Technote 1008 - Understanding PCI Bus Performance Page: 1

Technotes
ownload Download
FOF A
i]
Acrobat file (254K) AppleWorksfile (60K)

Under standing PCI Bus Performance

Technote 1008 OCTOBER 1995

With the second generation of Power Macintosh computers, Apple has transitioned the Macintosh 1/0
expansion bus from NuBus(TM) to PCI. Apple's underlying policy isto support the PCI standard, as
expressed in the PCI Local Bus Specification, Revision 2.0.

The adoption of the PCI standard brings many advantages to the Macintosh platform. Arguably, one of
the most significant isincreased 1/O bandwidth. Developers frequently ask questions on PCI bus
commands with an eye toward bus performance. This Technote examines the PCI bus commands, the
operation of the IB chip (the PowerPC processor to PCI interface bridge chip), achievable PCI
bandwidth on PCI Power Macintosh computers, and, finally, Mac OS services available to maximize
PCI bandwidth.

This Technote is written for PCI hardware designers and driver writers who are devel oping for the
Power Macintosh platform.

Contents

o About Power Macintosh I nterrupt M anagement
o About the PowerPC Processor and PCI Commands
o About the Mac OS & Servicesto Maximize PCI Throughput

e Summary

About PCI Performance on the Power M acintosh

A good place to start addressing PCI performance on Power Macintosh CPUs is the PCI standard itself.
The Bus Specification, Revision 2.0, features a 32-bit data path -- upgradeable to 64-bits -- with
synchronous bus operation up to 33 Mhz, and the ability to transfer a data object on the raising edge of
each PCI clock cycle. Assuming that neither the initiator nor the target inserts wait states during each
data phase, the maximum theoretical bandwidth over a 32-bit busis 132 Mbytes/second. Thisalso
assumes continuous bursting with a 32-bit data object transferred on each PCI clock cycle. (Apple's
implementation incorporates a 32-bit data bus.)

Since the IB chip competes for system memory aong with other system devices, continuous PCI
bursting is not possible. Therefore, the achievable PCI bandwidth on Power Macintosh computers -- a
significant improvement from NuBus -- will be less than the PCI theoretical maximum. Also, the
bandwidth will be dependent on the PCI target's hardware design and the architecture of the driver
software.

A PCI burst transfer is defined by one PCI bus transaction with a signal address phase followed by two
or more data phases. One may ask, how can the bus master transfer a data object on each PCI clock
cycle? To initiate a bus transaction, the PCl master only hasto arbitrate for ownership of the bus one

Technote 1008 - Understanding PCI Bus Performance Page: 2

time. The master then issues the start address and transaction type during the address phase. It's the
responsibility of the target device to latch the start address into an address counter and increment the
addressing from data phase to data phase. (A single-beat read or write transaction is defined by asignal
address phase followed by only one data phase.)

For data to be transferred between the PowerPC Processor and the PCI Target, or for the PCI Target to
transfer data between system memory, one of the following commandsis initiated, as shown in Table 1.

Table 1 Commande between R petPC: Procae=of Bl PO Bus

PE1 Commmd Indkimlor

17O Read Froceesor gETerated

170 ¥Vrite Frce=or genecated
Cenfigurnlien Rend Procesaor grnetated
Cordlgutation Yrite Frocesaor gETerd ted

Memery Read Proce=or ar PO basier generaded
Memery Read Line Procesaor ot PLI bpater genermied
Meroory Read Multple Processor ot LT Blester gerareded
Memery Weite Procezor or PO basier gerneraded
Mernery Write and Irorelidete Procesaor ot PLI blpaler genernded

Table 1. Commands between Power PC Processor and PCI Bus

Note:
The 1/O Read and 1/0 Write commands are used to transfer data between the Processor and the
Target's 1/0 space.

The Configuration Read and Configuration Write commands are used to transfer data between
the Processor and the PCI target's Configuration registers during system initialization.

