TN 1150: HFS Plus Volume Format

Technote 1150

HFS Plus Volume For mat

By
Apple Worldwide Developer Technical Support

CONTENTS T

HFS Plus Basics his Technote describes the on-disk format for an HFS
Plus volume. It does not describe any programming

Core Concepts interfaces for HFS Plus volumes.

Volume Header Thistechnote is directed at developers who need to work
with HFS Plus at a very low level, below the abstraction

B-Trees provided by the File Manager programming interface. This
includes developers of disk recovery utilities and

Catdlog File programmers implementing HFS Plus support on other
platforms.

Extents Ovearflow File

This technote assumes that you have a conceptual
Allocation File understanding of the HFS volume format, as described in
Inside Macintosh: Files.

Attributes File

Startup File
Unicode Subtleties

HFES Wrapper

Volume Consistency Checks

Summary

HFS Plus Basics

HFS Plusis anew volume format for Mac OS. HFS Plus was introduced with Mac OS 8.1. HFS Plusis
architecturally very similar to the HFS, although there have been a number of changes. The following
table summarizes the important differences.

Table 1 HFS and HFS Plus Compared

Page: 1

TN 1150: HFS Plus Volume Format

|Feature I[HFS |[HFS Plus |[Benefit/Comment
User visible
name Mac OS Standard Mac OS Extended
Number of Radical decrease in disk space used on
alocation 16 bitsworth 32 bits worth large volumes, and alarger number of
blocks files per volume.
Long file names |31 characters 255 characters Obvious user benefit; aso improves
9 cross-platform compatibility
File name : Allowsfor international-friendly file
encoding MacRoman Unicode names, including mixed script names
File/ffolder %ﬁgﬁ:g%g %gdaﬁ ée ﬁg&’\éﬁgr future Future systems may use metadatafor a
attributes FXInfo) extensions richer Finder experience
Also supports a
OS startup : May help non-Mac OS systems to boot
support System Folder ID ﬂ(laglcated startup from HFS Plus volumes
Maintains efficiency in the face of the
other changes. (Thislarger catalog node
catalog node Size is due to the much longer file names
size 512 bytes 4KB [512 bytes as opposed to 32 bytes], and
larger catal og records (because of
more/larger fields)).
Maximum file Obvious user benefit, especialy for
size 231 bytes 2% bytes multimedia content creators.

The extent to which these HFS Plus features are available through a programming interface is OS
dependent. Currently (version 8.5), Mac OS does not provide programming interfaces for any HFS
Plus-specific features.

To summarize, the key goals that guided the design of the HFS Plus volume format were:

e efficient use of disk space,

e international-friendly file names,

e future support for named forks, and

e ease booting on non-Mac OS operating systems.

The following sections describes these goal's, and the differences between HFS and HFS Plus required to
meet these goals.

Efficient Use of Disk Space

HFS divides the total space on avolume into equal-sized pieces called allocation blocks. It uses 16-bit

fields to identify a particular allocation block, so there must be less than 216 (65,536) allocation blocks on
an HFS volume. The size of an allocation block istypically the smallest multiple of 512 such that there are
less than 65,536 allocation blocks on the volume (i.e., the volume size divided by 65,535, rounded up to
amultiple of 512). Any non-empty fork must occupy an integral number of allocation blocks. This means
that the amount of space occupied by afork isrounded up to a multiple of the alocation block size. As
volumes (and therefore allocation blocks) get bigger, the amount of allocated but unused space increases.

HFS Plus uses 32-bit values to identify allocation blocks. This allows up to 2 32 (4,294,967,296)
allocation blocks on avolume. More alocation blocks means a smaller alocation block size, especialy on
Page: 2

TN 1150: HFS Plus Volume Format

volumes of 1 GB or larger, which in turn means less average wasted space (the fraction of an allocation
block at the end of afork, where the entire allocation block is not actually used). It also means you can
have more files, since the available space can be more finely distributed among alarger number of files.
Thischangeis especialy beneficia if the volume contains alarge number of small files.

International-Friendly File Names

HFS uses 31-byte strings to store file names. HFS does not store any kind of script information with the
file nameto indicate how it should be interpreted. File names are compared and sorted using a routine that
assumes a Roman script, wreaking havoc for names that use some other script (such as Japanese).
Worsg, this algorithm is buggy, even for Roman scripts. The Finder and other applications interpret the
file name based on the script system in use at runtime.

Note:

The problem with using non-Roman scriptsin an HFS file name is that HFS compares file namesin a
case insensitive fashion. The case-insensitive comparison agorithm assume a MacRoman encoding.
When presented with non-Roman text, this algorithm fails in strange ways. The upshot is that HFS
decidesthat certain non-Roman file names are duplicates of other file names, even though they are not
duplicates in the source encoding.

HFS Plus uses up to 255 Unicode characters to store file names. Allowing up to 255 characters makes it
easer to have very descriptive names. Long names are especially useful when the nameis
computer-generated (such as Java class names).

The HFS catalog B-tree uses 512-byte nodes. An HFS Plus file name can occupy up to 512 bytes
(including the length field). Since a B-tree index node must store at least two keys (plus pointers and node
descriptor), the HFS Plus catalog must use a larger node size. The typical node size for an HFS Plus
catalog B-treeis 4 KB.

In the HFS catalog B-tree, the keys stored in an index node always occupy afixed amount of space, the
maximum key size. In HFS Plus, the keys in an index node may occupy a variable amount of space
determined by the actual size of the key. Thisallows for less wasted space in index nodes and creates, on
typical disks, asubstantialy larger branching factor in the tree (requiring fewer node accesses to find any
given record).

Future Support for Named Forks

Files on an HFS volume have two forks: adata fork and aresource fork, either of which may be empty
(zero length). Files and directories also contain a small amount of additional information (known as
catalog information or metadata) such as the modification date or Finder info.

Apple software teams and third-party devel opers often need to store information associated with particular
filesand directories. In some cases (e.g., custom icons for files), the data or resource fork is appropriate.
But in other cases (e.g., custom icons for directories, or File Sharing access privileges), using the data or
resource fork is not appropriate or not possible.

A number of products have implemented special-purpose solutions for storing their file- and
directory-related data. But because these are not managed by the file system, they can become inconsistent
with the file and directory structure.

HFS Plus has an attribute file, another B-tree, that can be used to store additional information for afile or
directory. Sinceit is part of the volume format, thisinformation can be kept with the file or directory asis
it moved or renamed, and can be deleted when the file or directory is deleted. The contents of the attribute
file's records have not been fully defined yet, but the goal isto provide an arbitrary number of forks,
identified by Unicode names, for any file or directory.

Page: 3

TN 1150: HFS Plus Volume Format

Note:

Because the attributes file has not been fully defined yet, current implementations are unable to delete
named forks when afile or directory is deleted. Future implementations that properly delete named forks
will need to check for these orphaned named forks and delete them when the volume is mounted. The

| ast Mount edVer si on field of the volume header can be used to detect when such a check needsto take

place.

Whenever possible, an application should delete named forks rather than orphan them.

Easy Startup of Alternative Operating Systems

HFS Plus defines a special startup file, an unstructured fork that can be found easily during system
startup. The location and size of the startup file is described in the volume header. The startup fileis
especially useful on systems that don't have HFS or HFS Plus support in ROM. In many respects, the
startup file is ageneralization of the HFS boot blocks, one that provides a much larger, variable-sized

amount of storage.

Note:
The startup fileis not currently used by Mac OS.

Back to top

Core Concepts

HFS Plus uses a number of interrelated structures to manage the organization of data on the volume.
These structures include:

the volume header

™
e thecatdogfile

o theextents overflow file
™

™

™

the attributesfile
the alocation file (bitmap)

thestartup file

Each of these complex structures is described in its own section. The purpose of this section isto give an
overview of the volume format, describe how the structuresfit together, and define the primitive data

types used by HFS Plus.

Terminology

HFS Plusis a specification of how avolume (files that contain user data, along with the structure to
retrieve that data) existson adisk (the medium on which user datais stored). The disk isdivided into
512 byte logical blocks of data, known as sector s. Sectors are identified by asector number, starting
at 0 and continuing to the last sector on the disk (whose number isthe disk size divided by 512 minus 1).

HFS Plus allocates sectors in groups called allocation blocks; an alocation block is simply agroup of
consecutive sectors. The size (in bytes) of an allocation block is a power of two, greater than or equal to
512, which is set when the volume is initialized. This value cannot be easily changed without reinitializing
the volume. Allocation blocks are identified by a 32-bit allocation block number, so there can be at
most 232 allocation blocks on avolume. Future implementations of the file system will be optimized for
4K alocation blocks.

Page: 4

TN 1150: HFS Plus Volume Format

All of the volume's structures, including the volume header, are part of one or more allocation blocks
(with the possible exception of the alternate volume header, discussed below). This differs from HFS,
which has several structures (including the boot blocks, master directory block, and bitmap) which are
not part of any allocation block.

Y ou can find the first sector of an alocation block by ssimply multiplying the allocation block number by
the allocation block size and dividing by the sector size (512).

IMPORTANT:

This clean mapping between an allocation block and a sector is muddied by the possibility of an HES
wrapper. HFS Plus sectors are aways considered to start at the beginning of the disk embedded in the
wrapper, which may not be the start of the real disk.

To promote file contiguity and avoid fragmentation, disk space istypically allocated to filesin groups of
allocation blocks, or clumps. The clump sizeis adways amultiple of the allocation block size. The
default clump sizeis specified in the volume header.

IMPORTANT:
The actual algorithm used to extend filesis not part of this specification. The implementation is not
required to act on the clump values in the volume header or file catalog records; it merely provides space

to store those values.

Note:

The current non-contiguous algorithm in Mac OS will begin alocating at the next free block it finds. It
will extend its allocation up to a multiple of the clump size if there is sufficient free space contiguous
with the end of the requested allocation. Space is not allocated in contiguous clump-sized pieces.

Every HFS Plus volume must have avolume header . The volume header contains sundry information
about the volume, such as the date and time of the volume's creation and the number of files on the
volume, as well as the location of the other key structures on the volume. The volume header is aways

located at sector 2.

A copy of the volume header, known asthe alter nate volume header, is stored in the second to last
sector of the volume (starting 1024 bytes before the end of the volume). Sectors 0 and 1, and the last
sector on the volume, are reserved. The actual number of allocation blocks occupied by the volume header
and the aternate volume header varies depending on the allocation block size.

An HFS Plus volume contains five special files, which store the file system structures required to
access the file system payload: folders, user files, and attributes. The special files are the catalog file,
the extents overflow file, the alocation file, the attributes file and the startup file. Specia files only have a
singlefork (the data fork) and the extents of that fork are described in the volume header.

Thecatalog file isaspecial file that describes the folder and file hierarchy on avolume. The catalog file
contains vital information about all the files and folders on avolume, as well asthe catalog
information, for the filesand folders that are stored in the catalog file. The catalog file isorganized as a
B-tree (or "balanced tree") to allow quick and efficient searches through alarge folder hierarchy.

The catalog file stores the file and folder names, which consist of up to 255 Unicode characters, as
described below.

Note:
The B-Trees section contains an in-depth description of the B-trees used by HFS Plus.

Theattributes file isanother special file which contains additional datafor afile or folder. Like the
catalog file, the attributes file is organized as a B-tree. In the future, it will be used to store information

Page: 5

TN 1150: HFS Plus Volume Format

about additional forks. (Thisissimilar to the way the catalog file stores information about the data and
resource forks of afile.)

HFS Plus tracks which allocation blocks belong to afork by maintaining alist of the fork's extents. An
extent isacontiguous range of allocation blocks allocated to some fork, represented by a pair of
numbers: the first allocation block number and the number of allocation blocks. For a user file, the first
eight extents of each fork are stored in the volume's catalog file. Any additional extents are stored in the
extents overflow file, which isalso organized as a B-tree.

The extents overflow file also stores additional extents for the specid files except for the extents overflow
fileitself. However, if the startup file requires more than the eight extents in the Volume Header (and thus
requires additional extents in the extents overflow file), it would be much harder to access, and defeat the
purpose of the startup file. So, in practice, a startup file should be allocated such that it doesn't need
additiona extentsin the extents overflow file.

Theallocation file isaspecial file which specifies whether an allocation block isused or free. This
performs the same role as the HFS volume bitmap, although making it afile adds flexibility to the volume
format.

Thestartup file isanother specia file which facilitates booting of non-Mac OS computers from HFS
Plus volumes.

Finally, thebad block file prevents the volume from using certain alocation blocks because the portion
of the mediathat stores those blocksis defective. The bad block file is neither a specid file nor auser file;
thisis merely convention used in the extents overflow file. See Bad Block File for more details.

Broad Structure
The bulk of an HFS Plus volume consists of seven types of information or areas.

user fileforks,

the allocation file (bitmap),
the catalog file,

the extents overflow file,
the attributesfile,

the startup file, and
unused space.

Noghs~swbhE

The genera structure of an HFS Plus volumeisillustrated in Figure 1.

Figure 1 Organization of an HFS Plus VVolumes

Page: 6

TN 1150: HFS Plus Volume Format

Wolume Header [always third sector)

Allocation File [allocated frorn allo cation bladks))

Extents Cwverflaw Fle (allocated frorn allocation bladks)

Catalog Ale [allocated from allocation blocks)
File [rata
ar
Free Space
Artributes File [allocated from allocation blocks)
Startup File Callozated frorm allocation blod:s)

Atemate Volume Heatder | ialways second to last sector)

The volume header is always at afixed location (sector 2). However, the specia files can appear
anywhere between the volume header block and the alternate volume header block. These files can appear
in any order and are not necessarily contiguous.

The information on HFS Plus volumes (with the possible exception of the alternate volume header, as
discussed below) is organized solely in alocation blocks. Allocation blocks are simply a means of
grouping sectors into more convenient parcels. The size of an alocation block is a power of two, and at
least 512. The alocation block size is avolume header parameter whose value is set when the volumeis
initialized; it cannot be changed easily without reinitializing the volume.

