Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations

Technotes
ownload Download
FOF A
i]
Acrobat file (K) AppleWorksfile (51K)

QuickDraw GX ConicLibrary.cin Detail: Description and Derivations

Technote 1052 JUNE
1996

Important for all Apple Printing and Graphics Developers.

Theinformation in this Technoteis still relevant up to and including Mac OS 7.6 with QuickDraw GX
1.1.5. Beginning with the release of Mac OS 8.0, however, Apple plansto deliver asystem which
incorporates QuickDraw GX graphics and typography only. QuickDraw GX printer drivers and GX
printing extensions will not be supported in Mac OS 8.0 or in future Mac OS releases. Apple'sgod isto
simplify the user experience of printing by unifying the Macintosh graphic and printing architectures and
standardizing on the classic Printing Manager.

For details on Apple's officia announcement, refer to </technotes/gxchange.html>

This Technote discusses ConicLibrary.c from the QuickDraw GX Libraries.

This Note isintended for Macintosh QuickDraw GX devel opers who want to approximate ellipses and
hyperbolas with paths. These, with parabolas (gxCurves), form the familty of curves called conics.

Contents

e About the GX Libraries

e Using ConicLibrary.c

® The Theory behind ConicLibrary.c
e Summary

About the GX Libraries

For better or worse, the development of QuickDraw GX took seven years from conception to initia
release. During that time, there were many requests for feature enhancements and interface improvements
that, if implemented, might have taken seven more years to complete. Asit turns out, some of these
enhancements could readily be built on existing services, but there was no time to test or document these
services with the rigor required to make them fully part of the released system.

The GX Librariesfill this gap by providing services built on top of the rest of QuickDraw GX in source
form. This Technote and others document these services. Since GX libraries are provided as source, it is
reasonable for developers to modify them to meet their specific needs. Care was taken for the libraries
not to depend on the implementation details of QuickDraw GX so that future versions should not
invalidate them, in original or modified form.

Thelibraries are likely to evolve to take advantage of improved agorithms, as well as new Macintosh or

Page: 1

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations
QuickDraw GX services. If you modify one for your application's specific needs, it's worth occasionally
reviewing the GX library provided by Appleto stay synchronized with any improvements.

What isin ConicLibrary.c?

The GX Library, ConicLibrary.c, generates conics, afamily of curvesthat include circles, elipses,
parabolas and hyperbolas. It was written by Michagl Reed (the guy behind GX Fonts and TrueType)
from a math paper derived by Robert Johnson, the GX resident mathematics professor.

Using ConicLibrary.c
A ConicisagxCurve, Almost

ConicLibrary.c usesthe conic struct:

struct conic {
gxPoi nt a;
gxPoi nt b;
gxPoi nt c;
Fi xed | anbda

b

Thisis nearly the same as the gxCurve struct; it differs only by the additional lambda parameter. (Mike
was amath mgjor, t0o.) The lamba specifies the curvature. If the curvatureis equal to one, the conicisa
parabola, and isidentical to agxCurve (also known as a quadratic Bézier) with the same three points, as
illustrated in Figure 1.

In Figure 1, as lambda decreases, the curve approaches the line from point ato point c. All of these
curves are dliptica arcs. When lambda hits zero, the curve has become aline from point ato point c.

Aslambdaincreases, the curve approaches point b. These curves are hyperbolas. Once lambda gets big
enough, the curve approximates two line segments. one from point ato point b, and another from point b
to point c.

d C

Figure 1: A Quadratic Rational Spline with Vertices (a,b,c)
One reasonable use of the ConicLibrary provides a graphics application with a means to change the

amount of curvature defined by a quadratic Bézier, a segment of agxPath. To increase the curvature,
increase lambda.

Conic Functions
Before we get into what the various values for lambda do, let's take alook at the conic library functions.
NewConic

gxShape NewConi c(const conic *curve);

NewConic creates a path which approximates the conic. It subdivides the origina conic into a pair of
conics, recursively, until the gxCurve described by the smaller conic has a sufficiently small error. The
error is set by the default path's shape error, which isinitialy 1.0. You can set it to alarger or smaller

Page: 2

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations

error with:

GXSet ShapeCur veEr r or (GXGet Def aul t Shape(gxPat hType), errorVal ue);

DrawConic

voi d DrawConi c(const conic *curve, gxShapeFill fill);

DrawConic creates the path shape, drawsit with the specified fill, and throws it away. Thefill can be any
gxShapeFill value that works with a path; gxOpenFrameFill isthe most common choice.

