
Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 1

Technotes

Download

Acrobat file (195K)

Download

AppleWorks file (42K)

Printer Direct Mode APIs for Macintosh Printer Drivers

Technote 1013 FEBRUARY 1996

This Technote describes the APIs for implementing a printer-direct (or pass-thru) mode for Macintosh
printer drivers. Implementing this feature will allow applications to identify and send printer data that is
unique to the printer connected to the Macintosh without having to generate QuickDraw codes,
understand how to connect to and maintain a connection with a particular printer, or handle
communications errors with the printer.

Apple's PC Compatibility systems present an interesting dilemma when trying to print from the
DOS/Windows side of the CPU because all of the I/O of this system must occur through the
Macintosh. DOS applications and Windows printer drivers generate native printer codes for specific
printers, but do not generate the QuickDraw commands that Macintosh printer drivers depend on in
order to image data to a specific printer. This printer direct mode will allow a "back-door" for these
native printer commands to get directly to the printer through the Macintosh printer driver.

This Technote is directed towards printer driver developers who write drivers for non-PostScript
printers. Implementing this feature will allow faster and better quality printing with Apple's PC
Compatibility products, where printing must always occur on the Macintosh, even though the printer
driver generating the printer commands may be on a DOS/Windows system.

This document assumes you are familiar with the Macintosh Printing Manager and Apple's PC
Compatibility products. See Inside Macintosh:Imaging with QuickDraw for further details on the
Printing Manager.

Contents

About the Printer Direct Mode
Using the Printer Direct APIs
Summary of the Printer Direct APIs
Summary

About the Printer Direct Mode

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 2

The printer direct (or pass-thru) mode is specifically intended to allow printer manufacturers and printer
driver developers to make products that will easily integrate into the PC Compatibility CPU marketplace.
Since most new printers are not being developed for a single CPU platform, the printer direct mode will
give end-users the best printing results possible.

Using the Printer Direct APIs
The printer direct printer driver functions are implemented via a set of PrGeneral routines and a reserved
opCode for those routines. There is a set of six functions (for which there are selectors) that the
Macintosh printer driver must support:Open, Close, SendData, SendFile, Despool, and Verify. The
PrGeneral opCode reserved by Apple for this operation is 20 decimal ($14 hex). Each of the five
functions take a selector code as defined by these constants:

#define kPrinterDirectOpCode 20
#define kPDOpenSelect 1
#define kPDSendDataSelect 2
#define kPDSendFileSelect 3
#define kPDCloseSelect 4
#define kPDDespoolSelect 5
#define kPDVerifySelect 6

If the driver does not support the printer direct opCode, the PrGeneral function should return a
opNotImpl error. This is the one case where an error code will only be returned in the printer error
(PrError). For all the rest of the functions, error codes need to be returned in the error field of the
parameter block as well as the printing error variable (PrSetError).

Open Printer Direct

The Open command alerts the printer driver that data is about to be sent and it should allocate whatever
memory structures are needed to begin receiving the printer data. This printer data can be passed to the
driver in one of two ways: 1) As a pointer to data blocks of a specific size, or 2) an FSSpec record which
points to a spool file where the data is located. The appropriate selector code for Open command and an
appropriate selector for the type of data to be sent to the driver must entered into the selector and
spoolType fields of the OpenPDBlk. The spoolType valid values are:

#define kPDData 1
#define kPDFileSpec 2

If any other value is set in the spoolType field, the function should return the pdBadSpoolTypeErr. The
format of the parameter block is:

struct OpenPDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 UInt32 spoolType; // Ptr to data or FSSpec.
};
typedef struct OpenPDBlk OpenPDBlk, *OpenPDBlkPtr;

ERRORS

opNotImpl,
pdBadSelectorErr,
pdBadJobIDErr,
pdBadSpoolTypeErr

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 3

The opCode is always 20 (kPrinterDirectOpCode). The error and reserved fields should be initialized to
zero. The jobID is returned from the Open function and it is the calling function's unique identifier to
the print job being opened.

Send Data

There are two Send commands for sending the print job to the printer:SendPDData and SendFileSpec.
For sending data, the driver must minimally be able to handle 4K data blocks which are repeatedly sent
to the printer until all the data has been sent. However, more data can be sent if the driver can handle
additional memory requirements. If the driver is not able to handle any data block larger than 4K, an
error must be appropriately returned by the printer driver.

struct SendPDDataBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 Ptr Data; // Pointer to the data.
 UInt32 count; // Number of bytes Data points to.
};
typedef struct SendPDDataBlk SendPDDataBlk, *SendPDDataBlkPtr;

ERRORS

opNotImpl,
pdBadSelectorErr,
pdBadJobIDErr,
Memory Manager Errors

Send File

The Send File command is issued once and specifies a fileSpec for the location of the spooler file
containing all of the print job data. This file must be in a closed state when it is passed to the driver. The
printer driver is responsible for deleting the spool file when it is finished spooling the file to the printer.

struct SendPDFileSpecBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 FSSpec fileSpec; // Points to file where data is
};
typedef struct SendPDFileSpecBlk SendPDFileSpecBlk,
 *SendPDFileSpecBlkPtr;

ERRORS

opNotImpl,
pdBadSelectorErr,
pdBadJobIDErr,
File System Errors

Close Printer Direct

The Close commands tells the printer driver to stop receiving printer data and prepare the data to be
spooled to the printer.

