TN 1004: QT Component Manager 3.0/PowerPC Native
Components

Technotes
ownload Download
FOF A
i]
Acrobat file (K) AppleWorksfile (51K)

TECHNOTE : On QuickTime Component Manager 3.0 & Power PC Native Components

Technote 1004 OCTOBER 1995

This Note contains information about the version of the Component Manager that shipped with QuickTime 1.6 and the
changes necessary to support native PowerPC components.

Contents
CONTENTS
o About Component Manager 3.0

o Codefor the Glue Function
o Component Manager Interfaces

About Component Manager 3.0

The Component Manager in QuickTime 1.6.x and for the Power Macintosh (PowerPC) rel ease has some new features. It
has added the ability to automatically resolve conflicts between different versions of the same component. It will ensure
that only the most recent version of a given component is actually registered. The Component Manager now supports
Icon Suites for a component, so acomponent'sicon no longer has to be just black and white. In addition, the Component
Manager can support code written in the native format of the PowerPC.

The result returned for the Gestalt selector gest al t Corponent Mgr will be 3, indicating version number 3 of the
Component Manager. Thisis the version being discussed in this Note. To insure that you have the features discussed
here, check that version 3isinstalled.

For support of the Power Macintosh, the Component Manager has been extended to alow use of native PowerPC
components. When the Component Manager |oads a native component on the Power Macintosh, it uses the Code
Fragment Manager and calls Get MenFr agrment and then later O oseConnect i on when it unloads your code resource
(specified in aConponent PI at f or m nf o). Thisis how the Component Manager supports a native code fragment.

A component can support multiple platforms such as the 68K and PowerPC. Existing 68K code is always supported on
the Power Macintosh through emulation. But you can a so have native PowerPC code for your component to support
better performance. The Component Manager will alow you to create a component that contains both code formats, so
that you can support al platforms with a single component. The Component Manager also was extended in away that
alowsfor native PowerPC only components (without any 68K code support).

Extended ComponentResour ce

The Conponent Resour ce data structure (the' t hng' resource) has been extended. These extensions define additional
information about the component. The compl ete data structure is shown below. Thefirst portion is the same asthe

Page: 1

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

existing Conponent Resour ce, with the new fields added at the end. The Component Manager determinesif it is present
by examining the size of the' t hng' resource.

struct Ext Component Resource {

Conponent Descri ption cd; /* Registration paranmeters */

Resour ceSpec conponent ; /* resource where Conponent code is found */
Resour ceSpec conponent Nane; /* name string resource */

Resour ceSpec conponent I nf o; /* info string resource */

Resour ceSpec conponent | con; /* icon resource */

/1 new data for Conponent Manager version 3

| ong component Ver si on; /* version of Conponent */

| ong conponent Regi st er Fl ags; /* flags for registration */
short conponent | conFami | y; /* resource id of lcon Fanmly */
| ong count; /[* elements in platformArray */

Conponent Pl at form nfo platformArray|[1];
b
componentVersion
Theconponent Ver si on field contains the version number of the component. This should be identical to the value
returned by Get Conponent Ver si on. For convenience, if thisvalueis set to O, the component is called to get the version.
Thisis useful during development. The version number stored in the Conponent Resour ceExt ensi on isused by the
Component Manager to avoid having to load and call the component to retrieve the component's version during startup.
componentRegister Flags
Theconponent Regi st er Fl ags alow you to define additional register information. These flags are discussed below.

[* Conponent Resource Extension flags */

conponent DoAut oVer si on = (1<<0)
conponent Want sUnr egi st er = (1<<1)
conponent Aut oVer si onl ncl udeFl ags = (1<<2)
conponent HasMul ti pl ePl at f or ns = (1<<3)

Theconponent DoAut oVer si on flag tells the Component Manager that you want your component registered only if
thereisno later version available. If thereisan older version of the component ingtaled, it will be unregistered. If an older
version of the same component attempts to register after you, it will be immediately unregistered. Further, if a newer
version of the same component registers after you, you will automatically be unregistered. Using the automatic version
control feature of the Component Manager allows you to make sure that only the most recent version of your softwareis
running on a given machine, regardless of how many versions may be installed.

