TN1181: Sherlock's Find by Content Text Page: 1
Extractor Plug-ins

Technote 1181
Sherlock's Find by Content Text Extractor Plug-ins

CONTENTS
Oveview

Text Extractor Plug-ins Defined

Registering the MIME Typesa
Plug-in can Understand

Structures Used By Plug-ins

Routines a Text Extractor Must
Define

An Example Plug-in

Cdlling a Text Extractor Plug-in from
an Application

Index of Code Listings

Further References

Downloadables

ThisTechnote describesthe API for creating Find By

Content Text Extractor Plug-ins. Text Extractor Plug-ins
are used by Find by Content to extract the textual
information stored in adocument when it is creating
indexes and summarizing files. By doing so, it ispossible
for usersto avoid indexing peripheral data such as
formatting commands, HTML tags, and other data that
does not relate to the information stored in the document.
By creating Text Extractor Plug-ins for their document
types, developers make it possible for users to conduct
meaningful searches for information stored in documents
created by their applications.

Text Extractor Plug-ins can be created for use with Mac
0S 8.6 and later. Mac OS 8.6 was shipped with two Text
Extractor Plug-ins: the "HTML Text Extractor" and the
"PDF Text Extractor.” The "HTML Text Extractor" strips
the HTML tags from HTML files and returns the text
stored therein; the "PDF Text Extractor” returns the textual
information from Adobe®’ s Portable Document Format
(PDF) files. In Mac OS 8.5, indexing HTML files meant
that both the text stored in the document and the HTML
tags were incorporated into indexes. Furthermore, PDF
files were excluded from the indexing process. In Mac OS
8.6, meaningful textual information extracted from these
filesisincorporated into index files used by Find By
Content.

This Technote provides information necessary for creating
and installing Text Extractor Plug-ins. In addition, an
annotated example Text Extractor Plug-in is provided.
Developers can easily modify this example to create their
own plug-in for use with their own file formats.

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Overview

Text Extractors improve the accuracy of indexing and summarizing files. As an example, consider the
HTML fileshownin Listing 1.

<I--This HTM. file contains both HTM. tags and ASCI| text. For
i ndexi ng purposes, it would be nore useful to ignore the tags and only
i ncorporate the docunent's text into the index.-->

<HTML>
<BODY>
This is a sanple docunent.

</ BODY>
</ HTM_>

Listing 1. A sample HTML file.

Without knowing the HTML format, every word above would get indexed, so searching for "body" in
Find by Content would find the above document, but when a user opened the filein her web browser, she
would not see "body". Similarly, summarizing aHTML document would show HTML Tagsin the
summary. The HTML Text Extractor knows the format of an HTML file so it will skip the HTML Tags
and return just the text that a user would see viewing the document. For the above example, "Thisisa

sample document.” would be the only text that is indexed.

Back to top

Page: 2

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Text Extractor Plug-ins Defined
Text Extractor Plug-ins are Code Fragments that have the following characteristics:

FileType: ' f bce'

Creator Type: ' f ndf"

Code Fragment Name: "I ATextExtractor"

System Location: "Find by Content Plug-ins' folder of the "Find" folder of the "Extensions’
folder. Thefolder type kFi ndByCont ent Pl ugi nsFol der Type (' f bcp') can be passed to the
functionFi ndFol der to locate the folder.

e Exported Functions - A Text Extractor Plug-in must implement and export al of the following
functions:

o | APl ugi nl ni t - When atext extractor plug in is opened, the exported function
[APlugininit is called.

o | APl ugi nTer m- When a session with atext extractor plug-in is terminated, the function
IAPluginTerm is called. At thistime the plug-in can perform any needed cleanup.

o | AGet Ext r act or Ver si on - Returnsthe version of the Text Extractor Interface that
plug-in corresponds to.

O | ACount Suppor t edDocTypes - Returns the number of document types the plug-in
knows how to handle. This call returns the maximum valid index for the call
| AGet | ndSupport edDocType.

O | AGet | ndSuppor t edDocType - Returnsthenth document type the plug-in supports
(firstitemis 1 not 0). Documents are identified by Multipurpose Internet Mall
Extension (MIME) type and subtype for example an HTML document would have a
MIME type of "text/html".

o | ApenDocunent - Creates areference to the text of adocument, the IADocRef typeis
on opaque type that it defined by the plug-in to reference the document. The
| ADocA ccessorPtr contains areference to a document and pointers to functions used to
access the document. The document accessor pointer will bevalid for al callsthat use
the returned IADocRef until 1ACloseDocument is called.

o | A oseDocunent - Perform any needed cleanup for the plug-in defined | ADocRef
object.

o | AGet Next Text Run - Given aopen document reference, get the next run of text
associated with the item. Fills the buffer with the next run of text. On input ioSizeisthe
size of the buffer, on output i0Size is the number of byteswritten to the buffer. If the
encoding or languages of a document changes errl AEndOf TextRun should be returned.
Note: aresult of errl AEndOf TextRun does not necessarily mean that the routine will
return an empty buffer.

o | AGet Text Runl nf o - Gets the encoding and language of the text that was returned in
the last call to IAGetNextTextRun.

A Text Extractor Plug-in's resource file may contain one or more' mi np' resources that advertise the
kinds of filesthe plug-inis able to process. The format of these resourcesis defined in the Registering
the MIME Types a Plug-in can Understand section below.

Back to top

Page: 3

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Registering the MIME Types a Plug-in can Under stand

Clients of Text Extractors need to map documentsto aMIME type. To help clients determine the
document types a plug-in understands, a plug-in can include one or more' mi np' resourcesin its
resource file. Definitions for defining your own ' nmi np' can befound in thefile "I AExtractor.r'. As
showninListing 2,' mi np' resources contain information about file Finder types and file extensions that
map to aMIME type.

/* An exanple 'm np' resources for Portable Docunent Format (PDF) docunents. */

#i nclude "I AExtractor.r"
resource 'mnp' (128) {
kl ACur rent M MEMappi ngVer si on

PDF ', [* file type */
' CARO , /* file creator */
".opdf", /* file extension */
"application/pdf", /* MME type */
"Portabl e Docunent Format" /* description */

Listing 2. A sample' mi np' resource for PDF files.

When creating indexes, Find By Content uses calls to Internet Config to discover the files MIME type.
Once afile's MIME type has been discovered, it then usesthe a Text Extractor Plug-in capable of
extracting text from the file (based on the MIME types the extractor advertisesit can decodein its

'm nmp' resource).

MIME types reported by Text Extractor Plug-ins must be of the format type "/* subtype otherwise the
extractor will be ignored. Also, an extractor's initialization function should verify (and correct, if
necessary) that any entriesin Internet Config's file mapping database referencing the extractor's type and
creator specify the same mime type asthe Text Extractor Plug-in.

Back to top

Structures Used By Plug-ins

Find By Content provides a number of routines and callbacks that can be used by Text Extractor
Plug-ins. These callbacks provide access to memory alocation and file input. The following sections
describe the structures used by Find By Content to provide these callbacks and the callbacks themselves.

Application developers wanting to call Text Extractor Plug-ins from their own code will want to create
and initialize these structures themselves. Examples of how to do this can be found later in the Calling a
Text Extractor Plug-in from an Application section below.

The lAPluginlnitBlock Structure

Thel API ugi ni ni t Bl ock record provides call back routines that remain constant the entire time a Text

Page: 4

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Extractor Plug-in isopen. A pointer to this structure is passed as a parameter to the plug-in's

| APl ugi nl ni t routine; and, it is safe for aplug-in to save apointer to this structure and make callbacks
through it any time before the APl ugi nTer mroutine is called. Listing 3 shows the contents of the

| APl ugi nl ni t Bl ock structure and prototypes for the callbacks made available by this structure. This
structure and macros for making callbacks (shown as routine prototypes for illustrative purposes in
Listing 3) are defined in thefile "l AExtractor.h".

/* I APl uginlnitBlock structure definition */

typedef struct | API uginlnitBl ock* | APl uginlnitBlockPtr
struct | APl ugi nlnitBl ock {
| AAl'l ocUPP Al'l oc;
| AFr eeUPP Fr ee;
| Aldl eUPP Idle;
s
typedef struct | APl uginlnitBl ock | APl ugi nl nit Bl ock
/* Routine Prototypes */
voi d* Cal Il AAl Il ocProc(1 AAll ocUPP All oc, U nt32 inSize);
voi d Call | AFreeProc(| AFreeUPP Free, voi d* object);

Unt8 CalllAldleProc(lAldl eUPP Idle);

Listing 3. Declaration of the | API ugi nl ni t Bl ock structure and prototypes that can be used for calling
the routines referenced in the structure.

| APl ugi nl ni t Bl ock provides callbacksfor allocating memory and ani di e callback that can be called
during lengthy operations. Plug-ins should use the memory allocation routines provided in this structure
instead of direct callsto the Memory Manager. Callbacks provided by this structure are described below.

