
TN 1169: The Download Manager Page: 1

Technote 1169
The Download Manager

CONTENTS

Introduction

Section 1:
Download Manager Client APIs

Downloading Files
The Status-Idle Procedure
Utility Functions For A
Client’s Use of the
Download Manager
Downloading Streams
Additional Utility Functions

Section 2 :
Low-level Converter Interface

Streams Information
Additional Functions For
Random-Access Streams
Low-level Converting
Routines
Getting Information For A
Client
Peeking At The Data
Queries
Doing The Conversion
Converter Capabilities
Utility Functions
Errors
Logging

Summary

Downloadables

This Technote is divided into two sections. Section 1

discusses the Download Manager API that Download
Manager clients would use to call the Download Manager
to cause a file, or other data, to be downloaded to a
PostScript printer. (The Desktop Printing software is an
example of a Download Manager client that uses this
API.) Writers of low-level converters should read Section
1 to get an overview of the environment in which their
converter will operate.

Section 2 discusses the APIs that the Download Manager
uses to call the low-level converters. This material is
intended for the writers of the low-level converters which
are called by the Download Manager.

In addition to downloading files to a PostScript output
device, it is possible for a client to provide the data from a
source other than a file or to obtain the PostScript output
data itself rather than have it transmitted to a device.
Programmers who wish to create a Download Manager
client that supplies the data to convert and/or a client that
receives the Download Manager generated PostScript
output should read the discussion of streams in Section 2.

Moreoever, programmers who wish to create a Download
Manager client that only downloads files to a PostScript
output device need not read Section 2.

Introduction
PrintingLib version 8.6, which is included with LaserWriter 8 version 8.6, adds new functionality. One
part of this functionality is the Download Manager, which allows clients to print data to PostScript printers
without launching a separate application. LaserWriter 8.6 also added the Printing Plug-ins Manager and
Custom Hose support. These other features will be described in separate Technotes.

The Download Manager allows a client, such as Desktop Printing, to print documents directly to a
PostScript printer without launching a separate application. There are several benefits to printing the data
directly. Since applications tend to be memory intensive and relatively slow to launch, the Download
Manager can call a converter plug-in and start the job printing more quickly. Rather than having an
application convert the data to QuickDraw and then have the printer driver convert the QuickDraw data to
PostScript, the Download Manager allows the image data to be converted directly to PostScript. This

TN 1169: The Download Manager Page: 2

lowers the overhead involved with converting a data format to PostScript, and also allows more efficient
PostScript code to be generated. An extra benefit to this process is that the user need not necessarily have
an application which can open and print the document.

Here’s how it works: the user drags a given file onto a desktop printer. The Desktop Printing software
then asks the Download Manager whether it knows how to download this file. If the Download Manager
says yes, the Desktop Printing software calls the Download Manager to download the file. If the
Download Manager cannot handle the file, Desktop Printing opens the application with a print event as it
did before the Download Manager existed and the user can print the document from the application.

Note:
The Download Manager is not restricted to use by the Desktop Printing software and can be used by
other clients.

The design of the Download Manager is intended to be modular, so that it can download new data types
without being changed itself. It does this by using converter module plug-ins, referred to here as
“low-level converters.” These components are the functional units which convert a given data type into
PostScript language code appropriate for sending to a PostScript printer. These low-level converters are
shared libraries which conform to the interface required by the Download Manager.

The Download Manager currently provides several built-in converters together with the ability to drop new
low-level converters into a special folder so they are available for use with the Download Manager.
PrintingLib version 8.6 and later provide converters to handle PostScript and EPS files, PICT data files,
and non-progressive JPEG images.

To provide an idea how this all ties together in Mac OS 8.5, Desktop Printing is a client of the Download
Manager. The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins, which
include low-level converters and custom hoses. Low-level converters take a file of a given type and convert
it directly to PostScript, without going through an application or a driver. The Download Manager then
sends the generated PostScript to the printer using a custom hose, which is specified by the Desktop
Printer.

TN 1169: The Download Manager Page: 3

Back to top

Section 1
This section discusses the calls that a Download Manager client uses to download data through the
Download Manager. Most Download Manager clients can ignore Section 2, which discusses the APIs
that the Download Manager itself uses to call the low-level converters. The section File Download
Example is an example of using the Download Manager to download a file. This is the approach that the
Desktop Printing software uses.

Download Manager APIs
The Download Manager APIs allow a client to determine whether the Download Manager, together with
the current set of low-level converter modules available, can convert and download a given piece of data.
This data may be the data fork of a file, or it may be supplied by the client via a stream mechanism which
is defined below. Once the client has determined if the Download Manager can handle the data, it calls the
Download Manager routine to invoke the processes of conversion and downloading.

Back to top

Downloading Files

This section of the document describes the high-level APIs that a client of the Download Manager, such as
the Desktop Printing software, would call to download files. First, the client calls the
psCanDownloadFile routine:

TN 1169: The Download Manager Page: 4

psCanDownloadFile

OSStatus psCanDownloadFile(const FSSpec *fileSpecP,
 Collection hints, Handle papaHandle,
 Boolean *canDownloadP,
 DownloaderInfo *downloaderInfoP, Str255 errReason);

psCanDownloadFile asks the Download Manager whether it can download the file represented by
fileSpecP.

fileSpecP is a pointer to an FSSpec corresponding to the file to be downloaded.

hints is a Collection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

papaHandle is a handle to a PAPA for the target output destination.

canDownloadP is a pointer to a Boolean that is set to true or false depending on whether the file can be
downloaded by one of the low-level converters available to the Download Manager.

downloaderInfoP is a pointer to a DownloaderInfo structure that the client uses to call the
psDownloadFile routine of the Download Manager (described below). The DownloaderInfo structure is
defined as follows:

 typedef struct DownloaderInfo{
 unsigned char converterID[256];
 }DownloaderInfo;

The Download Manager routine psCanDownloadFile writes information into the DownloaderInfo
structure, which it can later use to select which low-level converter to use for the download.

The errReason argument to psCanDownloadFile is a pointer to a Str255 which may be filled in with a
text string message should an error occur during this call. This is supplied to facilitate reporting problems
back to clients of the Download Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

Note that whether the Download Manager can handle a given file may be dependent on the hints
collection and papaHandle passed to psCanDownloadFile. If the target device changes,
psCanDownloadFile should be called again to ensure that indeed the Download Manager can download
the file to the new target device. It is possible that this will not be the case, or, the DownloaderInfo
returned will differ from that originally obtained. This comment is specifically directed to clients such as
the Desktop Printing software, where dragging files from one DTP queue to another must be considered.

Once a client determines that the document can be downloaded by the Download Manager, it can call the
routine psGetDownloadDocumentInfo to obtain information (such as number of pages) about the
document. The structure DownloadDocumentInfo (described shortly) is filled in by this call with
information determined by the Download Manager and the low-level converter.

psGetDownloadDocumentInfo
 OSStatus psGetDownloadDocumentInfo(const FSSpec *fileSpecP,
 Collection hints,
 const DownloaderInfo *downloaderInfoP,
 DownloadDocumentInfo *downloadDocInfoP,
 Str255 errReason);

TN 1169: The Download Manager Page: 5

psGetDownloadDocumentInfo asks the Download Manager to gather document information about a file.

fileSpecP is a pointer to an FSSpec corresponding to the file for which the information is requested.

hints is a Collection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

downloaderInfoP is a pointer to the data returned by psCanDownloadFile when it can download the
file. This allows the Download Manager to find the converter which it determined can handle the download
during the psCanDownloadFile call.

Note that the DownloaderInfo data returned by psCanDownloadFile can be stored and reused at a later
time. There is nothing in the DownloaderInfo structure that can’t be used across reboots. It is possible
that the low-level converter referenced in the DownloaderInfo structure may not be available at a later time
due to user actions such as deleting the converter. Download Manager clients should be prepared for the
error errInvalidDownloaderInfo if a saved DownloaderInfo structure is used. An additional
disadvantage of saving the DownloaderInfo structure is that a low-level converter later added to the
system will not be used, even if it is better able to handle the data.

downloadDocInfoP is a pointer to a DownloadDocumentInfo structure. The DownloadDocumentInfo is
a structure to receive the data and is defined shortly.

errReason is a pointer to a Str255 which may be filled in with a text string message should an error
occur during this call. This is supplied to facilitate reporting problems back to clients of the Download
Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

DownloadDocumentInfo structure

The DownloadDocumentInfo structure filled in by psGetDownloadDocumentInfo is defined as:

typedef struct DownloadDocumentInfo{
 SInt32 version; // caller must set to 1
 OSType type;
 Boolean isManualFeed; //true if job is manual feed,else false.
 SInt32 pages; // Unknown = -1
 SInt32 copies; // Unknown = -1
 Str255 creator; // unknown for most converters use "\p"
 Str255 title; // unknown for most converters use "\p"
}DownloadDocumentInfo;

The version field should be set to the version of the structure that the caller of
psGetDownloadDocumentInfo supplies. This allows for the ability in the future to supply a pointer to a
larger structure that potentially provides additional data. The only version defined at this time is version 1.

