TN1141: Extending and Controlling Sherlock

Technote 1141

Extending and Controlling

re

and the Find by Content Libraries

being a description of the Find facilitiesin Mac OS 8.5

TN1141: Extending and Controlling Sherlock Page: 2

CONTENTS M
Overview ac OS 8.5 includes severa enhanced
searching capabilities, known collectively as
Internet Search Plug-ins Sherlock. Previoudy, the Mac OS Find
application allowed users to search mounted disk
e Search Plug-in Files volumes for files based on information such as
e AnExample name, modification date, and file type. Sherlock
e Internet Search and XML Search retains this functionality, but also extends the
Results user's search options to include both the content
e Tipsfor Search Site Administrators of files and the Internet.
e Internet Search Interface Language
BNF

AppleScript Support

e Searching the Internet

e Searching Files
e Indexing Volumes

The Optional KAEOpenDocuments Apple Event
Parameter

Find By Content

e Determining if Find By Content is
Available
Working with Search Sessions
Setting up a Search Session
Performing Searches
Retrieving Information from a Search
Session
e Find By Content Reference

o DataTypes

o Allocation and Initialization of
Search Sessions
Configuring Search Sessions
Executing a Search
Getting |nformation About Hits
Summarizing Text
Getting Information About
Volumes

o Resarving Heap Space

o Application-Defined Routine
e Find By Content C Summary

O0OO0O0O

Acknowledgments

Overview

To perform an Internet search, the Sherlock application sends query information to one or more Internet
search sites. The information returned by the search sitesisinterpreted by the Sherlock application and
then displayed for perusal. As each Internet search site has its own particular format for query and
response information, the Sherlock application uses plug-ins that describe data formats expected and

TN1141: Extending and Controlling Sherlock Page: 3

provided by individual Internet search sites for formatting queries and parsing response data. Internet
search site providersinterested in building their own Internet search site plug-inswill find directions for
doing so in thelnternet Search Plug-ins section.

AppleScript commands for accessing the new content-based search and Internet search facilities provided
by the Sherlock application are available. These include commands for searching by content, a command
for indexing volumes, and commands for performing Internet searches. These commands are discussed
in greater detail in the AppleScript Support section.

The Sherlock application, when asked to open afile that was found by way of a content-oriented search,
attaches information about the search and why the file was selected to the 'odoc’ Apple event it passesto
the Finder. The Finder passes thisinformation along to applications as a property associated with the

" odoc' Apple event. Applications can access this information and use it to perform further search and
display actionswhen it isfound inthe' odoc' event. More information can be found in the

kA EOpenDocuments section.

Find By Content is anew system-level facility implemented as a Code Fragment Manager library. The
Sherlock applicationisaclient of Find By Content and utilizes its search facilities for performing
content-based searches. Developers interested in using the Find By Content services from within their
applications may do so by linking against the PowerPC Code Fragment Manager library named "Find
By Content" (without the quotes). Routine descriptions and examples are provided in the Find By
Content section below.

| nter net Search Plug-ins

The " Search Internet” feature in the Sherlock application allows usersto perform Internet searches using
one or more Internet search engines. The Sherlock application itself contains no information about the
exact data formats expected or generated by individua Internet search engines, when accessing any
particular Internet search site, the Sherlock application uses a search plug-in file that describes the data
formats both expected by the site for queries and produced by the site in its responses to queries. Internet
Search Interface Language (1SIL) is the language used in search plug-in files so that Internet search site
administrators may provide their own search plug-in files.

ASCII text describing the search siteis contained in a search plug-in's data fork. The resource fork may
be used for custom icons, Finder strings, et cetera. Search plug-in files have the creator code' f ndf ' and
thefiletype' i ssp' and will be only recognized by the Sherlock application when they reside in the
"Internet Search Sites’ Folder (FindFolder type="i ssf'). When dropped onto the System Folder's
(closed) icon, files of type' i ssp' are auto-routed to the "Internet Search Sites' folder.

ISIL ismodeled closely after the HTML it isused to describe, so HTML authors familiar with the syntax
should have little or no trouble creating their own search plug-in files. An exact specification of the
language can be found in the Internet Search Interface L anguage BNF section, and the sections that
follow discuss the language in greater detail.

To create a search plug-in file, you will need atext editor program -- Simple Text will do -- and a utility
that will alow you to change the plug-in'sfile type. The basic stepsfor editing a search plug-infile are:

Open or create and then edit the file using your text editor program.
Save any changes you make and close the file.

Changethefiletype of thefilefrom' TEXT' to'issp'.

Test your file (now a Sherlock plug-in) using the Sherlock application.
If satisfied, you're done: stop.

Change thefile type of the search plug-infrom* i ssp' to' TEXT' .

Go to thefirst step in thislist.

o hwhpE

If your text editor edits any file regardless of type and does not change the types of thefilesit edits, you
can skip steps 3 and 5.

The Sherlock application scans the "Internet Search Sites’ only once when it is starting up. Y ou should

TN1141: Extending and Controlling Sherlock Page: 4

restart the Sherlock application each time you would like to test your search sitefile.

Sear ch Plug-in Files

Search plug-in files contain ASCII text formatted similarly to the HTML text used to define web pages.
Accordingly, terminology used to describe HTML is used in this document's description of ISIL syntax.
Information describing an Internet search site is contained in ablock labeled with the SEARCH tag. This
block is used to describe how the Sherlock application sends queriesto an Internet search site, and it
includes information such asthe site's URL,, the HT TP command used to send a query, and query
parameters. Listing 1 illustrates the typical layout for a SEARCH block.

Listing 1. Typical layout for a SEARCH block in asearch plug-in file:

<SEARCH
nane = "<search engi ne name>"
method = ["get" | "post"]
action = "<url to address>"
[update = "<url containing update file>"]
[updat eCheckDays = "<days between update pings>"]
[description = "<hunman-readabl e-description">]
[banner | mage = "<url containi ng banner inmage>"]
[bannerLink = "<url to | oad when banner clicked>"]>
<I NPUT
nane = "<input nanme>"
val ue = "<val ue>"
[mode = "results"]>
<I NPUT
name = "<input name>"
val ue = "<val ue>"
[mode = "browser"] >
<I NPUT
nane = "<input nanme>"
user >
<| NTERPRET
[bannerStart = "<text>"]
[banner End = "<t ext >"]
[rel evanceStart = "<text>"]
[rel evanceEnd = "<text>"]
[resultListStart = "<text>"]
[resultListEnd = "<text>"]
[resultltenBtart = "<text>"]
[resultltenmEnd = "<text>"]
[ski pLocal =true]
[charset = "<text>"]
[resul t Encodi ng = <i nt eger>]
[resul t Transl ati onEncodi ng = <i nt eger >]
[resul t Transl ati onFont = "<text>"]>

</ SEARCH>

TN1141: Extending and Controlling Sherlock

Search blocks begin with the <SEARCH> tag (containing a number of attributes, as described in

Table 1) and end with a</SEARCH> tag. Within atypical search block describing an Internet search site,
there will be one or more INPUT tags and an INTERPRET tag. The SEARCH block attributes describe

the search site, how it is to be accessed, and where updates to the search plug-in file can be found.

Table 1. SEARCH block attributes
Attribute Name Description

nane

net hod

action

updat e

dat eCheckDays

descri ption

banner | mage

banner Li nk

Thisis a human-readable name for the search plug-in.

Themet hod attribute specifies the type of HT TP command that should be
used for communications with the HTTP server. Currently, either " GET"
or " POST" can be specified as the communications method.

Specifiesthe full URL to access the search server. Any relative linksin
theresult list will be localized using this URL.

Thisisan optional attribute specifying where the most recent version of
the search plug-infileis kept. If provided, the Sherlock application will
periodically check this URL for changes. If the file at this URL isfound
to be more recent than the one that is currently installed, the Sherlock
application will prompt the user to download the new file and
automatically install it. The file located at this URL should bein BinHex
format (but not otherwise compressed or encoded).

Thisisan optiona attribute specifying the number of days between times
when the updat e URL is checked for more recent versions of the search
plug-infile. If thisattribute is not present, the default value of 30 daysis
used.

Thisisan optiona attribute containing text describing the search engine,
its capabilities, and the content type of the search results. This text may be
used for display in user interface facilities.

Thisisan optional attribute specifying an URL for an image that will be
displayed in the detail s pane when any result from a query using this
search plug-in is selected. Note: the banner properties of the | NTERPRET
tag will override this setting when thereis a conflict.

Thisisan optional attribute specifying an URL that will be loaded when
the banner image is clicked. Note: the banner properties of the | NTERPRET
tag will override this setting when thereis a conflict.

Page: 5

TN1141: Extending and Controlling Sherlock

Thel NPUT tags are used to construct the datafield used in the GET or POST command sent to the
HTTP server. The datafield is constructed using the HTTP syntax and the et hod field determinesthe
method that is used to query the server. A search block may contain one or more | NPUT tags, but only
one of thel NPUT tags can be a USER | NPUT tag.

| NPUT tags may specify an optional mode attribute. The Sherlock application will send two types of
gueries: one when it is retrieving results and another when it sends a query URL to abrowser. | NPUT
tags specifying the "results’ mode (the default) are used by the Sherlock application when it sends
queriesto search sites that will be displayed in the list of search results in the Sherlock application's
window. | NPUT tags specifying "browser" will be included in query URL s sent to browser applications
for display. For example, the following two | NPUT tags may be present in a search plug-in file:

"resul ts">
"browser" >

<i nput nanme="sv" val ue="AP" node
<i nput nanme="sv" val ue="1S" node

Here, & sv=AP will be sent to the server when the Sherlock application will be used to display the results,

and & sv=ISwill be sent to the server when aweb browser will be used to display the results.

