
  

  

    
Making Your Applications Scriptable
One of the more powerful features of the Mac OS is scripting. Scripting 
enables average users to become power users and tap into the latent potency of 
their systems without having to use mouse or keyboard. For example, a script 
that executes when a system boots up could run a mail program, scan messages 
in the in box for URLs of a certain form, and then open those URLs in Web 
browsers.

In a scripting language such as AppleScript, users write a series of statements, 
each of which seems like (or at least close to) a natural sentence in a language 
such as English. For example, 

tell application "Finder"

activate

set the_version to (get the version) as text

if the_version is less than "8" then

beep

display dialog "This script requires Mac OS 8 which

is notinstalled on this computer." 

buttons {"Cancel"} default button 1 with icon 0

end if

end tell

But once the script is interpreted and run, these sentences become control 
structures and commands to one or more applications on the user’s system 
(including operating-system components such as the Finder). The beauty of 
scripting is that, with appealing simplicity, it extends and integrates what the 
operating system and each scriptable application have to offer. 
1



 

Making Your Applications Scriptable

              
Scripting and Mac OS X
Mac OS X includes scripting as a feature that spans the Blue Box/Yellow Box 
divide. That means you can write an AppleScript script on the Blue Box using 
the Script Editor application, run it, and have it send commands to a Yellow Box 
application. A script can thereby take advantage of the strengths of applications 
on either side of the divide. 

You could, for example, have a script that processes a scanned photograph using 
Adobe PhotoShop on the Blue Box and transfers that photograph to an 
Enterprise Objects Framework (EOF) application running on the Yellow Box, 
which stores it in a database used by a WebObjects application. You can also run 
scripts that get data as well as send it; you might, for instance, have a script that 
fetches the sender addresses of new e-mail in a MailViewer mailbox and 
responds to them using Claris Emailer.

Important: In the first Customer Release you are not able to compose AppleScript 
scripts in the Yellow Box or send AppleScript commands from the Yellow Box to 
the Blue Box. These features will be added in future releases.

Default Suites
The Yellow Box frameworks includes two suites—exported declarations of 
scriptability—that application’s get “for free”: the Core suite and the Text suite. 
In these suites, the Application Kit exports scriptable APIs for many of the key 
classes, such as NSApplication, NSDocument, NSWindow, NSColor, and 
NSTextStorage.

Suites have nonlocalized and localized definitions, which are contained in 
external files loaded by a scriptable application. The nonlocalized file is called a 
“suite definition,” and the localized one is called a “suite terminology.” You can 
use any text editor to examine the class, command, and terminology definitions 
contained in these files. Suite definitions are located in the (nonlocalized) 
Resources directory of an application, framework, or bundle. For example, if you 
have a framework named MyStuff, you would look for a suite definition (named 
MyStuff.scriptSuite) at:

MyStuff.framework/Resources/

Suite terminologies—which map special AppleScript terminology to the class 
and command descriptions in the suite definition—are located in localized .lproj 
subdirectories of the Resources directory. For example, if the same framework 
has a suite terminology for the French dialect, you would find it 
(MyStuff.scriptTerminology) in:

MyStuff.framework/Resources/French.lproj/
2



              
For more on suites, see “Creating Suite Definitions and Suite 
Terminologies.”

Core Suite
The Core suite provides default implementations for most AppleScript 
commands. It also defines scriptability for document-based applications 
(that is, applications based on the Application Kit’s document architecture). 
The suite also supports strings as a primitive type for properties.

Supported AppleScript commands: (all) Get, Count, Exists, Move, Copy, Create, 
Delete, Set; (NSDocument) Print, Save, Open, Close. Note that there is no 
default implementation for the Print command.

Text Suite
The Text suite provides scriptability for the text object (NSText and related 
classes, particularly NSTextStorage). You can acquire this functionality for 
your application simply by adding the text object to your graphical user 
interface; you can add the text object programmatically or by dragging it 
from Interface Builder’s DataViews palette.

