Technote 1038 - QuickDraw GX OffscreenLibrary.c in Page: 1
Detail: Description, Uses & Limitations

Technotes

Download

Acrobat file (K)

AppleWorksfile (42K)

QuickDraw GX OffscreenLibrary.cin Detail: Description, Uses & Limitations

Technote 1038 MARCH 1996

This Technote discusses OffscreenLibrary.c from the QuickDraw GX Libraries.

ThisNote isintended for Macintosh QuickDraw GX devel opers who implement flickerless drawing or
double buffering using OffscreenLibrary.c or who are considering using it for their QuickDraw GX
graphics applications.

Contents

e About the GX Libraries
e Using OffscreenLibrary.c

e Summary

Important for all Apple Printing and Graphics Developers.

The information in this Technoteis still relevant up to and including Mac OS 7.6 with QuickDraw GX
1.1.5. Beginning with the release of Mac OS 8.0, however, Apple plansto deliver a system which
incorporates QuickDraw GX graphics and typography only. QuickDraw GX printer drivers and GX
printing extensions will not be supported in Mac OS 8.0 or in future Mac OS releases. Apple'sgoal is
to simplify the user experience of printing by unifying the Macintosh graphic and printing architectures
and standardizing on the classic Printing Manager.

For details on Applée's officia announcement, refer to </technotes/gxchange.html>

About the GX Libraries

For better or worse, the development of QuickDraw GX took seven years from conception to initia
release. During that time, there were many requests for feature enhancements and interface improvements
that, if implemented, might have taken seven more years to complete. Asit turns out, some of these
enhancements could readily be built on existing services, but there was no time to test or document these
services with the rigor required to make them fully part of the released system.

The GX Librariesfill this gap by providing services built on top of the rest of GX in source form. This
Technote and others document these services. Since GX libraries are provided as source, it is reasonable
for devel opers to modify them to meet their specific needs. Care was taken for the libraries not to depend
on the implementation details of GX, so that future versions of GX should not invalidate them, in original
or modified form.

Thelibraries are likely to evolve to take advantage of improved algorithms, new Macintosh or GX services,
if you modify one for your application's specific needs, it's worth occasionally reviewing the GX library
provided by Apple to stay synchronized with any improvements.

Technote 1038 - QuickDraw GX OffscreenLibrary.c in
Detail: Description, Uses & Limitations

What ar e Offscreens?

Slick graphics applications attempt to draw animations seamlesdly to the screen, without flashing or
flickering. QuickDraw GX provides a number of strategies that change these distractionsinto attractions.
The most popular method to eliminate flickering is double buffering; the application drawsinto one

bitmap while the computer displays a second bitmap. The bitmap receiving the drawing that will be
displayed momentarily is called an offscreen.

What isin OffscreenLibrary.c?

The GX Library, OffscreenLibrary.c, provides utility functions to implement double buffering; it creates
bitmaps that in turn areimaged by GX Graphics. It was written primarily by Oliver Steele, with
contributions from the rest of the GX Graphics team.

OffscreenLibrary.c has two distinct groups of functions. The smpler revolves around the offscreen struct,

and provides a single bitmap for back buffering. The other set uses a viewPortBuffer to support multiple
offscreens that correspond to the portions of awindow that spans multiple monitors of different depths.

Using OffscreenLibrary.c
The One Shot Solution: Struct offscreen

The meat of Offscreenlibrary.cisthis struct:

struct offscreen {

gxShape dr aw; /* a bitmap which, when drawn, transfers the
of fscreen to the display */

gxTransform xform /* this causes shapes owning it to draw
of fscreen. */

gxVi ewDevi ce device; /* the offscreen devi ce whose col or Space,
etc. you may change */

gxVi ewPor t port; /* the offscreen port which may be put in
any transform s viewPort list */

gxVi ewG oup group; /* the global space in which the viewPort

and vi ewDevi ce exi st */

b
and these functions:
voi d CreateCOffscreen(of fscreen *target, gxShape bitnmapShape);

Use CreateOffscreen to fill in the offscreen struct, given the bitmap shape to back up.

voi d Di sposeO fscreen(offscreen *target);

When you're through with the offscreen, use DisposeOffscreen to get rid of the pieces.

voi d CopyToBit maps(gxShape target, gxShape source);
To copy one bitmap to another, use CopyToBitmaps.

