TN 1182: NewGWorlds in VRAM and AGP Memory

Technote 1182
NewGvwor | ds in VRAM and AGP Memory

Page: 1

CONTENTS T

The New NewGWorld () his Technote describes the changes in NewGwor | d
with the release of Mac OS 9.

Using the New NewGWorld ()
TheNewGWr | d routine now supports allocation of

A Sample Implementation offscreen Gnor | d’sin AGP memory and VRAM. This
allows the application programmer much more flexibility

Summary in deciding how to alocate their off-screen images. It aso

adds more complexity and can, if used incorrectly, result
in significantly poorer application performance.

This Technote describes the new selectors, coverstheir
basic use, then goes on to illustrate some of the basic
problems associated with their use. Finaly, the note
discusses basic performance figures from a sample
implementation.

The New NewGWorld ()
NewGWorld

Use the NewGWor | d function to create an offscreen graphics world.

QDErr NewGWrld (GWor | dPtr * of f screenGWrl d,
short pi xel Dept h,
const Rect * boundsRect,
CTabHandl e cTabl e, /* can be NULL */
GDHandl e aCGbevice, [/* can be NULL */
Gwor | dFl ags fl ags)

of fscreenGWr| d

of f screenGWr | d isapointer to the offscreen graphics world created by this routine.
pi xel Dept h

pi xel Dept h isthe pixel depth of the offscreen world; possible depthsare 1, 2, 4, 8, 16, and 32
bits per pixel. The NewGWor | d function uses the pixel depth of the screen with the greatest pixel
depth from among all screens whose boundary rectangles intersect the rectangle that you specify
intheboundsRect parameter. If you specify zero in this parameter, NewGWor | d aso usesthe
Gevi ce record from this device instead of creating anew GDevi ce record for the offscreen
world. If you useNewGWr | d on acomputer that supports only basic QuickDraw, you may
specify only zero or onein this parameter.

boundsRect

boundsRect isthe boundary rectangle and port rectangle for the offscreen pixel map. This



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 2

becomes the boundary rectangle for the GDevi ce record, if NewGWr | d creates one. If you specify
zero inthe pi xel Dept h parameter, NewGWor | d interprets the boundaries in global coordinates that
it uses to determine which screens intersect the rectangle. (NewGWr | d then uses the pixel depth,
color table, and GDevi ce record from the screen with the greatest pixel depth from among all
screens whose boundary rectangles intersect this rectangle.) Typically, your application supplies
this parameter with the port rectangle for the onscreen window into which your application will
copy the pixel image from this offscreen world.

cTabl e

cTabl e ishandle to a ColorTable record. If you pass NULL in this parameter, NewGor | d uses the
default color table for the pixel depth that you specify inthe pi xel Dept h parameter. If you set the
pi xel Dept h parameter to 0, NewGWor | d ignores thecTabl e parameter, and instead copies and
uses the color table of the graphics device with the greatest pixel depth among al graphics devices
whose boundary rectangles intersect the rectangle that you specify in the boundsRect parameter.
If you use NewGor | d on acomputer that supports only basic QuickDraw, you may specify only
NULL in this parameter.

a@evi ce

aCGhevi ce isahandleto aGevi ce record that is used in only two cases. First, when you specify
thenoNewDevi ce flaginthef | ags parameter, in which case NewGvwor | d attaches this GDevi ce
record to the new offscreen graphics world. Second, when you specify useDi st ant Hdwr Mem
and/or useLocal Hdw Memflagsinthef | ags parameter, in which case NewGwr | d uses this
Gevi ce’SVRAM or AGP memory to store the Gnor | d. If you set thepi xel Dept h parameter to
zero, or if you do not set the noNewDevi ce, noNewDeviceflag,useDi st ant Hdw Mem and/or
useLocal Hdw Memflag(s), NewGnor | d ignores theaGDevi ce parameter, so you should set it to
NULL. If you set thepi xel Dept h parameter to zero, NewGWor | d uses the GDevi ce record for the
graphics device with the greatest pixel depth among al graphics devices whose boundary
rectangles intersect the rectangle that you specify in theboundsRect parameter. Y ou should pass
NULL in this parameter if the computer supports only basic QuickDraw. Generally, your
application should never create GDevi ce records for offscreen graphics worlds. Lastly, if you set
useDi st ant Hdw Memand/or useLocal Hdw Memflags you should always specify a GDevi ce,
otherwise the behavior and device associated with the Gwor | d, isindeterminate.

