Technote 1076: Cross-Platform Communication/PCCMS Page: 1

Technotes
ownload Download
FOF A
i]
Acrobat file (K) AppleWorksfile (44K)

Cross-Platform Communication Using the PC Compatibility M essaging System

Technote 1076 October 1996

This Technote describes the Messaging System Architecture used in Apple's PC Compatibility and DOS
Compatihility products. Specifically, the messaging system allows communication of data between the
PC-based machine running on a NuBus or PCI card and the Macintosh OS. Thisinter-machine
communication is facilitated through a driver on the Macintosh which controls the PC card and allowsiit to
run within the Macintosh hardware and software space.

This Technote is directed toward third-party developers who are interested in devel oping software for the
Mac and the PC which needs to communicate instructions or data between platforms. The applications
developed to use the messaging system would be intended to run specifically with Apple's PC
Compatibility products.

This document assumes the developer is familiar with application and driver-level software development on
the Macintosh platform as well asthe PC. For the Mac, an understanding of the Device Manager and
implementing 68K and PPC native code is essential. For the PC, an understanding of 16-bit DOS Red
mode execution and x86 assembly language is useful. For development in conjunction with Window's
based applications, a knowledge of 32-bit Windows programming and virtual device drivers (VXD's) is
necessary.

This document also assumes the reader is familiar with Apple's PC Compatibility products and how they
function within the Macintosh OS.

Further information on Macintosh programming at the device level can be found in Inside Macintosh:
Devices . For more information on Windows VXD programming (only necessary for using the message
system with Windows 3.x or Windows 95), see Writing Windows Virtual Device Drivers by David
Thielen and Bryan Woodruff.

TheMacMsgTest and PCM sgT st Tools

This Technote is accompanied by two tools, one for the Mac and one for the PC, that perform very smple
messaging. MacMsgTest iswritten entirely in C and is designed and compiled to run PPC Native.
PCMsgTst iswritten in C and x86 assembly. Source code, header files, and makefiles are included for
each tool. The necessary build environments are not included.

Thetools are available on Apple's Developer website (http://mww.devel oper.apple.com/) and on the
Developer CD. Please see each tool'sindividual ReadMe files for further information on executing and
building MacMsgTest and PCMsgTst.

To download the toals, just click on the icon below:

Download

Technote 1076: Cross-Platform Communication/PCCMS Page: 2

MzgTest

MsgTest Folder (110K)

CONTENTS

About the PC Compatibility Messaging System
Using the Messaging System

Basic Messaging Concepts

Summary of Messaging System

Summary

About the PC Compatibility M essaging System

The PC Compatibility (or DOS Compatibility) systems currently supported by this messaging architecture
are the Centris 610 DOS Compatible, PowerMac 6100/66 DOS Compatible, the Quadra 630 DOS
Compatible, and any PCI-based Macintosh which includes the most recent PCl-based 100Mhz Pentium
and Cyrix 5x86 PC Compatibility Cards. Currently, the only system bundled with the PCI- based cardsis
the PowerMac 7200/120. All of these systems must be running version 1.5 of the PC Compatibility
Software or later, which includes the driver that allows the messaging system to function.

The messaging system isimplemented as a 16-bit DOS real-mode driver and is used extensively in these
current products to alow the PC to have access to the shared devices on the Mac (HD, CD, floppy, €tc.),
networking communications, folder sharing, and clipboard support.

Using the M essaging System

Software programs on the Mac and the PC are capable of exchanging messages containing up to 64K of
data by using the Messaging System API. Applications that plan on sharing messages must define and
understand the types of messages to be sent and received. More importantly, verification and
acknowledgment of sent and received messages must be maintained by the sending and receiving
applications.

Thedriver installed at the Mac OS startup timeis called ".Symbiosis' and needs to be opened by your
M acintosh application before driver cals can be made. Y our program will then use device manager
_Control callsto register, send, and receive messages. The PC accesses the messaging system through a
software interrupt interface. The application will 1oad x86 registers with appropriate values, afunction
selector, and then call the messaging system viaan INT 5Fh call.

Basic M essaging Concepts

Both the Mac and the PC appli cations accessing the messaging systems must define a 32-hit selector for
their messages and a count value that denotes the number of different types of messages available for this
selector. Typicaly, applications that are to pass messages define one selector type. Selector types can be
any unique 32-bit value, so 4-character values work well (32-bit OSType). Both the Mac and the PC
applications must know the message selector and they must know the number of message types associated
with that selector in order to register themselves with the messaging system (See the Registering
Messages section for more details on Message Selectors and Types).

The basic process of single message communication between an application on the Mac and an
application on the PC isasfollows:

Open the messaging system and verify it isavailable.
Accurately register message selector and number of message
types.

