TN 1184: FCBs, Now and Forever

Technote 1184

FCBs, Now and Forever

Page: 1

CONTENTS M
Introduction ac OS 9.0 changes the format of the File Control
Block (FCB) table significantly. This technote explains the
Before the Beginning original format of the FCB table, how the use of the FCB
table has evolved over time, and how you can access FCB
In the Beginning information in a compatible way.
stem 7.0 All Mac OS developers should read the Concrete Advice
section to ensure that their software is compatible with Mac
stem 7.5 0S 9.0 and beyond.
Mac OS 8.1 If your software is not compatible with Mac OS 9.0
(specifically, it causes asystem error 119), you should read
Mac OS 9.0 the Debugging FCB Problems section.
Summary The other sections of the technote are background material

for the Mac OS archeologists out there.

| ntroduction

Prior to Mac OS 9.0, the Macintosh was limited to 348 simultaneously open files (FCBs). Thislimit
proved to be a problem for both users and developers, so one of the design goals of Mac OS 9.0 was to
increase thislimit significantly. Everything has its price, however, and the price of increasing the number
of FCBsis compatibility. Mac OS has used the same FCB table format since the introduction of HFS
(1986) and a number of developers have (erroneously) grown dependent on this format.

Note:
The term “fork control block” istechnically more accurate than the historical “file control block.” To
avoid confusion, this technote uses the abbreviation “FCB” everywhere.

This technote describes the changes to the FCB table format over time, and the consequences of these
changes to developers. The full story is quite involved, and so the technote starts with some concrete advice
for those folks with more legacy code than time.

Concrete Advice

Mac OS 9.0 is not the ultimate evolution of the FCB table. Apple expects to make further changes asthe
system evolves. Y ou should look at your code now to strive for compatibility in the future.

One specific thing to check is your use of file reference numbers. File reference numbers are defined to be
positive sl nt 16’s. There are no special file reference numbers. The number 2 is not guaranteed to be
the file reference number of System file. The equality (r ef Num mod 4) = 2 (or (r ef Num nmod 94) = 2,
pre-Mac OS 9.0) is not guaranteed either.

Note:
The number O (zero) is suitable as both anil file reference number and a nil device reference number.

TN 1184: FCBs, Now and Forever Page: 2

For application-level software (applications, shared libraries, and so on), the best road to future
compatibility is Carbon. The Carbon programming interfaces are specifically designed to be
supportable on future systems. If you are programming for Carbon, you should be isolated from future,
low-level File Manager changes.

Specifically, if you want to access FCB information from application-level code, you should use
the File Manager routine FSGet For kCBI nf o (or its parameter block variants

PBGet For kCBI nf oSync and PBGet For kCBI nf oAsync, Of PBGet FCBI nf oSync and PBGet FCBI nf oAsync
on pre-Mac OS 9.0 systems).

There are, however, circumstances in which it is not possible to call the File Manager to get FCB
information. For example, if you are writing a File System Manager (FSM) plug-in, or you are writing a
system extension and your code is executing within the context of a File Manager patch. In these
circumstances, you may need to access the FCB immediately (that is, without queuing a File Manager
request).

If you need to access an FCB immediately and FSM is available, you should use the FSM
accessor routines. These routines are discussed later in this technote.

The only timeit is acceptable to access the FCB table directly is when you need immediate access to the
FCB and FSM is not present.

Debugging FCB Problems

If your software does not work on Mac OS 9.0 and you suspect you have a dependency on the FCB table,
there are a number of ways you can debug it. This section describes how you can search your source code
looking for FCB-related bugs and some run-time debugging techniques you can use.

Sear ching Your Source Code

One obvious way to determine whether your software relies on the format of the FCB tableisto run it
under Mac OS 9.0. The tricky part, however, is exercising your entire source base. The FCB table
dependency may be hiding in ararely used feature that isn’t exercised by your test suite. A good
aternative to testing isto search your source code looking for references to the FCB table.

