
TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 1

Technote 1144
Writing Custom Hoses For LaserWriter 8.6

CONTENTS

Identifying a DTP's Type

Adding Hose Plug-ins

Hose Type Registrations

Summary

Downloadables

LaserWriter 8.6 supports printing to a variety of

desktop printer types, including PAP, LPR, and IrDA.
Each desktop printer can have its own method of
communicating with its associated physical printer, RIP,
or other post-printing processor. LaserWriter 8.6, through
the invention of custom "hoses", adds the ability for
shared libraries to implement various communication
methods and for these libraries to be loaded dynamically
based upon a DTP's type. This Technote gives an
overview of the custom hose specification for developers.

Identifying a DTP's Type

Associated with each LaserWriter 8 desktop printer is a 'PAPA' resource that identifies the DTP's type, as
well as the printer's name and other associated communications parameters. The DTP type takes the form
of a four-byte constant. All DTP types, with the exception of the 'PAP ' type, must be in the form '=XXX'
(e.g. '=Hld' or '=Fil'). This is due to how the old 'PAPA' resource was expanded with the release of the
LaserWriter 8.5.1 driver. The new DTP type signature replaces the zone string in the old 103-byte 'PAPA'
resource and maps to the appropriate tag 'TYPE' in the 'PAPA' resource. Technote 1115: The Extended
'PAPA' Resource contains detailed information about the contents of the 'PAPA' resource.

LaserWriter 8.6 DTP Types

The PrintingLib that ships with LaserWriter 8.6 supports the following DTP types:

'PAP '
Communication with the printer is performed using AppleTalk's Printer Access Protocol (PAP). The
printer's AppleTalk name, type, and zone are stored in the compatibility portion of the 'PAPA' resource as
described in Technote 1115: The Extended 'PAPA' Resource.

'=Hld'
The hold desktop printer is unique in that there is no associated communications module for it. A hold
desktop printer never converts the desktop spool file to PostScript, but instead simply queues the spool
files. To print a spool file queued to a hold desktop printer, the user must move the spool file into the
queue of another type of desktop printer.

'=Fil'
A translator desktop printer writes its PostScript, EPS, or PDF output to a file.

Note:
The ability to output PDF is dependent upon the user having Adobe's Acrobat Distiller installed.

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 2

'=LPR'
An LPR desktop printer uses the Unix LPD protocol to communicate over TCP/IP with a print server. For
more information on this protocol, please see RFC 1179 at <http://ds.internic.net/ds/dspg1intdoc.html>.

'=Cst'
The custom application desktop printer writes its PostScript to disk and then launches an application to
post-process the PostScript job. See Technote 1113: Customizing the Desktop Printer Utility for
additional information on custom DTPs.

'=Ird'
The PostScript job is transmitted using an infrared link to an IrDA-capable printer. LaserWriter 8 uses the
IrDA specification as outlined at http://www.irda.org.

Note:
Future releases of the LaserWriter 8 driver may add built-in support for USB and FireWire.

Adding Hose Plug-ins

When printing a job to a desktop printer, LaserWriter 8.6 obtains the four-byte DTP type and then looks
for a shared library containing the matching hose. LaserWriter 8.6 searches for the library in the following
order:

1. In the System's "Printing Plug-ins" folder (in the Extensions folder)
2. In the PrintingLib file

A desktop printer's type is obtained using the SettingsLib call psGetDTPType(), as described in
Technote 1129: The Settings Library. The Printing Plug-in Manager (as described in an upcoming
Technote) is then used to find a printing plug-in of type 'hose' with a subtype matching the DTP type.

Plug-in files managed by the Printing Plug-ins Manager, such as custom hoses, are required to have a
resource of type 'PLGN' with ID -8192 that contains information about the plug-ins contained in a given
file. If they do not, they cannot be used and are ignored by the LaserWriter 8.6 driver. The plug-ins are
also required to have a standard 'cfrg' resource describing the code fragments in the data fork of the file.

The 'PLGN' resource contains information about how many shared libraries are contained in this file, and
for each shared library, the type of plug-in that it is, the subtype that library handles, and the library name.

