TN 1192: ATA Interface Modules Page: 1

Technote 1192
ATA Interface M odules

CONTENTS T
his Technote describes how to write a device driver for
an ATA host bus controller, known asan ATA Interface

Introduction

Core Concepts Module, or AIM. An AIM isthe ATA equivalent of the SCS|
Interface Module (SIM). It does not control a device on the
ATA Manager Additions ATA bus, but implements a standard hardware abstraction for
the bus itself.
AIM Packaging
AlMs operate at the very lowest level of the traditional Mac
AIM Entry Points OS I/0O subsystem, which makes them hard to write and hard
to debug. Only experienced Mac OS device driver writers
AIM Action Function Codes should consider developing an AIM.
AIM Support Routines This Noteisdirected at developers of ATA host bus

controller cards (typicaly PCI or CardBus).

TN 1192: ATA Interface Modules Page: 2

| ntroduction

This technote describes how to write aMac OS device driver for ATA host bus controller hardware. Such
adriver isknown asan ATA Interface Module, or AIM. In some respectsitisthe ATA equivalent to the
more commonly known SCSI Interface Module (SIM).

This technote is divided into two sections. This section, and the Core Concepts sections which followsit,
represent the introductory material. They describe high-level issues with writing AIMs; understanding
these sectionsis critical to writing areliable AIM. The remaining sections are reference material. They
describe how you can register an ATA buswith ATA Manager, how you should package your AIM so
that it isrecognized by ATA Manager, what entry pointsATA Manager expects you AIM to implement,
thelist of function codes your AIM's action routine must support, and some support routinesthat ATA
Manager exports to support AIM implementation.

IMPORTANT:

AlMs are only supported by ATA Manager 4.0 and above. Development of third-party ATA busesis not
supported on older versions of ATA Manager. Device 0/1 support is not available on some early ATA
Manager 4.0 systems; however, your AIM should always support device 0/1 operations.

Before You Begin
Before you consider developing an AIM, you should be familiar with the following concepts:

e The native driver model, as described in Designing PCI Cards and Drivers for Power Macintosh
Computers

e TheMac OSATA programming interface, as described in ATA Device Software for Macintosh
Computersand amended by the ATA Device 0/1 Software Developer's Guide and DTS Technote
1098 ATA Device Software Guide Additions and Corrections.

e The ATA bus protocol; ANSI NCITS 317-1998 AT Attachment - 4 with Packet Interface
Extension isagood reference.

Y ou will also need the following:

e "ATA.h" from the latest version of Universal Headers.

e If that version of "ATA.h" does not include the AIM-related declarations described in this
technote, you will need the "ATAExtras.h" header file that isincluded with this technote.
[2404935]

e Similarly, if thelibrariesincluded with Universal Headers does not include ATAManager stub
library, you will need the one included here.

e Information about your bus controller from your hardware vendor.

Back to top

Core Concepts

Before starting your AIM, you should be familiar with some fundamental concepts, as described in the
following sections.

Theory of Operation

AlMs represent an abstraction of an ATA bus. Your AIM isolatesthe ATA Manager and its clients from
the specific details of your ATA bus controller hardware. For instance, an ATA bus may be part of aPC
Card dot, or perhaps reside on a PCI card, or may even be integrated as part of a system chipset. Each
physical ATA controller will have specific requirements for how it is addressed, what cycletimes are
supported and how they are programmed, how interrupts from the controller are routed to the system, and

TN 1192: ATA Interface Modules Page: 3

so on. By bundling the hardware-specific details of the ATA controller in aplug-in software module, the
ATA Manager presents a consistent interface for drivers and applications to communicate with ATA and
ATAPI devices.

All of the operations which directly touch the hardware in any manner are handled by your AIM. This
includes:

e describing the features of the bus controller, primarily the supported 1/0O modes and cycle times,
and controlling those features

preparing physical DMA transfer buffers and building DMA programs for those buffers
alignment issues

reading and writing the device'stask file registers

writing ATAPI command packets

handling ATA and ATAPI transfer operations

servicing hardware interrupts

timing out failed bus transactions

resetting the bus

Current versions of ATA Manager will only dispatch asingle request for asingle device on the bus
controlled by your AIM at any given time. Overlapped ATA/ATARPI features are not currently supported.
AlMswritten to the specification in this document will never be expected to handle concurrent requests.

In general, your AIM should be interrupt-driven. It should do as much work asit can on arequest, then
return to the ATA Manager pending an interrupt from the hardware. For instance, when you receive a
request to read data, you would set your AIM'sinternal flags as needed, write the task file to the device,
and then return to ATA Manager. When the device isready to transfer data, it will assert an interrupt which
will call your AIM's hardware interrupt handler. Y our AIM would then call ATAFanBusEvent For Al Mto
gueue a secondary handler and return from the hardware interrupt handler. ATA Manager will then call
your AIM's MyHandl eBusEvent function where you would complete the data transfer, clear your AIM's
internal flags, and call ATAFani Obone. It isimportant that all your cleanup be done before calling
ATAFani ODone, because ATA Manager may call you with another request during ATAFam CDone. Also,
your AIM's MyHandl eBusEvent function may be called immediately when calling

ATAFanBusEvent For Al M Other than these two cases, the AIM will not be called reentrantly.

There are some limits on the controller hardware that can be supported by an AIM:

e Each ATA bus must be capable of simultaneous operation, independent of any other ATA bus. If
an ATA controller chip implements two bus controllers, but they share common wiring or aDMA
engine such that only one bus can be active at atime, then only one bus may be supported under
ATA Manager. ATA Manager has no synchronization mechanism between buses.

e ATA controllersincapable of generating interrupts are not supported.

e PCl ATA controllers which operate only in x86 "legacy mode" (that is, they hard-decode only the
lower-address bits and cannot be relocated in PCI space) are not supported. However, it is
possible to support addressing the controller in either memory or PCI /O space.

Global Variables

Your AIM should allocate its per-bus global variablesin amemory block (typically alocated use
Pool Al | ocat eResi dent) and use ATA Manager's per-AlM r ef Con facility to track its globals.

The reason to use ther ef Con (rather than C ext er n and st at i ¢ variables, which are stored in your
fragment's data section) isthat the ATA Manager has afacility to update your AIM to a newer version "on
the fly." The process, described below, involves closing the CFM connection to the older version of your
AIM and replacing it with a connection to the newer version. If you had important datain the older AIM's
data section, that datais lost when the data section is disposed as part of closing the CFM connection. In
contrast, ATA Manager explicitly passesther ef Con to the new version of your AIM.

TN 1192: ATA Interface Modules Page: 4

Note:

AnAlIM isanativedriver (' ndrv') and shares many of the properties of native driversin genera. One of
these propertiesisthat your AIM isinstantiated once for each instance of your ATA hardware on the
machine (technically, one per ATA node in the Name Registry). Therefore you can store per-bus global
variablesin your data section, and you will automatically get one copy of these globa variables per bus.

However, you should avoid using this strategy for per-bus global variables for the reason described
above.

It is acceptable to use your data section for global variables aslong as you have a strategy for passing
them between versions. Y ou could, for example, store the data primarily in you data section, push it into
the AIM'sr ef Con memory block when your AIM is suspended, and restore it to your data section when
your AIM isresumed. Or you might choose to pass data between versions of your AIM viaName
Registry properties. However, both of these techniques are significantly more convoluted than using the
AlM'sr ef Con, hence the recommendation to just use ther ef Con approach.

Regardless of how you alocate your global variables, you must ensure that they are held resident in
memory (in the virtual memory sense). All of the techniques described above guarantee this.

Finaly, your AIM should use PowerPC structure alignment for its global variables. This hastwo
advantages.

1. If you do atomic operations on aglobal variable, PowerPC alignment ensures that the variableis
aligned appropriate.
2. PowerPC alignment yields better performance for native code than 68K alignment.

AlIM Update Process

As mentioned above, the ATA Manager has a process for updating your AIM to anewer version "on the
fly," without shutting the bus down. The ATA Manager accomplishesthisin a7 step process:

Open a CFM connection to the new AIM

Wait for al pending AIM requests to terminate

Block any new AIM requests from starting

Call the old AIM's suspend routine (MyAl MSuspend)

Call the new AlIM'sresume routine (M Al MResune), passing it ther ef Con from the old AIM
Unblock the AIM to allow bus operations to continue

Close the CFM connection to the old AIM

Noo,rwNE

There are anumber of important things about this process to keep in mind.

e The ATA Manager finds replacement AIMs by matching the Name Registry node name to the
nanel nf oSt r field of the Dri ver Type structure of its driver description. In order for your AIM
to be updated, these names much match exactly.

e Inaddition, the ATA Manager will only update an AIM if thever si on field of theDri ver Type
structure of its driver description is newer than the version of the existing AIM.

e You must structure your per-bus globals such that they can be passed from one version of your
AIM to the next. Some suggested techniques are:

e Using your AIM'sr ef Con to store a pointer to your per-bus storage simplifies
the process of passing this information between versions. See the previous
sectionfor more details.

e Put the version number of your AIM in your per-bus storage so that the newer
AIM knowswhich older version it is taking over from (and can compensate for
known bugs, oversights, and so on).

e Include some "reserved"” fieldsin your per-bus storage to give future versions of
your AIM some room for expansion.

e You can aso use Name Registry properties to pass information between versions
of your AIM.

TN 1192: ATA Interface Modules

e AIM resume routines are not defined to return an error code. Y ou should design your AIM so
that its resume routine cannot fail.

AIM Synchronization M odel

Aslong asyou follow one simple rule, the ATA Manager takes care of most of the synchronization
problemsinwriting an AIM. Theruleis:

When your AIM is called by anyone other than ATA Manager, you must synchronize with
ATA Manager by posting a bus event.

Posting a bus event (ATAFanBusEvent For Al M) isathe way your AIM informs ATA Manager that its bus
event handler (WyAl MHandl eBusEvent) should be called. ATA Manager queues the bus event and
eventually calls the bus event handler when it is safe to do so.

If you follow thisrule, ATA Manager guaranteesthat it will never call your AIM on more than one thread
of execution at atime. So aslong as you're executing within the context of aroutinethat iscaled by ATA
Manager, you can access global variables without worrying about synchronization issues.

