Technote 1026 - The Notification Manager: Problems &
Fixes

Technotes
ownlo Download
FOF TR
]
Acrobat file (K) AppleWorksfile (44K)

The Notification Manager: Problems & Fixes

Technote 1026 FEBRUARY 1996

This Technote describes two serious problemsin the Notification Manager (NM), one having to do with
activate events and the other with update events. These problems can cause windows in your application

to be drawn redundantly or not at all. This Technote provides aworkaround for the active event problem
and some sample code, with explanations, for fixing the update event problem.

If you're an application or app framework developer and want to ensure the windows in your
application(s) are aways updated and activated properly, you should read this Note.

This Technote augments the information presented in three chapters of Inside Macintosh :"Event
Manager" (Chapter 2) and "Window Manager" (Chapter 4) of Macintosh Toolbox Essentials and
"Notification Manager" (Chapter 5) of Processes

Contents

o Defining the Problem

e Using the Sample Code Library "UpdateRegionSaver” to Work Around the Problem
o UpdateRegionSaver Reference

e Summary

e Appendix A

Defining Notification Manager Problems

Y ou can use the Natification Manager to present the user with amoda dialog (aert) that opensin front
of the windows of all applications. This diaog actually appearsin the window list of the frontmost
application during its call to WaitNextEvent.

Important:
Y our application should not depend on the details of the way Notification Manager presentsits
diaog, including but not limited to the fact that NM uses Dialog Manager. The information is
presented here only in order to provide afull understanding of the problem at hand.

Thefirst thing to know isthat Notification Manager calls the Dialog Manager to manage the dialog.
More specificaly, NM calls Modal Dialog with adiaog filter which in turn calls the standard dialog filter
as obtained by GetStdFilterProc.

Thefact that Didlog Manager, and in particular Modal Dialog and the standard dialog filter, provide

imperfect event handling means that some window-oriented events are "swallowed" (i.e., never provided
to your app) whilethe diaog is present.

Swallowed Deactivate Events (and Redundant Activate Events)

Page: 1

Technote 1026 - The Notification Manager: Problems &
Fixes
Y our application does not receive a deactivate event for the (soon-to-be-former) front window when the
Notification Manager's dialog appears. Thisis because Modal Dialog hasits own event loop (partialy
implemented by the standard dia og filter) and has no way of passing the deactivate event off to your
app's event loop.

When the user dismisses NM's dialog, your app receives a redundant activate event for the
(recently-reinstated) front window. Y our app can make sureit doesn't logicaly activate awindow (i.e.,
enable text fields, etc.) redundantly by ssimply checking to see if the window is already active before
logicaly activating it.

Swallowed Update Events

In order to understand how update events get swallowed, you need to understand how they would have
been generated in the first place.

Each window has aregion, expressed in globa coordinates, which describes the portion of the window
that needs redrawing. Thisis called the window's update region. During WaitNextEvent, the Event
Manager, Window Manager, and Process Manager collaborate in walking the current window ligt. If the
update region of awindow isfound to be non-empty, they generate an update event for that window.

When your application receives the update event, it calls BeginUpdate, (re)draws the image for the
window, and calls EndUpdate. The BeginUpdate/EndUpdate pair of cals empties the update region for
the window so that subsequent searches for windows which need updating do not find that window.

These update regions are the key to understanding how the Notification Manager swallows update
events.

The standard dialog filter, to which NM's dialog filter passes control, wants to ensure that background
apps get processing time by "solving" the problem described in Macintosh Technical Note TB37,
"Pending Update Perils." The standard filter smply calls BeginUpdate and EndUpdate every timeit's
given an update event, regardless of the window for which the event is bound.

Thisresultsin al windowsin the current window list having their update regions emptied amost
immediately. As a consequence, no update events are generated for those windows, even though they
need to be (re)drawn. When the user dismisses NM's dia og, only the windows covered by NM's dialog
get update events, and then only for the region covered by NM'sdialog.

