TN 1172: Writing Plug-ins for Desktop Printer Page: 1
Utility

Technote 1172
Writing Plug-insfor Desktop Printer Utility

CONTENTS A
pple’ s Desktop Printer Utility (DTPU) is an application
used to create or configure various types of Desktop Printers

Limits and Assumptions

Plug-in Requirements (DTPs) supported by the LaserWriter 8 printer driver. The
built-in DTP types currently provided by DTPU version 1.1

Interaction between DTPU and include AppleTalk (PAP) printer, LPR printer, infrared

plug-ins printer, Hold printer, PostScript trandator, and Custom

application trandator.
The PluginDtplnfo structure

Third-party plug-in support was added in DTPU version 1.2.

The Plug-in Interface This document describes how to write plug-ins for DTPU
version 1.2 and later. A DTPU plug-in isamechanism for
Summary programmers to write shared libraries which can be

recognized by DTPU and provide means to configure
different types of desktop printers that are not built into
DTPU. A good use of thisisto provide user interface for
configuring external hoses for LaserWriter 8. See Technote
1144: Writing Custom Hoses for LaserWriter 8 for
information about writing LaserWriter 8 communication
hoses.

TN 1172: Writing Plug-ins for Desktop Printer

Utility

| ntroduction

A DTPU window has either one or two panes, depending on the type of the desktop printer it represents.
The upper pane, which iscommon to al types of Desktop Printers, is used to select the PostScript™
Printer Description (PPD) file for the printer. The lower pane, if one exists, is used to configure
properties or characteristics specific to that DTP. Examples of this are an AppleTalk addressfor an

AppleTak DTP (see Figure 2) and adomain name address for an LPR DTP.

£

Untitled 1

- PostScript™ Printer Description (PPD) File

-,
] I
—

Genetic

| Change... I

Cezkiop Printer Usage : Create Spoaol File
“with Printer Driver : LaserWriter 2

Figurel - Single pane DTPU window

O

Untitled 2

- PostScript™ Printer Description (PPD) File

™,
%)

——

Gener ic

| Change... I

- AppleTalk Printer Selection

!

—————

Viper

| Change... I

Desktop Printer Uzage: Print to printer ™ Viper *

“Wwith Printer Driver : Laser'writer 8

Figure 2 - Double pane DTPU window for PAP DTP

Developers who need to configure desktop printers with more information than just the basic PPD file
configuration may want to consider writing aDTPU plug-in. A DTPU plug-in alows developersto
customize the lower pane of their DTP window to a small extent, and to display adialog window when
the lower "Change" button is clicked (or when the lower icon is double-clicked).

Page: 2

Back to top

TN 1172: Writing Plug-ins for Desktop Printer Page: 3

Utility

Limitsand Assumptions

When using this plug-in mechanism, the main DTP windows are limited to two panes. The layout and
design of the itemsin the main DTP windows are fixed. The DTPU plug-in has control over the content
of the itemsin the lower pane, but not the positioning of those items. Once the “Change” button is
clicked, a plug-in can then present a dialog window with the items necessary to properly configure that
type of desktop printer. The example dialog below shows how AppleTalk printers on the network are
chosen. Movable dialog windows are strongly recommended for this purpose.

AppleTalk Printer

AppleTalk Zones:

Selact a Postscript Printer:

rbi-Ether b Behind Brendanw./o password
rbi-Etherwith along na... Behind Brendan1
rbi-Gateway Behind Gelphman
rbhi-Local Lilly Pad

Yiper
Yiper w/password

] | [cancel |

Figure 3 - Dialog Window to configure a PAP DTP.

Back to top

TN 1172: Writing Plug-ins for Desktop Printer Page: 4
Utility

Plug-in Requirements
Please read the related document Technote 1170: The Printing Plug-ins Manager for requirements of

writing LaserWriter plug-ins. In order for shared library plug-ins to be recognized by DTPU, they have
to be kept in the “ Printing Plug-ins’ folder within the Extension folder of the active System Folder.