An obvious example of wherethisisuseful isfor handling interrupts. Asarule, your AIM will service /O
requests as a state machine. When ATA Manager callsyour AIM to start arequest (M Al MAct i on), your
AIM will start an asynchronous I/0 operation and then return to ATA Manager. When the asynchronous
operation completes, your hardware will interrupt the processor, and system software will execute your
interrupt service routine. This interrupt service routine executes at hardware interrupt time. 1f you access
your global variables from it, you must worry about synchronizing that access with lower execution levels.
The solution isfor your AIM to post abus event. ATA Manager will defer calling your bus event handler
(MyAl MHandl eBusEvent) until it can guarantee that it is the only thread of execution running inside your
AIM. Y our bus event handler can therefore safely access global variables without worrying about
synchronization.

IMPORTANT:
Y our interrupt service routine must perform the following tasks as quickly as possible:

e |dentify the source of the interrupt.
e If theinterrupt isfrom your device, clear the source of the interrupt and post a bus event.

The bulk of the work in handling an interrupt should be done in your bus event handler.
If your AIM's hardware is hosted on a PCl bus, you must be sure to handle hardware interruptsin an

expansion chassis friendly fashion. See DTS Technote 1135 Dealing with PCI Expansion Chassis
Problemsfor details.

Controllers which contain two ATA buses which share asingle PCI interrupt must extend the interrupt
source tree so that each ATA bus has a separate interrupt node. Typicaly thisisdonein your AIM's
initialization routine.

A less obvious example of the use of bus eventsisto handle timeouts. If your AIM implements timeouts
using the system timer service (Set | nt er r upt Ti mer), the timer routine will be executed at hardware
interrupt time. Y our AIM can avoid synchronization problems by posting this event as a bus event aswell.

Page: 5

TN 1192: ATA Interface Modules

Note:

ATA Manager uses the bus event mechanism to both guarantee synchronization and to defer the
processing of bus events until interrupts are enabled (by way of a secondary interrupt). Y ou should not
rely on ATA Manager's use of secondary interrupts. Older versions of ATA Manager implemented this
using a deferred task, and the implementation might change again in the future.

In addition to guaranteeing that only one thread of execution can be running inside your AIM at any point
intime, the ATA Manager also guarantees to dispatch only asingle request to your AIM at atime.
Between the point when ATA Manager dispatches arequest (by calling M Al MAct i on) and the point when
your AIM completesit (by calling ATAFam Obone), ATA Manager will not dispatch any further requests
to your AIM. Instead, it will queue these requests on itsinternal queues. This"one request at atime”
guarantee isin recognition of the fact that the ATA bus architecture does not support parallel overlapped
requests and that, by guaranteeing this, ATA Manager smplifiesyour life.

Both of the synchronization guarantees described in this section are defined on a bus-by-bus basis. If
your AIM is multiply instantiated on the system, and those instances share common data, you must be
careful to synchronize access to that common data.

Finaly, ATA Manager a so handles enabling and disabling of user code (in the virtual memory sense) for
you. Readers who are familiar with SIMs (the equivaent to AIMs for SCSI buses) know that they are
required to call Ent eri ngSI Mand Exi t i ngSI Mwhenever they enter or leave the SIM. AIM developers are
not required to jump through that particular hoop because the ATA Manager knows when non-reentrant
portions of the AIM are executing (because the non-reentrant parts of the AIM are always executed as a
result of the ATA Manager caling the AIM) and so it can enable and disable user code appropriately.

ATA 1/O Modes

This section explains one of the trickier aspects of the ATA Manager's API for setting transfer modes and
timings. In addition to the discussion here, you should read the ATA Device Software for Macintosh
Computers (and its errata, DTS Technote 1098 ATA Device Software Guide Additions and Corrections)
carefully to fully understand how ATA client software expects your AIM to handle transfer modes and
timings.

Prior to ATA Manager 3.0, which wasthefirst version of the ATA Manager to support DMA transfers,
transfer modes were specified as absolute numbers. Thus, avalue of 2 for atransfer mode meant PIO
mode 2. Starting with ATA Manager 3.0, transfer modes were specified as bitmaps. Thus avalue of 1
meant transfer mode 0, avalue of 2 meant transfer mode 1, and so on. The at aMbdeType field of the
ATAReqBI ock determineswhich mode thisrequestisin.

Thisisimportant to remember when trying to establish the correct timing mode on the ATA bus. For
example, the flag bit mATAFI agUseConf i gSpeed has different meanings depending on the value of the

at aMbdeType field. If the at amodeType field is set to kATAMbdeAbsol ut e (pre-ATA Manager 3.0) then
the flag bit mATAFI agUseConf i gSpeed indicates whether to use timing values for the mode last set with a
Set Driver Configuration request, or to use timing values for the PIO mode specified in thefield

at aPBl OSpeed. If theat aMbdeType field is set to kATAMbdeBi t map (ATA Manager 3.0 and above) then
the flag bit mATAFI agUseConf i gSpeed should always be set. If so, your AIM must use the bus mode
(P10, singleword DMA, multiword DMA, UltraDMA) and timing val ues that were stored from the last Set
Driver Configuration request. If mATAFI agUseConf i gSpeed isnot set, your AIM should execute the
request at the slowest possible transfer speed.

AlMsversusSIMs

In many respects, AIMs are architecturally similar to SCSI Interface Modules (SIMs), the name given to
host bus controller driversin the Mas OS SCS| architecture. The following table compares various
features of AIMsand SIMs.

Page: 6

TN 1192: ATA Interface Modules

Feature		[AIM	[SIM
Single Thread	[Yes	[No	
Single Request	[Yes	[No	
Interrupt Polling	[Yes	[Yes	
Enable/Disable User Code	[No	[Yes	
Per-Bus Storage	[Maintained by ATA Manager	[Maintained by SCSI Manager	

Single request, therefore put

Per-Request Storage per-request datain per-bus globals

Allocated by client as part of SCSI
parameter block

|Update "on the fly" |[Yes |[Not provided by SCSI Manager |
' ndr v’ ||Required ||Possible, but not required |
Back to top

ATA Manager Additions

ATA Manager 4.0 defines two new ATA Manager function codes to be used with the at avanager system
cal. The new functions are defined below. The codes are used to add and remove ATA buses, respectively.

enum {
kKATAMyr AddATABUS = 0x93,
kATAMgr RenoveATABuUS = 0x94

IMPORTANT:

If your AIM isloaded from an expansion ROM on a card, you do not need to register it manually with
ATA Manager. At startup time, ATA Manager will search the Name Registry for ATA nodes and
automatically register an ATA bus for any node with an available AIM. ATA Manager considers any
node whose "device type" property iskATADevi ceType ("ata\15\0") to be an ATA node.

For compatibility reasons, ATA Manager aso recognizes nodes of type "ide\0". New AlMs should use

awayskATADevi ceType.

Adding an ATA Bus

Toadd an ATA busto ATA Manager, you must call the at aManager System call, passing in a parameter

block of type at aAddATABuS.

Page: 7

TN 1192: ATA Interface Modules

struct ataAddATABus {

at aPBHeader * at aPBLi nk;

U nt16 at aPBQType;

Ul nt8 at aPBVer s;

U nt8 at aPBReser ved;
Ptr at aPBReser ved?2;
ProcPtr at aPBCal | backPtr;
CSEr r at aPBResul t ;
unt8 at aPBFunct i onCode;
U nt8 at aPBI OSpeed,;

U nt 16 at aPBFI ags;

SInt 16 at aPBReser ved3;
Ul nt 32 at aPBDevi cel D,

Ul nt 32 at aPBTi neQut ;
Ptr ataPBd ientPtri;
Ptr ataPBd i entPtr2;
Ul nt 16 at aPBSt at e;

U nt 16 at aPBSemaphor es;
Sl nt 32 at aPBReser ved4;
RegEntryl DPt r at aNanmeRegEnt ry;
CFragConnecti onl D connl D

Ul nt 32 busl D;

U nt8 fl ags;

U nt8 socket Type;

Ptr i conDat a;

Ptr st ri ngDat a;

1
t ypedef struct ataAddATABus at aAddATABus;

The fields have the following meaning:

at aPBLi nk

at aPBQType

at aPBVer s

at aPBReser ved

at aPBReser ved2

at aPBCal | backPt r

at aPBResul t

at aPBFunct i onCode

at aPBI OSpeed

at aPBFI ags

at aPBReser ved3

at aPBDevi cel D

at aPBTi meQut

ataPBClientPtrl

ataPBCientPtr2

at aPBSt at e

at aPBSemaphor es

at aPBReserved4
Standard ATA Manager parameter block header. See ATA Device Software for Macintosh
Computersfor details. You must initialize at aPBFunct i onCode t0 kATAMyr AddATABUS,
at aPBVer s t0O kATAPBVer s2.

at aNaneRegEntry
Y ou must set thisto the Name Registry node of the ATA buswhich you wishto add. The ATA
Manager will use Driver Loader Library to locate your native driver (AIM) for thisbus. See AIM
Packaging for more information about how your native driver must be structured.

connl D
Reserved. Y ou must set thisfield to zero and ignore any value returned.

busl D
On successful completion of the request, the ATA Manager setsthisfield to the ATA bus D of
the newly created ATA bus.

flags

Page: 8

TN 1192: ATA Interface Modules

Y ou must set thisto the bus flags for this bus. The possible flags are defined below. The
undefined flag bits are reserved; you must set them to zero.

socket Type
You must set thisto the ATA socket type of the bus using one of the constants defined in
"ATA.h" (currently one of kATASocket | nt er nal , KATASocket MB, Or kATASocket PCMCI A).

i conDat a
Y ou must set thisto either apointer to ablack and white icon (256 bytes of datain' | CN#'
format) that representsthe ATA bus, or toni | if thereis no such icon. ATA Manager makes a
copy of the data, so you can dispose of it when the call completes.

stringDat a
Y ou must set thisto either a pointer to a string that describes the location of the ATA bus, or to
ni | if you do not wish to supply alocation. The string isa C string (zero terminated) of at most
31 characters in the system script encoding; longer strings will be truncated by ATA Manager.
ATA Manager makes a copy of the data, so you can dispose of it when the call completes.

In response to this request, the ATA Manager opens your AIM and creates the internal data structures
necessary for it to track the AIM and its attached devices. As part of processing thiscall, the ATA
Manager callsyour AIM'sinitialization routine (MyAl M ni t), which must probe your bus for attached
devices. If your AIM'sinitiaization routine returns an error, the ATA Manager cleans up and completes
the request with that error. If your AIM'sinitialization routine succeeds and indicates that devices are
attached to the bus, ATA Manager will issue kATAUpdat eEvent and kATAONI i neEvent eventsfor each
device.

