TN 1189: The Monster Disk Driver Technote Page: 1

Technote 1189
The Monster Disk Driver Technote

CONTENTS T
his Technote is both a summary and review of existing

S . disk driver information and a description of disk driver
Disk Driver Basics features that until now have not been generally documented.

Introduction

Driver Gestalt This Noteis directed at developers of disk drivers and disk
formatting utilities. There is aso a section specificaly amed
at application developers who need to operate on disks

Non-512 Byte Block Devices di rectly.

Secrets of the Partition Map

Large Volume Support

How the ROM Loads SCSI and ATA
Drivers

Loading FireWire Drivers

Chaining Drivers and Patch Partitions

Disk Drivers and the System Heap

PowerPC Native Disk Drivers

Installing and Removing Drivers and
Drives

Close and Purge
File Exchange (né PC Exchange)

Private Control and Status Requests

Read-Verify Mode

Color Icons

Target Mode

Disk Driver Power Management

Summary

| ntroduction

The Mac OS disk driver architecture has not been comprehensively documented since Inside
Macintosh Il (1985). In theintervening years, disk technology has changed radically, from 400 KB
floppy disksto FireWire, visiting two different SCSI Managers and four versions of ATA Manager on
the way. Many of these technologica changes have been accompanied by architectural changesfor
which the documentation isin obscure places, was not generally released, or was just never written.

The technote is an attempt to rectify that oversight. It serves both to bring together the existing

TN 1189: The Monster Disk Driver Technote Page: 2

documentation and to fill in the missing pieces. Y ou can use this technote as either areference, an
introduction to writing disk drivers, or just to bring yourself up-to-date on the latest disk driver advances.

If you are new to Mac OS disk drivers, you should start with the Disk Driver Basics section. If you're
already familiar with the basics of the Mac OS disk driver architecture, you may want to start with the
two high-level summaries, one for disk driver writers and one for application developers.

Existing Information

The existing documentation for disk driversis scattered through many different Apple documents,
interface files, and code samples. The section classifies these references based on their usefulness.

Core References

These large works cover information that you will definitely need in your driver. Don't start adisk driver
without being familiar with these works:

e Inside Macintosh: Devices , SCSI Manager isthe core reference for the classic SCSI Manager
programming interface, introduced with the Mac Plus. It also describes the Apple partition map
format, used by all Macintosh computers since the Mac Plus.

e Inside Macintosh: Devices , SCSI Manager 4.3 isthe core reference for the SCSI Manager 4.3
programming interface, introduced with the Quadra 840av. All SCSI drivers written today
should use the SCSI Manager 4.3 programming interface.

o ATA Device Software for Macintosh Computers (previously known as the ATA Device
Software Guide) is the core reference for the ATA Manager, which alows you to find and
control ATA devices connected to the computer. The "ATA Driver Reference” chapter offersa
useful summary of the Control and Status requests relevant to a modern Mac OS hard disk
driver, athough some of the information is inaccurate and has been updated in this document.

e ATA 0/1 Software Developers Guide is a supplement to the above, and describes the changes
required to support device 0/1 (master/ave) on ATA buses.

e Inside Macintosh: Files describes the drive queue, akey data structure used by all disk drivers.

e Technote 1041, "Inside Macintosh: Files Errata’ comprises corrections to the core Inside
Macintosh: Files document.

e The Shared Device Access Protocol specification.

e DTS sample code RAM Disk implements the basic framework for adisk driver. Unfortunately,
it does not demonstrate how to handle requests asynchronoudly, which is one of the trickiest
thingsto get right in adisk driver.

e DTS sample code TradDriverL oaderLib shows how to correctly install a Mac OS driver
'DRVR .

e DTS sample code SCSI Driver Example demonstrates afully fledged SCSI driver that supports
both classic SCSI Manager and SCSI Manager 4.3. It is a useful sample, although it has
decayed a bit in the years since it was last updated (1994).

e DTS sample code ATA Demo demonstrates how to read blocks from both ATA and ATAPI
disks.

e "DriverGestalt.h" (from the latest Universal Interfaces) always contains the most up-to-date list
of Driver Gestalt selectors.

o The MoreDisks module from the DTS sample code library Morel sBetter contains a
comprehensive list of al the currently defined disk driver Control and Status requests, and
where to get more information on how to support them.

Additional Information
These smaller documents contain information that supplements the above in certain key aress.

e Technote 1098, "ATA Device Software Guide: Additions and Corrections' isthe latest erratafor
the ATA Device Software for Macintosh Computers.

e Technote DV 17 Sony Driver: What your Sony Drives For Y ou documents the Control and
Status requests supported by Apple's standard floppy disk driver. Thisis akey reference for
disk driver developers. Floppy disk driver writers should also read the "MFM Disk Device

TN 1189: The Monster Disk Driver Technote Page: 3

Driver" chapter of Apple Logic Board Design L PX-40 Developer Note (hardware developer
note), which includes information on floppy disk Control and Status requests that is missing
fromDV 17.

e Technote DV 22, "CD-ROM Driver Calls' documents the Control and Status requests
supported by Apple's standard CD-ROM driver. Thisis akey reference for CD-ROM driver
developers.

e Technote 1104, "Interrupt-Safe Routines' answers the perennial question, can | do X at interrupt
time?

e Technote 1067, "Traditional Device Drivers: Sync or Swim" addresses a common
misconception of device driver writers.

e Technote 1040, "Write Cache Flushing: Techniques for Properly Handling System Shutdown"
describes how disk drivers should handle system shutdown.

e Technote ME 09, "Coping with VM and Memory Mappings' is probably the best place for
information on ensuring that your device driver is compatible with virtual memory.

e Technote 1094, "Virtual Memory Application Compatibility" contains a description of the Mac
OS VM architecture as awhole, which is useful background material for device driver writers.

e Designing PCI Cards and Drivers for Power Macintosh Computers, pages 110 through 117,
documents the Driver Gestalt mechanism and some new Control requests. This technote
provides clarifications and corrections on Driver Gestalt and the mechanism used to boot from a
partition. In addition, the File Exchange section of this technote completely replaces the PC
Exchange description in the book.

e Guideto the File System Manager contains useful background information about how FSM
interacts with disk drivers; however, the specific recommendations for driver writers are covered
in the File Exchange section of thistechnote.

e DTS Q&A OPS 22, "Notification Manager Reinitialized During Boot" is an important tidbit for
disk driver developers.

e DTS Q&A DV 34, "Secondary Interrupts on the Page Fault Path" describes the dangers of
using secondary interrupts in software that must service page faults. While the Q& A was
written for SIM developers, itswarning is also important for other page fault path software, such
as disk drivers. Disk drivers must not use secondary interrupts (or, for that matter, deferred
tasks) on the page fault path.

e Data Structureto Aid Security and Recovery Software, David Shayer and Marvin Carlberg,
1991

e The InterruptSafeDebug module of the DTS sample code library Morel sBetter can be useful
when tracking down nasty crashing problemsin adevice driver, especialy those that happen
early at startup time.

Obsolete

These documents, as they pertain to disk drivers, are considered obsolete. Thislist is provided for
completeness only. Y ou should read the recommended materia instead.

e Inside Macintosh Il , "The Disk Driver", page 211 through 219, documents the basic interface
to adisk driver, includethekEj ect (7) Control request, the kSet TagBuf f er (8) Control
request, and thekDr i veSt at us (8) Status request.

e Inside Macintosh IV , "The Disk Driver", page 223 through 224, documentsthekVeri fy (5),
kFor mat (6),kTr ackCache (9), andkDri vel con (21) Control requests.

e Inside Macintosh IV , "The SCSI Manager”, page 292 through 293 describes the origina
partitioning format used on the Mac Plus and goes on to say, "Since the driver is called to install
itself, it must contain code to set up its own entry in the unit table and to call its own Open
routine. An example of how to do this can be obtained from Developer Technical Support.” This
example was part of the "SCSI Driver Developer Kit". All of theinformationinthe kit is
available elsawhere. The specific sample code referenced by the book evolved into SCS| Driver
Example.

e Inside Macintosh V , "The Disk Driver", page 470 through 471, documentsthekDr i vel con
(21), kMedi al con (22), and kDr i vel nf o (23) Control requests.

e TechnoteDV 2," AddDrive, Drvringall, and DrvrRemove' documented the AddDr i ve,
Driverlnstall,andDriver Renove System routines. Thistechnoteis now obsolete. AddDr i ve
is documented in Inside Macintosh: Files, and Dri ver I nstal | ,and Dri ver Renpve are covered
by Inside Macintosh: Devices, dong with Dri ver | nst al | Reser veMem Moreover, developers

TN 1189: The Monster Disk Driver Technote

of 68K drivers should use TradDriverLoaderLib to install their drivers.
Technote DV 12, "Our Checksum Bounced" documents a misfeature of the code used by the
ROM to checksum disk drivers. The technote is now obsolete. The ROM checksum behavior is
described in Inside Macintosh: Devices and this technote describes the checksum agorithm
itself.
Technote DV 13, " PBClose the Barn Door" ill contains vaid advice for genera device driver
writers, although this technote deals with thistopic asit appliesto disk drivers.
Technote DV 18, "CD-ROM Notes (Most Excellent)" contains some interesting historical
information about CD-ROM devices, although much of the information is now obsolete or
covered elsawhere.
Power Macintosh 9500 Computers (hardware developer note) describes many aspects of the
large volume support (greater than 4 GB support) introduced with that machine. The large
volume support aspects of that developer note are now obsolete. This technote discusses large
volume support asit appliesto disk drivers. DTS Q& As FL 07 and FL 08 discuss large volume
support from the application perspective.
The following documents were never released generally. Their devel oper-oriented content has
been rolled into this technote.

o "Chainable Drivers and Patches’

o "Ruby Slipper Lite ERS' (large volume support)

o "Bootable CD Developer Kit (Software Developer Note)"

o "PC Exchange and Large Volume Drivers'

Checklist for Disk Driver Writers

All of the above s probably overwhelming, so here is a summary of the most important steps to take to
improve the reliability and compatibility of your disk driver:

If you do nothing else, you should support Driver Gestalt.

Y ou should support the partition map entry features documented in Secrets of the Partition Map.

Specifically, you should ensure that your driver is checksummed, supports booting from a
partition, and write your driver signature to the pnPad field.

Y our driver should support large volumes, including booting from large volumes on machines
without large volume support in the ROM by means of the' r uby' patch.

Y ou should follow the rules when installing and removing your driver and its drive queue

elements. Y ou should al so support closeto alow other devel opers to remove your driver cleanly.

If your driver uses SCSI Manager 4.3 or ATA Manager, it must register itself with the manager.
The documentation for each manager describes how thisis done. If you're using SCSI Manager

4.3, useSCsl Cr eat eRef NunXr ef . If you're using ATA Manager, use kKATAMyr Dr i veRegi st er .

Y ou should support the File Exchange interface. Thiswill allow foreign file systems to access
your disks without any skullduggery.

Y ou should check that your private Control and Status requests follow the rules, both with
respect to Driver Gestalt and virtual memory. Thisis harder than you might think.

Y ou should support read-verify mode. This technote explains how to do it easily.

Y ou may want to support target modein your ATA driver.

Y ou may want to support color icons Waoo hoo!

For Application Writers

The purpose of adisk driver isto support a generic interface for accessing block devices. The primary
client of thisinterface isthe File Manager, athough it can be used by other programs. If you're writing a
foreign file system, or just an application that needs something beyond the standard File Manager
programming interface, parts of this technote may be of interest to you.

If you need to interrogate a driver about its capabilities, you should read the section Driver
Gestalt for Applications.

If you need to read arbitrary blocks on avolume, you should read the discussion of the
X1OParam block for applications, along with the accompanying hints and tips

If you need to read arbitrary blocks outside of avolume -- for example, the partition map, or a
non-Mac OS partition -- you should investigate the File Exchange section of thistechnote,

Page: 4

TN 1189: The Monster Disk Driver Technote

especially the section on using the File Exchange interface.
e If you need to verify that you have written data to the disk correctly, you should check out the
read-verify mode section which describes the easiest way to do this. [Hint: Think "MoreFiles'!]
e If you need to get color icons for adrive, you can now call the disk driver to get them --
although you should probably just call 1con Servicesinstead.

In addition, if you're writing adisk formatting utility, this technote contain invaluable information on the
partition map, chaining drivers, patch partitions, and "hostile" takeovers.

Disk Driver Basics

Mac OS communicates with attached devices through device driver s, which are software plug-ins that
conform to awell-defined structure. The Device Manager isthe origina system component used to
install, find, manage, and communicate with device drivers. It exports routines that can be called by
higher level system software, and by applications. Most of these routines trandate directly into requests
to the underlying device driver.

In order to identify different drivers, the Device Manager assigns each installed driver a unique negative
number, referred to asadriver reference number. When calling the Device Manager, clients passa
driver reference number to tell it which driver they are dealing with.

For ablock device to be available to the system, it must have adisk driver. Thisis either in the ROM
(for the built-in floppy drive), or loaded at system startup from a special partition on the disk (SCSl,
ATA, and FireWire devices), or loaded from a system extension (USB and FireWire devices). In
addition, adisk driver can be loaded when adeviceis plugged in by either an 1/0O family expert (ATA,
USB, and FireWire), or by aspecial utility program (SCSl). Finally, software can install adisk driver for
avirtua block device which has no obvious physical presence, such asaRAM disk or disk image.
Regardless of how they areinstalled, all disk driversroughly follow the same rules.

It isimportant to note the difference between adisk and adevice. A block device isthe entity which
reads and writes dataon adisk. A disk isthe medium which actualy storesthe data. Thisdistinction is
unimportant for fixed disk devices (such as hard disks), but is critical for removable disk devices (such
as floppy drives and removable cartridge disk devices).

Mac OS always directs block 1/0 to a software entity known as adrive. Each disk driver creates one or
more drives and puts them in a system structure called the drive queue. Eachdrive queue element
represents adrive, and contains both the driver reference number and the drive number. Thedrive
number isapositive number that uniquely identifiesthe drive; it is assigned when the driveis added to
the drive queue.

A drive does not necessarily correspond directly to agiven physical device. Rather, the driver decides
which drivesto create for the deviceit controls. In some cases, there is one drive per physica device. For
example, the built-in floppy disk driver creates adrive for each attached floppy disk device. However, itis
also common for adriver to create multiple drives for asingle device. For example, the driver for a
partitioned hard disk device creates adrive for each file system partition on the disk.

When the system performs 1/O to adrive, it suppliesthe driver reference number of the device driver and
the drive number of adrive created by that driver. The Device Manager uses the driver reference number
to find the device driver and call its entry point. The device driver then uses the drive number to
determine which driveis the target of the 1/0 request.

All drive I/O isdoneisterms of 512-byte logical blocks. Therefore, al transfers must start at multiple of
512 bytes and be amultiple of 512 byteslong. Thisis regardless of the underlying device's block size.

File Manager and Drives

To alow the flexibility of storage required by the user interface (a hierarchy of folders and files), Mac
OS implements another layer of abstraction, known as the File Manager, on top of the Device Manager

Page: 5

TN 1189: The Monster Disk Driver Technote Page: 6
and the drive queue.

A file system is amechanism for storing fine-grained data (files) and meta-data (folders, Finders
atributes, and so on) on adrive. The file system defines the way this datais stored and the rules for
manipulating it. The File Manager includes built-in support for two file systems (HFS and HFS Plus)
and a plug-in architecture (File System Manager) for others (AppleShare, DOS FAT, ProDOS, UDF,
and third-party FSM plug-ins).

The File Manager exports a programming interface defined in terms of volumes, which contain
directories, files, and meta-data. A volume is an instance of afile system on adrive. Each volumeis
uniquely identified by a negative volume r efer ence number, which is stored, along with other datato
operate the volume, in avolume control block (VCB) that islinked into the system VCB queue. The
VCB also contains the drive number and the driver reference number of the drive on which the volumeis
mounted.

The process of making the contents of a drive available viathe File Manager is called mounting a
volume. When the File Manager attempts to mount avolume on adrive, it calls each of the file systems
in turn to determine which one understands the logical format of the data on the disk in the drive. It then
createsa VCB for that file system on that drive.

The File Manager takes requests to operate on the volume and passes them to the appropriate plug-infile
system, which reduces them to basic block operations and passes them to the drive viathe Device
Manager (using the drive number and driver reference number stored in the VCB). Asfar asthefile
system is concerned, the drive isits own logical disk, even though it may only represent asmall part of
thereal disk.

A drive can exist without having a volume mounted on it. This happens, for example, if the dataformat
on the drive isincomprehensible to the installed file systems, or the volume on the drive has been
unmounted. Y ou can still access the data on adrive that has no volume mounted on it, but only viathe
Device Manager interface.

Terminology

In any technical document, it is very important to get your terminology straight. Thisis especialy
important when talking about disk drivers, where much of the terminology has been extended over the
long, confusing history of the Mac OS block storage architecture. This technote uses the following terms
throughout.

disk driver
A software plug-in that implements a hardware abstraction layer for block devices, like hard
disks, floppy drives, and CD-ROM drives. In Mac OS, adisk driver must be a Device Manager
driver (either a68K driver or anative driver).

68K driver
A disk driver implemented using the traditional 68K driver architecture, as documented in Inside
Macintosh: Devices. A 68K driver iscommonly stored in aresource of type' DRVR orina
driver partition.

nativedriver
A disk driver implemented using the native driver model, introduced with the first generation of
PCI Power Macintosh computers and documented in Designing PCl Cards and Drivers for
Power Macintosh Computers. A native driver iscommonly stored in afile of type' ndrv',
athough native drivers have started appearing in driver partitions aswell.

driver reference number
An sl nt 16 that uniquely identifies a Device Manager driver to the system. Driver reference
numbers are not persistent -- they are assigned when the driver is added to the unit table -- but
some driver reference numbers are assigned to certain well-known drivers. Driver reference
numbers occupy the same "name space” as file reference numbers (which identify an open file).
Driver reference numbers are aways negative, while file reference numbers are aways positive.

b%ero isaninvalid driver reference number and an invaid file reference number.
unit table

TN 1189: The Monster Disk Driver Technote

A Device Manager data structure that lists the installed device drivers (both 68K and native).
block device
A block-oriented storage device.
real block device
A block device that has some obvious physica presence, such as afloppy drive or a SCSI hard
disk device.
virtual block device
A block device this has no obvious physical presence, such asaRAM disk, adisk image, or a
network block device.
device
Some hardware attached to the computer. In this context of this technote, thistypically means a
block device athough, in some places, the term may be used for any type of device.

disk
The actua physical mediawhich holds data. A disk is made up of blocks, each of which holdsa
fixed number of bytes (typically 512). A disk isdistinct from a block device because, in the case
of removable disk devices, the user can insert one of many different disks into the device.

disc
A synonym for "disk" that is only used in the context of CD or DVD discs (wherethe disk is
actudly adisc).

media
See disk.

drive

A Mac OS software construct used to represent a block storage entity. A volume is always
mounted on adrive. There may be multiple drives corresponding to asingle disk. Exception:
some removable disk devices have been historically known as drives (for example, floppy drive,
CD-ROM drive). Thistechnote continuesto use "drive" in these contexts, rather than the more
cumbersome "floppy disk device." However, if the word "drive" appears unqualified, it always
refersto the primary definition.

drive queue
A OS gueue which contains al the drive queue elements known to the system. Y ou can get the
head of the drive queue using the routine Get Dr vQHdr . See Inside Macintosh: Files for more
details of the drive queue and its elements.

drive queue element
The specific data structure used to represent adrive. A drive queue element is a structure of type
Dr vQEl alocated in the system heap and placed in the drive queue.

drive number
An I nt 16 which uniquely identifies adrive. Drive numbers are not persistent; they are
assigned when the drive is added to the drive queue. Drive numbers occupy the same "name
space" as volume reference numbers. Drive numbers are always positive, while volume reference
numbers are aways negative.

partition
A disk may be divided into a set of contiguous blocks, each known as a partition. Partitions are
typically either file system partitions (which hold file system data) or meta-data partitions (which
hold information about the disk, such as the partition map or the disk's device driver). Not al
disks are partitioned, although a disk must be partitioned to support booting (except for floppy
disks, because the driver for the built-in floppy disk driveisin the ROM).

partition map
A data structure, typically at the beginning of the disk, which describes the partitions on the disk.
Most Mac OS disks are partitioned using the Apple partition map format, described in Secrets
of the Partition Map.

partition map entry
The Apple partition map describes each partition on the disk using a partition map entry data
structure (of typeParti ti on).

startup partition
The partition which the user has designated as the one from which they prefer to boot the
system, or the partition from which the system booted.

driver partition
A partition which containsadisk driver.

file system partition
A partition which contains file system data.

Page: 7

TN 1189: The Monster Disk Driver Technote

meta-data partition
A partition which holds information about the disk, such as the partition map or the disk's device
driver.

partition-based driver
A driver that isloaded from a partition.

file system-based driver
A driver that isloaded from afilein thefile system, typically in the Extensions folder.

disk-based driver
Eithgr eg partition-based driver or afile system-based driver. This term isambiguous and to be
avoided.

ghost partitioning
A system used on non-512 byte block devices where partition map entries appear at both
512-byte boundaries and device block boundaries so that they can be seen by software using
either physical or device blocks.

1/O family
A component of the Mac OS I/O subsystem that is responsible for a particular category of
devices. A driver can work within multiple 1/0O families. Each family requires certain attributes of
the driver (for example, how it is packaged and the programming interface it provides to upper
layer software) and provides services for the driver. For example, aFireWire disk driver must be
packaged as a native driver which responds to the standard disk driver programming interface,
and FireWire provides servicesto the disk driver, such as SBP-2 utility routines.

I/O family expert
A component of an I/O family that seeks out devices of a particular type and registers them with
the 1/0O family.

volume
A File Manager software construct that represents asingle, user-visible storage device. Each
volume appears as aicon on the desktop. Each volume is mounted on adrive, so if the disk has
multiplefile system partitionsit will aso have multiple drives and hence multiple volumes.

volume r efer ence number
An I nt 16 which uniquely identifies avolume. Volume reference numbers are not persistent;
they are assigned when the volume is mounted. V olume reference numbers occupy the same
'name space’ as drive numbers. Drive numbers are always positive, while volume reference
numbers are always negative.

refNum
This contraction of "reference number" is ambiguous and is not used in this document. In other
documents, it commonly means either adriver reference number or afile reference number,
depending on context.

vRefNum
A contraction of volume reference number.

logical blocks
The block numbering scheme used to access blocks on adrive. Each logical block contains 512
bytes and the first block accessible through the drive is block 0. See Block Trandlation for
details.

physical blocks
The block numbering scheme used to access blocks on adisk. Y ou can derive a physical block
number from alogical block number by adding to it the start block number of the partition. If
the disk is not partitioned, logical blocks and physical blocks are identical. Each physical block
contains 512 bytes. See Block Trandation for details.

device blocks
The actua block numbering scheme used by the device hardware to access data on the disk.
Device blocks are not necessarily 512 bytes big, and the device driver isresponsible for
blocking and deblocking to present the illusion of 512-byte physical blocks to the system. See
Block Trandation for details.

blocks
When used without qualification in this technote, blocks meanslogical blocks.

sectors
Depending on context, this can either mean device blocks (for afloppy drive), physica blocks
(for ahard disk device), or logical blocks (in avolume format specification). To avoid confusion,
this technote avoids the term "sector” in favor of its more specific synonyms.

chaining driver

Page: 8

TN 1189: The Monster Disk Driver Technote

A driver loaded from a partition which performs some action and then loads the next driver in
the driver chain. The most common chaining driver is Apple's patch driver.

driver chain
A sequence of drivers, each in its own driver partition, that can al be loaded for a particular
expansion bustype (for example, SCSI or ATA). Each driver chain consists of one or more
chaining drivers and areal driver for the disk. A disk may contain more than one driver chain if
it can be accessed through more than one expansion bus type.

patch driver
A chaining driver which applies the patches from a patch partition and then chains to the next
driver.

patch partition
A meta-data partition containing patches that must be applied to the system before it can boot.
ghe patchesin the patch partition are applied by the patch driver beforeit chainsto the real disk

river.

target mode
PowerBook computers can be placed in target mode, where the PowerBook's internal hard disk
devic;a is accessible asahard disk device to other computers on an expansion bus (typically
SCSl).

