TN 1171: LaserWriter 8.6: How to Write a Page: 1
Converter Plug-in for the Download Manager

Technote 1171

LaserWriter 8.6: How to Writea Converter Plug-in for the Download
M anager

CONTENTS T

Overview his document describes in detail how to write aplug-in
converter module for use with the Download Manager under

Requirements PrintingLi b version 8.6 (included with LaserWriter 8
version 8.6) and later. It contains information about the

Other Details pieces a plug-in must have, discussion of asample plug-in,
and tipsfor plug-in developers.

Sample Code Overview

Introduction to the Sample Code
Structure

Summary
Appendix A

Note: This document refers to Download Manager plug-ins
aslow-level convertersto avoid confusion with other types of
plug-ins available on the Mac OS. This terminology matches
that used in other Technotes related to the Download
Manager and its plug-ins.

This Technoteis directed at application devel opers who wish

to write plug-in converters.
Appendix B

Appendix C
Downloadables

Overview

A low-level converter isused by clients of the Download Manager to convert afile or stream of agiven
data type (or types) into PostScript output. For example, in Mac OS 8.5, the desktop printing softwareisa
Download Manager client that offers drag and drop printing of files to the targeted desktop printer (DTP).
When the target is a PostScript printer and alow-level converter is available to handle the conversion, that
low-level converter can be used to generate the PostScript code to be sent to the device, without requiring a
separate application. The Download Manager and itslow-level converters are described in more detail in
Technote 1169, “Download Manager.”

Printing plug-in filesreside in the “ Printing Plug-ins” folder in the Extensions folder. Each plug-in file
can contain multiple plug-in libraries. Each plug-in file containsa' PLGN' resource indicating what shared
libraries are contained in that file and what plug-in type each library is. The Pri nti ngLi b fileitself
contains many plug-ins, including severa low-level converters for the Download Manager.

Note:
PrintingLi b isspecia in that the Download Manager locates plug-inswithin Pri nt i ngLi b, even
though it is not in the “Printing Plug-ins” folder.

Figure 1 below gives an overview of the Download Manager’ s relationship to its clients and the low-level
converters.

TN 1171: LaserWriter 8.6: How to Write a Page: 2
Converter Plug-in for the Download Manager

Download
Manager
Client
e.g. DTP

Download Manager

55 5

JPEG PSIERPS PICT
cormerter cormerter o cormerter

W

Low Level Converiers

FIGURE 1
Back to top
Requirements

There are severa requirements for a plug-in to work with the Download Manager:

1. To be seen asaDownload Manager low-level converter, aplug-in file must containa' PLGN
resource with ID - 8192. This resource contains the information which identifies what type of
plug-ins are contained inside the file aswell as the name of the shared library containing agiven
plug-in. Details on this resource are documented in the' PLGN Resource section of this
Technote.

2. For agiven plug-in shared library to be alow-level converter for use with the Download Manager,
it must export aminimum set of required routines. The Download Manager calls these routines to
determine whether agiven low-level converter can handle a specific datatype and, if so, to call the
plug-in to perform the conversion of the data into PostScript output.

3. Inaddition to the required exported routines, alow-level converter must provide a data structure to
advertise the types of data that the plug-in can handle. When asked whether it can download a
given file or stream of data, the Download Manager uses this information to reduce the set of
possible converters to only those which might be able to handle the data. It then asks each of
those convertersdirectly if it can handle the data and, if thereis one, uses the best converter found
to proceed with the download.

Back to top
The'PLGN' Resource

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins. For a Download
Manager converter to be seen by the Printing Plug-ins Manager, it must have aresource of type' PLGN
with ID number - 8192. If the plug-in does not contain this resource, it cannot be used and isignored.
Plug-ins are also required to have astandard ' cf rg' resource describing the code fragments in the data
fork of thefile. For devel opersinterested in using the Printing Plug-in Manager, more information is
availablein Technote 1170: “The Printing Plug-ins Manager.”

The' PLGN' resource contains information about how many shared libraries are contained in this file and
for each shared library, the type of plug-in that it is, the subtype that the library handles and the library
name. To be used by the Download Manager, a plug-in must have atype of * down' and a subtype of

' 22?22 . There are no constraints on the library name beyond those imposed by the Code Fragment
Manager.

The' PLGN resource is defined as follows (using Rez syntax):

type ' PLGN {
i nt eger = $$Count of (Pl ugi nLi bl nf o) ;
array Pl uginLi bl nfo {
literal longint; /* Type */
literal longint; /* subtype */
pstring; /[* library name */
align word;
b
1

A ResEdit template resource (" TMPL') for the' PLGN' resource is contained within Pri nt i ngLi b versions
8.6 and later.

ThePl ugi nLi bl nf o structurein C syntax is:

t ypedef OSType SettingsDataType;
t ypedef OSType SettingsDat aSubType;

short num // the nunber of shared libraries this 'PLGN describes
Pl ugi nLi bl nfo i bl nfo[num;

typedef struct Pl uginLi bl nfo{
Setti ngsDat aType type;
Setti ngsDat aSubType subtype;
unsi gned char libraryName[]; // pascal string
/1 word aligned
} Pl ugi nLi bl nf o;

e type isthetype of plug-in that is described by thisPl ugi nLi bl nf o
e subt ype isthe subtype of datathat can be handled by the plug-in described by this
Pl ugi nLi bl nfo

e | i braryName isthelibrary name of the code fragment in the plug-in file described by this
Pl ugi nLi bl nfo
Note: A single file can contain multiple plug-in libraries.

Back to top
Required Routines

This section describes each of the routines required by the Download Manager. All of the routines

Page: 3

TN 1171: LaserWriter 8.6: How to Write a Page: 4
Converter Plug-in for the Download Manager

described here are discussed in more detail in Technote 1169: “Download Manager.” The descriptions
here are intended to provide just an overview.

This discussion of the routines and the order in which a converter should call them istailored to the way
the Download Manager calls a converter in response to the Finder’ s desktop printing software. In
addition, this discussion assumes that the Download Manager client is downloading afile. This document
discusses the differences between downloading files and downloading data from other sourcesin the
section Input Stream Types.

psL owGetConverter Information

Before it can determine which converters can handle a given download job, the Download Manager must
determine the capabilities of all the available converters. It doesthis by calling the

psLowGet Convert er | nf or mat i on routine for each low-level converter. This routine returns a pointer to a
Convert er Descri pti on structure which provides alist of datatypesthat a given converter can handle.
TheConvert er Descri pti on structure contains additional information which can be used to narrow the
search further. A sample Convert er Descri pti on structure is described in detail later in this document in
the section Sample Converter Description.

Note:

The Download Manager cachesthe Conver t er Descri pt i on structuresit obtains from each low-level
converter to improve performance. Thisis not an issue for users, but during development of alow-level
converter it does require a devel oper to do some specia handling of the plug-in files. See the Tips section
near the end of the document for more information.

psLowCanConvert

When the desktop printing software asks the Download Manager if it can handle agiven file, the
Download Manager checksthe Convert er Descri pti on structuresfor al of the low-level convertersto
obtain alist of candidate converters. For each low-level converter onitslist of candidates, the Download
Manager callsthe converter'spsLowCanConvert routine. This allows the converter an opportunity to
examine the data to determine whether it can indeed be handled by the converter and if so, with what
“priority” it can handle the data.

Each converter returnsa* priority”, an indication of how well it can handle the given type of data. It is
possible for multiple converters to handle data of agiven type. If there are multiple low-level converters
which can handle the data, the converter which returns the highest priority is chosen to convert the data.

The datato convert is provided to the low-level converter as a PSSt r eamstructure which contains routines
to alow reading and writing of the data. The sample code demonstrates use of the PSSt r eamstructures.
Thereis also some additional discussion of the PSSt r eamstructure and the routines to read and write to
PSSt r eanms in Appendix A.

psL owGetStreaminfo

If the data can be handled by alow-level converter, the Download Manager tells the desktop printing
software that it can download the file. At that point, the desktop printing software wants more information
about the type of datathat it is downloading. Since the file is an opaque object to both the desktop printing
software requesting the download and to the Download Manager itself, the Download Manager calsthe
converter’ spsLowGet St r ear nf o routine to obtain more information about the file, such as the number
of pages, the type of data, the number of copiesthat are being generated, whether the download job is
manual feed, and so forth. Thisinformation is used to provide information to the user about the Download
Manager print jobsin agiven DTP queue.

psL owPeek Convert

Once afileto be downloaded reaches the top of a DTP queue, the desktop printing software asks the
Download Manager to download the file. In response, the Download Manager first callsthe low-level

TN 1171: LaserWriter 8.6: How to Write a

Converter Plug-in for the Download Manager
converter’ spsLowPeekConvert routine. This givesthe converter an opportunity to look at the data and
record any information that might be useful when it converts the data into PostScript output. For example,
the low-leve converter built into Pri nt i ngLi b which handles downloading of PostScript and EPS data
first parses the PostScript Document Structuring Conventions (DSC) comments in the PostScript file, and
records what fonts are required by the document. This allows the converter to request appropriate printer
gueries and to incorporate the query information during the generation of the PostScript output

psLowAddConverter Queries

After calling the psLowPeek Conver t routine, the Download Manager callsthe low-level converter’s
psLowAddConvert er Queri es routine. Thisalows alow-level converter to tell the Download Manager
what queriesit desires. The Download Manager is responsible for performing the queries. The sample
code demonstrates use of some of the queries, and Appendix B has more information about the available
queries.

psL owDoConvert

After the Download Manager performsthe queries, it callsthe low-level converter’s psLowDoConver t
routine to do the conversion. At this point, the low-level converter isrequired to convert the input into
PostScript output. The Download Manager itself generates no PostScript output as part of its operation; it
relies on the low-level converter to do this. It is the responsibility of the low-level converter to generate all
the PostScript output for the download job, including any or al printer feature requests. Support for
handling feature code generation is available through the Feat ur eUt i | sLi b library built into

Printi ngLi b; however, itisup to agiven low-level converter to make the appropriate calsif it choosesto
utilize this library. The sample code demonstrates use of the Feat ur et i | sLi b library. Appendix C has
more information about Feat ur eUt i | sLi b.

The datais provided to the low-level converter as an input PSSt r eamstructure which contains aroutine to
read the data. The generated PostScript output is written to an output PSSt r eamstructure which contains a
routine to write the data to the output device. The sample code demonstrates use of the PSStream
structures. Thereis also additional discussion of the routines to read and write to PSSt r eans in Appendix
A.

In addition to generating al the PostScript output and writing it to the output stream, it is the responsibility
of the low-level converter to read data from the output stream and write it back to the input stream. Data
read from the output stream consists of data returned from a PostScript output device. This can be error
information or other types of status information. Writing such data back to the input stream alowsthe
Download Manager to process this information appropriately.

psLowGetConverterVersion
Onefind routine must be supplied by alow-level converter to provide version information. The routine

psLowGet Convert er Ver si on dlowsacaller to determine CFM version information for a given low-level
converter.

Back to top
Other Details

This section discusses some low-level converter issuesin additional detail. The sample low-level converter
code addresses each issue in depth, and there is sample code to support the discussion points.

The Converter Description Structure

The low-level converter routine psLowGet Convert er | nf or mat i on returns a pointer to a

Convert er Descri pti on structure. The purpose of the Convert er Descri pti on structure isto advertise
the types of datathat alow-level converter can handle. The Convert er Descri pti on structure isloosely
modeled after the Dri ver Descri pti on structure used for PCl Drivers. The Conver t er Descri pti on

Page: 5

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

structureis defined as follows:

typedef struct ConverterDescription {
OSType converterDescSi gnat ure;
Convert er DescVer si on converter DescVersi on;
ConverterType converterType;
Converter Service converterService;

} ConverterDescription;

Theconvert er DescSi gnat ur e fieldinthe Conver t er Descri pti on structureisrequired to be a
signature long word designating this to be a converter description structure. The value of thissignatureis:

enum {
kTheConverterDescri pti onSi gnature = ' dhw'
/*first long word of ConverterDescription*/

}s

Theconvert er DescVer si on field (long word) of the Conver t er Descri pt i on structure indicates the
version of the structure being used. Thisis used to distinguish different versions of converter descriptions
which have the same signature but different values. Thisis defined asfollows:

typedef Ul nt32 ConverterDescVersion;
enum {
kl ni tial ConverterDescriptor =0
/* the initial version of ConverterDescription
supported by the Downl oad Manager
*/
s

The next field of the Convert er Descri pti on istheconvert er Type. This structure contains name and
information string data as well as the converter module version information. It is defined as:

typedef struct Converter Type{
Str31 nane;
Str 255 info;
NumVer si on ver si on;

} Converter Type;

typedef struct NunVersi on{

U nt8 majorRev; /*1st part of version nunber in BCD/

U nt8 m nor AndBugRev; /*2nd and 3rd part of version
nunber share a byte*/

U nt8 stage; /*stage code: dev, al pha, beta, final*/

U nt8 nonRel Rev; /*rev |evel of nonrel eased version*/

} NunVer si on;

Thefinal field inthe Convert er Descri pti on structureisaConver t er Ser vi ce structure which contains
information about what types of data the converter can handle. Thisis defined as:

Page: 6

TN 1171: LaserWriter 8.6: How to Write a Page: 7
Converter Plug-in for the Download Manager

typedef struct ConverterService{
Ul nt 32 nTypes;
Converter Typelnfo typelnfo[1];
} Convert er Servi ce;

typedef struct Converter Typel nfo{
CSType type;
Fi xed priority;
Str15 matchString;

} Convert er Typel nf o;

A converter may be able to handlefiles or streams of different datatypes. ThenTypes field isthe number
of different Convert er Typel nf o structures contained in the Convert er Ser vi ce.

Thetypefield of the Conver t er Typel nf o structure isthe OSType of data described by the
Convert er Typel nf o. If the converter can handle any type, it should includethetype' ****' (i.e, the
wildcard type) with the appropriate mat chSt ri ng.

Thenmat chstri ng field isa Pascal string of at most 15 bytes (plus alength byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript converter
requires the identification data ‘%!’ to be the first 2 bytes of data. A converter informs the Download
Manager what types of datait can convert by supplying the data type and the mat chSt ri ng. For agiven
converter, if thereisno unique mat chsSt ri ng for the OSType of the Conver t er Typel nf o, the length of the
string should be set to 0. Thisindicates to the Download Manager that this OSType does not have a magic
identification string. An example of thiskind of converter isthe PICT converter, since the first 512 bytes
of aPICT datafile can contain any data.

The Download Manager usesthe Conver t er Typel nf o datato determine thelist of low-level converters
which can possibly be used to download the data. It does this by looking at the first 15 bytes of dataand
uses the Conver t er Typel nf o datato determine which low-level converters may support the data. After
paring down the list with thisinformation, it normally calls the psLowCanConver t routine of each of the
possible low-level convertersto allow further examination of the data.

