Summary of
QuickTime for Java

Since its introduction in 1991, QuickTime has evolved into the equiva-
lent of five large multimedia toolkits, with an extensive API in the C
language. It is designed to produce full-length movies, music, animat-
ed sprites, virtual reality, and 3D modeling. Besides its widespread use
for delivering high-quality digital content over the Internet, Quick-
Time has become the core multimedia technology used in over 11,500
CD-ROM titles and hundreds of new DVD titles.

QuickTime for Java came about to meet developers’ need for a way
to get at QuickTime besides using C calls. The idea was to integrate the
write-once, run-everywhere capabilities of Java with QuickTime’s ro-
bust media architecture.

An early version of the QuickTime for Java technology was first
demonstrated at the JavaOne conference in 1998. The current version is
now available free to the Java community and other QuickTime devel-
opers at www.apple.com/quicktime/qtjava.

This document summarizes the highlights of QuickTime for Java
under the following headings:

“The QuickTime for Java API” (page 2) summarizes the principal
programming elements of the Java API for QuickTime

= “Using QuickTime in Multimedia Production” (page 3) presents
several scenarios for using QuickTime for Java in the multimedia
production space.

= “An Overview of QuickTime for Java” (page 5) gives you basic
facts about this software.

2 Chapter 1: Summary of QuickTime for Java

= “Integrating QuickTime with Java” (page9) discusses how the
QuickTime for Java Application Framework works.

= “The QuickTime for Java Package Structure” (page 14) describes the
packages that make up QuickTime for Java.

= “Comparing QuickTime C and Java Code” (page 25) discusses how
you relate Java code to QuickTime’s native C code.

= “QuickTime for Java Classes and Interfaces” (page 33) describes the
QTCanvas and QTFactory classes and the QTDrawab1e interface.

= “Displaying and Streaming Movies” (page 44) summarizes the
ways you can stream multimedia content using QuickTime for Java.

= “Media and Presenters” (page 57) discusses how your Java code
can present QuickTime media.

= “Imaging and Effects” (page 65) summarizes the ways you can use
Java to image QuickTime media and apply QuickTime effects.

= “Animation and Compositing” (page 78) introduces some of the
techniques you use to animate and composite images in QuickTime
for Java programs.

For full technical details see the book QuickTime for Java, being in-
troduced at JavaOne in June, 1999.

THE QUICKTIME FOR JAVA API

If you’re a Java or QuickTime programmer and want to harness the
power of QuickTime’s multimedia engine, you’ll find a number of im-
portant advantages to using the QuickTime for Java API. For one thing,
the API lets you access QuickTime’s native runtime libraries and, addi-
tionally, provides you with a feature-rich Application Framework that
enables you to integrate QuickTime capabilities into Java software.

Aside from representation in Java, QuickTime for Java also pro-
vides a set of packages that forms the basis for the Application Frame-
work found in the quicktime.app group. The focus of these packages is

Using QuickTime in Multimedia Production 3

on using QuickTime to present different kinds of media. The frame-
work uses the interfaces in the quicktime.app packages to abstract and
express common functionality that exists between different QuickTime
objects.

As such, the services that the QuickTime for Java Application
Framework renders to the developer can be viewed as belonging to the
following categories:

= creation of objects that present different forms of media, using QT-
Factory.makeDrawable() methods

= Vvarious utilities (classes and methods) for dealing with single imag-
es as well as groups of related images

= Spaces and controllers architecture, which enables you to deal with
complex data generation or presentation requirements

= composition services that allow the complex layering and blending
of different image sources

= timing services that enable you to schedule and control time-relat-
ed activities

= Vvideo and audio media capture from external sources
= exposure of the QuickTime visual effects architecture

All of these are built on top of the services that QuickTime pro-
vides. The provided interfaces and classes in the quicktime.app packag-
es can be used as a basis for developers to build on and extend in new
ways, not just as a set of utility classes you can use.

USING QUICKTIME IN MULTIMEDIA PRODUCTION

QuickTime provides some powerful constructions that can simplify the
production of applications or applets that contain or require multime-
dia content. Although we do not address directly the often complex
production processes that can be involved, a combination of some of
the techniques that are illustrated in the example code presented in this

eAel 1o} awi]}2Ind jo Arewwns -

4 Chapter 1: Summary of QuickTime for Java

document can provide a basis to both simplify and extend the work
that is involved in such productions.

For example, a multimedia presentation often includes many differ-
ent facets: some animation, some video, and a desire for complex pre-
sentation and interactive delivery of this content. The spaces and
controllers architecture, and the services that it provides to build ani-
mations, provides the ability to deliver presentations that can be both
complex in their construction and powerful in the interactive capabili-
ties that they provide to the user.

The media requirements for such presentations can also be com-
plex. They may include “standard” digital video, animated characters,
and customized musical instruments. QuickTime’s ability to reference
movies that exist on local and remote servers provides a great deal of
flexibility in the delivery of digital content.

A movie can also be used to contain the media for animated charac-
ters and/or customized musical instruments. For example, a cell-based
sprite animation can be built where the images that make up the char-
acter are retrieved from a movie that is built specifically for that pur-
pose. In another scenario, a movie can be constructed that contains
both custom instruments and a description of instruments to be used
from QuickTime’s built-in Software Synthesizer to play a tune.

In both cases we see a QuickTime movie used to contain media and
transport this media around. Your application then uses this media to
recreate its presentation. The movie in these cases is hot meant to be
played but is used solely as a media container. This movie can be
stored locally or remotely and retrieved by the application when it is
actually viewed. Of course, the same technique can be applied to any of
the media types that QuickTime supports. The sprite images and cus-
tom instruments are only two possible applications of this technique.

A further interesting use of QuickTime in this production space is
the ability of a QuickTime movie to contain the media data that it pre-
sents as well as to hold a reference to external media data. For exam-
ple, this enables both an artist to be working on the images for an
animated character and a programmer to be building the animation us-
ing these same images. This can save time, as the production house

An Overview of QuickTime for Java 5

does not need to keep importing the character images, building inter-
mediate data containers, and so on. As the artist enhances the charac-
ters, the programmer can immediately see these in his or her
animation, because the animation references the same images.

AN OVERVIEW OF QUICKTIME FOR JAVA

QuickTime for Java enables Java and QuickTime programmers alike to
take full advantage of QuickTime’s multimedia capabilities. At its sim-
plest level, QuickTime for Java lets you write a Java applet and run that
applet on a variety of platforms. Java can be used in an applet, for ex-
ample, to make Web pages more interactive so that users will be able to
interact with those pages in ways they haven’t before. At an advanced
level, you can write applications that composite images, capture music
and audio, create special effects, and use sprites for animation.

A SET OF JAVA CLASSES WITH TWO LAYERS

The QuickTime API is implemented as a set of Java classes in Quick-
Time for Java. These classes offer equivalent APIs for using QuickTime
functionality on both Mac OS and Windows platforms.

The QuickTime for Java API consists of two layers. There is a core
layer that provides the ability to access the QuickTime native runtime
libraries (its API) and an Application Framework layer that makes it
easy for Java programmers to integrate QuickTime capabilities into
their Java software. The Application Framework layer includes

= the integration of QuickTime with the Java runtime, which in-
cludes sharing display space between Java and QuickTime and
passing events from Java into QuickTime

= a set of classes that provides a number of services that simplify the
authoring of QuickTime content and operation

The QuickTime for Java classes are grouped into a set of packages
on the basis of common functionality, common usage, and their organi-

eAel 1o} awi]}2Ind jo Arewwns -

6 Chapter 1: Summary of QuickTime for Java

zation in the standard QuickTime header files. The packages provide
both an object model for the QuickTime API and a logical translation or
binding of the native function calls into Java method calls. In “Integrat-
ing QuickTime with Java” (page 9) we discuss in detail the grouping
and usage of these packages, as well as how this logical translation
works.

SUPPORT FOR DIFFERENT JAVA VIRTUAL MACHINES

The QuickTime for Java API supports all fully compliant Virtual Ma-
chines (VMs). On the Macintosh, it supports Apple’s Macintosh
Run-time for Java (MRJ) 2.1 or later; under Windows, JDK 1.1 or later.
The Java VM used must be fully compliant with at least the JDK 1.1
specification and implementation from Sun Microsystems.

QuickTime for Java can also run in an applet, provided that the
browser or applet viewer has one of the supported Java VM'’s chosen.
Currently this requires the use of the Java Plug-in on Windows for
Netscape Navigator and Internet Explorer browsers because those
browsers do not provide a fully compliant Java 1.1 VM. On the Macin-
tosh, you can use the Internet Explorer version 4 browser with an ap-
plet tag if MRJ 2.1 is chosen as your default VM. For Netscape
Navigator version 4 on the Macintosh, QuickTime for Java applets
must be viewed using the MRJ Plug-in.

This requires the HTML page to have different tags (OBJECT, EM-
BED or APPLET, for instance), depending on the browser. In the Soft-
ware Development Kit (SDK), available for download from Apple’s
QuickTime for Java website (http://www.apple.com/quicktime/qtja-
va), is a JavaScript script (AppletTag.JS) is provided that inserts the ap-
propriate tag when the page is viewed.

VERSION NUMBERING

The minimal version required of QuickTime is expressed in the version
number of QuickTime for Java. Thus, the current release is known as
QuickTime for Java version 3, which means that it is basically compati-
ble with QuickTime 3. Subsequent releases of QuickTime for Java that

An Overview of QuickTime for Java 7

have QuickTime 4 APIs in abundance will be renumbered QuickTime
for Java version 4.

THE QTSIMPLEAPPLET: AN EXAMPLE

A good starting point for understanding QuickTime for Java is the
QTSimpleApplet program, a code snippet of which is shown in
Example 1.1. This program is useful for taking advantage of Quick-
Time presentation on the Internet to display multimedia content—and
this is accomplished in less than a dozen lines of Java code. Figure 1.1
shows the output of the QTSimpleApplet, running locally on the user’s
computer in an Internet Explorer browser window. The resulting
QuickTime movie, which you can control with the standard Quick-
Time movie controller buttons, uses the media as specified in the ap-
plet tag—in this case, sample.mov.

The QTSimpleApplet example uses QTFactory() methods that be-
long to the quicktime.app package to manufacture QuickTime objects
that are able to present any of the wide range of media that QuickTime
supports. That media may include video, audio, text, timecode, music/
MIDI, sprite animation, tween, MPEG, or even movies that let you use
Apple’s QuickTime VR and QuickDraw 3D capabilities. The code sam-
ple is discussed in detail in “The QTSimpleApplet Code” (page 22).

ExampLE 1.1 QTSimpleApplet.java

public class QTSimpleApplet extends Applet {
private Drawable myQTContent;
private QTCanvas myQTCanvas;

public void init () {

try

{

QTSession.open();

setlLayout (new BorderlLayout());

myQTCanvas = new QTCanvas (QTCanvas.kInitialSize, 0.5F, 0.5F);
add (myQTCanvas, "Center");

QTFile file = new QTFile (getCodeBase().getFile() + getParameter("file"));
myQTContent

QTFactory.makeDrawable (file);

eAel 1o} awi]}2Ind jo Arewwns -

8 Chapter 1: Summary of QuickTime for Java

} catch (Exception qtE) f{

// handle exception

public void start () {
try |
if (myQTCanvas != null)
myQTCanvas.setClient (myQTContent, true);
} catch (QTException e) f{
}

public void stop () {
if (myQTCanvas != null)
myQTCanvas.removeClient();

public void destroy () {
QTSession.close();

Integrating QuickTime with Java 9

FIGURE 1.1 The QTSimpleApplet running in a browser window

=—————————— (IsimpleApplet =0—n———<= 0 B
42 e @REO0OEDAA &~ R
Address: | | [file :// /Biscotti /QTSimple Applet /test htm| | IE

D [D

1

yadeas N\ A10ysily S\ saplaoaey [/

Applet Loaded e

INTEGRATING QUICKTIME WITH JAVA

As we saw in the previous section, QuickTime for Java represents a li-
brary of classes that are designed to bring the power and functionality
of QuickTime to Java. The core library of these classes provides you
with the ability to access many features and capabilities in the Quick-
Time API. The second set of classes—an Application Framework—Iets
you integrate those capabilities into your Java programs.

This section discusses how that integration works. The topics dis-
cussed include the following:

= a brief introduction to some Java terminology

= grouping QuickTime for Java classes into a set of packages based on
common functionality and usage

eAel 1o} awi]}2Ind jo Arewwns -

10 Chapter 1: Summary of QuickTime for Java

= classes in the Application Framework built on top of QuickTime for
Java native binding classes

= the QTSimpleApplet and PlayMovie programs explained method by
method

In this and the following sections, many code listings are given that
use the various QuickTime components and structures. For detailed
technical information about QuickTime, see nhttp://www.apple.com/
quicktime, where the complete QuickTime reference documentation is
available.

SOME JAVA TERMINOLOGY

If you're a C or C++ programmer, you’ll need to understand some of
the key terms in the Java programming language before proceeding
with the QuickTime for Java API.

In Java, you can think of an object as a collection of data values, or
fields. In addition, there are methods that operate on that data. The data
type of an object is called a class; and an object is referred to as an in-
stance of its class. In object-oriented programming, the class defines the
type of each field in the object. The class also provides the methods that
operate on data that is contained in an instance of the class. You create
an object using the new keyword. This invokes a constructor method of
the class to initialize the new object. You access the fields and methods
of an object by using the dot (.) operator.

In Java, methods that operate on the object itself are known as in-
stance methods. These are different from the class methods. Class meth-
ods are declared static, and they operate on the class itself rather than
on an individual instance of the class. The fields of a class may also be
declared static, which makes them class fields instead of instance fields.
Each object that you instantiate in Java has its own copy of each in-
stance field, but there is only one copy of a class field, which is shared
by all instances of the class.

Fields and methods of a class may have different visibility levels,
namely, public, protected, package, and private. These different levels
allow fields and methods to be used in different ways.

Integrating QuickTime with Java 11

Every class has a superclass. And from that superclass it inherits
fields and methods. When a class inherits from another class, it is called
a subclass of that class. This inheritance relationship forms what is
known as a class hierarchy. The java.lang.0bject class is the root class
of all Java classes; Object is the ultimate superclass of all other classes
in Java.

An interface is a Java construct that defines methods, like a class.
However, it does not provide implementations for those methods. A
class can implement an interface by defining an appropriate implemen-
tation for each of the methods in the interface. An interface expresses
the methods an object can perform—what a class can do—while mak-
ing no assumptions about how the object implements these methods.

When compiled, Java classes generate a class file that is a byte-cod-
ed representation of the class. When a Java program is run, these byte
codes are interpreted and often compiled (with a Just-in-Time Compil-
er) into the native or machine code of the runtime environment and
then executed. This is the part of the work done by the Java Virtual Ma-
chine (VM). These byte codes are platform-independent and can be ex-
ecuted on any platform that has a Java VM.

A method in a Java class can be declared to be a native method. A
native method has no Java code; it assumes that the method is actually
defined in a native library, typically in C. Native methods are used for a
number of reasons: performance, access to native services provided by
the operating system, and so on. In fact, many of the classes in the ja-
va.* packages contain native methods in order for the Java classes to
intergrate with an existing operating system.

Part of the distribution of QuickTime for Java is a framework of
classes. A package name (package and import) is a qualification that
precedes the name of a class, i.e., it defines a name-space. The java.*
packages are the standard set available on any distribution. QuickTime
for Java uses quicktime.* to delineate the QuickTime for Java
name-space.

eAel 1o} awi]}2Ind jo Arewwns -

12 Chapter 1: Summary of QuickTime for Java

FIGURE 1.2

QUICKTIME TO JAVA INTEGRATION STRUCTURE

Figure 1.2 illustrates a top-level view of the QuickTime to Java integra-
tion.