There is nothing straightforward your app can do to prevent swallowed update events. While your app
innocently waits for acall to WaitNextEvent to return, NM suddenly puts up its dialog and seizes control
of the event loop until the user dismissesthe dialog. Y our app can't even predict when this will happen,
much less prevent it or easily work around it.

Using the Sample Code Library " UpdateRegionSaver" to
Work Around the Problem

Although Apple may fix both of these problemsin afuture system software release, you might consider
using some of the sample code presented here as a workaround. The sample code will continue to work
even if thereis afix to the system software.

Most users of UpdateRegionSaver will only need to make three very simple cals, shown in this sample:
SaveUpdateRegions, RestoreUpdateRegions, and DeleteUpdateRegions.

#i f ndef __ _EVENTS_ _
i ncl ude
#endi f
#i ncl ude "Updat eRegi onSaver. h"
pascal Bool ean Wit Next Event W t hNVSaf eUpdat es
(Event Mask event Mask, EventRecord *theEvent,
U nt 32 sl eep, RgnHandl e nobuseRgn)

Updat eRegi onSaver *root = SaveUpdat eRegi ons ();

Page: 2

Technote 1026 - The Notification Manager: Problems & Page: 3
Fixes
Event Record event;
Bool ean result = Wit Next Event
(event Mask, t heEvent, sl eep, nouseRgn) ;
Rest or eUpdat eRegi ons (root);
Del et eSavedUpdat eRegi ons (root);
root = nil;
return result;

}

For afull listing of each of the three calls, refer to Appendix A at the end of this Technote.
UpdateRegionSaver Reference

This section describes the data structures and routines specific to the UpdateRegionSaver library.
Data Structures

The UpdateRegionSaver library manipulates a data structure of type UpdateRegionSaver.

typedef struct Updat eRegi onSaver

RgnHandl e f RgnH,;
W ndowRef f Ref ;
struct Updat eRegi onSaver *f Next ;

}
Updat eRegi onSaver;

Field Descriptions

fRgnH
A region copied from the update region of awindow. It isin global coordinates (asis the update
region itself). Before being restored to the window, it will be copied and converted to the local
coordinates of the window.

fRef
The address of the window from which the copy of the update region came. Before restoring the
region, UpdateRegionSaver verifiesthat thereis still awindow at this address in the window ligt.
(Thisisnot a perfect test, but it is the best test that can be made without patching atrap or three.)

fNext

The address of the next structure in the linked list. The last node in thelist has a0 here.

UpdateRegionSaver Routines
To get alist of update regions associated with the windows in the current window lit, call

SaveUpdateRegions. To restore the regions to their owning windows, call RestoreUpdateRegions. To
destroy thelist of regions, call DeleteSavedUpdateRegions.

SaveUpdateRegions

To save the update regions associated with the windows in your application's window ligt, call
SaveUpdateRegions.

SaveUpdateRegions returns a pointer to the root of simple singly-linked list which contains a node for

each window. In each node your app will find awindow pointer, acopy of the window's update region,
and a pointer to the next node.

RestoreUpdateRegions

Torestore alist of saved update regions to the windows from which they came, call
RestoreUpdateRegions.

RestoreUpdateRegions copies the regionsin the list and converts the copies to the local coordinates of

Technote 1026 - The Notification Manager: Problems &
Fixes

each window before calling InvalRgn to merge the region into any update region which may already be
there.

DeleteSavedUpdateRegions
To delete alist of saved update regions, call DeleteSavedUpdateRegions.

Summary

The Notification Manager (NM) may present a Dialog Manager dialog whenever your application calls
WaitNextEvent. Thisimpedes the flow of window-related events (such as update or activate) to your
application's event loop. Make sure your app doesn't logically activate awindow which is aready active.
Use the UpdateRegionSaver library (or something like it) to ensure your app will aways get the update
eventsit requires.

Further Reference

e Macintosh Technical Note TB 37, "Pending Update Perils," has a discussion of the problem
Notification Manager "solves," as mentioned previoudly.

o Chapter 6, "Dialog Manager," Inside Macintosh: Macintosh Toolbox Essentials hasa
description of the operation of Moda Dialog and the standard dialog filter.

