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Important for all Apple Printing and Graphics Developers: 

The information in this Technote is still relevant up to and including Mac OS 7.6 with QuickDraw GX
1.1.5. Beginning with the release of Mac OS 8.0, however, Apple plans to deliver a system which
incorporates QuickDraw GX graphics and typography only . QuickDraw GX printer drivers and GX
printing extensions will not be supported in Mac OS 8.0 or in future Mac OS releases. Apple's goal is to
simplify the user experience of printing by unifying the Macintosh graphic and printing architectures and
standardizing on the classic Printing Manager. 

For details on Apple's official announcement, refer to </technotes/gxchange.html> 

This Technote discusses ConicLibrary.c from the QuickDraw GX Libraries. 

This Note is intended for Macintosh QuickDraw GX developers who want to approximate ellipses and
hyperbolas with paths. These, with parabolas (gxCurves), form the familty of curves called conics. 

Contents
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About the GX Libraries
For better or worse, the development of QuickDraw GX took seven years from conception to initial
release. During that time, there were many requests for feature enhancements and interface improvements
that, if implemented, might have taken seven more years to complete. As it turns out, some of these
enhancements could readily be built on existing services, but there was no time to test or document these
services with the rigor required to make them fully part of the released system.

The GX Libraries fill this gap by providing services built on top of the rest of QuickDraw GX in source
form. This Technote and others document these services. Since GX libraries are provided as source, it is
reasonable for developers to modify them to meet their specific needs. Care was taken for the libraries
not to depend on the implementation details of QuickDraw GX so that future versions should not
invalidate them, in original or modified form.

The libraries are likely to evolve to take advantage of improved algorithms, as well as new Macintosh or
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QuickDraw GX services. If you modify one for your application's specific needs, it's worth occasionally
reviewing the GX library provided by Apple to stay synchronized with any improvements.

What is in ConicLibrary.c?

The GX Library, ConicLibrary.c, generates conics, a family of curves that include circles, ellipses,
parabolas and hyperbolas. It was written by Michael Reed (the guy behind GX Fonts and TrueType)
from a math paper derived by Robert Johnson, the GX resident mathematics professor.

Using ConicLibrary.c

A Conic is a gxCurve, Almost

ConicLibrary.c uses the conic struct:

struct conic {
        gxPoint a;
        gxPoint b;
        gxPoint c;
        Fixed lambda;
};

This is nearly the same as the gxCurve struct; it differs only by the additional lambda parameter. (Mike
was a math major, too.) The lamba specifies the curvature. If the curvature is equal to one, the conic is a
parabola, and is identical to a gxCurve (also known as a quadratic Bézier) with the same three points, as
illustrated in Figure 1.

In Figure 1, as lambda decreases, the curve approaches the line from point a to point c. All of these
curves are elliptical arcs. When lambda hits zero, the curve has become a line from point a to point c.

As lambda increases, the curve approaches point b. These curves are hyperbolas. Once lambda gets big
enough, the curve approximates two line segments: one from point a to point b, and another from point b
to point c.

Figure 1: A Quadratic Rational Spline with Vertices (a,b,c)

One reasonable use of the ConicLibrary provides a graphics application with a means to change the
amount of curvature defined by a quadratic Bézier, a segment of a gxPath. To increase the curvature,
increase lambda.

Conic Functions

Before we get into what the various values for lambda do, let's take a look at the conic library functions.

NewConic

gxShape NewConic(const conic *curve);

NewConic creates a path which approximates the conic. It subdivides the original conic into a pair of
conics, recursively, until the gxCurve described by the smaller conic has a sufficiently small error. The
error is set by the default path's shape error, which is initially 1.0. You can set it to a larger or smaller
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error with:

GXSetShapeCurveError(GXGetDefaultShape(gxPathType), errorValue);
 

DrawConic

void DrawConic(const conic *curve, gxShapeFill fill);

DrawConic creates the path shape, draws it with the specified fill, and throws it away. The fill can be any
gxShapeFill value that works with a path; gxOpenFrameFill is the most common choice.

SetConic

void SetConic(gxShape target, const conic *curve);

This replaces the geometry in an existing shape with a path that approximates the conic.

