

Working with Property Lists

This chapter describes how to work with property lists in the Yellow Box. It
answers the following questions:

• What is a property list?
• What are the different ways of storing property lists?
• How do you implement each of the storage solutions?
• What methods does the Yellow Box provide for working with property lists?

What Is a Property List?

A property list is a mechanism used by the Yellow Box to provide a uniform way
of organizing, storing, and accessing data.

Property lists organize data into named values and lists of values using four
classes: NSDictionary, NSString, NSData, and NSArray. The four classes used
in property lists give you the means to produce data that is meaningfully
structured, transportable, storable, and accessible, but still as lightweight as
possible. You represent basic data types (such as integers and text) with
NSString, and binary data with NSData. You use NSDictionary and NSArray to
build complex data structures. In an NSDictionary, data is structured as key-
value pairs, where each key is a string and the key’s value can be an NSString,
an NSArray, an NSData, or another NSDictionary. In an NSArray, data is
structured as a collection of objects that can be accessed by index. In a property
list, an NSArray can contain NSStrings, NSDatas, NSDictionaries, and other
NSArrays.

Note: NSDictionaries and NSArrays can contain data types other than
NSStrings, NSDatas, NSDictionaries, and NSArrays, but if they do, they’re not
property lists—and consequently, you can’t use the Yellow Box’s property list
API to work with them.

Ways of Storing Property Lists

A property list can be stored in one of three different ways:

• As an ASCII file
• In a serialized binary format
• As a persistent property list (NSPPL)
1

Ways of Storing Property Lists

Each of these approaches has its advantages. For example, an ASCII property list is
human-readable, but access is slow. Serialization, which stores property lists in a
binary format, offers faster access than an ASCII property list and it’s also lazy,
meaning that you can read parts of files without accessing the whole thing. But if you
modify serialized data, you must reserialize the entire file.

Like serialization, a persistent property list (NSPPL) stores data in a binary format,
provides fast access, and is lazy. It also allows you to make incremental changes
(even when an NSPPL contains tens of megabytes of data), while still ensuring that
your data is never corrupted. In this sense, an NSPPL is analogous to a database.
Because of their ability to incrementally store and retrieve data, NSPPLs are well-
suited for working with large amounts of data—that is, data that has several
elements, that occupies a large number of bytes, or both.

The different ways of storing property lists are described in more detail in the
following sections.

Working with ASCII Property Lists
The property list data types, NSString, NSArray, NSDictionary, and NSData, all
know how read from and write to ASCII representations of themselves. This section
describes the ASCII property list syntax, and gives a code example of how to work
with ASCII property lists.

ASCII Property List Syntax
The following sections describe the ASCII syntax for each of the property list data
types: NSString, NSData, NSArray, and NSDictionary.

NSString

A string is enclosed in double quotation marks, for example:

"This is a string"

The quotation marks can be omitted if the string is composed strictly of
alphanumeric characters and contains no white space (numbers are handled as
strings in property lists). Though the property list format uses ASCII for strings, note
that Yellow Box uses Unicode. You may see strings containing unreadable sequences
of ASCII characters; these are used to represent Unicode characters.

NSData

Binary data is enclosed in angle brackets and encoded in hexadecimal ASCII. Spaces
are ignored. For example:

<0fbd777 1c2735ae>
2

Working with Property Lists

NSArray

An array is enclosed in parentheses, with the elements separated by commas. For
example:

("San Francisco", "New York", "London").

The items don’t all have to be of the same type (for example, all strings)—but they
normally should be. Arrays can contain strings, binary data, other arrays, or
dictionaries.

NSDictionary

A dictionary is enclosed in curly braces, and contains a list of keys with their values.
Each key-value pair ends with a semicolon. For example:

{ user = maryg; "error string" = "core dump"; code = <fead0007>; }.

Note the omission of quotation marks for single-word alphanumeric strings. Values
don’t all have to be the same type, since their types are usually defined by whatever
program uses them. In this example, the program using the dictionary knows that the
value for “user” is a string and the value for “code” is binary data. Dictionaries can
contain strings, binary data, arrays, and other dictionaries.