QuickTime and Java integration

Platform independent
Java source / byte-codes

. o i cktime.
* lib T librar
‘ Java.* libraries [y;gTJavahbraneS

42 4>
L |-
Java to Native Interface
L L
Platform specific
Java libraries QuickTime native-code

OS (Mac / Win32) APIs

BINDING QUICKTIME FUNCTIONS TO JAVA METHODS

Java classes are created from structures and data types found in the
standard QuickTime C language header files. These data types provide
the basic class structure of the QuickTime for Java API. For example,
the Movie data type in Movies.h becomes the Movie class. In general, the
C function calls list the main data structure they operate on as the first
parameter of the function. These calls become methods in this class. In
line with Java conventions, all class names are capitalized, while meth-
od names are not.

The methods of a class are created from C functions. There is gener-
ally a one-to-one relationship between a native function call and a Java
method. The Java method’s name is derived by the following proce-
dure:

The QuickTime native function
SetMovieGWorld

logically translates (or is bound by) the Java method

Integrating QuickTime with Java 13

setGWorld on the Movie class.

The QuickTime native function
MCSetControllerPort

logically translates (or is bound by) the Java method
setPort on the MovieController class.

A complete list of the QuickTime functions that QuickTime for Java
binds is provided on the QuickTime for Java SDK, which is included
with the book QuickTime for Java. The javadoc-generated documenta-
tion in HTML, also on the SDK, lists for each method the related Quick-
Time function call in bold. For example:

QuickTime::EnterMovies()

The supplied HTML documentation for these binding calls pro-
vides only brief descriptions. You need to refer to the QuickTime docu-
mentation in this website for specific details of a particular API, as well
as for general discussions on the usage of particular services.

GARBAGE COLLECTION

As Java has a built-in garbage collection mechanism, the QuickTime for
Java classes perform their own memory management. There are no ex-
plicit dispose calls in the QuickTime for Java API. These calls are called
by the objects themselves when they perform garbage collection. The
quicktime.util.QTUtils.reclaimMemory() method requests that the
garbage collector run and can be used to help ensure disposed of mem-
ory that is no longer referenced.

The QuickTime for Java API contains no direct access to pointers or
other features that are common in a C-based API. The Java method calls
provide very little overhead to the native call; they do parameter mar-
shalling and check the result of the native call for any error conditions.
If an error is returned by the native call, then an exception is thrown.

eAel 1o} awi]}2Ind jo Arewwns -

14 cChapter 1: Summary of QuickTime for Java

THREADS

Although Java is a multi-threaded environment, the method calls that
map a QuickTime function to a Java method do not provide any implic-
it synchronization support. If you share any QuickTime object between
threads, you are responsible for dealing with any synchronization is-
sues that may arise. The Java language provides easy services to let you
do this by means of the following syntax as well as synchronized meth-
od calls:

synchronize (adavaObject) { /*synchronized block of code*/ }

THE QUICKTIME FOR JAVA PACKAGE STRUCTURE

The QuickTime for Java classes are grouped into a set of packages. The
grouping is based on common functionality and usage and on their or-
ganization in the standard QuickTime header files. The packages pro-
vide both an object model for the QuickTime API and a logical
translation or binding of the native function calls into Java method
calls. A number of packages also have subpackages that group togeth-
er smaller sets of functionality.

The major packages generally have a constants interface that pre-
sents all of the constants that relate to this general grouping and an ex-
ception class that all errors that derive from a call in this package group
will throw. The packages, with descriptions of their principal classes
and interfaces, are shown in Table 1.1.

The QuickTime for Java Package Structure 15

TABLE 1.1 QuickTime for Java packages

Package

Principal classes
and interfaces

Description

quicktime

QTSession,
QTException

The QTSession class has calls that set up and
intialize the QuickTime engine, such as
initialize, gestalt, and enterMovies.

quicktime.io

OpenFile, QTFile,
OpenMovieFile,
QTIOException

Contains calls that deal with file I/0. These
calls are derived from the Movies.h file.

quicktime.qd

QDGraphics,
PixMap, Region,
QDRect, QDColor,
QDConstants,
QDException

Contains classes that represent the
QuickDraw data structures that are required
for the rest of the QuickTime API. These calls
are derived from the QuickDraw.h and
QDOffscreen.h files. The QuickTime API
expects data structures that belong to
QuickDraw, such as graphics ports, GWorlds,
rectangles, and points.

quicktime.qd3d

CameraData,
Q3Point, Q3Vector

Contains classes that represent the
QuickDraw 3D data structures that are
required for the rest of the QuickTime API,
predominantly the tweener and 3D media
services.

quicktime.sound

SndChannel, Sound,
SPBDevice,
SoundConstants,
SoundException

Contains classes that represent the Sound
Manager API. These calls are derived from
the Sound. h file. While some basic sound
recording services are provided, for more
demanding sound input and output the
sequence grabber components and movie
playback services should be used.

eAel 1o} awi]}2Ind jo Arewwns -

16 Chapter 1: Summary of QuickTime for Java

Package

Principal classes
and interfaces

Description

quicktime.

std

StdQTConstants,
StdQTException

The original QuickTime interfaces on the
Mac OS are contained in a collection of eight
header files that describe the standard
QuickTime API. As such, nearly all of the
functions defined in these files are to be
found in classes in the quicktime.std group
of packages.

quicktime.
anim

std.

Sprite,
SpriteWorld

Classes that provide support for animation.
QuickTime can be used as a real time
rendering system for animation, distinct from
a data format—that is, the movie. Thus, you
can create a graphics space (SpriteWorld)
within which characters (Sprite objects) can
be manipulated.

quicktime.
clocks

std.

Clock, TimeBase,

QTCallback and
subclasses

Contains classes that provide timing services,
including support for the creation of
hierarchical dependencies between time
bases, the usage of callbacks for user
scheduling of events or notification, and the
capability of instantiating the system clocks
that provide the timing services.

quicktime.
com

std.

Component,
Component-
Description

QuickTime is a component-based
architecture, with much of its funtionality
being provided through the creation and
implementation of a particular component's
API. This package contains classes that
provide basic support for this component
architecture; a full implementation is
forthcoming.

Package

Principal classes
and interfaces

The QuickTime for Java Package Structure 17

Description

quicktime.std.

image

CodecComponent,
QTImage,
CSequence, Matrix

Contains classes that present the Image
Compression Manager. These classes provide
control for the compression and
decompression of both single images and
sequences of images. It also contains the
Matrix class, which (like the Region class in
the qd package) is used generally throughout
QuickTime to alter and control the rendering
of 2D images.

quicktime.std.

movies

AtomContainer,
Movie,
MovieController,
Track

Contains the principal data structures of
QuickTime, including classes that represent
QuickTime atom containers, movies, movie
controllers, and tracks—all essential for
creating and manipulating QuickTime
movies. A movie containing one or more
tracks is the primary way that data is
organized and managed in QuickTime. A
Movie object can be created from a file or from
memory and can be saved to a file. The
MovieController class provides the standard
way that QuickTime data (movies) are
presented and controlled. AtomContainer
objects are the standard data structures used
to store and retrieve data in QuickTime.

quicktime.std.

movies.media

DataRef, Media
and subclasses,
MediaHandler
and subclasses,
Sample
Description and
subclasses

A Track object is a media neutral structure,
but it contains a single Media type that
defines the kind of data that a Track is
representing. The Media, MediaHandler and
SampleDescription subclasses describe the
various media types that QuickTime can
present. Media classes control references to
data that comprise the raw media data.

eAel 1o} awi]}2Ind jo Arewwns -

18 Chapter 1: Summary of QuickTime for Java

Package

Principal classes
and interfaces

Description

quicktime.std.
music

AtomicInstrument,

NoteChannel,
NoteAllocator

Contains classes that deal with the general
music architecture provided by QuickTime.
This architecture can be used to capture and
generate music (MIDI) events in real time,
customize and create instruments, and
eventually provide your own algorithmic
synthesis engines.

quicktime.std.

MovieExporter,

Contains classes that interface with some of

gtcomponets Movielmporter, the components that are provided to supply
TimeCoder . . .
different services. The import and export
components are supported, as are tween and
timecode media components.
quicktime.std.sg SequenceGrabber, Contains classes that implement the
SGVideoChannel. sequence grabber component for capturing
SGSoundChannel . . .
video and audio media data.
quicktime.util QTHandle, Contains classes that represent utility
UTByteObject, functionality required by the general
QTPointer,

UtiTException

QuickTime API. The most commonly used
feature of this package is a set of classes for
memory management from Memory.h. These
classes typically form the base class for actual
QuickTime objects.

quicktime.vr

QTVRConstants,
QTVRInstance,
QTVRException

Contains classes that represent the
QuickTime Virtual Reality API. The package
contains all the QuickTime VR interface
constants, the QTVRInstance class and some
QTVR callbacks for presentation of QTVR
content.

QUICKTIME HEADERS AND JAVA CLASSES

As we’ve seen, Java classes are created from structures and data types
found in the standard QuickTime C language header files. These pro-

The QuickTime for Java Package Structure 19

vide the basic class structure of the QuickTime for Java API. The origi-
nal QuickTime interfaces on the Mac OS are contained in a collection of
eight header files that describe the standard QuickTime API. As such,
nearly all of the functions defined in these files are to be found in class-
es in the quicktime.std group of packages.

The standard QuickTime C header files with their corresponding
packages in the QuickTime for Java API are shown in Table 1.2.

TABLE 1.2 C header files and corresponding QuickTime for Java packages

QuickTime C header files

Description

Components.h

Calls from this file are in the
quicktime.std.comp package.

ImageCompression.h and
ImageCodec.h

Calls from this file are in the
quicktime.std.image package.

MediaHandlers.h

Not required in QuickTime for Java.

Movies.h

This file has been separated into a number of
packages to present a finer degree of
definition and functional grouping.

Sprite animation calls are in the
quicktime.std.anim package.

Callback and time-base calls are in the
quicktime.std.clocks package.

File 1/0 calls are in the quicktime.io
package.

All media-related calls are in the
quicktime.std.movies.media package.
Movies, movie controllers, tracks, and atom
containers are in the quicktime.std.movies
package.

eAel 1o} awi]}2Ind jo Arewwns -

20 cChapter 1: Summary of QuickTime for Java

QuickTime C header files Description
MoviesFormat.h Not required in QuickTime for Java.
QuickTimeComponents.h This file has been separated into a number of

packages to present a finer degree of
definition and functional grouping. The
clocks component is found in the
quicktime.std.clocks package. Sequence
grabber components calls are found in the
quicktime.std.sg package. The remaining
components are found in the
quicktime.std.qtcomponents package.

QuickTimeMusic.h All calls from this file are in the

quicktime.std.music package.

THE APPLICATION FRAMEWORK

The classes in the QuickTime for Java Application Framework are built
entirely on top of QuickTime for Java native binding classes.

The Application Framework classes are designed to simplify the us-
age of the QuickTime for Java APl and to provide a close integration
with Java’s display and event distribution system. They offer a set of
services that are commonly used by QuickTime programs. In addition,
they provide useful abstractions and capabilities that make the use of
these services simpler and easier for the developer.

The Framework itself is also designed with reusability and extensi-
bility of classes in mind. It uses Java interfaces to express some of the
functionality that can be shared or is common among different classes.
You can also implement your own versions of these interfaces, or ex-
tend existing implementations, to more specifically meet a particular
requirement, and in so doing, use these custom classes with other class-
es of the Framework itself. Table 1.3 describes the various Framework
packages and their principal classes.

TABLE 1.3

Package

The QuickTime for Java Package Structure 21

QuickTime for Java Application Framework packages

Description

quicktime.

app

Provides a set of “factory” methods for creating classes that
you can use to present media that QuickTime can import. In
addition, it provides some utility methods for finding
directories and files in the local file system.

quicktime.

app.

action

Contains a large number of useful controller classes for mouse
drags and for handling mouse events. It also contains action
classes that can be used to apply actions to target objects.

quicktime.

app.

anim

Contains classes that present all of the functionality of the
Sprite and SpriteWorld.

quicktime.

app

.audio

Contains a number of interfaces and classes that deal
specifically with the audio capabilities of QuickTime.

quicktime.

app.

display

Contains a number of classes that are important for using the
QuickTime for Java API. QTCanvas and QTDrawable negotiate
with java.awt classes to allow the presentation of QuickTime
content within a Java window or display space.

quicktime.

app

.image

Handles the presentation and manipulation of images.
Included are utility classes for setting transparent colors in
images, applying visual effects, creating objects for handling
sequences of images, and QTDrawable objects that read image
data from a file or load the data into memory.

quicktime.

app

.players

QTPlayer and MoviePlayer define a set of useful methods that
enables you to present QuickTime movies, using QTCanvas
objects and the QTbrawable interface.

quicktime.

app.

S9

Contains a single class, SGDrawer.

quicktime.

app.

spaces

Interfaces in this package provide a uniform means of dealing
with a collection of objects in QuickTime for Java.

quicktime.

app.

time

Provides a set of useful classes to handle timing services used
to schedule regular tasks that need to be performed on an
ongoing basis.

eAel 1o} awi]}2Ind jo Arewwns -

22 Chapter 1: Summary of QuickTime for Java

THE QTSIMPLEAPPLET CODE

The sample code QTSimpleApplet (available in the SDK that comes with
the book QuickTime for Java) is a QuickTime for Java applet you can cre-
ate that presents any of the media file formats that QuickTime sup-
ports. QuickTime includes support for a vast array of common file
formats: QuickTime movies (including QuickTime VR), pictures,
sounds, MIDI, and QuickDraw 3D.

The applet tag for this applet is

<applet code="QTSimpleApplet.class" width=200 height=100>
<{param name="file" value="media/crossfad.gif">
</applet>

The QTSimpleApplet code takes any of the media file types support-
ed by QuickTime as a parameter in the HTML applet tag and creates
the appropriate object for that media type:

param name=file value="MyMediaFile.xxx”

The QTCanvas, QTDrawable, and QTFactory classes, which are part of
the QTSimpleApplet code, are discussed in greater detail in the next sec-
tion.

As with all Java applets, we begin in the QTSimpleApplet code by
declaring a list of Java packages and QuickTime for Java packages that
contain the required classes you need to import:

import java.applet.Applet;
import java.awt.*;

import quicktime.QTSession;
import quicktime.io.QTFile;

import quicktime.app.QTFactory;

import quicktime.app.display.QTCanvas;
import quicktime.app.display.Drawable;
import quicktime.QTException;

To get the resources for the simple applet and set up the environ-
ment, including the creation of the QTCanvas object, you use the init()
method, as shown in the snippet below. 0TCanvas is the object responsi-

The QuickTime for Java Package Structure 23

ble for handling the integration from the java.awt side between Java
and QuickTime. The QTCanvas also has parameters that let you control
the resizing of the client that it presents. In this case, we tell the canvas
to center the client within the space given by the applet’s layout man-
ager. This ensures that the client is only as big as its initial size (or
smaller if you make the canvas smaller).