Note:

The alocation block sizeis aclassic speed-versus- space tradeoff. Increasing the alocation block size
decreases the size of the alocation file, and often reduces the number of separate extents that must be
manipulated for every file. It also tends to increase the average size of adisk 1/O, which decreases
overhead. Decreasing the allocation block size reduces the average number of wasted bytes per file,
making more efficient use of the volume's space.

Page: 7

TN 1150: HFS Plus Volume Format

WARNING:

While HFS Plus disks with an allocation block size smaller than 4 KB arelegal, DTS recommends that
you always use aminimum 4 KB allocation block size. Disks with asmaller allocation block size will be
markedly slower when used on systems that do 4 KB clustered 1/0, such as Mac OS X Server.

Primitive Data Types

This section describes the primitive data types used on an HFS Plus volume. All data structuresin this
volume are defined in the C language. The specification assumes that the compiler will not insert any
padding fields. Any necessary padding fields are explicitly declared.

IMPORTANT:

The HFS Plus volume format is largely derived from the HFS volume format. When defining the new
format, it was decided to remove unused fields (primarily legacy MFSfields) and arrange all the
remaining fields so that similar fields were grouped together and that al fields had proper alignment
(using PowerPC alignment rules).

Reserved and Pad Fields

In many places this specification describes afield, or bit within afield, as reserved. This has a definite
meaning, namely:

e \When creating a structure with areserved field, an implementation must set the field to zero.

e When reading existing structures, an implementation must ignore any value in the field.

e \When modifying a structure with areserved field, an implementation must preserve the value of
the reserved field.

This definition allows for backward-compatible enhancements to the volume format.

Pad fields have exactly the same semantics as areserved field. The different name merely reflects the
designer's goals when including the field, not the behavior of the implementation.

Integer Types

All integer values are defined by one of the following primitive types: Ul nt 8, SI nt 8, Ul nt 16, Sl nt 16,
Ul nt 32, SI nt 32, Ul nt 64, and SI nt 64. These represent unsigned and signed (2's complement) 8-bit,
16-hit, 32-bit, and 64-bit numbers.

All multi-byte integer values are stored in big-endian format. That is, the bytes are stored in order from
most significant byte through least significant byte, in consecutive bytes, at increasing offset from the
start of a block.

HFES Plus Names

File and folder names on HFS Plus consist of up to 255 Unicode characters with a preceding 16-bit
length, defined by the type HFSUni St r 255.

struct HFSUni Str255 {
Untl6 |ength;
Uni Char uni code[255] ;
};
typedef struct HFSUni Str255 HFSUni Str 255;
typedef const HFSUni Str255 *Const HFSUNni St r 255Par am

Page: 8

TN 1150: HFS Plus Volume Format

Uni Char I1sauUl nt 16 that represents a character as defined in the Unicode character set defined by The
Unicode Sandard, Version 2.0 [Unicode, Inc. ISBN 0-201-48345-9].

HFS Plus stores strings fully decomposed and in canonical order. HFS Plus compares stringsin a
case-insensitive fashion. Strings may contain Unicode characters that should be ignored by this
comparison. For more details on these subtleties, see Unicode Subtleties.

Text Encodings

Current Mac OS programming interfaces pass filenames as Pascal strings (either asastri ngPtr or asa
St r 63 embedded in an FSSpec). The characters in those strings are not Unicode; the encoding varies
depending on how the system software was localized and what language kits are installed. Identical
sequences of bytes can represent vastly different Unicode character sequences. Similarly, many Unicode
characters belong to more than one Mac OS text encoding.

HFS Plus includes two features specifically designed to help Mac OS handle the conversion between Mac
OS-encoded Pascal strings and Unicode. Thefirst feature isthet ext Encodi ng field of the file and folder
catalog records. Thisfield is defined as a hint to be used when converting the record's Unicode name
back to aMac OS- encoded Pascal string.

Thevalid values for thet ext Encodi ng field are defined in Table 2.

Table 2 Text Encodings

|Encoding Name |[Value |[Encoding Name |[Value |
[MacRoman [0 |[MacThai |[21 |
[MacJapanese |1 |[MacLaotian |[22 |
[MacChineseTrad |2 |[MacGeorgian |[23 |
[MacKorean |3 |[MacArmenian |[24 |
[MacArabic ||4 |[MacChineseSimp |[25 |
[MacHebrew (5 |[MacTibetan |[26 |
[MacGreek |[6 |[MacMongolian |[27 |
[MacCyrillic |7 ||MacEthiopic |[28 |
|MacDevanagari |E) ||MacCentral EurRoman |[29 |
[MacGurmukhi {10 |[MacVietnamese |[30 |
[MacGujarati {11 |[MacExtArabic |[31 |
[MacOriya |[12 |[MacSymbol |[33 |
[MacBengdli {13 |[MacDingbats |[34 |
[MacTamil |[14 |[MacTurkish |[35 |
[MacTelugu |15 |[MacCroatian |[36 |
[MacKannada |[16 |[Maclcelandic |[37 |
[MacMaayalam (17 |[MacRomanian |[38 |
[MacSinhalese |[18 |[MacFars |[140 (49) |
[MacBurmese {19 |[MacUkrainian |[152 (48) |
[MacKhmer |[20 |

Page: 9

TN 1150: HFS Plus Volume Format

IMPORTANT:
Non-Mac OS implementations of HFS Plus may choose to smply ignore thet ext Encodi ng field. In

this case, the field should be treated as areserved field.

Note:
Mac OS usesthet ext Encodi ng field in the following way. When afile or folder is created or renamed,

Mac OS converts the supplied Pascal string to aHFSUni St r 255. It stores the source text encoding in the
t ext Encodi ng field of the catalog record. When Mac OS needs to create a Pascal string for that record,
it usesthet ext Encodi ng as ahint to the text conversion process. This hint ensures a high-degree of
round-trip conversion fidelity, which in turn improves compatibility.

The second use of text encodingsin HFS Plusisthe encodi ngsBi t map field of the volume header. For
each encoding used by a catal og node on the volume, the corresponding bit in the encodi ngsBi t map field
must be set. Bit 0 isthe least significant bit; bit 63 is the most significant bit.

It is acceptable for abit in this bitmap to be set even though no names on the volume use that encoding.
This means that when an implementation deletes or renames an object, it does not have to clear the
encoding bit if that was the last name to use the given encoding.

IMPORTANT:
The text encoding value is used as the number of the bit to set in encodi ngsBi t map to indicate that the

encoding is used on the volume. However, encodi ngsBi t map isonly 64 bitslong, and thus the text
encoding values for MacFarsi and MacUkrainian cannot be used as bit numbers. Instead, another bit
number (shown in parenthesis) is used.

Note:
Mac OS usesthe encodi ngsBi t map field to determine which text encoding conversion tables to load

when the volume is mounted. Text encoding conversion tables are large, and |oading them unnecessarily
Isawaste of memory. Most systems only use one text encoding, so thereis a substantial benefit to
recording which encodings are required on a volume-by-volume basis.

WARNING:

Non-Mac OS implementations of HFS Plus must correctly maintain the encodi ngsBi t map field.
Specificaly, if the implementation setsthet ext Encodi ng field acatalog record to a text-encoding value,
it must ensure that the corresponding bit is set in encodi ngsBi t map to ensure correct operation when
that disk is mounted on a system running Mac OS.

HFS Plus Dates

HFS Plus stores dates in severa data structures, including the volume header and catalog records. These
dates are stored in unsigned 32-bit integers (Ul nt 32) containing the number of seconds since midnight,
January 1, 1904, GMT. Thisis dightly different from HFS, where the value represents local time.

The maximum representable date is February 6, 2040 at 06:28:15 GMT.

The date values do not account for leap seconds. They do include aleap day in every year that is evenly
divisible by four. Thisis sufficient given that the range of representable dates does not contain 1900 or

2100, neither of which have leap days.

The implementation is responsible for converting these times to the format expected by client software.
For example, the Mac OS File Manager passes datesin local time; the Mac OS HFS Plus implementation
converts dates between local time and GMT as appropriate.

Page: 10

TN 1150: HFS Plus Volume Format

Note:

It should be noted that the creation date stored in the Volume Header isNOT stored in GMT; it is stored
inlocal time. The reason for thisis that many applications (including backup utilities) use the volume's
creation date as arelatively unique identifier. If the date was stored in GMT, and automatically converted
to local time by an implementation (like Mac OS), the value would appear to change when the local time
zone or daylight savings time settings change (and thus cause some applications to improperly identify
the volume). The use of the volume's creation date as a unique identifier outweighs its use as a date.
This change was introduced late in the Mac OS 8.1 project.

HFS Plus Permissions

For each file and folder, HFS Plus maintains a record containing access permissions, defined by the
HFSPI usPer ni ssi ons structure. This structure is intended as a placeholder. Future specifications may
define away to layer POSIX or AFP permissions onto the HFS Plus volume format.

IMPORTANT:
The details of this structure have not been finalized and are subject to change; however, the size of the

structure will not change.

struct HFSPl usPerm ssions {
U nt32 ownerl D;
U nt32 groupl D;
U nt32 permni ssions;
U nt32 special Devi ce;
i

typedef struct HFSPlI usPerm ssi ons HFSPI usPer mi ssi ons;

The fields have the following meaning:

owner | D
An implementation must treat thisas areserved field. Thisfield is intended to hold a number

uniquely identifying the owner of thefile or folder.

groupl D
An implementation must treat thisas areserved field. Thisfield isintended to hold a number
uniquely identifying the group of thefile or folder.

per m ssi ons
An implementation must treat thisas areserved field. Thisfield is intended to hold the access

rights for the owner, group, and all other users.

speci al Devi ce
An implementation must treat thisas areserved field. Thisfield isintended for use by
POSI X -based systems to hold extrainformation that would typically be held in aPOSIX file

system.

Note:
Mac OS handles the permission structure as defined in this specification, that is, as areserved field.

Fork Data Structure

HFS Plus maintains information about the contents of afile using the HFSPI usFor kDat a structure. Two
such structures -- one for the resource and one for the data fork -- are stored in the catalog record for each
user file. In addition, the volume header contains afork data structure for each special file.

An unused extent descriptor in an extent record would have both st ar t Bl ock and bl ockCount Set to
zero. For example, if agiven fork occupied three extents, then the last five extent descriptors would be all

ZEeroes.

Page: 11

TN 1150: HFS Plus Volume Format

struct HFSPI usFor kData {

Ul nt 64 | ogi cal Si ze;
Ul nt 32 cl unpSi ze;
Ul nt 32 t ot al Bl ocks;
HFSPI usExt ent Record extents;

H
typedef struct HFSPlI usFor kDat a HFSPI usFor kDat a;

t ypedef HFSPI usExt ent Descri pt or HFSPI usExt ent Recor d[8] ;

The fields have the following meaning:

| ogi cal Si ze
The size, in bytes, of the valid datain the fork.

cl unpSi ze
The clump size for the fork in bytes. Thisisahint to the implementation as to the size by which a
growing file should be extended.

t ot al Bl ocks
Thetotal number of alocation blocks used by al the extentsin thisfork.

extents
An array of extent descriptors for the fork. This array holds the first eight extent descriptors. If
more extent descriptors are required, they are stored in the extents overflow file.

IMPORTANT:
TheHFSPI usExt ent Recor d is aso the data record used in the extents overflow file (the extent record).

TheHFSPI usExt ent Descri pt or structure is used to hold information about a specific extent.

struct HFSPI usExt ent Descriptor {
Ul nt 32 start Bl ock;
Ul nt 32 bl ockCount ;

i
typedef struct HFSPlI usExt ent Descri ptor HFSPI usExt ent Descri ptor;

The fields have the following meaning:

start Bl ock

Thefirst allocation block in the extent.
bl ockCount

The length, in allocation blocks, of the extent.

Back to top

Volume Header

Each HFS Plus volume contains a volume header at sector 2. The volume header -- analogous to the
master directory block (MDB) for HFS -- contains information about the volume as awhole, including

the location of other key structures in the volume. The implementation is responsible for ensuring that this
structure is updated before the volume is unmounted.

A copy of the volume header, the aternate volume header, is stored in the second to last sector of the

Page: 12

TN 1150: HFS Plus Volume Format

volume (starting 1024 bytes before the end of the volume). The implementation should only update this
copy when the length of one of the special files changes. The alternate volume header isintended for use
solely by disk repair utilities.

Thefirst two sectors (before the volume header) and the last sector (after the alternate volume header) are
reserved.

Note:

Thefirst two sectors are reserved for use as boot blocks; the Mac OS Finder will write to them when the
System Folder changes. The boot block format is outside the scope of this specification. It is defined in
Inside Macintosh: Files.

The last sector is used during Apple's CPU manufacturing process.

The alocation block (or blocks) containing sectors 0 through 2 are marked as used in the allocation file
(see the Allocation File section). Also, in order to accommodate the alternate volume header and last
(reserved) sector, the last alocation block (or two allocation blocks, if the volume is formatted with
512-byte allocation blocks) is also marked as used in the alocation file,.

IMPORTANT:

The dternate volume header is always stored in the second to last sector . If the disk sizeis not an even
multiple of the allocation block size, this sector may lie beyond the last allocation block. However, the
last allocation block (or two allocation blocks for a volume formatted with 512-byte allocation blocks) is
still reserved even if the aternate volume header is not stored there.