The Memory Read and Memory Write commands are used to transfer data between the PCI
Master and the Target's memory space.

The Memory Read Line command is used by the PCI Master to transfer a cache line of data
from the PCI Target's memory space.

The Memory Read Multiple command is used by the PCl Master to transfer more than one
cache line of datafrom the PCI Target's memory space.

The Memory Write and Invalidate command is used by the PCI Master to transfer one or more
complete cache lines of datato the PCl Target's memory space.

Note:
A cachelineis 32-bytesfor Apple Power Macintosh computers.

About the Power PC Processor and PClI Commands

Now with the basics of the PCI bus under our belt, let's move on to important details regarding PCI
Power Macintosh computers. The PowerPC processor has a 64-bit data bus and its system memory
space defaults to write back cache mode, while the PCI busis 32-bits wide and the PPC processor sets
PCI address space to cache inhibit mode. For PPC initiated read and write transactions between PCI
memory space, the IB chip (the PowerPC Pracessor to PCI Bridge) will initiate basically one of the
three following types of PClI commands:

1. asingle-beat Memory Read or Write command;

2. aMemory Read or Write command with two data phases -- defined as a burst transaction;
and

3. aMemory Read Line or Memory Write and Invalidate command that bursts a 32-byte cache
line.

Important:

Technote 1008 - Understanding PCI Bus Performance Page: 3

The PPC processor will not burst to or from address space marked cache inhibited. Therefore,
under default cache settings, the IB chip will not initiate the Memory Read Line or Memory
Write and Invalidate commands to a PCI target.

As per the PCI Specification Revision 2.0, PCI Power Macintosh Computers support PCI 1/0 space.
PCI 1/0 commands and Mac OS services available for them are addressed |ater in this Technote.

With the basics of the PCI bus described and details of the Power Macintosh PCI implementation
outlined, this should be ample background to describe the functionality of the IB chip. In particular,
under what circumstance will it perform what type of PCI command?

Bursting from Power PC to PCI

Provided software is written to utilize floating-point load and store instructions -- as opposed to integer
operations -- the IB chip will burst atwo-beat Memory Read or Memory Write command (two 4-byte
data phases with one PCI transaction). The PowerPC floating-point datais 8-bytes wide and integer data
is4-bytes. Utilizing floating-point instructions in effect nearly doubles the PCI bandwidth over
single-beat PClI Memory Read or Write commands. Thisisworth investigating for solutions where the
PCI hardware does not support cache line bursting.

If the PCI target's address space is set to write thru cache mode, the IB chip will perform an eight-beat
burst read on PCI with the Memory Read Line command. Thistrandatesto a cacheline, eight 4-byte
long words, i.e. 32-bytes.

If the PCI target's address space is set to write back cache mode, the IB chip will perform an eight-beat
burst write on PCI with the Memory Write and Invalidate command.

Important:
Extreme care must be taken for burst writesto PCI address space to perform appropriate cache
flushing.

Bursting from PCI to Power PC

If the addressis aligned on an 8-byte boundary, the IB chip will respond to PClI Memory Read and
Memory Write commands by atwo-beat PCI transaction to aign two 32-bit PCl datawords to the
64-hit PowerPC bus. On non-8-byte-aligned addresses, single-beat transactions are implemented.

The PCI Memory Write and Invalidate command will perform an 8-beat transaction if the addressis
aigned on a 32-byte boundary.

The PCI Memory Read Line or Memory Read Multiple commands will perform an eight-beat
transaction if the addressis aligned to an address less than or equal to 8-bytes |ess than the next 32-byte
boundary. The PCI Memory Read Line and Memory Read Multiple commands are treated the same by
the IB chip, in either case the IB chip will disconnect after an eight-beat transaction -- one 32-byte cache
line.

Note:
Keep in mind that the main memory spaceis set to write back cache mode.