flags

f1 ags describes options available to your application. Y ou can set amost any combination of the
flags pi xPur ge, noNewDevi ce, useTenpMem keepLocal ,useDi st ant Hdw Mem and

useLocal Hdw Mem If you don’t wish to use any of these flags, pass 0 in this parameter, in which
case you get the default behavior for NewGor | d—that is, it creates an offscreen graphics world
where the base address for the offscreen pixel image is unpurgeable, it uses an existing GDevi ce
record (if you pass O in the depth parameter) or creates anew GDevi ce record, it uses memory in
your application heap, and it allows graphics accelerators to cache the offscreen pixel image. You
should not usekeepLocal with either usebDi st ant Hdwr Memor useLocal Hdw Mem the results are
in determinate. The available flags are described here:

enum

pi xPur ge

noNewDevi ce
useTenmpMem
keepLocal

useDi st ant Hdw Mem
uselLocal Hdwr Mem

1L << pixPurgeBit,

1L << noNewDevi ceBit,

1L << useTenpMenBit,

1L << keeplLocal Bi t,

1L << useDi stant Hdw MenBi t
1L << uselocal Hdw MenBi t

ti/pedef unsi gned | ongGWr | dFl ags;

pi xPur ge



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 3

Makes base address for offscreen pixel image purgeable.
noNewDevi ce

Stops the creation of an offscreen GDevi ce record.
useTenpMem

Create base address for offscreen pixel image in temporary memory.
keepLocal

K eeps offscreen pixel image in main memory where it cannot be cached to a graphics accel erator
card.

useDi st ant Hdwr Mem
Attempts to create the offscreen pixel imagein VRAM.
uselLocal Hdwr Mem

Attempts to create the offscreen pixel imagein AGP memory.
DESCRIPTION

TheNewGwr | d function creates an offscreen graphics world with the pixel depth you specify in the

pi xel Dept h parameter, the boundary rectangle you specify in theboundsRect parameter, the color table
you specify in the cTabl e parameter, and the options you specify inthef | ags parameter. The NewGwor | d
function returns a pointer to the new offscreen graphicsworld inthe of f scr eenGnor | d parameter. You
use this pointer when referring to this new offscreen world in other routines described in this chapter.

Typicaly, you pass 0 in the pi xel Dept h parameter, awindow’ s port rectangle in the boundsRect
parameter, NULL in thecTabl e and aGDevi ce parameters, and—in thef | ags parameter—an empty set ([
]) for Pascal code or O for C code. This provides your application with the default behavior of NewGWor | d,
and it supports computers running basic QuickDraw. This aso alows QuickDraw to optimize the

CopyBi t s, CopyMask, and CopyDeepMask procedures when your application copies theimagein an
offscreen graphics world into an onscreen graphics port.

TheNewGwr | d function allocates memory for an offscreen graphics port and its pixel map. On
computers that support only basic QuickDraw, NewGwr | d creates a 1-bit pixel map that your application
can manipulate using other relevant routines described in this chapter. Y our application can copy this 1-bit
pixel map into basic graphics ports.

Unless you specify zero in the pi xel Dept h parameter--or pass the noNewDevi ce flag inthef | ags
parameter and supply a GDevi ce record in the aGDevi ce parameter--NewGnor | d also allocates anew
offscreen GDevi ce record.

When creating an image, your application can use the NewGr | d function to create an offscreen graphics
world that is optimized for an image’ s characteristics-for example, its best pixel depth. After creating the
image, your application can then use the CopyBi t s, CopyMask, Or CopyDeepMask procedure to copy that
image to an onscreen graphics port. Color QuickDraw automatically renders the image at the best available
pixel depth for the screen. Creating an image in an offscreen graphics port and then copying it to the
screen in thisway prevents the visual choppiness that would otherwise occur if your application were to
build a complex image directly onscreen.