The QTSession.open() call performs a gestalt check to make sure
that QuickTime is present and is initialized. Note that this is a required
call before any QuickTime for Java classes can be used:

public void init () {
try {
QTSession.open()

To set up a QTCanvas object that displays its content at its original
size or smaller and is centered in the space given to the QTCanvas when
the applet is laid out, we do the following:

setlLayout (new BorderLayout());

myQTCanvas = new QTCanvas (QTCanvas.kInitialSize, 0.5F,
0.5F);

add (myQTCanvas, "Center");

QTFile file = new QTFile (getCodeBase().getFile() +
getParameter("file"));
myQTContent = QTFactory.makeDrawable (file);
} catch (Exception e) {
e.printStackTrace();

}

The QTFactory.makeDrawable() method is used to create an appro-
priate QuickTime object for the media that is specified in the
<PARAM> tag.

If a QTException is thrown in the init() method, an appropriate ac-
tion should be taken by the applet, depending on the error reported.

In the start() method shown in the next code snippet, you set the
client of the QTCanvas. This QTCanvas.client is the QuickTime object

eAel 1o} awi]}2Ind jo Arewwns -

24 cChapter 1: Summary of QuickTime for Java

(i.e., an object that implements the QTDrawable interface) that draws to
the area of the screen that the QTCanvas occupies. This is the QuickTime
side of the integration between Java and QuickTime:

public void start () f
try { myQTCanvas.setClient (myQTContent, true);
} catch (Exception e) {
e.printStackTrace();
}
}

You use the stop() method to remove the client from the QTCanvas.
It will be reset in the start() method if the applet is restarted. de-
stroy() is used to close the QTSession. This protocol enables the applet
to be reloaded, suspended, and resumed—for example, if the user is
leaving and returning to the page with the applet. The init()/de-
stroy(),and start()/stop() methods are reciprocal in their activities.

public void stop () {
myQTCanvas.removeClient();
}

public void destroy () {
QTSession.close();
}

You need to call QTSession.close() if you have previously called aT-
Session.open() in order to shut down QuickTime properly.

The init() method may throw exceptions because the required file
was not found or the applet does not have permission from Java’s secu-
rity manager to read that file. Alternatively, the required version of
QuickTime may not be installed. The applet should deal with these is-
sues appropriately.

Comparing QuickTime C and Java Code 25

COMPARING QUICKTIME C AND JAVA CODE

Much of the sample code available for QuickTime is presented in the C
programming language. Comparing Example 1.2 and Example 1.3 in C
with the Java version shown in Example 1.4 can aid in understanding
how to translate C to Java code.

GETTING A MOVIE FROM A FILE

Before your application can work with a movie, you must load the
movie from its file. You must open the movie file and create a new
movie from the movie stored in the file. You can then work with the
movie. You use the OpenMovieFile function to open a movie file and the
NewMovieFromFile function to load a movie from a movie file. The code
in Example 1.2 shows how you can use these functions.

ExampLE 1.2 Getting a movie from a file using C code

Movie GetMovie (void)

{

0SErr err;

SFTypelist typelist = {MovieFileType,0,0,0};
StandardFileReply reply;

Movie aMovie = nil;

short movieResFile;

StandardGetFilePreview (nil, 1, typelist, &reply);
if (reply.sfGood)

{

err = OpenMovieFile (&reply.sfFile, &movieResFile,

fsRdPerm);

if (err == nokrr)

{
short movieResID = 0; /* want first movie */
Str255 movieName;
Boolean wasChanged;

eAel 1o} awi]}2Ind jo Arewwns -

26 Chapter 1: Summary of QuickTime for Java

}

err

Clo

= NewMovieFromFile (&aMovie, movieResFile,
&movieResID,
movieName,
newMovieActive, /* flags */
&wasChanged);

seMovieFile (movieResFile);

return aMovie;

The QuickTime Movie Toolbox uses Alias Manager and File Manag-
er functions to manage a movie’s references to its data. A movie file
does not necessarily contain the movie’s data. The movie’s data may re-
side in other files, which are referred to by the movie file. When your
application instructs the Movie Toolbox to play a movie, the Toolbox at-
tempts to collect the movie’s data. If the movie has become separated
from its data, the Movie Toolbox uses the Alias Manager to locate the
data files. During this search, the Movie Toolbox automatically dis-
plays a dialog box. The user can cancel the search by clicking the Stop
button.

The code in Example 1.3 shows the steps your application must fol-
low in order to play a movie. This program retrieves a movie, sizes the
window properly, plays the movie forward, and exits. This program
uses the GetMovie function shown in Example 1.2 to retrieve a movie
from a movie file.

ExampLE 1.3 Playing a movie

#include
#include
#include
#include
#include
#include
#include
#include

{Types.
<Traps.
<Menus.
<Fonts.

<Packa
<Gesta
"Movie
"Image

h>

h>

h>

h>

ges.h>
1tEqu.h>

s.h"
Compression.h"

/* ffinclude "QuickTimeComponents.h" */

Comparing QuickTime C and Java Code 27

jfdefine doTheRightThing 5000

T

void main (void)

{
WindowPtr aWindow;
Rect windowRect;
Rect movieBox;
Movie aMovie;
Boolean done = false;
OSErr err;
EventRecord theEvent;
WindowPtr whichWindow;
short part;

eAel 1o} awi]}2Ind jo Arewwns

InitGraf (&qd.thePort);
InitFonts ();
InitWindows ();
InitMenus ();

TEInit ()

InitDialogs (nil);

err = EnterMovies ();
if (err) return;

SetRect (&windowRect, 100, 100, 200, 200);
alWindow = NewCWindow (nil, &windowRect, "\pMovie",
false, noGrowDocProc, (WindowPtr)-1,

true, 0);
SetPort (aWindow);
aMovie = GetMovie ();
if (aMovie == nil) return;

GetMovieBox (aMovie, &movieBox);
OffsetRect (&movieBox, -movieBox.left, -movieBox.top);
SetMovieBox (aMovie, &movieBox);

SizeWindow (aWindow, movieBox.right, movieBox.bottom, true);
ShowWindow (aWindow);

SetMovieGWorld (aMovie, (CGrafPtr)aWindow, nil);

28 Chapter 1: Summary of QuickTime for Java

StartMovie (aMovie);
while (!IsMovieDone(aMovie) && !done)
{
if (WaitNextEvent (everyEvent, &theEvent, 0, nil))
{
switch (thekEvent.what)

case updateEvt:

whichWindow = (WindowPtr)theEvent.message;

if (whichWindow == aWindow)

{
BeginUpdate (whichWindow);
UpdateMovie(aMovie);
SetPort (whichWindow);
EraseRect (&whichWindow->portRect);
EndUpdate (whichWindow);

}

break;

case mouseDown:
part = FindWindow (theEvent.where,
&whichWindow) ;
if (whichWindow == aWindow)
{
switch (part)
{
case inGoAway:
done = TrackGoAway (whichWindow,
theEvent.where);
break;
case inDrag:
DragWindow (whichWindow,
thekEvent.where,
&qd.screenBits.bounds);
break;

break;

MoviesTask (aMovie, DoTheRightThing);

Comparing QuickTime C and Java Code 29

DisposeMovie (aMovie);
DisposeWindow (aWindow);

PLAYING A QUICKTIME MOVIE

Example 1.4 shows how to display any QuickTime content within a ja-
va.awt display space using the QTCanvas. It also demonstrates the use of
the different resize options of the QTCanvas (with the alignment set to
center it in the display space). You use the movie controller to select
and then play a QuickTime movie, which can be a local file or a URL
specified by the user.

You call QTSession.open() to perform a gestalt check to ensure that
QuickTime is present and is initialized. This is a required call before
any QuickTime Java classes can be used.

The window is the size of the movie and resizing the window will
resize the movie. The QTCanvas is set to allow any size and is the cen-
tral componentin a java.awt.BorderLayout Of its parent Frame.

You use the following methods to lay out and resize the Frame to the
size of the Movie:

pm.pack();
pm.show();
pm.toFront();

You now prompt the user to select a movie file:

QTFile qtf = QTFile.standardGetFilePreview(QTFile.kStandardQTFileTypes);

You open the selected file and make a movie from it, using these
calls:

OpenMovieFile movieFile = OpenMovieFile.asRead(qtf);
Movie m = Movie.fromFile (movieFile);

You construct a movie controller from the resultant movie, en-
abling the keys so the user can interact with the movie by using the
keyboard:

eAel 1o} awi]}2Ind jo Arewwns -

30 Chapter 1: Summary of QuickTime for Java

MovieController mc = new MovieController (m);
mc.setKeysEnabled (true);

You create a QTCanvas SO that the MovieController has somewhere
to draw and add it to the Frame:

QTCanvas myQTCanvas = new QTCanvas();
add (myQTCanvas);

You construct the QTDrawab1e object to present a movie controller:

QTPlayer myQTPlayer = new QTPlayer (mc);

Now you set it as the drawing client of the 0TCanvas for a QTPlayer.
This also registers interests for both mouse and key events that origi-
nate in the QTCanvas:

myQTCanvas.setClient (myQTPlayer, true);

You add a WindowlListener to this frame that will close down the QT-
Session. Finally, you dispose of the Frame that closes down the win-
dow and you exit:

addWindowlListener(new WindowAdapter () {
public void windowClosing (WindowEvent e) {
QTSession.close();
dispose();

public void windowClosed (WindowEvent e) {
System.exit(0);

b

When the user closes the window, the program quits, first calling
QTSession.close to terminate QuickTime. You need to call QTSes-
sion.close() if you have previously called QTSession.open() in order
to shut down QuickTime properly. QTSession.close() is called before
the canvas that the QuickTime obiject is attached to is disposed of. This
enables QuickTime to clean up its graphics objects, which it attaches to
the native implementation of the QTCanvas.

Comparing QuickTime C and Java Code 31

ExAamPLE 1.4 PlayMove.java

import java.awt.*;
import java.awt.event.*;

T

import quicktime.*;

import quicktime.io.*;

import quicktime.std.movies.*;

import quicktime.app.display.QTCanvas;
import quicktime.app.players.QTPlayer;

public class PlayMovie extends Frame {

public static void main (String args[]) f{

try |
QTSession.open ();
PlayMovie pm = new PlayMovie("QT in Java");
pm.pack();
pm.show();
pm.toFront();

} catch (QTException e) {

// handle errors

eAel 1o} awi]}2Ind jo Arewwns

PlayMovie (String title) throws QTException {
super (title);

QTFile qtf = QTFile.standardGetFilePreview(QTFile.kStandardQTFileTypes);

OpenMovieFile movieFile = OpenMovieFile.asRead(qtf);
Movie m = Movie.fromFile (movieFile);

MovieController mc = new MovieController (m);
mc.setKeysEnabled (true);

QTCanvas myQTCanvas = new QTCanvas();
add (myQTCanvas);

QTPlayer myQTPlayer = new QTPlayer (mc);

32 Chapter 1: Summary of QuickTime for Java

myQTCanvas.setClient (myQTPlayer, true);

addWindowListener(new WindowAdapter () {
public void windowClosing (WindowEvent e) {

1)

}

QTSession.close();
dispose();

pubTic void windowClosed (WindowEvent e) {

}

System.exit(0);

SUMMARY COMPARISION

We’ve seen two bodies of code illustrated in several examples, one in C
and the other in Java. In summary, we could note the following points:

Both pieces of code can open and play a vast number of media files.

The C code is specific to the Macintosh; the Windows version (not
shown) is different—though only slightly. Of course, as an applica-
tion in C is developed around QuickTime, more and more plat-
form-specific code needs to be written, whereas with Java, a
framework is provided that is a cross-platform API as well as a
cross-platform execution model.

The Java code benefits from the Java class framework with which a
developer may already be familiar.

Java runs anywhere, unchanged, so long as QuickTime is available.
As other client operating systems gain QuickTime support, the
QuickTime for Java code will run there, too.

The Java code is arguably simpler.

QuickTime for Java Classes and Interfaces 33

QUICKTIME FOR JAVA CLASSES AND INTERFACES

This section discusses the usage of two principal classes and one princi-
pal interface in the QuickTime for Java API. These are the QTCanvas, QT-
Drawable, and QTFactory. As we saw in the preceding section, the
QTCanvas is a subclass of the java.awt.Canvas and represents primarily
a way to gain access to the underlying native graphics structure of the
platform. QuickTime requires this in order to draw to the screen. QT-
Drawable is an interface that expresses this requirement of QuickTime
objects to draw to this native graphics structure. QTFactory is a class
that uses the importing capabilities of QuickTime to “manufacture” QT-
Drawable objects to present that media.

In this section, we discuss how to

= Uuse the QTCanvas class to interact with the Java display and event
system

= Usethe QTDrawable interface to encapsulate common operations that
can be applied to a QuickTime drawing object

= present media that QuickTime can import by using “factory” meth-
ods provided by the QTFactory class

The section also introduces briefly an abstraction known as a space,
which is part of the QuickTime for Java spaces and controllers architec-
ture. A space defines and organizes the behavior of objects and allows
for the complex representation of disparate media types.

THE QTCANVAS CLASS

To present QuickTime content within Java, you need a mechanism for
interacting with the Java display and event system. This is provided
through the services of the QTcanvas class and its client, an object that
implements the Drawable interface. QTCanvas is a specialized canvas that
supplies access to the native graphics environment and offers expand-
ed display functionality.

eAel 1o} awi]}2Ind jo Arewwns -

34 Chapter 1: Summary of QuickTime for Java

QTCanvas encapsulates much of the display and presentation func-
tionality of the QuickTime for Java APL. It is responsible for “punching
a hole” within the Java display surface and telling its client that it can
draw to this display surface and receive events that occur therein. Its
clients are generally some kind of QuickTime object, and the events it
receives may be mouse or key events. An instance of a QTCanvas object
can display any object that implements the Drawable interface.

The client of a QTCanvas object is called Drawable because Quick-
Time generally uses the word “draw”—for example, MCDraw. Java uses
the word “paint,” so this enables us to make a distinction between Java
objects that “paint” and QuickTime objects that “draw.”

Your code can interact with the 0TCanvas methods as with those of
any java.awt.Component. The QTCanvas delegates calls as appropriate to
its drawing client. A client essentially draws itself in the display area of
a QTCanvas. If the client is a QTDrawable, the QTCanvas also gets the
graphics structure (0DGraphics) of the native implementation of the
canvas’s peer and sets this QDGraphics as the destination QDGraphics of
such a client. All aTbrawable objects require a destination QDGraphics in
which to draw.

Using the setClient() method, you can associate a new client, a
Drawable object, with this QTCanvas. The flag determines if awt per-
forms a layout and how the client is integrated with the canvas. If the
flag is false, the new client takes on the current size and position of the
canvas. If the flag is true, then awt lays out the canvas again, using the
initial size of the client and the resize flags to resize the canvas and its
client. The getClient() method returns the Drawable object currently
associated with this QTCanvas.

Interacting With Java Layout Managers

QuickTime media content is often sensitive to the size and proportions
of screen space that it uses—for instance, a movie that is made to dis-
play at 320 x 240 pixels can look bad or have serious performance re-
percussions if drawn at 600 x 60 pixels on the screen.

QuickTime for Java Classes and Interfaces 35

The QTcanvas provides flags for controlling how the Java layout
managers allocate space to it (resizeFlags) and where, within that
space, the QTCanvas client actually draws (alignmentFlags). You can
also set the minimum, preferred, and maximum sizes of the QTCanvas,
as with any other java.awt.Component. The preferred size is automati-
cally set for you as the initial size of the QTCanvas client if your applica-
tion does not specifically set the preferred size itself.

THE QTDRAWABLE INTERFACE

The QTdbrawable interface encapsulates the common operations that can
be applied to a QuickTime drawing object. It also presents an interface
that expresses the required methods that the QTCanvas needs to call
upon its drawing client.

