TN 1117: Open Transport STREAMS FAQ Page: 1

Technote 1117
Open Transport STREAMS FAQ

CONTENTS T

Getting Started his Technote contains collected lore on writing
STREAMS modules and drivers for use with Open

STREAMS Modules and Drivers Transport.

Messages and Memory Allocation It is structured as a series of question and answer pairs,

. that answer Frequently Asked Questions about Open

Transport Provider Interface (TPY) Transport STREAMS. However, thisisn't just acollection

Data Link Provider Interface (DLPI) of Q& As, alot of the materid istutorial in nature.

Summary This Technote is directed at devel opers who are writing
OT kerndl level plug-ins, such as protocol stacks,
networking device drivers, and filtering and encryption
software.

Getting Started

Q What is STREAMS?

A When written in upper case, STREAM S refersto a standard environment for loadable networking
modules. This environment was first introduced as part of AT& T UNIX [UNIX isaregistered trademark
of UNIX Systems Laboratory, Inc., in the U.S. and other countries], but has since been ported to many
platforms.

Q So what is Open Transport?

A Open Transport isan implementation of STREAMS on the Mac OS. OT contains a number of
enhancements vis-a-vis atraditional STREAMS environment, but STREAMS lives at its core.

Q What is Mentat Portable Streams?

A Mentat Portable Streams (MPS) isafast, portable implementation of STREAMSthat islicensed to
system vendors by Mentat. While MPS is compliant withthe AT& T UNIX STREAMS at the API levd,
it contains many enhancements, both internal and external. Open Transport's STREAMS environment is
based on MPS.

Q I'm just getting started with STREAMS. What should | read?

TN 1117: Open Transport STREAMS FAQ Page: 2

A\ There are anumber of useful references that explain the STREAMS architecture in general:

e Programmer's Guide: STREAMS UNIX SystemV Release 4 , UNIX Press, ISBN
0-13-02-0660-1

e STREAMSModules and Drivers, UNIX SystemV Release 4.2 , UNIX Press, ISBN
0-13-066879-6

o UNIX System V Network Programming , Stephen Rago, Addison-Wesley, ISBN
0-20-156318-5

The "Open Transport Module Developer Note" (part of the OT Module SDK) describes the differences
between a standard UNIX STREAM S implementation and the one provided by Open Transport. In
generd, the OT implementation is very closeto UNIX, soif you're an experienced UNIX STREAMS
programmer you will bein familiar territory.

Open Transport Advanced Client Programming explains many of the low-level client programming
interfaces required to test and plumb your STREAMS plug-ins under Open Transport.

Another reference | find useful is UNIX man pages. If you have access to a UNIX machine that supports
STREAMS, you might find that the STREAMS "man" pages areinstalled. To test this out, try typing
man put msg onthe UNIX command line.

Y ou should also keep on eye on the Open Transport web page, which contains news and information for
Open Transport developers. In addition, there are a number of non-Apple STREAM S-related sites on the
Internet, including:

e the Mentat home page.

e Sun Microsystems STREAMS Programming Guide.
e DennisRitchie'sorigind STREAMS paper.

e TheDigita UNIX STREAMS Programmer's Guide.

Finaly, you should join the OT mailing list, which isamailing list dedicated to solving Open Transport
programming questions, at al levels of experience. See the OT web page for instructions on how to join.

Q What's the rel ationship between STREAMS and XT1?

A XTI isastandard API for access ng network services. STREAMS is a standard way of implementing
networking services. Traditionally machines running STREAMS support an XTI AP, athoughitis
possible to support other types of APIs. For example, Open Transport supports a standard XTI interface,
an asynchronous XTI interface, and classic networking backward compatibility, al on top of STREAMS.
Also, UNIX STREAMS implementations commonly support a Berkeley Sockets API on top of
STREAMS.

Q Isn't STREAMS slow?

A A poorly implemented STREAMS framework can dlow down STREAM S-based protocol stacks.
Thisisnot true of MPS. Actua detailed performance measurements of MPS on multiple platforms have
shown MPS's overhead to be negligible, and have shown that Mentat's STREAM S-based TCP
outperforms various BSD-based TCP implementations.

STREAMS Modulesand Drivers

Q I'm reading the STREAM S Modules and Drivers book described above and | can't make head or tail of it. Any
suggestions?

TN 1117: Open Transport STREAMS FAQ Page: 3

A | must admit that it wasn't until my third attempt at reading that book that | made any sense out of it. My secret? |

found that if you print out a copy of theni st r eam h header file and have it at hand while you're reading, it helpsa
lot.

Q What isa"stream"?

A Inthe most genera definition, astream (in lower case) is aconnection oriented sequence of bytes sent between
two processes. However, in the STREAMS environment, astream normally refers to a connection between a client
process and a network provider. For example, when you open a URL in aweb browser, it creates a stream to the TCP
module to transport connection information and data.

A stream carries the implication of instance. For example, thereis only one Ethernet driver but it can support many
different streams. One stream might be used by AppleTalk, one by TCP, and yet another by a network sniffing
program.

Finaly, a stream aso implies a chain of modules, starting at the stream head and terminated at a driver. For example,
if you open an endpoint "adsp,ddp,enet0", the system creates a new stream that looks like the one shown below.

A
Stream Head
Module, eq “adsp™
Module, eq “ddp™
Driver, eq “enet0™
Y
Write Side Fead Side

Any datathat you write to that endpoint starts at the stream head and proceeds first to the "adsp” module. That
module can pass the data downstream (in this case towards the "ddp") with or without modifying it, or swallow the
data completely, or reply to the data with a message sent upstream.

Q Whét is the stream head?

A Thestream head is part of the STREAMS kernel. It isresponsible for managing all interaction between the
client and the modules. It works in concert with client side libraries that implement the actual networking APIs.

There are two keys areas of interaction: signals and memory copying.

