
TN 1082: The Problem with & (Simple) Fix to
Purgeable WDEFs

Page: 1

The Problem with & (Simple) Fix to Purgeable WDEFs

CONTENTS

Defining the Problem

The Problem Scenario

Why This Hasn't Been a Problem Before

The Simple Fix

Additional Notes & Comments

Summary

This Technote describes a problem with purgeable WDEFs

and explains how to fix it simply by marking WDEF resources as
non-purgeable. This Note is directed at application developers
who include WDEF resources in their applications as well as
developers who create WDEF code resources.

Defining the Problem
Like other definition functions, WDEFs contain executable code that needs to be locked down in
memory whenever it is executed. If your application is using a custom WDEF marked as purgeable, the
Memory Manager may purge the WDEF resource in order to allocate additional memory in your
application heap. The Window Manager will reload the WDEF resource if necessary before calling it. If
your application is the "current" application, i.e. the one that is executing but may not necessarily be
frontmost, the Window Manager can reload the WDEF resource. Everything works fine.

The Problem Scenario
The following is a sequence of events that may cause the problem to occur: The Window Manager calls
your WDEF when it needs to redraw your windows even if your application is not current. It does this
by calling your WDEF directly whenever your windows get erased. If the WDEF has been purged, the
Window Manager will try to reload the WDEF. Since your application is not the "current" application,
your application's context has not been restored and your resource chain is not the current resource
chain. As a consequence, the Window Manager attempts to load a WDEF from the wrong resource
chain. Since it can't find the WDEF, it calls SysError(87).

Why This Hasn't Been a Problem Before
There are three reasons why this hasn't been a problem in the past.

1. Most applications use WDEFs for floating windows. As defined by Apple's Human Interface
Guidelines (HIG), applications should hide their floating windows before being suspended.
Since the windows are invisible, the Window Manager under most circumstances won't try to
reload your WDEF if it does get purged.

2. This problem might not be triggered by the fact that applications in the background don't
normally allocate a lot of memory. For example, even if the WDEF is marked as purgeable, the
Memory Manager may not actually cause your WDEF to be purged.

3. Most applications don't run with very tight memory partitions, so even though a WDEF
resource is marked purgeable, it doesn't need to be purged.

TN 1082: The Problem with & (Simple) Fix to
Purgeable WDEFs

Page: 2

The Simple Fix
The simple fix to the problem of your WDEFs not being able to be reloaded is to mark your WDEFs as
non-purgeable. This prevents the Memory Manager from purging the WDEF, so it is always available
even if your application is not frontmost.

Additional Notes & Comments
The following are some important items that you may need to consider when working through the
problem of purgeable WDEFs:

Other 'DEF types (CDEFs, MDEFs, etc.) won't exhibit this problem because they don't get
called when the application's process globals are not current as in the case of WDEFs. These
resources types can remain purgeable.
WDEFs in the System file (or in an enabler file and probably in extensions such as Aaron) can
safely be purged because they are always in the resource chain - no matter which application's
process is set up.
An application with a purgeable WDEF may have code in it that makes it non-purgeable after
bringing it into memory - in which case, this problem won't occur.
Third-party memory utilities may force purging to occur more often, thus exacerbating this
problem.
If there is data embedded in a WDEF and the WDEF gets purged and reloaded, the data will
have reverted to its on-disk values. Many popular development tools embed global variables in
code resources. (If your WDEF needs to call SetUpA4, you're using one of these development
systems.) A WDEF whose variables suddenly change to unexpected values can of course cause
any of the crashes normally associated with unexpected values.
In general, applications should not detach WDEF resources from their resource map (see
Technical Q&A TB575: Window Manager Q&A's). However, it's worth noting that detached
WDEF resources which are also purgeable can never be reloaded from disk.

Summary
The problem with purgeable WDEFs can be fixed by simply marking their resources as non-purgeable.

Further References

Technical Q&A TB575: Window Manager Q&A's

Downloadables

 Acrobat version of this Note (K)

 AppleWorks version of this Note (16K)

To contact us, please use the Contact Us page.
Updated: 7-Nov-96

TN 1082: The Problem with & (Simple) Fix to
Purgeable WDEFs

Page: 3

Technotes
Previous Technote |Contents | Next Technote