Obijects that implement the QTdbrawable interface draw into the QD-
Graphics object presented to the client by its QTCanvas. As a conse-
guence, this is not an appropriate interface for objects that are not
QuickTime-based drawing objects. QTExceptions can be thrown by any
of the methods in this interface and would indicate that either the
graphics environment has changed in some unexpected way or that the
media object itself is in some unexpected state.

Figure 1.3 represents the QTDrawable interfaces and the classes in
QuickTime for Java that implement this interface.

Working With the QTDrawable Interface

As we’ve seen, the QTDrawable interface is used to handle the negotia-
tion between the QTCanvas and one of several QuickTime objects. The
QuickTime objects that implement the QTDrawable interface are exten-
sive and include the following:

= the QTPTayer class, which presents the movie controller

= the MoviePlayer Or MoviePresenter classes, which present the Movie
data type

» the GraphicsImporterDrawer class, which wraps the graphics im-
porter to present images from a data source, typically image files

eAel 1o} awi]}2Ind jo Arewwns -

36 Chapter 1: Summary of QuickTime for Java

= the ImagePresenter class, which presents the DSequence but for a
single image only, allowing image data to be loaded and kept in
memory, providing a faster redraw than the GraphicsImporter ob-
ject

= the SWCompositor class, which presents the sprite world

= the SGDrawer class, which presents the sequence grabber and se-
guence grabber channel (video) components

= the GroupDrawable class, which groups QTDrawable objects into the
same canvas.

= the QTEffect class, which wraps the visual effects architecture of
QuickTime

» the QTImageDrawer class, which allows the results of Java painting
intoa java.awt.Image to be captured and drawn by QuickTime

The aTDrawable interface is designed to work hand-in-hand with a
QTCanvas object. The class that implements this interface draws into the
supplied abGraphics object. The QTcanvas will call the methods of its
client (setting its destination QDGraphics, setting display bounds, and
redrawing it) as required.

QuickTime for Java Classes and Interfaces 37

FIGURE 1.3 The QTDrawable implementation

/quicktime. app.spaces
(Listener)
-
4 quicktime. N /quicktime,app,image A
app.display
Drawable ’ e eodece .
Transformable
:+ <[DSequenceFromMemory |
QTDra\Nab|e I § .s
+ - +|GraphicsimporterDrawer |
QTDisplaySpace .
N y :-<|AImageViewer
: QTFilter F—QTTransition |
-+ -[QTEffect
: CompositableEffect |
«**|QTImageDrawer
. —| QTEffectPresenter
:+<[ImagePresenterf—
o /
quicktime.app.players
quicktime.app.sg "[MoviePlayer
-t-[SGDrawer | *+[QTPlayer
Key [Class] [AAbstract] (interface) TExtends Implements

QTDrawable Methods

The QTDrawable interface expresses the capabilities that all QuickTime
drawing objects possess. The QTCanvas uses the following methods of
the QTdrawable interface:

m addedTo(), removedFrom()

eAel 1o} awi]}2Ind jo Arewwns -

38 Chapter 1: Summary of QuickTime for Java

These methods are used by the aTCanvas to notify the client object
that it has been added to or removed from the QTCanvas. Various
clients require this notification:

o QTPlayer, so it can declare its interest in mouse and key events

o QTImageDrawer, SO that it can create an java.awt.Image object to
paint into

o QTDisplaySpaces, to allow the attachment of controllers that are
interested in receiving events whose source is the QTCanvas

m setDisplayBounds(), getDisplayBounds()

These methods are used to get the current size of a QTCanvas client
and set its size. The QTCanvas determines the size of itself and its
client based on a complex interaction between the size the QTCanvas
parent container allocates to the QTCanvas, the initial (or best) size of
its client, and the setting of the resize and alignment flags of the
QTCanvas itself.

Once the QTcanvas has determined the correct size of itself and its
client, it uses the setDisplayBounds() method to resize and locate
its client. The size and location of a 0TCanvas and its client is always
the same.

s redraw()
This method is used to tell the client to redraw itself.

Both the setDisplayBounds() and redraw() methods of a client are
only called by the QTCanvas paint() method, with the
setDisplayBounds() call, if required, being always called before a
redraw() call.

m getGWorld(), setGWorld()

These methods are used to set the QTDrawable client’s destination
QDGraphics if the client of a QTCanvas isa QTDrawable, as is normally
the case. All QTDrawable objects must have a destination QDGraphics
at all times. As such, if a QTDrawable client is removed from a
QTCanvas or the QTCanvas has been hidden

myQTCanvas.setVisible (false);

QuickTime for Java Classes and Interfaces 39

then a special QDGraphics, QDGraphics.scratch(), is used to indicate
to the QTDrawable that it is invisible and basically disabled.

While the following methods are not used specifically in the rela-

tionship between QTCanvas and its client, they are presented here for the
sake of completeness and also express capabilities that all QTDrawable
objects possess:

getClip(), setClip()

All aTDrawable objects have the ability to clip their drawn pixels to
a specified region. The getC1ip() and setClip() methods are used
to get and set a clipping region. nu11 can be used and returned, and
it indicates that the QTDrawable currently has no clipping region set.

The DirectGroup display space enables one or more QTDrawable ob-
jects to draw into the same QTCanvas destination QDGraphics. It pro-
vides the capability to layer the objects in such a group, so that the
objects do not draw over each other. This layering is achieved
through the use of clipping regions. The DirectGroup clips its mem-
bers so that members that are behind others cannot draw into the
area where those in front are positioned. As this group by defini-
tion draws directly to the screen, this is the only means that can be
used to avoid the flickering that would occur if the QTDrawable ob-
jects could not be clipped.

getMatrix(), setMatrix(), getInitialSize()

The QTDrawable interface also extends the Transformable interface.
The Transformable interface expresses the ability of QuickTime
drawers to have a matrix applied that will map the source pixels of
a drawing object to some transformed destination appearance. A
matrix allows the following transformations to be applied in the
rendering process:

o translation. Drawing pixels from an x or y location
o scaling. Scaling the image by an x or y scaling factor
o rotation. Rotating the image a specified number of degrees

o skew. Skewing the image by a specified amount

eAel 1o} awi]}2Ind jo Arewwns -

40 Chapter 1: Summary of QuickTime for Java

o perspective. Applying an appearance of perspective to the image

Your application can freely mix and match these different transfor-
mations at its own discretion.

All QTdbrawable objects can have a matrix applied to them that will
transform their visual appearance. A Sprite in a SpriteWorld can also
have matrix transformations applied to it, as can a 3D model. The TwoD-
Sprite also implements the Transformable interface.

The Transformable interface allows for applications to define be-
haviors that can be applied to any of these objects. For example, the
quicktime.app.actions.Dragger, which will position objects in re-
sponse to a mouseDragged event, is defined totally in terms of the Trans-
formable interface. Thus, the Dragger can reposition any TwoDSprite in
a SWCompositor Oorany QTDrawable ina GroupDrawable.

Using interfaces to express common functionality is a powerful
concept and is relied upon extensively in the QuickTime for Java Appli-
cation Framework.

THE QTFACTORY CLASS

The QTFactory class provides “factory” methods for creating classes
used to present media that QuickTime can import. The makeDrawable()
methods of QTFactory use the QuickTime importers to return an appro-
priate QuickTime object that can present any of a wide range of media
types (images, movies, sounds, MIDI, and so on) that QuickTime can
import.

Given a file, a Java InputStream object, or a URL, the makeDraw-
able() methods that belong to the QTFactory class examine the con-
tained media and return an object that best presents that kind of media.
For example:

= Mmovies—a QTPlayer object
= images—a GraphicsImporterDrawer object
= sound media—a QTPlayer object

MIDI media—a QTPlayer object

QuickTime for Java Classes and Interfaces 41

Once you have the QTDrawable object, you merely add it to the can-
vas and the visual component of the media is presented in the canvas’
display space.

There are three versions of the makeDrawable() method. The first
two methods deal with a file, either local or remote;

m QTFactory.makeDrawable(QTFile, . . .)
m QTFactory.makeDrawable(String URL, . . .)

The QTFile version is a local file, whereas the URL version can use
any of the protocols known to QuickTime:

o file: for a local file
o HTTP: for a remote file
o FTP: for a remote file
o RTSP: for a movie with streaming content
m QTFactory.makeDrawable (InputStream, . . .)

In this method, the media data can be derived from any source—for
example, from a ZipEntry, from a local or remote file, or from mem-
ory. The readBytes() method of the input stream is used to read all
of the source object’s bytes into memory. Then this memory is used
to create the appropriate QTDrawable.

In the first two cases, QuickTime can use details about the file to de-
termine the type of media that the file contains. Many media formats
are not self-describing. That is, they don’t have information in the data
that describes what they are. Usually, the file type describes to Quick-
Time this important detail.

In the case of the InputStream, however, because the data can come
from an unknown or arbitrary source, your application must describe
to QuickTime the format of the source data so that it can import it suc-
cessfully. As such, these methods require the provision of a hintString
and hintType. You can specify that the hint is either the file extension,
Mac OS file type, or MIMEType of the source data.

Once the makeDrawable() methods determine the media, they cre-
ate either a Movie or a GraphicsImporter as the QuickTime object to

eAel 1o} awi]}2Ind jo Arewwns -

42 Chapter 1: Summary of QuickTime for Java

present that media. They then pass off this Movie or GraphicsImporter
toaQTDrawableMaker to return a QTDrawable oObject to present that Movie
Or GraphicsImporter.

Your application uses the default QTDrawableMaker if you do not
specify one. This returns a QTPlayer that creates a MovieController for
the Movie or a GraphicsImporterDrawer for the GraphicsImporter. An
application can also specify a custom QTDrawableMaker that will create a
required object for one or both of these two cases.

The QTFactory also provides methods to locate files in the known
directories of the Java application when it executes. In order for Quick-
Time to open a local file, it must have the absolute path and name of
the file. Your application may want to open files where it can know the
relative location of the file from where it is executing. For instance,
many of the code samples in the QuickTime for Java SDK will look for
files in the media directory that is in the SDK directory. This media di-
rectory is added to the class path when the application is launched. The
QTFactory.findAbsolutePath() method is used by the application to
find the absolute path of the file, and to find those files, at runtime.

= addDirectory()

Allows your application to specify a directory that is added to the
known directories that are used in searching for files

= removeDirectory()

Allows your application to remove directories where it doesn't
want files to be found. This can shorten the search process, as the
application can remove the specified directory from the search
paths that the find() ... methods will search for specified files in.

s findAbsolutePath()

Given a relative file (or directory), this method will search for this
specified path in

o application-specified directories

o user.dir, which is a directory that is one of the system proper-
ties of the Java runtime

QuickTime for Java Classes and Interfaces 43

o any directory known in the class path directories. class.path is
also a system property of the Java runtime.

This method searches for the specified path as this path is
appended to these known directories. It returns the first occurrence
of the file (or directory) that exists in these locations. If the specified
file is not found, a FileNotFoundException is thrown.

m findInSystemPaths()

Whereas the findAbsolutePath() will look for the specified file by
appending that file to the known directories, this method will do a
recursive search for the specified file or subdirectory of all of the
known or registered directories and their parents. This can be a
time-consuming search, and typically your application will only
use this method to find a file that the user has misplaced or is not
found in the findAbsolutePath() method. If the specified file is not
found, a FileNotFoundException is thrown.

SPACES AND CONTROLLERS ARCHITECTURE

The QuickTime for Java API introduces an abstraction known as a
space. A space defines and organizes the behavior of objects and allows
for the complex representation of disparate media types. Spaces pro-
vide a powerful and useful means to assemble and control a complex
presentation.

You use a space to create a “world” that can be controlled dynami-
cally from Java at runtime. This world could have certain characteris-
tics that define how the objects exist and interact with others. Your
application assembles the space with its objects or members and uses Ja-
va’s event model to allow for user interaction with those objects. Be-
cause it is a dynamic environment, decisions about behavior and even
which members belong to the space can be deferred until runtime. The
Space interface, which is part of the quicktime.app.spaces package,
provides the standard API that all spaces support.

QuickTime for Java controllers manipulate Java objects in spaces.
These controllers can define the standard behavior for a group of ob-
jects by defining the behavior of objects over time, by monitoring ob-

eAel 1o} awi]}2Ind jo Arewwns -

44 Chapter 1: Summary of QuickTime for Java

jects, and by responding to user events. Controllers provide a uniform
way of enforcing the same behavior on a group of objects. The behav-
ior of a controller depends upon the support protocols defined by a
space and by a controller itself.

The QuickTime for Java API provides a Controller interface and
defines a protocol for the interaction between spaces and controllers.
While the focus in this release of QuickTime for Java is in presentation,
the architecture is general enough to be applied in the model space for
generating data.

DISPLAYING AND STREAMING MOVIES

QuickTime provides a set of APIs that enable you to stream multime-
dia content over a network in real time, as opposed to downloading
that content and storing it locally prior to presentation. With stream-
ing, the timing and speed of transmission as well as the display of data
are determined by the nature of the content rather than the speed of the
network, server, or the client. Thus, a one-minute-long QuickTime
movie is streamed over a network so that it can be displayed or pre-
sented in one minute of real time.

In the QuickTime streaming architecture, a stream is, simply, a track
in a movie. QuickTime lets you stream a broad variety of content—au-
dio, video, text, and MIDI; the output of any audio or video codec sup-
ported in QuickTime can be streamed, in fact. If your application is
QuickTime-savvy, you can automatically take advantage of this multi-
media streaming capability.

In addition to demonstrating some useful techniques for display-
ing QuickTime movies, this section shows you how to play a streaming
movie from a URL. It builds on the concepts and examples discussed in
“Integrating QuickTime with Java” (page 9) and “QuickTime for Java
Classes and Interfaces” (page 33) and shows you how to

= select and then play a QuickTime movie with its controller de-
tached

Displaying and Streaming Movies 45

= convert a screen to full-screen mode and back to normal mode

= display a QuickTime movie within a window and add callbacks
that are triggered at some specific time during movie playback

PLAY A STREAMING MOVIE

Example 1.5 builds on the QTSimpleApplet code discussed in “The
QTSimpleApplet Code” (page 22). This applet enables you to play a
steaming movie from a URL.

You define the instance variables for the applet:

private Drawable myQTContent;
private QTCanvas myQTCanvas;

Just as with the QTSimpleApplet code sample, you can use the stan-
dard init(), start(), stop(), and destroy() methods to initialize, exe-
cute, and terminate the applet. Likewise, you call QTSession.open() in
order to make sure that QuickTime is present and initialized. Again,
this is a required call before any QuickTime for Java classes can be used.
It is called first in the init() method. In order to shut down Quick-
Time properly, you also need to call QTSession.close() if you have pre-
viously called QTSession.open(). This is called in the destroy()
method.

