
Technote 1043 - On Drag Manager Additions Page: 1

Technotes

Download

Acrobat file (K)

Download

AppleWorks file (45K)

On Drag Manager Additions

Technote 1043
Release 1.3

MAY 1996

Originally published May 1996.
Updated June 1996 to include the following:

Added information on Gestalt response bits.
Added CFM interfaces and libraries.
Improved error-handling in sample code.

Updated August 1996 to include the following:

Warning to preserve parameters to SetDragImage.

Updated March 1997 to include the following:

Refreshed HTML version of sample code from qualifying project.
Made descriptions of gestaltDragMgrHasImageSupport consistent.
Used the correct name of GetDragHiliteColor in all cases.
Changed some cosmetics in the description of Gestalt bits.

Since Drag Manager 1.0, two new calls have been added and three new Gestalt response bits have been defined.

One new call obtains the drag highlight color. The other enables the user to drag translucent images. (For an example
of the translucent dragging effect, see the Finder in System 7.5.3.)

The new Gestalt bits describe Text Services Manager window compatibility, PowerPC library availability, and the
availability of translucent dragging.

This Technote is intended for Macintosh developers who need to take advantage of these new features.

CONTENTS

Detecting New Drag Manager Behavior
Translucent Dragging -- Why & When
Appropriate Uses of Translucent Dragging
Reference
Summary
Appendix A: Interfaces and Libraries
Appendix A1: "DragManagerAdditions.h"
Appendix A2: "DragManagerAdditions.c"
Appendix B: Sample Code for Performing a Translucent Drag with a Picture

Detecting New Drag Manager Behavior

Technote 1043 - On Drag Manager Additions Page: 2

There are three new bits defined in the Gestalt response value for the gestaltDragMgrAttr selector code. If your
application uses the Drag Manager, it should already be calling Gestalt with this selector code and testing the
gestaltDragMgrPresent bit; testing these additional bits should be similar.

gestaltDragMgrFloatingWind

Denotes support for Text Services Manager floating windows. In order to receive a drag, such
windows must have their own handlers; they cannot rely on a global handler. When this bit is not
set, neither sending nor receiving drags will work properly.

gestaltPPCDragLibPresent

Denotes whether there is a PowerPC CFM shared library available for Drag Manager. PowerPC
applications should attempt to establish a connection (perhaps implicitly via a "weak" link) to the
library DragLib before testing this bit.

gestaltDragMgrHasImageSupport

Denotes the availability of SetDragImage and GetDragHiliteColor. Although support for
translucency is limited by hardware (see below), it is safe for your application to call SetDragImage
as long as Gestalt indicates that it is available.

Translucent Dragging -- Why & When
Before Color QuickDraw, highlighting graphics on the Macintosh was restricted to inversion, a quick and effective
operation. Color QuickDraw introduced a highlighting scheme for color images based on simple color substitution.
On Macs with PowerPC processors, running System 7.5.3, it has become possible for system software to further
enhance the user experience.

The User Experience of Translucent Dragging

In Figure 1, the user has clicked on the trash icon, highlighting it. Then the user has held down the mouse button,
dragging the translucent image of the icon up and to the left on the desktop.

Figure 1: Translucent dragging on the desktop

Note:
If you're looking at this document in black and white, you'll have to imagine the lower right image to be
opaque as normal and the upper left image to be somewhat less visually substantial -- in a word, translucent.

Apple is actively working to find a practical use for translucent dragging.

Requirements for Translucent Dragging

Translucent dragging is only supported on Macintosh computers with PowerPC processors. There are several
reasons for this, specifically an improved PowerPC-native Color QuickDraw, and the enhanced calculation and
execution speed provided by PowerPC processors.

In addition to PowerPC-only support, there are other requirements for translucency, including the following:

Monitors must be set to display at least 8 bits of color.

Technote 1043 - On Drag Manager Additions Page: 3

8-bit monitors on multiple-monitor systems must have color tables containing only colors that can be saved
and restored using a 24-bit color space.
8-bit monitors can't have color tables containing animated entries or a narrow range of colors.
Video mirroring must be disabled.