SCSI disk mode
See target mode.

request
When the Device Manager calsadriver entry point (Open, Close, Prime, Control, or Status for
a68K driver, DoDr i ver | Ofor native drivers), it passes the address of a parameter block which
describes the requested operation. Thisis known as arequest. A request is different from a
simple function call in that the driver may return from thisinitial call without completing the
request. Specificaly, for queued requests, the request is not complete until the driver explicitly
tellsthe system so (by calling | 0bone for 68K drivers, or by calling | OConmandl sConpl et e for
native drivers).

queued request
Synchronous and asynchronous requests are collectively known as queued requests. Thisis
because they are queued in the driver's queue (on the dCt | QHdr) and the driver is marked as
busy while the request is being processed.

immediate request
Immediate requests are distinct from queued requestsin that they are not placed in the driver's
gueue and do not mark the driver as busy.

TN 1189: The Monster Disk Driver Technote

Driver Gestalt

All disk drivers should support Driver Gestalt. Driver Gestalt is a mechanism whereby the system can
query your driver to determine whether it supports advanced driver features. In many waysit is similar to
the Mac OS Gestalt Manager, except that the system is querying your driver, not the other way around.

Y our driver should support Driver Gestalt. If you don't support Driver Gestalt, the system isin the dark
as to which advanced driver features your driver supports.

Driver Gestalt Reference

The basic reference for Driver Gestalt is Designing PCl Cards and Drivers for Power Macintosh
Computers specifically the "Driver Gestalt" section starting on page 106. However, Driver Gestalt is
useful even on non-PCl computers. Y our driver must support Driver Gestalt regardless of what
computer or OS version it is running on.

Designing PCI Cards and Drivers for Power Macintosh Computers does not document all of the
selectors associated with Driver Gestalt. The only official, up-to-date list of Driver Gestalt selectorsisthe
"DriverGestalt.h" header file, provided as part of Universal Interfaces. When Apple defines anew Driver
_Gesltalt selector, we add the selector to "DriverGestalt.h", aong with comments that describe how to
implement it.

In the event of a conflict between the written documentation and "DriverGestalt.h”, "DriverGestalt.h" is
correct and the written documentation iswrong. For example, Designing PCI Cards and Drivers for
Power Macintosh Computers describes the response of the' purg' selector asaBool ean (page 111),
whereas "DriverGestalt.h" correctly describes the response to be of type

Dri ver Gest al t Pur geResponse.

Driver Gestalt Guar antees

By saying that it supports Driver Gestalt, your driver guarantees certain things to the system, including:

1. Your driver will returncont r ol Er r in response to a Control request with an unrecognized
csCode.

2. Your driver will return st at usEr r in response to a Status request with an unrecognized csCode.

3. Your driver will return cont r ol Err inresponse to a Driver Configure request with an
unrecognized selector.

4. Your driver will return st at usEr r inresponseto a Driver Gestalt request with an unrecognized
selector.

5.

Y our driver will not use any csCodes below 128 for private Control or Status requests.

Items 3 and 4 in the list above are not documented clearly in Designing PCI Cards and Drivers for
Power Macintosh Computers, although they are implemented by all Apple drivers and are clearly shown
in the various Driver Gestalt samples. Thistechnote servesto officially document these two additional
requirements.

Driver Gestalt for Applications

Probably the best way to understand how to issue Driver Gestalt queries from an application isto look at
some sample code. "Driver Gestalt Demo" is a simple sample that shows how to issue afew queries.
"DriverGestaltExplorer” is amore comprehensive sample, which is also useful asasimpletest and
investigation tool. Both samples are available as DTS sample code.

Summary of Driver Gestalt

All disk driversshould support Driver Gestalt.

Page: 10

TN 1189: The Monster Disk Driver Technote Page: 11

Secrets of the Partition Map

A number of features have been added to the Apple partition map since it was documented in Inside
Macintosh: Devices. This section describes those featuresin detail.

Partition Field Relevance

The description of thePar ti t i on datatypein Inside Macintosh: Devices does not explicitly call out that
some fields of the data structure are only relevant for driver partitions (those whose partition name
contains"Appl€e" and "Driver"). Specifically, the fields from pri_gBoot St art through to pnPr ocessor
are only relevant for driver partitions. Non-driver partitions should set these fields to zero.

pmPar Type Possibilities

Inside Macintosh: Devices documents the well known values for the pnPar Type field of the partition map
entry, namely "Apple_partition_map", "Apple_Driver", "Apple_Driverd3', "Apple MFS', "Apple_HFS',

"Apple_Unix_SVR2", "Apple PRODOS', "Apple_Free", and "Apple_Scratch". This technote describes

anumber of additional partition types.

"Apple_Driver_ATA" -- Holds the device driver for an ATA device.

"Apple_Driver ATAPI" -- Holds the device driver for an ATAPI device. When it discoversa

deviceon an ATA bus, the ATA Manager identifies whether adeviceisATA or ATAPI and

automatically loads the corresponding driver.

e "Apple Driverd3_CD" -- A SCSI CD-ROM driver suitable for booting.

e "Apple FWDriver" -- Holds a FireWire driver for the device. See Loading FireWire Drivers for
detalls.

e "Apple Void" -- A dummy partition map entry, used to pad out a partition map to ensure the
correct alignment of partition map entriesin a bootable CD-ROM.

e "Apple_Patches' -- Holds a patch partition. The patch partition architecture is described in

Chaining Drivers and Patch Partitions.

IMPORTANT:

Apple reserves al partition types beginning with "Apple". Apple expects to add a number of new
partition typesin the near future, and your software should handle these new, reserved partition types
cleanly.

pmPartStatus Revealed

Inside Macintosh: Devices saysthat the pnPar t St at us field of the Par ti ti on data structure is only used
by A/UX, bits 0 through 7 having a defined meaning and al others being reserved. Thisis no longer true.

Thefollowing flags are defined in pnPar t St at us field of the Par ti ti on structure. All bits not defined
here are reserved (you should initialize them to O and ignore their value).

TN 1189: The Monster Disk Driver Technote

enum {
kPartitionAUXl svalid = 0x00000001,
kPartiti onAUXI sAl | ocat ed = 0x00000002,
kPartitionAUXI sl nUse = 0x00000004,
kPartiti onAUXl sBoot Val i d = 0x00000008,
kPartiti onAUXl sReadabl e = 0x00000010,
kPartiti onAUXI sWiteabl e = 0x00000020,
kPartiti onAUXI sBoot CodePosi ti onl ndependent = 0x00000040,
kPartitionlsWiteable = 0x00000020,
kPartitionl sMount edAt St art up = 0x40000000,
kPartitionlsStartup = 0x80000000,
kPartitionl sChai nConpati bl e = 0x00000100,
kPartitionl sReal Devi ceDri ver = 0x00000200,
kPartiti onCanChai nToNext = 0x00000400,

Bits 0 through 4 and 6 are still defined as documented in Inside Macintosh: Devices. A Mac OS
formatting utility should always set these bit to 1 for file system partitions and clear them for other

partition types.

The second group of bitsisused by Apple Mac OS disk driversto hold information about file system
partitions.

kPartitionl sWiteable
This bit indicates whether the partition iswriteable (1) or write-protected (0). If the bit is clear and
your driver creates a drive queue element to represent this partition, it should mark the drive queue
element as write-protected. Note that mask has the same value (and the same semantics) as
kPartiti onAUXI sWiteabl e.

kPartitionl sMount edAt St art up
This bit indicates whether the partition is mounted at system startup (1) or not (0). If your driver
would otherwise create a drive queue e ement to represent this partition at system startup and this
bit is clear, it should not create the drive.

kPartitionlsStartup
This bit indicates whether thisisthe startup partition (1) or not (0). This bit must be set for at
most one partition. See A Partition of Y our Imagination below.

Note:

Some third-party disk drivers reverse the sense of thekPar ti ti onl sMount edAt St ar t up bit of
pnPar t St at us. Thisisabug. Unfortunately, we cannot retroactively fix that bug on all installed disks,
soitisnot possible to look at this flag and determine whether the partition will be mounted. The most
reliable way to work out whether a partition will be mounted at startup is by using the partition attribute
Control and Status requests.

Thethird group of bits provides information about driver partitions. Y ou may need to read Chaining
Drivers and Patch Partitions to understand these descriptions.

kPartitionl sChai nConpati bl e
The driver in this partition supports being loaded by a chaining driver.

kPartitionl sReal Devi ceDri ver
This partition contains adriver that actually knows how to drive the device. Contrast thiswith the
patch driver, which is chain compatible, but which can only load patches and then chain to the
next driver; it does not actually contain adisk driver.

kPartiti onCanChai nToNext
This partition contains adriver that can chain to another driver. Typicaly, al driversin the chain
must have this bit set, except the last one whereit is clear.

Page: 12

TN 1189: The Monster Disk Driver Technote Page: 13

IMPORTANT:
Some Apple and most third-party drivers do not have the chaining flags set correctly, so itisvirtualy
impossible for your software to rely on their semantics.

Partition Attributes

There are anumber of Control and Status requests that modify the attributes of a partition. A disk driver
must support these requests as described below. A formatting application can use these requests to
modify partition attributes.

Note:

Many of these Control and Status requests were previously documented in Designing PCI Cards and
Drivers for Power Macintosh Computers, page 113 through 114, and ATA Device Software for

M acintosh Computers. The description herein replaces both of these documents. The old documents fail
to describe the Devi cel dent parameter to these routines, nor do they clarify that csParani 0. . 1] isa
partition map entry address.

Setting the Startup Partition

ITrap |[_Control |
IMode ||Synch, Async |

|csCode |[St nt 16 |[-> |[kSet St ar t upParti ti on (44) |
The drive number of the new startup partition, or O if

i oVRef Num Sl nt 16 -> |lyou wish to specify the startup partition by block
number.
If i oVRef NumisO, thisisthe physical block number of

csParanf0. . 1] Ul nt 32 -> |[|the partition map entry of the new startup partition. If

i oVRef Numisnot O, thisisignored.

If i oVRef NumisO, thisisthe device containing the new
startup partition. Thisisin the same format as the

scsi | Dfield of thepar t | nf oRec. If i oVRef Numis not
0, thisisignored.

csParanf 2. . 3] Devi cel dent ->

In response to this request, your disk driver must set the partition described by i ovRef Numand
csParanf 0. . 3] asthe startup partition. Typicaly thisinvolves settingkParti ti onl sStartup in
prPar t St at us, which in turn causes your disk driver to place the drive queue element for this partition
first in the drive queue at system startup.

IMPORTANT:
When your driver setsthekParti ti onl sSt art up bit for one partition, it must clear it for all other
partitions. This bit must be set for at most one partition.

Determining Whether a Partition isthe Startup Partition

ITrap ||_st at us |
IMode ||Synch, Async |

TN 1189: The Monster Disk Driver Technote

csCode

|[St nt 16

||-> ||kGet St art upSt at us (44)

i oVRef Num

SInt16

->

The drive number of the partition to query, or O if you
wish to query the partition by block number.

csParani 0. . 1]

Ul nt 32

If i oVRef NumisO, thisisthe physical block number of
the partition map entry of the partition to query. If
i oVRef Numisnot O, thisisignored.

csParani 2. . 3]

Devi cel dent

If i ovRef NumisO, thisisidentifies the device
containing the partition to query. Thisisin the same
format asthe scsl | Dfield of thepart | nf oRec. If

i oVRef Numisnot O, thisisignored.

csPar ani 0]

U nt 16

<-

Your disk driver must set thisto either O (thisis not the

startup partition) or 1 (thisisthe startup partition).

In response to this request, your disk driver must set csPar anf 0] to indicate whether the partition
described by i oVRef Numand csPar anf 0. . 3] isthe startup partition. Typicaly thisinvolvestesting
kPartitionlsStartup inpnPart St atus.

The request returns the status that is currently recorded in the partition map, not whether the system
actually started from this partition.

Specifying That a Partition Should Be Mounted at Startup

ITrap ||_Control

IMode |[Synch, Async

|csOode

|[St nt 16

|[-> |[kSet St ar t upMount (45)

i oVRef Num

Sl nt 16

->

The drive number of the partition, or O if you wish to
specify the partition by block number.

csParani 0. . 1]

Ul nt 32

If i oVRef NumisO, thisisthe physical block number of
the partition map entry of the partition. If i oVRef Numis
not 0, thisisignored.

csParani 2. . 3]

Devi cel dent

If i oVRef NumisO, thisisthe device containing the
partition. Thisisin the same format asthe scsI | Dfield
of thepart | nf oRec. If i oVRef Numisnot O, thisis
ignored.

In response to this request, your disk driver must set the partition described by i ovRef Numand
csParanf 0. . 3] to bemounted at startup. Typically thisinvolves setting

kPartitionl sMount edAt Start up inpnPart St at us, which in turn causes your disk driver to placea
drive queue element for this partition in the drive queue at system startup.

This request modifies the partition map, and hence only takes effect the next time the system is started. It
does not affect the state of any volume currently mounted on the partition.

Specifying That a Partition Should Not Be Mounted at Startup

ITrap |[_Control

M ode nch, Async
| || Synch, Asy

Page: 14

TN 1189: The Monster Disk Driver Technote

csCode |[St nt 16 |[-> |[«Cl ear Parti ti onMount (48)

. _-. || The drive number of the partition, or O if you wish to
| oVRef Num Sint16 > || specify the partition by block number.

If i oVRef NumisO, thisisthe physical block number of
csParanf 0. . 1] Ul nt 32 -> ||the partition map entry of the partition. If i oVRef Numis
not O, thisisignored.

If i oVRef NumisO, thisisthe device containing the

. o ||partition. Thisisin the same format asthe SCsI | Dfield
csParant 2.. 3] Devi cel dent > |of thepart | nf oRec. If i oVRef Numishot O, thisis
ignored.

In response to this request, your disk driver must set the partition described by i ovRef Numand
csParanf 0. . 3] to not be mounted at startup. Typicaly thisinvolves clearing

kPartitionl sMount edAt Start up inpnPart St at us, which in turn causes your disk driver to not place
adrive queue element for this partition in the drive queue at system startup.

This request modifies the partition map and hence only takes effect the next time the system is started. It
does not affect the state of any volume currently mounted on the partition.

Determining Whether a Partition isto be M ounted

ITrap ||_st at us |
IMode ||Synch, Async |

|csCode |[S! nt 16 ||-> |[kGet Mount St at us (45) |

. o || Thedrive number of the partition to query, or Oif you
| oVRef Num Sint16 > ||wish to query the partition by block number.

If i oVRef NumisO, thisisthe physical block number of
csParanf0. . 1] Ul nt 32 -> [|the partition map entry of the partition to query. If
i oVRef Numisnot O, thisisignored.

If i oVRef NumisO, thisisidentifies the device

: . |[containing the partition to query. Thisisin the same
csParan2..3] |Devicel dent > ||format asthe scsl I Dfidld of the par t | nf oRec. If
i oVRef Numisnot O, thisisignored.

Your disk driver must set thisto either O (this partition
csPar anf 0] Ul nt 16 <- ||[isnot to be mounted) or 1 (this partitionisto be
mounted).

In response to this request, your disk driver must set csPar anf 0] to indicate whether the partition
described by i oVRef Numand csPar anf 0. . 3] isto be mounted at system startup. Typically thisinvolves
testingkPartiti onl sMount edAt St art up inprPar t St at us.

The request returns the status that is currently recorded in the partition map, not whether the partition was
actually mounted at startup.

Mounting a Partition Immediately

ITrap |[_Control |
IMode |[Synch, Async |

Page: 15

TN 1189: The Monster Disk Driver Technote

csCode |[St nt 16 |[-> ||[kMount Vol une (60) |

: o || Thedrive number of the partition, or O if you wish to
| oVRef Num Sint16 > || specify the partition by block number.

If i oVRef NumisO, thisisthe physical block number of
csParanf0. . 1] Ul nt 32 -> ||the partition map entry of the partition. If i oVRef Numis
not O, thisisignored.

If i oVRef NumisO, thisisthe device containing the

. - ||partition. Thisisin the same format asthe scsi | Dfield
csParant 2.. 3] Devi cel dent > ||of thepart | nf oRec. If i oVRef Numishot O, thisis
ignored.

In response to this request, your disk driver must create a drive queue element for the partition described
by i oVRef Numand csPar an{ 0. . 3] (if it doesn't already have one) and post a"disk inserted” event for it.
It must do thisregardless of the state of thekPar ti ti onl sMount edAt St ar t up bit in the partition's
pnPar t St at us; however, thekParti ti onl sWit eabl e bit still controls whether the drive iswriteable.

If there is aready a volume mounted on the partition, the system will ignore the "extra disk inserted” event
this request generates.

Locking a Partition

ITrap |[_Control |
IMode ||Synch, Async |

|csCode |[S! nt 16 ||-> |[kLockParti tion (46) |

. The drive number of the partition, or O if you wish to
| oVRef Num Sint16 "> ||specify the partition by block number.

If i oVRef NumisO, thisisthe physical block number of
csParanf0. . 1] Ul nt 32 -> ||the partition map entry of the partition. If i ovVRef Numis
not O, thisisignored.

If i oVRef NumisO, thisisthe device containing the

: . ||partition. Thisisin the same format asthe SCsI | Dfield
csParan 2. . 3] Devi cel dent Z |lof thepar t | nf oRec. If i oVRef Numisnot O, thisis
ignored.

In response to this request, your disk driver must lock the partition described by i ovVRef Numand
csParani 0. . 3] . Typicaly thisinvolves:

e clearingkPartitionl sWiteableinpnPart Status, whichinturn causesyour disk driver to
create aread-only drive queue element for this partition at system startup, and
e making the drive queue e ement associated with this partition read-only. A read-only drive queue

element hasbit 7 of thewr i t ePr ot field of the drive queue element set, as described in Inside
Macintosh: Files, page 2-85.

Unlocking a Partition

ITrap ||_Cont rol |
IMode |[Synch, Async |

Page: 16

TN 1189: The Monster Disk Driver Technote

csCode

|[St nt 16

|[-> |[kUnl ockParti ti on (49)

i oVRef Num

SInt16

->

The drive number of the partition, or O if you wish to
specify the partition by block number.

csParani 0. . 1]

Ul nt 32

If i oVRef NumisO, thisisthe physical block number of
the partition map entry of the partition. If i oVRef Numis
not 0, thisisignored.

csParani 2. . 3]

Devi cel dent

If i oVRef NumisO, thisisthe device containing the
partition. Thisisin the same format asthe scsl | Dfield
of thepart | nf oRec. If i oVRef Numisnot O, thisis

ignored.

In response to this request, your disk driver must unlock the partition described by i oVRef Numand

csParani 0. . 3] . Typicaly thisinvolves:

e settingkPartitionl sWiteabl e inpnPart St at us, whichin turn causes your disk driver to
create aread/write drive queue element for this partition at system startup, and
e making the drive queue element associated with this partition read/write.

Determining Whether a Partition is L ocked

ITrap |[_Status

IMode |[Synch, Async

|csOode

|[SI nt 16

|[kGet Lockst at us (46)

i oVRef Num

SInt16

The drive number of the partition to query, or O if you
wish to query the partition by block number.

csParani0. . 1]

Ul nt 32

If i ovRef NumisO, thisisthe physical block number of
the partition map entry of the partition to query. If
i oVRef Numisnot O, thisisignored.

csParani 2. . 3]

Devi cel dent

If i ovVRef NumisO, thisisidentifies the device
containing the partition to query. Thisisin the same
format asthe scsi | Dfield of thepar t | nf oRec. If

i oVRef Numisnot O, thisisignored.

csPar ani 0]

U nt 16

Your disk driver must set thisto either O (this partition

isnot locked) or 1 (this partition is locked).

In response to this request, your disk driver must set csPar anf 0] to indicate whether the partition
described by i oVRef Numand csPar anf 0. . 3] islocked. Typicaly thisinvolvestesting
kPartitionlsWiteabl einpnPart Stat us.

IMPORTANT:

The polarity of thistest is opposite to the other partition attribute Status requests. If the partitionis
locked, kPartitionl sWiteabl eisclearinpnPart St at us.

The request returns the status that is currently recorded in the partition map, not whether the partition was
actually locked at startup. Y ou can determine whether adrive is currently write-protected by looking at bit
7 of thew i t ePr ot field of the drive queue element, as described in Inside Macintosh: Files, page 2-85.

pmPad Pearls

A previously undocumented feature of the Par ti t i on structure isthe use of the pnPad field. The first
four bytes of thisfield isadriver signature, aMac OS four- character code that uniquely identifies the
driver. Developers must fill out this field with either aregistered creator code (which is strongly

Page: 17

TN 1189: The Monster Disk Driver Technote

recommended) or zero. Driversthat use aregistered creator code in this driver signature field may then
use the remainder of pnPad to hold driver-specific configuration parameters.

Apple currently uses the following driver signatures:

enum {
kPat chDri ver Si gnat ure = 'ptDR,
kSCSI Dri ver Si gnat ure = 0x00010600,
kKATADr i ver Si gnat ure ='wki',
kSCSI CDDri ver Si gnature = 'CDvr',
kATAPI Dri ver Si gnat ure = "ATPI ',
kDri veSet upHFSSi gnat ure = ' DSUL'

The values have the following meaning:

kPat chDri ver Si gnat ure
The Apple patch driver.
kSCsSI Dri ver Si gnat ure
'I_'he?pple SCSI hard disk driver. [The significance of this value has been lost in the mists of
time.
KATADr i ver Si gnat ure
The Apple ATA hard disk driver.
kSCsI CDDr i ver Si gnat ure
The Apple SCSI CD-ROM driver.
kATAPI Dri ver Si gnat ure
The Apple ATAPI CD-ROM driver.
kDri veSet upHFSSi gnat ur e
Drive Setup setsthe first four bytes of the pnPad field of "Apple_HFS' partitionsto this value.
While thisisnot, in the strictest sense, adriver signature, it is documented here for completeness.

Remember that your disk driver should useits own driver signature; do not use these vaues for your own
driver.

New Driver Types

Inside Macintosh: Devices describes how aMac OS driver istagged by having ddType setto 1 in the
driver descriptor map (DDM). Thereis a constant for this, sbMac, defined in "SCSI.h". However, there
are other useful constantsfor thisfield.

enum {
kDri ver TypeMac SCSI = 0x0001,
kDri ver TypeMacATA = 0x0701,
kDri ver TypeMac SCSI Chai ned = OxFFFF,
kDri ver TypeMacATAChai ned = OxF8FF

Thefollowing constants are defined for the ddType field of the DDM:

kDri ver TypeMac SCSI
ThisisaMac OS SCS driver, equivaent to sbvac. Typically thisis only used for thefirst driver
(the patch driver) in aSCSI driver chain.

kDri ver TypeMacATA
ThisisaMac OS ATA driver. Typicaly thisisonly used for thefirst driver (the patch driver) in
an ATA driver chain.

kDri ver TypeMacSCSI Chai ned
ghis is %c_hai ned Mac OS SCSI driver. Thisis used for the second and subsequent driversin a

river chain.

Page: 18

TN 1189: The Monster Disk Driver Technote

kDri ver TypeMacATAChai ned
Thisisachained Mac OS ATA driver. Thisis used for the second and subsequent driversin a
driver chain.

The driver type for achained driver is aways the two's complement of the driver type for the patch driver.

For more information about this relationship, see Chaining Drivers and Patch Partitions.

Driver Checksums

Inside Macintosh, Volume V (page 580) contains an assembly language description of the checksum
algorithm used for the pnBoot Cksumfield of the partition map, but this algorithm was somehow dropped
from Inside Macintosh: Devices. Asit is now quite difficult to obtain copies of Inside Macintosh ,
Volume 'V , the algorithm isincluded below.

| nput s:

; a0.1 -> pointer to driver code

; dl.w -> length of driver code in bytes

; Qutputs:

; dO0.w -> driver checksum

DoCksum
noveq. | #0, dO ; initialize sumregister
noveq. | #0, d7 ; zero extended byte
bra.s CkDecr ; handl e 0 bytes

CkLoop
nove. b (a0) +, d7 ; get a byte
add. w d7, do ; add to checksum
rol.w #1, dO : and rotate

CkDecr
dbr a dl, CkLoop ; next byte
tst.w do ; convert a checksumof O
bne. s a :into $FFFF
subqg. w #1, dO ;

a

Thefollowing isaC equivalent.

static U nt32 ChecksunDriver(void *start, U ntl6 bytesToSum
{

unt8 *cursor;

U ntl6 result;

cursor

(Unt8 *) start;
result ;

= O,
while (bytesToSum!= 0) {
result = result + *cursor;
result ((result << 1) & OxOFFFE) |
((result >> 15) & 0x00001);
cursor += 1;
byt esToSum -= 1;

}

if (result == 0) {
result = OxOFFFF;

}

return result;

One minor mystery of the pnmBoot Cksumfield isthat the field is 32 bits wide but the checksum algorithm
only calculates a 16-bit value. The checksum is aways stored in the least significant 16 bits of

Page: 19

TN 1189: The Monster Disk Driver Technote Page: 20

pnBoot Cksumand the most significant bits are always set to zero.

