
Newtonscript Programming Language

NEWTONSCRIPT
PROGRAMMING

LANGUAGE
© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved

Introduction

This document addresses NewtonScript Programming Language issues that are not available in
the currently printed documentation . Please note that this information is subject to change as
the Newton technology and development environment evolve.

TABLE OF CONTENTS:
• NEW: NewtonScript Object Sizes (6/30/94)
• Play Catch - NewtonScript Exceptions (Obsoleted by NS Guide 1.0
 Final Documentation)

NewtonScript Q&As
• Garbage Collection (10/15/93) (obsoleted by NS Guide 1.0 Final Documentation)
• Order of Slots in Frames (9/15/93)
• Structured Literals (9/15/93)
• Passing Arguments (9/15/93)
• Slot (Variable) Lookup (9/15/93)
• Testing the Existence of a Slot (Variable) (9/15/93) (Obsoleted by NS 1.0 Final
 Documentation)
• Calling Methods Out Of Slot Context (9/15/93) (Obsoleted by NS Guide 1.0 Final
 Documentation)
• Inherited (10/13/93) (Obsoleted by NS Guide 1.0 Final Documentation)
• Deeply (foreach deeply in...) (10/13/93)(Obsoleted by NS Guide 1.0 Final
 Documentation)
• Compile Function (10/9/93) (Obsoleted by NS Guide 1.0 Final Documentation)
• Function Definitions (10/9/93)
• Closures and Perform (10/9/93) (Obsoleted by NS Guide 1.0 Final Documentation)
• Symbol Hacking (11/11/93) (Obsoleted by NS Guide 1.0 Final Documentation)
• Literals and Runtime (11/11/93)
• Missing SemiColons cause Weird Errors (12/11/93) (Obsoleted by NS Guide 1.0
 Final Documentation)
• Classical OOP programming ala NewtonScript (12/17/93) (Obsoleted by NS Guide 1.0
 Final Documentation)

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 1

Newtonscript Programming Language

• Only 7-Bit ASCII In NewtonScript Symbols (1/26/94) (Obsoleted by NS Guide 1.0
 Final Documentation)
• Nested IF Statements, Constant Condition Problems (6/9/94)
• NEW: How to Avoid _parent Problems (6/28/94)

NEW: NewtonScript Object Sizes (6/30/94)

Generic
The Newtonscript Objects are the objects that either reside in the read-write memory, pseudo-
ROM memory or inside the package or ROM. These objects are aligned to 8-byte boundaries.
This alignment causes a very small amount of fragmentation (usually under 2%) so this issue
could be ignored.

Immediates
The Newton Object System has four built-in primitive classes that describe an object's basic
type: Immediates, binaries, arrays and frames. In the case of an Immediates (integers,
character, boolean and so on) we are dealing with a 30+2 bit object.

In the case of binaries, arrays and frames we are also dealing with objects containing a so called
Object Header.

Object Header
Every object has a 12-byte header that contains information concerning size, flags, class, lock
count and so on. This information is implementation specific.

Strings
A string object contains a 12 byte header plus the Unicode strings plus a null termination
character. Note that Unicode characters are two-byte values. Here's an example:

"Hello World!"

This string contains 12 characters, in other words it has 24 bytes. In addition we have a null
termination character (24 + 2 bytes) and an object header (24 + 2 + 12 bytes), all in all the object
is 38 bytes big. Note that we have not taken into account any possible savings if the string was
compressed (using the NTK compression flags).

Binary Objects
A binary object contains a 12 byte header plus the size of the actual data.

Array Objects
Array objects have an object header (12 bytes) and additional four bytes per element. In

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 2

Newtonscript Programming Language

addition you need to calculate the amount of data stored in the arrays as well (references) if
you want to calculate the total amount.

Here's an example:

["Hello World!", "foo"]

We have a header (12 bytes) plus four bytes per element (12 + (2 * 4) bytes). In addition we
have string objects that we refer to (12 + (2*4) + 38 + 20 bytes), all in all 78 bytes. Again we
have not taken into account savings concerning compression. Note that the string objects could be
referred by other arrays and frames as well, so if we want to take this into account we should
make sure the string is counted only once per package.

Frame Objects
We have two kinds of frames, frames that don't have a shared map object, and frames who do
have a shared map object. We take the simple case first (no shared map object).

An array object map is an array of symbol pointers and one additional slot. The actual frame is
two arrays, one contains the slot names, and the other contains the actual slot entry.

The map is 16 bytes, if we add the object header to this the basic header size of a frame is 28
bytes. If we want to add the size taken by slot entries we multiply N slots with 8 (two array
entries). Here's an example:

{Slot1: 42, Slot2: "hello"}

We have a header of 28 bytes, in addition we have two slots (28 + (2 * 8)), all in all 48 bytes.
Once again we didn't calculate the actual slot entry objects.