The| NTERPRET tag describes the format of the information returned from search queries sent to the site.
Thisinformation allows the Sherlock application to extract individua search results from aquery and
format them into alist. Table 2 describes the various attributes that may be specified for an | NTERPRET
tag. Each attribute specified in the | NTERPRET tag specifies atext pattern occurring in the result page
delimiting some specific part of the results. When available, the Sherlock application will use these text
patterns to extract search result information from the result pages returned by Internet search sites and
build lists of itemsfor display.

Table 2. | NTERPRET tag attributes
Attribute Name Description

resul tListStart Specifies the text pattern present at the beginning of the list
of search resultsin the result page returned by the server. If
resul tLi st Start isnot specified, then the Sherlock
application will assume the result list begins at the top of
the result page.

resul t Li st End Specifies the text pattern present at the end of thelist of
search resultsin the result page returned by the server. If
resul t Li st End ishot specified, then the Sherlock
application will assume the result list ends at the bottom of
the result page. Theresul t Li st Start and
resul t Li st End attributes are used to define text patterns
delimiting the list of results.

resultltenttart Specifies atext pattern present at the beginning of each
individual item in the list of results. When the text specified
is matched in the result page, only linksimmediately
following the text pattern will be included in thelist of
results displayed for the user.

resul t1tenEnd Specifies atext pattern present at the end of the text used to
describe an item in the list of results. Text between a
result'slink and thistext pattern will be presented in the
detailspane. Theresul titenStart andresul t1tenEnd
attributes are used to define text patterns delimiting
individua itemsin thelist of results returned by the server.

Page: 6

TN1141: Extending and Controlling Sherlock Page: 7

banner St ar t Specifies atext pattern used to locate the banner image to
be displayed for the search results. Thefirst link following
the text pattern will be used asthe banner Li nk and the first
image following the text pattern will be used asthe
banner | mage. If thebanner St art attributeis specified
and the text pattern is matched, then the banner Li nk and
banner | mage will override those attributes specified in the
SEARCH tag.

banner End Specifies atext pattern marking the end of the banner
information. The search for abanner | mage and
banner Li nk will not proceed beyond this text pattern in the
result page. The text patterns defined in the banner St ar t
and banner End attributes are used to delimit the banner
information that may be present in the result page. If
banner information isfound in the result page, then it will
be used instead of any banner information specified in the
SEARCH tag; otherwise, if no banner information is found,
then the default banner information specified in the SEARCH
tag will be used.

rel evanceSt art Specifies atext pattern marking the beginning of the
relevance information provided for each itemin the list of
results. When present, the first numeric text found after the
pattern will be interpreted as the relevance of the item. Note:
the numbers used to represent relevance scores should be
between 0 and 100.

rel evanceEnd Specifies atext pattern marking the end of the relevance
information. The search for relevance information will not
proceed beyond this text pattern. The text patterns defined
inther el evanceSt art andr el evanceEnd attributes are
used to delimit the relevance score for each individua
search result. Note: the numbers used to represent
relevance scores should be between 0 and 100.

skipLoca ski pLocal isaboolean attribute. If ski pLocal istrue,
then the Sherlock application will ignore links that refer to
the same host as specified in the ACTI ON attribute in the

SEARCH tag.

char set The expected encoding of the HTML results. This attribute
may be set to any vaue appropriate for the char set
HTML metatag.

resul t Encodi ng The encoding that the HTML results are in. Thismay be

any integer constant defined in <Text Conmon. h>.

resul t Transl ati onEncodi ng The encoding that the HTML results should be trand ated
to. Thismay be any integer constant defined in
<Text Cormon. h>.

resul t Transl at i onFont the preferred font for the trandated text

TN1141: Extending and Controlling Sherlock Page: 8

The attributeschar set , resul t Encodi ng, resul t Tr ans| at i onEncodi ng, and

resul t Transl ati onFont arefor interpreting results returned with different character encodings. If the
result page containsthe HTML metatag "charset”, then the Sherlock application will use the Text
Encoding Converter to trandate the document into a Macintosh encoding.

It is possible, though, that the Sherlock application will not be able to recognize atext encoding by name.
For these cases, search plug-in creators can explicitly specify the character encoding that will be used in
responses to queries by using ther esul t Encodi ng attribute. The vaue specified for the

resul t Encodi ng attribute can be any integer constant defined in the file <Text Conmon. h>. Similarly,
resul t Transl at i onEncodi ng is used to specify the text encoding that the document should be
trandated into before processing continues. The value used for this attribute is a so an integer constant
from <Text Conmon. h>.

For example, if aresult page returned from a search site was encoded using the "euc-jp" character set (in
<Text Conmon. h> "euc-jp" is defined as k Text Encodi ngEUC_JP = 2336) and we would prefer that it be
trandated to Mac Japanese (defined as k Text Encodi ngMacJapanese = 1 in <Text Conmon. h>) and
displayed using the "Osaka" font, then the following character trandation values would be specified:

<interpret

resul t Encodi ng = 2336

resul t Transl ati onEncoding = 1
resul t Transl ati onFont = "Osaka"
>

| NTERPRET tags are optional, and all of the attributes within an | NTERPRET tag are optional aswell. If a
SEARCH block does not contain an | NTERPRET tag, then every link found in the result page will be treated
as aresult and the Sherlock application will present the entire list to the user as the results of her query

An Example

In this hypothetical example, we assume the Internet search site that we are writing the search plug-in file
for islocated at the URL <http://clarus.apple.com>. (As of thiswriting, this site does not exist, athough
the following text iswritten asif the site does exist. If the site did exist, it would presumably enable
visitorsto search for information regarding Clarus the Dogcow. An explanation of how visitors other
than dogcattle would make use of the search results is beyond the scope of this document and is | eft as
an exercise for the reader.)

TN1141: Extending and Controlling Sherlock

Step 1. Describethe sitein the opening SEARCH tag.

Using your web browser, go to the search site and view the HTML source for the web page. Somewherein the
HTML, you should find a FORMtag as follows:

<formaction="http://clarus.apple.com Titles" nethod="get" nane="Search">

Or, it ispossible that the action may be specified asalocal string asfollows:

<formaction="/Titles" method="get" name="Search">

If the action is specified asalocal string, then prefix it with the addressin the SEARCH tag's action attribute.
Using the information found here, we can construct the opening SEARCH tag for the search block:

<search
nane="Cl ar us"
description = "The Carus Search Site"
action="http://clarus.apple.com Titles/"
met hod=get >

From the HTML source, we were able to determine that the actionisht t p: // ¢l arus. appl e. com Ti t | es/
and the method appropriate for communicating with the siteisget . The name of the site and the description
are values we set ourselves.

Step 2: Definethe INPUT tags.

There are two ways to determine what inputs are expected by an Internet search site. The first method is
to manually perform a query and look at the URL that is sent to the server. The second is to pick through
the HTML to discover the information.

The Query Method. Looking at the query information is the ssmplest method. For example, if we go to
the search site in our web browser and type the query string "coffee" and start a search, then we may
observe aURL that lookslike this:

http://clarus. appl e. com Ti tl es?qt =cof f ee&h=10

From which, we can locate the inputs. The inputs come after the"?" and are separated by ampersand
characters[&]. In this query, the inputs are as follows:

gt =cof f ee
nh=10

Using thisinformation, we can construct the following two INPUT tags.

<i nput name="qt" user>
<i nput name="nh" val ue="10">

There may be some optional parameters available on a search site, so trying different options and queries
may yield more useful information.

TheHTML Method. If the inputs are not present in the URL then they must be determined by looking
at the HTML source. Here, we look for the | NPUT tags present in the search site's web page to determine
what will be used to describe the inputs. For example, suppose the first few lines of the HTML for a
search site were formatted as follows:

<formaction="/Titles" method="get" name="Search">

<tabl e wi dt h="500" cel | spaci ng=0 cel | paddi ng=3 bor der =0>
<tr><td col span=4>

Search</td>

<td align=center>Ti ps</ b></ a>

Page: 9

TN1141: Extending and Controlling Sherlock

</ltds</tr>

<tr><td col span=5>

<i nput type="text" name="qt" value="" size="25" MAXLENGTH=255>
</td></tr>

<I NPUT TYPE=hi dden NAME="nh" VALUE="10">

</ tabl e>

</ fornp

Between the <f or n»> and </ f or m» tags, there are the two inputs relevant to accessing this search engine:

<input type="text" name="qt" value="" size="25" MAXLENGIH=255>
<I NPUT TYPE=hi dden NAME="nh" VALUE="10">

Again, thisinformation can be used to construct the following two | NPUT tags:

<i nput name="qt" user>
<i nput nanme="nh" val ue="10">

Experimenting with these input parameters and writing different types of query URLSs can provide useful
information about their meaning and use. For instance, after writing several variations of the query URL,
we discovered that nh specifies the number of hits that should be returned in aresponse to a query.
Rather than 10 hits at atime, we would prefer to see 25 hits, so we change the inputs as follows:

<i nput name="qt" user>
<i nput nanme="nh" val ue="25">

Now that the inputs have been determined, there is enough information to put together a complete search
plug-infile:

<search
name="Cl arus Test"
description = "The Clarus Search Site"
action="http://clarus.apple.com Titles/"
met hod=get >

<i nput name="qt" user>

<i nput nanme="nh" val ue="25">

</ search>

However, in thisform, although it will be possible for queries to be sent and results to be displayed, the
lack of an | NTERPRET tag means that the results may not be displayed correctly. To ensure that they are,
an | NTERPRET tag should be added.