Theconponent Want sUnr egi st er flag indicates that your component wants to be called when it isunregistered. Thisis
useful if your component allocates globa memory at register time, for example. The prototype of the unregister message
isidenticd to the register message. If your component has never been opened, its unregister message is not be called. The
routine selector for unregister is given below.

kConponent Unr egi st er Sel ect = -7

Theconponent Aut oVer si onl ncl udeFl ags flag tells the Component Manager to use the component flags as criteriafor

Page: 2

TN 1004: QT Component Manager 3.0/PowerPC Native
Components
its component search. If a component wants automatic version control, the Component Manager hasto search for similar
components. Normally, the Component Manager searches only for another component using the type, subType, and
manufacturer fields of a Conponent Descri pti on record. Thisflag tells the Component Manager to include the
conponent Fl ags in its search.

Theconponent HasMul ti pl ePl at f or ms flag indicates that your component contains multiple versions of the code for
different platforms. If you plan on supporting the PowerPC native code format, then you need to use the

Corrponent Pl at f or m nf o within the component resource structure. Then set this bit in the conponent Regi st er Fl ags
field. If thisbit is not set then the code is assumed to be 68K format. Without this flag being set, the Component
Manager will ignore any Conponent Pl at f or ni nf o.

componentl conFamily

Finaly, the corponent | conFani | y field allows you to provide the resource ID of a System 7 Icon Suite. If thisfield is
0, it indicates that there is no icon suite.

count
Thisisthe number of elements contained in the Conponent Pl at f or ml nf o array.
platformArray

Thisisan array of elements that describe the code to be used for different platforms. If the platform isfor 68K, then the
information within this element is a copy from the conponent FI ags of the Conponent Descri pti on and ResourceSpec
of the original Corponent Resour ce structure. This insures backwards compatibility with older Component Managers. If
the component contains native code support for the PowerPC, then an element of the array will contain the information
about itsconponent Fl ags, resource type, and resource ID.

Thepl at f or nifype field isavaue that represents which platform the component code is to support. The Gestalt result
for selector gestaltSysArchitecture will be matched with the valuein pl at f or niType of the Conponent Resour ce. If a
match is found, then that code is used to support the given platform.

gestal t 68k = 1, /* Motorola MCG68K architecture */

gestal t Power PC = 2, /* | BM Power PC architecture */
struct ResourceSpec ({

OSType resType; [* 4-byte code */

short resl D,
b

typedef struct ResourceSpec ResourceSpec;

struct Conponent Pl atform nfo

{

| ong conponent Fl ags; /* flags of Conponent */
Resour ceSpec conponent ; /* resource where Conponent code is found */
short pl at f or nType; /* gestaltSysArchitecture result */

b
Component Manager version 3 routines
GetComponentl conSuite

Get Conponent | conSui t e returns an Icon Suite for the given component. This call works only under System 7 or later.

Page: 3

TN 1004: QT Component Manager 3.0/PowerPC Native
Components
It called on System 6, it returns an error. If the component doesn't have an | con Suite but does have a Component Icon
(asreturned by Get Conponent | nf 0), Get Conponent | conSui t e creates an Icon Suite containing just the
black-and-white Component Icon. In thisway, you can use Get Corponent | conSui t e whether or not a component has
an |con Suite.

pascal OSErr Get ConponentlconSuite(Conponent aConponent, Handl e *iconSuite)

aConmponent Conponent 1D, retrieved with Fi ndNext Conponent .
iconSuite Pointer to the lcon Suite you will receive.

Register Component
Register ComponentResour ce
Register ComponentResour ceFile

The only change made to these routines was to modify the use of the global parameter. The upper byte now contains the
platform ID to be used by the component being registered. This changeis necessary because these calls do not have
access to the ComponentResource which contains the Conponent Pl at f or mi nf o. If the upper byte of the global
parameter is zero, then the platform is assumed to be the platform68k.

