TN 1134: The Preferences Problem

Technote 1134

The Preferences Problem

Page: 1

CONTENTS

The Preferences Problem

Discussion
Overwhelmed?

Summary
Some Sample Code

Downloadables

Preferences nearly every application has them, but

thereisno Mac OS API specifically designed to help you
deal with them. Thisrequiresyou to write afair amount of
codeto ded correctly with preferences.

This Technote will attempt to outline the problems with
preferences files and the solutions to those problems so
that you can code arobust solution.

Often a problem has multiple solutions, and none of them
is the obvious best-choice solution for all possible cases.
This Note lists the top options, and discusses each
solution so that you can make an informed decision about
which to implement.

ThisNoteisdirected at developers who have a preferences
file, or files, and who want to make sure that they are
working correctly with those files by making sure they are
covering all reasonable possibilities.

TN 1134: The Preferences Problem

The Preferences Problem

Preferences files: nearly every application of substance has them, but they are often the cause of great
pain and frustration when they should make your life smpler.

What are the major problems relating to preference files?

What should | name my preferencesfile(s)?

Where do preferences file(s) go?

What file type and creator should | use for my preferencesfile(s)?
How do | find my preferencesfile(s)?

Should | havea' vers' resourcein my preferencesfile(s)?

How do | give my preferencesfile(s) theright icon?

What should | do if the user double-clicks my preferencesfile?
What should | do if apreferences file doesn't exist?

What should | do if my preferencesfile isn't writable?

10. What should | do if my preferencesfile(s) are corrupt?

11. What should | do if my preferences file(s) are usurped by another application?

CooNoUAWNE

In therea world it isimpossible to solve al of these problems with one solution that will always be the
correct one. With that in mind, we will attempt to give you the information that you need to come as close
aspossible to an ideal solution for your application.

Issue 18 of develop Magazine included an article called "The Write Way to Implement Preferences
Files." DTS does not believe you should follow the recommendations in that article. This Technote
supersedesthat article. If, for historica interest, you wish to see what it is we are recommending you
avoid, you can download the article.

Discussion

How you store your preferencesinside afileis up to you. Y ou can store your preferences as aflattened
structure that your application will read directly into a handle when it starts, or you can store it in amuch
more complicated form.

What should | name my preferences file(s)?

The name of your preferencesfile is completely up to you. The only suggestion that DTS hasisthat it
not end with "Prefs': use " Preferences’ instead. This way the user has a clear idea that the file contains
SurfWriter preferences and not some mysteriously essential data which might be dangerous to delete.

Thisseemslike atrivia point, but unless your application's nameis so long that "Preferences’ can't be
tacked onto the end of it, you should avoid the contraction. Y ou only have to type it once (presumably
intoa' STR#' resource), so making it verbose shouldn't be areal problem.

Where do preferencesfile(s) go?

The easy answer isthat you should put themin afile or filesin the Preferences folder, asidentified by a
call to Fi ndFol der .

If you have only one preferences file, you should put that file into the Preferences folder (returned from
Fi ndFol der). However, if you have multiple preferencesfiles, or other files, such aslog files, that you
want to put into the Preferences folder, you should create afolder in the Preferences folder, and store all
of your filesin that folder. This reduces clutter in the Preferences folder.

When your application needs more than one preferences file, consider creating afolder within the
Preferences folder and putting your preferencesfilesin this additional folder. However, storing
everything in the Preferences folder hierarchy is not best for al applications. For example, in a

Page: 2

TN 1134: The Preferences Problem Page: 3

multiple-user situation, you may want to have a preferences file stored in each user's personal folder
rather than have alarge number of files kept in the Preferences folder.

Another option that some programs aready implement is the concept of "local preferences’. A local
preferenceis onethat is stored in the same folder as the application. The application first looks for a
local preferencesfile, and if it does not find alocal one, it then looks for a preferencesfile in the
Preferences folder. This add complexity to the preferences search code, but for that added complexity
your users gain the ability to easily:

e Runtwo (or more) copies of the application simultaneoudly with different preferences.

e Allow applicationsto load, save and store preferences even if the volume which contains the
Preferences folder islocked (booting off a CD for example).

e Useaset of preferences quickly and revert to the original preferences (by copying and deleting
local preferences).

What filetype and creator should | use for my preferences
file(s)?
What file type?

