
TN 1182: NewGWorlds in VRAM and AGP Memory Page: 1

Technote 1182
NewGWorlds in VRAM and AGP Memory

CONTENTS

The New NewGWorld ()

Using the New NewGWorld ()

A Sample Implementation

Summary

This Technote describes the changes in NewGWorld

with the release of Mac OS 9.

The NewGWorld routine now supports allocation of
offscreen GWorld’s in AGP memory and VRAM. This
allows the application programmer much more flexibility
in deciding how to allocate their off-screen images. It also
adds more complexity and can, if used incorrectly, result
in significantly poorer application performance.

This Technote describes the new selectors, covers their
basic use, then goes on to illustrate some of the basic
problems associated with their use. Finally, the note
discusses basic performance figures from a sample
implementation.

The New NewGWorld ()

NewGWorld

Use the NewGWorld function to create an offscreen graphics world.

QDErr NewGWorld (GWorldPtr * offscreenGWorld,
 short pixelDepth,
 const Rect * boundsRect,
 CTabHandle cTable, /* can be NULL */
 GDHandle aGDevice, /* can be NULL */
 GWorldFlags flags)

offscreenGWorld

offscreenGWorld is a pointer to the offscreen graphics world created by this routine.

pixelDepth

pixelDepth is the pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16, and 32
bits per pixel. The NewGWorld function uses the pixel depth of the screen with the greatest pixel
depth from among all screens whose boundary rectangles intersect the rectangle that you specify
in the boundsRect parameter. If you specify zero in this parameter, NewGWorld also uses the
GDevice record from this device instead of creating a new GDevice record for the offscreen
world. If you use NewGWorld on a computer that supports only basic QuickDraw, you may
specify only zero or one in this parameter.

boundsRect

boundsRect is the boundary rectangle and port rectangle for the offscreen pixel map. This

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 2

becomes the boundary rectangle for the GDevice record, if NewGWorld creates one. If you specify
zero in the pixelDepth parameter, NewGWorld interprets the boundaries in global coordinates that
it uses to determine which screens intersect the rectangle. (NewGWorld then uses the pixel depth,
color table, and GDevice record from the screen with the greatest pixel depth from among all
screens whose boundary rectangles intersect this rectangle.) Typically, your application supplies
this parameter with the port rectangle for the onscreen window into which your application will
copy the pixel image from this offscreen world.

cTable

cTable is handle to a ColorTable record. If you pass NULL in this parameter, NewGWorld uses the
default color table for the pixel depth that you specify in the pixelDepth parameter. If you set the
pixelDepth parameter to 0, NewGWorld ignores the cTable parameter, and instead copies and
uses the color table of the graphics device with the greatest pixel depth among all graphics devices
whose boundary rectangles intersect the rectangle that you specify in the boundsRect parameter.
If you use NewGWorld on a computer that supports only basic QuickDraw, you may specify only
NULL in this parameter.

aGDevice

aGDevice is a handle to a GDevice record that is used in only two cases. First, when you specify
the noNewDevice flag in the flags parameter, in which case NewGWorld attaches this GDevice
record to the new offscreen graphics world. Second, when you specify useDistantHdwrMem
and/or useLocalHdwrMem flags in the flags parameter, in which case NewGWorld uses this
GDevice’s VRAM or AGP memory to store the GWorld. If you set the pixelDepth parameter to
zero, or if you do not set the noNewDevice, noNewDevice flag,useDistantHdwrMem, and/or
useLocalHdwrMem flag(s), NewGWorld ignores the aGDevice parameter, so you should set it to
NULL. If you set the pixelDepth parameter to zero, NewGWorld uses the GDevice record for the
graphics device with the greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle that you specify in the boundsRect parameter. You should pass
NULL in this parameter if the computer supports only basic QuickDraw. Generally, your
application should never create GDevice records for offscreen graphics worlds. Lastly, if you set
useDistantHdwrMem and/or useLocalHdwrMem flags you should always specify a GDevice,
otherwise the behavior and device associated with the GWorld, is indeterminate.