If the Drag Manager determines that translucency can't be done, it will revert to inverted outline dragging for one or
more screens.

Appropriate Uses of Translucent Dragging
Translucency is not appropriate for every drag. Applications should use the effect sparingly, and, in general, only
small, single-item graphics such as icons should be dragged translucently. Large or multi-part images such as
pictures or groups of icons may become distracting for users. If the image is too large, a user's attention may be
diverted from the task of finding the destination of the drag.

In addition, large images may not drag smoothly. Even two icons rendered in a PixMap constitute a large image if
those icons are far apart within the PixMap.

Text and some other non-graphic elements are also not good candidates for translucent dragging. Dragging text may
appear cluttered or too busy on the screen, and thus become more distracting for the user. Use the older outline
dragging for these drags.

Important:
While the Drag Manager will not allow translucency when the environment does not permit it, such as on
8-bit monitors with altered color tables, it can't prevent translucency from being used when it is inappropriate.
Design your program to use translucent dragging only when it's appropriate. Consider following the example
of the Finder and combining dragging of a small image with outlines for other items in the drag.

Reference

DragImageFlags

DragImageFlags is a 32-bit set of flags used to specify the appearance of a translucent drag. Here are a type
declaration and valid values for DragImageFlags:

typedef unsigned long DragImageFlags;

enum
{
 dragStandardImage = 0x00000000,
 dragDarkImage = 0x00000001,
 dragDarkerImage = 0x00000002,
 dragOpaqueImage = 0x00000003,
 dragRegionAndImage = 0x00000010
};

Four darkness values are permitted, ranging from the standard, Apple-recommended darkness used by Finder
(approximately 35% blending of the image with the background) to a near-opaque setting. The caller can add the
constant dragRegionAndImage to the darkness value to specify that the outline region passed to TrackDrag should be
drawn on the screen in addition to the translucent image. Without the dragRegionAndImage constant, the Drag
Manager draws the outline only on screens that cannot support translucency.

SetDragImage

SetDragImage associates an image with a DragReference. Upon TrackDrag, a translucent version of the image will
follow the cursor. SetDragImage is defined as follows:

pascal OSErr SetDragImage (DragReference theDragRef,
 PixMapHandle imagePixMap,
 RgnHandle imageRgn,
 Point imageOffsetPt,
 DragImageFlags theImageFlags);

Technote 1043 - On Drag Manager Additions Page: 4

imagePixMap A standard PixMapHandle. The Drag Manager will
 temporarily lock the PixMapHandle during the drag
 if necessary. Not copied into the DragReference. See below.
imageRgn A mask for the PixMap describing the portion of
 the PixMap which contains the image. Pass nil for
 imageRgn if the entire rectangular PixMap, including
 white space, is to be dragged. Not copied into the DragReference. See below.

imageOffsetPt The offset required to move the imagePixMap to the
 global coordinates where the image initially appears.
 If imageOffsetPt is {0,0}, the imagePixMap should
 already be in global coordinates.
theImageFlags A set of drag image flags as described above.

DESCRIPTION

To determine if SetDragImage is available, call Gestalt with the selector gestaltDragMgrAttr. If the
gestaltDragMgrHasImageSupport bit of the response is set, the SetDragImage call can be made safely.

SetDragImage should be called by the sending application prior to calling TrackDrag. Prior to calling SetDragImage,
the application should draw into imagePixMap a solid, opaque image. The Drag Manager will provide the
translucency effects. Typically, your application will obtain imagePixMap by calling GetGWorldPixMap and
supplying a GWorld into which your app has drawn the image.

To allow the Drag Manager to analyze the PixMap's colors in order to determine if it can be rendered on the available
screens, Apple recommends using an 8-bit GWorld for the imagePixMap.

SPECIAL CONSIDERATIONS

SetDragImage installs a custom drawing procedure to do the translucent drawing. Applications calling SetDragImage
should not also call SetDragDrawingProc for the same drag.

SetDragImage does not copy the imagePixMap and imageRgn parameter data. Until TrackDrag completes, you must
ensure the data to which these parameters refer continues to exist.

