Technote 1077 - Calling CFM Code From Classic 68K Code

TECHNOTE 1077

Calling CFM Code From Classic 68K Code, or
Thereand Back Again - A Mixed M ode Magic Adventure*

*with apologies to J.R.R. Tolkien and Bilbo Baggins from The Hobbit.

CONTENTS T
here are specific instances when you must call Code

Calling CFM From Classic Code
Fragment Manager (CFM) code from classic 68K code -- for

Shorteuts, Detours & Dead-Ends example, if your application cannot be converted to CFM, but you
_ _ want to be able to use CFM libraries. Or, you want to add plug-in

About Mixed Mode and Routine support to an existing classic 68K application without having to

Descriptors convert it to CFM68K.

Summery In addition, you may want to use CFM68K to develop an

application to run on both 68K and PowerPC computers and use
asingle FAT library for both environments. Ancther instance
would be developing for OpenDoc, which requires shared library
support. Prior to this Technote, only CFM applications could take
advantage of OpenDoc. This Technote explains how to add
library support to classic code.

Calling CFM From Classic Code

The basic stepsfor calling CFM from classic code are as follows:

1. Determine the address of the CFM routines you want to call.
2. Create aroutine descriptor for the CFM routine.

3. Cdl the routine descriptor.

4. Clean-up after yoursdlf.

Determining the Address of the CFM Routines

The most common way to determine the address of a CFM routineisto use FindSymbol against a
shared library.

OSErr Fi ndSynbol (ConnectionlD connl D, Str255 syniNane,
Ptr* symAddr, SynC ass *synC ass);

The first parameter is aconnection ID to afragment. This can be obtained from acall to
GetSharedLibrary, GetDiskFragment or GetM emoryFragment. The second parameter isthe name of the
symbol, in this case the name of the routine we want to call. The address of the symbol isreturned in the
third parameter and the last parameter returns the symbols class.

Page: 1

Technote 1077 - Calling CFM Code From Classic 68K Code

Creating a Routine Descriptor

In CFM code, you normally use the NewRoutineDescriptor routine to create routine descriptors. The
non-CFM version of thisisthe NewRoutineDescriptorTrap() routine. See the notes on using
New[Fat]RoutineDescriptor[Trap] at the end of this Technote.

pascal Universal ProcPtr NewRouti neDescri ptor Trap(
ProcPtr theProc,
Procl nf oType t heProcl nfo,
| SAType thel SA);

To create aroutine descriptor, you need the address, the procedure information and the architecture of the
routine being described. The address was obtained in the first step. The procedure information is based
on the calling conventions for the parameters passed to and returned from the routine. The last parameter
isthe architecture of the routine being called. In the headers, thisis defined asthe ISAType, whichisa
combination of two separate 4 bit values, the I nstruction Set Architecture (ISA) and Runtime
Architecture (RTA).

Deter mining the Procedur e Information

The Mixed Mode Manager supports many calling conventions. The most common are stack based for
Pascal and C, register based for operating system traps and register dispatched for selector based Toolbox
traps. The easiest way to define the procedure information is viaa enum: for example, if your routine was
defined like this:

pascal Ptr Get_Message(short pResl D, short plndex);

Its procedure information would then be defined like this:

enum {
kGet _MessageProcl nfo = kPascal St ackBased
| RESULT_SI ZE(S| ZE_CODE(si zeof (Ptr)))
| STACK_ROUTI NE_PARAMETER(1, S| ZE_CODE(si zeof (short)))
| STACK_ROUTI NE_PARAMVETER(2, Sl ZE_CODE(si zeof (short)))
s

Note:
The RESULT_SIZE, SIZE_CODE & STACK_ROUTINE_PARAMETER macros are defined in
MixedMode.h. Proclnfo is documented in Chapter Two, Inside Macintosh: PowerPC System Software.

Page: 2

Technote 1077 - Calling CFM Code From Classic 68K Code

Deter mining the Architecture

Everyone seems to be tempted to use GetCurrentArchitecture here; JUST SAY NO!
GetCurrentArchitecture is a macro that returns the architecture of the currently compiling code; in our
casg, classic. What we want is the architecture of the CFM code that we are calling from our classic code.
Remember: the architecture includes the ISA and the RTA. The correct thing to do isto call Gestalt to find
out what kind of CPU the codeis running on (68K or PPC) and use this to create the routine descriptor
with the correct architecture:

static pascal OSErr GetSystemArchitecture(COSType *archType)
{

// static so we only Gestalt once

static long sSysArchitecture = 0;

OSErr tOSErr = noErr;

/1 assune wild architecture
*archType = kAnyCFragArch;

/1 If we don't know the system architecture yet...