Y ou should give your preferencesfilethetype' pref' , whichispreferred. Using thistype will alow for
future versions of the Finder to auto-route your preferencesfile to the Preferences folder. The only
reason we can think of for not using afiletypeof ' pref' isthat fileswith that file type get the Finder's
Balloon Help message:

Finder Preferences
Thisfile stores preferences settings for the Finder.

This might be confusing for the user, since nearly every preferencesfilehasatypeof ' pref' . Itisthe
opinion of DTS that Engineering should fix the Finder instead. We've filed a bug report; itsID is
2241857.

If you have files other than preferences files that you are storing in the Preferences folder (or afolder in
the Preferences folder), feel free to use any type that you wish. For instance, if you have alog filein the
Preferencesfolder, it is perfectly reasonable to make it of type' TEXT' , sinceit isobviously not a
preferences file and opening it might be a reasonable thing to do.

In summary, if it's a preferencesfile, it should have atypeof ' pref' ; if itisn't apreferencesfile, it
shouldn't, even if it iskept in the Preferences folder.

What creator code?

There are three schools of thought on thisissue. The first claims you should give your preferencesfile a
creator code that matches your application signature. The second claimsthat you should give it a creator
of ' 22?2 . Thethird claimsyou should give it a (registered) creator code which is neither ' 222?' nor
the same as your application signature.

Using your application's creator code

There are good reasons why you would want to give your preference file the same creator as your
application signature. They are (in no particular order):

e Itisreasonably easy to find a preference file with a specific creator code, even if the user
changesits name.

e Ultility applications, such as ones which delete "orphaned” preferencesfiles, know that thefile
belongs to your application.

e Locaization iseasy because the creator code does not change when your applicationis
locaized. Y our code doesn't need to know the name of its preferencesfile, which simplifies

TN 1134: The Preferences Problem

localization.

However, there is a so areason why you would not want to use your application signature as the creator
code of your preferencesfile:

e Your application will be launched by a user opening your preferencefile, and if this happens,
you should probably do something in response. See the discussion below for details.

Using a creator code of ' 2?2?27

Of course, there are also some benefits to not using your creator code, and using a creator code of
' 2227 instead. They are:

e Itisvery easy to find afile by name (click here for a snippet showing how).

e Youdon't havetoregister a' 2???' asacreator code. (In fact, you can't; it's explicitly defined as
the signature of no application.)

e Your application will not be launched by a user attempting to open your preferencefile.

e You can have a application-missing message string to tell the user why they can't open your
preferencefile.

There are, however, some drawbacks to using a creator code of ' 27272 :

e You haveto find your preference file by name, which could mean localization issues.

e Ultility applications could flag your preference file as belonging to an application no longer on
the user's system, and the user might delete it. The utility could also be fooled and not clean up
your preferences file when your application is deleted.

e When you use a creator code of * 222?' , you won't be able to locate your preferences file by
creator code, because there may be multiple files with that creator code.

Using a different creator code

By using acreator code that is different from your application's signature, but not' 2?27?' , you get these
benefits:

e Itisreasonably easy to find a preference file with a specific, non-generic, creator code.

e Thereare no localization issues with respect to a creator code.

e Your application will not be launched by a user attempting to open your preferencefile.

e You can have a application-missing message string to tell the user why they can't open your
preferencefile.

However, this approach has adightly different set of disadvantages. They are:
e You must register a second application signature for use as your preference file's creator code to

avoid collisions with other applications.
e Utility applicationswill gtill identify your preferencesfile as an orphaned preferencesfile.

Note: Thereis code at the end of this Note that shows how you might want to locate a preferencesfilée
by creator code and/or file name. Y ou may find this agood start for your own search code.

A word on localized preferences

Thereisthe possibility that the user of your application will use a preferencesfile that was not created
with the same language code as the currently running system. For instance, aU.S. user may have sent
their preferences to a Japanese colleague.

If your application findsits preferences based on a creator code and not a name, then this combination of
Japanese application and U.S.-named preferences file will work as the user expected. If your application
always opens the preferences file by name, or requires that the name be a specific string, then you

Page: 4

TN 1134: The Preferences Problem

prevent the easy duplication of preferencesfiles, and make it difficult for users to make copies of their
preferences files for rapid switching between different preference sets.