Signals are amechanism whereby the kernel can inform client code of certain events. Typically thisis used for
eventslike the arrival of data, but it is possible for modules to generate signals directly by sending them SI G
message upstream. Obvioudly there is a connection between signals and OT's API-level notifiers.

Memory copying is the other main duty of the stream head. When you call an API routine (such as orsnd), you're

TN 1117: Open Transport STREAMS FAQ Page: 4

actually calling the Open Transport client-side libraries. These libraries take the contents of your call (i.e. the data
you want to send, or the address you want to connect to, etc.) and package it up into an STREAMS message. The
client then calls the kernel to pass this messages to the stream head, and the stream head passes it down the stream.
Once the datais packaged up into messages, no further data copying is done as these messages are passed around
inside the kernel.

Because all datais transmitted between client and kernel using messages, there is only one point of entry between the
client and the kernel. This means that STREAM S modules are not required to deal with client address spaces. This
central location where the kernel accesses client memory decreases the risk of a protection violation on a protected
memory system, and allows STREAMS modulesto run in response to an interrupt without requiring a context
switch.

Of course, there are some complications. For example, some APl routines (especially OTl oct |) pass client addresses
in message blocks. Modules can only gain access to the memory pointed to by these addresses by sending special
messages up to the stream head. Remember, it's the stream head that does al of the interaction between client and
kernel.

Q What's the difference between amodule and adriver?

| asked this question when | was learning STREAMS and got the answer A module can only be pushed, and a
driver can only be opened.” Thisanswer isfundamentally correct, but it didn't help alot at the time.

The real answer isthat thereisn't alot of difference between the two; modules and drivers have avery smilar
structure. In most cases, STREAMS documentation says "module” when it mean "module or driver".

The big difference between amodule and adriver isthat adriver isthe base of a stream. Streams pass through
modules, but terminate at drivers. Thus modules must be pushed on top of an existing stream (because they need
someone downstream of them), whereas drivers are dways opened directly.

The following picture shows multiple AppleTalk streams all based on top of one Ethernet driver.

Stream Head

mil BT

Module, eq “adsp™

Module, eq “ddp™

"

Driver, eq “enet0™

Thisis complicated by the existence of multiplexing drivers. Multiplexing drivers have both upper and lower
interfaces. The upper interface looks like adriver, that is, it can be opened multiple times for multiple streams and
appears to be the end of those streams. However you can also send aspecia i oct | cal tothedriver (I _LI NK) to
connect streams to the lower interface. At the lower interface, the multiplexing driver appears to be the stream head
for those connected streams.

For example, you might implement the IP module as a multiplexing driver. |P has multiple upper streams (i.e. client
processes using |P) and multiple lower streams (i.e. hardware interfaces over which IP is running) but thereis no

TN 1117: Open Transport STREAMS FAQ Page: 5

one-to-one correspondence between these streams. | P uses one a gorithm (routing) to determine the interface on
which to forward outgoing packets. | P uses a second algorithm (protocol types) to determine which upper stream
should receive incoming I P packets.

The following picture shows three TCP streams connected to a | P multiplexing driver, which isin turn connected to
link layer ports, one run directly through an Ethernet driver, and the other through another stream that connects a
SLIP moduleto a serial port.

Stream Head

Module, eq “tcpm

w

Driver, eq “ip™

—

Module, eq “slip™
Driver, eq “serials™ Driver, eq “enet0™

NOTE:

In Open Transport, |Pis not structured as amultiplexing driver, primarily for efficiency reasons. The
aboveisjust an example of how to think about multiplexing drivers. The next question explains how IP
isreally done.

Q I've noticed Open Transport has an "ip" driver and an "ipm" module. Why do some modules also appear as
drivers?

A Thisisan implementation decision on the part of the module writer. In some cases, it's convenient to access a
module as amodule, and in other casesit's convenient to access it asadriver.

In this specific case, the MPS | P modul e behaves differently depending on whether it is opened asamodule or a
driver. When OT is bringing up the TCP/IP networking stack, it first opensthe "ip" driver. |P recognizes that this
first connection, known asthe control stream, is specia, and respondsto it in aspecia way. Later, when OT is
bringing up interfaces under IP (e.g. an Ethernet card and a PPP link), it first opensthe link-layer driver and then
pushes the "ipm" module on top of it. Each time OT does this, the IP module recognizes this specia case and
preparesitsalf to handle this new interface. Finally, when a client process actually wants to access | P services, OT
opensthe"ip" driver to create anew stream to it for the client.

STREAMS givesyou alot of flexibility, and the designers of MPS IP chose to useit.

Q What is this q parameter that's passed into each of my routines?

TN 1117: Open Transport STREAMS FAQ Page: 6

A Theq parameter (which pointsto aqueue_t datastructure) is the fundamental data structure within STREAMS.
Each time astream is opened, STREAMS alocates apair of queues (aqueue pair) for each module in the stream. It
then hangs all the stream-specific information off the queue pair.

One queue is designated the write-side queue. Data that the client sends to the stream is handled on the write-side
gueue. The other queueistheread-side queue. Datathat the stream generates and sends to the client is handled on
the read-side queue.

Each queue has aput routine, which is called whenever amessageis sent to the module. The put routine has the
choice of sending the message on to the next module (with or without modification), temporarily queuing the
message on the queue for processing later, replying to the message by queuing the reply on the other queue in the
queue pair, or freeing the message.

Each queue also has an optional service routine that is called when there is queued data to be processed. The service
routine is optional because the modul€e's put routine may be written in such away that it never queues messages for
later processing.

Because these routines are specific to aqueue, modules tend to contain two routines of each type, one for the read
side and one for the write side. These routines are known astheread put routine, read service routine, write put
routine, and write service routine.

In addition, multiplexing drivers can have both upper and lower queue pairs, implying atotal of eight entry points.