The possible flags for thef | ags field of the at aAddATABus structure are defined below.

enum {
mMATANo DMAONBuUS = 0x80
1

The meaning of theseflagsis:

mATANo DMAONBUS
If thisflag is set, the busthe ATA Manager's kATAMgr Bus| nqui ry function will indicate that the
bus does not support DMA, even if your AIM indicates that it does. This allows the bus expert
which registers this bus to override AIM defaults for DMA support. The actual effect of thisflag
isthat the ATA Manager clearsthe at aSi ngl eDMAMbdes, at aMul t i DMAMbdes and
at aUl t raDMAModes fields returned by your AIM in response to akATAFnBus| nqui ry request
before returning those fields as part of the client'sk ATAMgr Bus| nqui ry request.

Y ou must issue thisrequest at system task time.
Removing an ATA Bus

Toremove an ATA bus, you must call theat aManager system call, passing in a parameter block of type
at aAddATABuUS.

Page: 9

TN 1192: ATA Interface Modules

struct ataRenmpbveATABus {

at aPBHeader * at aPBLi nk;

U nt16 at aPBQType;

Ul nt8 at aPBVer s;

U nt8 at aPBReser ved;
Ptr at aPBReser ved?2;
ProcPtr at aPBCal | backPtr;
CSEr r at aPBResul t ;
unt8 at aPBFunct i onCode;
U nt8 at aPBI OSpeed,;

U nt 16 at aPBFI ags;

SInt 16 at aPBReser ved3;

Ul nt 32 at aPBDevi cel D,

Ul nt 32 at aPBTi neQut ;

Ptr ataPBd ientPtri;
Ptr ataPBd i entPtr2;
Ul nt 16 at aPBSt at e;

U nt 16 at aPBSemaphor es;
Sl nt 32 at aPBReser ved4;
Ul nt 32 busl D

RegEntryl DPt r at aNaneRegEntry;

H

t ypedef struct ataRenpbveATABus at aRenpveATABuUS;

The fields have the following meaning:

at aPBLi nk

at aPBQType

at aPBVer s

at aPBReser ved

at aPBReser ved?2
at aPBCal | backPtr
at aPBResul t

at aPBFunct i onCode
at aPBI OSpeed

at aPBFI ags

at aPBReser ved3
at aPBDevi cel D

at aPBTi neQut
ataPBd ientPtril
ataPBd ientPtr2
at aPBSt at e

at aPBSemaphor es
at aPBReser ved4

busl D

Standard ATA Manager parameter block header. See ATA Device Software for Macintosh

Computersfor details. You must initialize at aPBFunct i onCode t0 kATAMgr RermmoveATABuUS,

at aPBVer s 10 kATAPBVer s2.

Reserved. Y ou must set thisfield to zero and ignore any value returned.

at aNaneRegEntry

Y ou must set thisto the Name Registry node of the ATA bus which you wish to add.

In response to this request the ATA Manager will remove the ATA bus associated with the Name Registry
node specified in at aNameRegEnt ry. The ATA Manager executes the following steps.

1

It callsyour AIM's action routine (MyAl MAct i on) with the kATAFnKi | | | Ofunction code, to
indicate that your AIM should stop processing the current request.

. It completes any pending /O requests (including the current one) for your AIM with the

nsDr vErr error code.

2
3. Itcalsyour AIM'sdevice light routine (MyAl MDevi celLi ght) to turn off the device's light.
4,

5. It calsyour AIM's close routine (MyAl MOl ose), ignoring any error result.

It issues thekATARenovedEvent event for each device on your bus.

Page: 10

TN 1192: ATA Interface Modules

6. It disposes of the resourcesit used to track the bus and releases its CFM connection to your
AlIM.

Y ou may issue this request at any execution level, although if you issueit at anything other than system
task level the ATA Manager's connection to the AIM is not closed until afuture system task time.

Back to top

AlIM Packaging

An AIM is packaged asanativedriver (' ndrv'). For ATA Manager to load your AIM, it must be available to the
Driver Loader Library. See Designing PCl Cards and Drivers for Power Macintosh Computers for more
information on how Driver Loader Library finds native drivers.

Y our AIM must export two named entry global variables:

e TheDriverDescription -- Thisis the standard native driver description.
e ThePluginDispatchTable -- This contains information specific to ATA Manager.

The structure of these global variables is described in the following sections.
TheDriver Description

An AIM must export the standard native driver description structure under the name " TheDriverDescription”. An
example of how your AIM should fill out this structure is given below.

01 extern DriverDescription TheDriverDescription = {

02

03 /'l Signature

04

05 kTheDescri pti onSi gnat ur e,

06 klnitial DriverDescriptor,

07

08 /'l Driver Type

09

10 {

11 "\ pMAl MNane",

12 kmaj or Rev, km nor AndBugRev, kstage, knonRel Rev,
13 b

14

15 /1 OS Runtinme Requirenents of Driver
16

17 {

18 kDri ver | sUnder Expert Control ,
19 "\ pMAl MNane",

20 b

21

22 /'l Service Category List

23

24 /1 Only one service category required
25

26 1,

27

28 /'l First Service Category

29

30 kSer vi ceCat egor yATA,

31 0,

32 1, 0, 0, O

Page: 11

TN 1192: ATA Interface Modules

Some parts of this definition deserve further explanation.

Line1l
You must set thenanel nf oSt r field of theDri ver Type structure to the name of the Name Registry
node your driver controls. Thisalowsthe Driver Loader Library, and hencethe ATA Manager, to
associate your driver with the appropriate hardware.

Line12
You must set thever si on field of the Dri ver Type structure the version number of your driver. This
alowsthe Driver Loader Library to load the latest version of your driver if more than one happensto be
installed. It also alowsthe ATA Manager to replace an initidl ROM-based AIM with a newer file-based
AIM oncethe File Manager isavailable.

Line 18
AlMs are explicitly loaded by the ATA Manager (the expert), so you must set thedr i ver Runt i ne flags
of theDri ver GSRunt i me structureto kDr i ver | sUnder Expert Control .

Line19
The driverName field of the Dri ver OSRunt i me structureistypically used to hold the unit table name of
thedriver. AsAlMsare not ingtalled in unit table, thisfield is not significant. Y ou should set to the same
string you used in Line 11.

Lines 26 through 32
AlMs arerequired to export at least one service category, namely kSer vi ceCat egor yATA. Thisalows
the ATA Manager to check that it correctly matched the AIM to the Name Registry node. The other fields
of theDri ver Servi cel nf o structure are reserved for future versions of the ATA Manager; you must
initialize them as shown.

ThePluginDispatchTable

In addition to the standard drive description, you AIM must export a plugin dispatch table under the name
"ThePluginDispatchTabl€e". The ATAPI ugi nDi spat chTabl e type describes the format of this table.

struct ATAPI ugi nDi spat chTabl e {

ATAPI ugi nHeader header ;
ATAPI ugi nl ni t init;
ATAPI ugi nCl ose cl ose;
ATAPI ugi nActi on acti on;
ATAPI ugi nHandl eBusEvent busEvent ;
ATAPI ugi nPol | pol | ;
ATAPI ugi nEj ect Devi ce ej ect;
ATAPI ugi nDevi ceLi ght light;
ATAPI ugi nDevi ceLock | ock;
ATAPI ugi nSuspend suspend;
ATAPI ugi nResune resune;

1
t ypedef struct ATAPI ugi nDi spat chTabl e ATAPI ugi nDi spat chTabl e;

t ypedef OSStatus ATAPI ugi nl nit (ATAInitlnfo *pb);

t ypedef OSSt atus ATAPI ugi nCl ose(U nt 32 ref Con, RegEntryl DPtr ai nRegEntry);
t ypedef void ATAPI ugi nAction(U nt32 refCon, ATAReqBl ock *pb);

t ypedef void ATAPI ugi nHandl eBusEvent (Ul nt 32 ref Con, U nt32 ainData);

t ypedef Bool ean ATAPI ugi nPol | (Ul nt32 refCon, U nt32 interruptlLevel, U nt32 *ainData);

t ypedef void ATAPI ugi nEj ect Devi ce(Ul nt 32 ref Con);

t ypedef voi d ATAPI ugi nDevi ceLi ght (U nt32 refCon, U nt32 whichDevice, Unt32 lightState);
t ypedef void ATAPI ugi nDevi ceLock(Ul nt32 ref Con, U nt32 whichDevice, Unt32 | ockState);

t ypedef void ATAPI ugi nSuspend(Ul nt 32 ref Con);

t ypedef void ATAPI ugi nResunme(Ul nt 32 ref Con);

The fields have the following meaning:

Page: 12

TN 1192: ATA Interface Modules

header
A header which describes the version of the overall plugin dispatch table. See below.
init
Y ou must set thisto a pointer to your AIM'sinitialization routine (WAl M ni t).
cl ose
Y ou must set thisto apointer to your AIM's close routine (MyAl MOl ose).
action
Y ou must set thisto apointer to your AIM's action routine (M Al MAct i on).
busEvent
You must set thisto apointer to your AIM's bus event handler routine (MyAl MHandl eBusEvent).

pol |
Y ou must set thisto apointer to your AIM's interrupt poll routine (M Al MPol |).
ej ect

Y ou must set thisto a pointer to your AIM's gject routine (MyAl MVEj ect Devi ce) or ni | if your AIM does
not have an gect routine.

l'i ght
opt You must set thisto a pointer to your AIM's device light routine (MyAl MDevi ceLi ght) or ni | if your
AIM does not have an gect routine.

| ock
Y ou must set thisto a pointer to your AIM's device lock routine (M Al MDevi ceLock) or ni | if your AIM
does not have an gect routine.
suspend
Y ou must set thisto a pointer to your AIM's suspend routine (MyAl MSsuspend).
resune
Y ou must set thisto a pointer to your AIM's resume routine (MyAl MResune).

The ATAPI ugi nHeader , as defined below, structure describes the version of the overall plugin dispatch table.

struct ATAPI ugi nHeader {

NunWer si on header Ver si on
NumVer si on di spat chVersi on
Ul nt 32 reservedA;

Ul nt 32 reservedB

1
t ypedef struct ATAPI ugi nHeader ATAPI ugi nHeader

enum {
kATAPI ugi nVer si on
KATAPI ugi nCur r ent Ver si on

0x00000001,
kATAPI ugi nVer si on

b

The fields have the following meaning:

header Ver si on
Y ou must set thisto the version number of your AlIM, as defined above.
di spat chVersi on
If your AIM conformsto this version of the specification, you must set thisfield to
kATAPI ugi nVer si on.
reservedA
Reserved. Y ou must set thisto zero.
reservedB
Reserved. Y ou must set thisto zero.