Asmentioned earlier, 132 Mbytes/sec is the maximum theoretica bandwidth across a 32-bit PCI bus at
33 Mhz. Table 2 and Table 3 show the maximum achievable bandwidth that can be expected, depending
on the type of PCI transaction performed. Please note these values are not guaranteed but areredlistic
ranges that have been measured moving large buffers (many thousands of bytes) -- to average out PCI
arbitration PCl wait states -- across a Power Macintosh Computer's PCI bus.

The numbersin Tables 2 and Table 3 are based on the following assumptions:

Bus Speeds:

e Processor Busisrunning at minimally 40 Mhz
e PCI Busisrunning at 33 Mhz

PCI Target responses during Power PC Processor to PCI transactions:

Technote 1008 - Understanding PCI Bus Performance

e PCI Targets are medium DevSd_timing with NO inserted wait states for reads and writes.
e PCI Target does not assert Stop_ to disconnect bus.

PCIl Master requirements during PCl Master with System Memory transactions:

e PCl Master is able to source data within one clock of Frame _ assertion with no inserted wait
states for subsequent data phases.
e PCl Master is able to sink data with no inserted wait states for subsequent data phases once the
host bridge asserts Trdy .
e PCl Master isable to start its next transaction within two clocks from the PCI Bus returning to
the Idle state from its previous transaction.

Tabrla 2

PovaP G Procaazar o POl KaHmum Bendwidih Summery

Bu> Haat=
Proceamar
TProceasar
TProceasat

Pooces=r

Proceasar

Froceasat

Tiansaction Hhyiea!
Deacriplion troma,

¥rite Te PCI 1

¥rite Te PCI]

¥rite Ta FCI e,
i

Eead From
FI

Eead Fromn 8
B

Eead Frorn 3
B

Pl
Bl
(KB

20
40
&h
1

20

40

PPC sehup
[ateger Store
FF Stom

[C] CesposEack
[ateger Load

EF Load

PC1 ¥WriteThn

Table 2. Power PC Processor to PCI Maximum Bandwidth Summary

Toble 2

PZl et 1o 3yxten Memory Weximum Bandwidh Summar

Bw MactEl
PCI brlpaler

PCI tefpater

I bfpater

I bfpater

FCT bdpeter

BT blasier

Tremeacibon e
Daeciiption trome .
Write T i
Memaorcy

Wiita T i
Meramey

Wirita T 2
Memary

Kead Frotn i
Mernoty

Kead From &
Meroty

Read From 1
Mermoty

Pl
B
(MB&D
20

]

&0

10

15

o

PPC comamand
Klexn Sy

Metn Wr
Mern Wr e Iy
e Bd
s Bd

Kem Ad Ln/hdult

Table 3. PCl Master to System Memory Maximum Bandwidth Summary

Note:

For # of byteg/trans.: 4 indicates single-beat; 8 equals two-beats; and 32 is an 8-beat

transaction.

About the Mac OS & Servicesto Maximize PCI Throughput

Now that the hardware level basics have been examined for PCl Power Macintosh Computers, let's move
up to the Mac OS level and review services available to maximize PCI throughput. It'simportant to
mention first that for second generation PCI Power Macintosh Computers, thereisanew PCI driver
environment -- or 1/O architecture -- available in the reference release Mac OS version 7.5.2. Refer to

Designing PCI Cards and Drivers for Power Macintosh Computers.

With this reference release OS, Apple starts to separate between APIs (Application Programming

Page: 4

Technote 1008 - Understanding PCI Bus Performance

Services) and SPI (System Programming Services). In this present Mac OS release and the future
direction, such as Copland, APIs and toolbox services are no longer available to driver SW. The Mac
OSversion 7.5.2 providesaDSL (Driver Services Library) that implements all SPI services available for
drivers; documented in Designing PCI Cards and Drivers for Power Macintosh Computers , Chapter
9.