When called, each of these routinesis passed aq parameter. The read-side routines are always passed the read queue
and the write side routines are always passed the write queue. It'simportant to remember that each queue denotes a
specific connection to your module and that queues are always created in pairs. So the g parameter passed to your
moduleisreally just away of distinguishing stream instances.

Q I'm executing in aread-side routine (either a put or service routine) and | need access to the write-side queue.
How do | find it?

A Queue structures are actually alocated in memory as pairs, butted up right next to each other, with the read queue
immediately preceding the write queue. Given that q isapointer to the read queue, you can derive the write queue
using the C construct &q[1] . However an even better solution is to use the macros RD, WR and OTHERQ defined in
"mistream.h”.

Q How do | store global datain my module?

The best way to store globals in your module isjust to declare global variables. Because modules are shared libraries,
you don't need to do anything specia to access these globals. Note that these globals are shared across all instances
of your module, i.e. al streams that run through your module.

NOTE:

There is one exception to the above statement. If you have two PCI (or PC Card 3.0) cardsinstalled, OT
will create a separate instance of the CFM-based driver for each card. So the driver will have a copy of
it'sglobal variablesfor each installed card. The driver distinguishes which card its driving by

RegEnt ryl D, passed as aparameter to its| ni t St r eanivbdul e routine.

If you want to store globals on a per-stream basis, you have to do alittle more. The following snippet demonstrates
the recommended technique.

/|l First declare a data structure that holds all of the
/1 data you need on a per-stream basi s.

struct MyLocal Dat a

b

TN 1117: Open Transport STREAMS FAQ

OSType nmagi c; /1 ' ESK1l' for debugging
| ong current St at e; /1 TS_UNBND etc.
[...]

typedef struct MyLocal Data MyLocal Data, *MyLocal DataPtr;

/'l Then declare a global variable that acts as the head of

I

the Iist of all open streans.

static char* ghMdul eList = nil;

I

In your open routine, call m _open_commto create

/1l a copy of the global data for this new stream

static int MyOpen(queue_t* rdq,

dev_t* dev, int flag,
int sflag, cred_t* creds)

MyLocal Dat aPtr | ocal s;

[...]
err = m _open_com{ &Modul eli st ,
si zeof (MyLocal Dat a) ,
rda,
dev, flag,
sflag, creds);
if (err == noErr) {

/!l m _open_comm has put a pointer to our per-stream
/! data in the qg_ptr field of both the read-side
/1l and write-side queue.

| ocals = (MyLocal DataPtr) rdg->qg_ptr;
| ocal s->magi ¢ = ' ESK1' ;

| ocal s->currentState = TS_UNBND,;
[...]

}
[...]

In your close routine, use m _close_commto destroy
the per-streamglobals. Note that, if you have
any pointers in your data, you nust neke sure to

di spose of those before calling m _cl ose_comm

As an alternative to m _close_comm you mght want to
use m _detach and m _cl ose det ached.

static int Myd ose(queue_t* rdq, int flags, cred_t* credP)

{

I
I
I

[...]
(void) m _close_com(&Modul eLi st, rdq);
[...]

If you find that you need to | oop through all the
streans open through your nobdule, use the m _next_ptr
routi ne as shown bel ow.

static void MyForEachStream([...])

{

MyLocal Dat aPtr aStreaniocal s;

aStreanlLocal s = (MyLocal DataPtr) gModul eLi st ;

Page: 7

TN 1117: Open Transport STREAMS FAQ Page: 8

while (aStreamlocals !'= nil) {

[...]
aStreanLocals = (MyLocal DataPtr) m _next_ptr((char *) aStreaniocals);

The Open Transport Module Developer Note has afull description of the routines used in the above snippet.

Q How do | synchronize accessto my global data?

A mMPs provides support for synchronizing access to global or per-stream data. When you install your module, you
must fill out thei nst al | _i nf o structure. One of the fieldsin thisstructureisi nst al | _sql vl , which you set to
control your modul€'s reentrancy.

NOTE:

When reading this description, it's important to keep the following abbreviations in mind. In the context
of MPS, "SQ" stands for synchronization queue, which isthe key data structure that MPS uses to
guard against reentrancy. Also, "SQLVL" stands for synchronization queue level, which isthe degree
of mutual exclusion needed by a module.

Thelega vauesfor the sync queue leve are:

SQLVL_QUEUE
Y our module can be entered once per read or write queue. This means that you must guard your global data
from access by multiple threads running in you module, and you must guard your per-stream data from
access by threads running on the read and write sides of the stream simultaneously.

SQLVL_QUEUEPAI R
Y our module can be entered once per queue pair. Y ou must still guard your global data from access by
multiple threads running in your module, but your per-stream data is safe from simultaneous access by the
read and write sides.

SQLVL_SPLI TMODULE
[This sync queue level isnot yet supported in Open Transport, and is documented here for compl eteness
only.] Your module can be entered once from an upper queue and once from alower queue. With this sync
queueleve, thenps_beconme_wri t er function isrelatively cheap, and thisis the recommended sync queue
level for network and link-layer drivers.

SQLVL_MODULE
Y our module can only be entered once, no matter which instance of the module is entered.

SQLVL_GLOBAL
Between al modulesthat use SQLVL_GLOBAL, only one will be entered at atime.

In the above list, sync queue levels are given from least exclusive (SQLVL_QUEUE) to most exclusive (SQLVL_GLOBAL).
In genera, the least exclusive sync queue level also yields the best system performance, while the most exclusive
value leads to the worst system performance. However thisis not guaranteed. If, by setting your sync queue level to
SQLVL_QUEUE, you are forced to make a significant number of callsto nps_beconme_wri t er, you may find better
performance with a more exclusive sync queue level.