The volume header is described by the HFSPI usVol uneHeader type.

struct HFSPI usVol umeHeader {

U nt 16 si gnat ur e;

U nt 16 ver si on;

Ul nt 32 attri butes;

Ul nt 32 | ast Mount edVer si on;
Ul nt 32 reserved;

Ul nt 32 creat eDat e;

Ul nt 32 nodi f yDat e;

Ul nt 32 backupDat €;

Ul nt 32 checkedDat e;

Ul nt 32 fileCount;

Ul nt 32 f ol der Count ;

Ul nt 32 bl ockSi ze;

Ul nt 32 t ot al Bl ocks;

Ul nt 32 freeBl ocks;

Ul nt 32 next Al | ocati on;
Ul nt 32 rsrcd unpSi ze;
Ul nt 32 dat all unpSi ze;
HFSCat al ogNodel D next Cat al ogl D;
Ul nt 32 wri t eCount;

Ul nt 64 encodi ngsBi t map;
unt8 finderlnfo[32];
HFSPI usFor kDat a al |l ocati onFil e;
HFSPI usFor kDat a extentsFil e;

Page: 13

TN 1150: HFS Plus Volume Format

HFSPI usFor kDat a cat al ogFi | e;
HFSPI usFor kDat a attributesFile;
HFSPI usFor kDat a startupFil e;

b
typedef struct HFSPlI usVol uneHeader HFSPI usVol umeHeader

Thefields have the following meaning:

si gnature
The volume signature, which must be kHFSPI usSi gwor d (' H+') for an HFS Plus volume.

versi on
The version of the volume format, which is currently 4 (kHFSPI usVer si on).

attributes
Volume attributes, as described below.

| ast Mount edVer si on
A value which uniquely identifies the implementation that last mounted this volume for writing.
This value can be used by future implementations to detect volumes that were last mounted by
older implementations and check them for deficiencies. When a volume has been mounted for
writing, the implementation should update this field with its own unique value. Third-party
implementations of HFS Plus should place aregistered creator code in thisfield. The value used
by Mac OS8.1is' 8. 10' (kHFSPI usMount Ver si on).

Note:

It isvery important for implementations (and utilities that directly modify the volume!) to set the

| ast Mount edVer si on. It isaso important to choose different values when non-trivial changes are made
to an implementation or utility. If abug isfound in an implementation or utility, and it setsthe

| ast Mount edVer si on correctly, it will be much easier for other implementations and utilities to detect
and correct any problems.

reserved
An implementation must treat this asareserved field.

createDate
The date and time when the volume was created. See HFS Plus Dates for a description of the
format.

nodi f yDat e
The date and time when the volume was last modified. See HES Plus Dates for a description of
the format.

backupDat e
The date and time when the volume was last backed up. The volume format requires no specia
action on thisfield; it smply defines the field for the benefit of user programs. See HES Plus
Dates for a description of the format.

checkedDat e
The date and time when the volume was | ast checked for consistency. Disk checking tools, such
as Disk First Aid, must set this when they perform a disk check. A disk checking tool may use
this date to perform periodic checking of avolume.

fil eCount
The total number of fileson the volume. Thefi | eCount field does not include the specidl files.
It should equal the number of file records found in the catalog file.

f ol der Count
The total number of folders on the volume. Thef ol der Count field does not include the root
folder. It should equal the number of folder records in the catalog file, minus one (since the root
folder has afolder record in the catalog file).

bl ockSi ze
The alocation block size, in bytes.

t ot al Bl ocks

Page: 14

TN 1150: HFS Plus Volume Format

Thetotal number of allocation blocks on the disk. For adisk whose size Is an even multiple of
the allocation block size, all sectors on the disk are included in an allocation block, including the
volume header and alternate volume header. For a disk whose size is not an even multiple of the
alocation block size, only the allocation blocks that will fit entirely on the disk are counted here,
The remaining sectors at the end of the disk are not use by the volume format (except for storing
the aternate volume header, as described above).

freeBl ocks
The total number of unused allocation blocks on the disk.

next Al | ocati on
Start of next alocation search. Thenext Al | ocat i on field isused by Mac OS as a hint for where
to start searching for free allocation blocks when allocating space for afile. It contains the
allocation block number where the search should begin. An implementation that doesn't want to
use thiskind of hint can just treat the field as reserved. [Implementation details. the current
implementation for Mac OS 8 typically setsit to the first alocation block of the extent most
recently allocated. It is not set to the allocation block immediately following the most recently
allocated extent because of the likelihood of that extent being shortened when thefileis closed
(since awhole clump may have been allocated but not actually used).] See Allocation File section
for details.

rsrcCl unpSi ze
The default clump size for resource forks, in bytes. Thisisahint to the implementation as to the
size by which a growing file should be extended.

dat adl unpSi ze
The default clump size for dataforks, in bytes. Thisis ahint to the implementation as to the size
by which a growing file should be extended.

next Cat al ogl D
The next unused catalog ID. See Catalog File for adescription of catalog I1Ds.

wri t eCount
Thisfield isincremented every time avolume is mounted. This allows an implementation to keep
the volume mounted even when the mediais gjected (or otherwise inaccessible). When the media
is re-inserted, the implementation can check thisfield to determine when the media has been
changed while it was g ected. It is very important that an implementation or utility change the
wri t eCount fieldif it modifiesthe volume's structures directly. Thisis particularly important if it
adds or deletes items on the volume.

encodi ngsBi t nap
Thisfield keeps track of the text encodings used in the file and folder names on the volume. This
bitmap enables some performance optimizations for implementations that don't use Unicode
names directly. See the Text Encoding sections for details.

finderlnfo
Thisfield contains information used by the Mac OS Finder. It's format is not part of the HFS
Plus specification.

al l ocationFile
Information about the location and size of the allocation file. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

extentsFile
Information about the location and size of the extentsfile. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

catal ogFil e
Information about the location and size of the catalog file. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

attributesFile
Information about the location and size of the attributes file. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

startupFile
Information about the location and size of the startup file. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

Page: 15

TN 1150: HFS Plus Volume Format

Volume Attributes

Theat t ri but es field of avolume header istreated as a set of one-bit flags. The definition of the bitsis
given by the constants listed below. Bit O isthe least significant bit; bit 31 isthe most significant bit.

enum {
/* Bits 0-6 are reserved */
kHFSVol unmeHar dwar eLockBi t
kHFSVol uneUnnount edBi t
kHFSVol umeSpar edBl ocksBi t
kHFSVol umeNoCacheRequi r edBi t
kHFSBoot Vol unel nconsi stent Bi t
/[* Bits 12-14 are reserved */
kHFSVol unmeSof t war eLockBi t

PoOooON

[A T I 1|
ol

1
o
a

The bits have the following meaning:

bits 0-7
An implementation must treat these asreserved fields.

kHFSVol umeUnmount edBi t (bit 8)
Thisbit is set if the volume was correctly flushed before being unmounted or gected. An
implementation must clear this bit on the mediawhen it mounts avolume for writing. An
implementation must set this bit on the media as the last step of unmounting awritable volume,
after all other volume information has been flushed. If an implementation is asked to mount a
volume where this bit is clear, it must assume the volume is inconsistent, and do appropriate
consistency checking before using the volume.

kHFSVol umeSpar edBl ocksBi t (bit 9)
Thisbit is set if there are any records in the extents overflow file for bad blocks (belonging to file
ID kHFSBadBI ockFi | el D). See Bad Block File for details.

kHFSVol uneNoCacheRequi r edBi t (bit 10)
Thisbit is set if the blocks from this volume should not be cached. For example, aRAM or ROM
disk is actually stored in memory, so using additional memory to cache the volume's contents
would be wasteful.

kHFSBoot Vol umel nconsi st ent Bi t (bit 11)
Thisbit is similar to kHFSVol umeUnnount edBi t , but inverted in meaning. An implementation
must set this bit on the mediawhen it mounts a volume for writing. An implementation must clear
this bit on the media as the last step of unmounting a writable volume, after al other volume
information has been flushed. If an implementation is asked to mount a volume where thisbit is
set, it must assume the volume is inconsistent, and do appropriate consistency checking before
using the volume.

bits 12 through 14
An implementation must treat these asreserved fields.

kHFSVol uneSof t war eLockBi t (bit 15)
Thisbit is set if the volume is write-protected due to a software setting. Any implementations
must refuse to write to avolume with this bit set. Thisflag is especially useful for
write-protecting a volume on a media that cannot be write-protected otherwise, or for protecting
an individual partition on a partitioned device.

Note:

An implementation may keep a copy of the attributesin memory and use bits 0-7 for its own runtime
flags. As an example, Mac OS uses bit 7, kHFSVol umeHar dwar eLockBi t , to indicate that the volumeis
write-protected due to some hardware setting.

Page: 16

TN 1150: HFS Plus Volume Format

Note:

The existence of two volume consistency bits (kHFSVol uneUnnount edBi t and

kHFSBoot Vol unel nconsi st ent Bi t) deserves an explanation. Macintosh ROMs check the consistency
of aboot volume if kHFSVol umeUnmount edBi t IS clear. The ROM-based check isvery slow,
annoyingly so. This checking code was significantly optimized in Mac OS 7.6. To prevent the ROM
check from being used, Mac OS 7.6 (and higher) leaves the original consistency check bit

(kHFSVol umeUnmount edBi t) set at all times. Instead, an alternative flag

(kHFSBoot Vol umel nconsi st ent Bi t) isused to signal that the disk needs a consistency check.

Note:

For the boot volume, the kHFSBoot Vol unel nconsi st ent Bi t should be used as described but

kHFSVol uneUnnount edBi t should remain set; for all other volumes, use the

kHFSVol uneUnnount edBi t as described but keep the kHFSBoot Vol urel nconsi st ent Bi t clear. Thisis
an optimization that prevents the Mac OS ROM from doing a very slow consistency check when the boot
volume is mounted since it only checks kHFSVol umeUnnount edBi t , and won't do a consistency check;
later on, the File Manager will see the kHFSBoot Vol unel nconsi st ent Bi t Set and do a better, faster
consistency check. (It would be OK to always use both bits at the expense of adower Mac OS boot.)

Back to top

B-Trees

Note:
For apractical description of the algorithms used to maintain a B-tree, seeAlgorithmsin C , Robert
Sedgewick, Addison-Wesley, 1992. ISBN: 0201514257.

Many textbooks describe B-treesin which an index node contains N keys and N+1 pointers, and where
keyslessthan key #X lie in the subtree pointed to by pointer #X, and keys greater than key #X liein the
subtree pointed to by pointer #X+1. (The B-tree implementor defines whether to use pointer #X or
#X+1 for equal keys.)

HFS and HFS Plus are dightly different; in a given subtree, there are no keys less than the first key of
that subtree's root node.

This section describes the B-tree structure used for the catal og, extents overflow, and attributes files. A
B-treeis stored in file data fork. Each B-tree has a HFSPI usFor kDat a structure in the volume header that
describes the size and initial extents of that data fork.

Note:

Specid files do not have aresource fork because there is no place to store itsHFSPI usFor kDat a in the
volume header. However, it's still important that the B-tree isin the data fork because the fork is part of
the key used to store B-tree extents in the extents overflow file.

A B-treefileisdivided up into fixed-size nodes, each of which contains r ecor ds, which consist of a
key and some data. The purpose of the B-tree isto efficiently map akey into its corresponding data. To
achieve this, keys must be ordered, that is, there must be a well-defined way to decide whether one key is
smaller than, equal to, or larger than another key.

Thenode size (which is expressed in bytes) must be power of two, from 512 through 32,768,

inclusive. The node size of a B-tree is determined when the B-treeis created. The logical length of a
B-treefileisjust the number of nodes times the node size.

Page: 17

TN 1150: HFS Plus Volume Format
There are four kinds of nodes.

e Each B-tree containsasingle header node. The header node is always the first node in the
B-tree. It contains the information needed to find other any other node in the tree.

e Map nodes contain map recor ds, which hold any allocation data (a bitmap that describes the
free nodes in the B-tree) that overflows the map record in the header node.

e Index nodes hold pointer records that determine the structure of the B-tree.

e L eaf nodes hold data recor ds that contain the data associated with a given key. The key for
each data record must be unique.

All nodes share a common structure, described in the next section.

Node Structure

Nodes are indicated by number. The node's number can be calculated by dividing its offset into the file by
the node size. Each node has the same general structure, consisting of three main parts. a node descriptor
at the beginning of the node, alist of record offsets at the end of the node, and alist of records. This
structure is depicted in Figure 2.

Figure 2 The structure of anode

Mode descriptor

~ull
Record 0

-
Record 1

i
Free space

Offset to free =pacs
Offset to record 1

Offzet to record O

Thenode descriptor contains basic information about the node as well as forward and backward links
to other nodes. TheBTNodeDescr i pt or datatype describesthis structure.

Page: 18

TN 1150: HFS Plus Volume Format

struct BTNodeDescriptor {
Ul nt 32 f Li nk
Ul nt 32 bLi nk

SInt8 Ki nd;

unt8 hei ght ;

U ntl6 nunmRecor ds;
U nt 16 reserved;

t&pedef struct BTNodeDescri ptor BTNodeDescri pt or

The fields have the following meaning:

f Li nk
The node number of the next node of thistype, or O if thisis the last node.

bLi nk
The node number of the previous node of thistype, or O if thisisthe first node.

ki nd
The type of this node. There are four node kinds, defined by the constants listed bel ow.

hei ght
Thelevel, or depth, of this node in the B-tree hierarchy. For the header node, this field must be
zero. For leaf nodes, this field must be one. For index nodes, thisfield is one greater than the
height of the child nodes it points to. The height of amap node is zero, just like for a header
node. (Think of map nodes as extensions of the map record in the header node.)

nunRecor ds
The number of records contained in this node.

reserved
An implementation must treat thisas areserved field.

A node descriptor isaways 14 (which issi zeof (BTNodeDescr i pt or)) byteslong, so thelist of
r ecor ds contained in anode always starts 14 bytes from the start of the node. The size of each record can
vary, depending on the record's type and the amount of information it contains.

Therecords are accessed using the list of record offsets at the end of the node. Each entry in thislist
isaul nt 16 which contains the offset, in bytes, from the start of the node to the start of the record. The
offsets are stored in reverse order, with the offset for the first record in the last two bytes of the node, the
offset for the second record isin the previous two bytes, and so on. Since the first record is aways at
offset 14, the last two bytes of the node contain the value 14.