In the case of a frame with a shared map multiple similar frames (look the same) could share
the one and only map. This will save space, reducing the marginal overhead per frame to the
same as an array with the same amount of slots. In addition we need to take into account the
amortized map size that multiple frames share. In other words the magic formula this time is
12 bytes for the header plus 4 times the amount of slots plus the amortized map size.

Here's an example of a frame with a shared map:

{Slot1: 42, Slot2: "hello"}

We have a header of 12 bytes, in addition we have two slots (2 * 4), and additional 16 bytes for
the size of a map with no slots, all in all 36 bytes. We should also take into account the shared
map, in the worst case there's only one of these frame objects, in other words we have
additional 16 bytes.

When do we create objects with a shared map?

1. When we clone the system will make sure that the cloned object uses the same map. A trick to
make use of this is to create a common template frame, and when we need to create additional
frames we clone this template frame over and over.

2. The system will make sure that the frame uses a shared map if the frame is created by a a

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 3

Newtonscript Programming Language

frame constructor expression in most cases a function that returns a frame. This is the reason we
use RelBounds when we create the viewBounds frame, in other words there's just one single
viewBounds map in the system, and it's stored inside the ROM.

Note again that these figures are for objects in their runtime state, ready for fast access. Objects
in transit or in storage (packages) are compressed into smaller stream formats. These figures are
neither true for flattened objects that are sent over a comms endpoint, neither true for objects
stored in soups.

Symbols
Asymbol is a frame with two slots, one pointing to a string containing the name, the other
pointing to the next symbol in an internal hash table. Symbols share one map, so each symbol
occupies 12+2*4 = 20 (round to 24) bytes for the frame and 12+length (rounded) bytes for the
name, for a total of 36+length bytes.

A symbol is a binary object that contains a four-byte hash value and the name is a null
terminated ASCII character . Each symbol is 12 (header) + 4 (hash value_) + length of object +
1 bytes (null termination ASCII char).

PLAY CATCH - NEWTONSCRIPT EXCEPTIONS
(9/15/93) (Obsoleted by NS Guide 1.0 final docs)

Introduction
The NewtonScript exception system provides a structured way for a module to report a failure
to another module. It communicates the type of the failure, and allows (optionally)
transmission of data that may explain the reason for the failure. The NewtonScript
implemention uses the exception system to report errors (for example, errors in an application,
failures due to lack of resources, or internal errors). Developers can use the exception system to
communicate errors between different modules in an application.

Basic Syntax
The Exception handling is based on a try block, and if an exception is thrown from
somewhere, the code should catch this with a special onException block.

Try Statements
The general format of the try statement is:

try
<statement list>

onexception <exception symbol> do
<statement>

onexception <exception symbol> do
<statement>

...

An example of this might be:
© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 4

Newtonscript Programming Language

try
begin

// create entries and store them to soups
end
onexception |ext.ex.store.err| do
begin

// problems with the store, most likely not enough memory
// do something

end

The <exception symbol>s must be single part exception symbols. Details about exception
symbols — that is, what multiple parts mean — are discussed below.

One or more onexception clauses are allowed. The try statement executes <statement list>. If no
exceptions are thrown in the process, then the value of the try statement is the value of the last
statement in <statement list> and the onexception clauses are never executed.

If during execution of <statement list> an exception is thrown, then the execution of <statement
list> stops and control is transferred to one of the onexception clauses. When an exception, X, is
raised, the onexception clauses of the try statement are examined in order. The first clause
whose <exception symbol> is a prefix of any of X's parts is executed and its <statement> value
becomes the value of the try statement.

If no onexception clause matches the exception, then the exception is passed to the next
enclosing try statement for processing. In a Newton application, the exception will ultimately
be handled by the view system (putting up an error dialog box) if your application doesn't catch
i t .

NOTE: It is important that the search for a matching onexception clause uses dynamic scoping,
not lexical scoping.

Since all exceptions have an evt.ex part, an exception clause with evt.ex as its symbol will
catch any exception. (See the following section for a description of "parts".) If your try
statement has an evt.ex clause, it should be last, since onexception clauses occuring after it will
never be executed. In general, you should order your onexception clauses from most specific to
least specific.

Exception Symbols
Exceptions have names which are symbols. These symbols have a particular format which
must be adhered to. An exception name consists of one or more parts separated by semi-colons.
Each part is a structured name beginning with evt.ex.

A few facts about exception symbols:
• They can have as many as 127 characters.
• They can contain periods, so the symbols must be enclosed in vertical bars (|'s)
• They can have multiple parts, separated by semi-colons.
• They must have a part starting with evt.ex.