Creating a Power PC ComponentResour ce
The basics step for running on a Power Macintosh with a native component are:

Create component code fragment with native PowerPC code

Main entry point to code is a mixed mode routine descriptor

Package component code fragment as a resource

If you supply an interface for the component to be called directly, then for PowerPC code to call your component
you must provide custom glue to make the call.

o Createtheextended' t hng' resource using the ComponentPlatforminfo

Each of these steps are discussed in more detail asfollows:

Creating the component code fragment

Thefirst step in creating a native PowerPC component is to port your code. For compl ete details on porting to PowerPC,
see |nside Macintosh: PowerPC System Software. Especially important for the following discussion is an understanding
of the Mixed Mode and Code Fragment Managers.

Like other code ported for PowerPC, anytime your code uses a callback function (Pr ocPt r), it must be converted to a
Uni ver sal ProcPt r. But unlike callbacks defined by the system, callbacks to your component have their own function
prototypes. With the exception of some callbacks defined for QuickTime components, there are no system supplied
function prototypes or UniversalProcPtrs, so you must create these yourself.

If, in response to arequest code, your component dispatches to internal functions using Cal | Conponent Funct i on or
Cal | Conponent Funct i onW t hSt or age, then thisis a place where you must use a Uni ver sal ProcPtr.

Suppose your component currently responds to an open request as follows:

swi tch (parans->what)

{

case kComponent OpenSel ect : /* Open request */

{
result = Call Component Functi onWt hSt orage (storage, parans, M/Open);

br eak;

Page: 4

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

M/ Open isan interna function callback, so you must create aRout i neDescr i pt or /Uni ver sal ProcPtr for it. MyQpen is
declared asfollows:

pascal Component Result MyOpen (Handl e storage, Conponentlnstance self);

Thefirst stepisto create aPr ocl nf o vaue for this function:
enum {
uppMyOpenProcl nfo = kPascal St ackBased
| RESULT_SI ZE(SI ZE_CODE(si zeof (Conponent Resul t)))
| STACK_ROUTI NE_PARAMETER(1, S| ZE_CODE(si zeof (Handl e)))
| STACK_ROUTI NE_PARAMETER(2, Sl ZE_CODE(si zeof (Conponent | nst ance)))
b

Next you must update your source to build auni ver sal ProcPt r and useit. You could use NewRout i neDescri pt or for
this purpose, but the disadvantage is that creates a heap object which your component must dispose of properly.

An dternate approach isto declare aglobal Rout i neDescri pt or (globa variables are not aproblem for anative
PowerPC component, since a code fragment automatically has globa variables):

#i f def powerc

Rout i neDescri ptor MyOpenRD = BUI LD_ROUTI NE_DESCRI PTCR
(uppMyOpenProcl nfo, MyOpen);

#endi f

If you want your code to be compilable for both 68K and PowerPC, using the Universal Interfaces, then to avoid alot of
conditional compilation, the following macros may be useful:

#i f def powerc

#defi ne Cal | Conponent Functi onW t hSt or ageUni v(storage, parans, funcNane) \
Cal | Conponent Functi onWt hSt or age(st orage, parans, &f uncNanme##RD)

#defi ne Cal | Conponent Functi onUni v(parans, funcNanme) \
Cal | Conponent Functi on(par ans, &f uncNane##RD)

#def i ne | NSTANTI ATE_ROUTI NE_DESCRI PTOR(f uncNanme) Routi neDescri ptor funcNanme##RD = \
BUI LD_ROUTI NE_DESCRI PTOR (upp##f uncName##Pr ocl nf o, funcNane)

#el se

#defi ne Cal | Conponent Functi onWt hSt or ageUni v(st orage, parans, funcNane) \

Cal | Conponent Functi onW t hSt or age(st orage, parans,
(Conponent Funct i onUPP) f uncNane)

#defi ne Cal | Conponent Functi onUni v(parans, funcName) \
Cal | Conponent Funct i on(par anms, (Conponent Functi onUPP) f uncNane)
#endi f

These macros, exactly analogousto Cal | Conponent Funct i on and Cal | Conponent Funct i onW t hSt or age, generate
the appropriate code when compiled for 68K and PowerPC. Note that the PowerPC macro expansion depends on the
global RoutineDescriptor name being FuncNameRD, i.e., the name of the function with RD appended. The
INSTANTIATE_ROUTINE_DESCRIPTOR macro can be used for that purpose:

Page: 5

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

#i f def powerc
| NSTANTI ATE_ROUTI NE_DESCRI PTOR(MyQpen) ;
#endi f

Thisisidentical to the declaration of MyOpenRD earlier, but simplifies the editing.