The type field of this structure is the type of document being downloaded. The type of data may in some
cases not be known by the Macintosh Finder TYPE information, but instead might be only known to a
low-level converter that knows how to handle the data. The type returned here is available for a client to use
as it wishes; for example, a client could have a special icon for different document types. The list of types
which might be returned by this call is unlimited since new converter modules can be added via Plug-Ins.
The types which have been defined to date are:

'EPSF': Encapsulated PostScript File
'PSDC': PostScript file, claims to be DSC 3.0 conformant or greater
'PSUN': PostScript file, does not claim to be DSC 3.0 conformant or greater

TN 1169: The Download Manager Page: 6

'JFIF': JPEG data file
'PICT': Macintosh PICT data file
'TIFF': TIFF data file
'TEXT': Plain text file to be treated as unformatted text
'PDF ': Adobe Systems’ PDF document format
'????': An unknown type of file.

The isManualFeed field allows the Download Manager to notify the caller that this download job
requests manual feed. This allows a client, such as the Desktop Printing software, to notify the user when a
manual feed job begins. Note that it is possible that the print job requests manual feed, but it is a
save-to-disk job. In this case, it would be inappropriate to alert the user that a manual feed job is starting
since a disk file is being written and is not a print job to a live printer. A routine is available in
FeatureUtilsLib called psIsJobPrintToDisk which Download Manager clients can call if
isManualFeed is set to true.

The pages field of the DownloadDocumentInfo is the number of pages in the document. For some types
of documents handled by the Download Manager it may be unknown and this is indicated by use of the
value -1.

The copies field of the DownloadDocumentInfo is the number of copies of the document which will be
printed. (This is typically 1, but there are some situations where it might be different. For many low-level
converters’ handling of features, this reflects the default number of copies that the user has as their saved
defaults for the Print Dialog. If the user has a different saved default for the number of copies, many
converters respect that and report it here.) Currently there is no straightforward way to know the number
of copies for most PostScript files and this is indicated by the value -1 for the number of copies.

The creator field of the DownloadDocumentInfo is a text string indicating the name of the application
used to create the original file. This is unknown for many document types, but for PostScript files
containing the %%Creator comment, the application creating the document may be available. If the
document creator is not available, the creator field of the DownloadDocumentInfo is a zero-length string.

The title field of the DownloadDocumentInfo is a text string which indicates what the original file name
was when creating this file. This is unknown for many document types, but for PostScript files containing
the %%Title comment, the name of the original document may be available. If the original document title is
not available, the title field of the DownloadDocumentInfo is a zero-length string.

psDownloadFile

Once the Download Manager client has determined that the file can be handled by the Download Manager,
it calls the psDownloadFile routine to perform the download:

OSStatus psDownloadFile(const FSSpec *fileSpecP,
 Collection hints, Handle papaHandle,
 const DownloaderInfo *DownloaderInfoP,
 StatusIdleProcUPP idleProc, void *clientIdleParams,
 Str255 errReason);

psDownloadFile causes the Download Manager to download the file represented by fileSpecP using
the converter specified in downloaderInfoP.

fileSpecP is a pointer to an FSSpec corresponding to the file to be downloaded by psDownloadFile.

hints is a Collection containing information about the destination output device and possibly user
requests for how the data should be converted and downloaded.

papaHandle is a handle to a PAPA for the target output destination.

DownloaderInfoP is a pointer to the data returned by psCanDownloadFile when it can download the

TN 1169: The Download Manager Page: 7

file. This allows the Download Manager to find the converter which it determined can handle the download
during a prior psCanDownloadFile call.

Note:
The DownloaderInfo data returned by psCanDownloadFile can be stored and reused at a later time.
There is nothing in the DownloaderInfo structure that can’t be used across reboots; however, it is
possible that the low-level converter referenced in the DownloaderInfo structure is not available at a later
time due to user actions such as deleting the converter. Download Manager clients should be prepared
for errors when a saved DownloaderInfo structure is used.

idleProc is a Universal Proc Pointer to a routine supplied by the caller of psDownloadFile, i.e., the
Download Manager client. The Download Manager calls this idleProc routine with status information
during the download. The idleProc routine is responsible for giving time to other applications, reporting
status information to the user and handling user interactions with the client as the download proceeds.

clientIdleParams is a pointer to data supplied by the Download Manager client. This pointer is
supplied as part of the data passed to each call of the idleProc during the download.

Note:
The resource chain at the time the idleProc is called is not guaranteed. The Download Manager and its
low-level converters may open resource files and add them to the resource chain during their execution.
Clients whose idleProc routines require resources from their resource files should take care to ensure
that any additional open resource files are not in the way. The most straightforward way for a client to do
this is to have a field in their clientIdleParams structure which is the current resource file at the time
they call psDownloadFile. In addition, an idleProc muse preserve the resource chain. If you change
the resource chain in your idleProc, you must save and restore the resource chain using CurResFile
and UseResFile.

The errReason argument to psDownloadFile is a pointer to a Str255 which may be filled in with a text
string message should a download fail. This is supplied to facilitate reporting problems back to clients of
the Download Manager.

Note:
Even if an error occurs, errReason may contain a zero-length string.

The error value errCantHandleThisDownloadData (defined in DownloadMgrLib.h) is a special error
value that may be returned by the psDownloadFile call if a converter module determines that, even though
it previously reported that it could download a file, it has now determined that it can’t download that file.
This should be a rare occurrence.

Back to top

TN 1169: The Download Manager Page: 8

The Status-Idle Procedure

The idleProc supplied to the call psDownloadFile is a Universal Proc Pointer containing a procedure of
type StatusIdleProc. This is defined as follows:

typedef pascal OSStatus(*StatusIdleProc)(DownloadIdleInfo *param);

This procedure is called with a pointer to a DownloadIdleInfo structure.

This structure is defined as follows:
typedef struct DownloadIdleInfo{
 void *clientIdleParams; /*the client's IdleParam data */
 long currentPage; /* -1 means Unknown */
 long totalPages; /* -1 means Unknown */
 short percentageDownloaded; /* -1 means Unknown, otherwise
 /* ranges from 0 to 100 */
 PSSection section; /* one of the PSSection
 values from PSSectionInfo.h */
 PSSubsection subsection; /* one of the PSSubsection
 values from PSSectionInfo.h */
 void *statusInfoP; /* pointer to data appropriate
 for this download idle call.
 See PSSectionInfo.h for
 details.
 */
}DownloadIdleInfo;

The StatusIdleProc is supplied by the client and is called by the Download Manager during the
download. clientIdleParams is the data pointer supplied by the client as the clientIdleParams
parameter to the psDownloadFile call.

The currentPage and totalPages fields are filled in if and when the Download Manager can determine
this data.

The percentageDownloaded field reflects the progress of the download. The Download Manager uses
the percentage of the input data read by the converter during the download as its way of reporting
progress.

Note:
If a low-level converter does not read the file data in a sequential fashion, the Download Manager will set
the percentageDownloaded field to “Unknown” and no longer update the percentageDownloaded
field during that download. Since this field may be “Unknown,” a status bar should properly change its
indicator to “Unknown” accordingly.

The section field indicates which phase of the download is currently in progress. Currently the possible
section values are kSectCoverPage, kSectAnon, kSectPeek, kSectQueryJob, and kSectJob.

The subsection field contains Document Structuring Conventions information or other section information
about the PostScript data being downloaded (see the heading DownloadIdleInfo Section, Subsection and
StatusInfo below).

The statusInfoP field contains a pointer to information corresponding to the current subsection. For
example, if the subsection is kSubStatusSection, the information in statusInfoP is a pointer to a
Pascal string containing a status message from the printer and should be treated accordingly. If the
subsection is kSubBeginFont, the statusInfoP contains a pointer to a DSCData structure describing the
font being downloaded. If the subsection is kSubPrinterErrorSection, the statusInfoP contains a
pointer to a Pascal string describing a printer error condition, such as out of paper, that requires user
intervention.

TN 1169: The Download Manager Page: 9

The client’s StatusIdleProc is required to give time to other applications, handle user interactions with
the client and report status to the user. If StatusIdleProc returns an error, the Download Manager aborts
the download.

