
Tn 1016: Where Has My qd Gone? Page: 1

Technotes

Download

Acrobat file (K)

Download

AppleWorks file (41K)

Where Has My qd Gone? How Do I Use QDGlobals Correctly?

Technote 1016 FEBRUARY 1996

This Note addresses the genesis of and changes to the qd variable and the QDGlobals data type. The qd
variable contains all QuickDraw global variables. This Note also demonstrates the correct usage of the
qd variable and the QDGlobals data type.

This Note is of general interest to developers involved in Macintosh programming in C and C++.

Contents

Defining qd Now: Why and How?
The Early Pascal Declaration
The C Declaration
Using qd in Environments Other Than MPW
Summary

Defining qd Now: Why and How?
At one time in the evolution of the Macintosh it was not necessary to define the variable qd. In fact, there
was no system global variable called qd. As development environments changed from Pascal to C and
internal data structures matured, however, a set of global variables were grouped together and called qd.
The definition of this variable was, for the most part, hidden from the Macintosh programmer. Today,
one by-product of using shared libraries is that you must globally define qd.

The Early Pascal Declaration
In the early days (before qd), a group of global variables were declared thus:

thePort: GrafPtr;
white: Pattern;
black: Pattern;
gray: Pattern;
ltGray: Pattern;
dkGray: Pattern;
arrow: Cursor;
screenBits: BitMap;

Tn 1016: Where Has My qd Gone? Page: 2

randSeed: LONGINT;

and could be accessed directly as follows:

InitGraf(@thePort);

But that was back in the days when Pascal was the programming language of choice for Macintosh
development.

The C Declaration
When Apple and most Macintosh developers moved to C, it was decided that this group of variables
should be tied together as a single data structure. The data structure was given the name qd, and declared
thus:

extern struct {
 char privates[76];
 long randSeed;
 BitMap screenBits;
 Cursor arrow;
 Pattern dkGray;
 Pattern ltGray;
 Pattern gray;
 Pattern black;
 Pattern white;
 GrafPtr thePort;
}qd;

without a data type in Quickdraw.h. It was defined for Macintosh programmers in the library Runtime.o
(i.e., the actual storage for qd was provided by Runtime.o). This meant that to access qd or any of its
fields, you didn't have to define it. The fields of qd could no longer be accessed directly as they once
were, but only through qd as follows:

InitGraf(&qd.thePort);

At a later point the data structure was changed, given a data type and declared thus:

struct QDGlobals {
 char privates[76];
 long randSeed;
 BitMap screenBits;
 Cursor arrow;
 Pattern dkGray;
 Pattern ltGray;
 Pattern gray;
 Pattern black;
 Pattern white;
 GrafPtr thePort;
};

typedef struct QDGlobals QDGlobals, *QDGlobalsPtr, **QDGlobalsHdl;

extern QDGlobals qd;

With the introduction of the PowerPC came the Code Fragment Manager, and with the Code Fragment
Manager came shared libraries. If an application used five shared libraries and each linked with the old
Runtime.o module, each library would have a separate copy of qd, and not the one passed by the
application to InitGraf! This meant that it was possible to have more than one qd variable defined at a
time. There were problems with this approach. For example, if you had multiple qds, updating one

Tn 1016: Where Has My qd Gone? Page: 3

would necessitate propagating those changes to all qds, which would be time-consuming on one hand.
On the other hand, if that wasn't done, then these qds could easily get out of sync with each other.

Moreover, it was not a logical reflection of the world. For example, the qd variable has always been used
as an abstraction of the user's computer screen, of which there is logically only one. qd was thus
removed from the statically linked runtime library in the PowerPC environment. This meant that to link
for the PowerPC environment, your application had to take on the added responsibility of defining qd.

To avoid separate code bases for 68K and PowerPC Macintoshes, it was recommended that the
following definition be added to each application that made use of the qd global:

#ifdef powerpc
QDGlobals qd;
#endif

This worked fine until CFM-68K came along. The shared libraries in the CFM-68K environment
suffered the same problems with multiple definitions of qd. During the development of CFM-68K, it
was initially recommended that the previous definition be changed to the following:

#if GENERATINGCFM
QDGlobals qd;
#endif

As development of CFM-68K continued, it became apparent that the runtime libraries needed to be
reorganized to better reflect the realities of how they were used, and to reduce duplication of code
between the Pascal libraries and the three versions of the C libraries. In the process of this
reorganization, the library Runtime.o was replaced with MacRuntime.o and IntEnv.o.

In addition, when the libraries were reorganized, the default I/O operations were redone, modeled on the
newer PowerPC versions. Previously, if an application wrote to stdout or stderr, the output was written to
a dialog box. To put up this dialog, the libraries needed to be able to draw to the screen, and so needed a
qd global. Since the libraries already had one, it seemed logical to provide it to user. In the new I/O
model, if an application writes to stdout or stderr, a file by that name is created, and the output sent there.
The libraries no longer need to draw to the screen, and no longer need a qd global for their own use.

Because of the problems exposed by shared libraries, the changes to the I/O model, and to reduce the
amount of CFM-specific code, it was concluded that it was no longer appropriate for the C Language
libraries to define the qd variable. With the release of MPW 3.4, therefore, each program that requires
qd is now required to provide a single definition of qd regardless of the runtime environment:

QDGlobals qd;

Using qd in Environments Other Than MPW
Currently neither Metrowerks nor Symantec support CFM-68K, but are expected to in the near future.
Both Metrowerks' and Symantec's runtime architectures for the PowerPC are the same as MPW's, but
as of this writing both continue to use the old classic 68K runtime architecture. If you need to develop in
multiple environments, such as MPW, Metrowerks or Symantec, you need to use a preprocessor
conditional statement. For example:

#if GENERATINGCFM

 QDGlobals qd; // Required for all CFM environments

#else

 #ifndef SYMANTEC_C || SYMANTEC_CPLUS

Tn 1016: Where Has My qd Gone? Page: 4

 #define __MPW_ONLY__
 #endif

 #if defined (__SC__) && defined(__MPW_ONLY__)
 QDGlobals qd; // Required for SC in MPW compilations
 #endif

 #undef __MPW_ONLY__

#endif

Summary
With the release of the MPW 3.4 runtime libraries, when writing a standard Macintosh application that
uses standard Macintosh graphics, such as a graph port, you must now provide a single definition of the
qd variable in order to allocate storage for it in your application. This definition is usually done in the
global space of the file that contains the main() function.

ETO #19, MPW Release Notes, p.6-26, 7-10.

Inside Macintosh: Volume I page I-162, I-165.

Inside Macintosh: Imaging With QuickDraw page 2-36, 2-62.

Inside Macintosh: PowerPC System Software , page 59.

Technotes
Previous Technote | Contents | Next Technote