Thetypeinthe' PLGN resource (ID - 8192) for aDTPU plug-in hasto be' dt pu' . The subtype can be
any four-character type starting with the character '=". If this subtype represents a custom hose, it should
be registered with DTS. Please send the following information to devprogram@apple.com to register
your custom hose type:

Contact Name;

Company Name:

Mailing Address:

Phone Number:

Email Address:

Make and Model of device:

Description of communi cations method:
4-byte type (in the form ‘=XXX’):

ONoU~WNE

Example: type: ‘dtpu’
subtype: '=AS"

Developers attempting to write a DTPU plug-in will need the following files:
e Desktop Printer Utility Version 1.2 or later

e PrintingLib Version 8.6.5 or later
e DtpuPlugin.h (which isincluded with the Sample Code accompanying this Technote)

Back to top

| nter action between DTPU and plug-ins

When the "New" menu itemis selected in DTPU, the following dialog window is displayed for usersto
select the type of DTP to create:

TN 1172: Writing Plug-ins for Desktop Printer Page: 5
Utility

Mew Desktop Printer

with| LaserWriter8 4 |
Create Desktop...

Printer (AppleTalk)

Printer {LPR}

Printer {no printer connection)

Translator (PostScript)

Printer {UsE)

Printer {App5Socket)] type of plug-in

Create desktop printer for printer using .ﬁ.ppSncket.@ 5 ezplanati-::n of
the plug-ins

e

| Cancel i

Figure4 - DTP type selection dialog

If DTPU recognizes aplug-in in the "Printing Plug-ins’ folder, it adds the plug-in’stype (item 1in
Figure 4) to the selection list and provides some explanation (item 2 in Figure 4) in the space below the
list when the plug-in type is selected. DTPU asks each plug-in for thisinformational string.

Once aplug-in DTP typeischosen, DTPU displays a DTP window similar to the onein Figure 5. The
content of items 1-4 are controlled by the plug-ins. Again, DTPU obtains the text strings from plug-ins
and displays them on behalf of the plug-ins. Item 2 isa 32 pixel x 32 pixel icon. Plug-ins can also
provide an icon drawing routine which will be called by DTPU whenever it needs to draw theicon. More
information about how a plug-in can control these items is provided in the PluglnDtplnfo Structure and
DTP Window Display sections.

TN 1172: Writing Plug-ins for Desktop Printer Page: 6
Utility

[E===——————lntitled | =r————H

PostScript™ Printer Description (PPD) File

™,
1 1

Gener ic | change... I
AppSocket Printer Selection (1)
!.

T
ctunzpecifiedss ——" | | Change... I 2

Desktop Printer Uzage : Print to printer "<<unspecified::" @

“With Printer Driver : Laser'writer 8

Figure 5 - Example of a plug-in DTP window

When the lower change button (item 5 in Figure 5) is clicked, DTPU calls the plug-in to display a
configuration dialog window. The window displayed by the included sample code is shown in Figure 6.
Thiswindow is entirely owned by the plug-in. A plug-in can put any number of items of any typeinthis
window and position the items wherever appropriate. User interaction directed to this dialog window
should be handled by the plug-in. DTPU provides a callback routine to handle events that are not related
to this dialog window. Plug-ins should use movable modal dialog windows for this purpose whenever
possible. More information about how to control thiswindow is given in the Configuration Dialog
Window section.