DownloadIdleInfo Section, Subsection, and StatusInfo

The DownloadIdleInfo structure has fields which supply status information about the download to a
client’s StatusIdleProc. The first of these fields is the section field which is of type PSSection. A
PSSection value provides overall information about what part of the download is in progress. PSSection
values consist of kSectAnon, kSectQueryJob, kSectCoverPage, kSectJob, and kSectPeek. The
definition of PSSection is in the “PSSectionInfo.h” header file. The Download Manager is responsible
for setting the section field of the DownloadIdleInfo structure and does this as it processes the different
sections of the download job.

The PSSection field corresponds to the various parts of a download: the query, peeking at the data that a
low-level converter can do as part of a download, the cover page (if there is one) and the actual download
job itself. A converter doesn’t start generating PostScript data until the kSectCoverPage or kSectJob
PSSection values are seen.

The subsection field is of type PSSubsection. A subsection value provides finer granularity in the
reporting of progress of the download job. Typically the subsection values correspond to Document
Structure Conventions (DSC) comments which have a well-defined meaning. A few subsection values
have been added to provide additional information. Each section can contain the same subsection values,
although most of the subsections apply only to the kSectJob, kSectCoverPage, and kSectPeek sections.

The Download Manager generates status and error subsection values. Beyond that, each low-level
converter module is responsible for generating subsection values during the download. While any
subsection value from the list in “PSSectionInfo.h” is possible, Table 1 lists those most likely to be
generated by existing low-level converters. No one converter necessarily generates all of these subsection
values for each job.

The DownloadIdleInfo structure contains a statusInfoP field which is declared as a (void*) field.
The statusInfoP field may be NULL in any subsection, meaning that the subsection value is being
reported without any additional information. If the data is non-NULL, it is a pointer to a data type that
depends on the subsection being reported in the DownloadIdleInfo structure. The complete list of
subsections together with their info field structure is listed in "PSSectionInfo.h." Table 1 below lists the
ones most likely to be seen.

Note:
It is important for an idleProc to check that the statusInfoP field is not NULL before attempting to
dereference it.

For example, the low-level PostScript converter module (which downloads PostScript and EPS input data)
generates the kSubPages subsection when the section is kSectJob or kSectPeek and it encounters the
%%Pages DSC comment in the PostScript data. At that time, it reports the kSubPages subsection with the
statusInfoP field pointing to an SInt32 value that is the number of pages in the document.

Table 1

Subsection DSC Comment statusInfo structure

kSkSubPSAdobe %!PS-Adobe-x.y Fixed

kSubPSAdobeEPS %!PS-Adobe-x.y EPSF-a.b EPSFVersion

kSubBoundingBox %%BoundingBox DSCBBox

kSubDocData %%DocumentData DSCDocumentDatA

kSubEndComments %%EndComments none

kSubLangLevel %%LanguageLevel SInt32

TN 1169: The Download Manager Page: 10

kSubPages %%Pages SInt32

kSubContinue %%+ DSCContinuationData

kSubBeginProlog %%BeginProlog none

kSubEndProlog %%EndProlog none

kSubBeginSetup %%BeginSetup none

kSubEndSetup %%EndSetup none

kSubBeginPageSetup %%BeginPageSetup SInt32 (page #)

kSubEndPageSetup %%EndPageSetup SInt32

kSubPage %%Page DSCPage

kSubEOF %%EOF none

kSubDocNeededRes %%DocumentNeededResources DSCData

kSubDocSuppliedRes %%DocumentSuppliedResources DSCData

kSubDocFonts %%DocumentFonts DSCData

kSubDocNeededFonts %%DocumentNeededFonts DSCData

kSubDocSuppliedFonts %%DocumentSuppliedFonts DSCData

kSubBeginFeature %%BeginFeature DSCFeature

kSubEndFeature %%EndFeature none

kSubIncludeFeature %%IncludeFeature DSCFeature

kSubBeginFont %%BeginFont DSCData

kSubEndFont %%EndFont none

kSubBeginBitmapFont %RBIBeginBitmapFont Str255

kSubEndBitmapFont %RBIEndBitmapFont none

kSubBeginTrueTypeFont %RBIBeginTrueTypeFont Str255

kSubEndTrueTypeFont %RBIEndTrueTypeFont none

kSubBeginTrueTypeScaler %RBIBeginFontRasterizer none

kSubEndTrueTypeScaler %RBIEndFontRasterizer none

kSubIncludeFont %%IncludeFont DSCData

kSubBeginResource %%BeginResource DSCData

kSubEndResource %%EndResource none

kSubIncludeResource %%IncludeResource DSCData

kSubStatusSection (see below) Str255

kSubPrinterErrorSection (see below) Str255

kSubFatalPrinterErrorSection (see below) Str255

kSubGiveUpTime (see below) none

kSubLogWarningData (see below) DSCLogData

kSubLogErrorData (see below) DSCLogData

A few of the subsections do not correspond to DSC comments but instead are used to convey information
to the client such as status data, printer error conditions, and error or warning messages from a converter.

The kSubStatusSection subsection contains the normal status during the download as reported from a

TN 1169: The Download Manager Page: 11

live printer or the save-to-disk process. This is normally seen as a status narration line in the Download
Manager client’s downloading dialog.

The kSubPrinterErrorSection subsection is used to report a printer error condition that should be
reported to the user. Usually a client reports the error through a notification. This subsection is supplied
repeatedly until the printer error condition is cleared. These messages are strings such as “out of paper”,
“cover open”, and “paper jam”.

The kSubFatalPrinterErrorSection subsection is used to report fatal printer errors to the user. The
fatal printer error is usually a PostScript error.

The kSubGiveUpTime subsection is used by a low-level converter when it has no data to write but wants to
give time to the Download Manager and its clients.

The kSubLogWarningData subsection is used by a low-level converter to report warning conditions to the
client. These are not fatal errors, but rather conditions which might lead to a failure in the download. For
example, the PostScript converter supplies a warning if the document being downloaded requires a
PostScript language level greater than the target output device supports. This will very likely result in a
PostScript error during the download, but the warning itself does not result in an error. A savvy client
could warn the user, if it were so configured.

The kSubLogErrorData subsection is used by a low-level converter to report an error condition to the
client. After reporting this error, the psDownloadFile call will terminate with an error supplied by the
low-level converter. In this case, the errReason returned by psDownloadFile is filled in with a text
message supplied by the low-level converter.

Note:
Even if an error occurs, errReason may contain a zero-length string.

The kSubLogWarningData and kSubLogErrorData subsections can supply a pointer to a DSCLogData
structure as the statusInfoP structure. This structure is defined as:

 typedef struct DSCLogData{
 PSSubsection logSubsection;
 void *info;
 Str255 logMessage;
 }DSCLogData;

The logSubsection field is a PSSubsection value and it is the subsection to which the warning or error
corresponds. It is kSubAnon if it doesn’t correspond to any other PSSubsection. The info field is a
pointer to a structure which corresponds to the logSubsection value. That is, if the info field in a
DSCLogData structure is non-NULL, it points to whatever structure is appropriate for the PSSubsection
value of the logSubsection field, as described in Table 1 above. The logMessage field is a Str255
containing the actual text message.

For example, when the PostScript converter supplies a warning that the document being downloaded
requires a PostScript language level greater than the target output device supports, it supplies a
DSCLogData structure where the logSubsection value is kSubLangLevel.The structure pointed to by the
info field is an SInt32 with the value of the document’s language level requirement (which, in this case,
exceeds that of the target output device). It also supplies a warning text message in the logMessage field.

Back to top

Utility Functions For A Client’s Use of the Download Manager

psCreateDMJobCollection

The Download Manager makes available a routine called psCreateDMJobCollection. This call provides

TN 1169: The Download Manager Page: 12

one-stop shopping for clients to prepare a collection for use with a given Download Manager job. For
example, the Desktop Printing software makes this call with information about the current driver, the PAPA
to use with that driver and a pointer to a FSSpec representing the file to download. If there is no error,
psCreateDMJobCollection returns a collection to the caller which is appropriate for use with the
Download Manager routines psCanDownloadFile and psDownloadFile. The collection represents the
printer defaults and those collection items appropriate for this particular download.

Depending on how a client operates, it may be appropriate to call psCreateDMJobCollection once per
download job. It is necessary to call psCreateDMJobCollection only once to obtain a collection for
passing to psCanDownloadFile and the same collection can be passed to psDownloadFile if the
collection is used immediately. If the collection needs to be stored, the target driver or printer changes, or
there is any chance that saved user defaults have changed, a client should call psCreateDMJobCollection
again to obtain a collection for passing to psDownloadFile.