The simplest possible exception symbol is |evt.ex|. An example of an exception symbol with
two parts would be '|evt.ex;type.ref|. Some more examples: '|evt.ex.div0|,
'|evt.ex.fr.intrp;type.ref.frame|.

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 5

Newtonscript Programming Language

Exception Frames
Associated with every exception is an exception frame. When handling an exception you can get
this frame using the global function, CurrentException(). An exception frame always has a
name slot which contains the exception symbol. It will contain one other slot whose name and
contents depend on the type of exception as follows: (this info is summarized on the NS Quick
Ref Card)

• if type.ref is a prefix in the exception symbol, then the other slot will be called data and can
contain anything.

|evt.ex;type.ref|: {name: <string>, data: <frame>}

Ex: {name: "the llama exception", data : {type: 'inka, size: 42, weight:
177}}

• if evt.ex.msg is a prefix in the exception symbol, then the other slot will be called message
and contain a string

|evt.ex.msg|: {name: <string>, message: <string>}

Ex: {name: "Ho ho exception", message: "You have a serious problem,
mate"}

• otherwise, the other slot will be called error and will contain an integer (error code)

|evt.ex|: {name: <string>, error: <integer>}

Ex: {:name: "Hi Ho exception", error: -48666}

Here are examples of exception frames from real life:
• Example A, division by zero:
{name: |evt.ex.div0|, error: 1764744}

If you want to catch division by zero errors, here's the trick:
try

5/0
onexception |evt.ex| do

CurrentException();

• Example B, undefined variable:
{name: |evt.ex.fr.interp; type.ref.frame|, data: {error:-48807, symbol:
foo}}

How to Raise Gentle Exceptions

You can throw an exception using the global function, Throw(<exception symbol>, <exception
data>). The value you pass for <exception data> is put into the "other" slot of the exception
frame. Make sure it is the correct type (as per the above rules) or your call to Throw will raise
another exception.

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 6

Newtonscript Programming Language

If the code block has more than one try statement in effect at one time, you can pass control to
the next enclosing try statement using the Rethrow function.

Here are examples of the three different ways to create and throw exceptions. Note that you
need to send an exception symbol ('):

Throw('|evt.ex.foo|, 99);

Throw('|evt.ex.msg|, "string");

Throw('|evt.ex;type.ref.something|, ["a", "b", "c"])

Default Exception Handling
Unfortunately, there is currently no general way for your application to specify a default
exception handler, for example, viewExceptionScript. This means you need to use try
statements wherever you want to catch exceptions.

Examples
Here's some code to test out the exception system. This tries various cases and is
designed to print no output, assuming the exception system works as advertised.
However, the NTK Inspector prints out every exception that is thrown,
whether it's handled or not. Expect to see output; however, none of
thePrint("*error?*) statements should execute.

//simple cases & a nested block
try

begin

try
Throw('|evt.ex;type.ref;foo|,"dsafsda");
Print("*error*1");

onexception |foo| do
begin

//Exception handled quietly
 end;

try

Throw('|evt.ex;type.ref;foo|,"dsafsda");
Print("*error*2");

onexception |type.ref| do
begin

//Exception handled quietly
 end;

 //outer block should catch this one
Throw('|evt.ex.foobar|,42);

 Print("*error*3");

end
onexception |evt.ex| do

if CurrentException().error <> 42 then
begin

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 7

Newtonscript Programming Language

Print("*error*4");
Print(CurrentException())

end;

//try out rethrow()
try

begin

try
Throw('|evt.ex|,42);
Print("*error*5");

onexception |evt.ex| do
begin

 //outer block should catch this one
Rethrow();

 end;

Print("*error*6");

end
onexception |evt.ex| do

if CurrentException().error <> 42 then
begin

Print("*error*7");
Print(CurrentException())

end;

//try it out with fn calls
try

begin

call func()
begin

try
call func(esym) Throw(esym,42) with ('|evt.ex|);
Print("*error*8");

onexception |type.ref| do
begin

 //outer block should catch this one
Rethrow();

 end;
end

with ();

Print("*error*9");

end
onexception |evt.ex| do

if CurrentException().error <> 42 then
begin

Print("*error*10");
Print(CurrentException())

end;

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 8

Newtonscript Programming Language

Print("no news, is good news");

NewtonScript Q&As

Garbage Collection (10/15/93) (Obsoleted by NS Guide 1.0 Final
Documentation)

In NewtonScript, the run-time module, not the programmer, is responsible for allocating storage
for objects and for reclaiming the storage of objects that are no longer used. Garbage collection is
carried out by the basic object system, so it’s not technically NewtonScript that does it. The
storage taken up by an object will be freed sometime after the last reference to that object goes
away.