Call |l AAl |l ocProc

voi d* Cal Il AAl | ocProc(
| AAl | ocUPP Al'l oc,
U nt32 inSize);
Al | oc - thevaue stored in the Alloc field inthe API ugi nl ni t Bl ock Structure.

i nSi ze - The number of bytesto alocate.

result - apointer to ablock of storage or NULL if the request cannot be allocated.

Cal I 1 AAI | ocProc isacallback procedure provided in thel API ugi nl ni t Bl ock structure that can be
caled by plug-insto allocate memory.

Cal I I AAI | ocProc can be used for allocating memory. Plug-ins should use this callback for al memory
requests. If successful, the callback returns a pointer to a block containing the requested number of bytes.
If an error occurs or there is not enough memory to complete the request, then the callback returns NULL.

Call | AFreeProc

Page: 5

TN1181: Sherlock's Find by Content Text Page: 6
Extractor Plug-ins

voi d Call | AFreeProc(
| AFreeUPP Free,
voi d* object);
Fr ee - thevaue stored in the Freefidld inthe API ugi nl ni t Bl ock Structure.

obj ect - apointer to ablock of memory allocated through the Cal | 1 AAI | ocPr oc callback.

Cal | I AFr eePr oc isacallback procedure provided in the | API ugi nl ni t Bl ock structure that can be
called by plug-insto release memory alocated by the Cal | | AAI | ocPr oc routine.

Cal | | AFr eePr oc can be used for deallocating memory allocated by callstothe Cal | | AAI | ocProc
callback.

Call |l Aldl eProc

Unt8 CalllAldleProc(
| Al dl eUPP 1dl e);

I di e - thevalue stored inthei di e field inthel API ugi nl ni t Bl ock structure

resul t - non-zero if the current operation should be canceled, zero to continue.

Cal | I Al dl ePr oc isacalback procedure provided in thel APl ugi nl ni t Bl ock structure that can be
called by plug-ins while they are processing lengthy tasks.

Cal | 1 Al dI ePr oc should be called by aplug-in during lengthy tasks. By calling this routine, plug-ins
can alow other taskstime to run. If this callback returns any value other than zero, then the plug-in
should stop processing immediately and return aerr | ACancel ed result. If thei dl e calback returns
zero, then the plug-in should continue processing and, perhaps, call thei dlI e procedure again if
necessary.

Applications developers wanting to call Text Extractor Plug-ins from inside of their own applications will
haveto initialize this structure and define the necessary callbacks themselves. An example showing how
to set up al API ugi nl ni t Bl ock structure can be found in the Setting up the | API ugi nl ni t Bl ock
structure section later in this document.

Back to top

The | ADocAccessor Recor d Structure

Thel ADocAccessor Recor d provides callbacks for accessing information in files. Plug-ins should be
aware that although the contents of the API ugi nl ni t Bl ock will remain constant during the time while a
plug-inisopen (between callsto | API ugi nl nit and| APl ugi nTer m), it is possible that the plug-in will
be passed one or more | ADocAccessor Recor d structures that refer to different files. However, it is safe
to assume that the | ADocAccessor Recor d structure passed to a plug-in's| AQpenDocurment routine will
remain the same until the plug-in's1 ACl oseDocunent routineiscalled. Listing 4 shows the definition or
thel ADocAccessor Recor d and macros (shown as routine prototypes for illustrative purposes) that can
be used to call back through this structure.

/* | ADocAccessor Record structure definition. */

typedef struct | ADocAccessor Record* | ADocAccessorPtr

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

struct | ADocAccessor Record {

/* docAccessor is an opaque type used by Find By Content
to track the file. It is not possible for plug-ins to
access this information. */

| ADocAccessor Ref docAccessor ;
| ADocAccessor OpenUPP OpenDoc;

| ADocAccessor Cl oseUPP Cl oseDoc;

| ADocAccessor ReadUPP ReadDoc;

| ASet DocAccessor ReadPosi ti onUPP Set ReadPosi ti on;
| AGet DocAccessor ReadPosi ti onUPP Get ReadPosi ti on;
| AGet DocAccessor EOFUPP Get ECF;

s

typedef struct | ADocAccessor Record | ADocAccessor Recor d;

/* Routine Prototypes. */
OSSt at us Cal | | ADocunent Accessor Qpen(| ADocAccessor Ref i nAccessor);
OSSt at us Cal | | ADocunent Accessor Cl ose(| ADocAccessor Ref i nAccessor);

OSSt atus Cal | | ADocunent Accessor Read(| ADocAccessor Ref i nAccessor,
voi d* buffer, U nt32* ioSize);

OSSt at us Cal I | ASet Docunent Accessor ReadPosi ti on(l ADocAccessor Ref i nAccessor,
SInt32 invbde, SInt32 inOfset);

OSSt at us Cal | | AGet Docunent Accessor ReadPosi ti on(| ADocAccessor Ref i nAccessor,
Sl nt 32* out Posti on);

OSSt at us Cal I | AGet Docunent Accessor EOF(| ADocAccessor Ref i nAccessor, Sl nt32*
out EOF) ;

/* macros corresponding to the routine prototypes above */

#defi ne Cal |l | ADocunment Accessor Open(accessor) \
I nvokel ADocAccessor OpenUPP((accessor) - >docAccessor, \
(accessor) - >OpenDoc)

#defi ne Cal |l | ADocunent Accessor Cl ose(accessor) \
I nvokel ADocAccessor Cl oseUPP((accessor) ->docAccessor, \
(accessor) - >0 oseDoc)

#defi ne Cal |l | ADocunent Accessor Read(accessor, buffer, size) \
I nvokel ADocAccessor ReadUPP((accessor) - >docAccessor, (buffer),\
(size), (accessor)->ReadDoc)

#defi ne Cal |l | ASet Docunent Accessor ReadPosi ti on(accessor, node, offset) \
I nvokel ASet DocAccessor ReadPosi ti onUPP((accessor) - >docAccessor, \
(nmode), (offset), (accessor)->Set ReadPosition)

#defi ne Cal | | AGet Docunent Accessor ReadPosi ti on(accessor, \
out Posi tion) \
I nvokel AGet DocAccessor ReadPosi ti onUPP((accessor) - >docAccessor, \
(out Position), (accessor)->CetReadPosition)

#defi ne Cal | | AGet Docunent Accessor EOF(accessor, out EOF) \
I nvokel AGet DocAccessor EOFUPP((accessor) - >docAccessor, \

Page: 7

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

(out EOF), accessor)->Get EOF)

Listing 4. Declaration of the | ADocAccessor Recor d structure and prototypes that can be used for
calling the routines referenced in the structure.

Thel ADocAccessor Recor d defined in Listing 4 provides plug-ins with all the necessary resources for
accessing files. Plug-ins should not make calls to the File Manager directly. Instead, they should perform
all file input operations necessary for accessing afile through these callbacks. Fields and callbacks
defined in this structure are discussed below.

Cal | | ADocument Accessor Open

OSSt at us Cal I | ADocunent Accessor Open(
| ADocAccessor Ref i nAccessor);

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AGpenDocunent routine.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | ADocunent Accessor Qpen isacallback procedure provided in the | ADocAccessor Record
structure that can be called by plug-insto open afile for input.

Cal | | ADocunent Accessor Qpen opens the document for reading. Plug-ins should call thisroutine to
open the document for reading before making any of the input calls described below.

Cal |l | ADocument Accessor Cl ose

OSSt at us Cal | | ADocunent Accessor O ose(
| ADocAccessor Ref inAccessor);

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AQpenDocunent routine.
i nAccessor must be in the open state when thisroutine is called.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | ADocunent Accessor Cl ose isacallback procedure provided in the| ADocAccessor Record
structure that can be called by plug-insto close afile that was opened by acall to
Cal | I ADocunent Accessor Open.

Cal | | ADocunent Accessor O ose should be called to close afile opened by acall to
Cal | I ADocunent Accessor Open.