OSStatus psCreateDMJobCollection(const FSSpec *driverFSSpecP,
 Handle papaHandle, const FSSpec *theFileP,
 Collection *hintsP);

driverFSSpecP is a pointer to a FSSpec corresponding to the driver for the target Desktop Printer (DTP).
It does not have to be the current system printer driver. Calling psCreateDMJobCollection does not
change the current system printer driver.

papaHandle is the PAPA to use for the target output device. It does not have to be the current PAPA in the
driver corresponding to driverFSSpecP, nor does this routine change the current PAPA for the driver
pointed to by driverFSSpecP.

theFileP is a pointer to an FSSpec for the file to be downloaded.

If there is no error, psCreateDMJobCollection returns a Collection corresponding to the default for the
current printer, updated appropriately with hints for a Download Manager job in *hintsP. This collection
is only intended to be passed to the Download Manager and must not be used to update the any saved
defaults for a given printer. The caller is responsible for disposing of the collection properly.

File Download Example

For a Download Manager client such as the Desktop Printing software, downloading a file is fairly
straightforward. The following example illustrates the basics:

#include "DownloadMgrLib.h"
#include "ClientSample.h" // included with Sample code
OSStatus DownloadFile(const FSSpec *driverFSSpecP,
 const FSSpec *fsSpecToDownloadP,
 Handle papaHandle)
{
/*

driverFSSpecP is a pointer to the FSSpec for the PostScript driver for the target DTP. It does NOT have
to be the current system printer driver.

fsSpecToDownloadP is a pointer to the FSSpec for the file to download.

papaHandle is a handle to the PAPA for the target output device. It does not have to be the current PAPA
contained in the driver corresponding to driverFSSpecP, nor will this routine change that driver’s current
PAPA.

*/
 OSStatus err = noErr;

TN 1169: The Download Manager Page: 13

 Str255 errReason;
 Collection hints = NULL;
 Boolean canDownload;
 DownloaderInfo downloaderInfo;
 DownloadDocumentInfo downloadDocumentInfo;

 /* We’ll get our hints collection for use with this job.
 */
 err = psCreateDMJobCollection(driverFSSpecP, papaHandle,
 fsSpecToDownloadP, &hints);

 // check to see if the Download Manager can download the file
 if(!err)err = psCanDownloadFile(fsSpecToDownloadP, hints,
 papaHandle, &canDownload, &downloaderInfo,
 errReason);

 // get the information about the document
 if(!err && canDownload){
 downloadDocumentInfo.version = 1;
 // set the version
 err = psGetDownloadDocumentInfo(fsSpecToDownloadP,
 hints, &downloaderInfo, &downloadDocumentInfo,
 errReason);

 if(!err){
 // do whatever we need with the document information
 // we gathered in psGetDownloadDocumentInfo
 }
 }else
 // DM couldn’t download the file so we’ll set our
 // our client’s private iDMCantDownloadData error code
 // to tell the caller of this routine that the DM
 // couldn’t handle the data
 err = iDMCantDownloadData;

 if(!err){
 // idleProc is a Universal Proc Ptr to our status
 // idle routine downloadIdle
 StatusIdleProcUPP idleProc = MakeProcPtr(downloadIdle,
 StatusIdleProcUPP);
 DialogPtr dialog = GetNewDialog(STATUSDIALOG_ID, NULL,
 (WindowPtr)-1);
 if(dialog){
 ShowWindow(dialog);
 DrawDialog(dialog);
 }
 else
 err = ResError();

 if(!err){
 ClientParams ourIdleParams;

 ourIdleParams.statusDialog = dialog;

 err = psDownloadFile(fsSpecToDownloadP,
 hints, papaHandle, &downloaderInfo,
 idleProc, &ourIdleParams, errReason);

 }
 if(dialog)DisposeDialog(dialog);
 }
 if(hints)DisposeCollection(hints);

 // if we return the error code iDMCantDownloadData then
 // the caller will assume that the DM couldn’t handle

TN 1169: The Download Manager Page: 14

 // the data and will take alternative action, i.e. launch
 // the application with a print event

 return err;
}

The code example assumes that we’ve defined a routine downloadIdle to handle the status idle calls and
that the routine MakeProcPtr creates a universal procedure pointer of type StatusIdleProcUPP to be
used by the Download Manager to call the client’s downloadable routine.

The code example uses stack allocation for the errReason, downloaderInfo, and
downloadDocumentInfo variables. Developers who are concerned about stack space usage may wish to
allocate these variables dynamically.

Back to top

Downloading Streams

Some Download Manager clients may have data which is not in a file, but is instead supplied in another
fashion. Other clients may want to direct the output to something other than a Desktop Printer and receive
the converted PostScript output data directly. In these cases, the client provides an input stream for reading
the data to convert and an output stream to which the Download Manager and the low-level converters
write.

psCanDownloadStream

Note that the details of the PSStream data type are discussed in detail in the section Streams Information
in Section 2.

OSStatus psCanDownloadStream(PSStream *stream, OSType type,
 Collection hints, Boolean *doDownload,
 DownloaderInfo *downloaderInfoP, Str255 errReason);

This function is similar to the psCanDownloadFile routine except that, instead of supplying an FSSpec,
the caller provides a stream for reading the data and the type of the data. Here, the type of the data is the
same as the Finder Type would be if the data were stored in a file. When using this call, the client
guarantees that the stream is a stream type that can be positioned by users of the stream (see the section
Streams Information in Section 2 for more information about positioning a stream). That is, the Download
Manager and the converter modules it calls are able to rewind or otherwise reposition the stream as
necessary.

Note:
Even if an error occurs, errReason may contain a zero-length string.

psCanDownloadData

If the client has data that allows it to be read only once, the psCanDownloadData routine must be used
instead:

 OSStatus psCanDownloadData(Str15 firstBytes, OSType type,

 Collection hints, Boolean *doDownload,

 DownloaderInfo *downloaderInfoP, Str255 errReason);

TN 1169: The Download Manager Page: 15

This function is similar to the psCanDownloadStream routine except that the caller provides the first 15
bytes of the data in the firstBytes parameter. The Download Manager uses firstBytes and the type of
data to determine which, if any, converter module best handles the download. This routine is provided for
clients who cannot provide a stream which can be repositioned. Note that a number of low-level converters
may be completely excluded when using this type of stream.

Note:
Even if an error occurs, errReason may contain a zero-length string.

psDownloadStream

 OSStatus psDownloadStream(PSStream *inputStream,
 PSStream *outputStream, Collection hints,
 const DownloaderInfo *downloaderInfoP,
 Str255 errReason);

This function is similar to psDownloadFile except the client is responsible for providing both the data
input stream and the output stream for the converted data. If inputStream is of a type that can be
rewound, the Download Manager calls the psLowPeekConvert routine of the low-level converter used for
the download; otherwise, it does not. The Download Manager queries the output stream using
outputStream only if the hints collection contains the kHintDownloaderDoQueryTag hint with value
true; if it doesn’t, the creator of the stream is responsible for handling any queries and supplying their
results in the hints collection. If the Download Manager does not perform the queries, a low-level
converter does not have the opportunity to specify any queries.

A careful reader will notice that the psCanDownloadStream call does not have StatusIdleProc or
clientIdleParams arguments. Because the Download Manager creates input and output streams for
psDownloadFile, it knows how and when to extract data from those streams for the call to the client’s
idleProc. Since the client supplies these streams to the psDownloadStream call, the client is responsible
for ensuring that the stream callback routines allow the client to give itself status information and other
applications processing time.

Note:
Even if an error occurs, errReason may contain a zero-length string.

Note:
The Download Manager and its low-level converters may change the current port and gDevice at the
time of their operation. Therefore the current grafPort and gDevice at the time the client’s stream
routines are called is not guaranteed. Clients which require a specific grafPort and gDevice are
responsible for setting that port in their stream routine’s equivalent of the idleProc code. This also
applies to the current resource chain: new resource files may be opened and added to the resource chain
by the Download Manager and its low-level converters. In addition, an idleProc must preserve the
resource chain. If you change the resource chain in your idleProc, you must save and restore the
resource chain using CurResFile and UseResFile.

Note:
The streams passed into the psCanDownloadStream, psCanDownloadData and psDownloadStream
functions have functions which are called by the Download Manager and the low-level converters. The
callers of these functions are doing so using CFM-calling conventions and assume that the code they are
calling is of the same architecture as the machine. This forces the following constraint: these functions
must be PPC native on PPC machines and 68k code on 68k machines. More unusual is the requirement
that these routines must obey CFM-calling conventions on 68k machines, which means they must be
contained in a CFM library on both 68k and PPC machines.