One of the many benefits of garbage collection is that the programmer has to think about
freeing objects only in a small number of important places, as opposed to dealing with the
constant background worry that objects must be freed. Wth automatic garbage collection you
only need to consider disposing objects in rare cases.

One place where you should think about it is when you close an application; here you want to
free as much storage as possible. You do this by either removing slots or by setting slots to nil
in the application's context frame. Setting the value of all slots and variables referring to a
particular object to nil allows the Garbage Collector to destroy the object.

Within the Newton operating system, automatic garbage collection is triggered every time the
system runs out of memory. There's not really any reason to invoke garbage collection manually.
However, if you must do so, you can call the global NewtonScript function GC. Consult the
Newton Programmer’s Guide to find out more about the GC function.

Order of Slots in Frames (9/15/93)

Q: The description of the foreach function in the manual might be taken as a hint that
slots in frames are ordered. Does slot or array order imply anything about layout of
data in memory (as with C structs?)

A: Slots are not ordered, nor have we seen any performance gains from ordering slots for
particular sequences or search criteria. Don’t count on their being in any particular
order, nor on data structures in memory being ordered with any regard to the
placement of slots (as in the ANSI Common LISP object extension CLOS).

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 9

Newtonscript Programming Language

Q: Where is a newly-defined slot placed in a frame? at the end?

A: Because slots are unordered, the location of a new slot cannot be predetermined.

Structured Literals (9/15/93)

Q: Is it really dangerous to assign a string literal to a variable, as in the following
example?

s := "abc";

A: That depends on what you're going to do with s. If you're
going to modify it, then yes, it's dangerous. In that case, you
should use

s := Clone("abc");

In general you should treat string literals in NewtonScript
as read-only (just as you should in ANSI C). String literals might
reside in read-only memory or share storage with other literals.

The same warning applies to quoted array and frame literals, as in the following
example:

 '[1,2,3] or '{one: 1, two: 2, three: 3}

Here are some rules regarding string literals and quoted array/frame literals:

- Treat them as read only. Use clones when necessary.

- Realize that they always represent the same object. In the example below,

func foo() begin "abc"
end;

 - always returns exactly the same string - not different,
equivalent strings.

- In your code, an unquoted array or frame literal will generate a
new array or frame each time it is evaluated. So it’s acceptable for a
function to return [1,2,3] or {one: 1,two: 2,three: 3} as long as
they're not quoted.

Passing Arguments (9/15/93)

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 10

Newtonscript Programming Language

Q: Is NewtonScript call-by-reference or call-by-value?

A: A seemingly simple question. The short answer is “call-by-value,” the litmus test
being that

 func foo(x) x := 1;

does not affect the argument passed to it. However, this is not meant to imply that
NewtonScript functions can never make changes to their arguments. If the argument
has structure—for example, if it’s an array, frame, or string—then changes to the
internal structure are persistent. Consider the following code fragments:

 func foo(x) x[0] := 1;
// changes the 1st element of array arguments

func foo(x) x.slot1 := 1;
// changes the slot1 slot of frame arguments

Depending on what you’re used to, this example might be confusing because the
concepts of call-by-reference, call-by-value are mixed, and copying arguments are
intertwined (and often misunderstood.) The following discussion of this terminology
with respect to other languages may help clarify the differences.

Pascal - Supports both call-by-reference (VAR parameters) or call-by-value (the
default). When array or record arguments use call-by-value, copies of the
arrays/records are made and passed in. To Pascal programmers, NewtonScript may
seem to pass arrays and frames as VAR parameters.

C - Only supports call-by-value. Struct (not struct*) arguments are
passed as values; that is, a copy of the struct is passed. However, array arguments
pass in the address of the first element of the array. Thus, C programmers will find
the array arguments to be treated normally.

LISP - Only supports call-by-value. Copies are not made of structured
arguments (lists, structures, arrays, objects,...) Argument passing in Newton Script
works just like it does in LISP.

__
Slot (Variable) Lookup (9/15/93)

Q: What differences are there among the various ways to access a slot?

A: The means by which you access a slot specifies the search path and inheritance
mechanisms used to locate it. Each of the five ways to access a slot is described below.

•Specifying the slot name only

If you specify only the name of the slot, as in the example

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 11

Newtonscript Programming Language

theSlot

the search begins in the current function frame with lexically-visible variables,
followed by slot names. In other words, if the currently-executing function has a local
variable named theSlot, it is found before a local variable named theSlot in the
enclosing function, and so on. Similarly, any of those variables are found (in scope
order) before an actual slot named theSlot is found. If a variable named theSlot is not
found, global variables are searched next. If a global variable is not found, the current
receiver is searched for a slot named theSlot.

