TN 1180: Sherlock’s Find By Content Library

Technote 1180

Sherlock’s Find By Content Library

Page: 1

CONTENTS

Overview
Determining if Find By Content is Available
Working with Search Sessions
Setting up a Search Session
Performing Searches
Retrieving Information from a Search Session
Find By Content Reference
Data Types
Allocation and Initialization of Search
Sessions
Configuring Search Sessions
Executing a Search
Getting Information About Hits
Summarizing Text
Getting Information About Volumes
Indexing Volumes, Folders, and Files
Reserving Heap Space
Application-Defined Routine

Find By Content C Summary

T his Technote describes the Find by Content

libraries used by Sherlock for searching the
contents of files.

The Find by Content libraries export afull suite
of routines and functions allowing applications
to perform content based searches of files.

With MacOS 8.6, Text Extractor Plug-ins were
introduced. These allow Find By Content to
extract textual information from binary filesfor
inclusion inindex files. Text Extractor Plug-ins
are documented in Technote TN1181, “Find by
Content Text Extractor Plug-ins.”

This Note is directed at application developers
who wish to access the Find By Content library
directly from their applications.

Overview

The Find By Content (FBC) facilities provided in Mac OS 8.6 are implemented in a PowerPC Code

Fragment Manager library that resides in the “ Extensions” folder. The Sherlock application is a client of

FBC, accessing FBC services through this shared library. Developer applications can also access the

search facilities provided by thislibrary. This section describes how devel opers can create products that

access the new FBC facilities through this shared library.

Compiler interfacesto FBC are found in the C header file “ FindByContent.h.” And, for linking
purposes, the Code Fragment Manager library implementing FBC is named ”Find By Content”

(without the quotes). Developers using the FBC routines described herein should weak-link against this

library, and then check the Gestalt selectors from within their application before calling any of these

routines.

Back to top

TN 1180: Sherlock’s Find By Content Library

Determining if Find By Content is Available

FBC definestwo Gest al t selectors. Clients of FBC must verify that correct version of the
implementation is available before making any of these calls, and will want to check the FBC indexing
state before performing any searches.

enum {
gest al t FBCVer si on = 'fbecv',
gest al t FBCCurr ent Ver si on = 0x0011

H

Thegest al t FBCVer si on selector returns the version of FBC that is installed on the computer.
Developers can compare this version with the version of the interface with which they have compiled their
programs using thegest al t FBCCur r ent Ver si on to determineif it is safe to make any callsto FBC. If
gest al t FBCVer si on produces some version other than the version of the interface your application has
been compiled to run with, then your application should not make any callsto FBC.

enum {
gest al t FBCl ndexi ngSt at e = 'fbci',
gest al t FBC ndexi ngSaf e = 0,
gest al t FBC ndexi ngCri ti cal =1

Thegest al t FBCI ndexi ngSt at e selector returns information about the current indexing status of FBC.
At any given time, the indexing statuswill be either gest al t FBG ndexi ngSaf e or

gest al t FBG ndexi ngCri ti cal . If the statusisgest al t FBG ndexi ngCri ti cal , then any search will
result in asynchronous wait until the state returnsto gest al t FBG ndexi ngSaf e. When the FBC
indexing state returned isgest al t FBG ndexi ngSaf e, then al searches will execute immediately. To
avoid synchronous waits, developers should check the gest al t FBCI ndexi ngSt at e selector and only
make calls to FBC when the indexing state returned isgest al t FBG ndexi ngSaf e.

Back to top

Working with Search Sessions

FBC allows client applications to open and close a“ search session.” A search session contains all of the
information about a search, including the list of matched files after the search is complete. Clients of FBC
can obtain references to search sessions, modify them, and query their state using the routines defined in
this section. References to search sessions are defined as an opaque pointer type owned by the FBC
library.

typedef struct OpaqueFBCSear chSessi on* FBCSear chSessi on;

Developers should only access the search session structure using the routines defined herein. This
includes using the appropriate FBC routines for duplicating and disposing of search sessions. Search
sessions are complex memory structures that contain pointers to other data that may need to be copied
when a search session is duplicated or disposed of when a search session is deallocated.

The normal sequence of actions one takes when using the FBC library isto create a search session,

configure the search session to target specific volumes, perform the search, query the search results, and

dispose of the search. Other possibilities for searches include the ability to reinitialize a search session

and use it over again for another search, to provide backtracking by cloning search sessions and

(rj)_erform_i ng additional searches using the clones, or to limit search resultsto files found in particular
irectories.

Page: 2

TN 1180: Sherlock’s Find By Content Library
Back to top

Setting up a Search Session

Creating anew session and preparing it for a search, as shown in Listing 6, requires at least two callsto
the FBC library. In this example, a new search session is created and it is configured to search all local
volumes that contain index files. The call to FBCAddAI | Vol unesToSessi on automatically configuresthe
search session to search all indexed volumes.