Back to top

TN 1169: The Download Manager Page: 16

Additional Utility Functions

psGetDownloadMgrLibVersion

The Download Manager provides an additional call for use by its clients:

 OSStatus psGetDownloadMgrLibVersion(CFMVersion *version);

The psGetDownloadMgrLibVersion routine allows clients and low-level converters to determine CFM
version data for the Download Manager library. The CFMVersion structure is defined as follows:

 typedef struct CFMVersion{
 long definition;
 long implementation;
 long current;
 }CFMVersion;

Readers familiar with the Code Fragment Manager will notice that this information mirrors the version
information built into a CFM library. Unfortunately, in some versions of the system software, the
GetDiskFragment routine has a bug that won’t allow it to load a library unless the definition,
implementation, and current version numbers built into the library are all 0. To work around this bug, the
Download Manager must all have these version numbers set to zero. To make it possible for a client of the
Download Manager to determine the actual version information of the Download Manager, this call
returns the version information for the Download Manager.

The Download Manager API does not contain any information about how to determine the location of the
plug-ins folder that it uses for its plug-in converters. See Technote 1170: The Printing Plug-ins Manager
for more information about calls relating to the “Printing Plug-ins” folder.

Back to top

Section 2

This section describes the public interface to the low-level converters that the Download Manager calls to
perform the data conversion portion of the download. Developers writing programs which only invoke
the Download Manager to download files to a desktop printer do not need to read this section to
understand how to call the Download Manager.

Low-level Converter APIs
This section describes the APIs that the Download Manager uses to call the low-level converters that it
knows about. The Download Manager knows about the built-in converters (a set of shared libraries built
into PrintingLib) as well as converter modules in the “Printing Plug-ins” folder in the Extensions folder.
Files containing converter module plug-ins must contain a resource of type ‘PLGN’, ID -8192 with the
plug-in type ‘down’ and subtype ‘????’. Details of the PLGN resource are described in Technote 1170:
The Printing Plug-ins Manager.

Back to top

Streams Information

Low-level converters don’t know where the data they are converting comes from, nor do they know the
ultimate destination of their PostScript output data. Instead, they read the data from input procedures and
write data to output procedures. These procedures are packed into structures called streams.

TN 1169: The Download Manager Page: 17

PSStream structure

The low-level converters read and write data from stream structures of type PSStream. PSStream is
defined as:

typedef struct PSStream{
 PSStreamType type; // The type of Stream, used to pick
 // from the union below.
 void *reserved; // For use by the stream implementation.
 union{
 PSReservedStreamType1 null;
 PSReservedStreamType2 spool;
 PSSerialStream ps;
 PSRandomAccessStream file;
 }u;
}PSStream;

The PSStreamType is defined as:
typedef enum{
 kReservedStreamType1,
 kReservedStreamType2,
 kPSSerialStream, //For streams that can not be positioned.
 kPSRandomAccessStream //For streams that can be positioned.
}PSStreamType;

The PSSerialStream and PSRandomAccessStream are defined as:
typedef struct{
 PSOutProc write; // output proc
 PSInProc read; // input proc
 UInt32 reserved; // reserved
 PSPosition pos; // structural info about where we are
 // in the PostScript stream
}PSSerialStream;

typedef struct{
 PSSerialStream serialStream;
 PSGetPosProc getPos;
 PSSetPosProc setPos;
 PSGetEOFProc getEOF;
}PSRandomAccessStream;

The PSRandomAccessStream stream has the same callbacks and data as the PSSerialStream, but it also
has functions to get the current stream position, set the current stream position and get the size of the file.

The read and write procedures of the PSSerialStream and PSRandomAccessStream types are used to
read data from and write data to the stream. They are declared as follows:

typedef OSStatus (*PSInProc)(PSStream *psStream,
 void *data, SInt32 *nBytes);

The read field of the PSSerialStream structure contains a function of type PSInProc which is used to
read data from the stream. The psStream parameter is a pointer to the stream being read. The data
parameter is a pointer to a client-supplied buffer into which the data is read. The caller sets *nBytes to the
number of bytes to read into the data buffer. It is up to the caller to ensure that the data buffer it supplies
has enough room for *nBytes of data. After the function call, *nBytes contains the number of bytes
actually read.

TN 1169: The Download Manager Page: 18

typedef OSStatus (*PSOutProc)(PSStream *psStream,
 const void *data, SInt32 nBytes);

The write field of the PSSerialStream structure contains a function of type PSOutProc which is used to
write data to the stream. The psStream parameter is a pointer to the stream being written to. The data
parameter is a pointer to the data to be written to the stream. The nBytes parameter specifies the number
of bytes to be written.

The PSInProc routine of the input stream is used by the low-level converter to read and examine the data
to be converted to determine if it can handle this data stream. During the psLowPeekConvert and
psLowDoConvert calls (described below), the low-level converter calls the PSOutProc routine of the
input stream to give time and status to the client. The PSPosition structure is used to pass Document
Structuring Conventions data and status information back to the client idleProc.

When actually converting data, a low-level converter is passed an output stream of type kPSSerialStream
for it to write the converted data. The converter uses the PSOutProc of the output stream to write its
converted data to the output device (or file). It reads data returned from the output device back channel via
the PSInProc of the output stream. It writes the data read from the back channel to the PSOutProc of the
input stream, allowing the Download Manager to report any status information coming from the back
channel.

Note that some output streams have no PSInProc routine (such as a print to file stream). The PSInProc
routine in an output stream should be tested for NULL before calling the procedure.

Back to top

Additional functions for random-access streams

Streams of type kPSRandomAccessStream have additional procedures available:

The PSGetPosProc procedure determines the current position of the mark in the stream corresponding to
the file (or file-like stream). This position is based on the last data read from the stream, not the underlying
file since the data may be buffered. The prototype for this function is:

typedef OSStatus (*PSGetPosProc)(PSStream *psStream,
 SInt32 *currentPos);

The psStream parameter points to the stream whose position you want to obtain; the value of
*currentPos returned is the current stream position.

The position value is zero-based; that is, the value of *currentPos is 0 if the stream position mark is
positioned at the beginning of the stream.

The PSSetPosProc procedure sets the position of the stream mark. The next data read from the stream is
the first byte after the stream mark.

typedef OSStatus (*PSSetPosProc)(PSStream *psStream,
 SInt32 positionMode, SInt32 posOffset);

For the PSSetPosProc call, the positionMode is the positioning mode and posOffset is the positioning
offset. The positionMode parameter indicates how to position the mark; it must contain one of the
following values:

TN 1169: The Download Manager Page: 19

enum{
 fsFromStart = 1, //set mark relative to beginning of stream
 fsFromLEOF = 2, //set mark relative to logical end-of-stream
 fsFromMark = 3 //set mark relative to current mark
};

The positionMode parameter works like the Macintosh file system call SetFPos. These supported values
of the positionMode constants are defined in the Macintosh header file “Files.h.” These constants let
you position the mark relative to either the beginning of the file, the logical end-of-file, or the current mark.
You must also pass in posOffset, a byte offset (either positive or negative) from the specified point. If
you specify fsFromLEOF, the value in posOffset must be less than or equal to 0.

Note:
If a low-level converter uses the PSSetPosProc to reposition the stream to a new position before that of
the previous stream position during the call psLowDoConvert, the Download Manager cannot determine
the percentage progress of the download and it will report that the percentage progress is unknown for
the remaining duration of the download.

The PSGetEOFProc procedure is used to determine the size of the stream. Not all streams which can be
positioned have a procedure which can determine the size. When using a stream of type
kPSRandomAccessStream, it is important for the user of a stream to verify that the PSGetEOFProc
procedure pointer is not NULL before calling it.

typedef OSStatus (*PSGetEOFProc)(PSStream *psStream,
 SInt32 *streamSize);

Note:
low-level converters should be prepared to handle input streams that do not allow random access, i.e., are
not of type kPSRandomAccessStream. If a given converter cannot handle such a stream, it should
properly advertise itself as unable to download such a stream. See the discussion for psLowCanConvert
and psLowGetConverterInformation below.

One additional comment about the streams used by the Download Manager and the low-level converters is
that they each call stream routines as native code, without using CallUniversalProc. In addition to
requiring the stream functions to be native code, this also means that these functions must obey
CFM-calling conventions, even on 68k machines.

Back to top

Low-level Converting Routines

When a client such as the Desktop Printing software calls the Download Manager routine
psCanDownloadFile, the Download Manager uses the first 15 bytes of the file and its OSType to see
which low-level converters can potentially handle the download. The Download Manager then calls the
psLowCanConvert routine for each of those converters. This gives each of those converters an
opportunity to examine the input data and determine if the converter can handle it.