The Text suite does not directly support any AppleScript commands—it 
inherits the support it offers from the Core suite—but it does specify the 
following attributes and relationships:

Other Suites
Many of the standard Yellow Box applications, frameworks, and bundles 
will be made scriptable over time. The Sketch (formerly Draw) example 

Table 1. Core Suite Attributes and Relationship

Class Attributes Relationships
all class name, class code

NSApplication name, active flag, version documents, windows

NSDocument filename (complete path), last 
component of file name, edited flag

NSTextStorage foreground color, font name, font size characters, text

NSWindow tier number, title, various binary-state 
attributes

document

NSColor color

Table 2. Text Suite Attributes and Relationships

Class Attributes Relationships
NSTextStorage font name, font size, foreground color characters, words, paragraphs, 

attribute runs, text

NSAttachmentTextStorage filename
3



 

Making Your Applications Scriptable

  
project also includes its own suites; this project provides a good source of 
example code related to scripting.
4



 

Overview of Scripting in Mac OS X

       
Overview of Scripting in Mac OS X 

Mac OS X supports scripting using an architecture whose primary goal is 
ease of scriptability. It relies on a few key concepts, such as metadata 
registry, key-value coding, and the Model-View-Controller paradigm. As 
long as you adhere to a few design principles (which are based on these 
concepts), you can make you applications scriptable with little effort. 

This section is an overview and does not attempt to provide a comprehensive 
discussion of scripting concepts. Its aim is to present enough conceptual 
background to give you a sense of how scripting works in Mac OS X and 
thus to prepare you for making your applications scriptable. 

Architectural Overview
As depicted in Figure 1, the architecture for AppleScript support in Mac OS 
X relies on a number of interdependent subsystems.

As in Mac OS 8.x, an AppleScript script in the Blue Box is sent to the 
AppleScript engine for execution. The engine converts the statements in the 
script into discrete Apple events and sends these to the Apple event manager 
(which receives Apple events from other sources as well). The manager 
coalesces sends the events to the destination application using the Program-
to-Program Communication toolbox (PPC) as dispatcher. 
5



 

Making Your Applications Scriptable

    
Figure 1.  Scripting Subsystems

It is at the PPC level that the architecture begins to diverge from the Mac OS 
model. The PPC sends Apple events to the applications they are destined for. As 
in the Mac OS, it sends scripting Apple events to Blue Box (Mac OS) 
applications. But for Mac OS X, the PPC has been modified to notice if Apple 
events are meant for Yellow Box applications. If the PPC encounters such an 
Apple event, it hands it off to the Blue Abstraction Layer (BAL). The BAL 
packages the Apple event as a distributed object and, through the Distributed 
Object (DO) mechanism, transports the Apple event to the target Yellow Box 
application.

The Yellow Box application dynamically links in several frameworks that 
comprise the subsystems supporting scripting on the Yellow Box side. 
(Scriptable applications must link against the Scripting and AppKitScripting 
frameworks.) The first of these subsystems called into play is the Apple event 
manager for the Yellow Box. This manager receives from the Blue Box a 
distributed object “wrapping” an Apple event; it converts this object back to an 
Apple event and dispatches the event appropriately. If the Apple event is related 
to scripting, the manager sends it to the Apple event translator; the manager 
knows when to do this because the translator registers with the manager all Apple 
events it knows to be script commands.
6



 

Overview of Scripting in Mac OS X

    
Using the script terminologies loaded by the application, the Apple event 
translator converts the Apple event into a script command (that is, an 
NSScriptCommand object). The script command is executed in the script 
execution context (a single, shared instance of NSScriptExecution context). 
For details on what happens just before and during command execution, see 
“How a Command Is Composed and Executed.”

The flow of commands and Apple events is bi-directional in this 
architecture. Script commands often define return values; when these 
commands are executed, values of a specified type are returned to the 
originating script. To get back to the script, the return value follows the same 
path as the original command. 

Scripting Metadata
A scripting command can involve any object that is scriptable in any object 
hierarchy. The scripting system needs not only to get and set the data held 
by any scriptable object but to determine the objects that can be accessed 
from any particular scriptable object and what commands these objects 
support. For this reason, every scriptable application, framework, or bundle 
must publicly declare in an external data source the scriptable objects it 
exports. At runtime, this information is stored in a globally accessible 
repository of scripting metadata.

Scripting metadata consists of two general sorts of information: class 
descriptions and command descriptions. A class description describes the 
attributes and relationships of a scriptable class; “attribute” and 
“relationship,” which are terms borrowed from database technology, 
correspond to “property” and “element” in AppleScript. Relationships can 
be of several kinds: one-to-one, one-to-many, or inverse. A class description 
also lists the commands a class supports and specifies whether a particular 
method of the class handles the command or the command’s default 
implementation is used to execute the command. A description of a class can 
designate a scriptable superclass, and thus inherit the attributes, 
relationships, and supported commands of that class. 

