





What’s New in WebObjects 4.5



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Contents

Introduction

9

Compatibility with WebObjects 4.0 9
Changes in WebObjects 4.5 9

Platform and Language Support 9
Deploying WebObjects Applications 10
Profiling and Tuning Applications 10

Profiling 10
Tuning 11

Tools Improvements 12
Object Modeling Improvements 12
Managing Stale Data 12
Automatic Database Reconnection 13
Direct to Web 13
Java Client 13
LDAP Adaptor 14

What’s New in the WebObjects Framework

15

Executive Summary 16
Monitor Changes 17
Web Server Adaptor Changes 18
Configuring the Web Server Adaptor 19

Accessing Configuration Information 19
Changing the Web Server Adaptor Multicast Address 21

Disabling or Protecting Administrator Access 22
Apache with mod_WebObjects.so 23
NSAPI Adaptors 23

4

Contents

ISAPI Adaptor 23
WAI 23
CGI 24

Licensing Changes 25
Miscellaneous Changes 26
Supplemental Documentation 26

Direct-Connect Mode 27
Rapid Turnaround Mode 28

Rapid Turnaround and Direct-Connect Mode 29
Testing With a Web Server 29

WebObjects Framework API Changes

31

New Classes 31
WOEvent 31
WOMessage 32

Messages with XML Content 32
Changes to WORequest 33
Changes to WOResponse 33

WOHTTPConnection 34
XML Package 34

New Methods 35
Other WODisplayGroup Changes 38

Deprecated API 40
WOExtensions Changes 41

WOExtensions Reference Documentation 41
New Components 41
Stateless Components 42
Deprecated Elements 42

WebObjects Tools Changes

43

Project Builder Changes 43
WebObjects Builder Changes 44

Main Window Changes 44
Layout View Changes 44
Preview View 45

Contents

5

Source View 45
Changes to the Binding Process 45

Inspector Appearance 45
Documentation 45
Binding by Dragging 46
Binding With the Element’s Context Menu 46
Binding Validation 46
Adding and Deleting Bindings with the Inspector 46
Binding Aids in the Inspector 46
Binding Name Completion 47

Working with Keys 47
Changes to Keyboard Actions 47
Working with Tables 48

Creating Tables 48
Making Selections 48
Editing Tables 48

Working with Fonts 49
Path View Menu 49
Context Menus 49
API Editor 50
Syntactic and Semantic Constraints 51
How WebObjects Builder Handles Bindings Files 53

Direct to Web Changes 53
API and Components Exposed 53
Modifying the Visual Style 54
Modifying the D2W Menu 54
Neutral Look 54
Custom Components 54
Named Configurations 55
Tab Panel Page 55
Better Support for Key Paths in the Web Assistant 55
Web Assistant Support for EOProject Parser 55
Confirmation Page 55
Deployment Performance 55
Converting Projects From Earlier Releases 56
API Changes 56

6

Contents

What’s New in Enterprise Objects Framework

59

Schema Synchronization 59
Related API Changes 60

Event Logging 60
WOEventSetup page 61
WOEventDisplay page 61
Event System User Defaults 63
Event Logging Questions and Answers 63
Custom Event Logging 65
Related API Changes 67

Object Sharing 67
How It Works 68

Shared Objects Are Read-Only 69
Shared Objects Are Uniqued 70

Setting Up Object Sharing 70
Accessing Shared Objects 71
Inserting, Updating, and Deleting Shared Objects 72
Refreshing the Shared Editing Context 72
Disabling Sharing During Development 73
Performance 73
Multithreaded Access and Locking 74
Related API Changes 75

Subclassing EOGenericRecord 77
Property Storage: Dictionary or Instance Variables 79
Creating a Subclass 80

Deferred Faulting 81
Deferred Faulting and Inheritance 81
Related API Changes 82

Snapshot Reference Counting 83
Related API Changes 85

Snapshot Timestamping 86
Related API Changes 87

Handling Missing Faults 92
Related API Changes 92

Automatic Database Reconnection 93
Related API Changes 94

Setting Access Layer Delegates 97

Contents

7

Related API Changes 98
Key Value Coding Changes 99

Key Bindings 99
Enforcing Lowercase Key Names 100
Related API Changes 100

Recursive Reader and Writer Locks 101
Related API Changes 102

LDAP Adaptor Example 102
LDAP Client Libraries 102
Creating Models 103

Logging In 103
If Reverse Engineering Fails 104

Adding Entries to the Server 105
Performing Authentication 105

Miscellaneous API Enhancements 107
Deprecated API 111

What’s New in Java Client

111

Foundation Layer Changes 112
Number Formatter 112
New Foundation Layer Classes and Interfaces 113

Control Layer Changes 113
New Control Layer Classes and Interfaces 114
New API 115
Deleted API 121
Server-Side Features Not in Java Client 122

Distribution Layer Changes 122
New Distribution Layer Classes and Interfaces 123
Related API Changes 124
Deleted API 127

Interface Layer Changes 127
Support for Table Cell Editing 128
QuickTime Association 128
URLAspect for Associations 129
Package Reorganization and Changes 129
New Interface Layer Classes and Interfaces 130

8

Contents

Added Methods 131
Deleted API 136

Running Java Client Applications 137
For Non-Mac OS X Server Users 138

Direct To Java Client 138

Compatibility with WebObjects 4.0

9

C H A P T E R 1

1 Introduction

This document describes changes made to WebObjects between release 4.5 and 4.0.
It describes changes made to existing features and describes new features you may
want to start using in your applications

Compatibility with WebObjects 4.0

WebObjects 4.5 is compile-compatible with WebObjects 4.0. You should be able to
run most WebObjects 4.0 applications by simply rebuilding them using WebObjects
4.5. Note that Direct To Web and Java Client applications require some additional
effort to convert to WebObjects 4.5; see the

WebObjects 4.5 Post-Installation
Instructions

 for more information on converting your existing applications.

Changes in WebObjects 4.5

This section describes the primary changes to WebObjects for the 4.5 release,
including Enterprise Objects Framework (EOF), which is considered part of
WebObjects 4.5.

Platform and Language Support

WebObjects makes the following improvements to platform and language support
in release 4.5:

10

Changes in WebObjects 4.5

C H A P T E R 1

Introduction

�

WebObjects applications written in Java are now supported on HP-UX.

�

WebObjects now supports JDK 1.1.8 on Windows NT and on Solaris (1.1.7 on
HP-UX).

�

On Solaris and HP-UX, WebObjects no longer needs to be installed into

/opt/Apple

.

Deploying WebObjects Applications

In addition to the changes listed under Platform and Language Support (above), the
following changes have been made to ease the deployment of WebObjects
applications:

�

Web server adaptors can now get their configuration information from a file on
the local machine, a file on another machine running a web server, from

wotaskd

(the replacement for MonitorProxy), or from other machines on the subnet
running WebObjects via a new multicast mechanism.

�

Many of the responsibilities formerly assumed by Monitor are now handled by

wotaskd

 (each host involved in a WebObjects deployment now runs

wotaskd

).
Monitor now simply changes settings in your deployment environment.

Profiling and Tuning Applications

WebObjects 4.5 provides many new features to help you profile applications,
decrease their memory usage, and increase their speed. This section provides an
overview of the features and tells you where to go for more information.

Profiling

WebObjects 4.5 introduces a new feature to help you profile your applications.
event logging. A new event logging system records and displays how long certain
operations in an application take. The measurements allow you to profile an
application and optimize its execution time. For this, the EOF and WebObjects
frameworks instrument key portions of their code to measure the elapsed time of
functions and methods. You can instrument key portions of your code as well. To
learn how to use this feature, see“Event Logging” (page 60) in the chapter What’s
New in Enterprise Objects Framework.

Note:

HP-UX 10.20 is no longer supported; WebObjects 4.5 requires HP-UX 11.0.

C H A P T E R 1

Introduction

Changes in WebObjects 4.5

11

Tuning

There are many new features to help tune your application. They are:

�

Object sharing

EOF 4.5 introduces a new technique for sharing read-only enterprise objects. The
new subclass of EOEditingContext, EOSharedEditingContext, defines a
mechanism that allows editing contexts to share enterprise objects for reading.
This mechanism can reduce both the number of fetches an application makes
and the amount of redundant data it requires. See the section “Object Sharing”
(page 67) in the chapter What’s New in Enterprise Objects Framework.

�

Subclassing EOGenericRecord

EOF 4.5 adds a new option for creating custom enterprise objects: rather than
creating a subclass of EOCustomObject (Java) or NSObject (Objective–C), you
can now subclass EOGenericRecord.

This feature is most significant in applications that use the Java bridge. By
default, a subclass of EOGenericRecord stores its properties in a dictionary on
the Objective–C side of the bridge instead of in individual instance variables on
the Java side. This allows EOF to access enterprise object properties with many
fewer trips across the bridge, which reduces memory usage and improves
performance.

See the section “Subclassing EOGenericRecord” (page 77) in the chapter What’s
New in Enterprise Objects Framework.

�

Deferred faulting

EOF uses faults as stand-ins for objects whose data has not yet been fetched.
Although fault creation is much faster than fetching, fault instantiation still takes
time. To improve performance, EOF 4.5 has the ability to use

deferred faults

(which are more efficient) for enterprise object classes that enable the feature.
See the section “Deferred Faulting” (page 81) in the chapter What’s New in
Enterprise Objects Framework.

�

Snapshot reference counting

This is a new feature that removes snapshots from an EODatabase when they are
no longer used by any enterprise objects in an application. This feature reduces
the memory footprint of WebObjects applications. See the section “Snapshot
Reference Counting” (page 83) in the chapter What’s New in Enterprise Objects
Framework.

12

Changes in WebObjects 4.5

C H A P T E R 1

Introduction

Tools Improvements

�

WebObjects Builder’s user interface has been significantly enhanced and should
now be even easier to use. See the chapter “WebObjects Tools Changes”
(page 43).

�

EOModeler supports synchronization of a database schema with the current
state of a model. See the section “Schema Synchronization” (page 59) in chapter
What’s New in Enterprise Objects Framework.

Object Modeling Improvements

EOF 4.5 adds the following features that improve object modeling:

�

Better handling of missing faults

When a fault fires but doesn’t have a corresponding row in the database, an
exception isn’t automatically thrown. An exception is thrown only if the
application attempts to make changes to the missing fault. See “Handling
Missing Faults” (page 92).

�

Handling of ambiguous to-one relationships in Java

If you enable deferred faulting—a new feature in EOF 4.5—you can have to-one
relationships to non-leaf entities in an inheritance hierarchy. This arrangement
was impossible without workarounds in earlier versions. See “Deferred
Faulting” (page 81).

�

Enterprise object classes are more flexible and easier to maintain

You can now subclass EOGenericRecord, which can benefit the design of your
enterprise objects. See “Subclassing EOGenericRecord” (page 77).

Managing Stale Data

EOF 4.5 adds a snapshot timestamping feature to help you keep your application’s
data fresh. It updates snapshots when fetching and allows an editing context to
request that the snapshots used to build enterprise objects are no older than a
particular timestamp. This has the effect of refreshing snapshots periodically,
keeping the application’s view more up-to-date with the database. See “Snapshot
Timestamping” (page 86).

C H A P T E R 1

Introduction

Changes in WebObjects 4.5

13

Automatic Database Reconnection

In EOF 4.5, a concrete adaptor can now implement methods that cause EOF to
automatically attempt to reconnect to a database server when a connection is
unexpectedly dropped. This behavior handles the problem of transient
communication failures. By default reconnection is attempted by all of the adaptors
that ship with EOF 4.5. See the section “Automatic Database Reconnection”
(page 93) in the chapter What’s New in Enterprise Objects Framework.

Direct to Web

Direct to Web now allows you to create your own visual style and exposes a great
deal of new API. For more information, see the section “Direct to Web Changes”
(page 53) in the chapter WebObjects Tools Changes.

Java Client

Java Client has been extended considerably, including the following:

�

The foundation layer (com.apple.client.foundation) contains a new number
formatter based on NSNumberFormatter and adds an NSUndoManager class,
which is analogous to the server side class.

�

The control layer (com.apple.client.eocontrol) is more complete.

�

The distribution layer (com.apple.client.eodistribution on the client side and
com.apple.yellow.eodistribution on the server side) now provides support for
encrypted client/server communication and for managing user defaults.

�

The interface layer (com.apple.client.eointerface) adds support for table cell
editing and for displaying images and QuickTime media.

Additionally, Java Client now has a new user interface generation layer, Direct to
Java Client, which is comparable to WebObjects’ Direct to Web.

For more information on changes to Java Client, see the chapter “What’s New in
Java Client” (page 111).

14

Changes in WebObjects 4.5

C H A P T E R 1

Introduction

LDAP Adaptor

EOF 4.5 comes with a new sample adaptor: the LDAP adaptor. The adaptor
provides a simple way to verify a user’s password on the Web with an LDAP server.
For more information, see the section “LDAP Adaptor Example” (page 102) in the
chapter What’s New in Enterprise Objects Framework.

15

C H A P T E R 2

2 What’s New in the WebObjects
Framework

This chapter describes changes made to the Web Objects Framework and the
Monitor application between release 4.0 and 4.5. It describes changes made to
existing features and describes new features you may want to start using in your
applications.

This chapter is organized into the following sections:

�

“Executive Summary” (page 16)

�

“Monitor Changes” (page 17)

�

“Web Server Adaptor Changes” (page 18)

�

“Configuring the Web Server Adaptor” (page 19)

�

“Licensing Changes” (page 25)

�

“Miscellaneous Changes” (page 26)

�

“Supplemental Documentation” (page 26)

Between WebObjects 4.0 and 4.5 there have been a number of changes to the
WebObjects Framework APIs. These changes are detailed in a separate chapter,
“WebObjects Framework API Changes” (page 31). In addition. WebObjects
application developers will likely be interested in the new Event Logging feature;
see “Event Logging” (page 60).

16

Executive Summary

C H A P T E R 2

What’s New in the WebObjects Framework

Executive Summary

The changes to the WebObjects Framework for the 4.5 release of WebObjects can be
summed up as follows:

�

MonitorProxy has been replaced by

wotaskd

.

�

The web server adaptors by default now get their configuration information
from

wotaskd

 via http requests, and no longer maintain a temporary
configuration file in

/tmp

. The web server adaptor can be configured to retrieve
its configuration information from a file on the current or a different web server;
see “Accessing Configuration Information” (page 19) for details.

�

The web server adaptors are now capable of automatically determining which
WebObjects application servers are available and which applications are
running on those servers.

�

The web server adaptor configuration file, if used, now uses an XML format (see
the online document

Deploying WebObjects Applications

 for details).

�

A number of aspects of WebObjects adaptor operation are now configurable at
runtime.

�

Much of the common functionality between WORequest and WOResponse has
been abstracted into a new class, WOMessage, that represents messages with
either HTML or—if your WebObjects application is written in Java—XML
content. WOMessages allow your WebObjects applications to communicate
with other WebObjects applications as well as with applications that “speak ”
XML.

�

Installed as a part of WebObjects is the

com.ibm.xml.dom

 package (IBM’s
alphaWorks), which contains various XML parsers for Java written by IBM. The
WebObjects Framework uses the DOM parser to generate document and
document fragment objects from XML data (or to manipulate and/or generate
XML data from a document object). For more information on the alphaWorks
parser, including complete documentation, point your web browser to

http://www.alphaworks.ibm.com

 and search for “XML Parser for Java”.

C H A P T E R 2

What’s New in the WebObjects Framework

Monitor Changes

17

�

Components can now be made stateless. A single instance of each stateless
component is shared between multiple sessions, reducing your application’s
memory footprint.

To support the above new functionality, there have been various additions to the
WebObjects Framework API’s. For a complete list of changes, see “WebObjects
Framework API Changes” on page 31.

Monitor Changes

Monitor and MonitorProxy have changed substantially in WebObjects 4.5. In
particular, MonitorProxy has been replaced with a new process named “

wotaskd

”
that’s responsible for all things related to deployment on a particular host. Many of
the responsibilities formerly assumed by the Monitor application are now handled
by

wotaskd

 (each host involved in a WebObjects deployment now runs

wotaskd

).
Monitor now simply changes settings in your deployment environment.

Monitor registration with

wotaskd

 no longer used DO (Distributed Objects).

Monitor has a number of minor UI enhancements throughout, including:

�

the “File Transfer Wizard,” which allows Monitor users to move files and
directories between hosts being monitored, and

�

the “Path Wizard,” which should appear everywhere you’re required to enter a
path in Monitor, allowing you to browse the file system on a particular host.

There are new settings that can be altered from within Monitor that affect the
WebObjects adaptors.

Note:

In theory, you could run multiple

wotaskd

’s on different ports on the same
machine and have different web servers talk to the same app servers but see
different applications. This has not been tested, however.

18

Web Server Adaptor Changes

C H A P T E R 2

What’s New in the WebObjects Framework

Web Server Adaptor Changes

The WebObjects 4.5 API-based web server adaptor is intended to be used as a server
plug-in where state information can be maintained from request to request. CGI is
supported, but beyond the fact that it’s easier to debug, the CGI adaptor provides
no real benefit over the API-based adaptor.

Among the features which differentiate it from the 4.0 WebObjects adaptor:

�

Many aspects are configurable at runtime, including:

�

Load balancing strategy

�

Application/adaptor communication transport

�

Socket timeouts

�

Application URL version (the adaptor supports WebObjects 3.5, 4.0, and 4.5
application URLs)

�

Error redirect URLs

�

It supports a new, additional scheduling technique: “Instance load-based
scheduling.”

�

It uses an XML-based configuration file format (see the online document

Deploying WebObjects Applications

 for details).

�

Configuration for multiple web servers is simpler and more automatic:
configuration files are no longer required.

�

The web server adaptor by default automatically discovers WebObjects-enabled
systems.

�

Performance has been improved.

For information on installing the adaptor, see the installation files for CGI, Apache,
Microsoft ISAPI, Netscape NSAPI or Netscape WAI.

Note:

The WebObjects 4.5 NSAPI adaptor won’t work with Netscape Enterprise
3.5 servers. If you want to use the NSAPI adaptor, you’ll need to upgrade to
Netscape Enterprise 3.6, or recompile with 3.5.

C H A P T E R 2

What’s New in the WebObjects Framework

Configuring the Web Server Adaptor

19

Configuring the Web Server Adaptor

The web server adaptors by default now get their configuration information from

wotaskd

 via HTTP requests, and no longer maintain a temporary configuration file
in

/tmp

. This release also includes support for the automatic discovery of systems
running WebObjects by web server adaptors. This should remove the necessity to
administer the web servers, beyond the initial adaptor installation. This automatic
discovery mechanism is the default; to disable it, you’ll need to change the web
server adaptor’s configuration file as outlined in “Accessing Configuration
Information” (page 19).

When the web server adaptor starts up, and at intervals determined by the
configuration refresh interval setting, the adaptor sends out a multicast request in
an effort to discover which WebObjects app servers are available. Each app server’s

wotaskd

 process replies with its URL (

http://me.myself.com:1085

). The adaptor
constructs a list of these URLs and then polls each in turn to get the full site
configuration information.

If the configuration refresh interval is 10 seconds, the discovery broadcast happens
every 100 seconds (the discovery broadcast occurs a factor of 10 less frequently).

Accessing Configuration Information

Web server adaptor configuration information can now be obtained in a number of
ways. In addition to the default “multicast” mode, the web server adaptor can be
set to retrieve configuration information from one or more WebObjects application
servers running

wotaskd

, or it can be set to obtain configuration information from a
configuration file, which can be located either on the local machine or on a machine
running a different web server.

By default, the adaptor uses multicast to communicate with all machines on same
subnet that are running

wotaskd

. From the responses, the adaptor builds up a list of
WebObjects application servers, along with all of the information necessary to allow
access to all of the the WebObjects application instances running on those machines.

20

Configuring the Web Server Adaptor

C H A P T E R 2

What’s New in the WebObjects Framework

Although this is the default mode of operation, you can explicitly specify that the
Web server adaptor obtain its configuration information this way using an entry
similar to the following in your

apache.conf

 file:

Retrieve configuration information using multicast
WebObjectsConfig webobjects://239.128.14.2:1085 10

In the above, as in all of the configuration file entries shown in this section, the final
value—10 in this instance—indicates the configuration refresh interval.

While the multicast mode requires no configuration, in a real deployment scenario
you may wish to limit which application servers can be accessed from a given web
server. For instance, you may have multiple web servers that each need to access a
different set of WebObjects applications. Or, you may want to prevent end-user
access to WebObjects applications in development or being tested on the same
subnet. To explicitly specify the set of WebObjects application servers that can be
accessed from a given web server, use an entry similar to the following in your

apache.conf

 file:

Retrieve config file from wotaskd (multiple hosts can be listed)
WebObjectsConfig http://hostA:1085,http://hostB:1085 10

Note that

wotaskd

 must be running on each WebObjects application server in order
for the above to work.

You can also have the web server adaptor obtain its configuration information from
a configuration file. Using a configuration file allows you to further limit what a
given web server can access: in the configuration file you can specify that the web
server can access only specific applications (or even specific instances of a
WebObjects application) on individual WebObjects application servers. This
configuration file now uses an XML format (previously it was formatted as a
property-list) which is fully described in the online document

Deploying WebObjects
Applications. Place an entry similar to one of the following in your apache.conf file to
have the web server adaptor obtain its configuration information from a file:

Note: For simplicity, only entries in apache.conf are shown. However, the
corresponding entries can be made for all other supported web servers (with
ISAPI you either need to make an entry in the Windows NT registry as shown in
“Changing the Web Server Adaptor Multicast Address” (page 21)or you need to
rebuild the adaptor). See the installation instructions for your particular web
server—in $NEXT_ROOT/Developer/Examples/WebObjects/Source/Adaptors—for
more information.

C H A P T E R 2

What’s New in the WebObjects Framework

Configuring the Web Server Adaptor 21

Retrieve config information from a file (XML-formatted config file)
WebObjectsConfig file:///tmp/WebObjects.xml 10

or:

Retrieve config information from a file (old plist-style config file)
WebObjectsConfig file:///tmp/WebObjects.conf 10

or:

#Retrieve config information from a file on a different web server
WebObjectsConfig http://my.webserver.com/WebObjects.xml 10

Changing the Web Server Adaptor Multicast Address

The adaptor sends discovery requests out on a particular multicast “channel”
(which is a combination of the IP address and the port). The defaults are:

Default IP Address: 239.128.14.2

Default port: 1085

The default multicast address is within the “Adminstratively Scoped Domain.”
That is, it’s within the range of addresses intended for internal use inside
organizations.