NOTE:

If your moduleis using sync queue levels SQLVL_QUEUE, SQLVL_QUEUEPAI R, OF SQLVL_SPLI TMODULE,
you can use the mps_beconme_wri t er function to ensure that only one thread of execution isinside a
particular part of your module at any given time. See the Open Transport Module Devel oper Note for a
description of nps_become_wri ter.

So, what does this mean in practical terms? Before OT calls your module (either the put routine or the service
routine), it checks to see whether there is athread of execution already running in your module. If thereis, it checks
the sync queue level of the module to see whether calling your module would be valid at thistime. It uses these two
factors to decide whether to call your module immediately, or queue the call for some later task to execute.

TN 1117: Open Transport STREAMS FAQ Page: 9

The sync queue levelsfdl into two categories.

1. Queue-based sync queue levels (i.e. SQLVL_QUEUE and SQLVL_QUEUEPAI R) are centred around the queue
pairs associated with each stream that's opened to your module. If you use SQLVL_QUEUE, your module can
be reentered as long as the put or service routine for that queue isn't dready running. If you use
SQLVL_QUEUEPAI R, your module can be reentered as long as a put or service routine for that queue pair
(i.e. the stream) isn't aready running

2. Module-based sync queue levels (SQLVL_SPLI TMODULE, SQLVL_MODULE and SQLVL_GLOBAL) work on a
module-by-module basis. For the moment, you can ignore SQLVL_SPLI TMODULE. With SQLVL_MODULE, your
module cannot be reentered at all. With SQLVL_GLOBAL, your moduleis mutually excluded against al other
module that are marked as SQLVL_GLOBAL. [This can be useful if you're trying to bring up a suite of
modules that talk to each other.]

Of course, these mutual exclusion guarantees are for when STREAMS callsyou, i.e. your open, close, put and
service routines. If you are called by other sources (such as a hardware interrupts), you have to take additional
measures to ensure data coherency. Of course, OT provides support for this too. See the Open Transport Module
Developer Note for a description of the routines you can call from your hardware interrupt handler.

In general, | recommend that you first use SQLVL_MODULE in order to get your module working. Then, once you
understand the data coherence issuesin the final code, analyze the code to see if you can use a better sync queue
level.

IMPORTANT:

If your are pushing your module into an existing protocol stack, you should be sure to check the sync
gueue leve of the other modulesin the stack. If the existing modules have a very exclusive sync queue
level, there is nothing to gain by engineering your module to have anon-exclusive level. Conversdly, if
the existing modul es have a non-exclusive sync queue level, you could affect the performance of the
entire protocol stack by adopting avery exclusive level.

Q I'm confused by the gi ni t structures. | need to have two gi ni t structures, one for the read side and one for the
write side, but that implies two open and close routines. Two open routines seems like a recipe for confusion. What
thefull story?

A For the open and close routines, STREAMS only looks at the read-side gi ni t structure.

Q How should | structure my STREAMS module?

STREAMS modules have two primary entry points, the put routine and the service routine. In general, you should try
to do al the work you can in your put routine. Thisis contradictory to most of the STREAMS documentation, and is
an important factor in making your modules fast.

Every time you use put g to put a message on your queue, STREAM S must schedule atask to run your service
routine in order to service that message. While OT'sinterna task scheduler isfast, it still takestime.

The dternative is to process the message in your put routine and then immediately send the message on to the next
module (using put next) or reply to the message (using gr epl y). This can make your put routine complicated. If
you find that your put routine is getting too complicated, smply break it up into subroutines. The cost a subroutine
call ismuch less than the cost of scheduling your service routine.

Of course you can still use put g in flow control conditions because, if you're flow controlled, you don't redlly care
about speed.

Q How does flow control work?

TN 1117: Open Transport STREAMS FAQ Page: 10

STREAMS flow control is quite hard to understand. The basic tenets of STREAMS flow control are:

Y our module either takes part in flow control, or it doesn't. If it doesn't take part in flow control (i.e. it'sa
simplefilter module), you should let STREAMS know by having no service routine. Y ou can then ignore the
other rules given below.

High priority messages are not subject to flow control. It'simportant that your module avoid enqueuing them
because of flow control because this can cause a deadlock situations (i.e. you can't flush the messages out of
astream because the stream is flow controlled).

Flow control is governed by two vaues in the queue, the high and low water marks. If the number of bytes
of messages stored on a queue is greater than the high water mark, the queue isflow controlled. The queue
stays flow controlled until the number of bytes of messages enqueued falls below the low water mark.
Bytes go on to your queue when you call put q. This has the side effect of scheduling your service routine.
[You can a so schedule your service routine directly using genabl e.] Your service routine only gets run once
regardless of how many times you scheduleit.

Bytes come off your queue when you call get g in your service routine. When you get amessage like this,
you should call canput next to seeif it's possible to put the data on the next queue that has a service
procedure. If itis, call put next to put it onthe next queue. If itisn't, cal put bg ("put back on queue”) to
return the message to your queue. Calling put bq puts the data back on to your queue without rescheduling
your service routine.

Because your service routine can only be scheduled once, it iscritical that your service routine finish either
by calling put bq or by completely draining the queue (i.e. get q returnsnil). A sample serviceroutineis
shown below.

// A standard read service routine that follows the
/| above gui del i nes.

static int MyReadService(queue_t* Q)

mbl k_t *np;

while ((mp = getq(q)) !'=nil) {

}

/'l Never putbq a high-priority nmessage.

if ((np->b_datap->db _type < QPCTL) && !canputnext(q)) {
putbq(q, np);
return (0);

}

/1 Handl e the nmessage then put it on the next queue
[...]
put next (q, np);

return (0);

When your queueis flow controlled, the previous modul€'s read service routine will stop being able to put
messages on your queue (because its callsto canput next will return false). This causes that module to call
put bg, which puts the data on their queue without scheduling their read service routine. Eventually this
causes the number of bytesin their queue to exceed their high water mark, which causes them to be flow
controlled aswell. This process proceeds up the stream until you get to the stream head or the driver.
When the stream head gets flow controlled, it stops accepting data from the client, and the client blocks
waiting for data to be sent.