IMPORTANT:

Thelist of record offsets always contains one more entry than there is records in the node. This entry
contains the offset to the first byte of free space in the node, and thus indicates the size of the last record
in the node. If there is no free space in the node, the entry contains its own byte offset from the start of
the node.

Theki nd field of the node descriptor describes the type of a node, which indicates what kinds of records
it contains and, therefore, its purpose in the B-tree hierarchy. There are four kinds of node types given by
the following constants:

enum {
kBTLeaf Node
kBTl ndexNode
kBTHeader Node
kBTMapNode

[T T
1
NP OPR

Page: 19

TN 1150: HFS Plus Volume Format

It'simportant to realise that the B-tree node type determines the type of records found in the node. L eaf
nodes always contain data records. Index nodes always contain pointer records. Map nodes always
contain map records. The header node always contains a header record, areserved record, and a map
record. The four node types and their corresponding records are described in the subsequent sections.

Header Nodes

Thefirst node (node 0) in every B-treefileis a header node, which contains essential information about
the entire B-treefile. There are three records in the header node. Thefirst record is the B-tree header
record. The second is areserved record that is always 128 bytes long. The last record is the B-tree map
record; it occupies al of the remaining space between the reserved record and the record offsets. The
header node is shown in Figure 3.

Figur e 3 Header node structure

Mode descriptor

il
B-tree header record
=l
Unus=ed record
ol

B-tree map recond

Offzet 1o free spacs :I

Offzet to record 2

Offzet to record 1

Offzet to record O

Thef Li nk field of the header node's node descriptor contains the node number of the first map node, or
0 if there are no map nodes. The bLi nk field of the header node's node descriptor must be set to zero.

Header Record
The B-tree header record contains general information about the B-tree such as its size, maximum key

length, and the location of the first and last leaf nodes. The data type BTHeader Rec describes the structure
of a header record.

Page: 20

TN 1150: HFS Plus Volume Format

struct BTHeader Rec {
U nt 16 tr eeDept h;
Ul nt 32 r oot Node;

Ul nt 32 | eaf Records;
Ul nt 32 firstLeaf Node;
Ul nt 32 | ast Leaf Node;

U nt 16 nodeSi ze;

U nt 16 maxKeyLengt h;
Ul nt 32 t ot al Nodes

Ul nt 32 f reeNodes

U nt 16 reservedl

Ul nt 32 clunpSi ze; /1 msaligned

unt8 bt reeType

unt8 reserved?2

Ul nt 32 attri butes; /1 long aligned again

Ul nt 32 reserved3[16];
¥
typedef struct BTHeader Rec BTHeader Rec

Note:

The root node can be aleaf node (in the case where there is only asingle leaf node, and therefore no
index nodes, as might happen with the catalog file on anewly initialized volume). If atree has no leaf
nodes (like the extents overflow file on anewly initialized volume), thef i r st Leaf Node,

| ast Leaf Node, and r oot Node fieldswill al be zero. If there is only one leaf nhode (as may be the case
with the catalog file on anewly initialized volume), f i r st Leaf Node, | ast Leaf Node, and r oot Node
will al have the same value (i.e., the node number of the sole leaf node). Thefi r st Leaf Node and

| ast Leaf Node fields just make it easy to walk through all the leaf nodes by just following

f Li nk/ bLi nk fields.

The fields have the following meaning:

treeDept h
The current depth of the B-tree. Always equal to the hei ght field of the root node.
r oot Node
The node number of the root node, the index node that acts as the root of the B-tree. See Index
Nodes for details. There is apossibility that ther oot Node is aleaf node. Seelnside Macintosh:
Files, pp. 2-69 for details.
| eaf Recor ds
The total number of records contained in all of the leaf nodes.
firstLeaf Node
The node number of the first leaf node. This may be zero if there are no leaf nodes.
| ast Leaf Node
The node number of the last leaf node. This may be zero if there are no leaf nodes.
nodeSi ze
The size, in bytes, of anode. Thisisa power of two, from 512 through 32,768, inclusive.
maxKeyLengt h
The maximum length of akey in an index or leaf node. HFSV olumes.h has the maxKeyLengt h
values for the catalog and extents files for both HFS and HFS Plus
(kHFSPI usExt ent KeyMaxi muniengt h, kHFSExt ent KeyMaxi munLengt h,
kKHFSPI usCat al ogKeyMaxi munLengt h, kHFSCat al ogKeyMaxi nuniengt h). The maximum key
length for the attributes B-tree will probably be alittle larger than for the catalog file. In general,
maxKeyLengt h hasto be small enough (compared to nodesSi ze) so that a single node can fit two
keys of maximum size plus the node descriptor and offsets.
t ot al Nodes
The total number of nodes (be they free or used) in the B-tree. The length of the B-treefileisthis
valuetimesthenodeSi ze.
freeNodes

Page: 21

TN 1150: HFS Plus Volume Format

The number of unused nodes in the B-tree.
reservedl
An implementation must treat this asareserved field.
cl umpSi ze
Ignored for HFS Plus B-trees. The cl unpSi ze field of the HFSPI usFor kDat a record is used
instead. For maximum compatibility, an implementation should probably set thecl unpSi ze in
the node descriptor to the same value asthe cl unpSi ze in theHFSPI usFor kDat a when
initializing avolume. Otherwise, it should treat the header recordsscl unpSi ze asreserved.
btreeType
Must be 0 for HFS Plus B-trees.
reserved?2
An implementation must treat this as areserved field.
attributes
A set of bits used to describe various attributes of the B-tree. The meaning of these bitsis given
below.
reserved3
An implementation must treat this as areserved field.

The following constants define the various bits that may be set intheat t ri but es field of the header
record.

enum {
kBTBadC oseMask = 0x00000001
kBTBi gKeysMask = 0x00000002,
kBTVari abl el ndexKeysMask = 0x00000004

The bits have the following meaning:

kBTBadC oseMask
This bit indicates that the B-tree was not closed properly and should be checked for consistency.
Thisbit is not used for HFS Plus B-trees. An implementation must treat this as reserved.

kBTBi gKeysMask
If thishit is set, thekeyLengt h field of the keysinindex and leaf nodesis Ul nt 16; otherwise, it
isaul nt 8. Thisbit must be set for all HFS Plus B-trees.

kBTVari abl el ndexKeysMask
If thisbit is set, the keysin index nodes occupy the number of bytesindicated by their
keyLengt h field; otherwise, the keysin index nodes always occupy naxKeyLengt h bytes. This
bit must be set for the HFS Plus Catalog B-tree, and cleared for the HFS Plus Extents B-tree.

Bits not specified here must be treated as reserved.
Reserved Record

The second record in a header node is always 128 bytes long. It is not used by HFS Plus B-trees. An
implementation must treat the contents of this record as areserved field.

Map Record

The remaining space in the header node is occupied by athird record, the map record. It is abitmap that
indicates which nodes in the B-tree are used and which are free. The bits are interpreted in the same way
asthe bitsin the alocation file.

All tolled, the node descriptor, header record, reserved record, and record offsets occupy 256 bytes of the
header node. So the size of the map record (in bytes) isnodeSi ze minus 256. If there are more nodesin

Page: 22

TN 1150: HFS Plus Volume Format

the B-tree than can be represented by the map record in the header node, map nodes are used to store
additional allocation data.

Map Nodes

If the map record of the header node is not large enough to represent all of the nodes in the B-tree, map
nodes are used to store the remaining allocation data. In this case, thef Li nk field of the header node's
node descriptor contains the node number of the first map node.

A map node consists of the node descriptor and a single map record. The map record is a continuation of
the map record contained in the header node. The size of the map record is the size of the node, minus the
size of the node descriptor (14 bytes), minus the size of two offsets (4 bytes), minus two bytes of free
gpace. That is, the size of the map record is the size of the node minus 20 bytes; this keeps the length of
the map record an even multiple of 4 bytes. Note that the start of the map recordisnot aignedto a
4-byte boundary: it startsimmediately after the node descriptor (at an offset of 14 bytes).

The B-tree uses as many map nodes as needed to provide alocation datafor all of the nodes in the B-tree.
The map nodes are chained through the f Li nk fields of their node descriptors, starting with the header
node. Thef Li nk field of the last map node's node descriptor is zero. The bLi nk field isnot used for map
nodes and must be set to zero for al map nodes.

Note:
Not using thebLi nk field is consistent with the HFS volume format, but not really consistent with the
overall design.

Keyed Records

Therecordsinindex and leaf nodes share acommon structure. They contain akeyLengt h, followed by
thekey itself, followed by the record data.

Thefirst part of therecord, keyLengt h, iseither aul nt 8 or aul nt 16, depending on theat t ri but es
field in the B-tree's header record. If the kBTBi gkeysMask bitissetinattri but es, thekeyLength isa
Ul nt 16; otherwise, it'sa Ul nt 8. The length of the key, as stored in this field, does not include the size of
thekeyLengt h field itself.

IMPORTANT:
All HFS Plus B-trees use aul nt 16 for their key length.

Immediately following the keyLengt h isthe key itself. The length of the key is determined by the node
type and the B-tree attributes. In leaf nodes, the length is dways determined by keyLengt h. In index
nodes, the length depends on the value of the kBTVar i abl el ndexKeysMask bit in the B-tree attributesin
the header record. If the bit is clear, the key occupies a constant number of bytes, determined by the
maxKeyLengt h field of the B-tree header record. If the bit is set, the key length is determined by the
keyLengt h field of the keyed record.

Following the key isthe record's data. The format of this data depends on the node type, as explained in
the next two sections. However, the datais always aligned on a two-byte boundary and occupies an even
number of bytes. To meet the first alignment requirement, a pad byte must be inserted between the key
and the dataif the size of thekeyLengt h field plus the size of the key is odd. To meet the second
alignment requirement, a pad byte must be added after the dataif the data size is odd.

Index Nodes

Therecordsin anindex node are called pointer records. They contain akeyLengt h, akey, and annode
number, expressed a Ul nt 32. The node whose number isin apointer record is called achild node of

Page: 23

TN 1150: HFS Plus Volume Format

the index node. An index node has two or more children, depending on the size of the node and the size
of the keysin the node.

Note:
A root node does not need to exist (if the treeis empty). And even if one does not exi<t, it need not be an
index node (i.e., it could be aleaf node -- if al the recordsfit in a single node).

L eaf Nodes

The bottom level of aB-treeis occupied exclusively by leaf nodes, which contain data recor ds
instead of pointer records. The data records contain akeyLengt h, akey, and the data associated with that
key. The data may be of variable length.

In an HFS Plus B-tree, the data in the data record is the HFS Plus volume structure (such asa
Cat al ogRecor d, Ext ent Record, Or At t ri but eRecor d) associated with the key.

Sear ching for Keyed Records

A B-treeis highly structured to alow for efficient searching, insertion, and removal. This structure
primarily affects the keyed records (pointer records and data records) and the nodes in which they are
stored (index nodes and leaf nodes). The following are the ordering requirements for index and |eaf
nodes:

e Keyed records must be placed in anode such that their keys are in ascending order.

e All thenodesin agiven level (whosehei ght field isthe same) must be chained viatheir f Li nk
and bLi nk field. The node with the smallest keys must be first in the chain and itsbLi nk field
must be zero. The node with the largest keys must be last in the chain and itsf Li nk field must be
zero.

e For any given node, all the keysin the node must be lessthan all the keys in the next nodein the
chain (pointed to by f Li nk). Similarly, al the keysin the node must be greater than all the keys
in the previous node in the chain (pointed to by bLi nk).

Keeping the keys ordered in thisway makes it possible to quickly search the B-tree to find the data
associated with agiven key. Figure 4 shows a sample B-tree containing hypothetical keys (in this case,
the keys are ssimply integers).

When an implementation needs to find the data associated with a particular sear ch key, it begins
searching at the root node. Starting with the first record, it searches for the record with the greatest key
that isless than or equal to the search key. In then moves to the child node (typically an index node) and
repeats the same process.

This process continues until aleaf node is reached. If the key found in the leaf node is equal to the search
key, the found record contains the desired data associated with the search key. If the found key is not
equal to the search key, the search key is not present in the B-tree.

Figure 4 A sample B-Tree

Page: 24

TN 1150: HFS Plus Volume Format

isthatnods ot ncds lsst Lo o
Healdar wods pon b pointer polnter
! |
hdsx nodas lr

|Ei| poinir |'IE-| ponttr |
|
[%] pontr [13] pointe | [18] pointer (2] ponter [E5] ponter |

R B w—

[&] &w [10] data | [15] daw [15] datm | 18] dawm | [20] daw 22| dsm | [23] dam |

Lleafmodex

HFS and HFS Plus B-Trees Compared

The structure of the B-trees on an HFS Plus volume is a closely related to the B-tree structure used on an
HFS volume. There are three principal differences. the size of nodes, the size of keys within index nodes,
and the size of akey length (UInt8 vs. UInt16).

Node Sizes
In an HFS B-tree, nodes always have afixed size of 512 bytes.

In an HFS Plus B-tree, the node size is determined by afield (nodeSi ze) in the header node. The node
size must be a power from 512 through 32,768. An implementation must use the nodeSi ze field to
determine the actual node size.

Note:
The header node is aways located at the start of the B-tree, so you can find it without knowing the
B-tree node size.

HFS Plus uses the following default node sizes:

e 4 KB for the catalog file
e 1 KB for the extents overflow file
e 4 KB for the attributesfile

These sizes are set when the volumeisinitialized and cannot be easily changed. It islegal to initidlize an
HFS Plus volume with different node sizes, but the node sizes must be large enough for an index node to
contain two keys of maximum size (plus the other overhead such as a node descriptor, record offsets, and
pointersto children).

IMPORTANT:
The node size of the catalog file must be at least kHFSPI usCat al ogM nNodeSi ze (4096).