For PowerPC software you should start by running your program through the Carbon Dater tool
(available on the Carbon web site). Thiswill flag any references to the FCB table low-memory accessor
routines (LMcet FCBSPt r , LMSet FCBSPt r , LMGet FSFCBLen, and LMset FSFCBLen) and likely PowerPC
code sequences that indicate alow-memory access. Unfortunately, Carbon Dater cannot detect all
low-memory accesses, so you should search your source code textually aswell.

Carbon Dater is not an option for 68K software, so the best thing to do is search your source code looking
for some (uncommon) strings that indicate direct access to the FCB table. The stringsto look for are:

e “FCBSPtr” and “FSFCBLen”—The official names for the key low-memory globals.
e “34E” and “3F6”"—The above in hexadecimal.
e “846" and “1014"—The above in decimal.

If you don’t have source for al of your software, you can also search your 68K code resources for $034E
and $03F6. Both of these values arerare as 68K instructions, so if you hit one, it is worth disassembling
the surrounding code to see whether it is an FCB table access.

System Error 119
If you run your software and the system crashes with a system error dsMust UseFCBAccessor s 119, itisa

sure sign that your PowerPC code is accessing the FCB table directly. See PowerPC Code and
Low-Memory Accessors for details.

Horrible Crashes

TN 1184: FCBs, Now and Forever Page: 3

If your application dies with an access exception (or buserror) on Mac OS 9.0, you can look at the
program state to determine whether the problem is FCB related. Any of the following in your Processor
registers or local variables might indicate FCB-related troubles.

e Pointersinto the 32-KB pointer block referenced by the low-memory global FCBSPt r ($034e) .

e Vauesof $68F168F1, possibly shifted in either direction by 16 bits. Thisisthe bus error value
which the File Manager uses to fill unused entriesin the fake FCB table. See 68K Code and Low
Memory for details.

e Valuesthat are the address of aVCB (using MacsBug'svol command to display the VCB list),
possibly shifted in either direction by 16 bits. 68K Code and Low Memory explainswhy thisis
likely.

Back to top

Before the Beginning

FCBs, as we know them today, were introduced as part of HFS. HFS is built in to al 128K ROMs or
later (starting with the Macintosh Plus in 1986), and was available as an extension for 64K ROM
computers (the Macintosh 128 and 512).

Except for afew corner cases, this technote assumes that you are programming for a 128K ROM system
or later. Thisisafair assumption because 64K ROM machines do not support System 7.0. Moreover, no
current development environment supports development for 64K ROMSs. In short, if you are developing
for the 64K ROM, you have our sympathy but not our support.

Back to top

In the Beginning

This section described the classic FCB table format, which was introduced with the HFS file system and
retired in Mac OS 9.0. It also discusses some of the limitations of this format.

Classic FCB Table

When it was introduced, HFS used an ssimple table to store FCBs. The table isheld in a pointer block in
the system heap and is pointed to by the low-memory global FCBSPt r ($34E). The table consists of atwo
byte header (which contains the size of the pointer block) followed by an array of FCBs, each of which is
afixed sze. Thissizeis determined by another low-memory global, FSFCBLen ($3F6) , which contained
the value 94 when HFS was introduced.

The format of the classic FCB tableis shown in below.

TN 1184: FCBs, Now and Forever

FCBSPtr e FCE Table Size E2 s :I_ First FCE RefMum
L Second FCE ReflMurn
FSFCELen First FCE
i Third FCE RefMum
Second FCE
i — Last FCE RefMum
Third FCE
.
-
.
Last FCE

A file reference number is the offset into this table of the corresponding FCB. The file reference number
for the 'Nth fileis2 + (N - 1) * FSFCBLen, which yields the sequence 2, 96, 190, 284, and so on.

