TN 1120: Opening Resource Files Twice Page: 1
Considered Hard?

Technote 1120

Opening Resour ce Files Twice Considered Hard?

CONTENTS M
ost Mac OS programmers do not consider
FSpOpenResFi | e (or it's older cousins (penResFi | e,

Describing the Problem

FSpQpenResFi | e Explain! OpenRFPer m and HOpenResFi | €) to be difficult to call.

) However, the behavior of these calls when the resourcefile
Cookbook Solutions is already open has never been documented properly.
Summary This Note describes the exact behavior of

FSpOpenResFi | e when the resourcefileis already open,
and describes some cookbook solutionsto avoid
problemsin this case.

Downloadables

All Mac OS programmers who use the Resource Manager
should read the Summary section of this Note, just to
familiarize themselves with the problem. In addition,
programmers who are writing non-application code
should carefully read the entire Note to ensure maximum
compatibility for their code.

Describing the Problem

Inside Macintosh: More Macintosh Toolbox (p1-60) has the following to say about the behavior of
FSpOpenResFi | e when the resourcefile is aready open:

If you attempt to use FSpOpenResFi | e to open aresource fork that is aready open,
FSpOpenResFi | e returns the existing file reference number or a new one, depending on
the access permission for the existing access path. For example, your application receives
anew file reference number after a successful request for read-only accessto afile
previoudy opened with write access, whereas it receives the same file reference number

In response to a second request for write access to the same file. In this case,
FSpOpenResFi | e doesn't make that file the current resource file.

This statement is mostly true, but it certainly is not the whole truth. The exact Situation isalot more
complex.

Complicating Factors
The complicating factors when opening aresource file include:

e the exact call used to open thefile, i.e. OpenResFi | e, OQpenRFPer m HOpenResFi | e, and
FSpOpenResFi | e,

the permissions supplied to the call,

whether the resourcefile is already open,

if the resourcefile is aready open (whether by this process or by another)

if the resourcefileis already open by another process (whether this processis on the local
machine or on another machine accessing the file via File Sharing)

TN 1120: Opening Resource Files Twice
Considered Hard?

e if theresourcefileisaready open (the permissions previously used to open thefil€e).

Page: 2

These complicating factors combine to make opening aresource file potentially much more complicated
than it seems on first examination.

Simplifying the Problem

Fortunately, not al of the above factors actually complicate the problem. We can simplify the analysis by
noting the following:

® (penResFi | e, QpenRFPer m HOpenResFi | e, and FSpOpenResFi | e dl behave in the same way.

While you might think thisis obvious, DTS engineers take nothing for granted and | hope you
feel reassured to know that | actually tested this.

NOTE:

OpenResFi | e does not take a permission parameter. When you call QpenResFi | e, it actsasif you had
supplied the permission f sCur Per m

e Thereare only three outcomes from calling FSpOpenResFi | e:

1. Complete Success -- A new resource map is created and added to the top of the
resource chain. The routine makes the new resource map the current resource map and
returnsits resource file reference number.

2. Partial Success -- The resource file reference number of an existing resource map is
returned. That existing map will become the current resource map.

3. Failure -- FsppenResFi | e returns -1 and the resource chain remains unchanged. Y ou
can call ResError to get thereal error number.

NOTE:

In the Partial Success outcome above, Cur ResFi | e is changed, which directly contradicts the last

sentence of the quote from Inside Macintosh: More Macintosh Toolbox . This Technoteis correct and
Inside Macintosh isin error.

e Inall cases, asking for f sw Per mand asking for f sRdW Per mhave the same effect.

These points combine to make it much easier to describe the exact situation. What remainsisto describe
the behavior in each of the remaining cases.

FSpOpenResFi | e Explained!

The following table show the exact behavior of FSppenResFi | e in the various interesting cases.

TN 1120: Opening Resource Files Twice

Considered Hard?

Per missions Used Per missions Used Same Same Different

to Open First to Open Second Process Machine Machines

|f sCur Per m ||f scur Per m ||Success R-O |[SuccessR-O |[Failure-54 |

|fsCurPerm ||stdPerm ||SUCCG£S R-O ||Success R-O ||Fai|ure-54 |
f sCur Per m ;g‘évd\ﬁ’ve;,g“r - Patia R'W ||Failure-49 ||Failure-54

|f sRdPer m ||f scur Per m ||Success R-O |[Success R-O |[Success R-O |

|f sRdPer m ||f sRdPer m |[SuccessR-O |[Success R-O ||SuccessR-O |

f sRdPer m Ii\évdm?r o Partiadl R-O ||Failure-49 Success R-O

;SW Per m f sCur Perm Success R-O ||Success R-O ||Failure-54
sRAW Per m e e E—

; sSWPerm f sRdPer m Success R-O ||SuccessR-O ||Failure-54
sRAW Per m e E— E—

f SW Perm f sSW Perm ; : _ : _

¢ sRAW Per m { SRIW Per m Partial R/'W Failure-49 Failure-54

Thefirst column gives the permission value used the first time the file was opened. The second column
givesthe permission value for this call to FSpOpenResFi | e.