If the slot is not found in the receiver of the message, the remaining frames are
searched in order of prototype and parent inheritance. An exception is thrown if you
try to access a slot that can't be found. If you do an assignment operation using an
undeclared slot, the slot is created if you place the self. prefix in front of the slot
name; if you do the operation without the self. prefix you will get a local variable.

•Using the dot (.) operator

If you use the dot operator to specify the frame and the slot, as in the example

myframe.myslot

the search begins in the specified frame. If the slot is not found in the specified
frame, the remaining frames are searched in order of prototype inheritance. Parent
inheritance paths are not searched. If the slot does not exist, the system returns NIL.

•Using the GetSlot function

If you call

GetSlot(frame, slot)

only the specified frame is searched for the specified slot. Inheritance paths are not
searched.

•Using the GetVariable function

If you call

GetVariable(frame, slot)

the search begins in the specified frame. If the slot is not found in the current frame,
the remaining frames are searched in order of prototype and parent inheritance.

•GetVar will be removed from the language

You can usually simulate GetVar using GetVariable(self,slot). The difference will be that local
variables will not be found - only slots.

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 12

Newtonscript Programming Language

If you use GetVar you may find that is not available in future products, in which case your code
will throw an exception; or GetVar may work differently not finding local variables anymore,
in which case your code may subtly break. DTS advises against using GetVar.

Testing the Existence of a Slot (Variable) (9/15/93) (Obsoleted by NS
1.0 Final Documentation).

Q: What differences are there among the various ways to determine whether a slot
exists in a frame?

A: The means by which you test for a slot's existence specifies the search path and kinds
of inheritance used to discover it. The following examples describe three ways to
discover the existence of a slot in a frame.

• Using the exists operator

The exists operator follows the same rules as the expression to which it is applied.
For example, if you use this operator to test a slot access expression, as in the example

myframe.myslot exists

the search begins in the specified frame. If the slot is not found in the current frame,
the remaining frames are searched in order of prototype inheritance only. Parent
inheritance paths are not searched.

However, when using the exists operator to check whether an identifier exists, as in
the example

myvar exists

both prototype and parent inheritance paths are searched.

• Using the HasSlot function

If you call

HasSlot(frame, slot)

only the specified frame is searched for the specified slot. Inheritance paths are not
searched.

• Using the HasVariable function

If you call

HasVariable(frame, slot)

the search begins in the current frame. If the slot is not found in the current frame, the
remaining frames are searched in order of prototype and parent inheritance.

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 13

Newtonscript Programming Language

Calling Methods Out Of Slot Context (9/15/93) (Obsoleted by NS
Guide 1.0 Final Documentation)

Q: I'm trying to pull a method out of a slot and call it. Unfortunately, the functions
apply and call both seem to set self to {}. Is there another way?

A: The global function Perform(frame, message, paramaterArray) does what you want,
except that the method needs to be in a slot in the current frame if you really want to
preserve the value of self.

Inherited (10/13/93) (Obsoleted by NS Guide 1.0 Final
Documentation)

Q: What is the function of "inherited:" and "inherited:?"

A: In NewtonScript, the inherited:X() message send specifies a NewtonScript function
call on the function X, where X is found UP the inheritance chain starting from the
caller's _proto. In other words, lookup for that method ONLY starts up the caller's
_proto chain, NOT in "self" (the currently executing frame). The conditional message
send (:?), with inherited specified, operates almost exactly the same except that
no error results if the given method (function) is NOT found. The conditional message
send (:?), with inherited specified, is helpful in complex heirarchies because you
can use it without worrying about whether any such method was ever implemented
higher up in the inheritance chain.

Deeply (foreach deeply in...) (10/13/93)(Obsoleted by NS Guide 1.0
Final Documentation)

Q: What is the difference between "foreach" and "foreach deeply in"?

A: 'Deeply' specifies that only the slots/elements of the current frame/array are listed,
except that if passed a frame, slots of ancestors up the _proto chain are considered
elements of the current frame.

Here is some Inspector code to illustrate the difference between the two:

//oo DEFINITIONS
normallist := func (param)

 begin
 local tempItem;
 foreach tempItem in param
 collect tempItem;
 end;

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 14

Newtonscript Programming Language

deeplylist := func (param)
 begin
 local tempItem;
 foreach tempItem deeply in param
 collect tempItem;
 end;

//oo SAMPLE DATA
x := {one: 1, two: 2, three: 3};

y:= {four: 4, five: 5, combo: x};

z:= {six: 6, _proto: y};

complex := {a: "first string", b: ["array1", "array2",
{_proto: x}], c: 3.1415926};

//oo TESTS
:normallist(x) // same
#4413441 [1, 2, 3]
:deeplylist(x)
#44137D9 [1, 2, 3]

:normallist(y) // same
#4413A11 [4,

 5,
 {One: 1,
 two: 2,
 three: 3}]

:deeplylist(y)
#4413C49 [4,

 5,
 {One: 1,
 two: 2,
 three: 3}]

 // For z, the answer is different.
 // the deeply version travels proto chains!