For Apache, place the following in your apache.conf (the final value—10 in this
instance—indicates the configuration refresh interval):

WebObjectsConfig webobjects://239.128.14.2:1085 10

For CGI, either recompile, or set the WO_CONFIG_URL environment variable as above.

For NSAPI, place something like the following in your obj.conf:

Standard:

Init fn=”WebObjects_init” root=”/opt/ns-home/docs”
config=”http://localhost:1085”

Note: With Apache, you’ll need the SetEnv command, which comes with the
“env” module. Note that Mac OS X Server doesn’t switch this module on by
default.

22 Configuring the Web Server Adaptor

C H A P T E R 2

What’s New in the WebObjects Framework

Multicast:

Init fn=”WebObjects_init” root=”/opt/ns-home/docs”
config=”webobjects://239.128.14.2:1085”

For ISAPI, add the following to the registry:

\\SOFTWARE\\Apple\\WebObjects\\Configuration\\CONF_URL
webobjects://239.128.14.2:1085

By default wotaskd listens for multicast discovery requests on IP address
239.128.14.2. If you configure the web server adaptor to send such requests to a
different IP address, you must also set the WOConfigMulticastAddress user default
on machines running wotaskd (you must to do this as root/administrator). One way
to do this is to modify the startup script to set this user default as follows:

defaults write wotaskd WOConfigMulticastAddress 239.128.14.2

If you don’t change the multicast IP address, the above defaults write isn’t
necessary.

Disabling or Protecting Administrator Access
In WebObjects 4.5, sending the URL http://someHost/cgi-bin/WebObjects/xyzzy
results in the webserver adaptor displaying information about all available
application instances. As a convenience to the developer, this functionality is
enabled by default. This has certain security implications, however. For
deployment this behavior should either be turned off or protected with a username
and password.

You protect the xyzzy output by specifying a username and password. To disable it
altogether, simply specify a username of “disabled”. How you do this depends on
which webserver you’re using. The following sections detail how you disable or
protect this feature for a number of common webservers.

Note: When xyzzy output is password protected, you access the application
instance display by supplying a URL of the form: http://someHost/cgi-bin/
WebObjects/xyzzy?username+password

C H A P T E R 2

What’s New in the WebObjects Framework

Configuring the Web Server Adaptor 23

Apache with mod_WebObjects.so

To completely disable xyzzy output, add the line

WebObjectsAdminUsername disabled

to the bottom of the apache.conf file. To provide username and password
protection, add the following two lines at the bottom of the apache.conf file:

WebObjectsAdminUsername someName
WebObjectsAdminPassword somePassword

NSAPI Adaptors

To completely disable xyzzy output, add the following to your obj.conf file:

Init fn=WebObjects_init root="C:/Netscape/Suitespot/docs"
config="webobjects://239.128.14.2:1085" username="disabled"

To provide username and password protection, add something like the following
to your obj.conf file (providing your own username and password as appropriate):

Init fn=WebObjects_init root="C:/Netscape/Suitespot/docs"
config="webobjects://239.128.14.2:1085" username="joe" password="secret"

ISAPI Adaptor

To completely disable xyzzy output, add the following registry entry:

\\HKEY_LOCAL_MACHINE\\SOFTWARE\\Apple\\WebObjects\\Configuration\\WOUSERNAME disabled

To provide username and password protection, add registry entries similar to the
following (providing your own username and password as appropriate):

\\HKEY_LOCAL_MACHINE\\SOFTWARE\\Apple\\WebObjects\\Configuration\\WOUSERNAME joe
\\HKEY_LOCAL_MACHINE\\SOFTWARE\\Apple\\WebObjects\\Configuration\\WOPASSWORD secret

WAI

To completely disable xyzzy output, add the following to your obj.conf file:

Init fn="WebObjectsServiceInit" root="C:/Netscape/Suitespot/docs"
config="webobjects://239.128.14.2:1085" username="disabled"

24 Configuring the Web Server Adaptor

C H A P T E R 2

What’s New in the WebObjects Framework

To provide username and password protection, add something similar to the
following to your obj.conf file (provide your own username and password as
appropriate):

Init fn="WebObjectsServiceInit" root="C:/Netscape/Suitespot/docs"
config="webobjects://239.128.14.2:1085" username="joe" password="secret"

CGI

There are two options for disabling or protecting xyzzy output when using CGI.
First, you can uncomment the relevant code (shown below) in main.c and then
recompile the CGI adaptor.

/*
 * SECURITY ALERT
 *
 * To disable xyzzy, uncomment the next line.
 * st_addStatic(options, WOUSERNAME, "disabled");
 *
 * To specify an xyzzy username and password, uncomment the next two lines.
 * st_addStatic(options, WOUSERNAME, "joe");
 * st_addStatic(options, WOPASSWORD, "secret");
 *
 */

Alternatively, if the webserver is configured to pass environment variables, the CGI
adaptor will read them. For example, configure Apache to load the module
mod_env.so by adding or uncommenting the lines in apache.conf.

LoadModule env_module /System/Library/Apache/Modules/mod_env.so
AddModule mod_env.c

You will also need to add the following System directive in apache.conf:

PassEnv WO_XYZZY_USERNAME WO_XYZZY_PASSWORD

To completely disable xyzzy output, you must then create an environment variable
WO_XYZZY_USERNAME and set its value to “disabled”.

To provide username and password protection, create two environment variables,
WO_XYZZY_USERNAME and WO_XYZZY_PASSWORD, and set them to, for example, “joe” and
“secret” respectively.

C H A P T E R 2

What’s New in the WebObjects Framework

Licensing Changes 25

Licensing Changes

From a legal standpoint, the WebObjects 4.5 licensing scheme is not intended to be
any different from 4.0. However, WebObjects 4.5 changes both the registration
mechanism for instances and the way the configuration is picked up by the
webserver adaptors.When the license is correctly enforced, these changes mean
certain usage that was possible (though not strictly conforming to the license) with
WebObjects 4.0 is no longer possible with 4.5.

Unregistered instances appear with an instance ID of -1. This is all that is allowed
with the restricted license. If an app sees a URL with a positive instance ID and the
license is restricted, it will generate a “more than one instance detected” error
message. This error simply means that there’s an instance out there using a positive
instance ID when only -1 is allowed. In this instance, it does not literally mean there
is more than one instance running.

Apps now register via a UDP heartbeat with wotaskd. This fixes a large number of
problems with the way the old monitoring scheme worked, but, if wotaskd knows
about it, any app that registers with the correct name on a given port will be given
the instance ID assigned for that app name and port combination. This can mean
that your app gets a “deployment” instance ID when your license does not actually
allow that. This behavior is different from 4.0, since in 4.0 you either built the .conf
file yourself (and thus could do what you liked), or you allowed the adaptor to pick
up the .conf file from /tmp, in which all instance IDs were set to -1. You can avoid
this problem in WebObjects 4.5 by either picking a different port or removing the
instance from the configuration on that host using Monitor.

WebObjects 4.5 by default performs instance discovery via multicast. On a large
subnet with many machines running WebObjects, instance discovery could
produce a lot of replies. WebObjects 4.5 filters out non-deployment instances that
aren’t running on the same machine as the adaptor, so the only ones you wind up
seeing are those you should be able to talk to, and the possibility of name/port
collision in the adaptor is reduced. This filtering basically means you can’t talk to an
app instance that isn’t “deployed” if the webserver and adaptor are running on a
different machine. To make this work in WebObjects 4.0 you had to create your own
configuration file (by copying the configuration file in /tmp on the other machine)
and use -1 for the instance IDs. In Webobjects 4.5, you should be able to get this old

26 Miscellaneous Changes

C H A P T E R 2

What’s New in the WebObjects Framework

WebObjects 4.0 behavior by using a file URL to specify the adaptor configuration
file. See “Accessing Configuration Information” (page 19) for more information on
specifying an adaptor configuration file.

Miscellaneous Changes

In addition to the numerous major changes listed elsewhere in this document, a
number of smaller changes are important to note:

� Configuration files have moved from $(NEXT_ROOT)/Library/WebObjects/
Configuration to $(NEXT_ROOT)/Local/Library/WebObjects/Configuration. As
with all end-user configurations, /Local is reserved for files which you change.

� The WOMonitorHost user default (and command-line argument) has been
deprecated. WOF always tries to register with the service named wotaskd on
localhost.

� This release supports a WORequiresWOF40Compatibility user default that
re-enables certain behaviors of the 4.0 release. If you’re having problems with an
application you’ve ported from WebObjects 4.0, set the
WORequiresWOF40Compatibility user default to “YES”.

� The WORadioButtonList dynamic element has been deprecated. Use
WORadioButtonMatrix (defined in the WebObjectsExtensions Framework)
instead.

Supplemental Documentation

The following documentation supplements that found in the WebObjects Developer’s
Guide.

C H A P T E R 2

What’s New in the WebObjects Framework

Supplemental Documentation 27

Direct-Connect Mode
For deployment, a web server should be running to receive HTTP requests and to
forward them through the WebObjects adaptor. To simplify the development
process, though, WebObjects applications are capable of receiving HTTP requests
directly. This is the default; invoke WOApplication’s setDirectConnectEnabled
method to disable direct-connect mode.

This feature has several advantages:

� You can debug applications on a machine that doesn’t have a web server
present.

� You don’t have to install project directories under the web server’s document
root in order to test them.

� Running without an HTTP server uses less memory on your development
machine.

� The WebObjects example applications don’t need to be installed under the web
server’s document root (they are installed under Developer/Examples/
WebObjects).

The WOPort command-line option (also settable from Monitor) allows you to specify
the number of the port where the application should listen for requests when
operating without a web server. By default, WOPort is -1, which assigns an arbitrary
high port number to the application. Thus, you aren’t required to specify a port
number when in direct-connect mode. However, it’s generally a good idea to assign
a specific port number.

Note that if you do want to use a web server to test WebObjects examples, you can
still do so. Before you do, perform a “make install” (be sure to set
INSTALLDIR_WEBSERVER in the makefile preamble) to install the example’s web server
resources (such as image files and Java client-side classes) in the web server’s
document root, just as you do when installing a WebObjects application. If you put
your application in a directory other than “WebObjects” under your document root,
set the WOApplicationBaseURL option to the .woa directory’s path relative to the
document root (WOApplicationBaseURL is set to /WebObjects by default). If you don’t
perform these steps, the web server won’t be able to find web server resources;
when you run the application, you’ll see broken images, and client-side classes
won’t be loaded.

See the following section for more on developing with and without a web server.

28 Supplemental Documentation

C H A P T E R 2

What’s New in the WebObjects Framework

Rapid Turnaround Mode
WebObjects is largely an interpreted environment. The HTML templates,
declarations files, and WebScript files each represent interpreted languages. One of
the main benefits of an interpreted environment is that you needn’t recompile every
time you make a change to the project. The ability to test your changes without
rebuilding the project is called “rapid turnaround” and, when using rapid
turnaround capability, you’re said to be in “rapid turnaround mode.”

WebObjects supports rapid turnaround of .html, .wod, and .wos files within
application projects, framework projects, and subprojects of either application or
framework projects.

To support rapid turnaround, WebObjects must be able to locate the resources of
your application and its associated frameworks within your system’s projects rather
than the built products (the .woa or .framework wrappers). To tell WebObjects where
to look for your system’s projects you must define the NSProjectSearchPath user
default. Set this default to an array of paths where your projects may be found.
(Relative paths are taken relative to the executable of your project.) The order of the
entries in the array defines the order in which projects will be located. The default
NSProjectSearchPath is ("../.."), which causes WebObjects to look for any other
applicable projects in the directory where your application’s project resides. For
example, if your application’s executable resides within:

c:\web\docroot\WebObjects\Projects\MyProject\MyProject.woa

then from the executable’s directory, "../.." would point to:

c:\web\docroot\WebObjects\Projects

If you’ve set your project’s “Build In” directory to something other than the default,
"../.." isn’t likely to be appropriate; you should set your NSProjectSearchPath to
point to the directories where you keep your projects while you work on them.

When your application is starting up, pay close attention to those log messages
which indicate that a given project is found and will be used instead of the built
product. Many problems can be solved by understanding how to interpret this
output. If no such log message is seen for a given project, it won’t be possible to use
rapid turnaround for that project.

C H A P T E R 2

What’s New in the WebObjects Framework

Supplemental Documentation 29

Pay close attention when you have several projects with the same name in the same
directory. This often happens when you have several copies of the same project as
backups in your project directory. For example, you might have:

c:\web\docroot\WebObjects\Projects\MyApp
c:\web\docroot\WebObjects\Projects\Copy of MyApp
c:\web\docroot\WebObjects\Projects\MyAppOld

Even though the folders containing the projects have different names, the
PB.project files within them might be identical. WebObjects uses the PROJECTNAME
attribute inside your project’s PB.project file to determine the name of the project,
not the name of the directory for the project. If this happens with in a WebObjects
application, WebObjects checks the path of the project in question against the path
to the executable (after resolving symbolic links). and chooses the project whose
path matches the initial portion of the executable’s path (thus, in the above example
it would choose MyApp). If multiple projects with the same PROJECTNAME attribute
reside within a single directory in a framework project, WebObjects chooses the one
who’s PROJECTNAME matches the prefix of the framework’s project directory.

Rapid Turnaround and Direct-Connect Mode

Direct-connect mode allows you to test your application without involving a web
server. This means that you don’t have to install your web server resources under
the document root of your web server. The result is that rapid turnaround is even
more convenient when in direct-connect mode because you needn’t rebuild to
install web server resources changes to the document root. See “Direct-Connect
Mode” (page 27) for more information on Direct-Connect Mode.

Testing With a Web Server

When you’re working in direct-connect mode, few issues arise with respect to rapid
turnaround. If your application has features which require a web server even for
testing, however, there are a couple of things to know to make rapid turnaround
work for you. Specifically, since you are relying on the web server to locate files
within WebServerResources, you must follow these guidelines:

� Your projects must reside somewhere below your web server’s document root.

� NSProjectSearchPath should point to all projects of interest.

30 Supplemental Documentation

C H A P T E R 2

What’s New in the WebObjects Framework

� For application projects, the WOApplicationBaseURL user default should specify
the directory containing the application project. For example, if your
application’s project folder is:

c:\web\docroot\WebObjects\MyApp

then the WOApplicationBaseURL user default must be "/WebObjects".

� For framework projects, the WOFrameworksBaseURL user default should specify the
directory containing all framework projects used by the application. For
example, if your application uses MyFramework.framework and that project resides
in:

c:\web\docroot\WebObjects\Frameworks\MyFramework

then the WOFrameworksBaseURL user default must be "/WebObjects/Frameworks".

Conveniently, the two examples above use the default locations for
WOApplicationBaseURL and WOFrameworksBaseURL; if your projects reside in these
default locations, you need only set NSProjectSearchPath.

Also, while it is possible to point WOApplicationBaseURL and WOFrameworksBaseURL to
other locations, it is not suggested that WOFrameworksBaseURL be moved since all
WebObjects applications use WOExtensions.framework, which resides in the default
location. If you set WOFrameworksBaseURL to point elsewhere, one side effect will be
that the images in the “Raised Exception” panel will not render.

New Classes 31

C H A P T E R 3

3 WebObjects Framework API
Changes

This chapter details those changes in the API of the WebObjects Framework, listing
new classes and methods and identifying API that has been deprecated since the
previous release.

This chapter is organized into the following sections:

� “New Classes” (page 31)

� “New Methods” (page 35)

� “Deprecated API” (page 40)

� “WOExtensions Changes” (page 41)

New Classes

This release of WebObjects adds two new classes to the WebObjects Framework,
WOEvent and WOMessage.

WOEvent
WOEvent is a subclass of EOEvent (defined in the EOControl framework) that
serves as the parent class for objects that gather information—such as duration—
about various operations in WebObjects. You can see the results of this information
gathering in your web browser by accessing a special “event display” page, and you
can configure how the results are displayed by accessing a special “event setup”
page.

32 New Classes

C H A P T E R 3

WebObjects Framework API Changes

WOEvent adds knowledge of pages and components to the EOEvent class. Events
that are subclasses of WOEvent can be grouped or aggregated by page or by
component. Although you can subclass WOEvent, in most cases the private
subclasses included in the framework will be adequate for analyzing WebObjects
applications.

WOMessage
WOMessage is the parent class for both WORequest and WOResponse, and
implements much of the behavior that is generic to both. WOMessage represents a
message with an HTTP header and either HTML or XML content. HTML content is
typically used when interacting with a Web browser, while XML content can be
used in messages that originate from or are destined for another application (either
an application that “speaks” XML or another WebObjects application).

The methods of the WOMessage class can be divided primarily into two groups,
those that deal with a message’s content and those that read and set header
information. Most of the remaining WOMessage methods control how the content
is encoded and allow you to attach arbitrary “user info” to your WOMessage objects
in order to pass information about a given message to other objects within your
application.

Messages with XML Content

The Java version of the WOMessage class contains three methods that allow you to
construct and interpret messages whose content is formatted as XML (these
methods aren’t available to Objective-C programmers).

The arguments to these methods are XML documents (or, in the case of
appendContentDOMDocumentFragment, a document fragment) as defined by the
Document Object Model (DOM). Installed as a part of WebObjects is the
com.ibm.xml.dom package (IBM’s alphaWorks), which contains various XML parsers
for Java written by IBM. The included DOM parser is used to generate document
and document fragment objects from XML data (or to manipulate and/or generate
XML data from a document object). For more information on the Document Object
Model, see the online documentation at http://www.w3.org/DOM/.

http://www.w3.org/DOM/

C H A P T E R 3

WebObjects Framework API Changes

New Classes 33

Changes to WORequest

The following methods are no longer declared in WORequest but are instead
inherited from WORequest’s new parent class, WOMessage:

content

headerForKey: (headerForKey in Java)
headerKeys

headersForKey: (headersForKey in Java)
httpVersion

userInfo

Changes to WOResponse

The following methods are no longer declared in WOResponse but are instead
inherited from WOResponse’s new parent class, WOMessage:

defaultEncoding (static/class method)
setDefaultEncoding: (setDefaultEncoding in Java; static/class method)
addCookie: (addCookie in Java)
appendContentCharacter: (appendContentCharacter in Java)
appendContentData: (appendContentData in Java)
appendContentString: (appendContentString in Java)
content

contentEncoding

cookies

headerForKey: (headerForKey in Java)
headerKeys

headersForKey: (headersForKey in Java)
httpVersion

removeCookie: (removeCookie in Java)
setContentEncoding: (setContentEncoding in Java)
setContent: (setContent in Java)
setHTTPVersion: (setHTTPVersion in Java)
setHeader:ForKey: (setHeader in Java)

34 New Classes

C H A P T E R 3

WebObjects Framework API Changes

WOHTTPConnection
The new WOHTTPConnection class is intended to be used as a client for HTTP
communications. It gives you direct access to the HTTP contents and headers.
WOHTTPConnection’s sendRequest: method allows you to send a WORequest
object directly to a server, while readResponse allows you to receive WOResponse
objects from that same server.

XML Package
WebObjects 4.5 includes a new XML package, com.apple.webobjects.xml, which
consists of the following:

WOXMLCoding interface
WOXMLCoder class
WOXMLDecoder class

Use this package to encode and decode objects as XML. The WOXMLCoder and
WOXMLDecoder classes can be used to archive and unarchive object data, or to
parse and/or generate XML obtained from or destined for an external source (such
as the World Wide Web). When working with such “foreign” XML, you describe the
XML elements and properties and their mapping to objects in an XML-format
“mapping model” that you can create with either a text editor or an XML editor.

For complete details on the XML framework and its use, see the reference
documentation in the WOInfoCenter. For examples, see the XML Archiving
andRelatedLinks examples (accessible through the WebObjects Info Center under
Examples > WebObjects > Java).

C H A P T E R 3

WebObjects Framework API Changes

New Methods 35

New Methods

In addition to the new event classes (see the discussion of WOEvent/EOEvent
elsewhere in this document), the following methods have been added to the classes
that make up the WebObjects Framework.

Table 3-1 WOApplication

Method Description

createContextForRequest:
(Objective-C)
createContextForRequest (Java)

Creates a new context object for a given
request. Override this method if you need to
provide your own subclass of WOContext. If
you override it, you need not call super in
your overriding method.

defaultRequestHandlerClassName The default implementation of this method
returns ”WOComponentRequestHandler”,
which is the default request handler. If you
don’t want a session created for your
application’s home page, override this
method to return
”WODirectActionRequestHandler”, making
the direct action request handler the default.

sharedEditingContext This is a convenience method that returns
the default shared editing context.

traceAll: (Objective-C only; in Java,
this method is still named “trace”)

Old “trace” method.

36 New Methods

C H A P T E R 3

WebObjects Framework API Changes

Table 3-2 WOAssociation

Method Description

isValueConstantInComponent:
(Objective-C)
isValueConstantInComponent (Java)

Returns true when the association is
“constant.” Use this for checking bindings at
runtime.

isValueSettableInComponent:
(Objective-C)
isValueSettableInComponent (Java)

Returns false when the association is
“constant.” Use this for checking bindings at
runtime.

Table 3-3 WOComponent

Method Description

canGetValueForBinding:
(Objective-C)
canGetValueForBinding (Java)

Verifies that the binding exists and that
valueForBinding will return a value.

canSetValueForBinding:
(Objective-C)
canSetValueForBinding (Java)

Verifies that the binding exists and that
setValueForBinding will succeed.

C H A P T E R 3

WebObjects Framework API Changes

New Methods 37

isEventLoggingEnabled Called to determine if a component wants
event logging. This is not desirable, for
example, for components which are
associated with event display as they would
interfere with the actual event logging. The
default implementation of this method
returns true.

isStateless By default, this method returns false,
indicating that state will be maintained for
instances of the receiver. Overriding this
method to return true will make the
component stateless. A single instance of
each stateless component is shared between
multiple sessions, reducing your
application’s memory footprint.

reset This method—which is only invoked if the
component is stateless—allows a component
instance to reset or delete temporary
references to objects that are specific to a
given context.

Table 3-4 WODisplayGroup

Method Description

globalDefaultForValidatesChangesIm
mediately

This static/class method returns the class
default controlling whether changes are
immediately validated.

globalDefaultStringMatchFormat This static/class method returns the default
string match format for the class.

globalDefaultStringMatchOperator This static/class method returns the default
string match operator for the class.