Below is a sample of a more complex property list, taken from a user’s defaults
system. The property list itself is a dictionary with keys “Clock,”
“NSGlobalDomain,” and so on; each value is also a dictionary, which contains the
individual defaults.

{

Clock = {ClockStyle = 3; };

NSGlobalDomain = {24HourClock = Yes; Language = English; };

NeXT1 = {Keymap = /NextLibrary/Keyboards/NeXTUSA; };

Viewer = {NSBrowserColumnWidth = 145;

"NSWindow Frame Preferences" = "5 197 395 309 "; };

Workspace = {SelectedTabIndex = 0; WindowOrigin = "-75.000000"; };

pbs = {};

}

Debugging ASCII Property Lists
The property lists you create using Yellow Box property list methods should be free
from syntax errors. However, if you manually edit an existing ASCII property list or
create one by hand, it’s easy to introduce syntax errors that can be hard to track down.
You can use the pl command line utility to parse an ASCII property list. pl converts
an ASCII property list into a binary format and vice versa, and as a by-product of this
conversion it flags ASCII syntax errors. For example, the following command takes
the ASCII property list myPlist.plist and writes it to aBinaryFile:

pl -output aBinaryFile < myPlist.plist
3

Ways of Storing Property Lists

If pl finds any syntax errors in the supplied ASCII property list, it prints out
diagnostic error messages, for example:

*** Uncaught exception: <NSParseErrorException> *** Separator ‘}’
expected; Parse error line 4 (position 118) for units: (xObject, Array,
parseArray, xObject, Dictionary, personDictionary); next token is
‘children’

pl is available in NEXT_ROOT/NextLibrary/Executables.

Example of Using ASCII Property Lists
This section uses an example application, People, to illustrate some of the basic
principals involved in working with ASCII property lists. The section shows how to:

• Use the property list data types in combination with each other
• Initialize an array from a string that has property list format
• Read and write ASCII property lists to disk

The user interface of the People application is shown in Figure 1.

Figure 1. The People Application

The People application takes user input, uses it to initialize a person record, and then
adds the person record to an array. The array of all person records is then stored as
an ASCII property list.

More specifically, when a user enters data into the window and clicks Add, the data
is used to initialize the NSStrings, NSArrays, and NSDictionaries that constitute the
person record. These objects are then placed in an NSDictionary, personDict. The
array of all person records, peopleArray, is initialized from a file that stores data in an

Users enter data into the fields as
shown. Clicking Add adds the new
person record to the array of records
and saves the array to disk.
4

Working with Property Lists

ASCII property list format. The dictionary personDict is added to this array, and the
array is then saved back out to the file.

This code excerpt shows how to take the user input and use it to initialize a person
record:

/* Assume these exist. */

id nameField, childrenField,streetField,cityField,

stateField, zipCodeField;

NSString *name;

NSMutableString *childString;

NSMutableDictionary *personDict, *addressDict;

NSArray *childArray;

NSMutableArray *peopleArray;

name = [nameField stringValue];

personDict = [NSMutableDictionary dictionaryWithCapacity:3];

/* Enclose childString in parentheses to put it in an

 * array property list format so that it can be used to

 * initialize an array.

 */

childString = [NSMutableString stringWithString:

[childrenField stringValue]];

[childString insertString:@"(" atIndex:0];

[childString appendString:@")"];

/* Now that it’s been enclosed in parentheses, you can

 * use childString to initialize an array.

 */

childArray = [childString propertyList];

addressDict = [NSMutableDictionary dictionaryWithCapacity:4];

/* Add data to addressDict. */

[addressDict setObject:

[streetField stringValue] forKey:@"street"];

[addressDict setObject:[cityField stringValue] forKey:@"city"];

[addressDict setObject:[stateField stringValue] forKey:@"state"];

[addressDict setObject:

[zipCodeField stringValue] forKey:@"zipcode"];

[personDict setObject:name forKey:@"name"];

[personDict setObject:addressDict forKey:@"address"];

[personDict setObject:childArray forKey:@"children"];

Now that a new person record has been initialized, the record needs to be added to
the array of all people records. The following code excerpt shows how to read the
5

Ways of Storing Property Lists

ASCII property list People.plist and use it to initialize peopleArray. The code then adds
the new record to peopleArray, and saves peopleArray to the file People.plist.