IMPORTANT:
The node size of the attributes file must be at least kHFSPI usAt t r M nNodeSi ze (4096).

Key Sizein an Index Node

In an HFS B-tree, all of the keysin an index node occupy afixed amount of space: the maximum key

length for that B-tree. This smplifies the algorithms for inserting and del eting records because, within an

index node, one key can be replaced by another key without worrying whether there is adequate room for
Page: 25

TN 1150: HFS Plus Volume Format

the new key. However, it is also somewhat wasteful when the keys are variable length (such as in the
catalog file, where the key length varies with the length of the file name).

In an HFS Plus B-tree, the keysin an index node are allowed to vary in size. This complicates the
algorithms for inserting and deleting records, but reduces wasted space when the length of akey can vary
(such asin the catalog file). It aso means that the number of keysin an index node will vary with the
actual size of the keys.

Back to top

Catalog File

HFS Plus uses a catal og file to maintain information about the hierarchy of files and folders on avolume.
A catalog fileis organized as a B-treefile, and hence consists of a header node, index nodes, |eaf nodes,
and (if necessary) map nodes. The location of the first extent of the catalog file (and hence of thefile's
header node) is stored in the volume header. From the catalog fil€'s header node, an implementation can
obtain the node number of the root node of the B-tree. From the root node, an implementation can search
the B-tree for keys, as described in the previous section.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. Asthe catalog fileisa
B-tree, it inherits the requirements of thisrule. In addition, the node size of the catalog file must be at |east
4 KB (kHFSPI usCat al ogM nNodeSi ze).

Each file or folder in the catalog file is assigned a unique catalog node ID (CNID). For folders, the CNID
isthefolder I D, sometimes caled adirectory ID, or dirlD; for files, it'sthefile 1 D. For any given file
or folder, the parent ID isthe CNID of the folder containing the file or folder, known as the parent folder.

The catalog node ID is defined by the Cat al ogNodel D data type.

typedef Ul nt 32 HFSCat al ogNodel D;

Thefirst 16 CNIDs are reserved for use by Apple Computer, Inc., and include the following standard
assignments:

enum {
kHFSRoot Par ent | D
kHFSRoot Fol der | D
kHFSExtentsFil el D
kHFSCat al ogFi | el D
kHFSBadBl ockFi | el D
kHFSAI | ocationFil el D
kHFSSt art upFi | el D
kHFSAttri butesFil el D
kHFSBogusExt ent Fi |l el D
kHFSFi r st User Cat al ogNodel D

BN RONE

@ o

These constants have the following meaning:

kHFSRoot Par ent | D
Parent ID of the root folder.
kHFSRoot Fol der | D
Folder ID of the root folder.
kHFSExt ent sFi | el D
Page: 26

TN 1150: HFS Plus Volume Format

FlelD of the extents overflow file.
kHFSCat al ogFi | el D

FileID of the catalog file.
kHFSBadBI ockFi |l el D

File ID of the bad block file. The bad block fileis not afilein the same sense as a special file and

auser file. SeeBad Block Filefor details.
kHFSAI | ocati onFi |l el D

File ID of the alocation file (introduced with HFS Plus).
kHFSSt art upFi | el D

File ID of the startup file (introduced with HFS Plus).
kHFSAt tri but esFil el D

File ID of the attributesfile (introduced with HFS Plus).
kHFSBogusExt ent Fi | el D

Used temporarily during ExchangeFi | es operations.
kHFSFi r st User Cat al ogNodel D

First CNID available for use by user files and folders.

In addition, the CNID of zero is never used and serves as anil value.

The implementation must store anumber greater than the largest CNID used by any file or folder on the
volume in the next Cat al ogl D field of the volume header. Typically CNIDs are allocated sequentially,
starting at kHFSFi r st User Cat al ogNodel D. When the CNID reaches its maximum ($FFFFFFFF), the disk
isout of CNIDs and no new files or folders can be created.

Asthe catalog fileis a B-treefile, it inheritsits basic structure from the definition in B-Trees Beyond
that, you need to know only two things about an HFS Plus catalog file to interpret its data:

1. theformat of the key used both in index and leaf nodes, and
2. theformat of the leaf node data records (file, folder, and thread records).

Catalog File Key

For agivenfile, folder, or thread record, the catalog file key consists of the parent folder's CNID and the
name of thefile or folder. This structure is described using the HFSPI usCat al ogKey type.

struct HFSPI usCat al ogKey {

U nt 16 keyLengt h;
HFSCat al ogNodel D parent | D
HFSUni St r 255 nodeNare;

i
typedef struct HFSPI usCat al ogKey HFSPI usCat al ogKey;

The fields have the following meaning:

keyLengt h
ThekeyLengt h field isrequired by all keyed recordsin aB-tree. The catalog file, in common
with all HFS Plus B-trees, uses alarge key length (Ul nt 16).

parent| D
For file and folder records, thisisthe folder containing the file or folder represented by the
record. For thread records, thisisthe CNID of thefile or folder itself.

nodeNarme
Thisfield contains Unicode characters, fully decomposed and in canonical order. For file or
folder records, thisisthe name of the file or folder inside the par ent | D folder. For thread
records, thisisthe empty string.

Page: 27

TN 1150: HFS Plus Volume Format

IMPORTANT:

The length of the key varies with the length of the string stored in the nodeNarre field; it occupies only
the number of bytes required to hold the name. The keyLengt h field determines the actua length of the
key; it varies between kHFSPI usCat al ogKeyM ni mur_engt h (6) to

kHFSPI usCat al ogKeyMaxi muniengt h (516).

Note:

The cataog file key mirrors the standard way you specify afile or folder with the Mac OS File Manager
programming interface, with the exception of the volume reference number, which determines which
volume's catalog to search.

Catalog file keys are compared first by par ent | D and then by nodeNare. The par ent | Dis compared as
an unsigned 32-bit integer. The nodeNarre should be compared in a case-insensitive way, as described in
the String Comparison Algorithm section.

For more information about how catalog keys are used to find file, folder, and thread records within the
catalog tree, see Catalog Tree Usage.

Catalog File Data
A cataog file leaf node can contain four different types of datarecords:

1. Afolder record containsinformation about a single folder.

2. Afile record containsinformation about asinglefile.

3. Afolder thread record providesalink between afolder and its parent folder, and lets you
find afolder record given just the folder ID.

4. Afilethread record providesalink between afile and its parent folder, and lets you find afile
record given just thefile ID. (In both the folder thread and the file thread record, the thread record
isused to map thefile or folder 1D to the actual parent directory ID and name.)

Each record starts with ar ecor dType field, which describes the type of catalog data record. The
recor dType field contains one of the following values:

enum {
kHFSPI usFol der Record = 0x0001
kHFSPI usFi | eRecord = 0x0002,
kHFSPI usFol der ThreadRecord = 0x0003,
kHFSPI usFi | eThr eadRecor d = 0x0004

The values have the following meaning:

kHFSPI usFol der Record
Thisrecord isafolder record. Y ou can use theHFSPI usCat al ogFol der typeto interpret the
data.
kHFSPI usFi | eRecor d
Thisrecord isafilerecord. You can use theHFSPI usCat al ogFi | e typeto interpret the data.
kHFSPI usFol der Thr eadRecor d
Thisrecord isafolder thread record. Y ou can use the HFSPI usCat al ogThr ead typeto interpret
the data.
kHFSPI usFi | eThr eadRecord
Thisrecord isafile thread record. Y ou can use the HFSPI usCat al ogThr ead type to interpret the
data.

The next three sections describe the folder, file, and thread records in detail.

Page: 28

TN 1150: HFS Plus Volume Format

Note:
The position of ther ecor dType field, and the constants chosen for the various record types, are
especially useful if you're writing common code to handle HFS and HFS Plus volumes.

In HFS, the record type field is one byte, but it's always followed by a one-byte reserved field whose
value is aways zero. In HFS Plus, the record type field is two bytes. Y ou can use the HFS Plus
two-byte record type to examine an HFS record if you use the appropriate constants, as shown below.

enum {
kHFSFol der Record = 0x0100,
kHFSFi | eRecord = 0x0200,
kHFSFol der Thr eadRecor d = 0x0300,
kHFSFi | eThr eadRecor d = 0x0400

}s

The vaues have the following meaning:

kHFSFol der Recor d
Thisrecord is an HFS folder record. Y ou can use the HFSCat al ogFol der typeto interpret the
data.
kHFSFi | eRecord
Thisrecord isan HFSfile record. Y ou can use the HFSCat al ogFi | e typeto interpret the data.
kHFSFol der Thr eadRecord
Thisrecord is an HFS folder thread record. Y ou can use the HFSCat al ogThr ead typeto
interpret the data.
kHFSFi | eThr eadRecor d
Thisrecord isan HFS file thread record. Y ou can use the HFSCat al ogThr ead typeto interpret
the data.

Catalog Folder Records

The catalog folder record is used in the catalog B-tree file to hold information about a particular folder on
the volume. The data of the record is described by the HFSPI usCat al ogFol der type.

struct HFSPI usCat al ogFol der {

SInt16 recordType;

U nt 16 fl ags;

Ul nt 32 val ence;

HFSCat al ogNodel D fol derl D;

Ul nt 32 creat eDat e;

Ul nt 32 cont ent MbdDat €;
Ul nt 32 attri but eMbdDat €;
Ul nt 32 accessDat e;

Ul nt 32 backupDat e;
HFSPI usPer m ssi ons perm ssi ons;

DI nfo user | nf o;

DXI nf o finderl nfo;

Ul nt 32 t ext Encodi ng;
Ul nt 32 reserved;

¥
typedef struct HFSPlI usCat al ogFol der HFSPI usCat al ogFol der;

Page: 29

TN 1150: HFS Plus Volume Format
The fields have the following meaning:

recordType
The catalog data record type. For folder records, thisis always kHFSPI usFol der Recor d.

flags
Thisfield contains bit flags about the folder. No bits are currently defined for folder records. An
implementation must treat this as areserved field.

val ence
The number of files and folders directly contained by thisfolder. Thisis equal to the number of
file and folder records whose key'spar ent | Dis equal to thisfolder'sf ol der I D.

IMPORTANT:

The current Mac OS File Manager programming interfaces require folders to have a valence less than
32,767. An implementation must enforce thisrestriction if it wants the volume to be usable by Mac OS.
Values of 32,768 and larger are problematic; 32,767 and smaller are OK. It's an implementation
restriction for the older Mac OS APIs; items 32,768 and beyond would be unreachable by

PBCGet Cat | nf 0. Asa practical matter, many programs are likely to fails with anywhere near that many
itemsin asingle folder. So, the volume format alows more than 32,767 itemsin afolder, but it's
probably not agood ideato exceed that limit right now.

folderlD
The CNID of thisfolder. Remember that the key for afolder record contains the CNID of the
folders parent, not the CNID of the folder itself.

createDate
The date and time the folder was created. See HFS Plus Dates for a description of the format.
Again, thecr eat eDat e of the Volume Header isNOT stored in GMT; it islocal time. (Further,
if the volume has an HFS wrapper, the creation date in the MDB should be the same as the
cr eat eDat e in the Volume Header).

cont ent ModDat e
The date and time the folder's contents were last changed. Thisisthe time when afile or folder
was created or deleted inside this folder, or when afile or folder was moved in or out of this
folder. See HFS Plus Dates for a description of the format.

Note:
The current Mac OS APIs use the cont ent ModDat e when getting and setting the modification date. The
current Mac OS APIstreat at t ri but eMbdDat e as areserved field.

attri but eModDat e
Theat t ri but eModDat e IS set when anamed fork (attribute) -- other than the data and resource
fork -- iswritten to. Thecont ent ModDat e is used for the data and resource forks, and when
adding/removing items in a directory. An implementation which doesn't use named forks should
treat theat t ri but eModDat e as reserved.

accessDat e
The date and time the folder's contents were last read. Thisfield has no analog in the HFS
catalog record. It represents the last time the folder's contents were read. Thisfield existsto
support POSIX semantics when the volume is mounted on non-Mac OS platforms. See HFS
Plus Datesfor a description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not maintain the accessDat e field. Newly created files
or folders have an accessbat e of zero.

backupDat e
The date and time the folder was last backed up. The volume format requires no special action on
thisfield; it simply definesthefield for the benefit of user programs. See HFES Plus Dates for a

Page: 30

TN 1150: HFS Plus Volume Format

description of the format.

perm ssi ons
Thisfield contains folder permissions, similar to those defined by POSIX or AFP. See HFS Plus
Permissions for a description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not use the per ni ssi ons field. Folders created by Mac
OS have the entirefield set to 0.

userlinfo
Thisfield contains information used by the Mac OS Finder. Its format is not part of the HFS Plus
specification.

finderlnfo
Thisfield contains information used by the Mac OS Finder. Its format is not part of the HFS Plus
specification.

t ext Encodi ng
A hint asto text encoding from which the folder name was derived. This hint can be used to
improve the quality of the conversion of the name to aMac OS-encoded Pascal string. See Text
Encodingsfor details.

reserved
An implementation must treat this asareserved field.

Catalog File Records

The catalog file record is used in the catal og B-tree file to hold information about a particular file on the
volume. The data of the record is described by the HFSPI usCat al ogFi | e type.

struct HFSPI usCat al ogFil e {

SInt16 recordType;

U nt 16 fl ags;

Ul nt 32 reservedl
HFSCat al ogNodel D filelD

Ul nt 32 creat eDat e;

Ul nt 32 cont ent MbdDat €;
Ul nt 32 attri but eModDat e;
Ul nt 32 accessDat e;

Ul nt 32 backupDat €;
HFSPI usPer m ssi ons perm ssi ons;

FI nfo user | nf o;

FXI nfo finderl nfo;

Ul nt 32 t ext Encodi ng;
Ul nt 32 reserved?;
HFSPI usFor kDat a dat aFork;

HFSPI usFor kDat a r esour ceFor k

b
typedef struct HFSPl usCat al ogFi | e HFSPI usCat al ogFi | e;

The fields have the following meaning:

recordType
The catalog data record type. For files records, thisis awayskHFSPI usFi | eRecord.

flags
Thisfield contains bit flags about the file. The currently defined bits are described below. An
implementation must treat undefined bits as reserved.