The 'PLGN' resource is as follows:

 short num; // the number of shared libraries
 PluginLibInfo libInfo[num];

The PluginLibInfo structure is as follows:
 typedef struct PluginLibInfo{
 SettingsDataType type;
 SettingsDataSubType subtype;
 unsigned char libraryName[]; // pascal string
 // word aligned
 }PluginLibInfo;

type: the type of plug-in that is described by the PluginLibInfo
subtype: the subtype of data that can be handled by the plug-in
 described by the PluginLibInfo
libraryName: the library name of the code fragment in the plug-in
 file described by this PluginLibInfo

A ResEdit 'TMPL' for editing the 'PLGN' resource is provided in PrintingLib 8.6. The type field should be

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 3

'hose' and the subtype should be '=XXX', where XXX is the custom-registered type of DTP being
supported. See the Hose Type Registrations section for more details on registration. The libraryName
should match the name of the code fragment in the data fork which implements the hose.

The Hose Interface

hoseOpen
Hose fragments are required to export a single entry point. This entry point, hoseOpen() has the
following signature:

OSStatus hoseOpen(HoseInfo *hoseInfo, const BufCallbacks *callbacks, Collection hints, Handle papaH);

The hoseOpen routine's primary job is to fill out the structure pointed to by hoseInfo.

/* The HoseInfo structure is filled out by a hoseOpen procedure. The
structure describes the buffer requirements of the hose as well as
the function pointers for reading, writing, and closing the hose.

*/
typedef struct{
 HoseOutProc out; // Called to write a buffer.
 HoseInProc in; // Called to read a buffer.
 HoseIdleProc idle; // Called periodically.
 HoseCloseProc close; // Called to shut down the connection.
 HoseConnProc connState; // This procedure returns the state of the
 // current connection.
 HoseStatusProc status; // Return the hose's current status string.
 HoseDisposeProc dispose;// The hose should free up all of its memory.
 Size bufSize; // The size of each allocated data buffer.
 long minBufs; // The hose requires this many buffers. If
 // there isn't enough memory to allocate them,
 // the client will return memFullErr.
 long maxBufs; // We'll never allocate more buffers than this.
 void *refcon; // A pointer that will be passed to the hose
 // routines.
}HoseInfo;

First, the hose needs to fill in the out, in, idle, close, connState, status, and dispose fields with
native function pointers to routines in the hose that implement the hose's functionality (i.e., the PPC code
provides PPC function pointers while the 68KCFM code provides 68KCFM function pointers. No classic
68K function pointers are supported). In addition to filling in the hose's function pointers, the hose must
fill in the bufSize, minBufs, and maxBufs fields to describe the hose's buffer requirements. Lastly, the
hose needs to fill in the refcon field with a pointer to its own storage.

Before calling the hose to transmit data, the hose client provides buffering to improve performance.
Because of this buffering, the hose must deal with only one transmit buffer and one receive buffer at a
time. The hose client is responsible for allocating the buffers that it uses for providing the buffering. The
hose indicates the size of the buffers its client should allocate by filling in the bufSize field during
hoseOpen. Some typical buffer sizes include 4096 bytes for the 'PAP ' hose and 16384 bytes for the
'=Fil' hose. The hose specifies the minimum number of buffers it needs in minBufs. It is recommended
that the minBufs field be set to at least four for bidirectional hoses and to at least two for unidirectional
hoses. The maximum number of buffers to be allocated is set by the hose in the maxBufs field. The
current rule of thumb for this field is that it should not specify more than 256K worth of memory. In other
words, it should be (262144 / bufSize). This is just a general rule of thumb; some hoses may require a
larger maxBufs setting, while others will use a smaller number.

The callbacks parameter to hoseOpen is a pointer to a BufCallbacks structure filled in by the hose client.

typedef void (*FinishedWriteProc)(MemQElemPtr memElem, OSStatus err);
typedef void (*FinishedReadProc)(MemQElemPtr memElem, OSStatus err);

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 4

typedef struct{
 FinishedWriteProc finishedWrite;
 FinishedReadProc finishedRead;
}BufCallbacks;

The hose's client places two pointers to native functions in this structure. These functions are to be called
by the hose when a read or write is completed. For more information on these function pointers, see the
detailed description of HoseOutProc and HoseInProc below. The hose should store a copy of this
structure in its private data.

