TN 1173: Understanding Open Transport Asset
Tracking

Technote 1173
Under standing Open Transport Asset Tracking

Page: 1

CONTENTS T
his Technote describes how Open Transport tracks
assets, like memory and providers, which it allocates on your

Goals and Problems

The Origina Solution behalf. Open Transport’ s approach to asset tracking was
poorly documented in the past, and that contributed to a

The Carbon Solution number of common devel oper programming errors.

Summary This technote describes the asset tracking mechanism used

for the existing Open Transport programming interface, and
how that mechanism has been “tuned up” for Carbon.

This Technote is directed at al programmers who use the
Open Transport client programming interface.

Goals and Problems

Open Transport regularly allocates assets on your behalf. For example, every time you open an endpoint,
Open Transport creates an internal data structure to hold the state of that endpoint. Whenever Open
Transport allocates an asset, it associates the asset with the particular client that allocated it, so when the
client terminates, Open Transport can clean up the assets it allocated.

IMPORTANT:
In the context of this and other Open Transport technotes, “client” refers to some program that uses the
standard Open Transport programming interface, not to the client in a client/server protocol.

Open Transport tracks two important classes of assets, providers (endpoints, mappers, service providers)
and memory (allocated by OTAl | ocMemand OTAI | oc). Open Transport aso has infrastructure to track
deferred tasks, system tasks, timer tasks, and raw streams, although these assets are not actually tracked by
the current Open Transport implementation on traditional Mac OS.

Other parts of Mac OS implement various different asset tracking schemes:

e Most assets are tracked by process. When such an asset is alocated, it istagged as belonging to
the process that was running at the time (as returned by Get Cur r ent Pr ocess). Thisapproach is
used for assets such as windows, resource maps, file reference numbers, seria ports (when a
serial port arbitrator isinstalled), and temporary memory.

e Other assets are tracked by heap zone. When such an asset is allocated, it is tagged as belonging
to the current heap (the value returned by Get Zone). This approach is used for assets such as
code fragment connections and component instances.

e Some assets are not tracked at all. For example, the system does not track who opened a device
driver (except serid ports). Consequently, the classic networking stack, which was replaced by
Open Transport, did not do any asset tracking.

Unfortunately, Open Transport cannot use any of the asset tracking schemes described above. The Open
Transport programming interface istypically called at deferred task time, and tracking assets by the current
process or heap zone does not make sense at deferred task time.

For example, imagine that your application calls OTAl | ocMemfrom adeferred task. The deferred task

TN 1173: Understanding Open Transport Asset
Tracking
might run while the Finder isthe current application. If Open Transport tracked assets based on the
current process, it would erroneoudly think that the Finder allocated this memory.

Page: 2

Because of these problems, Open Transport 1.0 introduced a new asset tracking mechanism, whichis
described in the next section. However, this mechanism proved somewhat confusing to devel opers, so
Carbon introduces a much clearer mechanism, based on explicit contexts.

Back to top

The Original Solution

This section describes how Open Transport tracks assets for pre-Carbon clients, and the rules you should follow
when building pre-Carbon software.

TheBasics

Open Transport tracks assets for pre-Carbon clients by means of aglobal variable, named __gord i ent Record,
which is gtatically linked into your program’ s data section (A5 world for 68K code). When you call an Open
Transport asset-creation routine, you are actualy calling astatically linked stub, which inturn callsared,
dynamically linked variant of the routine. This dynamically linked routine, whose name endsin “Priv”, hasasan
extra parameter which isthe address of the client record.

For example, when you call oropenEndpoi nt , you're actually caling the statically linked stub shown below.