When the driver gets flow controlled, it either

TN 1117: Open Transport STREAMS FAQ Page: 11
a) starts dropping packets (for unreliable services, such as Ethernet), or

b) it raisesthe link-layer flow control (for reliable services, such as serid).

e When flow control islifted (this happens when the number of bytesin the flow controlled queue drops
below the low water mark -- for the read side, thisis because the client reads some data; for the write side, it
happens when the driver transmits some data), STREAM S automatically reschedul es the service procedure
of the previous queue that has a service routine. Like the propagation of flow control, thisback enabling
continues until it reaches the beginning of the stream.

Finally, there is one important hint for using flow control. In certain specia case situations, such as constructing a
sequence of messages, it may be extremely inconvenient to deal with flow control. At timeslike this, you always have
the option of ignoring it. While not strictly legal, thiswill work and is unlikely to get you into trouble. But it is
important that you deal with flow control in the general case, otherwise messages will pile up on queues, and
STREAMS will run out of memory.

Q Which should | use, canput next or put next (g- >q_next) ?

A STREAMS Modules and Drivers contains a number of code samplesthat look like:

#i fdef MP

if (canputnext(q, mp)) {
#el se

if (puta(g->g_next, np)) {
#endi f

Thisis an anachronism from UNIX STREAMS's support of multi-processor (MP) systems. MPS STREAMS has
full support for MP built-in, so canput next isawaysavailable. In addition, MPS automatically handles
synchronization across multiple processors using sync queues (see the question How do | synchronize access to my
global data?), so you do not have to worry about MP issuesin your OT modules.

Q I've notice that some STREAMS routines returnii nt even though there is no defined returned value. When |
check the returned vaues, | find that they are random. What's going on?

A The STREAMSinternal routines were imported wholesale from UNIX and, in some cases, the prototypes do not
match the semantics. In these cases, you should make sure to ignore the returned value.

Q STREAMS Modules and Drivers talks alot about bands. Isthis of any use?

A Not real ly. Some protocol modules (such as TCP and ADSP) have the concept of expedited data and typically
these are supported using band 0 (normal data) and band 1 (expedited data). No one has ever found ause for al 255
bands!

Also, note the band structures inside STREAMS are dllocated as an array, so if you use more than one band, make
sure you allocate them sequentialy from 0. Otherwise you might find yourself using alot more memory than you
expect.

Finally, you should remember that bands only affect the order in which messages are queued, and hence the order in

which they are returned by get g to the service routine. As an efficient STREAMS protocol stack will rarely queue
messages, bands are rarely useful. One case where they have a significant effect is on the stream head, where the
IbanS aff?cts the order in which dataiis delivered to the client. However, this effect may not be the effect you are
ooking for!

TN 1117: Open Transport STREAMS FAQ Page: 12
Q What fields of the queue_t structure can | modify?

A\ There are anumber of rules related to the fidlds in aqueue:

e You should only modify your own queues. Y ou should not modify the queue of another module.

e Theq_ptr fiddisspecificaly reserved for the module's own use. The module can read or write that value at
any time. Note, however, that if you usem _open_conm(which | strongly recommend), theq_pt r field of
both queues in the queue pair contains a pointer to your per-stream data, and you should not use if for
anything else.

e Althoughitisnormally OK to just read the queue's fields directly, you really should read them using
st rgget . Thisavoids some possible synchronization issues.

e You must modify any fields (other thang_pt r) using st r gset .

strqget andstrgset aredefined with the following prototypesin "mistream.h":

extern int strqget(queue_t*, gfields_t what, uchar_p pri, |ong* valp);
extern int strqgset(queue_t*, gfields_t what, uchar_p pri, long val);

strqget isusedto read afield, putting the value in the long pointed to by val p. st rgset isusedto set afield. The
field that ismodified is determined by thewhat parameter, whose value can be:

gfields t field in queue_t read-only?
QHIWAT q_hiwat no
QLOWAT q_lowat no
QMAXPSZ (_maxpsz no
QMINPSZ g_minpsz no
QCOUNT q_count yes
QFIRST q_first yes
QLAST q last yes
QFLAG g _flag yes

Thepri parameter determines which priority band isused. A band of O indicates the value held in the queue itself, a
higher value refers to the band data structure referenced by the queue.

The functions can return the following errors:

e ENCENT if aninvalid what is specified
e EI NVAL if the specified band is not currently defined
e EPERMIf you are not alowed to modify the specified field

IMPORTANT:
Y ou should not modify fields that are marked as read-only in the above table. Whileit may seem like a

convenient shortcut, it will cause you problemsin the long run. Thiswarning applies specifically to the
q_flag field.

Q The standard UNIX STREAMS books do not contain any information about the routines that begin with the
prefix i _, for exampleni _open_comm Where are these documented?

A These are utilities routines provided by Mentat to make STREAMS programming easier. They are documented in
the Open Transport Module Developer Note. | strongly recommend that you use these routines because they help cut
down on silly programming errors.

TN 1117: Open Transport STREAMS FAQ Page: 13

M essages and M emory Allocation

Q Can | modify the message blocks that are passed to my module?

A Yes as long asyou are careful. To start with, you must distinguish between message blocks (nbl k_t)
and data blocks (dbl k_t). Message blocks are always wholely owned by you. STREAMS passes you the
message block, and you are expected to remember it, freeit, or passit on. No one else has areference to
that message block. For this reason, you are aways allowed to modify the fields in the message block,
even if you aren't allowed to modify the data block.

Thefollowing fields of the mbl k_t are commonly modified: b_cont ,b_r pt r,b_wpt r. Y ou should not
directly change the other fieldsin the nbl k_t ; there are STREAMS routines that let you change them
indirectly.