SetConic

voi d Set Coni c(gxShape target, const conic *curve);

This replaces the geometry in an existing shape with a path that approximates the conic.

Note:
It is not necessary to understand lambda in mathematical terms. Its usefulness for
ConicLibrary.c can be summarized by the following: increasing lambda increases curvature,
while decreasing lambda decreases the curvature.

Note:

These functions are orthogonal to other GX Graphics primitives, such as points, lines, polygons
and paths, and other libraries, such as cubics, arcs, ovals and rounded rectangles. Y ou can rely
on functions of the form NewX, SetX and DrawX for any geometry supported by QuickDraw
GX.

The Theory behind ConicLibrary.c

In the discussion that follows, several liberties are taken. Since the reader is assumed to be a
programmer, not a mathematician, most of the equationsthat follow are in C++ rather thanin
mathematical notation. The non-existent structs fPoint, fCurve and fConic are introduced, to make the
code easier to read. They are defined as.

struct fPoint {
float x;
float vy;
b

struct fCurve {
fPoint first;
f Poi nt control;
f Poi nt | ast;

b
struct fConic {
f Poi nt a;
f Poi nt b;
f Poi nt c;
fl oat |anbda;
b
Note:

My apologies to the mathematicians of the world for bastardizing concepts, to the C
programmers of the world for using C++, and to the GX Engineers for using not using Fixed.

There are (at least) two ways of describing conics. First, the ones that use x and y in equations you
vaguely remember from high school:

circle: x2+y2:0
par abol a: X = y2
hyper bol a: x2 - y2 =1

Page: 3

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail: Page: 4
Description and Derivations

el l'i pse: X%l a + y2/b =0
We're going to mostly ignore these, except to note that they can al be generalized by:

conic: ax?

+bx +cy? +dy +exy +f =0
This looks suspicoudly like the equation describing a parabola (with the right vaues of a, b, ¢, d, eand f)
—agxCurve; anditis. Letls see how.

Describing a Curve

The general conic equation asserts that any equation of order 2 in x and y describes aconic. A conic, in
turn, is described as a plane section of apair of cones, stacked point to point. Slicing these cones reveals
the familiar circles, elipses, parabolas and hyperbolas.

There's another way to describe aparabola: as aparametric equation. A parametric equation (at least as
they are going to be described here) describes x and y in terms of two equations as athird parameter, t,
varies from zero to one. The equation for a second order parametric equation is:

2

X = at“ + bt + ¢

dt2 + et + f

y

It's easy to see how this describes at |east a non-rotated parabola; setting aor d to zero allows specifying
an xy equation where either x or y is squared. More importantly for computers, it's easy to turn this
equation into aforward differencing algorithm that allows approximating the curve as a series of lines
with computations no more complicated than adds and shifts.

If the curve described by these equationsis limited by t starting at zero and ending at one, then the curve
beginsat (¢, f) and endsat (a+ b + ¢, d + e+ f). Plugging in 0.5 for t yields the curve's midpoint; i.e., X
= a4+ b/2 + c. It is convenient to be able to define a curve by where it starts and ends; all that's missing
is some additional information that describeshow it curves. A gxCurve describes a parabolic segment
in terms of three control points, named first, control and last. We can describe those points in terms of
their parametric parameters:

first =c¢

control =Db/2 + ¢

last = a+ b +c

The control point isformed by intersecting the tangent lines at the start and end of the curve. We can
express the mid point in terms of first, control and last by:

md=al4 +b/l2+c=cld+Dbld+c/l2+ (a+b+c)/ld =first/4 +control/2 +

| ast/ 4

Solving for a, b and c resultsin:

a =first - 2 * control + |ast

b control * 2 - first * 2

c = first

By substituting the above equations, we can specify apair of parametric equations that describe a curve,
given three points. (C++ code begins here:)

voi d CurveXY(const fCurve& cu, float& x, float& y, const float t)
{

x = (cu.first.x - 2 * cu.control.x + cu.last.x) * t * t +

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations

2 * (cu.control.x - cu.first.x) *t + cu.first.x
y = (cu.first.y - 2 * cu.control.y + cu.last.y) * t * t +
2 * (cu.control.y - cu.first.y) *t + cu.first.y;