:normallist(z)
#4416E29 [6,

 {four: 4,
 five: 5,
 combo: {#4415D79}}]

:deeplylist(z)
#4416FE1 [6,

 4,
 5,
 {One: 1,

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 15

Newtonscript Programming Language

 two: 2,
 three: 3}]

 // for this complex frame, the answers are the same
 // because there is no _proto slot in the *MAIN* frame
 // hence there is nowhere to go deeply into.

:normallist(complex)
#4418741 ["first string",

 ["array1", "array2", {#44183B9}],
 3.14159]

:deeplylist(complex)
#4418AC1 ["first string",

 ["array1", "array2", {#44183B9}],
 3.14159]

Compile Function (10/9/93) (Obsoleted by NS Guide 1.0 Final
Documentation)

Q: I need the ability to download the validtest and endtest functions to the Newton for
searches. I do not see how I can convert the incoming textual representation of the
function to code to execute. How could I do this?

A: You could use the special compile function in NewtonScript. Here's an example of how
to use compile:

begin
 local x;

 // Set x to be a function that returns the new function.
 x := Compile("Print(\"Hello\")");

 // Now call the actual compiled function.
 call x with ();

 // At this point, "Hello" will have been printed to the
inspector...

end;

Note that compile returns a function taking no arguments whose body is the string
passed to compile. If you need to create a function taking arguments, you can create a
function with Compile whose return value is a function that takes arguments, like
this:

f := call Compile("func(x) x*x") with ();
call f with (10); // prints 100.

Function Definitions (10/9/93)

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 16

Newtonscript Programming Language

Q: Is it "safer" to use a return statement at the end of a function or is it just a style issue?

A: All functions return the last value in the function body. This means that you have a
choice of explicitly writing a return statement, or assuming that the code reader
knows that the last statement is automatically returned.

One might argue that a return statement should always be used. However there are
cases where the code looks prettier with no return statement, and the return statement
does generate code. Compare the following two examples:

begin
...
if expr then "" else text

end

begin
if expr then

return ""
else

return text
end

Additionally, in the current NewtonScript compiler, an extra byte or two is used for
the return statement, but in most cases it will make no apparent difference in speed.

Closures and Perform (10/9/93) (Obsoleted by NS Guide 1.0 Final
Documentation)

Q: The NewtonScript manual indicates that the receiver during a call is the receiver
that made the call. For example, the code

a := {
 id: "a",
 foo: func() Print(id),

};

b := {
 id: "b",
 bar: func() call a.foo with (),

};

b:bar();

should print "b".

When I run this in an Inspector, however, it appears that the receiver during the
execution of foo() is the top level frame in which a (and b) is defined. How is the
receiver actually determined? Is it always the top level of the Inspector?

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 17

Newtonscript Programming Language

A: What you really create is a closure, which is the executable code bound up with the
dynamic and lexical environments at the time the function was created. That is,
whatever self evaluated to when the function was compiled is what it will evaluate
to when it's called.

The Perform call, or message-passing does change the closure's dynamic environment
(self) to the frame that was specified by the message pass or Perform call.

To do what you seem to be attempting, you could try this:

a := {
 id: "a",
 foo: func() Print(id)};

b := {
 id: "b",
 bar: func() begin self.temp := a.foo; :temp() end};

b:bar();

Instead of :temp() above, you could have used Perform(self, 'temp, []); Perform is
handy when you don't know at compile time which message you need to pass. For
example, you can write Perform(self, jumpTable[i], []); where jumpTable contains an
array of symbols representing methods. Perform takes a frame, a message and an
array of message parameters.

Symbol Hacking (11/11/93) (Obsoleted by NS Guide 1.0 Final
Documentation)

Q: I would like to be able to build frames dynamically and have my application create
the name of the slot in the frame dynamically as well. For instance, something like
this:

MyFrame:= {}; tSlotName := "Slot_1";

At this point is there a way to then create this ?:
MyFrame.Slot_1

A: There is a function called Intern, that takes a string and makes a symbol. There is also
a mechanism called path expressions (see the NewtonScript manual), that allows
you to specify an expression or variable to evaluate, in order to get the slot name. You
can use these things to access the slots you want:

MyFrame := {x: 4} ; // MyFrame -->{x: 4}

theXSlotString := "x" ;
MyFrame.(Intern(theXSlotString)) := 6

 // MyFrame --> {x: 6}

tSlotName := "Slot_1" ; // the following code creats a
© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 18

Newtonscript Programming Language

// slot called Slot_1 in MyFrame and
// assigns it the number 7.