/* Sinpl eSet UpSessi on al |l ocates a new search session and
returns a FBCSearchSession value in the *session
paraneter. if an error occurs, *session is |left
unt ouched. */

CSErr Si npl eSet UpSessi on(FBCSear chSessi on* session) {
CSErr err;
FBCSear chSessi on newsessi on;

/* set up our local variables */
err = nokErr;
newsessi on = NULL;
if (session == NULL) return parantrr;

/* create the new session */
err = FBCCr eat eSear chSessi on(&ewsessi on) ;
if (err = noErr) goto bail;

/* search all available |ocal volunes */
err = FBCAddAI | Vol unesToSessi on(newsessi on, fal se);
if (err !'= noErr) goto bail;

/* store our result and | eave */
*sessi on = newsessi on;
return noErr;

bai | :
if (newsession != NULL)
FBCDest r oySear chSessi on(newsessi on) ;
return err;
}

Listing 6. Setting up a search session to search al local, indexed volumes.

FBC provides acomplete set of routines for devel opers wanting more control over what volumeswill be
searched by the search session. Listing 7 illustrates how a new search session could be configured to
search a particular set of volumes.

Page: 3

TN 1180: Sherlock’s Find By Content Library

/* Set UpVol uneSessi on al |l ocates a new search session and
returns a FBCSearchSession value in the *session paraneter.
if vCount is not zero, then vRef Nums points to an array of

vol unme reference nunbers for volunes that are to be searched.

if any of the vRef Nuns refer to a volune wi thout an index,
parankErr is returned. */

OSErr Set UpVol umeSessi on (FBCSear chSessi on* sessi on,
U ntl16 vCount, SIntl6 *vRef Nuns) {
OSErr err;
untl6 i;
FBCSear chSessi on newsessi on;

/* set up our local variables */
err = nokErr;
newsessi on = NULL;
if (vCount == 0) return parangrr;
if (session == NULL) return paranktrr;
if (vRef Nums == NULL) return parantrr;

/* create the new session */
err = FBCCreat eSear chSessi on(&ewsessi on) ;
if (err = noErr) goto bail;

/* search the volunes specified in vRef Nuns */

for (i=0; i<vCount; i++)

i f (!FBCVol unel sl ndexed(vRef Nuns[i])) {
err = parantrr;
goto bail;

} else {
err = FBCAddVol uneToSessi on(nhewsessi on,

vRef Nuns[i]);

if (err = noErr) goto bail;

/* store our result and | eave */
*sessi on = newsessi on;
return noErr;

bai I :
if (newsession != NULL)
FBCDest r oySear chSessi on(newsessi on) ;
return err;
}

Listing 7. Setting up a session to search a particular set of volumes.

In this example, the FBCAddVol umeToSessi on routineis used to add volumes to the search session.
Other routines for querying what volumes are currently targeted by a search session and removing

volumes from that list are provided.

Once a search session has been configured to search anumber of volumes, it can be used again after a
search has been conducted without having to reconfigure its target volumes. After performing a search
and examining the results, the search session can be prepared for another search by calling the routine
FBCRel easeSessi onHi t s. Thisroutine releases al of the search results from the last search while

leaving the list of target volumesintact.

Making a copy of a search session using the routine FBCO oneSear chSessi on will copy thelist of

target volumesto the duplicate search session.

Page: 4

TN 1180: Sherlock’s Find By Content Library

Back to top

Performing Searches

When FBC performs a search, it will generate alist of filesthat were matched. Thislist isreferred to as
the "hits,” and it is stored inside of the search session. FBC can be asked to perform a content-based
search using a query string containing alist of words, asimilarity search based on one or more hits
obtained in a previous search, or asimilarity search based on alist of examplefiles. Listing 8 illustrates
how a query-based search can be performed. Here, the query is used to search for matching files on all
local indexed volumes.

CSErr Si npl eFi ndByQuery (char *query, FBCSearchSessi on *session) {
CSErr err;
FBCSear chSessi on newsessi on;

/* set up locals, check parameters... */
if (query[0] == 0) return parantrr;
if (session == NULL) return parangkrr;

newsessi on = NULL;

/* allocate a new search session */
err = Sinpl eSet UpSessi on(&ewsessi on) ;
if (err !'= noErr) goto bail;

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySearch(newsessi on, query,
NULL, 0, 100, 100);
if (err !'= noErr) goto bail;

/* save the results and return */
*sessi on = newsessi on;
return noErr;

bail :
i f (newsession != NULL)
FBCDest r oySear chSessi on(newsessi on) ;
return err;

Listing 8. A Query based search of al local, indexed volumes.

Searches conducted using either the routine FBCDoExanpl eSear ch or the routine

FBCBI i ndExanpl eSear ch can be used to locate files that are similar to other files. Similarity searches
will locate files with similar content to the files specified as examples. Examples can be specified as
indg>_<§;s referring to hits obtained from previous searches, or asalist of FSSpec records referring to files
on disk.

All three of the search routines— FBCDoExanpl eSear ch, FBCBI i ndExanpl eSear ch, and

FBCDoQuer y Sear ch—provide support for limiting the search results to files residing in one or more
directories. To do this, clients provide alist of FSSpec records referring to target directories. The example
in Listing 9 illustrates how to limit the results of a search to a particular set of directories.

enum {
kMaxVol s = 20,
maxH ts = 10,

Page: 5

H

TN 1180: Sherlock’s Find By Content Library

maxHi t Terns = 10

OSErr RestrictedFi ndByQuery (char *query, U nt16 dirCount,

FSSpec* dirList,
FBCSear chSessi on* sessi on)
U nt16 vCount, i;
SInt 16 vRef Nums[kMaxVol s], normal Vol ;
FBCSear chSessi on newsessi on;

vCount = O;

newsessi on = NULL;

if (dirList == NULL || dirCount == 0) return parangkrr;
if (query == NULL) return parantrr;

if (*query == 0) return parankrr;

if (session == NULL) return parangkrr;