Install message handlers and completion routines.

Begin transceiving messages.

Once the message handler is called, the application can provide
space to receive the data or ignore the message.

After the data has been received, the receiving application

o urbw DNE

Technote 1076: Cross-Platform Communication/PCCMS

should send a response to the sending application,
acknowledging the data was properly received.

7. Once the acknowledge has been received, the calling application
can then send another message (goto step 4) or both apps can
stop sending messages.

8. After al messages have been sent, both applications must
remove and dedllocate al their message handlers.

Performing multiple message communication is also possible (i.e., the ahility to send more than one
message before receiving an acknowledge), but requires more maintenance. The intent here isto describe
the basic communi cation between applications. Therefore, multiple message communication concepts are
discussed in the Advanced Messaging Techniques section of this Technote.

Opening the M essaging System

On the Mac, the application must open the .Symbiosis driver and retrieve the refNum for the driver in
order to make other message system control calls. Y our application can do this using the OpenDriver
function. If this returns an error, the .Symbiosis driver is not available and the messaging system cannot be
used.

On the PC, the application must load the AH register with 0 and call the software interrupt INT 5Fh. If the
messaging systemisingtalled, AH = $A5 and AL will equal the highest implemented function code, which

iscurrently 5, when the interrupt returns. The highest implemented function code means there are atotd of
5 functions supported for registering and receiving messages. Thiswill be discussed in detail later.

Essential Data Types
The basic data structures for accessing the messaging system on the Mac side are defined as follows:

typedef struct {
CEl enPtr gLi nk;

Sint16 qType;

Sl nt 16 i oTr ap;

Ptr i oCndAddr ;

ProcPtr i oConpl eti on; /] al ways NULL

OSEr r i oResul t; /] error result info.
StringPtr i oNamePt r;

Sl nt 16 i oVRef Num

Sl nt 16 i oCRef Num /] refNum of Synbiosis driver.
SInt16 csCode; /1l messagi ng system function
void * cshtr; /1 pointer to procedure or data
Sl nt 32 csDat a; // data

Sl nt 32 csDat a2; // data

} SBPar anBl ockRec, *SBPar anBl ockRecPtr;

The SBParamBlockRec is virtually the same as a standard paramBlockRec except only the fields used by
the messaging system are included for the data area. The only fields needed for messaging are the
ioCRefNum and csCode for calling the driver, and then the csPtr and csData fields which are used to point
to other structures that are defined below. The different csCode's used for calling the messaging system
are defined below:

enum {
eSendMessage
el nst al | MsgHandl er
eRenpbveMsgHandl er
eRegi st er Message

800, // Send a nessage

801, // Install a nessage handl er
802, // Renove nessage handl er
803 /1 Register nessage type

b
The data structures used for sending and receiving messages are below:

typedef struct MsgPBl k {
struct MsgPBl k* nsgQLi nk; /1 Pointer to next MsgPBI k
Sl nt 16 nmsgQrype; /1 Queue Fl ags
SInt16 nmsgCnd; /1 The nessage type or comand

Page: 3

Technote 1076: Cross-Platform Communication/PCCMS

Sl nt 32 nmsgPar am;

Sl nt 32 msgPar an®;

voi d* nmsgBuf f er;

Sl nt 32 msgReqCount ;
Sl nt 32 nmsgAct Count ;
MsgConpl et i onUPP msgConpl eti on;
Sl nt 16 msgResul t ;

U nt 16 nmsgFl ags;

Ul nt 32 nmsgUser Dat a;

}MsgPBI k, *MsgPBI kPt r;

/1l Message paraneter 1

/'l Message paraneter 2

/1 Ptr to the msg data buffer
/'l Requested data |l ength

/1 Actual data length

/1 Ptr to comp. rtn. or NULL

/1 The result of nmsg operation
/'l Message fl ags

/1 refCon (a5, etc)

typedef struct MsgRecEl em {
struct MsgRecEl ent recQLink; /1 Next queue el enment
Sl nt 16 recQrype; /'l queue flags
Sl nt 16 recFl ags; /] Not used...Set to zero
MsgRecei veUPP recProc; /] Ptr to the receive proc.
SInt 16 r ecCndBase; /1 Msg Sel ector base.
Sl nt 16 recCmdCount ; /1 # of nsgTypes
Ul nt 32 recUser Dat a; /1 refCon (could be A5...)

} MsgRecEl em *MsgRecEl enPtr;

The MsgPBIk is used for sending and receiving data and the MsgRecElem is used for notification of
incoming messages.