Note: 
It is not necessary to understand lambda in mathematical terms. Its usefulness for
ConicLibrary.c can be summarized by the following: increasing lambda increases curvature,
while decreasing lambda decreases the curvature.

Note: 
These functions are orthogonal to other GX Graphics primitives, such as points, lines, polygons
and paths, and other libraries, such as cubics, arcs, ovals and rounded rectangles. You can rely
on functions of the form NewX, SetX and DrawX for any geometry supported by QuickDraw
GX.

The Theory behind ConicLibrary.c
In the discussion that follows, several liberties are taken. Since the reader is assumed to be a
programmer, not a mathematician, most of the equations that follow are in C++ rather than in
mathematical notation. The non-existent structs fPoint, fCurve and fConic are introduced, to make the
code easier to read. They are defined as:

struct fPoint {
        float x;
        float y;
};

struct fCurve {
        fPoint first;
        fPoint control;
        fPoint last;
};

struct fConic {
        fPoint a;
        fPoint b;
        fPoint c;
        float lambda;
};

Note: 
My apologies to the mathematicians of the world for bastardizing concepts, to the C
programmers of the world for using C++, and to the GX Engineers for using not using Fixed.

There are (at least) two ways of describing conics. First, the ones that use x and y in equations you
vaguely remember from high school:

circle:         x2 + y2 = 0

parabola:       x = y2

hyperbola:      x2 -  y2 = 1
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ellipse:        x2/a + y2/b = 0

We're going to mostly ignore these, except to note that they can all be generalized by:

conic:  ax2 + bx + cy2 + dy + exy + f = 0

This looks suspicously like the equation describing a parabola (with the right values of a, b, c, d, e and f)
– a gxCurve; and it is. Let1s see how.

Describing a Curve

The general conic equation asserts that any equation of order 2 in x and y describes a conic. A conic, in
turn, is described as a plane section of a pair of cones, stacked point to point. Slicing these cones reveals
the familiar circles, ellipses, parabolas and hyperbolas.

There's another way to describe a parabola: as a parametric equation. A parametric equation (at least as
they are going to be described here) describes x and y in terms of two equations as a third parameter, t,
varies from zero to one. The equation for a second order parametric equation is:

        x = at2 + bt + c

        y = dt2 + et + f

It's easy to see how this describes at least a non-rotated parabola; setting a or d to zero allows specifying
an xy equation where either x or y is squared. More importantly for computers, it's easy to turn this
equation into a forward differencing algorithm that allows approximating the curve as a series of lines
with computations no more complicated than adds and shifts.

If the curve described by these equations is limited by t starting at zero and ending at one, then the curve
begins at (c, f) and ends at (a + b + c, d + e + f). Plugging in 0.5 for t yields the curve's midpoint; i.e., x
= a/4 + b/2 + c. It is convenient to be able to define a curve by where it starts and ends; all that's missing
is some additional information that describes how  it curves. A gxCurve describes a parabolic segment
in terms of three control points, named first, control and last. We can describe those points in terms of
their parametric parameters:

first = c

control = b/2 + c

last = a + b + c

The control point is formed by intersecting the tangent lines at the start and end of the curve. We can
express the mid point in terms of first, control and last by:

mid = a/4 + b/2 + c = c/4 + b/4 + c/2+ (a + b + c)/4 = first/4 +control/2 +
last/4

Solving for a, b and c results in:

a = first - 2 * control + last

b = control * 2 - first * 2

c = first

By substituting the above equations, we can specify a pair of parametric equations that describe a curve,
given three points: (C++ code begins here:)

        void CurveXY(const fCurve& cu, float& x, float& y, const float t)
        {
                x = (cu.first.x - 2 * cu.control.x + cu.last.x) * t * t +
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                        2 * (cu.control.x - cu.first.x) * t + cu.first.x;
                y = (cu.first.y - 2 * cu.control.y + cu.last.y) * t * t +
                        2 * (cu.control.y - cu.first.y) * t + cu.first.y;
        }