Table 3-3 WOComponent (continued)

Method Description

38 New Methods

C H A P T E R 3

WebObjects Framework API Changes

Other WODisplayGroup Changes
In the past, EODisplayGroup and WODisplayGroup replaced all instances of "=" in
queries involving string attributes with the defaultStringMatchOperator. This is
caseInsensitiveLike, although it can be changed by a variety of instance or class
methods on display group. Additionally, these string based queries had the
wildcard character appended to them by means of the defaultStringMatchFormat
which is initially @"%@*".

These transformations took place even if the EOQualifierOperatorEqual is explicitly
set in the display group's queryOperator dictionary.

insertObjectAtIndex (New in Java
only; the Objective-C version of this
method previously existed)

Inserts the supplied object into the receiver’s
EODataSource and displayed objects at the
specified index, if possible.

setGlobalDefaultForValidates
ChangesImmediately: (Objective-C)
setGlobalDefaultForValidates
ChangesImmediately (Java)

This static/class method sets the class
default controlling whether changes are
immediately validated.

setGlobalDefaultStringMatch
Format: (Objective-C)
setGlobalDefaultStringMatch
Format (Java)

This static/class method sets the default
string match format for the class.

setGlobalDefaultStringMatch
Operator: (Objective-C)
setGlobalDefaultStringMatch
Operator (Java)

This static/class method sets the default
string match operator for the class.

stringQualifierOperators Returns an array containing all of the
relational operators supported by
EOControl’s EOQualifier that work
exclusively on strings: “starts with”,
“contains”, “ends with”, “is”, and “like”.

Table 3-4 WODisplayGroup (continued)

Method Description

C H A P T E R 3

WebObjects Framework API Changes

New Methods 39

As of version 4.5, a display group won’t alter “=” if it is explicitly set. It will provide
the old behavior only if the query operator is not set. Therefore,
EOQualifierOperatorEqual will no longer provide any pattern matching
functionality and will generate "=" instead of "like" in the SQL.

You can get the old behavior if you set the WORequiresWOF40Compatibility default.
Alternatively, you can replace the "=" in the appropriate entry of the queryOperator
dictionary with the empty string or with "starts with" (both provide the default
behavior).

Additionally, display group provides a new instance method, stringOperators,
which returns an array of string comparison operators including "starts with",
"ends with", "contains", "is", and "like". "starts with", "ends with", and
"contains" all use the defaultStringMatchOperator and the match formats @"%@*",
@"*%@", and @"*%@*" respectively. The defaultStringMatchOperator is still
caseInsensitiveLike. "is" and "like" map exactly to the “=” and
caseInsensitiveLike operators.

The pre-v4.5 behavior was precisely "starts with".

These string operators are only supported by display group, not EOQualifier, nor
any other part of EOF in this release.

40 Deprecated API

C H A P T E R 3

WebObjects Framework API Changes

Deprecated API

Table 3-5 WOApplication

Deprecated API New API or Workaround

logToMonitorWithFormat:
(Objective-C)
logToMonitorString (Java)

New features in Monitor will allow logging
of information. The deprecated API does
nothing.

monitorHost (The Java version of this
method has not yet been deprecated)

New monitor features eliminate the need for
this method.

setMonitorHost: (The Java version of
this method has not yet been
deprecated)

New monitor features eliminate the need for
this method.

trace: (Deprecated in Objective-C
only; in Java, this method remains
as-is)

traceAll:

Table 3-6 WOResponse

Deprecated API New API or Workaround

appendContentBytes: (Objective-C
only; this method never existed in
the Java version of WOResponse)

Deprecated. Use appendContentData:, which
is inherited from WOMessage.

C H A P T E R 3

WebObjects Framework API Changes

WOExtensions Changes 41

WOExtensions Changes

The WebObjects Extensions framework has changed in the following ways:

� Documentation for the components is now provided

� 12 reusable components have been added

� 11 reusable components have been made stateless

� WOTableString has been deprecated

WOExtensions Reference Documentation
A new document titled WebObjects Extensions Component Specifications has been
added to cover the reusable components in the WebObjects Extensions framework.
You can access this document from the WebObjects Info Center.

New Components
The following reusable components are new:

JSAlertPanel
JSConfirmPanel
JSImageFlyover
JSModalWindow
JSTextFlyover
JSValidatedField
WOCheckboxMatrix
WOEventDisplayPage
WOEventSetupPage
WOKeyValueConditional
WORadioButtonMatrix
WOTabPanel

42 WOExtensions Changes

C H A P T E R 3

WebObjects Framework API Changes

See the WebObjects Extensions Component Specifications for more information
about these components.

Stateless Components
Making a reusable component stateless significantly improves the performance of
the component. To this end, the following WebObjects Extension components are
now stateless:

WOAnyField
WOBatchNavigationBar
WODictionaryRepetition
WOSimpleArrayDisplay
WOSimpleArrayDisplay2
WOSortOrder
WOSortOrderManyKey
WOTable
WOThresholdColoredNumber
WOToManyRelationship
WOToOneRelationship

The conversion has not changed their function.

Deprecated Elements
WOTableString is now deprecated. This component was used to improve the
appearance of table cells containing empty strings. The HTML specification
designates that the borders for table cells should only appear when the cell has
content; which causes table cells containing empty WOStrings appear without their
borders. The WOTableString reusable component was provided as a workaround
that rendered as a non-breaking space when its value was empty, preserving the
borders.

Instead of using the WOTableString reusable component, use the WOString
dynamic element with the valueWhenEmpty attribute bound to " ".

Project Builder Changes 43

C H A P T E R 4

4 WebObjects Tools Changes

This chapter describes changes to the WebObjects tools between release 4.0.1 and
4.5. It describes changes to existing features and new features that you might want
to start using. The WebObjects tools include the Project Builder application, the
WebObjects Builder application, and the Direct to Web framework.

Project Builder Changes

Project Builder has received changes in this release in the areas of
NSProjectSearchPath support, indentation, and the Build, Launch, and Find panels.

Project Builder now includes a Searchpath preferences panel to specify the project’s
NSProjectSearchPath user default. If your project uses framework projects that
reside in a directory in the NSProjectSearchPath, you can access the source files for
the frameworks through the Frameworks suitcase. Using the Build Options panel
in the Build panel, you can specify whether to build the frameworks when you
build the project. In the Find panel you can specify whether to search the project and
frameworks or just the project.

Project Builder’s automatic indentation has been upgraded. You can control its
behavior with the Indentation preferences panel.

Project Builder’s Build, Launch (with debugger) and Find panels now have an extra
pane where you can edit code. You no longer need to switch between the main
Project Builder window and the Build panel when you are editing compile errors.
Likewise, you can search for text within the project and edit it without leaving the
Find panel.

44 WebObjects Builder Changes

C H A P T E R 4

WebObjects Tools Changes

Project Builder is documented in WebObjects Tools and Techniques.

WebObjects Builder Changes

WebObjects Builder’s user interface has received major changes for 4.5, specifically
in the main window toolbar, the user interface for binding keys, and the table
editing user interface. A path view, an API editor, and component validation have
been added. WebObjects Builder is documented in WebObjects Tools and Techniques.

Main Window Changes
The editing modes from WebObjects 4.0.1 have been renamed. Graphical Editing
Mode is now called the layout view. Source Editing Mode is now called the source
view. A new view called the preview view has been added.

Layout View Changes

The toolbars have been reorganized. All tools are now available in a single click.
You don't have to choose a toolbar. The WOComponentContent dynamic element
is now available from the toolbar. In addition, the toolbar also contains an alert icon,
which opens a window displaying the validation errors on the page and a puzzle
piece icon, which opens the API editor. The API editor is described below.

WebObjects Builder now optionally displays HTML tags with opening and closing
tag icons, which makes the HTML structure of the page more transparent. You can
choose which tags are marked this way with the Layout preferences panel.

In the center of the window is a path view, which replaces the path view in the
inspector and provides extra functionality. The path view displays the elements in
the path as HTML tags rather than icons.

The object browser has column headings. Each heading displays the class of the
object selected in the previous column. This class also contains the keys in the
column.

C H A P T E R 4

WebObjects Tools Changes

WebObjects Builder Changes 45

Double clicking an element’s icon no longer collapses the element. Use the preview
view instead (described below).

Preview View

A new preview view, similar to the layout view, displays the page so it matches
what the user sees in the browser as closely as possible. WebObjects Builder renders
elements (for example, WORepetitions) in their collapsed form and hides comments
and HTML tags.

Source View

Syntax coloring is new for WebObjects 4.5. By default, WebObjects Builder displays
unmatched tags in red, markers in purple, comments in grey, and WebObjects in
blue. You can change the colors using the preferences panel.

You can match a tag in the source view by triple-clicking on it. For example, if you
want to select a tag, the closing tag, and everything in
between, triple click on <FONT, >, or . You can also drag the mouse after you
have triple-clicked, which expands the selection by whole containers.

Changes to the Binding Process
The process of binding is more flexible, streamlined, and intuitive in this version of
WebObjects Builder.

Inspector Appearance

The inspector now has a horizontal aspect, which is more convenient to tile with the
main window than before.

Documentation

Documentation for static dynamic elements is now available from the inspector by
clicking the book icon. The documentation appears in the WOInfoCenter.

46 WebObjects Builder Changes

C H A P T E R 4

WebObjects Tools Changes

Binding by Dragging

Binding by dragging from a variable to an element is now different. Instead of
opening the inspector when you release the mouse button, WebObjects Builder now
opens a menu with the element's attributes. You can click one of these attributes or
click “Connect to new binding...” which adds a new binding.

Binding With the Element’s Context Menu

You can bind a variable to an element's attribute by selecting the key in the object
browser and Control-clicking (right-click in Windows NT) an element in the upper
pane of the main window. A menu appears containing a submenu with the
element's attributes. Click one of the attributes to connect it to the selected key. You
can also create a new binding by clicking “Connect to a new binding...”

Binding Validation

WebObjects Builder checks for required bindings that are missing and mutually
exclusive bindings that are specified. Invalid bindings display in red in the
inspector. By clicking the alert icon in the inspector, you can access a description of
the missing bindings.

Adding and Deleting Bindings with the Inspector

A pull-down list in the top right corner of the inspector allows you add and delete
bindings. You can also add a binding by selecting the inspector and pressing Enter.
You can delete a binding by selecting the binding and pressing the delete key.

Binding Aids in the Inspector

Creating bindings for date formats, number formats, booleans, image file names,
framework names, page names, direct actions, and direct action classes is now
easier. When WebObjects Builder can determine a set of possible values for an
attribute, it displays a combo box for the attribute that allows you to choose one of
these values. For example, boolean attributes have a combo box which allows you
to choose YES or NO.

C H A P T E R 4

WebObjects Tools Changes

WebObjects Builder Changes 47

Binding Name Completion

When you inspect an element, double-click in the binding column, and start typing
a key, WebObjects completes the name for you based on the keys in the object
browser. For example, to bind to “application.allGuests.count,” you simply type
“a.a.c” and the inspector fills in the rest. The object browser also selects the key as
you type it.

Working with Keys
The keys pull-down list at the bottom left corner of the main window manipulates
keys in the component's script file only. It does not affect keys in the application or
session files. You can add keys to the application (or session) with the application's
context menu by selecting application (or session) and Control-clicking
(right-clicking in Windows NT) in the next column of the object browser.

You can now rename and delete keys in the component’s script file using the keys
pull-down list. To delete or rename a application or session key, Control-click
(right-click in Windows NT) on the key and choose Delete key or Rename key from
the pop-up menu.

Changes to Keyboard Actions
The tables below show the changes to the keys you need to press to perform certain
WebObjects Builder functions.

Table 4-1 Layout View Keyboard Actions

Pre-WebObjects 4.5 WebObjects 4.5

Insert Paragraph (<P>) Shift-Enter Enter

Insert Line Break (
) Enter Shift-Enter

Delete Text Backspace, Delete, or Del unchanged

Delete Structures Backspace, Delete, or Del Shift-Backspace,
Shift-Delete, or
Shift-Del

Add New List Item Shift-Enter Enter

48 WebObjects Builder Changes

C H A P T E R 4

WebObjects Tools Changes

Working with Tables
Creating and editing tables is substantially changed and more intuitive in this
version of WebObjects Builder.

Creating Tables

To create a table, click the table icon in the toolbar. You can set the dimensions, size,
layout, and other parameters for your table in the panel that appears. Press OK to
insert the table.

Making Selections

In previous versions of WebObjects Builder, the inspector had a path view. In this
version, the path view is in the main window. Thus, selecting the entire table or a
single row is done differently in this version. If you select a table cell, you can
inspect the row (by clicking <TR> in the path view) or the table itself (by clicking
<TABLE> in the path view).

You can select multiple cells by

� clicking in a cell and dragging across the cells

� selecting a cell and shift clicking in another cell

� command (control in NT) clicking each cell.

The first two selection methods ensure that the selected cells form a contiguous
region.

Note: selecting all of the cells in a row or table is not the same as selecting the row
or table!

Editing Tables

The structure/content table editing modes have been eliminated. Click in a cell to
edit its contents. The table data and table row inspectors now have buttons to edit
the table's structure.

C H A P T E R 4

WebObjects Tools Changes

WebObjects Builder Changes 49

Working with Fonts
In HTML, the FACE attribute for the FONT tag specifies a comma separated list of
font names in order of preference. The browser searches for an installed font with a
corresponding name in the list. WebObjects Builder provides a font panel which
manipulates these lists. This font panel is available from the font pull-down list in
the toolbar.

To delete a font list, select it in the font panel and press the delete key.

Path View Menu
Control-clicking (right-clicking on Windows NT) an element in the path view
brings up a menu from which you can

� inspect the element

� make the element a static element (if it is a dynamic element)

� make the element a dynamic element (if it is a static element)

� delete the element and its contents

� delete the element's contents only

� delete the element without deleting its contents (unwrapping the element)

� isolate the selection (wrap the selected content in the parent element separately
from the unselected content.)

� make many kinds of selections.

Context Menus
The path view menu is one example of context menus. These menus appear when
you control-click (right-click on Windows NT) on elements or keys in the
WebObjects Builder window. The following parts of the user interface have context
menus:

� elements in the upper pane of the layout and preview views

� elements in the path view

� keys in the object browser

50 WebObjects Builder Changes

C H A P T E R 4

WebObjects Tools Changes

� the empty space in the columns of the object browser

� the empty space in the upper pane of the layout and preview views

� the table views, including the Attribute/Binding table in the inspector, and the
Bindings and Messages tables in the API editor.

API Editor
A graphical API editor is now accessible by clicking the puzzle piece icon on the
toolbar. It allows you to define the attributes and binding rules for a reusable
component. The editor has three panels, one for creating bindings and setting
attributes on them, one for creating validation rules, and one for associating an icon
and documentation file with the component.

The Bindings tab allows you set up the attributes of your reusable component.
WebObjects Builder displays these attributes in the inspector in WebObjects
Builder. You can also tell WebObjects Builder which attributes must be bound,
which attributes must be bound to a key that can be set, and the kind of values each
attribute takes (such as page names, MIME types, or frameworks).

The Validation tab allows you to set up validation rules for the component. These
rules specify which attributes must be bound together and which cannot be bound
together. The “required” and “will set” checkboxes on the first tab are really
shortcuts for setting up validation rules; the generated rules appear on the
Validation tab when you check those checkboxes for your attributes. You can also
set up more complex rules on the Validation tab. For example, you can specify that
a set of attributes all control the same basic property of a component and only one
of them may be bound at a time.

The Display tab allows you to choose an image that WebObjects Builder uses to
display the reusable component in a document. You can also specify an HTML
documentation file for the reusable component with the Display tab. WebObjects
Builder displays this file in the WOInfoCenter when the user clicks the book icon in
the component’s inspector.

C H A P T E R 4

WebObjects Tools Changes

WebObjects Builder Changes 51

Syntactic and Semantic Constraints
WebObjects Builder optionally enforces constraints defined by the HTML 3.2
specification published by the World Wide Web Consortium (W3C). The W3C
maintains the standards governing the World Wide Web. Their website is at
http://www.w3.org.

While mainstream browsers tolerate many HTML errors, WebObjects Builder’s
Layout view does not allow you to introduce semantic errors (although the Source
view allows you to create and edit any HTML). If your document already has
HTML errors, you can still edit it with the Layout view depending on the settings
in your Validation preferences panel. This panel allows you to specify what
WebObjects Builder does when it encounters semantic or syntactic errors when it
tries to display the document in the Layout view.

Semantic errors occur when an HTML tag cannot be a child of another tag. For
example, according to the HTML 3.2 specification, cannot have <H1> as a child
because is a text-level tag, while <H1> is a block-level tag. Close tags without
corresponding open tags and open tags without corresponding close tags are also
semantic errors.

Syntactic errors occur when your HTML is malformed, for example, <//B> or <B.

Depending on the settings in the Validation preferences panel, WebObjects Builder
automatically repairs each error it encounters, ignores it, or asks you what to do
with it. Note that there are some errors for which WebObjects Builder cannot
accommodate the settings you have chosen. For example, a document with two
<BODY> tags can neither be repaired nor ignored.

If you choose to repair errors, WebObjects Builder adds missing close tags, and
removes extra or malformed tags. When one tag is not allowed as a child of another,
WebObjects Builder introduces an intermediate element between the two
incompatible elements or adds a close tag for the parent element depending on the
context. These repairs can be complicated and intrusive, so you should not routinely
allow WebObjects Builder to repair all errors.

If you choose to ignore errors, WebObjects Builder does not modify your document.
To see the errors in your document from the Layout view, bring up the validation
panel.

52 WebObjects Builder Changes

C H A P T E R 4

WebObjects Tools Changes

If you choose to have the Builder ask about errors, it stops at every error it
encounters as it tries to display your document in the Layout view and asks you
whether you want to repair the error, ignore it, or stop and display the document in
the source view. Note that if you repair some errors and then stop on one, the errors
that you repaired revert to their original (incorrect) state; WebObjects Builder does
not modify the document unless every error is either repaired or ignored.

One common semantic violation seen in WebObjects HTML templates is
improperly nesting tags within a WOConditional. For example:

<WEBOBJECT NAME=Conditional1>

</WEBOBJECT>
This text is conditionally displayed in boldface.
<WEBOBJECT NAME=Conditional1>

</WEBOBJECT>

The corresponding entry in the bindings file is:

Conditional1: WOConditional {
condition = myCondition;

}

Not only is this a semantic violation, it is also bad coding practice. It is much better
to use a WOGenericContainer in such cases:

<WEBOBJECT NAME=Generic1>
This text is conditionally displayed in boldface.

</WEBOBJECT>

The corresponding entry in the bindings file is:

Generic1 : WOGenericContainer {
elementName = “B”;
omitTags = myNegatedCondition;

}

Note that you have to negate the original condition.

C H A P T E R 4

WebObjects Tools Changes

Direct to Web Changes 53

How WebObjects Builder Handles Bindings Files
WebObjects Builder now respects bindings (.wod) files that have been edited by
hand. Specifically, if you edit the bindings file of your component with a text editor,
open the component in WebObjects Builder, and save it, WebObjects Builder

� preserves the whitespace and comments around entries in the bindings file

� retains the order of the entries (depending on the settings in the .wod preferences
panel)

� allows a single entry to be used multiple times in the HTML template file

This behavior of WebObjects Builder eases the transition from hand-editing
components with a text editor to using WebObjects Builder.

Direct to Web Changes

Direct to Web has received two major changes: exposed API and support for
creating your own visual style. There are many additional changes as well. This
version of Direct to Web is not completely compatible with the 4.0 release. You need
to run conversion scripts on your project’s source files, Main.wod file, and rule
(.d2wmodel) files. See “Converting Projects From Earlier Releases” (page 56).

API and Components Exposed
One of the major goals of the 4.5 release is to make more of Direct to Web available
to developers. The API and components have been reviewed and streamlined and
are now ready for public use. In addition, two books have been added to the
documentation about Direct to Web.

Developing WebObjects Applications With Direct to Web discusses the Direct to Web
architecture and how to customize your Direct to Web application.

The Direct to Web Reference covers the classes and reusable components in the Direct
to Web Framework.

You can access these documents from the WOInfoCenter.

54 Direct to Web Changes

C H A P T E R 4

WebObjects Tools Changes

Modifying the Visual Style
It is now possible to create your own Direct to Web-style dynamic template. When
generating a 'task' page (for example, the List Page for all entities) Direct To Web
generates a page that is not specific to a particular entity (unlike freezing a page).
Instead, the page retains its dynamic capabilities and reacts to the entities it
encounters at runtime. You can also access and modify its template, binding, and
Java source files. By creating a set of these for all the common tasks (query, list, edit,
etc.) you can create your own look.

Note that you can still freeze a Direct to Web page for a particular task and entity as
you could in previous releases.

Modifying the D2W Menu
The Navigation tool of Direct to Web is now part of your project when you create it.
This allows you to tailor its look and functionality.

Neutral Look
A new look, called the Neutral look, is now available when you create a Direct to
Web project. It is ideal for adding your own logo because it contains no Apple or
WebObjects logos.

Custom Components
It is now possible to embed regular WebObjects components in a Direct to Web
page. Two components, D2WCustomComponent and
D2WQueryCustomComponent, have been added for this purpose.

From the Web Assistant, you can configure Direct to Web to use your component
for a particular task and property. See Developing WebObjects Applications with Direct
to Web for more information.

C H A P T E R 4

WebObjects Tools Changes

Direct to Web Changes 55

Named Configurations
Once you have configured a given page (for example, List page for Movies) you can
save those settings under a name (for example, ListRentedMovies) and use this
configuration from your code (either by API or as an embedded component). This
lets you have several pages for the same task/entity pair which display different
sets of properties. For example, the Rental Store example uses different List Pages
for Movies depending whether you are a customer or a clerk, and whether you are
renting a movie or just browsing.

Tab Panel Page
A tab panel inspect and edit page has been introduced in the WebObjects and
Neutral looks, which lets you group property keys in different tabs. This page is not
available in the Basic look.

Better Support for Key Paths in the Web Assistant
The Web Assistant now sports a key-path browser which lets you add a property
based on a key path to any D2W page.

Web Assistant Support for EOProject Parser
The Web Assistant now uses EOProject to parse your source code (much like
WebObjects builder does) and display custom keys available on your Enterprise
Objects in its key-path browser.

Confirmation Page
A new confirmation page has been introduced. The list page uses it before deleting
an object. It can be frozen like any other D2W page.

Deployment Performance
The caching mechanism for D2W dynamic components has been rewritten resulting
in a twofold to fivefold deployment performance improvement.