/* collect all of the unique volune reference nunbers

fromthe list of FSSpecs provided in the paraneters. */
for (i=0; i<dirCount; i++) {

Bool ean found;

HPar anBl ockRec pb;

/* ensure the vRefNumis a vol une
ref erence nunber */
pb. vol umrePar am i oVRef Num = dirList[i].vRef Num
pb. vol unePar am i oNanePtr = NULL;
pb. vol umrePar am i oVol I ndex = 0;
if ((err = PBHGet VI nfoSync(&pb)) != noErr) goto bail;
nor mal Vol = pb. vol umePar am i oVRef Num

/* make sure it’'s not already in the list */
for (found = false, j=0; j<vCount; j++)

if (vRefNuns[j] == normal Vol) {
found = true;
br eak;

}

/* add the volune to the list */
if (!found && vCount < kMaxVol s)
vRef Nums[vCount ++] = nor nal Vol ;

/* set up a session to use the volunmes we found */
err = Set UpVol uneSessi on(&ewsessi on, vCount, vRef Nuns);
if (err = noErr) goto bail;

/* Here is the call that does the actual search,
storing the results in the search session. */
err = FBCDoQuerySearch(newsessi on, (char*)queryTxt,
dirList, dirCount, maxHits, maxHitTerms);
if (err !'= noErr) goto bail;

/* save the result and return */
*sessi on = newsessi on;
return noErr;

bail :

i f (newsession != NULL)
FBCDest r oySear chSessi on(newsessi on) ;
return err;

Listing 9. Searching aparticular set of directories.

Page: 6

TN 1180: Sherlock’s Find By Content Library

Here, volume reference numbers extracted from the array of FSSpec records referring to target directories
provided as a parameter are used to configure the volumes that will be searched by the search session.
Then, thelist of target directoriesis passed to the FBCDoQuer ySear ch.

Back to top

Retrieving Infor mation from a Search Session

After asearch is conducted using a search session, the search session may contain information about one
or more matching files. Clients can access information about individua hits including the file's FSSpec
record, the words that were matched in the file, the “score” assigned to the file during the last search
operation, and additional information about the file. Listing 10 illustrates how one could obtain
information about each hit returned by a search.

typedef OSErr (*HitProc) (FSSpec theDoc,
fl oat score,
Ul nt 32 nTer s,
FBCWor dLi st hit Terns);

/* Sanpl eHandl eHi ts can be called after a search to enunerate
the search results. For each search hit, the hitFileProc
function paraneter is called with informati on descri bing
the target. */

OSErr Sanpl eHandl eHi ts (FBCSear chSessi on sessi on,

H tProc hitFileProc) {
OSErr err;
U nt32 hitCount, i;
FSSpec tar get Doc;
float targetScore;
FBCWor dLi st target Ter ns;
Ul nt 32 nuniTer 1rs;

/* set up locals, check paraneters */
target Ternms = NULL;
if (hitFileProc == NULL) return parantrr;
if (session == NULL) return parangtrr;

/* count the nunber of hits in this session */
err = FBCGet Hi t Count (sessi on, &hitCount);
if (err !'= noErr) goto bail;

/* iterate through the hits */
for (i =0; i < hitCount; i++) {

/* get the target document’s FSSpec */
err = FBCGet Hi t Docunent (session, i, &targetDoc);
if (err !'= noErr) goto bail;

/* get the score for this docunent */
err = FBCGet Hi t Score(session, i, &t argetScore);
if (err !'= noErr) goto bail;

/* get alist of the words matched in
this document */
numlerns = nmaxH t Ter ns;
err = FBCGet Mat chedWirds(session, i, &nunierns,
&t ar get Terns) ;
if (err !'= noErr) goto bail;

Page: 7

TN 1180: Sherlock’s Find By Content Library Page: 8

/* call the call back routine provided as a
paraneter to do something with the information. */
err = hitFileProc(&t argetDoc, score, nunierns,

target Terms);
if (err !'= noErr) goto bail;

/* clean up before noving to the next iteration. */
FBCDest r oyWor dLi st (target Terns, nuniler ns) ;
target Terms = NULL;

}
return noErr;
bail :
if (targetTernms != NULL)
FBCDest r oyWor dLi st (target Ter ns, numniler ns) ;
return err;
}

Listing 10. Enumerating al of the files found in a search session.

Back to top

Back to top

Find By Content Reference

This section provides a description of the CFM-based interfaces to the PowerPC FBC library. PowerPC
applications using these routines link against the library named “Find By Content” (without the quotes).

Back to top

TN 1180: Sherlock’s Find By Content Library

Data Types
FBC provides the following data types. Storage management for these typesis provided by the FBC
library. Clients should not attempt to allocate or deall ocate these structures using calls to the Memory
Manager.
FBCSear chSessi on
typedef struct OpaqueFBCSearchSessi on* FBCSear chSessi on;
Search sessions created by FBC are referenced through pointer variables of thistype.
Theinternal format of the datareferred to by this pointer isinternal to the FBC library.
Clients should not attempt to access or modify this data directly.
FBCWordltem
typedef char* FBCWordltem
An ordinary C string. Thistypeis used when retrieving information about hits from a
search session.
FBCWor dLi st
t ypedef FBCWordltemr FBCWOrdLi st;

An array of wor dlI t ems. Thistype is used when retrieving information about hits from a
search session.