ERRORS

Four new result codes have been defined for SetDragImage:

enum
{
 unsupportedForPlatformErr = -1858,
 // call is for PowerPC only
 noSuitableDisplaysErr = -1859,
 // no displays support translucency
 badImageRgnErr = -1860,
 // bad translucent image region
 badImageErr = -1861
 // bad translucent image PixMap
};

GetDragHiliteColor

To determine the color the Drag Manager will use for a particular window, call GetDragHiliteColor.
GetDragHiliteColor can safely be called when the gestaltDragMgrHasImageSupport bit is set in the Gestalt response
to the selector gestaltDragMgrAttr.

pascal OSErr GetDragHiliteColor (WindowPtr window, RGBColor *color);

SPECIAL CONSIDERATIONS

The Drag Manager chooses an appropriate color for hilighting, depending on the colors available in the color table for

Technote 1043 - On Drag Manager Additions Page: 5

the window. Limitations on the choice of available colors are described in Macintosh Technical Note TB 33 - Color,
Windows and 7.0.

Summary
The new Drag Manager Gestalt response bits have been defined. Test the gestaltDragMgrFloatingWind bit to
determine the availability of Text Services Manager Support. Test the gestaltPPCDragLibPresent bit to determine
whether the CFM library DragLib has been prepared. Test the gestaltDragMgrHasImageSupport bit to determine
whether translucent dragging is supported.

Two new Drag Manager calls enable your app to obtain the drag highlight color and perform translucent dragging.
Use SetDragImage to specify a PixMap to be transformed into a translucent image for display during dragging. Be
careful to observe the human interface principles outlined in this Note. Use GetDragHiliteColor to obtain the color
used for drag highlighting.

Further Reference

Drag Manager Programmer's Guide
Inside Macintosh: Imaging with QuickDraw

Appendix A: Interfaces and Libraries
As of June 6, 1996, there is no constant for gestaltDragMgrHasImageSupport defined in <Drag.h> and there are no
interfaces or CFM library glue for calling SetDragImage and GetDragHiliteColor. However, in Appendix A1, we
provide interfaces you can use in C and C++ programs, and in Appendix A2, we provide a library you can compile
with a C or C++ compiler and call from C, C++, and Pascal. You need to compile and link the library module into
your program if your program is CFM-based (PowerPC or CFM-68K). If you compile the library source into a
non-CFM project accidentally, it will automatically render itself invisible.

Appendix A1: "DragManagerAdditions.h"
#pragma once

#ifndef __DRAG__
include <Drag.h>
#endif

enum
{
 _DragDispatch = 0xABED
};

enum
{
 gestaltDragMgrHasImageSupport = 3
};

enum
{
 unsupportedForPlatformErr = -1858,
 // call is for PowerPC only
 noSuitableDisplaysErr = -1859,
 // no displays support translucency
 badImageRgnErr = -1860,
 // bad translucent image region
 badImageErr = -1861
 // bad translucent image PixMap
};

typedef unsigned long DragImageFlags;

enum
{
 dragStandardImage = 0x00000000,

Technote 1043 - On Drag Manager Additions Page: 6

 dragDarkImage = 0x00000001,
 dragDarkerImage = 0x00000002,
 dragOpaqueImage = 0x00000003,
 dragRegionAndImage = 0x00000010
};

#ifdef __cplusplus
extern "C" {
#endif

pascal OSErr SetDragImage (DragReference theDragRef,
 PixMapHandle imagePixMap,
 RgnHandle imageRgn,
 Point imageOffsetPt,
 DragImageFlags theImageFlags)
 TWOWORDINLINE (0x7027, 0xABED);

pascal OSErr GetDragHiliteColor
 (WindowPtr window, RGBColor *color)
 TWOWORDINLINE (0x7026, 0xABED);

#ifdef __cplusplus
}
#endif

Appendix A2: "DragManagerAdditions.c"
#define SystemSevenFiveOrLater 1
#define CGLUESUPPORTED 0
#define OLDROUTINENAMES 0
#define OLDROUTINELOCATIONS 0
#define STRICT_WINDOWS 1

#ifndef __CONDITIONALMACROS__
include <ConditionalMacros.h>
#endif

#if GENERATINGCFM

 //
 // If we're not generating CFM, then assume the
 // 68K inlines in the headers apply instead.
 //