FCB Table Design Limitations

The basic structure of the FCB table implies alimit to the number of FCBs, and hence the number of
simultaneously open files. The original Macintosh (which was extremely memory constrained) created a
table with 10 FCBs. This number was derived from the bbcnt FCBs field of the boot block (Boot Bl kHdr).
When the Macintosh Plus was introduced, the system automatically scaled this number to suite the
installed memory. If the computer had 1 MB or more, the system created an FCB table with bbCnt FCBs *
4 entries. The result was an FCB table with 40 entries on most System 6 computers.

Towards the end of System 6'slifespan, thislimit proved to be a problem for many users. There were two
solutions. First, one could use adisk editor (the legendary FEdit, for example) to increase the limit by
editing the boot block. Second, one could install the “Up Y our FCBS’ system extension, which would
expand the FCB table to its maximum size at system startup.

The maximum size of the classic FCB tableis 32 KB, primarily because afile reference number is a 16-bit
signed offset into the table. Thisyields a maximum number of FCBs of (32768 - 2) div FSFCBLen, or 348
for the standard FCB size of 94 bytes.

Note:
Inside Macintosh: Files states that the maximum number of open files with the classic FCB table is 342.
Thisisincorrect. The limit is 348.

Page: 4

TN 1184: FCBs, Now and Forever Page: 5

Note:

The maximum number of FCBsis not the same as the maximum number of files an application can
open. The system uses some of these FCBs for its own internal needs. Some of thisusageisan
unavoidable implementation detail of the file system (such asthe FCBsfor the HFS catalog and extents
files), while other files are explicitly opened by system software (such as the System file and various
shared libraries). Modern systems maintain alot of open files and severely constrain the number of
FCBs available to application software. For example, an easy install of Mac OS 8.6 has 100 files open

before you get to the Finder.

Compatibility Notes

The classic FCB table was never a public data structure. While the format iswell known—it is
described in Technote 1089, “HFS Elucidations Revisited”—all these descriptions include awarning that
relying on this format will cause future compatibility problems.

Thereis, however, one documented use of the FSFCBLen low-memory global, namely to determine whether
the system has HFS available. This mechanism is described in Technote FL_35, “Determining Which
File System Is Active.” Thistechnique requires that FSFCBLen be positive if HFS isavailable, and
negative otherwise. Thereis no documented use of FSFCBLen other than testing itssign.

Back to top
System 7.0

System 7.0 introduced a number of new file system features related to FCBs. This section describes those
features. Remember that all versions of System 7 and Mac OS 8 use the classic FCB table format, and
inherit many properties from that format.

Parallel FCB Table

System 7.0 was the first system to track FCB usage by process. When a process opens afile, the FCB is
tagged as belonging to that process. If the process quits unexpectedly, the Process Manager automatically
closes al the FCBs owned by it.

Unfortunately, there was not enough space to storethe ProcessSer i al Nunber (PSN) of the owning
process in the classic FCB. While it was possible to grow the FCB (by changing FSFCBLen), this had two

important drawbacks.

1. Increasing the size of an FCB would decrease the maximum number of FCBs, because the
maximum overall size of the classic FCB table sizeislimited to 32 KB.

2. Increasing the size of an FCB might cause compatibility problems for developers who had
hard-codedsi zeof (FCBRec) into their code (bad developers!).

Instead, System 7.0 introduced the concept of a parallel FCB table. This table was used to store the PSN
for the process that opened the file and, when a process quit, to close all the files that were left open by that

process.

IMPORTANT:
The parallel FCB table was never documented to third-party developers and has been removed in Mac

0S9.0. It isdiscussed here for informative purposes only and you should not rely on any details of the
table or its implementation.

Process Manager only tracksfiles that are opened synchronously. Files that are opened asynchronous
(using PBHOpenDFAsync, for example) are not tracked by the Process Manager because these calls can be
made at interrupt time, and there is no easy way to determine the owning process at interrupt time.

