Technote 1009: On Multiple Inheritance & HandleObjects

Technotes
ownload Download
FOF A
i]
Acrobat file (K) AppleWorksfile (45K)

On Multiple Inheritance & HandleObjects

Technote 1009 OCTOBER 1995

This Technote answers a common question about MPW C++: Why doesn't Handl ebj ect support
multiple inheritance? To answer that question, this Note provides a brief overview of how multiple
inheritance isimplemented in MPW C++.

This Technote is addressed primarily to C++ devel opers who are concerned about memory
fragmentation.

Contents

o About HandleObjects

o Using HandleObjects

e Managing Many Handles
e Summary

About HandleObjects

Beginning with Version 3.0, MacApp switched the focus of its object memory management from a
handle-based system to a pointer-based system. This change substantially improved execution speed,
specifically because pointer-based objects avoid compaction delays.

Accordingly, Apple recommends using mal | oc or the standard oper at or newfor alocating small
objects.

For large objects, handles have some significant advantages. For one thing, they minimize RAM usage
by avoiding fragmentation. Also, some devel opers need to continue using handlesin their existing code.

Handlesunder Future Versions of Mac OS

Plans for future versions of Mac OS call for handles to become lessimportant. An improved
implementation of virtual memory (VM) will aleviate the effects of fragmentation for objects larger than
the size of aVM page (4K bytes) while increasing the duration of heap compaction due to
page-swapping between disk and RAM.

Note:
Theitems called "vtable" in this Technote are actually pointersto the vtable, which resides
elsawherein memory. The more recent reference The Annotated C++ Reference Manual uses
theterm "vptr".

Page: 1

Technote 1009: On Multiple Inheritance & HandleObjects

Using HandleObjects

MPW C++ contains several extensions to standard C++ for supporting Macintosh programming. One
such extension isthe built-in class Handl ebj ect . Objects of any class descended from Handl ebj ect
are dlocated as handles in the heap. Y our program may refer to one of these objects asif it werea
simple pointer; the compiler takes care of the extra dereference required.

A Handl eQbj ect isuseful in Macintosh programming for the same reason that a handleis useful. The
use of handles helps prevent heap fragmentation, which is critical on Macintosh computers that use
small amounts of memory. If you need to write an app that issmall -- i.e,, less than 100K -- you need to
consider using Handl eoj ect s.

The nature of Handl ebj ect imposes some restrictions, however, on how you can useit in aprogram.
These regtrictionsinclude:

e hegp dlocation

e handle manipulation
e multipleinheritance.

Heap Allocation

Because each object is allocated as a handle, al objects must be allocated on the heap. ("Native' C++
objects can be alocated on the stack or in the static space as well.) Consequently, you always declare
variables and parameters as pointers to an object of the class. For example:

class TSanpl e: public Handl e(oj ect {

public:

| ong fData;

TSanmpl e *aSanpl ehject; // Legal

TSanpl e anot her Sanple; // Results in a conmpile-time error
The error message the compiler generatesin thiscaseis:

Can't declare a handl e/ pascal object: another Sanmpl e

At firg, this message might seem strange because the last two lines seem to both declare objects.
Actualy, the first declaration is of apointer to an object, not of the object itself.

Handle M anipulation

The second restriction is that you must follow the usua rules for manipulating handles. In particular,
you have to be careful about creating pointersto Handl eObj ect data members, since the object might
move if the heap is compacted. If you write

long *x = & (aSanpl eCbj ect -> fData);

then x becomes "stale," i.e,, it hasavalid address but doesn't point to where the programmer intends, if
the object moves. The solution isto lock the object if there isa possibility that the heap may be
compacted. Objects of Handl eCbj ect are alocated with acal to NewHandl e, SO you can use HLock and
Hunl ock (along with an appropriate type cast) to lock and unlock the object.