The remaining three columns describe the behavior in each of the three important cases:

e Same Process-- Thefile has already been opened by the same process.

e Same Machine -- Thefile has already been opened by another process on the same machine.

e Different Machines -- Thefile has aready been opened by another process on another
machine connected via File Sharing.

Each cdll islabelled with apair of items. Thefirst item is the outcome of the call, as defined above. The
second item is either the permissions associated with the returned resource file reference number (for
outcomes Success and Partial) or the error code returned (for outcome Failure).

Gotchas and Observations
There are anumber of important observations to be made about the above table:

e Asking for write permissionsto afileif it has already been opened by your processwill yield
Partial Success, i.e. FSpOpenResFi | e will return the resource file reference number of an
existing resource map. If you're not prepared for this (and you close the resource map after
using it, say), you will find yourself in aworld of pain. For example, it's common for devel opers
to accidentally close the resource map of their own application, or the system resource map.

e Itispossibleto get lesser permissions than you asked for. For example, in Same Process
columninthetable, if thefileisaready open with f sRdPer mand you open it with f sRAW Per m
the resource file reference number returned has read-only permissions. Y ou can check for this
situation using the code shown below.

e Asking for f sRdW Per mpermissions to afile which has already been opened with f sRdPer mby
another machine will succeed (1), but will give you aread-only resource file reference number.

e Theexact error code you get back when aresourcefileis aready opened by another process
depends on whether that processis running on the local machine or not.

One Final Gotcha

The last problem with opening the same resource file twice isintrinsic to the design of the Resource
Manager and very hard to guard against. When you open aresource file, the Resource Manager loads a

Page: 3

TN 1120: Opening Resource Files Twice Page: 4
Considered Hard?

catalog of all the resources (the r esour ce map) into your heap, and uses that map to locate the data for
each resource resides in the resourcefile.

When changing the resource map, the Resource Manager does not coordinate between the various
processes that might have the resource file open. While the Resource Manager prevents you from
opening two read/write resource file reference numbers to the same resourcefile, it does not stop you
from having aread-only and aread/write resource file reference number simultaneously.

This can cause serious problemsin the following situation:

1. Process A opens the resource file read/write. The Resource Manager reads the resource map for
thefileinto Processs A's heap.

2. Process B opens the resource read-only. The Resource Manager reads the resource map for the
fileinto Processs B's heap.

3. Process A then changes the resource file and calls Updat eResFi | e to write those changes back
to the disk. This can cause the position of various resources in the resource file to change quite
dramatically.

4. Process B then calls the Resource Manager to read a resource from the resource file. Because
Process B's copy of the resource map no longer matches the actual file, the Resource Manager
returns bogus resource data.

Therestriction is described quite well in the Specia Considerations section of the description of
FSpOpenResFile in Inside Macintosh: More Macintosh Toolbox , but that description is worth
reiterating while we're on the subject of opening resource filestwice.

Cookbook Solutions

This section describes some useful techniques you can employ to ensure that the weirdnesses of
FSpQpenResFi | e does not bite your software. These are listed with the most recommended (and easiest
to implement) first.

Open Resour ce Files Once

If you're writing normal application-level code, it's easy to remember whether your process has aready
opened aresource file and avoid opening it twice. The following snippet shows a simple example of this.

TN 1120: Opening Resource Files Twice
Considered Hard?

static SInt1l6 gResourceResFile = 0;
static U nt32 gResourceUsageCount = 0;

static OSErr StartUsi ngResources(Const FSSpecPtr fss)

{

CSErr err;

SInt16 tnpResFil g;

err = nokErr;

i f (gResourceUsageCount == 0) {
tnpResFil e = FSpOpenResFi |l e(fss, fsRAW Perm;
err = ResError();
if (err == noErr) {

gResour ceResFil e = t npResFi | g;
}

}

if (err == noErr) {
gResour ceUsageCount += 1;

}

return err;

}
static void StopUsi ngResources(voi d)
{
gResour ceUsageCount -= 1;
i f (gResourceUsageCount == 0) {
Cl oseResFi | e(gResourceResFi |l e);
gResour ceResFil e = 0;
}
}

Extending this technique for more than one resource file is |eft as an exercise to the devel oper.