As part of the hoseOpen call, the hose is handed a Collection Manager collection containing hints for
configuring the job that will be transmitted through the hose. The hints in this collection are used by the
QuickDraw to PostScript converter hose client to configure the byte codes that are available for its
generation of PostScript language output. In particular, the kHintEighthBitTag and
kHintTransparentChannelTag hints, as defined by LaserWriter 8.6, configure the hose client as to
whether it can generate its data using byte values outside the standard PostScript language printable ASCII
character set. These hints are defined as follows:

/* When generating PostScript for the output stream, the PostScript converter
 will by default use, if needed, characters in the range 0x80-0xFF
 inclusive. Use the 'kHintEighthBitTag' with a value of 'false' to
 prevent the converter from emitting bytes with the high
 bit set.
*/
#define kHintEighthBitTag 'bit8'
#define kHintEighthBitId 1
#define kHintEighthBitVariableType Boolean
#define kHintEighthBitDefault true

/* When generating PostScript for the output stream, the PostScript converter
 will by default use, if needed, characters in the range 0x00-0x1F
 inclusive. Use the 'kHintTransparentChannelTag' with a value of
 'false' to prevent the converter from emitting bytes less than 0x20.
*/
#define kHintTransparentChannelTag 'trns'
#define kHintTransparentChannelId 1
#define kHintTransparentChannelVariableType Boolean
#define kHintTransparentChannelDefault true

Typically, the hints collection passed to hoseOpen does not contain the collection items corresponding to
these tag/id pairs. This is equivalent to the kHintEighthBitTag and kHintTransparentChannelTag
hints both set to true, i.e. bytes 0x00-0xFF are all available.

For hoses which communicate through a channel that has attributes more restrictive than these defaults, the
hose must add the appropriate collection item(s) to the hints collection to ensure that the hose client only
writes bytes in the supported range. Note that only hints which are more restrictive than the defaults need
to be added. If a hose supports full 8-bit communications, it need not add these hints to the hints collection
passed in.

In some cases, the hints collection passed to hoseOpen already contains either or both of the
kHintEighthBitTag and kHintTransparentChannelTag collection items and the collection item may
be locked. If the hose client requires a more restrictive setting than that present, it must add the hint to the
collection, regardless of whether the hint is already locked.

 OSErr err;

 // e.g. this hose cannot transmit the high 8 bit
 kHintEighthBitVariableType eightBit = false;

 // unlock the hint if it is already there
 // this is OK if the hint is already unlocked

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 5

 err = SetCollectionItemInfo(hints, kHintEighthBitTag,
 kHintEighthBitId, collectionLockMask,
 0);
 // if the hint isn't already there that's fine
 if(err == collectionItemNotFoundErr)
 err = noErr;

 if(!err){
 err = AddCollectionItem(hints, kHintEighthBitTag,
 kHintEighthBitId, sizeof(eightBit),
 &eightBit);
 if(!err)
 err = SetCollectionItemInfo(hints,
 kHintEighthBitTag, kHintEighthBitId,
 collectionLockMask, collectionLockMask);
 }

See Inside Macintosh : QuickDraw GX Environment and Utilities for more information on the Collection
Manager.

The last parameter to hoseOpen, papa, is the handle to an extended 'PAPA' structure. Please see Technote
1115: The Extended 'PAPA' Resource for a full description of this structure and Technote 1129: The
Settings Library for the 'PAPA' accessor routines, psPapaToCollection and psCollectionToPapa.
Each type of hose has different communications parameters that specify the target output device and how
the communications channel is to be configured. The 'PAPA' handle provides those communications
settings for the hose and are set by the creator of the desktop printer.