56 Direct to Web Changes

C H A P T E R 4

WebObjects Tools Changes

Converting Projects From Earlier Releases
Since the D2W components are now public, the Java source files, the Main.wod file,
and the rule files have changed in this release. Two scripts are provided to ease the
conversion process.

The first script, located in $(NEXT_ROOT)/Developer/Java/Conversion/WebObjects/
D2W4_5codechanges.tops, modifies the code to conform to Direct to Web’s API
changes (see API Changes). You need to execute it on

� all code generated by releases of Direct to Web earlier than 4.5

� the project’s Main.wod file

A ReadMe file in the script’s directory explains how to execute the script.

The second script, located in $(NEXT_ROOT)/Developer/Java/Conversion/
WebObjects/D2W4_5modelchanges.tops, modifies the rule files to use renamed
property-level components. You need to execute it on all files in your project ending
in .d2wmodel. See the ReadMe file in the script’s directory to see how to execute the
script.

API Changes
The NextPageCallback interface has been renamed to NextPageDelegate. This
change affects any code that uses this interface including code generated when you
freeze a component with WebObjects 4.0. The following methods are changed.

Table 4-2 ConfirmPageInterface

Removed API Replacement API

setConfirmCallback setConfirmDelegate

setCancelCallback setCancelDelegate

C H A P T E R 4

WebObjects Tools Changes

Direct to Web Changes 57

References to the Live Assistant have been changed to Web Assistant.
Consequently, the following methods are deprecated.

Table 4-3 EditPageInterface, EditRelationshipPageInterface, InspecPageInteface,
ListPageInterface, and QueryPageInterface

Removed API Replacement API

setNextPageCallback setNextPageDelegate

Table 4-4 SelectPageInterface

Removed API Replacement API

nextPageCallback nextPageDelegate

setNextPageCallback setNextPageDelegate

Table 4-5 D2W

Deprecated API New API or Workaround

isLiveAssistantEnabled isWebAssistantEnabled

setLiveAssistantEnabled setWebAssistantEnabled

Table 4-6 D2WComponent

Deprecated API New API or Workaround

isLiveAssistantEnabled isWebAssistantEnabled

Schema Synchronization 59

C H A P T E R 5

5 What’s New in Enterprise Objects
Framework

This chapter describes changes made to the Enterprise Objects Framework (EOF)
between release 3.0 and 4.5. It describes changes made to existing features and
describes new features you may want to start using in your applications.

Schema Synchronization

In EOF 4.5, EOModeler supports synchronization of a database schema with the
current state of a model.

To initiate the process of synchronizing a model and schema, select “Synchronize
Schema” from the Model menu. Note that before synchronizing, you need to save
your model. Because the operation cannot be undone, the “Synchronize Schema”
menu item is only enabled when the model has no unsaved changes.

After starting the synchroniztion process, EOModeler reverse engineers the
database’s schema and assembles the adaptor operations necessary to synchronize
it with the model. These operations are presented to the user for confirmation before
execution.

Note: To synchronize the version numbers of WebObjects and EOF, the version
number of EOF was increased from 3.0 in the last release to 4.5 in this release.

Note: The Informix and ODBC adaptors do not provide schema synchronization
support.

60 Event Logging

C H A P T E R 5

What’s New in Enterprise Objects Framework

For example, if you add simple attributes (attributes representing database
columns) to an entity, schema synchronization adds the columns to the underlying
table. Similarly new columns or tables created in the database can be selected for
incorporation into the model. External type changes for attributes and the renaming
of columns and tables are also supported.

Related API Changes
EOModeler makes use of the schema synchronization API to synchronize your
database with your model. You don’t need to use the API yourself unless you’re
implementing the API for a custom adaptor.

If you do need to use or implement this API (very unlikely), see the related
documentation in the following class and interface/protocol specifications:

� EOAdaptor

� EOAdaptorChannel

� EOAdaptorChannel Delegate

� EOSQLExpression

Event Logging

WebObjects 4.5 introduces event logging. The goal for this feature is to allow the
measurement of how long certain operations in EOF and WebObjects take.
Measurements allow you to profile an application and optimize its execution time.
For this, the EOF and WebObjects frameworks instrument key portions of their code
to measure the elapsed time of functions and methods.

To support this feature, EOF adds two new classes: EOEvent and EOEventCenter.
An EOEvent keeps information (such as duration) about a logged event, and
EOEventCenter manages the events. EOEvent is an abstract class whose subclasses

Note: The event logging feature, related classes, and related API are not available
in the com.apple.client packages. Therefore, you can’t time the client side of a
Java Client application.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Event Logging 61

are responsible for defining the events they track. For example, there are (private)
subclasses for Sybase adaptor events, editing context events, WOApplication
events, and so on.

To enable event logging in an application, simply open the WOEventSetup page as
described in “WOEventSetup page” (page 61) and enable logging for the event
classes you want to see.

In addition to the framework support, the WOExtensions framework provides
components for using the feature. WOEventSetup is a page you use to configure
event logging, and WOEventDisplay is a page the displays event information. Both
pages can be accessed in any WebObjects 4.5 application with a direct action, as
described in the following sections.

WOEventSetup page
 The page used to set up the logging properties is accessed through a direct action
named “WOEventSetup”. So for example, you can access the WOEventSetup page
for an application named “MyApp” with a URL such as the following:

http://myhost:aPort/cgi-bin/WebObjects/MyApp.woa/wa/WOEventSetup

On the WOEventSetup page, you can see all families of events that are registered for
the application. Since the event classes are registered dynamically as the program
executes, it is a good idea to “warm up” an application before accessing
WOEventSetup.

The page lists the registered event classes, their subcategories, and a description of
the kinds of events that can be logged. For instance, the EOEditingContext event
class logs events for the saveChanges and objectsWithFetchSpecification: methods.
Logging for each class can be enabled and disabled with the corresponding check
box; it isn’t possible to disable individual subcategories of an event class.

WOEventDisplay page
The page that displays collected events, WOEventDisplay, is also accessed through
a direct action. For example, you can access the WOEventSetup page for an
application named “MyApp” with a URL such as the following:

http://myhost:aPort/cgi-bin/WebObjects/MyApp.woa/wa/WOEventDisplay

62 Event Logging

C H A P T E R 5

What’s New in Enterprise Objects Framework

On this page, you can view events in four different ways:

� Raw root events. This view, the most verbose, displays all events at the root
level (events without an encompassing event). WOEventDisplay shows each
event individually, which means that its possible for an event to appear multiple
times if the thread of execution crosses its point more than once.

� Aggregated root events. This view is similar to the raw root event view, except
that multiple identical events are aggregated or grouped in a single entry, and
their combined time is displayed. In addition, the “Calls” column shows how
many times an event was executed (in other words, how many events
contributed to the displayed aggregate event).

� Events grouped by page and component. In this view, the first level of display
shows only page names. By expanding a page, you get a list of components in
that page. Expanding a component shows all the events within that component.
This means that even events which were collected “deep” within a component
are shown immediately below the component name. All identical events are
aggregated as in the aggregated root event view for easier reading. It’s possible
to traverse the component event hierarchy by expanding the hyperlinks within
a component.

Note that since a page is also a component, a page with no dynamic
subcomponents seems as if it’s nested one level too deep. This is the correct
behavior.

� Events grouped by page only. This display is similar to the grouped by page
and component view, except the events do not have a by-component
subgrouping.

In any of these displays, if an event or event group has subevents, it can be
expanded by clicking the hyperlink or triangle image.

Each view orders events by duration (in milliseconds) from the longest to the
shortest. Aggregation reduces rounding errors, which are a maximum of 1ms per
event. In other words, an aggregate event consisting of ten events has at most 1ms
deviation from the actual run time; however, manually adding ten individual
events as displayed in the table might have up to a 10ms deviation. Therefore, any
displayed sum is always more accurate than adding up the durations of individual
events. Also note that the sub-events of an event branch doesn’t necessarily add up
to the duration of the branch event—the branch event’s duration might be larger.
This because the parent event generally consists of more than just calling the
methods causing the sub-events.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Event Logging 63

Event System User Defaults
The event system provides three defaults for configuring its behavior:

EOEventLoggingEnabled
A boolean value that determines whether event logging is enabled. The
default is NO, logging isn’t enabled.
You can enable logging with EOEventLoggingEnabled, but the
WOEventSetup page gives you more flexibility. The
EOEventLoggingEnabled default enables logging for every class,
whereas with WOEventSetup you can enable logging on a class by class
basis.

EOEventLoggingLimit
An integer value that sets the maximum number of events the event
system logs. The default logging limit is 200,000 per thread.
When the logging limit is reached, the event system attempts to purge
old events before logging new ones. If the system is unable to purge old
events, event logging is aborted.

EOEventLoggingOverflowDisplay
A boolean value that determines whether the event system logs a message
when the event logging limit is reached. If enabled, the system logs
messages when the event center truncates the log and also when event
logging is aborted due to overflow.

Event Logging Questions and Answers

Question
What happens to an EOEvent if an exception is raised before the event
is completed?

Answer
As soon as you close another event, the system detects that a previous
event was not closed properly and closes it for you. All events logged
between an unclosed event (due to an exception or improper coding)
and the closing of another event are logged at the wrong place in the
event hierarchy, but they are logged.

64 Event Logging

C H A P T E R 5

What’s New in Enterprise Objects Framework

An improperly closed event can have another negative side effect: the
improperly closed event can’t be pruned with the automatic memory
manager. This is virtually the only thing that can completely abort event
logging.
If you have reason to believe that you might raise while an event is in
progress, you should cancel the event in an exception handler.

Question
 What’s the overhead of enabling event logging?

Answer
The logging mechanism is extremely fast and memory efficient. A
standard 300 MHz G3 system can log more than 300,000 events per
second. Thus, the creation and logging of events is negligible compared
to the time required to generate dynamic web pages. The only expensive
operations are tree pruning when memory overflows (which takes
about as long as logging ten events), and handling exceptions (which is
linear to the depth of the tree—rarely more than 5 levels deep under
normal circumstances). Therefore, the overhead is not really
measurable.

Question
Can I enable event logging for a single-user application in production?

Answer
You shouldn’t, because it would use a lot of memory: about 4 MB per
thread for the default event log limit (200,000 events). Also, throughout
the lifetime of an application, the system must continuously prune the
event tree to keep the log size under the limit. As stated above, pruning
the tree is a relatively expensive operation.

Question
Is performance impacted by the size of the event log? Does performance
degrade if logging isn’t reset periodically?

Answer
No. As stated above, the size of the event log is limited. Once you warm
up the application and the logging framework, event logging overhead
is constant—not per event, but over an average of a series of events.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Event Logging 65

Custom Event Logging

To define and log custom events, you create an event class, define the event’s
categories and subcategories, register the event class with the WOEvent center, and
instrument the portions of code you want to log. This section describes these steps.

To create a custom event:

1. Create a subclass of EOEvent or an appropriate subclass.

For example, to log events for a custom adaptor you’ve written, say MyAdaptor,
create an EOEvent subclass named MyAdaptorEvent.

Your subclass doesn’t usually have to override any of the inherited methods, but
you can customize the default behavior.

2. Create a description file for your event and add it to your project’s Resources
folder.

An event’s description file defines the event categories and subcategories used
in the WOEventDisplay page. The file’s contents is a dictionary in plist format.
For the MyAdaptorEvent class, the file’s name is MyAdaptorEvent.description,
and it might look like the following:

{
EOEventGroupName = “MyAdaptor Event”;
connect = “Connect”;
openChannel = “Open Channel”;
evaluateExpression = “Evaluate Expression”;
fetchRow = “Fetch Row”;
commitTransaction = “Commit Transaction”;

}

The EOEventGroupName entry is mandatory. It describes the family of events
logged by the event class. Any other keys are self defined by the event class. In
this example, the other keys (connect, openChannel, and so on) are the names of
the events MyAdaptorEvent logs.

3. Register the event class with the EOEventCenter.

Typically you register the event class in the initialize method of the class
whose code you’re instrumenting—MyAdaptor in this example.

static Class MyAdaptorEventLoggingClass = Nil;
static NSString *connectEvent = @”connect”;

66 Event Logging

C H A P T E R 5

What’s New in Enterprise Objects Framework

static NSString *openChannelEvent = @”openChannel”;
static NSString *evaluateExpressionEvent = @”evaluateExpression”;
static NSString *fetchRowEvent = @”fetchRow”;
static NSString *commitTransactionEvent = @”commitTransaction”;

+ (void)initialize {
[EOEventCenter registerEventClass:[MyAdaptorEvent class]

classPointer:&MyAdaptorEventLoggingClass];
}

As in this example, you might want to define string constants for the keys in
your event’s description dictionary.

4. Instrument the methods.

In any method you want to instrument, add the following code, substituting the
appropriate event key. This code instruments the “connect” event of
MyAdaptorEvent.

MyAdaptorEvent *event=nil;

// Setup and start logging
if(MyAdaptorEventLoggingClass) {

event = EONewEventOfClass(MyAdaptorEventLoggingClass, connectEvent);
EOMarkStartOfEvent(event, nil);

}

// Code to be timed goes here.

// Finish logging.
if(event) {

EOMarkEndOfEvent(event);

The second argument to EONewEventOfClass is an event key corresponding with
an entry in the .description file. The corresponding value is used in the Title
column of the WOEventDisplay page. If the argument isn’t a key in the
description dictionary, EONewEventOfClass uses the argument instead.

For more information on the methods used in this example, see the class
descriptions for EOEvent and EOEventCenter. To see a complete example of
timing events, refer to the ODBC Adaptor source code that’s distributed with
WebObjects.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Object Sharing 67

Related API Changes
Three new classes and one interface have been added to support event logging.
They are:

� EOEventCenter (EOControl/EOEventCenter.h)

� EOEvent (EOControl/EOEvent.h)

� EOAggregateEvent (EOControl/EOAggregateEvent.h)

� EOEventCenter.EventRecordingHandler (Java) or EOEventRecordingHandler
(Objective–C; EOControl/EOEventCenter.h)

For more information, see the corresponding class or interface specifications.

Object Sharing

EOF 4.5 introduces a new technique for sharing read-only enterprise objects. The
new subclass of EOEditingContext, EOSharedEditingContext, defines a mechanism
that allows editing contexts to share enterprise objects for reading. This mechanism
can reduce both the number of fetches an application makes and the amount of
redundant data it requires.

As an example, consider the FeeType entity in the samle Rentals model that ships
with EOF 4.5. A FeeType enterprise objects describes a type of fee that a video store
can charge its customers—“Rental” and “Late”, are the two FeeTypes in the sample
database. It is very uncommon to add or remove FeeTypes, and it’s perhaps even
more uncommon to modify an existing FeeType (to rename it, for example). For the
most part, FeeTypes are read-only.

With 4.5, you can fetch read-only objects such as FeeTypes into a shared editing
context once, when an application starts, and all the application’s sessions can share
those objects. For example, objects in any session can create relationships to the

Note: These classes and interfaces aren’t available in the
com.apple.client.eocontrol package.

68 Object Sharing

C H A P T E R 5

What’s New in Enterprise Objects Framework

shared FeeType objects even though the FeeTypes are in a different editing context
from the source objects. Using previous releases, you would have to make local
copies of the read-only FeeTypes in each of the editing contexts that use them.

How It Works
The idea behind shared editing contexts is to load read-only (or read-mostly) objects
into a central context that all sessions have transparent access to. It works like this.

1. A model file identifies any objects to be shared.

Models identify shared objects by defining shared object fetch specifications,
which define criteria for fetching objects that are to be shared. For information
on creating shared object fetch specifications, see “Setting Up Object Sharing”
(page 70).

The first time your application accesses a model’s entities, it checks the model
for shared object fetch specifications. If any are found, they are evaluated and
the corresponding fetched objects are loaded into the default shared editing
context. Any existing editing contexts that don’t have any registered objects
begin using the default shared editing context. Similarly, any editing contexts
subsequently created use the default shared editing context.

Note that if you don’t specify any shared fetch specifications, a shared editing
context is never created and no object sharing occurs. Conversely, if you do
specify shared object fetch specifications, a shared editing context is
automatically created and object sharing is enabled for all standard editing
contexts.

2. The application’s shared editing context is created and populated the first time
a model containing shared object fetch specifications is accessed.

Generally an application’s shared editing context is initialized when the first
editing context attempts to access the database. At this time, all the application’s
models are loaded, and any shared object fetch specifications are detected. If any
of the application’s models have shared object fetch specifications, a shared
editing context is created and populated and is set as the shared editing context
for all empty editing contexts.

Note: Support for shared editing contexts is not implemented in the
com.apple.client packages. Therefore, shared editing contexts are not available in
the client side of a Java Client application.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Object Sharing 69

You can disable object sharing on individual editing contexts as described in
“Inserting, Updating, and Deleting Shared Objects” (page 72) or you can disable
object sharing altogether as described in “Disabling Sharing During
Development” (page 73).

3. Standard editing contexts use objects in the shared editing context as if they
were local.

When a standard editing context fetches, any relationships to shared objects are
automatically resolved to the shared editing context’s objects. Similarly, an
object in any standard editing context can create a relationship to a shared
editing context’s object.

This all works transparently. EOEditingContext’s implementations of
objectForGlobalID and faultForGlobalID look for an object in the shared editing
context when a standard editing context doesn’t find the object locally. If the
methods finds the object in the shared editing context, they return the shared
object as they would if the object were local.

To allow object sharing to work, EOF makes the following assumptions:

� Shared objects are read-only (or read-mostly).

� Objects must be unique in their editing contexts and their editing context’s
shared editing context.

The following sections describe why these assumptions are necessary and how they
are enforced.

Shared Objects Are Read-Only

If you could update a shared object, all of an application’s users would see the
changes immediately since all sessions share the exact same object. This behavior is
undesirable. You only want users to see committed changes to objects. For example,
suppose you make a change to a shared object in a web application, but you haven’t
yet saved it to the database. The changes are written to the object as soon as the
request-response loop begins, and every other web user sees the change you made,
even if you undo them later or make further changes before saving.

For this reason EOF enforces the read-only quality of shared objects. Shared objects
can’t be inserted, updated, or deleted in a shared editing context the same way that
normal enterprise objects can be inserted, updated, or deleted when they’re in a
standard editing context. EOSharedEditingContext overrides EOEditingContext
methods that mutate data (takeValueForKey, saveChanges, deleteObject, and

70 Object Sharing

C H A P T E R 5

What’s New in Enterprise Objects Framework

insertObject for example) to raise exceptions. Correspondingly, methods that
report on changes in a shared editing context return either null/nil or an empty
array.

It would also be undesirable if you could delete a shared object. In Objective–C, it
would be bad if a shared object were released while objects in standard editing
contexts had relationships to it. Objects in a shared editing context are always
retained. You are guaranteed that no object in a shared editing context will be
destroyed while the application is running (a shared object can become invalid, but
it won’t go away).

Shared Objects Are Uniqued

EOF uses object uniquing to ensure that a single editing context never has more than
one object with the same global ID. Because every standard editing context has
access to the objects in a shared editing context as if the objects were local, none of
a shared editing context’s objects can have the same global ID as any object in any
standard editing context.

EOF does most of the work for you. A shared editing context sends out notifications
when it initializes new objects. Standard editing contexts listen for these
notifications and raise exceptions if they have local objects with the same global ID
as the new shared object. However, you have to take some precautions not to fetch
into a shared editing context objects that have already been fetched into a standard
editing context:

� Don’t explicitly fetch into a standard editing context an object that is already
shared unless you disable sharing, as described in “Inserting, Updating, and
Deleting Shared Objects” (page 72).

� If a shared object has relationships to entities that aren’t shared, remove the
relationships from the model. Otherwise, when the faults fire, the destination
objects are fetched into the shared editing context.

Setting Up Object Sharing
EOModeler has a new entity inspector for specifying the objects you want to fetch
into a shared editing context when an application starts. To use it, select the entity
whose objects you want to share, and open the Shared Objects Inspector.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Object Sharing 71

To share all the entity’s objects, select “Share all objects.” If the entity has an
unqualified fetch specification, that fetch specification is selected. Otherwise,
EOModeler creates an unqualified fetch specification and selects it.

To share only some objects, define fetch specifications that select the objects you
want to share. In the Shared Objects Inspector, select “Share objects fetched with”
and select your fetch specifications.

You can also prefetch relationships into the shared editing context. For example,
suppose that Product has a relationship to ProductPlatforms and that both entities
should be shared. You can create a Product fetch specification that has a hint to
prefetch the Product’s ProductPlatforms relationship. Using this fetch specification
to fetch Products into the shared editing context also causes ProductPlatforms to be
loaded into the shared editing context.

Accessing Shared Objects
Shared editing contexts maintain dictionaries of all the objects they have fetched,
both by entity name and by the fetch specification name they were retrieved with.
This makes it easy to use shared objects for populating user interface controls. The
two methods for accessing these dictionaries are:

objectsByEntityName
objectsByEntityNameAndFetchSpecificationName

These two methods make it easy to use key-value coding and key paths to bind data
to WebObjects elements directly in a WebObjects .wod file.

For example: Say you have a model with the entity “Products” and an attribute
called “isDiscontinued”, which indicates whether an item is unavailable. You could
set up a fetch specification in EOModeler named “regularProducts” that fetches
only objects that are available (the qualifier would specify that “isDiscontinued =
0"). To use the returned set of “regular products” in a WebObjects page, create a
user interface control (such as a WOPopup or WOBrowser), and set its list
attribute like this:

list =
session.defaultSharedEditingContext.objectsByEntityNameAndFetchSpecificatio
nName.Products.regularProducts

The user interface control’s list is automatically filled with data from shared objects.

72 Object Sharing

C H A P T E R 5

What’s New in Enterprise Objects Framework

Inserting, Updating, and Deleting Shared Objects
Generally shared objects are read-mostly. For example, an application could provide
an administration mode that allows administrative users to insert, update, and
delete otherwise read-only shared objects. You can still use a shared editing context
in such an application, but you have to write special code. Since insertions, updates,
and deletions of shared objects are typically very infrequent, the performance
benefit of sharing objects can still be significant.

To insert new objects, create and insert a new object in a standard editing context.
Once you do this, you need to fetch the new object into the shared editing context
as described in “Refreshing the Shared Editing Context” (page 72).

Updating and deleting them is a little trickier. To modify shared objects, you need
to disable object sharing for a particular editing context, as follows:

mySession.defaultEditingContext().setSharedEditingContext(null); // Java
[[mySession defaultEditingContext] setSharedEditingContext:nil]; // ObjC

A session that does this doesn’t have access to shared objects and can explicitly fetch
objects that would otherwise be shared. After fetching the objects, they are local,
and you can update or delete them. When you save the changes, the shared editing
context receives ObjectsChangedInStoreNotifications. In response to the
notifications, the shared editing context refaults updated objects and removes
deleted objects from its objectsByEntityName and
objectsByEntityNameAndFetchSpecificationName dictionaries.