In some cases the Download Manager cannot call the psLowCanConver t routine of the candidate
low-level converters. Thisisthe case where the data is supplied from a PSSt r eamwhich cannot be
repositioned or randomly accessed since reading the datain psLowCanConver t would prevent the data
from being downloaded later. In these cases, the Download Manager usesthe priority field of the
Conver t er Typel nf o data to determine whether the low-level converter can handle the data. Seethe
section Input Stream Types for more information about the handling of stream types which cannot be
randomly accessed.

The priority field inaConver t er Typel nf o structure isaFi xed humber which is the priority estimate of
the converter for handling the type of data described by the type field and the mat chSt ri ng. This priority
is used by the Download Manager when only themat chst ri ng and type of the data being downloaded
are available for determining whether a converter can handle the download. In al other cases, the
Download Manager callsthe psLowCanConver t function with a stream that the low-level converter can
use to determine whether it can handle the data. For this reason, the priority specified here should be the
priority that the converter can guarantee based only on the 0SType and themat chsSt ri ng data. If a

mat chSt ri ng of Ois provided, the priority should probably be 0x0 (i.e., cannot convert without looking at
more data). If the converter cannot handle a stream which cannot be randomly accessed, it should assign a
priority of 0x0 for that OSType in theConvert er Typel nf o.

Note:

A given low-level converter may have more than one Conver t er Typel nf o for agiven type. Thiswould
occur if there was more than one priority and nmat chSt ri ng pair appropriate for agiven datatype. An
example would be a converter which can handle both G F87a and Gl F89a. These files have the same
type, but would have different mat chSt ri ngs.

TN 1171: LaserWriter 8.6: How to Write a Page: 8
Converter Plug-in for the Download Manager

A sample Conver t er Descri pti on structureis part of the sample cde discussed later in the Sample

Converter Description section.

Back to top
Input Stream Types

The datato be converted by alow-level converter is provided viaa PSSt r eamstructure. The PSSt r eam
structure is aunion of anumber of different types of streams.

There are currently two types of PSSt r eamstructures which can be provided to low-level converters as
input streams:

1. Thetype of PSst r eamused when downloading filesis of type kPSRandomAccessSt r eam This
type of stream represents data that can be accessed randomly, i.e., the position where the next read
from the stream occurs can be changed. All low-level converters must be able to read data from
thistype of stream.

2. The other type of PSSt r eamthat low-level converters might seeiskPSSeri al St ream Thistype
of stream does not have the ability to position the next read; instead, the datais only availablein a
sequentia fashion. Thistype of stream will not be seen when converting files with desktop
printing, but may instead be seen when the Download Manager is called by other clients. For data
generated by a Download Manager client on the fly, there may be no way to position the read
mark within the data stream.

ThepsLowCanConvert routineis not called by the Download Manager for streams which cannot be
rewound since there would be no point in doing so. Seethe Convert er Descri pt i on discussion above
regarding the Download Manager selection of low-level convertersin this case. In addition, the Download
Manager does not call alow-level converter’spsLowPeekConvert routineif the input stream is of type
kPSSer i al St r eamsince such astream can, by definition, only be read once.

A given low-level converter should be able to operate with either type of stream. When processing data
types that don’'t require random access, this should be fairly straightforward. Ideally, peeking at the datais
not required and will only improve the quality of the PostScript output.

Writing the PostScript Language Output

During execution of itspsLowDoConvert routine, alow-level converter writes its PostScript output to the
output stream. The simplest way to do thisisto make a call to the write procedure on the output stream
with the data to be written. The major disadvantage of this approach is that the Download Manager client
(such as the desktop printing software) gets no detailed status information about the progress of the
conversion. For example, thereis no information about what pageis currently being printed since only the
low-level converter hasthisinformation.

To alow for the communication of status information about the data being written to a stream, the

PSst r eamstructure for the types kPSRandomAccess St r eamand kPSSer i al St r eamcontains a

PSPosi t i on structure which allows alow-level converter to tag the datait iswriting with additional
information. This tag information is loosely designed around the PostScript Document Structuring
Conventions. The intent isthat low-level converters tag the portions of the PostScript output which
correspond to the various DSC comments. This alows the Download Manager and its clientsto track the
progress of the download and other information about the PostScript output.

Thelibrary PSUti | sLi b inPri ntingLi b contains routinesthat may be useful to low-level converters.
Some of these routines are helpful for generating the tagged output. In addition, PSUt i | sLi b contains
routines which are useful for generating formatted output (smilar to pri nt f inthe standard C library).

Appendix A has more information about the PSSt r eamand PSPosi t i on structures, aswell as the routines
inthePsuti | sLi b library which can be used for generating formatted output and tagging that output.

Reading the Back Channel

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

During the conversion processin the psLowbDoConver t routine, alow-level converter is expected to read
data from the output stream and write that data back to the input stream. This allows the Download
Manager and its clients to detect any PostScript errors or status messages that come back from the output
device. The conversion process of the psLowDoConver t routine resembles Figure 2 below:

|
Inpuidata |eve|

conyerer chann 1o
FS i Proc | PSOUPOG C‘pnnm
COME 0N
—— - - — ~—— Ll 3
input S oufpul N
| streamm _ wrling o printse sireamm

o P50 1PTo: backchanngl 1 T _f-‘il
SHULdaFroc NG 45 6 m prinker
P bss chchan nst

FIGURE 2

Private Data Hints

Most of the low-level converter routines have a Collection parameter passed to them. The purpose of
passing a Collection to alow-level converter routine is to pass hints about the job requirements and to
provide a container for arbitrary datato or from the routine' s caller.

A low-level converter which gathers information during its peek phase (psLowPeekConver t) may want
that information to be available during the conversion phase (psLowboConver t) of the download. The
only reliable way to pass data from one routine to the other is through the Collection which is passed into
both routines. Note that global datais not appropriate to use for this purpose, since the converter module
may be unloaded between the callsto psLowPeekConvert and psLowDoConver't .

The sample code described later in this document demonstrates passing collectionsto low-level routines. It
also demonstrates the appropriate way of using private data hints to pass data from the peek phaseto the
conversion phase.

Warning and Error Logging

A low-level converter operates without an explicit user interface and should not display any dialogs or
alertsto the user. To communicate warning or error conditions, the low-level converter should use the
PSPosi t i on portion of the PSSt r eamstructure used for the conversion.

In particular, the PSSubsect i ons of kSubLogEr r or Dat a and kSubLogWar ni ngDat a are used to tag
Messages as error or warning messages, respectively. Warnings are non-fatal conditions that might be
used to dert auser. Errors are considered fatal. After awarning is generated, the converter should proceed
normally. If an error is generated, the converter should terminate its conversion immediately after writing
the tagged error message.

More information about the use of these subsectionsis contained in Technote 1169: “ The Download
Manager.” Additionally the sample code useskSubLogEr r or Dat a as needed.

When alow-level converter reports these conditions, the Download Manager passes the information to its
client (such as the desktop printing software). In addition, the Download Manager has the ability to log
thisdatato alog file. Normally this feature is disabled, but it can be enabled by a sophisticated user or
developer. Seethe Tips portion of this document to see how to enable logging and how it might be useful
during testing and devel opment.

Page: 9

TN 1171: LaserWriter 8.6: How to Write a Page: 10
Converter Plug-in for the Download Manager

Back to top
Sample Code Overview

Most of the remainder of this document discusses a sample low-level converter which converts JPEG/JFIF
datainto PostScript output suitable for transmission to PostScript Level 2 and PostScript 3 output devices.
The sample code is structured in away that isintended to make it straightforward for devel opersto modify
it to support conversion of graphics formats that are output as a single page. Examplesinclude PNG and
GIF. The sample code should aso be relatively straightforward to modify to support multiple-page
documents.

The discussion about the sample code is divided into a number of sections. The section Sample JPEG
Converter Specification provides a high level discussion of the sample code features. Thisisintended to
provide an overview of the goals of this sample low-level converter. Within that specification is
information about implementation. This information does not contain anything about the structure of the
sample code, but is smply to provide an overview of the implementation.

The section Introduction to the Sample Code Structure discusses the sample code’ s structure in some
detail. In particular, it discusses the way the sample code is broken out into a“shell” which provides the
support for printer feature handling, for the DSC structure of the PostScript output, and for the tagging of
the output so that the Download Manager and its clients can report status. This “shell” code is usable as
isfor low-level converters other than a JPEG converter, particularly those that generate 1 page of outpui.

The section JPEG Converter Specific Code discusses the portion of the sample code which has been
tailored for handling JPEG output. This portion of the sample code relies on the ‘ shell’ codeto call it
appropriately. This code isthe guts of what makes this particular low-level converter a“JPEG” low-level
converter.

The low-level converter Shell Code section describes the “shell” code in some detail. Thisdiscussionis
for those who want to understand everything about the sample code and/or for those who wish to create a
low-level converter that handles more than a single page of outpuit.

Note:
Y ou should download <link> the sample code before continuing with this section.

Back to top
Sample JPEG Converter Specification

This portion of the document describes the sample JPEG converter module for use with the Download
Manager. Thismodule is a so-called ‘low-level converter,” which smply meansthat it is a plug-in module
that the Download Manager can call to ‘convert’ astream of data of a certain type into a PostScript output
stream. In the case of the sample JPEG converter module described here, conversion of the datainto a
PostScript stream means transformation of the raw JPEG or JFIF datainto a stream more suited to the
target PostScript output device.Some details are:

e PostScript output devices supporting PostScript Language Level 2 or higher can be sent the JPEG
dataasis, without performing any image compression. This sample code does not support
generation of output suitable for a PostScript Level 1 output device.

e The converter centers the JPEG image on the page and orients the image so that the longest edge
of theimage is parallél to the longest edge of the paper. This means that images whose width is
greater than the height are printed in landscape orientation. In addition, if the image islarger than
the imageable area of the page, theimage is uniformly scaled so that it fitsin the imageable area of
the page. If theimage is smaller than the page in both dimensions, no scaling adjustment is done.

e Thereissupport for desktop printers which are “ Saveto File” printers. If the target output device
advertisesitsalf as requiring an EPS stream to be generated, the JPEG converter generates EPS
datainto the output stream. There is no screen preview generated, but the datais EPS, including
the bounding box.

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

e For non-EPS output, most print time features from the Print dialog are invoked. The feature
settings are chosen from the saved defaults for the target output device.

One significant goal of the JPEG converter module is that the output it produces conformsto the DSC.
The converter module generates the necessary and appropriate DSC comments into the output stream.

Overall Strategy

The basic strategy of the sample JPEG converter module isto determine first if the data stream is JPEG
datathat it can handle. The JPEG converter can handle raw JPEG data as well as JFIF data. The only
known case of valid JPEG data that the converter cannot handle is“ progressive JPEG,” an extension to
the original JPEG specification. Progressive JPEG data cannot be handled by a PostScript Level 2 or
PostScript 3 output device directly. If the dataiis either invalid JPEG data or is* progressive JPEG” data,
the JPEG converter reports that it cannot handle the data.

Since this sample code cannot handle printing to Level 1 printers, the sample code checks the target
language level and, if itisLevel 1 orincludesLeve 1 (such as“SaveasLevel 1 Compatible’), it reportsit
cannot handle thefile.

When the JPEG converter can handle the data, it merely adds DSC header comments and a small
PostScript “wrapper” around the JPEG dataitself. For target output requiring support for ASCII data, the
JPEG dataistransformed into ASCII85 data on the host. In this case, the decompressed datais wrapped
with adightly different PostScript wrapper to ensure that it prints correctly.

Print Dialog Feature Support

The JPEG converter attempts to support most of the print dialog features normally associated with a
standard print job. Since the user does not normally get a print dialog to select print time features when
using the Download Manager or the JPEG converter module, the default features for the target desktop
printer or output device are used. That is, the user gets the same result asif they had brought up the print
dialog and clicked Print without adjusting any settings in the print dialog.

Note:

These statements assume that the client invoking the original download has used the Download Manager
routinepsCr eat eDMJobCol | ect i on to create the hints collection passed to the Download Manager
downloading routines. Thisistrue for drag and drop desktop printing in Mac OS 8.5 and later.

The saved defaults for these features are used as the print time values by the JPEG converter:

Number of copies.

Paper source.

Cover Page Handling.

Duplex (if available).

Error Handling: PostScript and Tray Switching.

Saveto File defaults, including whether to default to saveto file.
Any PPD features available for the target output device.

Save to disk DTP support.

Note:

If the user has not saved defaults for this desktop printer, the standard print dialog defaults apply for
non-printer specific features (1 copy, no cover page, no PostScript error handling, and so forth). Inthis
case, printer specific features are treated as “ Printer’ s Default”, no PostScript code is sent to activate
those features and the current printer configuration is used. Finaly, the paper handling istreated as
Automatic Feed for the default paper size as specified in the PPD file.

When printing to a“ Save to Disk” DTP or to a printer which has “ Save to File” asits default, adisk file
iswritten instead of output being sent to the printer. The JPEG converter configures itself as described by
the user’ s saved defaults for the Print dialog save panel. The user’s choice of “PostScript Job” or EPSis

Page: 11

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

respected; although no EPS previews are created. In addition, the LanguageLevel , ASCII/Binary salection
and font inclusion defaults are specified (of course, JPEG files have no fonts, but other converters may
need to include fonts).

Note:
Thereis currently no support for “ Save as PDF’. Currently, if “Save as PDF” isthe default, the
Download Manager regquests PostScript Job instead.

Some features from the Print Dialog are ignored. These features are:

e Print Time: foreground/background makes little sense and users requiring a special print time
handling must use the desktop printing software to set it.

e Calibrated Color settings.

e N-up Printing. Any settings are ignored so the default values of 1 sheet per page with no border
are aways used, regardless of the user’s saved defaullts.

One sticky point is the issue of paper size. For normal print jobs through the Printing Manager, the paper
sizeis based on the print record, which in turn is based on the Page Setup dialog choices and the default
print record. Since the user has no way of choosing these through the Download Manager, the default
paper sizeisthe default as givenin the * Def aul t PageSi ze keyword in the PPD file assigned to the target
output device.

One additional feature isthat any * Devi ceAdj ust Mat ri x Or * Pat chCode entriesin the target PPD file
are utilized properly.

I mplementation Details

This section describes how the JPEG converter, as a plug-in for the Download Manager, implements each
of itsrequired routines.

psL owGetConverter I nfor mation

The JPEG converter returns a pointer to aConver t er Descr i pt i on structure which reflectsits
capabilities. The name of the JPEG Converter is“Sample JPEG Downloader.” The info string for the
converter isobtained from a' STR#' resource with id value JPEGCONVERTERSTRI NGS_| D and the string
number kJPEGConver t er | nf oSt ri ng. Thisresource is defined in sample LangEnglish.r.

TheConverterDescri pti on for the JPEG converter reports that the JPEG converter can handle three
typesof data:' JPEG ,' JFI F and' ?2??" . For each of these data types, the Convert er Descri pti on for
the JPEG converter requires the first two bytes of the file to be 0xFFD8. The priority for each of these
typesin the Convert er Descri pti on iszero, meaning that the JPEG converter cannot handle the data
unless it can read more than the first 15 bytes of datato determineif itisvalid JPEG data. Thisisa
conservative approach since without reading the data, the sample converter can’t be sure that it hasvalid
JPEG data, or whether it is of aformat (progressive JPEG) that it can not handle.

psLowCanConvert

Thisroutineisrequired to determineif the JPEG converter can handle the data stream and if so, with what
priority. To determine this, the JPEG converter first determinesif the output device requires Level 1
support. If it doesrequire Level 1 support or has unknown PostScript support, the JPEG converter reports
that it cannot convert thefile.