Back to top

Page: 9

TN 1180: Sherlock’s Find By Content Library

Allocation and I nitialization of Search Sessions
The following routines can be used to alocate and dispose of search sessions. Storage
occupied by search sessions is owned by the FBC library, and these are the only
routines that should be used to allocate, copy, and dispose of search sessions.
FBCCr eat eSear chSessi on
OSErr FBCCr eat eSear chSessi on(
FBCSear chSessi on* sear chSessi on);

sear chSessi on pointsto avariable of type FBCSear chSessi on.

FBCCr eat eSear chSessi on alocates anew search session and returns areferenceto it
in the variable pointed to by sear chSessi on.

FBCDestroySear chSessi on
OSErr FBCDest r oySear chSessi on(
FBCSear chSessi on t heSessi on);

t heSessi on isapointer to a search session.

FBCDest r oySear chSessi on reclaims the storage occupied by a search session. This

will include any volume configuration information and hits associated with the search
session.

FBCCI oneSearchSessi on

OSErr FBCC oneSear chSessi on(
FBCSear chSessi on ori gi nal ,
FBCSear chSessi on* cl one);

ori gi nal isapointer to asearch session.

cl one pointsto avariable of type FBCSear chSessi on.

FBCCl oneSear chSessi on creates anew search session and stores a pointer to it in the
variable pointed to by the clone parameter. Information from the original search session

that is copied to the new session includes the volumes targeted by the search session
and al of the hits that may have been found in previous searches.

Back to top

Configuring Sear ch Sessions

Search sessions can be configured to limit searches to a particular set of volumes. These routines alow
clients access to the set of volumes that will be searched by FBC.

FBCAddAI | Vol umesToSessi on

Page: 10

TN 1180: Sherlock’s Find By Content Library Page: 11
OSErr FBCAddAI | Vol unesToSessi on(
FBCSear chSessi on t heSessi on,
Bool ean i ncl udeRenot e) ;
t heSessi on isapointer to a search session.

i ncl udeRenot e iSaBool ean vaue.

FBCAddAI | Vol unesToSessi on configures a search session to search all mounted
volumes that have been indexed. If i ncl udeRenot e istrue, then remote volumes will be
included in the search session’s list of target volumes. Volumesthat are not indexed are
not added to search session’s list of target volumes.
FBCSet Sessi onVol umes
CSErr FBCSet Sessi onVol unes(
FBCSear chSessi on t heSessi on,

const SIntl1l6 *vRef Nuns,
U nt 16 nunVol unes) ;

t heSessi on isapointer to asearch session.
vRef Nunms isan pointer to an array of volume reference numbers (16-bit integers).

nunmVol unes isan integer value containing the number of volume reference numbersin
the array vRef Nums.

FBCSet Sessi onVol unes aII_ows (_:Iientsto add several volumesto thelist of volumes
targeted by a search sessioninasingle call.
FBCAddVol umeToSessi on
OSErr FBCAddVol uneToSessi on(
FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;
t heSessi on isapointer to asearch session.

vRef Numis avolume reference number.

FBCAddVol uneToSessi on addsavolumeto thelist of volumesthat will be searched by
the search session. If the volumeis not indexed, it will not be added to the list.

FBCRemoveVol umeFr omSessi on

CSErr FBCRenpveVol uneFr onSessi on(
FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;

t heSessi on isapointer to a search session.
vRef Numis avolume reference number.

FBCRenoveVol uneFr onBessi on removes the specified volume from the list of volumes
that will be searched by the search session.

TN 1180: Sherlock’s Find By Content Library Page: 12

FBCGet Sessi onVol umeCount
OSErr FBCGet Sessi onVol uneCount (

FBCSear chSessi on t heSessi on,
U nt 16* count);

t heSessi on isapointer to a search session.

count isapointer to a 16-bit integer where the result is to be stored.

FBCGet Sessi onVol umeCount returns, in * count , the number of volumesin thelist of
volumes that will be searched by the search session.

FBCGet Sessi onVol umes
OSErr FBCGet Sessi onVol unes(
FBCSear chSessi on t heSessi on,

Sl nt 16 *vRef Nuns,
U nt 16* nunWVol unes);

t heSessi on isapointer to asearch session.
vRef Nunms isapointer to an array of volume reference numbers (16-bit integers).
*nunvol umes isapointer to a 16-bit integer. On input, thiswill be the number of

elements that can be stored in vRef Nuns, and on output it will be the number of
elements actually stored in vRef Nuns.

FBCGet Sessi onVol unes returnsthe list of volumesthat will be searched by the search
session in the array pointed to by vRef Nuns. * nunvol umres is set to the number of
volume reference numbers returned in the array.

Back to top

Executing a Sear ch

FBC provides three different routines for conducting searches that are described in this section.

