TN 1156: Scribbling Into AWT Components

Technote 1156
Scribbling Into AWT Components

Page: 1

CONTENTS T
his Technote describes how to draw into an AWT
Component by means other than the Java AWT Graphics

Introduction to Impure Drawing

How To Do It API. In particular, by discovering the QuickDraw
G af Por t, origin, and clipping Region corresponding to
Compatibility the Component’ s visible area, you can use any means at
your disposal (most likely QuickDraw) to draw things
Further References inside the Component.
Downloadables

I ntroduction to Impure Drawing

Most Java applications are content (if sometimes grudgingly so) to use normal “100% Pure Java’ APIs
to draw their user interface. They use a combination of existing AWT control components like Button or
Checkbox, and custom Component subclasses that use the graphics primitives provided by the AWT
Graphics class to draw themselves. (They may a so use components provided by higher-level class
libraries such as Swing or IFC, which in turn use Graphics.)

However, some Java code needs to use drawing services provided by the platform’ s toolbox. Such code
will usualy be a Javalibrary whose goal isto provide a Java API for features provided by the platform’s
toolbox -- Apple' s QuickTime For Javais one such example; another would be an OpenGL interface for
Java

Such code will need to use either native methods or JDi r ect to make callsto the toolbox. Both of these
mechanisms are documented e sewhere. When it comes time to draw, though, the problem appears: How
does the drawing code acquire the resources it needs to draw into the Component? For instance, before
making QuickDraw calls, you'd need to know theright Gr af Port to use, and set upthe Graf Port’s
origin and clipping.

Thisisan issue that appliesto any platform, not just the Mac OS (although the details of the resources
necessary are of course platform-specific.) Sun Microsystems, therefore, defined an API collectively

referred to as DrawingSurface that can be used to map from a Component object to native-window
system resources.

Back to top
How To Do It

First, use the right kind of Component as your drawing surface. Y ou need a Component with a native peer,
so lightweight Components won't work. And doing your own drawing into components that AWT itself
aready drawsinto -- like Button or Choice -- is discouraged. The Component types that work best, then,
are Canvas, Pandl and any of the Window types (Window, Frame, Dialog.)

Getting to the DrawingSurface

Theinterface sun. awt . Dr awi ngSur f ace is used to access native drawing surface information. This

TN 1156: Scribbling Into AWT Components

interface isimplemented by non-lightweight component peers and by |mages created for offscreen
graphics. The interface contains only a single method, get | nf o, which returnsabr awi ngSur f acel nf o
object. Thisisthe main object you'll need to use.

Here' s a Java snippet that shows how to get the Dr awi ngSur f acel nf o for the Component
t heConponent :

i mport sun.awt.*;

Drawi ngSurface ds = (Draw ngSurface)theConponent. get Peer () ;
Drawi ngSurfacelnfo dsi = ds. get Drawi ngSurfacel nfo();

(Y ou can do the same thing from native code using JNI; it’ s just more awkward.)

How to Draw

Y ou need to call the Dr awi ngSur f acel nf o’ S | ock method before you start drawing, and itsunl ock
method after you stop drawing. Thel ock method sets up QuickDraw’ s state and ensures the G af Por t
isin decent shape for you to draw into it.

To prevent AWT code running on other threads from messing with the port (or other global Toolbox
state) while you' re drawing, you need to synchronize against the Toolbox lock before you call the
Dr awi ngSur f acel nf o’ S| ock method. Thisis described in detail in Technote 1153, Thread-Safe
Toolbox Access From MRJ . The next snippet below shows how to do this.

Important:

Synchronizing against the Toolbox lock acquires a central AWT semaphore which prevents other Java
threads, as well asthe native host application, from accessing the Toolbox until your synchr oni zed
block exits. This means that

e You should lock for as short atime as possible -- get in, do your drawing, then get out.

e You should not make any other AWT calls while the drawing surface is locked (nor should the
thread doing the drawing do anything that could block against other threads of yours that need
to make AWT calls, or you could deadlock).

e Y ou should make absolutely sure that you unlock on the way out, by putting theunl ock call ina

finaly clause.

Now that you've locked the drawing surface, QuickDraw is all set to draw into the Component. Its
G af Por t isthe current port, the local coordinate (0,0) is at the top left of the Component, and the

cl i pRgn isset to the visible region of the Component (which will not include the regions occupied by any

non-lightweight child Components.)