Note:

The language level information available at the time psLowCanConvert iscaled may be more
conservative than the true output LanguageLevel . That is, if the user has not set up her printer, the
LanguageLevel isconsidered unknown. If thisisthe case, this sample converter cannot support the data,
even though the printer may support Level 2 PostScript. Use aLanguagelLevel 2 printer and set up that
printer in the Chooser to test this sample converter.

Page: 12

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

If the PostScript LanguageLevel of the output deviceisLanguagelLevel 2 or greater, the JPEG converter
looks at the stream of data and determinesif it isvalid JPEG datathat it can handle. If so, it obtainsthe
width, height, and depth of the JPEG data. If the datais valid JPEG datathat it can handle, i.e., the width
and height are non-zero and the depth is either 8 bit or 24 hit, it returns apriority of 10. If not, it returnsa
priority of 0, meaning that it cannot handle the data.

psL owGetStreaml nfo

Thisroutineis used by a client to get some minimal information about the downloaded data type, and so
forth. The JPEG converter reports the following:

e Download datatype: ' JFI F' .

e Number of pages: 1.

e Manua feed is determined by calling the routine psRequi r esManual Feed inFeat ureUti | sLi b
for non-EPS stream creation. When creating an EPS output stream, manual feed is aways false.

e Number of copies: When creating a non-EPS output stream, the number of copiesis that
reguested as the print time default. When creating an EPS output stream, the number of copiesis
1

These are the only pieces of information that the JPEG converter reports. Any other pieces of information
requested are reported as Unknown.

psL owPeekConvert

The JPEG converter does not need to peek at the data, so itspsLowPeekConvert routine merely returns
without peeking.

psLowAddConverter Queries
The JPEG converter adds queries for the PostScript LanguageLevel and the channel characteristics.

The PostScript LanguageLevel query isused, at conversion time, to determine what the PostScript
LanguageLevel redly is. Thisallowsthe converter to verify at print time whether it can really support the
target output device. The only situations where this could fal after the converter checked the language level
inpsLowCanConvert arewhen:

e the caller requesting the download changed the target output device betweenitscallsto
psCanDownl oadFi | e and psDownl oadFi | e and the new device requires Level 1 support

e thetarget output device changed between the time of printer setup and the time of the print job and
the new devicerequires Level 1 support

e The queries about the channel are used to determine whether the JPEG converter must generate
binary or ASCII data.

The query hints used for these queries are:

@ For Languagelevel : kHi nt LanguageLevel Tag, kH nt LanguageLevel | d, default Unknown.
e For channd characterigtics. kHi nt Ei ght hBi t Tag, kHi nt Ei ght hBi t | d, default 7hit;
kHi nt Tr anspar ent Channel Tag, kHi nt Tr anspar ent Channel | d, default notTransparent.

psLowDoConvert

The purpose of the psLowDoConvert call isto generate the PostScript data to the output device. During
this process, the converter reads the input stream and writes it to the output stream. In addition, it reads the
output stream for data being echoed from the output device and writes such data to the input stream.
During the reading and writing of the PostScript data, the JPEG converter module tailorsits output stream
to the target output device and provides status information to the client which has called it.

The JPEG converter first alocatesits buffers for reading data from the input stream and for reading data
from any back channel that might exist. It then readsitsfirst buffer of datafrom the stream and verifies

Page: 13

TN 1171: LaserWriter 8.6: How to Write a Page: 14
Converter Plug-in for the Download Manager

thet the dataiis valid JPEG data. It does this to obtain the width, height, and depth of the stream it isto
convert. If, for any reason, the data cannot be handled, the converter reports this by writing alog message
kJPEGBadDat aMsg. Thisisdiscussed in detail in the section Generating Error Messages. If the data
cannot be handled, the converter returns the error er r Cant Handl eThi sDownl oadDat a.

The converter then evaluates the query results. If the query for LanguageLevel indicatesLevel 1
compatible output is required, the JPEG converter cannot download the data and returns the error
er r Cant Handl eThi sDownl oadDat a. This should rarely happen.

The query for the channel alows the converter to configure whether it can write binary output.

If the converter can handle the data but the output stream requires ASCI| data, the compressed JPEG data
is encoded with ASCI185 encoding on the host before being written to the output stream. Note that in this
case the converter usesthe ASCI | 85Decode filter in combination with the DCTDecode filter in the
PostScript wrapper. Once the JPEG data has been written to the output stream, the finishing PostScript
wrapper iswritten.

Note that if the source JPEG data is one component, a grayscale image is produced regardless of the color
capabilities of the target device.

Generating Error Messages

The JPEG converter module generates error messages when it detects problems with the conversion.
These error messages are in addition to any provided by the Download Manager itself, such as PostScript
errors or other error conditions in the output device. The error messages initiated by the JPEG converter
arethose relating to its ability to convert the JPEG data into PostScript output for the current output
device. They are provided to the downloading client and ultimately may be provided to the user in a useful
form.

There are two cases where error messages are generated. The first occursif, after acall to
psLowCanConvert determinesthat the JPEG data can be handled by the JPEG converter, but during
psLowDoConvert , the JPEG converter determines that the JPEG datais not properly formed, it generates
an error message corresponding to kJPEGBadDat aMsg. Currently this error message, found in sample
LangEnglish.r, is“ The image data depth or size cannot be supported by the sample JPEG converter.”
This condition should not occur, but the JPEG converter is prepared to handle it if it does.

The second case where the sample JPEG converter initiates an error messageisif during
psLowDoConvert, it determines that output compatible with a PostScript LanguageLevel 1deviceis
required, it generates the error message corresponding to JPEGNoLevel 1Suppor t Msg. Currently this error
message, found in sample LangEnglish.r, is“ Generating Level 1 Compatible PostScript output with the
sample JPEG converter is not possible.”. This should happen rarely, if at al. It should only happen if the
user does a Chooser setup and the target output device reportsto be LanguagelLevel 2 and later the user
changes the actual target output device to one that only supports LanguageLevel 1 output.

Back to top
I ntroduction to the Sample Code Structure

The sample JPEG converter is structured in amanner that is intended to make it easy for developersto
create anew low-level converter to convert dataformats that generate a single page of graphics. Evenif a
given data format generates more than a single page, the structure of the sample code is likely to ease the
creation of new low-level converters.

The structure of the sample code consists of two parts. Thefirst part isa* shell” portion which provides
the support for printer feature handling, for the DSC structure of the PostScript language output, and for
the tagging of the output so that the Download Manager and its clients can report status. This “shell”
codeis not specific to any data type and hopefully has very few assumptions about what the output of a
given low-level converter should be. The*shell” code consists of the files sample ConverterShell.c,
sample ConverterShell.h, Utilities.c and Utilities.h. This codeis described in detail in the section low-level

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

converter “Shell” Code.

The shell codeis specifically written to make the creation of one-page graphic converters especially easy
but does contain a significant amount of code that would make more extensive converters straightforward
to write. The existing structure expects that thereis only one page, and it is hard coded as such. The code
is commented to indicate where the single page assumptions are and devel opers are free to use this code as
abasis for making a converter that handles more than one page.

The second part of the sample code is the part which is specific to the sasmple JPEG converter. It iswhat
makesthislow-level converter a JPEG converter as compared to a converter for GIF, FAX data, or other
types of data. The files which comprise this portion of the code are sample JPEGConverterLib.c, sample
JPEGConverterLib.h, sample JPEGConverterLib.r, and sample LangEnglish.r. The details of this portion
of the implementation are described in the section JPEG Converter Specific Code.

The remainder of this section provides basic information about what the shell code does and what a user of
the shell code needs to provide to use the shell code without modification.

Shell Basics

The shell code suppliesal the routines that need to be exported by alow-level converter for use by the
Download Manager. This should make it easier to build alow-level converter that meets all the
requirements of the Download Manager. The routines exported by the shell code call specia routines
which are supplied by the non-shell code. The term “shell client code” will be used to refer to this
non-shell portion of alow-level converter that uses the shell code.

The shell code handles a set of basic queries and gives the shell client code an opportunity to add
additional queries should they be required. The basic queriesit handles include:

e PostScript language level.

e ASCII/Binary.

e Color output device.

e Whether the output device is configured to generate color separations.

In addition to specifying these queries, the shell code handles the results of the query to create information
in aform useful to shell client code.

For example, the color output device query and color separations query are used to compute the Boolean
canDoG ayOnHost that is passed to the shell client code. This Boolean lets the shell client know whether it
is safe to downsample any color data on the host to grayscale data. For some output types, this would
allow asubstantial performance benefit. For example, the JPEG converter built into Pri nt i ngLi b knows
how to handle PostScript Level 1 output devices and, when generating Level 1 compatible output and
canDoG ayOnHost istrue, it downsamples the uncompressed JPEG data on the host to reduce the amount
of transmitted data by 2/3.

Shell client code doesn’t have to worry about generating any feature code, cover pages, or document level
DSC comments: these are handled by the shell code. Since the shell code also handlestheinitia portions
of the page level DSC comments, shell client code does not need to generate any DSC comments other
than those necessary for the PostScript stream to draw a given page.

The shell code creates and uses a St r ean nf oDat a data structure. It also passes this structure to the client
shell routinesthat it calls to emit PostScript code into the output stream. The St r ean nf oDat a structure
contains information about the output stream and its characteristics, such as whether it supports the low 32
charactersin the 7-bit data range (transparent) and whether it supports datain the 8-bit character range.
This structure is the structure which is passed to many of the PSUt i | sLi b output routines that are
available for use to write datainto the PostScript output stream. Some of the routinesin PSUt i | sLi b can
write formatted output (similar to pri nt f in the standard C library) and they take into account the channel
characteristics when they generate output. For more information on PSUt i | sLi b see Appendix A.

Before calling the shell client code to draw the actual page, the shell code performs scaling of the

Page: 15

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

PostScript coordinate system so that the bounding box of the graphic is centered on the page and scaled to
fit onthe page, if appropriate. This generaly gives attractive results for 1-page graphics formats that might
have not fit on a single page or that would have been clipped by the imageable area. This ‘auto scaling’
may not be appropriate for some data types or graphics formats. This request for auto scaling may be
removed from the shell code if agiven low-level converter does not want this functiondity.

Note:
The auto scaling PostScript is not emitted if the Download Manager job requests an EPS job or if the
Download Manager job contains the kHi nt DoAut oScal i ngTag hint with the value false,

Details on how the shell code performsits duties are described in the section low-level converter “ Shell”
Code.

Crucial Note:

The sample code builds alibrary which is marked as using shared global data. What this meansis that no
matter how many simultaneous users of a given plug-in there are, they al share the same global data. For
this sample converter, that is perfectly reasonable since it has no globa data that maintainsits current
state; having shared global data saves memory.

Using shared global data does have at least one side effect that is reflected in the source code. In particular,
accessing the resource fork of the plug-in file must be done carefully. The approach taken in the sample
code isto access the resource fork by opening and closing it each time the converter needs to access data
from the resource fork. Another approach isto open it at the beginning of the relevant routine and close it
before ending that routine. An approach which does not work with shared global dataisto open the
resource fork in the library fragment initialization routine and expect that resource fork to be available to
all clients. This does not work because the resource fork is only in the resource chain of the application
which first loads the plug-in. Other uses of the plug-in after it has been loaded do not call the library
fragment initialization routine if the library is marked with shared global data. Attempts to use the resource
fork in this situation fail.

Shell Usage

The .c file caled “sample ConverterShell.c” contains the shell code. Thisfileis normally not modified by
auser of the shell code. It consists of the exported routines needed by the Download Manager. It
implements those exported routines by doing as much asit can in a generic fashion, while caling specific
routines to be implemented by alow-level converter.

The routines to be implemented by alow-level converter that uses the shell code and which are called by
the shell code are:

converterGetConverterl nfoPtr
converterCanConvert
converterGetConverterDocType
converterPeekConvert
converterGetVersion
converterAddAdditional Queries
converterGetConverterName
converterlnitDoConvertClientData
converterDisposeDoConvertClientData
converterGetBBox
converterEmitProlog
converterEmitPageData

Here are the descriptions of these routines called by the shell code:

converter GetConverter | nfoPtr

Page: 16

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

CSSt at us converter Get Converterl nfoPtr(const ConverterDescription
**thePtr);

Thisroutine is used by the shell code during psLowGetConverterlnformation to obtain the
ConverterDescri ptionPtr to passback to the Download Manager. A converter should store its
ConverterDescriptionPtr in*thePtr.

converter CanConvert

CSSt at us convert er CanConvert (PSSeri al St ream *r eadSt r eam
PSSt ream *i nput Stream Col |l ection hints,
LowConverterlnfo *datal nfo, Fixed *downl oadability);

Thisroutine is used by the shell code during psLowCanConvert to ask alow-level converter whether it can
convert the data represented by i nput St r eam For convenience, the shell code passes the following
parameters:

® readStreamisapointer to aPSSeri al St r eamfrom which aclient can read the data.

® i nput St r eamisapointer to a PSSt r eamcorresponding to the input data. Thisform of the input
stream is needed if a client needsto rewind or position the stream. Note that not all streams can be
repositioned so a client must first look at the stream type of inputStream if it needs to position the
stream.

e hi nt s isthe collection provided to supply information about the features requested for the
download.

e dat al nf o isinformation about the Finder type associated with the stream data.

e downl oadabi | i ty isapointer to aFi xed number. The converter is expected to indicate its ability
to download the data. A return value of O reports that the converter cannot download the data. The
larger the number, the more suitable the converter isto download the data. A value of 10.0
(Fi xed) isthelargest value returned by the converterswithin Pri nt i ngLi b.

converter GetConverter DocType

OSSt at us convert er Get Convert er DocType(PSSeri al St ream *r eadSt r eam
PSSt ream *i nput Stream Col |l ection hints, OSType *theType);

Thisroutine is called by the shell code as part of psLowGet St r eant nf o to obtain the ‘type’ of document
to which the data corresponds. This routine is only called after a converter has indicated that it can handle
the data.

The stream and hints information is passed to alow a converter to examine the data, should it need to read
the data stream to determine the ‘type’ of data. A converter that only handles one type of data should not
read the data, but simply return the supported typein *t heType parameter.

converter PeekConvert

OSSt at us convert er PeekConvert (PSSeri al Stream *readSt ream
PSSt ream *i nput Stream Coll ection hints);

Thisroutine is called by the shell code during the psLowPeekConvert call to alow aconverter to peek at
the input stream and record any hints about the data which would be useful during conversion.

® readStreamisapointer to aPSSeri al St r eamfrom which aclient can read the data.