Page: 13

TN 1192: ATA Interface Modules

Note:

ATA Manager does not currently look at the di spat chVer si on field. Moreover, Apple's AIMs do not
currently set thisfield correctly. Because of this confusion, any future version of ATA Manager that
implements an extended plug-in interface will not use thisfield to determine which version of the plug-in
interface that your AIM conforms to.

Back to top

AIM Entry Points

Your AIM must implement anumber of routines and export those routinesto the ATA Manager viathe
plugin dispatch table. This section describes these routines in detail.

MyAIMInit

extern OSStatus MYAIMnit (ATAInitlInfo *ainmnit);

lai m ni t ||A pointer to an ATAI ni t I nf o parameter block, described below.|
result ||An error code; see below for details. |

The ATA Manager callsyour AlM'sinitialization routine to commence operations on the ATA bus
controlled by your AIM. Thisroutineis called when an ATA busis registered with ATA Manager. Y our
AIM must alocate any private resources it needs (typically per-bus storage), instal its interrupt handler,
initialize its hardware, probe the bus for attached devices (and determine whether they are ATA or ATAR!),
and return information about those devices to the ATA Manager. Depending on your hardware, your AIM
may need to reset the ATA busto determine if any devices are attached.

Your AIM must aso create child Name Registry nodes for the attached ATA devices. The nodes must
have at |east the following properties:

e The"name" property must be set to either "ata-disk™ or "atapi-disk".
e The"device type" property must be set to "block™.
e The"device id" property must be set to aul nt 32 that containsthe ATA bus D and device ID (in
the same format asthe at aPBDevi cel D field of ATA Manager parameter blocks).
Your AIM initialization routine must not issue any commands to the ATA device.

Your AIM'sinitialization routine receives the address of an ATAI ni t | nf o parameter block as a parameter.
The parameter block contains both input and output fields.

struct ATAlnitlnfo {

Ul nt 32 busl D;
ATADevI nf o Fi r st Devi ce;
ATADevI nf o SecondDevi ce;
RegEnt ryl DPt r ai nRegEnt ry;
Ul nt 32 r ef Con;

tS/pedef struct ATAInitlnfo ATAInitlnfo;

Thefields have the following meaning:

busl D

Page: 14

TN 1192: ATA Interface Modules Page: 15

ATA Manager setsthisto the ATA bus|D it has assigned to the new bus that is being registered.
FirstDevice
Your AIM must initialize this structure to hold information about the first device on the ATA bus.
See below for a description of the ATADevI nf o structure. If the bus supports ATA devices 0 and
1, and device 1 is present but device 0 isn't, your AIM should set this structure to represent device
1 and set SecondDevi ce to indicate that no second device is attached.
SecondDevi ce
Your AIM must initiaize this structure to hold information about the second device on the ATA
bus.
ai nRegEntry
The ATA Manager setsthisto the Name Registry node of the ATA bus which is being registered.
r ef Con
Your AIM may set thisfield to any 32-bit value, typically a pointer to your per-bus storage. The
ATA Manager will passthisvalue as a parameter (typically named r ef Con) whenever it calls your
other AIM entry points.

IMPORTANT:

TheAl M ni t I nf o data structure and the structures it points to are deallocated as soon as your AIM
returns fromMyAl M ni t . If you wish to retain access to this data, you must copy it to your own storage.
Specificaly, you should make a copy of the RegEnt r yI D pointed to by ai nRegEnt ry. Copying the
RegEnt ryl DPt r isnot sufficient!

TheATADev| nf o structure holds information about a specific ATA device on abus. Your

struct ATADevlnfo {
U nt8 devType;
SInt8 devl D

1
t ypedef struct ATADevl nfo ATADevl nf o;

enum {
KATAI nval i dDevi cel D
kATADevi ceODevi cel D
kATADevi celDevi cel D

rOR

Thefields have the following meaning:

devType
Your AIM must set thisfield to indicate the type of the attached device. Possible ATA device
typesarelisted in "ATA.h" (current kATADevi ceUnknown, KATADevi ceATA, KATADevi ceATAPI ,
and kATADevi ceReser ved).

devl D
Your AIM must set thisfield to indicate the ATA device ID of the attached device. Possible device
IDs are kATAI nval i dDevi cel D, kATADevi ceODevi cel D and kATADevi celDevi cel D.

If your AIM wantsto indicate that no ATA deviceisattach, it must set devType to kATADevi ceUnknown
and devl DtO kATAI nval i dDevi cel D.

If your AIM initialization routine returns an error, or it indicates that there are no devices on the bus, ATA
Manager failsthe request to register the ATA bus, unloads your AIM, and dispose of all referencesto it.

TN 1192: ATA Interface Modules

IMPORTANT:

It is especially important to take note of the circumstances under which your AIM will be unloaded when
extending the interrupt source tree for multiple bus controllers that share an interrupt. Remember, your
buses may be initialized in any order. The first instance of an AIM that successfully initializes should
extend the interrupt tree and store the child interrupt nodes for each busin the Name Registry. When the
secongekéus isinitialized, it can look in the Name Registry to determine whether the interrupt tree has been
extended or not.

Suggested result codes include:

noEr r Initialization successful.

menful | Err Unableto dlocate private data.

nsDr vEr r No device detected on node

par anEr r Bad parameter

nr | nval i dNodeEr r Invalid Name Registry node

nr Not FoundEr r A required property was not found in the Name Registry node
ATAI ni t Fai | Initialization failed

Thisroutineis always be called at system task time.
MyAIM Close

extern OSStatus MyAl Ml ose(Ul nt32 ref Con, RegEntryl DPtr ai mRegEntry);

|r ef Con ||A pointer to your per-bus storage, as returned by M/Al M ni t |
|lai mRegENt ry || The Name Registry node of the ATA buswhich is being deregistered. |
result ||An error code; see below for details. |

The ATA Manager calls your AIM's close routine to terminate operations on the ATA bus controlled by
your AIM. Thisroutineis called when an ATA busis deregistered with ATA Manager. Y our AIM must
shut down its hardware, remove any interrupt handlers, and release any resources it owns. Thiswill be the
last request that a particular instance of your AIM will receive.

Any error code returned by your AIM isignored. Y ou should structure your AIM such that its close
routine can not fail.

Thisroutine will always be called at system task time.

MyAIMAction

extern void M/Al MActi on(Ul nt 32 refCon, ATAReqgBl ock *pb);

|r ef Con ||A pointer to your per-bus storage, as returned by /Al M ni t |
Ipb ||A pointer to an ATAReqBI ock parameter block, described below. |

The ATA Manager calls your AIM's action routine to perform atransaction on the ATA bus. The
ATAReqBI ock parameter block specifies the action to perform and the place to store the results. The
meaning of many of the fields is dependent on the at aFunct i onCode field, which specifies exactly what
operation isto be performed. Each function code is described in detail in AIM Action Function Codes.

Page: 16

TN 1192: ATA Interface Modules

struct ATAReqBl ock {

Ul nt 32 connecti onl D;

Ul nt 32 Msgl D;

ATAResul t * result;

ATAD agResult * Di agResul t;

ATABusl nfo * busl nf o;
ATADevConfig * devConfi g;

ATADat aObj ect i oObj ect;

at aTaskFil e at aPBTaskFi | e;
ATAPI CndPacket packet CBD,

Dur ati on Ti meout ;

Ul nt 32 Busl D;

SInt8 Devl D;

U nt8 at aFunct i onCode;

Ul nt 32 Abort | D

Ul nt 32 at aPBLogi cal Bl ockSi ze
Ul nt 32 at aPBFI ags;

Ul nt 32 reserved

struct ATAReqBl ock * next REQ

OSSt at us at aPBResul t ;

U nt8 at aPBEr r or Regi st er
U nt8 at aPBSt at usRegi st er
Ul nt 32 at aPBact ual Xf er Count ;
Ul nt 32 at aPBSt at e;

Ul nt 32 at aPBSemaphor es;

U nt8 Xf er Type;

U nt8 at aModeType;

U nt8 at aPBI OSpeed,;

U nt8 reserved2

U nt16 reserved3

1
t ypedef struct ATAReqBl ock ATAReqBl ock

Unless otherwise stated, afield is has the same meaning for all function codes (except kKATAFnKi | | 1 O).
The fields have the following meaning:

connectionl D
Reserved. Y ou must not modify thisfield or depend on its contents.

Msgl D
Reserved. Y ou must not modify thisfield or depend on its contents.

result
Thisfield is used to hold the result of an AIM action. Thisfield isa structure (ATAResul t), not a
smple'i oResul t ' value, but the fields of the structure are only relevant tot he kATAFnExecl O
function code. The only field relevant to the other function codesisat aResul t field, but your
AIM does not need to explicitly set thisfield because ATAFam ODone does it for you.

Di agResul t
Thisfield issignificant only for the kATAFnRegAccess function code and is described along with
that function code.

busl nfo
Thisfield issignificant only for the kATAFnBus| nqui ry function code and is described along
with that function code.

devConfig
Thisfield issignificant only for the kATAFnGet Dri veConf i g and kATAFnSet Dri veConfi g
function codes and is described along with those function codes.

i 0Obj ect
Thisfield issignificant only for the kATAFnExecl Oand kATAFnDx i vel dent i fy function codes
and is described along with those function codes.

at aPBTaskFi | e
Thisfield issignificant only for the kATAFnExec! Ofunction code and is described aong with that
function code.

packet CBD

Page: 17

TN 1192: ATA Interface Modules

Thisfield issignificant only for the kATAFnExec! Ofunction code and is described along with that
function code.

Ti meout
The ATA Manager setsthisfield to atimeout (in milliseconds) for the request. It derives the value
from theat aPBTi meQut field of the client's request, or setsit to a default value (currently 31000)
if at aPBTi meQut was zero.

Busl D
ATA Manager sets up thisfield to the bus ID of the ATA bus on which to perform the action. It
derivesthisvalue from at aPBDevi cel Dfield of the client's request. Typically your AIM ignores
thisfield because the busis aready uniquely identified by the per-bus storage pointed to by the
r ef Con passed to Al MAct i on.

Devl D
ATA Manager sets up thisfield to either kATADevi ceODevi cel D Or kATADevi celDevi cel D10
describe which device on the ATA busto act upon. It derivesthis value from the at aPBDevi cel D
field of the client's request.

at aFunct i onCode
ATA Manager sets up thisfield to describe the action that the AIM should take. AIM Action
Function Codeslists the defined function codes.