For the PC application using the messaging system, the PC Data structures and function ID constants

Index for is available

I ndex for Send func

Index for Install Mg Handl er func
I ndex for Renpbve Msg Handl er func
I ndex for Register Mg

Index to get the version nunbers

basic types used for the MsgPBl k and MsgRecEl em structures.

are defined below:
enum {
el sAvailable = 0 I
eSendMessage = 1 I
el nstal | MsgHandl er = 2 I
eRenoveMsgHandl er = 3 I
eRegi st er Message = 4 /1
eVersionCheck =5 I
b
/] some
typedef char SInt 8;
typedef short SI nt 16;
typedef |ong Sl nt 32;
typedef unsigned char U nt8;
typedef unsigned short Ul nt16;
typedef unsigned |ong U nt32;
typedef char _ _far* Ptr32;
typedef struct MsgPBl k {
struct MsgPBI k* i nk;
SInt16 nsgCnd;
Sl nt 32 msgPar ant;
Sl nt 32 nmsgPar ang;
Ul nt 32 nmsgConpl eti on;
Ptr32 nsgBuf f er;
SInt 32 msgReqCount ;
Sl nt 32 msgAct Count ;
SInt8 nmsgResul t;
U nt8 nsgFl ags;
Ul nt 32 msgUser Dat a;
Ul nt 32 ms gVXD;

}MsgPBI k, *MsgPBI kPt r;

typedef struct MsgRecEl em {
struct MsgRecEl ent Li nk;
SI nt 32 Code;
Sint16 cndBase;
Sint16

11

Poi nter to the next MsgPBI k.
The nessage command or type
Param 1

Par am 2

Ptr to the conpletion routine
Ptr to the data buffer

Length of the data

of bytes actually transfered
The err code after conplete or 1
Not used, init to zero.

for caller's use

Used by VxD

/1l the base message nunber for this proc
cndCount ;// the # of nmessage nunbers for this proc

Page: 4

Technote 1076: Cross-Platform Communication/PCCMS

Ul nt 32 userData;// for caller's use
Ul nt 32 recVXD; // reserved - Used by VxD
}MsgRecEl em *MsgRecEl enPtr;

Registering M essages with the M essage System

The process of message registration requires both the Mac application and the PC application to be
aware of a predefined set of message types that are defined by the application developer. Both
applications are aware of the data formats of these messages and know how to decode and use certain
parts of the messages based on their distinct message type ID. These message types are grouped
together by a message selector (4-byte value of type OSType) known to both the Mac and the PC
application.

Both applications send the message selector and the number of message types to the message system
and the message system returns acmdBasel D (See Figure 1).

Figure 1. Registering a message selector and message types.

[MegSelector |

- - - - = MsgCmd Fase ID

- - - - =] WiegCmd Base D +1

|
|
- - - - | MegCmdBase D +2 |
|

B

ot

¢

|

I
Messaging System

- - - - | WegCmd Base D +3

Migtypen [--—| F--- | MegCmdBace ID +fn-1)

Once the set of messages for the Mac and PC applications has been registered with the message system,
each individual message has a unique value (called a msgCmd) which ranges from the msgCmdBasel D
to the total number of messages - 1. When the applications send and receive messages, they will
reference particular message types through the msgCmdBasel D plus some value which specifies the
message type. The resulting vaue is the msgCmd.

Registering a Message on the Mac

To register messages on the Mac, your application must fill out a SBParamBlockRec make the
appropriate driver call. To do this, fill out the following fields of a SBParamBlockRec:

--> joCRef Num = <ref Num of the .Synbiosis driver>;
--> joVRef Num = 0;

--> jioConpletion = 0;

<-- JjoResult = 0;

--> csCode = eRegi st er Message;

<-> cshtr
--> cshata

<nessage sel ector>;
<nunber of nessage types>;

Page: 5

Technote 1076: Cross-Platform Communication/PCCMS

The message selector entered in the csPtr field should by a 4-byte value of type OSType. The csData
field should be the number of message types registered.

Make the driver call using the PBControllmmed function. If the registration is successful, the ioResult
will equal noErr and the csPtr will contain a message base command (msgCmdBasel D) value which is
used in the message send and receive parameter blocks.

Registering a M essage on the PC

To register amessage on the PC, load the 32-bit message selector into the EBX register and put the
number of message typesin CX. Then call INT 5Fh with AH equal to the registerM essage function ID
(4). On return from the interrupt, BX will contain a message command base |D which must be used in
the MsgPBIk's and MsgRecElem's. A sample function called MsgRegister, which passes in a selector
and count (number of msg types) and returns the command base 1D, is shown below:

MsgRegi ster PROC FAR C nsgSel : DAORD, nsgCount : WORD, nsgCnmd: WORD

nov ebx, msgSel ; load EBX with the msgSel ector.
nov cx, msgCount ; load CX with the nmsgCount

nov ah, r egi st er Message ; load AHwith the function ID.

i nt O5Fh ; make the interrupt call.