® i nput St r eamisapointer to a PSSt r eamcorresponding to the input data. Thisform of the input
stream is needed if aclient needs to rewind or position the stream. Note that not all streams can be
repositioned so a client must first look at the stream type of i nput St r eamif it needs to position

Page: 17

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager
the stream.
e hi nt s isthe collection provided to supply information about the features requested for the
download and alow the low-level converter to record hints obtained during the peek phase.

converter GetVersion

CSSt at us converter Get Versi on(struct CFMersion *version);

Cdled by the shell code as part of psLowGet Convert er Ver si on to alow aclient to determine the CFM
version data of the low-level converter.

converter AddAdditionalQueries

CSSt at us convert er AddAddi ti onal Queri es(Col |l ection hints,
Col |l ecti on query);

Called by the shell code during psLowAddConver t er Queri es to alow alow-level converter to add
additional query hints. The shell code always adds the queries:

® kHi nt Languagelevel Tag: the PostScript language level.

® kHi nt Ei ght hBi t Tag: whether the channel is 8 bit clean.

® kHi nt Tr anspar ent Channel Tag: whether the channd is transparent to the low 32 characters.
® kHi nt Col or Devi ceTag: whether the output device isacolor device.

® kHi nt Col or SepTag: whether the output deviceis configured to do color separations.

If aconverter wantsto add additional query hints, it should add them to the query collection parameter.

converter GetConverter Name

0SSt at us converter Get Convert er Name(St r 255 convert er Name) ;

Thisroutineis caled by the shell code during psLowbDoConver t to obtain the name of the converter. This
allows the shell code to use the proper “application name” for the DSC comments relating to the
document creator. It aso allows any generated cover page to correctly reflect the converter's name.

converterlnitDoConvertd i entData
OSSt at us converterl nitDoConvertd i entData(void **clientData,
PSSeri al St ream *readSt ream PSStream *i nput Stream
PSSt r eam *out put Stream Col | ection hints,
unsi gned char *backChannel Dat aBuffer,
Sl nt 32 backChannel Dat aBuf f er Si ze,
Ul nt 32 *LanguagelLevel , Bool ean doBi nary,
Bool ean canDoGrayOnHost, Bool ean i sNot EPS) ;

® converterlnitDoConvertd i ent Dat a iscalled during the psLowboConvert phase of
conversion to allow aconverter to create and configure any client datathat it needs for the
cogversi on process. Thisroutineis called before any PostScript data is generated by the shell
code.

e client Dat a isapointer to a(void *) that can be supplied by the client. cl i ent Dat a is passed to
each of the other routines called by the shell code during the psLowboConver t phase of the
conversion.

® readStreamisapointer to aPSSeri al St r eamfrom which aclient can read the data.

® i nput St reamisapointer to a PSSt r eamcorresponding to the input data. Thisform of the input
stream is needed if aclient needs to rewind or position the stream. Note that not all streams can be

Page: 18

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

repositioned so aclient must first ook at the stream type of inputStream if it needs to position the
stream.

® out put St r eamisapointer to a PSSt r eamto which aclient should write the generated PostScript
language data.

e hi nt s isacollection provided to supply information about the features requested for the
download and allow the low-level converter to obtain hints recorded during the peek phase.

® backChannel Dat aBuf f er isabuffer (or NULL) allocated by the shell code for use by the
convert er Em t PageDat a routine to read the back channel datainto. Typically, this buffer is not
read directly by a converter but isinstead passed to ReadW i t eBackChannel asdescribed inthe
section Shell Utility Routines.

® backChannel Dat aBuf f er Si ze iSthe size of the backChannel Dat aBuf f er data buffer.
Typicdly thisvalueis not used directly by a converter, but isinstead passed to
ReadW i t eBackChannel asdescribed in the section Shell Utility Routines.

® Languagelevel isapointer to aul nt 32 indicating the target language level for output. The
converter supplied routine should put the minimum LanguageLevel required to support the
generated output. Thislets the shell code generate the proper %%lLanguagelLevel : DSC
comment.

e doBi nary isaBoolean indicating whether the destination can accept binary data.

® canDoG ayOnHost isaBoolean indicating whether the converter can downsample grayscale
output from color input. Thisisonly trueif it is known that the output device is not color capable
and is not generating color separations.

® i sNot EPS isaBoolean indicating whether the generated output should be EPS output. If the
generated output is not supposed to be EPS, thisvalue istrue. If the output is supposed to be
EPS, thisvalueisfase.

Shell client code should not write to the output stream during the call to

converterlnitDoConvertd i ent Dat a. Thisroutine should only be used to configure the shell client
code appropriately.

converter DisposeDoConvertClientData

OSSt at us convert er D sposeDoConvert C i ent Dat a(void *clientData);
Thisroutineis called by the shell code during psLowbDoConver t to allow the low-level converter to dispose
of any cl i ent Dat a it allocated during convert er | ni t DoConvert d i ent Dat a.

converter GetBBox

OSSt at us convert er Get BBox(kHi nt EPSBBoxVar *bbox,
void *clientData);

Thisroutineis caled by the shell code during psLowbDoConver t to obtain the appropriate bounding box
information for the data being downl oaded.

converter EmitProlog

OSSt at us converter Emit Prol og(Stream nfoData comm
void *clientData);

Thisroutineis called by the shell code during psLowboConver t to alow the low-level converter to emit its
prolog code into the output stream. The shell code generates the appropriate %9@egi nPr ol og and
98EndPr ol og comments around the prolog code emitted by convert er Eni t Pr ol og.

® conmisast ream nf oDat a corresponding to the output stream.
e client Dat a isthe client datafilled in by the converter when
converterlnitDoConvertd i ent Dat a was called.

Page: 19

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

converter EmitPageData

CSSt at us convert er Emi t PageDat a(St r eanl nf oDat a comm
void *clientData);

Thisroutineis called by the shell code during psLowboConver t to alow the low-level converter to emit
the PostScript code to render the page into the output stream. Thisiswhere the bulk of the PostScript code
emitted by the low-level converter should be generated. The shell code generates the showpage command
aswell as the appropriate comments after the page and job.

The PostScript coordinate system in force at the time this call is made has been set by the shell code to be
the default PostScript coordinate system as modified by any device adjust matrix and any autoscaling
necessary to center and scale the bounding box reported by conver t er Get BBox. A low-level converter
should emit PostScript code to render the page so that it has a bounding box as reported by

convert er Get BBox.

® conmisast ream nf oDat a corresponding to the output stream.
e client Dat a isthe client datafilled in by the converter when
converterlnitDoConvertd i ent Dat a was called.

Resources

Once these routines have been implemented, the C code is complete, but the converter isnot. A converter
module must also have the appropriate resources, in particular the' PLGN' resource it requiresas a
Download Manager plug-in. The sample code sample JPEGConverterLib.r file containsa' PLGN
resource with ID number - 8192. A converter MUST contain this resource and thel i br ar yNane field of
the Pl ugi nLi bl nf o resource must have the name of the converter module library in place of that for the
sample.

resource ' PLGN (-8192,
#i f gNanmes

"Plug-In Info",
#endi f

pur geabl e) {

{

"down', '????', "YourConverterMdul eLi bNane"

}
b

Note:
Without aproper' PLGN resource, alow-level converter will not be recognized by the Download
Manager.

The name “Y ourConverterModuleLibName” above should be replaced with the name used for the
converter code fragment.

That should be it. Once the converter moduleis built correctly (get that library name to match in both the
"cfrg' resourceandthe' PLGN resource!), you can drop an alias of that library into your “Printing
Plug-ins’ folder in your Extensions folder. Y ou should now be able to test drag and drop printing in the
Finder in Mac OS 8.5 or later using your plug-in.

Y ou can use the shell code asis. If so, you should also read section JPEG Converter Specific Code. Those
not using the shell approach or those who want to know more about the shell approach should read section
low-level converter “ Shell” Code to understand better what the shell code is doing.

Shell Utility Routines

Page: 20

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

In addition to calling the routines that are supplied by the converter shell client, the shell code makes
available some routines that are useful to the converter. Descriptions of these functions follow.

openLowLibraryResFile

OSErr openLowlLi braryResFil e(short *fRef);

Thisroutine is used to open the library resource file so that resources can be used. The caller of this
routine must close the resource fork when finished. Thefile is opened read only.

e f Ref isapointer to ashort that openLowLi br ar yResFi | e fillsin with the file reference number
of the library resource fork opened.

ReadWriteBackChannel

OSSt at us ReadW i t eBackChannel (PSSt ream *st reanifod i ent,
PSWiteProc witeProc,
PSSt r eam *st reanifoPri nter, PSReadProc readProc,
unsi gned char *backChannel Buffer,
Sl nt 32 backChannel Buf ferSi ze) ;

Thisroutine isto be called by a converter so that any data coming up the back channel from a PostScript
output device is properly passed back to the Download Manager so it can look for errors or status
messages. This routine should be called regularly by a converter asit iswriting data out. Thisroutineis
only for use during the convert er Eni t PageDat a and conver t er Eni t Pr ol og procedures (seethe

section Shell Usage).

® streaniTod i ent istheinputStream passed to the low-level converter’s
converter | ni t DoConvert d i ent Dat a procedure.

® witeProc isthewrite procedure onthest reanTod i ent Stream.

® streanioPrinter istheout put St r eampassed to the low-level converter’s
converterlnitDoConvert d i ent Dat a procedure.

e readPr oc istheread procedure on the st r eanifoPri nt er Sstream.

® backChannel Buf f er isthe data buffer passed to the low-level converter’'s
converter | ni t DoConvert d i ent Dat a procedure.

® backChannel Buf f er Si ze isthe size of the backChannel Buf f er as passed to the low-level
converter’sconverter | ni t DoConvert Cl i ent Dat a procedure.

writeL ogM sg

OSStatus writeLogMsg(PSStream *streanQut, PSSubsection subsection,
void *info, SInt32 stringslD,
Sl nt 32 nsgl D, Bool ean isError);

Thisroutineis caled by a converter to log any error or warning messages which are appropriate during the
data conversion.

e streantut istheout put St r eampassed to the low-level converter’s
converterlnitDoConvertd i ent Dat a procedure.

® subsecti on isthePSSubsect i on to which the error pertains. Use kSubAnon if thereisno
appropriate subsection.

e i nf o isapointer to a structure appropriate for the subsection being reported or isNULL.

Page: 21

TN 1171: LaserWriter 8.6: How to Write a Page: 22
Converter Plug-in for the Download Manager

e stringslDisthelD of a' STR#' resource containing the message string list for the converter.
The converter library resource fork is opened (and closed) by wri t eLogMsg to obtainthe' STR#'
resource, so aclient need not open the library resource fork before callingwr i t eLogMsg.

e nsgl Disthelist number of the target message within the' STR#' resource referenced by
stringslD.

® i sError isthe constant LOGERRORif the caller wants the message to be reported as an error as
opposed to awarning. The constant LOGAARNI NG is used to report the message as awarning.

JPEG Converter Specific Code

The filesin the sample code which cause this sample low-level converter to be a JPEG converter are the
files sample JPEGConverterLib.r, sample JPEGConverterLib.c, and sample LangEnglish.r.

Sample'PLGN' Resource

Thefile sample JPEGConverterLib.r providesthe' PLGN resource for this converter module:

resource 'PLGN (-8192,
pur geabl e) {
{

"down', '????', "sanpl eJPEGConverterlLib"
}
}s

Specifically this' PLGN' resource indicates that the file contains one plug-in and that the type of plug-inis
“down” with subtype' ?2??' . These are the download manager plug-in types. Thefina piece of
information indicates that the plug-in library nameissanpl eJPEGConver t er Li b. Thisname isthe same
as the name of the code fragment to load for this plug-in.

For this sample converter, the sample LangEnglish.r file containsa' STR#' resource definition of a string
list of message strings used by the sample JPEGConverterLib.c file. Y our C code may require asimilar
" STR#' list or other resources.

Sample Converter Description

The shell code doesn’t know anything about what types of data an actua low-level converter can handle,
so “shdll client code” must supply a converter description. The sample code declares anew type of data
MyConver t er Descri pt i on which parallelsthe Convert er Descri pti on datatype but is concretein the
number of Convert er Ser vi ce structuresit contains.

HereistheConvert er Descri pti on used for the sample JPEG converter:

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

MyConvert erDescripti on gTheConverterDescription =

/'l signature information

kTheConverterDescriptionSignature, // signature always first
kl nitial ConverterDescri ptor, /1 version data

/1 ConverterType

"\ pJPEG Converter", // nane
"\p", [/l our real info string data comes fromrsrc fork
kMaj or Rev, kM nor Rev, kRel easeStage, kNonRel ease,

},
/] Converter Services

kNumHandl edTypes, // # of ConverterTypelnfo structures
{

" JPEG , /1 file type for JPEG data

CANTDOMWNLOAD, // priority hint - we can't
// handle if we can't | ook at
// nore than the first 15
/'l bytes of data to verify it
// is JPEG data we can handl e

"\p\ xFF\ xD8" // the first 2 bytes of
/1 JPEGE JFI F data

}l

{

"JFIF, /1l file type for JFIF data
CANTDOMWNLOAD, // priority hint - we can't
// handle if we can't | ook at
// nore than the first 15
/'l bytes of data to verify it
// is JPEG data we can handl e

"\p\xFF\ xD8" // the first 2 bytes of
// JPEG JFI F data

}l

{

'R, /1 file type for unknown data
CANTDOMNLOAD, // priority hint - we can't
/1 handle if we can't | ook at
/1 nmore than the first 15
/'l bytes of data to verify it
/'l is JPEG data we can handl e

"\p\xFF\xD8" // the first 2 bytes of
// JPEG JFI F data

There are acouple of pointsthat are worth noting. First, the info field of the conver t er Type field of the
ConverterDescri ption isazero-length Pascal string. The sample code takes care of filling in thisfield
with data from sample LangEnglish.r so that the info string can be internationalized.

For our sample converter, kNunHandl edTypes IS 3, that is, there are three types of data which the converter
wantsto handle. The GSTypes that are handled are' JPEG ,' JFI F and the unknown type' 22??' . The
Convert er Typel nf o for each type has the same priority and mat chsSt ri ng data.

Page: 23

TN 1171: LaserWriter 8.6: How to Write a Page: 24
Converter Plug-in for the Download Manager

Themat chSt ri ng supplied isthat corresponding to the first two bytes of JPEG data. By specifying these

asthefirst two bytes of the data stream, the Download Manager does not call this converter for files (or

streams) which match the specified types but do not have these two characters at the beginning of the

stream.

The priority supplied for each type is CANTDOANL QAD which isthe vaue 0. The priority valuein the
Convert er Typel nf o for each typeis used only in the case where the Download Manager must assign a
priority to the low-level converter but it can’t call the psLowCanConvert routine to obtain apriority. This
only happensif the input stream being downloaded cannot be repositioned, such as datathat is being
generated on the fly. Thisis never the case for file downloads from the desktop printing softwarein the
Finder.

The sample code doesn’'t have to reposition the stream and thiswould allow it to work both with streams
which alow positioning (kPSRandomAccess St r eam) and streams which do not allow positioning
(kPsseri al St ream). Unfortunately there are restrictions on the type of data that the sample code can
handle; there are JPEG datatypesit can’'t handle (Progressive JPEG) and it cannot handle PostScript
Leve 1 outpui.