flags

flags describes options available to your application. You can set almost any combination of the
flags pixPurge, noNewDevice, useTempMem, keepLocal, useDistantHdwrMem, and
useLocalHdwrMem. If you don’t wish to use any of these flags, pass 0 in this parameter, in which
case you get the default behavior for NewGWorld—that is, it creates an offscreen graphics world
where the base address for the offscreen pixel image is unpurgeable, it uses an existing GDevice
record (if you pass 0 in the depth parameter) or creates a new GDevice record, it uses memory in
your application heap, and it allows graphics accelerators to cache the offscreen pixel image. You
should not use keepLocal with either useDistantHdwrMem or useLocalHdwrMem, the results are
in determinate. The available flags are described here:

enum
{
 pixPurge = 1L << pixPurgeBit,
 noNewDevice = 1L << noNewDeviceBit,
 useTempMem = 1L << useTempMemBit,
 keepLocal = 1L << keepLocalBit,
 useDistantHdwrMem = 1L << useDistantHdwrMemBit,
 useLocalHdwrMem = 1L << useLocalHdwrMemBit,
};
typedef unsigned longGWorldFlags;

pixPurge

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 3

Makes base address for offscreen pixel image purgeable.

noNewDevice

Stops the creation of an offscreen GDevice record.

useTempMem

Create base address for offscreen pixel image in temporary memory.

keepLocal

Keeps offscreen pixel image in main memory where it cannot be cached to a graphics accelerator
card.

useDistantHdwrMem

Attempts to create the offscreen pixel image in VRAM.

useLocalHdwrMem

Attempts to create the offscreen pixel image in AGP memory.

DESCRIPTION

The NewGWorld function creates an offscreen graphics world with the pixel depth you specify in the
pixelDepth parameter, the boundary rectangle you specify in the boundsRect parameter, the color table
you specify in the cTable parameter, and the options you specify in the flags parameter. The NewGWorld
function returns a pointer to the new offscreen graphics world in the offscreenGWorld parameter. You
use this pointer when referring to this new offscreen world in other routines described in this chapter.

Typically, you pass 0 in the pixelDepth parameter, a window’s port rectangle in the boundsRect
parameter, NULL in the cTable and aGDevice parameters, and—in the flags parameter—an empty set ([
]) for Pascal code or 0 for C code. This provides your application with the default behavior of NewGWorld,
and it supports computers running basic QuickDraw. This also allows QuickDraw to optimize the
CopyBits, CopyMask, and CopyDeepMask procedures when your application copies the image in an
offscreen graphics world into an onscreen graphics port.

The NewGWorld function allocates memory for an offscreen graphics port and its pixel map. On
computers that support only basic QuickDraw, NewGWorld creates a 1-bit pixel map that your application
can manipulate using other relevant routines described in this chapter. Your application can copy this 1-bit
pixel map into basic graphics ports.

Unless you specify zero in the pixelDepth parameter--or pass the noNewDevice flag in the flags
parameter and supply a GDevice record in the aGDevice parameter--NewGWorld also allocates a new
offscreen GDevice record.

When creating an image, your application can use the NewGWorld function to create an offscreen graphics
world that is optimized for an image’s characteristics--for example, its best pixel depth. After creating the
image, your application can then use the CopyBits, CopyMask, or CopyDeepMask procedure to copy that
image to an onscreen graphics port. Color QuickDraw automatically renders the image at the best available
pixel depth for the screen. Creating an image in an offscreen graphics port and then copying it to the
screen in this way prevents the visual choppiness that would otherwise occur if your application were to
build a complex image directly onscreen.