/* Read People.plist. If it doesn’t exist, create it. */

if(!(peopleArray = [NSMutableArray

arrayWithContentsOfFile:@"D:/Katie/People.plist"]))

 peopleArray = [NSMutableArray array];

/* Add the dictionary initialized from data entered by the user

 * to peopleArray.

 */

[peopleArray addObject:personDict];

/* Write peopleArray back out to disk. */

[peopleArray writeToFile:@"D:/Katie/People.plist" atomically:YES];

The data in People.plist is stored in ASCII property list format:

(

 {

 address = {city = Napa; state = CA; street = "45 Chatsworth Rd.";
zipcode = 98609; };

 children = (Elise, Timothy, Claire);

 name = "Susanne Beutler";

 },

 {

 address = {city = Yardley; state = PA; street = "67 Sunset Rd.";
zipcode = 19067; };

 children = (Tom, Katie, Sarah);

 name = "Seth McCormick";

 },

 {

 address = {city = Falmouth; state = MA; street = "7 Palmer Ave.";
zipcode = 92300; };

 children = (Hannah);

 name = "Mike Bassett";

 },

 {

 address = {city = Houston; state = TX; street = "67 Winding Way";
zipcode = 94900; };

 children = (Rachel, Sam);

 name = "Pat Cooper";

 }

)

Working with Serialized Property Lists
As described in “Ways of Storing Property Lists” on page 1, ASCII property lists
have the advantage of being human-readable. However, accessing them is slow. As
6

Working with Property Lists

an alternative to storing property lists in an ASCII format, you can serialize them
using the NSSerializer class. The NSSerializer class provides a mechanism for
creating an abstract representation of a property list. The NSSerializer class stores
this representation in an NSData object in an architecture-independent format, so
that property lists can be used with distributed applications. NSSerializer’s
companion class NSDeserializer declares methods that take the abstract
representation and recreate the property list in memory. For more information on
serialization, see the NSSerializer and NSDeserializer class specifications in the
Foundation Framework Reference.

Serialization only works with NSArray, NSDictionary, NSString, and NSData. Any
other class of objects (that is, non-property list data) cannot be archived by
NSSerializer unless you implement the NSObjCTypeSerializationCallback protocol.
For more information, see the NSObjCTypeSerializationCallback protocol
specification in the Foundation Framework Reference.
7

Ways of Storing Property Lists

Example of Using Serialization
This section shows you how to rewrite the sample application, People, to use a
serialized property list.

/* This example adds the variable data */

id data;

/* ...

 * Create person record as shown in the section "Example of

 * Working with ASCII Property Lists."

 * ...

 */

NSSerializer vs. NSArchiver

Foundation provides two different ways of
“archiving” data: NSArchiver, and
NSSerializer. Serialization is generally the
most appropriate choice for storage of things
naturally structured as a property list. For
example, suppose you’re storing time zone
data, where each time zone includes the
date of daylight savings time transitions and
other information. All of this data could be
stored in one file: a serialized property list in
which the top-level object is a dictionary, the
keys are time zone names, and the value for
each key is a block of bytes (as an NSData)
that contain the data in a standard UNIX
format. Serialization would be the best
choice in this case because it’s simpler than
archiving, and because it’s also less tied to
the particular way objects archive
themselves. The serialization format is public
and documented in the Yellow Box
specification.

Other benefits of serialization are:

• It’s generally faster to serialize a tree of
property list objects than it is to archive it.

• Serialized property list objects can be
decoded lazily (and thus, as in the case of
time zone data, if all of the objects aren’t
needed, the cost of unarchiving them is
not incurred). With archiving, you have to
unarchive the whole archive.