nov dx, bx ; move BX to DX

nov bx, msgCnd ; Put the address of nsgCnd in BX
nov [bx], dx ; Return the msgCnd val ue.

ret

MsgRegi st er ENDP

Sending a M essage from the Mac

For either machine to send a message to the other, a MsgPBIk must be filled out and passed to the
message system. The message system function for sending messagesis always executed
asynchronoudly, but the actua driver call is still made with PBControllmmed function and the
ioCompletion field of the SBParamBIlockRec should be set to NULL. The SBParamBlockRec is only
used to send the MsgPBIk to the messaging system, so the completion routine function pointer isfilled
in theioCompletion field of the MsgPBIk. The csPtr field on the SBParamBlockRec should be aptr to
the completed MsgPBIKk.

To send a message, your application should fill out the MsgPBIk as follows:

-> negCmd = <nmessage cndBase ID + type |D>;

-> megParaml = <any 32-bit val ue>;

-> megParan? = <any 32-bit val ue>;

-> megBuffer = <pointer to a data buffer (64K nax)>;
--> negReqCount = <size (in bytes) of the data buffer)>;
<-- negAct Count = 0; // init to zero!

--> negConpl etion = <pointer to conpletion rtn. or NULL>;
<-- nsegResult = 0; /1 init to zero.

--> negFlags = 0; /1 always set to zerol!

--> negUserData = <any 32-bit pointer of value>;

The msgCmd field should contain avaue equal to the message cmdBase I D returned from the message
registration function plus the message type value for this message. If your application registered 15
message types for a particular selector (for which acmdBase ID was returned), cmdBasel D <=
msgCmd < (cmdBasel D + number of message types). The message handler on the PC will receive the
msgCmd and can determine the message type |D by subtracting the cmdBasel D from the msgCmd. The
format and/or types of these messages are predefined and recognizable by the applications which
defined them.

The msgParaml and msgParam?2 fields can contain any 32-bit values the sending application wishes to
place in them. The receiving function on the PC will have access to these paramters before the
msgBuffer is actually transferred to the PC. So these fields can be used for messages without a data

Page: 6

Technote 1076: Cross-Platform Communication/PCCMS Page: 7
block or they can be used to determine if the receiving application wants to receive the data buffer.

The MsgRegCount field should contain the length (in bytes) of the data that is contained within the
msgBuffer block. This does not mean it should be the length of the msgBuffer block, only the length of
the data you wish to send that is contained from the start of the msgBuffer (e.g., msgReqCount <= size
of buffer). The msgActCount field isfilled in by the message system contains the number of bytes that
were actualy sent to the PC.

The msgUserDatais arefCon that can be a 32-bit value or apointer to data. Thisfield does not get
transferred to the PC, but it available for use when the completion routine gets called.

Once the message is sent, the msgResult field will be set to 1 to mark that the message is currently busy.
Once the completion routine is called, msgResult will be 0 (noErr) or -3 (msgTimeout).

Note: The completion routine gets called at Deferred Task time and can use registers DO-D2, AO, and
A1l. All other registers must be saved and restored. AO will contain a pointer to the MsgPBIk. A5 must
be restored and saved if access to globals are necessary and you are coding under 68K. Use the
msgUserData field hold onto your A5 world.

If your application is PPC Native, universal proc pointers and mixed-mode function definitions have
been provided in the Messaging.h file included in the MessageTest tool source code that accompanies
this Technote. Obvioudy, no save and restore of global space is hecessary when running from PPC
Native code.

Sending a M essage from the PC

The MsgPBIk on the Mac and the MsgPBIk on the PC are virtually identical asfar asthe fields of the
data structure the messaging application must use. The PC application should build the MsgPBIk in the
same manner as described in the previous section and then send it through the message system interface
on the PC.

To send amessage from the PC, ES:BX should contain afar pointer to the MsgPBIk. AH should
contain the function ID for sendMessage (1). Then the application should make the INT 5Fh call. The
message will be queued and the msgResult field will be set to 1. Once the message has been sent, the
completion routine will be called.

Y our completion routine can be donein C code aswell as assembly, but you must remember to use the
__loadds keyword in your function prototype in order to have access to globals within your functions
data segment.

Note: The completion routine specified will be called with afar call, so your completion routine must
return with aRETF instruction (if you are writing your completion routinein C, thisis usually not an
issue). Interrupts are also turned off when the completion routine is called and the function should not
turn interrupts on for any reason. The completion routine can usethe AX, BX, CX, DX, DI, S, ES, and
DSregisters. When the completion routine is called ES:BX contains a pointer to the MsgPBIk.

Seethe Test.c and Mesg.asm files for the PC MsgTest tool that accompanies this Technote for sample
code.