Step 3: Describe theresultsin thel NTERPRET tag.

Determining the text delimiters located in the responses returned by Internet search engines requires
examination of the HTML source returned as the response to one or more queries. From this data, we
can determine text patterns delimiting interesting parts of the response information. For example,
suppose the following were returned as a response to a query:

Listing 2. A sample HTML response to aquery:

Page: 10

TN1141: Extending and Controlling Sherlock

<HTM_>
<HEAD><TI TLE>Sanpl e Resul t s</ Tl TLE></ HEAD>
<BODY>

<IM5 SRC="http://ww. appl e. conl mai n/ el ement s/ apple.gif"
ALT="Appl e Conputer"

</ A>

<pP>

<SMALL>90%</ SVALL>

Hot News</ A>
Appl e Hot News - http://ww. appl e. com hot news

Appl e Comput er </ A>

</ P>

<pP>

<SMALL>85%</ SMALL>

Appl e Product s</ A>

Appl e - Products - http://ww. appl e. conf products

Appl e Conput er </ A>

</ P>

</ BODY>

</ HTM.>

From thisinformation, we can see that the banner section is delimited by the text patterns "<BODY >" and
"<P>" asfollows:

banner St art =" <BODY>"
banner End=" <p>"

The List of results are delimited by the text patterns "" and "</BODY >":

resul tListStart=""
resul tLi st End=" </ BODY>"

Each item in thelist of resultsis bracketed by the text patterns "<P>" and "</P>":

resultltenttart ="<p>"
resul t1tenEnd="</P>"

And, the relevance score for each item is bracketed by the text patterns"<SMALL>" and "</SMALL>":

rel evanceSt art =" <SVALL>"
rel evanceEnd=" </ SMALL>"

Putting this al together, the complete search plug-in file would have the following contents:

<search
nane="C arus Test"
description = "The CUarus Search Site"
action="http://clarus.apple.com Titles/"
met hod=get >
<i nput nanme="qt" user>
<i nput name="nh" val ue="25">
<interpret
banner St art =" <BODY>"
banner End="<P>"
resultListStart=""
resul t Li st End=" </ BODY>"

Page: 11

TN1141: Extending and Controlling Sherlock

resul tltenBtart="<p>"

resul t1tenEnd="</P>"

rel evanceSt art =" <SVALL>"

rel evanceEnd=" </ SMALL>" >
</ sear ch>

I nter net Search and XML Search Results

It is possible that a search engine may provide a separate machine-readable interface such as Extensible

Markup Language (XML).

Listing 3. A sample XML document:

<sear chResponse>

<adverti senment >

<ing src="ad.gif">
</ a>

</ adverti senent >

<sear chResul t s>
<resultltene
<r el evance>67%/r el evance></ b>
<link>Titl e</link>

<sunmar y>Sunmmar y</ sunmar y>
</resultltenp
</ searchResul t s>
</ sear chResponse>

At the time of this document's creation, the XML specification is still under devel opment; however, using
the current state of the standard, the Internet Search Interface can be easily configured to interpret XML
result lists. For example, the | NTERPRET tag shown below illustrates how a search plug-in could be set up

to interpret the XML document shown in Listing 3.

<interpret

banner Start = "<adverti senent >"
banner End = "</ adverti senent >"
resultListStart = "<searchResul t s>"
resul tLi stEnd = "</searchResul t s>"
resultlitenBtart = "<resultltem”
resultltenEnd = "</resultltenp"

rel evanceStart = "<rel evance>"

rel evanceEnd = "</rel evance>">

Page: 12

TN1141: Extending and Controlling Sherlock

Tipsfor Search Site Administrators
Comment-style Delimiters

The Sherlock application uses information provided by search plug-in files to extract information from
HTML results returned from Internet search sites. Specifically, information in search plug-in filesis used
to find delimiters in the response information for the banner information and the search results. The
guestion of the Sherlock application being able to find and display results consistently depends entirely
on the search site remaining in sync with the formats specified in the search plug-in file. When the
formats specified in the search plug-in file are based on anecdotal properties found in one or two search
results files as in the example above, this sort of desynchronization can occur quite easily whenever small
formatting changes are made in the result pages generated by a search site.

To avoid this problem, it is suggested that search site administrators include comments delimiting the
interesting parts of response pages. By doing so, search plug-in files can be built to use the comment text
as delimiters, and HTML formatting information included in result pages can be modified without risk of
invalidating search plug-in files that have been built to access the search site. For example, the
INTERPRET tags given below could be used to interpret the HTML response information shown in
listing 4.

banner St art ="<!-- BANNER START -->"

banner End="<!-- BANNER END - ->"
resultListStart="<!-- RESULT LIST START -->"
resul tLi stEnd="<!-- RESULT LIST END -->"
resultlitenBtart="<!-- RESULT | TEM START -->"
resul tltenEnd="<!-- RESULT | TEM END - ->"

rel evanceStart="<!-- RELEVANCE START -->"

rel evanceEnd="<!-- RELEVANCE END - ->"

Using these text delimiters, the search provider can freely add additional formatting information to their

response pages without being concerned about invalidating any search plug-in files currently in use. This
approach is strongly recommended for all search site providers creating search plug-in files.

Listing 4. A smple HTML response to a query that includes delimiting comments:

Page: 13

TN1141: Extending and Controlling Sherlock

<HTM_>
<HEAD><TI TLE>Sanpl e Resul t s</ Tl TLE></ HEAD>
<BCODY>

<!'-- BANNER START -->

<I M5 SRC="http://ww. appl e. coni mai n/ el enent s/ apple.gif"
ALT="Appl e Conputer"

</ A>

<!'-- BANNER END - ->

<!-- RESULT LI ST START -->

<l-- RESULT | TEM START -->

<p>

<SMALL>

<!-- RELEVANCE START -->

90%

<!-- RELEVANCE END - ->

</ SMALL>

Hot News</ A>
Appl e Hot News - http://ww. appl e. com hot news

Appl e Conput er </ A>
</ P>

<!-- RESULT I TEM END - - >

<l-- RESULT | TEM START -->

<pP>

<SMALL>

<!-- RELEVANCE START -->

85%

<!'-- RELEVANCE END - - >

</ SMALL>

Appl e Product s</ A>

Apple - Products - http://ww. appl e. conf product s

Appl e Comnput er </ A>
</ P>

<!-- RESULT I TEM END - - >

<l'-- RESULT LIST END -->

</ BODY>
</ HTM_>

Page: 14

Banner Advertisements

The Sherlock application uses the firss HTML anchor (that includes a hypertext jump and an image)
found in the banner section as the banner image. For best results, banner advertisements should be
enclosed in an HTML anchor that includes both an hypertext jump (HREF attribute) and an IMG tag that
includes a SRC attribute and, preferably, an ALT attribute. For example, the HTML anchor shown below

illustrates the suggested format for banner advertisements:

<IM5 SRC="http://ww. appl e. conf mai n/ el ement s/ apple.gif"
ALT="Appl e Conputer"

</ A>

Result Lists

When interpreting search results, the Sherlock application identifies results by looking for HTML
anchors containing hypertext jump attributes. At least one anchor including an hypertext jump (HREF
attribute) should occur between the text patterns specifiedinresul t1tenStart andresul t1tenEnd or
resul tItenstart. The Sherlock application will attempt to interpret HTML results between these text

patterns and expectsto find at least one such anchor.

I nternet Search Interface Language BNF

All tags are case-insensitive and white space isignored.

<search-interface>

<search-start>
<search-attri bute>

<nane>

<net hod>

<action>

<updat e>

<updat eCheckDays>
<descri pti on>
<banner -1 i nk>
<banner -i mage>

<input-interp-list>
<i nput >
<input-attribute>
<val ue>

<user - sel ect >

<interpret>

<interpret-attribute>::

<rl-start>

<rl -end>
<ri-start>
<ri-end>

<banner-start>
<banner - end>
<rel-start>
<rel -end>

<ski p- I ocal >

<attrib-assi gn>
<attrib>

<quot est r >
<doubl equot est r >

<search-start> <input-interp-1list> <search-end>

TN1141: Extending and Controlling Sherlock

"<search " (<search-attribute> <reqg-S>)* ">"
<nanme> | <nethod> | <action> | <update> |
<updat eCheckDays> | <descri ption> |

<banner-1ink> |

<banner - i mage>

"name" <attrib-assign>

"met hod" <attrib-assign>

"action" <attrib-assign>

"updat e" <attrib-assign>

"updat eCheckDays" <attri b-assi gn>
"description" <attrib-assign>
"banner|ink" <attrib-assi gn>
"banneri mage" <attrib-assign>

<i nput >* <interpret>? <input>*
"<input " (<input-attribute> <req-S>)* ">"
<name> | <val ue> | <user-sel ect>

"val ue" <attrib-

"user"

<interpret " (<interpret-attribute> <reg-S>)* ">

<rl-start> | <rl
<banner-start> |
<rel-end> | <ski

assi gn>

-end> | <ri-start> |

<banner-end> | <rel-

p- | ocal >

"resultListStart" <attrib-assign>

"resul t Li st End"

<attrib-assign>

"resultltenBtart" <attrib-assign>

"resul tltenknd"

<attrib-assign>

"banner Start" <attrib-assign>
"banner End" <attri b-assi gn>

"rel evanceStart" <attrib-assign>
"rel evanceEnd" <attri b-assi gn>

"ski pLocal "

<opt-S> "=" <opt-S> <attrib>
<quot estr> | <doubl equotestr> | <noquotestr>

DN RS

AR B

<ri-end>
start> |

Page: 15

TN1141: Extending and Controlling Sherlock Page: 16

<noquot est r > R A
<req-S> ci= (#x20 | #x09 | #x0OD | #xO0A) +
<opt -S> D1= (#x20 | #x09 | #xOD | #x0A)*

AppleScript Support

The new search facilities provided by the Sherlock application can be accessed from AppleScript scripts.
AppleScript scripts can ask the Sherlock application to perform an Internet search using one or more
Internet Search Sites or search for files with specific content on local or remote volumes. Each of these
commands returns the results of the search as a string that can be used elsewhere in your script.
Optionally, AppleScript scripts can ask the Sherlock application to display the results of the search.