Multiple Inheritance

The third restriction is that you cannot use multiple inheritance with aHandl eCbj ect . The reason
behind this restriction is not obvious. To understand the reason, you must look at the implementation of

Page: 2

Technote 1009: On Multiple Inheritance & HandleObjects Page: 3
multiple inheritance.
Implementing Multiple Inheritance

To understand how multiple inheritance isimplemented, one needs a simple example. Suppose you
define two classes asfollows:

cl ass TBaseA {
public:
virtual void SetVarA(l ong newal ue);

| ong fVarA;

cl ass TBaseB ({
public:
virtual void SetVarB(long newal ue);

| ong f VarB;

b

If you wereto look at objects of these classes (see Figure 1), you would find that in each case the object
storage would contain four bytes for the C++ virtual table (vt abl e) and four bytes for the data member.
Any code that accesses the data members (for example, TBaseB: : Set Var B) would do so using a fixed
offset from the start of the object. (In the particular version of C++, this offset was 0; your offset may
vary.) Figure 1 showsthe layout of TBaseA and TBaseB objects.

% ard Warb

vtabl el vtableb

Figure 1. Layout of TBaseA and TBaseB objects
Now suppose you define another class:
cl ass TDerived: public TBaseA, public TBaseB {
public:
virtual void SetDerivedVar(l ong newal ue);

| ong fDerivedVar;

b
In this case, an object of TDer i ved hasthe following layout, as shown in Figure 2:

Technote 1009: On Multiple Inheritance & HandleObjects

™Ward

vtablelerived

arh

vtableb

flerivedvar

Figure 2. Layout of TDerived object

Thisiswhat you would expect. TDer i ved inherits from both TBaseA and TBaseB, and therefore objects
of TDeri ved contain apart that isa TBaseA and a part that is a TBaseB. In addition, the virtua table
vt abl eDer i ved includes the tables for both TBaseA and TDer i ved.

TDer i ved aso inheritsthe virtual member functions defined in TBaseA and TBaseB. Suppose you
wanted to call Set var B, using aTDer i ved object. The code for Set Var B expects to be passed a pointer
to aTBaseB object (all member functions are passed a pointer to an appropriate object as an implicit
parameter), and refersto f Var B by afixed offset from that pointer. Therefore, to cal Set var B using a
TDer i ved object, C++ passes apointer to the middle of the object; specifically it passes a pointer to the
part of the object that represents a TBaseB.

This givesyou avery basic ideaof how C++ implements multiple inheritance. For more details, read
"Multiple Inheritance for C++" by Bjarne Stroustrup in Proceedings EUUG Spring 1987 Conference ,
Helsinki.

Impact on HandleObjects

Each member function of aHandl ebj ect class expects to be passed a handle to the object, instead of a
pointer; when multiple inheritance is used, the compiler sometimes hasto pass a pointer to the middle of
the object.

Pointersinto the middle of an object, even though (and especially because) they areimplicit in this case,
nevertheless present the same problem as pointers to object data members (as described earlier). The
object's handle could be moved during heap compaction, rendering the pointer "stale.”

Designing a new implementation of multiple inheritance that is compatible with aHandl eQbj ect , aswell
asthe rest of C++, isabig undertaking. For that reason, it is unlikely this restriction will disappear in
thefuture. There are, however, two alternatives to consider:

Ignore Fragmentation

For the mgjority of today's machines and applications, the main reason to use Handl eCbj ect isfor
purposes of compatibility with code that expects handle objects. However, another valid reason isto
reduce the chance of fragmentation that would result from using non-relocatable blocks.

But even in applications for which fragmentation would otherwise be a critical concern, memory
alocation patterns may be very predictable; fragmentation isless of an issue when all alocated blocks
are of sSimilar sizes.