GX makesit pretty darn easy to create an offscreen. For instance, you can create a bitmap that contains a
diagonal linewith these calls.

gxLine aLine = {ff(20), ff(40), ff(60), ff(80)};
gxShape lineBits = GXNewLi ne(&alLi ne);
GXSet ShapeType(lineBits, gxBitnmapType);

Then, to create an offscreen from the line bitmap:

of fscreen of f Li ne;
CreateO fscreen(offLine, lineBits);

Y ou can draw the line bitmap with:

Page: 2

Technote 1038 - QuickDraw GX OffscreenLibrary.c in
Detail: Description, Uses & Limitations

GXDr awShape(of f Li ne. dr aw) ;
To add arectangle to the line bitmap, first create arectangle:

gxRect angl e aRect
gxShape rect ToAdd

{ff(50), ff(50), ff(60), ff(60)};
GXNewRect angl e(&aRect) ;

Then change the rectangle to the transform in the offscreen:

GXSet ShapeTr ansf or n(rect ToAdd, offLine.xform;
GXDr awShape(r ect ToAdd) ;

Now, drawing the line bitmap will draw both the line and the rectangle:
GXDr awShape(l i neBits);
Once you're done, you can use DisposeOffscreen to get rid of it:

Di sposeO f scr een(&of f Li ne) ;

The function CopyToBitmaps uses the offscreen structure internally to copy one bitmap onto another.
The name is somewhat miseading, since the shape to be copied can be any shape type, not necessarily a
bitmap. For instance, you can use it to create a bitmap that has a specific bit depth from apicture:

static gxShape Create8BitPicture(gxShape nyPicture)

{
gxRect angl e bounds;
/1 get the bounding box of the picture
GXGet ShapeBounds(nyPi cture, 0, &bounds);
/1 move the picture so that it8s upper left corner is at (0, 0)
GXMbveShape(nyPi cture, -bounds.left, -bounds.top);
/1 create a bitmap big enough to hold the picture
gxShape bitmap = {nil, FixRound(bounds.right - bounds.left),
Fi xRound(bounds. bottom - bounds.top), O, 8, nil, nil, nil};
/1 copy the picture to the bitnmap
CopyToBI t maps(bi t map, nmyPicture);
/1 nove the bitmap to the pictureGs original position
GXMbveShape(nyPi cture, bounds.|eft, bounds.top);
/1 restore the picture®s original position
GXMbveShape(bi t map, bounds. | eft, bounds.top);
return bitmap;

}
The ViewPortBuffer Multiple Offscreen Scheme

The Macintosh isrelatively unique among computers in that it allows windows to straddle two or more
monitors at the sametime. QuickDraw GX fully embraces this capability, and takes it to the logical
extreme; not only can viewPorts cross multiple viewDevices, but the viewDevices themselves can overlap
each other.

This makes allocating an offscreen bitmap a challenge, since there may be no single best depth that alows
drawing to contain the correct amount of color and draw as quickly as possible. The solution provided by
aviewPortBuffer creates a picture containing an array of offscreens that match the desired multiple
viewDevices.

