Technote 1060

Technotes
Download Download
A]
E
Acrobat file (K) AppleWorksfile (51K)

Controlling Appswith Synthesized Events,
or |GNEFilter -- the Untold Story

Technote 1060 July 1996

Release 1.0 July 1996

Wednesday, February 19 1997 09:30

Release 11 i rected assembly snippet

Monday, September 22, 1997 16:45

Release 1.2 removed obsolete referénce to Mac 0S8

Until now, JGNEFilter has been "under documented,” with only vague mentions appearing in Technote
TB 11: GetNextEvent; Blinking Apple Menu . JGNEFilter isthe name of a mechanism by which
programs can obtain access to each EventRecord just before the event is sent to the caller of
GetNextEvent or WaitNextEvent.

Using jGNEFilter, your programs can customize most event-driven interaction with the user, including
but not limited to such things as monitoring keystrokes, and programmeatically simulating some kinds of
user activity. Also, without being an application or driver, your program can arrange to be called
periodicaly at atime when it's safe to call Memory Manager (and the high-level managers which depend
on Memory Manager).

Developers who would like to make use of JGNEFilter -- or devel opers who are aready bravely making
use of it even in the face of inadequate documentation -- should read this Technote.

CONTENTS

o |GNEFilter Fundamentals

o |GNEFilter Cdling Conventions
o |GNEFilter "Gotchas'

e |GNEFilter Limitations

e Summary
jGNEFilter Fundamentals

The interface to JGNEFilter is, unfortunately, rather primitive. The key to the whole thing isa single long
word in low memory (at address 0x029A, to be precise). Thislong word, if non-zero (and it's amost
alwaysis non-zero; more on that later), isthe address of aroutine that GetNextEvent callsto filter
events. It'sthat smple.

Page: 1

Technote 1060

The process of installing ajGNEFilter routine amounts to saving off the old filter routine address and
installing a new one. Thereis no arbitration for access to this memory location; programs must be very
careful to accessit according to the calling conventions, as explained in the next section of this Technote.
Otherwise, the system may begin to misbehave in mysterious ways and other JGNEFilter routines may
not get the access to events they need to function properly.

Asisaways the case with low memory, you should access jJGNEFilter only through the LM accessor
functions declared in the Universal Headers <LowMem.h>, which in this case are LM GetGNEFilter and
LM SetGNEFilter.

All JGNEFilter routines should call any previous routine. This policy aloneis responsible for the
formation of a"chain" of JGNEFilter routines. Thisis roughly the sameideaas atrap patch. Caling the
previous JGNEFilter is essential to the proper operation of the Mac and cannot be omitted. Exactly when
in your routine to call the next routine in the chain is up to you.

JGNEFilter Calling Conventions

JGNEFilter calling conventions are inherently 68000-oriented and don't conform to the calling
conventions of any high-level language.

For PowerPC filter routines, use NewGetNextEventFilterProc and Call GetNextEventFilterProc, both of
which make use of a specia-case routine descriptor that makes writing the routine's interfacein a
high-level language smple.

For 68K filter routines, it's probably not impossible to write ajGNEFilter routine entirely in ahigh-level
language (assuming you're using a reasonably modern compiler), but it's probably more effort than it's
worth. Instead, you'll probably want to use afew lines of assembly glueto call aroutine writtenin a
higher-level language.

On entry to your jGNEFilter glue, register A1 will contain the address of the event record to be filtered.
Register DO will contain aword which isthe proposed return value for GetNextEvent. The word at
offset 4 from register A7 (just above the return address) will also be the proposed return value for
GetNextEvent. The differenceisthat DO is an input value and the stack word is an output value. The
stack word will be returned to the caller of GetNextEvent. Initialy, the word in DO and the word on the
stack are (or should be, assuming there are no buggy jGNEFilter functionsin the chain) the same.

It'simportant to note that the values of both registers A1 and DO must be set before calling the next
routine in the chain or returning. Thisisn't anything particularly specia to jJGNEFilter routines (as
opposed to trap patches and other such things), but it warrants emphasis because it's an easy thing to
forget.

By far, the trickiest part of caling the previous JGNEFilter routine is knowing when and how to set the
value of the word on the stack. If your routine isgoing to jump to the next routinein the chain (using a
68K JMP instruction or its equivalent), you need to make sure the stack value is what you would have
returned in case the next routine in the chain chooses not to changeit. If your routine is going to call
the next routine in the chain (using a68K JSR instruction or its equivalent), you should push aword
onto the stack before calling the next routine in the chain and pop the word after the routine returns. Y ou
can then use the return value from the next routine in the chain routine to help you decide what return
value to put on the stack when your routine returns.

In any case, you should set register DO to the value you want the next routine in the chain to use as
input.

These lines, dightly modified from the "jGNE Helper" sample on the Developer CD Series Tool Chest
Edition, perform the correct sequence of assembly instructions to allow a C function to do the brunt of
the work:

MOVE. W DO, - (A7) /'l push pre-result for C
MOVE. L AL, - (A7) /'l push event record pointer for C

Page: 2

Technote 1060

JSR nyGNE // do the real work (in C
MOVE. L (A7) +, Al /'l restore event record pointer
ADDQ L #2, A7 /| pop pre-result
/'l the post-result (fromC) is in DO
ASL.W #8,D0 // pretend to have same bug as Get Next Event
MOVE. W DO, 4(A7) /'l stash result where caller expects it

jGNEFilter " Gotchas"

The following section discusses the two important edge cases that you need to take into consideration
when installing ajGNEFilter.

The Low Memory Context Switching Gotcha

Most low memory global variables are swapped in and out of low memory on a process-by-process
basis. (Their values live in the Process Manager's storage while they're swapped out.) Thiswas donein
the early days of MultiFinder to appease applications that assumed they owned the whole machine.