Abort| D
ATA Manager does not use thisfield except insofar asto initidize it to zero. Your AIM can use
thisfield asit seesfit.

at aPBLogi cal Bl ockSi ze
Thisfield issignificant only for the kATAFnExec! Ofunction code and is described aong with that
function code.

at aPBFI ags
The ATA Managers setsthisfield to the value of the at aPBFI ags field of the client's request.
Your AIM is expected to read thisfield and act on the flags it contains.

reserved
Reserved. Y ou must not modify thisfield or depend on its contents.

next REQ
ATA Manager does not use thisfield except insofar asto initiaizeit to zero. Your AIM can use
thisfield asit seesfit.

at aPBResul t
ATA Manager does not use thisfield except insofar asto initidize it to zero. Your AIM can use
thisfield asit seesfit, although typically it is used to hold atemporary result.

at aPBEr r or Regi st er
ATA Manager does not use thisfield except insofar asto initiaizeit to zero. Your AIM can use
thisfield as it seesfit, although typicaly it is used as temporary storage for the error register.

at aPBSt at usRegi st er
ATA Manager does not use thisfield except insofar asto initidize it to zero. Your AIM can use
thisfield as it seesfit, although typicaly it is used as temporary storage for the status register.

at aPBact ual Xf er Count
ATA Manager does not use thisfield except insofar asto initiaizeit to zero. Your AIM can use
thisfield as it seesfit, although typicaly it is used as temporary storage for the transfer count.

at aPBSt at e
ATA Manager does not use thisfield except insofar asto initidize it to zero. Your AIM can use
thisfield asit seesfit, athough typically it is used to track the state of the request.

at aPBSemaphor es
ATA Manager does not use thisfield except insofar asto initiaizeit to zero. Your AIM can use
thisfield asit seesfit, athough typically it is used to hold flags that indicate the status of the
request.

Xf er Type
ATA Manager does not use thisfield except insofar asto initiaizeit to zero. Your AIM can use
thisfield as it seesfit, although typicaly it is used to hold the I/O transfer type (PO, single-word
DMA, multi-word DMA).

at aMobdeType
ATA Manager sets up thisfield to indicate whether the at aPBI OSpeed field contains an absolute
vaue (kATAMbdeAbsol ut e) or abitmap of possible values (kATAMbdeBi t map). It derivesthis
value from the at aPBVer s field of the client request; absolute mode is used only if the parameter
block islessthan version 3. See ATA /O Modes for more information about how your AIM

Page: 18

TN 1192: ATA Interface Modules

should interpret this and the at aPBI OSpeed field.
at aPBI OSpeed

ATA Manager setsthisfield to the at aPBI OSpeed field of the client's request.
reserved2

Reserved. Y ou must not modify thisfield or depend on its contents.
reserved3

Reserved. Y ou must not modify thisfield or depend on its contents.

Each field is described in more detail with the appropriate function code.

Your AIM typically processes an action request using a state machine. When it receives the action request,
it initializes the state machine and starts the first (asynchronous) step of processing the request. It then
returns control to the ATA Manager. When the first step is complete, the hardware generates an interrupt
and the AIM's interrupt service routineis caled. It notifies ATA Manager of the bus event by calling
ATAFanBusEvent For Al M ATA Manager then calls the AIM's bus event handler routine

(MyAl MHand! eBusEvent), which starts the next (asynchronous) step of processing the request. When the
last step isdone, the AIM calls ATAFani Obone. ATA Manager completes the original client's request and
then callsthe AIM to start the next request.

Thisroutine may be called at any execution level.
MyAIMHandleBusEvent

extern void My Al MHandl eBusEvent (Ul nt 32 ref Con, Ul nt32 ai nData);
r ef Con ||A pointer to your per-bus storage, as returned by MyAl M ni t |

The bus event type, as passed in to ATAFanBusEvent For Al Mor returned from
MAl MPol | ; AIM Synchronization Model for more details

ai nDat a

The ATA Manager callsyour AIM's bus event handler routine to handle events detected on your bus.
Typicaly these events are interrupts from your bussinterrupt hardware. Y our AIM informs ATA
Manager of these eventsin one of two ways:

e When an interrupt occurs (and is not masked), your interrupt service routine is called. Y our
interrupt service routine must inform ATA Manager of the bus event by calling
ATAFanBusEvent For Al Mand then return.

e When interrupts are masked (or otherwise deferred), ATA Manager callsyour AIM's interrupt
poll routine (MyAl MPol 1) to poll for masked interrupts. If the interrupt poll routine detects an
interrupt, it returns an indicative statusto ATA Manager.

Regardless of how it informs ATA Manager of the bus event, your AIM can provide a bus event type
which indicates what type of bus event occurred. The ATA Manager passes the same bus event type back
to the bus event handler in the ai nDat a parameter. Typically this bus event type is used to distinguish the
type of bus event that has occurred. For example, your AIM might use avalue of 1 to indicate that aDMA
interrupt has occurred and avalue of 2 to indicate that an I/O interrupt has occurred. ATA Manager does
not interrupt thisvalue.

Typically your AIM responds to a bus event by moving the current 1/0 request to the next state. For
example, if the current 1/0 request is waiting for an I/0O completion bus event, your AIM would respond to
that bus event by calling ATAFam ODone to inform ATA Manager that the /0 request is complete. On the
other hand, if the current I/O request is not complete, your AIM would respond by setting up the next
asynchronous I/O operation.

Thisroutine may be called at any execution level. It istypically executed with interrupts enabled (either
from a deferred task or a secondary interrupt) but that is not guaranteed.

Page: 19

TN 1192: ATA Interface Modules

MyAIMPoll

extern Bool ean MAI MPol | (Ul nt32 refCon,
U nt32 interruptLevel,
U nt32 *ainbDataPtr);

|r ef Con ||A pointer to your per-bus storage, as returned by M/Al M ni t . |

linterrupt Level || The current 68K interrupt mask: avaluefrom 0 to 7. |
If your AIM detected a bus event, it should set the value pointed to by this

ai nDat aPt r parameter to the type of bus event that occurred; see AIM Synchronization
Model for more details.

|result |[Trueif the AIM detected a bus event, otherwise false. |

The ATA Manager callsyour AIM'sinterrupt poll routine when it detects that a synchronous 1/0 request

is blocked because interrupts are masked (or otherwise deferred). Your AIM must look at itsinterrupt

hardware to determine if there is an interrupt pending. If thereis, your AIM must set the memory pointed

to by ai nDat aPt r to the type of bus event associated with that interrupt (see AIM Synchronization Model

llzglr more details on bus event types) and return true. If thereis no interrupt pending, your AIM must return
se.

Thei nt errupt Level parameter isaconvenienceonly. Your AIM may use this vaue to determine which
interrupt sources to check. For example, if your AIM receives device interrupts at level 2 and DMA
interrupts at level 4, and the current i nt er r upt Level is3, it need not check the status of the DMA
interrupt line because that interrupt is not being masked.

Thisroutine may be called at any execution level.
Background Material

Under the Mac OS I/0O system architecture, it is possible for the system to take a page fault in three
hard-to-handle cases:

e inside an interrupt handler (for example, Sound Manager callbacks are made directly from a
ig\llfgd r;(ar)dware interrupt handler, but applications must be able to take page faultsin these

acks

e when interrupts are masked (for example, the OS Utilities routine Enqueue will set the interrupt
mask to 7 and then manipulate queue headers, which may be paged out)

e when critical system resources are busy (for example, the ATA Manager typically defers
processing of bus events until secondary interrupt time, but secondary interrupts are serialized and
apage fault from a hardware interrupt handler while an unrelated secondary interrupt was running
would deadlock the system)

Page faults result in synchronous disk driver I/O requests. If the underlying 1/0 hardware requires
interrupts to complete an 1/0 request, and interrupts are masked or otherwise deferred when the page fault
happens, the system will deadlock.

In order to avoid this deadlock, the system polls for interrupts during any "sync wait" loop which occurs
while interrupts are masked (or otherwise deferred). Given that the system has no knowledge of your
AlM'sinterrupt architecture, it calls your AIM'sinterrupt poll routine to accomplish this polling.

See DTS Technote 1094 Virtual Memory Application Compatibility and DTS Q& A DV 34 Secondary
Interrupts on the Page Fault Path for more details about this technique.

MyAIMEjectDevice

Page: 20

TN 1192: ATA Interface Modules Page: 21

extern void MyAl MEj ect Devi ce(Ul nt 32 refCon);

|r ef Con ||A pointer to your per-bus storage, as returned by /Al M ni t |

The ATA Manager callsyour AIM's gject routine in response to akATAMgr Dr i veEj ect request.

IMPORTANT:
Thisroutine gectsthe entire ATA bus, not smply the mediafrom a device on the bus. The distinctionisa

subtle but important one. An example of an AIM that implements the gject routine is the built-in PC Card
AIM, which gects the PC Card in response to this call.

If your gjection hardware is asynchronous, this operation should simply start the g ection operation. If an
asynchronous gjection operation is not complete by the timethe ATA bus is deregistered, your close

routine (\yAl MCl ose) isresponsible for waiting until it is.

Thisroutineisoptiona. If your AIM does not support this function, it should set the appropriate plugin
dispatch table entry toni | .

Thisroutine may be called at any execution level.

MyAIM DevicelL ight

extern void My Al MDevi ceLi ght (Ul nt 32 ref Con
Ul nt 32 whi chDevi ce,

U nt32 lightState);

||A pointer to your per-bus storage, as returned by M/Al M ni t |

whi chDevi The ATA socket type of the device, derived from the socket Type field of
¢ ce theat aAddATABus structure used to register the bus

| |The state in which to set the light: one of the constants given below |

|reben

llightState

The ATA Manager calsyour AIM's device light routine to turn on and off the activity light, if any,
associated with your AIM. Typically the ATA Manager enables the activity light in response to adevice
driver request (the driver setsthe mATAFI agLEDEnabl e flag in the at aPBFI ags field of the parameter

block it passesto the at amanager system call).

The constants for thel i ght St at e parameter are defined below.

enum {
kATADevi ceLi ght O f
kATADevi ceLi ght On

0x00,
0x01

An example of an AIM that implements this routine is the media bay AIM for PowerBook compuiters,
whereit controlsthe LED on the media bay device.

Thisroutineisoptional. If your AIM does not support this function, it should set the appropriate plugin
dispatch table entry toni | .

TN 1192: ATA Interface Modules Page: 22
Thisroutine may be called at any execution level.
MyAIM Devicel ock
extern void My Al MDevi ceLock(Ul nt 32 ref Con,

Ul nt 32 whi chDevi ce,
U nt32 | ockState);

|r ef Con ||A pointer to your per-bus storage, as returned by M/Al M ni t |

whi chDevi ce The ATA socket type of the device, derived from the socket Type field of
theat aAddATABus structure used to register the bus

|l ockSt at e || Whether the device s locked or not; one of the constants given below |

The ATA Manager calsyour AIM's device lock routine to lock and unlock the hardware associated with
your AIM. A locked device cannot be g ected by the user. The ATA Manager locks and unlocks the AIM
based on themATApcLockUnl ock flag intheat apcVval i d field of the at aDevConf i gur at i on parameter
block supplied to ak ATAMgr Set Dr vConf i gur at i on request.