FBCGet Sessi onVol umeCount

OSErr FBCDoQuer ySear ch(
FBCSear chSessi on t heSessi on,
char* queryText,
const FSSpec targetDirs[],
Ul nt 32 nunifar get s,
U nt32 nmaxHits,
U nt 32 maxH t Wor ds) ;

t heSessi on isapointer to a search session.
quer yText refersto aC-style string containing the search terms.

tar get Di rs pointsto an array of FSSpec records that refer to directories. If

TN 1180: Sherlock’s Find By Content Library Page: 13
nunifar get s IS zero, then this parameter can be set to NULL.

nunirar get s contains the number FSSpec records in the array pointed to by
targetDirs.

maxHi t s the maximum number of hits that should be returned.
maxHi t Wor ds the maximum number of hit words that will be reported.

FBCDoQuer ySear ch performs a search based on the search terms found in quer y Text .
If thet ar get Di r s parameter is present (nunirar get s isnot zero), then only files
residing in the directories specified int ar get Di r s will beincluded in the hits found by
the search.

FBCDoExampl eSear ch

OSErr FBCDoExanpl eSear ch(
FBCSear chSessi on t heSessi on,
const Ul nt32* exanpl eH t Nuns,
Ul nt 32 nunExanpl es,
const FSSpec targetDirs[],
Ul nt 32 nunirar get s,
Unt32 maxHits,
U nt 32 maxHi t Words) ;

t heSessi on contains a pointer to a search session. This session must contain a hit list
generated by a previous search.
exanpl eH t Nuns pointsto an array of 32 bit integers.

nunExanpl es contains the number of integersin the array pointed to by
exanpl eHi t Nurrs.

t ar get Di rs pointsto an array of FSSpec records that refer to directories. If
nuniar get s I1Szero, then this parameter can be set to NULL.

nuniTar get s contains the number FSSpec recordsin the array pointed to by
targetDirs.

maxHi t s the maximum number of hits that should be returned.
maxHi t Wor ds the maximum number of hit words that will be reported.

FBCDoExanpl eSear ch performs an example-based or “similarity” search using hits
found in a previous search as examples. exanpl eHi t Nums points to an array of long
integers containing the indexes of one or more of the hits that are to be used as example
files. If thet ar get Di r s parameter is present (nunirar get s isnot zero), then only files
r:ﬂding w the directories specified int ar get Di r s will be included in the hits found by
the search.

FBCBI i ndExampl eSear ch

TN 1180: Sherlock’s Find By Content Library

OSErr FBCBI i ndExanpl eSear ch(
FSSpec exanples[],
Ul nt 32 nunExanpl es,
const FSSpec targetDirs[],
Ul nt 32 nuniar get s,
U nt32 maxHits,
U nt 32 maxHi t Wor ds,
Bool ean al | | ndexes,
Bool ean i ncl udeRenot e,
FBCSear chSessi on* t heSessi on);

exanpl es isapointer to an array of FSSpec records that refer to files. FBC will search
for filesthat are similar to these files.

nunExanpl es contains the number of FSSpec recordsin the array pointed to by
examples.

t ar get Di rs pointsto an array of FSSpec records referring to directories. If
target Di rs isnot NULL and nunirar get s isnot zero, then only filesresiding in these
directories will be included in the hit list returned by the search.

t ar get Di rs pointsto an array of FSSpec records that refer to directories. If
nuniar get s I1Szero, then this parameter can be set to NULL.

nuniar get s contains the number FSSpec recordsin the array pointed to by
targetDirs.

maxHi t s the maximum number of hits that should be returned.
maxHi t Wor ds the maximum number of hit words that will be reported.
i ncl udeRenot e iISaBool ean vaue.

t heSessi on pointsto avariable of type FBCSear chSessi on that will be created by this
routine.

FBCBI i ndExanpl eSear ch creates anew search session and conducts asimilarity
search using the files referred to in the array of FSSpec records provided in the
examples parameter. If thet ar get Di r s parameter is present (nunirar get s iSnot zero),
then only files residing in the directories specified int ar get Di r s will beincluded in
the hits found by the search. If i ncl udeRenot e istrue, then remote volumes will be
included in the search session’slist of target volumes.

If any of the example files are not indexed, then the search will proceed with the
remainder of thefiles, and the error code kFBCsoneFi | esNot | ndexed will be returned.

In this case, the search session will be created and areferenceto it will be returned in
*t heSessi on.

Back to top

Getting Information About Hits

Once asearch is complete, a search session will contain alist of hits that were found during the search.

The routines described in this section alow clients to access information about hits stored in a search
session. Hit records are indexed 0 through count-1.

Page: 14

TN 1180: Sherlock’s Find By Content Library

FBCGet Hi t Count
OSErr FBCGet Hi t Count (
FBCSear chSessi on t heSessi on,
U nt 32* count);
t heSessi on isapointer to asearch session.

count isapointer to a32-bit integer.

FBCGet Hi t Count setsthe variable pointed to by count to the number of hitsin the
search session. Hit records are indexed 0 through count-1.

FBCGet Hi t Document
OSErr FBCGet Hi t Docunent (
FBCSear chSessi on t heSessi on,

Ul nt 32 hit Nunber,
FSSpec* theDocunent);

t heSessi on isapointer to a search session.

hi t Nunber isanindex vaue referring to a hit record in the search session.

t heDocument iSapointer to aFSSpec record.

FBCGet Hi t Docunent returns theFSSpec record for the hit in the search session whose
index ishi t Nunber .

FBCGet Hi t Scor e

OSErr FBCGet Hi t Scor e(

FBCSear chSessi on t heSessi on,
Ul nt 32 hit Nunber,
float* score);

t heSessi on isapointer to asearch session.
hi t Nunber isanindex value referring to a hit record in the search session.
scor e isapointer to avariable of typef | oat .