Cal |l | ADocument Accessor Read

Page: 8

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

OSSt at us Cal | | ADocunent Accessor Read(
| ADocAccessor Ref inAccessor,
voi d* buffer,

Ul nt 32* i 0Si ze);

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AGpenDocunent routine.
i nAccessor must be in the open state when thisroutine is called.

buf f er - apointer to a buffer where the data should be stored.

i 0Si ze - apointer to a32-bit integer containing the number of bytesto be read. When the routine
returns, this value will have been updated to the actual number of bytes read.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | ADocunent Accessor Read isa callback procedure provided inthe | ADocAccessor Record
structure that can be called by plug-insto read datafrom afile.

Cal | | ADocunent Accessor Read reads*i oSi ze bytes from the file starting at the current read file
position. On return, *i oSi ze will reflect the actual number of bytes read and the routine's result will
indicate the success of the call. If this callback returns an eof Er r error, be sure to check the value stored
in*i oSi ze asit is possible that some bytes may have been read into the buffer before the end of thefile
was encountered. Callsto Cal | | ADocunent Accessor Read advance the read position for the file past the
bytes that have been read - the next call to Cal | | ADocunent Accessor Read begins where the last one | eft
off.

Cal | | ASet Document Accessor ReadPositi on

OSSt at us Cal | | ASet Docunent Accessor ReadPosi ti on(
| ADocAccessor Ref i nAccessor,
Sl nt 32 i nMbde,
SInt32 inOf fset);

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AQpenDocunent routine.
i nAccessor must be in the open state when thisroutine is called.

i nMode - contains one of the following positioning constants:

® kil AFrontt art Mode - i nOf f set contains avalue to be interpreted as an offset from the start

of thefile.

® kil AFrontCurrMde - i nOf f set contains avalue to be interpreted as an offset the current
read position.

® kil AFronEndMode - i nOf f set contains avalue to be interpreted as an offset from the end of
thefile.

i nOf f set - contains a 32-bit signed integer used to offset the current read position.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | ASet Docunent Accessor ReadPosi t i on isacallback procedure provided in the
| ADocAccessor Recor d structure that can be called by plug-insto set the position where the next read
will take place when Cal | | ADocunment Accessor Read iscalled.

Cal | | ASet Docunent Accessor ReadPosi ti on can be used to set the position where the next call to
Cal | | ADocunent Accessor Readwill begin reading bytes from the file. When afileisfirst opened, its
read position is set to the beginning of thefile.

Page: 9

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Cal | | AGet Document Accessor ReadPositi on

OSSt at us Cal | | AGet Docunent Accessor ReadPosi ti on(
| ADocAccessor Ref i nAccessor,
Sl nt 32* out Posti on);

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AQpenDocunent routine.
i nAccessor must be in the open state when thisroutine is called.

out Post i on - apointer to a32-hit value that is set to the current read position's offset from the
beginning of thefile.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | AGet Docunent Accessor ReadPosi ti on isacallback procedure provided in the
| ADocAccessor Recor d structure that can be called by plug-ins to determine the position where the next
read will take place when Cal | | ADocunent Accessor Read iscalled.

Cal | | AGet Docurrent Accessor ReadPosi t i on returnsthe location where the next read operation will
take placein * out Post i on. The value returned is an offset from the beginning of thefile.

Cal | | AGet Document Accessor EOF

OSSt at us Cal | | AGet Docunent Accessor EOF(
| ADocAccessor Ref i nAccessor,
Sl nt 32* out EOF) ;

i nAccessor - apointer tothel ADocAccessor Recor d passed to thel AQpenDocunent routine.
i nAccessor must be in the open state when thisroutine is called.

out EOF - apointer to a32-hit value that is set to the number of bytesin thefile.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

Cal | | AGet Docunent Accessor ReadPosi ti on isacallback procedure provided in the
| ADocAccessor Recor d structure that can be called by plug-insto determine length of the input file.

Cal | | AGet Document Accessor EOF can be used to discover the length of afile. On return, * out ECF is set
to the total number of bytesin thefile.

Applications developers wanting to call Text Extractor Plug-ins from inside of their own applications will
have to initialize this structure and define the necessary callbacks themselves. An example showing how
to set up al ADocAccessor Recor d structure can be found in the Setting up the | ADocAccessor Recor d
structure section later in this document.

Back to top

Routines a Text Extractor Must Define

This section describes the routines that must be exported by all Text Extractor Plug-ins. This section
provides a detailed description of each routine along with some discussion any important issues related to
each routine.

Page: 10

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

I APl ugi nl nit

0SSt atus | APl ugi nlnit (
I APl ugi nl ni t Bl ockPtr initBl ock,
| APl ugi nRef *out Pl ugi nRef);

i ni t Bl ock - contains a pointer to al APl ugi nl ni t Bl ock structure.

out Pl ugi nRef - isapointer to a 32-bit value that will be passed to other plug-in routines while the
plug-inisopen. A plug-in may set thisvaueinits! APl ugi nl ni t routineand it will remain
unchanged until 1 APl ugi nTer miscalled.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

| APl ugi nl ni t isaroutine that must be provided in the plug-in's code fragment.

After the plug-in's code fragment has been prepared for execution, the plug-in'si API ugi nl ni t routineis
called. This routine provides an opportunity for a plug-in to perform any necessary initialization
operationsit may require.

The calbacksinthel APl ugi nl ni t Bl ock pointed to by thei ni t Bl ock parameter remain vaid while the
plug-inisopen (until 1 APl ugi nTer mis called) and may be called from any of the plug-in's other
routines. The value stored in * out Pl ugi nRef is dedicated for the plug-in's use and may be used to store
persistent state information that isto remain intact between callsto the plug-in (this value is not saved
after the plug-in has been closed).

For an exampleillustrating how this routine could be implemented refer to Listing 6.

Back to top

I APl ugi nTerm

CsSt at us | APl ugi nTer m(| APl ugi nRef i nPl ugi nRef) ;

i nPl ugi nRef - a32-bit value dedicated for the plug-in'suse. Thisvalue will be the same asthe vaue
the* out Pl ugi nRef parameter was set tointhe| APl ugi nl ni t call.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

| APl ugi nTer misaroutine that must be provided in the plug-in's code fragment.

Before a plug-in's Code Fragment Manager connection is closed, the plug-in's1 APl ugi nTer mroutine is
called. Thisroutine provides opportunity for the plug-in to perform any necessary cleanup operations
required such as deallocating storage, closing resource files, et cetera. After this routine has been called,
there will be no other calls made to the plug-in until the next timeit isopened by acall to1 APl ugi nini t.

For an example illustrating how this routine could be implemented refer to Listing 7.

Back to top

Page: 11

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

| AGet Ext r act or Ver si on

OSSt at us | AGet Ext r act or Ver si on(
I APl ugi nRef i nPl ugi nRef,
Ul nt 32 out Pl ugi nVer si on) ;

i nPI ugi nRef - a32-bit value dedicated for the plug-in's use. Thisvaue will be the same asthe value
the* out Pl ugi nRef parameter was set tointhe| APl ugi nl ni t cal.

out Pl ugi nVer si on - apointer to a32-hit value. Y our routine should set this value to
kl AExt r act or Curr ent Ver si on.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

| AGet Ext r act or Ver si on isaroutine that must be provided in the plug-in's code fragment.

In thisroutine, a plug-in should set the value * out Pl ugi nVer si on to the version of the Text Extractor
Plug-in interface it was compiled against. The constant ki AExt r act or Cur r ent Ver si on, defined in

"l AExtractor.h", contains the current version of the Text Extractor Plug-in interface.

For an exampleillustrating how this routine could be implemented refer to Listing 8.

Back to top

| ACount Support edDocTypes

0SSt at us | ACount Support edDocTypes(
I APl ugi nRef i nPl ugi nRef,
Ul nt 32* out Count);

i nPI ugi nRef - a32-bit value dedicated for the plug-in's use. This value will be the same asthe value
the*out Pl ugi nRef parameter was set tointhel APl ugi nl ni t cal.

out Count - apointer to a 32-bit integer. The plug-in should set thisinteger to the number of
document typesthat it knows how to handle.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

| ACount Suppor t edDocTypes iSaroutine that must be provided in the plug-in's code fragment.

This routine should set * out Count to the number of document types the plug-in is able to handle. The
value stored in * out Count isinterpreted as the maximum valid index that can be provided asanindex in
| AGet | ndSuppor t edDocType calls.