With all the conditiona stuff out of the way, then the origina code can simply be updated by replacing
Cal | Conponent Functi onW t hSt or age with Cal | Conponent Funct i onW t hSt or ageUni v:

swi tch (parans->what)
{
case kComponent OpenSel ect : /1 Open request
{
result = Call Component Functi onWt hSt or ageUni v(st orage, parans, M/Qpen);
br eak;

}
Repesat the above steps for all internal component dispatches you make.

Setting the main entry point

Lastly, you must set up the entry point into your component correctly. Unlike a68K code resource, a PowerPC code
fragment (which your component will be) has awell defined entry point. The Component Manager, rather than just
jumping to the start of the code resource, will call the main entry point, as defined when linking, instead.

But the Component Manager is 68K code, which means your main entry point must be a RoutineDescriptor. Y ou can set
that up asfollows:

pascal Conponent Result main (Conponent Par anet er s *par ans,
Handl e st orage) ;
#i f def powerc
enum {
uppMai nProcl nfo = kPascal St ackBased
| RESULT_SI ZE(SI ZE_CODE(si zeof (Conponent Resul t)))
| STACK_ROUTI NE_PARAMETER(1, SIZE CODE(si zeof (Conponent Paraneters *)))
| STACK_ROUTI NE_PARAMETER(2, S| ZE_CODE(si zeof (Handl e)))
b
Rout i neDescri ptor Mai nRD = BU LD_ROUTI NE_DESCRI PTOR(uppMai nProcl nfo, main);
#endi f

When you link the component, you must then specify MainRD as the entry point.

Note:
Y our development environment may issue awarning because your main entry point isin adata section, not a
code section. Y ou may ignore the warning.

Note:
If your code is dependent on C or C++ runtime initializations, then your main entry point would be __start or

Page: 6

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

__cplusstart, respectively, rather than main. Modify the previous example accordingly.

Note:
Some components rely on a*fast dispatching” mechanism for calling component functions. This mechanismis
dependent on the 68K architecture and is unsupported for native components, athough it will work for emulated
components running on the Power Macintosh.

Note:

In all these modifications for PowerPC, the most difficult thing to get right isthe Pr ocl nf o value. It's very easy
to make a"cut and paste” error, or get atype wrong (short instead of short *). If your component is crashing the
first thing to check (and check and check and check!) arethe Pr ocl nf o values.

Packaging the Power PC component into a resource

PowerPC development tools create your PowerPC code in a code fragment in the data fork of the file. Y our component
code must be aresource (the resource type and id are specified inthe' t hng' resource described below). Y ou can use the
MPW Rez "read" command to read from the data fork into aresource. For example:

read 'nycp' (130) myconponent. pef;
reads the code fragment from the file mycomponent.pef and creates the resource' nycp' (130).
Providing an interface to the component

If you wish your component to be called directly, you must aso supply an interface so callers know how to cal it. For
standard functions, such as Open, Close, Version, etc., thisis not a problem as the Component Manager supplies
functionsto do thisfor you. Nor isthis a problem if you are writing QuickTime components, since QuickTime supplies
standard interfaces and libraries for calling components.

But one of the advantages of the Component Manager isit lets you define your own routines with their own parameter
lists, and for these routines you must supply an interface. Typically, for 68K thisinvolved providing calers an interface
file with function prototypes for your callsand inline 68K assembly to actualy make the call.

Obvioudy, theinline 68K code is a problem for a native PowerPC caller, so you must provide glue to accomplish the
same thing. The following discussion aso appliesto calling a 68K component from PowerPC code. The interfaceisthe
same, either way.