Data blocks are dightly different. A single data block can be referenced by multiple message blocks, so
you are only alowed to modify the fields in the data block (or indeed its contents) if you are the sole
owner of the block. Y ou determine this by looking at the db_r ef field of the data block. If itissetto 1,
you are free to modify the data block and its contents. If it is greater than one, some other message block
has a reference to this data block, and you should avoid modifying the data block or its contents.

If you wish to write to aread-only data block, you should copy the block using one of the alocation
functions described below.

The only field of the dbl k_t that iscommonly modified isdb_t ype. You should not directly change the
other fieldsin thedbl k_t , although there are STREAM S routines that let you change them indirectly.

Q How do | alocate new messages within my module?

A Therearealot of techni ques. If you just want to alocate araw message aong with its data block, use
the STREAMS function al | ocb. Givenasize, al | ocb will create a message that pointers to a data buffer
of at least that size.

copyb returns a new message block that's identical to the input message block. The data block that the
message block pointsto is also copied.

copynsg returns anew message that'sidentical to the input message. Like copyb, it also copiesthe data
that the message block pointsto. In addition, it copies all of the message blocks linked to this message
through theb_cont field, and al their data blocks.

dupb duplicates the message block you passed into it without copying the data block that the message
points to. The new message continues to reference the old data block. The function also increments the
db_ref field of the data block to record the new copy.

dupmsg duplicates the message block you passed into it without copying the data block that the message
pointsto. In addition, it duplicates al of the message blocks linked to this message through the b_cont
field.

esbal | oc creates amessage block that references a data block which you provide. You also passin a
function that will be called when the message is freed. This allows DM A-based network driversto
implement no-copy receives by passing their real DMA buffers upstream. See Open Transport Module
Developer Note for more hints and tips on esbal | oc.

There are al'so anumber of utilities routines for allocating TPl messages that you might find useful. These
include:

TN 1117: Open Transport STREAMS FAQ

m _tpi_conn_con m _tpi_uderror_ind
m _tpi_conn_ind m _tpi_unitdata_ind
m _t pi _conn_req m _tpi_unitdata_req
m _tpi_data_ind m _tpi _exdata_ind

m _tpi_data_req m _tpi _exdata_req

m _tpi _di scon_ind m _tpi_ordrel _ind

m _tpi_discon_req m _tpi_ordrel _req

m _tpi_info_req

See the Open Transport Module Developer Note for more details on these routines.

Q Why do | get alink error when | try to useni _t pi _dat a_i nd from my module?

A it appears that someone forgot to export that routine. Fortunately, it's very easy to write you own
version:

static nblk_t* gm _tpi _data_ind(nmblk_t* trailer_np, int flags, |ong type)
{

nbl k_t* np;
np = m _tpi_data req(trailer_nmp, flags, type);
it () |
((struct T data_ind *)np->b_rptr)->PRIM type = T_DATA | ND,
return np;

Q How do | reuse an existing message?

A Inwriti ng amodule, you often find yourself in the situation where you want to free a message and then
allocate a new messagein reply to the original message. In these cases, it's much better to reuse the first
message rather than suffer the overhead of the freeing one message and all ocating another.

Y ou can reuse amessage block aslong as both of the following conditions are true:

e You arethe sole owner of the message, i.e. the messagess datablock field db_r ef is1.
e The messageis big enough for your needs.

STREAMS guaranteesthat all control messages generated by put msg (typicaly M PROTO and
M_PCPROTO) reference data blocks that are at least 64 bytes long.

OT provides utility routines for reusing messages. The most general purpose oneis:

nbl k_t* m _reuse_proto(nblk_t* toReuse,
size_t sizeDesired,
bool ean_p keepOnError);

This routine attempts to reuse the message pointed to by t oReuse, making sure that the message can
contain si zeDesi r ed bytes. It return a pointer to the new message, or nil if it fails. If keepOnError is
fase, t oReuse isfreed regardless of whether we fail or not. Otherwise, t oReuse is preserved if wefail.

Page: 14

TN 1117: Open Transport STREAMS FAQ

There are a'so anumber of utilities routines specific to TPI that you might find useful including:

m _tpi_ack_alloc m _tpi_err_ack_alloc

m _tpi_ok_ack_alloc

See the Open Transport Module Devel oper Note for more details on these routines.

WARNING:

All of these reuse routines can return nil if you run out of memory. The reason isthat the message you're
trying to reuse may be read-only, in which case the routine is required to create a copy of the message.
This copy can fail if you run out of memory. Y ou must be prepare for these routines to fail.

Q How much dataisin a message?

A if you just want to know how much data there isin a single message block, you can simply calculate
b_wptr - b_rptr.If youwant tofind thetotal size of all the messagesin achain, usethe STREAMS
functionnmegdsi ze. Note that this function returns the number of data bytes in the message, and does not
take into account M_PROTO and M_PCPROTO message blocks.

Q How much space is there in amessage?

A if you just want to know how much space is available in a single message block, you can smply
cdculatedb_| i m - db_base. Asfar as| know, thereis no way to calculate thisfor al the messagesin a
chain.

Q Arethere any invariantsthat | can use to keep my message blocks straight?

A Yes. Theinvariants arethat:

np- >b_dat ap- >db_base < np->b_datap->db_Iim

np- >b_dat ap- >db_base <= np->b_rptr < np->b_datap->db_|im
np- >b_dat ap- >db_base <= np->b_wptr <= np->b_dat ap->db_|im
np->b_rptr <= np->b_wptr

These invariants imply that:

e thereisaways at least one byte of spacein amessage
e theread and write pointers always point within the data
e theamount of valid datain the message is aways non-negative

Q A lot of STREAMS allocation functions (e.g. al | ocb) take a buffer allocation priority value. What
should | use?