Inside Macintosh, Volume V also states that driver checksumming is only done for if the first four bytes
of the driver's partition map entry prPar t Nane field is"Maci”. Thisisonly true for SCSI disk drivers.
Other, partition-based disk drivers are ways checksummed.

The above agorithm is known asthe 16-bit driver checksum algorithm. Thisis because the ROM
decrements and tests byt es ToSumusing a DBRA ingtruction (which effectively makes byt esToSuma

Ul nt 16), so only thefirst byt esToSummodulo 64 K bytes of the driver are checksummed. Thisisnot a
problem if your driver issmaller than 64 K bytes. If your driver islarger, you must be careful for two
reasons.

1. The code you useto calculate pnBoot Cksummust mimic the incorrect behavior and only
checksum your driver up to the driver size modulo 64 K.
2. 'You may want to include your own checksum in the driver to ensure that the driver codeis intact.

Note:
The 16-bit driver checksum agorithm isidentical to the algorithm used by AppleTak's Datagram
Délivery Protocol (DDP).

In some situations where the ROM loads adriver, it does not use the 16-bit checksum algorithm.
Specificaly, later versions of ATA Manager use a 32-bit driver checksum algorithm, shown below.

static U nt1l6 ATALoadDoCksum(void *start, Ul nt32 bytesToSum

{
unt8 *startAsBytes;
U nt32 result;
unt32 i;
start AsBytes = (U nt8 *) start;
result = 0;
for (i =0; i < bytesToSum i++) {
result += startAsBytes[i];
result <<= 1;
result |= (result & 0x00010000) ? 1 : O;
return (U ntl1l6) result;
}

The key difference isthat byt esToSumis now expressed as a 32-bit quantity, and the algorithm correctly
checksums bytes beyond 64 KB. Further, the 16-bit agorithm never returns a checksum of O (it is
mapped to $FFFF), while the 32-bit algorithm can return a checksum of O.

Y our formatting utility must set pnrBoot Cksumappropriately, depending on which version of ATA
Manager isloading your driver. Furthermore, the ATA driver loader mechanism is updated during the
system startup process so that on machines with the old checksum algorithm in ROM, your driver will
need a different checksum depending on whether it isloaded at start time or after system startup.

Overdl, the best solution to this driver checksum conundrumiis;

e make your driver'ssize lessthan 64 KB (if necessary, use aboot strap driver to load your main
driver), and
e if your driver checksumsto O, add pad bytes until it doesn't.

IMPORTANT:
ATA disk drivers are also limited to asize of 255 * block size bytes (just under 128 KB for 512-byte
block devices). Thisis because the ROM reads the entire driver using asingle ATA request.

TN 1189: The Monster Disk Driver Technote

A Partition of Your Imagination

The origina Mac Plus SCSI implementation did not allow the user to specify a startup partition.
Obvioudly thisis desired feature, and disk driver devel opers came up with anumber of solutions for this
problem. Over the years, Apple has introduced various stages of OS support for booting from a partition.

Developer-Only Solutions

Prior to Apple providing a solution, developers were responsible for engineering their own. Developers
quickly noticed that, al things being equal, the Macintosh tends to boot from the first bootable drivein the
drive queue. Therefore, disk driver writers arranged to add the startup partition's drive queue element to the
drive queue before the non-boot partitions element. The disk driver's formatting utility provided the user
interface for specifying the boot partition.

Thistechnique was relatively effective and stimulated user demand for areliable mechanism for booting
from a partition.

Partition Attribute Support

Eventually, Apple codified this approach and provided support for it in the Startup Disk control panel. The
codification camein theform of thekParti ti onl sSt art up bitinthe pnPart St at us field of the
partition map, along with adriver Control request, kSet St ar t upPar t i t i on, which alowsthe Startup
Disk control pane to instruct the driver to set that bit.

This standardized the previous non-standard behavior, athough it still is not a perfect solution because of
variances in the way the ROM startup code chooses a drive from which to start up.

SCSI Manager 4.3

Apple made further refinements to this solution with the introduction of SCSI Manager 4.3. SCS|
Manager 4.3 presented new problems to the startup code because it allows for multiple SCSI buses, and it
provides full support for SCSI LUNSs. So, when SCSI Manager 4.3 was introduced, Apple also
introduced a new technique for finding the startup partition, the kdgBoot Driver Gestalt selector.

IMPORTANT:

SCSI Manager 4.3 must be in ROM for thekdgBoot selector to be effective. On machines, such asthe
Quadra 700, that can run SCSI Manager 4.3 but do not have it in ROM, SCSI Manager 4.3 loads out of
the System file, too late for it to affect the startup drive selection.

When the user chooses a drive in the Startup Disk control panel, Startup Disk sends the kdgBoot Driver
Gestalt selector to the disk driver controlling that drive. Startup Disk then records the response in PRAM.
When the Macintosh boots, it iterates through the drive queue, sending akdgBoot request to each drive.
When it finds adrive with avalue matching the value in PRAM, it knows that thisis the correct startup
drive.

ThekdgBoot Driver Gestalt selector is documented in Designing PCI Cards and Drivers for Power
M acintosh Computers, page 113. This documentation is accurate for SCSI drivers. For ATA drivers, the
Dri ver Gest al t Boot Response response fields should be set as follows.

ext Dev
The ATA bus number of the device.

partition
The partition number on the bootable partition on the device. As described bel ow, the format of
thisfield isinternal to your disk driver.

Sl M8l ot
ATA devices must set thistokDr i ver Gest al t Boot ATASI M8l ot ($20). [This constant is not
currently in Universal Interfaces, Radar I1D 2314693.]

S| MsRSRC
If your driver supports ATA 0/1, you must put O or 1 in thisfield to indicate the number of the

Page: 21

TN 1189: The Monster Disk Driver Technote Page: 22

device on the ATA bus. If your driver does not support ATA 0/1, you must set thisto zero. See
ATA 0/1 Software Developers Guide for more detailson ATA 0/1 support.

ROM-in-RAM (NewWorld)

The ROM-in-RAM architecture, introduced with the iMac, presents new challenges for the startup device
selection process. On a ROM-in-RAM machine, Open Firmware is responsible for loading the Mac OS
ROM file off the startup partition, and hence Open Firmware must define the startup partition well before
Mac OS starts to execute. When the Mac OS ROM starts, it continues booting from the startup partition
chosen by Open Firmware to avoid the potential user confusion of loading the Mac OS ROM from one
disk and the system software from another.

Open Firmware synthesizes the traditional Macintosh startup process, including:

e Startup drive selection agorithm -- Open Firmware implements the traditiona startup drive
selection agorithm. It turns out that this algorithm is very complex, athoughthe gist of itis:
1. if a"snag" key isheld down, try booting from the corresponding device,
2. try booting from the default drive (if any),
3. then try booting from other drives.

e CODS -- Holding down command-option-delete-shift (CODYS) prevents the Open Firmware
from booting from the default drive.

e Cfor CD-ROM -- Holding down the C key forces Open Firmware to boot from the CD-ROM
device. Thiswas previoudy implemented by the " snag” patch but isimplemented by Open
Firmware in ROM-in-RAM computers.

e Flashing question mark -- If no startup device is available, Open Firmware displays the traditiona
"flashing question mark" icon (although, in deference to the fact that ROM-in-RAM computers
do not have floppy drives, it flashes the question mark inside afolder icon instead of a floppy
disk icon).

On ROM-in-RAM compuiters, the selected default startup device is held in an Open Firmware
configuration variable boot - devi ce. This configuration variable holds an Open Firmware path to the
default startup device. The Startup Disk control panel generates a path based on the disk driver's response
to various Driver Gestalt queries.

It isimpossible for Open Firmware to completely mimic the startup drive selection algorithm when it
comes to selecting a startup partition. WWhen booting from a partition, boot - devi ce contains the Open
Firmware partition number of the startup partition. Unfortunately, there is no reliable way to get thisfrom
adisk driver with commonly implemented Driver Gestalt queries.

Note:

Y ou might think that theparti ti on field of theDri ver Gest al t Boot Response would do the trick;
however, thisfield is defined to be opaque to the system. "Designing PCI Cards and Drivers for Power
Macintosh Computers® explicitly states:

Thepartition field enables the selection of asingle partition on a multiply partitioned
device asthe boot device. It is not interpreted by the ROM or the Startup Disk ' cdev'
[sic], so the driver can choose a meaning and avalue for thisfield.

It turns out that different disk drivers use different valuesfor theparti ti on field. Apple disk drivers set
this to be the block number of the partition map entry for the partition, but some third-party drivers use
other techniques, such as recording 1 for the first HFS partition, 2 for the second HFS partition, and so
on. The upshot of thisisthat Startup Disk is unable to use thisfield reliably to set the partition number
INnboot - devi ce.

Prior to Mac OS 9.0, the Startup Disk control panel used tricky heuristics to allow booting from a
partition with Apple disk drivers as atemporary measure to solving this problem. The long-term solution;
however, isfor disk driversto support a set of new Driver Gestalt queries, which return exactly the
information Startup Disk needs to set boot - devi ce. Therequired Driver Gestalt selectors

TN 1189: The Monster Disk Driver Technote Page: 23

(kdgDevi ceRef er ence, kdgNaneRegi st r yEnt ry, kdgQpenFi r mnar eBoot Support , and
kdgQpenFi r mnvar eBoot i ngSupport) are described in "DriverGestalt.h" in Universal Interfaces 3.3.

Note:

Y our driver only need support the kdgNaneRegi st ryEnt ry Driver Gestalt selector if your device hasan
obvious Name Registry node. For devices with no Name Registry node (SCSI), or where the Name
Registry node can be tricky to find (ATA), it isreasonableto just return st at usErr .

Non-512 Byte Block Devices

The original Mac OS disk driver architecture assumed that all block devices would use 512-byte blocks.
Supporting block devices with adifferent block sizeisrelatively smple, athough it gets more
complicated if you want to boot from such adevice. Non-512 byte block device support is most
important for CD-ROM drivers, which use a 2-KB block size.

Just the Basics

The basic rule for supporting non-512 block devices on Mac OS isthat the disk driver is responsible for
blocking and deblocking all 1/0O requests to adrive. This discussion assumes that the device block sizeis
an integer multiple of 512, although similar algorithms work for weird device block sizes.

Block Translation

The File Manager makes an 1/0 request in terms of 512-byte logical block number s on a particular
drive. The disk driver isresponsible for trandating the logical block number of the request to an actual
block number on the drive. If the disk is partitioned, the first step of this trandation isto add the offset of
the partition to the logica block number; this generatesthe physical block number. If the device uses
512-byte blocks, the physical block number is the actual block number of the data on the disk. If the
device uses non-512 byte blocks, the disk driver must do afurther trandation, converting the physical
block number to adevice block number by dividing the physical block number by the number of
512-byte blocks in each physical block.

In addition, the disk driver must block/deblock the request. If the physical block number, or the number
of blocksto transfer, is not evenly divisible by the device block size, the disk driver must transfer partial
blocks to and from the disk.

The following diagrams shows the entire trandation process for two partitionson a2 KB block device.
All numbers on the diagram arein the units labeled in the left column. For example, partition 1 isa50
MB partition which extends from O to 100 mega logical blocks (512-byte blocks), 40 to 140 mega
physical blocks (also 512-byte blocks), and 10 to 35 megadevice blocks (2 KB byte blocks).

TN 1189: The Monster Disk Driver Technote Page: 24

Fartition 1 Fartition 2

Logical Blocks 0O 100 % 0O 120 M

Physical Blocks 40 M 140 M 160 M 280 M

Device Blocks
5 M TFOM
10M 40M

I mplementation Notes

A disk driver typically deblocks arequest by breaking it into three components. The leading component
consists of al the requested physical blocks up to the first device block boundary. The leading
component is empty if the requested physical blocks start on a device block boundary.

Themain component consists of al the requested physical blocks which are fully encompassed by
device blocks. The main component may be empty if the transfer is short. The main component is
transferred directly from between the client buffer and the disk.

Findly, thetrailing component consists of all the requested physical blocks of the transfer which fall
after the last block of the main component. The trailing component is empty if the physica block number
plus the number of physical blocksto transfer falls on a device block boundary.

Because you can't transfer a sub-block size request, the leading and trailing components must be
transferred through atemporary buffer. Y ou should allocate this temporary buffer when your driver is
opened. Asthe leading and trailing components are always | ess than one device block (otherwise they
would be part of the main component), the temporary buffer need only be as big as a device block. If
your device driver is single threaded, you need only alocate asingle temporary buffer. If your driver is
multi-threaded, you must allocate as many temporary buffers as you allow threads of execution within
your driver, or internally serialize the use of the temporary buffer.

The leading and trailing components are read by transferring the device block to the temporary buffer
and then copying the appropriate data out of the temporary buffer to the client buffer. The leading and
trailing components are written by first reading the current contents of the device to the temporary buffer,
then copying the new data from the client buffer to the temporary buffer, then writing the temporary
buffer to the device.

The following illustration shows how misaligned read is transferred to the client buffer:

TN 1189: The Monster Disk Driver Technote

4003 4015

1000 1001 1002 1003 1004 1005

X A

\ &

|:| Physical Block Request |:| Transfer 1 (leading)

|:| Device Blocks |:| Transfer 2 rnain)

|:| Client Transfer Buffer |:| Transfer 3 (trailing)

|:| Driver Temporary Buffer

Performance Consider ations

The above agorithm is obvioudly inefficient if transfers are misaligned, that is, if the leading and trailing
components are not empty. Misaligned writes are even more expensive than misaligned reads because
the disk driver must do an extral/O to pre-fill the temporary buffer with the existing contents of device
block. Worse yet, amisaligned write that has both leading and trailing components takes five 1/0
operations (read leading, write leading, write main, read leading, write leading).

There are anumber of waysto avoid misaligned transfers:

e Your formatting utility should aways start partitions (especialy file system partitions) on device
block boundaries.

e Filesystem clients can issue a Driver Gestalt kdgMedi al nf o request to determine the device
block size and ensure that transfers are aligned. Thisis particularly important for write requests.

e Asarule, volume formats should use the above technique to ensure that their alocation blocks
are correctly aligned. At aminimum, volume formats should aign allocation blocks on 2 KB
boundaries to accommodate the most common cases, namely CD-ROM, DVD-ROM/RAM, and
magneto-optical devices.

It is strongly recommended that your disk driver cache at |east one device block. Many Mac OS
programs will transfer datain sequential 512-byte chunks. By caching a single device block, your driver
can radically reduce the average time taken to service these requests.

Booting From Non-512 Byte Block Devices

This section is not yet finished and has been omitted in the interests of shipping an initia version of the
technote. A future revision of this technote will cover booting from anon-512 byte block device. If you
areinterested in thistopic, please email DTS and ask for a prerelease draft of this section.

Page: 25

TN 1189: The Monster Disk Driver Technote

L arge Volume Support

When Mac OS originally shipped, it supported volume sizes up to 2 GB. Thislimit was shared by a
number of system components, including the File Manager and disk drivers. Large volume support was
introduced in two phases.

1. System 7.5 introduced support for volumes larger than 2 GB, up to asize of 4 GB. The
semantics of two programming interfaces were changed to accomplish this.
o PBHGet VI nf o does not return the true size of the volumes greater than 2 GB; the volume
size and free space are always clipped to 2 GB or |ess.
o Thedct 1 Posi ti on field of the Device Control Entry (DCE) was redefined as an
unsigned quantity.
2. System 7.5.2 introduced support for volumes larger than 4 GB, up to asizeof a2 TB. This
required two new programming interfaces.
o PBXGet Vol | nf o returns the volume size and free space as a 64-bit quantity.
o Thel/O parameter block passed to disk drivers was extended to include a 64-bit field,
i oWPosOX f set , which supplantsdCt | Posi ti on.

The changes to the File Manager programming interfaces are not relevant to this technote; they are
documented in DTS Q& A FL 08, "Determining Volume Size." This section describes the changes to the
disk driver interface.

Large Volume Interfaces

Supporting volumes between 2 GB and 4 GB was simply a matter of redefining thedt | Posi ti on field
of the DCE and thei oPos O f set field of the | OPar amstructure to be unsigned longs (Ul nt 32).

IMPORTANT:
While the semantics of these fields have been changed to unsigned, Universal Interfaces (as of the
current version, 3.3) still define the fields as signed. Y our code must type cast the fields as appropriate.

To support volumes larger than 4 GB, a new extended 1/0 parameter block (XI OPar am) structure was
defined. The original and extended 1/O parameter blocks are distinguished by the kUseW dePosi t i oni ng
bit of thei oPosMode field (clear for original, set for extended).

The C definition of the extended 1/0O parameter block is given below. The key difference is the addition of
thei oWPosCf f set field, asigned 64-bit quantity which contains the offset of the request.

IMPORTANT:

The extended 1/0 parameter block must only be used for _Read or _W i t e requeststo device drivers. It
must not be used for accessing files. The following description assumes this restriction to simplify the
text.

Note:
This structure was previously only documented in the Power Macintosh 9500 Computers hardware
developer note. The description hereis not only easier to find, but updated and more accurate.

Page: 26

TN 1189: The Monster Disk Driver Technote

struct Xl OParam {

CEl enPtr gLi nk;

short gType;

short i oTr ap;

Ptr i oCndAddr ;

| OConpl et i onUPP i oConpl eti on;
CSEr r i oResul t;
StringPtr i oNanePtr;
short i oVRef Num
short i oRef Num
SInt8 i oVer sNum
SInt8 i oPer nssn;
Ptr i oM sc;

Ptr i oBuf fer;

| ong i oRegqCount ;

| ong i oAct Count ;
short i oPosMbde;

w de i oOWPosOX f set ;

s
t ypedef struct Xl OParam Xl OPar am
t ypedef Xl OParam * XI OPar anPtr;

For software making extended 1/0 requests, the fields are defined as follows:

gLi nk
qType
i oTrap
i oCndAddr
Used internaly by the Device Manager.
oConpl eti on
For asynchronous requests, you must either set thisfield to zero or set it to a universal procedure
pointer for your completion routine. For synchronous requests, thisfield isignored.
oResul t
On completion this field contains the result of the request, which is either noEr r (0) or a negative
error code. The Device Manager guarantees that thisfield will be set toi ol nPr ogr ess (1) until
the request is compl ete.
oNamePt r
Ignored for _Read and _W i t e requests.
oVRef Num
Y ou must set thisfield to the drive number of the drive you wish to read or write.
oRef Num
Y ou must set thisfield to the driver reference number of the device driver controlling the drive
you wish to read or write.
oVer sNum
oPernmssn
oM sc
Ignored for _Read and _W i t e requests.
oBuf f er
Y ou must set thisto point to a data buffer from which datais written, or to which dataisread.
oReqCount
Y ou must set thisfield to the number of bytes you wish to read or write. For disk driver requests,
this must be a multiple of 512 bytes.
oAct Count
On completion this field contains the number of bytes of data that were actually transferred.
oPosMbde
You must set thisfield to kUseW dePosi t i oni ng to indicate that thisis awide request. All wide
requests use a positioning mode of f sFronSt ar t . Y ou must not specify any other positioning
mode (f sAt Mar k, f sFr omLECF, or f sFr omVar k). You may also specify r dVeri f yMask for
read-verify mode, noCacheMask to request that the data not be placed in the cache, or
pl easeCacheMask to request that data be placed in the cache.

Page: 27

TN 1189: The Monster Disk Driver Technote

i OWPosX f set
You must set thisfield to the offset (in bytes) from the beginning of the disk where the transfer
should begin. For disk driver requests, this must be amultiple of 512 bytes.

For disk drivers servicing an extended /O request, the fields are defined as follows:

gLi nk

qType _ ,
Used interndly by the Device Manager.

i oTrap
Y our driver must test bit O of thisfield to determine whether the request isa_Read (bit O clear) or
a_Wite (bit 0set). It must asotest noQueueBi t (bit 9) to determine whether the request is
immediate (bit 9 set) or not. If your driver does not support immediate requests, it must fail the
request with apar aner r . Your driver must not testasyncTr pBi t (bit 10) to determine whether
the request is synchronous or asynchronous. Instead, it should handle all requests asiif they were
made asynchronously. See Technote 1067 Traditional Device Drivers. Sync or Swim for details.

i oCrdAddr
Used internaly by the Device Manager.

i oConpl etion
The Device Manager | Gbone routine will do the right thing with thisfield. Y our driver should
ignorethisfield and handle al requests as if they were made asynchronoudly. See Technote 1067
Traditiona Device Drivers. Sync or Swim for details.

i oResul t
Y our driver must not read or write thisfield. Y our driver setsthisfield implicitly when it cals
| obone. When your driver has finished a queued request, it should call I ODone to signa that the
request is complete. | Obone performs anumber of actions, one of which isto set thisfield to the
error status you passed to the routine in register DO. Y our driver must pass a non-positive
error statustol Obone.

i oNanePt r
Y our driver must ignorethisfield.

i oVRef Num
Y our driver must use thisfield to determine which driveisthe target of the request. If your driver
does not control adrive with this drive number, it must compl ete the request with nsDr vErr .

i oRef Num
Y our driver may look at thisfield to determine the driver reference number of the request. This
may be useful if the same code is used for multiple device drivers (see Code Sharing).

i oVer sNum

i oPer nssn

i oM sc
Y our driver must ignore these fields.

i oBuf f er
Y our driver must transfer data to or from the buffer pointed to by thisfield.

i oReqCount
Y our driver must attempt to transfer the number of bytes specified in thisfield. Y our driver may
fail arequest (with par an€r r) if thisisnot amultiple of 512 bytes.

i 0Act Count
Before completing the request, your driver must set thisfield to the number of bytesthat were
actualy transferred.

i oPosMbde
Y our driver must test the kUseW dePosi t i oni ng bit to determine whether thisis awide request,
as described in the next section. If it isawide request, your driver must ignore the bottom 2 bits
of thisfield (that is, f sFronst art , f sAt Mar k, f sFr onLEOF, and f sFr omvar k) and use
i oWPosCF f set to determine the offset into the drive for the transfer. Y our driver may choose to
honor ther dVeri f yMask, noCacheMask, and pl easeCacheMask in the traditional way.

i OWPosOX f set
Y our driver must transfer data from this offset (in bytes) into the drive. Y our driver may fail a
request (with par antr r) if thisisnot amultiple of 512 bytes. If i oWPosOf f set iShegative or
i oWPosOX f set plusi oReqCount isbeyond the end of the drive, your driver must fail the request
with apar antrr .

Page: 28

TN 1189: The Monster Disk Driver Technote Page: 29

Supporting Large Volumesin Your Driver
To support large volumes correctly, your driver must implement the following:

e Your driver must return true in response to the kdgw de Driver Gestalt selector. Y ou may want to
usetheGet Dri ver Gest al t Bool eanResponse macro to ensure that you set the correct response
byte in the parameter block.

e Whenhandling all _Read or _W i t e requests, your driver must check whether the
kUseW dePosi ti oni ng flagissetini oPosMode. If it is, you must cast the parameter block to an
XI oPar amand do the 1/0 at the 64-bit offset specified ini oWPosCf f set . Thistype of request is
known as awide request.

e If kUseW dePosi ti oni ng isnot set, your driver must do the I/0 at the offset specified by
dCt | Posi tion. Youmust cast this signed value to an unsigned quantity (Ul nt 32) to correctly
handle offsets from 2 GB to 4 GB. Thistype of request is known asanarrow request.

There are some important caveats of which you should be aware.

e Thereisno guarantee that the system will check with Driver Gestalt before issuing awide
request. The system expects that any driver controlling adrive larger than 4 GB will respond to
wide request correctly. Similarly, the system expectsthat adriver controlling adrive whose sizeis
between 2 GB and 4 GB is smart enough to treat dCt | Posi t i on as unsigned.

e Thereisno guarantee that the system will aways use wide requests when talking to a drive larger
than 4 GB. In fact, the system currently decides on arequest-by-request basis whether to use a
wide or anarrow request, based on the request's offset on the drive. However, you must not rely
on this behavior; you must handle wide requests to offsets less than 4 GB correctly.

e ThedCt 1 Posi ti on field of the DCE is a32-bit quantity, thus it cannot accurately reflect the
position of the current 1/0 beyond the 4 GB boundary. Y ou should ignore dt | Posi ti on for
wide requests and use it only for narrow requests.