Refreshing the Shared Editing Context
You might want to refresh the shared editing context after an administrative user
inserts a new shared object or to periodically synchronize with a database. To
refresh a shared editing context, use the method
bindObjectsWithFetchSpecification (Java) or
bindObjectsWithFetchSpecification:toName: (Objective–C). For example:

EOModelGroup modelGroup = EOModelGroup.defaultGroup();
EOSharedEditingContext sharedEC =

EOSharedEditingContext.defaultSharedEditingContext();

Note: Deleted objects remain in the shared editing context so that Objective–C
objects having relationships to them won’t be left with dangling pointers.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Object Sharing 73

EOFetchSpecification fs =
modelGroup.fetchSpecificationNamed(“regularProducts”, ”Product”);

if (fs == null) {
System.out.println(“Couldn’t get regularProducts fetch specification.”);

} else {
sharedEC.bindObjectsWithFetchSpecification(fs, “regularProducts”);

}

This has the effect of refetching all the shared objects and binding them to the
objectsByEntityName and objectsByEntityNameAndFetchSpecificationName
dictionaries.

Disabling Sharing During Development
Initializing a shared editing context does increase the amount of time it takes for an
application to start up. During development when you starting your application
frequently, the additional start up time can become a nuisance. To make debugging
passes quicker, you can essentially disable object sharing using the static method
setSharedObjectLoadingEnabled (or the equivalent class method in Objective–C).

This method specifies whether EOF looks for shared fetch specifications when it
loads models. While a shared editing context can still be created and referenced, it
won’t contain any objects unless you programmatically fetch them into it. The
advantage of disabling shared object loading is that the application starts up more
quickly.

Performance
Using shared editing contexts can have the following positive performance impact
on your application:

� Standard editing contexts don’t have their own copies of shared objects, so the
memory footprint is smaller.

� Fetching read-only data into an application is a lot simpler, so fewer database
trips may be needed.

However, there are potentially negative performance effects as well. They are:

74 Object Sharing

C H A P T E R 5

What’s New in Enterprise Objects Framework

� Every editing context has to hash twice: once to look up objects in their own
tables, and again to look up objects in the shared tables. Hashing is very fast, but
with nested contexts it can add up.

� On Windows NT, locking a thread is significantly slower than it is on other
platforms with similar hardware. Because shared editing contexts generate a lot
of locking activity, sharing objects can actually degrade the performance of an
application on NT. If you plan to deploy on NT, test your server’s performance
carefully.

� Fetching or firing faults in a shared editing context causes all other threads to
block when they try to get shared data. To avoid this problem, try to fetch
everything when the application starts up.

Multithreaded Access and Locking
WebObjects applications take care of most multithreading issues for you. This is
also the case with applications that use shared editing contexts. Here are the basics
of how EOF locks shared editing contexts:

� Shared editing contexts use a new lock, EOMultiReaderLock, which allows
multiple contexts to read data from the shared editing context concurrently.
When the shared editing context needs to update objects (because of fetching or
firing faults), the context waits for all reader locks to be surrendered and then
issues a writer lock. There can only be one writer at a time.

� Whenever an EOEditingContext lock method is called, it also obtains a reader
lock for its shared editing context.

� When an EOEditingContext is about to call its parent object store, it surrenders
its shared reader lock until the call is complete (this prevents deadlocks with the
object store lock).

From a WebObjects perspective, everything works automatically as long as you
interact with a shared editing context from within the context of a session. This is
because when a web session awakes, it locks its editing context, which reader-locks
the shared editing context. If you need to interact with the shared editing context
outside the context of a session, you should access it through a locked
EOEditingContext.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Object Sharing 75

If you invoke methods on a shared editing context directly, you must obey a strict
lock ordering protocol to avoid deadlocks and unsafe multithreaded access. If you
directly invoke any method besides objectsWithFetchSpecification,
objectForGlobalID, or faultForGlobalID on a shared editing context, you need to
take the a reader or writer lock yourself before calling the method.

Related API Changes
A new subclass of EOEditingContext, EOSharedEditingContext, has been added to
support object sharing. For more information on this class, see the corresponding
class specification.

Additionally, new API has been added to existing classes as summarized in the
following tables.

Note: With this release of EOF, there is a subclass of EOEditingContext for the
first time. You might have to adjust your code if you ever assume than an editing
context is always an instance of EOEditingContext.

Note: Support for shared editing contexts is not implemented in the
com.apple.client packages.

Table 5-1 EODatabaseContext (EOAccess/EODatabaseContext.h)

New or Changed API Description

setSharedObjectLoadingEnabled (Java)
setSharedObjectLoadingEnabled:
(Objective–C)

A static/class method that sets according to the
specified flag whether or not to automatically load
enterprise objects into the default shared editing
context when a database context loads a model. The
default is true/YES (the database automatically loads
shared objects).

isSharedObjectLoadingEnabled A static/class method that returns true/YES if
database contexts automatically load enterprise
objects into the default shared editing context when
database contexts load models, false/NO otherwise.

76 Object Sharing

C H A P T E R 5

What’s New in Enterprise Objects Framework

Table 5-2 EOEntity (EOAccess/EOEntity.h)

New or Changed API Description

setSharedObject
FetchSpecificationsByName (Java)
setSharedObject
FetchSpecificationsByName:
(Objective–C)

Sets the fetch specifications used to load objects into a
shared editing context to the fetch specifications
identified by name in the specified array.

sharedObject
FetchSpecificationNames

Returns an array of strings, which are the names of
the fetch specifications used to load objects into a
shared editing context.

addSharedObjectFetchSpecification
ByName (Java)
addSharedObjectFetchSpecification
ByName: (Objective–C)

Adds the fetch specification identified by the
specified name to the set of fetch specifications used
to load objects into a shared editing context.

removeSharedObject
FetchSpecificationByName (Java)
removeSharedObject
FetchSpecificationByName: (Objective–C)

Removes the fetch specification identified by the
specified name from the set of fetch specifications
used to load objects into a shared editing context.

Table 5-3 EOModel (EOAccess/EOModel.h)

New or Changed API Description

entitiesWithSharedObjects Returns an array of entities that have objects to load
into a shared editing context.

Table 5-4 EOModelGroup (EOAccess/EOModelGroup.h)

New or Changed API Description

entitiesWithSharedObjects Returns an array of entities that have objects to load
into a shared editing context.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Subclassing EOGenericRecord 77

Subclassing EOGenericRecord

EOF 4.5 adds a new option for creating custom enterprise objects: rather than
creating a subclass of EOCustomObject (Java) or NSObject (Objective–C), you can
now subclass EOGenericRecord.

This feature is most significant in applications that use the Java bridge. By default,
a subclass of EOGenericRecord stores its properties in a dictionary on the
Objective–C side of the bridge instead of in individual instance variables on the Java
side. This allows EOF to access enterprise object properties with many fewer trips
across the bridge, which reduces memory usage and improves performance.

Table 5-5 EOEditingContext (EOControl/EOEditingContext.h)

New or Changed API Description

setSharedEditingContext (Java)
setSharedEditingContext: (Objective–C)

Sets the receiver’s shared editing context. If the
receiver is listening for
(EO)DefaultSharedEditingContextWasInitializedNo
tification, it removes itself as an observer.
By default, the shared editing context is null/nil
but is set when an
(EO)DefaultSharedEditingContextWasInitializedNo
tification is posted.
Changing the shared editing context to null/nil
allows the receiver to obtain private, editable
copies of objects that would otherwise be shared. If
both the receiver and the specified shared editing
context have registered objects, the objects of both
contexts are compared to verify that the objects are
unique. If the objects are not unique, an exception
is raised by the editing context.

sharedEditingContext Returns the shared editing context used by the
receiver.

78 Subclassing EOGenericRecord

C H A P T E R 5

What’s New in Enterprise Objects Framework

More specifically, subclassing EOGenericRecord provides the following
advantages over subclassing EOCustomObject (Java):

� Java enterprise objects don’t incur a performance penalty relative to
Objective–C. Previously, each call to an EOKeyValueCoding method (such as
valueForKey) resulted in a bridged method invocation and possibly the creation
of a new object. Because EOGenericRecord provides the storage for an
enterprise object’s values, the values don’t need to cross the bridge during a
fetch. This results in a dramatic performance improvement in
EOKeyValueCoding-bound operations such as fetching, snapshotting, and
validation.

� Java enterprise objects don’t use more memory than Objective–C enterprise
objects. Since an enterprise object’s values were previously stored in its instance
variables, each value object had to be morphed between Java and ObjC when
interacting with the EOF frameworks. This meant that the values couldn’t be
shared between an enterprise object and its snapshots in the EOEditingContext
and EODatabase. Consequently, many more objects were resident in memory
than would be the case in the non-bridged case.

� Enterprise object classes are more flexible and easier to maintain. As you edit
your model by adding or removing keys, you only have to update your
enterprise object class if you want to add or remove custom accessors or
validation methods. You don’t have to maintain instance variables since
property values are stored in a dictionary.

Also, you can use a specific subclass of EOGenericRecord for multiple entities as
you can when you use EOGenericRecord. In previous releases, a single
enterprise object class (other than EOGenericRecord) could correspond to only
one entity. Subclasses of EOGenericRecord can now correspond to multiple
entities the same way EOGenericRecord can. This might be useful for providing
common behavior such as validation logic. Note that a “generic” subclass of
EOGenericRecord (that is, a subclass which is shared among entities) must be
instantiated using EOClassDescription’s createInstanceWithEditingContext
method in the same way that EOGenericRecord must. If it isn’t, the resulting
instance won’t be properly initialized.

� Subclasses of EOGenericRecord automatically use deferred faulting, which
increases performance and decreases memory usage even further. For more
information on deferred faulting, see “Deferred Faulting” (page 81).

Given all the advantages of subclassing EOGenericRecord, you might wonder if
there’s ever a reason to subclass EOCustomObject. Subclassing EOGenericRecord
usually yields better performance. Even if it doesn’t yield better performance, you

C H A P T E R 5

What’s New in Enterprise Objects Framework

Subclassing EOGenericRecord 79

can design it to be at least as fast and to have the same level of functionality as a
subclass of EOCustomObject by storing properties in instance variables. Therefore,
you really don’t ever need to subclass EOCustomObject.

Property Storage: Dictionary or Instance Variables
A subclass of EOGenericRecord can take three approaches to storing property
values:

1. Store them in the EOGenericRecord dictionary.

2. Store them in instance variables.

3. Store them in a combination of the above.

Generally the first approach is the best because it reduces the number of trips across
the Java bridge, improving performance and reducing memory usage. Enterprise
objects are accessed from Objective–C much more frequently than from Java. A
typical enterprise object is populated from Objective–C when it’s fetched from the
database, snapshotted from Objective–C each time the object is changed, and
accessed from Objective–C to provide values for bindings in WebObjects
components.

On the other hand, access from Java is typically limited to custom validation
(implemented in the enterprise object class) and to accesses by other enterprise
objects to obtain property values explicitly (for example, to check the department
budget before validating a new salary).

The second approach might be appropriate if your application accesses and
manipulates enterprise objects from Java quite frequently, however this case is
probably rare.

The third approach is to create instance variables for some of your enterprise
object’s properties and leave the rest in the EOGenericRecord dictionary. This
approach is the most difficult to maintain, because the implementation of accessor
methods depends on the way the property is stored.

Note: When you create an instance variable for an EOGenericRecord subclass,
ensure that the accessor methods read and write the instance variable instead of
invoking valueForKey and takeValueForKey, which is what the implementations
do if the code is generated by EOModeler.

80 Subclassing EOGenericRecord

C H A P T E R 5

What’s New in Enterprise Objects Framework

Creating a Subclass
EOModeler has been updated with templates that take advantage of this feature, so
new enterprise object classes are automatically subclasses of EOGenericRecord. To
re-parent existing business objects, perform the following steps in your source files:

1. Set the enterprise object class’s superclass to EOGenericRecord.

2. Delete all EOKeyValueCoding-related instance variables (that is, instance
variables that store values for attribute and relationship keys).

3. (Optional) For maximum performance, delete the three-argument constructor if
you don’t use the arguments. If you need custom logic in your constructor but
don’t need the three arguments, implement a custom default constructor. If you
don’t need a custom constructor, don’t implement one at all; the compiler inserts
the default constructor for you. If the three-argument constructor is present,
EOF uses it; otherwise the default constructor is invoked.

4. (Optional) For maximum performance, delete all accessors that don’t contain
custom logic. If you want strong typing to simplify business logic, implement
accessors using storedValueForKey, such as:

public NSGregorianDate dateReleased() {
return (NSGregorianDate)storedValueForKey(“dateReleased”);

}

In lieu of (or in addition to) adding custom accessors, it might be convenient to add
and use String constants for an enterprise object class’s keys, as shown in the
following:

public class Movie extends EOGenericRecord {
public static final String Title = “title”;
public static final String DateReleased = “dateReleased”;
public static final String Studio = “studio”;

public NSGregorianDate dateReleased() {
return (NSGregorianDate)storedValueForKey(DateReleased);

}
}

C H A P T E R 5

What’s New in Enterprise Objects Framework

Deferred Faulting 81

Deferred Faulting

EOF uses faults as stand-ins for objects whose data has not yet been fetched.
Although fault creation is much faster than fetching, fault instantiation still takes
time. To improve performance, EOF 4.5 has the ability to use deferred faults (which
are more efficient) for enterprise object classes that enable the feature.

In an object whose class enables deferred faulting, the object’s relationships are
initially set to deferred faults. For a particular relationship, a single deferred fault is
shared between all instances of an enterprise object class. This sharing of deferred
faults can significantly reduce the number of faults that need to be created, and
usually reduces the overhead of fault creation during a fetch.

For example, consider a Movie class with a studio relationship. Assuming the worst
case in which each movie has a different studio, without deferred faulting, during
a fetch of twenty Movie objects, twenty faults are created for the studio
relationship—one fault for each movie. With deferred faulting, only one fault is
created—a deferred fault that is shared by all the movies.

Deferred faults have a special fault handler, which knows how to replace the
deferred fault with a standard fault. Once the deferred fault is replaced with a
normal fault, the normal faulting behavior applies.

In 4.5, EOGenericRecord enables deferred faulting; you get the behavior without
making any changes to existing code. Non-EOGenericRecord enterprise object
classes don’t enable deferred faulting by default. To enable it on a custom class,
implement the class method useDeferredFaultCreation to return true/YES (the
default is false/NO). Additionally, invoke the method willReadRelationship before
accessing a relationship that might be a deferred fault. The willReadRelationship
method allows the special fault handler to instantiate a normal fault before it is
accessed.

Deferred Faulting and Inheritance
In Java programming, there’s an additional benefit of deferred faulting: Deferred
faulting allows you to have to-one relationships into an inheritance hierarchy.
Without deferred faulting, a to-one relationship to a non-leaf entity is impossible

82 Deferred Faulting

C H A P T E R 5

What’s New in Enterprise Objects Framework

without implementing workarounds (because of strong typing in the Java
language). The workarounds are not necessary if you use deferred faulting. For
more information on the inheritance limitation in Java and the workarounds, refer
to the Enterprise Objects Framework Developer’s Guide.

Related API Changes
New API added to support the deferred faulting feature is summarized in this
section.

Table 5-6 EODeferredFaulting interface/informal protocol (EOControl/EOFault.h)

New or Changed API Description

useDeferredFaultCreation A static/class method that defaults to false/NO.
Override to return true/YES on your enterprise
object class to use deferred fault creation.
EOGenericRecord’s implementation returns true/
YES, indicating that it uses the more efficient
deferred fault technique.
Note that in Java, this static method is not a formal
part of the EODeferredFaulting interface because
the Java language doesn’t support the inclusion of
static methods in an interface. It is, however, an
informal part of the interface. A static method
implemented in a custom enterprise object class
will be invoked automatically to determine
whether or not to use deferred fault creation.

willReadRelationship (Java)
willReadRelationship: (Objective–C)

Invoke this before using any relationship in an
enterprise object that uses deferred fault creation.
This method sets the corresponding instance
variable of the receiver using
takeStoredValueForKey/takeStoredValue:forKey:.
Returns a newly instantiated fault if the object is a
fault and has a deferred fault handler. Returns the
object otherwise.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Reference Counting 83

Snapshot Reference Counting

Snapshot reference counting is a new feature that removes snapshots from an
EODatabase when they are no longer used by any enterprise objects in an
application. This feature reduces the memory footprint of WebObjects applications.

The reference count on a snapshot is implicitly incremented when you create an
enterprise object, either by fetching it in a batch or by faulting it in. An
EOEditingContext decrements the reference count automatically when it forgets or
refaults an enterprise object.

To support this feature, the method editingContextDidForgetObjectWithGlobalID/
editingContext:didForgetObjectWithGlobalID: has been added to EOObjectStore.
This method is not intended to be called directly by your application.

As a developer you should not worry about this feature; it should just work without
any additional code on your part. There are only a few cases where it could be
incompatible with pre-EOF 4.5 applications:

� When the snapshots are removed because their reference counts fall to zero, the
globalID associated with these snapshots are also released. If your application is
written in Objective–C and you cache globalIDs in your application, make sure
you retain them. If you don’t, your application will crash with “Message sent to
freed object” errors when you try to access globalIDs that have been freed.

Table 5-7 EOFaultHandler (EOControl/EOFaultHandler.h)

New or Changed API Description

createFaultForDeferredFault (Java)
createFaultForDeferredFault:sourceObject
: (Objective–C)

Invoked by willReadRelationship to ensure that a
fault is valid. EOFaultHandler’s implementation
simply returns its fault.

Note: Snapshot reference counting is not available in the client side of Java Client
applications. The corresponding API is in the Java Client packages, but the
snapshots are not released.

84 Snapshot Reference Counting

C H A P T E R 5

What’s New in Enterprise Objects Framework

Previously GlobalIDs were never released; they were kept with the snapshots.
This is not a problem if you use Java as your development language, since Java
automatically retains all referenced objects.

� If your application assumes that snapshots for fetched objects are always
present, you could have a problem. This is no longer the case, and asking for a
snapshot might now return null/nil.

Sometimes you want a snapshot to stay around for the lifetime of your application.
If you need this functionality there are three ways to force selected snapshots to stay
around:

� Use the method incrementSnapshotCountForGlobalID on EODatabase to force the
snapshot to stay around. If you use this approach, make sure to call
decrementSnapshotCountForGlobalID when you don’t need the snapshot
anymore.

� Fetch the objects whose snapshots you need. (Note that if your application is
written in pure Objective–C and it’s not multithreaded, the EOEditingContext
doesn’t retain its enterprise objects—you have to retain them yourself.)

� Turn on entity caching for the entity. This automatically increments the
reference count for all the snapshots your entity caches.

You can turn the whole feature off and revert to the previous behavior of retaining
snapshots forever by invoking the class method disableSnapshotRefCounting on
EODatabase. Make sure to call this method early in your application initialization
code, before the creation of any EODatabase instances.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Reference Counting 85

Related API Changes
The following tables summarize new or changed API to support the snapshot
reference counting feature.

Table 5-8 EODatabase (EOAccess/EODatabase.h)

New or Changed API Description

incrementSnapshotCountForGlobalID (Java)
incrementSnapshotCountForGlobalID:
(Objective–C)

If the receiver releases unreferenced snapshots,
increments the reference count for the shared
snapshot associated with the specified globalID.

decrementSnapshotCountForGlobalID (Java)
decrementSnapshotCountForGlobalID:
(Objective–C)

If the receiver releases unreferenced snapshots,
decrements the reference count for shared
snapshot associated with the specified globalID;
if no more objects refer to the snapshot, removes
it from the snapshot table.

disableSnapshotRefCounting A static/class method that disables the snapshot
reference counting feature so that instances
don’t release snapshots.

Table 5-9 EOObjectStore (EOControl/EOObjectStore.h)

New or Changed API Description

editingContextDidForgetObject
WithGlobalID (Java)
editingContext:didForgetObjectWithGlobalID:
(Objective–C)

Invoked to inform the object store that it can stop
keeping data about an object it passed to a child.
Don’t invoke this method; it is invoked
automatically by the Framework.

86 Snapshot Timestamping

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Timestamping

EOF caches database snapshots and uses the cached values to initialize objects. This
significantly improves performance, since using the cached values is much faster
than making round-trips to the database for fetches. However, this behavior can
lead to staleness of the cached data; and it sometimes produces confusing results,
especially when new values available from a fetch are ignored in favor of the stale
snapshots.

A new snapshot timestamping feature updates snapshots appropriately when
fetching and allows an editing context to request that the snapshots used to build
enterprise objects are no older than the editing context’s fetchTimestamp. The
default value for the fetchTimestamp of a new editing context is one hour earlier than
the creation time of the editing context. So any snapshots that are less than an hour
old are acceptable to the editing context; older cached values are ignored. The
default “lag” can be adjusted using the static method setDefaultFetchTimestampLag
(or the corresponding Objective–C class method), and the fetchTimestamp for a
specific editing context can be set directly with setFetchTimestamp.

Note that the fetchTimestamp is significant only when fetching data (typically by
sending objectsWithFetchSpecification). An existing enterprise object is
unaffected by changes to the editing context’s fetchTimestamp.

When an EODatabase records a snapshot, it now also records a timestamp for that
snapshot. The timestamp is an NSTimeInterval (relative to the reference date as
documented for the NSDate class). Methods that return a snapshot from
EODatabase or EODatabaseContext now have variants that take an extra argument
to specify a minimal timestamp for the snapshot. If the recorded snapshot’s
timestamp is earlier than the requested time, null/nil is returned. If the snapshot
is recent enough for the request, the snapshot is returned as usual.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Timestamping 87

Related API Changes
The following tables summarize new API added to support the snapshot timestamp
feature.

Note: Support for snapshot timestamping is not available in the com.apple.client
packages. However, since snapshots are maintained only on the server, no
timestamping takes place on the client side of a Java Client application. In other
words, this feature can be used to its fullest potential in a Java Client application.