MyFrame.(Intern(tSlotName)) := 7 ;
// MyFrame --? {x: 6, Slot_1: 7}

Q: Is there a way to look for a slot programmatically starting with a slot name string?

A: Here's the code which can do this:
if MyFrame.(Intern(slotToFind)) exists then
 x := MyFrame.(Intern(slotToFind)) ; // use the slot

Literals and run time (11/11/93)

Q: Is the literals slot really needed during run time? I noticed that I could figure out
quite a lot about how my functions work from the literals used (examining the literals
slot). I would rather not make it easy for others to reverse engineer certain routines.

A: The literals slot is indeed needed during run time (in the current implementation of
NewtonScript) The interpreter is using it at run time. Here's an example:

f := func() "abc";
#4409CB9 <CodeBlock, 0 args #4409CB9>
f.literals
#4409B61 [literals: "abc"]
f.literals[0] := {foo: 'bar}
#440A1D1 {foo: bar}
call f with ()
#440A1D1 {foo: bar}

Don't assume anything about the implementation of the literals slot in future Newton
system software.

Missing Semicolons cause Weird Errors (12/11/93) (Obsoleted by NS
Guide 1.0 Final Documentation)

As with Pascal, semicolons are statement separators, not terminators. If you forget to add a
semicolon at the end of the Newtonscript statement, the interpreter will try to interpret a
larger statement than intended, causing strange error reports.

The following is an example of such a case.

You are getting an "expected array, frame, or binary but got 8" exception because you
wrote the following code:

 :Emit(dest, 'subprim, "Send", [t2, t1, Length(node.r3)])
 :PopTemp('ref);

Note the missing semicolon on the first line. This is parsed as

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 19

Newtonscript Programming Language

 (:Emit(blah blah)):PopTemp('ref);

The :Emit call resulted in an 8, which was used as the receiver for the PopTemp message. This
was NOT what the programmer intended.

There are two habits that would have prevented this error. You might want to consider them as
part of your personal coding style, though neither of them is extremely important since this
error is pretty rare.
 - Always use "self:foo()" instead of ":foo()".
 - Always put a semicolon at the end of a statement, even when you don't need to.

Classical OOP programming withNewtonScript (12/17/93)
(Obsoleted by NS Guide 1.0 Final Documentation)

Q: I would like to see the ability to use more of a C++ approach, where I could inherit
code — not necessarily user-interface (view) oriented code — with functionality
like templates.

A: You can easily simulate most aspects of traditional class-instance OO programming (as
in Smalltalk or C++) using NewtonScript. There aren't any specific features in NTK
1.0 to support this, but you can do it without too much trouble, using the Project Data
window.

The basic idea is to use _parent inheritance to provide the link between "instances"
and "classes". You define a frame in the Project Data to hold the methods (this is the
"class"), and you construct "instances" whose slots are the "instance variables" (or
"members" if you prefer C++). Quotes will continue to be used around these words to
emphasize that there is no built-in concept of a class in NewtonScript; we are using
the prototype-based inheritance system to simulate class-based inheritance.

Suppose we want to create a "class" to represent a stack. We will represent the stack
as an array. Each "instance" needs to store the array and the index of the top element
of the stack, so an "instance" will look like this:

 { _parent: ..., // pointer to the "class"
 items: [...], // array of items
 topIndex: 2 } // index of top item

The "class" contains the methods, like so:

Stack :=
{ Push: func (item) begin

 topIndex := topIndex + 1;
 items[topIndex] := item;
 self
 end,

 Pop: func () begin
 if :IsEmpty() then
 NIL

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 20

Newtonscript Programming Language

 else begin
 local item := items[topIndex];
 items[topIndex] := NIL;
 topIndex := topIndex - 1;
 item
 end
 end,

 IsEmpty: func ()
 topIndex = -1,

 Clone: func () begin
 local new := Clone(self);
 new.items := Clone(new.items);
 new
 end,

 New: func ()
 {_parent: self,
 items: Array(10, NIL),
 topIndex: -1}
 }

Obviously, this ignores such niceties as stretching the array and signalling error
conditions, for the sake of clarity.

To get a new Stack "instance", you send the New message to the "class":

 s := Stack:New();

Now you can send messages to s to get work done:

 s:Push('a)
 x := s:Pop()
 if s:IsEmpty() then ...
 s2 := s:Clone()
 // etc.

You can put "class variables" and "class methods" in the "class" if you want; they're
all the same thing in this model, just slots of the "class". The New method is an
example. Note that you can get a new instance from an old instance (i.e., s:New())
because of this unity.

Those who have been paying attention to the Listener output may already have
noticed this method of programming, because it is used by soups, stores, and cursors.
(But you should assume that anything undocumented you notice in the Inspector may
be changed in the next ROM.)