We can regroup the terms to reference the points' ordinates once: 

        void CurveXY(const fCurve& cu, float& x, float& y, const float t)
        {
                x = cu.first.x  * ( 1 - t) * 
                    (1 - t) + 2 * cu.control.x * t * (1 - t) + cu.last.x * t * t;
                y = cu.first.y  * ( 1 - t) * 
                    (1 - t) + 2 * cu.control.y * t * (1 - t) + cu.last.y * t * t;
        }

Thus, the mid point of the curve is computed to be:

        if ( t == 0.5) {        // optimize !
                x  = cu.first.x/4 + cu.control.x/2 + cu.last.x/4;
                y  = cu.first.y/4 + cu.control.y/2 + cu.last.y/4;
        }

Perspective geometry tells us that putting the points that describe a gxCurve or a gxPath through a
gxMapping is accurate only if the gxMapping is affine; that is, it contains scaling, skewing, rotation and
translation, but no perpsective. If a gxMapping is a perspective transformation, then a parabola becomes
either a hyperbolic or elliptical segment. If any conic is sent through a perspective transformation, the
result is another conic.

In Technote 1051 - Understanding Conic Splines, we learn that the parametric form for conics can be
represented by sending the parametric equation for a quadratric Bézier through a perspective
transformation:

void FindConicXY(const fConic& con, float& x, float& y, const float t)
{
        x =     (con.a.x  * ( 1 - t) * (1 - t) + 
             2 * con.lambda * con.b.x * t * (1 - t) + con.c.x * t * t) /
                (1 + 2 * (con.lambda -1) * t * (1 - t));
                
        y = (con.a.y  * ( 1 - t) * (1 - t) + 
             2 * lambda * con.b.y * t * (1 - t) + con.c.y * t * t) /
                (1 + 2 * (con.lambda -1) * t * (1 - t));
}

Note that if we plug in 1.0 for con.lambda, the denominator becomes equal to 1.0; the numerator
becomes identical to the CurveXY function derived above.

The mid-point for any conic simplifies to:

        if ( t == 0.5) {        // optimize !
                x = (con.a.x/2 + con.lambda * con.b.x + con.c.x/2) / (con.lambda + 1);
                y = (con.a.y/2 + con.lambda * con.b.y + con.c.y/2) / (con.lambda + 1);
        }

If lambda equals 1, then this becomes:

        if (t == 0.5 && con.lambda == 1) {      // further optimize !
                x = con.a.x/4 + con.b.x/2 + con.c.x/4;
                y = con.a.y/4 + con.b.y/2 + con.c.y/4;
        }

which is identical to the equation for a gxCurve or parabola that we derived above.

In summary, what do we know?

A second order parametric equation describes a parabolic segment.
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By adding a weighted divisor, conics can also be described by a parametric equation.

If the weight in the conic equation is set to 1, the result is a parabolic segment.

Without any proof, it's worth knowing that if lambda is greater than 1, the conic equation describes a
hyperbolic segment; if lambda is less than one, it describes an elliptical or circular segment.

Computing Lambda

Now let's determine the appropriate lambda value for a circular arc. Here's the decidedy GX-centric
approach we'll take:

a) Construct a pair of lines perpendicular to the tangents at the arc's ends.

b) Define the circle's center to be the intersection of these lines.

c) Rotate one of these lines to the mid-angle to define the arc's mid-point.

d) Use the arc's mid-point to define the arc's lambda value.

So you can try this on your own,we'll code this as legitimate fixed-point code.

#include 
#include 
void FindCircularLambda(conic& arc)
{
// we need a value for lambda that makes the midPoint equi-distant from
// the circle center. First, we need to find where the hypothetical 
// center is. There are many ways to find the circle center; the way
// we'll choose has a GX flavor; we'll construct two radius lines and
// find where they intersect.

