TN 1175: Applet Signing with MRJ and Javakey

Technote 1175
Applet Signing with MRJ and Javakey

Page: 1

CONTENTS A

Overview pplet signing has been the topic of considerable
discussion throughout the Java community. Processes and

How to Sign an Applet with procedures related to the signing of applets are generaly

Javakey complex and sometimes confusing, and users have had
issues related to using and signing applets with MRJ. The

How to Install and Use a Signed purpose of this document is to discuss the technology being

Applet employed and to clarify the procedures needed to sign jar
files, install certificates, and successfully utilize asigned

Additional Notes & Comments applet.

Summary

Overview

The applet signing process is based on the public key encryption system, which is based on four
fundamental concepts. These four pillars of public key encryption are public/private key pairs, digita
certificates, certificate authorities, and encryption algorithms. Key pair s provide a means of exchanging
messages, digital certificates ensure the authenticity of both the sender and receiver, the certificate
authority ensuresthe validity of the digital certificates, and encryption algorithms “scramble” the

message.

A digital certificate is a software token which serves as aform of identification,similar to the way your
driver’slicense is used to verify identity. Often recognized as aform of electronic signature, it is used to
authenticate the identity of an individua or corporation. It is the responsibility of the certificate receiver to
verify that the sender islegitimate before accepting any risky requests.

A digital signatureisameans of applying adigital certificate to a collection of data, thus guaranteeing the
originator of the data. Historically, a message was sealed with wax which was stamped with aunique
emblem so the receiver of the message could trust the message was actually from who supposedly sent it.
Conceptually, applet signing is much the same, but considerably more secure and reliable. Signing Java
code means applying your digital signature to your completed applet data, classfiles, imagefiles, data
files, etc., stored in the form of ajar file. This mechanism ensures that the origin of your applet can be
verified and that it has not been modified sinceit was signed. Even if it was intercepted while being
transmitted, a modified applet will fail the signature verification process.

Signing your Java applet’s code isimportant because the end user is assured that the code they are
running is from the signer, and not some other entity with malicious intent. Additionally, it givesyou, the
developer, access to additional resources outside of the Java security “sandbox.” In general, your code
would operate unrestricted asif it were an application on the client machine. Specifically, once signed,
your applet can gain access the following functionality:

e Issuing an RMI call to aremote object running on a different server than the applet’s

e Executing aclient-side program

e Reading from and writing to files stored on the client

e Sending aprint job to alocal printer

e Accessing the system clipboard

e Reading the client’s system properties (e.g., user name)

e Determining the structure of an object (fields, methods, vaues, etc.) using the Ref | ecti on API

TN 1175: Applet Signing with MRJ and Javakey
e and more...

MRJ s implementation of Applet Security uses Sun’s standard signed applet mechanism. Sun’sjavakey
tool is used to create certificates, sign jar files, manage the identity database, and perform other related
tasks. The javakey tool manages a database containing public/private key pairs and related certificates. In
order to sign ajar file with the javakey tool, you need to have apublic/private key pair in javakey’s
database. The javakey tool will look for the database at the location specified by thei dent i ty. dat abase
property in the security propertiesfile, j ava. security, located intheMRJ Libraries:lib:security
folder in the Extensions folder. By default, the database is afile called “identitydb.obj” and islocated
in the Preferences folder. The database typically holds key pairs for many different potentia signers,
each key pair being associated with the username of asigner. In addition to key pairs, javakey’ s database
contains certificates for the public keys. When a certificate is added to the database, javakey assignsit a
unique number for identification purposes.

How To Sign an Applet with Javakey
Getting Started

1. Packageal your applet-related classesinto ajar file. Make surethe jar fileis generated with a manifest.
Let uscall this“MyApplet.jar”.
2. Create afilefor your public key. Thefile need only to exist, asthe content will be created later.
o For example, use SimpleText to create afile called “ public.key”
3. Create afilefor your private key. The file need only to exit, as the content will be created later.
o For example, use SimpleText to create afile called “private.key”

Creating the Certification Directive File

Y ou provide certification information to javakey by using adir ective file, which is basically a property file that
javakey readswhen signing ajar file.