The constants for thel ock St at e parameter are defined below.

enum {
kATADevi ceUnl ock = 0x00,
kATADevi ceLock = 0x01

An example of an AIM that implements this routine is the built-in PC Card AIM, which prevents users
from gecting the PC Card if it has been locked.

Thisroutineisoptional. If your AIM does not support this function, it should set the appropriate plugin
dispatch tableentry toni | .

Thisroutine may be called at any execution level.

MyAIM Suspend
extern void My Al MSuspend(Ul nt 32 ref Con);
|r ef Con ||A pointer to your per-bus storage, as returned by M/Al M ni t |

The ATA Manager calsyour AIM's suspend routine as part of the process of updating an AIM to a newer
version. See AIM Update Processfor more details.

Your AIM must "disconnect” itself from al system callbacks except those directly associated with the
ATA Manager. Thisincludes:

e interrupt handlers
e timer tasks
e power management callbacks

Thisalowsthe ATA Manager to unload the code associated with the older version of your AIM. Y our

TN 1192: ATA Interface Modules

AIM must not dispose of the per-bus storage associated with r ef Con. ATA Manager will passthe same
r ef Con to the resume routine of the newer AIM, which isresponsible for "reconnecting” the AIM to the
system.

The ATA Manager guarantees that it will not call your AIM from the beginning of your suspend routine
until your resume routine returns.

Thisroutine will aways be called at system task time.

MyAIMResume
extern void MyAl MResune(Ul nt 32 ref Con);
|r ef Con ||A pointer to your per-bus storage, as returned by M/Al M ni t |

The ATA Manager callsyour AIM's resume routine as part of the process of updating an AIM to a newer
version. See AIM Update Processfor more details.

Your AIM must "redisconnect” itself to al system callbacks which were disconnected by the suspend
routine. Thisincludes:

e interrupt handlers

e timer tasks

e power management callbacks
Your AIM isrequired to continue operations using the per-bus storage inherited from the older version
and pointed to by r ef Con. If the format of your per-bus storage changes between versions, your resume
routine must convert from the old to the new format.

The ATA Manager guarantees that it will not call your AIM from the beginning of your suspend routine
until your resume routine returns.

Thisroutine will aways be called at system task time.

Back to top

AIM Action Function Codes

When ATA Manager callsyour AIM's action routine (MyAl MAct i on), it setstheat aFunct i onCode field
of the ATAReqBlI ock parameter block to avalue which identifies the type of operation to be performed. The
possible function codes are listed below:

Page: 23

TN 1192: ATA Interface Modules

enum {
kKATAFNNOP = 0x00,
kATAFnExecl O = 0x01,
kKATAFnBusl nqui ry = 0x02,
kATAFNQRel ease = 0x03,
kKATAFnCnd = 0x04,
kATAFnAbor t = 0x05,
kATAFnBusReset = 0x06,
kATAFnRegAccess = 0x07,
KATAFNnDri vel dentify = 0x08,
kATAPI FnExecl O = 0x009,
kATAPI FnCnd = O0xO0A,
kATAFnGet Dri veConfi g = 0xO0B,
kKATAFnSet Dri veConfi g = 0x0C,
KATAFnKi I I 1 O = 0x0D

The following sections describe each function code in detail. If your AIM receives arequest with a
function code it does not recognize, it should fail the request with a status of par anrr .

No Operation (KATAFNNOP)

Thisisa"no operation” request. ATA Manager should never issue this request to your AIM. If it does,
your AIM should immediately compl ete the request successfully by calling ATAFam ODone with a status
of noErr.

Execute 1/O (KATAFnExecl O)

ATA Manager issues this request to your AIM as the result of aclient's k ATAMyr Execl Orequest. Y our
AlIM is expected to execute the specified 1/0 transaction to the specified device on the specified bus. The
bulk of the ATAReqBI ock is set up as described above; only the fields specific to this request are described
here.

The structure of ther esul t field of the ATAReqgBI ock is shown below.

struct ATAResult {

OSSt at us at aResul t;

SInt8 at aSt at usRegi ster;
SInt8 at aError Regi ster;
Ul nt 32 act ual Xf er Count ;
at aTaskFile * TaskFi |l e;

1
typedef struct ATAResult ATAResult;

The fields have the following meaning:

at aResul t
The overal error result for the request. Unlike the other fieldsin the ATAResul t structure, this
fieldisrelevant for all function codes. Y our AIM must not explicitly set thisfield because
ATAFanm ODone doesit for you.

at aSt at usRegi st er
For execute 1/O requests, your AIM must set thisfield to the contents of the ATA status register.
When you complete the request, ATA Manager copiesthisfield to the at aPBSt at usRegi st er
field of the client's parameter block.

at akrror Regi ster
For execute 1/O requests, your AIM must set thisfield to the contents of the ATA error register.
When you complete the request, ATA Manager copies thisfield to the at aPBEr r or Regi st er
field of the client's parameter block.

Page: 24

TN 1192: ATA Interface Modules

act ual Xf er Count
For execute 1/0 requests, your AIM must set this field to number of bytes actually transferred.
When you complete the request, ATA Manager copies thisfield to the at aPBAct ual TxCount
field of the client's parameter block.

TaskFil e
For execute I/O requests, your AIM must copy the current contents of the ATA task fileto the
structure pointed to by thisfield, if itisnot ni | . Typically you copy this directly from the
at aPBTaskFi | e field of the ATAReqBI ock. ATA Manager does not currently look at thisfield.

The structure of thei obj ect field of the ATAReqBI ock is shown below.

struct ATADat aCbj ect {
unt8 * i oBuf;
Ul nt 32 Count ;

s
t ypedef struct ATADat aCbj ect ATADat aCbj ect;

The meaning of thefieldsin the ATADat aCbj ect structure are dependent on whether scatter/gather is
enabled for this request. Scatter/gather is enabled if mATAFI agUseScat t er Gat her issetinthe
at aPBFI ags for the request. If scatter/gather is not enabled, the fields have the following meaning:

i oBuf

ATA Manager setsthisfield to point to the start of the data buffer for the transfer.
Count

ATA Manager setsthisfield to the count of the number of bytesto transfer.

If scatter/gather is enabled, the fields have the following meaning:

i oBuf
ATA Manager setsthisfield to point to an array of | 0Bl ock structures (defined in"ATA.h").
Your AIM should transfer the data between the device and the scatter/gather buffer defined by this
array.

Count
ATA Manager setsthisfield to the number of | 0Bl ock structuresin the array pointed to by
i oBuf .

Theat aPBTaskFi | e field of the ATAReqBI ock has the same structure asthe at aPBTaskFi | e field of the
at al OPB (defined in"ATA.h"). Before issuing an execute I/O request to your AIM, ATA Manager copies,
without interpretation, the task file from the client'sat al OPB to theat aPBTaskFi | e field of the

ATAReqBI ock. [It does, however, forcethe mATADr i veSel ect bit of the at aTFSDH field of the task file
based on thedev! D field of the ATAReqBI ock.] When your AIM completes the request, the ATA Manager
copiesthe at aPBTaskFi | e field back to the client'sat al OPB.

Thepacket CBD field of the ATAReqBI ock has the same structure asthe ATAPI CndPacket type defined in
"ATA.h". By default, the ATA Managers clearsthisfield before issuing an execute 1/O request to your
AIM. However, if the client issued an ATAPI request (mATAFI agPr ot ocol ATAPI was Set in the

at aPBFI ags and at aPBPacket Pt r wasnot nil), ATA Manager copiesthe ATAPI CndPacket pointed to by
at aPBPacket Pt r into the packet CBD field of the ATAReqBI ock.

For execute /O requests, the ATA Manager setsthe at aPBLogi cal Bl ockSi ze field of the ATAReqBI ock
to at aPBLogi cal Bl ockSi ze field of the client's request.

BusInquiry (KATAFnBuslnquiry)
ATA Manager issuesthisrequest to your AIM as the result of a client'sk ATAMyr Bus| nqui ry request.

Your AIM is expected to return information about the specified ATA bus. The bulk of the ATAReqBI ock is
set up as described above; only the fields specific to this request are described here.

Page: 25

TN 1192: ATA Interface Modules

The structure of the bus! nf o field of the ATAReqBI ock is shown below:

struct ATABuslnfo {

U nt8 at aPl OMbdes;

U nt8 at aSi ngl eDMAMbdes;
U nt8 at aMul t i DMAMbdes;
U nt8 at aU t r aDiVAMbdes;
Ul nt 32 at al OPBsi zeO;

Ul nt 32 at al OPBsi zel,;
SInt8 ataContrl Type[16] ;
NunWer si on at aHBAver si on;

Ul nt 32 reserveds3;

1
t ypedef struct ATABusl nfo ATABusl nf o;

The fields have the following meaning:

at aPl Ovbdes
Your AIM must set thisfield to a bit mask representing the PIO transfer modes it supports. On
completion of the request, ATA Manager copiesthisfield into theat aPl Ovbdes field of the
client'srequest.

at aSi ngl eDVAMbdes
Your AIM must set thisfield to a bit mask representing the singleword DMA transfer modes it
supports. On completion of the request, ATA Manager copiesthisfield into the
at aSi ngl eDMAMbdes field of the client's request (unless the bus was registered with the
mATANoDMAONBus flag, in which casethisfield isignored and the ATA Manager clearsthe
at aSi ngl eDMAMbdes field of the client's request).

at aMul ti DMAMbdes
Your AIM must set thisfield to a bit mask representing the multiword DMA transfer modesiit
supports. On completion of the request, ATA Manager copiesthisfield into the
at aMul ti DMAModes field of the client's request (unless the bus was registered with the
mATANoDVAONBus flag, in which casethisfield isignored and the ATA Manager clearsthe
at aMul ti DMAMbdes field of the client's request).

at aul t r aDMAMbdes
Your AIM must set thisfield to abit mask representing the UltraDMA transfer modes it supports.
On completion of the request, ATA Manager copiesthisfield into theat au t r aDVAMbdes field
of the client's request (unless the bus was registered with the mATANoDMAONBus flag, in which case
thisfield isignored and the ATA Manager clearstheat aul t r aDVMAMbdes field of the client's
request).

at al OPBsi ze0
Your AIM must set thisfield to kATADef aul t Bl ockSi ze (512). Thisfield was originally
intended to hold the size of an ATA sector on device 0, but developmentsin the ATA standard
(namely ATAPI) have obviated the need for thisinformation.

at al OPBsi zel
Your AIM must set thisfield to kATADef aul t Bl ockSi ze (512). Thisfield was originally
intended to hold the size of an ATA sector on device 1, but developmentsin the ATA standard
(namely ATAPI) have obviated the need for thisinformation.

ataContrl Type
Your AIM may set thisfield to any value, including characters or binary data. The field isintended
as amechanism to report avendor or model name, or other data for identification or diagnostic
purposes. If you do not implement this functionality, you should clear the entire field. On
completion of the request, ATA Manager copiesthisfield into theat aCont r | Type field of the
client's request.

at aHBAver si on
Your AIM must put its version number in this field. On completion of the request, ATA Manager
copiesthisfield into the at aHBAver si on field of the client's request.

reserved3

Page: 26

TN 1192: ATA Interface Modules
Reserved. Y ou must not modify thisfield or depend on its contents.
I/0 Queue Release (KATAFNQRe ease)

Requests of this type should never be passed through to your AIM. Y our AIM should treat this as an
unrecognized function code.