Specify the AppSocket printer you are printing to
(using domain name or IP address)

Printer Address||ccunspecifieds>

[Eancel] [0K]

Figure 6 - Movable modal dialog controlled by plug-ins

Back to top

The PluglnDtplnfo Structure

TN 1172: Writing Plug-ins for Desktop Printer Page: 7
Utility

struct Pl ugl nDt pl nf of
OSType dtpl D, // four character type ID unique to
/1 your DTP type
Str255 dtpType; // appear in DIP type selection |ist
Str255 dtpHel p; // explanation of DITP usage
Str255 dtpConfigTitle; // explanation of DTP configuration
Bool ean pl ugi nSpecified; // plug-in data is well specified
/1 and valid
Bool ean canAut oSetup; // this DITP has enough info to
/1 do PPD auto setup
Bool ean aut oSet upPossi ble; // can possibly do PPD
/'l auto setup

Dt puPl ugl nDrawm conProc draw conProc; //optional
Dt puPl ugl nC i pboardOkProc cli pboar dCkProc;
Dt puPl ugl nPast ed i pboar dProc past eC i pboar dProc;
Dt puPl ugl nPl acel nC i pboar dProc pl acel nCl i pboar dProc;
Dt puPl ugl nAddDr agDat aProc addDr agDat aPr oc;
Dt puPl ugl nDr agAccept abl eProc dragAccept abl eProc;
Dt puPl ugl nRecei veDraglt enProc recei veDragltenProc;
Dt puPl ugl nAddTagsProc addTagsProc; //optional
Dt puPl ugl nSavePr ef sProc savePrefsProc; //optional
Dt puPl ugl nSuggest DocNanmeProc suggest DocNaneProc; //optional
Dt puPl ugl nConfi gur ePr oc confi gureProc;
Dt puPl ugl nGet I conTitl eProc getlconTitl eProc;
Dt puPl ugl nGet UsageText Proc get UsageText Proc;
Dt puPl ugl nC osePr oc cl oseProc;
void *refcon; // your private pointer that wll
/'l be passed back each tine
b

t ypedef struct PluglnDtplnfo PluglnDtplnfo;
t ypedef Pl ugl nDt pl nfo *Pl ugl nDt pl nfoPtr;
t ypedef Pl ugl nDtplnfo **Plugl nDt pl nf oHdl ;

TN 1172: Writing Plug-ins for Desktop Printer Page: 8
Utility

Pl ugl nDt pl nf o isused by DTPU to retrieve information from plug-ins. Thefields in this data
structure are:

dt pl D)- should be the same four-character ID used for subtypein' PLGN resource (1D
-8192

dt pType - will be displayed asitem 1 in Figure 4 (DTP type selection diaog)

dt pHel p - will be displayed asitem 2 in Figure 4 (DTP type selection dialog)

dt pConfi gTitl e - will bedisplayed asitem 1 in Figure 5 (plug-in DTP window)

pl ugi nSpeci fi ed - should be TRUE if the default plug-in settings for a newly created
“Untitled” DTP are complete and can fully satisfy the print-time needs, FAL SE otherwise. If
thisfield contains FAL SE and a user tries to save the DTP, the aert box shown in Figure 7
will be presented.

A ¥ou will not be able to printto an unspecified

printer. Would vou like to specify the printer?

[Save it anyway] [Eancel} || Specify... Ii

Figure 7 - Unspecified Printer warning

Plug-ins should set thepl ugi nSpeci fi ed field to FALSE if this alert iswanted before saving aDTP.
By setting pl ugi nSpeci fi ed to TRUE for anewly created DTP, the aert can be avoided. For existing
DTPs, thisfield should always be set to TRUE.

canAut oSet up - TRUE if this particular DTP has enough information to do a PPD auto setup
(for example, aPAP DTP hasavalid AppleTak address for a LaserWriter).

aut oSet upPossi bl e - TRUE if this plug-in type can possibly do a PPD auto setup. For
example, thisfield would be TRUE for aPAP DTP but FALSE for an LPR DTP because its
lack of duplex communication protocol.

ref con - can be used by plug-insin any way they please. It is normally used as a pointer to
any memory alocated by a plug-in.

Therest of the fieldsin this data structure are Pr ocPt r s pointing to routinesin the plug-in.
DTPU callsthese routines when it needs some information from a plug-in or when it needs a
plug-in to perform certain tasks. These routines are described below.