A word on application-missing messages

The application-missing message stringisa' STR ' resource ID -16397 put in afile by the creating
application, which the Finder usesto tell the user why afile could not be opened. The message should
tell the user which application created the file and the purpose of thefile. This string should be used if
you give your preferencesfile (or any other file) a creator code that is not the same as your application
signature. Thisway, when the user attempts to open your preferences file they will receive a message
such as:

"This document describes user preferences for the application SurfWriter. Y ou cannot
open or print this document. To be effective, this document must be stored in the
Preferences folder in the System Folder."

Thereis also a missing-application name string whichisa' STR ' resource ID -16396. Thisresourceis
simply the name of the application that created the file (" SurfWriter") which the Finder will useto tell the
user which application created a specific file when that application cannot be found. Normally this string
isused only for documents that are meant to be opened by the user.

Important: Do not use both the application-missing message string and the missing-application name
string; use one or the other, but not both. For more information on application-missing messages, see
Inside Macintosh: Macintosh Toolbox Essentials, Chapter 7 - Finder Interface, using the Finder
Interface Displaying Messages When the Finder Can't Find Y our Application.

How do | find my preferencesfile(s)?

Finding your preferencesfileissimpleif you find it by name; it's either there or it isn't. If you find your
preferencesfile by creator code, you will have to search the entire Preferences folder for afile of the
correct type. Y ou may want to also match it by name in case multiple files have the same creator code,
which is especialy likely to happen if the creator code you useis' ?2?227?' .

To search for files with a specific creator code, use indexed calls to PBHGet FI nf o to have it return you
the Finder information about each file in agiven directory. Remember that after each call to

PBHGet FI nf o, you havetoreseti obDi r | Dfield of the parameter block because PBHGet FI nf o changes
the value of thisfield.

Should | havea' vers' resourcein my preferencesfile(s)?

Y es, you should. Every filethat is part of your application should havea' vers' resource D 1 and 2 in
it asamatter of course, and preferences files are not an exception.

Theimmediate benefit of ' ver s' resourcesisthat auser will see amore complete Get Info dialog in the
Finder: one showing the application’'s name and version that belongsto thefile. A future benefit of the
"vers' resourceisthat it can come in handy when anew version of your program has to identify and
convert an older version's preferences settings to a new format.

How do | give my preferencesfile(s) theright icon?

Thisis easy; if you give your preferencesfile atypeof ' pref' , it will automaticaly get the correct icon
(the default preferences fileicon). Y ou should not have an entry of ' pref' inyour application’'s bundle
resource. Furthermore, having files with generic icons makes opening the Preferences folder alot faster.

We discourage devel opers from trying to have preferences files with non-generic (custom) icons.
However, if you want a custom icon, use a custom Finder icon so that your preferencesfile will have an
icon even if your application is deleted. This may help the user determine that they can now delete your

Page: 5

TN 1134: The Preferences Problem Page: 6

preferencesfile. Another reason for using a Finder custom icon is that the Finder only has to open one
file (the preferences file) whose location it knows, rather than searching the desktop database on every
volume, including volumes like AppleShare volumes mounted over Apple Remote Access, which may be
very sow.

For information on how to create a custom Finder icon, see |nside Macintosh: Macintosh Toolbox
Essentids, Chapter 7 - Finder Interface, using the Finder Interface, Creating Customized Document
Icons.

What should | do if the user double-clicks a preferencesfile?

Thisisaproblem only if you give your preferences file the same creator code as your application
signature. There are several thoughts on what to do if your application is asked to open a preferences
file:

1. You could put up adialog saying that you don't open preferencesfiles.

o By putting up adialog saying that you don't open preferences files, the user has been
able to launch your application, and now they know what file they just "opened.”

o Some users may find such a dialog distracting.

2. 'You could open your preferences dialog:

o Opening your preferences dialog is acool idea and seems very Mac-like, but it also has
some issues which need to be worked out, the scope of which is beyond a general
purpose document such as this Technote.

o From which file do you extract and display preferences values: the current file
or the newly opened file?

o When the user clicks OK, where do you save any changes? Do you put them
in the existing preferencesfile, or the newly opened preferencesfile, or both
files?

o What do you do if the newly opened preferencesfileis on aserver and you
can't writeto it?

o If someor al of the settings you store in a preferencesfile are not set viaan
explicit preferences dial og, how do you inform the user those preferences have
changed?