/1 Ask Gestalt what kind of machine we are running on.

if (sSysArchitecture == 0)

tOSErr = Gestalt(gestaltSysArchitecture,
&sSysArchitecture);

if (tOSErr == noErr) // if no errors

if (sSysArchitecture == gestalt68k) // 68k?
*archType = kMot or ol a68KAr ch;

else if (sSysArchitecture == gestaltPowerPC) // PPC?
*ar chType = kPower PCAr ch;

el se

t OSErr = gestal t UnknownErr;

/1 who knows what mi ght be next?

}
return tGSErr;
}

Note:

Don't confuse the OSType architecture used to specify fragment architecture with the SInt8 ISA/RTA
architecture used to specify routine descriptors. This routine determines the OSType architecture. | did it
thisway because | useit to open the connection to my shared library, which requires the OSType. When
| create my routine descriptors, | use this value to conditionaly execute the

NewRout i neDescr i pt or Tr ap routine with the correct ISA/RTA type parameter:

static OSType sArchType = kAnyCFragArch;
| SAType t| SAType;
if (sArchType == kAnyCFragArch) // if architecture is still undefined...

// & determi ne current atchitecture.

SOSErr = Get SystemArchitecture(&ArchType);
if (sOSErr != noErr)

return sCSErr;

}

if (sArchType == kMotorol a68KArch) // ...for CFMs8K
t | SAType = kM68kl SA | kCFMB8KRTA;

else if (sArchType == kPower PCArch) [/ ...for PPC CFM
t | SAType = kPower PCl SA | kPower PCRTA,;

el se

SsOSErr = gestal t UnknownErr; // who knows what mi ght be next?
if (sOSErr == noErr)

nyUPP = NewRout i neDescriptorTrap((ProcPtr) * pSymAddr,

pProcl nfo, t1 SAType);
return sGSErr;

Page: 3

Technote 1077 - Calling CFM Code From Classic 68K Code

Calling the Routine Descriptor

From CFM code you normally use CallUniversalProc to call the routine associated with aroutine
descriptor. (A Universal Procedure Pointer (UPP) is a pointer to a routine descriptor.) However,
CallUniversalProc is only implemented in shared libraries. For compatabality reasons, in classic code
UPP's can be treated like ProcPir's, i.e., they are pointers to executable code. Thisis because the first two
bytes of aroutine descriptor isthe 68K mixed mode magic ATrap. When we jump here from 68K code,
thetrap is executed and the Mixed Mode Manager takes over, setting up passed parametersin registers
or on the stack, based on the ProcInfo in the routine descriptor: switching the architecture and then
jumping to the CFM code. Thisis how you would call your routine:

/1 define a ProcPtr of our type
typedef pascal Ptr (*CGet_Message ProcPtr)(short pReslD,
short pl ndex);

[/ call it.
nyPtr = ((Get_Message_ProcPtr) myUPP) (128, 3);

Cleaning Up After Yourself

DisposeRoutineDescriptorTrap is used to rel ease the memory alocated for routine descriptors by the
NewRoutineDescriptorTrap.

Shortcuts, Detours & Dead-Ends

Y ou may be tempted to use the macro BUILD_ROUTINE_DESCRIPTOR, so that you can build your
routine descriptors statically. Unfortunately, this macro expands to include the macro
GetCurrentArchitecture whose problem was described in the section above. Another problem with this
approach is that the ProcPtr passed to the macro is expected to be a constant at compile-time. One solution
to both of these problemsisto build your routine descriptorsin your CFM library and export them. This
way the GetCurrentArchitecture macro returns the correct architecture for the library and the ProcPtr isa
compile-time constant. And since these routine descriptors are steticly allocated at compile time, you don't
have to worry about disposing them: their memory is released when the library is unloaded. Unfortunately,
this only works if you have source to the library you want to connect to.