Back to top

TN 1172: Writing Plug-ins for Desktop Printer
Utility

Plug-in Interface

The Plug-in interfaceisin C. Although DTPU iswritten in C++ using PowerPlant, plug-ins do not have
to use C++ or PowerPlant. All routines provided by plug-ins should return aresult of type 0SSt at us.
noEr r should be used as an indication of success. Shared library initialization and termination routines
can be used for initialization and clean-up. It isimportant to restore the current resource file before exiting
any plug-in routine if the current resource file is ever changed.

Plug-ins must provide the following routines and point each of their corresponding ProcPt rs in

Pl ugl nDt pl nf o to them. For those marked optional, the Pr ocPt r s should be set to NULL if the plug-in
chooses not to support them.

Open and Close
DtpuPluginOpen

All DTPU plug-ins must export aroutine named Dt puPl ugi nQpen. Thisisthefirst routine called by
DTPU after shared library initialization.

Page: 9

CSSt at us Dt puPl ugi nOpen(Pl ugl nDt pl nfo *pl ugl nDt pl nfoP, voi d* i nRef Con, Col |l ection inCollection)

pl ugl nDt pl nf oP pointsto aPl ugl nDt pl nf o structure whose contents should be filled in by this routine.
DTPU usesthe information returned in this data structure to display a DTP window and interact with the
plug-in. The datafieldsdt pl D, dt pType, dt pHel p,dt pConfi gTitl e, pl ugi nSpeci fi ed,andref con
have already been explained in the previous section. The Pr ocPt r s are pointersto routines provided by a
plug-in. When Dt puPI ugi nOpen iscalled, aplug-in should fill out al ProcPt r s and point them to the
routines handling the requests. These routines are described bel ow with their corresponding ProcPtrs in
Pl ugl nDt pl nf o. ProcPt rs for optiona routines which are not supported by a specific plug-in should be
set to NULL.

i nRef Con should beignored if it isNULL. Otherwise, i nRef Con would be the value returned by a
previous cal to Dt puPl ugi nOpen. In this case, it should be used to initiaize the newly created plug-in
DTP. Internal information contained in i nRef Con should be copied over to the new refcon or data
structure alocated for the new plug-in DTP.

i nCol | ecti on should beignored if itisNULL. Otherwise, it isa Collection for an existing DTP. Internal
information needed by plug-insto initialize anewly created plug-in DTP can be extracted from this
Collection by using Get Col | ect i onl t em Thisinformation would be the same as that saved by the
routine pointed to by savePr ef sPr oc, which is described later. See Inside Macintosh: QuickDraw GX
Environment and Utilities for more information on the Collection Manager.

If i nRef Con iSnon-zero, it should be used to initialized the new DTP, and i nCol | ect i on should be
ignored. If i nRef Con iszero andi nCol | ect i on isnon-zero, i nCol | ect i on should be used to initiaize
the new DTP. If they are both zero, the new DTP should be initialized with reasonable default values.

Note:

Multiple instances of the same plug-in must be able to coexist at the same time, since there may be
multiple DTPs with the same plug-in type. This means the calling sequence does NOT necessary follow
an open -> close -> open -> close order. Your plug-in’s Dt puPl ugi nQpen function might be called again
before its closeProc function is ever called.

Unless otherwise stated, ther ef con parameter in the following routinesis the same asther ef con in the
Pl ugl nDt pl nf o returned by a previous call to your Dt puPl ugi nOpen function.

closeProc OSStatus closeProc(void * refcon);

TN 1172: Writing Plug-ins for Desktop Printer
Utility

Thefield cl osePr oc in data structure Pl ugl nDt pl nf o should be set to the address of the plug-in’s
cl osePr oc routine.

DTPU cdlsthisroutine to give a plug-in a chance to rel ease any system resources allocated in the
Dt puPl ugi nOpen call.

DTP Window Display

To display the lower pane of the DTPU window on behalf of plug-ins, DTPU must call the following
three routines:

getlconTitle
cl oseProc
OSStatus getlconTitle(Str255 outlconTitle, void *refcon);

Thefidld get | conTi t1 ePr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s get I conTi t | e routine.

