
TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

Page: 1

Technotes

Download

Acrobat file ()

Download

AppleWorks file (42K)

Creating Off-Screen Bitmaps When Speed is Critical

Technote 1021 FEBRUARY 1996

This Technote provides an example of creating an off-screen bitmap by hand, drawing to it, and then copying from it to
the screen. Apple encourages the use of GWorlds for your off-screen needs. In some cases, however, creating your own
off-screens can be beneficial. The resulting off-screen bitmaps can be used like a 1-bit GWorld, but with improved
performance.

This technique is useful for the creation of regions when OpenRgn is not an option. For example, in making a region
from a line, draw the line in an offscreen and call BitMapToRegion to convert the offscreen's bitmap to a region. These
offscreen bitmaps can be also be substituted for pixmaps in routines such as CopyMask, where the mask is black and
white, and speed is of great importance.

This Technote is written primarily for those involved in speed-critical projects, such as game developers and graphics
applications developers.

Note:
This technique for creating off-screen bitmaps is intended for black and white uses only. If your needs include
only color ports, you should review Macintosh Technical Note QD 13 - "Principia Off-Screen Graphics
Environments."

Contents

Drawing Off-Screen Bitmaps
Summary

Drawing Off-Screen Bitmaps
The following is an example of creating and drawing to an off-screen bitmap, then copying from it to an on-screen
window. The example is supplied in both a C and Pascal versions, and will work with all compilers.

Creating an Off-Screen Bitmap in C

Let's look at a general purpose function to create an off-screen bitmap. This function creates the GrafPort on the heap.
You can also create it on the stack and pass the uninitialized structure to a function similar to this one.

Boolean CreateOffscreenBitMap(GrafPtr *newOffscreen, Rect *inBounds)
{
 GrafPtr savePort;
 GrafPtr newPort;

 GetPort(&savePort); /* need this to restore thePort after OpenPort */

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

Page: 2

 newPort = (GrafPtr) NewPtr(sizeof(GrafPort)); /* allocate the grafPort */
 if (MemError() != noErr)
 return false; /* failed to allocate the off-screen port */
 /*
 the call to OpenPort does the following . . .
 allocates space for visRgn (set to screenBits.bounds) and
 clipRgn (set wide open)
 sets portBits to screenBits
 sets portRect to screenBits.bounds
 (See Inside Mac: Imaging with QuickDraw,
 pages 2-38 to 2-39)
 side effect: does a SetPort(&offScreen)
 */
 OpenPort(newPort);
 /* make bitmap the size of the bounds that caller supplied */
 newPort->portRect = *inBounds;
 newPort->portBits.bounds = *inBounds;
 RectRgn(newPort->clipRgn, inBounds); /* avoid wide-open clipRgn, be safe */
 RectRgn(newPort->visRgn, inBounds); /* in case newBounds is screen bounds */

 /* rowBytes is size of row, it must be rounded up to an even number of bytes */
 newPort->portBits.rowBytes = ((inBounds->right - inBounds->left +
 15) >> 4) << 1;

 /* number of bytes in BitMap is rowBytes * number of rows */
 /* see notes at end of Technote about using _NewHandle rather than _NewPtr*/
 newPort->portBits.baseAddr =
 NewPtr(newPort->portBits.rowBytes * (long) (inBounds->bottom
 - inBounds->top));
 if (newPort->portBits.baseAddr == nil) { /* check to see if we had
 enough room for the bits */
 SetPort(savePort);
 ClosePort(newPort); /* dump the visRgn and clipRgn */
 DisposPtr((Ptr)newPort); /* dump the GrafPort */
 return false; /* tell caller we failed */
 }
 /* since the bits are just memory, let's clear them before we start*/
 EraseRect(inBounds); /* OpenPort did a SetPort(newPort) so we are ok */
 *newOffscreen = newPort;
 SetPort(savePort);
 return true; /* tell caller we succeeded! */
}

Eliminating an Off-Screen Bitmap in C

To eliminate an off-screen bitmap created by the previous function, use this function:

void DestroyOffscreenBitMap(GrafPtr oldOffscreen)
{
 ClosePort(oldOffscreen); /* dump the visRgn and clipRgn */
 DisposPtr(oldOffscreen->portBits.baseAddr); /* dump the bits */
 DisposPtr((Ptr)oldOffscreen); /* dump the port */
}

Using an Off-Screen Bitmap in C

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions of using one. First,
let's define a few things to make the NewWindow call a little clearer.