Notesfor Developers Calling Disk Drivers

If you're writing software that issues_Read or _W i t e requeststo adisk driver, you must be careful to
avoid some common pitfalls. Specificaly, you should follow the recommendations given below.

e You should alwaysuseani oPosMde Of f sFronst art when calling adisk driver. Because
dCt 1 Posi ti on cannot accurately reflect the position beyond 4 GB, other positioning modes do
not work as expected in all cases.

e Beforeissuing awide request, you should call Driver Gestalt to determine whether the driver
supports wide requests.

e If thedriver supports wide requests, you may choose to aways use wide requests for that driver.
However, for maximum compatibility, DTS recommends that you take the same approach asthe
system by deciding to use awide or narrow request based on the offset into the drive.

The following code snippet implements these recommendations.

TN 1189: The Monster Disk Driver Technote

static void Set WdePosO fset (U nt32 bl ockOf fset, Xl OParanPtr pb)
/'l Set up i oPosMbde and either ioPosOfset or i oWPosOfifset for a
/1l device _Read or _Wite.

{
pb->i oWPosOf fset.lo = bl ockOrfset << 9; [/ convert bl ock nunber
pb->i oWPosOf fset. hi = bl ockOffset >> 23; // to wide byte offset
if (pb->ioWosOfset.hi '=0) {
/1 Ofset on drive is >= 4G so use w de positioning node
pb->i oPosMbde = fsFronStart | (1 << kWdePosOfsetBit);
} else {
/I Ofset on drive is < 4G so use regular positioning node,
/1l and nmove the offset into i oPosOf f set
pb- >i oPosMbde = fsFronftart;
((1OParam *) pb) - >i oPosOf f set = pb->i oWPosOF f set . | 0;
}
}

In addition, you should never call PBRead! nmed or PBW i t el nmed on adisk driver unless you know, in
advance, that the disk driver supports such requests. Many disk driversfail to handle | medi at e requests
properly. Because immediate requests result in the disk driver possibly being reentered, these problems
are hard to detect and debug.

How the ROM Loads SCSI and ATA Drivers

This section describes how the ROM loads SCSI and ATA drivers from adriver partition. Understanding
this processis critical to an understanding of the chaining driver architecture, and useful for general disk
driver writers.

Note:

This discussion only applies to computers with built-in support for SCSI or ATA, and the drivers loaded
from devices attached to those buses. It does not apply to the Macintosh 128 and 512, which can only
boot through the floppy drive interface and do not support parti ti on-based drivers. Nor doesit
apply to driversfor modern /O buses, such as USB and FireWire.

When a Macintosh boots, code in the ROM scans each SCSI and ATA busfor block devicesin a
bus-specific manner. Once it has found a potentially bootable block device, the ROM attemptsto load a
driver from that device. The ROM executes the following procedure to load a driver.

1. It first reads device block O of the disk. Thisisthe driver descriptor map (DDM) and is
structured asthe Bl ock0 datatype defined in "SCSI.h". It checksthat block O isavalid DDM by
comparing the sbsi g field to sbSI Gwor d ($4552 or ' ER). If the DDM is not valid, the ROM
ignores the device.

2. It then reads device block 1 of the disk and looking for the first entry of the partition map. A
partition map entry is represented by the Par ti t i on data structure in "SCSI.h". For the partition
to be recognized, the pnsi g field must be newPVsi gWor d ($5453 or ' PM). The ROM uses the
pmvapBl kCnt field of thisfirst partition to determine the size of the partition map asawhole.

3. The ROM then searches the DDM for the first driver that is compatible with this bootable bus.
The DDM contains an array of DDvap structures. The key field in this structure isddType, which
identifies the type of driver defined by the structure. If the deviceis attached to a SCS| bus, the
ROM looks for a Dbvap whoseddType isSkDri ver TypeMacSCSI . If the deviceis attached to an
ATA bus, the ROM looks for a DDVap whoseddType iSkDri ver TypeMacATA.

4. The ROM then searches (by reading consecutive device blocks) the partition map for the chosen
driver's partition map entry (whose prPar Type startswith "Apple_Driver" and whose
pnPyPart St art equalsthe ddBl ock field of the DDvap of the chosen driver). It storesthis
partition map entry in atemporary memory block.

5. The ROM then searches (by reading consecutive device blocks) the partition map for the first
HFS partition (whose prPar Type is"Apple_HFS"). It stores this partition map entry in a

Page: 30

TN 1189: The Monster Disk Driver Technote Page: 31

temporary memory block.

6. The ROM then uses the driver's DDvap to read the driver into memory. It first allocates a pointer
block in the system heap to hold the driver (the size of this block isthe size of the driver in blocks
(ddsi ze) multiplied by the disk's block size (sbBI kSi ze)) and then reads the driver off the disk
(starting from ddBI ock) into that buffer.

7. Next, the ROM checksums the driver to ensure its validity. For more information on the exact
details of the checksum, see Driver Checksums.

8. The ROM then callsthe driver's entry point. The exact calling conventions are described below.
Thedriver isexpected to install itself in the unit table, openitself, and create drive queue elements
for each mountable partition on the disk. (The exact definition of "mountable” is covered in
Cooperating with File System Manager.)

If any of these stepsfail, the ROM assumes that the device is not bootable and attempts to boot from the
next available device.

IMPORTANT:

Thefact that the ROM requires an "Apple_HFS" partition to boot from a device isimportant to authors
of non-standard disk drivers, such as RAID striping drivers. The RAID software must create a dummy
"Apple_HFS" partition on the device so that the ROM will boot far enough to load the RAID driver.

Note:

The Macintosh Plus originally used an old style (Inside Macintosh IV) partition format, identified by a
prSi g of ol dPVSIi gwor d ($5453 or ' TS'). Chaining drivers are not supported on the old partition
format. However, the new (Inside Macintosh V) partition map format will work onthe Mac Plus, soitis
possible to use chaining drivers on these venerable machines.

If you want to support the Macintosh Plusin your driver, you need to be aware of the subtle difference
between it and later computers. Specifically the buffer pointed to by A0 when the Macintosh Plus ROM
callsyour driver contains the contents of the second block on the disk (the old style "device partition
map"); on all subsequent computers, the buffer pointed to by AO containsthefirst "Apple HFS®
partition map entry.

Each driver has two possible entry points. The primary entry point is at the beginning of the memory
block holding the driver. The secondary entry point is 8 bytesinto the memory block holding the driver.
In genera, the primary entry point is called when an "old" driver isloaded, or a"new" driver isloaded by
an 'old' ROM, and the secondary entry point is used when a'new' ROM load a"new" driver. The
secondary entry point has extra parameters that make sense in the 'new' ROM environment.

The exact definition of "old" and "new" depends on the bootable bus. For SCSI, a"new" ROM isone
that contains SCSI Manager 4.3, and a"new" driver isindicated by the bytes"43" in the two bytes
following the"Apple_Driver" in pnPar Type. For ATA, an'old' ROM is one that contains ATA Manager
1.0. All newer versions of ATA Manager use the secondary entry point. A 'new' ATA Manager will
always cdll the secondary entry point of the driver.

Note:
Computerswith ATA Manager 1.0in ROM are listed in the table bel ow:

Base Model	[Introduced		and Derivatives?
Macintosh Performa 630	[July 1994	lyes	
Macintosh PowerBook 150	[July 1994	lyes	
IMacintosh LC 580		Apr 1995	lyes
Power Macintosh 5200		Apr 1995	lyes
Power Macintosh 6200	[May 1995	lyes	
Power Macintosh 5300		Aug 1995	lyes

|

|Power Macintosh 6300 ||Oct 1995 ||yes, except 6360

TN 1189: The Monster Disk Driver Technote

Both entry points use register-based calling conventions. The register usage is shown in the table below:

A pointer to thefirst "Apple_HFS' partition map entry in the
partition map. See step 5 above. Y ou do not own this memory
A0 Partition * -> |land must neither change it nor freeit. This memory is not
guaranteed to be a standard Memory Manager pointer block.
This parameter is generally ignored by drivers.
D3 |[n/a ||-> || See discussion below.
A specification of the device from which the driver was |oaded,
D5 bus dependent -> |linaformat that is bootable-bus dependent. See the table and
discussion below.
o7 lon > || Thesbbat a field from the DDM. This parameter is generally
9 ignored by drivers.
Do ||oSErr orsint32 ||<- | Seediscussion below.
Register D3

Old Apple SCSI driversrequire that register D3 be set to anon-zero value in order to boot correctly. This
bug was fixed in September 1996 athough, if you are writing a SCSI disk -mounting utility, you may still

encounter these old drivers.

Register D5

Thedatain register D5 depends on both the bootable bus and the entry point called. The following table
indicates the possible combinations.

|Bootable Bus ||[Entry Point ||D5 For mat |
[SCSi |[Primary [0,0,0, SCSI ID |
SCS		Secondary		Devi cel dent
ATA	[Primary 10,0, 0, Bus			
ATA		Secondary	[Devi cel dent ATA	

The format of Devi cel dent ATA isgiven below.

struct Devi cel dent ATA {
U nt 8 di Reserved;
U nt 8 busNum
U nt8 devNum
U nt 8 di Reserved2;

b

t ypedef struct Devicel dent ATA
t ypedef Devi cel dent ATA *

Note:

Devi cel dent ATA;
Devi cel dent ATAPtr ;

Devi cel dent ATA isnot the same asthe at aDevi cel D structure defined in ATA 0/1 Software
Developers Guide, athough it is easy to convert between the two.

The fields have the following meaning:

di Reserved
Reserved. When calling adisk driver, the ROM sets thisto O; however, in the case described
below, this field contains meaningful data.

Page: 32

TN 1189: The Monster Disk Driver Technote Page: 33

busNum
The ATA bus number.

devNum
If the machine has ATA 0/1 support, thisis the device number of the device on that bus.

Otherwise, it must be zero.

di Reserved2
Reserved. Set to 0.

In some cases (such as the entry point to a patch loaded by the Apple paich driver), thedi Reser ved field
is used to distinguish between aDevi cel dent and Devi cel dent ATA. The appropriate values for thisfield

are given below.

enum {
kBusTypeSCsI
kBusTypeATA
kBusTypePCMCI A
kBusTypeMedi aBay

oo
WN PO

b

IMPORTANT:
Values other than kBus TypeSCsI (which indicatesaDevi cel dent) and kBus Ty peATA (which indicates

aDevi cel dent ATA) are now deprecated. PC Card and media bay device are now handled through the
ATA Manager, modern versions of which handle multiple buses.

Note:
In times past, it was accepted practice to use various high bits of register D5 to hold various pieces of

state information. Specifically the following bits are used by various Apple and third party drivers.

enum {
kSecondaryEnt ryPoi nt Cal l ed = 29, /1 1 => secondary entry point called
kDont Mount Vol urnes = 30, /1 1 => don't nount any partitions
kAft er Systentst art upTi ne = 31 /1l 1 => post-systemstartup | oad

However, in the circumstances described above, al bitsin register D5 can be used to hold information.
Therefore, DTS recommends that you discontinue the practice of storing flagsin the high bit of D5
where practical.

A good substitute for the kAf t er Syst enst ar t upTi me flag is described in Disk Drivers and the System
Heap.

Register DO

The significance of register DO on return from your driver's entry point varies depending on the manager
that loaded your driver.

e For ATA Manager, your driver should return an error result in the low word of register DO and, if
the driver successfully installed, its driver reference number in the high word (or ahigh word of
zero otherwise). If you return an error value other than noEr r , ATA Manager will unload your
driver code from memory.

e For SCSI Manager 4.3, the contents of register DO are alwaysignored. SCSI Manager 4.3 will
never unload your driver from memory. With some clever coding, you can unload the bulk of
your driver code upon afailed installation, if you feel that level of polish is necessary.

e For old SCSI Manager, the situation varies depending on the particular ROM.

o TheMac Pluswill treat register DO as an error result and unload your driver if you
return anon-zero value.

o Subsequent computers ignore the contents of register DO. If your driver failsto install
and you want its code to be unloaded, you can return to the return address plus 4 bytes,
which signalsthisto SCSI Manager. Doing this on a computer running SCSI

TN 1189: The Monster Disk Driver Technote Page: 34

Manager 4.3 will crash the system.

Loading FireWireDrivers

This section is only available under non-disclosure agreement. Please contact DTS for detalls.

Chaining Drivers and Patch Partitions

Booting a computer is aways atricky exercise. One of the perennial challenges is working around problemsin
the ROM that prevent the OS from booting far enough to load patches in the normal way. On
pre-ROM-in-RAM Macintosh computers, this problem is solved by means of chaining drivers and patch
partitions. Patches loaded in this way have been used to:

e support booting from volumes larger than 2 GB on machines that don't have such support in the ROM
(for example, NuBus-based Power Macintoshes),

e fix bugsinthe ROM SCSI Manager that would otherwise prevent booting, and

e provide support for snag booting, where the user can hold down the C key to force the system to boot
from the CD-ROM device.

This section explains how chaining drivers and patch partitions are implemented, and how you can license
chaining drivers and patches suitable for inclusion in your own disk formatting utility.

Note:

The chaining driver architecture is only required for SCSl and ATA devices. All computers capable of
booting from modern 1/0 buses (USB and FireWire) use the ROM-in-RAM architecture, where the
ROM isloaded from the "Mac OS ROM" filein the System Folder. On such machines, ROM patches
are effected by updating the "Mac OS ROM*" file.

Background Material

This section presumes that you are familiar with the existing documentation on disk partitions and how
Mac OS loads adriver from the disk at startup time. Specifically, you should be familiar with:

e Inside Macintosh: Devices, Chapter 3"SCSI Manager” The Structure of Block Devices (page
3-12 through 3-15) and Data Structures, (page 3-23 through 3-27), and
e Inside Macintosh: Devices, Chapter 4 "SCSI Manager 4.3" Loading and Initiaizing a Driver

(page 4-11)
o Secrets of the Partition Map, earlier in this document.

Architecture Overview

When it boots from ablock device, Mac OS loads the driver from the device itself. Thisdriver isheldina
driver partition (whose prPar Type startswith "Apple_Driver") and is referenced by an entry in the driver
descriptor map (DDM), which is stored in the first device block on the disk. The ROM searches the DDM
to find the appropriate driver, loads that driver into memory, and calsit.

The chaining driver architecture works by installing a special driver in place of the standard disk driver.
Thischaining driver performsits operation (typically it applies a patch to the ROM) and then loads the
next suitable driver in the DDM, in exactly the same way as the ROM would have. The next driver may be
area disk driver, or yet another chaining driver.

The sequence of driversloaded in thisway isknown asadriver chain. There may be more than one
driver chain on the disk; often, thereis one for each bootable bus possible for that disk. For example, aZip
disk may have achain of SCSI drivers (whose pnPar Type is"Apple Driver43") for use when the Zip
diskisinserted in aSCSI Zip device, and achain of ATA drivers (whose prPar Type iS

"Apple Driver ATA") for use when the Zip disk isinserted in an ATA Zip device.

TN 1189: The Monster Disk Driver Technote Page: 35

Thelast driver in adriver chain does not need to support chaining because there is nothing to chain to.
This means that you don't need to modify your disk driver to support this architecture, aslong as the disk
driver isawaysinstalled last in the chain.

One specia kind of chaining driver isthe patch driver. Thisisadriver supplied by Applethat is
responsible for loading and executing system patches out of a patch partition. Each patch has a patch
descriptor, which contains afour character code that uniquely identifies the patch. Once it has loaded the
patches, the patch driver chainsto the next driver, as any other chaining driver would.

In genera, you do not need to write a patch driver, or the patches it installs. However, your formatting
utility must install the patch driver and the patch partition such that the right patches are |oaded.

Available Patches

Apple supplies both patch drivers and patches to devel opers. The available patch drivers are listed below:

e "PatchChainDriver" -- This patch driver is used when booting from a SCSI device.

e "ATAPatchChainDriver" -- This patch driver is used when booting from an ATA device, such as
aninternal ATA hard disk.

e "ATAPIPatchChainDriver" -- This patch driver is used when booting from an ATAPI device, such
asan ATAPI CD-ROM.

Thefollowing patches are available.

e 'nesh' -- Thispatch fixesabug in the ROM SCSI Manager's handling of the MESH chip. Itis
required to successfully boot on a machine with that chip.

® 'scsi' -- Thispatch makes adjustments to the classic SCSI Manager to enable booting from
CD-ROM devices.

® 'ruby' -- Thispatch installs support for volumes larger than 2 GB on machines that don't have
this support in the ROM.

® 'snag' -- Thispatch implementsthe "To start up from this CD-ROM, hold down the C key as
the computer starts up” functionality used in many bootable CD-ROM products. It is only
necessary on pre-ROM-in-RAM computers, ROM-in-RAM computers implement snag booting
in Open Firmware.

To legaly include these patch drivers and patches in your formatting software, you must license the
patches from Apple. Contact Apple Software Licensing for details.

Note:

For experimental and debugging use, you can extract the relevant patch resources from Apple's Drive
Setup utility. Resources of type' pt DR hold patch drivers, resources of type' pDES' hold patch
descriptors, and resources of type' pt ch' hold patch code. However, production software must license
this resources from Apple for redistribution.

Advice for Formatting Utilities

Thefirst thing that a formatting utility must do is decide how many driver chains need to be constructed. Thisis
determined by the number of possible bootable buses for the disk. For example, a SCSI device can only be
attached via SCSl, so the utility need only construct one driver chain. In contrast, an removable cartridge disk
might be placed in either a SCSI or ATA mechanism, and therefore must contain two driver chains, one for SCSI
and onefor ATA. Moreover, a PowerBook internal ATA hard disk device needsto have a SCSI driver chainiif it
istowork in target mode.

For each driver chain constructed, the formatting utility must first create a partition for the patch driver and then
create a partition for the disk driver itself. When creating partitions, the formatting utility must be careful to write
thedriver signature into the pnPad field of the Par ti t i on record. Chaining drivers (including the patch driver)
need this signature to correctly find the next driver to load. The utility should also be sure to set up the

pnPart St at us field according to the description in pnPar t St at us Reveaed.

TN 1189: The Monster Disk Driver Technote

In addition to creating the driver partitions, the formatting utility must also create entriesin the DDM with the
appropriate driver type. See New Driver Typesfor alist of driver types, and Architecture in Detail for an
explanation of the relationship between them.

The formatting utility must also construct the "Apple_Patches' partition. Some rules must be observed when
doing this.

ThepnPar t Name field of the partition map entry should be "Patch Partition”.

ThepnPar Type field of the partition map entry must be "Apple_Patches'.

Thefirst block of the patch partition contains alist of the patches in the partition.

Patchesarerunin order, so it is necessary to place patches that are critical to the correct operation of
later patches (like' mesh' and' scsi ') beforethelesscritical ones(like' snag').

Patch descriptors contain aversion number. The formatting utility should not replace a newer patch with
an older one.

Patch descriptors are variable length data structures. Y ou cannot index the list of patches as an array.

There are aso some non-obvious factors when deciding whether to install a particular patch on a particular disk.

The MESH patch (mesh') should beinstalled on any disk which might be booted from via SCSI. In
particular, the MESH patch is required on the internal ATA hard disk on PowerBooks, becauseit is
possible they might be used to boot a machine while in target mode.

Thelarge volume support patch (' r uby') isonly required if any of the partitions on the disk are 2 GB
or larger.

Do not install the' snag' patch on hard disks! Doing so will prevent the user from snag booting a CD.
Thisis because, if the C key is held down, the hard disk ' snag' patch prevents booting from the CD,
whilethe CD-ROM ' snag' patch prevents booting from the hard disk.

Finally, formatting utilities should aim to leave some free space in the partition maps, driver partitions, and patch
partitions. Drivers and patches grow over time and wasting afew KB now may radically ease the job of
upgrading adriver or patch in the future.

IMPORTANT:

To be compatible with computers that have the classic SCSI Manager in ROM, al datathat isread by the
ROM must be within the first 1 GB of the disk. Thisis because the classic SCSI Manager driver loading
code uses 6-byte SCSI commands to read the driver.

Architecturein Detail

This section describes the chaining driver architecturein detail, including how chaining driversintercept the driver

loading process, the Apple patch driver, and the structure of the patchesit loads. To understand this section, you
need to understand how the ROM |oads SCS| and ATA drivers.

Pre-Chaining Example

The following diagram shows how a partition map might be laid out prior to the introduction of chaining drivers.
This example includes both ATA and SCSI drivers, a setup which is useful for disks that can be mounted in both

ATA and SCSI mechanisms. Some salient features are:

e The sample SCSI driver hasadriver signature of ' Qscz' , and the sample ATA driver hasadriver

signature of ' QATA' .

Loomed In Yiews Overall Disk Layout foomed In Yiews
[not to scale) [not to scale) [not to scale)

Block O L1}
sbSig = 'ER’
zbEIkSize = 512

Partition 1
prnSig = ‘P’
prafdapBIkCnt = 5

o Driver Desc,
Fap

Page: 36

sbEkCount = 2000

sbDrvrCount = 2

1 ddBlock = &4
ddSize = 40
ddType = $0001

2 ddBElock = 104
ddSize = 45
ddType = $0701

104

143

1930

2000

TN 1189: The Monster Disk Driver Technote

FPartition
Map

SCE| Driver

4T & Driver

HFsS
FPartition

Free Space

-

prioPyPartStart =1

praFartBIkCnt = 63 I:I
praoFartMarne = " &pple”

praoFarType = "&pple_partition_map"
praoLglataStart = 0

prafataCnt = 63

praFartStatus = 0

praBootClksurn = 0

proFrocessor = M

praFad = 0

Partition
prnSig = ‘P’
prafdapBlkCnt = 5
praPywPartStart = 64
praoFartBIkCnt = 40 I:I
praoFartMame = “MMacintosh"
praoFarType = "dpple_Driverd3"
praLghataStart = 0
praCataCnt = 40
prPartStatus = $7F
praBootCksum = $wxwe
praFrocessor = “g2000"
prmFad = '"QSCE’

Partition
prnSig = 'Pr°
profdapElkCnt = 5
prPyFartStart = 104
praoFartBIkCnt = 45 I:I
prnPartMarne = "Macintosh™
praFarType = "dpple_Driver _ 4T 4"
prLglataStart = 0
praCrataCnt = 45
prPartStatus = $7F

praBootCksum = $wxwe
prProcessar = "&2000"

prinFad = 'QATA"
Partition
pmSig = 'PH"

prafdapBlkCnt = 5
prPyPartStart = 149 |:|
pranFartBIkCnt = 1841
pmPartMame = “MMacintosh HC
praFarType = "#pple_HFS"
prLglataStart = 0

praCataCnt = 1841
pmPartStatus = $CO00007F
pranBootClksurm = 0
pmProcessor = "

praFad = 0

FPartition
prmSig = 'Pr’
prafdapBIkCnt = 5
pmPyFartStart = 1990
praFartBIkCnt = 10 I:I
pmPartMarne = "Extra®

praFarType = "dpple_Fres"
nrml AlataStart =N

Page: 37

TN 1189: The Monster Disk Driver Technote Page: 38

praCataCnt = 10
prPartStatus = 0
priBootClksurn = 0
pmProcessor = "
praFad =0

Chaining Drivers

The basic idea behind chaining driversisvery simple. A chaining driver appears to the ROM as the actual disk
driver. It hasa DDM entry of the appropriate type (kDr i ver TypeMacSCSI for SCSI, kDr i ver TypeMacATA for
ATA) and it has a partition with the appropriate type ("Apple_Driver43" for SCSI, "Apple Driver ATA" for
ATA). The ROM finds, loads, and executes the chaining driver asif it was the real disk driver. The chaining
driver does its operation (patching, password protection, and so on) and then finds, loads and executes the next
driver in the driver chain. This processis repeated once for each driver in the chain.

Thefirst chaining driver in adriver chain aways hasthe ddType expected by the ROM (kDr i ver TypeMac SCSI
for SCSI, kDri ver TypeMacATA for ATA). Subsequent driversin the driver chain have their ddType set to the
two's complement of the standard value (kDr i ver TypeMac SCSI Chai ned for SCSI,

kDri ver TypeMacATAChai ned for ATA).