Because the sample JPEG converter can’t always support downloading streams that begin with our
mat chSt ri ng datawithout looking at the data further, it must advertise a priority of O.

converter GetConverter I nfoPtr Routine

Theconverter Get Converter | nf oPt r routine supplied by the “shell client code’ isresponsible for
returning a pointer to the Conver t er Descri pt i on structure described above. As mentioned earlier, the
info field of this structure isfilled in with data that can be localized and livesin the low-level converter’'s
resource fork. To access this data, the sample code opens the library resource fork, copies the appropriate
string data into our structure and closes the library resource fork. The resource fork is handled in this
manner because, as discussed earlier, our plug-in shared library has shared global data and this approach
properly alows multiple clients to use the resource fork of the converter.

TheopenLowLi br ar yResFi | e routineis used to access the resource fork of the low-level converter. This
routine is provided by the shell code to smplify accessto the resource fork by the shell client code. The
shell client isresponsible for closing the resource fork onceit is done. Note that closing the resource fork
unloads any resources which have not been copied or detached from the resource fork.

converterlnitDoConvertClientData Routine

Thisroutine allows the shell client code to allocate and initialize any data that it needs to perform the
conversion. One important point isthat the shell code passesin a pointer to the LanguageLevel that
reflects the job request. The shell client should update the LanguageLevel data pointed to by this pointer
so that it reflects the minimum PostScript LanguageLevel that is generated by this converter. The shell
code uses the data returned to generate any %94.anguageLevel DSC comment.

converter PeekConvert Routine

Our sample code has no need to peek at the data since it can obtain all the data it needs by reading the
header of the JPEG data stream. Normally the sample code simply returns from the
convert er PeekConvert routine without doing anything.

To aid those devel opers who might wish to collect data during the peek phase and access that data during
the conversion phase, the sample code has some conditionally compiled code to give an example of how to
store private hints corresponding to data collected during the peek phase. Thereis also corresponding
conditionally compiled code contained in the conversion phase code to access the stored private hints.
Remember from the earlier Private Data Hints section that the converter might be unloaded between the
convert er PeekConvert call andtheconverter| nit DoConvertd i ent Dat a call, so globa data cannot
be used.

The reason for being careful about how private hints are stored is because any collection tags added to the
hints collection may conflict with hintsthat are stored in that collection by the Download Manager or other

TN 1171: LaserWriter 8.6: How to Write a

Converter Plug-in for the Download Manager
portions of the code path. To overwrite such hints could produce unpredictable behavior. To avoid this
problem, the collection tag value kHi nt AppPri vat eTag (' APPL') isreserved for third party’s use. When
using thistag, adeveloper can ensure it has a private ID value by using the signature assigned to the
converter. A converter devel oper should register this signature with DTS, just as when developing an
application.

In principle, thisonly allows asingle piece of datato be stored by each developer. The data stored is
private and need not be in any specific format. It may be convenient to have the private dataitself be a
collection, and the sample code demonstrates how to accomplish this.

To store a collection, one must flatten it into a handle and then store that handle. To access the stored data,
one must get the collection item handle and unflatten it back into a collection. The conditionally compiled
sample code does just this. It first createsa*“private” collection and stores the data for afew fake
“private’ hints. It then flattens the private collection and stores that with the kHi nt AppPr i vat eTag tag
value and an ID formed by using the appropriate signature. The code to access this private collection isin
the sample shell client code routineconverter | ni t DoConvert O i ent Dat a.

converter EmitProlog Routine

The shell codeclient’sconvert er Emi t Pr ol og routineis called by the shell code to generate the prolog
code into the output stream. For the sample code, all the prolog code is contained in asmall single Pascal
string psPr ol ogL2 which issimply global data. ThePSUti | sLi b routinepsQut PSt r iscalled to writethis
Pascal string to the output stream represented by the comm St r eant nf oDat a Structure passed to the
converter Eni t Prol og routine.

This approach isfine for converters which have small prologs, but if your converter has alarge prolog, it
may be preferable to store it as aresource and to load the resource and send it when needed. This has the
advantage of requiring less memory during the entire conversion, since global dataisin memory whenever
aconverter isloaded (ignoring virtual memory considerations) and resource datais only loaded upon
request.

However, having the prolog in the resource fork requires each instance of alow-level converter to load its
prolog rather than using the shared global data. This means that the total memory used by all instances of
alow-level converter will be larger for this case. Y ou should keep these tradeoffs in mind when deciding
where to store your prolog.

After writing the prolog code, conver t er Eni t Pr ol og callsthe ReadW i t eBackChannel routineto read
the output device back channel and write any data it reads back to the input stream. This allowsthe
Download Manager to look at the data. coming back from the output device and properly report PostScript
errors and status information. The ReadW i t eBackChannel routineis supplied by the shell code for use
by the shell client code.

converter EmitPageData Routine

Theconvert er Eni t PageDat a routine is where the bulk of the PostScript code specific to this document
is generated by the shell client code. Most of the code is pretty straightforward but there are afew
comments that might be helpful.

To emit the portion of the PostScript code which parameterizes the call to the PostScript image operator,

the sample code callsthe psQut For mat routinein PSUt i | sLi b. Thisis one of the routines which can
output data while formatting it. The call used is:

psQut For mat (conm psl mageDi ct Set upl, wi dth,
hei ght, numConponents);

The string being output is ps!| mageDi ct Set up1, which begins something like:

Page: 25

TN 1171: LaserWriter 8.6: How to Write a Page: 26
Converter Plug-in for the Download Manager

static const unsigned char pslmageDi ct Setupl[] =
"\'p/iwidth ~d def/iheight ~d def/conponents ~d def ...";

The use of ‘d” within astring is similar to the use of ‘%d’ in aformat string for pri nt f. That is, when
thepsl| mageDi ct Set up1 string is scanned by the psQut For mat routine, it substitutes thefirst ~d in the
format string with the first parameter passed after the format string in its arguments. Thisis handled
similarly for al the arguments and formatting charactersin the output.

Note:

The use of """ instead of "%" in these format stringsisto avoid interference with the legitimate use of a
"0%" character in such format strings, since the "%" character has semantic meaning in PostScript
language outpuit.

To write the JPEG data to the output stream, the sample converter usesthe psQut Bl ock routinein
PSUt i | sLi b. Thisroutine ssimply writes a data block of a specified number of bytes to the output stream.

For more information on the formatting routinesin PSW i | sLi b, see Appendix A.

While writing the JPEG data, the conver t er Enmi t PageDat a routine callsthe Readw i t eBack Channel
routine to read the output device back channel and write any datait reads back to the input stream. It does
thisasit writes significant blocks of data to the output stream so that it detects any data coming back from
the output device in atimely manner. There is no point spending time consuming computations or sending
lots of datato the output device just so it can be flushed by the output device’ s PostScript interpreter
because there was a PostScript error in the output device.

Caling ReadW i t eBackChannel allowsthe Download Manager to look at the data coming back from the
output device, and properly report PostScript errors and status information. The ReadW i t eBackChannel
routine is supplied by the shell code for use by the shell client code.

Use of WriteL ogM sg

The sample code usesthewr i t eLogMsg routine provided by the shell code. It uses this routine to generate
error or warning messages that are available for processing by the Download Manager or the application
client which invoked the Download Manager. In addition, these messages can be saved into alog file. See
the Tips section for additional information about logging that might be useful for debugging alow-level
converter.

Back to top
low-level converter “ Shell” Code

This section describes the operation of the shell code in more detail. In principle, only those who want a
deeper understanding of the shell code or who need to modify it need to read this section. In practice, since
the shell code is compiled into your low-level converter, you might want to understand it better even if you
don’t plan to modify it.

The biggest limitation of the shell code asimplemented for the sample JPEG converter isthat it is
currently hard coded to generate one page of output. The shell code' s psLowGet St r eam nf o routine
explicitly uses 1 for the number of pages it reports, regardless of whether EPS output is being generated.
It treats the bounding box data as if there is only one page being generated. It also uses 1 for the number
of pagesit generates for the %8ages: coment inthe document header and for the page number it
generates for the 984age: coment on thefirst (and only) page. It only callsconvert er Eni t PageDat a
once and doesn't pass the current page number since the assumption is that thereis only one page. In
addition, there are several places where a pointer to the current page number is passed to the

doQut put Posi t i on routine (discussed in the section DSC Comments and Feature Code).

psL owGetStreaml nfo

TN 1171: LaserWriter 8.6: How to Write a Page: 27
Converter Plug-in for the Download Manager
Thisroutine isimplemented in a generic fashion since the only data required from the shell client codeis
the type of datathat is actually contained in the file. Since the datain the stream is opaque to the caller of
the Download Manager, the low-level converter which can perform the download isthe only entity that can
authoritatively determine the datatype. The shell code callsthe shell client code's
convert er Get Conver t er Doc Type routine to determine what the datatypeis. The shell client code can
scan the data to determine this, or, in the case of the sample JPEG converter, it Simply returns the data type
sincethereisonly onetype of datathat the sample converter can handle. Since the only way alow-level
converter' spsLowGet St r earm nf o—and thereforeitsconvert er Get Convert er Doc Type routine—can
be cdled isif the converter has already agreed that it can handle the data through the psLowCanConver t
routine, it doesn’t have to scan the data unless it supports multiple data types.

The shell code determines whether an EPS or PostScript language download job is requested. If it is EPS,
the shell code knows the number of copiesisaways 1; otherwise, it looks for the job hint which indicates
the number of copiesto generate and returnsthat value. If the job is not EPS, it calls the routine

psl sJobManual Feed intheFeat ureUti | sLi b library to determineif the hints collection corresponds to
amanua feed job. If thejob iSEPS, it is never amanual feed job.

As described above, the shell code aways reports 1 for the number of pages.
psLowDoConvert

The shell version of this routine takes care of the bulk of the generation of the DSC comments, the feature
code, and the invocation of the shell client code’ s routines for generating the PostScript output into the
stream.

It begins by alocating a buffer for reading the back channel data that might be returned by the output
device back to the host. It does this so that both the shell client and the shell codeitself can use this buffer
to read the back channel.

The shell code callsthe routine psSet upSt r eaml nf oDat a to obtain ast r ean nf oDat a Structure that can
be used with the output routines contained inthe PSUt i | sLi b library. The resulting conmvariableis
passed to those shell client routines that are likely to emit code. If there are other routines that need the
commstructure, the shell code must be modified accordingly.

Back to top
DSC Comments and Feature Code

The shell code adds a number of hintsthat, on the surface, don’t seem to be used anywhere. These hints
include: kH nt EPSBBoxTag, kHi nt AppNaneTag, kHi nt O i ent NameTag, and kHi nt Cl i ent Ver si onTag.
These hints are used by the code which generates the feature invocations; that code is contained in the
Feat urelti | sLi b library. For example, when a cover page is generated, some of these hints are used to
obtain datato fill in cover page information.

The shell code emits anumber of DSC comments into the stream by using the doCut put Posi ti on
routine. This routine combines the generation of the DSC comments into the output stream (with the
appropriate tagging) and the request for various features.

The routine doQut put Posi t i on isactualy amacro which resultsin acall to the routine

Qut put Posi ti on. Theout put Posi ti on routine usesthe routines pswWi t eSubsect i onFeat ur e,
psQut For mat Posi ti on, and psQut For mat Posi t i onl nf o in astylized fashion that is appropriate to
discuss here. Here isthe routine:

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

static OSStatus QutputPosition(Stream nfoData comm
Col |l ection hints, const SubsectionStr *subsectionStr,
voi d *info, Bool ean i sNot EPS)

OSStatus err = noErr;

err = psWiteSubsecti onFeature(conm hints,
subsectionStr->subsection, info,
kBef or eSubsecti on, i sNot EPS);
if(lerr){
i f(info)
err = psQut For mat Posi ti onl nf o(comm
subsectionStr, info);
el se
err = psQut For mat Posi ti on(comm subsectionStr);

if(lerr)err = psWiteSubsecti onFeature(conm hints,
subsectionStr->subsection, info,
kAft er Subsecti on, isNotEPS);

return err;

}

Theout put Posi ti on routinefirst callspswi t eSubsect i onFeat ur e with the correct subsection and
with the value kBef or eSubsect i on. It then writes the comment by making acall to

psCQut For mat Posi ti on Or psQut For mat Posi t i onl nf o depending on whether the info data passed inis
NULL or not. Finally, it callspsW i t eSubsect i onFeat ur e with the correct subsection and with the value
kAf t er Subsecti on.

psW it eSubsecti onFeat ur e isaroutinein Feat urelti | sLi b that usesits knowledge of job feature
requests contained in the hints collection passed to it, and combines that knowledge with the information
about what portion of the document is currently being generated. When thisroutineis called, it is passed a
PSSubsect i on which indicates which DSC comment is going to be written or was just written. A
psSubsect i onLocat i on iSalso passed topsW i t eSubsect i onFeat ur e and indicates whether this call
topsWi t eSubsect i onFeat ur e isbefore or after the DSC comment which is being written.

By passing thisinformation about the document structureto pswW i t eSubsect i onFeat ur e, itisableto
intelligently generate the feature code needed at the appropriate point of the job stream. What feature code
to generate depends on the features requested in the hints collection passed to it. For example, when acall
ismadeto psWi t eSubsect i onFeat ur e with the subsection value k SubPSAdobe and

psSubsecti onLocat i on vauekBef or eSubsect i on,psW it eSubsect i onFeat ur e Knows to determine
whether a cover page should be emitted and if so, emits the cover page code into the stream. The call
returns and the caller normally generatesthe % PS- Adobe- 3. 0 DSC comment. It then calls

psWi t eSubsect i onFeat ur e with the subsection value k SubPSAdobe and psSubsect i onLocat i on
vaUuekAf t er Subsect i on and psW i t eSubsect i onFeat ur e writes nothing to the output stream.

This stylized way of using psW i t eSubsect i onFeat ur e alows feature code to be generated
corresponding to the feature requests in the hints collection. The feature invocation code is generated into
the job stream in the appropriate place, aslong asthe caller givesthepsw i t eSubsect i onFeat ur e
routine a chance to write its feature data at the appropriate points in the DSC job stream. The shell code
does this so that neither the shell code nor the shell client code need to know anything about the features
that the job requires. At the sametime, the shell and its clients have to do little work to support those
features. Thereis nothing that says alow-level converter must use the feature generation ability of the code
inFeaturelt il sLi b. However, by using thislibrary as shown in the sample code, the user will obtain the
requested print time features.

Feat ureUti | sLi b isdescribed in more detail in Appendix C.
ThepsQut For mat Posi ti on and psQut For mat Posi t i onl nf o functions mentioned above are availablein

PSUt i | sLi b and are used to tag the output written into the stream so that the Download Manager or its
callers who wish to track the progress of the job can do so by looking at the tags. This ‘tagged’ datais

Page: 28

TN 1171: LaserWriter 8.6: How to Write a

Converter Plug-in for the Download Manager
actually part of the stream itsdlf in the form of the PSPosi t i on structure, whichis part of a
PSSeri al St r eamstructure.