Page: 31

TN 1150: HFS Plus Volume Format

reservedl
An implementation must treat this asareserved field.

filelD
The CNID of thisfile.

createDate
The date and time the file was created. See HFS Plus Dates for a description of the format.

cont ent ModDat e
The date and time the fil€'s contents were last changed by extending, truncating, or writing either
of the forks. See HFS Plus Dates for a description of the format. The cont ent ModDat e iS Set
when the data or resource forks are extended, truncated, or written to. Theat t ri but eMbdDat e
is set when any other named fork (attribute) is extended, truncated, or written to. Since the
current Mac OS APIs don't support the other named forks, it treats attributeM odDate as reserved.

attri but eModDat e
The date and time the fil €'s attributes were last changed. Theat t ri but eModDat e IS Set when any
other named fork (attribute) is extended, truncated, or written to. Since the current Mac OS APIs
don't support the other named forks, it treatsat t r i but eMbdDat e as reserved (see the Attributes
File section). See HFES Plus Dates for a description of the format.

accessbDat e
The date and time the file's contents were last read. Thisfield has no analog in the HFS catal og
record. It represents the last time either of afile'sforks was read. Thisfield exists to support
POSIX semantics when the volume is mounted on non-Mac OS platforms. See HFS Plus Dates
for adescription of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not maintain the accessDat e field. Newly created files
or folders have an accessbat e of zero.

backupDat e
The date and time the file was last backed up. The volume format requires no special action on
thisfield; it smply definesthefield for the benefit of user programs. See HFES Plus Dates for a
description of the format.

perm ssi ons
Thisfield contains file permissions, similar to those defined by POSIX. See HFS Plus
Permissions for a description of the format.

IMPORTANT:
The Mac OS implementation of HFS Plus does not use the per ni ssi ons field. Files created by Mac OS
have the entire field set to O.

userlinfo
Thisfield contains information used by the Mac OS Finder. Its format is not part of the HFS Plus
specification.

finderlnfo
Thisfield contains information used by the Mac OS Finder. Its format is not part of the HFS Plus
specification.

t ext Encodi ng
A hint asto text encoding from which the file name was derived. This hint can be used to
improved the quality of the conversion of the name to aMac OS encoded Pascal string. See Text
Encodingsfor details.

reserved?2
An implementation must treat this asareserved field.

dat aFor k
Information about the location and size of the data fork. See Fork Data Structure for a description
of the HFSPI usFor kDat a type.

resour ceFor k

Page: 32

TN 1150: HFS Plus Volume Format

Information apout the location and size of the resource fork. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

For each fork, the first eight extents are described by the HFSPI usFor kDat a field in the catalog file
record. If afork is sufficiently fragmented to require more than eight extents, the remaining extents are
described by extent records in the extents overflow file.

The following constants define bit flagsin the file record'sf | ags field:

enum {
kHFSFi | eLockedBi t = 0x0000,
kHFSFi | eLockedMask = 0x0001
kHFSThr eadExi st sBi t = 0x0001
kHFSThr eadExi st sMask = 0x0002

The values have the following meaning:

kHFSFi | eLockedBi t, kHFSFi | eLockedMask
If KHFSFi | eLockedBi t isset, then none of the forks may be extended, truncated, or written to.
They may only be opened for reading (not for writing). The catalog information (like
finder | nfo anduser I nfo) may still be changed.

kHFSThr eadExi st sBi t , KHFSThr eadExi st sMask
This bit incidates that the file has athread record. As all filesin HFS Plus have thread records,
this bit must be set.

Catalog Thread Records

The catal og thread record is used in the catalog B-tree fileto link a CNID to thefile or folder record using
that CNID. The data of the record is described by the HFSPI usCat al ogThr ead type.

IMPORTANT:
In HFS, thread records were required for folders but optional for files. In HFS Plus, thread records are
required for both files and folders.

struct HFSPI usCat al ogThread {

SInt16 recordType;
SInt 16 reserved;
HFSCat al ogNodel D par ent | D
HFSUni St r 255 nodeNane;

b
typedef struct HFSPlI usCat al ogThread HFSPI usCat al ogThr ead;

Thefields have the following meaning:

recordType
The catalog data record type. For thread records, thisiskHFSPI usFi | eRecor d Of
kHFSPI usFol der Recor d, depending on whether the thread record refersto afile or afolder.
Both types of thread record contain the same data.
reservedl
An implementation must treat this asareserved field.
parent| D
The CNID of the parent of the file or folder referenced by this thread record.
nodeNarme
The name of thefile or folder referenced by this thread record.

Page: 33

TN 1150: HFS Plus Volume Format

The next section explains how thread records can be used to find afile or folder using just its CNID.

Catalog Tree Usage

File and folder records always have a key that contains a non-empty nodeNane. Thefile and folder
records for the children are all consecutive in the catalog, since they all have the same par ent | Din the
key, and vary only by nodeNane.

The key for athread record isthefile's or folder's CNID (not the CNID of the parent folder) and an
empty (zero length) nodeNane. Thisalows afile or folder to by found using just the CNID. The thread
record contains the par ent | D and nodeNarre field of thefile or folder itself.

Finding afile or folder by its CNID is atwo-step process. The first step isto use the CNID to look up the
thread record for the file or folder. Thisyieldsthefile or folder's parent folder 1D and name. The second
step isto use that information to look up the real file or folder record.

Sincefiles do not contain other files or folders, there are no catalog records whose key hasapar ent | D
equal to afile's CNID and nodeNamre with non-zero length.These unused key values are reserved.

Back to top

Extents Overflow File

HFS Plus tracks which alocation blocks belong to afile's forks by maintaining alist of extents
(contiguous allocation blocks) that belong to that file, in the appropriate order. Each extent is represented
by apair of numbers: the first allocation block number of the extent and the number of allocation blocksin
the extent. Thefile record in the catalog B-tree contains a record of the first eight extents of each fork. If
there are more than eight extentsin afork, the remaining extents are stored in the extents overflow file.

Note:
Fork Data Structure discusses how HFS Plus maintains information about a fork.

Likethe catalog file, the extents overflow file is B-tree However, the structure of the extents overflow
fileisrelatively ssimple compared to that of a catalog file. The extents overflow file hasasimple, fixed
length key and a single type of datarecord.

Extents Overflow File Key

The structure of the key for the extents overflow file is described by the HFSPI usExt ent Key type.

struct HFSPl usExt ent Key {

U nt 16 keyLengt h;
U nt8 forkType;
U nt8 pad;

HFSCat al ogNodel D filelD

Ul nt 32 st art Bl ock;

b
typedef struct HFSPlI usExt ent Key HFSPI usExt ent Key;

Thefields have the following meaning:

keyLengt h
ThekeyLengt h field isrequired by all keyed recordsin a B-tree. The extents overflow file, in

Page: 34

TN 1150: HFS Plus Volume Format

common with all HFS Plus B-trees, uses alarge key length (Ul nt 16). Keysin the extents
overflow file aways have the same length, kHFSPI usExt ent KeyMaxi muriengt h (10).
forkType
The type of fork for which this extent record applies. This must be either O for the data fork or
$FF for the resource fork.
pad
An implementation must treat this asapad field.
filelD
The CNID of the file for which this extent record applies.
start Bl ock
The offset, in alocation blocks, into the fork of the first extent described by this extent record.
The startBlock field lets you directly find the particular extents for a given offset into afork.

NOTE:

Typically, an implementation will keep a copy of theinitial extents from the catalog record. When trying
to access part of the fork, they see whether that position is beyond the extents described in the catalog
record; if so, they use that offset (in alocation blocks) to find the appropriate extents B-tree record. See
Extents Overflow File Usage for more information.

Two HFSPI usExt ent Key structures are compared by comparing their fieldsin the following order:
filelD, forkType, startBl ock. Thus, al the extent records for a particular fork are grouped together in
the B-tree, right next to all the extent records for the other fork of thefile.

Extents Overflow File Data

The datarecords for an extents overflow file (the extent recor ds) are described by the
HFSPI usExt ent Recor d type, which is described in detail in Fork Data Structure.

IMPORTANT:

Remember that the HFSPI usExt ent Recor d contains descriptors for eight extents. The first eight extents
inafork are held in its catalog file record. So the number of extent records for afork is ((number of
extents- 8+ 7) / 8).

Extents Overflow File Usage

The most important thing to remember about extents overflow fileisthat it isonly used for forks with
more than eight extents. In most cases, forks have fewer extents, and al the extents information for the
fork isheld inits catalog file record. However, for more fragmented forks, the extra extents information
is stored in the extents overflow file.

When an implementation needs to map afork offset into a sector on disk, it first looks through the extent
records in the catalog file record. If the fork offset is within one these extents, the implementation can find
the corresponding sector without consulting the extents overflow file.

If, on the other hand, the fork offset is beyond the last extent recorded in the catalog file record, the
implementation must look in the next extent record, which is stored in the extents overflow file. To find
this record, the implementation must form a key, which consists of information about the fork (the fork
type and thefile ID) and the offset info the fork (the start block).

Because extent records are partially keyed off the fork offset of the first extent in the record, the
implementation must have al the preceding extent records in order to know the fork offset to form the key
of the next extent record. For example, if the fork has two extent records in the extents overflow file, the
implementation must read the first extent record to calculate the fork offset for the key for the second
extent record.

Page: 35

TN 1150: HFS Plus Volume Format

However, you can use thest ar t Bl ock In the extent key to go directly to the record you need. Here'sa
complicated example:

We've got afork with atotal of 23 extents (very fragmented!). The bl ockCount s for the extents, in
order, are as follows: one extent of 6 allocation blocks, 14 extents of one allocation block each, two

extents of two allocation blocks each, one extent of 7 allocation blocks, and five more extents of one
alocation block each. The fork contains atotal of 36 allocation blocks.

The block counts for the catalog'sfork dataare: 6, 1, 1, 1, 1, 1, 1, 1. Thereis an extent overflow record
whose startBlock is 13 (0+6+1+1+1+1+1+1+1), and has the following block counts: 1, 1, 1,1, 1,1, 1,
2. Thereis asecond extent overflow record whose st ar t Bl ock is22 (13+1+1+1+1+1+1+1+2), and has
the following block counts: 2, 7, 1, 1, 1, 1, 1, 0. Note this last record only contains seven extents.

Suppose the allocation block size for the volume is 4K. Suppose we want to start reading from thefile at
an offset of 108K. We want to know where the data is on the volume, and how much contiguous dataiis
there.

First, we divide 108K (the fork offset) by 4K (the allocation block size) to get 27, which is the number of
allocation blocks from the start of the fork. So, we want to know where fork allocation block #27 is. We

notice that 27 is greater than or equal to 13 (the number of allocation blocksin the catalog's fork data), so
we're going to have to look in the extents B-tree.

We construct a search key with the appropriatefi | el Dand f or kType, and set st ar t Bl ock to 27 (the
desired fork allocation block number). We then search the extents B-tree for the record whose key isless
than or equal to our search key. We find the second extent overflow record (the one with

start Bl ock=22). It hasthe samefi | el Dandf or kType, SO things are good. Now we just need to figure
out which extent within that record to use.

We compute 27 (the desired fork allocation block) minus 22 (the st ar t Bl ock) and get 5. So, we want
the extent that is 5 alocation blocks "into" the record. Wetry the first extent. It's only two allocation
blocks long, so the desired extent is 3 allocation blocks after that first extent in the record. The next extent
is 7 alocation blocks long. Since 7 is greater than 3, we know the desired fork position iswithin this
extent (the second extent in the second overflow record). Further, we know that there are 7-3=4
contiguous alocation blocks (i.e., 16K).

Wegrab thest art Bl ock for that second extent (i.e., the one whosebl ockCount is7); suppose this
number is 444. We add 3 (since the desired position was 3 allocation blocks into the extent we found).
So, the desired position isin allocation block 444+3=447 on the volume. That is 447*4K=1788K from
the start of the HFS Plus volume. (Since the VVolume Header always starts 1K after the start of the HFS
Plus volume, the desired fork position is 1787K after the start of the Volume Header.)

Bad Block File

The extent overflow fileis aso used to hold information about the bad block file. The bad block fileis
used to mark areas on the disk as bad, unable to be used for storing data. Thisistypically used to map out
bad sectors on the disk.

Note:
All space on an HFS Plus volume is allocated in terms of alocation blocks. Typically, allocation blocks
are larger than sectors. If a sector isfound to be bad, the entire allocation block is unusable.

When an HFS Plus volume is embedded within an HFS wrapper (the way Mac OS normally initializes a
hard disk), the space used by the HFS Plus volume is marked as part of the bad block file within the
HFSwrapper itself . (This sounds confusing because you have a volume within another volume.)

The bad block fileis not afilein the same sense as a user file (it doesn't have afile record in the catal og)
Page: 36

TN 1150: HFS Plus Volume Format

or one of the special files (it's not referenced by the volume header). Instead, the bad block file usesa
speciad CNID (kHFSBadBI ockFi | el D) asthe key for extent recordsin the extents overflow file. When a
block is marked as bad, an extent with this CNID and encompassing the bad block is added to the extents
overflow file. The block is marked as used in the alocation file. These steps prevent the block from being
used for data by thefile system.

IMPORTANT:

The bad block file is necessary because marking abad block as used in the dlocation file isinsufficient.
One common consistency check for HFS Plus volumesisto verify that al the allocation blocks on the
volume are being used by real data. If such a check were run on avolume with bad blocks that weren't
also covered by extentsin the bad block file, the bad blocks would be freed and might be reused for file

system data.