For an exampleillustrating how this routine could be implemented refer to Listing 9.

Back to top

| ACGet | ndSuppor t edDocType

Page: 12

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

0SSt at us | AGet | ndSupport edDocType(
I APl ugi nRef i nPl ugi nRef,
U nt 32 inl ndex,
char** out M METype) ;

i nPl ugi nRef - a32-bit value dedicated for the plug-in's use. Thisvaue will be the same asthe value
the* out Pl ugi nRef parameter was set tointhe | APl ugi nl ni t cal.

i nl ndex - a32-hit integer value indicating the index of the document type to return. Index values
range between 1 and the maximum index value returned by | ACount Suppor t edDocTypes.

*out M METype - apointer value of typechar *. A plug-in should set this value to point to a string
containing the MIME type string. The storage for this string belongs to the plug-in - if it was
allocated by the plug-in, then the plug-in must deallocate it.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

| AGet | ndSuppor t edDoc Type iSaroutine that must be provided in the plug-in's code fragment.

Theroutine | AGet | ndSuppor t edDocType Sets* out M METype to point to a string containing the nth
MIME type the plug-in is able to understand. Index values that may be provided in thei nl ndex
parameter range from 1 (not zero) through the maximum value as reported by the

| ACount Suppor t edDocTypes cal.

For an example illustrating how this routine could be implemented refer to Listing 10.

Back to top

I AQpenDocunent

0SSt at us | AOpenDocurrent (
| APl ugi nRef i nPl ugi nRef,
| ADocAccessorPtr i nAccessor,
| ADocRef * out Doc) ;

i nPI ugi nRef - a32-bit value dedicated for the plug-in's use. Thisvaue will be the same asthe value
the*out Pl ugi nRef parameter was set tointhel APl ugi nl ni t cal.

i nAccessor - apointer toal APl ugi nl ni t Bl ock containing callbacks necessary for reading
information from afile.

out Doc - apointer to a 32-bit value available for the plug-in to use for storing information specific to
the document. Normally plug-inswill store a pointer to necessary state variables specific to the
document in this parameter.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

| AOpenDocument iSaroutine that must be provided in the plug-in's code fragment.

| ApenDocument iscalled before aplug-inisused to extract text from a new document. Thisroutine
provides opportunity for the plug-in to perform any initialization operations required before it begins
reading text from afile. Any state variables or data buffers required for processing the file should be
stored in ablock of memory and a pointer to that block should be stored in * out Doc. Thisvaue will be
passed to the routines | AGet Next Text Run, and | AGet Text Runl nf o while the document is open, and

Page: 13

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins
thento] AC oseDocunent once all the required text has been extracted from the document. Both the
| APl ugi nl ni t Bl ock pointed to by thei nAccessor parameter and the value stored in * out Doc will
remain valid until | ACl oseDocurnent iscalled.

For an example illustrating how this routine could be implemented refer to Listing 11.

Back to top

| ACl oseDocunent

OSSt at us | ACl oseDocunent (
| ADocRef i nDoc);

i nDoc - The document reference value created by the plug-in thel AOpenDocunent call containing
state variables or data buffers required for processing thefile.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

| ACl oseDocunent isaroutine that must be provided in the plug-in's code fragment.

| Al oseDocunent iscalled after al textual information required has been extracted from the document.
In this cal, the plug-in should dispose of any state variables or buffers that were created specifically for
thefile referenced by thei nDoc parameter.

For an exampleillustrating how this routine could be implemented refer to Listing 12.

Back to top

| ACGet Next Text Run

0SSt at us | AGet Next Text Run(
| ADocRef i nDoc,
voi d* buffer,
U nt 32* i0Si ze);

i nDoc - The document reference value created by the plug-in thel ApenDocunent call containing
state variables or data buffers required for processing thefile.

buf f er - apointer to ablock of memory.

i 0Si ze - apointer to a 32-bit integer value. when the routine is called, this value will equa the
number of bytes available in the memory area pointed to by buf f er parameter. After copying some
text to this memory buffer, the plug-in should set this value to the actual number of bytes copied.

result - er r | ANoEr r if the operation was successful, some other error code if the operation failed.

| AGet Next Text Run isaroutine that must be provided in the plug-in's code fragment.

Thel AGet Next Text Run routine should copy text from the document into the memory buffer pointed to
by thebuf f er parameter until that buffer isfull, or the plug-in runs out of text. If the language encoding
changes from one language to ancther while text is being decoded, the plug-in mark that location in the
text stream by returning the result code er r | AEndOF Text Run.

Page: 14

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

When the plug-in reaches the end of the text in thefile, it should return aresult code of noErr and it
should set *i 0Si ze to zero indicating there is no more text to be read from the file.

For an example illustrating how this routine could be implemented refer to Listing 13.

Back to top

| AGet Text Runl nfo

OSSt at us | AGet Text Runl nf o
| ADocRef i nDoc,
char** out Encodi ng,
char** out Language) ;

i nDoc - The document reference value created by the plug-in thel AGpenDocunent call containing
state variables or data buffers required for processing thefile.

out Encodi ng - apointer to avariable to type char*. Thisis an optiona parameter, and may be set to
NULL if the caller is not interested in this value. The plug-in should store a pointer to a string in the
variable pointed to by this parameter that contains the Internet name for the current character
encoding for text being extracted from thefile.

out Language - apointer to avariable to type char*. Thisis an optiona parameter, and may be set to
NULL if the caller is not interested in this value. The plug-in should store a pointer to a string in the
variable pointed to by this parameter that contains the language name for text being extracted from
the file. The language corresponds to the internet standard defined in 1SO-639.

result - er r I ANoEr r if the operation was successful, some other error code if the operation failed.

| AGet Text Runl nf o isaroutine that must be provided in the plug-in's code fragment.

| AGet Text Runl nf o returnsinformation about the character encoding and the language of the text for the
last buffer returned by | AGet Next Text Run.

Both parameters are optiona and may or may not be present depending on the caller's requirements. If a
parameter is not required, then it will be set to NULL.

If the plug-in alocates a pointer to a string and stores that pointer either in * out Encodi ng or in
*out Language, then it isthe plug-in's responsibility to deall ocate that storage.

If either value is not known, the plug-in may store the value NULL in either * out Encodi ng or in
*out Language. Thisvaueinstructs the caler that the current character encoding or language is not
known by the plug-in.

A pointer to astring containing the Internet name for the character encoding is returned in the

*out Encodi ng parameter. Encoding is the internet name for an encoding (i.e., "iso-8859-1",
"X-mac-roman”, "euc-jp", ...).

For an example illustrating how this routine could be implemented refer to Listing 14.

Back to top

Page: 15

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

An Example Plug-in

The following annotated example illustrates how to create a Text Extractor Plug-in for the "text/plain™
MIME type. Asthe function of this plug-in isto passtext from the file to the caler, itsimplementation is
very smple. Developers can easily modify this example to extract text from their own file formats.

/* File: PlainTextExtractor.c
Text Extractor plug-in exanple/shell. */

/* The file | AExtractor.h contains defines and structures
necessary for creating a Text Extractor Plug-in. */

#i nclude "I AExtractor. h"

/* This constant is used in the exanple as a data val ue
stored in the reference value naintained by the caller
for the plug-in. [It's not necessary to create a plug-in,
but it's useful for illustration. */

enum {
kPl ai nText Extract or Ref Type = 'text
b

/* This macro is used or verifying the reference val ue
remai ns unchanged in the exanple. */

#define VerifyType(x) ((U nt32)(x)==(U nt32)kPI ai nText Extract or Ref Type)

Listing 5. File header & importsfor Text Extractor Plug-ins.

The only important aspect of the above is the header file being included. Here, the file "l AExtractor.h"
containing the necessary constant and structure definitionsis included.

Page: 16

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

/* I APl uginlnit exanpl e inplenentation.*/

OSStatus APl uginlnit(
I APl ugi nl ni t Bl ockPtr initBl ock,
| APl ugi nRef* out Pl ugi nRef) {
/* validate paraneters. */
if (outPluginRef == NULL) return errl AParantrr;

/[* initialize the reference value. Plug-ins that
require menory allocation should cache initBlock

info here. */
*out Pl ugi nRef = (1 APl ugi nRef) kPl ai nText Ext r act or Ref Type;
/* Return with no error. */

return err| ANoErr;

Listing 6. | APl ugi nl ni t example.