TheNewGr | d function initializes the offscreen graphics port by calling the OpencCpPor t function. The
NewGwor | d function sets the offscreen graphics port’ s visible region to arectangular region coincident
with its boundary rectangle. The NewGWor | d function generates an inverse table with the Color Manager
procedureMakel Tabl e, unless one of the GDevi ce records for the screens has the same color table asthe



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 4

GDevi ce record for the offscreen world, in which case NewGWr | d uses the inverse table from that
GDevi ce record.

The address of the offscreen pixel image is not directly accessible from the Pi xvap record for the
offscreen graphics world. However, you can use the Get Pi xBaseAddr function (described in Inside
Macintosh , pages 6-38) to get a pointer to the beginning of the offscreen pixel image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel image by using
thisformula

rowBytes * (boundsRect.bottom - boundsRect.top)

Inthef | ags parameter, you can specify several optionsthat are defined by the Gar | dFI ags datatype. If
you don’t wish to use any of these options, pass zero here.

If you specify the pi xPur ge flag, NewGnor | d stores the offscreen pixel image in a purgeable block of
memory. In this case, before drawing to or from the offscreen pixel image, your application should call the
LockPi xel s function (described in Inside Macintosh: Imaging With QuickDraw) and ensure that it
returns TRUE. If LockPi xel s returns FALSE, the memory for the pixel image has been purged, and your
application should either call Updat eGnor | d to reallocate it and then reconstruct the pixel image, or draw
directly in awindow instead of preparing the image in an offscreen graphics world. Never draw to or copy
from an offscreen pixel image that has been purged without reallocating its memory and then
reconstructing it. If you specify the noNewDevi ce flag, NewGwor | d does not create a new offscreen

GDevi ce record. Instead, it usesthe GDevi ce record that you specify in the aGDevi ce parameter—and its
associated pixel depth and color table—to create the offscreen graphics world. (If you set the pi xel Dept h
parameter to 0, NewGor | d uses the GDevi ce record for the screen with the greatest pixel depth among all
screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter—even if you specify the noNewDevi ce flag.) The NewGwor | d function keeps areference to the
GDevi ce record for the offscreen graphics world, and the Set Gaor | d procedure (described in Inside
Macintosh: Imaging With QuickDraw) uses that record to set the current graphics device. If you set the
useTenpMemflag, NewGwor | d creates the base address for an offscreen pixel image in temporary memory.
Y ou generally would not use this flag, because you should use temporary memory only for fleeting
purposes and only with the Al | owPur gePi xel s procedure (described in Inside Macintosh: Imaging With
QuickDraw). If you specify the keepLocal flag, your offscreen pixel imageis kept in Macintosh main
memory and is not cached to a graphics accelerator card. Use thisflag carefully, asit negates the
advantages provided by any graphics acceleration card that might be present. Specifying

useDi st ant Hdwr Memand/or useLocal Hdw Memattempts to all ocate the offscreen pixel imagein VRAM
or AGP memory respectively. If both flags are specified NewGwor | d will first attempt to allocate in AGP
memory, if that falls, it will attempt to allocate in VRAM. When using useDi st ant Hdwr Mem

useLocal Hdw Memor both and NewGwor | d cannot allocate the offscreen pixel image in the requested area
of memory NewGWor | d will fail and return anentul | Err error code.

Asitsfunction result, NewGwor | d returns one of four result codes enumerated below. noEr r will dways
be returned from successful callsto NewGwor | d any other returns values should be considered afailure to
all ocate the requested offscreen pixel image.

SPECIAL CONSIDERATIONS

If you supply ahandle to aCol or Tabl e record in the cTabl e parameter, NewGwor | d makes a copy of the
record and stores its handle in the offscreen PixMap record. It isyour application’s responsibility to
make sure that the Col or Tabl e record you specify inthe cTabl e parameter isvalid for the offscreen
graphics port’s pixel depth.

If when using NewGWor | d you specify apixel depth, color table, or GDevi ce record that differs from those
used by the window into which you copy your offscreen image, the CopyBi t s, CopyMask, and
CopyDeepMask procedures require extratime to complete. These will likely cause buffers allocated in
AGP memory or VRAM to be unable to utilize hardware blitting accel eration, possibly resulting in



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 5
extremely poor copy performance.