Sear ching the Internet

Internet based searches use the "search Internet” command. The "search Internet” command allows
AppleScript scripts to specify the Internet search sites that will be used in the search along with query
information. The query information can be provided as either a string or as areference to afile containing
the query information (but not both). Results of the search are returned asa string, and it is possible to
specify that the Sherlock application display the results. Definition 1 includes the "search Internet” entry
from the Sherlock application’'s AppleScript dictionary.

Definition 1. The "search Internet” dictionary entry from the Sherlock application

sear ch Internet: Search the Internet
sear ch Internet string -- the Internet sites to search, optional

[for string] -- the text to look for...

[using dlias] -- ...or asaved Find file containing the query
[display boolean] -- Specifies whether or not to display
the result (default is without display)

Result: string -- the URLs that match the query

It isimportant to remember that the "for" and "using" parameters are mutually exclusive and cannot be
used together in one command. Either the query information is provided asa string or it is provided in a
file. If the display parameter istrue, then the Sherlock application will display the results of the search.

The"using" parameter allows query information stored in afile to be used rather than a query string. To
create such afile, use the " Save Search Criteria' command in the Sherlock application's File menu.

The direct object to thiscommand isalist of Internet search site names. If thelist of Internet search site
names is not specified and the " for string” parameter is used, then the same sites that were used in the
last Internet search will be used in the search. Thelist of Internet sitesisignored when the "using alias’
parameter is specified.

TN1141: Extending and Controlling Sherlock

Sear ching Files

Two AppleScript commands are provided for access to the Find by Content facilities in the Sherlock
application. The first command allows AppleScript scripts to perform searches based on contents of files
and the second allows AppleScript scriptsto create or update index files on particular volumesthat are
used by Find By Content. The AppleScript dictionary entry for the "search™ command is shownin
Definition 2 and the "index volumes' command is shown in Definition 3. The "search” command allows
AppleScript scripts to perform searches based on file contents.

Definition 2. The "search” dictionary entry from the Sherlock application

sear ch: Search disks or servers
sear ch aias -- the volumes or folders to search, optiona

[for string] -- the text to look for...

[similar to alias] -- ...or file(s) containing text for Find
by Content...

[using dlias] -- ...or asaved Find file containing the query
[display boolean] -- (default is without display) Specifies
whether or not to display the result

Result: dlias -- the files that match the query

In the "search" command, the parameters "for”, "similar to", and "using" are mutually exclusive
parameters and may not be used together in the same command.

Asin the Internet search command, the "using" parameter allows query information stored in afile to be
used rather than a query string. To create such afile, use the " Save Search Criteria’ command in the
Sherlock application's File menu.

The direct object to the "search™ command isalist of volumes or folders to search. If no list of volumes
is provided and either the "search for" or the "search similar to" parameter is used, then the "search"
command will search al local, indexed volumes. When the "using" parameter is specified, the list of
volumesisignored.

Indexing Volumes

Before the Find By Content facilities can be used to search a volume, the volume must contain an index.
Index files are stored in an invisible folder called " TheFindByContentFolder" located in a volume's root
directory and they contain necessary information for performing content-based searches. A volume
cannot be searched by the Find By Content facilities unless it contains an index. AppleScript scripts can
ask the Sherlock application to either update or create an index file for one or more volumes.

Definition 3. The "index volumes' dictionary entry from the Sherlock application.

index volumes: Create or update the index(es) of the specified volume(s)

index volumes dlias -- list of volumes

Page: 17

TN1141: Extending and Controlling Sherlock

The Optional kAEOpenDocunent s Apple Event Parameter

To provide applications with information useful in selecting and displaying parts of documentsin which
users are most likely interested, when the user opens afile that was located by way of a content-based
search from within one of the Sherlock application's windows, the Sherlock application will insert
information about the search that led to the file into the k AEGpenDocunent s (' odoc') Appleevent that is
used to open thefile. The Sherlock application opensfiles by sending kAEQpenDocunent s Apple events
to the Finder. The Finder, when receiving the k AEQpenDocunent s Apple event, launches the application
owning the document and passes the event to the application.

This type of kAEQpenDocument s Apple event contains an additional key AEPr opDat a (defined in
AERegi st ry. h) parameter. Among the propertiesin the key AEPr opDat a parameter there isone
identified using the keyword ' srwd' that containsthe origina query string used to locate the file. The
"srwd' property'sdataisformatted as a C-style string.

Listing 5. Retrieving the search words from and ' odoc' Apple event:

OSErr Get Sear chWor dsFr omAppl eEvent (Appl eEvent * i nAppl eEvent,
char* theText, long *iolLength)
{

CSErr err;
DescType out Type;
AERecord propData = {typeNul |, NULL};

/* set up our variables */
if (ioLength == NULL || theText == NULL) return parankrr;

/* get the property data fromthe Apple event */
err = AEGet Par amDesc(i nAppl eEvent,
keyAEPr opDat a, typeAERecord, &propData);

/* extract the search words information */
if (err == noErr)
err = AEGet KeyPtr(&propData, 'srwd', typeChar,
&out Type, theText, *iolLength, iolLength);

/* clean up and return */
AEDi sposeDesc(&propDat a) ;
return err;

Page: 18

TN1141: Extending and Controlling Sherlock

The Example shown in Listing 5 illustrates how an application may extract the query information from an
kAEQpenDocunent s Apple event. Here, the routine attempts to retrieve the key AEPr opDat a parameter
and then it attemptsto extract the' srwd' information from the property data. If no problems occur and
the' srwd' datais present, then the original query text will be returned in the buffer pointed to by
theText, whose length must be passed in ioLength. On return, *i oLengt h will be set to the length of the
string, and the function will return noErr .

Note: It ispossible for Get Sear chwor dsFr omAppl eEvent to returnnokEr r, but to have aso returned
only a portion of the query text. Y ou should compare the size returned ini oLengt h to the original value
passed in. If the value returned is larger than the original value, you should resize the buffer to the size
returned, and then call Get Sear chWor dsFr omAppl eEvent again.

The presence of this additional parameter will not affect the behavior of existing applications built
according to the guidelines set forth in the "Responding to Apple Events' chapter of Inside Macintosh
I nterapplication Communication. However, devel opers may choose to take advantage of this new
information when it is present in an Apple event as a clue pointing to the part of the document that the
user would like to seefirst. (The presence of the' srwd' information in an kAEQpenDocunent s Apple
event impliesthat the user conducted a search by content and then selected and opened the document
from within the list of files that were found in the search.) For example, an application may choose to
highlight all occurrences of the wordsin the string, view the first occurrence of aword from the string, or
open its find window with one or more of the query terms.

In some cases, however, it is possible that some or al of the wordsin the query string may not appear in
the document being opened. In anormal search based on a query phrase, Find By Content will locate
filesthat contain one or more of the words in the query. But, when a user selects one or more documents
found in a previous search and requests "similar" documents, then it is possible that some of the
documents found may not contain any of the words from the query string specified in the original search.
Developers accessing the' srwd' property should plan for the possibility that some or all of the keysin
the query string may not be present in the document being opened.

Page: 19

Find By Content

The Find By Content (FBC) facilities provided in Mac OS 8.5 are implemented in a PowerPC Code
Fragment Manager library that residesin the "Extensions' folder. The Sherlock application isaclient of
FBC, accessing FBC services through this shared library. Developer applications can also access the
search facilities provided by thislibrary. This section describes how developers can create products that
access the new FBC facilities through this shared library.

Compiler interfacesto FBC are found in the C header file <Fi ndByCont ent . h>. And, for linking
purposes, the Code Fragment Manager library implementing FBC is named "Find By Content” (without
the quotes). Developers using the FBC routines described herein should weak-link against thislibrary,
and then check the Gestalt selectors from within their application before calling any of these routines.