Thel APl ugi nl ni t isthefirst call made to the plug-in. During this call, the plug-in should set up any
variables or tables required. Also, if the plug-in will require any of the callbacks found in the
| APl ugi nl ni t Bl ock pointed to by thei ni t Bl ock parameter later during its execution, then it should

save a copy of this pointer.

Back to top

/* | APl ugi nTer m exanpl e i npl enentati on. */

OSSt at us | APL ugi nTer n(| APl ugi nRef i nPl ugi nRef) {

/* validate paraneters */

if (!VerifyType(inPluginRef))
return errl AParangkrr;

/* do other tear-down operations here... */

/* Return with no error. */

return errl ANoErr;

Listing 7. I APl ugi nTer mexample.

Normaly, thel APl ugi nTer mroutine will be used to deallocate any storage allocated by the plug-in, close

any resource files, and other cleanup tasks that need to be performed.

Page: 17

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Back to top

/* | AGet Extract or Versi on exanpl e inplenmentation. */

OSSt at us | AGet Ext ract or Ver si on(
| APl ugi nRef i nPl ugi nRef,
Ul nt 32* out Pl ugi nVersi on) {

/* validate paraneters */

if (!VerifyType(inPluginRef) || !outPluginVersion)
return errl AParankrr;

/* set return value to the interface version
this code was conpiled with. */

*out Pl ugi nVer si on = kl AExt ract or Current Ver si on;
/* Return with no error. */

return err| ANoErr;

Listing 8. | AGet Ext r act or Ver si on example.

Thevauekl! AExt r act or Cur r ent Ver si on will always contain the current version for the declarations
includedinthefile" I AExt ract or. h". For the current implementation thisvalue is set to

kl AExt r act or Ver si onl.

Back to top

/* 1 ACount Support edDocTypes exanpl e inpl enmentation.*/

OSSt at us | ACount Support edDocTypes(
| APl ugi nRef i nPl ugi nRef,
Ul nt 32* out Count) {

/* validate paraneters*/

if (!'VerifyType(inPluginRef) || ! outCount)
return errl AParankrr;

/* count is max value to be passed to
| AGet | ndSupport edDocType as index */

*out Count = 1;
/* Return with no error. */

return errl ANoErr;

Page: 18

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Listing 9. | ACount Suppor t edDocTypes example.

In this example, we only support one document type - plain text documents.

Back to top

/* 1 AGet | ndSupport edDocType exanpl e inpl ementation. */

OSSt at us | AGet | ndSupport edDocType(
| APl ugi nRef i nPl ugi nRef,
U nt 32 inl ndex,
char **out M METype)

/* set up local variables */
static char* supportedDocType = "text/plain";
/* validate paraneters */

if (!VerifyType(inPluginRef) || !'outM METype || inlndex != 1)
return errl AParantrr;

/* set return value */
*out M METype = supportedDocType;
/* return successfully */

return errl ANoErr;

Listing 10. 1 AGet | ndSuppor t edDocType example.

In the above declaration of | AGet | ndSuppor t edDocType the MIME type string is stored as a static
variable among the plug-in's globals.

Back to top

Page: 19

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

/* 1 AOpenDocunent exanpl e inplenmentation.*/

0SSt at us | AOpenDocunent (
| APl ugi nRef i nPl ugi nRef,
| ADocAccessorPtr inDocAccessor,
| ADocRef * out Doc) {

/* local variables */
CSSt atus err;
/[* verify paranmeters */

if (!VerifyType(inPluginRef) || !'inDocAccessor || !outDoc)
return errl AParantrr;

/* call our opening routine */
err = Calll ADocunent Accessor Qpen(i nDocAccessor);

if (err !'= errl ANoErr)
return err;

/* | ADocRef is defined by plug-in, in our case we are just
reading directly fromthe accessor so we are defining the
opaque type | ADocRef to be an | ADocAccessorPtr. */

*out Doc = (| ADocRef)i nDocAccessor;

/* return successfully */

return err| ANoErr;

Listing 11. 1 AOpenDocunent example.

Inthel AOpenDocunent call shown above, the plug-in calls back through the | API ugi nl ni t Bl ock
record pointed to by thei nDocAccessor parameter and before caching acopy of i nDocAccessor inthe
document reference parameter (* out Doc). Thisvaueis used to refer to the document in the next few

listings.

Back to top

Page: 20

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

/* 1 ACl oseDocunent exanpl e inpl enentation. */

OSSt at us | AC oseDocunent (| ADocRef i nDoc) {

/* local variables */

| ADocAccessorPtr docAccessor;
OSSt at us err;

[* verify paranmeters */

i f (inDoc == NULL)
return errl AParangkrr;

/* Cast | ADocRef to what we defined it to be in
| AOpenDocument in this case a | ADocAccessorPtr */

docAccessor = (1 ADocAccessorPtr)i nDoc;
/* use the callback to close the file */

err = Calll ADocunent Accessor C ose(docAc
cessor);

/* return status of |ast close */

return err;

Listing 12. 1 ACl oseDocunent example.

Inthel AC oseDocunent call shown above, the plug-in calls back through the] API ugi ni ni t Bl ock
structure to close thefile. The pointer to the | APl ugi ni ni t Bl ock Structure is coerced from thei nDoc
parameter where a copy was saved during the | AQpenDocunent call shownin Listing 11.

Back to top

Page: 21

TN1181: Sherlock's Find by Content Text Page: 22

Extractor Plug-ins

/* | AGet Next Text Run exanpl e inplementation. */

OSSt at us | AGet Next Text Run(
| ADocRef i nDoc,
voi d* buffer,
Ul nt 32* size) {

/* local variables */

| ADocAccessorPtr docAccessor ;
CSSt at us err;

/[* verify paranmeters */

if (!inDoc)
return errl AParankrr;

/* Cast | ADocRef to what we defined it to be
in | AQpenDocunent (in this case a | ADocAccessorPtr). */

docAccessor = (1 ADocAccessorPtr)i nDoc;
/* callback to read fromthe file. */

err = Calll ADocunent Accessor Read(docAcce
ssor, buffer, size);

/* return result o read operation */

return err;

Listing 13. 1 AGet Next Text Run example.

Inthel AC oseDocunent call shown above, the plug-in calls back through thel API ugi nl ni t Bl ock
structure to read data bytes from the file. The pointer to the | API ugi nl ni t Bl ock Structure is coerced
from thei nDoc parameter where a copy was saved during the | AQpenDocunent call shownin Listing 11.

Back to top

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

/* 1 AGet Text Runl nfo exanpl e inplementation. */

OSSt at us | AGet Text Runl nf of
| ADocRef i nDoc,
char** out Encodi ng,
char** out Language) ({

/* we don't know the encodi ng or | anguage of the file so
set to NULL. */

i f (outEncoding != NULL) *outEncoding
i f (outlLanguage !'= NULL) *outlLanguage

NULL;
NULL;

/* local variables */

return errl ANoErr;

Listing 14. |AGetTextRuninfo example.

In this example, we return NULL, indicating that both the text encoding and the language are unknown.

Back to top

Calling a Text Extractor Plug-in from an Application

Following is an example of how aclient may use a Text Extractor Plug-in to extract the text of a
document. Applications may use these routines or some variant of them to call Text Extractor Plug-insto
extract text from virtually any document type.

The steps below show how to set up the plug-in's code fragment, set up the callback structures, and finally
how to call the plug-in to perform the text extraction. This example does not show how to find or
determine the correct plug-in for aparticular document.

Setting up a Text Extractor Plug-in

First, we begin by setting up the plug-in's code fragment for execution and storing pointers to the routines
we want to call in astructure we will use to access the plug-in. Listing 15 contains the routines and
declarations used to perform this task.