A command description defines the characteristics of an AppleScript 
command that the application, framework, or bundle specifically supports. 
This information includes the class of the command, the type of the return 
value, and the number and types of arguments. Many commands defined in 
the Core suite have default implementations in subclasses of 
NSScriptCommand. Descriptions of AppleScript commands are kept 
separate from specific classes since they are general to all described classes.
7



 

Making Your Applications Scriptable

      
The scripting metadata for an application, framework, or bundle is referred to as 
a “suite.” A file called a “suite definition” contains the language-independent 
information for a scriptable suite. It describes object attributes and relationships 
as well as commands using a structured format called a property list. In addition 
to a suite definition, a suite can have “suite terminologies” for localizing each 
supported dialect of AppleScript. A suite terminology maps specific AppleScript 
words and phrases in a particular language to attributes and relationships defined 
in the suite definition. See “Creating Suite Definitions and Suite Terminologies” 
for more on this subject.

When a Yellow Box application first needs to, it locates and loads (caches) all 
suite definitions and suite terminologies, not only its own but those of all 
imported frameworks and loaded bundles. (If it later loads a bundle dynamically, 
it loads any suites defined by the bundle.) It also registers class descriptions and 
command descriptions, making them globally available to the Apple event 
translator and any other interested client.

Figure 2.  Suites, Registries, and Script Commands

How a Command Is Composed and Executed
When the Apple event translator in the Yellow Box receives an Apple event that 
corresponds to a script command, it converts the Apple event (and associated 
data) to a script-command object (NSScriptCommand). Using the suite 
terminologies for all scriptable objects in the current application, the translator 
obtains the keys for these objects and uses them to extract data from the class 
descriptions and command descriptions loaded by that application (including 
suites of imported frameworks and loaded bundles).

With this data, it composes the script command. A script command has several 
components: 

• The object (or objects) designated to receive the command in the application

Apple Event
TranslatorTo AEM

Script 
Execution
Context

Return
values

Script
commandsApplication

Registries
suite ter

Terminologies

Command
definitions

Class
descriptions

suite 
8



 

Overview of Scripting in Mac OS X

     
• The arguments of the command (if any)

• The definition of the AppleScript command, including command class, 
Apple event code, number and type of arguments, and return type

Because at this point the receivers and arguments are probably known only 
as AppleScript reference forms (for example, “word 5 of paragraph 3 of 
front document”), they are represented as nested “object specifiers” (that is, 
NSObjectSpecifier objects). The actual objects referenced by the object 
specifiers cannot be known until the command is executed within the context 
of the target application. 

Once the Apple event translator has composed the script command, it sends 
the command to the application’s NSScriptExecutionContext object, where 
it is executed. Command execution is not a simple procedure. It involves 
several steps:

1. It evaluates the object specifiers in the script command to determine which 
objects are receivers and arguments (see “How an Object Specifier Is 
Evaluated” for details).

2. It determines which method to use for executing the command. It first looks 
in the class description of the receiver to see if it has specified a selector for 
the command. If it doesn’t, it selects the default implementation for the 
command.

3. It calls the method indicated by the selector or the method implementing the 
default behavior for the command. This method has a single argument: the 
script command.

4. It returns any return value to the Apple event translator, from where it 
eventually makes its way back to the originating script.

How an Object Specifier Is Evaluated
When the Apple event translator composes a script command, it evaluates an 
AppleScript statement and converts any reference forms in it to a nested 
series of NSObjectSpecifier objects (or, simply, object specifiers). It 
packages these nested object specifiers as the receivers of a command and 
possibly as the arguments of the command. An application evaluates these 
object specifiers in its own context to discover the “real” objects so 
referenced.

A reference form is an expression such as:

words whose color is blue of paragraph 3 of front document
9



 

Making Your Applications Scriptable

      
AppleScript recognizes many types of reference forms; the Yellow Box has 
subclasses of the abstract NSObjectSpecifier class for most of them.

Most object specifiers have a reference to their “container specifier”—that is, the 
parent object specifier that “contains” it in the object hierarchy; the resolution of 
the container specifier must occur to establish a context in which the current 
object specifier can be evaluated. An object specifier knows how to evaluate itself 
in the context of its container specifier. (An object specifier also knows its “child 
specifier”—that is, the object specifier it is a container for.) An object that has no 
container specifier is known as the “top-level specifier”; in most cases, the top-
level specifier is the application itself. 