The plug-in should set the content of out | conTi t | e to the string to display as the printer icon title
(typically the printer name or network address) in item 3, Figure 5.

get UsageText
OSSt at us get UsageText (St r255 out UsageText, void *refcon);

Thefidld get UsageText Pr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s get UsageText routine.

The plug-in should set the content of out UsageText to the informative text to display, as shown in item 4,
Figure 5.

drawm con
OSSt at us drawl con(Rect* i nFraneP, Boolean inHi lite, void* inRefCon);

Page: 10

TN 1172: Writing Plug-ins for Desktop Printer
Utility
Thefield dr awi conPr oc in data structure PI ugl nDt pl nf o should be set to the address of the plug-in's
drawl con routine or to NULL if it's not supported.

Thisisthe plug-in’s optiona routine to draw an icon representing the printer or its setting. Plug-ins that
don’t want to draw their own icons should set thisfield to NULL, in which case a generic LaserWriter
iconis displayed.

Theicon ispositioned asitem 2 in Figure 5. Plug-ins can use Mac Toolbox routines such as Pl ot | conl D
or Pl ot | conSui t e to draw thisicon. The GrafPort is aready set properly when thisroutineis called. Any
change made to the Graf Port’ s drawing state by this routine should be restored on exit.

i nFrameP isapointer to aRect which contains the position (in local coordinates) of the icon to be drawn.

i nHi | i t e indicates whether the icon should be drawn as hilited or normal.

Copyé& Paste + Dragé& Drop

DTPU supports Copy & Paste and Drag & Drop between DTP documents. One can copy or drag the
lower paneicon (item 2 in Figure 5) and paste or drop it into another DTP window provided the two DTP
windows have compatible data types. This allows a user to copy the configuration information from one
DTP to another, which can ssimplify the configuration process. Because DTPU does not know the
meaning of aplug-in’sinternal data, plug-ins have to provide the following six routines to help DTPU
determineif the data can be used.

cl i pboar dCk
OSSt at us cl i pboar dOk(Bool ean* out Acept abl eP, void *refcon);

Thefield clipboardOkProc in data structure PI ugl nDt pl nf o should be set to the address of the plug-in's
cl i pboar dCk routine.

DTPU calsthisroutine to decide if the content in the clipboard is acceptable to aplug-in's DTP. Plug-ins
should use Get Scrap() to determineif the data on the clipboard is sufficient to setup its part of the DTP
completely. * out Acept abl eP should be set to TRUE if the clipboard contains the needed data and
FALSE otherwise (if not all needed information is present).

past ed i pboard
OSSt at us pasteC i pboard(void *refcon);

Thefidld past ed i pboar dPr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s past ed i pboar d routine.

DTPU callsthis routine to paste the clipboard into a plug-in’sinternal DTP data. The plug-in should use
Get Scrap() to extract the type of datait needs and update itsinternal information. Any fieldsin
Pl ugl nDt pl nf o that are affected by this operation should be updated to reflect these changes.

pl acel nCl i pboard
OSSt at us pl acel nd i pboard(void *refcon);

Thefiddpl acel nd i pboar dPr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s pl acel nd i pboar d routine.

DTPU calsthisroutine to place aplug-in’sinternal datain the clipboard. The plug-in should use
Put Scrap() to export itsinternal data of one or more types.

Page: 11

TN 1172: Writing Plug-ins for Desktop Printer
Utility
addDr agDat a

OSSt at us addDr agbat a(Dr agRef er ence i nDr agRef ,
ItenRef erence inltenRef, void *refcon);

The field addDragDataProc in data structure PluglnDtplnfo should be set to the address of the plug-in’'s
addDragData routine.