/* The follow ng typedefs correspond to the routines
exported by Text Extractor Plug-ins. In this exanple,
we use these for calling the plug-in fromour code. */

typedef OSStatus (*PluginlnitCallPtr) (1l APl uginlnitBlockPtr initBlock
| APl ugi nRef * out Pl ugi nRef) ;

typedef OSStatus (*Plugi nTernCallPtr) (1 APl ugi nRef inPl ugi nRef);

typedef OSStatus (*GetExtractorVersionCallPtr)(IAPl ugi nRef inPluginRef,

Page: 23

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Ul nt 32* out Pl ugi nVer si on) ;

t ypedef OSStatus (*Count SupportedDocTypesCall Ptr) (I APl ugi nRef i nPl ugi nRef,
Ul nt 32* out Count) ;

t ypedef OSStatus (*GetlndSupportedDocTypeCall Ptr) (I APl ugi nRef inPlugi nRef,
U nt 32 inlndex, char** outM METype);

typedef OSStatus (*OpenDocumnent Call Ptr) (I APl ugi nRef i nPl ugi nRef,
| ADocAccessorPtr inDoc, | ADocRef* outDoc);

typedef OSStatus (*C oseDocunentCall Ptr) (1 ADocRef inDoc);

t ypedef OSStatus (*GetText RunlnfoCallPtr) (I ADocRef inDoc,
char** out Encodi ng, char** outLanguage);

t ypedef OSStatus (*Get Next Text RunCal |l Ptr) (I ADocRef inDoc, void* buffer,
Ul nt 32* size);

/* ExtractorRec is used for storing information about the
plug-in's code fragment itself. it contains pointers
to the fragnent's routines, and the fragnent's CFM
connection id nunber. */

t ypedef struct {
Connecti onl D connl D
PluginlnitCal Il Ptr Pluginlnit;
Pl ugi nTernmCal | Ptr Pl ugi nTer m
Get Extract or Versi onCal | Ptr Get Ext ract or Ver si on;
Count Support edDocTypesCal | Ptr Count Support edDocTypes;
Get | ndSuppor t edDocTypeCal | Ptr Get | ndSupport edDocType;
OpenDocunent Cal | Ptr OpenDocunent ;
Cl oseDocunent Cal | Ptr C oseDocunent ;
Get Text Runl nfoCal | Ptr Get Next Text Run;
Get Next Text RunCal | Pt r Get Text Runl nf o;
} ExtractorRec, *ExtractorRecPtr;

/* OpenExtractor | oads the code fragnment bel onging
to the Text Extractor Plug-in referred to by the file
system specification record referred to by its spec
paraneter. |f successful, it returns a pointer to
a structure containing pointers to the plug-in's
routines. If an error occurs, the function returns NULL. */

Extractor RecPtr OpenExtractor (ESSpec *spec) {
ExtractorRecPtr extr,;
Str63 fragNane;
Ptr mai nAddr;
Str 255 err Nane;
Bool ean fragment Exi sts; /* tracks contents of fragConnlD */
Connecti onl D fragConnl D
CFragSynbol C ass synbol C ass;

/* set up locals to a known state */

extr = NULL;
fragnment Exi sts = fal se;

Page: 24

TN1181: Sherlock's Find by Content Text Page: 25
Extractor Plug-ins

/* allocate the storage for saving informati on about
the plug-in. */

extr = (ExtractorRecPtr) NewPtrd ear (sizeof (ExtractorRec))

if (extr == NULL) goto bail;
/* set up the plug-in's code fragment for use. */

err = Cet D skFragnent (spec, O
, kWwhol eFork, fragName, kLoadNewCopy,
& ragConnl D, &mai nAddr, errNane);
if (err '= noErr) goto bail;
fragment Exi sts = true;
extr->connl D = fragConnl D

/* save pointers to the routines we want to call. */

err = FindSynbol (fragConnl D,
"\ pl APl uginlnit",
(Ptr*) &extr->Pluginlnit, &synbol d ass);
if (err '=noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl APl ugi nTer n",
(Ptr*) &extr->Plugi nTerm &synbol C ass);
if (err = noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl AGet Ext r act or Ver si on",
(Ptr*) &extr->CetExtractorVersion, &synbol d ass);
if (err !'= noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl ACount Support edDocTypes",

(Ptr*) &extr->Count SupportedDocTypes, &synbol d ass);
if (err '= noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl AGet | ndSupport edDocType",

(Ptr*) &extr->CetlndSupportedDocType, &synbol d ass);
if (err '= noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl ACpenDocunent ",
(Ptr*) &extr->CpenDocunent, &synbol d ass);
if (err !'=noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl ACl oseDocunent ",
(Ptr*) &extr->C oseDocunent, &synbol O ass);
if (err !'=noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl AGet Next Text Run",
(Ptr*) &extr->Cet Next Text Run, &synbol d ass);
if (err = noErr) goto bail;

err = FindSynbol (fragConnl D,
"\ pl AGet Text Runl nf 0",
(Ptr*) &extr->Cet Text Runl nfo, &synbol d ass);
if (err '=noErr) goto bail;

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

/* return successfully */
return extr;
bai | :
if (fragnmentExi sts) d oseConnection(&fr
agConnl D) ;

if (extr !'= NULL) DisposePtr(Ptr) extr);
return NULL,;

/* Cl oseExtractor unloads the plug-in's code fragment and
rel eases storage all ocated when it was opened. */

voi d C oseExtractor(ExtractorRecPtr
extr) {

/* close the code fragment manager connection to
the plug-in's file. */

G oseConnecti on(&ex
tr->connl D);

/* release the menmory we were using to track the
plug-in's code fragment. */

Di sposePtr((Ptr) extr);

Listing 15. Routines for setting up a Text Extractor Plug-in's code fragment for execution.

The prototypes provided in Listing 15 alow usto call back to the plug-in. Pointersto these routines are
stored in the Ext r act or Rec structure.

Back to top

Setting up the 1 API ugi ni ni t Bl ock structure

Routines for setting up al APl ugi nl ni t Bl ock structure are provided in Listing 16. Here, callbacks used
by the plug-in are referenced in the structure saving routine descriptors referring to them in the structure.

/* routines exported in the I APl uginlnitBlock record.
Here we have defined our own set of routines that
call through to the Mac OS nenory nanager. */

static void* Myl AAll oc(UI nt32 inSize) {
return (void*) NewPtr(inSize);
}

static void Myl AFreeProc(voi d* object) {
Di sposePtr((Ptr) object);

Page: 26

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

}

static U nt8 Myl Aldl eProc(void) {
return O;

}

/* Newl APl ugi nlnitBl ock allocates a new init block
record containing nenory allocation routines
and idle routines that can be call ed
by a plug-in. If an error occurs, the function
returns NULL. */

I APl ugi nl ni t Bl ockPtr New APl ugi nl ni t Bl ock(void) {
| APl ugi nl nitBl ockPtr i Bl ock;
i Bl ock = NULL;

i Block = (APl uginlnitBlockPtr) NewPtrd ear(sizeof (I APl ugi nl nitBl ock));
if (iBlock == NULL) goto bail;

i Bl ock->All oc = Newl AAl | ocProc(Ml AAl |l oc);
if (iBlock->Alloc == NULL) goto bail;

i Bl ock->Free = New AFreeProc(M/ AFreeProc) ;
if (iBlock->Free == NULL) goto bail;

i Bl ock->1dl e = New Al dl eProc(Ml Al dl eProc);
if (iBlock->Idle == NULL) goto bail;

return i Bl ock;

bai | :
if (iBlock !'= NULL) {
if (iBlock->Alloc != NULL)
Di sposeRout i neDescri ptor ((Universal ProcPtr) i Bl ock->Alloc);
if (iBlock->Free !'= NULL)
Di sposeRout i neDescri ptor((Universal ProcPtr) i Bl ock->Free);
if (iBlock->Idle != NULL)
Di sposeRout i neDescri ptor((Universal ProcPtr) i Bl ock->Idle);
Di sposePtr((Ptr)
i Bl ock);
}
return NULL;
}

/* Di sposel APl ugi nl nitBl ock rel eases the nenory occupi ed
by the init block record allocated i n Newi APl ugi nl nit Bl ock. */

voi d Di sposel APl ugi nl ni t Bl ock(1 APl ugi nl ni t Bl ockPtr iBl ock) {
Di sposeRout i neDescri ptor ((Universal ProcPtr) i Bl ock->Alloc);
Di sposeRout i neDescri ptor((Universal ProcPtr) i Bl ock->Free);
Di sposeRout i neDescri ptor((Universal ProcPtr) i Bl ock->Idle);

Di sposePtr((Ptr) iBlock);

Page: 27

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Listing 16. Routinesfor alocating and initializing an 1 API ugi nl ni t Bl ock Structure.

The routines provided in Listing 16 allocate and deallocate the | API ugi ni ni t Bl ock Structure to use
routines that call the Memory Manager.

Back to top

Setting up the | ADocAccessor Recor d structure

The routines and declarations provided in Listing 17 illustrate how to set up the file access callbacks for a
plug-in. Here, we alocate the callback structure and another structure for keeping track off the file itself.