Y ou can get the Component’ s bounding box in local coordinate by calling the method
Dr awi ngSur f acel nf 0. get Bounds. It's safe to make this call while the Dr awi ngSur f ace islocked.

When you' re done drawing, you don’t need to restore the previous Gr af Por t . However, you must restore

any state you changed in the Component’s Gr af Por t (clipping, colors, etc.) And of course you need to
unlock the drawing surface.

It looks like this, continuing the above snippet:

Page: 2

TN 1156: Scribbling Into AWT Components

i mport Qui ckdrawFuncti ons; /1 fromJDirect Sanple Code in SDK
i mport com appl e. nrj . macos. t ool box. Tool box;

synchroni zed(Tool box. LOCK) {
dsi.lock();
tryf{
Rect angl e bounds = dsi . get Bounds();
Qui ckdr awFuncti ons. MoveTo(bounds. | eft, bounds.top);
Qui ckdrawFunctions. Li neTo(bounds. wi dt h-1, bounds. hei ght-1);

}finally{
dsi . unl ock();
}

Accessing the WindowPtr

In some circumstances (e.g., if messing with the Palette Manager) you may need to find the Mac OS

W ndowpt r of the window the Component isin. Thisisnot the same as the Component’sG af Port ;
MRJ 2.1 createsitsown G- af Por t s and never usesthe W ndowpt r directly for drawing. If you do access
thew ndowpt r, you should not useit for drawing -- use the Dr awi ngSur f ace’S Gr af Por t instead.

Important:
The Get W ndow method was added in MRJ 2.1, it is not implemented in MRJ 2.0 and thus MRJ 2.0 will
throw an error when trying to call this method.

Y ou get the w ndowPt r by doing the following. Note that you can also get the G af Por t and GDevi ce in
the same way:

MacDr awi ngSur face nds = (MacDraw ngSurface) dsi.getSurface();
int windowPtr = nds.getWndow(); // WndowPtr cast to int
int grafPtr = nds. getPort(); /1 CGafPtr cast to int
i nt gdevice nds. get Devi ce(); /1 GDHandl e cast to int

Don't hang onto these values for too long -- they will not be valid after the Component’s peer has been
disposed, that is, after the Component or a parent is hidden or the window closed. For safety’ s sake you
should only get and access them while the Dr awi ngSur f acel nf o islocked.

Important:

Thereisabug in MRJ 2.1 that makes it essential that you call get W ndow, get Por t , Or get Devi ce at
least once on any Dr awi ngSur f ace you ever draw into, if you plan on mixing native and Java-based
(using j ava. awt . G aphi c¢s) drawing in the same Component or Image. Until one of these methodsis
caled, MRJ 2.1 doesn't redize that native drawing is taking place, and it won't fully synchronize the
Java drawing with the native cals.

Back to top

Page: 3

TN 1156: Scribbling Into AWT Components Page: 4

Compatibility

TheDr awi ngSur f ace APl isimplemented in MRJ 2.0 and later, although the implementationin MRJ
2.1 ismore robust.

The method MacDr awi ngSur f ace. get W ndowwas added in MRJ 2.1; it is not implemented in MRJ 2.0,
and thusin MRJ 2.0 the class-loader will throw an error when trying to load a class that callsthis
method.

Not all Javaimplementations on al platforms support Dr awi ngSur f ace -- Sun explicitly points out that
sun.* classes are not part of the supported Java API set. Sun’s JDK 1.1 and later do support

Dr awi ngSur f ace. Naturally, the exact OS calls you'll need to make to draw are platform specific, and the
MacDrawingSurface classwill not exist. Y ou'll need to get documentation from the vendor of any other
Javaimplementation to find out how to use Dr awi ngSur f aces withit.

Back to top

Further References

e Technote 1153: Thread-Safe Toolbox Access From MRJ. Describes the “ Toolbox lock” and
how to useit. A must-read if you're going to use the Mac Toolbox for drawing.

Back to top
Downloadables

FOF
H Acrobat version of this Technote (K).

To contact us, please use the Contact Us page.
Updated: 01-March-99

Technotes | Contents
Previous Technote | Next Technote