To coordinate 1/0 operations that transfer buffers between system memory and PCI address space, the
Macintosh OS provides two functions with the DSL (Driver Services Library): Pr epar eMerror yFor | O,
and Checkpoi nt 1 O. The Pr epar eMenor yFor | Ofunction allocates resident system memory to buffers,
provideslogical and physical address information, and in conjunction with Checkpoi nt I O manages
coherency between system memory and the PowerPC caches. Checkpoi nt | Ois called after the buffer
transfer is complete and either relinquishes the memory back to the OS and adjusts the processor caches
for coherency, or prepares for another 10 transfer.

Important:
Pr epar eMenor yFor | O should not be confused with PCI
1/0 space. It isfor buffers whether they are located in PCI memory or PCI 1/O space.

Pr epar eMenor yFor | Oisan example of aservicein the DSL; PCI cardsthat have DMA hardware
should use Pr epar eMenor yFor | Oto locate physical addressesin system memory. Older I/O expansion
cards would typicaly use atoolbox call Get Physi cal tolocate physical addressesin system memory.
To be fully compatible with the present and future Mac OS rel eases, drivers should only use SPI
services. Again, thisisfully documented in Designing PCI Cards and Drivers for Power Macintosh
Computers .

Remembering that PCI address space defaults to cache inhibit mode, to enable the PowerPC to burst to
areas of PCI memory space, that area must be set to cacheable setting. This can be done with the

Set Processor CacheMode (see chapter 9 in Designing PCI Cards and Drivers for Power Macintosh
Computers). Set the desired PCI address space to kPr ocessor CacheMbdeCopyBack for cacheline
writes and kPr ocessor CacheModeW i t eThr ough for cacheline reads.

Important:
Extreme care must be taken for burst writesto PCI address space to perform appropriate cache
flushing.

Be advised that the Set Pr ocessor CacheMde has an undocumented limitation. The PowerPC address
space is divided into sixteen 256-Mbyte segments that are distinguished by the upper 4-bits of the
effective address. The Set Pr ocessor CacheMode isonly capable of changing the cache setting for one
contiguous section of memory per 256-Mbyte segment. Therefore, if two PCI cards are configured
where they both have PCI address assignments in the same segment only one card can change its
address space cache setting.

Asan example, if two cards (card x and card y) have addresses mapped into segment 8, one at
0x80800000 and another at 0x80801000, thefirst call to Set Pr ocessor CacheMbde from the driver of
card x to make a cacheable address space in segment 8 will work. A second call, say from the driver of
card y, to modify the cache setting in segment 8 will not work nor will it report an error. This scenario
will most likely result in alower than expected performance for card y, because card y address spaceis
actualy cacheinhibited which disables PCI transactions of 32-byte cache lines. If thetwo cards are
mapped into different segments, such as8 and A, then they both can modify the cache settings within
their perspective segments. This limitation will be relaxed in the future.

Extensionsto the Bl ockMove routine have been incorporated in the DSL that optimizes performance on
the PowerPC CPU family. In particular, Bl ockMoveDat a has been optimized for datathat is cacheable
and Bl ockMoveDat aUncached for datathat is cache inhibited. The difference between the cached and
uncached versions of these instructionsisthat, for Bl ockMoveDat a, the PPCdcbz instruction is used to
avoid the logically unnecessary read of the destination cache blocks. Bl ockMoveDat aUncached does
not use thedcbz instruction because dcbz is extremely sow for address space marked cache inhibited
or cache writethru.

Table 4 ligts the different BlockM ove functions provided in the DSL

Page: 5

Technote 1008 - Understanding PCI Bus Performance

Hbked Bl kiiowE WmncHoee prouvkded in 16 DSL

Blochblove roay be BSK code. enched
dagtlepton mernory

Elackbioveltte st BEE pode, caehed dertdhation
roettony (Fealest warslon)

Elachbdovelneechad ey he BEE pede, uneeched
deatinpton mernory (Slemwest

BlocktoveCatallnmched not 8K code, unmached de={inaton
IO@KLOTY

ElochZero to Betw ceched mernory

ElochZerolncached to sorw unceched mernory

Table 4. BlockM ove functions provided in the DSL

The difference between Bl ockMove and Bl ockMoveDat a versionsis whether or not the block being
moved contains 68K ingtructions. If the data does contain 68K instructions Bl ockMove must be called
which also flushes the DR (Dynamic Recompilation) Emulator's cache. Thisis costly time-wise, so if
the block does not contain 68K instructions, be sure to use Bl ockMbveDat a Of

Bl ockMoveDat aUncached. Also with performance in mind, when appropriate the Bl ockMove routines
will align the source and destination address to utilize floating-point load and store instructions.