/* MyDocument Ref erence contains information used by
the caller to track the input source being used
by the plug-in. In this exanple, we are using a
Mac CS file. */

typedef struct {
FSSpec spec; /* a

copy of the file specification record */
Bool ean docQpen; /* true when docunent is open */
short refnum /* file reference nunber */

} MyDocurent Ref erence, *MyDocRefPtr;

/* in this exanple, we will fill the fields of the
| ADocAccessor Record with routine descriptors referring
to routines that call through to the Mac OS file system
These routines are defined bel ow. */

static OSStatus Myl ADocAccessor OpenProc(| ADocAccessor Ref inAccessor) ({
My/DocRef Ptr refptr;
| ADocAccessorPtr accPtr;
CSErr err;
accPtr = (I ADocAccessorPtr) inAccessor;

refptr = (MyDocRefPtr)

accPtr->docAccessor;

err = FSpOpenDF(&ref ptr->spec, fs
RdPerm &refptr->refnum;
if (err == noErr)
refptr->docQpen = true;
return (OSStatus) err;

}

static OSStatus Myl ADocAccessor Cl oseProc(| ADocAccessor Ref i nAccessor) ({
M/DocRef Ptr refptr;
| ADocAccessorPtr accPtr;
accPtr = (1 ADocAccessorPtr) inAccessor;
refptr = (MyDocRef Ptr)
accPtr->docAccessor;
if (! refptr->docQOpen)
return errl AParantrr;
FSC ose(refptr->refnunj;
refptr->docQpen = fal se;
return errl ANoErr;

Page: 28

TN1181: Sherlock's Find by Content Text Page: 29
Extractor Plug-ins

}

static OSStatus Myl ADocAccessor ReadProc(| ADocAccessor Ref i nAccessor,

voi d* buffer, U nt32* ioSize) {
My/DocRef Ptr refptr;
| ADocAccessorPtr accPtr;
OSErr err,
accPtr = (I ADocAccessorPtr) inAccessor;

refptr = (MyDocRefPtr)

accPtr->docAccessor;

if (! refptr->docQOpen)
return errl AParantrr;

err = FSRead(refptr->refnum
i 0Si ze, buffer);

return (CSStatus) err;

}

static OSStatus Ml ASet DocAccessor ReadPosi ti onProc(
| ADocAccessor Ref inAccessor, SInt32 inMde, SInt32 inOfset) {

MyDocRef Ptr refptr;
| ADocAccessorPtr accPtr;

OSErr err;
accPtr = (1 ADocAccessorPtr) inAccessor;
refptr = (MyDocRefPtr)

accPtr->docAccessor ;

if (! refptr->docQOpen)
return errl AParantrr;

case (inhMde) {
case Kkl AFrontt art Mode:
err = SetFPos(refptr->refnum fsFronStart, inOfset);
br eak
case kl AFromCurr Mode:
err = Set FPos(refptr->refnum
fsFromvark, inOffset);
br eak;
case kl AFroneEndMode:
err = Set FPos(refptr->refnum
fsFromLEOF, i nOfset);
br eak;
defaul t:
err = errl| AParantrr;
br eak;

}

return (OSStatus) err;
}

static OSStatus Myl AGet DocAccessor ReadPosi ti onProc(
| ADocAccessor Ref i nAccessor, Slnt32* outPostion) {
M/DocRef Ptr refptr;
| ADocAccessorPtr accPtr;
CSErr err;
accPtr = (1 ADocAccessorPtr) inAccessor;

refptr = (MyDocRefPtr)
accPtr->docAccessor;

if (! refptr->docQOpen)

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

return errl AParantrr;

err = Cet FPos(refptr->refnum
out Post i on);

return (CSStatus) err;

}

static OSStatus Myl AGet DocAccessor EOFPr oc(
| ADocAccessor Ref i nAccessor, Slnt32* out ECF) ({
My/DocRef Ptr refptr;
| ADocAccessorPtr accPtr;
OSErr err;
accPtr = (I ADocAccessorPtr) inAccessor;

refptr = (MyDocRefPtr)

accPtr->docAccessor;

if (! refptr->docQOpen)
return errl AParantrr;

err = Get ECF(refptr->refnum
out EOF) ;

return (CSStatus) err;

/* Newl ADocAccessorRec initializes a | ADocAccessor Record
with routine descriptors referring to routines that
call through to the Mac OS file system It stores
a record containing informati on about the file
in the docAccessor field of the | ADocAccessor Record
record. |If an error occurs, th function returns NULL. */

| ADocAccessor Ptr Newl ADocAccessor Rec(FSSpec *targetFile) {
| ADocAccessorPtr docAcc;

MyDocRef Ptr refptr;

i Bl ock = NULL;
ref ptr = NULL;
refptr = (MyDocRef Ptr) NewpPtr (sizeof (MyDocurnent Ref erence

));
if (refptr == NULL) goto bail;
refptr->spec = *targetFile;
refptr->docQpen = fal se;
refptr->refnum= 0;

docAcc = (1 ADocAccessorPtr) Newptrd ear (sizeof (1 ADocAccessorR
ecord));

if (docAcc == NULL) goto bail;

docAcc->docAccessor = (| ADocAccessorRef) refptr;

docAcc- >QpenDoc = Newl ADocAccessor QpenPr oc(Myl ADocAccessor OpenProc) ;

i f (docAcc->CpenDoc == NULL) goto bail;

docAcc->C oseDoc = Newl ADocAccessor C oseProc(Myl ADocAccessor Cl oseProc) ;

i f (docAcc->C oseDoc == NULL) goto bail;

docAcc- >ReadDoc = Newl ADocAccessor ReadPr oc(Myl ADocAccessor ReadPr oc) ;

i f (docAcc->ReadDoc == NULL) goto bail;

Page: 30

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

docAcc- >Set ReadPosi ti on = Newl ASet DocAccessor ReadPosi ti onProc(
My I ASet DocAccessor ReadPosi ti onProc);
i f (docAcc->Set ReadPosition == NULL) goto bail;

docAcc- >CGet ReadPosi ti on = Newl AGet DocAccessor ReadPosi ti onProc(
M| AGet DocAccessor ReadPosi ti onProc);
i f (docAcc->Cet ReadPositi on == NULL) goto bail;

docAcc- >CGet EOF = Newl AGet DocAccessor ECFPr oc(
Myl AGet DocAccessor ECFPr oc) ;
if (docAcc->CGet EOF == NULL) goto bail;

return docAcc;

bai | :

if (refptr !'= NULL) DisposePtr((Ptr) refptr);
if (docAcc !'= NULL) {
i f (docAcc->CpenDoc != NULL)
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->CpenbDoc) ;
i f (docAcc->C oseDoc != NULL)
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->C oseDoc);
i f (docAcc->ReadDoc != NULL)
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->ReadDoc);
i f (docAcc->Set ReadPosition !'= NULL)
Di sposeRout i neDescri ptor ((Universal ProcPtr) docAcc->Set ReadPosition);
i f (docAcc->Cet ReadPosition !'= NULL)
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->Get ReadPosition);
i f (docAcc->Get ECF != NULL)
Di sposeRout i neDescri ptor ((Uni versal ProcPtr) docAcc->Get ECF);
Di sposePtr((Ptr)

docAcc) ;

}
return NULL;

/* Di sposel ADocAccessor Rec rel eases a | ADocAccessor Record
al | ocated by Newl ADocAccessorRec. Al o the sub
fields are deallocated, and, if the file is open,
it is closed before the structure is deallocated. */

voi d Di sposel ADocAccessor Rec(| ADocAccessorPtr docAcc) {

M/DocRef Ptr refptr;

/* destroy the docunment reference */

refptr = (MyDocRef Ptr)

docAcc- >docAccessor;

/* make sure the file is closed - incase we're aborting */
if (refptr->docOpen) FSC ose(refptr->refnum;

Di sposePtr((Ptr) refptr);

/* release the accessor structure */
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->CpenDoc) ;
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->C oseDoc);
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->ReadDoc) ;
Di sposeRout i neDescri ptor ((Universal ProcPtr) docAcc->Set ReadPosition);
Di sposeRout i neDescri ptor ((Universal ProcPtr) docAcc->Get ReadPosition);
Di sposeRout i neDescri pt or ((Uni versal ProcPtr) docAcc->Get ECF) ;

Page: 31

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

Di sposePtr((Ptr) docAcc);

Listing 17. Routinesfor alocating and initializing al ADocAccessor Recor d.