Figure 3.  Evaluation of nested object specifiers

Table 3. Reference Forms and Object Specifier Classes

Reference Form Yellow Box Class Description
Property
Every 

NSPropertySpecifier Specifies an attribute (property) or relationship (element) of an 
object.
Example: “color” (Property), “every graphic of the front 
document” (Every)

Index NSIndexSpecifier Specifies an object in a collection.
Examples: “word 5”, “front document”

Range NSRangeSpecifier Specifies a range of objects in a collection.
Example: “words 5 through 10”

Relative NSRelativeSpecifier Specifies the position of an object in relation to another object.
Example: “before word 5”

Filter
Name

NSWhoseSpecifier Specifies every object in a particular container that matches 
specified conditions defined by a Boolean expression.
Example: “words whose color is blue” or “document named ‘letter 
to Santa Claus’”

Arbitrary NSRandomSpecifier Specifies an arbitrary object in a collection.
Example: “any word”

Middle NSMiddleSpecifier Specifies the middle object in a collection.
Example: “middle word of paragraph 2”

Note: The ID reference form does not yet have a corresponding Yellow Box class.

get words of third paragraph of front document

words third
paragraph

front 
document

application "foo"
(implicit)

Evaluation
10



 

Overview of Scripting in Mac OS X

          
Evaluation starts with the top-level specifier and proceeds down the chain of 
object specifiers, evaluating and resolving each until it determines the 
identify of the final, nested “child” object. This object is a receiver (or 
receivers) of the command or one of the command’s arguments. Key-value 
coding is used as the mechanism for evaluation: An object specifier queries 
its evaluated container (using the valueForKey:  method or an extension of 
this method) for the value of the key associated with the object specifier. The 
key is typically something like “filename” or “windows.” The value is the 
evaluated object, such as an NSString representing a file system path or an 
NSArray of NSWindow objects. If the object reference has a child reference, 
the evaluated object is used as the basis for the next query, made on behalf 
of the child reference. (See “Make Objects Responsive to Key-Value 
Coding” for an overview of key-value coding.)

The Scripting Classes
About two dozen public classes in the Foundation framework support 
scripting in the Yellow Box. (They are in Foundation instead of the 
Application Kit in case you want to make server programs—which have no 
user interface—scriptable.) To make an application scriptable, you rarely 
have to interact directly with objects of any of these classes. Even rarer is 
the occasion when you need to create a subclass of a scripting class. But the 
scripting classes are available if you need to do anything more advanced, 
such as recording.

The following tables describe the purpose of each class, why you might 
want to use it, and why you might need to subclass it.

Scripting Commands and Scripting Metadata
The following classes represent scripting commands, the context in which 
commands are executed, and the scripting metadata associated with an 
application, framework, or bundle. Objects of these classes are 
automatically created by the scripting system.

Table 4. Scripting Metadata and Command Classes

Class Description
NSScriptSuiteRegistry A shared instance of this class loads and registers the suites associated with an 

application. Use its methods to get loaded suites, bundles, class descriptions, and 
command descriptions. Rarely requires subclassing.

NSScriptClassDescription Represents a description of a scriptable class in a suite definition. Use its methods 
to get attributes, relationships, supported commands, and related information. 
Rarely requires subclassing

NSScriptCommandDescription Represents a definition of a command supported by a suite. Use its methods to get 
command class and return and argument types. Rarely requires subclassing.
11



 

Making Your Applications Scriptable

       
Object Specifiers and Logical Tests
Objects from this group of classes represent particular AppleScript reference forms. 
Most of these classes are subclassses of NSObjectSpecifier, an abstract class. 
Objects of these classes—object specifiers—know how to evaluate themselves 
within the context of another object specifier that contains them. Some of these 
classes generate objects that represent relative or logical tests performed with object 
specifiers (particularly NSWhoseSpecifiers).

NSScriptCommand Represents an AppleScript command sent to an application. Use its methods to 
evaluate object references (receivers and arguments) and execute the command. 
Apple has implemented subclasses for the major AppleScript commands. You may 
create a subclass of this class if you define a command with a default 
implementation or which needs some special argument processing.

NSScriptExecutionContext Represents the context in which an AppleScript command is executed and tracks 
global state related to that command. It should not be subclassed.

Table 5. Object Specifier Classes

Class Description
NSObjectSpecifier An abstract class for concrete subclasses that represent AppleScript reference 

forms. An object specifier knows how to evaluate itself (to an actual object) in the 
context of a container specifier.