Table 5-10 EODatabase (EOAccess/EODatabase.h)

New or Changed API Description

DistantPastTimeInterval(Java)
EODistantPastTimeInterval (Objective–C)
(constant)

The NSTimeInterval used as a lower bound on
timestamps.

setTimestampToNow Sets the internal timestamp to value returned by
NSDate’s timeIntervalSinceReferenceDate
method. Used for recording subsequent
snapshots.

snapshotForGlobalID(EOGlobalID)
snapshotForGlobalID(
 EOGlobalID,
 double)
(Java)

The new, overloaded version of this method
takes a double argument to use as a timestamp.
It returns the snapshot associated with the
specified globalID. Returns null if there isn’t a
snapshot or if its timestamp is less than the
specified timestamp.
The old version that only takes a globalID has
been reimplemented to invoke the new version
using DistantPastTimeInterval as the
timestamp.

88 Snapshot Timestamping

C H A P T E R 5

What’s New in Enterprise Objects Framework

snapshotForSourceGlobalID(
 EOGlobalID,
 String)

snapshotForSourceGlobalID(
 EOGlobalID,
 String,
 double)

(Java)

The new, overloaded version of this method
takes a double argument to use as a timestamp.
It returns the to-many snapshot for the specified
globalID and relationship name. Returns null if
there isn’t a to-many snapshot or if the
timestamp is less than the specified timestamp.
The old version that only takes a globalID and a
String has been reimplemented to invoke the
new version using DistantPastTimeInterval as
the timestamp.

snapshotForGlobalID:after: (Objective–C) Returns the snapshot associated with the
specified globalID. Returns nil if there isn’t a
snapshot or if its timestamp is less than the
specified timestamp.
Note that snapshotForGlobalID: has been
reimplemented to invoke
snapshotForGlobalID:after: with
EODistantPastTimeInterval as the timestamp.

snapshotForSourceGlobalID:relationship
Name:after: (Objective–C)

Returns the to-many snapshot for the specified
globalID and relationship name. Returns nil if
there isn’t a to-many snapshot or if the
timestamp is less than the specified timestamp.
Note that
snapshotForSourceGlobalID:relationshipName:
has been reimplemented to invoke
snapshotForSourceGlobalID:relationshipName:a
fter: with EODistantPastTimeInterval as the
timestamp.

timestampForGlobalID (Java)
timestampForGlobalID: (Objective–C)

Returns the timestamp of the snapshot for the
specified globalID. Returns
(EO)DistantPastTimeInterval if there isn’t a
snapshot.

timestampForSourceGlobalID (Java)
timestampForSourceGlobalID:relationship
Name: (Objective–C)

Returns the timestamp of the to-many snapshot
for the specified globalID. Returns
(EO)DistantPastTimeInterval if there isn’t a
snapshot.

Table 5-10 EODatabase (EOAccess/EODatabase.h) (continued)

New or Changed API Description

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Timestamping 89

Table 5-11 EODatabaseContext (EOAccess/EODatabaseContext.h)

New or Changed API Description

snapshotForGlobalID(EOGlobalID)
snapshotForGlobalID(
 EOGlobalID,
 double)
(Java)

The new, overloaded version of this method takes a
double argument to use as a timestamp. It returns
the snapshot associated with the specified globalID.
Returns null if there isn’t a snapshot or if its
timestamp is less than the specified timestamp.
Searches first locally (in the transaction scope) and
then in the receiver’s EODatabase.
The old version that only takes a globalID has been
reimplemented to invoke the new version using
DistantPastTimeInterval as the timestamp.

90 Snapshot Timestamping

C H A P T E R 5

What’s New in Enterprise Objects Framework

snapshotForSourceGlobalID(
 EOGlobalID,
 String)
snapshotForSourceGlobalID(
 EOGlobalID,
 String,
 double)

(Java)

The new, overloaded version of this method takes a
double argument to use as a timestamp. It returns
the to-many snapshot for the specified globalID
and relationship name. Returns null if there isn’t a
to-many snapshot or if the timestamp is less than
the specified timestamp.
The old version that only takes a globalID and a
String has been reimplemented to invoke the new
version using DistantPastTimeInterval as the
timestamp.

snapshotForGlobalID:after: (Objective–C) Returns the snapshot associated with the specified
globalID. Returns nil if there isn’t a snapshot or if
its timestamp is less than the specified timestamp.
Searches first locally (in the transaction scope) and
then in the receiver’s EODatabase.
Note that snapshotForGlobalID: has been
reimplemented to invoke
snapshotForGlobalID:after: with
EODistantPastTimeInterval as the timestamp.

snapshotForSourceGlobalID:relationship
Name:after: (Objective–C)

Returns the to-many snapshot for the specified
globalID and relationship name. Returns nil if
there isn’t a to-many snapshot or if the timestamp
is less than the specified timestamp.
Note that
snapshotForSourceGlobalID:relationshipName: has
been reimplemented to invoke
snapshotForSourceGlobalID:relationshipName:afte
r: with EODistantPastTimeInterval as the
timestamp.

Table 5-11 EODatabaseContext (EOAccess/EODatabaseContext.h)

New or Changed API Description

C H A P T E R 5

What’s New in Enterprise Objects Framework

Snapshot Timestamping 91

Table 5-12 EOEditingContext (EOControl/EOEditingContext.h)

New or Changed API Description

setDefaultFetchTimestampLag (Java)
setDefaultFetchTimestampLag:
(Objective–C)

A static/class method that assigns the default
timestamp lag for new editing contexts. The default
value is 3600.0 seconds (one hour).
When a new editing context is initialized, it is
assigned a fetch timestamp equal to the current
time less the default timestamp lag. Setting the lag
too high might cause every new editing context to
accept very old cached data. Setting the lag too low
might degrade performance due to excessive
fetching. A negative lag value is treated as 0.0.

defaultFetchTimestampLag (Java)
defaultFetchTimestampLag (Objective–C)

A static/class method that returns the default
timestamp lag.

setFetchTimestamp (Java)
setFetchTimestamp: (Objective–C)

Sets the receiver’s fetch timestamp. When an
editing context fetches objects from its parent object
store, the parent object store can use the timestamp
to determine whether to use cached data or to
refetch the most current values. An editing context
prefers that fetched values are at least as recent as
its fetch timestamp. Note that the parent object
store is free to ignore the timestamp; so this value
should be considered a hint or request and not a
guarantee.
Changing the fetch timestamp has no effect on
existing objects in the editing context; it can affect
only subsequent fetches. To refresh existing objects,
invoke refaultObjects before you invoke
setFetchTimestamp.
The initial value for the fetch timestamp of a new
non-nested editing context is the current time less
the defaultFetchTimestampLag. A nested editing
context always uses its parent’s fetch timestamp.
setFetchTimestamp raises if it’s invoked on a nested
editing context.

fetchTimestamp Returns the receiver’s fetch timestamp.

92 Handling Missing Faults

C H A P T E R 5

What’s New in Enterprise Objects Framework

Handling Missing Faults

In previous versions of EOF, if a fault fired but no corresponding database row
could be found (for example because of a referential integrity problem or because
the row was deleted without EOF’s knowledge), the delegate method
databaseContextFailedToFetchObject/
databaseContext:failedToFetchObject:globalID: was called. If the delegate didn’t
fix the problem, an exception was raised immediately. In 4.5, The delegate is
invoked, but the exception is delayed or avoided, and an empty enterprise object is
returned. If the application later tries to save an object graph that requires the
missing fault, the exception is raised during saveChanges. If the object is never
needed, no exception is raised.

Related API Changes
The following tables summarize new API added to support the better handling of
missing faults.

Table 5-13 EODatabaseContext (EOAccess/EODatabaseContext.h)

New or Changed API Description

missingObjectGlobalIDs Returns the globalIDs of any “missing” enterprise
objects. Returns an empty array if no missing
objects are known to the receiver. An object is
“missing” when a fault fires and the corresponding
row for the fault isn’t found in the database.
To be notified when a missing object is discovered,
implement the delegate method
databaseContextFailedToFetchObject/
databaseContext:failedToFetchObject:globalID:.
If an application tries to save a missing object, an
exception is raised.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Automatic Database Reconnection 93

Automatic Database Reconnection

In EOF 4.5, a concrete adaptor can now implement methods that cause EOF to
automatically attempt to reconnect to a database server when a connection is
unexpectedly dropped. This behavior handles the problem of transient
communication failures. By default reconnection is attempted by all of the adaptors
that ship with EOF 4.5.

EOF now sends isDroppedConnectionException to the adaptor if an exception is
raised during fetching or saving. If the adaptor returns true/YES, then it attempts to
reconnect to the database and retry the operation. (The adaptor context must also
implement handleDroppedConnetion to clean up the state of the context and its
channels before the reconnection is attempted.) If the reconnection attempt fails, the
exception from the failure is raised as usual.

The delegate method reconnectionDictionaryForAdaptor can be used to provide a
new connection dictionary for the reconnection attempt. If the delegate is not
implemented, the adaptor uses its existing connection dictionary when
reconnecting to the server.

Table 5-14 EODatabaseContext Delegate (EOAccess/EODatabaseContext.h)

New or Changed API Description

databaseContextFailedToFetchObject (Java)
databaseContext:
failedToFetchObject:
globalID: (Objective–C)
(changed behavior)

Invoked when a to-one fault can’t find its data in
the database. Now if the method returns false/NO,
the specified database context doesn’t immediately
raise as before. Instead, it simply tracks the
globalID of the offending object. If the tracked
globalID is in the list of updated objects when
prepareForSaveWithCoordinator/
prepareForSaveWithCoordinator:editingContext: is
invoked (saveChanges invokes this method), an
exception is raised.
To get a list of the objects that failed to fetch, see the
method missingObjectGlobalIDs.

94 Automatic Database Reconnection

C H A P T E R 5

What’s New in Enterprise Objects Framework

You can completely override the database reconnection behavior with the delegate
method databaseContextShouldHandleDatabaseException (Java) or
databaseContext: shouldHandleDatabaseException (Objective–C). For more
information, see Table 5-20 (page 97).

Related API Changes
The following tables summarize new API added to support the database
reconnection feature.

Table 5-15 EOAdaptor (EOAccess/EOAdaptor.h)

New or Changed API Description

handleDroppedConnection The adaptor cleans up after a dropped connection
by sending handleDroppedConnection to all of its
adaptor contexts and then clearing its array of
contexts.
If the receiver’s delegate implements
reconnectionDictionaryForAdaptor, that method is
invoked and the result is used as the new
connection dictionary for the adaptor. Otherwise,
the adaptor attempts new connections using the
original connection dictionary.
You should never invoke this method; it is invoked
automatically by the Framework. Subclasses don’t
normally need to override the superclass
implementation.

isDroppedConnectionException (Java)
isDroppedConnectionException:
(Objective–C)

Returns true/YES if the exception is one that the
adaptor can attempt to recover from by
reconnecting to the database, false/NO otherwise.
The default implementation returns false/NO.
Subclasses should implement it to allow for
automatic database reconnection.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Automatic Database Reconnection 95

Table 5-16 EOAdaptor Delegate (EOAccess/EOAdaptor.h)

New or Changed API Description

reconnectionDictionaryForAdaptor (Java)
reconnectionDictionaryForAdaptor:
(Objective–C)

Invoked from handleDroppedConnection. If this
method returns a non-null/nil value, the value is
used as the adaptor’s new connection dictionary.
The delegate is responsible for guaranteeing that
the new connection dictionary is compatible with
any EODatabase that is using the adaptor. If
reconnection succeeds, the EODatabase continues
to use its database snapshots as if nothing had
happened. Therefore, the new database server
should have the same data as the original.

Table 5-17 EOAdaptorContext (EOAccess/EOAdaptorContext.h)

New or Changed API Description

handleDroppedConnection Implemented by subclasses to provide automatic
database reconnection support. If database
reconnection is not supported, subclasses don’t
have to implement it.
Subclass implementations should clean up the state
of the adaptor context and its associated adaptor
channels so that they can be safely released and
deallocated without any errors.
Don’t invoke this method; it’s invoked
automatically by the Framework.

96 Automatic Database Reconnection

C H A P T E R 5

What’s New in Enterprise Objects Framework

Table 5-18 EODatabase (EOAccess/EODatabase.h)

handleDroppedConnection Received when a dropped connection is detected to
initiate cleanup. It cleans up by sending
handleDroppedConnection to its adaptor, and then
sending handleDroppedConnection to all of its
registered database contexts. When the cleanup
procedure is complete, the Framework can
automatically reconnect to the database.
Don’t invoke this method; it’s invoked
automatically by the Framework.

Table 5-19 EODatabaseContext (EOAccess/EODatabaseContext.h)

handleDroppedConnection Cleans up after a dropped connection by effectively
releasing adaptor context and database channels,
and then creating a new adaptor context.
Don’t invoke this method; it’s invoked
automatically by the Framework.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Setting Access Layer Delegates 97

Setting Access Layer Delegates

EOAdaptor, EOAdaptorContext, and EODatabaseContext now implement the
static method setDefaultDelegate to simplify the setting of delegates for new
instances of those classes (there are corresponding class methods in Objective–C).
By default, the default delegate for those classes is null/nil. However,
setDefaultDelegate can be used to establish a default delegate for a particular class
that will be assigned to any new instance of that class when the instance is
initialized.

Table 5-20 EODatabaseContext Delegate (EOAccess/EODatabaseContext.h)

databaseContextShouldHandleDatabase
Exception (Java)
databaseContext:
shouldHandleDatabaseException
(Objective–C)

Invoked when an exception is thrown in response
to a lost database connection. Implement this
method only if you want to override the default
reconnection behavior. If the delegate method is not
implemented, the reconnection decision is made
according to the adaptor’s response to
isDroppedConnectionException
(isDroppedConnectionException: in Objective–C).
The implementation of this method should inspect
the exception to determine if the exception is a
response to a dropped connection. If not, the
delegate should simply raise the specified
exception. If the exception is in response to a
dropped connection, the method can return true/
YES to allow the database context to handle the
exception by automatically reconnecting to the
database or can return false/NO to customize
connection behavior.
If the delegate returns false/NO, then the delegate
is responsible for handling the exception and
implementing an appropriate reconnection
strategy. The database context retries the operation
that generated the original exception without doing
any additional clean up and without attempting to
reconnect to the database.

98 Setting Access Layer Delegates

C H A P T E R 5

What’s New in Enterprise Objects Framework

Related API Changes
The following tables summarize new API added to support the database
reconnection feature.

Table 5-21 EOAdaptor (EOAccess/EOAdaptor.h)

New or Changed API Description

setDefaultDelegate (Java)
setDefaultDelegate: (Objective–C)

A static/class method that sets the default delegate
for all newly created EOAdaptor instances. That is,
specifies the object that is assigned as delegate to
new adaptor objects.

defaultDelegate A static/class method that returns the default
delegate.

Table 5-22 EOAdaptorContext (EOAccess/EOAdaptorContext.h)

New or Changed API Description

setDefaultDelegate (Java)
setDefaultDelegate: (Objective–C)

A static/class method that sets the default delegate
for all newly created EOAdaptorContext instances
(and their EOAdaptorChannels). That is, specifies
the object that is assigned as delegate to new
adaptor context objects and their channels.

defaultDelegate A static/class method that returns the default
delegate.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Key Value Coding Changes 99

Key Value Coding Changes

EOF 4.5 introduces two improvements to key-value coding: The addition of key
binding objects and the enforcement of lowercase key names. The follow sections
describe each.

Key Bindings
New key-value coding primitives have been introduced. The new primitives are
based on bindings, which associate a class/key pair to a mechanism for accessing
the key. There are two types of bindings, get bindings and set bindings. They are
represented by the new class EOKeyBinding.

To access an object’s data with key-value coding, clients typically use the
EOKeyValueCoding and EOKeyValueCodingAdditions methods valueForKey,
takeValueForKey, and so on. However, in EOF 4.5, clients can optimize access by
obtaining and caching bindings for particular class/key combinations and applying

Table 5-23 EODatabaseContext (EOAccess/EODatabaseContext.h)

New or Changed API Description

setDefaultDelegate (Java)
setDefaultDelegate: (Objective–C)

A static/class method that sets the default delegate
for all newly created EODatabaseContext instances.
That is, specifies the object that is assigned as
delegate to new database context objects.

defaultDelegate A static/class method that returns the default
delegate.

100 Key Value Coding Changes

C H A P T E R 5

What’s New in Enterprise Objects Framework

those bindings directly. Classes can override the EOKeyValueCoding methods
(such as valueForKey) directly, but overriding keyValueBindingForKey to return an
appropriately initialized binder object provides the maximum performance benefit.

Clients caching bindings are responsible for checking that the class of the object to
which a binding is applied matches the target class of the binding. Using a binding
obtained from one class on an object of another results in undefined behavior.

Enforcing Lowercase Key Names
EOF expects keys to begin with a lowercase letter. It now logs a warning if that
restriction is violated. For backwards compatibility with previous releases which
did not strictly check capitalization, you can use the
EOKeyValueCoding.KeyBinding static method suppressCapitalizedKeyWarning to
suppress the warning for capitalized keys (EOKeyBinding class method in
Objective–C). However, note that this method is deprecated and will be removed in
a future release.

Related API Changes
The following new classes have been added to support key value bindings:

� EOKeyValueCoding.KeyBinding (Java) and EOKeyBinding (Objective–C)

� EOKeyValueCoding.KeyGetBinding (Java) and EOKeyGetBinding
(Objective–C)

� EOKeyValueCoding.KeySetBinding (Java) and EOKeySetBinding (Objective–C)

For more information, see the class specification for
EOKeyValueCoding.KeyBinding/EOKeyBinding.

In addition, the EOKeyValueCoding interface/informal protocol has been
enhanced to create and return key bindings. In Java, the new methods are defined
in a new interface called EOKeyValueCoding.KeyBindingCreation. In Objective–C,

Note: The need to override the default key-value coding methods, particularly
the new binding primitives, is extremely rare. The default behavior is very
efficient and should be well suited to almost any application.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Recursive Reader and Writer Locks 101

the new methods are defined in EOKeyValueCoding.h. For more information, see the
EOKeyValueCoding.KeyBindingCreation interface specification (Java) or the
EOKeyBindingCreation informal protocol specification (Objective–C).

Recursive Reader and Writer Locks

A new class, EOMultiReaderLock, provides EOF with recursive reader and writer
locks. The locks are recursive; a single thread can request a lock many times, but a
lock is actually taken only on the first request. Likewise, when a thread indicates it’s
finished with a lock, it takes an equal number of unlock calls to return the lock.

There is no limit on the number of reader locks that can be taken by a process.
However, there can only be one writer lock at a time, and a writer lock is not issued
until all reader locks are returned. (Reader locks aren’t issued to new threads when
there is a thread waiting for a writer lock, but threads that already have a reader
lock can increment their lock count.)

Thread safety is maintained by using mutex locks (binary semaphores), which
ensures that no more than one critical section of the class can be processed at a time.
The queueing order of requests for writer locks is not managed by the class; the
underlying implementation of mutex signaling manages the queue order.

EOMultiReaderLock correctly handles promotion of a read lock to a write lock, and
the extension of a reader lock to the current writer. This prevents a thread from
deadlocking on itself when requesting a combination of lock types.

EOMultiReaderLocks are slightly more time-expensive than NSRecursiveLocks
because the recursion count has to be stored per-thread, causing each request for a
reader lock to incur a hash. Writer locks are even more expensive because
EOMultiReaderLock must poll the hashtable until all reader locks have been
returned before the writer lock can be taken.

102 LDAP Adaptor Example

C H A P T E R 5

What’s New in Enterprise Objects Framework

Related API Changes
A new class, EOMultiReaderLock, has been added to the Framework to support the
new multi reader and writer lock feature. For more information, see the
corresponding class specification.

LDAP Adaptor Example

EOF 4.5 comes with a new sample adaptor: the LDAP adaptor. It provides read,
modify, and delete access and limited support for inserting. Additionally it
provides a simple way to verify a user’s password on the Web with an LDAP server
without requiring a model.

LDAP Client Libraries
The LDAP adaptor is ready to use when you install WebObjects. The source code is
provided so that you can use a different client library or enhance the adaptor
yourself.

The LDAP adaptor consists of two pieces: The adaptor framework and an LDAP
client library. Apple ships a client library based on the public University of
Michigan LDAP Client. You can build and install this library as a framework, or you
can substitute your own client library, such as the Netscape LDAP library. (The
latter has not been tested, but both libraries conform to RFC 1823, the LDAP client
API).

Note: This class doesn’t exist in com.apple.client.eocontrol. Multithreaded clients
aren’t yet supported in Java Client applications. All the client-side locks in Java
Client application’s are no-ops.

C H A P T E R 5

What’s New in Enterprise Objects Framework

LDAP Adaptor Example 103

Creating Models
You create a model for an LDAP server with EOModeler the way you create models
for other adaptors. Simply choose New from the Model menu, and choose LDAP as
the adaptor for the new model.

Logging In

The LDAP adaptor defines the following connection keys, which are represented in
the login panel:

Server Name
The server’s address. Either an IP address (e.g. 17.205.15.205) or a name
(e.g. ldap.bigfoot.com). If you are inside a corporate firewall, it might
not allow LDAP traffic to pass through. Check with your administrator
if you have trouble accessing LDAP servers on the open internet.

User Name
If your LDAP server requires you to login, enter a username. This
version of the LDAP adaptor supports simple authentication only.

Password
If your LDAP server requires a password, enter it here.

Search Base
Entries on an LDAP server (roughly equivalent to rows in a database)
are organized in trees. The search base indicates what branch of the tree
to begin searching in. Common designs are to have the top level of the
tree have country or organization branches, so good search bases have
the form “c=US” or “o=Apple Computer”. An approximate database
equivalent is to say the search base is ANDed with any qualifiers you
pass in.

Schema Base
This value is used only during reverse engineering the LDAP server.
The Adaptor looks at this location for the subschema entry. Note that
during reverse engineering, the scope is temporarily overridden to Base
because the subschema does not have any children.

Note: If all you are trying to do is authenticate users using an LDAP server’s
usernames and encrypted passwords, you don’t need to create a model. See
“Performing Authentication” (page 105).

104 LDAP Adaptor Example

C H A P T E R 5

What’s New in Enterprise Objects Framework

Value Separator
The character used to separate multiple values for a property.

Port
LDAP servers are almost always on port 389, but secure servers might
use a different port.

Timeout
Maximum time to wait during LDAP operations before raising an
exception. Timeouts come from the client library and are raised as
EOGeneralAdaptorExceptions.

Scope
LDAP entries belong to an object class. The Adaptor maps each class to
an entity. Like classes in object-oriented programming, LDAP classes
have an inheritance hierarchy. Depending on the scope you set, results
include results from the that object class only (Base), its immediate
children (One Level), or the entire subtree (Subtree). The more you
include, the larger the result set is for a given search. Object class
hierarchies and entry hierarchies work together to give order to the
LDAP server’s data, and the Adaptor provides control over how
ordered or chaotic the data appears.