 OSStatus psLowCanConvert(PSStream *inputStreamP,
 Collection hints, LowConverterInfo *dataInfoP,
 Fixed *priority);

The *inputStreamP parameter is a pointer to a stream of PSStreamType, kPSRandomAccessStream, or
kPSSerialStream. The low-level converter calls the PSInProc of inputStreamP to obtain the data.

TN 1169: The Download Manager Page: 20

hints is a collection passed to the low-level converter for use during its attempt to determine if it can
download the file. It may contain information about the “job” being downloaded that is useful for the
low-level converter. The low-level converter should not add or change any hints in the hints collection
during the psLowCanConvert call since other low-level converters might be affected by such changes.

dataInfoP is a pointer to a LowConverterInfo structure. It is used by the low-level converter to help
determine if the data/file is a type that it can handle.

 typedef struct LowConverterInfo{
 UInt32 version;
 OSType type;
 }LowConverterInfo;

The version field of the LowConverterInfo structure is 1 for the first version of the Download Manager.
The type field is the OSType of the data supplied to the low-level converter.

*priority is a fixed number filled in by the psLowCanConvert call. Values greater than zero indicate that
the converter can handle the stream. The larger the number, the more suitable the converter is for the data.
Currently a value of 10 (0x000A0000 Fixed) indicates the converter is the best converter possible for the
given data. Since the Download Manager simply looks for the ’best” result, a new converter could
advertise itself as having a larger value to become the favored converter for a given type of data.
(Remember that Nigel’s amplifier can be set to 11.)

Note:
The low-level converters in the “Printing Plug-ins” folder with a given priority are chosen over a
converter that is built into PrintingLib which claims the same priority. This allows an external converter in
the Printing Plug-in’s folder to override a built-in converter.

Note:
It is unfortunate that for some downloads we don’t always know about the output device when
psCanDownloadFile is called. For example a JPEG converter could always download non-progressive
JPEG data to a Level 2 printer, even if QuickTime isn’t available on the host. Since we might not know
the PostScript level of the output device, we don’t know if we need QuickTime. If the client does know
the printer is a Level 2 printer, specifying that would let the low-level converter know it doesn’t need
QuickTime. The best we can do with this design is for the client to supply in the hints collection the best
information it has about the output device and let the low-level converter decide what it can do based on
that information plus the input stream data.

Once the Download Manager establishes the best converter for the job (i.e., the one returning the highest
priority), the psCanDownloadFile routine returns and if the file is downloadable, the Download Manager
client calls the Download Manager routine psDownloadFile to download the file.

Note:
low-level converters should be prepared to handle input streams that do not allow random access, i.e., are
not of type kPSRandomAccessStream. If a given converter cannot handle such a stream, it should return
a priority of 0 if psLowCanConvert is called with a different stream type.

Back to top

Getting Information For A Client

When a Download Manager client calls the Download Manager routine psGetDownloadDocumentInfo,
the Download Manager asks the low-level converter to obtain the document information by calling the
low-level converter’s psLowGetStreamInfo routine.

TN 1169: The Download Manager Page: 21

OSStatus psLowGetStreamInfo(PSStream *inputStreamP,
 Collection hints, DownloadDocumentInfo *downloadDocInfoP);

*inputStreamP represents the stream of data to gather information from. The low-level converter calls the
PSInProc of inputStreamP to obtain the data.

hints is a collection passed into the low-level converter for its use during the information gathering. It
may contain information about the “job” being downloaded that is useful for the low-level converter
during this phase. During a call to psLowGetStreamInfo, a low-level converter can add or change hints in
the hints collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be used
by a low-level converter for their normal, intended purpose.

Note:
If a converter wants to have private hints, it should use the collection tag ‘APPL’ with a collection ID
value identical to its assigned application creator. This ensures that private hints will not collide with other
software’s hints.

The updated hints collection returned from psLowGetStreamInfo may or may not be passed by the
Download Manager and its clients to the other low-level converter calls psLowPeekConvert,
psLowAddConverterQueries, and psLowDoConvert (see the description of
psGetDownloadDocumentInfo in Section 1). A low-level converter should not require any data it adds to
the hints collection in the psLowGetStreamInfo routine being available during any other low-level
converter call.

*downloadDocInfoP is a pointer to a DownloadDocumentInfo structure (described above in Section 1)
to be filled in by the low-level converter. This structure is initialized by the Download Manager to
correspond to unknown values for each field. If the low-level converter does not know the information
corresponding to a given field, it should not fill in that field.

Back to top

Peeking at the Data

When a Download Manager client calls the Download Manager routines psDownloadFile or
psDownloadStream, the Download Manager determines if it can allow the low-level converter the
opportunity to peek at the data before doing the conversion. If the stream is of a type that can be
repositioned (i.e., type kPSRandomAccessStream), the Download Manager calls the psLowPeekConvert
routine of the low-level converter. With a stream that cannot be repositioned, the act of peeking would
prevent the stream from being converted.

Note:
If the client adds the hint kHintDownloaderPeekTag with a value of false, the Download Manager will
not call psLowPeekConvert regardless of whether the stream supports peeking.

 OSStatus psLowPeekConvert(PSStream *inputStreamP,
 Collection hints);

This routine is called by the Download Manager to allow the low-level converter an opportunity to look at
the data to be downloaded and thereby collect useful information. Such information might be collected to
provide information back to the Download Manager for reporting to the Download Manager client (such
as fonts used in a document, etc). Other information might be collected by the low-level converter for
passing back to itself when it is later asked to “convert” and download the document with the
psLowDoConvert call (described in the section Doing the Conversion below). For example, a PostScript
converter might read DSC comments to determine what fonts the document requires as part of the
download.

TN 1169: The Download Manager Page: 22

*inputStreamP represents the stream of data to peek at. The low-level converter calls the PSInProc of
inputStreamP to obtain the data.

hints is a collection passed into the low-level converter for its use during peeking. It may contain
information about the “job” being downloaded that is useful for the low-level converter during the peek
phase. During a call to psLowPeekConvert, a low-level converter can add or change hints in the hints
collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be used by a
low-level converter for their normal, intended purpose.

Note:
If a converter wants to have private hints, it should use the collection tag ‘APPL’ with a collection ID
value identical to their assigned application creator. This ensures that private hints will not collide with
other software’s hints.

The updated hints collection returned from psLowPeekConvert is passed by the Download Manager to
the low-level converter calls psLowAddConverterQueries and psLowDoConvert (described in the
sections Queries and Doing the Conversion respectively). By adding private hints to the collection during
the peek phase, a low-level converter can pass itself this information when the Download Manager calls the
psLowAddConverterQueries and psLowDoConvert routines.

Examples of data put into the hints during the peek phase by a low-level converter might be:

Font requirement data based on %%DocumentNeededResources comments in a PS file
DSC information such as “user”, “pages”, “creator”, etc.
Information about the procedure sets required, such as those required by a PICT converter
Bounding Box information for handling EPS data

While a low-level converter should always be prepared to handle the fact that a peek pass may not be
made, it may still find it useful to peek at the data when it is given the chance to do so. This means that a
low-level converter should be prepared to operate without data it would normally collect during a possible
psLowPeekConvert call.

Note:
While a low-level converter is required to implement a psLowPeekConvert routine, the implemented
routine can simply return without doing any examination of the data stream.

Back to top

Queries

When a client makes a call to psDownloadFile, the Download Manager is responsible for querying the
printer and providing the results from the queries to the low-level converter. Prior to any queries
performed by the Download Manager, the low-level converter gets a chance to add its queries to the set of
queries which the Download Manager will make. A low-level converter can add any or all of the queries
currently available through PSUtilsLib.The low-level converter does not do the query itself, but instead
the Download Manager calls the routine psLowAddConverterQueries supplied by a low-level converter
to determine the queries the low-level converter needs.

 OSStatus psLowAddConverterQueries(Collection hints,
 Collection query);

This routine is passed the hints collection for the current job. If the low-level converter routine
psLowPeekConvert was called, the hints collection as returned from that call is passed to
psLowAddConverterQueries. The psLowAddConverterQueries routine is also passed a query
collection so that the low-level converter can add query hints for use by the Download Manager. The
low-level converter can use the hints collection to decide whether to add any queries to the query

TN 1169: The Download Manager Page: 23

collection. When the psLowAddConverterQueries routine returns, the Download Manager uses the data
in the query collection to query the target output device. The Download Manager copies the results of the
queries into the hints collection that is used for the call to psLowDoConvert (see the section Doing the
Conversion below).