ThepsQut For mat Posi ti on and psQut For mat Posi t i onl nf o routines are passed the string data to be
written and the PSSubsect i on tag together in aSubsect i onSt r structure. This allows the data written to
be easily marked with the appropriate tag. The only difference between thetwo callsisthat acall to

psCQut For mat Posi ti onl nf o suppliesa(voi d *) pointer to some information data that is put into the info
field of the PSPosi t i on structure on the stream. The call to psQut For mat Posi t i on isequivaent to acall
to psQut For mat Posi t i onl nf o with theinfo parameter set to NULL. More information on these functions
isavailablein Appendix A.

Auto Scaling

It isimportant to point out again that the shell code does auto scaling so that the page of output is centered
and, if it would not fit on the page, is scaled to fit on the page. The orientation of the output depends on the
dimensions of the printed sheet and the bounding box of the data drawn. The drawing is oriented on the

page so that the longest dimension of the bounding box is aligned with the longest dimension of the paper.

Thistype of scaling may not be appropriate for all types of converters. It isimplemented asacall to
psW it eSubsect i onFeat ur e withthekSubAut oScal i ng PSSubsect i on vaue. Clearly this data does
not correspond to a DSC comment, and there is no DSC comment written before or after this call to
psW it eSubsect i onFeat ur e. Thisisabit different than the use of psW i t eSubsect i onFeat ur e
described above and is not associated with any DSC data written.

Thisisdone in this manner for two reasons. First, not all users of pswWi t eSubsect i onFeat ur e are
interested in emitting the auto scaling code. In addition, the appropriate place to emit the auto scaling code
depends on the PostScript code being generated for drawing a given graphic. By not tying the auto scaling
code to a specific DSC section, the caller decides whether to include the code and if so, it can decide
exactly whereto includeit.

Device Adjust Matrix

The shell code generates a device adjust matrix adjustment which reflectsthe * Devi ceAdj ust Mat ri x
value (if any) in the PPD file representing the target output device. Thisisdone asacdll to

psW it eSubsect i onFeat ur e withthekSubDevi ceAdj ust Mat ri x PSSubsect i on value. The shell code
does not write a DSC comment before or after thiscall to psw i t eSubsect i onFeat ur e. Again, thisisa
bit different than the use of psW i t eSubsect i onFeat ur e described above, and is not associated with any
DSC datawritten. When psW i t eSubsect i onFeat ur e writes any device adjust matrix code, it generates
99Begi nFeat ur e and %9&ndFeat ur e around the code, just asit does for other PPD feature code that it
generates.

Similar to the handling of kSubAut oScal i ng, thekSubDevi ceAdj ust Mat ri x PSSubsect i on has ho
connection to a specific point in the structured document job stream. The appropriate place to emit the
device adjust matrix code depends on the PostScript code being generated for drawing a given graphic. By
not tying the device adjust matrix code to a specific DSC section, the caller decides whether to include the
code and if so, where exactly to includeit.

Note that the shell emits PostScript code surrounding the invocation of pswW i t eSubsect i onFeat ur e
with the PSSubsect i on valuekSubDevi ceAdj ust Mat ri x. Thisisdone so that if there is no device adjust
matrix code generated, thereis no adjustment. The code to use a device adjust matrix properly is document

dependent and therefore the program which uses the matrix needs to decide how to useit. The feature code
merely inserts the matrix (if thereis one) in the stream.

Back to top
Tips

Converter Priorities

Page: 29

TN 1171: LaserWriter 8.6: How to Write a Page: 30
Converter Plug-in for the Download Manager

The Download Manager favors external converters over internal converters of the same priority. This

means that if the sample JPEG converter is placed in the “ Printing Plug-ins’ folder it is favored over that

builtinto Pri nti ngLi b. Thisisfine for looking at the sample converter; however, to use the JPEG

converter built into Pri nt i ngLi b, the sample JPEG converter must be removed from the “Printing

Plug-ins’ folder.

'PLGN' Resour ce Editing

While not strictly necessary, a' PLGN resource ResEdit templateisin Pri nti ngLi b 8.6 and later. To
look at the' PLGN' resourceinPri nti ngLi b, just open it up. If you want to look at the' PLGN' resource
inthe low-level converter you build, copy the appropriate’ TMPL' resource into that converter and then
open the' PLGN' resource.

Caching I ssues

The Download Manager resolves aiases placed in the “ Printing Plug-ins” folder. It is convenient to put
an diasto alow-level converter in the “Printing Plug-ins’ folder during converter development. If there
isn't aready a“Printing Plug-ins’ folder in the Extensions folder, the Download Manager will create one
automatically when it iscalled for the first time. One way to cause this to happen by dragging any
document onto a desktop printer created by LaserWriter 8 when using Mac OS 8.5 or later.

To improve performance, the Download Manager caches both the list of convertersin the “Printing
Plug-ins” folder and the Convert er Descri pt i on information it obtains from each low-level converter.
The Download Manager uses the folder modification date of the “Printing Plug-ins’ folder to determine
whether it needs to update its cached list of converters. This can be an issue during the development of a
low-level converter.

If the' PLGN' resource or the Convert er Descri pt i on information in aplug-in file changes, you want the
Download Manager to notice and take the new information into account. However, the system software
updates the folder modification date only when items are added or removed from afolder. If anitemis
edited in place, the system does not change the folder modification date. This means that editing or
rebuilding a plug-in file directly in the “ Printing Plug-ins’ folder, the folder modification date may not
change. Thisalso appliesto an diasthat pointsto a plug-in file that is created in another directory.

This“problem” only manifestsitself when the' PLGN' resource or Convert er Descri pti on iSchanging,
specifically, very early onin the development of a converter. Until the plug-in recognized by the Download
Manager and the Conver t er Descri pt i on has been finalized, the new converter should be manually
copied it to the “Printing Plug-ins” folder.

Note:
Thisis not a problem for users since there is no appropriate way to edit a plug-infile.

Initial Software Development
Getting Your Converter Seen by the Download M anager

Until the' PLGN' resourceis correct and all required symbols are correctly exported, the Download
Manager will never call alow-level converter. Once these requirements have been met, the Download
Manager will call the psLowGet Converter | nf or mat i on of thelow-level converter when the user drags
and drops afile onto a desktop printer created by LaserWriter 8 (in Mac OS 8.5 and later) and the
modification date of the “Printing Plug-ins’ folder has changed since the last drag and drop. It iswise to
start converter development by making sure that the Download Manager detects the new low-level
converter.

The easiest way to do thisisto put a breakpoint on the converter’s psLowGet Conver t er | nf or mat i on

routine and dropping a document onto a desktop printer created by LaserWriter 8. If thisfails, either the

' PLGN' resourceis not correctly formed or the low-level converter does not export al the required

Eé?ai ons. In order to retest, make sure the “ Printing Plug-ins’ folder modification date has changed
ore.

TN 1171: LaserWriter 8.6: How to Write a Page: 31
Converter Plug-in for the Download Manager

Getting Your Converter Called For Your Data Types

Once the converter is seen by the Download Manager, the next thing isto make sure that the converter is
being given a chance to convert al the files which have match the data types and mat chSt ri ng entriesin
theConverter Descri pti on. Thisisthe process of getting the Convert er Descri pti on correct for a
low-level converter. The smplest way to make sure aconverter is getting asked about al the data types
(and mat chSt ri ngs) it expectsisto put a breakpoint on the psLowCanConvert routine and verify that this
routine is being called by the Download Manager. Once the psLowCanConvert routineis called as
expected, you are ready to do the real work of implementing al the routines and converting the data.

If the converter’s psLowCanConvert routineisn't getting called as expected, but
psLowGet Convert er | nf or mat i on isbeing called, the culprit isthe Conver t er Descri pt i on being
returned by psLowGet Converter | nf or mat i on.

Note:
Once your converter isbeing properly called for all your data types, the caching issues can usualy be
ignored for the rest of your software development.

L ogging

A low-level converter (and the Download Manager itself) can tag datathat it writesto a stream by setting
PSSubsect i on valuesinthe PSPosi t i on structure that is part of the stream (see Appendix A for more
information about the streams the Download Manager uses). When alow-level converter usesthe
PSSubsect i on valueskSubLogEr r or Dat a and kSubLogWar ni ngDat a, it iS passing error or warning
messages back to the Download Manager. The Download Manager givesits clients an opportunity to
report these messages to the user.

The Download Manager has the ability to write these error and warning messagesto alog file. This ability
isturned off in the version of Pri nti ngLi b shipped with the system software, but it easily can be enabled
and tailored dightly by using ResEdit or Resorcerer to edit the Pri nt i ngLi b file.

Using Logging

Developers are encouraged to use the PSSubsect i on vauekSubLogWar ni ngDat a to generate warning
messages that are useful to sophisticated users. For example, if, in the middle of a conversion, a converter
discoversthat the data may have a problem but the problemisn’t fatal, that information could be reported
with awarning message. Of course, fatal errors should be reported using the PSSubsect i on vaue
kSubLogEr r or Dat a.

In addition, it may be useful to add warning messages as part of debug builds of alow-level converter.
This allows you and your testers to look at a trace of what is happening during the execution of your
converter. Thismay be useful as a supplement to the standard debugging strategies of setting breakpoints
or using debug strings.

Enabling L ogging

Note:
As alwayswork with a copy and, to enable logging, you should reboot your computer after editing the
PrintingLib file.

Toturn on logging, edit the' PRF2' resourceinPrinti ngLi b (Version 8.6 and later). Thereisabit
labeled “ Generate Log File for Download Manager Errors and Warnings’ which is off by default. Turn
this bit on and save your changes. Reboot. From this point on, logging is enabled.

The logging ability does have a bit of flexibility that might be useful to some developers or sophisticated
users. It can be configured dlightly by editing the' LOGD resourceinPri nti ngLi b. Open the' LoGD
resource and you'll see anumber of editable items:

TN 1171: LaserWriter 8.6: How to Write a Page: 32
Converter Plug-in for the Download Manager

e The maximum log file size (default: 32000 bytes).

e How much of the existing log to preserve when the log file size exceeds its maximum (default
4000 bytes).

e The Creator and OSType of the log file by the Download Manager (default: MPW text type).

e The name of the Log file (default: “Download Manager Log”).

When logging is enabled, the log file with the name specified by the' LOGD resource is created in the
“Printing Prefs’ folder in the Preferences folder.

Back to top
Summary

This Technote describes how to write alow-level converter for use with the Download Manager, part of
LaserWriter 8and Pri nti ngLi b, Version 8.6 or later. If your application supports or defines afile format
which could easily be converted to PostScript without launching the application, you should consider
writing alow-level converter to support printing files of that format directly when the user dragsafileto a
desktop printer. This allows for faster printing since no application needs to be launched in order to print.
Since low-level converters output PostScript directly, writing a converter can offer you the opportunity to
optimize printing of your file formats on PostScript output devices.

Further References

e Technote 1169: The Download Manager

e Technote 1170: The Printing Plug-ins Manager

o Inside Macintosh: QuickDraw GX Environment and Utilities
e Inside Macintosh: PPC System Software (CFM)

ChangeHistory

e Originally writtenin April 1998 by David Gelphman and Ingrid Kelly
e Revised in June 1999 by Dave Polaschek

Back to top
Appendix A: Useful PSUtilsLib Routines and Structures

Low-level converterswrite their generated PostScript data to procedures passed in a structure of type

PSSt r eam These procedures can be called to read from a data source or to write to an output device or
another data consumer. Because writing to streamsis very common in the operation of both conventional
LaserWriter 8 driver printing and the operation of the Download Manager low-level converters, the

PSUti | sLi b library (contained in Pri nti ngLi b) exports a number of useful routines which handle many
of the details of writing to streams. This Appendix focuses on the details of writing to streams aswell as
documenting some of theroutines availablein PSUt i | sLi b and their usage.

PSSt r eans are discussed in further detail in Technote 1169, “ The Download Manager.” In addition, the
PSStreams.h header file contains the definition of the PSSt r eamdata type as well as the routines described
in this Appendix.

PSSt r eamStructure

ThePsst r eamstructure describes a number of stream types. The important stream types for alow-level
converter are those of type PSSer i al St r eamand PSRandomAccessSt ream The

PSRandomAccess St r eamstream type allows read access to datain arandom way; the stream allows the
caller to position the stream mark randomly. This stream is used to represent files or data that can be
accessed asif it werein afile. Thistype of stream istypically used as an input stream to alow-level

TN 1171: LaserWriter 8.6: How to Write a Page: 33
Converter Plug-in for the Download Manager

converter. Other than the random access nature of these streams, they are identical to the PSSer i al St r eam
so the remainder of this discussion will be about the PSSer i al St r eamtype of PSSt r eam

ThePSSeri al St reamisdefined asfollows:

t ypedef struct PSSeri al Strean
PSWiteProc wite;
PSReadProc read;

U nt32 reserved;
PSPosi ti on pos;
} PSSeri al Stream

The write proc of aPSSeri al St r eamis used to write PostScript data to a consumer of the data. The write
proc of an output stream typically writes data to a PostScript output device or datafile. The write proc (if it
exists) on an input stream writes data back to the Download Manager or similar client for further
processing. For example, it is appropriate to write data read from an output stream back to the input stream
so that the Download Manager can handle status or other data returning from the back channel of an
output device. It isimportant to test that the write proc is not NULL before calling it.

Theread proc of aPSSer i al St r eamis used to read data from that stream. The read proc of an input
stream reads the data from the input stream. For alow-level converter, thisisthe datato convert. The read
proc (if it exists) of an output stream represents data coming back from a PostScript output device. Itis
important to test that the read proc isnot NULL before calling it.

Thereserved field inthe PSSer i al St r eamstructure is currently unused by alow-level converter.

ThePsSPosi ti on structurein the PSSer i al St r eamcommunicates structural information about the data
being written to a stream. Thisisdiscussed in detail in the next section.

PSPosition Structure

ThePSPosi t i on structure allows generators of PostScript output to communicate structural information
about the data they are writing. When generators of PostScript output properly use the PSPosi t i on
structure, it alows software clients to have knowledge of the data being written, without them having to
parse the PostScript dataitself. An example of thisisthe way the LaserWriter 8 driver reports status
during printing by looking at the PSPosi t i on data written to the output stream by the Pri nt i ngLi b
routines which convert QuickDraw drawing into PostScript data. Another exampleis the status that the
Download Manager and its clients report as alow-level converter generates its PostScript data.

The PSPosition structure is defined as;

typedef struct PSPosition{
PSSecti on secti on;
PSSubsecti on subsecti on;
voi d *info;
SInt32 id;

} PSPosi ti on;

The section field is of type PSSect i on and contains the identification of what “major” part of thejobis
in progress. The values of thisfield can bekSect Anon, kSect QueryJob, kSect Cover Page,

kSect Job, and kSect Peek. These correspond to the different parts of the job, as controlled by the
Download Manager and thisfield isfilled in by the Download Manager, not by the low-level converter.

The subsection field is of type PSSubsect i on and is used to describe the details of the PostScript output
corresponding to the datawrite call. PSSubsect i on vauestypicaly correspond to Document Structuring
Conventions (DSC) data but there are additional values which suit some specialized needs.