There are anumber of important implementation details for chaining drivers.

e All driversin the chain, except the first, must havethekpParti ti onl sChai nConpat i bl e bit setinthe
pnPar t St at us field of their partition map entries to indicate that they can be chained to (they don't have
to be loaded directly by the ROM). The first driver may have this bit set, although it is not required.

e A chaining driver must aways havethekParti ti onCanChai nToNext bit setinthepnPart St at us field
of its partition map entry. While thisbit is not actually needed for the chaining driver to be loaded,
formatting utilities may use the bit to determine the required order of driversin the DDM.

e A chaining driver may aso contain the real disk driver. If it does, it should have the
kPartitionl sReal Devi ceDri ver bitsetinthepnPart St at us field of its partition map entry.

e The ROM loads the chaining driver exactly asit would anormal driver. Therefore, if achaining SCS|
driver wants to haveits checksum validated by the ROM, it must set the first four bytes of its partition
map entry pnPar t Nane field to "Maci"”.

e A chaining driver must find the next driver to load using the following algorithm.

1. First, the chaining driver should search the partition map for its own partition map entry. It can
distinguish itself from other drivers by looking for its driver signaturein the pnPad field.

2. Then, the driver should look up itsentry in the DDM. It can find itself by matching the
pnPyPart St art field of its partition map entry to the ddBl ock field of its DDVap.

3. It can then find the DDVap of the next driver in the driver chain by searching onwards fromits
own DDVap for aDDvap with the appropriate ddType. In this case, appropriate is either the two's
complement of the chaining driver'sddType (if the chaining driver isfirst in the chain), or the
sameddType asthe chaining driver (if the chaining driver is subsequent in the chain).

e There may be no next driver to load. The chaining driver should treat this as an error, and handle it as
described below.

e A chaining driver must load and execute the next driver exactly asthe ROM would have. The exact
details are covered in the previous section. Note that the chaining driver must:

1. checksum thedriver, as described in Driver Checksums, and

2. remember which of its entry point was called (primary or secondary) and call the same entry
point for the next driver, and

3. call the next driver with registers AQ, D5, and D7 set exactly asthey were when the chaining
driver was cdlled.

4. handle any error returned by the next driver as described below.

e A chaining driver may need to increase the size of the system heap to alow it to allocate enough memory
to load the next driver. See Disk Drivers and the System Heap for details on doing this.

How the chaining driver handles errors depends on whether the chaining driver precedes the disk driver in the
driver chain. If the chaining driver precedes the disk driver, any error loading the next driver, or any error
returned by the next driver's entry point, isfatal. The chaining driver should returni oEr r fromits entry point.
However, if the chaining driver isthe disk driver (both kPar ti ti onCanChai nToNext and

TN 1189: The Monster Disk Driver Technote

kPartitionl sReal Devi ceDriver aresetinitspnPart St at us) or comes efter the disk driver, any error
loading the next driver isnot fatal, and the chaining driver should return noEr r regardless of any error loading
the next driver in the chain.

The following diagram shows how a partition map might be laid out for adisk that can only be booted on an
ATA bus and which has a chaining driver. Some salient features are:

e The DDM hasthe chaining driver first, followed by the disk driver (with anegated ddType).
e Thechaining flags are set in the pnPar t St at us fields of the chaining driver's and the disk driver's

partition map entry.
Zoomed In Yiews Overall Disk Layout Zoomed In Yiews
[not to scale) [not to scale) [not to zcale)

Block O 1} \\\-_ Partition 1
sbSig = 'ER’ o Driver Desc. prnSig = 'PH’
sbEIkSize = 512 1 Map prnfdapBIkCnt = 5
sbE kCount = 2000 — Py PartStart = 1
shDrvr-Count = 2 Fartition EmF‘gr'tEHkEnt = &3 I:I
1 ddBlock = 64 lap pmPartMarne = "Apple”
ddSize = 20 pmPar Type = " dpple_partition_rnap "
ddType = $0701 praoLglataStart = 0
2 ddBlack = 24 ol prbataCnt = 63
ddSize = 45 i pmPartStatus = 0
ddType = $FSFF prBootCksum = 0
g4 AT & Driver proFrocessor = "
prmPad =0
Partition 2
129 pmSlg = 'PH!
HFs prafdapBIkCnt = 5
Fartition prioPyPartStart = 64 I:I
prPartBIkCnt = 20
proFartMarne = “Macintosh_Chaining "
prParType = “Apple_Driver _ATA"
praLglataStart = 0
prnCataCnt = 20
praFartStatus = $07TF
prBootCksum = $wiwz
proFrocessor = “a2000"
pmFad = 'QCHN'
Partition S
prnSig = ‘P’
praflapBIkCnt = 5
praPyPartStart = 84 I:I
pmPartBlkCnt = 45
praFartMame = “MMacintosh"
pmParTywpe = "apple_Driver_aTaA"
J294 praLglataStart = 0
conn ERERIRHAGk pmbataCnt = 45
praFartStatus = $0ZTF
praBootCksum = $wive
praFrocessor = “g2000"
proFad = ‘AT A’
Partition 4
prnSig = ‘P’
prafdapBElkCnt = 5

Page: 39

TN 1189: The Monster Disk Driver Technote

prityHartstart = 1249 | |

pranFartBIkCnt = 1861
praFartMarne = “MMazintosh HC
praoFarType = "#pple_HFS"
praLglataStart = 0

praCataCnt = 1841
praPartStatus = $CO0000FF
pranBootClksurn = 0
praProcessor = "

praFad =0

Partition 3
prnSig = ‘P’
profdapBlkCnt = 5
prnPywPartStart = 1990
praoFartBIkCnt = 10 I:I
praoFartMarne = "Extra®
praoFarType = "dpple_Fres"
praLghataStart = 0
praCataCnt = 10
prnFPartStatus = 0
pranBootClksurn = 0

prProcessar = "
praFad =0

The Apple Patch Driver

The Apple patch driver isachaining driver supplied by Apple that |oads patches from a specia partition on the
disk. Y ou must license the patch driver and its accompanying patches for inclusion with your disk driver
software. This section describes the operation of the patch driver insofar asis necessary for you to write a
formatting utility that correctly installs the patches.

Typicaly, the patch driver isingtalled first in the driver chain. It finds the patch partition by searching the
partition map for an entry whose typeis"Apple Patches'. It then walks the patch partition, loading and executing
the patches. Findly, it chainsto the next driver.

The patch partition is structured to contain multiple patches. The first block of the patch partition contains a
patch list, adescription of al the patches in the partition. The patch list is defined by the Pat chLi st structure.

struct PatchList {
Ul nt 16 nunPat chBl ocks;
U nt 16 nunPat ches;
Pat chDescri ptor thePatch[1];

1
t ypedef struct PatchlLi st Pat chLi st ;
t ypedef PatchLi st * Pat chLi stPtr;

The fields have the following meaning:

nunPat chBl ock
The number of device blocks used to hold the patch list. The patch driver must load this many blocks
from the start of the patch partition to ensure that it has all the patch descriptors.
nunPat ches
The number of patch descriptors contained in the patch list.
t hePat ch
The patch descriptor describing the first patch in the patch list.

Page: 40

TN 1189: The Monster Disk Driver Technote

IMPORTANT:
Each patch descriptor is of variable size, so you can't index t hePat ch asan array.

Each patch in the patch list is described by the Pat chDescri pt or datatype.

struct PatchDescriptor {
OSType pat chSi g;
U nt 16 maj or Vers;
U nt16 m norVers;
U nt32 flags;
U nt 32 patchOfset;
U nt 32 pat chSi ze;
Ul nt 32 pat chCRC,
U nt 32 pat chDescri ptorLen;
Str32 pat chNane;
U nt8 patchVendor[1];

b
t ypedef struct PatchDescriptor PatchDescriptor;
t ypedef PatchDescriptor * Pat chDescriptorPtr;

t ypedef PatchDescriptorPtr * Pat chDescri pt or Handl e;

enum {
kRequi r edPat ch = 0x00000001;
i

The fields have the following meaning:

pat chSi g
A four-character code that uniquely identifies the patch. If you create your own patches, you must use a
registered creator code.

maj or Ver s
A major version number. Typicaly thisis 1.

m nor Ver s
A minor version number. Typically thisis 0. This combines with the major version number to indicate a
version of theform 1.0, 1.1, and so on.

flags
A set of flagsfor the patch. The only bit currently defined iskRequi r edPat ch. If thisis set, the patch
must succeed for the system to continue booting. See the section on error handling below. All other bits
are reserved and must be set to zero.

pat chOf f set
The offset, in device blocks , from the beginning of the patch partition to the patch code.

pat chSi ze
The actual size of the patch code in bytes.

pat chCRC
A checksum for the patch. Thisis calculated using the 16-bit driver checksum algorithm.

pat chDescri pt orLen
The total length, in bytes, of this patch descriptor. The minimum value for thisfield is
si zeof (Pat chDescri pt or) , which is 62 bytes. Thisvaue of thisfield must be even.

pat chNane
A human-readable name for the patch. This name is never displayed to users or used by the system. Itis
present for debugging and diagnosis only.

pat chVendor
A human-readable description of the patch vendor. This nameis never displayed to users or used by the
system. It is present for debugging and diagnosis only. This string may be followed by an arbitrary
amount of patch-specific data.

Page: 41

TN 1189: The Monster Disk Driver Technote

IMPORTANT:

Previous versions of the patch partition documentation described pat chNane asast r 31 (actualy, an
array of 32 Ul nt 8s), which implied that pat chvendor started at offset 60 in the structure. Thisis
incorrect. The pat chNane fieldisa St r 32 and pat chvendor starts at offset 61. Note that thisisan
exception to the genera rule that Pascal strings are not supposed to be placed at odd offsetsin a
structure.

In addition, because of the aforementioned error, the minimum value for the pat chDescr i pt or Len field
is 62, not 61 as previously documented.

IMPORTANT:
Previous versions of the patch partition documentation stated that pat chDescri pt or Len must be a
multiple of 4. Thisis contradicted by observed behavior.

Note:

Apple patches generally use "\pApple Computer, Inc." in the pat chvendor field and have no
patch-specific data. Thisresultsin apat chDescr i pt or Len of 82, whichis 62 +

PLstrl en(pat chVendor) .

When the patch driver executes a patch, it does so by creating anew pointer block in the system heap which is
large enough to hold the patch, reading the patch code into that block, and then calling the patch entry point (the
first byte of the memory block) using the calling conventions described in the next section.

As part of its operation, the patch driver increases the size of the system heap to accommodate the size of the
patches |oaded.

Patch Driver Error Handling

Error handling in the patch driver follows the general outline for error handling in chaining drivers. Specificdly,
an error is classfied as either fatal or non-fatal. For afatal error, the patch driver discards the current patch
descriptor and patch code (if any) and returnsi oEr r from its entry point, which indicates to the system that this
disk isunusable. Fatal errorsinclude:

e failuretoload arequired patch (one whose patch descriptor'sf | ags field haskRequi r edPat ch set),

e apositive result from arequired patch,

e anegative error result from any patch, and

e failureto load the next driver (the patch driver is always loaded first in the driver chain, so afalureto
load the next driver isaways afata error).

For anon-fatal error, the patch driver simply discards the patch descriptor and patch code for the patch and
continues trying to load the next patch (if any) or the next driver in the driver chain. Non-fatal errorsinclude:

e inability to load anon-required patch, and
e apositive error result from anon-required patch.

Patch Execution

The prototype for apatch's entry point is given below.

extern pascal OSErr MPat ch(PatchDescriptorPtr nyPatch,
Devi cel dent nyDevID);

IMPORTANT:
Previous versions of the patch partition documentation incorrectly documented this prototype as using C
caling conventions and having al ong return result. This documentation is correct.

The parameters to the entry point are:

myPat ch

Page: 42

TN 1189: The Monster Disk Driver Technote Page: 43

A pointer to the patch's patch descriptor. The patch can use this pointer to extract patch-specific
information from pat chVvendor part of the patch descriptor. The memory containing the patch
descriptor will be deallocated after the patch returns; the patch is responsible for copying any
information it needsto retain.

myDevl D
A device identifier which identifies the device from which the patch was loaded. The di Reser ved field
of this parameter can be used to distinguish whether thisisa SCSI Devi cel dent or a
Devi cel dent ATA.

result
noEr r, if the patch was successful. The patch driver will dispose of the patch descriptor but leave the
patch code in memory. A positive error code, if the patch encountered anon-fatal error. A negative error
code, if the patch encountered afatal error. See the description of patch driver error handling for details.

The patch's code is always loaded in the system heap. The patch's entry point is dways called at system task
time.

IMPORTANT:
A patch must try to minimize any assumptions about its environment. Specificaly:

e A patch should not assume that it was loaded from an ATA or SCSI device. For example, a
SCSl-specific patch should behave correctly if it isloaded from an ATA device. Thiscan
happen if the patch isinstalled on aremovable cartridge disk that can be mounted in both ATA
or SCSI devices.

e A patch should not assume the existence of optional system software capabilities. For example,
a SCSI Manager 4.3 specific patch should not assume that SCSI Manager 4.3 is present. It is
possible for an external device to be moved from a machine with SCSI Manager 4.3to a
machine without it, and vice versa.

e Because of the above, patches should avoid loading data from the disk. If your patch needs data,
you should add the data after the pat chvendor field of your patch descriptor.

e Paichesareloaded very early in the startup sequence and must alocate memory as outlined in
Disk Drivers and the System Heap.

e A patch should work correctly even if it isloaded twice. For example, if the same patchis
installed on multiple SCSI devices, both patches will be executed at startup time and the patches
must coordinate to avoid any conflicts.

Note:

ThenyDevI D parameter isatrue device identifier, even if the patch is being loaded on a system without
SCSI Manager 4.3 in the ROM. In that case, the patch driver isresponsible for synthesizing the device
identifier from the SCSI ID. A full explanation of the driver's various entry pointsisgiven in an earlier
section.

Because a patch's code is always loaded in a pointer block in the system heap, it can reduce its size in memory
using clever code sorting and Set Pt r Si ze. For example, imagine a patch that has 5 KB of install code and 25
KB of resident code. The patch can reduce its memory footprint by sorting the code as shown below.

TN 1189: The Monster Disk Driver Technote

Low HMemory

+ 0 EE Resident M'_-,-'F‘atch
Code
+ 25 KB My In=tall
In=tall Code
+ Z0 KE

High Memory

The following code snippet shows how this might be achieved in C.

extern pascal OSErr MPat ch(PatchDescriptorPtr nyPatch,

Devi cel dent mnyDevl D)

{
CSErr err;
err = Mylnstall (nyPatch, nyDevlD);
SetPtrSize((Ptr) &WPatch,
(Unt32) &Wlnstall - (U nt32) &WPatch
)
return err;
}
WARNING:

If you use this technique, be sure to generate alink map and check that the code order matches your
expectations. Y our devel opment environment might reorder code in an unexpected way.

Putting It All Together

The following diagram shows the layout of a disk that can be booted via SCS| and ATA.

The DDM has two patch chains, one for ATA booting and one for SCSI booting.

Each patch chain starts with the appropriate Apple patch driver.

Thefirst block of the "Apple_Patches' partition contains alist of patchesto be installed on the machine.
The remaining blocks contain the code for the patches themselves.

The' nes r? patch isinstalled to ensure correct operation when booted via SCSI on a machine with the
MESH chip.

The' ruby' patchisinstalled to allow booting on machines without large volume support in ROM. Note
that the total disk sizein thisexampleis5 GB. On the smaller disks used in the previous examples, the

' ruby' patch would not be necessary.

Loomed In Yiews Overall Disk Layout foomed In Yiews
[not to scale) [not to scale) [not to zcale)

Page: 44

TN 1189: The Monster Disk Driver Technote

Partition
prnSig = ‘P’
praflapBlkCnt = 2
pmPyPartStart = 1
praFartBIkCnt = 63 I:I
pmPartMarne = “&pple”
prioFarType = "#pple_partition_rmap"
prnLglataStart = 0
prafataCnt = 63
prPartStatus = 0
prinBootClksurn = 0

praPracessor = "
praFad =0

Partition
prnSig = 'PH’
prafdapBkCnt = 2
praPyPartStart = 64
praoFartBIkCnt = 20 I:I
proFartMame = “Macintosh"
prioFar Type = "dpple_Driver _ AT A"
praLglataStart = 0
praCataCnt = 20
praFartStatus = $07TF
priBootCksum = $wxve
proFrocessor = "e2000"

priFad = 'pibE"
Partition
prinZig = ‘Fr1’

prafapBkCnt = 2

praFyPartStart = 84

prioFartBIkCnt = 45 I:I
praoFartMame = "Macintosh"

prioFarType = "dpple_Driver _ 4T 4"
praLglataStart = 0

praCataCnt = 45

praFartStatus = $0ZTF

prBootCksum = $wxyz
praFrocessor = "a2000"

Block O 0 “\\
sb5ig = ‘ER’ B Driver Desc.
sbElkSize = 512 Map
sbBIkCount = 104257&0 1 =
sbDryrCount = 2 Mar ITian
1 ddBlock = &4 ap
ddSize = 20
ddType = $0701 o
. 332:221124 ATd Patch
ddType = $F2FF Driver
Z ddBElock = 129 24 ST A Driver
ddSize = 20
ddType = $0001
4 ddBElock = 149
ddSize = 40 129
SCS1 Patch
ddT = %FFFF
e Driver
14 SCS| Driver
129
Patch
Partition
89
HFS
Partition
10425730
Free Space
10425760
PatchlList 189

prioFad = QAT A"
Partition
prnSig = ‘P’

proflapBIkCnt = 8

praPyFPartStart = 129

prFartBlkCnt = 20 I:I
praoFartMame = "Mazintosh"

prFarType = “apple_Driver43”
praLglataStart = 0

prnfataCnt = 20

praFartStatus = $077F

prBootCksum = $wxye
proFrocessor = "e2000"

prmFad = ‘pilE’
Fartition
pranSig = ‘P’

nrabanRILTRt = 2

Page: 45

nurnFatchBlocks = 1

nurnPatches = 2

1 patchSig = ‘mesh’
majoriers = 1
rinoriers = 0
flags = $0001
patchOffzet = 1
patchSize = 5932
patchCRC = $wiyz
patchDescriptorlen = 82
patchMarme = "Hesh Itt Patch™

1 patchSig = 'ruby’
majoriers = 1
rinoriers = 0
flags = $0001
patchOffset = 13
patchSize = 4262
patchCRC = $wiyz
patchDescriptorlen = 22
patchMarme = "Large Yolurme"

TN 1189: The Monster Disk Driver Technote

patchendor = "&pple Comnputer, Inc.”

patchendor = "&pple Commputer, Inc.”

prioPywFPartStart = 149

prPariBIkCnt = 40 I:I
prioFartMame = “MMazintosh"

prPar Tywpe = "Apple_Driver43"
praLglataStart = 0

prnCrataCnt = 40

praFartStatus = $0Z7F

prBootCkzum = $wve

proFrocessor = "&2000"
pmFad = "QSCE’

HMeshPatchEntry

190

Partition
prnSig = ‘P’
proflapBIkCnt = &
proPyFartStart = 129
prPariBlkCnt = 200 I:I
proFartMarne = “Fatch Partition”
prPar Tywpe = "4pple_Patches"
praLglataStart = 0
prnCrataCnt = 200
praFartStatus = 0
prnBootClkzurn = O

prFProcessor = "
prmPad = 0

RubyPatchEntry

203

Disk Driversand the System Heap

FPartition
prnSig = 'PH’
profdapBIkCnt = 8
prPyFartStart = 229 |:|
proPartEIkCnt = 10455261
praoFartMamne = “Macintosh HC
prFPar Type = “4pple_HFS"
praLglataStart = 0
prnCataCnt = 18441
praPartStatus = $CO00007FF
prmBootClksurn = 0
prProcessor = "
prmFad = O

Partition
prnSig = 'PH’
proflapBIkCnt = 2
praPywFartStart = 10425750
prmPariBlkCnt = 10 I:I
praoFartMarme = "Extra”
pmParTywpe = "dpple_Free”
praoLglataStart = 0
prnCataCnt = 10
praFartStatus = 0
prmBootCksurn = 0
praFrocessor = "
pmFPad = 0

Disk driverstypically alocate their memory in the system heap. A disk driver must use one of three
techniques to allocate system heap space, depending on the execution context. There are three relevant

execution contexts for your driver:

Page: 46

TN 1189: The Monster Disk Driver Technote Page: 47

1. Driver Load Time-- If you driver isbootable, it iscalled at driver load timeto ingtall itself in the
unit table.

2. System Startup -- It is possible for your driver to be called at system startup time, after driver load
time but before system startup is complete. For example, if your driver setsdNeedTi me and some
startup code (for example, an' | NI T') brings up adiaog, your driver will receive accRun
requests.

3. After System Startup -- System startup time finishes when the Process Manager starts and
launches the Finder.

The best way to detect whether system startup is complete is to compare the first byte (the length) of the
Pascal string returned by LMzet Cur ApNane to $FF. If the first byte is $FF, the system is still starting up. If
it isany other value, system startup is complete.

Thereis no good way to distinguish between driver load time and system startup time. Y our driver must
remember internally whether it is executing as aresult of itsinstall routine being called.

Driver Load Time

At driver load time, adriver that needsto allocate alarge amount of memory must grow the system heap
using Set Appl Base. This system routine is documented as Inside Macintosh: Memory, along with a
warning that applications should not useit. However, it is expected that disk drivers which need to expand
the system heap will use this routine.

A smple example of caling Set Appl Base is shown below.

static void ExpandSystenHeap(Si ze byt esToG ow)

{

THz current Zone;

/1 Only try to expand the systemheap if we're at startup tine,
/1 ie the CurApNane is still filled with $FFs.

assert (LMGet Cur ApNane()[0] == OxFF); /'l from <assert. h>
current Zone = Get Zone();

/1 Round up the request to 512 bytes.

byt esToG ow = (bytesToGrow + Ox01FF) & ~O0x01FF;

/1l Set the systemheap to the specified size.

Set Appl Base((Ptr) ((U nt32) (LMzetSysZone())->bkLim+ bytesToG ow));

Set Zone(cur r ent Zone) ;

TN 1189: The Monster Disk Driver Technote

IMPORTANT:

Disk drivers should not attempt to grow the system heap too much using this mechanism. How muchis
too much? It depends on alot of factors, including the machine's ROM software, the system version,
Wh%tngrd virtual memory isturned on, which patches are being loaded, and which other device drivers are
inst .

For example, on Mac OS 8.1 the system heap can grow to a maximum of 4 MB during this early phase
of the startup process and this limit was exceeded when certain PCI RAID cards were installed. While
this problem was worked around before Mac OS 8.1 shipped, it is an important lesson for devel opers of
software that runs during the early startup process. Thereis asystem heap limit and thereisno
allocation policy for what memory isavailable.

In the absence of aformal policy, DTS recommends that each individual developer limit their system
heap expansion to less than 256 KB during this early startup phase. Thisincludes the expansion done
by the system to load your code. If necessary, you must compromise on the speed of your driver to
achieve thisgoal. If you need more memory to improve performance, you must either:

e install asystem extensonwithan' I NI T' resource, which grows the system heap (as described
below), and turns that memory over to your driver, or
e wait until your driver receives an accRun Control request and allocate your extramemory then.

System Startup

Disk driversthat load as part of the' | NI T' loading process should request that the system heap be grown
usinga' sysz' resource, as documented in Inside Macintosh: Memory and Inside Macintosh: Operating
System Utilities, and amended in Technote IM 2 Inside Macintosh: Memory Errata.

IMPORTANT:

"I NI T" resources should not expand the system heap using Set Appl Base. The Start Manager has open
resource files whose resource maps reside in the application zone and there is no supported way to close
and reopen these resource files.

After Startup Time

After the system has started up, adisk driver should allocate its system heap memory using Newpt r Sys,
or NewHand| eSys. The system heap will automatically expand to meet these requirements.

Power PC Native Disk Drivers

Many developers wish to implement their disk driversin PowerPC native code. However, thereisno
well-defined architecture for native disk drivers. There are anumber of consegquences and drawbacks,
which this section discussesin detail.

The Need for Speed

Most drivers are 1/0 bound. They spend a small amount of time setting up an 1/0 request and a
proportionally much larger amount of time waiting for the underlying hardware to complete that request.
Such driversreceive very little benefit from executing as native code. Moreover, the benefit varies
depending on theratio of small 1/O requests (which tend to be CPU bound) to large 1/0 requests (which
tend to be 1/0 bound).