NSPropertySpecifier A subclass of NSObjectSpecifier for object specifiers that represent an attribute or 
relationship of an object.

NSIndexSpecifier A subclass of NSObjectSpecifier for object specifiers that specify an object in a 
collection by index number.

NSRangeSpecifier A subclass of NSObjectSpecifier for object specifiers that specify a range of objects 
in a collection by index numbers.

NSRandomSpecifier A subclass of NSObjectSpecifier for object specifiers that specify an arbitrary object 
in a collection.

NSMiddleSpecifier A subclass of NSObjectSpecifier for object specifiers that specify the middle object 
in a collection.

NSWhoseSpecifier A subclass of NSObjectSpecifier for object specifiers that specify an object in a 
collection that matches a specified condition defined by a Boolean expression.

NSPositionalSpecifier An object of this class represents an insertion point by reference to a point before or 
after another object, or at the beginning or end of a collection. It contains an object 
specifier that represents the object referred to for position.

NSWhoseTest An abstract class for objects that represent Boolean expressions (qualifiers) 
involving object specifiers (also called “whose” clauses, as in “word whose color is 
blue”.

NSSpecifierTest A subclass of NSWhoseTest for objects that represent a comparison between two 
objects (which can be object references before being evaluated) using a given 
comparison method.

NSLogicalTest A subclass of NSWhoseTest for objects that represent the Boolean operations AND, 
OR, and NOT; used with one or more NSSpecifierTests.

Table 4. Scripting Metadata and Command Classes

Class Description
12



 

Overview of Scripting in Mac OS X

    
Key-Value Coding and Value Coercion
Table 6. Scripting Utility Classes

Class Description
NSCoercionHandler A shared instance of this class coerces object values to objects of another class, 

using information supplied by classes who register with it. Coercions frequently are 
required during key-value coding.

NSKeyValueCodingAdditions Additions to NSObject’s implementation of key-value coding that are related to 
scripting.
13



 

Making Your Applications Scriptable

                    
Scriptability Guidelines

This section describes what you must do to make your application (or framework 
or bundle) scriptable and gives you some background rationale for each 
procedure. For a comprehensive discussion of scripting concepts set alongside 
discussions of the Yellow Box’s document architecture and undo support, see 
“Application Design for Scripting, Documents, and Undo.”

Important: This section describes how you can design your application with 
scripting in mind. If you have an application that you do not want to redesign 
according to the principles expressed here, you can still make it scriptable, but 
to do so will take more effort on your part. 

Make Objects Responsive to Key-Value Coding

Overview
Key-value coding is a set of APIs that establishes a generic and automatic 
mechanism for setting and getting the properties of objects. It enables you to 
access object properties indirectly—and consistently—by property name (or 
“key”) rather than through the invocation of a method or directly getting or 
setting an instance variable. 

Key-value coding is based on two primitive instance methods of NSObject: 
valueForKey:  and takeValue:forKey: . These methods are implemented to 
look first for the accessor methods corresponding to the key. For example, 
[valueForKey:filter]  attempts to use accessor method filter ; the message 
[takeValue:anObj forKey:filter]  attempts to use accessor method 
setFilter:  If an accessor method doesn’t exist, key-value coding attempts to 
get or set the value of the instance variable directly. 

Keys are of three general types relative to the type of associated value: attribute, 
one-to-one relationship, and one-to-many relationship. A typical attribute key 
might be “color,” a window’s “document” key is a typical one-to-one 
relationship key, and a common one-to-many relationship is identified by an 
application’s “orderedWindows” key. In AppleScript, “property” refers to the 
same thing as an attribute and “element” refers to a relationship.

The Yellow Box scripting classes use key-value coding to return and set the 
attributes and relationships of objects. They also use it to evaluate “object 
specifiers.” AppleScript has the notion of “object hierarchies” that define the 
structure of the objects of an application. It uses object specifiers (object 
representations of AppleScript reference forms) to navigate through this 
hierarchy to a particular object (for example, “word 5 of paragraph 2 of the front 
14



 

Scriptability Guidelines

       
document”). The evaluation of object specifiers is necessary to find the 
receivers (or targets) of commands and frequently their arguments.

What You Must Do
To let your application take advantage of key-value coding, you should do 
the following: 

• Define the set of keys each scriptable class supports.

• Name your instance variables or (preferably) accessor methods 
accordingly.

