

C H A P T E R 2

 2 HelloWorld: Creating a Project
With Project Builder
This tutorial shows how to create a simple project with Project Builder. In it, you’ll
create a new project from a template, build and run it, then add a function to it, and
build and run the new application. Along the way, you’ll learn how to edit files,
search for text, and fix errors.

This tutorial does not attempt to teach you Mac OS X programming. You’ll create a
Carbon application, but you do not need to be familiar with Carbon to benefit.

1. “Create the Project” (page 15)

2. “Build and Run the Sample Application” (page 18)

3. “Write the New Function” (page 20)

4. “Call the New Function From the Main Application” (page 24)

5. “Fix, Build, and Run the New Application” (page 26)

Create the Project

Choose File > New Project. Project Builder displays a dialog box with several
template projects to choose from. Select Carbon Application, and click Next. Then
enter HelloWorld as the project name, choose a location, and click Finish.

Project Builder creates a directory for you, places a project file and some source files
in it, and opens the project’s window. The project already contains sample source
files that you can compile and run without change.
Create the Project 15

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

Now take some time to look at what’s in this Project Builder project. If you already
understand what projects, targets, and frameworks are, you can move ahead to
“Build and Run the Sample Application” (page 18).

A Project Builder project contains two types of items: file references and targets. The
files are in a list at the left of the project window and the targets are in a pop-up
menu above the file list.

■ Its files can be references to source files, resource files, libraries, and
frameworks. The files themselves aren’t in your poject. You can place related
files together in groups. Moving files into groups does not change where they
are located on disk.

■ Its targets are things you can build from your project’s files. A simple project,
like this one, has just one target that builds an application. A complex project
may contain several. For example, a project for a client-server software package
could contain targets for a client application, a server application, a private
framework that both applications use, and command-line tools that you can use
instead of the applications. Another tutorial (to be written) describes how to
manage projects with multiple targets.

Code

File

Target
Menu

List

Editor
16 Create the Project

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

This template project puts its files in four groups: Sources, Resources, External
Frameworks and Libraries, and Products. These are also the four main types of files
that a Project Builder project can contain. To see what’s in them, click the triangles
beside them.

■ Sources: These are files that are compiled to produce object code. In Project
Builder, header files are listed in the project window and are in this group. This
project contains only two source files: main.c and main.h.

■ Resources: These are files that contain resources or that can be compiled to
produce resources. This project contains two: main.r, which contains the
application’s resources, and InfoPlist.strings,which contains some strings
that can be localized. You’ll learn more about InfoPlist.strings in the tutorial
“AboutBox: Creating a Framework With Project Builder.”

■ External Frameworks and Libraries: These are different types of libraries. In Mac
OS X, a framework is a shared library that’s bundled with its header files and
resources. If you click the triangle beside a framework, you’ll see a list of its
header files. This project contains one: Carbon.framework.

■ Products: These are the items that the targets in your project can produce. It
contains one file: HelloWorld.app.

You can move the files into any groups you want. The groups are there solely for
your convenience and do not affect Project Builder’s ability to find or compile the
files.
Create the Project 17

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

Now go back to the Finder and look at the files in your project’s folder.

HelloWorld.pbxproj is a bundle that keeps track of your project’s files and targets.
(It may be called HelloWorld.pbproj.) If it appears as a single file, you can
double-click it to open your project. If it appears as a folder, open it and double-click
the project.pbxproj file that’s inside it.

English.lproj contains resources that are localized into English. In this case, it
contains InfoPlist.strings. You can have lproj folders for other languages, too,
like French.lproj or Japanese.lproj.

You’ll notice that although main.r is in a different group from main.c and main.h,
they’re all in the same folder. Also notice that Carbon.framework isn’t in here. It’s in
/System/Library/Frameworks. The project contains a reference to it.

Build and Run the Sample Application

First, you’ll build and run the sample application without modifying it, just to get a
feel for Project Builder.

1. Build the application.
18 Build and Run the Sample Application

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

Click the Build button. It’s the hammer in the upper-left corner of the project
window.

The Build panel slides down from the top of your project window. The top part
displays error messages and the bottom part displays the build’s status. Because
you haven’t changed the source files, there shouldn’t be any error messages.

When the build is done, “Build Succeeded” appears at the bottom of the project
window. To remove the Build panel, click the Build tab.

2. Run the application.

Click the Run button. It’s the computer monitor in the upper-left corner of the
project window.

Project Builder launches the application and drops down the Debug panel to
display messages written to stdout and stderr. Sometimes it can be handy to
Build and Run the Sample Application 19

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

perform simple debugging by writing status information to these streams.
Project Builder also lets you perform more sophisticated debugging, as shown
in the tutorial “DebugApp: Debugging an Application with Project Builder.”