A At the moment, STREAMS is defined to ignore these values. There are two reasonable approaches:

1. Ignore priorities and always pass the unspecified priority, i.e. O.

2. Analyze your buffer needs and set your priorities appropriately on the assumption that one day
someone will pay attention to them. For example, most data messages would default to BPRI _MED,
but high priority control messages like TPl ACKs should use BPRI _HI .

| recommend the first approach.

Page: 15

TN 1117: Open Transport STREAMS FAQ Page: 16

Q What do | do when an allocation fails?

A The approach you take depends on the type of module you are writing. If you are writing a modul e that
provides an unreliable service (such asa DLPI device driver), the best thing to do when you run out of
memory isto just drop the current packet on the floor. Because you are providing an unreliable service, the
upper-layer protocol is required to implement some error correction anyway, so there's no point
complicating your module with intricate error handling.

If you're writing areliable service, you must be prepared to deal with running out of memory. Y our
primary weapon should betheni _buf cal | routine. This routine allows you to stop your current
operation and schedule your queue's service routine to be called when a certain amount of memory is
available. Y ou then have aflag in your per-stream data that allows your service routine to pick up the
stalled operation before continue on with its normal duties.

See the Open Transport Module Developer Note for more detailson ni _buf cal | .

IMPORTANT:
You should useni _buf cal | in preference to the more traditional buf cal | . See the developer note for
the reasons why.

Transport Provider Interface (TPI)

Q I'm writing a STREAMS TPI module or driver. Where should | start?

A\ The best book to read is STREAMS Modules and Drivers. In terms of sample code, therearea
number of samplesto look at:

e TPIFile-- Available on the Developer CDs, thissampleisa TPl device driver that alows you to
read aMac OSfileasif it wasan OT seria port.

e StreamNOP -- Available on the Developer CDs, thisisacut down version of TPIFile that serves
as good starting point for new module devel opment.

e tilisten -- Part of the OT Module SDK, this sample contains the full source to the "tilisten"
module (a helper module used to simplify the listen/accept process for clients).

None of these samples are perfect, but they do give aflavour of what STREAMS programming islike.

Q I'm receiving a TPl message. Can | reuse that message to send the ACK?

A Seethe question How do | reuse an existing message?

Q I'm writing a TPl module and | successfully respond to a T_CONN_REQ message by sending a
T_OK_ACK message upstream, but my client code never leaves OTConnect . What did | do wrong?

A\ The short answer is that you need to send a connection confirmation message (T_CONN_CON) upstream
to indicate that the connection isin place.

The long answer isthat you need to study the TPI specification more closely, paying special attention to
the state diagrams. When your moduleisinsta_3 (i dl e) and receivesaconn_r eq event, it should
proceedtosta_5 (w_ack_c_req) . When your module replieswith the ok_ack1, it proceedstost a_6
(w_con_c_req) . At thispoint the client is still waiting for a connection confirmation message. To

TN 1117: Open Transport STREAMS FAQ
complete the connection sequence, you need to issue aconn_con event and proceedtosta_9 (data_t).

| find it useful to think of the T_OK_ACK as smply saying that the primitive being acked was correctly
formed; it says nothing about whether the request worked. If aresponse is needed, TPI typicaly hasa
different message (e.g., T_BI ND_ACK or T_I NFO_ACK). In the case where something needs to be done, like
connection setup, adistinct message T_CONN_CON is used to ‘confirm' the connection is established.

Q The TPI specification says that the address to connect to is pointed to by the DEST_of f set and
DEST_| engt h fields of the T_CONN_REQ message. | know how to find the address of this information
(using ni__of f set _par anc) but what isitsformat?

A Therearetwo aspectsto this question. First, how do Open Transport clients provide address
information. Second, how does Open Transport translate that client representation into a TPl message.

Open Transport uses a standard format for address information that's based on the OTAddr ess type. This
typeis an abstract record that contains only one interesting field:

struct OTAddress

OTAddr essType f AddressType;
U nt8 f Address[1] ;

Thef Addr essType field isatwo-byte quantity that determines the format of the remaining fields. All
Open Transport addresses are derived from this basic structure. For example, in the TCP/IP world, OT has
two different address formats, namely | net Addr ess and DNSAddr ess.

struct | net Address

OTAddr essType fAddressType; [/ always AF_I NET

| net Por t fPort; /'l port nunber
| net Host f Host ; /1 host address in net byte order
U nt8 f Unused[8] ; /1 traditional unused bytes

}s
struct DNSAddress

OTAddr essType fAddressType; // always AF_DNS
| net Domai nNarre f Nane; /1 ASCI| DNS name

These are distinguished by the first two bytes. An | net Addr ess startswith AF_| NET, while aDNSAddr ess
starts with AF_DNS. These type bytes are followed by an address-format specific number of bytes of data.
This general layout is common to all address formats under OT.

When you call an OT API routine and passin an address like this, OT simply copies the entire address
into amessage block without interpreting it. When the message reaches the appropriate TPl module, that
module is responsible for interpreting the specified address. It can determine that the addressisin the
appropriate format simply by looking at the first two bytes of the address buffer. The snippet of codein
the next Q& A shows how to do this.

Q TPI messages often contain "offset” and "count” parameters to reference variable length data. Every
time | accessthese, | find myself dying the 'death of athousand pointers. Isthere a better way?

A I'm glad you asked. MPS provides two useful utility routines that you can call to access these variable

Page: 17

TN 1117: Open Transport STREAMS FAQ Page: 18

length structures. There prototypes are:

Unt8* m _offset_paran(nblk_t* np, long offset, long |en);
U nt8* m _offset_paranc(nblk_t* np, long offset, long | en);

If you have asimple TPI message (one with a single message block), you can call ni _of f set _par amto
get a pointer to the structure whose sizeis| en a the given of f set into the message data. The routine
returnsnil if of f set and | en areinconsistent with the size of the message.