#include "DragManagerAdditions.h"
 // if missing, see Appendix A1, Technote 1043

pascal OSErr SetDragImage (DragReference theDragRef,
 PixMapHandle imagePixMap,
 RgnHandle imageRgn,
 Point imageOffsetPt,
 DragImageFlags theImageFlags)
{
 enum
 {
 uppSetDragImageInfo = kD0DispatchedPascalStackBased
 | RESULT_SIZE (SIZE_CODE (sizeof(OSErr)))
 | DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE
 (SIZE_CODE (sizeof (unsigned long)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (1, SIZE_CODE (sizeof (theDragRef)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (2, SIZE_CODE (sizeof (imagePixMap)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (3, SIZE_CODE (sizeof (imageRgn)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (4, SIZE_CODE (sizeof (imageOffsetPt)))

Technote 1043 - On Drag Manager Additions Page: 7

 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (5, SIZE_CODE (sizeof (theImageFlags)))
 };

 return CallUniversalProc (
 GetToolTrapAddress (_DragDispatch),
 uppSetDragImageInfo, 0x27L, theDragRef, imagePixMap,
 imageRgn, imageOffsetPt, theImageFlags);
}

pascal OSErr GetDragHiliteColor (WindowPtr window, RGBColor *color)
{
 enum
 {
 uppGetDragHiliteColorInfo =
 kD0DispatchedPascalStackBased
 | RESULT_SIZE (SIZE_CODE (sizeof(OSErr)))
 | DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE
 (SIZE_CODE (sizeof (unsigned long)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (1, SIZE_CODE (sizeof (window)))
 | DISPATCHED_STACK_ROUTINE_PARAMETER
 (2, SIZE_CODE (sizeof (color)))
 };

 return CallUniversalProc (
 GetToolTrapAddress (_DragDispatch),
 uppGetDragHiliteColorInfo, 0x26L, window, color);
}

#endif // GENERATINGCFM

Appendix B: Sample Code for Performing a Translucent Drag with a
Picture
#ifndef __QDOFFSCREEN__
include <QDOffscreen.h>
#endif

#ifndef __GESTALT__
include <Gestalt.h>
#endif

#ifndef __EVENTS__
include <Events.h>
#endif

#ifndef __WINDOWS__
include <Windows.h>
#endif

#ifndef __QUICKDRAW__
include <QuickDraw.h>
#endif

#include "TranslucentDragSample.h"
 // just a prototype for MyDoPictureDrag
#include "DragManagerAdditions.h"
 // if missing, see Appendix A1, Technote 1043

pascal OSErr MyDoPictureDrag (const EventRecord *theEvent,
 WindowPtr theWindow,
 PicHandle thePicture)
{
 OSErr err;
 DragReference theDrag;
 GWorldPtr imageGWorld;
 PixMapHandle imagePixMap;

Technote 1043 - On Drag Manager Additions Page: 8

 Rect imageRect;
 Rect dragBounds;
 RgnHandle dragRgn;
 RgnHandle tempRgn;
 RgnHandle imageRgn;
 RgnHandle contRgn;
 ItemReference theItem;
 char saveHState;
 long response;
 CGrafPtr savePort;
 Point offsetPt;
 GDHandle saveDevice;

 //
 // initialize values to allow for safe and easy
 // clean-up
 //

 theDrag = 0;
 imageGWorld = nil;
 dragRgn = nil;
 tempRgn = nil;
 imageRgn = nil;
 contRgn = nil;

 GetGWorld(&savePort, &saveDevice);

 //
 // create a new drag
 //

 err = NewDrag(&theDrag);
 if (err != noErr) goto Bail;

 //
 // add the picture data to the drag
 //

 saveHState = HGetState((Handle) thePicture);
 HLock ((Handle) thePicture);

 theItem = 1;
 err = AddDragItemFlavor(theDrag, theItem, 'PICT',
 *thePicture, GetHandleSize((Handle) thePicture), 0);
 HSetState ((Handle) thePicture, saveHState);
 if (err != noErr) goto Bail;