DTPU calls this routine when the plug-in’sicon is being dragged. The plug-in should use
AddDr agl t enFl avor () to export itsinternal datain one or more types. See Inside Macintosh: Drag
Manager for descriptionsi nDr agRef andi ni t enRef .

dr agAccept abl e

OSSt at us dr agAccept abl e(DragRef erence i nDr agRef
|t enRef erence inltenRef,
Bool ean* accept abl eP, void *refcon);

Thefield dr agAccept abl ePr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s dr agAccept abl e routine.

DTPU callsthis routine to decide if the content of adrag is acceptable to aplug-in's DTP. Plug-ins
should use Get Fl avor Fl ags() to decideif adrag hasthe type or types of data needed. See Inside
Macintosh: Drag Manager for i nDr agRef andi nl t enRef .

recei veDragl tem

OSSt at us recei veDragl t en{ DragRef er ence i nDragRef,
DragAttributes inDragAttrs,
ItenReference inltenRef, void *refcon);

Thefiddr ecei veDr agl t enPr oc in datastructure Pl ugl nDt pl nf o should be set to the address of the
plug-in’srecei veDr agl t emroutine.

DTPU callsthisroutine to drop data onto plug-in’s DTP. Plug-ins should use Get Fl avor Dat aSi ze()

and Get Fl avor Dat a() to extract the data. See Inside Macintosh: Drag Manager for i nDr agRef
inDragAttrs,andinl t enRef .

DTP Saving

Whenever DTPU needs to save a DTP which has a custom plug-in type, it needs assistance from the
following three routines provided by plug-ins.

addTags
OSSt at us addTags(Col | ecti on out TagCol | ecti on,
Col l ectionTag inTag, void *refcon);

Thefield addTagsPr oc in data structure Pl ugl nDt pl nf o should be set to the address of the plug-in's
addTags routine or to NULL if not supported.

DTPU callsaddTags before making an extended ' PAPA' . This gives plug-ins a chance to save
information needed at printing time. Plug-ins need to add this data to the Collection out TagCol | ect i on.
On exit, DTPU will take the Collection and save itsdatainto the DTP's' PAPA' . Plug-insthat don't need
this functionality don't have to support this routine.

For example, the domain name address required by an LPR hose at print time can be saved in extended
' PAPA' with thisroutine. See Technote 1115: The Extended PAPA for additional information. This
routine should make acall smilar to this one:

Page: 12

TN 1172: Writing Plug-ins for Desktop Printer
Utility

err = AddCol | ectionlten{out TagCol | ection, inTag,
nyPl ugi nDat aType, nyPl ugi nDat aSi ze, (void *)nyPl ugi nDataPtr);

out TagCol | ect i on istheresulting Collection that will be used to make the extended ' PAPA' . i nTag is
always' PAPA' . nyPl ugi nDat aType should be a4-character id identifying the plug-in data being added
into the Collection. myPI ugi nDat aSi ze and nyPI ugi nDat aPt r are the size and pointer to aplug-in’s
private data for the DTP. As an example of this,an LPR DTP could use' TCP ' for nyPl ugi nDat aType,
the length of the domain name for ny Pl ugi nDat aSi ze and a pointer to the domain name for

nyPl ugi nDat aPtr.

savePrefs
OSSt at us savePrefs(Col | ecti on out TagCol | ection, void *refcon);

Thefield savePr ef sPr oc in data structure Pl ugl nDt pl nf o should be set to the address of the plug-in’s
savePr ef s routine or to NULL if not supported.

DTPU callssavePr ef s() before saving aplug-in DTP. It gives plug-ins a chance to save any private data
they might need to reopen an existing DTP. Plug-ins need to add their private datato out TagCol | ect i on.
On exit, DTPU saves the content of the Collection.

suggest DocNane
OSSt at us suggest DocName(St r 255 out DocName, void *refcon);

Thefidd suggest DocNanmePr oc in data structure Pl ugl nDt pl nf o should be set to the address of the
plug-in’s suggest DocNane routine or to NULL if not supported. If thisfieldisNULL, DTPU will use
the name returned by get | conTi t | e asthe default DTP name in asave or save as dialog window.