Bad block extent records are aways assumed to reference the datafork. Thef or k Type field of the key
must be 0.

Note:
Because an extent record holds up to eight extents, adding a bad block extent to the bad block file does

not necessarily require the addition of a new extent record.

HFS uses a similar mechanism to store information about bad blocks. Thisfacility is used by the HES
Wrapper to hold an entire HFS Plus volume as bad blocks on an HFS disk.

Back to top

Allocation File

HFS Plus uses an alocation file to keep track of whether each allocation block in avolumeis currently
allocated to some file system structure or not. The contents of the alocation file is abitmap. The bitmap
contains one bit for each allocation block in the volume. If abit is set, the corresponding allocation block
iscurrently in use by some file system structure. If abit is clear, the corresponding allocation block is not
currently in use, and is available for allocation.

Note:
HFS stores alocation information in a special area on the volume, known asthe volume bitmap. The
allocation file mechanism used by HFS Plus has a number of advantages.

e Using afile alowsthe bitmap itself to be allocated from allocation blocks. This simplifiesthe
design, since volumes are now comprised of only one type of block -- the allocation block. The
HFS is dlightly more complex because it uses sectors to hold the alocation bitmap and
allocation blocks to hold file data.

e Theadlocation file does not have to be contiguous, which allows alocation information and user
datato be interleaved. Many modern file systems do thisto reduce head travel when growing
files.

e Theadlocation file can be extended, which makesit significantly easier to increase the number of
alocation blocks on adisk. Thisis useful if you want to either decrease the allocation block size
on adisk, or increase the total disk size.

e Theallocation file may be shrunk. This makes it easy to create a disk images suitable for
volumes of varying sizes. The alocation filein the disk image is sized to hold enough alocation
datafor the largest disk, and shrunk back when the disk iswritten to asmaller disk.

Each bytein the alocation file holds the state of eight allocation blocks. The byte at offset X into thefile
contains the allocation state of allocations blocks (X * 8) through (X * 8 + 7). Within each byte, the most
significant bit holds information about the allocation block with the lowest number, the least significant bit

Page: 37

TN 1150: HFS Plus Volume Format

holds information about the allocation block with the highest number. Listing 1 shows how you would
test whether an alocation block isin use, assuming that you've read the entire allocation file into memory.

Listing 1 Determining whether an allocation block isin use

static Bool ean IsAllocationBl ockUsed(U nt32 thisAllocationBl ock,
U nt8 *all ocationFil eContents)

{
U nt 8 thisByte;
thisByte = allocationFileContents[thisAllocationBlock / 8];
return (thisByte & (1 << (7 - (thisAllocationBlock %8)))) != 0;
}

The size of the allocation file depends on the number of alocation blocksin the volume, which in turn
depends both on the number of sectors on the disk and on the size of the volume's allocation blocks (the
number of sectors per alocation block). For example, avolume on a1l GB disk and having an allocation
block size of 4 KB needs an alocation file size of 256 Kbits (32 KB, or 8 allocation blocks). Since the
alocation fileitself is alocated using allocation blocks, it aways occupies an integral number of allocation
blocks (its size may be rounded up).

The alocation file may be larger than the minimum number of bits required for the given volume size.
Any unused bitsin the bitmap must be set to zero.

Note:
Since the number of alocation blocksis determined by a 32-bit number, the size of the allocation file can
be up to 512 MB in size, aradical increase over HFSs 8 KB limit.

IMPORTANT:

Because the entire volume is composed of allocation blocks (with the possible exception of the alternate
volume header, as described above), the volume header, alternate volume header, and reserved sectors
(the first two sectors and the last sector) must be marked as allocated in the allocation file. The actual
number of allocation blocks allocated for these sectors varies with the size of the allocation blocks. Any
allocation block that contains any of these sectors must be marked allocated.

For example, if 512-byte alocation blocks are used, the first three and last two allocation blocks are
alocated. With 1024-byte alocation blocks, the first two and the last alocation blocks are allocated. For
larger allocation block sizes, only the first and last alocation blocks are alocated for these sectors.

See the Volume Header section for a description of these sectors.

Back to top

Attributes File

The HFS Plus attributes file is reserved for implementing named forks in the future. An attributesfileis
organized as a B-treefile. It aspecial file, described by an HFSPI usFor kDat a record in the volume
header, with no entry in the catalog file. An attributes files has a variable length key and three data record
types, which makesit roughly as complex as the catalog file.

It ispossible for avolume to have no attributesfile. If the first extent of the attributesfile (stored in the
volume header) has zero allocation blocks, the attributes file does not exist.

The B-Trees chapter defined a standard rule for the node size of HFS Plus B-trees. Asthe attributesfileis
aB-tree, it inherits the requirements of thisrule. In addition, the node size of the attributes file must be at
Page: 38

TN 1150: HFS Plus Volume Format

least 4 KB (kHFSPI usAt t r M nNodeSi ze).

IMPORTANT:
The exact organization of the attributes B-tree has not been fully designed. Specifically:

e the structure of the keys in the attribute B-tree has not been finalized and is subject to change,
and
e addition attribute's file data record types may be defined.

An implementation written to this specification may use the details that are final to perform basic
consistency checks on attributes. These checks will be compatible with future implementations written to
afinal attributes specification. See Attributes and the Allocation File Consistency Check.

Attributes File Data

IMPORTANT:

Severd types of attributes file data records are defined. It is possible that additional record types will be
defined in future specifications. Implementations written to this specification must ignore record types
not defined here.

The leaf nodes of an attributes file contain data records, known as attributes. There are two types of
attributes:

1. Fork data attributes are used for attributes whose datais large. The attribute's datais stored
in extents on the volume and the attribute merely contains areference to those extents.

2. Extension attributes augment fork data attributes, allowing an fork data attribute to have more
than eight extents.

Each record starts with ar ecor dType field, which describes the type of attribute data record. The
recor dType field contains one of the following values.

enum {
kHFSPI usAttrinlineData = 0x10,
kHFSPI usAt t r For kDat a = 0x20,
kHFSPI usAttr Ext ent s = 0x30

The values have the following meaning:

kHFSPI usAttrinlinebData
Reserved for future use.

kHFSPI usAttr For kDat a
Thisrecord isafork data attribute. Y ou can use the HFSPI usAt t r For kDat a type to interpret the
data.

kHFSPI usAttr Extents
Thisrecord is an extension attribute. Y ou can use the HFSPI usAt t r Ext ent s typeto interpret the
data. A record of type kHFSPI usAt t r Ext ent s isreally just overflow extents for a corresponding
record of type kHFSPI usAt t r For kDat a. (Think of kHFSPI usAt t r For kDat a asbeing likea
catalog record and kHFSPI usAt t r Ext ent s as being like an extents overflow record.)

The next two sections describe the fork data and extension attributesin detail .

Fork Data Attributes

Page: 39

TN 1150: HFS Plus Volume Format

A fork data attribute is defined by the HFSPI usAt t r For kDat a data type.

struct HFSPl usAttrForkData {
Ul nt 32 recordType;
Ul nt 32 reserved;
HFSPI usFor kDat a t heFor k;
¥
typedef struct HFSPlI usAttr ForkData HFSPl usAttr For kDat a;

The fields have the following meaning:

recordType
The attribute data record type. For fork data attributes, thisis alwayskHFSPI usAt t r For kDat a.
reserved
An implementation must treat this asareserved field.
t heFor k
Information about the location and size of the attribute data. See Fork Data Structure for a
description of the HFSPI usFor kDat a type.

Extension Attributes

A extension attribute is defined by the HFSPI usAt t r Ext ent s datatype.

struct HFSPl usAttrExtents {

Ul nt 32 recordType;
Ul nt 32 reserved
HFSPI usExt ent Record extents;

H
typedef struct HFSPl usAttrExtents HFSPlI usAttr Extents;

The fields have the following meaning:

recordType
The attribute data record type. For extension attributes, thisis aways kHFSPI usAt t r Ext ent s.
reserved
An implementation must treat thisas areserved field.
extents
The eight extents of the attribute data described by this record. See Fork Data Structure for a
description of the HFSPI usExt ent Recor d type.

Attributes and the Allocation File Consistency Check

While the key structure for the attributes file is not fully specified, it is till possible for an implementation
to use attribute file information in its allocation file consistency check. The leaf records of the attribute file
are fully defined, so the implementation can simply iterate over them to determine which allocation blocks
on the disk are being used by fork data attributes.

See Allocation File Consistency Check for details.

Back to top

Page: 40

TN 1150: HFS Plus Volume Format

Startup File

The startup fileisa specia file intended to hold information needed when booting a system that does not
have built-in (ROM) support for HFS Plus. A boot loader can find the startup file without full
knowledge of the HFS Plus volume format (B-trees, catalog file, and so on). Instead, the volume header
contains the location of the first eight extents of the startup file.

IMPORTANT:
Itislegal for the startup file to contain more than eight extents, and for the remaining extents to be placed
in the extents overflow file. However, doing so defeats the purpose of the startup file.

Note:
Mac OS does not use the startup file to boot from HFS Plus disks. Instead, it uses the HFS wrapper, as
described later in this document.

Back to top

Unicode Subtleties

HFS Plus makes heavy use of Unicode strings to store file and folder names. However, Unicode is still
evolving, and its use within afile system presents a number of challenges. This section describes some of
the challenges, along with the solutions used by HFS Plus.

IMPORTANT:
Before reading this section, you should read HES Plus Names.

IMPORTANT:

An implementation must not use the Unicode utilities implemented by its native platform (for
decomposition and comparison), unless those algorithms are equivalent to the HFS Plus algorithms
defined here, and are guaranteed to be so forever. Thisisrarely the case. Platform algorithms tend to
evolve with the Unicode standard. The HFS Plus algorithms cannot evolve because such evolution
would invalidate existing HFS Plus volumes.

Note:

The Mac OS Text Encoding Converter provides several constants that et you convert to and from the
canonical, decomposed form stored on HFS Plus volumes. When using Cr eat eText Encodi ng to create
atext encoding, you should set the Text Encodi ngBase t0 kText Encodi ngUni codeV2_0, set the

Text Encodi ngVari ant t0kUni codeCanoni cal DeconpVar i ant , and set the Text Encodi ngFor mat to
kUni code16Bi t For mat . Using these values ensures that the Unicode will be in the same form ason an
HFS Plus volume, even as the Unicode standard evolves.

Canonical Decomposition

Page: 41

TN 1150: HFS Plus Volume Format

Unicode allows some sequences of characters to be represented by multiple, equivalent forms. For
example, the character "&" can be represented as the single Unicode character u+00E9 (latin small |etter e
with acute), or as the two Unicode characters u+0065 and u+0301 (the letter "€" plus a combining acute
symbol).

To reduce complexity in the B-tree key comparison routines (which have to compare Unicode strings),
HFS Plus defines that Unicode strings will be stored in fully decomposed form, with composing
characters stored in canonical order. The other equivalent forms areillegal in HFS Plus strings. An
implementation must convert these equivalent forms to the fully decomposed form before storing the
string on disk.

The Unicode Decomposition table contains alist of charactersthat areillegal as part of an HFS Plus
string, and the equivalent character(s) that should be used instead. Any character appearing in acolumn
titled "lllegal™, must be replaced by the character(s) in the column immediately to the right (titled "Replace
Wwith™).

In addition, the Korean Hangul characters with codes in the range u+ACOO through u+D7A3 areillega
and must be replaced with the equivalent sequence of conjoining jamos, as described in the Unicode 2.0
book, section 3.10.

IMPORTANT:

The characters with codes in the range u+2000 through u+2FFF are punctuation, symbols, dingbats,
arrows, box drawing, etc. The u+24xx block, for example, has single characters for thingslike " (a)".
The charactersin thisrange are not fully decomposed; they are left unchanged in HFS Plus strings.
Thisalows strings in Mac OS encodings to be converted to Unicode and back without loss of
information. Thisis not unnatural since a user would not necessarily expect adingbat "(a)" to be
equivalent to the three character sequence (", "a", ")" in afile name.

So, for the example given earlier, "&" must be stored as the two Unicode characters u+0065 and u+0301
(in that order). The Unicode character u+00E9 may not appear in a Unicode string used as part of an HFS
Plus B-tree key.

String Comparison Algorithm

In HFS Plus, strings must be compared in a case- insensitive fashion. The Unicode standard does not
strictly define upper and lower case equivaence, although it does suggest some equivalences. The HFS
Plus string comparison algorithm (defined below) include a concrete case equivalence definition. An
implementation must use the equivalence expressed by this algorithm.

Furthermore, Unicode requires that certain formatting characters be ignored (skipped over) during string
comparisons. The algorithm and tables used for case equivalence also arrange to ignore these characters.
An implementations must ignore the characters that are ignored by this agorithm.

The HFS Plus string comparison algorithm is defined by the Fast Uni codeConpar e routine, shown
below. Thisroutine returns a value that tells the caller how the strings should be ordered relative to each
other: whether the first string isless than, equal to, or greater than the second string. An HFS Plus
implementation may use this routine directly, or use another routine that produces the same relative
ordering.

Note:

TheFast Uni codeConpar e routine does not handle composed Unicode characters since they areillega
in HFS Plus strings. As described in Canonical Decomposition, all HFS Plus strings must be fully
decomposed, with composing charactersin canonical order.

/1
/1 Fast Uni codeConmpare - Conpare two Uni code strings; produce a relative ordering

Page: 42

TN 1150: HFS Plus Volume Format

I F RESULT
strl < str2 = -1
strl = str?2 => 0
strl > str2 = +1
The | ower case table starts with 256 entries (one for each of the upper bytes
of the original Unicode char). |If that entry is zero, then all characters with
t hat upper byte are already case folded. |If the entry is non-zero, then it is
the _index_ (not byte offset) of the start of the sub-table for the characters
with that upper byte. Al ignorable characters are folded to the val ue zero.