• Implement the accessor methods that get and set the values of these instance 
variables. 

• Specify in the external description of the class the type, Apple event code, 
and read-only flag for each key.

As an illustration, assume you have a DrawingCanvas object that you want 
to make scriptable. In a simple scenario, you want scripts to be able to access 
(and modify, if necessary) the graphical shapes of that object, and you also 
want scripts to be able to access and set the currently selected shape. To this 
end, you define two keys, “shapes” and “selectedShape”. These become 
instance variables of the DrawingCanvas class:

@interface DrawingCanvas: NSObject <NSCoding> {

NSArray *shapes;

NSBezierPath *selectedShape;

// ...

Next implement accessor methods for these instance variables:

- (NSArray *)shapes {

return shapes;

}

- (void)setShapes:(NSArray *)newShapes {

[shapes autorelease];

shapes = [newShapes retain];

}

- (NSBezierPath *)selectedShape {

return selectedShape;

}

- (void)setSelectedShape:(NSBezierPath *)newShape{

[selectedShape autorelease];
15



 

Making Your Applications Scriptable

       
selectedShape = [newShape copy];

}

The next step is to specify the keys “shapes” and “selectedShape” in the formal 
description of the DrawingCanvas class. This class description is in the suite 
definition you must create for any class with unique attributes, relationships, or 
commands (see “Create a Suite Definition and Suite Terminologies” for further 
information). The “selectedShape” key is an one-to-one relationship key; the 
“shapes” key is a one-to-many relationship. The relevant section of the class-
description property list might read as follows (the Apple Event codes, of course, 
are made up for this example):

"DrawingCanvas" = {

"ToOneRelationships" = {

                "selectedShape" = {

                    "Type" = "NSBezierPath";

                    "AppleEventCode" = "abcd";

                    "ReadOnly" = "NO";

                  };

};

          "ToManyRelationships" = {

                "shapes" = {

                    "Type" = "NSArray";

                    "AppleEventCode" = "efgh";

                    "ReadOnly" = "NO";

                };

             (and so forth)

Concentrate Scriptable Behavior in Model Objects

Overview
The Model-View-Controller (MVC) design paradigm assigns objects in an 
application to one of the three indicated types, or roles. Model objects 
encapsulate and manipulate the data used by the application; they typically have 
no direct connection to the user interface. View objects know how to display and 
possibly edit data, but typically do not encapsulate any data that is not specific 
to displaying or editing. Controller objects act as mediators, coordinating the 
exchange of data between the model and view objects; controllers incorporate 
most application-specific logic and hence are the least reusable of the three types 
of objects. Applications that conform to MVC should maintain a distinct 
separation among objects of different types.

Generally, the objects that you make scriptable should be model objects. This 
principle is in line with how AppleScript is designed, and the Yellow Box 
accordingly gears its scriptability support to the model layer. The most efficient 
way for a script to perform a task is not the same thing as the best way for a user 
16



 

Scriptability Guidelines

          
to do the same task. A script should not require the user’s involvement, 
unless it is intended more as macro than as batch processing. In a macro type 
of script, the user must prepare things for the script, and then invoke it. If 
you anticipate that your application will be scripted for this purpose, you 
may move scripting behavior to the appropriate non-model objects in your 
application. Yet even in this case, ensure that the scriptability of objects such 
as windows and selections is confined to this purpose.

What You Must Do
You should design your application with MVC in mind and ensure, as much 
as possible, that the objects you want to make scriptable are the model 
objects of your application. There are two common violations of model-
layer separation that you should guard against:

1. Do not set scriptable state in action methods. 

Action methods are typically owned by a controller object. State that 
should be scriptable should therefore not be directly set in action methods. 
For example, instead of this: 

- (void)shapeSelected:(id)sender {

/* shape is ivar */

shape = [[sender selectedItem] representedObject];

}

Move the shape  instance variable to an appropriate model object and use 
an accessor method to set it.

- (void)shapeSelected:(id)sender {

NSBezierPath *newShape = [[sender selectedItem] 
representedObject];

[modelObject setShape:newShape]; //modelObject is ivar

}

2. Do not keep scriptable state in user-interface objects.

For example, suppose your application has an inspector panel with a 
checkbox in it. Instead of having a controller object “read” the state of this 
control, store the state in a model object each time the user toggles the state 
of the control.
17



 

Making Your Applications Scriptable

                 
Create a Suite Definition and Suite Terminologies

Overview
A suite declares the exported set of scriptable APIs of an application, framework, 
or loadable bundle as well as the natural-language (AppleScript) interface to 
those APIs. The declaration is made in two types of files. A “suite definition” 
contains the language-independent information for a scriptable suite. A “suite 
terminology” describes the language-dependent interface; one suite terminology 
file goes in a language-specific resource directory (.lproj) if you support a 
particular AppleScript dialect in that language.

