Technote 1025 - GetDriverinformation: A Bug & Page: 1
Workaround

Technotes
Ownload Download
FOF A
e 4
Acrobat file (K AppleWorksfile (44K)

Driver Loader Library Call GetDriverInformation: A Bug & Workaround

Technote 1025 FEBRUARY 1996

This Technote describes aworkaround to abug in the first version of the Driver Loader Library in System 7.5.2
and System Update 7.5.3. (The bug should be fixed in later versions of the Mac OS.) As of thiswriting, the
Driver Loader Library is only available on Power Macintoshes that support PCI cards (for example:Power Mac
7200, 7500, 8500 and 9500). Thereis a bug in the routine GetDriverInformation that can possibly cause an
overwriting past the end of the name string that is passed in.

This Technote is directed primarily at writers or family experts and especially applications that get information
about drivers.

Contents

o Defining the Problem

o Solving the Problem

o Sample Code Using GetDriverlnformation To Iterate Over the Driver Unit Table
o Referencefor GetDriverlnformation

e Summary

Defining the Problem

In the Driver Loader Library, thereisabug in the routine GetDriverlnformation that can possibly cause an
overwriting past the end of the name string that is passed in.

This bug surfaces only when calling GetDriverlnformation() for adriver that has had its Device Control Entry
fields zeroed when it was closed (the Chooser driver has been observed to exhibit this behavior). The bug occurs
because GetDriverlnformation() does not check for zeroed fields before using the dCtIDriver field to reference
the driver's name; instead, it copies a garbage string from low memory into the name string passed asa
parameter to GetDriverlnformation().

If the first byte of this garbage string is larger than the number bytes of storage allocated by the caler for the
name string, then the caller's data located just past the end of name's storage will be overwritten with garbage.

Y ou can see the zeroing out of fields for the Chooser's driver by following these steps using any version of
MacsBug:

1. Open the Chooser.
2. Drop into MacsBug and type:

drvr <return>

Technote 1025 - GetDriverinformation: A Bug &
Workaround
3. Look down the list of driversin the Driver column of the drvr display and see the Chooser (on my machine
it'sat dNum OxF).
To see what the Chooser's DCE fields ook like before the zeroing type:

dm XXXXX dctlentry <return>

(where xxxxx is the hexidecimal number in the Chooser's row in the "DCE at"column in the drvr display)
4. Exit Macsbug by hitting Command-g.

5. Close the Chooser window.

6. Drop into MacsBug and type:

drvr <return>

You'll seethat name Chooser is replace by blanks in the row that it wasin.
7. To see the zeroing of DCE fields type:

dm XXXXX dctlentry <return>

(again, where xxxxx is the hexidecimal number in the Chooser'srow inthe "DCE at" column in the drvr
display).

You'l seethat all fields except the RefNum field have been zeroed.

It's doubtful that any expert code will encounter this problem if the expert code executes pre-Finder; applications
that execute after the Finder boots are the most likely victims. If your code calls GetDriverlnformation() after a
user has a chance to close one of these "zeroed-out" drivers (and the DCE fields are thus zeroed), then you will
need thisworkaround. If you cal GetDriverlnformation only for a driver that you know doesn't have its Device
Control Entry fields zeroed upon closing, then you don't need this workaround because the bug will not appear.
It is only when you traverse the unit table, calling GetDriverinformation for unknown drivers, that you need to be
aware of the workaround.

GetDriverInformation
Hereisthe declaration for GetDriverlnformation as gleaned from the universal headersfile, Devices.h:

extern OSErr

GetDriverlInformation (DriverRef Num ref Num
Uni t Nunber *uni t Num
DriverFl ags *fl ags,
Dri ver OpenCount *count,
StringPtr nane, /Il ** this is the field we are

concerned wth//

RegEntryl D *devi ce,
CFragHFSLocat or *dri ver LoadLocati on,
CFragConnecti onl D *fragnent Connl D,
DriverEntryPoi nt Ptr *fragnment Main,
DriverDescription *driverDesc);

It isthe StringPtr name parameter that we are concerned with. If you allocate, for example, a Str31 to use to pass
in as the StringPtr, then (if the erroneous byte GetDriverlnformation thinks is the length byte of the garbage
string is greater than Ox1f, or 31 decimal) GetDriverlnformation will unwittingly copy al the garbage bytesto
your code without regard to the actual location of the end of the name string.

Solving the Problem

The workaround is s mple:alocate a String255 for the name parameter passed into GetDriver|nformation()
rather than some shorter-length string. This means any garbage copied to the string will be contained in that
string rather than any other data. If you're familiar with GetDriverInformation, that's all you need to know:use a
Str255 for the name parameter rather than a shorter string and you're protected. If you're not familiar with
GetDriverInformation and would like to see some code to traverse the unit table, sample codeis provided here

Page: 2

Technote 1025 - GetDriverinformation: A Bug &
Workaround
for your information. Y ou also have to take precautions about using the garbage string data aswell (if you were
going to display the driver name in an application, you would probably want to check for non-printing characters
if displaying them would cause problems in your code. Y ou might want to make sure the garbage length of the
name string isn't too long for your code to handle).