Dynamically Growing FCB Table

TN 1184: FCBs, Now and Forever

System 7.0 a so introduced a mechanism to grow the FCB table dynamically. When a program attempts to
open afilewnhile the FCB tableisfull, the system returnsat nf oEr r (-42). When this happens under
System 7.0, the system catches the error, attempts to grow the FCB table, and then retries the open. The
system can only grow the FCB tableif al of the following are true.

e Therequest to open afile was made synchronously. Asynchronous requests (using
PBHOpenDFAsync, for example) can potentialy be made at interrupt time, when it isillega to call
the Memory Manager to grow the FCB table.

e Thereisenough space in the system heap for the new table.

e Thetableissmaller than its maximum of 348 FCBs.

Because of these restrictions, it is still possible to get at nf oEr r error under System 7.0 and later,
athough you are unlikely to get one if you are opening the file synchronously unlessthe FCB tableis
completely full.

Back to top

System 7.5

System 7.5 was the first system to include the File System Manager (FSM) as part of the System file.
FSM provides a number of routines which allow you to access FCBs without assuming knowledge of the
FCB table format.

The four FCB accessor functions are;

UTResol veFCB, which maps afile reference number to an FCB

UTI ndex FCB, which indexes through the open FCBs on avolume

UTLocat eFCB, which finds an FCB by file number and volume

UTLocat eNext FCB, which finds additional FCBs (after using UTLocat eFCB) by file number (or
name) and volume

pWNE

These routines are documented in the “Guide to the File System Manager”, which is part of the File
System Manager SDK.

IMPORTANT:
These FCB accessor routines are not in InterfaceLib prior to Mac OS 8.5. The Morelnterfacelib module

of the DTS sample code M orel sBetter has Mixed Mode glue for calling these routines from CFM code
on earlier systems.

IMPORTANT:
In Mac OS 9.0, UTI ndexFCB will aso return iterator control blocks. If you are only interested in open
files, you must explicitly skip these iterator control blocks using the technique described below.

Note:

These FCB accessor routines are not part of Carbon. Carbon code does not have immediate access to
FCBs; see the Concrete Advice section for details.

These FCB accessor routines were originally intended for use by FSM plug-ins (and other foreign file
systems) but it is appropriate to use them in other code. However, before you use these routines you
should read the Concrete Advice section to see whether you would be better off using File Manager
routines instead (for example, FSGet For kCBI nf 0) .

Y ou can test for the availability of these accessors with the following code.

Page: 6

TN 1184: FCBs, Now and Forever Page: 7

static Bool ean HasFCBAccessors(voi d)

{
Bool ean resul t;
| ong response;
result = false;
/1 Make sure FSMis installed
if (Gestalt(gestaltFSAttr, & esponse) == noErr) {
if ((response & (1L << gestaltHasFil eSystemvanager)) !=0) {
[/ FSM 1.2 is the first version to support the
/! the docunented API, so check the version
if (Gestalt(gestaltFSWersion, & esponse) == noErr) {
/1 Make sure we have FSM 1.2 or |ater
if ((unsigned |ong)response >= 0x0120) {
result = true;
}
}
}
}
return result;
}
Back to top
Mac OS8.1

Mac OS 8.1 introduced a new, built-in volume format, HFS Plus. Despite significant changesto the
internals of the File Manager, Mac OS 8.1 changed the FCB table very little.

The most important change was required because HFS Plus needs more space to store its extents
information. The classic FCB table storesthe first 3 extents of afilein thef cbExt Rec of the FCB, where
each extent is a 16-bit allocation block number and a 16-hit length. HFS Plus needs to store thefirst 8
extents of afile, where each extent is a 32-bit alocation block number and a 32-bit length. Obvioudy the
new extent datawould not fit into the classic FCB.

The solution adopted was to store the extents data for files on HFS Plus volumesin the parallel FCB
table, leaving thef cbExt Rec field of the FCB unused (and set to zero). This was avery compatible
solution because it left the classic FCB table mostly unchanged. Only software that relied on f cbExt Rec
broke, and that software would have broken anyway because of the new, larger, allocation block numbers.