3. You could do nothing:

o Daing nothing is certainly the smplest thing that you can do.

o Make surethat you don't crash (you will probably need to filter out files of type
' pref' from your application’s "open documents® Apple Event handler).

o However, we believe thisis actually abad user experience -- you should provide the
user with some evidence that you recognize that they have double-clicked on afile.

There are no real disadvantages to any of these methods other than the user experience that they offer,
and only you are able to determine what user experience to deliver (since Apple has no official position
on this subject).

What should | doif a preferencesfile doesn't exist?

Thiswould seem to be an easy question to answer; however, there are two different opinions on this
subject.

The opinions are:

1. Do not create one, yet set al of your preferencesin your application asif one existed and every
setting was set to your default value. If the user changes the preferences, then create a
preferences file with these values.

2. Create apreferencesfile and fill it in with default values.

The obvious advantage to the first approach isthat if the user never changes the preferences from their
default values, they never have a preferences file wasting space on their hard drive. This also makesit
easy for someone to install your application, try it, and then delete it without having to search their

TN 1134: The Preferences Problem

system for orphaned files. This point is especially directed at devel opers whose software is distributed
on atrial-use basis.

Always creating a preferences file makes for dightly smpler code, but since you have to be prepared to
run even if you cannot create a preferencesfile, you might aswell wait until you actually need to create a
preferences file before dealing with those possible problems.

One of the problems of creating a preferencesfile isthat you may not be able to create it because the
volume or system folder islocked. For ideas of what to do in this situation, see the following section on
what to do if the fileis on alocked volume or the preferencesfileislocked.

Thereisaso the problem of what to do if another file or folder exists where you would want to save
your preferencesfile or folder. For ideas when in this situation, see the section on what to do if your
preferencesfileis usurped by another application.

What should | doif the preferencesfileis not writable?

If your application is not able to save or update a preferences file, what do you do?

e You could refuseto run, but that's a bad solution, and should be your last resort, rather than your
first option.
e You could run and just not allow the user to save their preferences.

However, what if the user wantsto use your program with new preferences?

e You should probably alow the user to change al possible preference settings, but warn them
that they will not be able to save them for use at alater time. Y our program should run with the
new preferences settings.

e If you alow your user to have their preferencesfile stored in any arbitrary folder, you may
prompt the user for an aternate location to store the preferencesfile rather than telling them that
the preferences will not be saved.

What should | doif a preferencesfile(s) are corrupt?

Many applications have preferences files that are merely aresource fork that contains one or more
custom resource data structures that the program reads in during its launch. If you have a preferencesfile
based on the Resource Manager, you are subject to its limitations and you should be aware of them. One
of the most important things to know when relying on the Resource Manager is that the current
Resource Manager doesn't perform the most robust sanity checking before opening aresource file. If
your resource file has become corrupted in such away as to cause the Resource Manager to crash or
produce an error, the user will not have any way of discovering the problem. Deleting the offending
preferences file may be one of the last things that they try.

For this reason, you may want to perform sanity checking on the resource map of your preferencesfile
before you attempt to open it through the Resource Manager. Code for thisis provided in the public
domain as part of Internet Config; look for the file called "I CResourceForkSanity.c" inthe IC
Programmers Kit.

If your preferencesfileis corrupted, you should aert the user to that fact, and you should not take any
immediate action that isn't easily reversible. It may be that your preferences have been usurped by
another application and merely appear to be corrupt from the perspective of your application. In that
case, you don't want to delete the file. Allow the user to have the final decision asto what action should
be taken to correct the problem, though you are free to suggest the course of action you believe to the be
the best.

If your preferences file has not been usurped and isindeed corrupt, you should attempt to continue
running, either with default settings, or with backed-up settings. Forcing the user to quit and del ete your
preferencesfile isfrustrating for the user. Y our application may be perfectly usable with the default
settings, and the user may not want to spend the time fixing the problem immediately if they areina

Page: 7

TN 1134: The Preferences Problem
hurry to perform asimple task.

As an example of agood thing to do, Internet Config makes a copy of its preferencesfile's resource fork
and storesit in the datafork of the preferencesfile. If the resource fork turns out to be corrupt, it deletes
the resource fork, copies the saved preferences from the data into the resource fork, and continues. This
isacomplicated solution and it doubles the size of your preferencesfile, but usually that isnot a
significant amount of disk space.

If you would like to attempt such a solution in your application, the code for Internet Configisin the
public domain; you are freeto useit in your application.