Using BUILD_ROUTINE_DESCRIPTOR to dynamically initialize a routine descriptor is not agood
idea. From the classic 68K perspective, the routine descriptor is code being assembled out of data. This can
cause problems due to the split caches on 68040 CPUs and some 68K emulator optimizations on
PowerPCs. Y ou're trying to execute data but instead are executing old values from the instruction cache.
Using NewRoutineDescriptorTrap insures that the instruction cacheis flushed for the executable range of
the routine descriptor - two bytes.

In order to make the connection between classic code and the CFM code as transparent as possible, | liketo
put al my CFM glue code in its own separate file and use the same API in it as defined for my library
(usually by using the library's header file). Each entry point into the library has its own glue routine that
declares a static UPP variable initialized to kUnresolvedSymbol Address. By checking for thisinitial value,
the routine knows when it needs to look up its addressin the library and create a routine descriptor. Here's
the glue code for the library:

Source Codefor CFM Library Glue

#i ncl ude <CodeFragnents. h>
#i ncl ude "DenoLi b. h"

/1 Private function prototypes
static OSErr Find_Synbol (Ptr* pSymAddr,

Str255 pSymNane,
Procl nf oType pProcl nfo);

Page: 4

Technote 1077 - Calling CFM Code From Classic 68K Code

static pascal OSErr GetSystemArchitecture(OSType *archType);
/'l Private functions

static pascal OSErr GetSystemArchitecture(OSType *archType)

{

static long sSysArchitecture = 0; // static so we only Gestalt once.
OSErr tOSErr = noErr;

*archType = kAnyCFragArch; /1 assume wild architecture

/1 If we don't know the system architecture yet...

if (sSysArchitecture == 0)

[l ...Ask Gestalt what kind of machine we are running on.
tOSErr = Gestalt(gestaltSysArchitecture, &sSysArchitecture);

if (tOSErr == noErr) // if no errors

{

if (sSysArchitecture == gestalt68k) /1 68k?
*archType = kMot or ol a68KCFr agAr ch;

else if (sSysArchitecture == gestaltPowerPC) // PPC?
*archType = kPower PCCFr agAr ch;

el se
tOSErr = gestal t UnknownErr; // who knows what m ght be next?

return tGSErr;
}

static OSErr Find_Synbol (Ptr* pSymAddr,
Str 255 pSymNane,
Procl nf oType pProcl nf o)

static ConnectionlD sCID = 0;
static OSType sArchType = kAnyCFragArch;
static OSErr sOSErr = noErr;

Str255 errMessage;
Ptr mai nAddr;
SynCl ass syn(ass;
| SAType t | SAType;

if (sArchType == kAnyCFragArch) // if architecture is undefined...

sCID = 0; /1 ...force (re)connect to library
SOSErr = Get SystemArchitecture(&sArchType); // determine architecture
if (sOSErr != noErr)
return sCSErr; // OOPS!
}

if (sArchType == kMotorol a68KArch) // ...for CFMB8K
t | SAType = kMs8kl SA | kCFM58KRTA;
else if (sArchType == kPowerPCArch) // ...for PPC CFM
t1 SAType = kPower PCl SA | kPower PCRTA;
el se
SOSErr = gestal t UnknownErr; // who knows what might be next?

if (sCD==20) // If we haven't connected to the library yet...
{
/1 NOTE: The library name is hard coded here.
/1 1 try to isolate the glue code, one file per library.
/'l 1 have had devel opers pass in the Library nane to all ow
/1 plug-in type support. Additional code has to be added to
/'l each entry points glue routine to support multiple or
/1 switching connection |Ds.
SOSErr = Get SharedLi brary("\pDenoLi brary", sArchType, kLoadCFrag,
&sCl D, &mai nAddr, errMessage);
if (sOSErr != noErr)
return sCSErr; // OOPS!

Page: 5

Technote 1077 - Calling CFM Code From Classic 68K Code

}

/1 If we haven't |ooked up this symbol vyet...
if ((Ptr) *pSymAddr == (Ptr) kUnresol vedCFragSynbol Addr ess)
{

/1l ...look it up now
sOSErr = Fi ndSynbol (sCl D, pSymNane, pSymAddr , &ynCl ass) ;
if (sOSErr !'= noErr) // in case of error...
/1 ...clear the procedure pointer
(Ptr) &SymAddr = (Ptr) kUnresol vedSynbol Addr ess;
#if 1 GENERATINGCFM // if this is classic 68k code...
*pSymAddr = (Ptr) NewRouti neDescriptorTrap((ProcPtr) *pSymAddr,

pProclnfo, tlISAType); // ...create a routine descriptor...