Receiving a M essage

To receive amessage, your application must install amessage handler function. A message handler
function must be unique to every message selector that has been registered with the messaging system,
but is the same function for every message type that belongsto a particular selector. In other words, if
your application registers a message selector ‘abcd' which has 15 message types associated with it, your
application only hasto install one message handler that will know how to process al 15 types of
messages. The receive function can determine the message type by subtracting the cmdBasel D from the
msgCmd value in the MsgRecElem.

The purpose of a message handler is to examine the msgCmd, msgParam1 and msgParam?2 fiel ds of the
message that has been sent to determineif thereis any datato be retrieved from the message. If thereis
data the receiving application wantsto get, it must provide a pointer to a MsgPBIk with space alocated
for the msgBuffer field for receiving the data. The msgRegCount field of the MsgPBIk should aso

Technote 1076: Cross-Platform Communication/PCCMS Page: 8

contain the number of bytes the application expects to recelve or the absolute size in bytes of the
msgBuffer (i.e., 0 < msgRegCount <= size of msgBuffer). The messaging system will only write a
maximum of msgReqCount bytes or less of datato the msgBuffer block.

Once aMsgPBIk has been provided, the messaging system will then retrieve the datainto the msgBuffer
field and update the msgActCount field of the MsgPBIk with the actual number of bytes transferred. If
msgReqCount == msgA ctCount, msg Result equals noErr (0). If msgRegCount < msgActCount,
msgResult will equd -1 (msgOverrun). If msgReqCount > msgA ctCount, msgResult will equal -2
(msgUnderrun). If msgResult equals -3 (msgTimeout), atime out error occurred and the transferal of
data may not be complete. After the data has been received, the completion routine specified in the
MsgPBIk will be called.

Note: The msgBuffer pointer will be advanced msgActCount bytes after the data transfer has been made
(i.e., the pointer will point the end of the msgBuffer) and needs to be reset back to the start of the buffer
after the completion routineis called in order to access the transfered data. This behavior is consistent
for the Mac and the PC.

Receiving a M essage on the Mac

To establish the ahility for the Mac application to receive messages, the M sgRecElem should be built
and ingtalled. Typically, this should be done before the application sends amessage so it isable to
receive an acknowledge from the receiving application. Build a MsgRecElem asfollows:

-> recFlags = 0; // not used, init to zero.

-> recProc = <poi nter to nmsg receive handler function>;
-> recCrdBase = <cndBasel D for this app's nmsg Sel ector>;

-> recCmdCount = <Number of msgTypes for this nmsg sel ector>;
-> recUserData = <any 32-bit val ue or pointer>;

Toinstall the msg receive handler, build the MsgRecElem and then build an SBParamBIcokRec as
follows:

--> i0oCRef Num = <ref Num of the . Synbiosis driver>;
-> joVRef Num = 0;

--> joConpletion = 0;

<-- ioResult = 0;

-> c¢sCode = el nstal | MsgHandl er ;

-> csktr = <poi nter to MsgRecEl enp;

-> csbhata = 0;

-> cshata2 = 0;

Then install the msg handler by passing the built SBParamBlock to PBControlImmed.

When the Mac receives a message from the PC, the message handler function pointed to by recProc in
the MsgRecElem will be cdled. Your handler is called at interrupt time with interrupts masked at the dot
interrupt level. When the handler is called, DO.w contains the msgCmd, D1 contains msgParaml, and
D2 contains msgParam?2 from the sending applications MsgPBIK.

Based on these three values passed to the message handler, it must determine whether there is datato be
received or whether it wants to receive the data. If the handler decides to receive the message data, it must
return a pointer to aMsgPBIk that has an alocated msgBuffer and where the msgReqCount field is set
to the number of bytesit expectsto or is able to receive (see the previous section). The MsgPBIk should
be returned in AQ. If the MsgHandler decides not to receive the data, it should return 0 in AOQ.

The completion routine specified in the MsgPBIk will be called after the data has finished transmitting
through the message system. The completion routine is called at deferred task time and can use registers
A0, A1, DO, D1, and D2. All other registers must be saved and restored. AO will contain a pointer to the
MsgPBIK. (The universal procedure prototypes automatically handle moving the MsgPBIKk into the
function for PPC Native C functions.)

Receiving a M essage on the PC

The process for receiving a message on the PC is much the same as on the Mac. Build a MsgRecElem
just as was shown in the previous section. To install the message handler, place a pointer to

Technote 1076: Cross-Platform Communication/PCCMS Page: 9
MsgRecElemin ES:BX, set AH to installMsgHandler (2) and call INT 5Fh.