What should | do if my preferencesfile(s) are usurped by
another application?

If another file or folder exists where you would want to put your preferences, you should aert the user to
thisfact, but you should aso be able to continue gracefully.

If possible, attempt to save your preferencesfilein some alternate location. If there is a permanent
conflict, the user doesn't have to choose between your application and some other application, or use one
of the applications without their preferred preferences.

One of the easiest workarounds to this problem is to locate your preferencesfile by a unique creator
code (your application’s signature springs to mind), which alows the user to rename your preferences
file and not affect your application at al.

If you choose to locate your preferences file by name, putting aregistered string (such as"Apple") init
may help to reduce the likelihood that it will conflict.

Overwhelmed?

If you are overwhelmed by all these choices, DTS prefers that:

e Your application should have a single preferences file which has the same creator code as your
application's signature, because every file that belongs to an application should have a creator
code matching the application's signature. (If your application creates filesintended for use by
another application, you should of course use that application's signature as appropriate.)

Y our preferences file should be stored in the Preferences folder (as returned by Fi ndFol der).

Y our preferences should be of type' pref' .

Y our preferences file should have ageneric icon.

If the user attempts to open your preferencesfile, your application should present its preferences

dialog populated with the current settings, not those of the file being double-clicked.

Y our application should not create a preferences file until a preference is changed.

If your preferencesfileis not writable, you should use any settings you can read. Allow the user

to modify the current preferences, but aert them that they will not be able to save these new

Settings.

e If your preferencesfileis corrupt, use your default values and continue running. If possible,
attempt to recover your preferences from another location.

e If your preferencesfileis usurped by another application, use your default values and continue
running. Allow the user to change their preferences. If possible, save your preferencesin another
location or in the Preferences folder with another name.

e You should give your preferences file an application-missing message string.

Page: 8

TN 1134: The Preferences Problem

Summary

Maintaining apreferencesfileisn't assimple asit seems at first glance. There are options to consider and
trade-offs to be weighed, but because nearly every application must have a preferencesfile, correct
maintenanceis vitaly important.

In this Note, you have learned of al the possibilities we could think of and been shown their merits and
flaws. Now it is up to you to decide what is right for you and your users.

Appendix A: Some Sample Code

Hereis some code that shows how to find a preference file by file name and/or creator code:

Fi ndFol der returnsfnf Err (-43) if it can't find the specified folder, or dupFNer r (-48) if afile exists
where the folder should. Fi ndPr ef sFi | e takes aslong asthe last parameter, which isan index into an

enumwhich will tell you more about what happened if an error isreturned (sometimes even if noErr is
returned). Y ou can use this value to better explain the error that is returned to the user (if you choose to
tell the user anything). For instance, you could use thisvalue asan index into a' STR#' resource which
explains the error to the user.

Page: 9

/*

** Appl e Maci ntosh Devel oper Techni cal Support

* %

** Routine denmpbnstrating howto find a preferences file by creator code
** and/or file nane.

* %

** py Mark Cookson, Apple Devel oper Technical Support

* %

** File: FindPrefsFile.c

* %

** Copyright ©1996 Apple Conputer, Inc

** Al rights reserved.

* %

** You may incorporate this sanple code into your applications without
** restriction, though the sanple code has been provided "AS I S" and the
** responsibility for its operation is 100% yours. However, what you are
** not permtted to do is to redistribute the source as "Apple Sanple

** Code" after having nmade changes. If you're going to re-distribute the
** source, we require that you make it clear in the source that the code
** was descended from Appl e Sanpl e Code, and that you' ve nade changes.

*/

#i ncl ude <Types. h>

#i ncl ude <Fol ders. h>
#include <Files. h>

#i ncl ude <Errors. h>
#include <TextUtils. h>

#i ncl ude <assert. h>

enum {
noError
noFi | eExi sts
not Ri ght Nare
fil eWthNameNot Cr eat or
folderlnsteadOfFil e
t ooManyFi | es
findFol der Err

N
ONAWNRO

TN 1134: The Preferences Problem

CSErr Fi ndPrefsFil e (OSType creatorCode, Str63 prefsNane,

/*

*/

FSSpec * prefsFSSpec, |ong *result);

This function attenpts to find a file in the Preferences fol der by creator
and file nane.

* Qvervi ew

The idea is to find the preference file by creator code, using the nanme only
as a fall back search nethod.