The NewGWorld function initializes the offscreen graphics port by calling the OpenCPort function. The
NewGWorld function sets the offscreen graphics port’s visible region to a rectangular region coincident
with its boundary rectangle. The NewGWorld function generates an inverse table with the Color Manager
procedure MakeITable, unless one of the GDevice records for the screens has the same color table as the

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 4

GDevice record for the offscreen world, in which case NewGWorld uses the inverse table from that
GDevice record.

The address of the offscreen pixel image is not directly accessible from the PixMap record for the
offscreen graphics world. However, you can use the GetPixBaseAddr function (described in Inside
Macintosh , pages 6-38) to get a pointer to the beginning of the offscreen pixel image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel image by using
this formula:

rowBytes * (boundsRect.bottom - boundsRect.top)

In the flags parameter, you can specify several options that are defined by the GWorldFlags data type. If
you don’t wish to use any of these options, pass zero here.

If you specify the pixPurge flag, NewGWorld stores the offscreen pixel image in a purgeable block of
memory. In this case, before drawing to or from the offscreen pixel image, your application should call the
LockPixels function (described in Inside Macintosh: Imaging With QuickDraw) and ensure that it
returns TRUE. If LockPixels returns FALSE, the memory for the pixel image has been purged, and your
application should either call UpdateGWorld to reallocate it and then reconstruct the pixel image, or draw
directly in a window instead of preparing the image in an offscreen graphics world. Never draw to or copy
from an offscreen pixel image that has been purged without reallocating its memory and then
reconstructing it. If you specify the noNewDevice flag, NewGWorld does not create a new offscreen
GDevice record. Instead, it uses the GDevice record that you specify in the aGDevice parameter—and its
associated pixel depth and color table—to create the offscreen graphics world. (If you set the pixelDepth
parameter to 0, NewGWorld uses the GDevice record for the screen with the greatest pixel depth among all
screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter—even if you specify the noNewDevice flag.) The NewGWorld function keeps a reference to the
GDevice record for the offscreen graphics world, and the SetGWorld procedure (described in Inside
Macintosh: Imaging With QuickDraw) uses that record to set the current graphics device. If you set the
useTempMem flag, NewGWorld creates the base address for an offscreen pixel image in temporary memory.
You generally would not use this flag, because you should use temporary memory only for fleeting
purposes and only with the AllowPurgePixels procedure (described in Inside Macintosh: Imaging With
QuickDraw). If you specify the keepLocal flag, your offscreen pixel image is kept in Macintosh main
memory and is not cached to a graphics accelerator card. Use this flag carefully, as it negates the
advantages provided by any graphics acceleration card that might be present. Specifying
useDistantHdwrMem and/or useLocalHdwrMem attempts to allocate the offscreen pixel image in VRAM
or AGP memory respectively. If both flags are specified NewGWorld will first attempt to allocate in AGP
memory, if that fails, it will attempt to allocate in VRAM. When using useDistantHdwrMem,
useLocalHdwrMem or both and NewGWorld cannot allocate the offscreen pixel image in the requested area
of memory NewGWorld will fail and return a memFullErr error code.

As its function result, NewGWorld returns one of four result codes enumerated below. noErr will always
be returned from successful calls to NewGWorld any other returns values should be considered a failure to
allocate the requested offscreen pixel image.

SPECIAL CONSIDERATIONS

If you supply a handle to a ColorTable record in the cTable parameter, NewGWorld makes a copy of the
record and stores its handle in the offscreen PixMap record. It is your application’s responsibility to
make sure that the ColorTable record you specify in the cTable parameter is valid for the offscreen
graphics port’s pixel depth.

If when using NewGWorld you specify a pixel depth, color table, or GDevice record that differs from those
used by the window into which you copy your offscreen image, the CopyBits, CopyMask, and
CopyDeepMask procedures require extra time to complete. These will likely cause buffers allocated in
AGP memory or VRAM to be unable to utilize hardware blitting acceleration, possibly resulting in

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 5

extremely poor copy performance.