/1 Prototype of dynamically Iinked routine.

extern pascal Endpoi nt Ref OTOpenEndpoi nt Pri v(
OrConfi gurati on* config,
OTOpenFl ags of | ag,
TEndpoi nt | nfo* info,
CSSt at us* err,
Orcd i entRecord *client);

/] Statically linked stub routine which is Ilinked into your program

extern pascal Endpoi nt Ref OTOpenEndpoi nt (
OrConfi gurati on* config,
OTOpenFl ags of | ag,
TEndpoi nt | nf o* info,
OSSt at us* err)

return OTOpenEndpoi ntPriv(config, oflag, info, err, & gOTdientRecord);

The“Priv” routineisthe real entry point into the operating system, exported by the Open Transport shared
libraries. Open Transport uses the address of the client record to uniquely identify the client creating the asset, and
tags the asset as belonging to that client. When the client terminates (either it callsC oseQpenTransport Or an
application client terminates unexpectedly, see below), Open Transport disposes of any assets the client “leaked.”

IMPORTANT:

The contents of the __gOTd i ent Recor d variable are private to Open Transport. Y ou should not modify
thisvariable, or depend on its vaue.

The__gord i ent Recor d and the statically linked stub routines are obtained from a static object file to which you
link your program. For PowerPC software, thisfile is an X COFF object file whose name ends with “PPC.0". A
typical PowerPC program links with this static object file, containing the client record and the stub routines (for
application clients, thisis“OpenTransportAppPPC.0"), and a CFM stub library (“OpenTransportLib”), which
references the dynamically linked asset-creation “Priv” routines and other, non-asset creation, routines.

TN 1173: Understanding Open Transport Asset
Tracking

IMPORTANT:
For more information about linking with Open Transport libraries, see DTS Q& A NW 18 Open
Transport Libraries.

Applications versus Extensions

To further complicate matters, Open Transport has two sets of static object files. The set whose name contains
“App” isonly suitable for applications, while the set whose name contains “ Extn” is suitable for other,
non-application code (system extensions, shared libraries, MPW tools, and so on). Y our choice of libraries affects
the following.

e Automatic Cleanup—If you link to the“App” libraries, Open Transport will patch _Exi t ToShel | to
automatically cal d osepenTransport for you (if you haven't) when you application quits.

e Client Pool—If you link with the “ App” libraries, your client pool islocated in the application zone. If
you link with the “Extn” libraries, your client pool islocated in the system zone. See DTS Technote 1128
Understanding Open Transport Memory Management for details on client pools.

Rulesfor Clients
Open Transport’ s asset tracking strategy has a number of important consegquences for developers.

e Youmust cal I ni t QpenTransport once (and only once) for each global data section (A5 world for 68K)
you have. If you have an application and a shared library, both of which need to create endpoints, you must
cdl I ni t OpenTransport once for the application and once for the shared library.

e |f you are writing non-application code, you must remember to call i oseOpenTr ansport before your
global data section unloads. If you're writing an application, Open Transport’s_Exi t ToShel | patch
should clean up automatically for you, however DTS recommends that your application not rely on this
safety net in the typical case. In general, you should call O oseQpenTr ansport oncefor each timeyou've
caledl ni t OpenTransport .

e If you arewriting a68K code resource that calls Open Transport, it isvital that you have avalid A5 (or
global) world. Thisis because the Open Transport client record is aglobal variable allocated in your code
resource’s A5 world. The Open Transport libraries (specificaly “ OpenTransport.0” and
“OpenTransportExtn.o”) reference this variable using A5-relative addresses. An A4 “global world” (as
used by Metrowerks and Symantec compilers) is not sufficient.

IMPORTANT:

If you are using the Metrowerks CodeWarrior environment to build a code resource that calls Open
Transport, you should base it on the OT CodeResource sample, which shows how to use Open
Transport’s A5-based libraries in an A4-based code resource. It isimportant that you use version
1.0.1b1 (or later) of this sample. Earlier versions had a crashing bug.

e A code resource cannot “borrow” the A5 world from its host application when calling Open Transport.
This technique, which is commonly used by plug-ins that need to call QuickDraw, is not possible for
Open Transport clients because there' s no guarantee that the host application has an Open Transport client
record. Even if it does, there's no way to find the offset of the client record in the host’ s data section.