If only one file with the right creator code is found, then return the FSSpec
tothat file, regardless of its file nane.

If multiple files with the same creator code are found, then see if one of

those files has the right nane, if it does then return an FSSpec to that file.

If no files with the correct creator code are found, then check to see if a
file with the correct nane exists, if it does return a dupFNErr and a FSSpec
to the offending file, or if it doesn't then return a fnfErr and a FSSpec to
where the file shoul d be created.

The function also returns an enumthat tells nore about what happened. Use
this value to better informthe user (if needed) about what went wong. You
could use this value as an index into a STR# resource, for instance.

* | npl enent ati on:

There is a short-circuit test that |ooks for a file with the correct file
nane first, and if it finds that, it checks that its file type is the correct
file type. If the two match, then no other searching is done and the FSSpec
to this file is returned.

If no file with that name and creator is found, then every file in the

Preferences folder is searched to get its creator code. If afile with a
mat ching creator code is found, it is copied into a tenporary FSSpec and the
search continues. |f another file with the correct creator code is found

then the search is aborted and a fnfErr is returned. The FSSpec that is
returned is set to be where the correctly naned file woul d go.

If only one file is found with the correct creator code, it is
returned in the FSSpec and the function returns noErr, regardl ess of
its nane.

CSErr Fi ndPrefsFil e (OSType creatorCode, Str63 prefsNane, FSSpec *

pref sFSSpec, long *result) {

HPar anBl ockRec hpb;

FSSpec mat chFSSpec;

Sl nt 32 foundPrefDirl D = 0;

Ul nt 32 numvat ches = 0;

SInt 16 f oundPr ef VRef Num = 0;

CSErr err = nokrr;

Str63 fileNanme = "\p";

Bool ean shortCircuit = fal se,
f oundFi | eNane = fal se,
foundDirectory = fal se;

assert (prefsNanme != nil);
assert (prefsName[0] <= 63);
assert (prefsFSSpec !'= nil);

/1 Find the Preferences folder to begin our search.
err = FindFol der (kOnSystenDi sk, kPreferencesFol der Type,

Page: 10

TN 1134: The Preferences Problem Page: 11
kDont Cr eat eFol der, &f oundPrefVRef Num &foundPrefDirlD);

/1 Short circuit the search and see if a file with the right nane
and creator code exists.
if (err == noErr) {
Bl ockMoveDat a (prefsName, fileNane, prefsNanmeg[0] + 1);
hpb. fil eParami oConpl etion = nil;
hpb. fil eParam i oNanePtr = fil eNane;
hpb. fil eParam i oVRef Num = f oundPr ef VRef Num
hpb.fileParamioDirI D = foundPrefDirlD;
hpb. fil eParami oFDi rl ndex = 0;

/1 This allows us to return a FSSpec to where the file would be
/1 if we end up not finding one.
err = FSWakeFSSpec (foundPrefVRef Num foundPrefDirl D, prefsName, prefsFSSpec);
if (err == noErr) {
f oundFi | eNane = true;
err = PBHGet FI nf oSync (&hpb);

if (err == noErr) {
if (hpb.fileParam i oFl Fndrlnfo.fdCreator == creatorCode) {
/1 W found the file we were | ooking for.
shortCircuit = true;
numvat ches = 1;
if (result '=nil) {
*result = noError;
}

} else {
/1 |f PBHGet FI nfoSync returns an error, it's probably because we asked
/1 about a directory.
foundDirectory = true;

err = nokErr; /1 Continue the search by creator type.
if (result !'=nil) {
*result = folderlnsteadO Fil e;
}
} else {
err = nokErr; /1 Continue the search by creator type.
} else {
if (result !'=nil) {
*result = findFol derErr;
}
}
/1l The exact file didn't exist so try to find it by creator type.
if (err == noErr && shortCircuit == fal se) {

/1 Find all files in the preferences fol der and see if sone have
/1 the specified creator code.
do {
/1l Check the file's creator code to see if it is the right one.
hpb. fil eParam i oFDi rl ndex += 1;
hpb. fileParamioDirI D = foundPrefDirl D
err = PBHGet FI nfoSync (&hpb);

// Assunme the file doesn't exist.
if (result '=nil) {

*result = noFil eExists;
}

if (err == noErr && hpb.fileParam i oFl Fndrlnfo.fdCreator == creatorCode) ({
/1 This file has the right creator code, so we want to renenber it.
i f (numvat ches == 0) {
mat chFSSpec. vRef Num = f oundPr ef VRef Num