To take the example for Inside Macintosh: More Macintosh Toolbox, page 6-30, you might have acal like:

pascal Component Result Drawer Setup (Conponentlnstance nylnstance, Rect *r) =
Conponent Cal | Now (kDr awer Set UpSel ect, 4);

Corrponent Cal | Nowisamacro that expandsto inline 68K code that pushes additional parameters and then executes an
A-trap to call the Component Manager.

Thefirgt thing when using the new Universal Headers is that the definition of Conponent Cal | Now has changed slightly.
The above declaration would change to:

pascal Conponent Result Drawer Setup (Conponentlnstance nylnstance, Rect *r)
Conponent Cal | Now (kDr awer Set UpSel ect, 4);

The only differencein this declaration is that the "=' character is missing. Thisis necessary to allow the code to compile
for both 68K and PowerPC.

For 68K code, Conponent Cal | Now continuesto expand to inline 68K code, but for PowerPC, the Conponent Cal | Now
macro expands to nothing, which means the above declaration reducesto:

pascal Component Result Drawer Setup (Conponentlnstance nylnstance, Rect *r) ;

Y ou must now supply glue for Dr awer Set up that does the same thing on PowerPC as the 68K inlines would do.

The strategy hereisto mimic what 68K code calling your component would do. Namely, push abunch of parameters on

Page: 7

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

the stack, then call the component. Y ou do that by building a struct that 100ks like the parameters as they would appear on
the 68K stack. Each cdl will require a different struct because each call can have different parameters.

Use the struct below (Dr awer Set up@ uePB) as atemplate. The first three fields, conponent Fl ags,
cormponent Par anSi ze, and conponent What arerequired, asisthe last field, which is the component instance.

conponent Fl ags isunused and should be zero.

cormponent Par anSi ze isthe size, in bytes, of the parametersto the call, not counting the component instance. Thisisthe
same humber that is passed as the second parameter in a Conponent Cal | Now macro call, and should be the same asthe
size of the params struct, discussed below.

cormponent Wat isthe selector for your component cal. It's the same asthe first parameter to a Conponent Cal | Now
macro call.

The paramsfield is a separate struct that exactly mirrors your parameters. This must be customized for your cal. A
separate struct is used here because it simplifies the sizeof calculation for the conponent Par ansi ze field. Parametersin
this struct are specified in reverse order from the parameter li<t.

Note:
Remember that the struct mirrors 68K stack alignment, not 68K struct alignment. This meansthat byte
parameters, e.g., char or Boolean, get passed as two bytes, not one. The struct must mirror that fact, so you must
declare byte fields to be abyte field followed by a pad byte field and take it into account in your parameter size
calculations.

Once you have the struct, initidize it as shown in the example, and call the component viacCal | Uni ver sal Pr oc withthe
Cal | Conponent UPP. Cal | Conponent UPP is declared for you and is part of the InterfaceLib. Y ou don't need to do
anything special to useit.

uppCal | Conponent Pr ocl nf o should have been in the interfaces, because the call is always the same, but it's not, soit's
defined below.

enum {
uppCal | Component Procl nfo = kPascal St ackBased
| RESULT_SI ZE(kFour Byt eCode)

| STACK_ROUTI NE_PARAMETER(1, kFour Byt eCode)
b
Code for the Glue Function

Once you have the structure defined, create an instantiation of it, and initidizeit. Finally, call the component using
Cal | Uni ver sal Proc asshown in the following example.

pascal ConponentResult DrawerSetup (Conponentlnstance nyl nstance, Rect *r)

{
#defi ne kDr awer Set upPar anfsi ze (si zeof (Drawer SetupParans))

#i f def powerc
#pragma options align=mac68k
#endi f

struct Drawer SetupParans {

Rect *t heRect ; /* Your paraneters go here!! In reverse
order from paraneter list. */

Page: 8

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

b

typedef struct Drawer SetupParans Drawer Set upPar ans;

struct Drawer Set upG uePB {

unsi gned char conponent Fl ags; /* Flags - set to zero */

unsi gned char conponent Par anfSi ze; [* Size of the parans struct */
short conponent Wat ; /* The conmponent request selector */
Dr awer Set upPar ans par ans; /* The paraneters, see above */
Conponent | nst ance i nst ance; /* This conmponent instance */

b

typedef struct Drawer Setupd uePB Dr awer Set upd uePB;
#i f def powerc
#pragnma options align=reset
#endi f