e If you transfer providers from one Open Transport client to another (from a shared library to your
application, say, or between applications), you must call OTTr ansf er Pr ovi der Oaner shi p to ensure that
Open Transport knows that the provider now belongs to the new client. Otherwise, when the previous
owner calsd oseenTr anspor t , Open Transport will clean up the provider from underneath you.

e Any non-application code should use the “Extn” libraries. When deciding which libraries to link with,
you should ask yourself “Do | want my connection to Open Transport to be cleaned up automatically
when_Exi t ToShel | iscaled?’ and “Are my global variables guaranteed to be around when
_Exit ToShel | iscaled? If both answersare “Yes,” usethe“App” libraries, otherwise use the “ Extn”
libraries.

e When debugging Open Transport programsin MacsBug, you will not be able to find symbols for the stub
routines. For example, you won't be able to put a transition vector break on “InitOpenTransport”; you
should put it on “InitOpenTransportPriv” instead.

Tracked Assets

Page: 3

TN 1173: Understanding Open Transport Asset
Tracking

The follow table shows exactly which routines are have “Priv” variants. Except as noted below, the assets created
by these routines are tracked by Open Transport and will be disposed of when the client calls
Cl oseOpenTransport .

Initialization and Ter mination I ni t OpenTransport

G oseOpenTransport
OTRegi ster Asd i ent
OTUnr egi ster Asd i ent
OTI'Tr ansf er Oaner shi p

Memory OTAl | ocMem
OTAl | oc
OTFreeMem (1)
t_alloc

Provider Open and Close OTOpenEndpoi nt

OTAsyncOpenEndpoi nt
OTOpenAppl eTal kSer vi ces
OTAsyncOpenAppl eTal kSer vi ces
OTOpenl nt er net Ser vi ces
OTAsyncOpenl nt er net Ser vi ces
OrCpenMapper
OTAsyncOpenNapper

OTOpenPr ovi der
OTAsyncOpenPr ovi der

Orc oseProvi der

t _open

t_cl ose

Raw Stream Open and Close OTSt r eanOpen (2)

OTAsyncSt reanOpen (2)
OTOpenEndpoi nt OnSt ream (2)
OTOpenPr ovi der OnSt ream (2)
OTSt reanPi pe (2)

stream open (2)

stream pi pe (2)

Task Creation OTCr eat eDef erredTask (2)
OTCr eat eSyst enTask (2)

Notes:

1. orFreeMenPri v isonly exported for the benefit of clients linked with the Open Transport 1.1 and earlier
libraries. Clients linked with the Open Transport 1.1.1 and higher librarieswill call directly into a
dynamically linked version of OTFr eeMemwhich automatically works out which client allocated the
memory.

2. Theseroutines have “Priv” variants so that a future version of Open Transport can track their assets. The
assets created by these routines are not tracked by current versions of Open Transport.

Back to top
The Carbon Solution

The original solution to the Open Transport asset tracking problem was creative, but it has a number of
problems.

e Lack of Understanding—The original solution was poorly documented and therefore badly
understood, which resulted in many asset tracking related crashes. For example, linking a code
resource with the “App” librarieswill cause a crash when the host application quits, as Open
Transport’s _Exi t ToShel | patch tries to execute code that has been unloaded.

e Linker Semantics—Mac OS programmers are not used to providing semantic content through

Page: 4

TN 1173: Understanding Open Transport Asset Page: 5
Tracking

their choice of linker libraries. Any such approach isinherently error prone.

e Static Object Files—Alternative development environment (Javaruntimes, BASIC
implementations, Forth interpreters, C++ cross compilers, and so on) have easy mechanismsto
provide accessto CFM libraries. However, Open Transport’ s static object files—in MPW ' 0BJ
* format for 68K or X COFF format for PowerPC— present serious difficulties for anyone
using these adternative environments.

To address these problems—especially the problems with static object files—the designers of Carbon
chose to restructure the Open Transport programming interface for Carbon programs. This minor update,
whichisin line with the genera “tune up” goal of Carbon, is described in the next section.