FBCGet Hi t Scor e returns relevance score assigned to the hit in the search session
whose index ishi t Nunber . The score isadirect measure of the document’ s relevance
to the search criteriain the context of this particular search. Scores are normalized to the
range 0.0 - 1.0, and the most relevant hit from every search always has a score of 1.0.

FBCGet Mat chedWbr ds

OSErr FBCGet Mat chedWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hitNunber,
Ul nt 32* wor dCount ,
FBCWOr dLi st* |ist);

Page: 15

TN 1180: Sherlock’s Find By Content Library Page: 16

t heSessi on isapointer to asearch session.

hi t Nunber isanindex value referring to a hit record in the search session.

wor dCount isapointer to a 32-bit integer.

l'i st isapointer to avariable of type FBCWor dLi st .

FBCGet Mat chedWor ds returns alist of matched words for the hit in the search session
whoseindex ishi t Nunber . Thislist of wordsillustrates why the hit was returned. On
return, *1 i st will contain a pointer to aword list structure and * wor dCount will be set
to the number of entriesin that structure. Be sureto call FBCDest r oyWr dLi st to
dispose of the structure when you are done with it.

The matched words for a hit are stored in the hit itself, so retrieving them is fast.

FBCGet Topi cWor ds
CSErr FBCGet Topi cWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
Ul nt 32* wor dCount ,
FBCWrdLi st* |ist);
t heSessi on isapointer to a search session.
hi t Nunber isanindex vaue referring to a hit record in the search session.
wor dCount iSapointer to a 32-bit integer.
l'i st isapointer to avariable of type FBCWor dLi st .
FBCGet Topi cWr ds returnsalist of topical words for the hit in the search session
whoseindex ishi t Nunber . Thislist of words provides a clue about “what the
document is about.” On return, *1 i st will contain a pointer to aword list structure and
*wor dCount will be set to the number of entriesin that structure. Be sureto call
FBCDest r oyWor dLi st to dispose of the structure when you are done with it.
Thelist of topical words for aparticular hit must be generated through the index file, so
thiscal issignificantly slower than FBCGet Mat chedWor ds.
FBCDestroyWor dLi st
OSErr FBCDestroyWr dLi st (
FBCWr dLi st t helLi st,
U nt 32 wor dCount) ;
t heLi st isapointer to aword list.
wor dCount isthe number of wordsin thelist.

FBCDest r oyWor dLi st disposes of aword list allocated by either
FBCGet Mat chedWor ds Or FBCGet Topi c\Wor ds.

FBCRel easeSessi onHits

TN 1180: Sherlock’s Find By Content Library Page: 17

OSErr FBCRel easeSessi onHi t s(
FBCSear chSessi on t heSessi on);

t heSessi on isapointer to a search session. This session may contain hits generated by
asearch.

FBCRel easeSessi onHi t s deallocates any information stored regarding hits from the
last search from the search session. Volume configuration information is retained and
once this call completes, the search session is ready to perform another search.

Back to top

Summarizing Text

This call produces a summary containing the “most relevant” sentences found in the input text.

FBCSummari ze

OSErr FBCSunmari ze(
voi d* i nBuf,
U nt 32 inLength,
voi d* out Buf,
Ul nt 32* out Lengt h,
Ul nt 32* nunBSent ences) ;

i nBuf pointsto the text to be summarized.
i nLengt h isthe length of the text pointed to by i nBuf .
out Buf pointsto abuffer where the summary should be stored.

out Lengt h isa pointer to a 32-bit integer. On input, thisvalue is set to the size of the
buffer pointed to by out Buf . On output, it is set to the actual length of the data stored in
the buffer pointed to by out Buf .

nunSent ences iSapointer to a 32-bit integer. On input, this value is the maximum
number of sentences desired in the summary. On output, it is set to the actual number of
sentences generated. If nunsent ences is0 on input, FBC takes the number of
sentences in the input buffer and divides by 10. If the result is O, then the value 1 is used
as the maximum; otherwise, if the result is greater than 10, then the value 10 is used as
the maximum.

Back to top

TN 1180: Sherlock’s Find By Content Library Page: 18

Getting Information About Volumes

FBC provides the following utility routines for accessing information about volumes.

FBCVol umel sl ndexed

Bool ean FBCVol unel sl ndexed (SInt16 theVRef Num;

t heVRef Numis avolume reference number.

FBCVol unel sl ndexed returnst r ue if the indicated volume has been indexed.

FBCVol umel sRenot e

Bool ean FBCVol unel sRenot e(Sl nt 16 t heVRef Nunj ;

t heVRef Numis avolume reference number.

FBCVol unel sRenot e returnst r ue if theindicated volume is located on aremote server.
Clients may want to exclude networked volumes from searches to avoid network delays.

FBCVol umel ndexTi meSt amp

CSErr FBCVol unel ndexTi meSt anp(Sl nt 16 t heVRef Num
U nt 32* tinmeStanp);

t heVRef Numis avolume reference number.
ti meSt anp isapointer to an unsigned 32 bit integer.

FBCVol urrel ndexTi meSt anp Will return the time when the volume' sindex was last

updated. Thevauereturnedint i meSt anp is the same format as values returned by
Get Dat eTi ne.