QTCanvas, as we’ve seen, is a display space into which QuickTime
can draw and receive events. QTCanvas provides the output destination
for QuickTime drawing. You set up a QTCanvas to display its content at
its original size or smaller and centered in the space given to the QTCan-
vas when the applet is laid out. The QTCanvas is initialized to display its
client up to as large as that client’s initial size. And 0.5F flags are used
to position the canvas at the center of the space allocated to it by its
parent container’s layout manager:

setlLayout (new BorderlLayout());
myQTCanvas = new QTCanvas (QTCanvas.kInitialSize, 0.5F, 0.5F);
add (myQTCanvas, "Center");

eAel 1o} awi]}2Ind jo Arewwns -

46 Chapter 1: Summary of QuickTime for Java

You need to set the client as a Drawable object that can display into
the canvas. The QuickTime logo is displayed when there is no movie to
display. Thus, ImageDrawer is set up as the initial client of QTCanvas.

myQTContent = ImageDrawer.getQTLogo();

You enter the URL to a QuickTime movie to be displayed in a text
field:

final TextField urlTextField = new TextField (
"file:///... Enter an URL to a movie",
30);

You set the font and font size in the text field for the URL. The ini-
tial string is displayed in the text field. You add an ActionlListener SO
that the events taking place on the text field are captured and executed.
tf.getText () returns the URL that the user has entered:

urlTextField.setFont (new Font ("Dialog", Font.PLAIN, 10));

urlTextField.setEditable (true);

urlTextField.addActionListener (new ActionlListener () {
TextField tf = urlTextField;

public void actionPerformed (ActionEvent ae) {
myQTContent = QTFactory.makeDrawable (tf.getText());
myQTCanvas.setClient (myQTContent, true);

b

The URL can support the following protocols:
= file—alocal file on the user’s computer
« HTTP—HyperText Transfer Protocol
» FTP—File Transfer Protocol
= RTSP—Real Time Streaming Protocol

The URL can also point to any media file (movies, images, and so
on) that QuickTime can present. The single makeDrawable() method will
return the appropriate QuickTime object to present the specified me-

Displaying and Streaming Movies 47

dia. Once created, this QuickTime object is set as the client of the 0TCan-
vas and can then be viewed and/or played by the user.

Note that no error handling is done in the code in Example 1.5.

ExampLE 1.5 QTStreamingApplet.java

import
import
import

import
import

import
import
import

java
java
java

.applet.Applet;
awt.*;
.awt.event.*;

quicktime.*;
quicktime.io.QTFile;

quicktime.
quicktime.

quicktime.app.image.l

app.QTFactory;
app.display.*;

mageDrawer;

public class QTStreamingApplet extends Applet {
private Drawable myQTContent;
private QTCanvas myQTCanvas;

public void init () {

try

{
QTSession.open()

s

setlLayout (new Borderlayout());
myQTCanvas = new QTCanvas (QTCanvas.kInitialSize, 0.5F, 0.5F);

add (myQTCanvas,

"Center");

myQTContent = ImageDrawer.getQTLogo();

final TextField

urlTextField = new TextField ("Enter URL to movie here",
30);

urlTextField.setFont (new Font ("Dialog", Font.PLAIN, 10));

urlTextField.setEditable (true);

urlTextField.addActionlListener (new ActionlListener () {
TextField tf = urlTextField;

public void

actionPerformed (ActionEvent ae) {

if (myQTCanvas != null) {

try

{
myQTContent = QTFactory.makeDrawable (tf.getText());

eAel 1o} awi]}2Ind jo Arewwns -

48 Chapter 1: Summary of QuickTime for Java

myQTCanvas.setClient (myQTContent, true);
} catch (QTException e) {
e.printStackTrace();

b)s
add (urlTextField, "South");
} catch (QTException qtE) {
throw new RuntimeException (qtE.getMessage());

public void start () {
try |
if (myQTCanvas != null)
myQTCanvas.setClient (myQTContent, true);
} catch (QTException e) {
e.printStackTrace();

public void stop () {
if (myQTCanvas != null)
myQTCanvas.removeClient();

public void destroy () {
QTSession.close();

USING THE DETACHED CONTROLLER

The code sample in this section shows how to select and then play a
QuickTime movie with its controller detached. The media required is a
QuickTime movie of the user’s choice.

You are prompted to select a movie file. If you make the selection, a
window is constructed and the movie and its controller are presented,
as shown in Figure 1.4.

FIGURE 1.4

Displaying and Streaming Movies 49

The detached controller

[0 =——— QuickTime for Java —=——0H

50 o]

DETACHED CONTROLLER

1

The movie and its controller are displayed separately in the same
window, with the controller at the top and the actual movie at the bot-
tom. They are separated by a label. Though the movie and its control-
ler are shown here in the same window, they could also be displayed in
different windows, even on different monitors.

You use a QTPlayer object to play the movie in its canvas, and you
can use a MoviePlayer object to present the movie.

void setControllerCanvas(Movie mMovie) throws QTException {
QTCanvas controllerCanvas = new QTCanvas();

MovieController mController = new MovieController(mMovie,
mcScaleMovieToFit);

mController.setAttached(false);

QTPlayer qtPlayer = new QTPlayer(mController);

eAel 1o} awi]}2Ind jo Arewwns -

50 Chapter 1: Summary of QuickTime for Java

add(controllerCanvas, "North");
controllerCanvas.setClient(qtPlayer, true);

You can attach or detach the movie from its controller using this
method:

mController.setAttached(false);

Once the controller is a client of its canvas, if the movie is reat-
tached to the controller, you need to notify the canvas of this change in
the client’s display characteristics.

Now you create the canvas for the detached movie:
void setMovieCanvas(Movie mMovie) throws QTException{
QTCanvas movieCanvas = new QTCanvas();

MoviePlayer mPlayer = new MoviePlayer(mMovie);

add(movieCanvas, "South");
movieCanvas.setClient(mPlayer, true);

The following snippet shows the code that assembles the Detached-
Controller window. Resizing the window resizes the movie and the
width of the controller but not its height.

DetachedController(Movie mMovie) throws QTException {
super ("QT in Java");

setControllerCanvas(mMovie);
setMovieCanvas(mMovie);

add (new Label("DETACHED CONTROLLER"), "Center");

Displaying and Streaming Movies 51

CONVERTING TO FULL SCREEN

The Ful1Screen class provides the capability for converting a screen to
full-screen mode and back to normal mode. The QuickTime for Java
API allows you to put the specified screen into full screen mode and
then use a Java window to fill the screen.

To do this, you use the FullScreenWindow class, which is a subclass
of the java.awt.Window object. The FullScreenWindow class internally
manages a FullScreen object, and when the show() method is called, it
puts the screen into full-screen mode and fills up the screen with an
awt.Window. This is very useful because you can get the complete func-
tionality of using a Java AWT Window but in full-screen mode.

The movie is created in a similar fashion as the QTStreamingApplet.
The program also creates a menu that allows the user to select a movie
and once opened provides a Present Movie menu item to present the
movie in full screen mode.

The full code listing is shown in Example 1.6. You present the mov-
ie in full screen mode and use the current screen resolution and current
movie. The QTCanvas is created using the performance resize flag. This
ensures that the movie is displayed at its original size or at a multiple
of 2:

FullScreenWindow w = new FullScreenWindow(new FullScreen(),
myPlayMovie);

MoviePlayer mp = new MoviePTayer (myPlayMovie.getMovie());

QTCanvas ¢ = new QTCanvas (QTCanvas.kPerformanceResize, 0.5F, 0.5F);

w.add (c);

w.setBackground (Color.black);

You remove the movie from its current QTCanvas and put the movie
into the new canvas of the Ful1ScreeniWindow. You do this because a QT-
Drawable can only draw to a single destination QDGraphics:

myPlayMovie.getCanvas().removeClient();
c.setClient (mp, false);

eAel 1o} awi]}2Ind jo Arewwns -

52 Chapter 1: Summary of QuickTime for Java

HideFSWindow IS @ Mouselistener. A Mouselistener is installed on
both the QTCanvas and the Window. The window is then shown, which
will put the window into full-screen mode:

w.show();

HideFSWindow hw = new HideFSWindow (w, myPlayMovie, c);
w.addMouselListener (hw);

c.addMouselistener (hw);

As MoviePlayer object is used to present the movie, this shows just
the movie and not a controller. So finally, you start the movie playing:

mp.setRate (1);

When the user presses the mouse, the movie is restored to its previ-
ous QTCanvas and the full-screen window is hidden:

public void mousePressed (MouseEvent me) f{
try |
c.removeClient();
pm.getCanvas().setClient (pm.getPlayer(), false);
} catch (QTException e) {
e.printStackTrace();
b finally |
w.hide();

The user must explicitly press the mouse to hide the FullScreen-
Window. However, your application could also define an ExtremeCall-
Back that would automatically hide the FullScreenWindow when the
movie is finished playing. Callbacks are discussed in the next section.

ExAMPLE 1.6 FileMenu.java

presentMovieMenultem.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent event) f{
try |
if (myPlayMovie.getPlayer() == null) return;

FullScreenWindow w = new FullScreenWindow(new FullScreen(), myPlayMovie);
MoviePlayer mp = new MoviePlayer (myPlayMovie.getMovie());

Displaying and Streaming Movies 53

QTCanvas ¢ = new QTCanvas (QTCanvas.kPerformanceResize, 0.5F, 0.5F);
w.add (c);
w.setBackground (Color.black);

myPlayMovie.getCanvas().removeClient();
c.setClient (mp, false);

w.show();

HideFSWindow hw = new HideFSWindow (w, myPlayMovie, ¢);
w.addMouselListener (hw);

c.addMouselistener (hw);

mp.setRate (1);
} catch (QTException err) {
err.printStackTrace();

static class HideFSWindow extends MouseAdapter {
HideFSWindow (FullScreenWindow w, PlayMovie pm, QTCanvas c) {
this.w = w;
this.pm = pm;
this.c = c;

private FullScreenWindow w;
private PlayMovie pm;
private QTCanvas c;

public void mousePressed (MouseEvent me) {
try |
c.removeClient();
pm.getCanvas().setClient (pm.getPlayer(), false);
} catch (QTException e) {
e.printStackTrace();
b finally {
w.hide();

eAel 1o} awi]}2Ind jo Arewwns -

54 Chapter 1: Summary of QuickTime for Java

USING MOVIE CALLBACKS

This section explains how to display a QuickTime movie within a win-
dow and add callbacks. The callbacks are QuickTime calling back into
Java through the movie controller, movie, and QuickTime VR APIs.

Callbacks can be used by an application to perform its own tasks
when certain conditions occur within QuickTime itself. The callbacks
used in the MovieCallbacks program are invoked when some condition
having to do with the presentation of a movie is changed:

= In the movie, the DrawingComplete procedure is used to notify the
Java program whenever QuickTime draws to the screen.

= ActionFilter procedures are used. This subclass overrides those ac-
tions that pass on no parameters and a float parameter.

= The movie contains QuickTime VR content, and a number of QTVR
callbacks are installed for panning and tilting, for hot spots, and for
entering and leaving nodes.

The QTCallBack, ActionFilter, or DrawingComplete callbacks are in-
voked through a direct or indirect call of the QuickTime MoviesTask
function.

Many of the callback methods in QuickTime in Java are required to
execute in place, in that QuickTime requires a result code in order to
proceed. These callbacks provide meaningful feedback when their exe-
cute() method returns. The subclasses of QTCal1Back, however, can ex-
ecute asynchronously, in which case QuickTime does not require a
result code in order to proceed. This is also true of any of the execute()
methods with no return value.

The program just prints out details about the callback when it is in-
voked. The QuickTime APl documentation provides examples and dis-
cussions on the usage of these.

To set up a movie drawing callback:

static class MovieDrawing implements MovieDrawingComplete {
public short execute (Movie m) {
System.out.printin ("drawing:" + m);

Displaying and Streaming Movies

return 0;

To set up an action filter:

static class PMFilter extends ActionFilter {
public boolean execute (MovieController mc, int action) f{
System.out.printin (mc + "," + "action:" + action);
return false;

public boolean execute (MovieController mc, int action, float value) f{
System.out.printin (mc + "," + "action:" + action + ",value=" + value);
return false;

The following code sets up callbacks for QuickTime VR content:

Track t = m.getQTVRTrack (1);
if (t I=null) {
QTVRInstance vr = new QTVRInstance (t, mc);
vr.setEnteringNodeProc (new EnteringNode(), 0);
vr.setleavingNodeProc (new LeavingNode(), 0);
vr.setMouseOverHotSpotProc (new HotSpot(), 0);
Interceptor ip = new Interceptor();
vr.installInterceptProc (QTVRConstants.kQTVRSetPanAngleSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRSetTiltAngleSelector, ip, 0)

55

s

vr.installInterceptProc (QTVRConstants.kQTVRSetFieldOfViewSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRSetViewCenterSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRTriggerHotSpotSelector, ip, 0);
vr.installInterceptProc (QTVRConstants.kQTVRGetHotSpotTypeSelector, ip, 0);

static class EnteringNode implements QTVREnteringNode {
public short execute (QTVRInstance vr, int nodelD) {
System.out.printin (vr + ",entering:" + nodelD);
return 0;

eAel 1o} awi]}2Ind jo Arewwns -

56 Chapter 1: Summary of QuickTime for Java

static class LeavingNode implements QTVRLeavingNode {
public short execute (QTVRInstance vr, int fromNodelID, int toNodelD, boolean[]

cancel) {
System.out.printin (vr + ",leaving:" + fromNodeID + ",entering:" +
toNodelD);
// cancell[0] = true;

return 0;

static class HotSpot implements QTVRMouseOverHotSpot {
public short execute (QTVRInstance vr, int hotSpotID, int flags) f{
System.out.println (vr + ",hotSpot:" + hotSpotID + ",flags=" + flags);
return 0;

static class Interceptor implements QTVRInterceptor {
public boolean execute (QTVRInstance vr, QTVRInterceptRecord gtvrMsg) ({
System.out.println (vr + "," + qtvrMsg);
return false;

The following code shows how to install a QTRuntimeException han-
dler:

QTRuntimeException.registerHandler (new Handler());

Runtime exceptions can be thrown by many methods and are
thrown where the method does not explicitly declare that it throws an
exception. Using the QTRuntimeHandler allows your application to ex-
amine the exception and determine if it can be ignored or recovered
from.

An example of this is the paint() method of a Java component. Its
signature is

public void paint (Graphics g);

Media and Presenters 57

It is declared not to throw any exceptions. However, the QTDraw-
able redraw() or setDisplayBounds() calls (which are both invoked on
a QTCanvas client) are defined to throw QTEXxceptions.

If the QTCanvas client does throw an exception in this case, it passes
it off to a QTRuntimeHandler if the application has registered one, with
details about the cause of the exception. The application can then ei-
ther throw the exception or rectify the situation. If no runtime excep-
tion handler is registered, the exception is thrown and caught by the
Java VM thread itself.

MEDIA AND PRESENTERS

QuickTime understands media through the pairing of media data and a
metadata object that describes the format and characteristics of that me-
dia data. This media data can exist either on some external storage de-
vice or in memory. The media data can further be stored in the movie
itself or can exist in other files, either local or remote. The meta-data ob-
ject that describes the format of the media data is known as a SampleDe-
scription. There are various extensions to the base-level
SampleDescription that are customized to contain information about
specific media types (e.g., ImageDescription for image data).

This section discusses the following topics:

= retrieving media data and QuickTime’s use of this complex and
powerful capability, particularly with the introduction of multime-
dia streaming

= using presenters to express an object that renders media data load-
ed into or residing in memory

= the ImagePresenter class, which is the principal class in the Quick-
Time for Java API that presents such image data

eAel 1o} awi]}2Ind jo Arewwns -

58 Chapter 1: Summary of QuickTime for Java

MEDIA DATA AND MOVIES

With the introduction of QuickTime streaming, QuickTime has extend-
ed its ability to retrieve data. Traditionally, media data had to exist as
local data. With streaming, media data can now exist on remote servers
and retrieved using the HTTP or FTP Internet protocols, as well as the
more traditional file protocol of previous releases. The location of me-
dia is contained in a structure called a DataRef. This tells QuickTime
where media data is and how to retrieve it.

QuickTime streaming also adds support for broadcast media data,
using the RTSP protocol. Media data of this format is delivered through
network protocols, typically sourced through the broadcast of either
live or stored video. It requires the creation of streaming data handlers
to deal with the mechanics of retrieving media data using this protocol.