There are two important things to note about Gnr | d’s allocated in VRAM. Firgt, the base address
retrieved through Get Pi xBaseAddr or read directly from the Pi xMap Structure can become invalid anytime
memory is allocated in VRAM. This can occur either by explicit allocations, such as callsto NewGwor | d,
or by implicit ones, such as those associated with the interna texture allocation of OpenGL. The stored
pixel images themselves will still be valid but may have been moved in VRAM, thus rendering any stored
base addresses invalid. Y ou should never store an image’ s base address for longer than is necessary and
especialy never across callsto NewGWor | d or texture-creation routines,

Secondly, an offscreen pixel image allocated in VRAM can be purged at system task time by the display
driver. This means any time your application yields time such by calling Wi t Next Event Or Syst enifask
you can lose your VRAM Gwor | d contents. While this happens infrequently, usually associated with
display resolution or pixel depth changes you must code for this eventuality. This purge can occur whether
or not theGwor | d islocked or not. A return value of false from LockPi xel s, aNULL return value from
Get Pi xBaseAddr or NULL in the baseAddr field of the Pi xMap mean that the pixel image has been
purged. To reallocate it you can either call Updat eGwor | d or Di spose your current Gwor | d through

Di sposeGMr | d and redlocate it viaNewGWr | d. Either way you must then rebuild the pixel image.

To use acustom color table in an offscreen graphics world, you need to create the associated offscreen
Gevi ce record, because Color QuickDraw needsitsinverse table.

Currently, NewGnor | d does not do exhaustive error checking on the combination of parameters you
supply to it. It assumes these parameters make sense. Thisis especialy true when working with the new
flag parameters. For example, you could legally passkeepLocal , useDi st ant Hdw Mem and

uselLocal Hdw Meminf | ags and NULL inaGDevi ce, although this makes no sense and the behavior is
undefined. Y ou must ensure the flags and other parameters supplied to NewGwr | d actually work together
and not rely on the OS checking these kinds of errors.

TheNewGWr | d function may move or purge memory blocks in the application heap. Y our application
should not call thisfunction at interrupt time.

RESULT CODES

noEr r 0 No error

par antr r -50 [llegd parameter
menful | Err -108 Out of memory error
cDept hErr -157 Invalid pixel depth

See also Inside Macintosh: Imaging With QuickDraw.

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use NewGWor | d to create offscreen
graphics worlds.

If your application needs to change the pixel depth, boundary rectangle, or color table for an offscreen
graphicsworld, use the Updat eGwor | d function, described on pages 6-23 of Inside Macintosh.

Back to top
Using the New NewGnor I d ()

The basics of using the new NewGWr | d remain the same. The two additional flagsuseDi st ant Hdwr Mem
and uselLocal Hdw Mem allow the user to control where the offscreen pixel image is alocated. If you use
either useDi st ant Hdwr Memor useLocal Hdw Mem by themselves, NewGWor | d will attempt to alocate the
image on the device specified in aGDevi ce in only VRAM or AGP memory respectively. If thisallocation



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 6

falls, NewGwor | d will fail and return amentful | Err error. If bothuseDi st ant Hdw Memand

useLocal Hdw Memare specified, NewGvwor | d will first attempt to alocate in VRAM first, then AGP
memory of the device specified in aGDevi ce. If both fail, NewGwor | d will fail and return amentul | Er r
error. aGbevi ce should never be NULL when alocating in AGP memory or VRAM since the device used
for the allocation will be indeterminate, which is amost never what the developer intended.

useDi st ant Hdwr Memis useful to allocate pixel imagesthat are set once (or few) and used many times. It
isrelatively dow to writeto aVRAM pixel image from system memory, but it isvery quick to do a
hardware copy from VRAM to VRAM or VRAM to the screen. Since there is currently no mechanism to
determine if a copy operation will use hardware acceleration, it is recommended that all pixel images
alocated in VRAM be the same bit depth and have the same color table as the screen. Additionally, you
should use simple copy operations that do not use masks or resizing to maximize the possibility of a
specific copy being accelerated.

useLocal Hdw Memattempts to allocate the pixel image in AGP memory. If the system does not have an
AGP graphics system or NewGWor | d is unable to alocate the pixel image, the dlocation will fail, returning
amenful | Err error. Since AGP alocations are in system memory, these do not suffer from the same
problems associated with pixel images allocated in VRAM. AGP memory can however have some
limitations, such as being uncacheable, that make it dightly slower than regular system memory in copies
to and other system memory. While thisis minor, devel opers should be aware of the dight performance
degradation.