In its hoseOpen routine, the hose should allocate any needed memory and begin opening the connection
with the printer. The hose need not -- and for most connection types should not -- complete the connection
in the hoseOpen call. Because of the lengthy connect times of most communications techniques, the
opening of the printer connection should take place asynchronously. The hose starts the connection
process and then returns noErr from hoseOpen. The client will periodically call the hoseConnProc
requesting the current state of the connection. The hoseConnProc looks like this:

typedef enum{
 kConnClosed = 0, // Start in this state.
 kConnOpening, // This is the state while we wait for the
 // printer to accept the connection.
 kConnOpen, // This is the state while we do reads and
 // writes to the printer.
 kConnClosing // This is the state while we wait for the
 // connection to close.
}ConnState;

typedef ConnState (*HoseConnProc)(void *refcon);

The hose's connection procedure should return the constant kConnOpening while the connection is being
established. Once the open completes successfully, calls to the hose's connection procedure should return
kConnOpen. If instead an error occurs while opening the hose, the hose's connection procedure should
return kConnClosed. At that point, the hose client will call the hose's HoseCloseProc and
HoseCloseProc needs to return the appropriate error code indicating why the hose couldn't be opened.

HoseOutProc
The primary purpose of a hose is to transmit data. This is accomplished by the hose's client through calls
to HoseOutProc. HoseOutProc looks like this:

typedef OSStatus (*HoseOutProc)(void *refcon, MemQElem *memElem);

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 6

and thus the hose's function is:

OSStatus hoseOut(void *refcon, MemQElem *memElem);

The refcon parameter passed to HoseOutProc is taken from the refcon field of the HoseInfo structure
filled out by the hoseOpen routine. This value should be a pointer or a handle to the hose's private data.

The second parameter to HoseOutProc, memElem, is a pointer to a MemQElem structure describing the data
to be written.

typedef struct MemQElem{
 QElemPtr qLink; // Used by Enqueue and Dequeue- private.
 short qType; // Our constant (kMemQueueType) to identify our
 // queues- private.
 struct BufIO *bufIO; // So we can recover buffer information-
 // private.
 Byte *buf; // Pointer to the allocated buffer.
 SInt32 maxBytes; // The size of the block pointed to by 'buf'
 SInt32 nBytes; // Number of valid bytes in 'buf'.
 Boolean eoj; // true if the data is followed by an end of
 // job.
 Boolean inQOnly; // This buffer should be used only for the input
 // routines- private.
}MemQElem, *MemQElemPtr;

Note:
Many of the fields of the MemQElem structure are private and are used by the hose client. These fields are
marked private and must not be used by the hose.

The hose client uses the 'eoj' field of the MemQElem structure to signal to the hose when it needs to
transmit a PostScript end of job to the printer. If the 'eoj' field of the MemQElem structure is true, a
PostScript end of job indication must be sent after or along with the buffer of data (if any) in this
memElem. For some communications channels, this 'eoj' is a data byte sent after the data, such as
control-D for serial connections. For other communications channels, such as PAP, the end of job indicator
is out of band with the data itself.

Again, it is highly recommended that hoses perform their writes and reads in an asynchronous manner. In
this case, HoseOutProc begins to write the nBytes pointed to by buf and then returns to the caller. When
the write completes, the hose signals the caller by calling the finishedWrite function pointer passed in the
BufCallbacks structure to hoseOpen.

typedef void (*FinishedWriteProc)(MemQElem *memElem, OSStatus err);

When making the FinishedWriteProc call, the hose passes in the MemQElem pointer passed to hoseOut
along with an error code. If the write finished successfully, the error code should be noErr. If there was an
error in the write, pass that code to FinishedWriteProc.

The call to FinishedWriteProc is an indication from the hose to the client that the hose is done with the
MemQElem structure and is ready for another hoseOut call. In fact, the routine called through the
FinishedWriteProc may immediately make another hoseOut call before returning to the hose. Because
of this, the hose must be prepared for the hoseOut routine to be invoked while still in an asynchronous
completion routine. Furthermore, once the MemQElem pointer is passed to FinishedWriteProc, the hose
should no longer reference it. Any data that might have been copied from the structure before calling
FinishedWriteProc is no longer valid (particularly 'buf'). So, not only is the structure itself no longer
valid, any data contained in the structure that was previously in use is also no longer valid.

HoseInProc
If a hose is managing a unidirectional communications channel, the hose need not have a routine for

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 7

reading data. In this case, the hoseOpen routine should fill in the 'in' field of the HoseInfo structure
with NULL during hoseOpen.