ATA Command (KATAFnCmd)

Requests of this type should never be passed through to your AIM. Y our AIM should treat this as an
unrecognized function code.

Abort Command (KATAFnAbort)

Requests of this type should never be passed through to your AIM. Y our AIM should treat this as an
unrecognized function code.

Reset ATA Bus (KATAFnBusReset)
ATA Manager issues this request to your AIM as the result of aclient'sk ATAMyr BusReset request. Y our

AlIM is expected to reset the specified ATA bus. The ATAReqBI ock IS Set up as described above; there are
no fields specific to this request.

Register Access (KATAFNRegA ccess)
ATA Manager issues this request to your AIM asthe result of aclient'sk ATAMyr RegAccess request. Y our

AlIM is expected to read or write the specified ATA registers. The bulk of the ATAReqBlI ock is set up as
described above; only the fields specific to this request are described here.

IMPORTANT:
Your AIM must determine whether to read or write the ATA registers based on the mATAFI agl OW i te
flaginthe at aPBFI ags field of the ATAReqBI ock.

The structure of the Di agResul t field of the ATAReqBI ock is shown below.

struct ATAD agResult {

U nt16 at aRegMask;

OSSt at us at aResul t;

Ul nt 16 at aDat aReg;

Ul nt8 at aTFFeat ur es;

Ul nt8 at aTFCount ;

Ul nt8 at aTFSect or;

U nt8 at aTFCyl i nder Lo;
U nt8 at aTFCyl i nder Hi ;
Ul nt8 at aTFSDH;

U nt8 at aTFConmand;

Ul nt8 at aAl t St at DevCnt ;

s
t ypedef struct ATADi agResult ATAD agResult;

The fields have the following meaning:

at aRegMask
The ATA Manager setsbitsin thisfield to indicate which registersto read or write. The bit mask
aredefined in "ATA.h" (mATAAI t SDevCVal i d, MATASt at usCmdVal i d, MATASDHVal i d, and so
on).

at aResul t

Page: 27

TN 1192: ATA Interface Modules Page: 28

Reserved. Y ou must not modify thisfield or depend on its contents.

at aDat aReg
For awrite operation, your AIM must write thisfield to the ATA dataregister (always a 16-bit
write) if mATADat aval i d iSSet inat aRegMask. For aread operation, your AIM must read the
ATA dataregister (aways a 16-bit read) and put it in thisfield if mATADat aval i d iSSet in
at aRegMask.

at aTFFeat ur es
For awrite operation, your AIM must write thisfield to the ATA error register if
MATAET r Feat ur esVal i d iSSet inat aRegMask. For aread operation, your AIM must read the
ATA featuresregister and put it inthisfield if mATAEr r Feat ur esVal i d iS Set inat aRegMask.

at aTFCount
For awrite operation, your AIM must write thisfield to the ATA sector count register if
mATASect or Cnt Val i d IS Set inat aRegMask. For aread operation, your AIM must read the ATA
sector count register and put it inthisfield if mATASect or Cnt Val i d iSSet inat aRegMask.

at aTFSect or
For awrite operation, your AIM must write thisfield to the ATA sector number register if
mATASect or Nunval i d IS Set inat aRegMask. For aread operation, your AIM must read the ATA
sector number register and put it inthisfield if mATASect or Numval i d IS Sset inat aRegMask.

at aTFCyl i nder Lo
For awrite operation, your AIM must writethisfield to the ATA cylinder low register if
mMATACy| i nder LoVal i d iSset inat aRegMask. For aread operation, your AIM must read the
ATA cylinder low register and put it in thisfield if mATACy! i nder LoVal i d iSSet inat aRegMask.

at aTFCyl i nder Hi
For awrite operation, your AIM must write thisfield to the ATA cylinder high register if
MATACy| i nder Hi Val i d iSset inat aRegMask. For aread operation, your AIM must read the
ATA cylinder high register and put it inthisfield if mATACyl i nder Hi val i d isset in
at aRegMask.

at aTFSDH
For awrite operation, your AIM must writethisfield to the ATA SDH register if mATASDHVal i d
isset inat aRegMvask. For aread operation, your AIM must read the ATA SDH register and put it
inthisfield if mATASDHVal i d is set inat aRegMask.

at aTFCommand
For awrite operation, your AIM must writethisfield to the ATA command register if
MATASt at usCndVal i d IS Set inat aRegMask. For aread operation, your AIM must read the ATA
status register and put it in thisfield if mATASt at usCmdVal i d IS Set inat aRegMask.

at aAl t St at DevCnt
For awrite operation, your AIM must write thisfield to the ATA device control register if
MATAAI t SDevCVval i d iSSet inat aRegMask. For aread operation, your AIM must read the ATA
aternate status register and put it inthisfield if mATAAI t SDevCval i d is set inat aRegMask.

Drive I dentify (KATAFnDrivel dentify)
ATA Manager issues thisrequest to your AIM astheresult of aclient'skATAMyr Dr i vel dent i fy request.

Your AIM is expected to execute an ATA driveidentify command (kATAcndDr i vel denti fy). This
request is very similar to a standard execute 1/O request except for the following:

e Your AIM must force the I/O to be byte swapped (typically by setting mATAFI agByt eSwap in
at aPBFI ags).

e Your AIM must aways attempt to transfer 512 bytes (typically by overwriting the Count field of
thei obj ect with 512).

e Your AIM must aways use a512 bytelogical block size (typically be overwriting
at aPBLogi cal Bl ockSi ze with 512).

e Your AIM must issuean ATA drive identify command (typically by overwriting the
at aTFCommand field of the at aPBTaskFi | e withkATAcndDr i vel denti fy and theat aTFSDH of
theat aPBTaskFi | e with mATASect or Si ze).

Once it has modified the parameter block in thisway, your AIM can simply pass this request through to
the execute 1/0 logic.

Execute ATAPI I/0O (KATAPIFnExecl O)

TN 1192: ATA Interface Modules

Requests of this type should never be passed through to your AIM. Y our AIM should treat thisas an
unrecognized function code.

ATAPI Command (kATAPIFnCmd)

Requests of this type should never be passed through to your AIM. Your AIM should treat this as an
unrecognized function code.

Get Drive Configuration (KATAFnGetDriveConfig)
ATA Manager issues thisrequest to your AIM as the result of aclient'sk ATAMyr Get Dr vConf i gur at i on

request. Your AIM is expected to return information about a device's current configuration. The bulk of
the ATAReqBI ock is set up as described above; only the fields specific to this request are described here.

The structure of the devConf i g field of the ATAReqBI ock is shown below.

struct ATADevConfig {

Sl nt 32 at aConfigSetting;
U nt8 at aPl CSpeedMbde;

U nt8 reserved

U nt 16 atapcVval i d;

U nt16 at aRWwWul ti pl eCount ;
U nt16 at aSect or sPer Cyl i nder;
U nt16 at aHeads;

u nt16 at aSect or sPer Tr ack
U nt16 at aSocket Nunber ;

U nt8 at aSocket Type

U nt8 at aDevi ceType;

U nt8 at apcAccessMde;

Ul nt8 at apcVcc;

U nt8 at apcVppl;

U nt8 at apcVpp2

U nt8 at apcSt at us;

U nt8 at apcPi n;

Ul nt8 at apcCopy;

U nt8 at apcConfi gl ndex;
U nt8 at aSi ngl eDMASpeed,;
U nt8 at aMul t i DMASpeed;
U nt16 at aPl OCycl eTi ne;

U nt 16 ataMul ti Cycl eTi ne;
U nt8 at aUl t r aDMASpeed
U nt8 reserved2

Ul nt 16 ataU t raCycl eTi ne;
U nt 16 Reservedl[5] ;

1
t ypedef struct ATADevConfig ATADevConfi g;

The fields have the following meaning:

at aConfigSetting
Your AIM must set thisfield to indicate the device configuration settings currently in use. The
possible values are defined in ATA Device Software for Macintosh Computers. On completion of
therequest, ATA Manager copiesthisfield into theat aConfi gSet ti ng field of the client's
reguest.

at aPl CSpeedMbde
Your AIM must set thisfield to indicate which PIO models are enabled for this device. On
completion of the request, ATA Manager copiesthisfield into the at aPl OSpeedMode field of the
client's request.

reserved

Page: 29

TN 1192: ATA Interface Modules

Reserved. Y ou must not modify thisfield or depend on its contents.

atapcVvalid
Reserved. Y ou must not modify thisfield or depend on its contents. On completion of the request,
ATA Manager updates the mATApcLockUnl ock flag to indicate whether the device is currently
locked.

at aRWWII t i pl eCount

at aSect or sPer Cyl i nder

at aHeads

at aSect or sPer Tr ack
Reserved. Your AIM must set these fieldsto zero. On completion of the request, ATA
Manager copiesthisfield into the corresponding fields of the client's request.

at aSocket Nurrber
Reserved. Y ou must not modify thisfield or depend on its contents. Thisfield wasused in
previous versions of ATA Manager (which handled much of the PC Card socket configuration
internally) but is now obsolete, replaced by functionality in PC Card Manager.

at aSocket Type
Your AIM should ignore this field; on completion, ATA Manager will set it based on your AIM's
socket type.