#define kIsVisible true
#define kNoGoAway false
#define kNoWindowStorage 0L
#define kFrontWindow ((WindowPtr) -1L)

Here's the body of the test code:

main()

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

Page: 3

{
 char* myString = "\pThe EYE"; /* string to display */

 GrafPtr offscreen; /* our off-screen bitmap */
 Rect ovalRect; /* used for example drawing */
 Rect myWBounds; /* for creating window */
 Rect OSRect; /* portRect and bounds for off-screen bitmap*/
 WindowPtr myWindow;

 InitToolbox(); /* exercise for the reader */
 myWBounds = qd.screenBits.bounds; /* size of main screen */
 InsetRect(&myWBounds, 50,50); /* make it fit better */
 myWindow = NewWindow(kNoWindowStorage, &myWBounds, "\pTest Window",
 kIsVisible,noGrowDocProc, kFrontWindow,
 kNoGoAway, 0);
 if (!CreateOffscreenBitMap(&offscreen, &myWindow->portRect)) {
 SysBeep(1);
 ExitToShell();
 }
 /* Example drawing to our off-screen bitmap*/
 SetPort(offscreen);
 OSRect = offscreen->portRect; /* offscreen bitmap's local coordinate rect */
 ovalRect = OSRect;
 FillOval(&ovalRect, qd.black);
 InsetRect(&ovalRect, 1, 20);
 FillOval(&ovalRect, qd.white);
 InsetRect(&ovalRect, 40, 1);
 FillOval(&ovalRect, qd.black);
 MoveTo((ovalRect.left + ovalRect.right - StringWidth(myString)) >> 1,
 (ovalRect.top + ovalRect.bottom - 12) >> 1);
 TextMode(srcXor);
 DrawString(myString);

 /* copy from the off-screen bitmap to the on-screen window. Note
 that in this case the source and destination rects are the same size
 and both cover the entire area. These rects are allowed to be
 portions of the source and/or destination and do not have to be the
 same size. If they are not the same size then _CopyBits scales the
 image accordingly.
 */
 SetPort(myWindow);
 CopyBits(&offscreen->portBits, &(*myWindow).portBits,
 &offscreen->portRect, &(*myWindow).portRect, srcCopy, 0L);

 DestroyOffscreenBitMap(offscreen); /* dump the off-screen bitmap*/
 while (!Button()); /* give user a chance to see our work of art*/
}

Creating an Off-Screen Bitmap in Pascal

Let's look at a general purpose function to create an off-screen bitmap. This function creates the GrafPort on the heap.
You can also create it on the stack and pass the uninitialized structure to a function similar to this one.

FUNCTION CreateOffscreenBitMap(VAR newOffscreen:GrafPtr; inBounds:Rect)
 : BOOLEAN;

 savePort : GrafPtr;
 newPort : GrafPtr;

 GetPort(savePort); {need this to restore thePort after OpenPort changes it}

 newPort := GrafPtr(NewPtr(sizeof(GrafPort))); {allocate the GrafPort}
 IF MemError <> noErr THEN BEGIN
 CreateOffscreenBitMap := false; {failed to allocate it}
 EXIT(CreateOffscreenBitMap);
 END;
 {
 the OpenPort call does the following . . .

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

Page: 4

 allocates space for visRgn (set to screenBits.bounds) and clipRgn
 (set wide open)
 sets portBits to screenBits
 sets portRect to screenBits.bounds
 (See Inside Mac: Imaging with QuickDraw, pages 2-38 to 2-39)
 side effect: does a SetPort(offScreen)
 }
 OpenPort(newPort);
 {make bitmap exactly the size of the bounds that caller supplied}
 WITH newPort^ DO BEGIN {portRect, clipRgn, and visRgn are in newPort}
 portRect := inBounds;
 RectRgn(clipRgn, inBounds); {avoid wide-open clipRgn, to be safe}
 RectRgn(visRgn, inBounds); {in case inBounds is > screen bounds}
 END;

 WITH newPort^.portBits DO BEGIN {baseAddr, rowBytes and bounds are in newPort}
 bounds := inBounds;
 {rowBytes is size of row It must be rounded up to even number of bytes}
 rowBytes := ((inBounds.right - inBounds.left + 15) DIV 16) * 2;