TN 1134: The Preferences Problem
mat chFSSpec. par 1 D = foundPrefDi rl D
Bl ockMoveData (fil eNane, mat chFSSpec. nane, fileName[0] + 1);
numvat ches = 1;
} else {
/1 W found another file with the sane creator code but wong
/1 file nane.
/1 W& won't know which file to return a reference to, so stop
/1 the search.
numvat ches = 2;
}
}
} while (err !'= fnfErr &% nunmVatches < 2);
}
i f (numvat ches == 0) {
if (foundDirectory == true) {
err = notAFil eErr;
if (result !'=nil) {
*result = folderlnsteadO File;
} else if (foundFileNane == true) {
err = dupFNErr; /1 Afile with the right nane, but the wong creator code
/'l exists!
if (result !'=nil)
*result = fil eWthNanmeNot Creat or;
} else {

err = fnfErr;

}
se if (numvatches == 1 && shortCircuit == false) {
/1 W found exactly one match, so this is the right prefs file.
Bl ockMoveDat a (&rat chFSSpec, pref sFSSpec, sizeof (FSSpec));
err = nokrr;
if (result '=nil) {
*result = notRi ght Nane;

-
@

}
se if (numvatches > 1) {
/1 There were multiple files with the sanme creator found,
/1 which neans none had the right nane
/'l (the correct one would have been caught by the short-circuit
/1 test), so we return fnfErr.
err = fnfErr;
if (result !'=nil) {
*result = tooManyFil es;
}

} e

}

return err;

Page: 12

This snippet shows how to find afile by namein the Preferences Folder.

Fi ndFol der will returnf nf Err (-43) if it can't find the System Folder or the Preferences folder (and
you are using kDont Cr eat eFol der , asthis code does). FSvakeFSSpec will returnf nf Err if afileor
folder doesn't exist with the specified name. If no file exists, you will have to create your preferencesfile
before you can open it.

Note: FsvakeFSSpec will return avalid FSSpec if afolder with the specified name exists. When you
attempt to open the returned FSSpec, make sure that you can deal with the open call failing.

TN 1134: The Preferences Problem

#i ncl ude <Types. h>

#i ncl ude <Fol ders. h>
#i ncl ude <Files. h>

#i nclude <Errors. h>

#i ncl ude <TextUtils. h>

#i ncl ude <assert. h>

enum {
/'l Choose an unused error nunber that the calling code will know how to handl e.
fi ndFol der Err = 128
1
CSErr Fi ndPref sByNane (FSSpec * prefsFSSpec) {
OSErr err = nokrr;
Sl nt 32 foundPrefDirl D = 0;
Sl nt 16 f oundPr ef VRef Num = 0;
Str 255 pr ef sNane;

assert (prefsFSSpec !'= nil);

/'l Get the preferences file nane.
Get I ndString (prefsName, kPreferencesSTRRes, kPrefsNaneSTRI ndex);

if (prefsName == nil) {

err = resNot Found;

}

if (err == noErr) {
/1 Find the Preferences folder to begin our search
err = FindFol der (kOnSystenDi sk, kPreferencesFol der Type,
kDont Cr eat eFol der, &f oundPref VRef Num &f oundPrefDirlD);

return err;

/1 1f the prefs name's string is nil then the resource probably doesn't exist.

}
if (err == noErr) {
/1 Make an FSSpec to where the preferences file should be
err = FSMakeFSSpec (foundPref VRef Num foundPrefDirlD, prefsNane, prefsFSSpec);
} else {
err = findFol derErr;
}

Further References

o Inside Macintosh: Macintosh Toolbox Essentials, Chapter 7 - Finder Interface
o The Creator code registration web page

Downloadables

E Acrobat version of this Note (K).

i‘ Internet Config source

Page: 13

TN 1134: The Preferences Problem Page: 14

ChangeHistory
e Originally written in June 1998.
e In October 1998, this Technote was updated to add another alternative possibility where an
application could search for its preferencesfile. It was updated to include the suggestion of how
to implement local preferences, that is, preferencesin the same folder as the application.

To contact us, please use the Contact Us page.
Updated: 19-Oct-98

Technotes
Previous Technote | Contents | Next Technote