If Reverse Engineering Fails

The LDAP specification does not require LDAP servers to provide a means of
learning the server’s layout; providing a schema to clients is optional. For this
reason, the LDAP adaptor might not be able to reverse-engineer your LDAP server
to generate an EOModel automatically. If this is the case, you might need to create
your model by hand.

Generally speaking, Netscape Directory Servers automatically create and provide
schemas to clients. So, if you have a Netscape Directory server, you should be fine.

However, if the adaptor can’t find subschema information, it creates a default
model with two entities: Person and NoSchemaDataAvailable. If the server is
ldap.bigfoot.com (a well known server) and the scope is set to Subtree, this model
works for finding names. The NoSchemaDataAvailable entity is designed to be an
error message and should be deleted from the model. (EOAdaptors aren’t allowed
to return null/nil when reverse engineering a database, so the best alternative is to
return a minimal model.)

C H A P T E R 5

What’s New in Enterprise Objects Framework

LDAP Adaptor Example 105

Adding Entries to the Server
The LDAP adaptor provides limited support for adding entries to the server. If you
plan to use the adaptor to insert entries, keep the following points in mind:

� The LDAP adaptor doesn’t provide automatic primary key generation. so set the
primary key (the distinguished name, or “dn”) as a class property and set an
appropriate value yourself before saving a new entry.

� Consider adding an objectclass attribute to the entity so your can add the entry
to multiple classes at once.

� You must enforce object rules in custom code. The adaptor detects object class
violations once you attempt to save changes, but the violations cause the
adaptor to raise an exception.

Performing Authentication
One of the common applications for LDAP is to verify a user’s password on the
Web. The authentication is generally done by the LDAP server, not by retrieving the
user’s password from an LDAP entry. So, in essence, all that is needed is a mutable
connection dictionary from a model and a request to validate the connection. The
LDAP Adaptor provides a simple way to do this without a model:

java.lang.Throwable athenticateUser()

or in Objective–C,

+ (NSException *)authenticateUserString:(NSString *)userString
password:(NSString *)password
withServer:(NSString *)server
matchOnAttribute:(NSString *)searchAtt
searchBase:(NSString *)base
searchScope:(NSString *)scope;

The method is pretty easy to use and the header file contains specifics on its use.
Here is a sample code fragment from a WebObjects application that has one page,
“Main” with three instance variables: userName1, password1, and isLoggedIn. This
method is tied to the web page’s Submit button.

- authenticateUser {
NSException *exception;

106 LDAP Adaptor Example

C H A P T E R 5

What’s New in Enterprise Objects Framework

exception = [LDAPAdaptor authenticateUserString:userName1
password:password1
withServer:@”bigbird.apple.com”
matchOnAttribute:@”cn”
searchBase:@”o=apple computer” searchScope:@”Subtree”];ì

if (exception) {
NSLog(@”Auth failed.”);
isLoggedIn = NO;

} else {
NSLog(@”Auth successful.”);
isLoggedIn = YES;

}
return self;

}

Or, in Java (isLoggedIn is a string instead of a BOOL in this example):

public WOComponent authenticateUser() {
java.lang.Throwable ex = null;
ex = LDAPAdaptor.authenticateUser (

userName,
pswField,
“bigbird.apple.com”,
“cn”,
“o=Apple Computer”,
“Subtree”);

 if (ex == null) {
 isLoggedIn = “You are now logged in.”;
} else {

isLoggedIn = ex.getMessage();
}
return this;

}

C H A P T E R 5

What’s New in Enterprise Objects Framework

Miscellaneous API Enhancements 107

Miscellaneous API Enhancements

This section summarizes other miscellaneous methods added in EOF 4.5 not
covered in the other sections.

Table 5-24 EOAdaptorContext (EOAccess/EOAdaptorContext.h)

New or Changed API Description

hasOpenTransaction Returns true/YES if a transaction is open (begun
but not yet committed or rolled back). For more
information on this addition, see the section
“Deprecated API” (page 111).

Table 5-25 EODatabaseContext Delegate (EOAccess/EODatabaseContext.h)

New or Changed API Description

databaseContextWillFire
ObjectFaultForGlobalID (Java)
databaseContext:
willFireObjectFaultForGlobalID:
withFetchSpecification: editingContext:
(Objective–C)

Invoked just before the Framework-generated fetch
specification (provided as an argument) is used to
clear the fault for the specified globalID.
Note that it is very dangerous to modify the fetch
specification.

databaseContextWillFire
ArrayFaultForGlobalID (Java)
databaseContext:
willFireArrayFaultForGlobalID:
relationship: withFetchSpecification:
editingContext: (Objective–C)

Invoked just before the Framework-generated fetch
specification (provided as an argument) is used to
clear the fault for the specified globalID and
relationship.
Note that it is very dangerous to modify the fetch
specification.

108 Miscellaneous API Enhancements

C H A P T E R 5

What’s New in Enterprise Objects Framework

Table 5-26 EOEditingContext Additions (Objective–C only; EOAccess/EOUtilities.h)

New or Changed API Description

createAndInsertInstanceOf
EntityNamed:

Creates a new enterprise object of the specified
entity, inserts it into the receiving editing context,
and returns the new object.

Table 5-27 EOUtilities (Java)

New or Changed API Description

createAndInsertInstance Creates a new enterprise object of the specified
entity, inserts it into the specified editing context,
and returns the new object.

Table 5-28 EOClassDescription (EOControl/EOClassDescription.h)

New or Changed API Description

fetchSpecificationNamed (Java)
fetchSpecificationNamed:(Objective–C)

The receiver returns the fetch specification it
associates with the specified name.
EOClassDescription’s implementation returns
null/nil; subclasses can override it to return a
fetch specification.

Table 5-29 EOFetchSpecification (EOControl/EOFetchSpecification.h)

New or Changed API Description

fetchSpecificationNamed (Java)
fetchSpecificationNamed:entityNamed:
(Objective–C)

A static/class method that returns the fetch
specification that the specified entity associates
with the specified fetch specification name.

C H A P T E R 5

What’s New in Enterprise Objects Framework

Miscellaneous API Enhancements 109

Table 5-30 EOQualifier (EOControl/EOQualifier.h)

New or Changed API Description

evaluateWithObject (Java)
evaluateWithObject: (Objective–C)

Implemented by subclasses to return true/YES if
the provided object matches the criteria specified in
the receiver, false/NO otherwise. The argument
should be an enterprise object, a snapshot
dictionary, or something that implements key-value
coding.

allQualifierKeys Returns an NSSet of strings, which are the left-hand
sides of all the qualifiers in the receiver. For
example, if you have a qualifier
 salary > 10000 AND manager.lastName = 'smith'
allQualifierKeys returns an array containing the
strings “salary” and “manager.lastName”.
Subclasses should not override this method,
instead they should override
addQualifierKeysToSet.

addQualifierKeysToSet (Java)
addQualifierKeysToSet: (Objective–C)

Adds the receiver’s qualifier keys to the specified
NSMutableSet. The subclasses in the EOControl
framework do this by traversing the tree of
qualifiers. Node qualifiers (such as
EOAndQualifier) recursively invoke this method
until they reach a leaf qualifier (such as
EOKeyValueQualifier) which adds its key to the
set.
Subclasses of EOQualifier must implement this
method.

Table 5-31 EOTemporaryGlobalID

New or Changed API Description

assignGloballyUniqueBytes (Java only) This method, which was not wrapped in 4.0, is the
equivalent of the Objective–C method,
assignGloballyUniqueBytes:, which assigns a
network-wide unique ID

110 Miscellaneous API Enhancements

C H A P T E R 5

What’s New in Enterprise Objects Framework

Table 5-32 EOAssociation (EOInterface/EOAssociation.h)

New or Changed API Description

isExplicitlyDisabled
(Java Client only)
setExplicitlyDisabled
(Java Client only)

Returns or sets whether or not the association is
explicitly disabled. These methods are used by the
new user interface generation layer, which is
described in “Direct To Java Client” (page 138). An
association is “explicitly disabled” when the
display object shouldn’t be editable, such as in the
case where the display object simply displays the
results of a search.

Table 5-33 EODisplayGroup (EOInterface/EODisplayGroup.h)

New or Changed API Description

globalDefaultStringMatchOperator A static/class method that returns the default
operator used for matching strings, one of
caseInsensitiveLike or like

setGlobalDefaultStringMatchOperator
(Java)
setGlobal
DefaultStringMatchOperator:
(Objective–C)

A static/class method that sets the default operator
for instances to use for string matching.

globalDefaultStringMatchFormat A static/class method that returns the default
format used for matching strings (“%@*”, for
example).

C H A P T E R 5

What’s New in Enterprise Objects Framework

Deprecated API 111

Deprecated API

Nested transactions are no longer supported. EOF never actually used nested
transactions. Furthermore, the concrete adaptors were not guaranteed to support
them, especially since the SQL/92 standard doesn’t allow nested transactions. New
features in EOF 4.5 make nested transactions impossible to support.

setGlobalDefaultStringMatchFormat (Java)
setGlobalDefaultStringMatchFormat:
(Objective–C)

A static/class method that sets the default format
for instances to use for string matching.

globalDefaultFor
ValidatesChangesImmediately

A static/class method that returns true/YES if
instances validate immediately by default.

setGlobalDefaultFor
ValidatesChangesImmediately (Java)
setGlobalDefaultFor
ValidatesChangesImmediately:
(Objective–C)

A static/class method that sets the default
validation behavior for instances.

Table 5-33 EODisplayGroup (EOInterface/EODisplayGroup.h) (continued)

New or Changed API Description

112 Deprecated API

C H A P T E R 5

What’s New in Enterprise Objects Framework

Consequently, the following methods are deprecated.

For backwards compatibility, the Sybase Adaptor still allows you to attempt to
begin a nested transaction, but the implementation ignores the nesting.

Table 5-34 EOAdaptorContext (EOAccess/EODeprecated.h)

Deprecated API New API or Workaround

canNestTransactions: None.
No adaptor can nest transactions.

transactionNestingLevel hasOpenTransaction

Returns true/YES if a transaction is open (begun
but not yet committed or rolled back).

111

C H A P T E R 6

6 What’s New in Java Client

This chapter describes changes made to Java Client between WebObjects release 4.0
and release 4.5. Java Client has been extended considerably, including the
following:

� The foundation layer (com.apple.client.foundation) contains a new number
formatter based on NSNumberFormatter and adds an NSUndoManager class,
which is analogous to the server side class.

� The control layer (com.apple.client.eocontrol) is more complete.

� The distribution layer (com.apple.client.eodistribution on the client side and
com.apple.yellow.eodistribution on the server side) provides support for
encrypted client/server communication and for managing user defaults.

� The interface layer (com.apple.client.eointerface) adds support for table cell
editing and for displaying images and QuickTime media.

Additionally, Java Client now has a new user interface generation layer, Direct to
Java Client, which is comparable to WebObjects’ Direct to Web.

The following sections describe how Java Client has been synchronized with the
rest of EOF, the changes to the procedures for running Java Client applications, and
the new Direct to Java Client technology.

Note: Java Client applications require some conversion to run on WebObjects 4.5;
see the WebObjects 4.5 Post-Installation Instructions for more information on
converting your existing applications.

112 Foundation Layer Changes

C H A P T E R 6

What’s New in Java Client

Foundation Layer Changes

This section lists some of the new features in the Java Client Foundation framework
(com.apple.client.foundation).

Number Formatter
The Java Client number formatter has been rewritten; it is now based on the
NSNumberFormatter in the Foundation framework. It preserves the previous
AWT-based API, so it isn’t necessary to convert your code.

The new number formatter supports a subset of the Objective–C number formatter.
It doesn’t support attributed strings, but it does support customized text strings for
zero, null, and NaN (Not a Number).

C H A P T E R 6

What’s New in Java Client

Control Layer Changes 113

New Foundation Layer Classes and Interfaces
The following table lists the classes and interfaces that have been added in this
release.

Control Layer Changes

The Java Client control layer API is more complete in this release. Many features
that were missing in 4.0 have been ported, and many of the server-side features
added in EOF 4.5 are available on the client side as well. This section lists the new
classes, interfaces, and methods added to Java Client’s control layer
(com.apple.client.eocontrol) as well as classes and methods that have been
removed. The purpose of most of the API changes is to synchronize Java Client’s
feature set and API with EOF’s. However, some of the new API is exclusive to Java
Client.

Class or Interface Description

NSDisposable An interface that defines a method (dispose) for
performing any necessary housecleaning in
preparation for garbage collection.

NSInlineObservable An interface that observable objects implement.
NSNotificationCenters and EOObserverCenters use
the interface’s two methods (observerData and
setObserverData) to avoid creating uncollectable
object references.
Note that this interface is only needed in the
absence of weak references; it might be removed in
the future when support for weak references is
available.

NSUndoManager Analogous to the server side class.

114 Control Layer Changes

C H A P T E R 6

What’s New in Java Client

New Control Layer Classes and Interfaces
The following table lists the classes and interfaces that have been added in this
release.

Class or Interface Description

EOFoundationExtras Exclusive to Java Client. A utility class containing
convenience methods for working with classes in
the com.apple.client.foundation package.

EOKeyValueCoding.KeyBinding Analogous to the server side class. Corresponds to
a new feature in EOF 4.5. See “Key Value Coding
Changes” (page 99).

EOKeyValueCoding.
KeyBindingCreation (interface)

Analogous to the server side interface.
Corresponds to a new feature in EOF 4.5. See “Key
Value Coding Changes” (page 99).

EOKeyValueCoding.
UnknownKeyException

The kind of exception raised by key value coding
methods when they encounter an unknown key.

EOQualifier.
QualifierVariableSubstitutionException

The kind of exception raised when an
EOQualifierVariable object requires bindings for all
its variables and one or more variable is missing
from the bindings.

EOQualifierVariable Analogous to the server side class.

C H A P T E R 6

What’s New in Java Client

Control Layer Changes 115

New API
The following tables summarize the methods and constants that have been added
to the client side control layer in this release. Most methods are analogous to
methods in the server side control layer and have been added to synchronize the
two layers.

Table 6-1 EOClassDescription

API Description

invalidateClassDescriptionCache Analogous to the server side method.

defaultFormatterForKey Analogous to the server side method.

defaultFormatterForKeyPath Analogous to the server side method.

displayNameForKey Analogous to the server side method.

fetchSpecificationNamed Analogous to the server side method.

userPresentableDescriptionForObject Analogous to the server side method.

Table 6-2 EOCustomObject

API Description

createKeyValueBindingForKey Analogous to the server side method. Conformance
to EOKeyValueCoding.KeyBindingCreation, a new
feature in EOF 4.5. See “Key Value Coding
Changes” (page 99).

keyValueBindingForKey Analogous to the server side method. Conformance
to EOKeyValueCoding.KeyBindingCreation, a new
feature in EOF 4.5. See “Key Value Coding
Changes” (page 99).

observerData

setObserverData

Exclusive to Java Client. Conformance to
NSInlineObservable.

116 Control Layer Changes

C H A P T E R 6

What’s New in Java Client

Table 6-3 EODelayedObserver

API Description

observerData

setObserverData

Exclusive to Java Client. Conformance to
NSInlineObservable.

Table 6-4 EOEditingContext

API Description

dispose Exclusive to Java Client. Conformance to
NSDisposable.

invalidatesObjectsWhenFinalized

setInvalidatesObjectsWhenFinalized

Analogous to the server side method.

lock

unlock

Analogous to the server side method.
Note that multithreaded clients aren’t yet
supported. All the client-side locks in Java Client
application’s are no-ops.

observerData

setObserverData

Exclusive to Java Client. Conformance to
NSInlineObservable.

redo Analogous to the server side method.

refault Analogous to the server side method.

refetch Analogous to the server side method.

reset Analogous to the server side method.

revert Analogous to the server side method.

undoManager

setUndoManager

Analogous to the server side method.

undo Analogous to the server side method.

C H A P T E R 6

What’s New in Java Client

Control Layer Changes 117

Table 6-5 EOEditingContext.Delegate

API Description

editingContextDidMergeChanges Analogous to the server side method.

editingContextShouldInvalidateObject Analogous to the server side method.

editingContext
ShouldMergeChangesForObject

Analogous to the server side method.

editingContext
ShouldUndoUserActionsAfterFailure

Analogous to the server side method.

Table 6-6 EOEditingContext.MessageHandler

API Description

editingContextPresentErrorMessage Analogous to the server side method.

Table 6-7 EOEnterpriseObject

API Description

changesFromSnapshot Analogous to the server side method.

reapplyChangesFromDictionary Analogous to the server side method.

userPresentableDescription Analogous to the server side method.

118 Control Layer Changes

C H A P T E R 6

What’s New in Java Client

Table 6-8 EOFaultHandler

API Description

eoShallowDescription Returns a string that describes the object that
receiver’s fault represents. Used to prevent faulting
an object upon receipt of an eoShallowDescription
message.

descriptionForObject Analogous to the server side method.

Table 6-9 EOFaulting

API Description

faultHandler If the receiver is a fault, returns its
EOFaultHandler; otherwise returns null.

Table 6-10 EOFetchSpecification

API Description

fetchSpecificationNamed Analogous to the server side method.

fetchSpecification
WithQualifierBindings

Analogous to the server side method.

C H A P T E R 6

What’s New in Java Client

Control Layer Changes 119

Table 6-11 EOKeyValueCoding

API Description

TargetObjectUserInfoKey

UnknownUserInfoKey

String constants defining the keys in the userInfo
dictionary of an
EOKeyValueCoding.UnknownKeyException. An
UnknownKeyException is raised by key value
coding methods when they are invoked with a key
that does not correspond to a method or instance
variable in the receiving object. The userInfo of the
exception contains the target object
(TargetObjectUserInfoKey) and the key
(UnknownUserInfoKey).

SetKeyBindingMask Analogous to the server side constant.

StoredKeyBindingMask Analogous to the server side constant.

Table 6-12 EOKeyValueCoding.Support (Exclusive to Java Client)

API Description

createKeyValueBindingForKey A static method that provides a default
implementation of the corresponding
EOKeyValueCoding method.

keyValueBindingForKey A static method that provides a default
implementation of the corresponding
EOKeyValueCoding method.

120 Control Layer Changes

C H A P T E R 6

What’s New in Java Client

Table 6-13 EOKeyValueCodingAdditions.Support (Exclusive to Java Client)

API Description

takeStoredValuesFromDictionary A static method that provides a default
implementation of the corresponding
EOKeyValueCodingAdditions method.

valueForKeyPath A static method that provides a default
implementation of the corresponding
EOKeyValueCodingAdditions method.

Table 6-14 EOObjectStore

API Description

editingContext
DidForgetObjectWithGlobalID

Analogous to the server side method. Corresponds
to a new feature in EOF 4.5. See “Snapshot
Reference Counting” (page 83). However, note that
Java Client doesn’t implement snapshot reference
counting yet.

faultForRawRow Analogous to the server side method.

Table 6-15 EOQualifier

API Description

qualifierToMatchAllValues Analogous to the server side method.

qualifierToMatchAnyValue Analogous to the server side method.

addQualifierKeysToSet Analogous to the server side method, which is new
in EOF 4.5. See “Miscellaneous API Enhancements”
(page 107).

allQualifierKeys Analogous to the server side method, which is new
in EOF 4.5. See “Miscellaneous API Enhancements”
(page 107).

bindingKeys Analogous to the server side method.

C H A P T E R 6

What’s New in Java Client

Control Layer Changes 121

Deleted API
The two interfaces EOKeyValueCoding.KeyValueGetter and
EOKeyValueCoding.KeyValueSetter have been removed. Additionally, the
following methods, organized by class, have been deleted and replaced where
appropriate, for compatibility with the Java wrappers (com.apple.yellow
packages).

keyPathForBindingKey Analogous to the server side method.

qualifierWithBindings Analogous to the server side method.

validateKeysWithRootClassDescription Analogous to the server side method.

Table 6-16 EOValidation

API Description

validateTakeValueForKeyPath Analogous to the server side method.

Table 6-17 EOClassDescription

Deleted API New API or Workaround

registerForName registerClassDescription

registerForClass registerClassDescription

Table 6-15 EOQualifier (continued)

API Description

122 Distribution Layer Changes

C H A P T E R 6

What’s New in Java Client

Server-Side Features Not in Java Client
Features added to server-side in the 4.5 release that are not yet available in Java
Client are:

� Shared editing contexts

� Event logging

� Snapshot timestamps

� Snapshot reference counting

� Recursive reader/writer locks

Distribution Layer Changes

This section describes the changes made to the client and server sides of the
distribution layer for Java Client applications. They are:

� EODistributionContexts are associated with WOSessions.

Table 6-18 EOEditingContext

Deleted API New API or Workaround

globalIDsForObjects globalIDForObject

objectsForGlobalIDs objectForGlobalID

registeredGlobalIDs registeredObjects and globalIDForObject

Table 6-19 EOEditingContext.MessageHandler

Deleted API New API or Workaround

editingContextPresentException editingContextPresentErrorMessage

C H A P T E R 6

What’s New in Java Client

Distribution Layer Changes 123

An EODistributionContext is now associated with a WOSession, and by default,
a distribution context’s editing context is the session’s default editing context.

� Client server communication supports encryption.

Additional delegate methods for EODistributionContext and an
EODistributionChannel delegate provide hooks in which you can encrypt and
decrypt data being sent between client and server.

� The EODistributedObjectStore method invokeRemoteMethodWithKeyPath now
invokes the method on the server side EODistributionContext if the provided
key path is null.

� User defaults support

EODistributionContext now sends out notifications to load and save user
defaults, which can be used to manage defaults on a per-user basis.

New Distribution Layer Classes and Interfaces
The following table lists the classes and interfaces that have been added in this
release.

Class or Interface Description

EODistributionChannel.Delegate An interface defining methods that allow you to
encrypt and decrypt data being sent between client
and server

124 Distribution Layer Changes

C H A P T E R 6

What’s New in Java Client

Related API Changes
The following tables summarize the updated and new API in the distribution layer.

Table 6-20 EODistributionContext (Server side; EOJavaClient/
EODistributionContext.h)

New or Changed API Description

public EODistributionContext(
 WOSession session,
 EOEditingContext context)

public EODistributionContext(
 WOSession session)

(Java)

Creates a new EODistributionContext for use
within the specified session and with the specified
editing context, if provided. If an editing context
isn’t provided, the new distribution context is
associated with the session’s default editing
context.

initWithSession:editingContext:
(Objective–C)

Initializes a new EODistributionContext for use in
the specified session and with the specified editing
context.

initWithSession: (Objective–C) Initializes a new EODistributionContext for use in
the specified session and with that session’s default
editing context.

editingContext Returns the EOEditingContext with which the
distribution context is associated.