The tracks in a single movie can have data in different locations. For
example, one track’s media data might be contained in the movie it-
self; a second track’s media data might exist in another local file; and a
third track’s media data might exist in a remote file and retrieved
through the FTP protocol. In these two cases, the movie references the
media data that is stored elsewhere. A fourth track might retrieve
broadcasted media data through a network using the RTSP protocol.

Your application is free to mix and match these data references for
tracks’ media data as appropriate. QuickTime presents a complex and
powerful capability to deal with media data; a complexity that pro-
vides the user of QuickTime with a powerful tool in both the develop-
ment and delivery of media content.

Dealing With Media

Despite the complexity of the data retrieval semantics of QuickTime,
the process of dealing with media in QuickTime is quite simple. In the
CreateMovie sample code, the movie’s data is constructed by inserting
the media sample data and its description into the media object and
then inserting the media into the track.

The following is a printout of the ImageDescription for the last
frame of the image data that is added to the movie. As you can see, the

Media and Presenters 59

ImageDescription describes the format, the size, and the dimensions of
the image itself:

quicktime.std.image.ImageDescription[
cType=rle ,
temporalQuality=512,
spatialQulity=512,
width=330,
height=140,
dataSize=0,
frameCount=1,
name=Animation,
depth=32]

The following is the SoundDescription of the sound track added in
this sample code. It describes the sample, sample rate, size, and its for-
mat:

quicktime.std.movies.media.SoundDescriptionl
format=twos,
numChannels=1,
sampleSize=8,
sampleRate=22050.01]

If the data is not local to the movie itself, one inserts a sample de-
scription (as previously to describe the data) and a DataRef that de-
scribes to QuickTime both the location of the data and the means it
should use to retrieve the data when it is required. Once assembled,
QuickTime handles all of the mechanics of retrieving and displaying
the media at runtime.

When media is displayed, the media handlers use the various ren-
dering services of QuickTime. These rendering services are based on
the same data model, in that the sample description is used to both de-
scribe the media and to instantiate the appropriate component respon-
sible for rendering data of that specific format. These rendering
components are also available to the application itself outside of movie
playback.

For example, the DSequence object is used to render image data to a
destination QDGraphics and used throughout QuickTime to render visu-

eAel 1o} awi]}2Ind jo Arewwns -

60 Chapter 1: Summary of QuickTime for Java

al media. Your application can also use the DSequence object directly by
providing both the image data and an ImageDescription that describes
the format and other characteristics of this data and, of course, a desti-
nation QDGraphics where the data should be drawn. Like QuickTime it-
self, your application can apply matrix transformations, graphics
modes, and clipping regions that should be applied in this rendering
process.

Similar processes are used and available for all of the other media
types (sound, music, and so on) that QuickTime supports, with each of
these media types providing their own extended sample descriptions,
media handlers, and rendering services.

The ImageSpec Interface

The ImageSpec interface expresses the close relationship between image
data and an ImageDescription that describes it. Figure 1.5 illustrates all
of the ImageSpec-derived classes in the QuickTime for Java API.

The image data itself is represented by an object that implements
the EncodedImage interface. This interface allows image data to be
stored in either raw memory, accessed using pointers, or in a Java int
or byte array. Any object that implements the ImageSpec interface can
have its image rendered by either the ImagePresenter to a destination
QDGraphics or by a TwoDSprite to its container SWCompositor.

The ImageSpec interface expresses the commonality of QuickTime’s
media model, specifically with regard to image data, and unifies the
many possible constructions and imaging services that QuickTime pro-
vides.

If your application requires a particular format for generating im-
age data, then it can implement the ImageSpec interface and thus have
QuickTime use this custom class wherever the QuickTime for Java API
uses existing ImageSpec objects.

FIGURE 1.5

Media and Presenters 61

Image implementations

/'quicktime.app.image A
+ « - +[ImageDataSequence |
(ImageSpec)---:
quicktime.app.anim
feecsesesscscsssscsssscsnssns code TwoDSpritemfo
R R R R R «« 4+ 4 TWoDSprite
: - - /[GraphicsimporterDrawer |
(Coméositable)e oot
+ .. .|ImagePresenter
.« | QTEffectPresenter quicktime.app.players
1 teceesesscscsscsesssscscssnss P {Moviepresenter
(Dznamlclmaée)e oot
: - - -[CompositableEffect |
: - - -[DSequenceFromMemory |
+++[QTImageDrawer
N : /

quicktime.app.anim

* +|- -[a SWCompositor —]Compositor

Key [Class | [AAbstract | [FinaiClass | (interface D) TExtends Implements

The Compositable and Dynamiclmage Interfaces

The Compositable and DynamiclImage interfaces extend the ImageSpec in-
terface. The Compositable interface captures the ability of image data to
have a graphics mode applied to it when it is rendered. Graphics
modes include rendering effects such as transparency, where any pix-
els of a particular color in the image data won’t be drawn, and blend-
ing, where all of the drawn colors of an image are blended with a blend
color to alter the rendered image.

The DynamicImage interface extends Compositable and expresses the
fact that some pixel data may change. This interface is used by the Com-

eAel 1o} awi]}2Ind jo Arewwns -

62 Chapter 1: Summary of QuickTime for Java

positor, as a TwoDSprite must invalidate its Sprite if the pixel data
changes.

QUICKTIME FOR JAVA PRESENTERS

When QuickTime plays back a movie, it does not generally read all of
its media data into memory but rather reads chunks of data as re-
quired. A movie can be constructed that requires the media data to be
loaded into memory or other parameters that will require more memo-
ry to be used but will generally improve the quality of the rendered
movie. The QuickTime APl documentation covers these customiza-
tions that a movie’s author can make.

Due to the usefulness of, and in some cases requirement for, load-
ing media data into memory, QuickTime for Java provides presenters. A
presenter is an object that renders media data that is loaded or resides
in memory. A presenter also uses a QuickTime service to render this
media data.

QuickTime for Java ships with an ImagePresenter for rendering im-
age data. The ImagePresenter class implements the QTDrawable inter-
face. The ImagePresenter uses a DSequence to perform the rendering of
the image data. It is the primary object that is used in QuickTime for
Java to render image data. The TwoDSprite is also a presenter that pre-
sents image data loaded into memory. However, its role is specific to
the membership of its Sprite in a SpriteWor1d (which is represented in
QuickTime for Java by the SWCompositor).

Though only an ImagePresenter is provided in this release, a simi-
lar design strategy could be employed with other media types. For ex-
ample, let’s consider the music media type. MusicMedia is rendered in
QuickTime by the TunePlayer class. A MusicPresenter class could be
created that used the TunePlayer to render the MusicData. A MusicSpec
interface could be described that returns a MusicDescription and the
raw MusicData of the tune events.

Media and Presenters 63

The ImagePresenter Class

The ImagePresenter manages the varying state and conditions of use of
QuickTime’s DSequence renderer. It is a useful abstraction because it
hides such details from the user, creating a robust and reusable class.

The ImagePresenter is able to render its data faster than its corol-
lary GraphicsImporterDrawer, which also implements the QTDrawable
interface, for two reasons. First, the data is kept in memory and so it is
guicker to read. (The GraphicsImporterDrawer reads its image data from
its DataRef, typically a file.) Second, the image data of an ImagePresent-
er can be (and often is) kept in a format that is optimized for rendering
or decompression. However, a GraphicsImporterDrawer will use less
memory and is often more than sufficient for presenting an image
where no demanding rendering tasks are required, such as constant,
time-sensitive redrawing.

An ImagePresenter object can be created from many sources. For
example, from a file:

ImagePresenter myImage = ImagePresenter.fromFile(imageFile);

In this case, the ImagePresenter will create a GraphicsImporter to
read and load into memory the image data from the file. It will then de-
compress the image if necessary to a format optimized for rendering.

You can also create an ImagePresenter from generated image data
and an ImageDescription that describes it:

int width = 100;
int height = 100;

IntEncodedImage myImageData = new IntEncodedImage (width * height);
//...fill in pixel values using standard java ARGB ordering

ImageDescription myDescription =
ImageDescription.getdavaDefaultPixelDescription (width,
height);
myDescription.setDataSize (myImageData.getSize());

ImagePresenter myPresenter = ImagePresenter.fromQTImage(myImageData,
myDescription);

eAel 1o} awi]}2Ind jo Arewwns -

64 Chapter 1: Summary of QuickTime for Java

You can also create an ImagePresenter object from an onscreen or
offscreen QDGraphics that you have previously drawn into:

QDGraphics gWorld =
Rect rect =

int colorDepth =

int quality =

int codecType =
CodecComponent codec =

ImagePresenter myIP = ImagePresenter.fromGWorld (myGWorld,
myGWorld.getBounds(),
myGWorld.getPixMap().getPixelSize(),
myDerivedCompressionQuality,
myDerivedCompressionType,
myDerivedCodecComponent) ;

Subclasses of ImagePresenter

There are two basic subclasses of ImagePresenter, which inherit from
and build on the features of ImagePresenter: MoviePresenter and QTEf-
fectPresenter. Both of these subclasses work in a similar fashion. They
render their target objects (a movie or an effect) into an offscreen QD-
Graphics object. The pixel data from this 0DGraphics is then set as the
EncodedImage data of the superclass. An ImageDescription is created
that describes this raw pixel data and this description is given to the su-
perclass. Thus, retrieving the image data (getImage()) returns the raw
pixel data that the movie has drawn into.

The ImagePresenter superclass then blits this raw pixel data to its
destination QDGraphics. If this presenter is added as a Sprite, the raw
pixel data becomes that sprite’s image data.

MoviePresenter takes a Movie object and implements the same inter-
faces as MoviePlayer, but it has the extra capability of being a presenter
and having a graphics mode set for its overall appearance.

QTEffectPresenter is similar to MoviePresenter but takes a QTEf-
fect object. You could use this presenter to capture the results of ap-
plying a filter to a source image. You could then discard the filter object
and just present the resultant image. You can also use this presenter to

Imaging and Effects 65

present a character in a sprite animation that could transition on and
off the stage.

IMAGING AND EFFECTS

The QuickTime for Java Application Framework provides a number of
classes that handle the presentation of images within a Java display
space. These classes provide utility methods that you can use to set
transparent colors in images, apply visual effects, or create objects for
handling sequences of images (such as slide shows). Other methods en-
able you to create 0TDrawab1e objects that read image data from a file or
load the data into memory.

This section shows you how to
= draw an image file using the GraphicsImporterDrawer
= createa java.awt.Image out of an image in QuickTime’s format

= Use the QTImageDrawer class to render Java-painted content in a
QuickTime graphics space

= take advantage of QuickTime’s visual effects architecture to apply
transitions between two images

DRAWING AN IMAGE FILE

Example 1.7 shows how to import and draw an image from a file. This
program works with the GraphicsImporterDrawer object to import and
display a variety of image file formats. The media required for this
sample code is any image file that can be imported using the Graphic-
sImporterDrawer.

The quicktime.app.image package has two primary image display
classes: GraphicsImporterDrawer and ImagePresenter. These classes im-
plement both ImageSpec and QTDrawable interfaces. GraphicsImporter-
Drawer uses GraphicsImporter to read, decompress, and display image
files.

eAel 1o} awi]}2Ind jo Arewwns -

66 Chapter 1: Summary of QuickTime for Java

ExAmMPLE 1.7 ImageFileDemo.java

import
import
import
import

import
import

public

quicktime.*;
quicktime.std.StdQTConstants;
quicktime.std.image.GraphicsImporter;
quicktime.io.QTFile;

quicktime.app.display.QTCanvas;
quicktime.app.image.*;

class ImageFileDemo extends Frame implements StdQTConstants {

public static void main (String args[]) f{

try {
QTSession.open();

int[] fileTypes = { kQTFileTypeGIF, kQTFileTypedPEG,

kQTFileTypePicture };

QTFile qtf = QTFile.standardGetFilePreview (fileTypes);

ImageFileDemo ifd = new ImageFileDemo (qtf);

ifd.pack();
ifd.show();
ifd.toFront();

} catch (QTException e) {

if (e.errorCode() != Errors.userCanceledErr)

e.printStackTrace();
QTSession.close();

ImageFileDemo (QTFile gtf) throws QTException {

super (qtf.getName());

QTCanvas canv = new QTCanvas();
add (canv, "Center");

GraphicsImporterDrawer myImageFile = new GraphicsImporterDrawer (qtf);

canv.setClient (myImageFile, true);

addWindowlListener(new WindowAdapter () {
public void windowClosing (WindowEvent e)
QTSession.close();

{

1)

}

Imaging and Effects 67

dispose();

pubTic void windowClosed (WindowEvent e) {

}

System.exit(0);

QUICKTIME TO JAVA IMAGING

The code in this section shows how to create a java.awt.Image from a
QuickTime source. The QTImageProducer is used to produce this im-
age’s pixel data from the original QuickTime source.

The QuickTime image could come from any one of the following
sources:

= an image file in a format that Java doesn’t directly support but
QuickTime does

= recording the drawing actions of a QDGraphics into a Pict. This can
be written out to a file or presented by an ImagePresenter class to
the QTImageProducer directly.

= using the services of QuickTime’s sequence grabber component. A
sequence grabber can be used to capture just one individual frame
from a video source.

In the sample code, the user is prompted to open an image file from
one of 20 or more formats that QuickTime’s GraphicsImporter can im-
port.

The program then uses the QTImageProducer to create a ja-
va.awt.Image thatis then drawn in the paint() method of the Frame.

You prompt the user to select an image file and import that image
into QuickTime. You then create a GraphicsImporterDrawer that uses
the GraphicsImporter to draw. This object produces pixels for the QTIm-
ageProducer:

eAel 1o} awi]}2Ind jo Arewwns -

68 Chapter 1: Summary of QuickTime for Java

QTFile imageFile =
QTFile.standardGetFilePreview(QTFile.kStandardQTFileTypes);
GraphicsImporter myGraphicsImporter = new GraphicsImporter
(imageFile);
GraphicsImporterDrawer myDrawer = new GraphicsImporterDrawer
(myGraphicsImporter);

You create a java.awt.Image from the pixels supplied to it by the
QTImageProducer:

QDRect r = myDrawer.getDisplayBounds();

imageSize = new Dimension (r.getWidth(), r.getHeight());

QTImageProducer qtProducer = new QTImageProducer (myDrawer,
imageSize);

javalmage = Toolkit.getDefaultToolkit().createlmage(qtProducer);

Note that to do Java drawing, your application uses the ja-
va.awt.Graphics.drawImage(...) calls, which must be defined in a
paint() method. When using a QTCanvas client, this detail is taken care
of by the QTcCanvas itself by establishing the QTCanvas QTDrawable client
relationship, as the above code demonstrates.

In the paint() method of the frame, the image that we produced in
the above code is drawn, using this drawImage call. This method will
correctly resize the image to the size of the Frame.

public void paint (Graphics g) {
Insets i = getlnsets();
Dimension d = getSize();
int width = d.width - i.left - i.right;
int height = d.height - i.top - i.bottom;
g.drawlmage (javalmage, i.left, i.top, width, height, this);

This returns the size of the source image, so the pack () will correct-
ly resize the frame:

public Dimension getPreferredSize () {
return imageSize;

Imaging and Effects 69

IMAGE PRODUCING

The code in this section shows how to display any QuickTime drawing
object using Java’s ImageProducer model.

The program works with the 0TImageProducer and with Swing com-
ponents. The QTImageProducer in this case is responsible for getting the
QuickTime movie and producing the pixels for a java.awt.Image. It
draws the movie into its own QDGraphics world and then feeds the pix-
els to any java.image.ImageConsumer objects that are registered with it
in a format that they are able to deal with. The Swing buttons control
the movie playback.