It isvery important to understand where all ocations happen and the general caveats (described in the
preceding paragraphs) associated with alocations in other than standard system memory. The key to
improving an application’ s performance using offscreen Gwor | d’swith useDi st ant Hdwr Memor
useLocal Hdw Memflagsisidentifying which pixel images are used often and can be transferred with
hardware accelerated copies. Images used very often and modified infrequently can be placed in VRAM to
optimize their copy performance. For general purposes, you can use AGP memory. Since the amount of
AGP memory islimited and other graphics services, such as OpenGL, useit, care should be used to
allocate more frequently used imagesfirst. In addition, note that AGP memory is not swapped out to disk
by the virtual memory system and the amount available may vary with the amount of physical memory
installed on a system.

To recap, if acopy does not use hardware accel eration, performance from AGP memory to the screen can
be expected at best to be equal to system memory. In the same non-accel erated case performance from
VRAM to the screen will be significantly slower than from system memory. So alocate you images
carefully and use AGP memory and VRAM judicioudly.

Asafina note, when NewGor | d alocates memory outside of your application heap (i.e., in AGP memory
space or VRAM) it is extremely important that you properly dispose of that memory with Di sposeGwor | d
prior exiting your application. Failure to do so will leak memory, making either the VRAM or AGP
memory unavailable for future use. In many cases, thisleaked memory will only be recovered at restart.

One more reminder: when devel oping your implementation, ensure you note the above specia
considerations for Gwor | d’sallocated in VRAM. Itiscritical that you handle moved and purged pixel
images for amnr 1 d’sin VRAM correctly, ensuring you will not display garbage or accessinvalid memory
when trying to use VRAM Gwr | d’s.

Back to top
A Sample I mplementation

Implementing thisis actually very easy. Below is some simple code that will assist you. First, we will test
for the availability of the new flags. In this case, we just need to look at the system version (since there are
no specific selectors for the new version of NewGvwor | d). If the Mac OSin useis later than 8.6, we can
expect useDi st ant Hdwr Memand useLocal Hdw Memto be available.



TN 1182: NewGWorlds in VRAM and AGP Memory

Bool ean gNewNewGWrl d = fal se;
| ong versionSystem
/1 this will only work with Mac OS later than 8.6
Gestalt (’sysv', &versionSysten);
i f (0x00000860 < (versionSystem & 0xO0000FFFF))
gNewNewGWIrld = true; // systemis greater than version 8.6

Next, we want to encapsulate the functions required to allocate and reallocate our Gnr | d. We can use the
same logic for both, checking the Gwor | dpt r , then checking the pixel image’ sbaseAddr and finally
checking to seeif the window’s GDevi ce is still the same as the offscreen’s GDevi ce. When alocating
theGwor | d we take the location input parameter and use this to determine in which memory space to

alocate (VRAM, AGP memory, or application heap). If an alocation fails, we fall through to the next type.

Obvioudly, you can modify this behavior to suit your needs. The function returnstrueif theGwor | d is
allocated or reallocated and falseif the existing Gwor | d isvalid. Thisis shown in the following listing.

Bool ean Buil dOf fscreen (GWrldPtr * ppGMrid, WndowPtr pW ndow,
short * plocation)

{
GDHandl e hgdW ndow = NULL;
Bool ean f Must Rebuild = fal se;
if (NULL == *ppGWorld) // if GMrld passed in is not allocated
f Must Rebui | d = true;
el se
{
Pi xMapHandl e hPi xmap = Get GWr | dPi xMap (*ppGWorl d);
/1 if pixmap handle is NULL or pixnmap base address is NULL
if ((NULL == hPixmap) || (! GetPixBaseAddr (hPixmap)))
f Must Rebuil d = true;
/1 if GMrld not on same device as w ndow
else if (GetGWrl dDevice(*ppGWrid) !'= Get WndowbDevi ce (pW ndow))
f Must Rebui l d = true;
}
if (fMustRebuild) // nust rebuild
{

