODBCChannel sends this message to ODBCContext
when it (ODBCChannel) is about to open a channel to the server. This method is called
automatically by the framework.

22

C L A S S O D B C C o n t e x t

odbcDatabaseConnection

– (void *)odbcDatabaseConnection

Returns the ODBC Database Connection Handle (HDBC) as a void*; you must cast it to HDBC
to work with it.

odbcDisconnect

– (void)odbcDisconnect

Closes the connection to the database server. ODBCChannel sends this message to
ODBCContext when it (ODBCChannel) has just closed a channel to the server.

odbcDriverInfo

– (NSDictionary *)odbcDriverInfo

Returns a dictionary summarizing some important information about the driver (driver name,
version, support of NOT NULL, and so on). Connects to the database if a connection isn’t
already in place.

setOdbcDatabaseConnection:

– (void)setOdbcDatabaseConnection:(void *)odbcDatabaseConnection

Sets to odbcDatabaseConnection the ODBC Database Connection Handle (HDBC). You can
invoke this method from the delegate method adaptorContextShouldConnect: to set up a
connection in an alternative way (by using SQLBrowseConnect(), for example).

23

C L A S S

ODBCSQLExpression

Inherits from: EOSQLExpression : NSObject

Declared in: ODBCEOAdaptor/ODBCSQLExpression.h

Class Description

ODBCSQLExpression defines how to build SQL statements for ODBCChannels.

Bind Variables
The ODBCAdaptor uses bind variables. A bind variable is a placeholder used in an SQL
statement that is replaced with an actual value after the database server determines an execution
plan. You use the following methods to operate on bind variables:

� bindVariableDictionaryForAttribute:value:

� mustUseBindVariableForAttribute:

� shouldUseBindVariableForAttribute:

For more information on using bind variables, see the EOSQLExpression class specification.

24

C L A S S O D B C S Q L E x p r e s s i o n

Class Methods

bindVariableDictionaryForAttribute:value:

– (NSMutableDictionary *)bindVariableDictionaryForAttribute:(EOAttribute *)attribute
value:value

Overrides the EOSQLExpression implementation to return the receiver’s bind variable
dictionaries. For more information on bind variables, see the discussion in the class description.

lockClause

– (NSString *)lockClause

Overrides the EOSQLExpression implementation to return the SQL string used in a SELECT
statement to lock selected rows. If you’re using the Microsoft SQL Server, this method returns
@“HOLDLOCK”. Otherwise, it returns @“FOR UPDATE”.

mustUseBindVariableForAttribute:

– (BOOL)mustUseBindVariableForAttribute:(EOAttribute *)attribute

Overrides the EOSQLExpression implementation to return YES since in the ODBC adaptor, the
receiver must always use bind variables for attribute. A returned value of YES indicates that
the underlying RDBMS requires that bind variables be used for attributes with attribute’s
external type.

shouldUseBindVariableForAttribute:

– (BOOL)shouldUseBindVariableForAttribute:(EOAttribute *)attribute

Overrides the EOSQLExpression implementation to return YES since in the ODBC adaptor, the
receiver must always be able to provide a bind variable dictionary for attribute. A returned
value of YES indicates that the receiver should use bind variables for attributes with attribute’s
external type.

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and composed on a desktop publishing system
using Apple Macintosh computers and FrameMaker software.

Line art was created using Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set in Adobe Letter Gothic.

	SybaseAdaptor class:specification
	ODBCAdaptor
	ODBCChannel
	ODBCContext
	ODBCSQLExpression