#endi f
}
return sCSErr;

}

/* Public functions &anp; globals */
pascal void Do_Deno(void)
static Do_DenoProcPtr sDo_DenmoProcPtr = kUnresol vedSynbol Addr ess;

/1 if this synbol has not been setup yet...
if ((Ptr) sDo_DenmoProcPtr == (Ptr) kUnresol vedSynbol Addr ess)
Fi nd_Synbol ((Ptr*) &sDo_DenoProcPtr, "\ pDo_Deno", kDo_DenoPr ocl nf 0) ;
if ((Ptr) sDo_DenmoProcPtr != (Ptr) kUnresol vedSynmbol Addr ess)
sDo_DenoProcPtr();
}

pascal void Set_DenoVal ue(l ong pLong)

static Set_DenpVal ueProcPtr sSet DenoVal ueProcPtr =
kUnr esol vedSynbol Addr ess;

/1 if this synbol has not been setup yet...
if ((Ptr) sSet_DenoVal ueProcPtr == (Ptr) kUnresol vedSynbol Addr ess)
Fi nd_Synbol ((Ptr*) &sSet_DenoVal ueProcPtr,
"\ pSet _DenpVal ue", kSet _DenoVal ueProcl nfo);
if ((Ptr) sSet_DenoVal ueProcPtr != (Ptr) kUnresol vedSynbol Addr ess)
sSet _DenpVal ueProcPtr (pLong);
}

pascal |ong Get_DenpVal ue(voi d)

static Get_DenpVal ueProcPtr sGet_DenpVal ueProcPtr =
kUnr esol vedSynbol Addr ess;

/1 if this synbol has not been setup yet...

if ((Ptr) sGet_DenoVal ueProcPtr == (Ptr) kUnresol vedSynbol Address)
Fi nd_Synbol ((Ptr*) &sGet_DenoVal ueProcPktr,

"\ pGet _DenopVal ue", kGet _DenoVal uePr ocl nf o) ;

if ((Ptr) sGet_DenoVal ueProcPtr != (Ptr) kUnresol vedSynbol Address)
return sGet_DenopVal ueProcPkPtr();

el se
return OL;

}

pascal Ptr Get_DenpString(void)

static Get_DenmpStringProcPtr sGet_DenoStringProckPtr =
kUnr esol vedSynbol Addr ess;

/1 if this synbol has not been setup yet...
if ((Ptr) sGet_DenoStringProcPtr == (Ptr) kUnresol vedSynbol Addr ess)
Fi nd_Synbol ((Ptr*) &sGet_DenoStringProcPktr,
"\ pGet _DenpString", kGet _DenpStri ngProcl nfo);
if ((Ptr) sGet_DenoStringProcPtr !'= (Ptr) kUnresol vedSynbol Addr ess)

Page: 6

Technote 1077 - Calling CFM Code From Classic 68K Code

return sGet_DenoStringProcPtr();
el se

return OL;
}

Note:

The above routines will silently do nothing if their Find_Symbol call fails. Routines that do this sort of
load/resolve on the fly should always have a means to bail out in case there are any errors. For example,
return OSErr, use some kind of exception mechanism, etc. At the least, have Find_Symbol put up afatal
alert. Thisisleft as an exercise for the programmer.

Notes on Using the New[Fat]RoutineDescriptor[Trap]

When calling NewRoutineDescriptor from classic 68K code, there are two possible intentions. The first
is source compatibility with code ported to CFM (either Power PC or 68K CFM). When the codeis
compiled for CFM, the functions create routine descriptors that can be used by the mixed mode manager
operating on that machine. When the code is compiled for classic 68K, these functions do nothing so
that the code will run on Macintoshes that do not have a Mixed mode manager. The dua nature of these
functionsis achieved by turning the CFM callsinto "no-op" macrosfor classic 68K: Y ou can put
"NewRoutineDescriptor” in your source, compileit for any architecture, and it will run correctly on the
intended platform. All without source changes and/or conditional source.

The other intention isfor code that "knows' that it is executing as classic 68K and is specificaly trying
to call code of another architecture using mixed mode. Since the routines were designed with classic <->
CFM source compatibility in mind, this second case is treated specially. For classic 68k code to create
routines descriptors for use by mixed mode, it must call the " Trap" versions of the routines
(NewRoutineDescriptorTrap). These versions are only available to classic 68K callers. rigging the
interfaces to alow calling them from CFM code will result in runtime failure because no shared library
implements or exports these functions.