There are two important things to note about GWorld’s allocated in VRAM. First, the base address
retrieved through GetPixBaseAddr or read directly from the PixMap structure can become invalid anytime
memory is allocated in VRAM. This can occur either by explicit allocations, such as calls to NewGWorld,
or by implicit ones, such as those associated with the internal texture allocation of OpenGL. The stored
pixel images themselves will still be valid but may have been moved in VRAM, thus rendering any stored
base addresses invalid. You should never store an image’s base address for longer than is necessary and
especially never across calls to NewGWorld or texture-creation routines.

Secondly, an offscreen pixel image allocated in VRAM can be purged at system task time by the display
driver. This means any time your application yields time such by calling WaitNextEvent or SystemTask
you can lose your VRAM GWorld contents. While this happens infrequently, usually associated with
display resolution or pixel depth changes you must code for this eventuality. This purge can occur whether
or not the GWorld is locked or not. A return value of false from LockPixels, a NULL return value from
GetPixBaseAddr or NULL in the baseAddr field of the PixMap mean that the pixel image has been
purged. To reallocate it you can either call UpdateGWorld or Dispose your current GWorld through
DisposeGWorld and reallocate it via NewGWorld. Either way you must then rebuild the pixel image.

To use a custom color table in an offscreen graphics world, you need to create the associated offscreen
GDevice record, because Color QuickDraw needs its inverse table.

Currently, NewGWorld does not do exhaustive error checking on the combination of parameters you
supply to it. It assumes these parameters make sense. This is especially true when working with the new
flag parameters. For example, you could legally pass keepLocal, useDistantHdwrMem, and
useLocalHdwrMem in flags and NULL in aGDevice, although this makes no sense and the behavior is
undefined. You must ensure the flags and other parameters supplied to NewGWorld actually work together
and not rely on the OS checking these kinds of errors.

The NewGWorld function may move or purge memory blocks in the application heap. Your application
should not call this function at interrupt time.

RESULT CODES

noErr 0 No error

paramErr -50 Illegal parameter

memFullErr -108 Out of memory error

cDepthErr -157 Invalid pixel depth

See also Inside Macintosh: Imaging With QuickDraw.

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use NewGWorld to create offscreen
graphics worlds.

If your application needs to change the pixel depth, boundary rectangle, or color table for an offscreen
graphics world, use the UpdateGWorld function, described on pages 6-23 of Inside Macintosh.

Back to top

Using the New NewGWorld ()
The basics of using the new NewGWorld remain the same. The two additional flags useDistantHdwrMem
and useLocalHdwrMem allow the user to control where the offscreen pixel image is allocated. If you use
either useDistantHdwrMem or useLocalHdwrMem by themselves, NewGWorld will attempt to allocate the
image on the device specified in aGDevice in only VRAM or AGP memory respectively. If this allocation

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 6

fails, NewGWorld will fail and return a memFullErr error. If both useDistantHdwrMem and
useLocalHdwrMem are specified, NewGWorld will first attempt to allocate in VRAM first, then AGP
memory of the device specified in aGDevice. If both fail, NewGWorld will fail and return a memFullErr
error. aGDevice should never be NULL when allocating in AGP memory or VRAM since the device used
for the allocation will be indeterminate, which is almost never what the developer intended.

useDistantHdwrMem is useful to allocate pixel images that are set once (or few) and used many times. It
is relatively slow to write to a VRAM pixel image from system memory, but it is very quick to do a
hardware copy from VRAM to VRAM or VRAM to the screen. Since there is currently no mechanism to
determine if a copy operation will use hardware acceleration, it is recommended that all pixel images
allocated in VRAM be the same bit depth and have the same color table as the screen. Additionally, you
should use simple copy operations that do not use masks or resizing to maximize the possibility of a
specific copy being accelerated.

useLocalHdwrMem attempts to allocate the pixel image in AGP memory. If the system does not have an
AGP graphics system or NewGWorld is unable to allocate the pixel image, the allocation will fail, returning
a memFullErr error. Since AGP allocations are in system memory, these do not suffer from the same
problems associated with pixel images allocated in VRAM. AGP memory can however have some
limitations, such as being uncacheable, that make it slightly slower than regular system memory in copies
to and other system memory. While this is minor, developers should be aware of the slight performance
degradation.