Back to top
Mac OS9.0

This section describes the features of the Mac OS 9.0 File Manager as they relateto FCBs. It also
explains some of the rational e behind the changes made in Mac OS 9.0. It even explains why the new limit
to the number of open filesis 8,169!

Design Goals

Mac OS 9.0 includes a significant enhancements to the File Manager, including:

TN 1184: FCBs, Now and Forever Page: 8

e new programming interfaces to access HFS Plus features such as long file names (255 Unicode
characters) and large files (> 2 GB)

e anew FCB table format that extends the limit of the number of open files from 348 to 8169

e the ability to make most File Manager calls from pre-emptive tasks (M P tasks)

One of the design criteriafor the enhanced File Manager was to implement these new features without
breaking software that uses documented programming interfaces. Increasing the maximum number of
open files required a change to the FCB table format, but this format has never been documented as
something that developer can rely on.

Note:
Developers have been warned to not rely on the format of the FCB table many times.

e Inside Macintosh Il , page 127, “Warning: The size and structure of afile control block may be
different in future versions of Macintosh system software.”

e Inside Macintosh IV , page 181, “Warning: The size and structure of afile control block may
be different in future versions of Macintosh system software.”

e Inside Macintosh 'V , page 386, “Do not directly examine or manipulate system data structures,
such asfile control blocks (FCB) or volume control blocks (VCB), in memory. Use File
Manager callsto access FCB and VCB information.”

e Inside Macintosh: Files, page 2-81, “Note: The size and structure of afile control block may be
different in future versions of Macintosh system software. To be safe, you should get
information from the FCB allocated for an open file by calling the File Manager function
PBGet FCBI nf 0.”

e Technote 1089, “HFS Elucidations Revisited.” “The following exampleis here for illustrative
purposes only; dependence on it may cause compatibility problems with future system
software.”

Gestalt

Mac OS 9.0 definesanew Gest al t bit which indicates that the system has anew FCB table format and
that you can't rely on FCBSPt r , FSFCBLen, or their low-memory accessor routines (except

LMzet FSFCBLen). ThisGest al t bitisgest al t Must UseFCBAccessor s (bit 13) of gestal t FSAttr. Asa
rule, you should not use this Gest al t bit to determine whether to use FCB accessors; instead, you should
always use the FCB accessorsif they are available.

Big Changes

In Mac OS 9.0, FCB information is now stored in a private table whose format is undocumented to
developers.

The information that was previously stored in the parallel FCB table has been rolled into an expanded
FCB. The expanded FCB is defined by the For kCont r ol Bl ock type in “FSM.h.”

Mac OS 9.0 also storesiterator control blocks in the FCB table. See Iterator Control Blocks for details.

Developers who need immediate accessto FCBs must use the FSM accessors. In addition, Mac OS 9.0
introduces more FSM accessor routines, described in the New FSM A ccessors section.

68K Code and Low Memory

Given the massive changesto the FCB table format, it is clear that the low-memory globals associated with
the classic FCB table format (FCBSPt r and FSFCBLen, described above) no longer have any meaning.
Appleoriginaly intended to set these variables to a value that would cause a bus error if accessed, but a
number of considerations have modified this policy.

Unfortunately, the Apple-supplied glue for Get VRef Numrelies on the classic FCB table format. This glue
isstatically linked into many 68K applications, and prevents Apple from eliminating the classic FCB table
completely. Instead, afake FCB tableis carefully constructed so that this glue continues to work.

Note:

TN 1184: FCBs, Now and Forever

The Apple-supplied glue for Get VRef Numhas made its way into a number of different librariesina
number of different devel opment environment.

o MPW includes Get VRef Numin “Interface.o0”.
o CodeWarrior includes Get VRef Numin “MacOS.lib".

e Think C and Symantec C include Get VRef Numin “MacTraps”.

o Think Pascal includes Get VRef Numin “Interface.Lib”.