This almost appears seamless until you consider "fat" routine descriptors and the advent of CFM-68K.
What does "fat" mean? CFM-68K is not emulated on Power PC and Power PC is not emulated on
CFM-68K. It makes no sense to create a routine descriptor having both a CFM-68K routine and a
Power PC native routine pointer. Therefore "fat" is defined to be amix of classic and CFM for the
hardware's native instruction set: on Power PC fat is classic and Power PC native, on a 68k machine with
CFM-68K instaled fat is classic and CFM-68K. By definition fat routine descriptors are only
constructed by code that is aware of the architecture it is executing as and that another architecture exists.
Source compatibility between code intended as pure classic and pure CFM is not an issue and so
NewFatRoutineDescriptor is not available when building pure classic code.
NewFatRoutineDescriptorTrap is available to classic code on both Power PC and CFM-68K. The
classic code can use the code fragment manager routine " FindSymbol" to obtain the address of aroutine
in ashared library and then construct a routine descriptor with both the CFM routine and classic routine.

Page: 7

Technote 1077 - Calling CFM Code From Classic 68K Code Page: 8

About Mixed Mode and Routine Descriptors

In the beginning (1984), there was the classic Macintosh programming model, based on the Motorola
680x0 processor and code segments. Then in 1991, the PowerPC processor was introduced. There was
concern about compatibility with existing 68K applications (including the Finder), and the first stepin
addressing this concern was writing a 68L C040 emulator which allowed 68K code to run unmodified in
the new environment. As part of this effort, amethod had to be devised to switch between the native PPC
and the emulated 68K modes - thus, the Mixed Mode Manager was born.

The Mixed Mode Manager is system software that manages mode switches between codein different
instruction set architectures (I1SA's). An ISA isthe set of instructions recognized by aparticular
processor or family of processors. Y ou indicate the ISA of a particular routine by creating aroutine
descriptor for that routine.

Click hereto find a downloadable binhexed library of routine descriptors at the end of this Technote.
Note: For more information about the Mixed Mode Manager, read its chapter in Inside Macintosh:

PowerPC System Software. The documentation aso appliesto CFM68K - just consider "native" code to
be either PowerPC or CFM68K.

Code Fragment Manager

CFM was developed initially for PowerPC-based Macintosh computers to prepare code fragments for
execution. A fragment is ablock of executable code and its associated data. On PowerPC-based
Macintosh computers, native programs, applications, libraries, and standalone code are packaged as
fragments.

In 1994, CFM was ported back to 68K. The Mixed Mode Manager was again used to handle transitions
between classic 68K and the CFM conventions for the CPU it isrunning on, i.e., on PowerPC it can
handle classic to PowerPC transitions, and on 68K it can handle classic to CFM68K transitions. Classic
68K codeis generally ignorant of mode switches while CFM code must be aware of them. Classic 68K
code can treat aroutine descriptor pointer as aclassic 68K proc pointer, but CFM code cannot treat a
routine descriptor as a proc pointer.

Summary

Calling CFM from classic code may be necessary for a number of reasons, particularly if you want to take advantage of
both the classic and CFM libraries. It may also be the smplest and easiest method of adding plug-in support to an existing
68K or FAT application without having to port the 68K code to CFM68K.

This Technote discusses some straightforward methods you can use to call CFM code from classic code. There are
problems, however, that you ought to consider when trying to build routine descriptors for C routinesin a shared library.

Further References

e Inside Macintosh: PowerPC System Software.
e TECHNOTE 1084: Running CFM-68K Code at Interrupt Time: Is Y our Code at Risk?
e Fragments of Your Imagination by Joe Zobkiw, Addison-Wesley, ISBN 0-201-48358-0

Downloadables

Technote 1077 - Calling CFM Code From Classic 68K Code Page: 9

E Acrobat version of this Note (K)

EADDI eWorks version of this Note (60K)

&

Binhexed Routine Descriptor Lib (68K)

L

Binhexed Metrowerks Project File (116K)

To contact us, please use the Contact Us page.
Updated: 14-Nov-96

Technotes
Previous Technote | Contents| Next Technote