The ingtalled message handler routine is called at interrupt time with interrupts turned off. The AX, BX,
CX, DX, gl, DI, ES, and DS registers are available for use. When it is called, AX contains the msgCmd
from the sending application's MsgPBIk. ECX contains msgParaml and EDX contains msgParam?2
from the sending application's MsgPBIk. DS:DI contains a pointer to the MsgRecElem.

Just the same asin the Mac message handler, the PC message handler must determine whether thereis
datato be received or whether it wantsto receive the datain the message. If it does, it must return a
pointer to aMsgPBIk in ES:BX, otherwise it should set ES:BX to NULL.

After the data has been received by the PC, the completion routine specified in the MsgPBIK will be
caled. ES:BX will contain the pointer the MsgPBIk and the function can usethe AX, BX, CX, DX, DI,
Sl, ES, and DS registers. All other registers must be saved and restored.

Note: Both the message handling routine and the completion routine are called at interrupt time with
interrupts turned off. Both functions should adhere to any rules of execution during interrupt timefor a
PC system and should not at any time turn interrupts back on.

Removing the M essage Handlers

M essage handlers must be removed when applications that installed them are no longer active. If the
message handler is not removed, the messaging system could attempt to call the handler again. If the
application has been terminated, it's agood bet that both the PC and Mac will crash.

To remove amessage handler on the Mac, create a SBParamBlockRec and specify the
eRemoveM sgHandler function code for the csCode. The csPtr field would be a pointer to the
MsgRecElem that was used to install the message handler. Pass the SBParamBlockRec to the
messaging system using a PBControl call.

To remove a message handler on the PC, set the AH register to removeMsgHandler (3), set ESBX toa
pointer to the MsgRecElem used to install the handler, and make an INT 5Fh call.

Advanced Messaging System Techniques

Asdescribed in the Basic Messaging Concepts section of this Technote, the goal here isintroduce
developers to simple methods of performing Mac <--> PC communication using the PC Compatibility
Card's messaging system interface. That basic level of communications means two applications send
information to each one message at atime (i.e., the sending application does not send a second message
to areceiving application until the receiving application has acknowledged it actualy received the data of
the sent message). Some applications may have aneed to send multiple threads of messages back and
forth before awaiting areply, however. The good newsiis that this can be done. The bad newsis that the
developer is responsible for managing all of the message types and basic send/acknowledge protocols
the applications should adhere to.

This management of messagesis primarily performed in the message handler function which would be
required to maintain alist of MsgPBIk'sto grab all of the data being sent in. The only limit being how
much memory the gpplication can alocate to hold on to thisincoming data and how well the message
parameters and data are defined so acknowledging messages can be adequately returned to the sending
application.

Figure 2.Basic data flow for multiple message communication.

Technote 1076: Cross-Platform Communication/PCCMS

Mote: Ench MsgrPB B o harve ¢ 2erE ras
conprlaion midine ov thay oon shove

| Messaging Systemn |
M gFElk w/ ik
msghutfer

Aa! RSS! SASA AR ARG SERARA A i)
: fl.m) I
i Frw Few :
' Comp. | ====] Comp. !
! Fontme. Frutme. ;
: # notification for I
' the applimton !
: Listof MeglHlL's B, ;
: writh allocated T Mgt .
: Lo Handlerf) ToRe 5

s o (Gemien of Copge. Fim's ==mon of
\\ﬁpp]ll:ﬂhm P8k 's, ma=n),

Asshown in Figure 2, amessage installer can install a M sgRecElem and some number of n MsgPBIK's
with msgBuffer's allocated. When the MsgHandler is called, it searchesthelist for an available
MsgPBIk (one in which the msgResult field <= 0, and the msgActCount = 0, so it knows the msgBuffer
isempty) and returns it to the messaging system. Each MsgPBIk may have its own completion routine
(if, for instance, one type of MsgPBIk was to be used for a specific message type) or can use one
particular completion routine. So the number of completion routines <= the number of MsgPBIk'sin the
list.

After aMsgPBIk's completion routineis called, it can handle the datain any method needed, but then
needs to notify the application that the datais ready. Either the msgBuffer needs to be detatched from
the MsgPBIk (and anew buffer attached) or the application must have some way of marking the
MsgPBIk as busy until the application can retrieve and process the data. The MsgPBIk can then be reset
and the MsgHandler can use it again for other incoming messages.

The application message handler is then responsible for sending the acknowledge message back to the
sending application after it has verified the length and/or quality of the data.

What is described here is one possible methodol ogy for handling multi ple message communication.
Simpler methods or more complex methods may be needed based on the complexity of datato be
exchanged. Theleve of this complexity isleft to the devel oper, however. Aslong asthe basic criteriaare
met as to when the messaging system has access to the paramBlock's and when the application has
accessto them, any system should work.

Similar messaging a gorithms should be maintained for both the Mac and the PC applications that
communicate information. All transactions between the Mac and the PC are made asynchronously at
interrupt time.