TN1141: Extending and Controlling Sherlock

Determining if Find By Content is Available

FBC definestwo Gest al t selectors. Clients of FBC must verify that correct version of the
implementation is available before making any of these calls, and will want to check the FBC indexing
state before performing any searches.

enum
gest al t FBCVer si on = '"fbecv',
gest al t FBCCur r ent Ver si on = 0x0011

b

Thegest al t FBCVer si on selector returns the version of FBC that isinstalled on the compuiter.
Developers can compare this version with the version of the interface with which they have compiled their
programs using thegest al t FBCCur r ent Ver si on to determineif it is safe to make any calsto FBC. If
gest al t FBCVer si on produces some version other than the version of the interface your application has
been compiled to run with, then your application should not make any callsto FBC.

enum
{
gest al t FBCI ndexi ngSt at e = '"fbci',
gest al t FBG ndexi ngSaf e = 0,
gest al t FBCi ndexi ngCri ti cal =1

}s

Thegest al t FBCI ndexi ngSt at e selector returns information about the current indexing status of FBC.
At any given time, theindexing status will be either gest al t FBCi ndexi ngSaf e or

gest al t FBG ndexi ngCri ti cal . If the statusisgest al t FBG ndexi ngCri ti cal , then any search will
result in asynchronous wait until the state returnsto gest al t FBG ndexi ngSaf e. When the FBC
indexing state returned isgest al t FBG ndexi ngSaf e, then all searches will execute immediately. To
avoid synchronous waits, developers should check the gest al t FBCI ndexi ngSt at e selector and only
make calls to FBC when the indexing state returned isgest al t FBG ndexi ngSaf e.

Working with Search Sessions

FBC dlows client applications to open and close a"search session”. A search session contains al of the
information about a search, including the list of matched files after the search is complete. Clients of FBC
can obtain references to search sessions, modify them, and query their state using the routines defined in
this section. References to search sessions are defined as an opaque pointer type owned by the FBC
library.

typedef struct OpaqueFBCSear chSessi on* FBCSear chSessi on;

Developers should only access the search session structure using the routines defined herein. This
includes using the appropriate FBC routines for duplicating and disposing of search sessions. Search
sessions are complex memory structures that contain pointers to other data that may need to be copied
when a search session is duplicated or disposed of when a search session is deallocated.

The normal sequence of actions one takes when using the FBC library isto create a search session,
configure the search session to target specific volumes, perform the search, query the search results, and
dispose of the search. Other possibilities for searches include the ability to reinitialize a search session
and use it over again for another search, to provide backtracking by cloning search sessionsand
performing additional searches using the clones, or to limit search results to files found in particular
directories.

Page: 20

TN1141: Extending and Controlling Sherlock

Setting up a Search Session

Creating anew session and preparing it for a search, as shown in Listing 6, requires at least two callsto
the FBC library. In this example, a new search session is created and it is configured to search all local
volumes that contain index files. The call to FBCAddAI | Vol unesToSessi on automatically configuresthe
search session to search all indexed volumes.

Listing 6. Setting up a search session to search al local, indexed volumes:

/* Sinpl eSet UpSession al |l ocates a new search session and
returns a FBCSearchSession value in the *session
paraneter. if an error occurs, *session is left
unt ouched. */

CSErr Si npl eSet UpSessi on(FBCSear chSessi on* sessi on)
{

CSErr err;

FBCSear chSessi on newsessi on;

/* set up our local variables */
err = noErr;
newsessi on = NULL;
if (session == NULL) return parangtrr;

/* create the new session */
err = FBCCreat eSear chSessi on(&ewsessi on) ;
if (err = noErr) goto bail;

/* search all available |ocal volumes */
err = FBCAddAI | Vol unesToSessi on(newsessi on, fal se);
if (err !'= noErr) goto bail;

/* store our result and | eave */
*sessi on = newsessi on;
return noErr;

bai | :
i f (newsession != NULL)
FBCDest r oySear chSessi on(nhewsessi on) ;
return err;

FBC provides a complete set of routines for devel opers wanting more control over what volumeswill be
searched by the search session. Listing 7 illustrates how a new search session could be configured to
search a particular set of volumes.

Listing 7. Setting up a session to search a particular set of volumes:

Page: 21

TN1141: Extending and Controlling Sherlock

/* Set UpVol uneSessi on all ocates a new search session and

returns a FBCSearchSession value in the *session paraneter.
if vCount is not zero, then vRef Nunms points to an array of

vol une reference nunbers for volunes that are to be searched.

if any of the vRef Nuns refer to a volune wi thout an index,
parankErr is returned. */

OSErr Set UpVol uneSessi on (FBCSear chSessi on* sessi on,

{

U ntl6 vCount, SIntl6 *vRef Nuns)

CSErr err;
U ntl6 i;
FBCSear chSessi on newsessi on;

/* set up our |ocal variables */
err = noErr;
newsessi on = NULL;
if (vCount == 0) return parankrr;
if (session == NULL) return parangtrr;
if (vRef Nums == NULL) return parantrr;

/* create the new session */
err = FBCCreat eSear chSessi on(&ewsessi on) ;
if (err = noErr) goto bail;

/* search the volunes specified in vRef Nuns */
for (i=0; i<vCount; i++)

i f (!FBCVol unel sl ndexed(vRef Nuns[i])) {
err = parantrr;

goto bail;
} else {
err = FBCAddVol uneToSessi on(newsessi on,
vRef Nunms[i]);
if (err = noErr) goto bail;

/* store our result and | eave */
*sessi on = newsessi on;
return noErr;

bai I :

i f (newsession != NULL)
FBCDest r oySear chSessi on(hewsessi on) ;
return err;

Page: 22

TN1141: Extending and Controlling Sherlock

In this example, the FBCAddVol umeToSessi on routineis used to add volumes to the search session.
Other routines for querying what volumes are currently targeted by a search session and removing
volumes from that list are provided.

Once a search session has been configured to search a number of volumes, it can be used again after a
search has been conducted without having to reconfigure its target volumes. After performing a search
and examining the results, the search session can be prepared for another search by calling the routine
FBCRel easeSessi onHi t s. Thisroutine releases al of the search results from the last search while
leaving the list of target volumesintact.

Making a copy of asearch session using the routine FBCCl oneSear chSessi on will copy the list of
target volumes to the duplicate search session.

Performing Sear ches

When FBC performs a search, it will generate alist of filesthat were matched. Thislist isreferred to as
the "hits', and it is stored inside of the search session. FBC can be asked to perform a content-based
search using a query string containing alist of words, asimilarity search based on one or more hits
obtained in a previous search, or asimilarity search based on alist of examplefiles. Listing 8 illustrates
how a query-based search can be performed. Here, the query is used to search for matching files on all
local indexed volumes.

Listing 8. A Query based search of al local, indexed volumes:

OSErr Si npl eFi ndByQuery (char *query, FBCSearchSession *session)
{

CSErr err;

FBCSear chSessi on newsessi on

/* set up locals, check paraneters... */
if (query[0] == 0) return parantrr;
if (session == NULL) return parangkrr;
newsessi on = NULL;

/* allocate a new search session */
err = Sinpl eSet UpSessi on(&ewsessi on) ;
if (err !'= noErr) goto bail

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySearch(newsessi on, query,
NULL, 0, 100, 100);
if (err !'= noErr) goto bail

/* save the results and return */
*sSessi on = newsessi on
return noErr;

bai | :
i f (newsession != NULL)
FBCDest r oySear chSessi on(hewsessi on) ;
return err;

Page: 23

TN1141: Extending and Controlling Sherlock

Searches conducted using either the routine FBCDoExanpl eSear ch or the routine

FBCBI i ndExanpl eSear ch can be used to locate files that are similar to other files. Similarity searches
will locate files with similar content to the files specified as examples. Examples can be specified as
indexes referring to hits obtained from previous searches, or asalist of FSSpec records referring to files

on disk.

All three of the search routines-- FBCDoExanp! eSear ch, FBCBI i ndExanpl eSear ch, and

FBCDoQuer ySear ch--provide support for limiting the search resultsto files residing in one or more
directories. To do this, clients provide alist of FSSpec records referring to target directories. The example

in Listing 9 illustrates how to limit the results of a search to a particular set of directories.

Listing 9. Searching a particular set of directories:

enum {

b

i f

for

err

kMaxVol s = 20,
maxH ts = 10,
maxHi t Terns = 10

OSErr RestrictedFi ndByQuery (char *query, U nt16 dirCount,

FSSpec* dirLi st,
FBCSear chSessi on* sessi on)

U nt16 vCount, i;
SInt16 vRef Nuns[kMaxVol s], nor mal Vol ;
FBCSear chSessi on newsessi on;

vCount = O;
newsessi on = NULL;
if (dirList == NULL || dirCount == 0) return parangrr;

if (query == NULL) return parantrr;
(*query == 0) return parankrr;
if (session == NULL) return parangtrr;

/* collect all of the unique volune reference nunbers
fromthe list of FSSpecs provided in the paraneters. */
(i=0; i<dirCount; i++) {

Bool ean found;

HPar anBl ockRec pb;

/* ensure the vRefNumis a vol une
ref erence nunber */
pb. vol umeParam i oVRef Num = dirList[i].vRef Num
pb. vol umePar am i oNanmePtr = NULL;
pb. vol umrePar am i oVol | ndex = 0;
if ((err = PBHGet VI nfoSync(&pb)) !'= noErr) goto bail;
nor mal Vol = pb. vol unePar am i oVRef Num

/* make sure it's not already in the list */
for (found = false, j=0; j<vCount; j++)

if (vRefNuns[j] == normal Vol) {
found = true;
br eak;

}

/* add the volunme to the list */
if (!found & vCount < kMaxVol s)
vRef Nuns[vCount ++] = nor mal Vol ;

/* set up a session to use the volunmes we found */
= Set UpVol uneSessi on(&ewsessi on, vCount, vRef Nuns);

Page: 24

TN1141: Extending and Controlling Sherlock Page: 25

if (err !'= noErr) goto bail;

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySear ch(newsessi on, (char*)queryTxt,
dirList, dirCount, maxH ts, maxHitTerns);
if (err = noErr) goto bail;

/* save the result and return */
*sessi on = newsessi on;
return noErr;

bai I :
if (newsession != NULL)
FBCDest r oySear chSessi on(hewsessi on) ;
return err;
}

Here, volume reference numbers extracted from the array of FSSpec records referring to target directories
provided as a parameter are used to configure the volumes that will be searched by the search session.
Then, thelist of target directoriesis passed to the FBCDoQuer ySear ch.