 {number of bytes in BitMap is rowBytes * number of rows}
 {see note at end of Technical Note about using _NewHandle rather than _NewPtr}
 baseAddr := NewPtr(rowBytes * LONGINT(inBounds.bottom - inBounds.top));
 END;
 IF baseAddr == nilTHEN BEGIN {see if we had enough room for the bits}
 SetPort(savePort);
 ClosePort(newPort); {dump the visRgn and clipRgn }
 DisposPtr(Ptr(newPort)); {dump the GrafPort}
 CreateOffscreenBitMap := false;
 END
 ELSE BEGIN
 {since the bits are just memory, let's erase them before we start }
 EraseRect(inBounds); {OpenPort did a SetPort(newPort)}
 newOffscreen := newPort;
 SetPort(savePort);
 CreateOffscreenBitMap := true;
 END;

Eliminating an Off-Screen Bitmap in Pascal

Here is the procedure to get rid of an off-screen bitmap created by the previous function:

PROCEDURE DestroyOffscreenBitMap(oldOffscreen : GrafPtr);
 ClosePort(oldOffscreen); {dump the visRgn and clipRgn }
 DisposPtr(oldOffscreen^.portBits.baseAddr); {dump the bits }
 DisposPtr(Ptr(oldOffscreen)); {dump the port };

Using an Off-Screen Bitmap: MPW Pascal

Now that you know how to create and destroy an off-screen bitmap, let's test one out. First, let's define a few things to
make the NewWindow call a little clearer.

CONST
 kIsVisible = true;
 kNoGoAway = false;
 kMakeFrontWindow = -1;
 myString = 'The EYE'; {string to display}

Here's the body of the test code:

VAR
 offscreen : GrafPtr; {our off-screen bitmap}
 ovalRect : Rect; {used for example drawing}
 myWBounds : Rect; {for creating window}
 OSRect : Rect; {portRect and bounds for off-screen bitmap}
 myWindow : WindowPtr;

 InitToolbox; {exercise left to the reader}

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

Page: 5

 myWBounds := screenBits.bounds; {size of main screen }
 InsetRect(myWBounds, 50,50); {make it fit better }
 myWindow := NewWindow(NIL, myWBounds, 'Test Window', kIsVisible,
 noGrowDocProc, WindowPtr(kMakeFrontWindow), kNoGoAway, 0);

 IF NOT CreateOffscreenBitMap(offscreen,myWindow^.portRect) THEN BEGIN
 SysBeep(1);
 ExitToShell;
 END;

 {Example drawing to our off-screen bitmap }
 SetPort(offscreen);
 OSRect := offscreen^.portRect; {offscreen bitmap's local coordinate rect }
 ovalRect := OSRect;
 FillOval(ovalRect, black);
 InsetRect(ovalRect, 1, 20);
 FillOval(ovalRect, white);
 InsetRect(ovalRect, 40, 1);
 FillOval(ovalRect, black);
 WITH ovalRect DO
 MoveTo((left+right-StringWidth(myString)) DIV 2, (top+bottom-12) DIV 2);
 TextMode(srcXor);
 DrawString(myString);

 {copy from the off-screen bitmap to the on-screen window. Note
 that in this case the source and destination rects are the same size
 and both cover the entire area. These rects are allowed to be
 portions of the source and/or destination and do not have to be the
 same size. If they are not the same size then _CopyBits scales the
 image accordingly}

 SetPort(myWindow);
 CopyBits(offscreen^.portBits, myWindow^.portBits,
 offscreen^.portRect, myWindow^.portRect, srcCopy, NIL);

 DestroyOffscreenBitMap(offscreen); {remove the evidence}

 WHILE NOT Button DO; {give user a chance to see the results}.

Summary
In the example code, the bits of the BitMap structure pointed to by the baseAddr field are allocated by a NewPtr call.

Keeping a large off-screen around for any length of time may lead to heap fragmentation. One alternative that lessens
this problem is to get the bits via NewHandle, so that the Memory Manager can move them when necessary. To
implement this approach, you need to keep the handle separate from the GrafPort (for example, in a structure that
combines a GrafPort and a Handle). When using the off-screen bitmap, lock the handle and put the dereferenced handle
into the baseAddr field. You can then unlock the handle when not using the off-screen bitmap.

Further Reference

Inside Macintosh: Imaging with QuickDraw

Technotes
Previous Technote | Contents | Next Technote