It is very important to understand where allocations happen and the general caveats (described in the
preceding paragraphs) associated with allocations in other than standard system memory. The key to
improving an application’s performance using offscreen GWorld’s with useDistantHdwrMem or
useLocalHdwrMem flags is identifying which pixel images are used often and can be transferred with
hardware accelerated copies. Images used very often and modified infrequently can be placed in VRAM to
optimize their copy performance. For general purposes, you can use AGP memory. Since the amount of
AGP memory is limited and other graphics services, such as OpenGL, use it, care should be used to
allocate more frequently used images first. In addition, note that AGP memory is not swapped out to disk
by the virtual memory system and the amount available may vary with the amount of physical memory
installed on a system.

To recap, if a copy does not use hardware acceleration, performance from AGP memory to the screen can
be expected at best to be equal to system memory. In the same non-accelerated case performance from
VRAM to the screen will be significantly slower than from system memory. So allocate you images
carefully and use AGP memory and VRAM judiciously.

As a final note, when NewGWorld allocates memory outside of your application heap (i.e., in AGP memory
space or VRAM) it is extremely important that you properly dispose of that memory with DisposeGWorld
prior exiting your application. Failure to do so will leak memory, making either the VRAM or AGP
memory unavailable for future use. In many cases, this leaked memory will only be recovered at restart.

One more reminder: when developing your implementation, ensure you note the above special
considerations for GWorld’s allocated in VRAM. It is critical that you handle moved and purged pixel
images for GWorld’s in VRAM correctly, ensuring you will not display garbage or access invalid memory
when trying to use VRAM GWorld’s.

Back to top

A Sample Implementation
Implementing this is actually very easy. Below is some simple code that will assist you. First, we will test
for the availability of the new flags. In this case, we just need to look at the system version (since there are
no specific selectors for the new version of NewGWorld). If the Mac OS in use is later than 8.6, we can
expect useDistantHdwrMem and useLocalHdwrMem to be available.

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 7

Boolean gNewNewGWorld = false;
long versionSystem;
// this will only work with Mac OS later than 8.6
Gestalt (’sysv', &versionSystem);
if (0x00000860 < (versionSystem & 0x00000FFFF))
 gNewNewGWorld = true; // system is greater than version 8.6

Next, we want to encapsulate the functions required to allocate and reallocate our GWorld. We can use the
same logic for both, checking the GWorldPtr, then checking the pixel image’s baseAddr and finally
checking to see if the window’s GDevice is still the same as the offscreen’s GDevice. When allocating
the GWorld we take the location input parameter and use this to determine in which memory space to
allocate (VRAM, AGP memory, or application heap). If an allocation fails, we fall through to the next type.
Obviously, you can modify this behavior to suit your needs. The function returns true if the GWorld is
allocated or reallocated and false if the existing GWorld is valid. This is shown in the following listing.

Boolean BuildOffscreen (GWorldPtr * ppGWorld, WindowPtr pWindow,
 short * plocation)
{
 GDHandle hgdWindow = NULL;
 Boolean fMustRebuild = false;

if (NULL == *ppGWorld) // if GWorld passed in is not allocated
 fMustRebuild = true;
else
{
 PixMapHandle hPixmap = GetGWorldPixMap (*ppGWorld);
 // if pixmap handle is NULL or pixmap base address is NULL
 if ((NULL == hPixmap) || (!GetPixBaseAddr (hPixmap)))
 fMustRebuild = true;
 // if GWorld not on same device as window
 else if (GetGWorldDevice(*ppGWorld) != GetWindowDevice (pWindow))
 fMustRebuild = true;
}