On the other hand, some drivers are CPU bound. For example, adriver that encrypts data asiit transfersit
to the disk may spend a significant amount of time executing driver code. This may even be true for a
complex, but still 1/0 focused driver, such asaRAID driver or acaching disk driver. These drivers may
receive significant benefit from "going native."

The only good way to tell whether your driver receives a benefit from conversion to native code, and that

Page: 48

TN 1189: The Monster Disk Driver Technote

the benefit is enough to overcome the difficultiesin doing so, isto actually profile the code. Y ou may be
able to do this quickly by profiling the driver code in an application framework before facing the
challenges of creating aworking native driver.

Difficultieswith Taking Your Driver Native

The primary difficulty in creating anative disk driver isthat there is no well-defined architecture for it.
The PCI-native driver model has anumber of drawbacks for disk driver developers.

1. It doesnot include adisk driver I/O family expert. It is possible to write a generic native driver
(kSer vi ceCat egor yNdr vDr i ver) which actsas a disk driver, but it is not possible to do so
within the native driver architecture. Specifically, adisk driver must link to Interfacelib to access
routines like AddDr i ve. Linking to Interfacelib works just fine on the current Mac OS, but it is
not legal within the native driver model and guarantees that your driver will not be compatible
with any future Mac OS that emulates this model on a non-traditional framework.

2. The PCI native driver model is not available on older, non-PCl-based, Power Macintosh
computers.

Another possible approach isto implement a partialy native driver, where code that you know to take a
long time isimplemented as native code. This makes alot of sensein some cases, such as an encryption
driver, where the lengthy codeis easily isolated from the rest of the driver.

It isalso possible to implement avirtualy fully native driver without the PCI native driver module, using
only atiny amount of 68K glue code to provide the driver header and an interface to | ODone. In generd,
this approach is not recommended by DTS because of the complexities involved in transitioning from
68K to native code and back.

When taking adisk driver native, it isimportant to remember that the primary client of the disk driver is
the File Manager, which is not native. While it islikely that a disk driver will incur Mixed Mode switches
regardless of whether it is native or not (the SCSI Manager and ATA Manager are native), taking the
driver native shifts the line where the switches occur, and may increase or decrease the number of
switches depending on how your driver works. So, to guarantee an overall speed improvement, itis
important that the native driver be significantly faster than the emulated one.

Native Drivers and accRun

Beforeimplementing adisk driver as a native driver, you must read DTS Q&A DV 35, "Native Drivers
(_ndrv' s) and dNeedTi me", which describes an incompatibility between native drivers and dNeedTi ne.

Therest of this technote assumes that you are building a68K driver, and thus you can set dNeedTi e in
dCt | Fl ags to get system task time viathe accRun Control request. If you are building a native driver and
you need system task time, you must implement one of the aternative mechanisms described in the
Q&A.

68K drivers should continue to use dNeedTi e as aways.

Recommendations

DTS does not recommend that devel opersimplement disk driversin PowerPC native code unlessthereis
clear evidence that doing so improves the performance significantly. Typically thisisonly for driversthat
are CPU bound, such as encrypting drivers. A standard SCSI or ATA driver is1/O bound, and receives
little benefit from running native.

The easiest way to implement a PowerPC native driver is using the native driver mode, introduced with
the PCl-based Power Macintosh computers. However, this approach will not work on older Power
Macintosh computers. Another recommended alternative isto implement apartialy native driver, where
core functionality (such as an encryption engine) isin native code.

Page: 49

TN 1189: The Monster Disk Driver Technote Page: 50

|nstalling and Removing Driversand Drives

Over the course of the past 15 years, Mac OS has evolved from arelatively static environment -- aMac
with one or two floppy drives that needed to be connected at startup time -- to a highly dynamic system,
where devices and disks come and go at runtime. The Mac OS disk driver architecture has, to alarge
exltenj[, cc(l)peoll with this evolution, aslong as driver writers play by the rules. This section explains these
rulesin detail.

Installing and Removing Drivers
There are anumber of waysto install your disk driver.

1. If you'rewriting a native driver that controls areal piece of hardware (aFireWire device, or a PCI
RAM disk card, for example), you can set up your Dr i ver Descr i pti on SO that the system
automatically finds and opens your device driver. See Designing PCI Cards and Drivers for
Power Macintosh Computers for details.

2. If you're writing a native driver with no corresponding hardware, you can use DriverLoaderLib to
install your driver directly. See Designing PCI Cards and Drivers for Power Macintosh
Computersfor details.

3. If you'rewriting a68K driver, you should use TradDriverLoaderLib to install your driver.
Installing adriver in the unit table is easy to do haf right but tricky to do exactly right, whichis
why DTS strongly recommends that developers use TradDriverLoaderLib. The only exceptionis
boot disk drivers, where the limited scope of the task makes the general nature of
TradDriverLoaderLib seem alittle too much. See Code Sharing for more details on this.

Note:
TradDriverLoaderLibisaDTS sample that provides similar functiondlity to DriverL oaderLib, except that
it worksfor 68K drivers rather than native drivers. Y ou can download the sample viaFTP.

WARNING:

Disk drivers, which can be called at interrupt time, must never be installed as RAM-based drivers
(drRAMBased must not be set indCt | Fl ags); paradoxicaly, disk drivers are dways "ROM-based.”
TradDriverLoaderLib takes care of this and many other details of loading adriver.

To remove adisk driver from the unit table, you have a number of choices.

1. If thedriver isanative driver, you must use the DriverLoaderLib routine RenoveDr i ver to
removeit.

2. If thedriver isa 68K driver, you should have installed it using Tr adDr i ver Loader Li b. If s0, you
can remove it using the Tr adRenoveDr i ver routine provided by that library.

3. If thedriver was not installed using TradDriverLoaderLib (either because it was a boot disk driver
or because it wasn't installed by your software), you should follow the procedure described in the
Hostile Takeovers section of this document.

WARNING:
You must never remove adriver that hasdrivesin the drive queue. Doing so will cause the system
to crash.

Code Sharing

Code sharing is a technique used by some third-party disk driversto share the device driver code between
multiple driversin the unit table. Code sharing isalegal technique, although it is not implemented by
Apple disk drivers and is not recommended by DTS. Before shipping a driver that uses code sharing, you
need to understand the costs and benefits of the technique.

How Code Sharing Works

The basic agorithm for code sharing is as follows:

TN 1189: The Monster Disk Driver Technote

1. When your driver ingtallsitsdlf, it first scans the unit table to see whether another instance of it is
aready installed.

2. If thereisan existing instance, you must check its version number to determine whether to use its
code or replace its code with the code in your driver. Y ou can get the driver'sversion using a
Driver Gestalt kdgVer si on request.

3. If theexisting driver isolder, you must somehow dispose of its code and replace it with yours. As
thereisno Apple-defined way of replacing' DRVR s, you must use a private hand-off technique
built in to your driver. Alternatively, you might consider not sharing code in this case.

4. If the existing driver is newer, you must somehow inform it that another instance of it isbeing
created. Again, thereisno Apple-defined technique for this; this information exchange is private
to your driver.

In addition, drivers that implement code sharing must reference count the code in order to support close
and purge correctly.

The Prosand Cons of Code Sharing

Code sharing has one big advantage: it reduces memory usage if two devices controlled by your driver are
attached to the system. This may be especialy significant for acomplex device driver, such asa RAID
driver.

The disadvantages of code sharing include:

e The standard library for installing ' DRVR s, TradDriverL oaderLib does not support code sharing.
If you implement code sharing, you must do this leg work yourself.

e Supporting code sharing significantly complicates the installation code path of your driver. Asthe
installation code is run very early in the startup sequence, bugsin that code are often very hard to
debug.

e Driversthat use code sharing cannot be reopened.

Managing Drive Queue Elements
TheBasics
The drive queue and its associated drive queue elements are documented in Inside Macintosh: Files, page

2-85. However, that document does not describe how drive queue el ements are created, installed, removed,
and destroyed.

Y our disk driver must add a drive queue element for each file system partition on each disk it controls.
The strategy you use for managing drive queue elementsis largely up to you, within some basic
congtraints. Drive queue e ements must be alocated in the system heap, primarily so that they persist
throughout the life of the system but also, in the case of paging devices, so that they are held resident in
memory. Tylpi caly, your driver is responsible for creating and disposing the drive queue e ements under
your control.

One popular technique for managing drive queue e ementsisto extend the Dr vQel data structure with the
extra per-drive storage needed by your driver. This makesit easy for you to find your per-drive storage
structure given either the Dr vQe!l Pt r (just cast the Dr vQEI Pt r to a pointer to your per-drive storage
structure) or the drive number (search the drive queue looking for that drive number, which gives you the
Dr vQEl Pt r, and then proceed as before).

Another important thing to remember about drive queue elementsis that the system requires that you
implement four flag bytesimmediately before thefirst field of the Dr vQEl . Y ou can choose to either
define these flags as part of your per-drive storage structure (which complicates the cast between it and a
DrvQEl Pt r), or just handle those flags as a specia case.

When creating a drive queue element, you must first decide on the drive number for the new drive. The
algorithm to find a free drive number isvery smple: start with drive number 5 (or, by convention, 8 if

Page: 51

TN 1189: The Monster Disk Driver Technote

you'reahard disk driver), check to see whether it isin use, and if so, increment the number and try again.

IMPORTANT:
This algorithm must be run at system task time to work reliably.

Note:

Drive numbers below 5 are reserved. A third-party disk driver should not use drive numberslessthan 5
except in specia circumstances. As an example, afloppy disk driver that provides high-fidelity emulation
of Apple's”.Sony" driver, might want to use drive number 1.

Once your driver has created a drive queue element, it can put it in the drive queue with the system routine
AddDr i ve. AddDr i ve isavery thin wrapper around Get Dr vQHdr and Enqueue. It isnot strictly necessary
to use thisroutine, but it may be convenient.

IMPORTANT:

Prior to Mac OS 8.5, the PowerPC glue for AddDr i ve in Interfacelib was broken. The
Morelnterfacel.ib module of the DTS Morel sBetter sample shows how to correctly call AddDr i ve from
PowerPC code.

Once your driver has created a drive queue element, it should inform the system of its existence, as
described in Cooperating with File System Manager.

Removing a Drive Queue Element

Removing a drive queue element is somewhat more convoluted than adding one. The basics are very
simple. The system doesn't define aRenoveDr i ve routineg; you must remove a drive queue element using
the code shown below. Compilable source is available as part of the MoreDisks module of the DTS
sample code library Morel sBetter.

extern pascal OSErr MoreRenoveDrive(DrvQEl Ptr drvQEl)

{
OSStatus err;

if (MoreVol umeMount edOnDri ve(drvQEl ->dQ@rive, false) == 0) {
err = Dequeue((QElenPtr) drvQeEl, GetDrvQHdr());

} else {
err = vol OnLi nErr;

}

return err;

}

WARNING:
You must never remove a drive queue element for a drive which has mounted volumes. Doing so
will cause the system to crash, with possible data | oss.

Page: 52

TN 1189: The Monster Disk Driver Technote Page: 53

WARNING:

Y ou should never add or remove drive queue elements at interrupt time. For astart, AddDr i ve iS
not documented to be interrupt safe. Furthermore, system task time code may be walking the drive queue,
looking at elementsin the queue. If your interrupt-time code removes the drive queue e ement while
system task time code islooking at it, the system may crash.

It is also important to remember that, if your disk driver can be called asynchronoudly, it is possible for
even synchronous requests to be executed at interrupt time. See Technote 1067, "Traditiona Device
Drivers. Sync or Swim."

Conseguently, your driver should never add or remove a drive queue element except in its Open or Close
entry point, or in response to an immediate request that it knows was made at system task time, such as
an accRun Control request. In particular, it isnot safe for your disk driver to remove a drive queue
element as part of handling an kEj ect Control request.

If your disk driver needs to remove a drive queue element, it must mark the drive queue element as "to be
removed" and set dNeedTi ne initsdcCt | Fl ags. When it receives the accRun Control request, it must
walk the drive queue looking for drives it owns that are marked as "to be removed" and remove them
there. The DTS sample AsyncDriverSample shows a correct implementation of this.

Drive Queue Strategies

While removing adrive queue element isrelatively simple, deciding on a strategy for when to remove the
drive queue element is not. The key ishow you handle the kEj ect Control request. The two common
strategies are described below.

Real Block Device

If your disk driver controls some real piece of hardware (for example, afloppy drive, a SCSI gectable
disk device, a SCSI fixed disk device), you should not remove the drive queue element when the user
gectsthe disk. You should leave the drive queue element in the queue so that, when the user reinserts the
disk, you can post a"disk inserted” event for it. Thissmplifiesyour life and ensuresthat your drive's
drive number isrelatively stable.

This approach may seem alittle strange for fixed disks, but it works just fine. Fixed disks are typically not
marked as gjectable, so the user can not redlly gect afixed disk; they smply unmount the volume
mounted onit. Thisis useful for programs (for example, adisk recovery program) which want to
unmount avolume, perform some low-level activity on the disk, and then remount the volume. To remount
the volume, the program can simply call PBMount Vol for the old drive number. This technique would not
be possible if the fixed disk driver removed its drive queue elements when the disk was g ected.

Note:

The Alias Manager remounts volumes in thisway, which isvery convenient for the user. The user can
unmount avolume by dragging it to the Trash and later remount it by ssimply double-clicking an diasto
the volume.

So leaving fixed disk drive queue elementsin the drive queue is not only safe, it is also convenient.

IMPORTANT:

One important exception to the above is removable disks with multiple partitions. For example, if the
users gects adisk with three partitions and then inserts a disk with a single partition, you should remove
the two extra drive queue elements (at system task time) before informing the system about the new disk.

Virtual Block Device

If you are writing adisk driver for some virtual block device (likeaRAM disk, or adisk image, or a
block-oriented network protocol), your job is more complex. In the simple casg, if the disk is g ected when
thereis no volume mounted on it, you should remove the drive queue e ement, as explained in the previous

TN 1189: The Monster Disk Driver Technote Page: 54
section.

However, if the disk is gjected while there is still avolume mounted on it, you must take specid action to
avoid the disk switch dialog asking the user to insert the virtual disk. [The "Please insert disk RAM Disk"
disk switch dialog is particularly amusing or annoying depending on how much caffeine you've had that
day.] There are two common waysto prevent this:

1. Non-Ejectable -- Y ou can mark your virtua drive as non-gectable. Thisis probably the easiest
and most sensible gpproach. It can; however, have problems when running with virtual memory
enabled on older systems. Old versions of the Virtual Memory Manager assume that any local,
non-gectable drive is eligible for paging. This may not be true for your virtual block device driver
(especidly if it relies on the network). Modern versions of the Virtual Memory Manager (starting
with Mac OS 8.1) query the drive, via Driver Gestalt (kdgVMXt i ons), to see whether the driveis
really suitable for paging. However, for older systems, the only recourse you have isto make
your drive as g ectable.

2. Auto Reinsert -- If you are forced to mark your virtual drive as gjectable, the following agorithm
will ensure that you remove the drive queue e ement when appropriate and never have an g ected
drive with avolume mounted on it:

1. When you receive thekEj ect Control request, mark the drive as not having adisk in
place and set the dNeedTi e bitinthedct | Fl ags.

2. When the system sends you an accRun, walk the drive queue |ooking for any of your
driveswhich are marked as not having adisk in place.

3. For those drives, walk the system VCB queue |ooking for avolume that has been g ected
but was previously mounted on that drive.

4. If you find such avolume, post a"disk inserted" event for that drive. Thiswill remount
the volume back on the drive.

5. If you don't find such avolume, remove the drive queue element for that drive.

The DTS sample AsyncDriverSample implements this algorithm.
Hot Swapping

The Mac OS 1/0 subsystem is evolving towards more support for hot-swappable devices. Modern I/0
buses, like USB and FireWire, fully support the addition and removal of deviceswhile the systemiis
running.

Unfortunately, other parts of Mac OS are not as friendly to the hot swapping of devices. For disk devices,
hot swapping isareatively new idea, and Mac OS support for hot swappable disk devicesislimited.
Whileit is possible to add new drives on the fly, removing a drive while thereis avolume mounted on it
will cause the system to crash, with possible loss of user data.

There are two basic strategies for handling adisk device being unplugged unexpectedly.

1. Put It Back -- If possible, your disk driver should stop the system and post a diaog telling the
user to replace the disk device. This dialog should have no OK or Cancel buttons; the user must
replace the device to continue using the system and the dial og should auto-dismiss when the
device isresttached. Thisistricky to implement, for the following reasons.

o Inmost cases, the notification that a device has been removed happens at interrupt time,
and it is unsafe to pose a standard Dialog Manager diaog at interrupt time. Y ou can
defer the dialog until your next accRun, but you may receive 1/0 requests before you are
issued an accRun, and you must be prepared to handle those 1/0 requests at interrupt
time.

o Some /O families are not capable of handling reconnections at interrupt time.

o Some block devices are not tagged with aunique ID so, even if the deviceis reconnected,
thereis no way to guarantee that it is the same device.

2. Error Everything -- Y our device driver should simply fail al I/O requests with the error
dri ver Har dwar eGoneEr r (-503). In Mac OS 9.0 and higher, the File Manager recognizesthis
error and respondsin the following way.

o It setsthekVCBFI agsHar dwar eGoneBi t inthevcbFl ags field of the Volume Control
Block (vcB).

TN 1189: The Monster Disk Driver Technote Page: 55

o It postsaNaotification Manager alert saying, "The device for disk 'MyDiskName' was
unexpectedly disconnected. To prevent dataloss, aways use the Finder to 'Put Away' a
disk before disconnecting its disk device."

o At system task time, it walks the volume list looking for volumes that have the
kVCBFI agsHar dwar eGoneBi t bit set and puts them offline.

3. Thisapproach issimilar to that taken by the AppleShare externa file system when the connection
to the server tears.

In some cases, your 1/0 family may provide support for the hot unplugging of disk devices. For example,
if your device is connected viathe mediabay, the system will automatically put up a"put it back" dialog
for you, and if your deviceis connected via FiréWire, you can use the FWhai t For Devi ceRePl ug routine
to wait for adevice to be reconnected.

Note:

The mediabay uses the System Error Handler to display its dialogs. The system error codes used by the
media bay are documented in "Errors.h", namely:

System Error Code		[English Text (Mac OS 8.5)
dsMBFI py SysEr r or		Please reinsert the Floppy Drive module now.
dsMBATASysEr r or		Please reinsert the Disk Drive module now.
dsMBATAPI SysEr r or		Please reinsert the CD-ROM module now.
dsMBExt er nFl pySysError		Please reconnect the Floppy Drive module now.

Y ou might think to use the same technique as the media bay but this is unsatisfactory for anumber of
reasons;

e Itisnot supported by DTS.

e The System Error Handler uses QuickDraw to display its dialogs. Calling QuickDraw at
interrupt timeisillegal, and therefore calling SysEr r or at interrupt timeisillegal. Thisisa
known compromise in the design of SysEr r or and is acceptable because, when you're handling
area system error, the system is already in a precarious state. However, using SysEr r or as part
of the standard operation of your disk driver is asking for trouble.

In the absence of an 1/O family-specific solution, the best compromise solution is to implement the
following algorithm:

e When you are notified of a device being disconnected, check whether there is a volume mounted
on any of itsdrives. If thereisn't avolume mounted on any of itsdrives, al iswell; you can
simply wait for the next accRun to remove the device's drive queue elements. If thereisavolume
mounted, set aflag in your per-drive storage.

e If youreceive an I/O request while that flag is set, fail the request with dri ver Har dwar eGoneEr r
error. On Mac OS 9.0 or above, thisis a sufficient response. On earlier systems, you should also:

o AtaccRun time, look through for drives owned by your driver which have the flag set.
For each missing device, post a Dialog Manager dialog that requires the user to reattach
Lhe ((:jllevl ce. Once the device is reattached, clear the flag and return from your accRun

andler.

o Post aNotification Manager aert like that described above.

TN 1189: The Monster Disk Driver Technote Page: 56

Close and Purge

For maximum friendliness, your driver must support being closed. This section explains how to support
the Close request properly in you disk driver and how aformatting utility might use thisto allow adisk to
be reformatted without rebooting.

Supporting Closein Your Driver

Y our driver must support the Close request properly. This requirement was documented along time ago
and isastruetoday asit ever was.

Y our driver's Close entry point should attempt to undo all the things that its Open entry point did,
including the tasks listed below.

1. Check to see whether there are volumes mounted in any of the drives controlled by the driver.
Codefor doing thisis shown below. If there are, the Close should fail withacl osErr.

extern pascal SInt16 MoreVol uneMount edOnDrive(SInt16 drive,
Bool ean ej ect edl sMbunt ed)
{

SIntl1l6 result;
VCBPt r t hi sVCB;

result = 0;
thi sVCB = (VCBPtr) GetVCBQHdr () ->qHead;
while (thisVCB != nil && result == 0) {
i f (thisVCB->vcbDrvNum == drive ||
(ej ectedl sMount ed &&
t hi sVCB- >vcbDrvNum == 0 &&
t hi sVCB- >vcbDRef Num == dri ve

) |
result = thisVCB->vcbVRef Num

} else {
thi sVCB = (VCBPtr) thisVCB->qLink;
}

}

return result;

1. Terminate al asynchronous operations and remove any interrupt handlers. Y our Close entry point
isaways caled immediately at system task time, so it is safe to "spin wait" (that is, synchronously
wait) for asynchronous operations to complete.

2. Remove dl of itsdrive queue elements from the drive queue. The system supplies a routine for
adding adrive queue elements (AddDr i ve), but not one to remove them. The code for removing a
drive queue element is shown earlier.

3. Unregister with any system services with which it registered. Typically, thisincludes SCS
Manager or ATA Manager, Power Manager, and Shutdown Manager.

4. Freeany memory alocated by the driver, including thedcCt | St or age.

If it is absolutely impossible to complete any of these steps, the driver should return cl osEr r and continue
asif the close had not been requested.

In addition, your driver may choose to implement the kdgPur ge Driver Gestalt selector. The response to
thisselector isabDri ver Gest al t Pur geResponse, as shown below.

TN 1189: The Monster Disk Driver Technote

struct DriverGestaltPurgeResponse {
U nt16 purgePermi ssion;
U ntl6 purgeReserved;
Ptr purgeDri ver Poi nter;

t&/pedef struct DriverGestaltPurgeResponse Driver CGestal t PurgeResponse;

If your driver responds to this selector, it must fill out the fields of the response as follows:

pur gePer m ssi on
Three bitsin thisfield are defined below. Y ou should set them as appropriate for your driver. The
remaining bits are reserved and must be set to zero.

pur geReser ved
Reserved. Must be set to zero.

pur geDri ver Poi nt er
A pointer to the memory block containing your driver's code. Y ou must set thisto avalid Memory
Manager pointer if you return knokd oseCkPur ge in thepur gePer ni ssi on field.

The bitsin the pur gePer ni ssi on field are defined as follows:

kbC oseCk
Set thisbit if your driver correctly handles the Close request, as described above.

kbRenpveCk
Set this bit if your driver can be removed from the unit table with Dr i ver Remove. Usualy thisis
safeif you installed your driver using Dri ver I nstal | Or Dri ver | nstal | Reser veMem
(assuming your driver is pointer based, which all disk drivers should be).

kbPur geCk
Set this bit if you can supply a pointer to asingle Memory Manager pointer block that contains
your driver code and that can be disposed to free the memory used by your driver's code. If you
set this bit, you must set pur geDr i ver Poi nt er to bethat pointer. If your driver supports code
s;)e;ri ng, you must only set this bit if there is only one instance of your driver remaining in the unit
table.

Of the eight possible combinations of these three bits, only three make any real sense. There are symbolic
constants for these three useful combinations (knmNoCl oseNoPur ge, kmokCl oseNoPur ge and
kmOkCl oseCkPur ge).

Note:
If you set kbRenoveOk without setting kbPur geCk, anyone closing your driver is guaranteed to leak the
memory containing your driver's code (unless you use code sharing).

Supporting Reopen

If your driver supports close, it should also support being reopened. There are circumstances under which
third party software wantsto close your driver, take control of the device, and then restore the normal
function of your driver. Thisisonly possibleif your driver supports reopen.