Basic Queries

Most queries fall into the category of basic queries. Examples of these queries are the PostScript language
level, PostScript version information, color or black and white device knowledge, and so forth. Such
queries are generated by adding the appropriate hints to the query collection, with default values chosen by
the converter for its own conservative handling approach. For example, to cause the Download Manager to
query for the PostScript language level, the following code is used:

kHintLanguageLevelVar langlevel = UnknownLevel;
err = AddCollectionItem(queryCollection, kHintLanguageLevelTag,
 kHintLanguageLevelId, sizeof(langlevel), &langlevel);

Note here that the default value used is UnknownLevel so that, if the query is not done (see the section
Using Query Results below), getting this collection item later reflects this default.

Font Queries

The Download Manager can query for a specific list of fonts or obtain the entire list of fonts available in
the target output device. Both of these font queries are specified with the hint kHintIncludeFontsTag
with the ID value kHintIncludeFontsId. The data contained in this hint determines the type of query.
The data is a PSFontHandling structure, defined as:

typedef struct {
 long tag;
 unsigned char name[1]; //packed array of names,
 //length 0 indicates end of list
}PSFontHandling;

and the following constants are defined:

enum{
 kIncludeNoFontsOtherThan,
 kIncludeAllFontsBut
};

If the tag field of the PSFontHandling structure is kIncludeAllFontsBut, the query is for the complete
list of fonts (the equivalent of the *?FontList query from the PPD file). For this flavor of the font query,
there should be one name specified whose length is zero. Upon return of the query, the name field will be
a packed array of Pascal strings corresponding to the fonts built into the output device. This list of names
will be terminated with a Pascal string whose length is zero.

If the tag field of the PSFontHandling structure is kIncludeNoFontsOtherThan, the query is for a
specified list of fonts (the equivalent of the *?FontQuery query from the PPD file). For this flavor of the
font query, the list of fonts to query for should be in the name field of the structure. The list is a packed
array of Pascal strings and is terminated with a Pascal string with a zero-length byte. After the query, the
name field is a packed array of Pascal strings corresponding to the fonts from the query list which were
not available, i.e., the fonts available in the output device are removed from the list. Again, this list of names
is terminated with a Pascal string with a zero-length byte.

TN 1169: The Download Manager Page: 24

Note:
It is quite possible that a low-level converter might request a query with a tag of kIncludeAllFontsBut
and the query result may contain a query with a tag of kIncludeNoFontsOtherThan or vice versa.

Communication Channel Queries

A second category of special queries is that for the communication channel characteristics. Most low-level
converters will generate different output data if the communication pathway to the target output device
supports binary data. There are two hints used to query for whether the output device supports binary data
and both should be consulted.

The first is the hint with tag value kHintEighthBitTag and ID value kHintEighthBitId. If the hint
value is true, the output stream supports the data range 0x80-0xFF inclusive. If the value is false, the
PostScript output stream generated by the low-level converter should not contain these byte values.

The second is the hint with the tag value kHintTransparentChannelTag and ID value
kHintTransparentChannelId. If the hint value is true, the output stream supports the data range
0x00-0x1F inclusive. If the value is false, the PostScript output stream generated by the low-level
converter should not contain these byte values.

Normally a low-level converter will add both of these hints to the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteristics.
The value for these hints after the query determines the channel characteristics.

Using Query Results

A low-level converter receives its query results in the hints collection supplied to the call psLowDoConvert
(see the section Doing the Conversion below).

A low-level converter should be prepared to operate without results from a query. Query results can be
unavailable in at least two ways. If the Download Manager is invoked using the routine
psDownloadStream, the Download Manager only calls psLowAddConverterQueries and generates
queries if the hints collection contains the kHintDownloaderDoQueryTag hint with value true. If the
Download Manager client handles queries, it would set the kHintDownloaderDoQueryTag hint to false.

Another case where queries may not be completed is when the download is to a file without a printer
involved or with any communication channel that does not support a backchannel, such as LPR. In that
case, some of the queries may be satisfied by PPD data, but others return a default value.

Back to top

Doing the Conversion

After the query phase, the Download Manager calls the psLowDoConvert routine of the low-level
converter. This routine is defined as follows:

 OSStatus psLowDoConvert(PSStream *inputStreamP,
 PSStream *outputStreamP, Collection hints);

TN 1169: The Download Manager Page: 25

It is the responsibility of the low-level converter to read the data supplied in the stream pointed to by
inputStreamP, “convert” it into appropriate PostScript language output and write that output to the
stream pointed to by outputStreamP.

*inputStreamP represents the stream of data to “convert” into PostScript output. The low-level
converter calls the PSInProc of inputStreamP to read the data from the stream to convert.

*outputStreamP represents the output stream. The “converted” PostScript output data is written to the
PSOutProc of outputStreamP. This may be a stream communicating with a PostScript printer via PAP or
USB, a stream communicating using LPR, a stream to send data to a custom Desktop Printer for further
processing, or it may be a stream generating a PostScript output file. The kind of stream used for output is
determined by the Download Manager client and the Download Manager; the low-level converter simply
writes its PostScript output to this stream.

The outputStreamP stream may contain a read procedure of type PSInProc for returning error messages
or other data from a PostScript output device. The low-level converter is responsible for reading this
returned data during the download and writing it to the PSOutProc of inputStreamP. The PSOutProc of
inputStreamP is responsible for forwarding this data to the client for further processing. This data may
be error messages, return results from the PostScript output device, or device status messages returned
from the printer back channel instead of the status channel.

PSStreams of type kPSSerialStream and PSRandomAccessStream have a field of type PSPosition.
This structure is defined as:

typedef struct PSPosition{
 PSSection section; //filled in by DownloadMgr not converters
 PSSubsection subsection; //for DSC data obtained by converters
 void *info; //for DSC data obtained or generated by
 //converters
 SInt32 id; // to be updated appropriately by the caller
 // filling in any of the other fields
}PSPosition;

While processing the data to be converted during psLowPeekConvert and psLowDoConvert, a low-level
converter uses this structure to pass information about the data being written to (or read from) from the
stream. The Download Manager uses this data to pass information to the client’s StatusIdleProc so the
client can report the status and progress of the download. If the Download Manager client used the
Download Manager function psDownloadStream and therefore supplied the input and output stream, that
client is responsible for handling status in its streams’ read and write procedures.

The hints collection passed to psLowDoConvert contains information which may be useful for a low-level
converter. It might contain information about the output stream characteristics (8-bit, ASCII/binary), data
stored into this collection by the low-level converter during the peek phase, query results or other data
about the download job that is useful for a low-level converter.

Since calls to psLowDoConvert may or may not be preceded by calls to psLowPeekConvert or
psLowAddConverterQueries, the psLowDoConvert routine should not rely on hint data collected by
psLowPeekConvert or query results to operate successfully. If data collected by a call to
psLowPeekConvert is present in the hints, psLowDoConvert may work more efficiently or offer better
results than if it is not present, but it should work regardless.

The following figure attempts to illustrate the way the input and output streams are used by a low-level
converter during the call to psLowDoConvert:

TN 1169: The Download Manager Page: 26

Back to top

Converter Capabilities

At various times, the Download Manager determines what low-level converters are available and then
determines what file types each low-level converter can potentially handle. It does this by calling the
psGetConverterInformation routine of each low-level converter.

 OSStatus psLowGetConverterInformation(
 const ConverterDescription* *theConverterDescription);

The psGetConverterInformation routine returns information about the converter. The
ConverterDescription structure is loosely modeled after the DriverDescription structure used for
PCI Drivers. The ConverterDescription structure is defined as follows:

typedef struct ConverterDescription {
 OSType converterDescSignature;
 ConverterDescVersion converterDescVersion;
 ConverterType converterType;
 ConverterService converterService;
}ConverterDescription;

The first field in the ConverterDescription structure is a signature long word designating this to be a
converter description structure.

enum {
 kTheConverterDescriptionSignature = 'dhwu'
 /*first long word of ConverterDescription*/
};

The second long word of the ConverterDescription structure indicates the version of the structure
being used. This is used to distinguish different versions of converter descriptions which have the same
signature but different values. This is defined as follows:

typedef UInt32 ConverterDescVersion;
enum {
 kInitialConverterDescriptor = 0
 /* the initial version of ConverterDescription
 supported by the Download Manager
 */
};

The next field of the ConverterDescription is the converterType. This structure contains name and
information string data as well as the converter module version information. It is defined as:

TN 1169: The Download Manager Page: 27

typedef struct ConverterType{
 Str31 name;
 Str255 info;
 NumVersion version;
}ConverterType;

typedef struct NumVersion{
 UInt8 majorRev; /*1st part of version number in BCD*/
 UInt8 minorAndBugRev; /*2nd and 3rd part of version number share a byte*/
 UInt8 stage; /*stage code: dev, alpha, beta, final*/
 UInt8 nonRelRev; /*rev level of nonreleased version*/
}NumVersion;

The final field in the ConverterDescription structure is a ConverterService structure which contains
information about what types of data the converter can potentially handle. This is defined as:

typedef struct ConverterService{
 UInt32 nTypes;
 ConverterTypeInfo typeInfo[1];
}ConverterService;

typedef struct ConverterTypeInfo{
 OSType type;
 Fixed priority;
 Str15 matchString;
}ConverterTypeInfo;

A given converter may be able to handle a number of different OSType data and/or different data types.
The nTypes field is the number of different ConverterTypeInfo structures contained in the
ConverterService.