/1 wi ndow pi xel depth
short wPi xDepth = (**((CG af Ptr) pW ndow) - >port Pi xMap) . pi xel Si ze;
GDHandl e hgdW ndow = Get W ndowDevi ce (pW ndow);// w ndow GDevi ce
if (NULL !'= *ppGWrld) // if we have an allocated GMrld
{
D sposeGMrld (*ppGnorld);// dunp our current GWrld
*ppGWOrld = NULL;

switch (*plocation) // where to we want to put it

case kl nVRAM
if (noErr == NewGWrld (ppGWrld, wPi xDepth, &pW ndow >port Rect,
NULL, hgdW ndow,
noNewDevi ce | useDi st ant Hdwr Mem) )
br eak;
/1 we failed with VRAM signal that and drop to AGP
SysBeep (30);
*pl ocation = Kkl nAGP;
case Kkl nAGP:
if (noErr == NewGWrld (ppGWrld, wPi xDepth, &pW ndow >port Rect,
NULL, hgdW ndow,
noNewDevi ce | uselLocal Hdw Mem) )
br eak;
/1 we failed with AGP, signal that and drop to system nmenory
SysBeep (30);

Page: 7



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 8

*pl ocation = Kkl nSystem
case Kkl nSystem
defaul t:
if (noErr !'= NewGWMrld (ppGhrld, wPi xDepth,
& W ndow >port Rect, NULL, hgdW ndow,
keepLocal | noNewbDevi ce))

{

/'l we failed with systemthus, we can’'t allocate our GMrld,
/1 signal that, indicate no |ocation and drop to debugger
SysBeep (30);
*pl ocati on = kNoWher e;
DebugStr ("\pUnable to allocate off screen image");
return false; // nothing was al |l ocated

}

*pl ocation = klnSystem
}

return true; // we rebuilt our GMwrld

return false; // everything is okay

This previous function uses standard Macintosh Toolbox functions except the call to Get W ndowDevi ce
that determines the GDevi ce on which the mgjority of the window resides. Note that it is up to the
individua application developer to handle the case where windows span multiple devices.

Get W ndowDevi ce islisted below.

GDHandl e Get W ndowDevi ce (W ndowPtr pW ndow)
{
Rect rectWnd, rectSect;
short wFraneHei ght, wTitl eHeight;
| ong greatestArea, sectArea;
GDHandl e hgdNt hDevi ce, hgdZoonOnThi sDevi ce;

rect Wnd = pW ndow >port Rect;
Local Tod obal ((Point*)& rectWnd.top); // convert to global coordinates
Local Tod obal ((Point*)& rect Wnd. botton);
/1 cal cul ate height of window s title bar
wFrameHei ght = rectWnd. left - 1 —
(**(( (W ndowPeek) pW ndow) - >st rucRgn) ). rgnBBox. | ef t;
wlitleHeight = rectWnd.top - 1 —
(**(( (W ndowPeek) pW ndow) - >st rucRgn) ) . r gnBBox. t op;
rectWnd.top - wTitl eHeight;
hgdNt hDevi ce Get Devi ceLi st ();
great est Area O; // initialize to O
/'l check wi ndow agai nst all gdRects in GDevice list and remenber
/1 which gdRect contains |argest area of w ndow}
whi | e (hgdNt hDevi ce)
{

rectWnd.top

if (TestDeviceAttribute (hgdNt hDevi ce, screenDevice))
if (TestDeviceAttribute (hgdNt hDevice, screenActive))

/'l The SectRect routine calculates the intersection

/1 of the window rectangle and this GDevice

/1 rectangle and returns TRUE if the rectangles intersect,

/1 FALSE if they don't.

Sect Rect (& ect Wnd, &(**hgdNt hDevi ce).gdRect, &rect Sect);

/'l determ ne which screen holds greatest w ndow area

/'l first, calculate area of rectangle on current device

sectArea = (long)(rectSect.right - rectSect.left) *
(rectSect.bottom- rectSect.top);

if ( sectArea > greatestArea )

{



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 9

greatest Area = sectArea;// set greatest area so far
hgdZoonOnThi sDevi ce = hgdNt hDevi ce;// set zoom device

}
hgdNt hDevi ce = Get Next Devi ce( hgdNt hDevi ce) ;

}
} /1 of while
return hgdZoonmOnThi sDevi ce;

Once we have the buffer allocated, we just need to fill it and blit it to our window. The process to do this
remains unchanged. The following listings demonstrate this. Note, Fi | | Of f scr een assumes the

Gwor | dPtr passed inisvaid, whileBl i t Tow ndowis more general purpose and runs a check on the
Gnorl d.