IMPORTANT:

Most existing SCSI and ATA drivers do not support reopen. There is no well-documented way of
determining whether adriver supports reopen. Software that relies on the ability to reopen disk drivers
should warn the user that the reopen may not work, preferably before closing the driver.

Most existing disk drivers perform their driver initialization codein their Install routine and do nothing in
their Open entry point. A typical SCSI driver'sinitialization codeis asfollows.

Page: 57

TN 1189: The Monster Disk Driver Technote Page: 58

on install
install driver into unit table
scan partition map
create a drive queue element for each partition
"open' driver by marking it open in the DCE
end install

on open
return noErr
end open

The problem with this approach isthat it does not alow clients to reopen the driver after closing it. A better
approach is shown below.

on install
install driver into unit table
rename driver to a uni que name
open driver using OpenDriver
end install

on open
scan partition map
create a drive queue elenment for each partition
end open

WARNING:

SCSl disk driver lore requires that adriver's installation routine not use the QpenDr i ver routine to open
the driver. Instead, the driver installation routine was expected to put the driver in the unit table and then
mark the driver as open by setting the dOpened bit of the DCE'sdCt | FI ags. Thiswas because the
implementation of GpenDri ver in old ROM'swould touch the Resource Manager (and hence the File
Manager) even when the driver already existed in the unit table. DTS believes that thisis only necessary
on ancient Macintosh ROMs and modern drivers should install themselves using QpenbDr i ver .

Note:

Many device driver writers guard against their Open entry point being called multiple times. Thisis
unnecessary for 68K drivers. Once your 68K driver is marked as open (bit dOpened isset in the DCE's
dCt | Fl ags), further callsto QpenDri ver will simply return noEr r without calling your driver's Open
entry point.

Thisisnot true for native drivers, where opens and closes are reference counted by the Device Manager.
For anative driver, asecond call to OpenDri ver will result in your driver being sent another
kOpenConmmand request.

Note:

If your driver uses code sharing, it isimpossible to support reopen properly because al instances of
your driver in the unit table will have the same name, and the OpenDr i ver routine only allows you to
open adriver by name.

Hostile Takeovers

There are circumstances under which software wants to remove the driver for adisk at runtime. For
example, aformatting utility might want to reformat a disk which was previoudy controlled by another
driver. If the driver controlling the disk iswritten by you, it is easy to coordinate this takeover. On the
other hand, if the driver controlling the disk is unknown to you, taking over the disk istricky to do safely.
This processis known as a hostile takeover .

TN 1189: The Monster Disk Driver Technote

Note:
Do not use the term "hostile takeover" in your user interface. It islikely to scare and confuse users.

Toinitiate a hostile takeover of adevice, you must take the following steps.

1. Warn the user that you are attempting something that risks both crashing and data |l oss.

2. Veify that there are no volumes mounted on drives controlled by the device. Do this by iterating
through the mounted volumes (by making indexed callsto PBHGet VI nf o) checking that
i oVDRef Numis not equal to the driver reference number of the driver in question. If there are
volumes mounted using the driver, you may want to unmount the volumes yourself using
PBUnmount Vol .

3. If thedriver supports Driver Gestalt, issue akdgPur ge Driver Gestalt request. If this succeeds,
you can check the pur gePer ni ssi on to see whether the driver supports the Close request. If it
doesn't, a hostile takeover is not possible without restarting.

4. Call d oseDri ver to closethe driver, which returns one of the following results.

1. noErr -- Thedriver closed successfully. Continue with the next step.
2. cl osErr (or any other error) -- The driver could not be closed. A hostile takeover is not
possible without restarting.

Note:

Never close adriver with FSO ose or PBd ose. If you're closing adriver, alwaysused oseDri ver.
Similarly, if you're opening adriver, dways use OpenDr i ver . These routines provide the correct glue to
the_Open and _d ose traps to ensure that you are acting on adriver, not afile, or adesk accessory, or a
dot driver.

1. Just to be certain, you should check whether any drive queue el ements belonging to the driver
remain in the drive queue. If there are, the driver'simplementation of the Close request is broken
and a hostile takeover is not possible without restarting.

2. If youissued akdgPur ge request (step 3 above) and kbRenoveCk was set in the
pur gePer mi ssi on response, you can call Dri ver Renove to remove the driver from the unit table.
If the driver doesn't support Driver Gestalt, or kbRenoveCk iSnot set, the hostile takeover is
complete. The driver is till installed in the unit table but it should be arelatively benign memory
leak.

3. If you issued akdgPur ge request (step 3 above) and kbPur geCk was set in the
pur gePer mi ssi on response, you can call Di sposePtr ON pur geDri ver Poi nt er to removethe
driver's code from memory. If the driver doesn't support Driver Gestalt, or kbPur geCk is not e,
the hostile takeover is complete. The driver codeis still in memory but it should be ardatively
benign memory leak.

Note:

Y ou might think that you can just disposedct | Dri ver, but that isnot correct. dCt | Dri ver may not bea
valid Memory Manager pointer. Specifically, for SCSl and ATA drivers, dct | Dri ver typically points
some number of bytes into the pointer block.

If ahostile takeover is not possible without restarting -- or the user declines your offer to attempt one --
you are forced to restart the computer to take over the disk. Y ou can overwrite the DDM to eliminate all
foreign drivers from the disk and then restart the computer. Because there are no driversin the DDM, the
disk will not be mounted and you will be freeto useit as you wish.

Page: 59

TN 1189: The Monster Disk Driver Technote

IMPORTANT:

Do not expect any data on the disk to survive this operation. While most drivers use the standard
partition format, there are some non-standard partition formats (such as RAID striping) for which the
driver isthe only thing that "holdsit all together”. In those cases, eliminating the driver typically
eliminates the data. The only way around thisisto treat each of the common RAID formats as a specia
casein your hostile takeover software.

Note:

Some third-party formatting utilities implement amore powerful but |less safe approach to hostile
takeovers. Specifically, if the check for orphaned drive queue elements (step 5 above) fails, the utility
simply dequeues the orphaned drive queue el ements and unregisters the drives with the appropriate
manager. This technique worksin most cases, athough it leaks memory (the orphaned drive queue
elements) and may potentially cause a system crash. If you implement this technique, be sure to warn the
user of the possible consequences.

File Exchange (né PC Exchange)

Foreign file systems (such as File Exchange) require your disk driver to do extrawork to support the
mounting of non-HFS volumes. While this extrawork is not hard, it has been poorly documented. This
section explains the correct way to support foreign file systemsin your disk driver.

Note:
For an in-depth explanation of the whole volume mounting process, see Partition Handling: Background
and Rationale later in this section.

Cooperating with File System Manager

There are two steps you must take to fully support File System Manager in your disk driver. The first
step is to support the File Exchange interface, which is described in the next section. The second step is
related to the way your disk driver scans abus and creates drive queue elements for devices on that bus.
Y our current algorithm might look something like that shown bel ow.

on scanFor Devi ces
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMuntedAtStartup is set in pnPartStatus
if the partition is of type "Apple_HFS"
create a drive queue element with FSID of 0O
post a "disk inserted" event
end-if
end-if
end- f or
end-if
end- f or
end scanFor Devi ces

To cooperate with FSM, you should modify this agorithm to the one shown below.

Page: 60

TN 1189: The Monster Disk Driver Technote

on scanFor Devi ces
clear InfornFSM fl ag
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMuntedAtStartup is set in pnPartStatus
if the partition is of type "Apple_HFS'
create a drive queue element with FSID of 0O
post a "disk inserted" event
else if the partition is of a known non-di sk type
do not hi ng
el se
create a drive queue elenment with FSID of fsnenericFSID
set InfornFSM fl ag
end-if
end-i f
end-for
el se
create a drive queue element with FSID of fsnCGenericFSID\
that enconpasses the entire drive
set InfornFSM fl ag
end-if
end- f or
if InfornFSM fl ag
call I nfornmFSM fsnDrvQEl ChangedMessage)
end-if
end scanFor Devi ces

IMPORTANT:
I nf or mFSMis ageneric utility routine by which your disk driver can send messagesto FSM. Itis
documented in Guide to the File System Manager.

The basic algorithm, as shown above, is surprisingly easy. However, complications arise if your disk driver
might load before FSM. This can happen in the following circumstances:

1. If your disk driver isloaded out of adriver partition in a partition map.

2. If your disk driver loads from a system extension on an old system. Systems prior to System 7.5
did not have FSM in the System file, so FSM loaded at INIT time. The system extension which
loads your driver might run before the one loading FSM.

Note:
There are two common cases where FSM might load from a system extension:

1. Early versions of PC Exchange contain an equaly early version of FSM embedded in the
extension. When PC Exchange loads, it checks to see whether FSM is already present in the
system. If itisnt, it loads the embedded version of FSM.

2. FSM plug-in developers can license a system extension, "File System Manager”, to install with
their FSM plug-in on older systems.

If your disk driver loads before FSM, the above a gorithm has a number of problems. Firstly, I nf or nFSM
is not implemented until FSM loads, so calling it would be bad. Secondly, the support for

f smGeneri cFSI Disimplemented by FSM, so creating a drive queue element with that FSID isabad idea
unless FSM isinstalled.

The solution to thisisto defer both activities until FSM loads. If system startup completes without FSM
loading, you smply do not perform these steps. Y ou can poll for both of these eventsin your driver's
accRun handler. The new agorithm is shown below.

Page: 61

TN 1189: The Monster Disk Driver Technote Page: 62

on scanFor Devi ces
determ ne whether FSMis installed
clear InfornFSM fl ag
scan bus for devices
for each device found on the bus
if the disk contains an Apple partition map
for each partition on the disk
if kPartitionlsMuntedAtStartup is set in pnPartStatus
if the partition is of type "Apple_HFS"
create a drive queue element with FSID of 0
post a "disk inserted" event
else if the partition is of a known non-di sk type
do not hi ng
el se
if FSM avail abl e
create a drive queue elenment with FSID of fsnenericFSID

end-if
set InfornFSM fl ag
end-if
end-if
end- f or

el se
if FSM avail abl e
create a drive queue element with FSID of fsntenericFSID \
that enconpasses the entire drive

end-if
set InfornFSM fl ag
end-if
end-for

if InfornFSM fl ag
if FSM avail abl e
call I nfornFSM fsnDrvQEl ChangedMessage)
el se
set gPol | For FSM
set dNeedTinme in dCIFl ags
end-if
end-if
end scanFor Devi ces

on accRun
i f gPol | For FSM
if FSM avail abl e then
call scanFor Devi ces again
cl ear gPol | For FSM
clear dNeedTine in dCl| Flags (unless you need it for other reasons)
else if startup time is over
cl ear gPol | For FSM
clear dNeedTine in dC| Flags (unless you need it for other reasons)
end-if
end-if
end accRun

Note:
Y ou can determine whether system startup is complete using the technique described in Disk Drivers and
the System Heap.

TN 1189: The Monster Disk Driver Technote

For more information about why this algorithm is necessary, see Partition Handling: Background and
Rationale.

Finally, if you mount alarge number of disks simultaneously, you may run afoul of the system event
gueue's size limit. On current systems (Mac OS 9.0), the system event queueis limited to 48 events. If the
system event queue isfull and you post a"disk inserted” event, the event isignored. There are two aspects
to this problem:

1. If you explicitly posted the "disk inserted" event by calling Post Event , you will find that an event
posted while the event queue is full will cause thefirst event in the queue to be dropped.
Post Event will not return an error to indicate that an event was dropped.

2. You aso receive no notification that the event queue isfull if you implicitly post "disk inserted"
events by caling I nf or nFSMwith thef snDr vQEl ChangedMessage Selector.

Thereisasimple agorithm that handles both of these cases:

1. When adriveisready for operation (its disk has just been inserted, or you detected it during your
initial gcan for devices), set aflag in your per-drive storage to indicate that a "disk inserted" event
is pending.

2. Inform the system that the disk was inserted as described above (either by posting a*disk
inserted” event or by calling I nf or nFSMwith the f snDr vQEl ChangedMessage Selector).

3. When any 1/0 isdone to the drive, clear the disk inserted pending flag. 1/0 to the drive indicates
that some file system has queried the drive to determine whether to mount avolume on it, which
implies that the "disk inserted” event was successfully processed.

4. AtaccRun time, check for any drives with the disk inserted pending flag still set. If you find one it
islikely that the "disk inserted" event waslost, so you should reinform the system of the disk
insertion.

I mplementing File Exchange Support

This section describes how you should implement the File Exchange interface in your disk driver.

Note:

The requests described here have been documented in a number of places, including Designing PCI
Cards and Drivers for Power Macintosh Computers, page 114, and "PCX and Large Volume Drivers.”
However, none of the previous descriptions are sufficiently detailed for you to implement the requests
correctly.

Implementing Driver Gestalt kdgAPI

Page: 63

TN 1189: The Monster Disk Driver Technote

A disk driver that supports the following Control and Status requests must implement the kdgAPI selector
to indicate that it does. For more information about Driver Gestalt, see the Driver Gestalt section of this
technote.

Partition | nfor mation Record

The partition information record (par t | nf oRec) isastructure used to store information about a partition
on adisk. Thefields of the structure are:

SCSI 1D
If the underlying device is connected viaa SCSI interface, this field holds the SCSI Manager
Devi cel dent of thedevice. If the deviceis connected viaan ATA interface, thisfield holds the
ATA Manager at aDevi cel D (astructure defined in ATA 0/1 Software Developers Guide).
Devices connected via other interfaces can use whatever value makes sense to uniquely identify
the device on that bus (typically thisis the same 32-bit number returned by the
kde?éjevi ceRef er ence Driver Gestalt selector). If no value makes sense, adriver must clear this
field.

physPartitionLoc
The block number of the first block in the partition.

partitionNunber
The physical block number of the partition map entry of this partition.

Note:
Y ou can determine the interface used by the deviceissuing thekdgl nt er f ace Driver Gestalt query.
Driversthat support File Exchange should also support this Driver Gestalt selector.

Note:
For more information about the at aDevi cel D structure, consult the ATA Device 0/1 Software Developer
Guide. This structureis not the same asthe Devi cel dent ATA structure, defined above.

Creating a New Drive Queue Element

ITrap ||_Control |
IMode |[Synch, Async, Immediate |

|csCode |[SI nt 16 ||-> |[kGet ADrive (51)

On input, contains the address of adrive queue
element pointer. The request creates anew drive
csParanf 0. . 1] DrvQel Ptr * -> ||queue element based on the supplied drive queue
element and places a pointer to the new drive queue
element in the supplied address.

Page: 64

TN 1189: The Monster Disk Driver Technote

In response to this request, your disk driver must create a new drive queue element. The fields of the new
drive queue element must be filled out as described bel ow.

drive flags (the 4 bytes prior to gLi nk)

Inherited from the supplied drive queue element.
gLi nk

Set up when you add the drive to the drive queue using AddDr i ve.
qType

Inherited from the supplied drive queue element.
dQ@rive

Must be set to a new unique drive number.
dQRef Num

Must be set to your driver's reference number.
d@FSI D

Inherited from the supplied drive queue element.
dQDr vSz

Inherited from the supplied drive queue element.
dQ@rvSz2

Inherited from the supplied drive queue element.
partition offset (typically held in extra bytes beyond dQbr vSz2)

Inherited from the supplied drive queue element.

Y our driver must return the new drive queue element in the memory pointed by csPar anf 0. . 1] . You
must not post a"disk inserted” event for the new drive, or send the f snDr vQEl ChangedMessage message
to FSM.

IMPORTANT:

Thisrequest istypically issued as a synchronous request, which can cause problemsif your driver needs
to alocate memory to create the new drive queue element. To avoid this problem, DTS recommends that
al clientsissue this as an immediate request. However, to work with old clients, your driver should be
prepared to handle all possible request modes.

IMPORTANT:

Y our driver should be prepared for the incoming value of the drive queue element pointed to by
csParani 0. . 1] being nil, or some other value which is not a pointer to one of your driver's drive queue
elements. In that case, your driver should initidize the fields of the new drive queue element to default
values.

Changing the Partition of a Drive Queue Element

ITrap ||_Control |
IMode ||Synch, Async |

|csCode |[SI nt 16 ||-> ||kRegi sterPartition (50)

lcsParanf0..1] |[DrvQEl Ptr |[-> || The drive queue element whose partition is to be changed |
lcsParan{2..3] ||Unt32 |[-> || The block number of the first block in the partition
lcsParanf 4..5] ||Ulnt32 |[-> || Thesize (in blocks) of the partition

In response to this request, your disk driver must retarget the specified drive queue element to represent
the given partition on the disk. After this request, the drive queue element must represent a partition that
starts at the block specified by csPar anf 2. . 3] andisof the size specified by csPar anf 4. . 5] .

Y ou must not post a"disk inserted” event for the drive, or send thef snDr vQEl ChangedMessage message
to FSM.

Page: 65

TN 1189: The Monster Disk Driver Technote

IMPORTANT:
The effects of this request are limited to the drive queue element in memory. This request must not
change the partitioning scheme on the disk.

Preventing a Partition from Mounting

ITrap |[_Control |
IMode |[Synch, Async |

|csCode |[SI nt 16 |[->||kProhi bi t Mounti ng (52) |

A pointer to apart | nf oRec that describes the
partition which is not to be mounted at startup

csParanf0.. 1] part| nfoRec * ->

In response to this request, your disk driver must mark the partition specified csPar anf 0. . 1] such that it
isn't mounted at system startup.

IMPORTANT:
The effects of this request are permanently applied to the partition map on the disk.

Note:

Modern versions of File Exchange do not require your driver to support this request (partly becauseit is
functionally equivaent to kClearPartitionM ount). If you decide not to support it, make sure to return
control Err.

Note:
The partition is completely determined by the fields of the partition information record, not by the
i oVRef Numfield of the parameter block.

Deter mining the Partition of a Drive

ITrap ||_st at us |
IMode ||Synch, Async |

|csCode |[SI nt 16 |[-> ||kGet Partinfo (51)

The drive number of the drive whose partition
information is requested

A pointer to apar t | nf oRec Where the partition
information is placed

i oVRef Num SInt 16 ->

csParani0. . 1] partl nfoRec * ->

In response to this request, your disk driver must place partition information about the specified drivein
the partition information record pointed to by csPar anf 0. . 1] .

Page: 66

TN 1189: The Monster Disk Driver Technote

Note:

Y our driver's response to this request has a non-obvious effect on the Disk Initialization Package,
especially the DI Ref or mat call. The Disk Initialization Package prevents the user changing thefile
system on adrive that exists on a partitioned disk. It does this to prevent the data on the partition getting
out of sync with the partition type (pnPar Type) in the partition map entry. For example, if the user could
reformat an existing HFS partition to be in DOS FAT format, the partition datawould bein DOS FAT
format while the pnPar Type would still be"Apple HFS'. Thisis obviously not agood thing (the ROM
might attempt to boot from aDOS FAT partition!), so the Disk Initialization Package preventsit.

This raises the question, how does the Disk Initialization Package know whether adrive isapartition on
adisk. The algorithm used is shown below.

on drivelsAPartition drive
if drive's driver supports File Exchange requests (kdgAPl)
and kGetPartlnfo on drive succeeds then

return physPartitionLoc !'=0
el se

return drive's driver's unit nunber in [32..39]
end-if

end drivel sAPartition

The gist of thisagorithm isthat, if your driver supports File Exchange requests, the drive's partition
must start at the beginning of the disk for the Disk Initialization Package to allow a change of format.
Alternatively, if your driver does not support File Exchange requests, it is considered to have partitionsiif
itsunit number fallsin the range reserved for classic SCSI Manager drivers.

If other demands on your driver prevent it from being reformatted by the above algorithm, you will
probably need to include reformat support in your formatting utility.

DTS has requested a better solution to this problem [Radar ID 2287925)].

Determining Whether a Partition is Mounted

ITrap |[_Status |
IMode |[Synch, Async |

|csCode |[St nt 16 |[-> ||kGet Parti ti onSt at us (50)
. i A pointer to apart | nf oRec that describes the
csParanf0.. 1] part| nf oRec > partition to be queried
A pointer to an Sl nt 16. On return, this holds the
csParani 2. . 3] SInt16 * -> [lvRef Numof the volume represented by this partition,
or O if no volumeis represented by this partition.

In response to this request, your disk driver must determine whether the partition described by the partition
information record pointed to by csPar an{ 0. . 1] ismounted and return the volume reference number of
thevolumein the si nt 16 pointed by csPar anf 2. . 3], or O if the partition is not mounted.

Note:
The partition is completely determined by the fields of the partition information record, not by the
i oVRef Numfield of the parameter block.

Using These Requests

This section explains how you might utilize the File Exchange driver requestsin your application (or FSM
plug-in) to access portions of a partitioned disk that lie outside of the HFS partitions.

Page: 67

TN 1189: The Monster Disk Driver Technote

WARNING:

Many of the File Exchange driver requests require you to pass a pointer to a buffer. As explained in
Private Requests and Virtual Memory, you must hold these buffers (in the VM sense) to prevent fatal
page faults.

Note:

This section contains a number of routines which demonstrate the use of the File Exchange interface.
Some of the detail s have been removed for brevity. Moreover, the routines rely on other utility routines
that are not included here. The full source code for these routines is available in the MoreDisks module
of the DTS Morel sBetter sample code library.

Thefirst step of using the File Exchange interface isto create a drive queue element that targets the section
of the disk you wish to read or write. The following code snippet shows how this might be done.

extern pascal OSErr MoreCreat eNewDri veQueueEl enent (SInt16 driveToC one,
U nt32 firstBlock, U nt32 sizelnBlocks, SIntl6 *newDrive)

/'l See comment in interface part.
{

CSErr err;
Cnt r| Par am pb;
DrvQEl Ptr drvCEl;

/'l First check that the driver supports the File Exchange
/1 interface.

err = noErr;

if (! MorebDriveSupportFil eExchange(driveToCO one)) {
err = control Err;

}

/1l Find the drive queue el enent associated with
/'l driveToClone. This is an input paraneter to
/'l kGet ADri ve.

if (err == noErr) {
err = MoreUTFi ndDriveQ driveTod one, &drvQEl);

/'l Make the kGet ADrive request to the driver. Because
/1l we pass a pointer to nenory outside of the paraneter
/1l block (drvQel) and the driver m ght be a paging device,
/1 we must hold drvQEl (and make sure to unhold it laterl!).

if (err == noErr) {
err = Saf eHol dMenory(&JrvQEl, sizeof (drvQEl));
if (err == noErr) {
pb. i oVRef Num = dri veTod one;
pb. i oCRef Num = MoreCGet Dri veRef Nun{ dri veTod one) ;
pb. csCode = kGet ADri ve;
*((DrvQEl Ptr **) &pb.csParan{0]) = &dJrvQEl;

err = PBControl Sync((ParnBl kPtr) &pb);
if (err == noErr) {
*newDrive = drvQEl ->dQDri ve;

}
(voi d) SafeUnhol dMenory(&drvQEl, sizeof (drvQEl));

/1 Now retarget the new drive to the partition on the

/1 disk specified by firstBlock and sizel nBl ocks. W do
/1 this in the create call because sone disk drivers

/1 don't always inherit the partition information from

Page: 68

TN 1189: The Monster Disk Driver Technote Page: 69

// the drive that was cl oned.

if (err == noErr) {
err = MoreSetDrivePartition(*newDrive, firstBlock, sizelnBlocks);
}

return err;

Thisroutineworksin two parts. First, it finds the drive queue element associated with dri veTod one and
clonesit using akGet ADr i ve reguest to the driver. Then, it setsthe new drive's partition location and size
using Mor eSet Dri vePar ti ti on, which isshown below.

extern pascal OSErr MreSetDrivePartition(SIntl16 drive, U nt32 firstBl ock,
U nt 32 si zel nBl ocks)
/1l See comment in interface part.

CSErr err;
Cnt r| Par am pb;
DrvQEl Ptr drvCH ;

/'l First check that the driver supports the File Exchange
/1 interface.

err = nokErr;

if (! MoreDriveSupportFil eExchange(drive)) {
err = control Err;

}

/1 Find the drive queue el enent associated with
/] drive. This is an input paraneter to
/'l kRegi sterPartition.

if (err == noErr) {
err = MoreUTFi ndDriveQ(drive, &JrvQEl);

/1 Make the kRegisterPartition Control request. W
/! don't need to hold any nmenory because all the

/| parameters to this Control request are entirely
/1 contained within the parameter bl ock.

if (err == noErr) {
pb. i oVRef Num = dri ve;
pb. i oCRef Num = MoreGet Dri veRef Num(dri ve);
pb. csCode = kRegisterPartition;
*((DrvQEl Ptr *) &pb.csParani0]) = drvCQEl;
*((UInt32 *) &pb.csParani2]) = firstBl ock;
*((Unt32 *) &pb.csParani4]) = sizel nBl ocks;

err = PBControl Sync((ParnBl kPtr) &pb);
}

return err;

Once you have adrive queue e ement that spans the blocks you're interested in, you can read and write
those blocks using standard Device Manager routines, for example, PBReadSync. The next listing shows
how this might be done.