FBCVol umel ndexPhysi cal Si ze

OSErr FBCVol unel ndexPhysi cal Si ze(SInt 16 t heVRef Num
Ul nt 32* si ze);

t heVRef Numis avolume reference number.

si ze isapointer to an unsigned 32 bit integer.

FBCVol umel ndexPhysi cal Si ze returnsthe size of the volume' sindex filein bytes.

Back to top

TN 1180: Sherlock’s Find By Content Library

Indexing Volumes, Folders, and Files

A new API has been added to Find By Content allowing for the immediate indexing of new or altered
files. The new routineis declared asfollows:

FBCl ndexl t ems

OSErr FBCl ndexl t ens(
FSSpecArrayPtr theltens,
U nt32 itenmCount);

t hel t ens isapointer to an array of file specification records referring to the filesto be
indexed.

i t emCount isthe number of itemsin the array of file specification records.

FBCI ndex| t ens indexes (or re-indexes) the filesreferred to in the array of file
specification records passed as a pointer in the first parameter. If the volume containing
afileaready has an index, the document is added or re-indexed; and, if the volume does
not contain an index, anew index is created.

Normally you will cal FBCI ndexI t ens after saving afile (or updating afile) ona
volume containing an index. Thiswill allow usersto keep their indexes up to date
without any additional effort. For more information about how to determineif avolume
contains an index, refer to the Sherlock technote.

COMPATIBILITY NOTE

The symbol FBCI ndexI t ens is not exported from the original version of the “Find By Content”
shared library. Applications wishing to use this routine should weak link to this symbol and then test
for it s presence before attempting to call it. Techniques for doing this are described in Technote
TN1083, “Weak-Linking to a CFM-based Shared Library.”

Back to top

Reserving Heap Space

Clients of FBC can reserve space in their heap zone for their callback routine before conducting a search.

FBCSet HeapReservati on

voi d FBCSet HeapReservati on(Ul nt 32 bytes);

byt es isan integer value containing the number of bytes that should be reserved.

FBCSet HeapReser vat i on setsthe number of bytes FBC should guarantee are available
in the client application’ s heap whenever the client’s call back routineis called during
searches. If you do not explicitly reserve heap space by calling this routine, then 200K
will be reserved for you.

Back to top

Page: 19

TN 1180: Sherlock’s Find By Content Library

Application-Defined Routine

Clients can provide aroutine that will be called periodically during searches. This routine will provide
clients with both information about the status of a search, and opportunity to cancel a search beforeit is
complete.

Call back routines are defined as follows;

FBCCal | backProcPtr

t ypedef Bool ean (*FBCCal | backProcPtr) (
U nt16 phase
fl oat percent Done,
void *data);

phase isa16-bit integer containing one of the following constants indicating the current
status of the search:

enum {
kFBCphSear chi ng
kFBCphMaki ngAccessAccessor
kFBCphAccessWii ti ng
kFBCphSummari zi ng
kFBCphl dl e
kFBCphCancel i ng

per cent Done isaprogressvaueintherange0.0- 1.0
dat a contains the same value provided to FBCSet Cal | back in the data parameter.

To avoid locking up the system while asearch isin progress, the callback should either directly or
indirectly cal Wi t Next Event .

An ongoing search will be canceled if the call back function returnst r ue.

FBCSet Cal | back

voi d FBCSet Cal | back(FBCCal | backProcPtr fn, void* data);

f n isapointer to your call back function.

dat a isavaue passed through to your call back function.

FBCSet Cal | back setsthe call back function that will be called during searches. If aclient does not define
acall back function, then the default callback function is used. The default call back function calls
Wai t Next Event and returnsf al se.

Back to top

Page: 20

TN 1180: Sherlock’s Find By Content Library Page: 21

Find By Content C Summary

Constants
enum {
gest al t FBCl ndexi ngSt at e = 'fbci',
gest al t FBC ndexi ngSaf e = 0,
gest al t FBCi ndexi ngCri ti cal =1
}s
enum {
gest al t FBCVer si on = '"fbecv',
gest al t FBCCur r ent Ver si on = 0x0011
}
enum { /* error codes */
kFBCvTwi nExcepti onErr = -30500,
/* m scell aneous error */
kFBCnol ndexesFound = -30501,
kFBCal | ocFai | ed = -30502,
/*probably | ow nenmory*/
kFBCbadPar am = -30503,
kFBCfi | eNot | ndexed = -30504,
kFBCbadl ndexFi |l e = - 30505,
/ *bad FSSpec, or bad data in file*/
kFBCt okeni zat i onFai | ed = -30512,
/*couldn't read from document or query*/
kFBCi ndexNot Found = -30518,
kFBCnoSear chSessi on = -30519,
kFBCaccessCancel ed = -30521,
kFBC ndexNot Avai | abl e = -30523,
kFBCsear chFai | ed = -30524,
kFBCsoneFi | esNot | ndexed = -30525,
kFBCi | | egal Sessi onChange = -30526,
/*tried to add/renove vols */
/*to a session that has hits*/
kFBCanal ysi sNot Avai | able = -30527,
kFBCbadl ndexFi | eVer si on = -30528,
kFBCsummari zat i onCancel ed = -30529,
kFBCbadSear chSessi on = -30531,
kFBCnoSuchHi t = -30532
}s

enum { /* codes sent to the call back routine */

kFBCphSear chi ng = 6,
kFBCphMaki ngAccessAccessor = 7,
kFBCphAccessWii ti ng = 8,
kFBCphSummari zi ng =9,
kFBCphl dl e = 10,
kFBCphCancel i ng =11
i
Data Types