Limitations

As stated earlier, the messaging system is capable of sending individual data packets of up to 64K. All
data transfers between the Mac and the PC occur at interrupt time. This can sometimes have an effect on
other software that may rely on processing data during interrupt time. Therefore, it is highly
reccommended that if software designed to use this messaging system requires transmission of large
blocks of data, the packet size used for each message sent should be reduced.

There is no absolute rule to follow here and the effect on other interrupt dependent software running at

Page: 10

Technote 1076: Cross-Platform Communication/PCCMS

the same time as the data packets being transmitted to and from the PC Compatibility Card aso depends
on the capability of the hardware being used. As agenera rule, however, it is advised that if the software
being devel oped needs to transmit more than 1 MB of data at any particular time, the message packet
size should be reduced to 32K or 16K. Thiswill alow interrupts to not be turned off for aslong a
period of time to process the data transfers and allow other interrupts to execute and catch up.

Summary of the M essaging System

Note: All of the Macintosh constants, data types, universal procedure pointers, and universal procedure
definitions can be found in the "Messaging.h" filein MacMsgTest tool that accompanies this technote.

Constants (M ac)

#define kDriverNanme "\p. Synbiosis" // The nanme of the driver

enum {
eSendMessage = 800, /1 Send a nmessage
el nst al | MsgHandl er = 801, /1 Install a nessage handl er
eRenmbveMsgHandl er = 802, /'l Renpbve nessage handl er
eRegi st er Message = 803 /1 Register nessage type

b

enum {
nmsgNoEr r or =0, /1 No error
msgOverrun = -1, /] More data was avail abl e
nmsgUnder run = -2, /| Less data was avail abl e
nsgTi meout =-3 /1 Timeout error

3

Data Types (Mac)

typedef struct ({
CEl enPtr gLi nk;
SInt 16 qType;
SInt 16 i oTr ap;
Ptr i oCndAddr ;
ProcPktr i oConpl eti on; /1 al ways NULL
CSErr i oOResul t; /1 error result info.
StringPtr i oNanmePt r;
Sl nt 16 i oVRef Num
Sl nt 16 i oCRef Num /1 refNum of Synbiosis driver.
SInt16 csCode; /1 messagi ng system function
void * cshtr; /1 pointer to procedure or data
Sl nt 32 csDat a; // data
Sl nt 32 csDat a2; /] data

} SBPar anBl ockRec, *SBPar anBl ockRecPtr;

typedef struct MsgPBl k {

struct MsgPBl k* nsgQLi nk; /1 Pointer to next MsgPBI k
SInt16 nmsgQlype; /1 Queue Fl ags

SInt16 nsgCnd; /1 The nessage type or command
Sl nt 32 nmsgPar ami; /'l Message paraneter 1

Sl nt 32 nmsgPar an; /1 Message paraneter 2

voi d* nmsgBuf f er; /1 Ptr to the msg data buffer
Sl nt 32 nsgReqCount ; /1 Requested data |length

Sl nt 32 msgAct Count ; /1 Actual data |ength

MsgConpl et i onUPP msgConpl etion; // Ptr to conp. rtn. or NULL
SInt16 nmsgResul t; /1 The result of nsg operation
Ul nt 16 nsgFl ags; /1 Message fl ags

Ul nt 32 msgUser Dat a; /1 refCon (ab, etc)

}MsgPBl k, *MsgPBI kPt r;

typedef struct MsgRecEl em {

struct MsgRecEl ent recQLink; /'l Next queue el enment
Sl nt 16 recQrype; /'l queue flags
SInt16 recFl ags; /1 Not used...Set to zero

MsgRecei veUPP recProc; /1l Ptr to the receive proc.

Page: 11

Technote 1076: Cross-Platform Communication/PCCMS

SInt 16 r ecCndBase; /1 Msg Sel ector base.
Sl nt 16 recCmdCount ; /1 # of nsgTypes
Ul nt 32 recUser Dat a; /1 refCon (could be A5...)

}MsgRecEl em *MsgRecEl enPtr;
Universal ProcPtr and Procedur e Definitions

#i f GENERATI NGCFM

typedef Universal ProcPtr MsgConpl eti onUPP;
typedef Universal ProcPtr MsgRecei veUPP;
#el se

typedef ProcPtr MsgConpl eti onUPP;

typedef ProcPtr MsgRecei veUPP;