JGNEFilter is not one of the low memory globals which is swapped. Consequently, it's possible for an
application to install afilter routine and get access to events which are about to be passed to other
applications. (Mostly, such filters get accessto al relevant events destined for the foreground application
but only null and update events destined for background applications, because these events are generally
the only events which background applications receive.)

An application ingtalling ajGNEFilter function does not pose a problem until it's time to quit the
application and/or uninstall the filter. Since the JGNEFilter routine addressis just along word in low
memory, there's no way to prevent a second application from reading it and installing a new filter routine
address. This second application would expect to call what it perceivesto be the next filter routine in the
chain. When the time came for the first application to quit, it would restore the "next" routine address
low memory, over-writing the filter routine address of the second application. Suddenly, the second
application would be excluded from the filter chain and would stop functioning properly. The situation
would get even worse if the second application wereto call its"next” filter routine address, because that
code would have disappeared when the first application quit.

The solution for applications that want to install ajGNEFilter isto ingtal it indirectly viaa"jump idand"
in a 6-byte pointer block in the system heap. Disassembled, the jump island looks like this:

JMP XXXXXXXX ; where XXXXXXXX is the address of your filter routine

Y ou declare a struct for this:;

#i f PRAGVA ALl GN_SUPPORTED
pragnma options align=nmac68k
#endi f

t ypedef struct

unsi gned short jnp;
void *addr;

}
t Junpl sl and, *tJunpl sl andP
#i f PRAGVA_ALI GN_SUPPORTED

pragna options align=reset
#endi f

After calling NewSysPtr to allocate the block, you set jmp to Ox4EF9 and addr to the address of your
filter routine (or GetNextEventFilterUPP). Remember to flush the instruction cache after performing

Page: 3

Technote 1060 Page: 4

this magic. (See Technote HW 06 for details on flushing the instruction cache.) When you want to
uninstall your filter routine, ssimply set addr to the previous filter routine address. Don't dispose the
pointer block and don't call LM SetGNEFilter, so that other programs continue to function. Do
remember to flush the instruction cache again.

The Unexpectedly NIL Filter Routine Address Gotcha

Since the system uses jGNEFilter to do housekeeping such as servicing the Notification Manager
gueue, one might expect JGNEFilter to ways be non-NIL. However, thisis not the case. Some
third-party programs have taken it upon themselvesto set the JGNEFilter routine addressto NIL
temporarily for their own nefarious purposes. Always be ready to compensate for this. Compensating
might be as smple as testing the address before calling it.

The Re-entrancy Gotcha

JGNEFilter is not aloop but afilter. Consequently, ajGNEFilter routine does not have the freedom to
define the way in which it handles events. It handles them when the system dictates. If your routine
makes an Event Manager call which results in another call to JGNEFilter, your routine needs to set
and/or test are-entrancy flag to avoid infinite recursion.

jGNEFilter Limitations

Compared to other mechanisms, | GNEFilters have remarkably few limitations. JGNEFilter routines can
allocate or move memory (directly or indirectly), call the Toolbox, perform file I/O, launch applications,
etc. Thelimitations are:

Not a Process

Any system call that relies on the current process to establish some sort of unique identity is not going
to work very well. The reason isthat ajGNEFilter routine can be called while any processis current.

For example, the AppleEvent Manager uses the current process to identify the sender of an AppleEvent.
A jGNEFilter routine can send AppleEvents, aslong as the current process hasits

modeHighL evelEventAware bit set, but it can't receive them, and that includes queued reply events. It
might be tempting to set up AppleEvent handler routines while a given processis current, but that's likely
to cause you big compatibility problemsin the long term, if not right away -- just don't do it.

If you need a process, consider starting up a background-only application, either via LaunchA pplication
or by changing your "INIT" file to an "app€’. Y ou can find more information on background-only
applications in Technote PS 02 - Background-Only Applications .

Inter national Keystrokes

"Fake" keyDown events are not sent through the JGNEFilter chain. Thiswas aknown bug, but it was
fixed, and should only manifest itself when multi-byte script packages, such as the Japanese Language
Kit, areinstalled.

If your program needs access to keystrokes and will be sold into a market where WorldScript isin
heavy use, you may be better off patching WaitNextEvent than writing ajGNEFilter routine. (Yes, it's
shocking to see DTS speaking in afavorable light about atrap patch, and it pains usto write it, but it's
the plain truth.) Unfortunately, thiskind of patch is difficult to write.

Text Services Manager Bugs

In the presence of a Text Services Manager input-method window (usually caled, smply, aTSM
window), some mouseDown events may not be sent to the JGNEFilter and in fact may appear to "pass
through" a TSM window into whatever is behind it. Unfortunately, thereis no official workaround for
this known bug.

Technote 1060 Page: 5

Summary

The JGNEFilter is a powerful mechanism that adds new functionality to your code, enabling you to
watch the system aswhole. If you're trying to monitor or modify the user's interaction with the system,
JGNEFilter isthe place to start. If you're smply trying to achieve a more flexible environment for your
periodic tasks -- i.e., allowing them to allocate memory or do file I/O, JGNEFilter may also be for you.
There are some limitations, as explained in this Technote, but the unique advantages of JGNEFilter
outweigh its disadvantages.

Further Reference
e Technote TB 11: GetNextEvent; Blinking Apple Menu

e Technote HW 06: Cache As Cache Can
e Technote PS02: Background-Only Applications

For sample code, see:

Dev. CD Aug 96 TC
Tool Chest

Cs Uilities

j GNE Hel per

Technotes
Previous Technote | Contents | Next Technote