I n pseudocode:

Let ¢ = source Uni code character
Let table[] = | ower case table

| ower = tabl e[hi ghbyte(c)]
if (lower == 0)
lower = c
el se
| ower = tabl e[l ower+l owbyte(c)]

if (lower == 0)
ignore this character

To handl e i gnorable characters, we now need a loop to find the next valid
character. Also, we can't pre-conpute the number of characters to conpare

the string length mght be |arger than the nunber of non-ignorable characters.
Further, we nust be able to handle ignorable characters at any point in the
string, including as the first or last characters. W use a zero value as a
sentinel to detect both end-of-string and ignorable characters. Since the File
Manager doesn't prevent the NULL character (value zero) as part of a fil enane,
the case mapping table is assuned to map u+0000 to sone non-zero value (like
OxFFFF, which is an invalid Unicode character).

Pseudocode:
while (1) {
cl = Get Next Val i dChar (str1l) [l returns zero if at end of string
c2 = Get Next Val i dChar (str2)
if (cl = c2) break /1 found a difference
if (cl ==0) /1 reached end of string on both
/1 strings at once?
return O; /1 yes, so strings are equa
}
/1 When we get here, cl I=c2. So, we just need to determ ne which one is
/1 less.
if (cl <c2)
return -1;
el se
return 1;

Sl nt 32 Fast Uni codeConpare (register ConstUni CharArrayPtr strl, register ItemCount |engthl

{

regi ster Const Uni CharArrayPtr str2, register ItenCount |ength2

regi ster U ntlé cl,c2;
Page: 43

TN 1150: HFS Plus Volume Format

regi ster Untlé t enp;
regi ster U nt16* | ower CaseTabl e;

| ower CaseTabl e = gLower CaseTabl e;

while (1) {
/1 Set default values for cl, c2 in case there are no nore valid chars
cl = 0O;
c2 = 0;
i

/1 Find next non-ignorable char fromstrl, or zero if no nore
while (lengthl & cl1 == 0) {
cl = *(strl++);
--l engt hl;
if ((tenp = | ower CaseTabl e[c1>>8]) != 0) /1 is there a subtable
/1 for this upper byte?
cl = | owerCaseTable[tenp + (c1 & OxO0FF)]; // yes, so fold the char

/1 Find next non-ignorable char fromstr2, or zero if no nore
while (length2 & c2 == 0) {
C2 = *(str2++);
- -l engt h2;
if ((tenp = | ower CaseTabl e[c2>>8]) != 0) /1 is there a subtable
[l for this upper byte?
c2 = | ower CaseTabl e[tenp + (c2 & OxO00FF)]; // yes, so fold the char

if (cl!=c2) /1 found a difference, so stop |ooping
br eak;

if (cl ==0) /1l did we reach the end of both strings at the sane tine?
return O; /1l yes, so strings are equa

}
if (cl <c2)
return -1;
el se
return 1;

/* The | ower case table consists of a 256-entry high-byte table foll owed by
some nunber of 256-entry subtables. The hi gh-byte table contains either an
of fset to the subtable for characters with that high byte or zero, which
means that there are no case mappi ngs or ignored characters in that block
I gnored characters are mapped to zero.

*/

U nt16 gLowerCaseTable[] = {
/1 H gh-byte indices (== 0 if no case mappi ng and no ignorables)

/1 Full data tables omtted for brevity.
/1 See the Downl oadabl es section for URL to downl oad the code.

}s

Back to top

Page: 44

TN 1150: HFS Plus Volume Format

HFS Wrapper

An HFS Plus volume may be contained within an HFS volume in away that makes the volume look like
an HFS volume to systems without HFS Plus support. This has a two important advantages:

1. It allows acomputer with HFS (but no HFS Plus) support in ROM to start up from an HFS
Plus volume. When creating the wrapper, Mac OS includes a System file containing the
minimum code to locate and mount the embedded HFS Plus volume and continue booting from
its System file.

2. Itimprovesthe user experience when an HFS Plus volume isinserted in a computer that has
HFS support but no HFS Plus support. On such a computer, the HFS wrapper will be mounted
as avolume, which prevents error dialogs that might confuse the user into thinking the volume
is empty, damaged, or unreadable. The HFS wrapper may aso contain a Read Me document to
explain the steps the user should take to access their files.

The rest of this section describes how the HFS wrapper islaid out and how the HFS Plus volumeis
embedded within the wrapper.

IMPORTANT:

This section does not describe the HFS Plus volume format; instead, it describes additions to the HFS
volume format that allow an HFS Plus volume (or some other volume) to be embedded in an HFS
volume. However, as al Mac OS volumes are formatted with an HFS wrapper, al implementations
should be able to parse the wrapper to find the embedded HFS Plus volume.

Note:

An HFS Plus volume is not required to have an HFS wrapper. In that case, the volume will start at the
first sector of the disk, and the volume header will be at sector 2. However, Apple software currently
initializes all HFS Plus volumes with an HFS wrapper.

HFS Master Directory Block

An HFS volume aways contains a Master Directory Block (MDB), in sector 2. The MDB issimilar to an
HFS Plus volume header. In order to support volumes embedded within an HFS volume, several unused
fields of the MDB have been changed, and are now used to indicate the type, location, and size of the
embedded volume.

What was formerly the dr VCSi ze field (at offset $7C) is now named dr EnbedSi gWor d. This two-byte
field contains a unique value that identifies the type of embedded volume. When an HFS Plusvolumeis
embedded, dr EnbedSi gWor d must be kHFSPI usSi gword (' H+'), the same value stored in the

si gnat ur e field of an HFS Plus volume header.

What were formerly the dr VBMCSi ze and dr &t | CSi ze fields (at offset $7E) have been combined into a
single field occupying four bytes. The new structure is named dr EnbedExt ent and is of type

HFSExt ent Descri pt or . It contains the starting allocation block number (st ar t Bl ock) where the
embedded volume begins and number of alocation blocks (bl ockCount) the embedded volume
occupies. The embedded volume must be contiguous. Both of these values are in terms of the HFS
wrapper's allocation blocks, not HFS Plus allocation blocks.

Note:
The description of the HFS volume format in Inside Macintosh: Files describes these fields as being
used to store the size of various caches, and labels each one as "used internally”.

To actualy find the embedded volume's sectors on disk, an implementation must use the dr Al Bl kSi z
anddr Al Bl st fieldsof the MDB. Thedr Al Bl kSi z field contains the size (in bytes) of the HFS alocation
blocks. Thedr Al Bl st field contains the offset, in 512-byte sectors, of the wrapper's allocation block O
relative to the start of the volume.

Page: 45

TN 1150: HFS Plus Volume Format

IMPORTANT:

This embedding introduces a transform between HFS Plus sectors and sectors on the disk. The HFS
Plus volume exists on avirtual disk embedded within the real disk. When accessing an HFS Plus sector
on an embedded disk, an implementation must add the offset of the embedded disk to the sector number.
Listing 2 shows how one might do this.

Listing 2 Sector transform for embedded volumes
static U nt32 HFSPl usSect or ToDi skSect or (Ul nt 32 hf sPl usSect or)

Ul nt 32 enbeddedDi skOf f set ;

enbeddedDi skOF f set = gMVDB. dr Al Bl St +
gMDB. dr EnbedExtent . start Bl ock * (drAl Bl kSiz / 512)
return enbeddedD skOf f set + hf sPl usSector;

}

In order to prevent accidentally changing the files in the HFS wrapper, the wrapper volume must be
marked as software-write-protected by setting kHFSVol umeSof t war eLockBi t inthedr At r b (volume
attributes) field of the MDB. All correct HFS implementations will prevent any changes to the wrapper
volume.

To improve performance of HFS Plus volumes, the size of the wrapper's alocation blocks should be a
multiple of the size of the HFS Plus volume's allocation blocks. In addition, the wrapper's allocation
block start (dr Al Bl St) should be a multiple of the HFS Plus volume's allocation block size (or perhaps 4
KB, if the HFS Plus allocation blocks are larger). If these recommendations are followed, the HFS Plus
alocation blocks will be properly aligned on the disk. And, if the HFS Plus alocation block sizeisa
multiple of the size of the device's physical blocks, then blocking and deblocking at the device driver level
will be minimized.

Allocating Space for the Embedded Volume

The space occupied by the embedded volume must be marked as allocated in the HFS wrapper's volume
bitmap (similar to the HFS Plus alocation file) and placed in the HFS wrapper's bad block file (ssmilar to
the HFS Plus bad block file). This doesn't mean the blocks are actually bad; it merely prevents the HFS
Plus volume from being overwritten by newly created files in the HFS wrapper, being deleted
accidentally, or being marked as free, usable space by HFS disk repair utilities.

ThekHFSVol umeSpar edBl ocksMask bit of thedr At r b (volume attributes) field of the MDB must be set
to indicate that the volume has a bad blocksfile.

Read Me and System Files

IMPORTANT:
This section is not part of the HFS Plus volume format. It describes how the existing Mac OS
implementation of HFS Plus creates HFS wrappers. It is provided for your information only.

Page: 46

TN 1150: HFS Plus Volume Format

Asinitialized by the Mac OS Disk Initialization Package, the HFS wrapper volume contains five filesin
the root folder.

e Read Me-- The Read Mefile, whose name is actually "Where_have al_my files gone?’,
contains text explaining that thisvolumeisreally an HFS Plus volume but the contents cannot be
accessed because HFS Plusis not currently installed on the computer. It also describes the steps
needed to install HFS Plus support. Localized system software will also create alocalized version
of thefile with localized filename and text content.

e System and Finder (invisible) -- The System file contains the minimum code to |ocate and mount
the embedded HFS Plus volume, and to continue booting from the System file in the embedded
volume. The Finder fileis empty; it isthere to prevent older versions of the Finder from
de-blessing the wrapper's root directory, which would prevent booting from the volume.

e Desktop DB and Desktop DF (invisible) -- The Desktop DB and Desktop DF files are an artifact
of the way the files on the wrapper volume are created.

In addition, the root folder is set as the blessed folder by placing itsfolder ID in thefirst SI nt 32 of the
dr Fndr | nf o (Finder information) field of the MDB.

Back to top

Volume Consistency Checks

An HFS Plus volumeis a complex data structure, consisting of many different inter-related data
structures. Inconsi stencies between these data structures could cause serious data loss. When an HFS
Plus implementation mounts a volume, it must perform basic consistency checks to ensure that the
volume is consistent. In addition, the implementation may choose to implement other, more advanced,
consistency checks.

Many of these consistency checks take a significant amount of time to run. While a safe implementation
might run these checks every time avolume is mounted, most implementations will want to rely on the
correctness of the previous implementation that modified the disk. The implementation may avoid
unnecessary checking by determining whether the volume was last unmounted cleanly. If it was, the
implementation may choose to skip a consistency check.

An implementation can determine whether a volume was unmounted cleanly by looking at various flag
bitsin the volume header. See VVolume Attributes for details.

Next Catalog Node ID Consistency Check

For an HFS Plus volume to work correctly, it's vital that the next Cat al ogl D field of the volume header
be greater than all CNIDs currently used in the catalog file. The algorithm to ensure thisis as follows.

e Theimplementation must iterate through all the leaf nodes of the catalog file, looking for file and
folder records, determining the maximum CNID of any file or folder in the catal og.

e Onceit knows the maximum CNID value, the implementation must set next Cat al ogl Dto a
value greater than it.

WARNING:

To prevent the loss of user data, an implementation must perform this check every timeit mounts a
volume that wasn't unmounted cleanly. It is most important that an allocation block that isin use be
marked in the alocation file. It islessimportant that an allocation block that is not in use be cleared in the
alocationfile. If an alocation block is marked as in-use by the alocation file, but not actually in use by
any extent, then that allocation block isreally just wasting space; it isn't otherwise dangerous.

Allocation File Consistency Check

Page: 47

TN 1150: HFS Plus Volume Format

For an HFS Plus volume to work correctly, it's vital that any allocation block in use by file system
structures be marked as allocated in the alocation file. The algorithm to ensure thisisas follows:

The implementation must first walk the alocation file, marking every allocation block asfree.
(This step can be skipped to improve the performance of the consistency check. All that will
happen is that some allocation blocks may have been marked as in-use, though they are not really
in use by any extent.)

The implementation must then mark the allocation blocks containing the first three sectors and the
last two sectors as allocated. These sectors are either reserved or used by the volume header.

The implementation must then mark the allocation blocks used by all extentsin all special files
(the catal og file, the extents overflow file, the allocation file, the attributes file, and the startup
file) as alocated. These extents are all described in the volume header.

The implementation must then walk the leaf nodes of the catal og file, marking all alocation
blocks used by extentsin file records (i.e., in the HFSPI usFor kDat a structures for the data and
resource forks).

The implementation must then walk the leaf nodes of the extents overflow file, marking all
allocation blocks used by all extentsin all extent records as allocated.

The implementation must then walk the leaf nodes of the attributes file, marking all alocation
blocks used by all extents described in fork data attributes and extension attributes as allocated.

WARNING:
To prevent the loss of user data, an implementation must perform this check every timeit mountsa
volume that wasn't unmounted cleanly.

Back to top

Summary

Volume format specifications are fun.

Further References

Inside Macintosh: Files, especially the Data Organization on V olumes section.

e Algorithmsin C , Robert Sedgewick, Addison-Wesley, 1992, especially the section on

B-trees.

Back to top

Downloadables

E Acrobat version of this Note (245K).

Ei FastUnicodeCompare.c (43 KB)

Back to top

Change History

Page: 48

TN 1150: HFS Plus Volume Format

e First published on February 1999.

e Updated in March 1999 to include a warning about initializing disks with asmall allocation block
Size.

e Updated in January 2000 to clarify the allocation block usage and placement of the alternate
volume header on volumes where the disk size is not an even multiple of the allocation block
Size.

Back to top

To contact us, please use the Contact Us page.
Updated: 18-January-2000

Technotes [Contents
Previous Technote | Next Technote

Page: 49