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

Theinfofield iseither aNULL pointer or a pointer to data whose type is defined for the PSSubsect i on
value in the subsection. The data (if any) pointed to by the info value coincides with the data being written
to the output stream. For example, when calling the write routine with the data “ %0%Pages. 4", the caller
would put the PSSubsect i on valuekSubPages into the subsection field of the PSSer i al St r eamand the
info field would point to an SI nt 32 with the value 4. See the header file PSStreaminfo.h for the list of
PSSubsect i on values and the proper data type for the info of each PSSubsect i on.

TheID fieldisan Sl nt 32. Thisis used by generators of the PostScript output to generate output for a
given subsection over a series of writes, yet still identify the data as one conceptual block of data. Thisis
done by performing the consecutive writes with the same subsection, info, and ID values. When the data
being written corresponds to a new subsection, then the ID value isincremented. Doing writesin this
fashion allows software clients looking at the structural data to notice when the PSPosi t i on datamay have
changed without having to look at any other fields in the structure. For example, a client (such asthe
Download Manager) monitoring the position information being written to the stream has atest like:

i f(jobstatus->lastPosld != stream >u.ps.pos.id){
process the new position we are now seei ng

/'l update our the |ast position we saw
j obst at us->l ast Posl d = stream >u. ps. pos. i d;

}

Simple Example of Writing to a Stream

Here is a simple code example to bring together the basic ideas presented on streams. The datais hard
coded into this routine to improve readability.

#i ncl ude " Downl oadMyr Li b. h"
#i ncl ude "PSStreans. h"

CSSt at us writ ePages(PSSt ream *streanfut)

OSStatus err = noErr;
PSSeri al St ream *stream

i f(streanfut->type == kPSRandomAccessStrean)
stream = &(streanfut->u.file.serial Strean);
el se{
i f(streanut->type == kPSSeri al Stream
stream = &streantut - >u. ps;
el se{
/1l we don’t know that type of stream
err = errCant Handl eThi sDownl oadDat a;

}
}

if(lerr & stream>wite){
SInt 32 pages = 4,
unsi gned char *formatString = "\ p%Afages:

/'l the subsection reflects the fact that
/'l we are writing kSubPages
stream >pos. subsecti on = kSubPages;

/1l the info field is a pointer to the nunber of pages
stream >pos. i nfo = &pages;

/1 distinguish this wite fromany previous
stream >pos. i d++;
/1 now go ahead and wite the ' %/4ages: ' portion

Page: 34

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

/1 of the coment
err = stream>wite(streanOut, formatString +1,
format String[0]);

/'l now go ahead and wite the value of the nunber
/'l of pages with the SAME id since it is part of
/'l the same DSC data we are emtting
if(lerr){
Str15 pagesStr;
NumToSt ri ng(pages, pagesStr);
err = stream>wite(streanCut,
(unsigned char *)pagesStr + 1,
pagesStr[0]);

/1 now wite the newine with the SAME id
if(lerr){
err = stream>wite(streanut, "\r", 1);

}

I/l reset the PSPosition data after our wite call
stream >pos. subsecti on = kSubAnon;
stream >pos.info = NULL;

/1 we nust bunmp the id so that consuners of this
/1l streamw |l know that we are done with the

/'l wite of the Pages comment when the next wite
/'l is done.

stream >pos. i d++; }

return err;

}

Note:

Theid field of the PSPosition structure on the stream is updated before the first write of the Pages
comment and after the write of the last portion of the Pages comment. The last id increment is done so
that we ensure that any following write to the stream is distinguished from this write of the Pages
comment. Thisis more than a safety measure since many of the stream output routines do not modify the
PSPosi t i on structure of the stream. Therefore, after our write, the stream should aready reflect anew id
to distinguish future writes from the one just done.

Useful Stream Output Routines

Generating PostScript output for agiven print job typically involves emitting both constant data such as
thesages comment, aswell as variable data such asthe sI nt 32 value for the number of pages asin the
example above. Sometimes the data needs to be formatted differently depending on the characteristics of
the output communications channel. The most obvious example of this occurs when generating PostScript
string data since there needs to be quoting of various characters, depending on whether the channel
supports the full range of binary data. The need to supply the PSPosi t i on information while generating
output adds an additional requirement when generating outpui.

ThePsuti | sLi b library built into Pri nt i ngLi b has routines which make generation of PostScript output
significantly smpler. PSU i | sLi b contains routines that make it smple to generate formatted output with
and without positional information.

Relevant Structures

Before introducing the output routines, there are a couple of relevant data types that must be introduced
first.

Page: 35

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

StreamlnfoData

Thest r eam nf oDat a type isa pointer to an opaque data structure that is passed to the PSUt i | sLi b
stream output routines. This opague structure contains information about the communications channel
which enables the stream formatting routines to generate proper PostScript output. There are routines for
creating and disposing of this structure.

t ypedef struct Stream nfo *Streanl nfoDat a;

CSSt at us psSet upSt r eand nf oDat a(St r eand nf oDat a *comm
PSSt ream *PSStreanP, Col | ection hints);

psSet upSt r eam nf oDat a alocates and initidlizesa st r eam nf oDat a Structure corresponding to the
Psst r eanP and the hints collection. It consults the hints collection for hints indicating the capabilities of
the communications channel (see Appendix B). Theresulting St r eam nf oDat a can then be passed to the
stream output routines described below to write to the stream represented by PSSt r eanP and generate
output properly formatted for that communications channel.

CSSt at us psDi sposeStreani nf oDat a(Streaml nfoData *conmm) ;

psDi sposeSt r eam nf oDat a disposes of the St r eant nf oDat a structure that was created and returned
from psSet upSt r eam nf oDat a. Upon return of thisroutine, * conmis NULL.

SubsectionStr
When generating PostScript output that is to be tagged with a given PSSubsect i on vaue, it isuseful to

group the PostScript output string together with an associated PSSubsect i on value. The data structure
Subsecti onSt r gathersthese piecesin one place. The definition of SubsectionStr is:

typedef struct SubsectionStr{
StringPtr fornmat;
PSSubsecti on subsecti on;

} Subsecti onStr;

An example of aSubsect i onStr for generating the %84#ages DSC comment would be;

const SubsectionStr psPages = {"\p%®&ages: ~d\r", kSubPages};

Theformat field of the Subsect i onSt r isaPascal string that may contain formatting data. In the above
example the format usesthe~d formatting marker. Thiswill be described shortly.

Formatting Output Routines

Thepsaut For mat routines and its structured equivalents described below allow straightforward use of
output formatting similar to thepri nt f routine in the standard C library. Becausethe ‘%’ character isa

significant character in PostScript data, these routines use the ‘M’ character as the format marker character.

OSSt at us psQut For mat (St ream nf oDat a conm
Const Str255Param format, ...);

Page: 36

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

The supported formets are:

b passin along and output “true” or “false”

"d passin along and output in decimal format.

M passin a16.16 fixed number and output in decimal with up to 3 places past the decimal.

F passin a 16.16 fixed number and output in decimal with up to 4 places past the decimal.

"H passin along and the long div 2 is output with a possible .5 (or you can think of it asa31.1
Fixed-point number)

s pass in a pointer to a Pascal String. For use when generating PostScript strings, i.e., ()

NS same as”s, but with control and extended ASCI| characters always quoted. Typically used for
DSC comments which are lwaysin therange 0x20 - 0x7F

"z same as s, but specified with explicit length (call with string pointer and long length).

~Z same as”'s, but generate (..) or <..> depending on which one takes the |least space.

Ai passin ashort and it is output in decimal format.

Ap same as”s, it outputs a Pascal string.

CSSt at us psQut For mat Posi tion(Stream nfoData comm
const SubsectionStr *format, ...);

psQut For mat Posi ti on isjust like psQut For mat except that it takes a pointer to aSubsect i onSt r
structure rather than aformat string. The Subsect i onSt r structure provides both aformat string and a
PSSubsect i on value for that format string that will be passed to the stream’ s output routine to identify the
type of PostScript that is being written. psQut For mat Posi t i on first insertsthe PSSubsect i on vaueinto
the subsection field of the PSPosi t i on in the stream and storesaNULL into theinfo field in the stream’s
PSPosi t i on structure. It then writes the formatted output to the stream. This routine takes care of

ensuring that the PSPosi t i on datais handled appropriately, i.e., in asimilar manner to that shown above
in the section Simple Example of Writing to a Stream.

CSSt at us psQut For mat Posi ti onl nf o(Stream nf oData conm
const SubsectionStr *format, void *info, ...);

psQut For mat Posi ti onl nf o iSjust like psQut For mat Posi t i on except the info value passed to this
routine is stored in the PSPosi t i on structure in the stream that is passed to the write routine prior to the
write. The info pointer provides additional information to the PostScript positional information provided
by format. After psQut For mat Posi t i onl nf o returns, the info field of the steam’ s PSPosi t i on structure
isnull.

Simple Formatted Example

Page: 37

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

CSStat us writ eFor nmatt edPages(Stream nf oData conmm)

CSStatus err = noErr;
const SubsectionStr psPages = {"\p%&ages: "d\r", kSubPages}; SInt32 pages = 4;

err = psQut For mat Posi ti onl nf o(comm
/1 the fornat
&psPages,

/1l now the info. For the kSubPages it is a
/'l pointer to an SInt32
&pages,

/1l now the data to satisfy the format. The ~d
/'l takes this long and wites the output

pages) ;

return err;

}

Additional Formatting Routines

OSSt at us psQut HexBl ock(St ream nf oDat a comm Byte *bl ock,
| ong nBytes, short *|inePos);

psQut HexBl ock writesnByt es from block to the stream represented by conmusing the hex encoding
technique, regardless of the channel characteristics. The hex data generated is wrapped to avoid excessively
long lines. *1 i nePos represents the current length of the line and isinitially passed as 0. Upon return,

*| i nePos represents the length of the current line. Each sequentia call to psQut HexBl ock should passin
the value returned from the previous call. psQut HexBl ock isuseful when generating image data when the
output channel does not support binary data and ASCI | 85 is not appropriate.

OSSt at us psQut Bl ock(St ream nf oDat a comm const void *bl ock,
| ong nBytes);

psQut Bl ock writesnByt es of datafrom block to the stream represented by comm without any additional
processing. psQut Bl ock isuseful for emitting binary image data or other output that requires no
additional formatting.

CSSt at us psQut String(Stream nfobData conm Byte *str, |ong |ength,
Bool ean quoted, short *linePos);

psQut St ri ng writes length bytes of data pointed to by st r assuming that it isgoing to be inside a
PostScript string. This function performs the quoting necessary for the channel and does line breaks as
necessary. If quoted istrue, then bytes outside the printable ASCII character set are dways quoted,
regardless of the communications channel characteristics. If quoted isfalse, then bytes outside the
printable ASCII character set are quoted according to the needs of the communications channel. The string
data generated is wrapped to avoid excessively long lines. * 1 i nePos represents the current length of the
lineand isinitially passed as 0. Upon return, *1 i nePos represents the length of the current line. Each
sequentia call to pscut St ri ng should passin the value returned from the previous call.

Page: 38

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

CSSt at us psQut PStr (St rean nfoData comm Const Str255Par am pstring);

psQut PSt r writes the Pascal string pst ri ng to the stream represented by conm There is no quoting or
formatting done.

Back to top
Appendix B: Available Job Queries

Low-level converters can specify printer queriesto help them to generate optimal PostScript datafor the
target output device. The low-level converter usesits psLowAddConver t er Quer i es routineto add hintsto
aquery collection that can be used by the Download Manager to query information about the target output
device. This Appendix describes each available query hint in detail. The header file Hints.h contains the
actual tag and ID values as well asthe definition of any structures that are used to store query results.

Communications Channel Queries

The query hintskHi nt Tr anspar ent Channel Tag, kHi nt Tr anspar ent Channel | d,kHi nt Ei ght hBi t Tag,
and kHi nt Ei ght hBi t | d specify queries related to the capabilities of the communications channel.
Whether the communications channel can support full binary data or only a subset of such datais
important to generators of PostScript code. Generating full binary output is much more efficient but it is
not acceptable if the communications channel does not support it!

Normally alow-level converter will add both of these hintsto the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteristics.
The value for these hints after the query determines the channel characteristics.

If the value of the hint with tag valuekHi nt Ei ght hBi t Tag and ID valuekHi nt Ei ght hBi t | d iStrue, the
output stream supports the data range 0x80- 0xFF inclusive. If the value isfalse, the PostScript output
stream generated by the low-level converter should not contain these byte values.

If the value of the hint with tag valuekHi nt Tr anspar ent Channel Tag and ID vaue

kHi nt Tr anspar ent Channel | d istrue, the output stream supports the data range 0x00- 0x1F inclusive. If
the valueisfase, the PostScript output stream generated by the low-level converter should not contain
these byte values.

Note:

A St r eant nf oDat a structure, described in Appendix A, is configured by these hints. Consequently, the
relevant stream output formatting procedures described in Appendix A then know how to format
PostScript output properly for the stream.

Output Device Characteristics

There are severa queries available to allow alow-level converter to determine the inherent capabilities of a
given output device. Knowledge of thisinformation typically enables the generation of much more
efficient PostScript output.

PostScript Language L evel

To query for the PostScript language level of the output device, a converter adds the hint with tag value
kHi nt LanguagelLevel Tag and ID kHi nt LanguagelLevel | d. Thevauereturned isan Si nt 32. The
following enum describes the currently defined values.

Page: 39

TN 1171: LaserWriter 8.6: How to Write a Page: 40
Converter Plug-in for the Download Manager

enum Post Scri pt Level s{
/11 L2 conpatible
Level 2and3 = -3,
/11 L1 conpatible
Level 1land2 = -2,
/11 unknown | evel
UnknownLevel = -1,
/11 other |evel
G her Level = 0,
[l level 1
Level 1l = 1,

[l level 2
Level 2 = 2,
[l level 3
Level 3 = 3

H

Positive values indicate a specific PostScript language level, for example the value 2 means that the target
output device supports language level 2. In this case there is no need to generate output compatible with a
PostScript level 1 output device and use of level 3 (or later!) operators will generate errors.

Negative vaues returned from this query are associated with either an Unknown response or indicate a
request for generating output compatible with a given minimum language level. If the language level
returned isunknownLevel oOr Level land2, then typically alow-level converter should generate output
compatible with PostScript language level 1. Such output may use language level 2 or language level 3
features but it must do so in away that also executes properly on alanguage level 1 output device. If the
vaueisLevel 2and3, thisindicates that the generated PostScript must be compatible with alanguage level
2 output device. Such output may use PostScript 3 features but must do so in away that also executes
properly on alanguage level 2 output device.

Color Output Device

Prior to generating sampled image data, it may be useful to know whether the target output device supports
color. If it does not support color then in many cases it may be more efficient to downsample any RGB or
CMYK datainto grayscale data as part of generating the PostScript language output. There are two queries
which relate to the output device' s ability to produce color outpuit.