The type field of the ConverterTypeInfo structure is the OSType of data described by the
ConverterTypeInfo. If the converter can handle any type, it should include the type ‘****’ (i.e., the
wildcard type) with the appropriate matchString.

Note:
A given low-level converter may have more than one ConverterTypeInfo for a given type. This would
occur if there was more than one priority, matchString pair appropriate for a given data type.

The matchString field is a Pascal string of at most 15 bytes (plus a length byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript converter
requires the identification data “%!” to be the first 2 bytes of data to be downloaded. If, for a given
converter, none of the first (up to 15) bytes are distinctive for the OSType of the ConverterTypeInfo, the
length of the matchstring should be set to 0. This indicates to the Download Manager that this OSType
does not have a magic identification string.

The Download Manager uses the ConverterTypeInfo data to pare down the list of candidate low-level
converters which can be used to download the data. It does this by looking at the first 15 bytes of data and
uses the ConverterTypeInfo data to determine which low-level converters may support the data. After
paring down the list with this information, it normally calls the psLowCanConvert routine of the candidate
low-level converters to allow further examination of the data.

In some cases the psLowCanConvert routine of the candidate low-level converters cannot be called. This
is the case where the data is supplied from a stream which cannot be repositioned or randomly accessed.
In these cases, the Download Manager uses the priority field of the ConverterTypeInfo data to
determine whether the low-level converter can handle the data.

The priority field in a ConverterTypeInfo structure is a Fixed number which is the priority estimate
of the converter for handling the type of data described by the type field and the matchString. This
priority is used by the Download Manager when only the matchString and type of the data are available

TN 1169: The Download Manager Page: 28

for determining whether a converter can handle the download. In all other cases, the Download Manager
calls the psLowCanConvert function with a stream that the low-level converter reads to determine whether
it can handle the data. For this reason, the priority returned here should be the priority that the converter
can guarantee based only on the OSType and the matchString data. If a converter requires more than the
15 bytes matchString to be certain it can handle the data or a matchString of 0 is provided, the priority
should be 0x0 (i.e., can’t convert without looking at more data).

Note:
If the converter cannot handle a stream which cannot be randomly accessed, it should assign a priority of
0x0 for that OSType in the ConverterTypeInfo.

As an example, here is a sample ConverterDescription structure for a hypothetical converter module
which “converts” a PostScript input stream to a PostScript output stream:

ConverterDescription TheConverterDescription =
{
 // signature information
 kTheConverterDescriptionSignature, // signature always first
 kInitialConverterDescriptor, // version
 // type information
 {

 "\pPostScript Downloader.", // name
 "\pThis converter module sends PostScript code to a"
 "PostScript printer.", // info string
 0x1,0x0,0x40,0x2, // Rev 1.0.0a2
 },

 // ConverterServices
 {
 3, //# of ConverterTypeInfo structures
 {
 {
 'TEXT', // file type
 0x000A0000, // priority hint
 "\p%!" // match string
 },
 {
 'EPSF', // file type
 0x000A0000, // priority hint
 "\p%!" // match string
 },
 {
 '????', // file type
 0x000A0000, // priority hint
 "\p%!" // match string
 }
 }
 }
};

Note that by reporting a non-zero priority hint for each type, this hypothetical converter says that it can
operate on a stream that cannot be randomly accessed.

When the Download Manager calls psGetConverterInformation, it expects to get back a pointer to a
ConverterDescription. This data is owned by the converter module. If the Download Manager needs to
keep any of this data, it must first copy that data before closing the converter module. The pointer returned
is declared const indicating that the caller of psGetConverterInformation must not change the
ConverterDescription data itself since that data is owned by the converter module.

The converter module is responsible for disposing of any memory it allocates as part of generating the

TN 1169: The Download Manager Page: 29

ConverterDescription returned by psGetConverterInformation.

Back to top

Utility Functions

OSStatus psLowGetConverterVersion(CFMVersion *version);

The psLowGetConverterVersion reports the CFM version information for a low-level converter. This
information may be used by the Download Manager (or other callers of the low-level converters) to
determine version and interface information about a given low-level converter. Though there is no planned
usage for this today we have found that it is useful to have this information for other shared libraries used
by LaserWriter 8 and PrintingLib.

Readers familiar with the Code Fragment Manager will notice that this information mirrors the version
information built into a CFM library. Unfortunately, in some versions of the system software, the
GetDiskFragment routine has a bug that won’t allow it to load a library unless the definition,
implementation and current version numbers built into the library are all 0. To work around this bug a
low-level converter must all have these version numbers set to zero. To make it possible for a client of a
low-level converter to determine the actual version information of that converter, this call returns the
version information for that low-level converter.

Back to top

Errors

errInvalidDownloaderInfo - This error is returned if the Download Manager is passed a
DownloaderInfo structure that is no longer valid. This can happen if a client obtains a DownloaderInfo
structure from the Download Manager calls psCanDownloadFile, psCanDownloadStream, or
psCanDownloadData and later supplies this data to the Download Manager after the set of converter
modules in the Printing Plug-ins Folder or PrintingLib itself has changed. This should be rare but could
happen if DownloaderInfo data is persistently stored over a period of time.

errCantMakeStreamForDTP - This error occurs if the client calls psDownloadFile with a target PAPA for
which PrintingLib cannot make a stream. This should only happen if the client fails to call
psCanDownloadFile with a PAPA for the device for which it later calls psDownloadFile.

errCantHandleThisDownloadData - This error occurs if at some point in downloading a file or stream,
the converter realizes that there is some problem with the data. This might be the situation if the data is
corrupt, for example.

Note:
Other Mac OS errors can also be returned.

Back to top

Logging

The Download Manager can log errors and warnings that might be generated by a low-level converter. The
PSSubsection values of kSubLogErrorData and kSubLogWarningData are to be used by a low-level
converter (and the Download Manager) to indicate fatal and non-fatal errors which occur during the
download process. The Download Manager is responsible for logging this data appropriately. By default,
this logging is only turned on in the debug builds of PrintingLib. It can be turned on in a release build by
changing the value of the doDownloadMgrLogging bit in the printing preferences PRF2 resource in
PrintingLib.

The amount of information logged is controlled by the LOGD resource. It is defined by default as:

TN 1169: The Download Manager Page: 30

resource kDownloadMgrLoggingType (kPreferencesID,

#if qNames
 "Download Manager Logging Preferences",
#endif
 purgeable) {
 32000, // the maximum file size
 4000, // the maximum amount to preserve
 // when size is exceeded
 'MPS ', // the log file creator
 'TEXT', // the log file type
 "Download Manager Log"
 // the log file name
};

When logging is turned on, the log file (default name “Download Manager Log”) is created in the user’s
Printing Prefs folder.

Back to top

Summary
The Download Manager allows Desktop Printing and other clients to quickly send documents to a
PostScript printer. Applications which wish to bypass QuickDraw can call the Download Manager to
send data directly to the printer. Also, the types of documents handled by the Download Manager can be
extended by third parties creating new “low-level converters.” More information on writing low-level
converters will be provided in a separate Technote.

Back to top

Further References

Print Hints: The All-New LaserWriter Driver Version 8.4, develop 27
Technote 1112: Introducing the LaserWriter Driver Version 8.5.1
Technote 1143: Introducing the LaserWriter 8 Driver Version 8.6
Technote 1165: Introducing the LaserWriter 8 Driver Version 8.6.5
Technote 1170: The Printing Plug-ins Manager
Inside Macintosh, The Collection Manager

Change History

Originally written in April 1998.
Revised in May 1999.

Back to top

Downloadables

 Acrobat version of this Note (K).

 Binhexed Routine Descriptor Lib (196K).

TN 1169: The Download Manager Page: 31

Back to top

To contact us, please use the Contact Us page.
Updated: 24-May-99

Technotes | Contents
Previous Technote | Next Technote