The Swing JComponent is the ImageConsumer of the QTImageProducer.
It will automatically repaint itself if the 0TImageProducer source is mul-
tiframed media, such as a movie. This is a feature of the ImageProducer
model of the Java API.

Placing a QuickTime movie within a Swing JComponent requires the
usage of Java’s image producing API. Swing is a framework that uses
lightweight components. As such, a heavyweight component, such as a
QTCanvas, is generally not added to the lightweight components. To put
QuickTime content into a lightweight component a java.awt.Image is
used to capture the pixel data generated by QuickTime. As the previ-
ous example showed, the Java image producing API is used, with the
QTImageProducer implementing the ImageProducer interface used for
this purpose. More information about Swing and the image producing
API can be found in Java documentation and at the Java web site: nht-
tp://Jjava.sun.com/.

We open the movie and set looping of its time base. We make a Mov -
iePlayer out of the Movie to pass to the QTImageProducer, which takes
any QTDrawable object as a source of pixel data. We pass in the original
size of the movie to the QTImageProducer, which will notify the produc-
er how big a QbGraphics it should create.

Once the QTImageProducer is made, we need to redraw it when each
frame of the movie is drawn. To optimize this process, we install a Mov -
ieDrawingComplete callback. This callback notifies us when the movie
draws a complete frame, and in the execute() method we redraw the

eAel 1o} awi]}2Ind jo Arewwns -

70 Chapter 1: Summary of QuickTime for Java

QTImageProducer. The QTImageProducer redraw() method will pass on
the changed pixel data to the registered ImageConsumer objects. The Im-
ageConsumer is registered with the QTImageProducer when we create the
IPJComponent, as shown in the code below.

OpenMovieFile openMovieFile = OpenMovieFile.asRead(movFile);
Movie m = Movie.fromFile (openMovieFile);
m.getTimeBase().setFlags (loopTimeBase);

MoviePlayer moviePlayer = new MoviePlayer (m);

QDRect r = moviePlayer.getDisplayBounds();

Dimension d = new Dimension (r.getWidth(), r.getHeight());
ip = new QTImageProducer (moviePlayer, d);

//this tells us that the movie has redrawn and

//we use this to redraw the QTImageProducer - which will

//supply more pixel data to its registered consumers
m.setDrawingCompleteProc (movieDrawingCallWhenChanged, this);

IPJComponent canv = new IPJComponent (d, ip);
pan.add("Center", canv);

The following is the execute() method of the MovieDrawingCom-
plete interface. This execute () method is invoked whenever the movie
draws. We use the updateConsumers() method of the QTImageProducer
as the movie has already drawn when this callback is executed, so we
only need to notify the image consumers and give them the new pixel
data. If the movie hadn’t drawn, then the QTImageProducer redraw()
method would be called. This both redraws the QTDrawable source and
updates the image consumers’ pixel data:

public int execute (Movie m) {
try |
ip.updateConsumers (null);
} catch (QTException e) {
return e.errorCode();
}
return 0;

The following shows the construction of the IPJComponent. This
JComponent is a Swing component and its paint () method will draw the

Imaging and Effects 71

image that is the consumer of the QTImageProducer. The constructor cre-
atesa java.awt.Image, the createImage() method establishing the QTIm-
ageProducer as the producer of pixel data for this Image. The
preparelmage() call establishes the IPJComponent as the ImageObserver
of this process. The paint () method uses the supplied java.awt.Graph-
icdrawImage() call to draw the Image, also passing the 1PJComponent as
the ImageObserver. Each time the QTImageProducer is redrawn, it noti-
fies its image consumers that it has more pixel data. This will, in turn,
notify the ImageObserver, which is the 1PJComponent, that it should re-
paint itself. The paint() method is consequently called and drawIm-
age() will draw the new pixel data to the screen.

static class IPJComponent extends JComponent {
I[PJComponent (Dimension prefSize, QTImageProducer ip) {
pSize = prefSize;
im = createlmage (ip);
preparelmage (im, this);

private Dimension pSize;
private Image im;

public Dimension getPreferredSize() ({
return pSize;

}

public void paint (Graphics g) {

g.drawlmage (im, 0, 0, pSize.width, pSize.height, this);
}
// stops flicker as we have no background color to erase
public void update (Graphics g) {

paint (g);
}

USING THE QTIMAGEDRAWER CLASS

The QTImageDrawer class enables standard Java drawing commands and
graphics objects to have their content rendered by QuickTime within a
QuickTime graphics space (QDGraphics). Standard AWT paint() calls

eAel 1o} awi]}2Ind jo Arewwns -

72 Chapter 1: Summary of QuickTime for Java

can be made on the Graphics object supplied to the paint() call of the
Paintable interface attached to the QTImageDrawer. Because the QTImage-
Drawer implements the ImageSpec interface, you can add it to a quick-
time.app.display.Compositor object and thus draw into the same
display space as QuickTime-generated content. It also implements the
QTDrawable interface and can thus also be a client of a QTCanvas.

A QTImageDrawer object is used to convert the results of painting
into a java.awt.Image object using a java.awt.Graphics object to a for-
mat that QuickTime can render.

When the java.awt.Image object is created and painted into (using
the QTImageDrawer Paintable object) the QTImageDrawer uses Java’s Pix-
elGrabber to grab the raw pixel values that resulted from this painting.
It then constructs an ImageDescription object that describes to Quick-
Time the format, width, and height of this pixel data, and an ImagePre-
senter is used internally to render the image using QuickTime imaging
services.

If the QTImageDrawer is used to grab the results of a single paint,
then it can make optimizations on the amount of memory that it uses.
A single frame is indicated by the kSingleFrame flag when constructing
it. In this case, your application can grab the resultant image data (get -
Image()) and its description (getDescription()) and then discard the
QTImageDrawer object completely. This is preferable in many situations
where both performance and memory usage are a consideration; per-
formance is enhanced because once the image is retrieved in this way
and can be drawn very efficiently by QuickTime, it is already in a for-
mat that is suitable. The extra memory and overhead of Java’s imaging
model and the translation to a format QuickTime can render can thus
be discarded.

The paint() method of the QTImageDrawer Paintable oObject returns
an array of rectangles that tells the drawer which areas of its drawing
area were drawn. This optimizes the amount of copying and can great-
ly increase performance when composited.

Imaging and Effects 73

VISUAL EFFECTS

QuickTime provides a wide range of sophisticated visual effects.
QuickTime’s visual effects architecture can be applied to visual media
in a movie or can be used in real-time—that is, applied to image sourc-
es that are not contained in a movie. The code listed here and the
QuickTime for Java classes are designed with this second usage in
mind. Example code to apply effects to a movie can be found in the
QuickTime SDK that is included with the book QuickTime for Java.

The aTEffect class forms the base class for visual effects. Depend-
ing on the effect itself, you can apply visual effects over a length of time
or once only. Effects can be applied to no source images (i.e., the effect
acts on a background QDGraphics object), such as the ripple effect. An
effect can also be applied to a single source image (typically, color cor-
rection or embossing) using the QTFilter class. Finally, an effect can be
applied to two sources (such as wipes and fades), using the QTTrans1 -
tion class that transitions from the source to the destination image.

The code snippets in this section show how to use QuickTime’s visual
effects architecture. The effects in the code are applied, in real time, to
two images. The rendering of the transitions is controlled by the user
settings in the window’s control panel.

Changes to any one of these three fields of the transition can affect
the values of the other. Thus, changing the duration or frames per sec-
ond (fps) will alter how many frames are rendered. The code updates
the values in the other fields to reflect these dependencies.

You set the duration of the transition if it is running using the time
mode of the QTTransition class:

timeField.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent event) f{
int output = ...//get value from field
transition.setTime (output);

b)s

You set the number of frames the transition will take to render:

eAel 1o} awi]}2Ind jo Arewwns -

74 Chapter 1: Summary of QuickTime for Java

frameField.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) f{
int output = ...//get value from field
transition.setFrames (output);

1)

You set the number of frames per second that the transition should
be rendered in:

fpsField.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent event) f{
int output = ...//get value from field
transition.setFramesPerSecond (output);

b)s

You use this code snippet to make the transition run based on the
settings. If the transition is profiling, some statistics about the transi-
tion are printed.

runEffectButton.addActionlListener (new ActionlListener () {
public void actionPerformed (ActionEvent event) f{
try |
transition.doTransition();
if (transition.isProfiled()) {
String profileString = "Transition Profile:"
+ "requestedDuration:" + transition.getTime()
,actualDuration:" + transition.profileDuration()
,requestedFrames:" + transition.getFrames()
,framesRendered=" + transition.profilefFramesRendered()
,averageRenderTimePerFrame="
(transition.profileDuration()
/ transition.profileFramesRendered());
System.out.printin (profileString);

+ o+ o+ o+ o+

} catch (QTException e) f{
if (e.errorCode() != userCanceledErr)
e.printStackTrace();

Imaging and Effects 75

You use this code snippet to show QuickTime’s Choose Effects dia-
log box:

chooseEffectButton.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent event) f{
PlayQTEffectApp.showDialog (transition);

b)s

The two buttons in the following code snippet can change the mode
of the transition. If the transition renders using time mode, it will po-
tentially drop frames in order to render itself as close to the specified
duration as possible. If the transition is set to doTime(false), it will ren-
der the currently specified number of frames as quickly as possible.
This mode varies considerably from computer to computer based on
the processing and video capabilities of the runtime environment.

frameButton.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent event) {
transition.doTime (false);

b
timeButton.addItemListener (new ItemlListener () {
public void itemStateChanged (ItemEvent event) {
transition.doTime (true);

b

Figure 1.6 shows an explode effect from the program.

eAel 1o} awi]}2Ind jo Arewwns -

76 Chapter 1: Summary of QuickTime for Java

FIGURE 1.6

The explode effect frome the QT Effects program

O

QuickTime for lava ="a——— 0 H

[Run Effect |[Choose Effect |
Effect Length (msecs]: {® Time
Total Frames: i) Frames
Frames Per Second: I:I
; -,

To make an effect, you need to either build one in code or the user

can choose an effect from QuickTime’s Choose Effects dialog box, as
shown in Figure 1.7.

Imaging and Effects 77

FIGURE 1.7 QuickTime’s Choose Effects dialog box

Select Effect...

Alpha Compositor [|

Chroma Key il I 2 ‘:@:' ., AU ., @’ =
Cross Fade 0 2550 75100 0 2550 75100
Explode Explode Center:

Gradient Wipe E

Implode X I » to 1

Iris 20-10 00 10 20 20-10 00 10 20
Matrix Wipe E ¥: o m y to m

Push - | 1 1 1 1 | 1 1 1 1
Radial = -20-10 00 10 20 -20-10 00 10 20
,ﬁ

/

[Lnad".] [Save".] [Cancel] [0K “

You set up an atom container to use a SMPTE effect. Using SMPTE
effects, you set the WhatAtom to SMPTE, ensure the endian order is
big-endian, and use SMPTE effect number 74:

public AtomContainer createSMPTEEffect (int effectType,
int effectNumber) {
AtomContainer effectSample = new AtomContainer();

// We are using SMPTE Effects so set the what atom to smpt
effectSample.insertChild (new Atom(kParentAtomIsContainer),
kEffectWhatAtom,
1,
0,
EndianOrder.flipNativeToBigEndian32(kWipeTransitionType));

// We are using SMPTE effect number 74 - start at 0%, stop at 100%
effectSample.insertChild (new Atom(kParentAtomIsContainer),
effectType,
1,
0,

eAel 1o} awi]}2Ind jo Arewwns -

78 Chapter 1: Summary of QuickTime for Java

EndianOrder.flipNativeToBigEndian32(effectNumber));

return effectSample;

In this example, the dialog box is configured to show only effects
that expect two sources, but it can be configured to show effects ap-
plied or requiring only a single source.

public static void showDialog (QTEffect ef) throws QTException {
AtomContainer effectSample = ParameterDialog.showParameterDialog
(new Effectslist (2, 2, 0), 0);
ef.setEffect (effectSample);

You use the doTransition() method, which is part of the QTTran-
sion class in the quicktime.app.image package, to set parameters to
control the rendering behavior of the effect.

QTTransition ef = new QTTransition ();

ef.setTime (800);

ef.setSourcelmage (sourcelmage);

ef.setDestinationImage (destlImage);

ef.setEffect (createSMPTEEffect (kEffectWipe,
kRandomWipeTransitionType));

Your application can also directly control the rendering of each

frame of an effect through setting the frame directly and redrawing the
effect.

ANIMATION AND COMPOSITING

With animation, you are working essentially with a time-based script of
composited images, which simply means that the images will change
over time. With compositing, you are using images from different
sources and layering them and generating a composited image.

Animation and Compositing 79

USING THE SWCOMPOSITOR

The SwCompositor class provides the capability to compose a complex
image from disparate image sources and then treat the result as a sin-
gle image, which is presented to the user. It also provides a time base
that controls the rendering cycle and allows your application to attach
time-based behaviors or actions.

The SWCompositor uses the QuickTime SpriteWorld internally to
perform its compositing tasks and its TimeBase for its timing services.
All of the actual drawing of the members of a SWCompositor is handled
through the interaction between the SpriteWorld and Sprite classes of
QuickTime.

The SpriteWorld itself is wrapped by the SWCompositor class, and to
represent the Sprite class it uses the TwoDSprite. The TwoDSprite is a
presenter, that is it presents image information. The presentation of im-
age information within the context of the SWCompositor SpriteWorld is
determined by the matrix, graphics mode, layer, and visibility of the
Sprite object.

To create a Sprite, you need a valid SpriteWorld. To create a
SpriteWorld, you need a valid QDGraphics destination. Depending on
whether a SWCompositor is visible, you may or may not have a valid
destination QDGraphics. The interaction between the SWCompositor and
its TwoDSprite presenters handles the saving and creating of Sprite-
World and Sprite objects—your application does not need to deal spe-
cifically with this issue.

The SWCompositor object presents the functionality of the Sprite-
World within the context of the QTDisplaySpace interface. The TwoD-
Sprite object wraps the QuickTime Sprite object, giving it a
Transformable interface so that its visual characteristics can have ma-
trix transformations applied to them. It also implements the Composit-
able interface, as graphics modes can be applied when a sprite’s image
data is rendered. You can save the current display state of an individu-
al sprite and recreate a sprite from the information you saved; the TwoD-
Spritelnfo object is a helper class created for this purpose.

eAel 1o} awi]}2Ind jo Arewwns -

80 Chapter 1: Summary of QuickTime for Java

The SWCompositor supports two important characteristics of mem-
bers. If the member implements a DynamiclImage, this indicates to the
Compositor that the image being presented by the member is apt to
change. For example, the member is a MoviePresenter, in which case
the member needs to create a special object—an Invalidator—that will
invalidate the sprite that is presenting the member, so that the compos-
ite cycle will redraw that sprite, and you will see the changing image
data of a movie as it plays back. This is discussed in more detail below.

A further service that the SWCompositor renders to its new members
is the handling of members that implement the Notifier interface. If a
member implements this interface, the Compositor establishes the con-
nection between the Notifier (the new member) and its NotifylListen-
er (the new member’s TwoDSprite). When the new member’s image
data is complete, it can then automatically notify its registered Noti-
fylListener—its TwoDSprite. This is used with QTImageDrawer members
where the QTImageDrawer won’t have valid image data until the Java
offscreen image is created. It could also be used with images that may
reside on a remote server, or interactively where the user may choose
or draw an image that is part of an animation.