The query specified with tag value kHi nt Col or Devi ceTag and ID valuekHi nt Col or Devi cel d queries
for whether the output device is known to support color output. The value returned from this query is of
typeTri St at e.

enum Tri St at]
kTri Fal se = 0,
kTri True,

kTri Unknown

b
typedef enum Tri State Tri State;

If thevauereturned iskTri Tr ue then the output device supports color. If the value returned is
kTri Unknown then it is unknown whether the output device supports color. A low-level converter should
not do any downsampling of color datato grayscale for either of these cases.

If thevauereturned iskTri Fal se then the output device does not support color and the color separation
guery (just below) should be consulted to determine whether the output deviceis configured to generate
color separations. If ablack and white output device is generating color separations then color data should
be emitted so that the separations are generated properly.

TN 1171: LaserWriter 8.6: How to Write a Page: 41
Converter Plug-in for the Download Manager

The query specified with the tag value kHi nt Col or SepTag and ID value kHi nt Col or Sepl d queriesfor

whether the output device is known to be configured to generate color separations. The value returned

fromthisquery isof type Tri St at e.

If thevaluereturnediskTri Tr ue then the output device is generating color separations. If the value
returned isk Tri Unknown then it is unknown whether the output device is generating color separations. A
low-level converter should not do any downsampling of color datato grayscale for either of these cases.

If thevauereturnediskTri Fal se, then the output device is not generating color separations. In this case
it would only be appropriate to generate downsampled grayscale data if the output device is not generating
color separations and is known to not support color output.

Device Resolution

The query specified by the tag value kHi nt Pri nt er ResTag and ID valuekHi nt Pri nt er Resl d queries
for the current device resolution at the time of the query. The data returned from the query is of type
PSResol uti on.

struct PSResol ution{
I ong Xx;

long y;

H . .

typedef struct PSResol uti on PSResol ution;

The returned resolution dataiis in dots per inch (dpi) and may differ in X and Y. If theresolution is
unknown, avalue of - 1 isreturned for both X and Y. Note that generdly it isamistake to use device
resolution data when generating PostScript output since doing so hampers a given output device's ability
to produce the best quality output.

Printer Resources
TrueType Rasterizer

The query specified by thetag valuekHi nt TTRast eri zer Tag and ID valuekHi nt TTRast eri zer | d
queries for the support level available for TrueType fonts. The value returned for this query isalong with
the following values defined:

enum TTRast eri zer Type {
kTTRast eri zer Unknown = O,
kTTRast eri zer None = 1,
kTTRast eri zer Accept 68K = 2,
kTTRast eri zer Type42 = 3

H

If the valuereturned iskTTRast er i zer Type42 thisindicates that the target output device has built-in
support for FontType 42, i.e., TrueType, fonts. If the value returned iskTTRast eri zer Accept 68K, this
indicates that the output device has no built-in rasterizer but it can accept a downloaded rasterizer. If the
valuereturned iskTTRast eri zer None thisindicates that the output device has no support for TrueType
fonts and arasterizer cannot be downloaded. A value of kTTRast er i zer Unknown means that the
availability of a TrueType rasterizer in the target PostScript output device is unknown.

Fonts
Low-level converters can request aquery for a specific list of fonts or request the entire list of fonts

availablein the target output device. Both of these font queries are specified with the hint tag
kHi nt | ncl udeFont sTag with the ID valuekHi nt I ncl udeFont si d. Theinitial data contained in this hint

TN 1171: LaserWriter 8.6: How to Write a Page: 42
Converter Plug-in for the Download Manager

determines the type of query. The datais aPSFont Handl i ng structure, defined as:

t ypedef struct {
| ong tag;
unsi gned char nare[1]; //packed array of names as PStrings,
//1ength O indicates end of Iist
} PSFont Handl i ng;

and the followi ng tag val ues are defined:

enuni
kl ncl udeNoFont sQt her Than,

kl ncl udeAl | Font sBut
H

If thetag field of the PSFont Handl i ng Structure iskl ncl udeAl | Font sBut , the query isfor the complete
list of fonts (the equivalent of the * 2Font Li st query from the PPD file). For thisflavor of the font query,
aconverter should pass in one font name whose length is zero. Upon return of the query, the namefield
will be a packed array of Pascal strings corresponding to the fonts built into the output device. Thislist of
names will be terminated with a zero-length Pascal string.

If thetag field of the PSFont Handl i ng Structure iskl ncl udeNoFont sQt her Than, the query isfor a
specified list of fonts (the equivalent of the * ?Font Quer y query from the PPD file). For this flavor of the
font query, thelist of fonts to query for should be in the namefield of the structure. Thelist is a packed
array of Pascal strings and is terminated with a zero-length Pascal string. After the query, the namefield is
apacked array of Pascal strings corresponding to the fonts from the query list which were not available,
i.e.,, thefonts available in the output device are removed from thelist. Again, thislist of namesisterminated
with azero length Pascal string.

Note:
Reqguesting either type of query can produce resultsin the other form. For example, arequest for al fonts

canresultin alist of fontswhich are not available. A request for the availability of alist of fonts can
result in alist of al fonts. This means, for example, that alow-level converter might request afont query
with atag of kI ncl udeAl | Font sBut and the query result may contain a query with atag of

kl ncl udeNoFont s& her Than. The value of the tag field returned reflects the results of the query and the

meaning of the list of names which follows.

Freevirtual memory

The query specified by that tag value kHi nt Fr eeVMrag and ID valuekH nt Fr eeVMARec! ai i d queries
for the amount of free Virtua Memory (virtual memory) in the output device. The result returned isan
Sl nt 32 containing the number of bytes of virtual memory available. If the result is unknown, then -1 is

returned.

M iscellaneous

There are couple of additiona queriesavailable, but it is highly unlikely that alow-level converter would
need these queries or their results. They are given here for completeness.

Spooler Query

The query specified by the tag value kHi nt ADOSpool er Tag and ID value kHi nt ADOSpool er | d queries
for the presence of a spooler. The returned result isof type Tri St at e. If thevalueiskTri Tr ue then the
output deviceisaspooler. If thevalueiskTri Fal se then the output device is not aspooler. If the returned
vaueiskTri Unknown, then it is unknown whether the job is targeted to a spooler.

PostScript Version Query

TN 1171: LaserWriter 8.6: How to Write a Page: 43
Converter Plug-in for the Download Manager

The query specified by the tag valuekHi nt PSVer si onTag with ID vauekHi nt PSVer si onl d queries for

the PostScript language version and revision of the output device. The value returned is of type

PSVer si on.

struct PSVersi on{

/1l revision, -1 => unknown
| ong revision;

/1] "\p" => unknown

Str63 version;

typedef struct PSVersion PSVersion;

Therevisonfield isalong containing the PostScript revision number of the target output device. Thisis
the number normally returned by the PostScript revision operator. A value of —1 means unknown.

Theversion field isaPasca string containing the PostScript version information as returned by the
PostScript version operator. A typical version string is something like "\p2013.106". If the version string
is unknown, the length of the string is zero.

Itisvery unlikely that a generator of PostScript code would request or use the results of the version query.
Thisquery isusualy used to generate information for a user, although in rare circumstancesit can be
useful. More typically, the PostScript language level query is used instead.

PostScript Product Query

The query specified by the tag value kHi nt Pr oduct Tag and ID value kHi nt Pr oduct | d queriesfor the
printer product string. The returned result isa Pascal string. The length of datareturned in thishint is
variable size. If the results for the query are unknown, then a zero length string is returned.

Itisvery unlikely that a generator of PostScript code would request or use the results of the product
query. Thisquery isusually used to generate information for a user.

Back to top
Appendix C: Useful FeatureUtilsLib Routines

The Download Manager and its clients prepare a hints collection for use with each download. This hints
collection contains information about the feature requests for that download job. For example, these
features can include number of copies and cover page, aswell as printer specific features such as duplex,
image enhancement, paper tray selection and so forth.

Generators of PostScript output, such as Download Manager low-level converters, know how to generate
the device independent PostScript code to image a document, but typically know little or nothing about
printer features and how to invoke them. To simplify the task of handling printer specific features, the
shared library Feat ureUti | sLi b contained in Pri nti ngLi b, versions 8.6 and later, was born.

Feat ureUti | sLi b can take the hints collection which contains the job feature information and generate
the PostScript language feature code needed to invoke user requested features. This greatly relievesthe
burden on those clients who know how to generate device-independent PostScript code but would rather
not worry about the printer specific features.

Usually there are specific pointsin the PostScript stream where various printer feature invocations must
occur both from the point of view of Document Structuring Conventions (DSC) conformity aswell as
PostScript execution. For example, if aspecific paper tray is used on the first page of adocument, the
PostScript invocation code of that paper tray must appear outside any page level save/restore nesting on
that page, or el se the output will be incorrect. Because only the generator of the PostScript page
description knows whereit isin the process of generating the output stream, that generator must work

TN 1171: LaserWriter 8.6: How to Write a Page: 44
Converter Plug-in for the Download Manager

closely withthe Feat ur elt i | sLi b code generation to ensure that the correct feature requests are emitted

at the proper point in the PostScript output stream.

Generating Feature Code with psWriteSubsectionFeature

TheFeat urelti | sLi b routinepsW it eSubsect i onFeat ur e makes the generation of feature code
straightforward. This routine relies on the concept of aPSSubsect i on asintroduced in the Download
Manager documentation as well asin this document. A PSSubsect i on isaway of communicating DSC
and other structural information. psW i t eSubsect i onFeat ur e knows the points it needs to generate the
pieces of feature code invocation data; it just needs to be notified by the caller wherethe caller isinits
generation of output.

OSSt at us psWit eSubsecti onFeat ure(Streanl nfoData comm
Col | ection hints,
PSSubsecti on subsecti on,
voi d *info,
psSubsecti onLocati on subsecti onLocati on,
Bool ean i sNot EPSCQut put) ;

typedef enum psSubsecti onLocati on{
kBef or eSubsection = fal se,
kAft er Subsection = true

} psSubsecti onLocati on;

e commrepresents the stream any generated PostScript code is emitted into. The St r eam nf oDat a
typeisdescribed in Appendix A.

e hi nt s isacollection representing the job being processed. This collection contains information
that psWi t eSubsect i onFeat ur e UseSto generate the proper feature code.

® subsecti on isthePSSubsect i on corresponding to the position in the output stream that the
caler iseither about to write or just wrote.

e i nf o isapointer to a structure relevant to the subsection being written. The value may be NULL;
otherwise, it will be the data type assigned to the PSSubsect i on corresponding to subsection. See
the header file PSStreaminfo.h for the list of PSSubsect i on values and the proper info datatype
for each PSSubsect i on.

® subsecti onLocat i on iSeither kBef or eSubsect i on Or kAf t er Subsect i on depending on
whether thiscall to psW i t eSubsect i onFeat ur e isbeing made before the caller has written the
data corresponding to this subsection or after.

i sNot EPSQut put isaBoolean indicating whether the caller is generating EPS data. Some of the
invocation code normally generated by psw i t eSubsect i onFeat ur e iSnot appropriate when the caler is
generating EPS output. If i sNot EPSCQut put istrue, then the caller is not generating EPS dataand, if itis
fase, the caller is generating EPS data.

A smple example clarifiesthis:

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

#i ncl ude "PSStreans. h"
#include "FeatureUtilsLib. h"

#def i ne DSC30Ver si on 0x30000 // Fixed(3.0);
OSSt at us doPer cent Bang(St ream nf oDat a comm Col | ecti on hints){

CSStatus err = noErr;

Fi xed dscVersi on = DSC30Ver si on;

Bool ean i sNot EPS = true;

SubsectionStr psVersion = {"\p% PS- Adobe-3.0\r",
kSubPSAdobe} ;

/* we are about to wite the ‘9% PS- Adobe-3.0" conmment
begi nni ng our PostScript generation so we first call
psWit eSubsecti onFeature indicating this so that it can
generate any feature code that nust appear before this conment .

*/

err = psWiteSubsecti onFeature(comm hints,

kSubPSAdobe, &dscVer si on,
kBef or eSubsection, // BEFORE
i sNot EPS) ;
/* Now we enit ‘9% PS-Adobe-3.0" into the stream */
if(lerr)err = psCutFormat Positionl nfo(comm &psVersion,
&dscVersi on);

/* Now tell psWiteSubsectionFeature that we just wote
the ' % PS- Adobe-3.0" comment. */
if(lerr)err = psWiteSubsecti onFeature(comm hints,
kSubPSAdobe, &dscVersi on,
kAfterSubsection, // AFTER
i sNot EPS) ;

return err;

By using this stylized way of emitting PostScript output code into the output job stream, the sample code
automatically gets a cover page before the job, should the hints collection indicate that it is required. When
the code sample callspsW i t eSubsect i onFeat ur e beforetheinitial %8 PS- Adobe- 3. 0 emitted into the
print stream and indicates that it is about to write the subsection k SubPSAdobe, the routine examines the
supplied hints collection to seeif it indicates that a cover page should be generated before the job. If a
cover page should be generated, then psW i t eSubsect i onFeat ur e writesit into the output stream and
ends the cover page job so that when the above code fragment then emits % PS- Adobe- 3. 0 into the output
stream, that is the first PostScript code appearing in the print job following the cover page. Note that if

i sNot EPSisfase, psWi t eSubsect i onFeat ur e does not generate a cover page.

TousepsW it eSubsect i onFeat ur e properly, the caller must carefully identify the different parts of the
PostScript output that it generates. This also encourages the generators of PostScript code to follow the
DSC guidelines to emit structured PostScript code. The sample code supplied with this document follows
this approach and forms a good basis for starting any Download Manager converter module.

Detecting Manual Feed

A low-leve converter needsto be able to respond to the call psLowGet St r eam nf o to inform the caller
whether agiven print job requires manual feed. The Feat ur eUt i | sLi b routinepsRequi r esManual Feed
isavailableto aid alow-level converter’s effortsto respond. A low-level converter that usesthe

psW it eSubsect i onFeat ur e described above to handle its feature code should use

psRequi r esManual Feed to determine if the print job requires manual feed.

Page: 45

TN 1171: LaserWriter 8.6: How to Write a
Converter Plug-in for the Download Manager

OSSt at us psRequi resManual Feed(Col | ection jobHints,
Bool ean *requi resManual FeedP) ;

@ j obHi nt s isaCollection corresponding to the job collection for the download job in question.
® requi resManual FeedP isapointer to aBoolean which isfilled in by the call. If thej obHi nt's
collection indicates that the job requires manual feed *r equi r esManual FeedP iS Set to true;

otherwisg, it isset to false.

Note:
psRequi r esManual Feed does not take into account whether an EPS job is being generated. Because of
this, it isimportant that alow-level converter determine whether EPS output is to be generated and, if o, it

needn’t bother calling psRequi r esManual Feed but instead can ssmply return that the job does not
require manual feed. The sample converter properly handles this situation.

Back to top

Downloadables

FOF
E Acrobat version of this Note (K).

W

Binhexed Sample Code (343K).

Page: 46

To contact us, please use the Contact Us page.
Updated: 21-June-1999

Technotes | Contents
Previous Technote | Next Technote