See “Scripting Metadata” for an overview of suite definitions and suite 
terminologies. 

What You Must Do
If your application, framework, or bundle has any objects that you want to be 
scriptable, you must create a suite definition for it. You also need to create a suite 
terminology for each AppleScript dialect you support. 

Follow the instructions given in the document “Creating Suite Definitions and 
Suite Terminologies.” 

Implement Scripting Methods

Overview
Setting aside the methods of the scripting classes (which are overridden only in 
special circumstances), two kinds of method implementations are commonly 
required for scripting, accessor methods and command handlers:

Accessor Methods

Key-value coding, which is the mechanism used for getting and setting object 
properties and for evaluating object references, looks first to use the accessor 
methods based on a key specified by a scriptable class in a class description. For 
example, if a class specifies a key of “name,” key-value coding looks for accessor 
method name to get the value of the key and for accessor method setName:  to 
set the value. If no accessor methods are implemented, it attempts to set or get 
the value of the instance variable directly. 

However, sometimes what an accessor method does in the normal use of an 
application—getting and setting the value of an instance variable—doesn’t work 
for scripting. The documents managed by a document-based application provide 
an example. When a script asks for an application’s documents, 
18



 

Scriptability Guidelines

               
NSDocumentController’s documents  method could be invoked to return all 
currently opened documents. But these documents are unordered in the 
returned NSArray and include both on-screen and off-screen documents. 
This is not what is required by scripting; AppleScript has the notion of a 
“front” document and a “last” document and this notion implies an ordering 
of documents visible on the screen. NSApplication therefore implements a 
method that, in response to a request for its documents, returns an NSArray 
that first contains all on-screen windows in their tier order and then all off-
screen windows.

Another occasion for implementing an accessor method that does something 
more than simply set and get values is when it would be impractical to have 
objects at the level of granularity expected by AppleScript. For example, an 
AppleScript script can ask for the “characters” of a text document, but it 
would be quite expensive for an application to represent each character as 
an object. The Application Kit handles this request in a specially 
implemented “accessor” method.

Command Handlers

The description of a class (in a suite definition) includes a section for 
commands supported by the class. In this section you can either indicate that 
the default implementation (which is based on key-value coding) for a 
command is sufficient, or you can specify a method that you want to handle 
the command when it is executed. If the default implementation or handler 
for a command is insufficient for your purposes, you must specify and 
implement your own handler.

What You Must Do

Custom Accessor Methods
The procedure is no different than for specifying a class’s actual accessor 
methods, except that the method you implement is used only in scripting.

1. Specify the key of the attribute or relationship, along with supporting data 
(type, Apple event code, read-only flag), in a property-list format in the 
class description. (See “Creating Suite Definitions and Suite 
Terminologies” for procedure and examples.) 

2. Define accessor methods with names corresponding to the name of the key: 
set KeyName:  and keyName. Then implement the methods to provide the 
necessary behavior that supplements or replaces the getting and setting of 
an instance-variable value.
19



 

Making Your Applications Scriptable

                
3. You can also override or implement extended key-value coding methods for 
better performance. For example, if it makes sense to perform some special array 
processing for your class, you could override 
valueAtIndex:inPropertyWithKey:.

Command Handlers

1. Determine the command’s return type and the type and key for each command 
argument. You can usually find this information by looking up the definition of 
the command in the Core suite definition 
(Foundation.framwork/Resources/NSCoreSuite.scriptSuite). 

2. In the Supported Commands section of the class description for the class 
implementing the command handler, assign the method to the command.

"MyClass" = {

            "Superclass" = "NSCoreSuite.NSDocument";

            "Attributes" = {

                // ...

            };

            "ToOneRelationships" = {

               // ...

            };

            "SupportedCommands" = {

                "NSCoreSuite.Save" = "handleSaveCommand:";

            };

            "AppleEventCode" = "docu";

        };

The method must have one and only one argument (and so in Objective-C must 
end in a colon).

