Technote 1089 - HFS Elucidations Revisited Page: 1

TECHNOTE 1089

CONTENTS T
his Technote, originally FL 6 - HFSElucidations ,
describes afew problems that may occur while using

One Close is Always Enough

Avoiding the Problem of Overwriting The Hierarchica File System (HFS). It also describes waysto
FCB Record avoid these problems.
This .filename L ooks Outrageous This Note isimportant for developers who need to

address debugging issues involving HFS. Thisisas
important now as it was when the Note was originally
published.

The Note discusses the following problems:

1. Itisvery important to be careful about how files
are opened and closed. There must be no more
than one close for every open.

2. Don't usedriver names, like. Bout, . Print or
. Sony, in place of file names, or the system may
become confused.

Each of these can lead to strange occurrences, aswell as
problems for users. Performing any or all of these
marginally-illegal operationswill not necessarily lead to a
System Error. In some cases, the confusion generated
may be worse than a System Error.

One Close is Always Enough

If afileisclosed twice, it is possible to corrupt the file system on adisk. Without a clear understanding of
how the file system all ocates access pathsto files that are currently open, it is possible to adopt arather
cavalier attitude about opening and closing files. This Note explains why it is necessary to be very careful
about opening and closing files.

When the File Manager receives an Open call, it will look at the parameters passed in the parameter block
and create a new access path for the file that is being opened. The access path is how the File Manager
keepstrack of whereto send data that is written, and where to get datathat is read from that file. An access
path is nothing more than:

1. abuffer that the file system usesto read and write data, and
2. aFile Control Block that describes how thefileis stored on adisk.

A call such as

ErrStuff = FSpOpenDF (fsspec, pernission, firstRefNum;

will create the access path as a buffer and a File Control Block (FCB) in the FCB buffer. The term "FCB
buffer" isused in most documentation, although it actually behaves more like an array than a buffer.
However, to avoid confusion, this Technote will continue to use the term "FCB buffer,” although "FCB
array" would be a better description.

Technote 1089 - HFS Elucidations Revisited Page: 2

Note:

The following exampleis here for illustrative purposes only; dependence on it may cause compatibility
problems with future system software.

TheFcBspt r isalow-memory global (at 0x034E) that holds the address of a nonrelocatable block. That
block isthe File Control Block buffer, and is composed of the two byte header which gives the length of
the block, followed by the FCB records themselves. The records are of fixed length, and give detailed
information about an open file. The structure of the queue can be visualized as.

ICESR+xr [(§34E)—W 1
2z

Fuffer Length

Firzt ECE Peooxrd

24ECELargth

Second ICE RBecooxd

Lazt ICE Pecoord

As depicted, any given record can be found by adding the length of the previous FCB records to the start
of the block, adding 2 for the two byte header; giving an offset to the record itself. The size of the block,
and hence the number of files that can be open at any given time, is determined at startup time and
expanded on demand later. The call to open the file referenced by f sspec above, will produce thefile
reference number (which refers to the access path to thefile) inf i r st Ref Num Thisisthe number that will
be used to access that file from that point on. The File Manager passes back an offset into the FCB buffer
asthe reference number (Ref Num). This offset isthe number of bytes past the beginning of the queue to
that FCB record in the buffer. That FCB record will describe the file that was opened. An example of a
number that might get passed back as aRef Numis $1D8. That also means that the FCB record is$1D8
bytesinto the FCB block.

A visua example of arecord in use, and how the Ref Numrelatesis:

Enze 1]
2z

Enze+PefHum

Technote 1089 - HFS Elucidations Revisited

Base ismerely the address of the nonrelocatable block that isthe FCB buffer. FCBSPt r pointstoit. The
Ref Num(anumber like $1D8) is added toBase, to give an address in the block. That address iswhat the
file system will use to read and write to an open file, which iswhy you are required to pass the Ref Numto
thePBRead and PBW i t e calls. So Ref Numis merely an offset into the buffer.

Let's step through a dangerous imaginary sequence and see what happens to a given record in the FCB
buffer. Here's the sequence we will step through:

Err St uf f
Err St uff
Err St uf f
Err St uff
{the above

FSpOpenDF (fsspec, permission, firstRefNum;

FSCl ose (firstRefNum);

FSpOpenDF (secondFi |l eSpec, perm ssion, secondRef Num ;
FSClose (firstRefNum); {the wong file gets closed!!!}
line will close 'SecondFile', not '"FirstFile', which is

al ready cl osed}

Before any operations, the record at $1D8 is not used.

Ensze 1]

2z

Fnse+RafHum

After thecall:

ErrStuff = FSpOpenDF (firstFil eSpec, permssion, firstRefNun;
firstRefNum = $1D8 and the record isin use.

Enze 1]

2z

Enze+PefHum

Page: 3

Technote 1089 - HFS Elucidations Revisited Page: 4

After thecdll:

ErrStuff = FSC ose (firstRefNunj;
firstRefNum is still equal to $1D8, but the FCB record is unused.