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 4

struct ClosePDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
};
typedef struct ClosePDBlk ClosePDBlk, *ClosePDBlkPtr;

ERRORS

opNotImpl,
pdBadSelectorErr,
pdBadJobIDErr

Despool Print Job

Once the Close command is completed, the printer driver will only dispatch the printer data once it has
received the Despool command. Despooling can take place either in the foreground or the background,
depending on the user's selection in the Chooser.

struct DespoolPDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 UniversalProcPtr idleProcPtr; // idleProc
};
typedef struct DespoolPDBlk DespoolPDBlk, *DespoolPDBlkPtr;

ERRORS

opNotImpl,
iPrAbort,
pdBadSelectorErr,
pdBadJobIDErr,
pdDespoolFailedErr

An idleProcPtr can be supplied for Despool function which the driver should execute periodically. The
idleProc should be a function which takes no arguments and returns no values and should be of the
form:

pascal void MyIdleProc(void);

The primary purpose of the idleProc is to sense events when a user is attempting to abort the print job.
Should the idleProc sense this, it must set the printing error (via the PrSetError function) with the
iPrAbort error. Otherwise, the idleProc should return a noErr. The driver should check the error returned
and abort the print job upon receiving the abort error.

Should the despool procedure be aborted, it should return the iPrAbort error. If the despool function
should fail for any other reason, it should return the pdDespoolFailedErr so the calling application can
prompt the user.

If the idleProc is nil, it is the printer driver's option to supply a default idleProc routine.

Verify Printer Direct Mode

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 5

The Verify function allows an application to verify that the driver supports printer direct mode. If the
driver does not support the printer direct opCode, the PrGeneral function should return an opNotImpl
error.

struct VerifyPDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 OSType drvrCreator; // Printer driver's creator type
 NumVersion drvrVersion; // Printer driver's version number
};
typedef struct VerifyPDBlk VerifyPDBlk, *VerifyPDBlkPtr;

The drvrCreator and drvrVersion fields are returned by the printer driver. The drvrCreator is a 4
character OSType that is part of the driver's file info. The drvrVersion field is of type NumVersion
which is defined in the Types.h file of the Macintosh headers. It is defined there as follows:

struct NumVersion {
 UInt8 majorRev; /*1st part of version number in BCD*/
 UInt8 minorAndBugRev; /*2nd & 3rd part of version number
 share a byte*/
 UInt8 stage; /*stage code:dev, alpha, beta, final*/
 UInt8 nonRelRev; /*revision level of non-released version*/
};
typedef struct NumVersion NumVersion;

Based on the creator and version information, and any pertinent information in the printer record, it is up
to the calling application to determine whether the printer data being sent to this driver would be handled
properly by this printer.

Summary of the Printer Direct APIs

Constants

#define kPrinterDirectOpCode 20

#define kPDOpenSelect 1
#define kPDSendDataSelect 2
#define kPDSendFileSelect 3
#define kPDCloseSelect 4
#define kPDDespoolSelect 5
#define kPDVerifySelect 6

#define kPDNoData 0
#define kPDData 1
#define kPDFileSpec 2

enum {
 pdBadSelectorErr = -10001,
 pdBadSendModeErr = -10002,
 pdBadJobIDErr = -10003,
 pdDespoolFailed = -10004
};

Data Types

struct OpenPDBlk {

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 6

 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 UInt32 spoolType; // Ptr to data or FSSpec.
};
typedef struct OpenPDBlk OpenPDBlk, *OpenPDBlkPtr;

struct SendPDDataBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 Ptr Data; // Pointer to the data.
 UInt32 count; // Number of bytes Data points to.
};
typedef struct SendPDDataBlk SendPDDataBlk, *SendPDDataBlkPtr;

struct SendPDFileSpecBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 FSSpec fileSpec; // Points to file where data is
};
typedef struct SendPDFileSpecBlk SendPDFileSpecBlk, *SendPDFileSpecBlkPtr;

struct ClosePDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
};
typedef struct ClosePDBlk ClosePDBlk, *ClosePDBlkPtr;

struct DespoolPDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 UInt32 jobID; // ID referencing this job
 UniversalProcPtr idleProcPtr; // idleProc
};
typedef struct DespoolPDBlk DespoolPDBlk, *DespoolPDBlkPtr;

struct VerifyPDBlk {
 SInt16 opCode; // Printer Direct opCode = 20
 OSErr error; // Result code
 UInt32 reserved; // reserved
 UInt32 selector; // Function selector code
 OSType drvrCreator; // Printer driver's creator type
 NumVersion drvrVersion; // Printer driver's version number
};

Technote 1013 - Printer Direct Mode APIs
for Macintosh Printer Drivers

Page: 7

typedef struct VerifyPDBlk VerifyPDBlk, *VerifyPDBlkPtr;

Summary
The printer-direct mode for Macintosh printer drivers described in this Technote will be used by the PC
Print Spooler application, which is part of Apple's new PC Compatibility System and should be relased
in the first part of 1996. The PC Print Spooler application spools print jobs from the PC side of the
CPU to the printer connected to the Macintosh and selected in the Chooser.

The printer-direct mode will be implemented in PowerPrint 3.0.1 Classic and LT driver packages from
GDT Softworks in February, 1996. This feature is also being considered in a future release of Apple's
LaserWriter 8 driver. In addition, other third-party providers have shown interest in implementing this
feature in their printer drivers in the future.

A caveat: Application developers should realize that this feature is currently not supported by Apple's
drivers.

Technotes
Previous Technote | Contents | Next Technote