Retrieving Information from a Search Session

After asearch is conducted using a search session, the search session may contain information about one
or more matching files. Clients can access information about individual hitsincluding the file's FSSpec
record, the words that were matched in thefile, the "score" assigned to the file during the last search
operation, and additional information about thefile. Listing 10 illustrates how one could obtain
information about each hit returned by a search.

Listing 10. Enumerating all of the files found in a search session:

typedef OSErr (*HitProc) (FSSpec theDoc,
fl oat score,
Ul nt 32 nTer s,
FBCWor dLi st hi t Ter ms) ;

/* Sanpl eHandl eHits can be called after a search to enunerate
the search results. For each search hit, the hitFil eProc
function paraneter is called with information describing
the target. */

OSErr Sanpl eHandl eHi t s (FBCSear chSessi on sessi on,

Hit Proc hitFileProc)

{

CSErr err;

U nt32 hitCount, i;
FSSpec t ar get Doc;

float targetScore;
FBCWr dLi st target Ter ns;
Ul nt 32 nuniTer ns;

/* set up locals, check paraneters */
target Ternms = NULL;
if (hitFileProc == NULL) return parantrr;
if (session == NULL) return parangtrr;

/* count the nunber of hits in this session */

TN1141: Extending and Controlling Sherlock Page: 26

err = FBCGet Hi t Count (sessi on, &hitCount);
if (err = noErr) goto bail;

/* iterate through the hits */
for (i =0; i < hitCount; i++) {

/* get the target docunent's FSSpec */
err = FBCGet Hi t Docunent (session, i, &t argetDoc);
if (err I'=noErr) goto bail;

/* get the score for this docunent */
err = FBCGet Hi t Score(session, i, & argetScore);
if (err = noErr) goto bail;

/* get a list of the words matched in
this docunent */
nunler ms = maxHit Ter ns;
err = FBCGet Mat chedWirds(session, i, &nunierns,
&t arget Terms) ;
if (err = noErr) goto bail;

/* call the call back routine provided as a
paraneter to do sonething with the information. */
err = hitFileProc(&targetDoc, score, nunilerms,
target Terms);
if (err = noErr) goto bail;

/* clean up before noving to the next iteration. */
FBCDest r oyWor dLi st (t arget Terns, nuniler ms) ;
target Terms = NULL;

}
return noErr;
bai | :
if (targetTernms != NULL)
FBCDest r oyWor dLi st (t arget Terns, nuniler ms) ;
return err;
}

Find By Content Reference

This section provides a description of the CFM-based interfaces to the PowerPC FBC library. PowerPC
applications using these routines link against the library named "Find By Content” (without the quotes).

TN1141: Extending and Controlling Sherlock

Data Types

FBC provides the following data types. Storage management for these typesis provided by the FBC
library. Clients should not attempt to allocate or deall ocate these structures using calls to the Memory
Manager.

FBCSear chSessi on
typedef struct OpaqueFBCSear chSessi on* FBCSear chSessi on;
Search sessions created by FBC are referenced through pointer variables of thistype. Theinterna format
of the datareferred to by this pointer isinterna to the FBC library. Clients should not attempt to access
or modify this data directly.
FBCWordltem
typedef char* FBCWordlitem
An ordinary C string. Thistype is used when retrieving information about hits from a search session.
FBCWor dLi st
typedef FBCWordltent FBCWordLi st;

An array of Wr dl t ens. Thistype is used when retrieving information about hits from a search session.

Allocation and I nitialization of Search Sessions

The following routines can be used to allocate and dispose of search sessions. Storage occupied by
search sessionsis owned by the FBC library, and these are the only routines that should be used to
allocate, copy, and dispose of search sessions.

FBCCr eat eSear chSessi on

OSErr FBCCr eat eSear chSessi on(
FBCSear chSessi on* sear chSessi on);

sear chSessi on pointsto avariable of type FBCSear chSessi on.

FBCCr eat eSear chSessi on alocates anew search session and returns areferenceto it in the variable
pointed to by sear chSessi on.

FBCDestroySearchSessi on

OSErr FBCDest roySear chSessi on(
FBCSear chSessi on t heSessi on);

t heSessi on isapointer to asearch session.

FBCDest r oySear chSessi on reclaims the storage occupied by a search session. Thiswill include any
volume configuration information and hits associated with the search session.

FBCCl oneSearchSessi on

Page: 27

TN1141: Extending and Controlling Sherlock

OSErr FBCC oneSear chSessi on(
FBCSear chSessi on ori gi nal ,
FBCSear chSessi on* cl one) ;
ori gi nal isapointer to asearch session.
cl one pointsto avariable of type FBCSear chSessi on.
FBCCl oneSear chSessi on creates anew search session and stores a pointer to it in the variable pointed
to by the clone parameter. Information from the original search session that is copied to the new session

includes the volumes targeted by the search session and al of the hits that may have been found in
previous searches.

Configuring Sear ch Sessions

Search sessions can be configured to limit searches to a particular set of volumes. These routines allow
clients access to the set of volumes that will be searched by FBC.

FBCAddAI | Vol umesToSessi on
OSErr FBCAddAI | Vol unesToSessi on(
FBCSear chSessi on t heSessi on,
Bool ean i ncl udeRenot e) ;
t heSessi on isapointer to a search session.
i ncl udeRenot e iSaBool ean vaue.
FBCAddAI | Vol unesToSessi on configures a search session to search all mounted volumes that have

been indexed. If i ncl udeRenot e istrue, then remote volumes will beincluded in the search session'slist
of target volumes. Volumes that are not indexed are not added to search session'slist of target volumes.

FBCSet Sessi onVol umes
OSErr FBCSet Sessi onVol unmes(
FBCSear chSessi on t heSessi on,
const SInt16 vRef Nums[],
U nt 16 nunVol unes);
t heSessi on isapointer to asearch session.
vRef Nuns isan array of volume reference numbers (16-bit integers).

nunmVol unes isan integer value containing the number of volume reference numbersin
the array vRef Nuns.

FBCSet Sessi onVol umes allows clientsto add several volumesto the list of volumestargeted by a search
sessioninasinglecal.

FBCAddVol umeToSessi on

OSErr FBCAddVol uneToSessi on(

Page: 28

TN1141: Extending and Controlling Sherlock

FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;

t heSessi on isapointer to a search session.
vRef Numis avolume reference number.

FBCAddVol uneToSessi on adds avolumeto the list of volumesthat will be searched by the search
session. If the volumeis not indexed, it will not be added to the list.

FBCRemoveVol umeFr omSessi on

OSErr FBCReroveVol uneFr onSessi on(
FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;

t heSessi on isapointer to asearch session.
vRef Numis avolume reference number.

FBCRenoveVol uneFr onBessi on removes the specified volume from the list of volumes that will be
searched by the search session.

FBCGet Sessi onVol umeCount

OSErr FBCCet Sessi onVol unmeCount (
FBCSear chSessi on t heSessi on,
U nt 16* count);

t heSessi on isapointer to asearch session.
count isapointer to a 16-bit integer where the result isto be stored.

FBCGet Sessi onVol umeCount returns, in * count , the number of volumesin thelist of volumes that will
be searched by the search session.

FBCGet Sessi onVol umes

OSErr FBCCet Sessi onVol unmes(
FBCSear chSessi on t heSessi on,
SInt16 vRef Nuns[],
Ul nt 16* nunVol unes) ;

t heSessi on isapointer to asearch session.
vRef Nuns isan array of volume reference numbers (16-bit integers).

*nunvol umes isapointer to a 16-bit integer. On input, thiswill be the number of
elements that can be stored in vRef Nuns, and on output it will be the number of
elements actually stored in vRef Nuns.

FBCGet Sessi onVol umes returnsthe list of volumes that will be searched by the search session in the
array pointed to by vRef Nuns. * nunvol unes is set to the number of volume reference numbers returned
inthe array.

Page: 29

TN1141: Extending and Controlling Sherlock Page: 30

Executing a Search

FBC provides three different routines for conducting searches that are described in this section.

FBCDoQuer ySear ch

OSErr FBCDoQuer ySear ch(
FBCSear chSessi on t heSessi on,
char* queryText,
const FSSpec targetDirs[],
Ul nt 32 nunilar get s,
Unt32 maxHi ts,
U nt 32 maxH t Wor ds) ;

t heSessi on isapointer to a search session.
quer yText refersto aC-style string containing the search terms.

tar get Di rs pointsto an array of FSSpec records that refer to directories. If
nunirar get s 1S zero, then this parameter can be set to NULL.

nunirar get s contains the number FSSpec records in the array pointed to by
targetDirs.

maxHi t s the maximum number of hits that should be returned.
maxHi t Wor ds the maximum number of hit words that will be reported.