If there's a possibility that the data you're looking for is not in the first message block of the TPl message,
you can useni _of f set _par anc to look for it in the entire message chain.

The following snippet shows how you can useni _of f set _par anc to find the addressin aT_CONN_REQ
message.

static void DoConnect Request (queue_t* g, nblk_t* np)
{

T _conn_req *connReq;
OTAddr ess *connAddr ;

[...]

connReq = (T_conn_req *) np->b_rptr;

[...]

connAddr = (OTAddress *) m _of fset_paranc(np,
connReq- >DEST_of f set,
connReq- >DEST_I engt h) ;
if (connAddr == nil || connReq->DEST_l ength < sizeof (OTlAddress)) {
Repl yW t hError Ack(q, np, TBADADDR, 0);
return;

}

switch (connAddr->f AddressType) {
[...]

}

[...]

Q Inmy TPl module | send data messages but they never arrive on the wire/at the client. Any ideas?

A\ You have most probably forgotten to set the b_wpt r field of the message that you are sending. If you
allocate a new message block, theb_r pt r and b_wpt r both default to pointing at the start of the data block
(i.e. db_base). Given that the amount of valid datain the messageisdefinedtobeb_wptr - b_rptr,if
you forget to set the b_wpt r on messages you will find that the receiver ignores them.

Data Link Provider Interface (DLPI)

Q I'm writinga STREAMS DLPI driver. Where should | start?

A\ You should start with one of the generic STREAM S references listed above, then continue with the
following Open Transport-specific material.

TN 1117: Open Transport STREAMS FAQ

e If you'rewriting a Ethernet-style device driver (Ethernet, Token Ring, FDDI, Fibre Channel, €tc.),
you should base it on the Apple Enet Framework, which isincluded in OT Module SDK. This
framework significantly reduces the amount of work you have to do, and guarantees the best
performance for high-speed devices.

e On the other hand, if you're writing something other than an Ethernet-style device driver (PPP,
SLIP, virtual private network (VPN), etc.), you should read the book Open Transport Advanced
Client Programming. The Implementation Notes chapter gives specific advice for PPP and VPN
developers.

Q Wheat's this stuff about connection-oriented DLPI drivers?

A\ | havenoideal Asfar asthe OT mainstream is concerned, all DLPI drivers are connection-less
(DL_cLDLS). Infact, when OT needs a connection-oriented device driver (e.g. serid), it uses TPl instead
of DLPI. However, connection-oriented DLPI drivers may be useful in some environments, such as X.25
or ATM.

Q I'm writing the code to fill out the DL_I NFO_ACK message, and | can't decide what to put in the

dl _provi der_styl e field. I'd like to use DL_STYLE1 (because then | don't have to mess with Physical
Points of Attachment (PPAS)) but it seems | should be using the later DL_STYLE2. What do you
recommend?

A Unless you have an overriding reason to use PPAS, you should return DL_STYLE1 in your
DL_I NFO_ACK message. Thiswill make your life easier and there'slittle need for PPAs on the Mac OS.

Q What is this stuff about major and minor device numbers?

A\ The short answer is: an anachronism from UNIX. M gjor device numbers represent the device driver
controlling adevice. Thisistraditionaly an index into atable of drivers maintained internally by
STREAMS. Under Open Transport, drivers are loaded into this table on demand, so there's no way you
can know what major device number your driver is going to get.

Minor device numbers are used to distinguish between multiple functions controlled by a single device
driver, for example, multiple serial ports controlled by the seria port driver. However, this definition
breaks down in the face of networking, even on UNIX systems.

It turns out that minor device numbers are used to distinguish between different streams connected to a
driver. Each stream is given aunique minor device number by the driver's open routine. Thisis
accomplished by means of the sf | ag parameter. The three possible cases are:

e 0 -- Thisvaueindicates that the moduleis being opened as adriver. A specific minor device
number -- specified by the devp parameter -- is being opened.

® CLONEOPEN -- Thisvaueindicates that the driver isbeing cloned, i.e. the driver should return a
unique minor device number. Y ou can do thissmply by calling ni _open_conm which does this
automaticaly.

@ NMODOPEN -- Thisvalue indicates that the module is being pushed; there is no minor device
number in this case.

So how doesthis affect you? It doesn't! If you call mi _open_conmmin your modul€'s open routine, it takes
care of all these details. Y our open routine might also want to check that you are being opened as a
module (i.e. sfl ag == MODOPEN) or asadriver (sfl ag ! = MODOPEN), just to be paranoid. But,
otherwise, you should not worry about device numbers and distinguish your streams using the g
parameter.

Page: 19

TN 1117: Open Transport STREAMS FAQ

Summary

Open Transport is based on an industry standard STREAMS networking kernel. Open Transport
STREAMS s documented in a number of UNIX books. and in the Open Transport Module Developer
Note . This Note answers some Frequently Asked Questions about issues that are not adequately covered
in the other documentation.

Further References

e Programmer's Guide: STREAMS, UNIX SystemV Release 4 , UNIX Press, ISBN
0-13-02-0660-1

STREAMS Modules and Drivers, UNIX SystemV Release 4.2 , UNIX Press, ISBN
0-13-066879-6

e "Open Transport Module Developer Note" (part of the OT Module SDK)
e UNIX "man" pagesfor "putmsg”, "getmsg", etc.
°
[J

Open Transport web page
Open Transport programmers mailing list

Downloadables

FOF
H Acrobat version of this Note (K).

ChangeHistory

e First published in February 1998.

e Updated in February 1999 to add additional references.

e Updated in March 1999 to mention "Open Transport Advanced Client Programming” in the
recommendation for DLPI device driver writers.

Page: 20

To contact us, please use the Contact Us page.
Updated: 15-February-98

Technotes
Previous Technote | Contents| Next Technote

