TN 1109: Optimizing QD3D 1.5.3 Apps For Page: 1
Maximum Performance

Technote 1109

Optimizing QuickDraw3D 1.5.3 Applications For Maximum
Performance

CONTENTS T
| . here are a number of techniques not discussed in the
ntroduction
QuickDraw3D (QD3D) documentation which a developer
Techniques For Optimizing QD3D 1.5.3 can use to boost performance in atypica QD3D
Applications For Maximum Performance application. This Technote presents these techniques. This

Technote assumes you are familiar with 3D graphics

Using 3D Accelerators To Boost fundamentals and QD3D programming as described in

Performance the book 3D Graphics Programming With QuickDraw
Summary @ by Addison-Wedl ey.

| ntroduction

3D software developers continue to add more and more powerful featuresto their applications. However,
as these applications become more and more complex, their overall performance may suffer aswell. The
current QD3D documentation contains no discussion of how to improve performance in atypical QD3D
application. This Technote present some techniques for doing so. Also included is a discussion of what
affect 3D accelerators can have on application performance.

Techniques For Optimizing QD3D 1.5.3 Applications For
Maximum Performance

There are anumber of things QD3D application devel opers can do to get maximum performance out of
their applications:

Use The TriMesh Geometry

TriMesh Performance

The trimesh geometry was first introduced with QD3D 1.5 (refer to Philip Schneider's article "New
QuickDraw3D Geometries' in develop issue 28 for agood discussion of the various QD3D
geometries, and to the document "Trimesh.pdf" on the QD3D 1.5.3 SDK for adiscussion of the
trimesh). With QD3D 1.5.3, performance of the trimesh geometry when used in immediate mode with
the interactive renderer is quite good. If you care about speed, you'll definitely want to consider using the
trimesh. Depending on your needs, many of the other QD3D geometries may work just aswell - but if
speed isimportant, consider using the trimesh. Future versions of QD3D will address performance of
the other geometries too.

Also, if you are going to use the trimesh, be sure and use it correctly to achieve maximum performance.
Don't try building one giant trimesh with 10 different texture attributes - that won't work (see the next
section discussing materials in trimesh objects).

TN 1109: Optimizing QD3D 1.5.3 Apps For
Maximum Performance

Use Only One Texture Per TriMesh Object

In general you'll get better performance if you use only one texture per trimesh object. The texture
atribute should be in the trimesh data'st ri MeshAt t ri but eSet . Don't attempt to apply atextureto
individual triangles or vertices.

Supply A Bounding-Box For The TriMesh

The trimesh geometry contains an optional bounding-box parameter (see the bBox parameter in the
TQ@Tri MeshDat a data structure) that can be provided to accelerate culling/clipping. Do specify a
bounding-box when creating the trimesh geometry and you'll get better performance (however, make
sure the bounding box you specify is correct, or a crash may result).

Apply Only the Normal & UV Coordinate Vertex Attributes

Apply only the following vertex attributes to a given object if you want better performance: normal
(k@BAttribut eTypeNor mal) & UV Coordinate (k@At t ri but eTypeSur f acelV &
kQBAt t ri but eTypeShadi ngWv).

Reuse AsMany Vertices As Possible

Reuse as many vertices as possible. Vertices with duplicate coordinates may have different normals
meaning you'll have to make awasteful duplicate of the vertex. In such cases, you should consider
averaging the normals and removing the duplicate. Thiswill usualy result in a smoothing effect on the
geometry, but it will make things go faster.

Usethe Triangle/Face Attribute Face Normal

With the current implementation of QD3D version 1.5.3, you'll want to use the face normal triangle/face
attribute, and even then there are cases where you might not want to do this. If you do not supply aface
normal, QD3D will calculate one for you every time you render. In many cases, thiswill cause QD3D to
dow down, since calculating anormal isslow. However, if you have alot of data, and it's unlikely your
arrays of normals stay inthe L1 or L2 cache between renderings, then it can be faster to * not* provide
the face normal.

A cache miss can cost more cycles than just letting QD3D recal culate the normal. In most cases, you'll
want to provide the face normal, but run some tests and seeif your application works better without
them.

Also, it's best if you make sure the vertices for each triangle are stored in the counterclockwise direction.
Refer to the document " Trimesh.pdf" on the QD3D 1.5.3 SDK for more details.

Do Your Own Object Culling

Do your own object culling? QD3D's object culling uses bounding box culling, which isfairly accurate
and isreally the only way to go for ageneral purpose library like QD3D, but it's very slow. Y ou should
implement your own object culling function which does spherical culling.

Also, use backface culling for closed objects (when appropriate), as this rendering styleislikely to be
significantly faster than the other backfacing styles (refer to Chapter 6, " Style Objects’, of 3D
Graphics Programming With QuickDraw 3D for the details).

Minimize Other Processing While Rendering

Applications may perform many other activities while rendering, such as drawing awireframe view of a

scene into another window, updating the coordinates of a geometry, updating non-QD3D structures, etc.
All these activities can have an effect on rendering. If you can reduce the amount of time spent on these

activities at rendering time, you'll see a performance improvement in your application.