#endi f

enum {
uppMsgRecei veProcl nfo = kRegi st er Based
| REG STER ROUTI NE_PARAMETER(1, kRegi sterAl,
S| ZE_CODE(si zeof (MsgRecEl enPtr)))
| REGQ STER_ROUTI NE_PARAMETER(2, kRegi sterD0, SIZE_CODE(si zeof (short)))
| REG STER ROUTI NE_PARAMETER(3, kRegi sterDl, SIZE CODE(si zeof (1ong)))
| REG STER_ROUTI NE_PARAMETER(4, kRegi sterD2, SIZE CODE(sizeof (I ong)))
| REG STER _RESULT_LOCATI ON(kRegi st er AQ)
| RESULT_SI ZE(kFour Byt eCode) ,

uppMsgConpl eti onProcl nfo = kRegi st er Based
| REGQ STER_ROUTI NE_PARAMETER(1, kRegi sterA0,
S| ZE_CODE(si zeof (MsgPBI kPtr)))
| REGQ STER_RESULT_LOCATI ON(kRegi st er AO)
| RESULT_SI ZE(kFour Byt eCode)

H

#i f CGENERATI NGCFM
#defi ne NewMsgRecei veProc(userRoutine) \
(MsgRecei veUPP) NewRouti neDescriptor((ProcPtr)(userRoutine), \
uppMsgRecei veProcl nfo, \
Get Current Architecture())
#el se
#defi ne NewMsgRecei veProc(userRoutine) \
((MsgRecei veUPP) (userRoutine))
#endi f

#i f GENERATI NGCFM
#def i ne NewMsgConpl eti onProc(userRoutine) \
(MsgConpl eti onUPP) NewRout i neDescriptor((ProcPtr) (userRoutine), \
uppMsgConpl eti onProcl nfo, \
Get Current Architecture())
#el se
#def i ne NewMsgConpl eti onProc(user Routine) \
((MsgConmpl eti onUPP) (userRoutine))
#endi f

Note: All of the PC constants and data types for assembly language programming can be found in the
"PCMesg.inc" filethat is part of the PCMsgTst tool that accompanies this Technote. Constants and data
types for C programming can be found in the PCMesg.h file that is included

Constants (PC)

enum {
el sAvailable = 0 /1 Index for is available
eSendMessage = 1 /1 Index for Send func
el nstal | MsgHandl er = 2 /1 Index for Install Mg Handl er func
eRemoveMsgHandl er = 3 /1 Index for Renpbve Msg Handl er func
eRegi ster Message = 4 /1 Index for Register Mg
eVersionCheck = 5 /1 Index to get the version nunbers

b

Data Types (PC)

Page: 12

Technote 1076: Cross-Platform Communication/PCCMS

/1 some basic types used for the MsgPBl k and MsgRecEl em structures.

typedef char SInt 8;

typedef short SI nt 16;
typedef |ong Sl nt 32;
typedef unsigned char U nt8;
typedef unsigned short Ul nt16;
typedef unsigned long Ul nt32;
typedef char _ far* Ptr32;

typedef struct MsgPBl k {

struct MsgPBI k* I'ink; /] Pointer to the next MsgPBI k.
SInt16 nsgCnd; /1l The nessage conmand or type

Sl nt 32 nmsgPar am; // Param 1

Sl nt 32 nmsgPar an; // Param 2

Ul nt 32 nmsgConpl etion; // Ptr to the conpletion routine
Ptr32 nsgBuf f er; /1l Ptr to the data buffer

Sl nt 32 msgReqCount ; /1 Length of the data

Sl nt 32 nmsgAct Count ; /1 # of bytes actually transfered
SInt8 nmsgResul t; /1 The err code after conplete or 1
U nt8 nsgFl ags; /1 Not used, init to zero.

Ul nt 32 nmsgUser Dat a; /[l for caller's use

Ul nt 32 s gVXD; /1 Used by VxD

}MsgPBl k, *MsgPBI kPt r;

typedef struct MsgRecEl em {
struct MsgRecEl ent Li nk;

Sl nt 32 Code;

SInt16 cndBase; /1 the base message nunber for this proc
SInt 16 cndCount; // the # of nessage nunbers for this proc
Ul nt 32 userData; // for caller's use

Ul nt 32 r ecVXD; /'l reserved - Used by VxD

} MsgRecEl em *MsgRecEl enPtr;

Summary

The Messaging System Architecture described in this Technote is compatible with the PC Compatibility
Software v1.5 or later which isinstallable on al DOS Compatible and PC Compatible products shipped
by Apple. Thisincludes the Centris 610 DOS Compatible, the Quadra 630 DOS Compatible, the
PowerMac 6100 DOS Compatible, the 7200 PC Compatible, and all PCI based Macintoshes which
support the 12" 100 MHz Pentium and 7" 100MHz Cyrix 5x86 PC Compatibility Cards.

Future releases of the PC Compatibility Software may have modifications to Messaging System
Architectures that will require updates of the software Interface described in this Technote.

Technotes
Previous Technote | Contents | Next Technote

Page: 13