FBCDoQuer ySear ch performs a search based on the search terms found in quer yText . If the
t ar get Di rs parameter is present (nunirar get s is not zero), then only filesresiding in the directories
specifiedint ar get Di r s will beincluded in the hits found by the search.

FBCDoExampl eSear ch

OSErr FBCDoExanpl eSear ch(
FBCSear chSessi on t heSessi on,
const Ul nt32* exanpl eHi t Nuns,
Ul nt 32 nunExanpl es,
const FSSpec targetDirs[],
Ul nt 32 nuniTar get s,
Unt32 maxHi ts,
U nt 32 maxH t Wr ds) ;

t heSessi on contains a pointer to a search session. This session must contain a hit list
generated by a previous search.

exanpl eHi t Nums pointsto an array of 32 bit integers.

nunExanpl es contains the number of integersin the array pointed to by
exanpl eHi t Nuns.

tar get Di rs pointsto an array of FSSpec records that refer to directories. If
nunirar get s 1S zero, then this parameter can be set to NULL.

nunirar get s contains the number FSSpec records in the array pointed to by
targetDirs.

TN1141: Extending and Controlling Sherlock

maxHi t s the maximum number of hits that should be returned.
max Hi t Wor ds the maximum number of hit words that will be reported.

FBCDoExanpl eSear ch performs an example-based or "similarity” search using hits found in a previous
search as examples. exanpl eHi t Nuns pointsto an array of long integers containing the indexes of one
or more of the hitsthat are to be used as examplefiles. If thet ar get Di r s parameter is present

(nunirar get s isnot zero), then only filesresiding in the directories specified int ar get Di r s will be
included in the hits found by the search.

FBCBI i ndExampl eSear ch

OSErr FBCBI i ndExanpl eSear ch(
FSSpec exanples[],
Ul nt 32 nunExanpl es,
const FSSpec targetDirs[],
Ul nt 32 nuniTar get s,
U nt32 maxHits,
Ul nt 32 maxH t Wr ds,
Bool ean al | I ndexes,
Bool ean i ncl udeRenot e,
FBCSear chSessi on* t heSessi on) ;

exanpl es isapointer to an array of FSSpec records that refer to files. FBC will search
for filesthat are smilar to thesefiles.

nunExanpl es contains the number of FSSpec records in the array pointed to by
examples.

t ar get Di rs pointsto an array of FSSpec records referring to directories. If
target Di rs isSnot NULL and nunirar get s isnot zero, then only filesresiding in these
directories will be included in the hit list returned by the search.

t ar get Di rs pointsto an array of FSSpec records that refer to directories. If
nuniar get s i1Szero, then this parameter can be set to NULL.

nunirar get s contains the number FSSpec records in the array pointed to by
targetDirs.

maxHi t s the maximum number of hits that should be returned.
max Hi t Wor ds the maximum number of hit words that will be reported.
i ncl udeRenot e iISaBool ean vaue.

t heSessi on pointsto avariable of type FBCSear chSessi on that will be created by this
routine.

FBCBI i ndExanpl eSear ch creates a new search session and conducts a similarity search using the files
referred to in the array of FSSpec records provided in the examples parameter. If thetarget Dirs
parameter is present (nunirar get s is not zero), then only filesresiding in the directories specified in

t ar get Di rs will beincluded in the hitsfound by the search. If i ncl udeRenot e iStrue, then remote
volumes will be included in the search session's list of target volumes.

If any of the example files are not indexed, then the search will proceed with the remainder of thefiles,
and the error code kFBCsoneFi | esNot | ndexed will be returned. In this case, the search session will be
created and areferenceto it will bereturned in *t heSessi on.

Page: 31

TN1141: Extending and Controlling Sherlock

Getting Information About Hits

Once asearch is complete, a search session will contain alist of hits that were found during the search.
The routines described in this section allow clients to access information about hits stored in a search
session. Hit records are indexed 0 through count-1.

FBCGet Hi t Count

OSErr FBCGet Hi t Count (
FBCSear chSessi on t heSessi on,
Ul nt 32* count);

t heSessi on isapointer to asearch session.
count isapointer to a32-bit integer.

FBCGet Hi t Count Setsthe variable pointed to by count to the number of hitsin the search session. Hit
records are indexed 0 through count-1.

FBCGet Hi t Document

OSErr FBCGet Hi t Docunent (
FBCSear chSessi on t heSessi on,
Ul nt 32 hit Nunber,
FSSpec* theDocunent);

t heSessi on isapointer to a search session.
hi t Nunber isanindex value referring to a hit record in the search session.
t heDocument iSapointer to aFSSpec record.

FBCGet Hi t Docunent returns theFsspec record for the hit in the search session whose index is
hi t Nunber .

FBCGet Hi t Scor e

OSErr FBCCGet Hi t Scor e(
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
float* score);

t heSessi on isapointer to a search session.
hi t Nunber isanindex value referring to a hit record in the search session.

scor e isapointer to avariable of typef | oat .

FBCGet Hi t Scor e returns relevance score assigned to the hit in the search session whoseindex is

hi t Nunber . The score is a direct measure of the document's relevance to the search criteriain the context
of this particular search. Scores are normalized to the range 0.0 - 1.0, and the most relevant hit from every
search aways has a score of 1.0.

Page: 32

TN1141: Extending and Controlling Sherlock Page: 33

FBCGet Mat chedWbr ds
OSErr FBCGet Mat chedWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
Ul nt 32* wor dCount
FBCWor dLi st* list);

t heSessi on isapointer to a search session.

hi t Nunber isanindex vaue referring to a hit record in the search session.

wor dCount iSapointer to a 32-bit integer.

l'i st isapointer to avariable of type FBCWor dLi st .
FBCGet Mat chedWr ds returnsalist of matched words for the hit in the search session whose index is
hi t Nunber . Thislist of wordsillustrates why the hit was returned. On return, *1 i st will contain a
pointer to aword list structure and *wor dCount will be set to the number of entriesin that structure. Be
sure to call FBCDest r oyWor dLi st to dispose of the structure when you are done with it.

The matched words for a hit are stored in the hit itself, so retrieving them isfast.

FBCGet Topi cWbr ds
OSErr FBCCet Topi cWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
Ul nt 32* wor dCount ,
FBCWor dLi st* 1ist);

t heSessi on isapointer to a search session.

hi t Nunber isanindex vaue referring to a hit record in the search session.

wor dCount iSapointer to a 32-bit integer.

l'i st isapointer to avariable of type FBCWor dLi st .
FBCGet Topi cWr ds returnsalist of topical words for the hit in the search session whose index is
hi t Nunmber . Thislist of words provides a clue about "what the document is about." Onreturn, *1 i st will
contain a pointer to aword list structure and * wor dCount will be set to the number of entriesin that
structure. Be sureto call FBCDest r oyWor dLi st to dispose of the structure when you are done with it.

Thelist of topical wordsfor a particular hit must be generated through the index file, so thiscall is
significantly slower than FBCGet Mat chedWr ds.

FBCDestroyWbr dLi st

OSErr FBCDestroyWr dLi st (
FBCWor dLi st theli st,
U nt 32 wor dCount) ;

t heLi st isapointer to aword list.

wor dCount isthe number of wordsin thelist.

TN1141: Extending and Controlling Sherlock

FBCDest r oyWr dLi st disposes of aword list allocated by either FBCGet Mat chedWor ds or
FBCGet Topi cWor ds.

FBCRel easeSessi onHi ts

OSErr FBCRel easeSessi onHi t s(
FBCSear chSessi on t heSessi on);

t heSessi on isapointer to a search session. This session may contain hits generated by
asearch.

FBCRel easeSessi onHi t s deallocates any information stored regarding hits from the last search from
the search session. VVolume configuration information is retained and once this call completes, the search
session is ready to perform another search.

Summarizing Text
This call produces asummary containing the "most relevant” sentences found in the input text.
FBCSummari ze

OSErr FBCSummari ze(
voi d* i nBuf,
U nt 32 inLength,
voi d* out Buf,
Ul nt 32* out Lengt h,
Ul nt 32* nunBent ences) ;

i nBuf pointsto the text to be summarized.
i nLengt h isthe length of the text pointed to by i nBuf .
out Buf pointsto a buffer where the summary should be stored.

out Lengt h isapointer to a 32-bit integer. On input, thisvalue is set to the size of the
buffer pointed to by out Buf . On output, it is set to the actual length of the data stored in
the buffer pointed to by out Buf .

nunBent ences iSapointer to a 32-bit integer. On input, this value is the maximum
number of sentences desired in the summary. On output, it is set to the actual number of
sentences generated. If nunsent ences is0 on input, FBC takes the number of
sentences in the input buffer and divides by 10. If the result is 0, then thevalue 1 is used
as the maximum; otherwise, if the result is greater than 10, then the value 10 is used as
the maximum.

Page: 34

TN1141: Extending and Controlling Sherlock Page: 35

Getting Information About Volumes

FBC provides the following utility routines for accessing information about volumes.

FBCVol umel sl ndexed
Bool ean FBCVol unel sl ndexed (SInt16 theVRef Num ;
t heVRef Numis avolume reference number.

FBCVol unel sl ndexed returnst r ue if the indicated volume has been indexed.

FBCVol umel sRemot e
Bool ean FBCVol unel sRenot e(Sl nt 16 t heVRef Nunj ;
t heVRef Numis avolume reference number.