}

We can regroup the terms to reference the points' ordinates once:

voi d CurveXY(const fCurve& cu, float& x, float& y, const float t)
{

X cu.first.x * (1-1t) *
(1 -t) +2* cu.control.x *t * (1-1t) +cu.last.x *t * t;
cu.first.y * (1-1t) *

*

(1-1t) +2 cu.control.y * t * (1 - t) + cu.last.y * t * t;

}
Thus, the mid point of the curveis computed to be:

if (t ==0.5) { /1 optimze
X cu.first.x/4 + cu.control.x/2 + cu.last. x/4;
y cu.first.y/4 + cu.control.y/2 + cu.last.y/4;

}

Perspective geometry tells us that putting the points that describe a gxCurve or a gxPath through a
gxMapping is accurate only if the gxMapping is affine; that is, it contains scaling, skewing, rotation and
trandation, but no perpsective. If agxMapping is a perspective transformation, then a parabola becomes
either ahyperbolic or dliptical segment. If any conic is sent through a perspective transformation, the
result is another conic.

In Technote 1051 - Understanding Conic Splines, we learn that the parametric form for conics can be
represented by sending the parametric equation for aquadratric Bézier through a perspective
transformation:

voi d Fi ndConi cXY(const fConic& con, float& x, float& y, const float t)
{
X = (con.a.x * (1 -1t) * (1-1t) +
2 * con.lanbda * con.b.x * t * (1 - t) + con.c.x *t * t) [/
(1 +2* (con.lanbda -1) * t * (1 - t));

(cona.y * (1-1t) * (1-1t) +

2 * lanbda * con.b.y * t * (1 - t) + con.c.y *t * t) [/
(1 +2* (con.lanbda -1) * t * (1 - t));

}

Notethat if we plug in 1.0 for con.lambda, the denominator becomes equal to 1.0; the numerator
becomes identicd to the CurveXY function derived above.

The mid-point for any conic simplifiesto:

if (t ==0.5) { /1 optim ze
X = (con.a.x/2 + con.lanbda * con.b.x + con.c.x/2) / (con.lanbda + 1);

y (con.a.y/2 + con.lanbda * con.b.y + con.c.y/2) / (con.lanbda + 1);
}
If lambda equals 1, then this becomes:
if (t == 0.5 && con.lanbda == 1) { /1 further optim ze
X con.a.x/4 + con.b.x/2 + con.c. x/ 4;

con.a.y/4 + con.b.y/2 + con.c.yl4;

}
whichisidentical to the equation for a gxCurve or parabolathat we derived above.

In summary, what do we know?

e A second order parametric equation describes a parabolic segment.

Page: 5

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations

e By adding aweighted divisor, conics can aso be described by a parametric equation.
o If theweight in the conic equation is set to 1, the result is a parabolic segment.

Without any proof, it'sworth knowing that if lambdais greater than 1, the conic equation describes a
hyperbolic segment; if lambdais less than one, it describes an eliptical or circular segment.

Computing Lambda

Now let's determine the appropriate lambda value for a circular arc. Here's the decidedy GX-centric
approach well take:

a) Congtruct apair of lines perpendicular to the tangents at the arc's ends.

b) Definethe circle's center to be the intersection of these lines.

¢) Rotate one of these linesto the mid-angle to define the arc's mid-point.

d) Usethe arc's mid-point to define the arc's lambda value.

So you can try this on your own,we'll code this as legitimate fixed-point code.

#i ncl ude
#i ncl ude
voi d Fi ndCi rcul ar Lanbda(coni c& arc)

/1l we need a value for |anbda that makes the mi dPoi nt equi-distant from
Il the circle center. First, we need to find where the hypotheti cal

/1 center is. There are many ways to find the circle center; the way

// we'll choose has a GX flavor; we'll construct two radius |ines and
/1 find where they intersect.