DTPU callssuggest DocNane before saving an untitled plug-in DTP. It gives plug-ins a chance to suggest
aname for the DTP. Plug-ins can use an appropriate default name and put it in out DocNane. For example,
an LPR DTP might suggest the printer’ s domain name address for the DTP name.

Configuration Dialog Window

configure

GsSt at us confi gure(Plugl nDi al ogCal | backProc cal | backProc,
MenuHandl e edi t MenuH, short cut Menultem
short copyMenultem short pasteMenultem
voi d *refcon);

Thefield confi gur ePr oc in datastructure Pl ugl nDt pl nf o should be set to the address of the plug-in’s
configure routine.

DTPU calls configure whenever the lower "Change..." button (item 5, Figure 5) is clicked or the lower
icon (item 2, Figure 5) is double-clicked. In response to this user interaction, a plug-in should display a
movable modal dialog window such as the one shown in Figure 6. The content of the dialog is decided by
the plug-in.

A plug-in’s configure routine should call Wi t Next Event () and handle al events directed to this movable
modal dialog window. In particular, the routine should handle mouse clicks in the content region, mouse
clicksinthetitle bar of the dialog window, window dragging of this dialog, and any update events for the
dialog. keyDown or aut oKey events when the command key is not pressed should be handled by this
routine as well. Events not related to the dialog window and not handled by the plug-in’s configure routine
should be passed up to DTPU by calling cal | backPr oc. cal | backPr oc isof type

Pl ugl nDi al ogCal | backPr oc which is defined as:

Page: 13

TN 1172: Writing Plug-ins for Desktop Printer Page: 14

Utility

typedef void (*PluglnDi al ogCal | backProc) (Event Record* nacEvent P);

DTPU handles command key-down events, and events not specifically for the plug-in’s window.

Upon entering this routine, the Edit menu is disabled. Plug-ins should enable/disable the Cut, Copy, and
Paste menu items as desired if the dialog has editable text items. Plug-ins should keep this menu updated
for the duration of the execution of this configure routine. The command key-down events for Edit,
however, are handled by DTPU through the callback. The MenuHandl e of Edit is passed in asedi t MenuH
and the menu items arein cut Menul t em copyMenul t em and past eMenul t em Plug-ins should use
Enabl el t en() and Dr awenuBar () to update the Edit menu (see Figure 8).

Help
Can’tUndo 37

Cut X
Copy i
Paste i

Figure 8 - Edit menu enabled by plug-in

Plug-ins should not return control back to DTPU until the user either confirms or cancels the settingsin
the dialog window. A value of “0” for user confirmation or avalue “1” for user cancellation should be
returned as aresult of thisroutine. Any other value causes an error.

Back to top

Summary

This Technote explains how to add a plug-in (or plug-ins) to the system that will be used by Desktop
Printer Utility. These plug-ins can configure desktop printers that use third-party custom hoses as
described in Technote 1144: Writing Custom Hoses for LaserWriter 8. With the information contained
in this Technote and the sample code which accompaniesiit, you should be able to extend Desktop Printer

Utility and Desktop Printing in general.

Further References

Technote 1170: The Printing Plug-ins M anager

Technote 1144: Writing Custom Hoses for LaserWriter 8
Technote 1129: The Settings Library

Technote 1115: The Extended 'PAPA' Resource

Technote 1113: Customizing the Desktop Printer Utility
Inside Macintosh: Drag Manager

Inside Macintosh: QuickDraw GX Environment and Utilities

ChangeHistory

e Originaly written in December, 1998.
e Updated and converted to Technote format in June, 1999.

Back to top

TN 1172: Writing Plug-ins for Desktop Printer Page: 15
Utility

Downloadables

H Acrobat version of this Note (K).

Back to top

Binhexed Sample Code (196K).

To contact us, please use the Contact Us page.
Updated: 16-Aug-1999

Technotes | Contents
Previous Technote | Next Technote