Appendix A
UpdateRegionSaver.h

#pragma once

#i f ndef __ W NDOWNS__

i ncl ude <W ndows. h>
#endi f

typedef struct Updat eRegi onSaver

/1 W don't care about alignment since this is an internal
[/ runtine-only structure.

RgnHandl e f RgnH,;
W ndowRef f Ref ;
struct Updat eRegi onSaver *f Next ;

}
Updat eRegi onSaver;

/1 1 can't figure why this next #ifdef would be necessary for
/1 pascal funcs,but CW for PPC says it is.

#i f def cpl uspl us

extern "C' {
#endi f

pascal void RestoreUpdat eRegi ons (Updat eRegi onSaver *);
pascal voi d Del et eSavedUpdat eRegi ons (Updat eRegi onSaver *);
pascal Updat eRegi onSaver * SaveUpdat eRegi ons (void);

#i fdef __cpl uspl us

}

#endi f

UpdateRegionSaver.c

#i f ndef _ LOWEM _
i ncl ude <LowiMem h>
#endi f

#i ncl ude "Updat eRegi onSaver. h"

Page: 4

static pascal

{

}

pascal

{

}

pascal

{

}

pascal

{

W ndowRef scan

Technote 1026 - The Notification Manager: Problems &
Fixes

Bool ean | sWndowsSti || Around (W ndowRef ref)

LMZet W ndowli st ();

whi |l e (scan)
if (scan == ref) break;
scan Get Next W ndow (scan);
}

return !!scan;

voi d Rest oreUpdat eRegi ons (Updat eRegi onSaver *ursp)

whil e (ursp)

if (!EnptyRgn (ursp->fRgnH) && I sWndowStill Around (ursp->fRef))
{

RgnHandl e | ocal Updat eRgn = NewRgn ();

i f (1 ocal Updat eRgn)
{

Poi nt zero;

Graf Ptr keep = qd.thePort;

Set Port (ursp->fRef);

zero.h = qd.thePort->portRect. | eft;
zero.v = qd.thePort->portRect.top;

d obal ToLocal (&zero);

CopyRgn (ursp->f RgnH, | ocal Updat eRgn) ;

O fset Rgn (| ocal Updat eRgn, zero. h, zero. v);

I nval Rgn (| ocal Updat eRgn) ;
Set Port (keep);
Di sposeRgn (| ocal Updat eRgn) ;

}

ursp = ursp->f Next;

voi d Del et eSavedUpdat eRegi ons (Updat eRegi onSaver *ursp)
whi | e (ursp)
{
Updat eRegi onSaver *next = ursp->f Next;
Di sposeRgn (ursp->f RgnH);

Di sposePtr ((Ptr) ursp);
ursp = next;

Updat eRegi onSaver * SaveUpdat eRegi ons (voi d)

/1 This function saves as nmany update regions as it can.

/1 |If for sonme reason nenory is so |ow that sone regions

// cannot be saved, this function makes a best effort.
/1 (lts best effort is rather stupid, but it does try.)

Updat eRegi onSaver *root = nil;
W ndowRef scan = LMzet W ndowLi st ();
whil e (scan)

Updat eRegi onSaver *newUpdat eRegi onSaver =

(Updat eRegi onSaver *) NewPtr (sizeof (UpdateRegi onSaver));

if (!MenError ())

Page: 5

Technote 1026 - The Notification Manager: Problems & Page: 6

Fixes
{
RgnHandl e rgnH = NewRgn ();
if ('rgnH
{
Di sposePtr ((Ptr) newUpdat eRegi onSaver);
newUpdat eRegi onSaver = nil;
}
el se
{ .
Get W ndowUpdat eRgn (scan, rgnH) ;
newUpdat eRegi onSaver - >f RgnH = rgnH,
newUpdat eRegi onSaver - >f Ref = scan,
newUpdat eRegi onSaver - >f Next = root;
root = newlUpdat eRegi onSaver ;
}
}

scan = Get Next Wndow (scan);
}

return root;

Technotes
Previous Technote | Contents | Next Technote