The fake FCB table is pointed to by FCBSPt r as before, but FSFCBLen is set to 4. The table is make up of
fake FCBs, one for each real FCB on the system. The fake FCBs are staggered by FSFCBLen (4 bytes)
and each containsavalid f cbVPt r at an offset of 20 ($14) bytes into the fake FCB ($10 bytes beyond the
bounds of the FCB as reported by FSFCBLen). The following diagram illustrates this layout.

FCESFtr g

FCE Table Size

FSFCELen itli

First FCE
Second FCE
Third FCE

w TobWPir

Last FCE

fecbWPir

First FCE Eeflurn
Second FCE EefMurn
Third FCE RefMum

Last FCEB RefMurn

Colour areas
contain valid data

Diagram assures all files
are on the zarme volume.

VCE

Thislayout allows the Get VRef Numto look up the FCB table, check that the file reference number isvalid,

and look up thef cbvpt r field of the FCB, all using the fake FCB table.

Page: 9

Note:

TN 1184: FCBs, Now and Forever

The disassembly of the GetVRefNum glue from "Interface.0" is shown below.

function Get VRef Nun(fil eRef Num

i nteger; VAR vRef Num

integer): OSErr;

Get VRef Num
MOVEA. L (A7) +, Al ; pop return address
MOVEQ #$00, D1 ; get fileRefNum (zero extended)
MOVE. W $0004(A7), D1 :
MOVEA. L FCBSPt r, AO ; get FCB table pointer
MOVE. W FSFCBLen, DO ; and FCB size
BM.S NoHFS if negative, we're pre-HFS
@FS
Dl VU. W Do, D1 divide fil eRef Num by FSFCBLen
BRA. S DoneDi vi si on
@NoHFS
Dl VU. W #3$005E, D1 divide fil eRef Num by size of
pre- HFS FCB
@oneDi vi si on
SWAP D1 ; get fileRefNumnod FCB size
SUBQ W #%$2, D1 ; if fileRef Numnod FCB size
BNE. S BadResul t : not 2, error out
MOVE. W $0004(A7), DO if fileRef Num > than size
CwP. W (A0), DO of FCB table,
BCC. S @BadResul t return an error
MOVEA. L $14(A0,D0.W,A0 ; grab fcbVPtr from appropriate
; FCB, points to VCB
MOVE. W $004E(A0) , DO ; grab vcbVRef Num from VCB
MOVEQ #$00, D1 : noErr
BRA. S @0o0dResul t
@BadResul t
MOVEQ #$00, DO
MOVE. W #$FFCD, D1 rfNunErr
@0o0dResul t
MOVEA. L (A7), A0 put DO into vRef Num
MOVE. W DO, (A0)
ADDQ W #3$6, A7 pop params
MOVE. W D1, (A7) put D1 into function result
JwP (AL ; return to caller

Note:

The fake FCB table is the cause of the 8169 limit on the number of open files. As before, the fake tableis
limited to 32 KB. No FCB is placed beyond the last 94 bytes because it might cause code that iswalking
the FCB table to wrap an SI nt 16. Therefore, the number of fake FCBs availableis (32768 - 94 - 2) div 4
+ 1, or 8169.

Power PC Code and L ow-Memory Accessors

The case for PowerPC code is somewhat clearer. For PowerPC code, the implementation of Get VRef Num
is part of the system software, so it was modified to cope with the new FCB table format.

On the other hand, the low-memory accessor routines for FCBSPt r and FSFCBLen presented a more

interesting problem. In theory, developers shouldn’t be using these routines because they shouldn’t be

depending on the format of the FCB table. In practice, our experience isthat a surprising number of

ghopull Srdappl ications were using them. Thisforced Apple to make adecision asto what these routines
ould do.

Thefina decisonis:

Page: 10

TN 1184: FCBs, Now and Forever

® LMGet FCBSPt r, LMSet FCBSPt r and LMset FSFCBLen all raiseadsMust UseFCBAccessor s (119)
system error _ o
® LMzet FSFCBLen continues to return the value from FSFCBLen, which is now 4.