/1 fills offscreen buffer with random bright col or

void FillOffscreen (GMrl dPtr pGAori d)
{
GDHandl e hCDSave;
CG af Ptr pCG af Save;
Rect rectSource = (pGMrld->portRect);
RGBCol or rgbCol or;

o

rgbCol or. red
rgbCol or. green
rgbCol or. bl ue

(Random () + 32767) / 2 + 32767;
(Random () + 32767) / 2 + 32767,
(Random () + 32767) / 2 + 32767,

Get GWrl d (&CG af Save, &hGDSave);
SetGWrld (pGworld, NULL);
if (LockPixels (GetGworl dPi xMap (pGnorld)))
{
/1 draw some background
Er aseRect (& ect Source);
RGBFor eCol or (& gbCol or);
Pai nt Rect (& ect Source);
Unl ockPi xel s (Get GMr | dPi xMap (pGWrid));

}
Set GWrld (pCG af Save, hGDSave) ;
}

/1l checks offscreen and blits it to the front
void BlitToWndow (GMrldPtr pGMrld, WndowPtr pW ndow, short * plLocati on)

Rect rectDest = ((G af Ptr)pW ndow) - >port Rect ;
Rect rectSource = ((G af Ptr)pW ndow) - >port Rect ;
G af Ptr pCG af Save;

/'l check to ensure we have a valid offscreen and rebuild if required
if (BuildOfscreen (& GWrld, pWndow, pLocation))
FillOfscreen (pGrld);

/1 blit
Get Port (&pCG af Save) ;
SetPort ((GafPtr) pW ndow);
if (LockPixels (GetGWrl dPi xMap (pGWMrlid)))
{
CopyBits (& (G afPtr)pGmrlid)->portBits,
&W ndow >portBi ts,
& ect Sour ce, &rectDest, srcCopy, NULL);
Unl ockPi xel s (Get GWr | dPi xMap (pGWrid));
}



TN 1182: NewGWorlds in VRAM and AGP Memory Page: 10

Set Port (pCG af Save) ;

Lastly, we need to ensure the memory alocated by NewGvwr | d is disposed of properly. The follow code
demonstrates this.

/1l this is VERY inportant since the GMrld may not be in the application heap
if (pGnorld)

Di sposeGMrild (pGorld);
pGMrld = NULL;

Back to top

Summary

Using the new NewGWor | d greatly enhances your options for creating performance-oriented applications.
By dlocating pixel imagesin either VRAM or AGP memory space, one can achieve levels of graphics
performance previously unavailable. Using these new features though does impose some requirements on
the application devel oper to ensure their code functions properly under all conditions. A checklist to
consider when using the new NewGwr | d is as follows:

Check system version for availability of useDi st ant Hdw Memand useLocal Hdwr Memflags.
Provide aGDevi ce when usinguseDi st ant Hdw Memand/or useLocal Hdw Mem

Check your return values for errors.

When retrieving your pixel image’ s base address check for NULL.

Implement arestoration scheme to handle purged pixel images.

Do not cache base address across functions that yield time to the system or that could allocate or
dedlocate VRAM.

e EnsureGwor | ds are disposed of properly to prevent memory leaksin VRAM or AGP memory.

TheflagsuseDi st ant Hdwr Memand useLocal Hdw Memprovide the developer with more options for
handling offscreen graphics but must be used with complete understanding of the additional burdens
placed on the application.

Further References

e Appl€e's Technote web site
o Inside Macintosh: Imaging With QuickDraw; Chapter 6: Offscreen Graphics Worlds

Back to top
Downloadables

FOF
Eﬂ Acrobat version of this Note (K).

Back to top

To contact us, please use the Contact Us page.
Updated: 05-October-1999

Technotes | Contents




TN 1182: NewGWorlds in VRAM and AGP Memory Page: 11

Previous Technote | Next Technote