The application displays an empty window. To quit it, press Command-Q.

Write the New Function

Now you’ll write a function that prints “Hello World!” in that empty window.
20 Write the New Function

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

1. “Write the Source File” (page 21)

2. “Write the Header File” (page 23)

Write the Source File

1. Create the source file.

Choose File > New File. Select Empty File and click Next. Enter hello.c as the
filename and click Finish.

Project Builder creates a new file and places a reference to it in your project
Write the New Function 21

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

The file is automatically opened in the project window’s editing pane. If you
want you can open it in a separate window by double clicking it in the file list.

2. Enter the source code.

You can either type in this code or copy and paste it from this document.

 Listing 2-1 The hello.c file

#include <QuickDraw.h>
#include <MacWindows.h>

void printHello(WindowPtr aWindow)
{

short int fNum;

SetPort(GetWindowPort(aWindow)) // <<-- ERROR! No semicolon
GetFNum("\pTimes", &fNum);
TextFont(fNum);
22 Write the New Function

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

TextFace(bold + italic);
TextSize(48);
MoveTo(5,50);
DrawString("\pHello World!");

}

Notice that the function contains a syntax error. You’ll fix it later on.

If you want, you can move the file into the Sources group. Just drag the file’s
icon.

Write the Header File

1. Create the header.

Choose File > New File. Select Empty File and click Next. Enter hello.h as the
filename and click Finish.

2. Enter the header’s code.

Again, you can either type in this code or copy and paste it from this document.

 Listing 2-2 The hello.h file

void printHello(WindowPtr aWindow);
Write the New Function 23

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

If you want, you can move the file into the Sources group as before.

Call the New Function From the Main Application

Now you’ll add calls to printHello in the main.c file. You’ll use Project Builder’s
Find command to determine where to put the calls.

1. “Include the New Header File” (page 24)

2. “Update MakeWindow” (page 24)

3. “Update DoEvent” (page 25)

Include the New Header File
Scroll to the beginning of the file main.c. After #include <MacWindows.h> (the last
#include statement), add the line #include "hello.h"

Update MakeWindow
In this step, you’ll edit MakeWindow to call printHello, so the application prints “Hello
World!” when it’s first started.

1. Find the function definition for MakeWindow.

Click the Find tab, near the top of the project window. The Find panel drops
down. In Project Builder, the Find panel appears right in the project window, so
you can find code and change it without opening several windows. The top of
24 Call the New Function From the Main Application

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2

the Find panel contains fields and buttons for performing the search. The bottom
of the Find panel displays a list of search results.

Enter MakeWindow and click the Find button (the magnifying glass). The results
list displays every occurrence of the string in your project.

Click the entry for the definition of MakeWindow. (It’s the one without a semicolon
at the end of the line.) The code for MakeWindow appears in the code editor, and
its first line is selected.

2. Replace the call to SetPort with a call to printHello.

Scroll down until you see this line. It appears after an else statement:

SetPort(GetWindowPort(myWindow));

Replace it with this line:

printHello(myWindow);

Update DoEvent
In this step, you’ll edit DoEvent to call printHello, so the application prints “Hello
World!” whenever it updates its window.

1. Find the function definition for DoEvent.
Call the New Function From the Main Application 25

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2
Search for DoEvent and click the entry for its definition.

2. Add a call to printHello.

Scroll down until you see the lines BeginUpdate((WindowPtr)event->message);
and EndUpdate((WindowPtr)event->message); . They should be near the end of
the function. Between these two lines, add this line:

printHello(myWindow);

Fix, Build, and Run the New Application

Finally, you’ll fix the error in the hello.c file, build your application, and run it.

1. Build the application.

Click the Build button.

The Build panel drops down and Project Builder starts building your project. An
error message appears in the results list.

Each file with errors is listed in the results list, with its errors listed underneath.

2. Fix the error.

Click the error message. The line with the error is selected in the code editor.
Add a semicolon at the end of the line.

3. Build the application again.
26 Fix, Build, and Run the New Application

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2
Click the Build button again. Now, Project Builder builds the project without
any problem.

4. Run the application.

Click the Run button.

Project Builder runs the application, which now displays a window that says
“Hello World!”
Fix, Build, and Run the New Application 27

Draft. Confidential.  Apple Computer, Inc. 5/2/00

C H A P T E R 2
28 Fix, Build, and Run the New Application

Draft. Confidential.  Apple Computer, Inc. 5/2/00

	HelloWorld: Creating a Project With Project Builder
	Create the Project
	Build and Run the Sample Application
	Write the New Function
	Write the Source File
	Write the Header File

	Call the New Function From the Main Application
	Include the New Header File
	Update MakeWindow
	Update DoEvent

	Fix, Build, and Run the New Application