 //
 // get the bounding rect of the picture and relocate
 // it to 0,0
 //

 imageRect = (**thePicture).picFrame;
 SetPt (&offsetPt, imageRect.left, imageRect.top);
 OffsetRect (&imageRect, -imageRect.left, -imageRect.top);

 //
 // since our imageRect is based at 0,0, find
 // the global offset of the image
 //

 SetPort (theWindow);
 LocalToGlobal (&offsetPt);
 SetPort ((GrafPtr) savePort);

 //
 // check if the Drag Manager supports image dragging
 //

Technote 1043 - On Drag Manager Additions Page: 9

 err = Gestalt(gestaltDragMgrAttr, &response);
 if (err == noErr && (response & (1L << gestaltDragMgrHasImageSupport)))
 {
 //
 // allocate a GWorld to hold the image; it is
 // okay if the pixels are in the app heap or
 // in temp memory
 //

 err = NewGWorld
 (&imageGWorld, 8, &imageRect, nil, nil, useTempMem);
 if (err)
 err = NewGWorld (&imageGWorld, 8, &imageRect, nil, nil, 0);

 if (err == noErr)
 {
 //
 // get the pixel map from the GWorld for:
 //
 // [1] LockPixels before drawing
 // [2] SetDragImage
 //

 imagePixMap = GetGWorldPixMap(imageGWorld);

 // draw the picture into the GWorld

 SetGWorld(imageGWorld, nil);
 (void) LockPixels(imagePixMap);
 // LockPixels always returns true for
 // non-purgeable pixels
 EraseRect (&imageGWorld->portRect);
 DrawPicture(thePicture, &imageRect;));
 UnlockPixels(imagePixMap);
 SetGWorld(savePort, saveDevice);

 //
 // allocate and set the region that
 // identifies the part of the image
 // being dragged
 //

 imageRgn = NewRgn();
 if (imageRgn == nil)
 err = MemError ();
 else
 {
 RectRgn (imageRgn, &imageRect);

 // attach the image to the drag

 err = SetDragImage (theDrag, imagePixMap, imageRgn,
 offsetPt, dragStandardImage);
 }
 }

 //
 // Translucency is not critical, so errors which
 // occur during any of the enclosed code are not fatal;
 // we've only bothered to assign 'err' to see its value
 // in the debugger.
 //

 err = noErr;
 }

 //
 // set the bounds and region for the drag using the
 // window's content rectangle and the imageRect in

Technote 1043 - On Drag Manager Additions Page: 10

 // its global location
 //

 dragBounds = imageRect;
 OffsetRect(&dragBounds, offsetPt.h, offsetPt.v);

 contRgn = NewRgn ();
 if (contRgn == nil)
 {
 err = MemError ();
 goto Bail;
 }

 GetWindowContentRgn (theWindow,contRgn);
 SectRect (&((**contRgn).rgnBBox), &dragBounds, &dragBounds);
 err = SetDragItemBounds(theDrag, theItem, &dragBounds);
 if (err != noErr) goto Bail;

 //
 // make a drag region outlining the image for screens
 // on which translucency isn't possible
 //

 dragRgn = NewRgn();
 if (dragRgn == nil)
 {
 err = MemError ();
 goto Bail;
 }

 RectRgn(dragRgn, &dragBounds);

 tempRgn = NewRgn();
 if (tempRgn == nil)
 {
 err = MemError ();
 goto Bail;
 }

 CopyRgn(dragRgn, tempRgn);
 InsetRgn(tempRgn, 1, 1);
 DiffRgn(dragRgn, tempRgn, dragRgn);

 //
 // finally, do the drag
 //

 err = TrackDrag(theDrag, theEvent, dragRgn);

Bail:

 if (theDrag)(void) DisposeDrag (theDrag);
 if (imageGWorld) DisposeGWorld (imageGWorld);
 if (dragRgn) DisposeRgn (dragRgn);
 if (tempRgn) DisposeRgn (tempRgn);
 if (imageRgn) DisposeRgn (imageRgn);
 if (contRgn) DisposeRgn (contRgn);

 return err;
}

Technotes
Previous Technote | Contents | Next Technote