Therationale for these changes was.

e Theformat of the FCB table (as pointed to by FCBSPt r) hasradically changed. Any software
relying on this format is not going to work. Given that the software is not going to work, it is
much better for the software to halt sooner rather than later. This prevents possible dataloss
caused by old software modifying whét it thinksis the FCB table.

e Thedidtinctive system error number allows technical support folk to quickly diagnose this
problem.

® FSFCBLen has adocumented use (to test for the presence of HFS, as described earlier) and
continues to work for that use.

Iterator Control Blocks

The File Manager in Mac OS 9.0 introduces a new mechanism, the iterator, to find al theitemsin a
directory or on avolume. Aniterator isan abstract object used to hold the state of a particular bulk
catalog operation. An iterator is described by the FSI t er at or datatype, which is created with
FSOpenl t er at or and destroyed with FSCO osel t erat or .

On traditional Mac OS, the state for the FSI t er at or ismaintained in aniterator control block (of type
I t er at or Cont r ol Bl ock) inthe FCB table. The iterator control block islike an FCB except that it
maintains the state for an FSl t er at or instead of for an open file.

Any software that uses FSM accessors must be careful to treat iterator control blocks as such, and not to
blindly treat them as FCBs. Y ou can distinguish between an | t er at or Cont r ol Bl ock and a
For kCont r ol Bl ock by testing thef cbl t er at or Bi t inthenor eFl ags fields of the FCB.

IMPORTANT:
Thenmor eFl ags field of the FCB is not present prior to Mac OS 9.0. Y ou should conditionalize your test
for iterator control blocks using Gestalt.

New FSM Accessors

Mac OS 9.0 introduces a number of new FSM utility routines which supplement the routines described
earlier. The routines are:

® UTGet For kCont r ol Bl ockSi ze—Returnsthe size of an FCB. Thisroutineis necessary because
LMzet FSFCBLen isno longer useful and it is expected that the FCB will expand further asthe
system evolves.

® UTResol veFi | eRef Num—Returns the file reference number for a given FCB.

e UTCheckFCB—AIllowsyou to vaidate whether an FCBRecPt r pointsto avalid FCB.

® UTCheckFor kPer mi ssi ons—A replacement for UTCheckPer ni ssi on that is somewhat easier to
use.

In addition, FCBs are now placed in a search list to speed up the search for open files. The following
routines allow an external file system to benefit from the speed gains of this search list.

® UTAddFCBToSear chlLi st
® UTRenpbveFCBFr onfSear chlLi st
® UTLocat eFCBI nSear chlLi st

All of these routines will be further documented in an update to the “ Guide to the File System Manager.”

Page: 11

TN 1184: FCBs, Now and Forever Page: 12

Note:
These FCB accessor routines are not part of Carbon. Carbon code does not have immediate access to
FCBs; see the Concrete Advice section for details.

Back to top

Summary

Theformat of the FCB table, while documented to developersfor illustrative purposes, have never been
guaranteed. Mac OS 9.0 changes the format of thistable, primarily to increase the maximum number of
open files on the system. Apple has made this change such that all existing, documented programming
interfaces continue to work. Moreover, the existing FSM accessors (introduced with System 7.5) allow
immediate access to an FCB in places where thisis necessary. However, Apple strongly recommends that
developers avoid immediate access to FCBs and instead use the Carbon-compatible File Manager
programming interfaces.

Further References

e Inside Macintosh: Files, especidly the File Control Blocks section
e Guideto the File System Manager , part of the File System Manager SDK
e Technote 1089, HFS Elucidations Revisited
e Technote FL 35, Determining Which File System Is Active
e Technote 1176, Mac OS 9.0
e Technote1121, Mac OS8.1
e TechnoteOQV 21, System 7.5
e Technote 1150, HFS Plus Volume Format
e OQ&A FL 10, Accessing File Control Blocks
e Carbonweb site
Back to top

Downloadables

FOF
H Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents
Previous Technote | Next Technote