Use SimpleText to create afile for our certificate directive information. In this case, we will cal it “cert.directive’.

The contents of the file should look like this:

Page: 2

TN 1175: Applet Signing with MRJ and Javakey Page: 3

Informati on about the issuer
#
i ssuer. nanme=Spi ff yCo

The certificate to use for the signing (required if this is not
self-signed). In this case it is commented out since we are

sel f-si gning.

#

issuer.cert=1

Informati on about the subject

#

subj ect . nane=Spi f f yCo

subj ect.real . name=Spi ffy Neat-O Co.
subj ect. org. uni t=Spi ffyCo Devel opnent
subj ect.org=Spiffy Neat-O Co. Inc.
subj ect . count r y=USA

Information about the certificate
#

start. date=01 January 1998
end. dat e=31 Decenber 1999

as an issuer you need to nake sure this nunber is unique
seri al . number =123456

Signature algorithmto be used.
Ei ther DSA or NMD5/RSA

#

si gnature. al gorithm=DSA

Name of the file to which to save a copy of the certificate
#
out.file=SpiffyCo.cert

Explanation of Properties:

® i ssuer. nanme and subj ect . nane
Database usernames. i ssuer . name isthe name of the signer signing and issuing the certificate.
subj ect . name isthe name of the entity (identity or signer) whose public key is being authenticated by the
issuer of the certificate.
® i ssuer.cert
Specifieswhich of theissuer’s certificatesis to be used to sign the certificate file, thereby authenticating
the subject’ s public key. This property’ s value should be the number that javakey previoudy assigned to
theissuer’ s certificate when javakey generated or imported the certificate. Y ou can see which numbers
javakey assignsto certificates by choosing the List All Detailed iteminjavakey’s popup menu, and
pressing the Do Javakey button.
Note:
Thisi ssuer. cert property isonly required if the certificate being generated isnot self-signed. (A
self-signed certificate isonefor whichi ssuer . nane equalsSsubj ect . nane.)

® subj ect.real . name,subj ect. org. unit,subject.org,andsubject.country
These are all X.500 distinguished name components which refer to the subject’s common name,
organizationa unit, organization, and country, respectively.

® start.date andend. date
Strings specifying the certificate' s validity start and expiration dates (and optionally, start and end times).
The certificate isvalid from the start date and time to the end date and time. The start and end date strings
can be any strings accepted by thej ava. uti| Dat e method that takesa st ri ng argument. A date without
atime specified isinterpreted as meaning the start of the specified date.

® serial . nunber
The serial number. For agiven issuer, this number must be unique, to distinguish this certificate from

TN 1175: Applet Signing with MRJ and Javakey

other certificates signed by the issuer.
® signature.al gorithm
The name of the signature algorithm to be used to sign the certificate. This argument isoptional. If thereis
no si gnat ur e. al gor i t hmspecified, DSA (Digital Signature Algorithm) will be used; in that case, the
_sfi gner’ s private and public keys must be for the DSA algorithm. A non-DSA agorithm can only be used
if:
1. The specified nameis a standard algorithm name.
2. Thereisadatically installed provider supplying an implementation for the algorithm.
3. Thesigner'skeys are suitable for the specified algorithm. For example, if the value of the
si gnat ur e. al gori t hmproperty is MD5/RSA or SHA-1/RSA, then the signer’ s keys must be
RSA keys.
® out.file
The name of afile to which to save the certificate. This argument is optional.

Creating the Signature Directive File

To sign afile, you must provide javakey with severa pieces of information: The username of the key pair to use,
the number of the certificate to use, the name to be used for the generated signature and signature block files, and
the name of the signed jar file to be output. Again, we will provide information to javakey by using another
directivefile.

Use SimpleText to create afile for this signature directive information. In this case we will call it “sign.directive”.
The contents of the file should look like this:

Whi ch signer to use. This signer nust be in the database
#
si gner =Spi ffyCo

Certificate nunber to use for this signer
#
cert=1

Certificate chain depth
#
chai n=0

The nanme that the signature file and signature block file are to have.
The signature nane nust be 8 characters or |ess

#

signature.fil e=SPI FFSI G

The nanme to give to the signed JAR file
#
out.file=MySi gnedAppl et.jar

Explanation of Properties:

® signer
The signer property specifies the username corresponding to the key pair that javakey isto use to sign the
jar file. In this example, javakey will sign the file using the key pair belonging to user “ SpiffyCo”.