To summarizethe Bl ockMve routines, for transfers of large buffers between PCI cardsthe

MoveBl ockDat a Of Bl ockMoveDat aUncached functions should be used, depending if the destination
address space is marked write back cacheable or not. Furthermore, PCI drivers most likely will not need
to consider the non-Data variant of the Bl ockMove routines because destination buffers either in PCI
address space or system memory will probably not need to execute 68K code.

A common question from PCI developersis, how to initiate a PCI burst of a cache line? Provided the
PCI address space is marked cacheable as explained earlier, the BockMoveDat a function will force the
IB chip to burst 32-byte cache lines -- eight-beat data phases per PCl command transaction.

To read or write PCI 1/O space, the Expansion Bus Manager provides routines to transfer data -- byte,
word, or long word (8, 16, or 32 hits, respectively) -- using PCI 1/0 Read and 1/0 Write commands. The
Expansion Bus Manager is part of the ROM firmware in PCI Power Macintosh CPUs. These routines
also perform appropriate byte swapping. For afurther description, refer to Designing PCI Cards and
Driversfor Power Macintosh Computers , chapter 10. PCI cards that are limited to 1/O space, and do
not incorporate PCl memory space, are limited to PCI 1/0 Read and 1/0 Write commands to transfer
data between the PPC and PCI target. If PCI 1/O data needs to be processed quickly, note thereisa
significant performance hit using Expansion Manager Routines. These routines are intended for PCI
targets that have 1/0 registers or low bandwidth I/O buffers. The IB chip does not burst PCI 1/O Read
nor burst PCI 1/O Write commands.

Asdescribed in chapter 10 of Designing PCI Cards and Drivers for Power Macintosh Computers
along with sample code, the PCI property "assigned-addresses’ provides vector entries that represent
physical addresses on PCI cards. Using the "APPL ,address" property adriver can locate alogica
address of a physical 1/0 resource. By accessing the logical 1/0 addressthe IB chip will generate the
appropriate PCI I/O command. Therefore a driver can generate PCI 1/O commands without using the
Expansion Bus Manager Routines; the same way it accesses PCI memory space. This providesthe
fastest way to access 1/0O space, but note it does not perform byte swapping as the Expansion Bus
Manager routines.

Also note, the Expansion Bus Manager provides OS services to generate PCI Configuration Read,
Configuration Write, Interrupt Acknowledge, and Specia Cycle commands.

Summary

The PCI bus on Power Macintosh computers delivers higher 1/0 performance along with lower costs
and complexity from the previous NuBus architecture. PCl also represents an emerging standard in the
desktop PC industry. To maximize bus performance, utilize the services available in the Driver Services

Page: 6

Technote 1008 - Understanding PCI Bus Performance

Library, and pay close attention to PCI chip selection -- in particular, chips that can execute cache line
burst transactions with Memory Read Line, Memory Read Multiple, and Memory Write and Invalidate
commands. And consider Designing PCI Cards and Drivers For Power Macintosh Computers as
essential documentation for successful PCI development on the Mac platform.

Further References

e Designing PCI Cards and Drivers For Power Macintosh Computers
e Creating PCI Device Drivers, develop , The Apple Technical Journal, Issue 22
o TheNew Device Drivers. Memory Matters, develop , The Apple Technical Journal, Issue 24

Technotes
Previous Technote | Contents | Next Technote

Page: 7