if (fMustRebuild) // must rebuild
{
 // window pixel depth
 short wPixDepth = (**((CGrafPtr)pWindow)->portPixMap).pixelSize;
 GDHandle hgdWindow = GetWindowDevice (pWindow);// window GDevice
 if (NULL != *ppGWorld) // if we have an allocated GWorld
 {
 DisposeGWorld (*ppGWorld);// dump our current GWorld
 *ppGWorld = NULL;
 }
 switch (*plocation) // where to we want to put it
 {
 case kInVRAM:
 if (noErr == NewGWorld (ppGWorld, wPixDepth, &pWindow->portRect,
 NULL, hgdWindow,
 noNewDevice | useDistantHdwrMem))
 break;
 // we failed with VRAM, signal that and drop to AGP
 SysBeep (30);
 *plocation = kInAGP;
 case kInAGP:
 if (noErr == NewGWorld (ppGWorld, wPixDepth, &pWindow->portRect,
 NULL, hgdWindow,
 noNewDevice | useLocalHdwrMem))
 break;
 // we failed with AGP, signal that and drop to system memory
 SysBeep (30);

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 8

 *plocation = kInSystem;
 case kInSystem:
 default:
 if (noErr != NewGWorld (ppGWorld, wPixDepth,
 &pWindow->portRect, NULL, hgdWindow,
 keepLocal | noNewDevice))

 {
 // we failed with system thus, we can’t allocate our GWorld,
 // signal that, indicate no location and drop to debugger
 SysBeep (30);
 *plocation = kNoWhere;
 DebugStr ("\pUnable to allocate off screen image");
 return false; // nothing was allocated
 }
 *plocation = kInSystem;
 }
 return true; // we rebuilt our GWorld
 }
 return false; // everything is okay
}

This previous function uses standard Macintosh Toolbox functions except the call to GetWindowDevice
that determines the GDevice on which the majority of the window resides. Note that it is up to the
individual application developer to handle the case where windows span multiple devices.
GetWindowDevice is listed below.

GDHandle GetWindowDevice (WindowPtr pWindow)
{
 Rect rectWind, rectSect;
 short wFrameHeight, wTitleHeight;
 long greatestArea, sectArea;
 GDHandle hgdNthDevice, hgdZoomOnThisDevice;

 rectWind = pWindow->portRect;
 LocalToGlobal ((Point*)& rectWind.top); // convert to global coordinates
 LocalToGlobal ((Point*)& rectWind.bottom);
 // calculate height of window’s title bar
 wFrameHeight = rectWind.left - 1 —
 (**(((WindowPeek)pWindow)->strucRgn)).rgnBBox.left;
 wTitleHeight = rectWind.top - 1 —
 (**(((WindowPeek)pWindow)->strucRgn)).rgnBBox.top;
 rectWind.top = rectWind.top - wTitleHeight;
 hgdNthDevice = GetDeviceList ();
 greatestArea = 0; // initialize to 0
 // check window against all gdRects in GDevice list and remember
 // which gdRect contains largest area of window}
 while (hgdNthDevice)
 {
 if (TestDeviceAttribute (hgdNthDevice, screenDevice))
 if (TestDeviceAttribute (hgdNthDevice, screenActive))
 {
 // The SectRect routine calculates the intersection
 // of the window rectangle and this GDevice
 // rectangle and returns TRUE if the rectangles intersect,
 // FALSE if they don’t.
 SectRect(&rectWind, &(**hgdNthDevice).gdRect, &rectSect);
 // determine which screen holds greatest window area
 // first, calculate area of rectangle on current device
 sectArea = (long)(rectSect.right - rectSect.left) *
 (rectSect.bottom - rectSect.top);
 if (sectArea > greatestArea)
 {

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 9

 greatestArea = sectArea;// set greatest area so far
 hgdZoomOnThisDevice = hgdNthDevice;// set zoom device
 }
 hgdNthDevice = GetNextDevice(hgdNthDevice);
 }
 } // of while
 return hgdZoomOnThisDevice;
}

Once we have the buffer allocated, we just need to fill it and blit it to our window. The process to do this
remains unchanged. The following listings demonstrate this. Note, FillOffscreen assumes the
GWorldPtr passed in is valid, while BlitToWindow is more general purpose and runs a check on the
GWorld.