Ensze 1]
2

Fnse+RafHum

After thecall:

ErrStuff = FSpOpenDF (secondFil eSpec, perm ssion, secondRefNum;
SecondRefNum = $1D8, FirstRefNum = $1D8, and the record is reused.

Enze 1]
2
Enze+PefHum

After thecall:

ErrStuff = FSO ose (firstRefNunj;

The firstRefNum = $1D8, secondRefNum = $1D8, and the FCB buffer element is cleared. This happens
eventhoughtirst Fi | e wasaready closed. Actualy, secondFi | e was closed:

Technote 1089 - HFS Elucidations Revisited Page: 5

Enze 0
2
Fase+PefHum
Note:

The second close is using the old Ref Num The second close will still close afile, and in fact will return
noErr asitsresult. Any subsequent accesses to the secondRef Numwill return an error, since thefile
'secondFi | e' was closed. The File Control Blocks are reused, and sincethey arejust offsets, it is
possible to get the same file Ref Numback for two different files. Inthiscase, fi r st Ref Num ==
secondRef Numsince fi r st Fi | e" was closed before opening 'secondFi | ' and the same FCB record
was reused for 'secondFi | e'.

There are any number of nasty casesthat can ariseif afileisclosed twice, reusing an old Ref Num A
common programming practice isto have an error handler or cleanup routine that goes through the files
that a program creates and closes them all, even if some may aready be closed. If an FCB element was not
reused, the d ose will return the expected f nopnEr r . If the FCB had been reused, then the d ose could
be closing the wrong file. This can be very dangerous.

Asaparticularly nasty example, think of what can happen if a program were to close afile, then the user
inserted an HFS floppy disk. The FCB could be reused for the Catalog File on that HFS disk. If the
program had a generic error handler that closed al of itsfiles, it could inadvertently close "its' file again.
If it thought "its" file was still open it would do the close, which could close the Catalog file on the HFS
disk. Thisis catastrophic for the disk since the file could easily be closed in an inconsistent state. The
result isabad disk that needs to be reformatted.

Technote 1089 - HFS Elucidations Revisited

Avoiding the Problem of Overwriting The FCB Record

A very simpletechniqueisto merely clear the Ref Numafter each close. If the variable that the program
usesis cleared after each close, then thereis no way of reusing a Ref Numin the program. An example of
this technique would be:

ErrStuff = FSpOpenDF (firstFil eSpec, permission, firstRefNunm;
ErrStuff = FSO ose (firstRefNum;

firstRefNum= 0; { Wt just closed it, so clear our refnum}
ErrStuff = FSpOpenDF (secondFil eSpec, perm ssion, secondRefNun;
ErrStuff = FSO ose (firstRefNum); { returns an error }

This makes the second C ose pass back an error. In this case, the second close will try to close RefNum
=0, which will pass back ar f NunEr r and do no damage.

Note:
Be sureto use 0, which will never be avalid Ref Num since the first FCB entry is beyond the FCB buffer
length word. Don't confuse this with the O that the Resource Manager uses to represent the System file.

Thus, if an error handler were cleaning up possibly open files, it could blithely close al the filesit knew
about, sinceit would legitimately get an error back on files that are already closed. Thisis not done
automatically, however. The programmer must be careful about the opening and closing of files. The
problem can get quite complex if an error isreceived halfway through opening a sequence of ten files, for
example. By merely clearing the Ref Numthat is stored after each closg, it is possible to avoid the
complexities of trying to track which files are open and which are closed.

This .filename L ooks Outrageous

Thereisapotentia conflict between file names and driver names when using deprecated Open calls, such
as FSOpen, PBHOpen and PBOpen. If afile nameis something like .Bout, .Print or .Sony, then the cdll
will open the corresponding driver instead of the file. Drivers have priority and will always be opened
before afile of the same name. This may mean that an application will get an error back when opening
these types of files, or worse, it will get back adriver Ref Numfrom the call. What the application thought
was afile open call was actually adriver open call. If the program uses that access path as afile Ref Num it
ispossibleto get all kinds of strange things to happen. For example, if . Sony is opened, the Sony driver's
Ref Numwould be passed back, instead of afile Ref Num If the application doesaw i t e call using that

Ref Num it will actually be adriver call, using whatever parameters happen to be in the parameter block.
Disks may be searching for new life after thistype of operation. If aprogram createsfiles, it should not
allow afileto be created whose name beginswith '.".

[mportant:
This problem never occurs when using the new Open calls, such as FSopenDF and PBHOpenDF. For this
reason, it is strongly recommended that these Open calls be used instead of FSOpen.

Further References

e Inside Macintosh: Files , Ch 2, File Manager
@ Technical Note FL22 - HFS Ruminations

Downloadables

Page: 6

Technote 1089 - HFS Elucidations Revisited Page: 7

= Acrobat version of this Note (K)

To contact us, please use the Contact Us page.
Updated: 20-Dec-96

Technotes
Previous Technote | Contents | Next Technote