// start with the arc tangents from the end points to the control point
        gxLine first = {{arc.a.x, arc.a.y}, {arc.b.x, arc.b.y}};
        gxLine second = {{arc.c.x, arc.c.y}, {arc.b.x, arc.b.y}};
        gxShape line1 = GXNewLine(&first);
        gxShape line2 = GXNewLine(&second);

// these lines need to be rotated towards the circle's center. 
// knowing the arc direction helps.

        gxShape arcShape = GXNewCurve((gxCurve*) &arc);
        Boolean direction  = (GXGetShapeDirection(arcShape, 1) << 1) - 1; 
                // -1 counter, 1 clockwise
        GXDisposeShape(arcShape);

// if the curve is clockwise, rotate the first 90° clockwise and
// the second 90° counter-clockwise

        GXRotateShape(line1, direction * ff(90), arc.a.x, arc.a.y);
        GXRotateShape(line2, -direction * ff(90), arc.c.x, arc.c.y);

//  while these lines don't touch, make them bigger

        while (GXTouchesShape(line1, line2) == false) {
                GXScaleShape(line1, ff(2), ff(2), first.first.x, first.first.y);
                GXScaleShape(line2, ff(2), ff(2),second.first.x, second.first.y);
        }

// now that they touch, find their intersection (line2 becomes a
// gxPoint).

        GXIntersectShape(line2, line1);
        gxPoint center;
        GXGetPoint(line2, &center);

// we'll use the tangents to describe the span of the arc.
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        gxPoint point1 = {arc.a.x - center.x, arc.a.y - center.y};
        gxPoint point2 = {arc.c.x - center.x, arc.c.y - center.y};
        gxPolar pole1, pole2;
        PointToPolar(&point1, &pole1);
        PointToPolar(&point2, &pole2);

// now we can rotate the first line so the starting point is at the
// arc's mid point

        GXRotateShape(line1, pole2.angle - pole1.angle >> 1, center.x,
                                        center.y);
        gxPoint mid;
        GXGetShapePoints(line1, 1, 1, &mid);

// given:mid.x = (arc.a.x/2 + lambda * arc.b.x + arc.c.x/2)/(lambda + 1)
// then: 2* mid.x * (lambda + 1) = arc.a.x + 2 * lambda * arc.b.x +
          arc.c.x
// then:lambda * 2 * (mid.x - arc.b.x) = arc.a.x + arc.c.x - 2  * mid.x
// then:
        Fixed lambda = FixedDivide(arc.a.x + arc.c.x - 2 * mid.x, 2 * (mid.x
          - arc.b.x));
        Fixed lambda2 = FixedDivide(arc.a.y + arc.c.y - 2 * mid.y, 2 *
          (mid.y - arc.b.y));
        Fixed error = lambda - lambda2;
        if (error < 0) error = - error;
        assert(error < 4);      // error should be small !
        arc.lambda = lambda + lambda2 >> 1;     // return average of two
}

For this example to work, the arc b point must be equidistant from the a and c points. For example:

        conic arc = {{0, 0}, {ff(125), ff(0)}, {ff(200), ff(100)}};
        FindCircularLambda(arc);
        DrawConic(&arc);

Summary
GX Libraries have a wealth of information and show how to use QuickDraw GX to solve real problems.
The Conic Library shows how to use GX to construct paths that approximate conics, given three control
points and a weight.

Reference Material

There are several different directions that conics can be taken. It's possible that a future version of GX
will directly support conics in all of its primitive operations. Until then, it is straight-forward to take the
information presented here, forget all of it, and read Technote 1051 - Understanding Conic Splines
instead to derive the code to transform conics through general gxMappings.

Another possible line of development is to adopt the general xy form equation for conics to use with GX.
Foley and Van Damm's venerable Computer Graphics  (2nd edition) from Addison-Wesley presents
code for scan converting conics in their general form. This algorithm is further explored on the Internet
at http://www.ece.uiuc.edu/~ece291/class-resources/gpe/conic.cc.html.

There are also a number of Internet resources to explore conics further. Listing them here will likely
produce references that quickly grow out of date, but you might try linking to
http://www.geom.umn.edu/apps/conics/ or http://www.bham.ac.uk/mathwise/syl3_2.htm.

Technote 1051 - Understanding Conic Splines 
MacOS SDK CD, Development Kits (Disc 1): QuickDraw GX: Programming Stuff: GX
Libraries: 
Inside Macintosh: QuickDraw GX Objects  
Inside Macintosh: QuickDraw GX Environment and Utilities  
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