/1 start with the arc tangents fromthe end points to the control point
gxLine first = {{arc.a.x, arc.a.y}, {arc.b.x, arc.b.y}};
gxLi ne second {{arc.c.x, arc.c.y}, {arc.b.x, arc.b.y}};
gxShape |inel GXNewLi ne(&first);
gxShape |ine2 GXNewLi ne(&second) ;

/1l these lines need to be rotated towards the circle's center.
I/ knowi ng the arc direction hel ps.

gxShape arcShape = GXNewCurve((gxCurve*) &arc);

Bool ean direction = (GXGet ShapeDirection(arcShape, 1) << 1) - 1,
I/ -1 counter, 1 clockw se

GXDi sposeShape(ar cShape) ;

[/ if the curve is clockwi se, rotate the first 90° cl ockwi se and
/1l the second 90° counter-clockw se

GXRot at eShape(linel, direction * ff(90), arc.a.x, arc.a.y);
GXRot at eShape(line2, -direction * ff(90), arc.c.x, arc.c.y);

/1 while these lines don't touch, nmake them bi gger

whi | e (GXTouchesShape(linel, line2) == false) {
GXScal eshape(linel, ff(2), ff(2), first.first.x, first.first.y);

GXScal eShape(line2, ff(2), ff(2),second.first.x, second.first.y);

}

/'l now that they touch, find their intersection (line2 becomes a
/1 gxPoint).

GXI nt er sect Shape(line2, linel);
gxPoi nt center;
GXGet Poi nt (1i ne2, ¢er);

/1 we'll use the tangents to describe the span of the arc.

Page: 6

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail:
Description and Derivations

gxPoint pointl = {arc.a.x - center.x, arc.a.y - center.y};
gxPoint point2 = {arc.c.x - center.x, arc.c.y - center.y};
gxPol ar pol el, pole2;

Poi nt ToPol ar (&poi nt 1, &pol el);

Poi nt ToPol ar (&oi nt 2, &pol e2);

/'l now we can rotate the first line so the starting point is at the
/[l arc's md point

GXRot at eShape(linel, pole2.angle - polel.angle >> 1, center. X,
center.y);

gxPoi nt md;

GXGet ShapePoi nts(linel, 1, 1, &mrd);

I/l given:mid.x = (arc.a.x/2 + lanbda * arc.b.x + arc.c.x/2)/(lanbda + 1)
/1 then: 2* mid.x * (lanbda + 1) = arc.a.x + 2 * lanbhda * arc.b.x +
arc.c.x
[/l then:lanmbda * 2 * (md.x - arc.b.x) = arc.a.x + arc.c.x - 2 * md.x
/] then:
Fi xed | anbda = Fi xedDivide(arc.a.x + arc.c.x - 2 * md.x, 2 * (md.x
- arc.b.x));
Fi xed | anbda2 = Fi xedDi vide(arc.a.y + arc.c.y - 2 * md.y, 2 *
(mdy - arc.b.y));
Fi xed error = | anbda - | anbda2;

if (error < 0) error = - error;
assert(error < 4); /1 error should be small !
arc. |l anbda = | anbda + | anbda2 >> 1; /1 return average of two

}
For this example to work, the arc b point must be equidistant from the a and ¢ points. For example:

conic arc = {{0, 0}, {ff(125), ff(0)}, {ff(200), ff(100)}};
Fi ndCi r cul ar Lanbda(arc);
Dr awConi c(&arc) ;

Summary

GX Libraries have awedlth of information and show how to use QuickDraw GX to solve real problems.
The Conic Library shows how to use GX to construct paths that approximate conics, given three control
points and aweight.

Reference M aterial

There are severa different directions that conics can be taken. It's possible that afuture version of GX
will directly support conicsin al of its primitive operations. Until then, it is straight-forward to take the
information presented here, forget al of it, and read Technote 1051 - Understanding Conic Splines
instead to derive the code to transform conics through general gxMappings.

Another possible line of development is to adopt the general xy form equation for conicsto use with GX.

Foley and Van Damm's venerable Computer Graphics (2nd edition) from Addison-Wesley presents
code for scan converting conicsin their general form. This agorithm is further explored on the Internet
at http://www.ece.uiuc.edu/~ece291/class-resources/gpe/conic.cc.html.

There are also anumber of Internet resources to explore conics further. Listing them here will likely
produce references that quickly grow out of date, but you might try linking to
http://mwww.geom.umn.edu/apps/conicy or http://www.bham.ac.uk/mathwise/syl3 2.htm.

o Technote 1051 - Understanding Conic Splines

e MacOS SDK CD, Development Kits (Disc 1): QuickDraw GX: Programming Stuff: GX
Libraries:

o Inside Macintosh: QuickDraw GX Objects

e Inside Macintosh: QuickDraw GX Environment and Utilities

Page: 7

Technote 1052 - QuickDraw GX ConicLibrary.c in Detail: Page: 8
Description and Derivations

Technotes
Previous Technote | Contents | Next Technote