// fills offscreen buffer with random bright color

void FillOffscreen (GWorldPtr pGWorld)
{
 GDHandle hGDSave;
 CGrafPtr pCGrafSave;
 Rect rectSource = (pGWorld->portRect);
 RGBColor rgbColor;

 rgbColor.red = (Random () + 32767) / 2 + 32767;
 rgbColor.green = (Random () + 32767) / 2 + 32767;
 rgbColor.blue = (Random () + 32767) / 2 + 32767;

 GetGWorld (&pCGrafSave, &hGDSave);
 SetGWorld (pGWorld, NULL);
 if (LockPixels (GetGWorldPixMap (pGWorld)))
 {
 // draw some background
 EraseRect (&rectSource);
 RGBForeColor (&rgbColor);
 PaintRect (&rectSource);
 UnlockPixels (GetGWorldPixMap (pGWorld));
 }
 SetGWorld (pCGrafSave, hGDSave);
}

// checks offscreen and blits it to the front

void BlitToWindow (GWorldPtr pGWorld, WindowPtr pWindow, short * pLocation)
{
 Rect rectDest = ((GrafPtr)pWindow)->portRect;
 Rect rectSource = ((GrafPtr)pWindow)->portRect;
 GrafPtr pCGrafSave;

 // check to ensure we have a valid offscreen and rebuild if required
 if (BuildOffscreen (&pGWorld, pWindow, pLocation))
 FillOffscreen (pGWorld);

 // blit
 GetPort (&pCGrafSave);
 SetPort ((GrafPtr) pWindow);
 if (LockPixels (GetGWorldPixMap (pGWorld)))
 {
 CopyBits (&((GrafPtr)pGWorld)->portBits,
 &pWindow->portBits,
 &rectSource, &rectDest, srcCopy, NULL);
 UnlockPixels (GetGWorldPixMap (pGWorld));
 }

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 10

 SetPort (pCGrafSave);
}

Lastly, we need to ensure the memory allocated by NewGWorld is disposed of properly. The follow code
demonstrates this.

// this is VERY important since the GWorld may not be in the application heap
if (pGWorld)
 DisposeGWorld (pGWorld);
pGWorld = NULL;

Back to top

Summary
Using the new NewGWorld greatly enhances your options for creating performance-oriented applications.
By allocating pixel images in either VRAM or AGP memory space, one can achieve levels of graphics
performance previously unavailable. Using these new features though does impose some requirements on
the application developer to ensure their code functions properly under all conditions. A checklist to
consider when using the new NewGWorld is as follows:

Check system version for availability of useDistantHdwrMem and useLocalHdwrMem flags.
Provide a GDevice when using useDistantHdwrMem and/or useLocalHdwrMem.
Check your return values for errors.
When retrieving your pixel image’s base address check for NULL.
Implement a restoration scheme to handle purged pixel images.
Do not cache base address across functions that yield time to the system or that could allocate or
deallocate VRAM.
Ensure GWorlds are disposed of properly to prevent memory leaks in VRAM or AGP memory.

The flags useDistantHdwrMem and useLocalHdwrMem provide the developer with more options for
handling offscreen graphics but must be used with complete understanding of the additional burdens
placed on the application.

Further References

Apple’s Technote web site
Inside Macintosh: Imaging With QuickDraw; Chapter 6: Offscreen Graphics Worlds

Back to top

Downloadables

Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents

TN 1182: NewGWorlds in VRAM and AGP Memory Page: 11

Previous Technote | Next Technote