C H A P T E R 6

What’s New in Java Client

Distribution Layer Changes 125

session Returns the WOSession with which the distribution
context is associated.

LoadUserDefaultsNotification (Java)
EOLoadUserDefaultsNotification
(Objective–C)

A string constant defining the name of a
notification that’s posted whenever a distribution
context receives a request for user default values
from a client application. Receivers can load default
values (from a database, for example) and add
them to the mutable dictionary provided in the
notification’s userInfo.

SaveUserDefaultsNotification (Java)
EOSaveUserDefaultsNotification
(Objective–C)

A string constant defining the name of a
notification that’s posted whenever the distribution
context receives user default values from a client
application. Receivers can use this notification to
store the default values (in a database, for
example). The default values are in the
notification’s userInfo dictionary.

Table 6-21 EODistributionContext.Delegate (Server side; EOJavaClient/
EODistributionContext.h)

New or Changed API Description

distributionContextDidReceiveData (Java)
distributionContext:didReceiveData:
(Objective–C)

Invoked after a distribution context has received
data. You can use this method and its counterpart,
distributionContextWillSendData, to implement
encryption in client server communication,
encrypting in distributionContextWillSendData
and decrypting in
distributionContextDidReceiveData.

distributionContextWillSendData (Java)
distributionContext:willSendData:
(Objective–C)

Invoked before a distribution context sends data to
the client.

Table 6-20 EODistributionContext (Server side; EOJavaClient/
EODistributionContext.h) (continued)

New or Changed API Description

126 Distribution Layer Changes

C H A P T E R 6

What’s New in Java Client

Table 6-22 WOJavaClientApplet (Server side; EOJavaClient/WOJavaClientApplet.h)

New or Changed API Description

EOAllParameterNamesKey (Objective–C) A string constant defining a dictionary key used
internally to collect the names of all HTML
parameters passed to the client (the names of all
bindings of the WOJavaClientApplet), including
any additional bindings that you add to the applet.

EOSessionIDKey (Objective–C) A string constant defining a dictionary key used
internally to identify the session with which the
server side EODistributionContext is associated.

EOComponentURLKey (Objective–C) A string constant defining a dictionary key used
internally to identify the WOJavaClientApplet
component on the server side which corresponds to
the EOApplet on the client side.

Table 6-23 EODistributionChannel (Client side)

New or Changed API Description

observerData, setObserverData Conformance to NSInlineObservable.

delegate, setDelegate Accessing the distribution channel’s delegate.

Table 6-24 EODistributedObjectStore (Client side)

New or Changed API Description

observerData, setObserverData Conformance to NSInlineObservable.

invokeRemoteMethodWithKeyPath (Changed
behavior)

If the specified key path is null, this method now
invokes the method on the server side
EODistributionContext rather than on the
EODistributionContext’s invocation target as it did
in earlier releases.

C H A P T E R 6

What’s New in Java Client

Interface Layer Changes 127

Deleted API
The following methods have been deleted and replaced where appropriate, for
backwards compatibility with the Java wrappers (com.apple.yellow packages).

Interface Layer Changes

This section describes changes in the interface layer of Java Client applications,
including the following new features:

� Support for table cell editing

� Support for displaying images and QuickTime media

� URL Aspect for Associations

� Changes to string matching behavior in EODisplayGroup

The changes to EODisplayGroup have also been made to WODisplayGroup. For
more information on the changes, see the section “Other WODisplayGroup
Changes” (page 38) in the chapter WebObjects Framework API Changes.

Table 6-25 EODistributionContext (Server side; EODistributionContext.h)

Deleted API New API or Workaround

public EODistributionContext(
 EOEditingContext context) (Java)

public EODistributionContext(
 WOSession session,
 EOEditingContext context)

initWithEditingContext: (Objective–C) initWithSession:editingContext:

128 Interface Layer Changes

C H A P T E R 6

What’s New in Java Client

Support for Table Cell Editing
Swing implements JTable editing using javax.swing.table.TableCellEditor, a single
method interface returning a java.awt.Component to act as editor. The new Java
Client class EOColumnEditor implements this interface to mediate between the
Component it returns and the EOTableColumnAssociation bound to the edited
column. Abstract hooks for component instantiation and protected methods for
editing event communication allow concrete subclasses such as
EOTextColumnEditor to focus purely upon their Component’s specifics.

EOTableColumnAssociation acquires the editors for associated TableColumns
from its TableCellCustomizer, a new static object serving as the source of both
EOColumnEditors and TableCellRenderers. EOTableColumnAssociation’s
implementation of establishConnection now sets the editor and renderer of its
TableColumn to the objects returned by this object. Consumers may customize
columns by installing their own TableCellCustomizer.

QuickTime Association
If you use the QuickTime view and association classes, you should note the
following:

� While you don’t have to have the QuickTime software or the QuickTime for Java
packages installed during development, clients must have both installed to view
the QuickTime media. If one or the other aren’t installed, the QuickTime view is
simply blank.

� Apple only provides QuickTime for Java on MacOS and Windows, not on
MacOS X Server.

� EOQuickTimeAssociation doesn’t support the ValueAspect, only URLAspect.

� HTTP urls are only supported in QuickTime v4.0.

� The QuickTime association and view aren’t supported by the Java Client palette
in Interface Builder.

C H A P T E R 6

What’s New in Java Client

Interface Layer Changes 129

URLAspect for Associations
EOTextAssociation, EOImageAssociation, and EOQuickTimeAssociation support a
new aspect, URLAspect. As opposed to the ValueAspect, which is the raw data for the
text, image, or movie, the URLAspect is a url that references data on disk or over the
Web. You can bind the URLAspect in Interface Builder. The corresponding values are
read only.

Package Reorganization and Changes
The following classes have been moved from the eointerface package to the
eoapplication package, a new package to support Direct to Java Client:

� EOApplet

� EOApplication

� EOArchive

� EOInterfaceController

Additionally, the classes EOApplication and EOInterfaceController have new
superclasses, and their APIs have been modified considerably. EOArchive has also
changed, resulting in the requirement that you open and explicitly save every
interface file in your projects.

130 Interface Layer Changes

C H A P T E R 6

What’s New in Java Client

New Interface Layer Classes and Interfaces
The following table lists the classes and interfaces that have been added to the client
side interface layer in this release.

For more information on these classes and interface, see the corresponding class and
interface specifications.

Class or Interface Description

EOColumnEditor An abstract class that implements generalized cell
editing management for javax.swing.JTables. See
“Support for Table Cell Editing” (page 128).

EOImageAssociation A class whose instances associate the contents of
their display groups with EOImageViews.

EOImageView A class whose instances display images
(java.awt.Image objects) in Java Client applications.

EOQuickTimeAssociation A class whose instances associate the contents of
their display groups with EOQuickTimeViews.

EOQuickTimeView A class whose instances display QuickTime media
in Java Client applications. See “QuickTime
Association” (page 128).

EOTableColumnAssociation.
TableColumnCustomizer (interface)

An interface that defines the API an object uses to
specify custom editors and renderers for an
EOTableColumnAssociation. See “Support for
Table Cell Editing” (page 128).

EOTextColumnEditor EOTextColumnEditor is a concrete subclass of
EOColumnEditor whose instances mediate
between EOTextColumnAssociations and
EOTextFields. See “Support for Table Cell Editing”
(page 128).

C H A P T E R 6

What’s New in Java Client

Interface Layer Changes 131

Added Methods
The following tables summarize the methods and constants that have been added
to the Java Client interface layer in this release. The majority of the additions are in
EODisplayGroup. Most of the additions are analogous to API in the server side
WODisplayGroup and have been added to synchronize the classes.

Table 6-26 EOAssociation

New or Changed API Description

URLAspect (Constant) A string constant that defines the name of a new
aspect. See “URLAspect for Associations”
(page 129).

dispose Conformance to NSDisposable.

isEnabled Returns false if the receiver has explicitly disabled
its display object or if the receiver’s EnabledAspect
(if bound) resolves to false; true otherwise.

isEnabledAtIndex Returns false if the receiver has explicitly disabled
its display object or if the receiver’s EnabledAspect
(if bound) resolves to false for the specified index;
true otherwise.

isExplicitlyDisabled Returns true if the receiver has explicitly disabled
its display object, false otherwise.

setExplicitlyDisabled Sets whether or not the receiver is explicitly
disabled. This method and its counterpart
isExplicitlyDisabled are used by Direct to Java
Client. An association is “explicitly disabled” when
the display object shouldn’t be editable, such as in
the case where the display object simply displays
the results of a search.

132 Interface Layer Changes

C H A P T E R 6

What’s New in Java Client

Table 6-27 EOControlActionAdapter

New or Changed API Description

dispose Conformance to NSDisposable.

Table 6-28 EODisplayGroup

New or Changed API Description

globalDefaultFor
ValidatesChangesImmediately

setGlobalDefaultFor
ValidatesChangesImmediately

Static methods that return or set the default
validation behavior for new display group
instances: true if they immediately handle
validation errors, or false if they leave errors for
the EOEditingContext to handle when saving
changes.

globalDefaultStringMatchFormat

setGlobalDefaultStringMatchFormat

Static methods that return or set the default string
match format string used by display group
instances.

globalDefaultStringMatchOperator

setGlobalDefaultStringMatchOperator

Static methods that return or set the default string
match operator used by display group instances.

awakeFromNib Invoked when the receiver is unarchived from a nib
file to prepare it for use in an application.

defaultStringMatchFormat

setDefaultStringMatchFormat

Returns or sets the default string match format
string used by the receiver.

defaultStringMatchOperator

setDefaultStringMatchOperator

Returns or sets the default string match operator
used by the receiver.

delete Analogous to WODisplayGroup’s method.

dispose Conformance to NSDisposable.

editingContextPresentErrorMessage Invoked as part of the
EOEditingContext.MessageHandlers, to present an
attention panel a message to display.

enterQueryMode Puts the receiver in query mode.

C H A P T E R 6

What’s New in Java Client

Interface Layer Changes 133

equalToQueryValues

setEqualToQueryValues

Returns or sets the receiver’s dictionary of equalTo
query values. Similar to the WODisplayGroup
queryMatch method.

fetch Analogous to the WODisplayGroup method.

finishInitialization Invoked from the EODisplayGroup constructor
and from awakeFromNib to finish initializing a newly
created display group.

greaterThanQueryValues

setGreaterThanQueryValues

Returns or sets the receiver’s dictionary of
greaterThan query values. Similar to the
WODisplayGroup queryMin method.

inQueryMode

setInQueryMode

Analogous to WODisplayGroup’s methods.

insert Analogous to the WODisplayGroup method.

insertObjectAtIndex Analogous to the WODisplayGroup method
insertNewObjectAtIndex.

insertedObjectDefaultValues

setInsertedObjectDefaultValues

Analogous to WODisplayGroup’s methods.

lessThanQueryValues

setLessThanQueryValues

Returns or sets the receiver’s dictionary of lessThan
query values. Similar to the WODisplayGroup
queryMax method.

observerData

setObserverData

Conformance to NSInlineObservable.

qualifierFromQueryValues Analogous to the WODisplayGroup method.

qualifyDataSource Analogous to the WODisplayGroup method.

qualifyDisplayGroup Analogous to the WODisplayGroup method.

queryBindingValues

setQueryBindingValues

Returns or sets a dictionary containing the actual
values that the user wants to query upon.

Table 6-28 EODisplayGroup (continued)

New or Changed API Description

134 Interface Layer Changes

C H A P T E R 6

What’s New in Java Client

queryOperatorValues

setQueryOperatorValues

Returns or sets a dictionary of operators to use on
items in the query dictionaries
(equalToQueryValues, greaterThanQueryValues, and
lessThanQueryValues).

selectNext Analogous to the WODisplayGroup method.

selectObjectsIdenticalToSelect
FirstOnNoMatch

Analogous to the WODisplayGroup method.

selectPrevious Analogous to the WODisplayGroup method.

setValueForObjectAtIndex (Changed
arguments)

The position of the integer index argument has
been swapped with that of the String value
argument.

setValueForObject (Changed arguments) The position of the last two arguments has been
swapped and the EOKeyValueCodingAdditions
argument has been retyped as an Object.

sortOrderings Analogous to the WODisplayGroup method.

undoManager Returns the receiver’s NSUndoManager.

valueForObjectAtIndex (Changed
arguments)

The position of the arguments has been swapped.

valueForObjectKey Returns the value in the specified object for the
property identified by the specified key.

willChange Notifies observers that the receiver will change.

Table 6-29 EOFormCell

New or Changed API Description

dispose Conformance to NSDisposable.

Table 6-28 EODisplayGroup (continued)

New or Changed API Description

C H A P T E R 6

What’s New in Java Client

Interface Layer Changes 135

Table 6-30 EOMasterDetailAssociation

New or Changed API Description

dispose Conformance to NSDisposable.

Table 6-31 EOTable

New or Changed API Description

dispose Conformance to NSDisposable.

Table 6-32 EOTableAssociation

New or Changed API Description

removeColumnAssociation Removes the specified column association from the
receiver’s set of EOTableColumnAssociations.

Table 6-33 EOTableColumnAssociation

New or Changed API Description

tableColumnCustomizer

setTableColumnCustomizer

Returns and sets the association’s table column
customizer.

dispose Conformance to NSDisposable.

table

setTable (Changed)
Returns and sets the association’s EOTable object.
Note that the pre-4.5 setTable method had a
java.awt.Component as an argument instead of an
EOTable (from which you can get Swing table).

136 Interface Layer Changes

C H A P T E R 6

What’s New in Java Client

Deleted API
The following methods, organized by class, have been deleted and replaced, for
backwards compatibility with the Java wrappers (com.apple.yellow packages):

Table 6-34 EOView

New or Changed API Description

dispose Conformance to NSDisposable.

Table 6-35 EOActionAssociation

Deleted API New API or Workaround

enabled isEnabled (inherited from EOAssociation)

Table 6-36 EODisplayGroup

Deleted API New API or Workaround

EODisplayGroup(EODataSource dataSource) Invoke the default constructor followed by
setDataSource with the data source as an argument.

editingContextPresentException(editingContextPresentErrorMessage

insertNewObjectAtIndex(int index); insertObjectAtIndex(int index)

selectObjectsIdenticalTo selectObjectsIdenticalToSelectFirstOnNoMatch

sortOrdering sortOrderings

Note the addition of the “s” in “Orderings”

valueForObject(
 String value,
 EOKeyValueCodingAdditions object)

valueForObjectKey(
 EOKeyValueCodingAdditions object,
 String value)

Note that in addition to the method name change,
the position of the arguments was swapped.

C H A P T E R 6

What’s New in Java Client

Running Java Client Applications 137

Running Java Client Applications

There are two changes to running Java Client Applications: the syntax for starting
applications has changed and the classpath requirements have changed for all
platforms except Mac OS X Server.

In WebObjects 4.5, there are three ways to run Java Client applications:

1. As a java application with the command:

java [-debug] -classpath <classpath>
com.apple.client.eoapplication.EOApplication
-applicationURL <url> [-page <page>]

Note that you might have to vary the parameters if you use special distribution
channels.

2. As an applet in Applet Viewer with the commands:

export CLASSPATH=<classpath>
appletviewer [-debug] <url>

3. As an applet in a browser

Table 6-37 EOViewLayout

Deleted API New API or Workaround

Fixed (Constant) For use in setAutosizingMask, simply use 0 to mean
fixed size.

138 Direct To Java Client

C H A P T E R 6

What’s New in Java Client

For Non-Mac OS X Server Users
If you run Java Client applications on non-Mac OS X Server platforms, you might
need to change the classpath you ordinarily use. If you previously put the awt.jar
file ($(NEXT_ROOT)/Library/Frameworks/JavaVM.framework/Classes/awt.jar) in your
classpath, you should remove it. Except on Mac OS X Server, you can’t use the
awt.jar.

Direct To Java Client

Direct to Java Client is an addition to Enterprise Objects Framework and Java
Client. It dynamically generates complete Java Client applications (or parts of them)
from information in a model. User interface configuration information is stored as
a set of rules. You can use the user interface specified by the default set of rules, or
you can customize the user interface by changing the rules.

The version of Direct to Java Client shipping with WebObjects 4.5 is a technology
preview. It is very stable and robust, but its programming interfaces and generated
user interfaces are not guaranteed to be the same in future releases.

Two new packages have been added to the Java Client technology to support Direct
to Java Client, eoapplication and eogeneration. The eoapplication package provides
application level logic such as document management and classes for creating
advanced user interfaces. The eogeneration package is for defining applications that
are completely dynamic.

The eoapplication and eogeneration packages consists mainly of controllers. A new
class, EOController, defines the basic controller behavior.

 There are different types of controllers:

Note: The EOInterfaceController class, which was in the eointerface package in
the previous release, has been redefined as a subclass of EOController. In greater
detail, EOController is a subclass of EOEntityController, which is subclass of
EOComponentController, which is subclass of EOController.

C H A P T E R 6

What’s New in Java Client

Direct To Java Client 139

� User interface controllers (for controlling tabbed panes and windows, for
example)

� Entity level controllers (for controlling user interfaces that operate at an entity
or object level; query and editor interfaces, for example)

� Property level controllers (for controlling user interface widgets such as text
fields, combo boxes, action buttons that operate on properties of objects)

� Application objects

Controllers are organized in a hierarchy. The root controller is the shared
application object, typically an EOApplication. Children of the EOApplication
object, or the EOApplication’s subcontrollers, are usually window or applet
controllers which themselves have one or multiple subcontrollers.

To learn more about Direct to Java Client, including how to create dynamic
applications, see the tutorial “Getting Started with Direct to Java Client”.

Note: The eoapplication and eogeneration APIs are preliminary, and might
change in future releases.

	Contents
	Introduction
	Compatibility with WebObjects 4.0
	Changes in WebObjects 4.5
	Platform and Language Support
	Deploying WebObjects Applications
	Profiling and Tuning Applications
	Profiling
	Tuning

	Tools Improvements
	Object Modeling Improvements
	Managing Stale Data
	Automatic Database Reconnection
	Direct to Web
	Java Client
	LDAP Adaptor

	What’s New in the WebObjects Framework
	Executive Summary
	Monitor Changes
	Web Server Adaptor Changes
	Configuring the Web Server Adaptor
	Accessing Configuration Information
	Changing the Web Server Adaptor Multicast Address

	Disabling or Protecting Administrator Access
	Apache with mod_WebObjects.so
	NSAPI Adaptors
	ISAPI Adaptor
	WAI
	CGI

	Licensing Changes
	Miscellaneous Changes
	Supplemental Documentation
	Direct-Connect Mode
	Rapid Turnaround Mode
	Rapid Turnaround and Direct-Connect Mode
	Testing With a Web Server

	WebObjects Framework API Changes
	New Classes
	WOEvent
	WOMessage
	Messages with XML Content
	Changes to WORequest
	Changes to WOResponse

	WOHTTPConnection
	XML Package

	New Methods
	Other WODisplayGroup Changes

	Deprecated API
	WOExtensions Changes
	WOExtensions Reference Documentation
	New Components
	Stateless Components
	Deprecated Elements

	WebObjects Tools Changes
	Project Builder Changes
	WebObjects Builder Changes
	Main Window Changes
	Layout View Changes
	Preview View
	Source View

	Changes to the Binding Process
	Inspector Appearance
	Documentation
	Binding by Dragging
	Binding With the Element’s Context Menu
	Binding Validation
	Adding and Deleting Bindings with the Inspector
	Binding Aids in the Inspector
	Binding Name Completion

	Working with Keys
	Changes to Keyboard Actions
	Working with Tables
	Creating Tables
	Making Selections
	Editing Tables

	Working with Fonts
	Path View Menu
	Context Menus
	API Editor
	Syntactic and Semantic Constraints
	How WebObjects Builder Handles Bindings Files

	Direct to Web Changes
	API and Components Exposed
	Modifying the Visual Style
	Modifying the D2W Menu
	Neutral Look
	Custom Components
	Named Configurations
	Tab Panel Page
	Better Support for Key Paths in the Web Assistant
	Web Assistant Support for EOProject Parser
	Confirmation Page
	Deployment Performance
	Converting Projects From Earlier Releases
	API Changes

	What’s New in Enterprise Objects Framework
	Schema Synchronization
	Related API Changes

	Event Logging
	WOEventSetup page
	WOEventDisplay page
	Event System User Defaults
	Event Logging Questions and Answers
	Custom Event Logging
	Related API Changes

	Object Sharing
	How It Works
	Shared Objects Are Read-Only
	Shared Objects Are Uniqued

	Setting Up Object Sharing
	Accessing Shared Objects
	Inserting, Updating, and Deleting Shared Objects
	Refreshing the Shared Editing Context
	Disabling Sharing During Development
	Performance
	Multithreaded Access and Locking
	Related API Changes

	Subclassing EOGenericRecord
	Property Storage: Dictionary or Instance Variables
	Creating a Subclass

	Deferred Faulting
	Deferred Faulting and Inheritance
	Related API Changes

	Snapshot Reference Counting
	Related API Changes

	Snapshot Timestamping
	Related API Changes

	Handling Missing Faults
	Related API Changes

	Automatic Database Reconnection
	Related API Changes

	Setting Access Layer Delegates
	Related API Changes

	Key Value Coding Changes
	Key Bindings
	Enforcing Lowercase Key Names
	Related API Changes

	Recursive Reader and Writer Locks
	Related API Changes

	LDAP Adaptor Example
	LDAP Client Libraries
	Creating Models
	Logging In
	If Reverse Engineering Fails

	Adding Entries to the Server
	Performing Authentication

	Miscellaneous API Enhancements
	Deprecated API

	What’s New in Java Client
	Foundation Layer Changes
	Number Formatter
	New Foundation Layer Classes and Interfaces

	Control Layer Changes
	New Control Layer Classes and Interfaces
	New API
	Deleted API
	Server-Side Features Not in Java Client

	Distribution Layer Changes
	New Distribution Layer Classes and Interfaces
	Related API Changes
	Deleted API

	Interface Layer Changes
	Support for Table Cell Editing
	QuickTime Association
	URLAspect for Associations
	Package Reorganization and Changes
	New Interface Layer Classes and Interfaces
	Added Methods
	Deleted API

	Running Java Client Applications
	For Non-Mac OS X Server Users

	Direct To Java Client