Dr awer Set upd uePB nyDr awer Set upd uePB;

nmy Dr awer Set upd uePB. conponent Fl ags = 0;

nmyDr awer Set upd uePB. conponent Par anSi ze = kDr awer Set upPar anfi ze;
nyDr awer Set upd uePB. conponent What = kDr awer Set UpSel ect ;

nmyDr awer Set upd uePB. par ans. t heRect = r;

nyDr awer Set upd uePB. i nstance = nyl nstance;

return Cal | Uni versal Proc(Cal | Conponent UPP,

uppCal | Component Procl nfo, &nyDrawer Set upd uePB);

}

Repesat the above steps for dl the public functions for your component. To allow for future updating, the best way to
make this glue available to your clientsisto build the glue into a Code Fragment Manager shared library that is built into
your component. Provide your client with an X COFF fileto link against. That way, if the glue changes, the client
applications will not have to be relinked.

Important:
Be sure you choose a unique name for the glue library to avoid possible name conflicts.

Creating the extended 'thng' ComponentResour ce

Hereishow to createthe' t hng' ComponentResource for a component that supports both platform68k and
platformPowerPC. Thisisthe source for MPW Rez using the latest version of Types.r that supports the
UseExt endedThi ngResour ce template. Before using the new Types.r you need to define the
UseExtendedThingResource conditional with the value 1.

A component defined with this resource will work for all previous versions of the Component Manager. By keeping the
origina portions of the ComponentResource setup for the platform68k information, it allows your component to work on
all 68K Macintosh computers. Adding the new information about your code fragment for the Power Macintosh allows
the Component Manager for that machine to use your native code.

Page: 9

TN 1004: QT Component Manager 3.0/PowerPC Native
Components

resource 'thng' (128, purgeable) {
kConponent Type,
kConponent SubType,
kConponent Cr eat or,
cnpWant sRegi st er Message,
kAnyConponent Fl agsMask,
k68KCodeType, k68KCodel D,
'STR ', kConponent NaneStri ngl D,
'STR ', kConponent| nfoStringl D,

"I CON', kConponent| conl D,

#i f UseExt endedThi ngResour ce
0x00010001, /* version 1.1 */
conponent HasMul ti pl ePl at f or ns,

kConponent | conFanmi | ylI D,

{

cnmpWant sRegi st er Message, k68KCodeType, k68KCodel D, pl at for n68k,
cnpWant sRegi st er Message, kPower PCCodeType, kPower PCCodel D,
pl at f or rPower PC
b

#endi f

b

If you have a component that only supports the 68K Macintosh, then you do not need to use the extended
ComponentResource structure. However, if you wish to utilize Icon Families and automatic version registration, then use
the extended Conponent Resour ce without the Conponent PI at f or m nf o and do not set the

cormponent HasMul t i pl ePl at f or s flag of the conponent Regi st er Fl ags. You may aso include the

Corrponent Pl at f or m nf o if you wish to and just have a single element that describes your 68K component code.

If you have a"fat" component, with both 68K and PowerPC code, set the component flags as you would for the 68K
only case and duplicate that information in the Corponent PI at f or m nf o portion of the extended resource. That will
alow your component to work correctly for versions of the Component Manager that are not aware of the extended 'thng'
resource.

If you have a component that only supports the PowerPC in native mode, then you must use the extended

Corponent Resour ce. In this case, some care must be taken so that the component will not be registered on 68K
machines. Set the Resour ceSpec field in the non-extended part of the 'thng' resource to zero. In addition, set the
component flags in the non-extended part of the resource to cnpWant sRegi st er Message, regardless of whether or not
you handle the register message. Thiswill cause the 68K Component Manager to attempt to register your component, it
will fail, because thereis no 68K code resource and your component will not be registered.

For the PowerPC case, you need to include a single ComponentPlatforminfo element that describes your PowerPC native
component code for PowerPC implementations of your component to be registered. Set the component flagsin the
extended portion of the resource as you would normally.