Page: 2

TN 1109: Optimizing QD3D 1.5.3 Apps For Page: 3
Maximum Performance

Minimize Time Given To Background Applications

Many applications give too much time (viathe Wai t Next Event function) to background applications
while rendering, so no matter how much QD3D acceleration is available, there are dways afew ticks
delay between redraws during rendering. If you can minimize the amount of time spent servicing
background applications, your application will be that much faster.

Be Careful When Using Group Objects

QD3D group objects are convenient for storing and managing objects. However, many developersfail to
realize each group will push and pop the graphics state at execution time because by default, the group
inlineflag (k@Di spl ayG oupSt at eMaskl si nl i ne) isnot set (see Chapter 10 "Group Object” of 3D
Graphics Programming With QuickDraw 3D for the details). Pushing and popping of the graphics
state at execution time for each group object can affect performance in abad way.

If you need to push and pop the graphics state manually, use the @Push_Submni t and @BPop_Subnmi t
functions. Devel opers instead, may want to implement their own data structures to handle the
management of large numbers of objects.

Retained vs. Immediate M ode

Depending upon your particular needs, using immediate mode may be faster than retained mode. For
example, if you are dealing with sphere or cone geometries with the constant subdivision style set you
will probably see a performance improvement when immediate mode is used.

You'l redly need to experiment to see which mode works best for you. In general, if most of amodel
remains unchanged from frame to frame, you'll probably want to use retained mode imaging to create
and draw the modél. If, however, many parts of the model do change from frame to frame, you might
consider using immediate mode imaging, creating and rendering of amodel on a shape-by-shape basis.
Y ou can, of course, use acombination of retained and immediate mode imaging: you can create retained
objects for the parts of amodel that remain static and draw quickly changing objects in immediate mode.
Refer to Chapter 1 of 3D Graphics Programming With QuickDraw3D for adiscussion of both retained
and immediate modes.

Don't Use @BVi ew_Sync, TQ@BVi enendFr ameMet hod Unless Necessary

It's best you not use the @3Vi ew_Sync or TQ@BVi ewEndFr aneMet hod functions unless absolutely
necessary when using the interactive renderer. These functions essentially put the renderer into
synchronous mode. Try to avoid doing so, and you'll get better performance.

TN 1109: Optimizing QD3D 1.5.3 Apps For Page: 4
Maximum Performance

Using 3D Accelerators To Boost Performance

There's been an increase lately in the number of 3D graphics accelerator boards which support QD3D.
These accelerators are designed to also improve performance for most QD3D applications. However,
many devel opers are disappointed to find their applications don't exhibit much in the way of improved
performance with these boards installed on their systems. One reason for this is many developers are not
using the techniques discussed in the previous section for obtaining maximum performance with their
QD3D applications.

When looking at the performance of agiven 3D accelerator, it isimportant you understand most cards
accelerate the 3D graphics rasterization process. As you know, rasterization is one process (usualy
towards the end) in the rendering pipeline. It follows, then, if you are using a geometry in your program
which is computationally expensive, such asaNURB geometry, and your code and geometry
calculations take up agreat ded of time, even if agiven accelerator could "instantaneously” render
polygons you wouldn't see much of a speed improvement in your program.

Itisalso likely that at a certain point (application/geometry/complexity), an application will wind up
performing at the same speed whether a software renderer or a 3D accelerator board is being used.
Developers can experiment to see where exactly this tradeoff takes place.

If you make rasterization more "expensive", for example by adding high quality (tri-linear mip mapped)
texturing, transparency, and/or CSG operations, then you will see alarge performance and quality gain
over asoftware renderer (of course thisis very much dependent on the 3D accelerator card in use). To
really take advantage of agiven 3D accelerator card, you need to tailor your application to take advantage
of the specific card's features.

Most cards will, with varying degrees, accelerate QD3D applications, and will often improve substantially
the appearance of textures. However, it is possible to bog a card down, as many cards don't properly
handle al of the complexity that general purpose applications generate in a scene.

Summary

If you follow the above guidelines, you'll see abig performance boost in your QD3D application. If you
don't believe us, and you would like to see how much the above techniques help speed up your
application, there isaretail product called 3SDM F Optimizer from Pangea Software

(http://www.red time.net/~panged) which uses many of the techniques discussed in this note and let's you
see the speed boosts we're talking about. A demo version of 3DMF Optimizer is available at the URL
listed above.

Further References

o 3D Graphics Programming With QuickDraw 3D , Addison-Wesley
e "New QuickDraw3D Geometries' by Philip Schneider, develop magazine issue 28
e 3D Optimizer, from Pangea Software

Downloadables

E Acrobat version of this Note

To contact us, please use the Contact Us page.
Updated: 6-February-98

TN 1109: Optimizing QD3D 1.5.3 Apps For Page: 5
Maximum Performance

Technotes
Previous Technote | Contents | Next Technote