Preserving Structural Information

In contrast to archiving (see the NSArchiver
class specification), the serialization
process preserves only structural
information, not class information. Thus, if a
property list is serialized and then
deserialized, the objects in the resulting
property list might not be of the same class
as the objects in the original property list.
However, the structure and
interrelationships of the data in the resulting
property list are identical to that in the
original, with one possible exception.

The exception is that when an object graph is
serialized, the mutability of the container’s
objects (NSDictionary and NSArray objects)
is preserved only down to the highest node in
the graph that has an immutable container.
Thus, if an NSArray contains an
NSMutableDictionary, the serialized version
of this object graph would not preserve the
mutability of the dictionary or the mutability
of any objects it contains.

If preserving class and mutability information
is more important to your application than
speed and portability, you may want to use
archiving (as implemented by NSCoder and
NSArchiver) instead of serialization to make
object graphs persistent.
8

Working with Property Lists

/* If serialized property list already exists, deserialize

 * it and use it to initialize peopleArray. Otherwise, create

 * peopleArray.

 */

if(!(peopleArray = [NSMutableArray arrayWithArray:

[NSDeserializer deserializePropertyListFromData:

[NSData dataWithContentsOfFile:@"D:/Katie/People.splist"]

mutableContainers:NO]]))

peopleArray = [NSMutableArray array];

[peopleArray addObject:personDict];

/* Serialize the property list and write it to a file. */

data = [NSSerializer serializePropertyList:peopleArray];

[data writeToFile:@"D:/Katie/People.splist" atomically:NO];

Lazy Deserialization

The above example uses the deserializePropertyListFromData: method to deserialize an
NSData object. You can alternatively use the
deserializePropertyListLazilyFromData:atCursor:length:mutableContainers: method to lazily
deserialize an NSData object:

unsigned int cursor = 0;

[NSDeserializer deserializePropertyListLazilyFromData:

[NSData dataWithContentsOfFile:@"D:/Katie/People.splist"]

atCursor:&cursor

length:64

mutableContainers:YES];

This method operates on the range of bytes starting at the specified cursor position,
up to the specified length. If this range is longer than the threshold specified by
NSDeserializer, a fault (stand-in) object is substituted for the property list
represented by the bytes. Once you access the property list and the objects it
contains, they’re instantiated as “real” objects.

Working with Persistent Property Lists (NSPPLs)
The NSPPL (persistent property list) class allows you to incrementally store property
lists in a binary format Like serialization, NSPPL provides fast access and is lazy.

Persistent property lists are atomic, meaning that if a save operation fails, the NSPPL
reverts to its previously saved state. An NSPPL is never left in an intermediate state.
Changes to an NSPPL are applied incrementally (in memory, but not to disk) as you
make them. A save operation has the effect of committing the changes you’ve made
to disk.
9

Ways of Storing Property Lists

For more information on NSPPL, see the NSPPL class specification in the
Foundation Framework Reference.

Example of Using NSPPL
This section shows you how to rewrite the sample application, People, to use an
NSPPL. Note that you access the data in an NSPPL through a root dictionary.

/* This example adds the variables rootDict and ppl */

NSMutableDictionary *rootDict;

NSPPL *ppl;

/* ...

 * Create person record as shown in the section "Example of

 * Working with ASCII Property Lists."

 * ...

 */

/* Read the NSPPL; if it doesn’t exist, create it. */

ppl = [NSPPL pplWithPath:@"D:/Katie/People.ppl"

create:YES readOnly:NO];

if (!ppl) {

 NSLog(@"Couldn't open or create %@", pplPath);

 exit(1);

 }

/* Initialize peopleArray from ppl. */

if(!(peopleArray = [NSMutableArray arrayWithArray:

[[ppl rootDictionary] objectForKey:@"peopleArray"]]))

peopleArray = [NSMutableArray array];

[peopleArray addObject:personDict];

/* Through the root dictionary, add the updated peopleArray

 * to ppl.