If the hose can read data from the printer, it fills the in field of the HoseInfo structure with a pointer to its
routine that reads data.

typedef OSStatus (*HoseInProc)(void *refcon, MemQElem memElem);

As with HoseOutProc, HoseInProc should execute asynchronously. When invoked, HoseInProc should
start a read. When data is available and the hose's asynchronous completion routine is invoked, the hose
invokes the client's FinishedReadProc, passing back the MemQElem pointer passed to HoseInProc and
an error code. The hose cannot read more than memElem->maxBytes bytes. In addition, the hose must fill
in memElem->nBytes with the number of bytes read into memElem->buf.

typedef void (*FinishedReadProc)(MemQElem memElem, OSStatus err);

As with data writes, once the FinishedReadProc is called, the hose must be prepared for another call to
HoseInProc before FinishedReadProc returns. Similar to FinishedWriteProc, the data in the
MemQElem should be considered invalid after the FinishedReadProc is called by the hose.

HoseIdleProc
Not all hoses are able to use asynchronous completion routines to note the end of a read or write. To help
these hoses, a HoseIdleProc can be specified in the HoseInfo structure returned from hoseOpen. If the
idle field of the HoseInfo structure is not NULL, the hose's client will periodically call the HoseIdleProc.
This idle procedure can check the status of pending reads and writes and call FinishedWriteProc and
FinishedReadProc as needed. Most hoses do not need a HoseIdleProc, but, if one is needed, it has the
following signature:

typedef OSStatus (*HoseIdleProc)(void *refcon);

HoseStatusProc
While a hose is open, the hose's client may periodically request that the hose query the printer for status.
When the call is made the hose should copy a Pascal string describing the printer's last known status into
the buffer pointed to by statusStr. The hose should also start an asyncronous status request to the
printer. When the asyncronous status request returns the hose must hold that status until the next call to its
status procedure.

typedef OSStatus (*HoseStatusProc)(void *refcon, StringPtr statusStr);

Note:
Make sure that the StringPtr always points to a valid Pascal string (i.e., leave the length byte 0 until the
whole string is written so that your client does not display garbage characters if the timing is wrong).

For some communications channels, such as serial channels, the status from a printer is returned on the
back channel read by the HoseInProc. In such a case, the hose's client pulls the status out of the back
channel and the hose does not need to do anything other than transmit a status request to the output device.

HoseCloseProc
When the client is done with the hose, it calls the hose's HoseCloseProc to shut down the connection. The
hose should terminate any pending reads and writes and begin to shut down the connection. If this shut
down procedure is immediate, it can be completed before this routine returns. If the shut down procedure
takes an extended amount of time, this routine can begin the process and return.

typedef OSStatus (*HoseCloseProc)(void *refcon);

HoseDisposeProc
After HoseCloseProc is invoked, the HoseConnProc is called repeatedly until kConnClosed is returned.
When the hose signals that the connection has been shut down, HoseDisposeProc is called to allow the
hose to release any memory it still holds.

TN 1144: Writing Custom Hoses For LaserWriter
8.6

Page: 8

typedef OSStatus (*HoseDisposeProc)(void *refcon);

If there was an error during an asynchronous close, the HoseDisposeProc should return a non-zero error
value.

Hose Type Registrations

In order to ensure that we do not have conflicting hose types, we ask that you register your custom hose
4-byte type by sending an email to devprograms@apple.com. Please send the following information to
register your custom hose type:

1. Contact Name
2. Company Name
3. Mailing Address
4. Phone Number
5. Email Address
6. Make and Model of device
7. Description of communications method
8. 4-byte type (in the form '=XXX')

Summary

As outlined in this document, creating a custom hose for LaserWriter 8.6 is fairly straightforward and
clean. Make sure that you are familiar with the other documents mentioned in this Technote before you
begin on your journey to create a custom hose!

References

Technote 1113: Customizing the Desktop Printer Utility
Technote 1115: The Extended 'PAPA' Resource
Technote 1129: The Settings Library
Technote 1170: Printing Plug-ins Manager
Inside Macintosh : QuickDraw GX Environment and Utilities

Downloadables

 Acrobat version of this Note (K).

 Binhexed Hose.h (9K).

To contact us, please use the Contact Us page.
Updated: 2-November-98

Technotes
Previous Technote | Contents | Next Technote