The SWController

The SWController deals with SpriteWorldHitTest calls on the Sprite-
Wor1d that are contained by the SWCompositor’s subclasses. By default, it
performs hit-testing on the actual sprite image itself. However, your
application can set the hit-test flags to support any mode of hit-testing
appropriate. As a subclass of the MouseController, it will return any
member of the SWCompositor thatis hit only if isWholespace() is true. If
isWholespace() is false, the hit sprite must be a member of the SWCon-
troller itself.

The Compositor

The Compositor class is a subclass of SWCompositor, with its primary role
being the relaxation of membership requirements of its members. The
member object of a Compositor is only required to implement the Imag-
eSpec interface, in which case, the Compositor creates the TwoDSprite

Animation and Compositing 81

that presents that image data in its display space. If a TwoDSprite itself
is added to the Compositor, it is added directly as a member, since TwoD-
Sprite also implements the ImageSpec interface.

If the new member implements the Transformable interface, then its
current matrix will be set on its TwoDSprite presenter. If the new mem-
ber implements the Compositable interface, then its current Graphics-
Mode is applied to its TwoDSprite presenter. These actions simplify the
adding of members to the Compositor. However, once added, your ap-
plication will need to deal directly with the member’s TwoDSprite pre-
senter to alter the Matrix or GraphicsMode of the sprite.

Note that most of the functionality of the Compositor is within the
SWCompositor abstract class. It is only in the membership requirements
that the Compositor specializes the SWCompositor—specifically in the
creation, removal, and retrieval of a member’s TwoDSprite presenter.

COMPOSITED EFFECTS

The example code in this section, which is available in the SDK, shows
the use of a Compositor to create a composited image out of effects,
sprites, and Java text. It also shows you how to use this as a backdrop
for a QuickTime movie that draws directly to the screen. You construct
a composited image containing the layering of an image file, a ripple
effect, an animation and some Java text. Over this, you place a movie
and its movie controller, which is drawn in front of the composited im-
age.

The Compositor is used to combine multiple-image objects, includ-
ing a CompositableEffect (the ripple effect), into a single image that is
then blitted on screen. Both the Compositor and the QTP1ayer are added
as members of the top-level DirectGroup client of a QTCanvas. The code
also shows you how timing hierarchies can be established when spaces
are contained within each other.

The media required for this sample code include

= ShipX.pct files (where X is a number indicative of a frame order)

m Water.pct

eAel 1o} awi]}2Ind jo Arewwns -

82 Chapter 1: Summary of QuickTime for Java

= jumps.mov

The compositing services of the Compositor (that is, transparent
drawing, alpha blending, and so on) are not available with a Direct-
Group. A DirectGroup does allow for its member objects to be layered.
Thus, the movie can draw in front of the Compositor unheeded. It
shows the embedding of a Compositor space in a parent Compositor,
and then the embedding of this Compositor in a parent DirectGroup dis-
play space.

We create the parent Compositor that will contain the background
image, ripple effect, Java text, and the spaceship compositor. The space-
ship compositor is created similarly to preceding examples:

Dimension d = new Dimension (kWidth, kHeight);
QDRect r = new QDRect(d);
QDGraphics gw = new QDGraphics (r);
Compositor comp = new Compositor (gw, QDColor.green,
new QDGraphics (r), 10, 1);

We add the background image, setting it to the same size as the
Compositor. The ripple effect will ripple the pixels that this image
draws:

QTFile bgFile = new QTFile(
QTFactory.findAbsolutePath("pics/water.pct"));
GraphicsImporterDrawer ifl = new GraphicsImporterDrawer (bgFile);
ifl.setDisplayBounds (r);
ImagePresenter background =
ImagePresenter.fromGraphicsImporterDrawer (ifl);
comp.addMember (background, Layerable.kBackMostlLayer);

The ripple effect is layered to apply on top of the background im-
age, and its bounds are set to only the top part of the compositor’s dis-
play bounds. A ripple effect is applied only to what is behind it, not to
sprites or text drawn in front of it. The QuickTime ripple effect codec
works by moving pixels around on the destination 0DGraphics that it is
set to. By placing it in a Compositor, your application can control which
part of an image it ripples—in this case, the water picture that is be-
hind it.

Animation and Compositing 83

CompositableEffect e = new CompositableEffect ();
AtomContainer effectSample = new AtomContainer();
effectSample.insertChild (new Atom(kParentAtomIsContainer),
kEffectWhatAtom,
1,
0,
EndianOrder.flipNativeToBigEndian32(kWaterRippleCodecType));
e.setEffect (effectSample);
e.setDisplayBounds (new QDRect (0, kHeight - 100, kWidth, 100));
comp.addMember (e, 2);

We add the contained Compositor. Yellow is set as the background
color, which is then not drawn, as we set the graphics mode of the Com-
positor to transparent with yellow as the transparent color.

We also add a Dragger so that members of this compositor can be
dragged around when any modifier key is pressed when the mouse-
Pressed event is generated. We also add a Dragger to the parent Compos -
itor so that we can drag any of its top-level members when no
modifier keys are pressed:

Compositor sh = new Compositor (
new QDGraphics (new QDRect(160, 160)),
QDColor.yellow, 8, 1);

addSprites (sh);

sh.setlocation (190, 90);

sh.setGraphicsMode (new GraphicsMode (transparent, QDColor.yellow));

sh.getTimer().setRate(1);

sh.addController(new SWController (new Dragger (

MouseResponder.kAnyModifiersMask,

MouseResponder.kAnyModifiers), true));
comp.addMember (sh, 1);

comp.addController(new SWController (
new Dragger (MouseResponder.kNoModifiersMask), true));

You use the QTImageDrawer Object using the Java-drawing APIs to
draw the Java text, which is then given a transparency so that only the
text characters themselves are displayed by QuickTime. Note that you

eAel 1o} awi]}2Ind jo Arewwns -

84 Chapter 1: Summary of QuickTime for Java

set the background color to white, so the Java text appears transparent.
White provides a reliable transparent background for different pixel
depths.

myQTCanvas.setBackground (Color.white);

You add the Java text in front of the background image and ripples
and set its transparency to the background color of the 0TCanvas, so that
only the text is seen.

QTImageDrawer gid = new QTImageDrawer (jt, new Dimension (110, 22),

Redrawable.kSingleFrame);

Paintable jt = new JavaText ();

gid.setGraphicsMode (new GraphicsMode (transparent, QDColor.white));
gid.setlLocation (200, 20);

comp.addMember (qid, 1);

The code here provides a good demonstration of the timing hierar-
chy that is built using the display spaces of the Compositor and Direct-
Group.

We make a DirectGroup as the top-level container space, adding
both the containing Compositor as a member of this group and the mov-
ie jumps.mov. Finally, we set the rates of both the Compositor and the Di -
rectGroup to 1 so that they are playing when the window is shown:

DirectGroup dg = new DirectGroup (d, QDColor.white);
dg.addMember (comp, 2);

QTFile movieFile = new QTFile (

QTFactory.findAbsolutePath ("jumps.mov"));
QTDrawable mov = QTFactory.makeDrawable (movieFile);
mov.setDisplayBounds (new QDRect(20, 20, 120, 106));
dg.addMember (mov, 1);

myQTCanvas.setClient (dg, true);

comp.getTimer().setRate(1);
dg.getTimer().setRate(1);

Animation and Compositing 85

The top DirectGroup is the master time base for all of its members;
the rate at which its time base is set (the top text box) determines the
overall rate of its members. The members can have their own rates that
become offset based on the rates of their parent groups. To start the
program, you set the top rate to 1.

TRANSITION EFFECTS

We end this document with a program that demonstrates how to use
the QuickTime effects architecture and apply it to a character in an ani-
mation scene.

The code in this section shows how you can build a transition ef-
fect and apply it to a character in a realistic animation of a UFO en-
counter! In the program, a fading effect is applied to transition to the
spaceship image. The image fades in and out as per the rate and the
number of frames set for the transition.

It shows the usage of effects and effects presenters. The kCrossFade-
TransitionType effect is applied to the source and the destination imag-
es, which that makes them fade as per the number of frames set for the
transition.

The QTEffectPresenter is used to embed the QTTransition effect
and present it to the Compositor, which draws it to the canvas. Note
that the QTTransition effect cannot be directly added to the Composi-
tor; instead, it is given to the QTEffectPresenter, which is added to the
Compositor. If a filter were applied, it would have the same limitations
as a transition when added to a Compositor. It must be added using the
QTEffectPresenter.

A ripple effect is applied to the water image (in front of the water
image taking up the same location), using the CompositableEffect
class. Zero sourced effects, such as the ripple effect, can be added di-
rectly to a Compositor.

CompositableEffect ce = new CompositableEffect ();

AtomContainer effectSample = new AtomContainer();

effectSample.insertChild (new Atom(kParentAtomIsContainer),
kEffectWhatAtom,

eAel 1o} awi]}2Ind jo Arewwns -

86

Chapter 1: Summary of QuickTime for Java

1,
0,
EndianOrder.flipNativeToBigEndian32(kWaterRippleCodecType));

ce.setEffect (effectSample);
ce.setDisplayBounds (new QDRect(0, 220, 300, 80));
comp.addMember (ce, 3);

The Fader class is used to create the 0TTransition and return the
QTEffectPresenter that will supply the pixel data that becomes the im-
age data for this member’s sprite:

class Fader implements StdQTConstants {

Fader() throws Exception {

File file = QTFactory.findAbsolutePath ("pics/Ship.pct");
QTFile f = new QTFile (file.getAbsolutePath());

QDGraphics g = new QDGraphics (new QDRect (78, 29));
g.setBackColor (QDColor.black);

g.eraseRect(null);

ImagePresenter srclmage = ImagePresenter.fromGWorld(g);
Compositable destImage = new GraphicsImporterDrawer (f);

ef = new QTTransition ();

ef.setRedrawing(true);

ef.setSourcelmage (srclmage);

ef.setDestinationImage (destlmage);

ef.setDisplayBounds (new QDRect(78, 29));

ef.setEffect (createFadeEffect (kEffectBlendMode, kCrossFadeTransitionType));
ef.setFrames(60);

ef.setCurrentFrame(0);

private QTTransition ef;

public QTEffectPresenter makePresenter() throws QTException {

QTEffectPresenter efPresenter = new QTEffectPresenter (ef);
return efPresenter;

public QTTransition getTransition () {

return ef;

Animation and Compositing 87

AtomContainer createFadeEffect (int effectType, int effectNumber)
throws QTException {
AtomContainer effectSample = new AtomContainer();
effectSample.insertChild (new Atom(kParentAtomIsContainer),
kEffectWhatAtom,
1,
0,
EndianOrder.flipNativeToBigEndian32(kCrossFadeTransitionType));

effectSample.insertChild (new Atom(kParentAtomIsContainer),
effectType,
1,
0,
EndianOrder.flipNativeToBigEndian32(effectNumber));
return effectSample;

We then create the QTEffectPresenter for the transition and add it
as a member of the Compositor:

Fader fader = new Fader();

QTEffectPresenter efp = fader.makePresenter();
efp.setGraphicsMode (new GraphicsMode (blend, QDColor.gray));
efp.setlLocation(80, 80);

comp.addMember (efp, 1);

comp.addController(new TransitionControl (20, 1,
fader.getTransition()));

The controller object implements the TicklishController and sub-
classes the PeriodicAction class that has a doAction() method, which
gets invoked on every tickle call.

class TransitionControl extends PeriodicAction
implements TicklishController {
TransitionControl (int scale, int period, QTTransition t) {
super (scale , period);
this.t = t;

eAel 1o} awi]}2Ind jo Arewwns -

88 Chapter 1: Summary of QuickTime for Java

The doAction() call is overidden to set the current frame and re-
draw the TransitionEffect. The source and the destination images of
the transition effect are swapped when the number of set frames is
reached. The transition’s controller then rests for a few seconds before
it is awakened again and reapplied. The incoming time values to the
doAction method (called by PeriodicAction.tickle()) are used to cal-
culate the rest and transition, ensuring that if the rate of playback
changes, the transition controller will react to these changes.

When the transition is quiescent, we set the redrawing state of the
QTEffectPresenter to false. This ensures that when the Compositor in-
validates this presenter it will not invalidate the sprite, as we are not
currently drawing into the QTEffectPresenter. When the transition is
being applied, that is when the current frame is set, then the isRedraw-
ing method will return true. The Invalidator for the QTEffectPresent-
er will then redraw the effect and invalidate its sprite presenter. Thus,
this controller is also able to control the redrawing of both itself and its
sprite through the use of the redrawing state and ensure that the Com-
positor only renders the sprite that presents this QTEffectPresenter
when it actually changes its pixel data—that is, the image data of the
effect’s presenter.

protected void doAction (float er, int tm) throws QTException {
if (waiting) {

if ((er > 0 && ((startWaitTime + waitForMsecs) <= tm))

|| (er < 0 && ((startWaitTime - waitForMsecs) >= tm))) {

waiting = false;
t.setRedrawing(true);

} else

return;

}

int curr_frm = t.getCurrentfFrame();
curr_frm++;
t.setCurrentFrame(curr_frm);

if (curr_frm > t.getFrames()) {
curr_frm = 0;
t.setRedrawing(false);

t.setCurrentFrame(curr_frm);

t.swapImages();
waiting = true;
startWaitTime = tm;
}

Animation and Compositing 89

T

eAel 1o} awi]}2Ind jo Arewwns

90 cChapter 1: Summary of QuickTime for Java

	The QuickTime for Java API
	Using QuickTime in Multimedia Production
	An Overview of QuickTime for Java
	A Set of Java Classes With Two Layers
	Support For Different Java Virtual Machines
	Version Numbering
	The QTSimpleApplet: An Example
	Figure�1.1 The QTSimpleApplet running in a browser window

	Integrating QuickTime with Java
	Some Java Terminology
	QuickTime to Java Integration Structure
	Figure�1.2 QuickTime and Java integration

	Binding QuickTime Functions to Java Methods
	Garbage Collection
	Threads

	The QuickTime for Java Package Structure
	Table�1.1 QuickTime for Java packages
	QuickTime Headers and Java Classes
	Table�1.2 C header files and corresponding QuickTime for Java packages

	The Application Framework
	Table�1.3 QuickTime for Java Application Framework packages

	The QTSimpleApplet Code

	Comparing QuickTime C and Java Code
	Getting a Movie from a File
	Playing a QuickTime Movie
	Summary Comparision

	QuickTime for Java Classes and Interfaces
	The QTCanvas Class
	Interacting With Java Layout Managers

	The QTDrawable Interface
	Working With the QTDrawable Interface
	Figure�1.3 The QTDrawable implementation
	QTDrawable Methods

	The QTFactory Class
	Spaces and Controllers Architecture

	Displaying and Streaming Movies
	Play a Streaming Movie
	Using the Detached Controller
	Figure�1.4 The detached controller

	Converting to Full Screen
	Using Movie Callbacks

	Media and Presenters
	Media Data and Movies
	Dealing With Media
	The ImageSpec Interface
	Figure�1.5 Image implementations
	The Compositable and DynamicImage Interfaces

	QuickTime for Java Presenters
	The ImagePresenter Class
	Subclasses of ImagePresenter

	Imaging and Effects
	Drawing an Image File
	QuickTime to Java Imaging
	Image Producing
	Using the QTImageDrawer Class
	Visual Effects
	Figure�1.6 The explode effect frome the QT Effects program
	Figure�1.7 QuickTime’s Choose Effects dialog box

	Animation and Compositing
	Using the SWCompositor
	The SWController
	The Compositor

	Composited Effects
	Transition Effects