 */

rootDict = [ppl rootDictionary];

[rootDict setObject:peopleArray forKey:@"peopleArray"];

[ppl save];

You don’t have to do anything special to access an NSPPL lazily or to save changes
to it incrementally—NSPPL handles these things for you. Accessing an NSPPL is
always lazy, and sending an NSPPL a save message only updates the parts of the
NSPPL that have changed.
10

Working with Property Lists

Yellow Box Property List Methods

This section summarizes the methods Yellow Box uses to operate on property lists.

propertyList Methods
NSString implements the propertyList method, which parses the receiver as a text
representation of a property list, returning an NSString, NSData, NSArray, or
NSDictionary object according to the topmost element. For example, this method is
used in the People application to initialize an array from a string:

 childArray = [childString propertyList];

NSString also implements the propertyListFromStringsFileFormat method, which returns
a dictionary object initialized with the keys and values found in the receiver. The
receiver must contain text in the format used for .strings files. NSDictionary
implements a complementary method, descriptionInStringsFileFormat, which returns a
string that represents the contents of the receiver, formatted in .strings file format. The
...StringsFileFormat methods are used for localization. For more information on the
.strings file format, see the method description for propertyListFromStringsFileFormat in
the NSString class specification.

description Methods
The four property list types, NSString, NSArray, NSDictionary, and NSData all
implement a description method, which returns the contents of the receiver formatted
as an ASCII property list (the property list format for each data type is described in
“ASCII Property List Syntax” on page 2).

In addition, NSArray and NSDictionary implement the descriptionWithLocale:
method, in which the locale specifies options for formatting each of the receiver’s
elements. NSArray and NSDictionary also implement a descriptionWithLocale:indent:
method, which lets you specify indentation options for the returned string.

serialize and deserialize Methods
NSSerializer implements two methods for serializing property lists:
serializePropertyList:intoData: and serializePropertyList. serializePropertyList:intoData:
serializes a property list into an NSMutableData object. serializePropertyList creates an
NSData object, serializes a property list into it, and returns the NSData object.

NSDeserializer implements the following methods for deserializing property lists:

• deserializePropertyListFromData:atCursor:mutableContainers:
11

Yellow Box Property List Methods

Returns a property list object corresponding to the abstract representation in the
NSData at the cursor location. If mutable is YES and the object is a dictionary or
an array, the re-composed object is made mutable. Returns nil if the object is not
a valid one for property lists.

• deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:

Returns a property list from the NSData at the cursor location or nil if the NSData
doesn’t represent a property list. The deserialization proceeds lazily. That is, if
the NSData at the cursor location has a length greater than the specified length, a
fault is substituted for the actual property list as long as the constituent objects of
that property list are not being accessed. If mutable is YES and the object is a
dictionary or an array, the re-composed object is made mutable.

• deserializePropertyListFromData:mutableContainers:

Returns a property list object corresponding to the abstract representation in the
NSData or nil if the NSData doesn’t represent a property list. If mutable
containers is YES and the object is a dictionary or an array, the re-composed
object is made mutable.

encodePropertyList: and decodePropertyList: Methods
The abstract superclass NSCoder implements methods for archiving and
unarchiving property lists: encodePropertyList: and decodePropertyList:. Note that these
methods must be used in conjunction with each other—each encodePropertyList:
message must have a corresponding decodePropertyList: message, and vice versa.
However, it’s likely that instead of using these methods you’d serialize a property
list, for the reasons described in “Working with Serialized Property Lists” on page 6.
12

	Working with Property Lists
	What Is a Property List?
	Ways of Storing Property Lists
	Working with ASCII Property Lists
	ASCII Property List Syntax
	Debugging ASCII Property Lists
	Example of Using ASCII Property Lists

	Working with Serialized Property Lists
	Example of Using Serialization

	Working with Persistent Property Lists (NSPPLs)
	Example of Using NSPPL

	Yellow Box Property List Methods
	propertyList Methods
	description Methods
	serialize and deserialize Methods
	encodePropertyList: and decodePropertyList: Methods