Page: 10

TN 1004: QT Component Manager 3.0/PowerPC Native
Components
Component Manager I nterfaces
/* MPWRez interfaces */
#def i ne cnpWant sRegi st er Message (1<<31) /* bits for conponent flags */
#def i ne conponent DoAut oVer si on (1<<0) /* bits for registration flags */
#def i ne conponent WAnt sUnr egi st er (1<<1)
#def i ne conponent Aut oVer si onl ncl udeFl ags (1<<2)
#def i ne conponent HasMul ti pl ePl at f or ns (1<<3)
type 'thng' ({
literal |ongint; [* Type */
literal |ongint; /* Subtype */
literal |ongint; /* Manufacturer */
unsi gned hex | ongint; /* component flags */
unsi gned hex | ongi nt kAnyConponent Fl agsMask = 0; /* conponent flags Mask */
literal |ongint; /* Code Type */
i nteger; /* Code ID */
literal |ongint; /* Name Type */
i nteger; /* Name ID */
literal |ongint; /* Info Type */
i nteger; /* Info ID */
literal |ongint; /* lcon Type */
i nteger; /* lcon ID */
#1 f UseExt endedThi ngResour ce
unsi gned hex |ongint; /* version of Conponent */
| ongi nt; /* flags for registration */
i nteger; /* resource id of lcon Famly */

| ongi nt = $$Count OF (Conponent Pl at f or m nf 0) ;

wi de array Conponent Pl atform nfo {

unsi gned hex | ongint; /* component flags */
literal |ongint; /* Code Type */

i nteger; /* Code ID */

integer platfornt8k = 1, platfornmPowerPC = 2; /* platformtype */

b

#endi f

Page: 11

TN 1004: QT Component Manager 3.0/PowerPC Native
Components
3
/* MPWC interfaces */
enum {
#def i ne gest al t Conponent Myr ‘cpnt' /* Component Myr version */
#defi ne gestal t Qui ckTi neFeat ures ‘qtrs' /* QuickTinme features */

gest al t PPCQui ckTi meLi bPresent = 0,

#defi ne gestalt SysArchitecture 'sysa’
gestalt68k = 1,

gest al t Power PC = 2,

/* conponent Regi sterFl ags flags for
conponent DoAut oVer si on
conponent Want sUnr egi st er
conponent Aut oVer si onl ncl udeFl ags

conponent HasMul ti pl ePl at f or s
H

struct Conponent Pl atform nfo

{
| ong conponent Fl ags;
Resour ceSpec conponent;
short pl at f or nType;
b

/* Power PC Qui ckTine glue library is present */

/* Native System Architecture */
/* Motorola MC68K architecture */

/* | BM Power PC architecture */

Conponent Resour ceExt ensi on */

(1<<0),

(1<<1),

(1<<2),

(1<<3)

/* flags of Component */
/* resource where Conponent code is found */

/* gestaltSysArchitecture result */

typedef struct Conponent Pl atform nfo Conponent Pl at f or m nf o;

struct Ext Conponent Resource {

Conponent Descri ption cd;

Resour ceSpec conmponent ;

Resour ceSpec conmponent Nane;
Resour ceSpec conponent | nf o;
Resour ceSpec component | con;

/* Registration parameters */

/* resource where Conponent code is found */
/* name string resource */

/* info string resource */

/* icon resource */

/1 new data for Conponent Manager version 3

| ong conponent Ver si on;

/* version of Conponent */

Page: 12

TN 1004: QT Component Manager 3.0/PowerPC Native Page: 13

Components
| ong conponent Regi sterFl ags; /* flags for registration */
short conponent | conFami | y; /* resource id of Icon Fanmly */
| ong count; /* elements in platformArray */

Component Pl at form nfo platformArray[1] ;

3
typedef struct Ext Conponent Resource Ext Conponent Resour ce;

Further Reference

o Inside Macintosh: More Macintosh Toolbox (Component Manager)
o Inside Macintosh: PowerPC System Software (Mixed Mode Manager and Code Fragment Manager) .

Technotes
Previous Technote | Contents | Next Technote