® cert
Certificate number to use for this signer. This determines which certificate will be included in the PKCS#7
block. Thisis mandatory and is 1-based. Its va ue should be the number that javakey previously assigned
to the signer’ s certificate when it generated it (or imported it). Y ou can see which numbers javakey assigns
to certificates by choosing the List All Detailed item in javakey’s popup menu, and pressing the Do
Javakey button.

® chain
Certificate chain depth of a chain of certificates to include. Thisis currently not supported.

® signature.file

Page: 4

TN 1175: Applet Signing with MRJ and Javakey Page: 5

The name to giveto the generated signature file and associated signature block. This must be 8 characters
or less. The generated signature file and associated signature block will have this name, with the .SF and
.DSA extensions, respectively.

In this example, the fileswill be SPIFFSIG.SF and SPIFFSIG.DSA.

The generated .SF and .DSA files will be added to the signed JAR file, inaMETA-INF directory. Any
files with these namesin the signed JAR file will be overwritten.

® out.file
The name that javakey should give to the signed jar file it produces. This property is optiond. If it's not
present, javakey will give the signed file the name of the origind jar file, but with a“.sg” filename
extension.

Working in Javakey:

1. Now that we have set up our public and private key files, our certification and signature directivefiles, we
are ready to proceed and use javakey. Being part of the SDK, the javakey application can be downloaded
with the MRJ SDK and should be installed before proceeding. Go ahead and launch the javakey
application, which isfound in your local copy of the MRJ SDK at:

VRJ SDK
Tool s
JDK Tool s
j avakey

It isimportant that the next steps be carried out in order since we are modifying the database and certain
information must be present in the database before the other steps can complete.

2. Creating a Signer
A signer or identity is needed in order to use any of the functionality in javakey.

o Sdect Create Signer from the popup list in javakey.

o Enter aname. This name should be the same asthei ssuer . name property in the certification
directivefileand thesi gner property in the signature directivefile. (In our example:
“SpiffyCo”— with no quotes; case sensitive).

o Check theTrusted box.

o Click onDo Javakey.

3. Generating a Key Pair
A key pair is used for signing purposes. The key pair consists of a public and a private part. Applets are
signed with the private part, the distributed certificate contains the public part, and only the combination of
the two will result in asecure applet.

o Sdect Generate Key Pair from the popup list in javakey.

o Select thekey sizeyou want. A larger value is more secure, but slower to create and verify a

runtime.

Select the public key file we created earlier (“public.key”) for the “Public Output File”.

Select the private key file we created earlier (“private.key”) for the “Private Output File”.

Click onDo Javakey.

Be patient; it can take awhile to do this, and there is no feedback on the progress. A “Done’

message will appear in the console window when it is finished.

4. Generating a Certificate
This actualy will be a self-signed certificate. If you need a professiona certificate, you will need to use the
services of acompany such as Verisign.

o Sedect Generate Certificatefrom the popup list in javakey.

o Usethe Certificate Directive File popup list to select the certification directive file we created
earlier (“cert.directive’).

o Click onDo Javakey.

o A certificate file “ SpiffyCo.cert” (as specified in the certification directivefile) has now been
created in the folder where the javakey application islocated.

o Thisisthefilethat will need to be distributed to the end users of the applet, so it is best to move
thisto amore appropriate location.

O0OO0Oo

5.

TN 1175: Applet Signing with MRJ and Javakey Page: 6

Signing the Jar File

o Sdect Sign File from the popup list in javakey.

o Select the signature directive file we created earlier (“sign.directive”) as the “Directive File*

o Sdlect the Applet jar file, which we called “MyApplet.jar”, asthe “ Java Archive File'.

o Click onDo Javakey.

o Bepatient, it can take awhile to do this, and there is no feedback on the progress. A “Done’
message will appear in the console window when it is finished.

o Thesignedjar file“MySignedApplet.jar” (as specified in the signature directive file) has now
been created in the folder where javakey application is|ocated.

o Thisnewly created jar file is now signed using the key pair we generated previously, and is ready
to be served just likeanormal Applet jar file.