Open Resour ce Files Read Only

In situations where you don't know whether aresource file has aready been opened by the current
process (in system extension code, for example), the easiest solution is to always open the resource file
read-only, i.e. using f sRdPer m If you do this, you will aways get a new resource reference number that
you can safely close.

A further refinement of this solution is to open, read, and close the resource file quickly, without yielding
time to other processes in between. This helps prevent another process from modifying the file while
you're reading it, and minimizes your vulnerability to the trickiest gotcha described above. This
refinement isonly useful in certain Situations, but is definitely one to keep in your ‘cookbook'.

Check TopMapHndl

In situations where you don't know whether aresource file has aready been opened by the current
process and you must open the resource file read/write, the best technique is to monitor the TopMapHndl
low memory global to seeif it changes around your call to FSpOpenResFi | e. If thisglobal changes, a

new resource map has been added to the top of the resource chain, and you are responsible for closing it.

If the global does not change, an existing resource map reference number was returned and you should
not closeit.

The following snippet illustrates this technique.

Page: 5

TN 1120: Opening Resource Files Twice
Considered Hard?

static void Saf eOpenResFi | eReadW it e(Const FSSpecPtr fss)

{
CSEr r err;

SInt16 ol dResFile;
Handl e ol dTopMap;
SInt1l6 resFile;

Bool ean shoul dC ose;

ol dResFile = CurResFile();

ol dTopMap = LMGet TopMapHndl () ;
resFile = FSpOpenResFil e(fss, fsRdW Pern;
err = ResError();

if (err == noErr) {
shoul dCl ose = (LMzet TopMapHndl () !'= ol dTopMap);

// do the stuff with the resource file

i f (shoul dd ose) {
Cl oseResFil e(resFile);
}

}
UseResFi | e(ol dResFi |l e);

It'simportant to remember that this technique is only necessary if you need to open the file read/write and
you don't know whether the file is aready open by the current process. As such, this technique is needed
most by non-application code -- such as system extensions, shared libraries, application plug-ins, etc --
blIJt it may aso be useful for application code is running in strange environments, such as a Standard File
filter function.

Always Preserve Cur ResFi | e

Regardless of which of above techniques you usg, it's always a good ideato bracket your callsto
FSpOpenResFi | e with callsto Cur ResFi | e and UseResFi | e to ensure that your code does not
accidentally change the current resource map. The above snippets also illustrates this technique.

Check Permissions

If you need to write to aresource file and you are not sure whether that file has already been opened, it
pays to examine the resource file reference number to ensure that it supports read/write access. While
having a read/write resource file reference number is not a guarantee that writing to the file will succeed,
it'sagood ideato check this asthefirst step.

Y ou can check whether aresource file reference number is read/write by calling the File Manager routine
PBGet FCBI nf oSync and looking at bit 8 of i oFCBFI ags. The following snippet demonstrates this
technique.

Page: 6

TN 1120: Opening Resource Files Twice Page: 7
Considered Hard?

static Bool ean | sResourceFil eRef NumWitabl e(SIntl16 rsrcRef Num

{
Bool ean resul t;
FCBPBRec f cbPB;
fcbPB. i oNanePtr = nil;
f cbPB. i oVRef Num = 0;
f cbPB. i oRef Num = r srcRef Num
f cbPB. i oFCBI ndx = O0;
i f (PBGet FCBI nfoSync(&f cbPB) == noErr) {
result = ((fcbPB.ioFCBFlags & (1 << 8)) != 0);
} else {
result = fal se;
}
return result;
}
Summary

If you open the same resource file twice, you are vulnerable to a number of strange behaviors of the
Resource Manager, including:

® FSpOpenResFi | e returning an existing resource file reference number rather than opening anew
resource file reference number.

® FSpOpenResFi | e returning aread-only resource file reference number, even though you
explicitly asked for read/write access.

e Possible corrupt resource dataif you read aresource file through aread-only resource file
reference number while ssmultaneoudy modifying it through another read/write resourcefile
reference number.

The best way to guard against these problemsisto avoid opening aresourcefile twice. If thisis
unavoidable, this Note suggests anumber of approaches you can use to minimize your vulnerability.

Further References

e Inside Macintosh: More Macintosh Toolbox , Chapter 1 Resource Manager
e DTS Technote FL 37 Y ou Want Permission to do What?!!

Downloadables

E Acrobat version of this Note (K)

To contact us, please use the Contact Us page.
Updated: 30-January-98

Technotes
Previous Technote | Contents | Next Technote