/* A collection of state information for searchi ng*/
typedef struct OpaqueFBCSear chSessi on* FBCSear chSessi on;

/* An ordinary C string (used for hit/doc terns)*/
typedef char* FBCWordltem

/* An array of Wordltens*/
t ypedef FBCWordltemr FBCWOrdLi st;

TN 1180: Sherlock’s Find By Content Library

Allocation and I nitialization of Search Sessions
OSErr FBCCr eat eSear chSessi on(

OSErr FBCDest

FBCSear chSessi on* sear chSessi on) ;
r oy Sear chSessi on(
FBCSear chSessi on t heSessi on);

OSErr FBCC oneSear chSessi on(

FBCSear chSessi on ori gi nal ,
FBCSear chSessi on* cl one);

Configuring Search Sessions
OSErr FBCAddAI | Vol unesToSessi on(

FBCSear chSessi on t heSessi on,
Bool ean i ncl udeRenot e) ;

CSErr FBCSet Sessi onVol unes(

FBCSear chSessi on t heSessi on,
const SInt16 vRef Nunms[],
U nt 16 nunVol unes);

OSErr FBCAddVol uneToSessi on(

FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;

OSErr FBCRenpveVol uneFr onSessi on(

FBCSear chSessi on t heSessi on,
SInt16 vRef Num ;

OSErr FBCGet Sessi onVol uneCount (

FBCSear chSessi on t heSessi on,
U nt 16* count);

OSErr FBCGet Sessi onVol unes(

Executing a Search

FBCSear chSessi on t heSessi on,
Sl nt 16 vRef Nuns[],
U nt 16* nunVol unes);

OSErr FBCDoQuer ySear ch(

FBCSear chSessi on t heSessi on,
char* queryText,

const FSSpec targetDirs[],
Ul nt 32 nunirar get s,

unt32 maxHits,

U nt 32 maxHi t Words) ;

OSErr FBCDoExanpl eSear ch(

FBCSear chSessi on t heSessi on,
const Ul nt32* exanpl eH t Nuns,
U nt 32 nunExanpl es,

const FSSpec targetDirs[],
Ul nt 32 nunirar get s,

U nt32 maxHits,

U nt 32 maxHi t Words) ;

OSErr FBCBI i ndExanpl eSear ch(

FSSpec exanples[],

U nt 32 nunExanpl es,

const FSSpec targetDirs[],

Ul nt 32 nunirar get s,

Unt32 maxHits,

Ul nt 32 maxHi t Wr ds,

Bool ean al | I ndexes,

Bool ean i ncl udeRenot e,

FBCSear chSessi on* t heSessi on);

Getting Information About Hits

Page: 22

TN 1180: Sherlock’s Find By Content Library

OSErr FBCGet Hi t Count (
FBCSear chSessi on t heSessi on,
Ul nt 32* count);
OSErr FBCGet Hi t Docunent (
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
FSSpec* theDocunent);
OSErr FBCGet Hi t Scor e(
FBCSear chSessi on t heSessi on,
Ul nt 32 hit Nunber,
float* score);
OSErr FBCGet Mat chedWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hit Nunber,
Ul nt 32* wor dCount ,
FBCWordLi st* list);
OSErr FBCGet Topi cWor ds(
FBCSear chSessi on t heSessi on,
Ul nt 32 hi t Nunber,
Ul nt 32* wor dCount ,
FBCWordLi st* 1ist);
OSErr FBCDest royWr dLi st (
FBCWor dLi st t helLi st
U nt 32 wor dCount) ;
OSErr FBCRel easeSessi onHi t s(
FBCSear chSessi on t heSessi on);

Summarizing Text
OSErr FBCSunmari ze(
voi d* i nBuf,
U nt32 inLength,
voi d* out Buf,
Ul nt 32* out Lengt h,
Ul nt 32* nunBent ences) ;

Getting Information About Volumes
Bool ean FBCVol unel sl ndexed (SInt16 theVRef Num;
Bool ean FBCVol unel sRenot e(Sl nt 16 t heVRef Nunj ;
OSErr FBCVol unel ndexTi meSt anp(Sl nt 16 t heVRef Num
U nt 32* tinmeStanp);
OSErr FBCVol unel ndexPhysi cal Si ze(SInt 16 t heVRef Num
Ul nt 32* si ze);

Indexing files, folders, and volumes

CSErr FBCl ndexl t ens(
FSSpecArrayPtr theltens,
U nt32 itenmCount);

Reserving Heap Space
voi d FBCSet HeapReservati on(Ul nt 32 bytes);

Application-Defined Routine
t ypedef Bool ean (*FBCCal | backProcPtr) (
U nt16 phase,
fl oat percent Done,
void *data);
voi d FBCSet Cal | back(FBCCal | backProcPtr fn, void* data);

Page: 23

TN 1180: Sherlock’s Find By Content Library Page: 24

Back to top

Further References

e Technote TN1141, “Extending and Controlling Sherlock”
e Technote TN1181, “Sherlock’s Find by Content Text Extractor Plug-ins.”

Back to top

Downloadables

FOF
H Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