TheBasics

The Open Transport programming interface for Carbon programs makes the client record an explicit
parameter to the routines which need it. For example, rather than call oropenEndpoi nt , in Carbon you
must call OTOpenEndpoi nt | nCont ext . This routine takes an addition parameter of type

Ord i ent Cont ext Pt r, which represents the client which is opening the endpoint.

Y our program must create an Open Transport context explicitly by caling

I ni t QpenTr ansport | nCont ext . Thisroutine, whose prototype is shown below, takes two parameters.
Y ou use the first parameter to explicitly tell Open Transport whether you are an application or extension
client. The second parameter returns the client context pointer, which you must pass to other
asset-creation routines.

extern pascal OSStatus |nitQpenTransport!| nContext (
OllnitializationFlags flags,
Orcd i ent Context Ptr *out Cl i ent Cont ext);

Carbon aso includes the concept of a default application context. If you passni | to the

out d i ent Cont ext parameter of | ni t OpenTr anspor t | nCont ext , you initialize this default application
context. From there on, you can passni | to any “InContext” routineto tell it to act in this default
context.

Finaly, to help application devel opers maintain source code compatibility between their Carbon and
pre-Carbon source bases, the Carbon designersintroduced a set of macros that map the pre-Carbon
routines to their Carbon equivalents. For example, the following macro allows you to open an endpoint
under Carbon without changing your pre-Carbon source.

#defi ne OTOpenEndpoi nt (config, oflag, info, err) \
OTOpenEndpoi nt I nCont ext (config, oflag, info, err, NULL)

To access these macros, you must define the OTCARBONAPPLI CATI ON compile-time variable. These
macros are only suitable for application devel opers because they aways use the default application
context. Shared libraries must always use the “InContext” routines.

Tracked AssetsIn Carbon

The follow table shows exactly which routines are “InContext” under Carbon. Except as noted below,
the assets created by these routines are tracked by Open Transport and will be disposed of when the
client callsd oseOpenTr ansport | nCont ext . Thislist issignificantly shorter than the list of “Priv”
routines given earlier because Carbon does not support many low-level Open Transport routines.

TN 1173: Understanding Open Transport Asset Page: 6

Tracking
Initialization and Ter mination I ni t QpenTransport | nCont ext
Cl oseQpenTr anspor t | nCont ext
Memory OTAI | ocMem nCont ext
OTAl | ocl nCont ext
Provider Open and Close OTOpenEndpoi nt | nCont ext

OTAsyncOpenEndpoi nt | nCont ext
OTOpenMapper | nCont ext
OTAsyncOpenMapper | nCont ext

OTOpenAppl eTal kSer vi cesl nCont ext
OTAsyncOpenAppl eTal kSer vi cesl nCont ext
OTOpenl nt er net Ser vi cesl nCont ext
OTAsyncOpenl nt er net Ser vi cesl nCont ext

Task Creation OTCr eat eDef erredTaskl nCont ext (1)
OTCr eat eTi mer Taskl nCont ext (1)

Notes:

1. These assets are tracked by the Mac OS X implementation of the Open Transport programming
interface, but are not tracked by current versions of Open Transport on traditional Mac OS.

Back to top

Summary

Understanding how Open Transport tracks assets is important when writing applications, shared libraries,
code resources, and other software that calls Open Transport reliably. The most important rule for
pre-Carbon clientsisthat you must call | ni t OpenTr ansport and O oseQpenTr ansport once per
global data section. The Carbon programming interface to Open Transport makes this requirement
explicit and simplifies the Open Transport asset tracking story.

Further References

e DTS Q&A NW 18 Open Transport Libraries
e DTS Technote 1128 Understanding Open Transport Memory M anagement
e Inside Macintosh: Networking with Open Transport

e DTS Sample Code OTCodeResource
[]
°

Carbon Specification
DTS Q&A NW 36 Caling CloseOpenTransport When Writing an Application

Back to top

Downloadables

FOF
ﬂ Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 23-August-1999

Technotes | Contents
Previous Technote | Next Technote