at aDevi ceType
Your AIM must set thisto the type of the device (for example, kATADevi ceATA or
kATADevi ceATAPI) specified by the devl D and bus| Dfields of the ATAReqBI ock. Typically your
AIM returns a copy of the information it derived during initialization (MyAl M ni t) On completion
of therequest, ATA Manager copiesthisfield into theat aDevi ceType field of the client's
request.

at apcAccesshbde
Reserved. Y ou must not modify thisfield or depend on its contents. Thisfield is obsolete with
ATA Manager 4.0. It was previously defined to support different access modes for PC Card
devices but that support was never implemented.

at apcVcc

at apcVppl

at apcVpp2

at apcSt at us

atapcPin

at apcCopy

at apcConf i gl ndex
Reserved. Y ou must not modify these fields or depend on their contents. These fields were used
in previous versions of ATA Manager (which handled much of the PC Card socket configuration
internally) but are now obsolete, replaced by functionality in PC Card Manager.

at aSi ngl eDMASpeed
Your AIM must set thisfield to indicate which singleword DMA speeds are enabled for this
device. On completion of the request, ATA Manager copiesthisfield into the
at aSi ngl eDMASpeed field of the client's request.

at aMul ti DMASpeed
Your AIM must set thisfield to indicate which multiword DMA speeds are enabled for this
device. On completion of the request, ATA Manager copiesthisfield into theat amul t i DMASpeed
field of the client's request.

at aPl CCycl eTi e
Your AIM must set thisfield to the current minimum cycle time (in milliseconds) for mode 3 or
greater PIO transfers. On completion of the request, ATA Manager copies thisfield into the
at aPl 0Cycl eTi me field of the client's request.

ataMul ti Cycl eTi me
Your AIM must set this field to the current minimum cycle time (in milliseconds) for multiword
DMA transfers. On completion of the request, ATA Manager copiesthisfield into the
ataMul ti Cycl eTi ne field of the client's request.

at aUl t r aDMASpeed
Your AIM must set thisfield to indicate which UltraDMA speeds are enabled for this device. On
completion of the request, ATA Manager copiesthisfield into theat au t r aDVMASpeed field of the
client'srequest.

reserved2
Reserved. Y ou must not modify thisfield or depend on its contents.

Page: 30

TN 1192: ATA Interface Modules

ataU traCycl eTi ne
Your AIM must set thisfield to the current minimum cycle time (in milliseconds) for UltraDMA
transfers. On completion of the request, ATA Manager copiesthisfield into the
ataU traCycl eTi ne field of the client's request.
Reservedl
Reserved. Y ou must not modify thisfield or depend on its contents.

Set Drive Configuration (KATAFnSetDriveConfig)

ATA Manager issues thisrequest to your AIM as the result of aclient'sk ATAMyr Set Dr vConf i gur at i on
request. Your AIM is expected to set the device's current configuration based on the supplied parameter
block. The bulk of the ATAReqBI ock is set up as described above; only the fields specific to this request
are described here.

IMPORTANT:
To understand how your AIM should interpret the various 1/0 mode and cycle time fields of this request,
see the ATA 1/O section, earlier in this document.

ThedevConfi g field of the ATAReqBI ock is defined above. For akATAFnSet Dr i veConf i g request, the
fields have the following meaning:

at aConfigSetting
The ATA Manager setsthisfield to required device configurations settings. The value is derived
from theat aConf i gSet ti ng field of the client request. The possible values are defined in ATA
Device Software for Macintosh Computers. Y our AIM must act on these configuration settings
for al subsequent I/O operations.

at aPl CSpeedMbde
The ATA Manager setsthisfield to required PIO speed mode for the device. The value is derived
from theat aPI OSpeedMvde field of the client request. Y our AIM must use this PIO speed for all
subsequent PIO transfers.

reserved
Reserved. Y ou must not modify thisfield or depend on its contents.

atapcVvalid
Reserved. Y ou must not modify thisfield or depend on its contents. This field wasused in
previous versions of ATA Manager (which handled much of the PC Card socket configuration
internally) but is now obsolete, replaced by functionality in PC Card Manager. Note that ATA
Manager still honors the maTApcLockUnl ock flag in thisfield by calling your device lock
(MyAIM Devicel ock) routine as part of handling ak ATAMgr Set Dr vConf i gur at i on request.

at aRWWII ti pl eCount

at aSect or sPer Cyl i nder

at aHeads

at aSect or sPer Tr ack
Reserved. Y ou must not modify thisfield or depend on its contents.

at aSocket Nunber
Reserved. Y ou must not modify thisfield or depend on its contents. Thisfield was used in
previous versions of ATA Manager (which handled much of the PC Card socket configuration
internally) but is now obsolete, replaced by functionality in PC Card Manager.

at aSocket Type
Reserved. Y ou must not modify thisfield or depend on its contents.

at aDevi ceType
Reserved. Y ou must not modify thisfield or depend on its contents.

at apcAccesshbde
Reserved. Y ou must not modify thisfield or depend on its contents. Thisfield is obsolete with
ATA Manager 4.0. It was previoudly defined to support different access modes for PC Card
devices but that support was never implemented.

at apcVcc

at apcVppl

at apcVpp2

at apcSt at us

Page: 31

TN 1192: ATA Interface Modules

atapcPin

at apcCopy

at apcConfi gl ndex
Reserved. Y ou must not modify these fields or depend on their contents. These fields were used
in previous versions of ATA Manager (which handled much of the PC Card socket configuration
internally) but are now obsolete, replaced by functionality in PC Card Manager.

at aSi ngl eDMASpeed
The ATA Manager setsthisfield to the required singleword DMA speed modes for the device.
Thevaueisderived from the at aSi ngl eDVASpeed field of the client request. It isonly valid if
at aMbdeType iSKATAMbdeBi t map. Your AIM may use these speeds for all subsequent
singleword DMA transfers.

at aMul ti DMASpeed
The ATA Manager setsthisfield to the required multiword DMA speed modes for the device.
The value is derived from the at amul t i DMASpped field of the client request. Itisonly valid if
at aMbdeType iSkATAModeBi t map. Your AIM may use these speeds for all subsequent
multiword DMA transfers.

at aPl OCycl eTi e
The ATA Manager setsthisfield to the required maximum PIO cycle timefor the device. The
valueisderived from the at aPl OCycl eTi e field of the client request. It isonly valid if
at aMbdeType iSKATAMbdeBi t map. Your AIM may use this, or aslower time, for subsequent PIO
transfers.

ataMul ti Cycl eTi e
The ATA Manager setsthisfield to the required maximum multiword DMA cycle time for the
device. Thevaueisderived from theat amul ti Cycl eTi ne field of the client request. It isonly
validif at aMbdeType iSkATAMbdeBi t map. Your AIM may use this, or agdower time, for
subsequent multiword DMA transfers.

at aUl t r aDMASpeed
The ATA Manager setsthisfield to the required UltraDMA speed modes for the device. The
valueisderived from theat aUl t r aDVASpeed field of the client request. It isonly valid if
at aMbdeType iSkKATAMbdeBi t map. Your AIM may use these speeds for all subsequent
UltraDMA transfers.

reserved2
Reserved. Y ou must not modify thisfield or depend on its contents.

ataU traCycl eTi e
The ATA Manager setsthisfield to the required maximum UltraDMA cycle time for the device.
The valueisderived fromtheat au t r aCycl eTi me field of the client request. It isonly valid if
at aMbdeType iSkATAModeBi t map. Your AIM may usethis, or aslower time, for subsequent
UltraDMA transfers.

Reservedl
Reserved. Y ou must not modify thisfield or depend on its contents.

Kill Current I/O (KATAFnKilllO)

The ATA Manager issues this request to your AIM as part of the process of removing your ATA bus. You
AIM must respond to this request by terminating any hardware transaction on the ATA bus. Thisisan
immediate request: your AIM must complete the request before returning from its action routine

(MAL MAct i on) and must not call ATAFam ODone for the request.

IMPORTANT:

kKATAFnKi | | I Oisdifferent from other action requestsin that none of the standard ATAReqBlI ock fields
are set up for kATAFnKi | | 1 O. Theonly valid field in the ATAReqBI ock for akATAFnKi | | | Orequest is
the function codeitself (at aFunct i onCode).

Back to top

Page: 32

TN 1192: ATA Interface Modules Page: 33

AIM Support Routines

This section describes the AIM support routines exported by the ATA Manager for convenience of
AlMs. Your AIM must use the routines described below to signal the ATA Manager that certain events
have occurred.

ATAFamIODone

extern voi d ATAFanl ODone(ATAReqgBl ock *t heReq, OSStatus result);

|t heReg || The action request to complete |
resul t || Thefinal status of the request, either noEr r or anegative error code |

Your AIM must call thisroutine to inform ATA Manager that the AIM action request iscomplete. ATA
Manager executes the following steps:

1. It copiesinformation from the AIM request block (t heReq) into the client's ATA request block.
2. If storesresul t intheat aResul t field of the client's request block.

3. It callsthe client's completion routine, if one was supplied.

4. It dispatchesthe next ATA request, if any, to the AIM's action routine.

Y ou must call this routine from the context of your AIM's action routine (M/Al MAct i on) or its bus event
handler (MyAl MHandl eBusEvent).

ATAFamBusEventForAIM

extern voi d ATAFanBusEvent For Al M Ul nt 32 busI D, U nt32 ainData);

busl D | |The ATA bus on which the event occurred |

The bus event type; the ATA Manager does not interpret this value, it smply
passesit back to your AIM's bus event handler (MyAl MHandl eBusEvent)

ai nDat a

Your AIM must call this routine when it wants to scheduled its bus event handler
(MyAl MHandl eBusEvent) to be executed. Typicaly it doesthisfrom ahardware interrupt handler. ATA
gueues the bus event and calls your AIM's bus event handler at the next opportune moment.

See AIM Synchronization Model for an in-depth discussion of why thisis both necessary and
convenient.

Y ou may call thisroutine at any execution level.

Further References

Designing PCl Cards and Drivers for Power Macintosh Computers

ATA Device Software for Macintosh Computers

ATA Device 0/1 Software Devel oper's Guide

DTS Technote 1098 ATA Device Software Guide Additions and Corrections.
ANSI NCITS 317-1998 AT Attachment - 4 with Packet | nterface Extension
DTS Technote 1094 Virtual Memory Application Compatibility

DTS Q&A DV 34 Secondary Interrupts on the Page Fault Path

TN 1192: ATA Interface Modules Page: 34

Back to top

Downloadables

E Acrobat version of this Note (K)

Back to top

AIM Interfaces and Libraries (8 KB)

To contact us, please use the Contact Us page.
Updated: 06-December-1999

Technotes | Contents
Previous Technote