Back to top

How to Install and Use a Signed Applet

Under MRJ 2.1.x, you will need to follow the following procedure to install the certificate on to the client
machine, while MRJ 2.2 gives you another option.

1.
2.

3.

Ea

O N owu

Get the certificate file to the system on which to install (in our example: “ SpiffyCo.cert”).
We will need to use javakey on the client machineto ingtall the certificate, so the MRJ SDK
should be installed before proceeding.
Launch the javakey application, which isfound in your local copy of the MRJSDK at:
VRJ SDK
Tool s
JDK Tool s
j avakey

Select Create | dentity from the javakey popup menu, and enter a name.
o IT_Ir(lis name does not need to be same asthe origina signer name. It can be anything you
ike.
Check the Trusted check box.
Click onDo Javakey.
o Thiscreates theidentity with which this certificate will be associated.
Select Import Certificate from the popup list in javakey.
Using the Select File... popup, select the certificatefile located on your local system (in our
example: “ SpiffyCo.cert”).
Click onDo Javakey.
Y ou have now authorized applets signed with the private key associated with the public key to
have full access to the system, just like an application.

Because MRJ 2.2 enhances support for signed applets, the above steps are not necessary under MRJ 2.2.
If the user access a signed applet and the certificate is already in their Java security database, the appl et
will run without restrictions. If the certificate is not in their Java security database, a dialog box will
provide information about the certificate:

This applet is signed by:
Levi Briown, Worldwide Developer Techrical Support, Apple

The Certificate Lised to Sign the Applet is:

Issued by: Levi Brown, Worldwide Developer Technical
Serial Melr3

Expiration Fri Dec 31 000000 PST 1999

Fingerprint:

TN 1175: Applet Signing with MRJ and Javakey

L0 you Trust Tnis ¢

[Trust this signer always | MO | | Yes |

The user can then choose to (1) accept the certificate permanently, thereby adding it to their Java security
database, or (2) to run this applet now but not add the certificate to the database, or (3) to rgect the
certificate. If the user chooses to reject the certificate, the applet will still run, but will generate Java
security exceptionsif it triesto perform arestricted action.

Back to top

Additional Notes & Comments

The following are some important items that you may need to consider when working with signed applets
under MRJ.

e Since MRJisusing Sun’'s standard signed applet mechanism, it is not necessary to sign the
applet on a specific platform. It does not matter what platform the signing occurs on so long as
the client machine understands the javakey certification method.

e MRJ s security database is separate from the database maintained by the browser. In many
casesit will be necessary to accept the signature twice: once for the browser and once for MRJ.

e TheJaval.1.x security modd isan al-or-nothing model. Unlike the Java 2 hierarchical security
model, Java 1.1.x isflat and provides either very tight security, or very little.

e MRJdoes not support Netscape-style applet signing.

e Netscape on the Mac does not currently (Navigator 4.6.1) use MRJ, and Netscape has their own
signing mechanism which is not compatible with the method used by javakey and MRJ.

e MRJ2.1.x does not support Microsoft-style CAB files, and MRJ 2.2 has minimal support for
CAB files but does not yet interpret signed, nor compressed, CAB files.

Back to top

Summary

In general, applets are not permitted to access your hard drive, to print, or to connect to sites other than
their own. Java enforces these limitations, and others, to protect you from code which may try to read
private information, write unwanted information, or perform other unexpected actions. A signed applet
includes a certificate that assures you that the applet was created by someone you trust, and has not been
altered since they created it. When an applet has been signed, it is no longer subject to restrictions. Applet
signing isavery useful technology that facilitates the creation of sophisticated applets, and gives them
access to client-side resources while also alowing the end user a decent level of security and assuredness
when executing an applet’s code.

Further References

e javakey - The Java Security Tool
o Signing JAR Filesusing javakey
e Code Signing for Java Applets
e JavaSigning FAQ

Back to top

Downloadables

Page: 7

TN 1175: Applet Signing with MRJ and Javakey Page: 8

FOF
H Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