TN 1189: The Monster Disk Driver Technote Page: 70

static OSErr ReadBl ock(SInt16 drive, U nt32 bl ockNumber, void *bl ockBuffer)

{
CSErr err;

| OPar am pb;

pb. i oVRef Num = dri ve;

pb. i oRef Num = MoreGet Dri veRef Nun(dri ve);
pb. i oBuffer = bl ockBuffer;

pb. i oReqCount = 512;

pb. i oPosMbde = fsFronftart;

pb.i oPosO fset = bl ockNunber * 512;

err = PBReadSync((ParnmBl kPtr) &pb);
return err;

Partition Handling: Background and Rationale

To understand the current disk driver architecture, you really need to understand the history of how it
evolved, starting with the floppy disk drives on the Mac 128.

Mac 128 Disk Driver

When the original Mac shipped all disks were floppy disks, which did not support partitions. The floppy
disk driver would create a single drive queue element that represented the entire disk, and the File Manager
used this drive as the entire volume. There was a one-to-one trand ation between logical blocks on the
volume (blocks that the File Manager requests) and physical blocks on the disk.

For example, on afloppy disk, if the File Manager requests block 64, the disk driver would ssmply return
block 64.

Disk insertion was handled with the following agorithm:

The disk driver created a drive queue element for each physicaly attached floppy drive.

\é\/_hen the user inserted adisk in adrive, the driver posted a disk inserted (di skEvt) event for that
rive.

The next time the application called Get Next Event (apredecessor to Wai t Next Event), the

(Toolbox) Event Manager got the "disk inserted” event and called _Mount Vol .

_Mount Vol only recognized built-in file systems, such as MFS and HFS. An attempt to mount an

unsupported file system would cause _Munt Vol to return an error.

The (Toolbox) Event Manager put the error result from _Mount Vol into the high word of the

message field of the Event Recor d, and returned the "disk inserted” event to the application.

The application saw the "disk inserted” event and examined the high word of the event'snessage

field. If the value was not zero, the "disk inserted” event was "bad" and the application called the

Disk Initialization Package's DI BadMount routine. DI Badvbunt would give the user the

opportunity to initialize or gect the disk.

o o &~ W DR

SCSI and Partitions

The introduction of SCSI hard disk devices on the Mac Plus made this situation more complex. Hard disk
devices support multiple partitions. The File Manager was not changed to recognize these partitions, so the
burden of supporting partitions fell on the disk driver. When adisk is partitioned, the disk driver must
read the partition map and creates a drive queue element for each HFS partition (a partition whose

pnPar Type iS"Apple_HFS") on the disk.

Thus, each drive queue element on a partitioned disk contains an implicit trandation from logical blocksto
physical blocks. For example, if you have a partition that starts at block 1024 and continues for 4096
blocks, the driver creates adrive queue element for a drive whose size is 4096 blocks. When the system
reads logical block 64 on that volume, the driver knows that it must trand ate that to physical block 1088
(that is, 1024 + 64) on the disk.

TN 1189: The Monster Disk Driver Technote Page: 71

The new disk insertion agorithm was:

1. The ROM or asystem extension loaded the disk driver.

2. Thedisk driver parsed the partition map looking for all the partitions of type "Apple HFS". For
each found partition, the driver would create a drive queue element and post a"disk inserted”
event.

3. If the driver was being loaded at system startup, the Start Manager would call _Mount Vol to
mount the startup volume. It would then boot from that volume. Later, when the Finder launched
and started calling Get Next Event , the "disk inserted" events for other partitions would be
processed.

4. If the driver was being loaded after system startup, the process would proceed as from step 3
above.

Thisworks just fine for disks with the Apple partition map and HFS partitions, where the driver
recognizes both the partition map format and the "Apple HFS" partition map entries, and creates the
appropriate drive queue elements. However, it doesn't allow foreign disk formats to be handled correctly, in
two important cases.

1. The partition map contains non-HFS partitions (such as"Apple PRODOS" or
"Apple_ UNIX_SVR2" (A/UX) partitions) -- When confronted by a non-HFS partition, the driver
has adifficult choice. If it creates adrive queue element for the partition and a suitable foreign file
system is not installed, the system asks the user whether they want to initialize the partition.
Probably not good. On the other hand, if it doesn't create a drive queue element for the partition,
thereisno way for aforeign file system to access the data on the partition. To safeguard user data,
most drivers choose the second alternative.

2. The partition map format isunrecognized -- As Mac OS loads disk drivers from a partition
onthedisk, itisrarethat adisk driver isloaded for anon-Apple partitioned disk. However, if a
driver isloaded (by a system extension, for example) for adisk with an unrecognized partition
map (such as a DOS partition map), it faces the same difficult choice described above. Most
driversresolve thisissue by smply not creating any drive queue elements for disks with an
unrecognized partition map.

A foreign file system (such as a File System Manager plug-in) isresponsible for controlling a volume
mounted on a particular drive (represented by a drive queue e ement). If thereis no drive queue element for
apartition, there is no obvious way to create one. Similarly, if thereisno driver for aparticular disk
(because the disk doesn't have an Apple partition map to load it from), there is no easy way for the foreign
file system to read from or write to the disk.

File System Manager

When File System Manager was introduced, it defined a new way for disk drivers to announce the arrival
of new drive queue e ements. This mechanism alows disk driversto create drive queue el ements for
non-Apple partitions, free from the fear of the dreaded "Thisis not a Macintosh disk. Would you like to
initializeit?' dialog.

The new algorithm works as described below:

1. When the disk driver loads, it parses the partition map. For each partition of type"Apple HFS',
the driver creates a drive queue element and posts a "disk inserted” event. For other partition
types, the disk driver creates a drive queue element whose FSID isf snGener i cFSI Dand calls
I nf or nFSMwith thef snDr vQEI ChangedMessage message. If it can't recognize the partition map,
the driver just creates a single drive queue element whose FSID isf snGener i cFSI Dand cals
I nf or nFSMwith thef snDr vQEI ChangedMessage message.

2. When | nf or nFSMis called with the f smDr vQEl ChangedMessage message, FSM posts a "disk
inserted” event for the driveif al the following conditions are met:

o thedrive'sFSID isnot zero,

o thedrivesFSID isnot f sm gnor eFSI D,

o thedrive does not aready have avolume mounted on it, and

o thedrivesFSID isf snGeneri cFSI D or the drive's FSID matches the FSID of one of the

TN 1189: The Monster Disk Driver Technote

installed FSM plug-ins.
3. Each"disk inserted” event is handled as before, except:

1. FSM passes _Mount Vol requests to externa file systems, which have the opportunity to
claim the drive as aforeign volume.

2. FSM tail patches_Mount Vol . If _Mount Vol fails and the drive on which the mount was
attempted hasthe FSID of f smGeneri cFSI D, FSM causes _Mount Vol to return
nsDr vEr r . Thiserror code, when passed back to the application and hence on to
DI BadMbunt , causes DI BadMount to not display the disk initialization dialog.

The effect of these changesisthat disk drivers are now free to create a drive queue element for any
partition and will not trigger the Disk Initialization Package as long as they set the FSID of the driveto
f smGeneri cFSI D. This goes some way to addressing problem 1, described above.

File Exchange

Thefinal part of the solution for problem 1 isthe File Exchange interface for disk drivers, as defined
above. To mount non-HFS partitions in an Apple partition map, File Exchange (and by extension any
FSM plug-in) uses thisinterface in the following way.

1. Itfirst creates anew drive queue element by cloning an existing drive queue element using
kCGet ADri ve.

2. It then retargets that drive queue element to represent the partition map for the disk using
kRegi st er Parti ti on. For an Apple partition map, thisis atwo-step process. First it must set the
partition to start at block 0 and be 2 blocks long. This gives access to the driver descriptor map
(DDM) and to the first partition map entry. It then uses the first partition map entry to determine
the size of the partition map. It then retargets the drive to represent the entire DDM and partition

map.
3. It then reads through the partition map looking for the required partition type. For each found

partition, it creates a new drive queue element (using kGet ADr i ve) and setsthat drive queue

element to represent the partition's data. It can then mount a volume on that drive queue element.

A similar technigue can be used for non-Apple partition maps.

File Exchange a so includes a partial solution to problem 2 in that it contains a generic SCSI disk driver.
At startup time, File Exchange scans the SCSI bus looking for devices that contain DOS partition maps.
When it finds such adevice, it loadsits generic SCSI driver for the device. Obvioudy that driver supports
the File Exchange interface, which File Exchange then uses (in asimilar process to that described above)
to read through the DOS partition map and create drives for all the mountable DOS partitions on the disk.

Thisisonly apartia solution because (@) it only supports SCSI and ATA devices (the system includes a
generic ATA devicedriver), but not any other block devices, and (b) the mechanism for loading the generic
SCSl driver is not documented to devel opers. However, asadisk driver writer, you can craft your driver to
guarantee atotal solution to problem 2, as described in Cooperating with File System Manager.

Private Control and Status Requests

If you define private Control and Status requests for communication with your device driver, you must
follow certain rules to ensure their reliable operation. This section outlines these rules.

Private csCode Selection

If your driver claims to supports Driver Gestalt, it must not use any csCode below 128 for a private
Control or Status request. All private csCodes must be allocated from the range 128 to 32767.

Private Means Private

If you implement a Control or Status request that is private to your driver, you must issueit only to your
driver. Do not issue your private Control and Status requests to other drivers, because the other driver

Page: 72

TN 1189: The Monster Disk Driver Technote

might use the private cs Code for acompletely different purpose, one that is potentially fatal to user data
(such as rewriting the partition map!).

At aminimum, you must check the driver name before issuing a private Control or Status request. Y ou
may also want to perform other checks (such as verifying a signature in the driver header, or issuing a
private Driver Gestalt) just to be sure.

Synchronous!= System Task Time

Asdescribed in DTS Technote 1067, "Traditional Device Drivers. Sync or Swim," caling adevice driver
synchronously does not guarantee that the driver's entry point will run at system task time. If you are
defining a Control or Status request for which your driver must do something that is not interrupt safe,
you must define the request to be executed immediately.

Private Requests and Virtual Memory

If your driver supports virtual memory (you can use the kdgvMopt i ons Driver Gestalt selector to
indicate this), you must be careful to avoid fatal page faults when fielding private Control or Status
requests. Specifically, your driver must not cause a page fault while it isfielding aqueued (that is,
synchronous or asynchronous) request.

The Virtual Memory Manager holds the entire Par anBl ockRec (80 bytes) passed to all queued _Read,
_Wite,_Control,and_status cals. Inaddition, VM holdsthe I/O buffer (pointed to by i oBuf f er,
for lengthi oReqCount) for _Read and _W i t e requests. Thus your driver can safely accessthis
memory without causing afatal page fault.

The problem comes when you define a private Control or Status request whose Par anBl ockRec
contains a pointer to another piece of memory. If your driver accesses that memory, it may cause apage
fault. If your driver supports virtual memory, that page fault will be fatal (because a page fault while any
paging deviceisbusy isfata).

There are anumber of ways to avoid this problem.

1. Alwaysinclude dl information “inline" in the parameter block. Remember that the parameter
block is automatically held for you by the Virtual Memory Manager.

2. If you must include pointersin your parameter block, define your private Control or Status
interface to be called immediately. Immediate requeststo adriver do not mark the driver as busy,
and hence any page faults they cause will not be fatal. However, your driver must be written to
support immediate requests of this kind.

3. If none of the above are suitable, you must require that your clients hold any buffers pointed to
by the parameter block.

If you're making a queued Control or Status request to a device driver which supports paging and the
parameter block contains pointers to other data structures, you should hold those data structures, just to
be sure.

For more background about how the Mac OS Virtual Memory Manager prevents fatal page faults, see
DTS Technote 1094, "Virtual Memory Application Compatibility."

Read-Verify Mode

Very few disk driver writers support read-verify mode in their drivers, perhaps on the mistaken
assumption that it is difficult to do. This may be because the historical definition of read-verify modein
the".Sony" driver istricky to implement for any DMA-based peripheral. This section explainsthe
current definition of read-verify mode, the best way to support it in your driver, and the best way for
application software to useit.

Read-Verify M ode Explained

Page: 73

TN 1189: The Monster Disk Driver Technote Page: 74

Read-verify mode is engaged by setting r dver i f yMask in thei oPosMde field of the I/O parameter
block passed to adevice driver. The original definition of read-verify mode is that the driver should do a
byte-for-byte comparison of the data buffer (pointed to bei oBuf f er andi oReqCount) with the dataon
disk. If they are the same, the operation would succeed. If they are different, the operation would fail with
ani oErr.

Thiswas easy to implement in the classic ".Sony" driver because the driver polled al bytesin to and out
of memory. So implementing read-verify mode was a simple as changing the original copy loop:

while (err == noErr && i oAct Count != ioReqCount) {
err = GetByte(ioBuffer + ioActCount);
if (err == noErr) {
i 0Act Count += 1,

}
}
to averify loop:
while (err == noErr && i oAct Count != ioReqCount) {
err = GetByte(& np);
if (err == noErr && tnp !'= *(ioBuffer + ioActCount)) {
err = ioFErr;
}

if (err == noErr) {
i 0Act Count += 1,
}

Thisform of read-verify modeistricky to implement in modern disk drivers, which typically useaDMA
engineto transfer the data. So the definition of read-verify mode has changed, as explained in the next
section.

Implementing Read-Verify Modein Your Driver

The new definition of read-verify modeis smpleto explain, and to implement in your driver. If your
driver gets aread-verify request, it should treat it exactly like aread request except that it must disable all
cachesfor the request. The data transferred into memory must have originated from the physical medium
itself.

This new definition of read-verify mode still allows applications to perform read-verify operations, as
explained in the next section.

Using Read-Verify Modein an Application

It is easy to write software that uses read-verify mode in way that is compatible with both the old and new
definitions. TheFSw i t eVeri fy routinein the DTS sample "MoreFiles' is an excellent example. The
basic algorithm is asfollows.

1. Write the data to the disk in the traditional way.

2. Copy the datato atemporary buffer.

3. Read the data back into the temporary buffer.

4. Compare the temporary buffer to the original data.

Thisworks because:
e if the driver implements read-verify mode in the old way, any errorswill be detected at step 3,

and
e if thedriver implements read-verify modein the new way, any errors will be detected at step 4.

TN 1189: The Monster Disk Driver Technote

Color Icons

A classic problem with disk driversis that the mechanism for returning icons from adisk driver (Control
requestskDri vel con (21) and kMedi al con (22), documented in Technote DV 17, "Sony Driver: What
Your Sony Drivesfor You") islimited to black-and-white icons. In Mac OS 8, the Finder was changed to
look at the drive and apply specia-case color icons, but there was still no generic way for adisk driver to
return a color icon.

Mac OS 8.5 and later alow disk driversto return color icons. Thisis done through two new Driver Gestalt
selectors, kdgPhysDri vel conSui t e (equivalent to thekDr i vel con (21) Control request) and

kdgMedi al conSui t e (equivalent to thekMedi al con (22) Control request). To give your drives acolor
icon, you must respond to these Driver Gestalt requests by putting a pointer to anicon family (i cns') in
dri ver Gest al t Response. Theicon family allows you to return any number of icon sizes and depthsin
one data structure.

Y ou can build an icon family in a number of ways.

e Manualy -- The format is documented in "lconServices.r". This approach is most suitable for
boot disk driverswhich typicaly statically link the icon into the driver code resource.
e Resource Editor -- Modern resource editors have been updated to edit these structures directly.
e Programatically -- The Icon Services programming interface allows you to create an icon family
from an icon suite, as shown in the code sample below. This approach is more suitable for disk
grivers that are loaded after the machine has started to boot, for example, network or disk image
rivers.

static | conFam | yPtr Get RanDi skl conFami | y(void)
{

CSErr err;

CSErr j unk;

I conFam | yPtr result;

I conSui t eRef iconSuite;

| conFami | yHandl e i conFamily;

Si ze iconFani |l ySi ze;

result = nil;
iconSuite = nil;
iconFamily = nil;

err = GetlconSuite(& conSuite, 128, kSel ectorAll Avail abl eDat a) ;
if (err == noErr) {

err = lconSuiteTol conFani |l y(iconSuite, kSelectorAll Avail abl eData, & conFamly);
}

if (err == noErr) {
i conFani | ySi ze = Get Handl eSi ze((Handl e) iconFamly);

result = (lconFam|yPtr) NewPtrSys(iconFam |ySize);
err = MenError();
if (err == noErr & result == nil) {
err = menful | Err;
}

if (err == noErr) {

Bl ockMoveDat a(*i conFanily, result, iconFamlySize);
}
/1 C ean up.

if (iconSuite !'=nil) {
(void) DisposelconSuite(iconSuite, false);

Page: 75

TN 1189: The Monster Disk Driver Technote Page: 76

if (iconFamly !'=nil) {
Di sposeHandl e((Handl e) iconFanily)
}

return result;

}

IMPORTANT:

Icon Services dways requests icons using an immediate request at system task time. Y our driver can
Move or purge memory in response to these requests. Be warned; however, that this immediate request
can cause your driver to be reentered.

IMPORTANT:
If an application issues these Driver Gestalt requests, it must follow Icon Services and issue them using
an immediate request at system task time.

Disk Driver Power Management

This section is not yet finished and has been omitted in the interests of shipping an initial version of the
technote. A future revision of this technote will cover disk driver power management. In the meantime,
you can consult the following references:

e Inside Macintosh: Devices , Power Manager
e DTS Technote 1046, "Inside Macintosh: Devices, Power Manager Addenda’
e DTS Technote 1039, "File Access and the Power Manager™"

Target Mode

Most PowerBooks support tar get mode (commonly known as " SCSI disk mode"), in which the
attachment of a special cable causes the PowerBook to makeitsinternal hard disk device available asa
SCSl target device. For PowerBooks that use internal SCSI hard disk devices, support for target mode
requires no special work by the disk driver. The PowerBook simply stays off of the SCSI bus and the
host computer has free access to the PowerBook's internal hard disk device. However, for PowerBooks
that use an internal ATA hard disk device, the implementation of target mode is somewhat more complex,
and requires explicit support by the ATA disk driver.

When a PowerBook with an internal ATA hard disk device boots in target mode, the CPU runs specia
target mode software. This software loads the ATA driver for the internal hard disk device and then puts
the built-in SCSI controller into target mode, listening for incoming SCSI requests. When such a request
is made, the CPU services that request by interpreting the incoming SCSI command. If the command
requires disk 1/O, the CPU makes an appropriate 1/0 request to the ATA disk driver to satisfy that /0.

In order to support target mode, your ATA disk driver must support some additional Control and Status
requests that allow the target mode software to do its job. These requests are described in the remainder of
this section.

Target Mode Checklist

If your ATA disk driver is having trouble when used in target mode, check that you support the following
items.

e You must support thekdgBoot (' boot ') Driver Gestalt selector as described above.

® Youmust return kdgbi skType (' di sk') inresponseto thekdgDevi ceType (' devt') Driver
Gestalt selector.

e You must support the kPhysi cal | OCode (17) Control request, described below.

e You must support thekGet Dri veCapaci ty (125) Status request, described below.

e You must support the kSet Power Mode (70) Control request, described in Designing PCI Cards
and Driversfor Power Macintosh Computers.

TN 1189: The Monster Disk Driver Technote
® You may choose to support thekGet Er r or | nf o (123) and kGet Dri vel nf o (124) Status

reguests, although the system will accommodate you not supporting them. See below for details
of how to support these Status requests.

Required Control and Status Requests

Your ATA driver must support the Control and Status requests described in this section in order to work
in target mode.

Switching to Physical 1/0 Mode

ITrap ||_Cont rol |
IMode ||Synch, Async |

|csCode |[SI nt 16 |[->|[kPhysi cal | OCode (17) |
|i oVRef Num |[SI nt 16 ||->||A drive number of adrive controlled by your driver |

Contains either 1 to specify physical 1/0 mode, or 0 to
specify logical 1/0 mode

csPar ani 0] U nt16 ->

In response to this request, your disk driver must change how it does logical-to-physical block trandation
on the drive specified by i oVRef Num If csPar anf 0] is1, your driver must disable logical-to-physical
block tranglations on the drive for subsequent I/O requests. In this mode, an /O request for logical block
X will always access physical block X. If csPar ani 0] is0, your driver must re-enable |logical-to-physical
block trandation. In thismode, an I/O request for logical block X will access physical block X + Y, where
Y isthe offset from the beginning of the disk of the partition represented by the drive.

For more details on logical-to-physical block trandation, see Block Trand ation.

If i oVRef Numis not adrive number controlled by your driver, it must return nsDr vErr .

Returning Disk Size

ITrap |[_Status |
IMode |[Synch, Async |

|csCode |[St nt 16 |[-> ||[kGet Dri veCapaci ty (125) |
|i oVRef Num |[SI nt 16 ||-> |[Theat aDevi cel Dof your device |
csPar an{ 0] Ul nt 16 <. ||'Your disk driver must set this to the bottom 16 bits of the

number of physical blocks on the device

Your disk driver must set thisto the top 16 bits of the
number of physical blocks on the device

csParanf 1] U nt 16 <-

In response to this request, your disk driver must return the physical size (in 512-byte blocks) of the disk
inthe device.

IMPORTANT:
In thisrequest, i oVRef Numis an at aDevi cel D, not the more typical drive number.

If i oVRef Numis not anat aDevi cel D of adevice controlled by your driver, it must return nsDr vErr .

Optional Status Requests

Your ATA driver may support the following Status requests to improve the fiddlity of SCS| target
emulation.

TN 1189: The Monster Disk Driver Technote Page: 78

Returning Error Information

ITrap ||_st at us |
IMode |[Synch, Async |

|csCode |[SI nt 16 |[-> |[kGet Errorlnfo (123) |

|i oVRef Num |[SI nt 16 ||-> ||A drive number of adrive controlled by your driver |

csPar an 2] OGEr 1 <. Zr?#:edéﬁ(\/grlver must set thisto the last error that occurred
Y our disk driver must set thisto the number of bytes that

csParan 3. . 4] Ul nt 32 <- ||weretransferred in the I/O request that caused the last
error on the drive

In response to this request, your disk driver must return the information described above about the last
error that occurred on the drive.

If i oVRef Numis not adrive number controlled by your driver, it must return nsDr vErr .

Getting Information About the Drive

ITrap |[_Status |
IMode ||Synch, Async |

|csCode |[SI nt 16 ||-> ||[kGet Dri vel nf o (124) |
|i oVRef Num |[SI nt 16 |[-> |[Theat aDevi cel Dof your device |

Y our disk driver must set thisto a pointer to a 20-byte

csParan{0. . 1] void * <. ||structure containing ASCI| text describing the attached
o drive; thefirst 16 bytes should be the model number, the

next 4 bytes should be the firmware revision number

In response to this request, your disk driver must return the information described above about the
attached drive. The target mode software uses this information to satisfy a SCSI Inquiry ($12) command.

Note:

The Apple ATA driver extracts thisinformation from the results of an ATA kATAcmdDr i vel denti fy
($EC) command to the device. The model number is extracted from bytes 27 through 42 of the response.
The firmware revision number is extracted from bytes 23 through 26 of the response.

IMPORTANT:
In thisrequest, i oVRef Numis an at aDevi cel D, not the more typical drive number.

If i oVRef Numis not anat abDevi cel D of adevice controlled by your driver, it must return nsbr vErr .

Summary
When the war of the giantsis over, the war of the pygmieswill begin.
Winston S. Churchill

Thistechnoteis the summary!

Further References

TN 1189: The Monster Disk Driver Technote

o SeetheExisting Information section of the technote.

Downloadables

POF
H Acrobat version of this Note (K).

ol
W
G

Data Structure to Aid Security and Recovery Software (49K).

PartitionExtras.h (49K).

M orel sBetter (contains MoreDisks module) (486K).

Page: 79

To contact us, please use the Contact Us page.
Updated: 22-November-1999

Technotes | Contents
Previous Technote | Next Technote