Abandoning Multiple Inheritance

The other aternativeisto give up multiple inheritance. In most cases, thisisn't as difficult asit sounds.
The typical way you would do thisiswith aform of delegation. For example, you could rewrite the class
TDeri ved as:

Page: 4

Technote 1009: On Multiple Inheritance & HandleObjects

class TSingl eDerived: public TBaseA {
public:
virtual void SetDerivedVar(l ong newal ue);
voi d Set BaseB(| ong newval ue);
| ong fDerivedVar;

TBaseB f BaseBPart ;

b

Inthis caseTsi ngl eDer i ved inherits only from TBaseA, but includes an object of TBaseB as an data
member. It aso implements the virtual member function Set BaseB to cal the function by the same name
in theTBaseB class. (In effect, TSi ngl eDer i ved delegates part of itsimplementation to TBaseB.)

There are advantages and disadvantages to this approach. The advantageis that it requires only single
inheritance, yet you can still reuse the implementation of TBaseB. The disadvantage is that

TSi ngl eDeri ved is not a sub-class of TBaseB, which means that an object of TSi ngl eDer i ved cannot
be used in asituation that requires aTBaseB. Alo, TSi ngl eDer i ved hasto define amember function
that corresponds to each function in TBaseB. (Y ou can, however, define these functions asinline and
non-virtual, which eliminates any run-time overhead.)

Caveat

Y ou should redize that the multiple inheritance implementation described here costs some extra space,
compared to asimpler implementation that does not support multiple inheritance (e.g., the
implementation used for aHandl eQbj ect). Eachvt abl e istwice aslarge, and each virtual member
function takes about 24 bytes, compared to 14. Thisistrue even if you do not take advantage of multiple
inheritance. For this reason, MPW C++ aso contains a built-in class called Si ngl etbj ect , whose
objects can be alocated in the same way as normal C++ objects, but which only supportssingle
inheritance.

Note:
Thethird class built into MPW C++, Pascal Qbj ect , uses Object Pascal's run-time
implementation, which takes the least amount of space, but the most execution time.

Managing Many Handles

If you're writing large, high-end applications, you may need to manage thousands of objects. The
Macintosh Memory Managers slow down when required to deal with so many handles. If you're dealing
with many handles, here are some important points to keep in mind:

o Keep the objectslocked except just after calling Wai t Next Event . Then, if some predetermined
amount of time (perhaps one minute, for example) has elapsed since the user interacted with the
application, unlock everything and compact the heap.

e When you compact the heap, do it incrementally, i.e. do alittle bit of compaction, then check to
seeif you have used up more than 50,000 microseconds in the process. When you have used
up that much time, call Event Avai | to check if thereis now an event that needs processing. If
such an event has arrived, return to your main event loop to processit.

e Because the Modern Memory Manager's Conpact Memroutine really compacts the entire
application heap even if you ask it to compact just alittle bit of it, use NewPt r instead. Ask for a
moderate-sized block (e.g. "Newpt r (40000) "), and check the time to seeif you need to call
Event Avai | . Then ask for another block.

e After compacting memory with Newpt r , dispose of the compaction pointers, and lock your
handles.

e When you can't allocate a pointer, you're done.

This approach will cause purgeable handles to get purged, so if you don't want that to happen, create and

Page: 5

Technote 1009: On Multiple Inheritance & HandleObjects

manage alist of purgeable handles. Call HNoPur ge on thislist prior to a Newpt r -based compaction, then
cal Hpur ge on it after the compaction.

Summary

Y ou canhot use aHandl ebj ect with multiple inheritance because of the way multiple inheritanceis
implemented in MPW C++. Y our aternatives are to give up one or the other: Y ou can either use native
C++ objects and let the objects fal where they may, or give up multiple inheritance and use aform of
delegation.

Further Reference

o MPW C++ Reference Manual

o "Multiple Inheritance for C++," Bjarne Stroustrup, Proceedings EUUG Soring 1987
Conference , Helsinki.

e Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual , (ak.a
"ARM "), Addison-Wesley, 1990, ISBN 0-201-51459-1, pp.217-237

Change History
This Technote was originally written in August, 1990.

It wasrevised in July, 1995, to include information on managing multiple handles and updated again
with new information in October, 1995.

Technotes
Previous Technote | Contents | Next Technote

Page: 6