In Listing 17, we use File Manager calls to accessthefile. For tracking information used by the File
Manager, we store a pointer to a private structure containing that information in the docAccessor field of
thel ADocAccessor Recor d.

Back to top

Calling a Text Extractor Plug-in

Theroutine provided in Listing 18 calls the Text Extractor Plug-in to gather textual information from a
file. Thetext gathered from thefile is passed back to the caller through aroutine the caller providesasa
parameter.

/* KETBufferSi ze determ nes the size of the buffer allocated
for retrieving chunks of text. */

#define KETBufferSi ze (1024*1)

/* TextSinkProc is a call back routine provided by the
caller. Text will be passed to this routine as it is
extracted fromthe file. */

typedef OSErr (*TextSi nkProc)(void* text, long length, long refcon);

/* ExtractTextFronFile calls the Text Extractor Plug-in
referred to by *theExtractor to extract text fromthe
file referred to by *targetFile. Wile extracting text,
the text will be sent to the TextSi nkProc provided by
the textsink paraneter. refcon is a val ue passed through
to the TextSinkProc in its refcon parameter. */

OSErr Extract Text FronFi |l e(FSSpec *targetFile, FSSpec *theExtractor,
Text Si nkProc textsink, long refcon) {
ExtractorRecPtr extractor;
| APl ugi nl nitBl ockPtr initblock;
| ADocAccessor Ptr accRec;
I APl ugi nRef i nPl ugi nRef ;
U nt 32 pl ugi nVer si on
Bool ean exlnited, docQOpen
| ADocRef docRef;
Ptr etBuffer;

/* set up locals to a known state */

extractor NULL,;
i ni tbl ock NULL;
accRec = NULL;
exlnited = fal se;
docOpen = fal se

Page: 32

TN1181: Sherlock's Find by Content Text Page: 33
Extractor Plug-ins

et Buf fer = NULL;
U nt 32 byt ecount;

/[* initialize the plug-in */

extractor = QpenExtractor(theExtractor);
if (extractor == NULL) goto bail

/[* initialize the callbacks used by the
plug-in for basic nenmory tasks. */

i nitblock = Newl APl ugi nl ni t Bl ock();
if (initblock == NULL) goto bail

/* call the plug-in's initialization routine. */

err = extractor->Pluginlnit(initBlock, &pluginRef);
if (err '= noErr) goto bail
exlnited = true

/* query the plug-in to find out if we're using
the interface we're using is in sync with the
interface it was built to use. */

err = extractor->Get ExtractorVersion(plugi nRef, &plugi nVersion);

if (err !'= noErr) goto bail

if (pluginVersion != kl AExtractorVersionl) { err = errlAParantrr; goto
bail; }

/* initialize the call backs used by the
plug-in for file input with our docunent. */

accRec = Newl ADocAccessorRec(targetFile);
if (accRec == NULL) goto bail

/* allocate a nmenory buffer for reading */

et Buf fer = NewPtr (KETBufferSize);
if (etBuffer == NULL) { err = menful | Err; goto bail; }

/* call the plug-in and ask it to open the docunent
for input. */

err = extractor->0CpenDocunent (pl ugi nRef, accRec, &docRef);
if (err !'= noErr) goto bail
docOpen = true;
/* Here, we loop until the plug-in returns no nore bytes */
while (true) {
/[* attenpt to fill the entire buffer with text. */

byt ecount = KETBufferSi ze;
err = extractor->CGet Next Text Run(docRef, etBuffer, &bytecount);

/* if sonme other error occurs, such as eofErr... we exit... */
if (err !'=noErr) goto bail

/* errl AEndOF Text Run is returned when the | anguage
encodi ng changes. in this case, we do not hing,

TN1181: Sherlock's Find by Content Text

Extractor Plug-ins

but in some cases we may wish to do sone additiona

processing. */

if (err == errl AEndOf Text Run) {

/* we don't check the bytecount

here because conceivably errl AEndOf Text Run coul d
be returned with a zero sized buffer sinply to

i ndi cate the begi nning of a new

character encoding range in cases where the
last call read all of the characters fromthe

| ast encoding run. */

/* normal term nation occurs when zero bytes are

returned. */

} else if (bytecount == 0)
br eak;

/* at this point, we have a chunk of text fromthe
we pass it back to the

fromthe docunent. Here,
caller's sink. */

err = textsink(etBuffer, bytecount, refcon);

if (err !'= noErr) goto bail
}
/[* at this point, all of the text
has been read. Now, we close down the docunent
by asking the plug-in to close,
menory buffer, and then disposing the file input
cal | back structure. Di sposel ADocAccessorRec is
defined in Listing
17. */

ext ract or - >Cl oseDocunent (docRef);
docOpen = fal se

Di sposePtr(etBuffer);

et Buf fer = NULL;

Di sposel ADocAccessor Rec(docAcc) ;
docAcc = NULL;

in the docunent

/* After closing the docunent, the plug-in

is released. This is done by calling the plug-in's
term nation procedure, releasing the nenory allocation
cal | backs (Di sposel APluginlnitBlock is defined in

Listing 16) and

then rel easing the plug-in's
code fragnent (C oseExtractor
Listing 15). */

ext ract or->Pl ugi nTer n{ pl ugi nRef) ;
exInited = fal se;

Di sposel APl ugi nl ni t Bl ock(i nitbl ock);
i nitblock = NULL;

Cl oseExtractor(extractor);

extractor = NULL;

/* return success */

return noErr;

is defined in

di sposi ng of the

Page: 34

TN1181: Sherlock's Find by Content Text
Extractor Plug-ins

bai | :
/* error handling code. note, ordering of the
recovery statements is inportant. */
i f (docOpen) extractor->C oseDocunent (docRef);
if (etBuffer !'= NULL) DisposePtr(etBuffer);
if (docAcc !'= NULL) Di sposel ADocAccessor Rec(docAcc);
if (exlnited) extractor->PluginTern(pluginRef);
if (initblock '= NULL) D sposel APl ugi nlnitBl ock(initblock);
if (extractor !'= NULL) d oseExtractor(extractor);
return err;
}

Listing 18. Sampleroutine for that calls a Text Extractor Plug-in.

The routine provided in Listing 18 performs the actual text extraction by calling the plug-in's routines
directly. In thisexample, no attention is paid to the language encoding or character encoding, but this
example could easily be modified to return thisinformation. This routine uses structures and calls routines
defined in Listing 15, Listing 16, and Listing 17.

Back to top

Index of Code Listings

The following code listings are provided in this document. Listings 5 through 14 define the content of the
sample plug-in, and listings 15 through 18 illustrate how to call a plug-in from an application.

e Listing 1. A sample HTML file.

Listing 2. A sample' mi np' resource for PDF files.

Listing 3. Declaration of the | API ugi nl ni t Bl ock structure and prototypes that can be used for

calling the routines referenced in the structure.

e Listing 4. Declaration of thel ADocAccessor Recor d structure and prototypes that can be used
for calling the routines referenced in the structure.

e Listing 5. File header & imports for Text Extractor Plug-ins.

e Listing 6.1 APl ugi nl nit example.

e Listing 7.1 APl ugi nTer mexample.

® Listing 8.1 AGet Ext ract or Ver si on example.

e Listing 9.1 ACount Support edDocTypes example.

e Listing 10. | AGet | ndSuppor t edDocType example.

e Listing 11. | AOpenDocunent example.

e Listing 12. 1 Ad oseDocunent example.

°

°

°

°

°

°

Listing 13. 1 AGet Next Text Run example.

Listing 14. 1 AGet Text Runl nf o example.

Listing 15. Routines for setting up a Text Extractor Plug-in's code fragment for execution.
Listing 16. Routines for alocating and initializing an1 APl ugi nl ni t Bl ock Structure.
Listing 17. Routinesfor allocating and initializing al ADocAccessor Recor d.

Listing 18. Sampleroutine for that calls a Text Extractor Plug-in.

Page: 35

TN1181: Sherlock's Find by Content Text Page: 36
Extractor Plug-ins

Further References

e Technote TN1141, "Extending and Controlling Sherlock."

e Technote TN1180, "Sherlock's Find By Content Library."

e RFC1521, "MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies." N. Borenstein, N. Freed.
September 1993.

Back to top

Downloadables

E Acrobat version of this Note (98K).

Back to top

To contact us, please use the Contact Us page.
Updated: 17-January-2000

Technotes | Contents
Previous Technote | Next Technote