3. Implement the command handler. The signature of this method must be of the 
form:

- (id) methodName:(NSScriptCommand *)command

In the actual implementation code, get the command’s arguments, handle the 
command, and return the expected value. If no return value is expected, return 
nil .

- (id)handleSaveCommand:(NSScriptCommand *)command {

    NSDictionary *args = [command evaluatedArguments];

    NSString *file = [args objectForKey:@"File"];

    NSNumber *ftype = [args objectForKey:@”FileType”];

    if (file) {

        /* handle command here */
20



 

Scriptability Guidelines

            
    }

    return nil;

}

Define a New Script Command

Overview
Sometimes an application can accomplish something for which none of the 
default commands suffice: “Fax” for example, or “Collate.” If you want that 
specialized behavior to be scriptable, you must define and implement a 
script command for it.

What You Must Do

1. Define the command in the Command Description section of the suite 
definition; the information you must supply is return type, arguments, and 
command class (as well as associated Apple event codes).

2. Add terminology information for the command to the suite terminology.

3. For each class that you want to send the command to, specify the command 
in the Supported Commands section of the appropriate class description.

For the procedures related to steps 1 through 3, see “Creating Suite 
Definitions and Suite Terminologies.”

4. If you want a default implementation for the command that is based on key-
value coding, make a subclass of NSScriptCommand and override 
performDefaultImplementation .

5. If you want a scriptable class to handle the command, define and implement 
a method for it (see “Command Handlers” for details). Make sure to specify 
this method in the Supported Commands section for the class implementing 
the method.

You must complete either step 4 or step 5, and you can complete both steps.

Use the Document Architecture

Overview
The Application Kit provides a few classes that underpin the Yellow Box’s 
document architecture: NSDocument, NSDocumentController, and 
NSWindowController. These classes directly implement the standard 
AppleScript document scripting model. If you use these classes to 
21



 

Making Your Applications Scriptable

         
implement a document-based application, that application automatically 
supports scripting by a number of AppleScript commands, including Open, 
Close, and Save. To acquire this scriptability, you need do nothing more than use 
the document architecture as it was designed.

Applications that take advantage of the Yellow Box’s document architecture put 
themselves in a better position to support scripting generally. A document in 
Yellow Box applications (NSDocument) typically owns and manages one or 
more model objects of the application. It therefore provides a hub for scripted 
access to the model objects in your application, which are the ones that should 
be scriptable.

For a discussion of the Application Kit’s document architecture, see 
“Application Design for Scripting, Documents, and Undo.”

What You Must Do
Documents are represented by an NSDocument object. To implement a 
document-based application, you must, first and foremost, create a subclass of 
NSDocument that gives documents knowledge of the application’s model layer 
and that loads and saves document data. NSWindowController objects manage 
the user-interface associated with documents. Simple applications can use the 
default NSWindowController object, but typically you subclass 
NSWindowController to give window controllers specific knowledge of the user 
interface they’re supposed to manage. In your NSDocument subclass, you then 
override the makeWindowControllers  method to create the window controllers 
used by the document. Finally, there is the NSDocumentController shared 
instance, which tracks and manages documents and performs common functions 
of application delegates (handling application termination, for example). You 
shouldn’t need to subclass NSDocumentController.

For a detailed discussion of what you must do to implement a document-based 
application, see the reference documentation for the NSDocument class.

Access the Text Suite

Overview
The text objects (particularly NSTextStorage) in the Application Kit export 
scriptable APIs defined in the Text suite. (See “Text Suite” for more 
information.) Scripts can thus request or select textual elements at different 
levels of granularity: character, word, paragraph, and entire body of text. 
Applications automatically acquire this scriptability if they acquire access to a 
NSTextStorage object through their container hierarchy.
22



 

Scriptability Guidelines

   
What You Must Do
To acquire text scriptability, drag a text object from Interface Builder’s 
DataViews palette into your application’s user interface. Alternatively, your 
program can programmatically create a text object.
23


	Making Your Applications Scriptable
	Scripting and Mac OS X
	Default Suites
	Overview of Scripting in Mac OS X
	Architectural Overview
	Scripting Metadata
	How a Command Is Composed and Executed
	How an Object Specifier Is Evaluated
	The Scripting Classes

	Scriptability Guidelines
	Make Objects Responsive to Key-Value Coding
	Concentrate Scriptable Behavior in Model Objects
	Create a Suite Definition and Suite Terminologies
	Implement Scripting Methods
	Define a New Script Command
	Use the Document Architecture
	Access the Text Suite