To use this technique in NTK, you can put the "class" in the Project Data window. To
access it from your code, you'll need to put a slot that refers to it in your main view (or
lower down if you don't need the class throughout your application). You can just add
a slot called "Stack" whose value is "Stack", or if you prefer, you can use distinct
names (for example, call it "StackClassFrame" in Project Data).

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 21

Newtonscript Programming Language

Here's an example, in NTK text-export form. This does not include the project data
section, because it looks just like the "Stack :=" section above. This is just an
application with a button that prints "30" in a complicated way using a stack object.

main :=
 {title: "xxx",
 viewBounds: {left: -1, top: 0, right: 236, bottom: 333},
 Stack: Stack,
 _proto: protoapp,
 };

_view000 := /* child of main */
 {text: "Button",
 buttonClickScript:
 func()
 begin
 local s := Stack:New();
 s:Push(10);
 s:Push(20);
 Print(s:Pop() + s:Pop())
 end,
 viewBounds: {left: 74, top: 74, right: 154, bottom: 106},
 _proto: prototextbutton
 };

You can use an extended form of this technique to put an object-oriented interface on
soup entries. "Wrap" the soup entry in an "instance" frame like the one above by
pointing a slot of the "instance" to the soup entry. You can have "class methods" to do
queries and return these "instances". You can also have "instance methods" to change,
validate, undo, flush, and so on. You can also choose _proto as the slot that points to
the soup entry, so you inherit the entry's slots--but remember that slot assignments
will go into the "instance", not the entry.

If you're intrigued by all this, see the various papers on the language "Self", by
Ungar, Chambers, and others at Stanford (now at SunSoft). Many aspects of
NewtonScript were inspired by Self. The postscript files are available via ftp on
Internet from self.stanford.edu.

Only 7-Bit ASCII In NewtonScript Symbols (1/26/94) (Obsoleted by
NS Guide 1.0 Final Documentation)

Q: My frame has some slot symbols that contain accent and special letters. For example:

f := {|à|:"help me please", |é|:"Thanks in advance", ...,...}

My program received a letter from ProtoInputLine and turned it into a symbol. I have
tried many different ways to do this but I could not convert it into a symbol.

A: The basic problem is you can only use 7-bit ascii in symbols.

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 22

Newtonscript Programming Language

Nested IF Statements, Constant Condition Problems (6/9/94)

Q: I have found a mysterious problem with Scripts containing nested IFs. In some cases
like the following example they are executed in an abnormal way.

The true conditions in the real code are constants defined in the project data file with
values true or nil. These are used for conditional compiling.

protoApp.viewSetupDoneScript : FUNC ()
begin

 if TRUE then
 begin
 if TRUE then
 begin
 if TRUE then
 begin
 if TRUE then
 begin
 Print ("Idlescript1");
 end
 end
 end
 end;
 Print ("Idlescript2");

end

There should be only two prints. In fact there are five prints in the following
manner:

"Idlescript1"
"Idlescript1"
"Idlescript1"
"Idlescript1"
"Idlescript2"

If I define Boolean slots with value truein the base view, and if I use those slots as
conditions, the code works like it should. Why can nested IFs with constant conditions
work like a loop?

A: This is a bug in the compiler's handling of IF statements with constant conditions.
The bug occurs only if the result of the IF statement is not used. For example,

 func () begin
 if TRUE then
 if TRUE then
 Print(1);
 Print(2);
 end

will trigger the bug, but

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 23

Newtonscript Programming Language

 func () begin
 local x := if TRUE then
 if TRUE then
 Print(1);
 Print(2);
 end

will not.

The workaround is to use the result of the if statement. You don't really want to
keep the result around, so the above example is not recommended . The simplest
workaround is probably the following:

 func () begin
 (
 if TRUE then
 if TRUE then
 Print(1);
) and TRUE;
 Print(2);
 end

This works because the NTK 1.0.1 compiler does not throw away the "and true" part,
but the result of the "if" is dropped immediately.

NEW: How to Avoid _parent Problems (6/28/94)

Q: I read somewhere that developers should never access a view _parent slot directly?
Are there any cases when it is safe to access the _parent slot?

A: In most cases, you should use the :Parent() view method to determine a parent view.
However, there are some cases when you want to access the _parent slot of a view
directly. The situation which is bad is to use _parent as a simple variable because
results will vary depending on implementation of the current function. Some
guidelines:

 _parent is bad
 view:Parent() is OK
 self._parent is OK (and should be the same as :Parent())
 view._parent is OK (and should be the same as view:Parent())

© Copyright 1993-94 Apple Computer, Inc, All Rights Reserved 7/7/94 24