FBCVol unel sRenot e returnst r ue if theindicated volumeislocated on aremote server. Clients may
want to exclude networked volumes from searches to avoid network delays.

FBCVol umel ndexTi meSt amp

OSErr FBCVol unel ndexTi neSt anp(Sl nt 16 t heVRef Num
U nt 32* tinmeStanp);

t heVRef Numis avolume reference number .
ti meSt anp isapointer to an unsigned 32 bit integer.

FBCVol unmel ndexTi neSt anmp will return the time when the volume'sindex was last updated. The value
returnedint i meSt anp isthe same format as values returned by Get Dat eTi ne.

FBCVol umel ndexPhysi cal Si ze

CSErr FBCVol unel ndexPhysi cal Si ze(SInt 16 t heVRef Num
Ul nt 32* si ze);

t heVRef Numis avolume reference number .
ti meSt anp isapointer to an unsigned 32 bit integer.

FBCVol unel ndexPhysi cal Si ze returnsthe size of the volume'sindex filein bytes.

TN1141: Extending and Controlling Sherlock

Reserving Heap Space

Clients of FBC can reserve space in their heap zone for their callback routine before conducting a search.

FBCSet HeapReservati on
voi d FBCSet HeapReservati on(Ul nt 32 bytes);

byt es isan integer value containing the number of bytes that should be reserved.

FBCSet HeapReser vat i on Setsthe number of bytes FBC should guarantee are available in the client
application's heap whenever the client's call back routine is called during searches. If you do not explicitly
reserve heap space by calling this routine, then 200K will be reserved for you.

Application-Defined Routine

Clients can provide aroutine that will be called periodically during searches. This routine will provide
clients with both information about the status of a search, and opportunity to cancel a search beforeit is
complete.

Call back routines are defined as follows;
FBCCal | backProcPtr

typedef Bool ean (*FBCCal | backProcPtr) (
U nt 16 phase,
fl oat percent Done,
voi d *data);

phase isa16-bit integer containing one of the following constants indicating the current
status of the search:

enum
{
kFBCphSear chi ng
kFBCphMaki ngAccessAccessor
kFBCphAccessWi ti ng
kFBCphSummari zi ng
kFBCphl dl e
kFBCphCancel i ng

=o

b
per cent Done isaprogressvaueintherange 0.0 - 1.0

dat a contains the same value provided to FBCSet Cal | back in the data parameter.

To avoid locking up the system while asearch isin progress, the callback should either directly or
indirectly call wai t Next Event .

An ongoing search will be canceled if the call back function returnst r ue.

FBCSet Cal | back
voi d FBCSet Cal | back(FBCCal | backProcPtr fn, void* data);

f n isapointer to your call back function.

Page: 36

TN1141: Extending and Controlling Sherlock Page: 37

dat a isavalue passed through to your call back function.
FBCSet Cal | back setsthe call back function that will be called during searches. If aclient does not define

acal back function, then the default callback function is used. The default call back function calls
Vi t Next Event and returnsf al se.

Find By Content C Summary

Constants
enum
gest al t FBCI ndexi ngSt at e = 'fbci',
gest al t FBC ndexi ngSaf e = 0,
gestal t FBG ndexi ngCri ti cal =1
b
enum
gest al t FBCVer si on = '"fbecv',
gest al t FBCCur r ent Ver si on = 0x0011
}s
enum/* error codes */
{
kFBCvTw nExcepti onErr = -30500,
/* m scel |l aneous error */
kFBCnol ndexesFound = -30501
kFBCal | ocFai | ed = -30502,
[*probably | ow nenory*/
kFBCbadPar am = -30503
kFBCfi | eNot | ndexed = -30504,
kFBCbadl ndexFi | e = -30505,
/*bad FSSpec, or bad data in file*/
kFBCt okeni zat i onFai | ed = -30512,
/*couldn't read from docunent or query*/
kFBCi ndexNot Found = -30518,
kFBCnoSear chSessi on = -30519,
kFBCaccessCancel ed = -30521
kFBCi ndexNot Avai | abl e = -30523,
kFBCsear chFai | ed = -30524,
kFBCsoneFi | esNot | ndexed = -30525,
kFBCi I | egal Sessi onChange = -30526,
[*tried to add/renove vols */
/*to a session that has hits*/
kFBCanal ysi sNot Avai | able = -30527,
kFBCbadl ndexFi | eVer si on = -30528,
kFBCsummari zat i onCancel ed = -30529,
kFBCbadSear chSessi on = -30531
kFBCnoSuchHi t = -30532
b

enum /* codes sent to the call back routine */

kFBCphSear chi ng

kFBCphMaki ngAccessAccessor
kFBCphAccessWi ti ng
kFBCphSummari zi ng

©oo~NO®

TN1141: Extending and Controlling Sherlock Page: 38

kFBCphl dl e
kFBCphCancel i ng

10,
11

}
Data Types

/* A collection of state information for searching*/
typedef struct OpaqueFBCSear chSessi on* FBCSear chSessi on;

/* An ordinary C string (used for hit/doc terns)*/
typedef char* FBCWordltem

/* An array of Wordltens*/
typedef FBCWordltenr FBCWOrdLi st;

Allocation and I nitialization of Sear ch Sessions

OSErr FBCCr eat eSear chSessi on(

FBCSear chSessi on* sear chSessi on) ;
OSErr FBCDest roySear chSessi on(

FBCSear chSessi on t heSessi on);
OSErr FBCC oneSear chSessi on(

FBCSear chSessi on ori gi nal ,

FBCSear chSessi on* cl one);

Configuring Sear ch Sessions

OSErr FBCAddAI | Vol unesToSessi on(
FBCSear chSessi on t heSessi on,
Bool ean i ncl udeRenot e) ;
OSErr FBCSet Sessi onVol unmes(
FBCSear chSessi on t heSessi on,
const SInt16 vRef Nuns[],
U nt 16 nunVol unes);
OSErr FBCAddVol umreToSessi on(
FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;
OSErr FBCRenpveVol uneFr onSessi on(
FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;
OSErr FBCCet Sessi onVol umeCount (
FBCSear chSessi on t heSessi on,
U nt 16* count);
OSErr FBCCet Sessi onVol unes(
FBCSear chSessi on t heSessi on,
SInt16 vRef Nuns[],
U nt 16* nunVol unes);

Executing a Search

OSErr FBCDoQuer ySear ch(
FBCSear chSessi on t heSessi on,
char* queryText,
const FSSpec targetDirs[],
Ul nt 32 nuniTar get s,
U nt32 maxHits,
U nt 32 nmaxHi t Wor ds) ;

OSErr FBCDoExanpl eSear ch(
FBCSear chSessi on t heSessi on,
const Ul nt32* exanpl eHi t Nuns,
Ul nt 32 nunExanpl es,
const FSSpec targetDirs[],
Ul nt 32 nuniTar get s,
U nt32 maxHits,

TN1141: Extending and Controlling Sherlock

U nt 32 nmaxHi t Wor ds) ;

OSErr FBCBI i ndExanpl eSear ch(

FSSpec exanples[],

U nt 32 nunExanpl es,

const FSSpec targetDirs[],

Ul nt 32 nunifar get s,

U nt32 maxHits,

U nt 32 maxHi t Wr ds,

Bool ean al | | ndexes,

Bool ean i ncl udeRenot e,

FBCSear chSessi on* t heSessi on);

Getting Information About Hits

OSErr FBCCet Hi t Count (

FBCSear chSessi on t heSessi on,
Ul nt 32* count);

OSErr FBCGet Hi t Docunent (

FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
FSSpec* theDocunent);

OSErr FBCCGet Hi t Scor e(

FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
float* score);

OSErr FBCGet Mat chedWor ds(

FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,

Ul nt 32* wor dCount

FBCWor dLi st* 1ist);

OSErr FBCGet Topi cWor ds(

FBCSear chSessi on t heSessi on,
Ul nt 32 hitNunber,

Ul nt 32* wor dCount,

FBCWor dLi st* 1ist);

OSErr FBCDestroyWrdLi st (

FBCWor dLi st t heli st,
Ul nt 32 wor dCount) ;

OSErr FBCRel easeSessi onHi t s(

Summarizing Text

FBCSear chSessi on t heSession);

OSErr FBCSummari ze(

voi d* i nBuf,

U nt 32 i nLengt h,

voi d* out Buf,

Ul nt 32* out Lengt h,

Ul nt 32* nunBent ences) ;

Getting Information About Volumes

Bool ean FBCVol unel sl ndexed (SInt16 theVRef Num ;
Bool ean FBCVol unel sRenot e(Sl nt 16 t heVRef Nunj ;
OSErr FBCVol unel ndexTi neSt anp(Sl nt 16 t heVRef Num

U nt 32* tinmeStanp);

OSErr FBCVol unel ndexPhysi cal Si ze(Sl nt 16 t heVRef Num

Reserving Heap Space

Ul nt 32* si ze);

voi d FBCSet HeapReservati on(Ul nt 32 bytes);

Application-Defined Routine

Page: 39

TN1141: Extending and Controlling Sherlock Page: 40

typedef Bool ean (*FBCCal | backProcPtr) (
U nt 16 phase,
fl oat percent Done,
voi d *data);
voi d FBCSet Cal | back(FBCCal | backProcPtr fn, void* data);

Downloadables

FOF
l'! Acrobat version of this Note (K).

To contact us, please use the Contact Us page.

Updated: 5-April-99

Technotes
Previous Technote | Contents | Next Technote