Here's the interface to viewPortBuffer.

typedef struct viewPortBufferRecord **vi ewPortBuffer;

The viewPortBuffer is a blind handle that points to the internals kept by these routines. It is never
necessary to directly accessthe fields pointed to by this handle.

vi ewPor t Buf f er NewVi ewPor t Buf f er (gxVi ewPort ori ginal Port);

To create an offscreen for awindow that may cross multiple monitors, call NewViewPortBuffer. It takes

Page: 3

Technote 1038 - QuickDraw GX OffscreenLibrary.c in
Detail: Description, Uses & Limitations

the window's viewPort, returns areference to the internal structure. The window's viewPort can be
retrieved from GX GetWindowViewPort.

voi d Di sposeVi ewPor t Buf fer (vi ewPort Buf fer target);

When the window is closed, call DisposeViewPortBuffer to get deall ocate the internal objects alocated by
the viewPortBuffer.

gxVi ewPort Get Vi ewPort Buf f er Vi ewPort (vi ewPor t Buf f er source);

To draw shapesinto the offscreen, first call GetViewPortBufferViewPort. GetViewPortBufferViewPort
returns aviewPort that references the multiple offscreens. Drawing into this viewPort draws into as many
offscreen bitmaps as is appropriate. To attach this viewPort to a single shape, use the library routine
SetShapeViewPort. To change al shapes of agiven type, try Set Tr ansf or nmvi ewPor t (

GXGet Def aul t Transforn{ theType));

gxShape Cet Vi ewPor t Buf f er Shape(vi ewPort Buf f er source);

To draw the offscreens, call GetViewPortBufferShape to get the shape to draw. Drawing the returned
shape transfers the offscreen bitmaps to the viewDevi ces pointed to by the origina viewPort, typically the
window's viewPort.

Bool ean Val i dVi ewPort Buf f er (vi ewPort Buf fer target);

The user may foul things up by changing the monitors depth or the window's position. After a
window-altering event, call ValidViewPortBuffer to seeif the viewPortBuffer needs to be recomputed.

Bool ean Updat eVi ewPor t Buf f er (vi ewPort Buf fer target);

If the viewPortBuffer is out of date, UpdateViewPortBuffer will put thingsright again. It returnstrueif the
viewPortBuffer was already valid.

Here's a convoluted example that builds the offscreens and draws a shape.

static void BufferDrawm gxShape shape, W ndowPtr wi ndow)

/1 create the viewPortBuffer fromthe viewPort associated with the w ndow
vi ewPort Buf fer buffer =
NewVi ewPor t Buf f er (GXGet W ndowVi ewPort (wi ndow)) ;
/1 retrieve the viewPort created that allows drawing into the offscreen
vi ewPort of fscreenPort = Get Vi ewPort BufferViewPort (buffer);
/1 point the shape to that offscreen
Set ShapeVi ewPort (shape, offscreenPort);
/1 draw the shape into the offscreen
GXDr awShape(shape) ;
/] draw the offscreen into the w ndow
GXDr awShape(Get Vi ewPor t Buf f er Shape(buffer));
/1 throw the of fscreen away
Di sposeVi ewPor t Buf f er (buf fer);
}

How the ViewPortBuffer Works

Since the viewPortBuffer isimplemented as alibrary, you can read the code yoursdf; you'l find it is
pretty straightforward.

Theimplementation is split into afew steps.
1. Figure out which devices the window/viewPort crosses.
2. For each device, figure out the coordinates for the viewPort on that device.

3. Create abitmap that has the same pixel depth, color s&t, color profile and color space asthe
corresponding device.

4. Keeptrack of the allocations and object references so that closing the window (or disposing the

Page: 4

Technote 1038 - QuickDraw GX OffscreenLibrary.c in
Detail: Description, Uses & Limitations

device) doesn't leave any dangling references or pointers.

Summary

GX Libraries contain awealth of information and show how to use QuickDraw GX to solve red
problems. OffscreenLibrary.c shows how to use GX to congtruct flickerless drawing by implementing
double buffering on a single device or on multiple devices.

e MacOS SDK CD, Development Kits (Disc 1): QuickDraw GX: Programming Stuff: GX
Libraries:

e Inside Macintosh: QuickDraw GX Objects

e Inside Macintosh: QuickDraw GX Environment and Utilities

Technotes
Previous Technote | Contents | Next Technote

Page: 5