Sample Code Using GetDriverInformation To Iterate Over the
Driver Unit Table

To drive the point home about using a Str255, and aso to aert you to another mandatory initializing of the
FSSpec field of the driverL oadL ocation struct, (another input of GetDriverInformation), here is some barebones
sample code. Note that traversing the unit table using GetDriverlnformation() is not the most efficient way to
discover which units are empty and which are full. Use the Driver Loader Library routine, LookupDrivers() for
that.

voi d TraverseDrivers()

{
CSErr err = noErr;
Dri ver Ref Num ref Num
Uni t Nunber uni t Nunm
DriverFl ags fl ags;
Dri ver OpenCount count;
RegEntryl D devi ce;
CFr agHFSLocat or dri verLoadLocati on;
Dri verDescription dri ver Desc;
/] Str63 theName; // BAD, not |ong enough
St r 255 theNane; // GOOD: THIS | S THE WORKAROUND!
FSSpec | oadLocSpec;
short i;

/1 this is another caveat about using GetDriverlnformation(); you nust
/1 initialize the FSSpec ptr field of the driverLoadLocation struct to
/1 point to an allocated FSSpec because GetDriverlnformation assunes you
I/ have. This is done is the next |ine bel ow

driverLoadLocation. u.onDi sk.fil eSpec = & oadLocSpec;

for(i =0; i <= HghestUnitNunber(); ++i){
refNum= ~i; // convert the unit nunber to a driver refNum
err = Get Driverlnformation(ref Num
&uni t Num
&f I ags,
&count ,
t heNane,
&devi ce,
&dri ver LoadLocat i on,
&f ragnent Connl D,
&f ragnent Mai n,
&dri ver Desc) ;
if(err '=noErr){ // there's a driver for this refNum

/1 Do whatever it was you wanted to do with the infornmation
// BEWARE: If the driver is a non-native driver, that is a
/1 68k driver of pre-PCl -supporting Macintosh, the device,
[/ driverLoadLocation, fragmentConnlD, fragmentMin, and

/1 driverDesc inputs above will be set to nil after the call
/1 because these fields don't apply to 68k drivers.

}
Yy Il for
} // end TraverseDrivers()

Reference for GetDriverlnformation

GetDriverInformation

GetDriverInformation returns a number of pieces of information about an installed driver.

Page: 3

Technote 1025 - GetDriverinformation: A Bug &
Workaround

OSErr GetDriverlnformation

ref Num
unit

fl ags
count
nane
devi ce

(Driver Ref Num ref Num

Uni t Nunber *uni t Num

DriverFl ags *fl ags,

Dri ver OpenCount *count,

StringPtr nane,

RegEntryl D *devi ce,

CFr agHFSLocat or *driverLoadLocati on,
CFragConnectionl D *f ragment Connl D,
DriverEntryPoi ntPtr *f ragnment Mai n,
DriverDescription *driverDesc);

ref Num of driver to exam ne

resul ting unit nunber

resulting DCE flag bits

nunber of times driver has been opened
resulting driver name

resul ting Nanme Regi stry device specification

driverLocation resulting CFM fragnment |ocator (fromwhich the driver

was | oaded)

fragnent Connl D resul ting CFM connection ID
fragnent Mai n resulting pointer to DoDriverlO
driverDesc resulting pointer to DriverDescription

Note:

DESCRIPTION

GetDriverlnformation is used by driver expertsin PCl-bus-supporting machines, software that
makes decisions about which driver to load for a particular device -- or by any software that
needs to get information about a driver for adevice.

Given the Unit Table reference number of an instaled driver, GetDriverlnformation returns the
driver's unit number in unit, its DCE flags in flags, the number of timesit has been opened in
count, its name in name, its RegEntryID valuein device, its CFM fragment locator in
driverLocation, its CFM connection ID in fragmentConni D, its DoDriverl O entry point in
fragmentMain, and its Driver Description in driverDesc.

With 68K drivers, GetDriverlnformation returns meaningful information in only the unit, flags, count,
and name parameters.

Warning:

Y ou must alocate the FSSpec field of the CFragHFSL ocator * driverLocation before passing it into
GetDriverInformation().

RESULT CODES
noErr 0 No error

badUni t Err -21 Bad unit nunber
uni t Empt yErr -22 Enpty unit nunber

Summary

To protect yourself against having GetDriverlnformation copy garbage into the passed SringPtr name
parameter when adriver hasits Device Control Entry (DCE) fields zeroed upon closing (the Chooser, for
example), alocate alarge enough string (for example, String255) for the name parameter. Thiswill assure that
any garbage copied to the string will be contained in that string.

See Designing PCI Cards and Drivers for Power Macintosh Computers for further documentation on
GetDriverlnformation or any other Driver Loader Library calls.

Technotes
Previous Technote | Contents | Next Technote

Page: 4

