TN 1085: Drag Manager and File System Entities Page: 1

TECHNOTE 1085

Using the Drag Manager to Interact with and Manipulate File
System Entities

Release1.1.1

CONTENTS T
he Drag Manager defines two data flavors for

Introducing f | avor Type and

f1avor TypeHFS interacting with and manipulating file system entities.
. While The Drag Manager Programmer's Guide
Using f1 avor TypeHFS explains these flavors, it does not provide sufficient detail
Sending | avor TypeHES for a complete understanding of how to use them.
Coping with Finder Bugs Developers who are interested in "teaching” (or even
those who have aready taught) their applicationsto
Receiving f | avor TypeHFS interact with and manipulate file system entities viathe

, _ Drag Manager should read this Technote.
Using f | avor TypePr oni seHFS

This Technote assumes you are familiar with the material

Sendling £l avor Typefr om setts in theDrag Manager Programmer's Guide and that, in

Cresting the File particular, you have read pages 2-36 and 2-37 and
understand the operation of aDr agSendDat aPr oc, which

Deferring Writing the File is documented starting on the bottom of page 2-72. Also,
some familiarity with the AppleEvent Manager data

Receiving f | avor TypePr omi seHFS structure AEDesc is assumed. (The AppleEvent Manager

is documented in chapter 3 of 1nside Macintosh:
Interapplication Communication .) Finally, familiarity

The True Nature of Find File's Evil: A

Sidebar with the File Manager call PBGet Cat | nf o iS

Working Around Find File recommended.

Summary Y ou can download a complete version of the code
snippetsin this Technote, FinderDragPro Metrowerks

Appendices Project, aswell asthe Drag Manager Programmer's

Guide, by clicking on theitem here or by clicking on the
appropriate icon in the Downloadables section at the end
of this Note.

TN 1085: Drag Manager and File System Entities

Introducing f | avor TypeHFS and f | avor TypePr omi seHFS

There are two data flavors for interacting with and manipulating file system entities: f | avor TypeHFS and
f | avor TypePr onmi seHFS. Despite similar names, their meanings are quite different. The key differenceis
that for one, the file exists, while for the other the file does not yet exist.

Putting f | avor TypeHFS data, which refersto an existing file, into abr agRef er ence islike saying "l
know of an existing file (which I may or may not have created myself) in which drag receivers might be
interested.” Putting f | avor TypePr oni seHFS datainto aDr agRef er ence islike saying "I'm willing to
create anew file as soon as somebody (adrag receiver) tells me where to put it."

Note:

The Drag Manager has the concept of "promising” datato aDr agRef er ence. Do not confuse
thiswithf I avor TypePr onmi seHFS. The two kinds of promise are different, and promising
fl avor TypeHFS datato aDr agRef er ence has nothing to do with f | avor TypePr omi seHFS.

This can be especially confusing when an application promisesf | avor TypePr oni seHFS datato
aDr agRef er ence; the promised datais in turn a promise to the receiving application to provide
datawhich refersto anewly created file - atriple indirection.

In this Technote, | make an effort to avoid using the word "promise" in more than one sense at a
time; nevertheless, read carefully.

[mportant:

The format of Drag Manager flavor datais only conventional. This means that nothing in the
API forces senders and recelversto useit correctly. As aways, you need to be careful to
implement these flavors strictly by the book.

The situation may even be worse. This document came into existence severd years after the
release of the Drag Manager. As aresult, it's been difficult for early adopters of the Drag
Manager to implement these flavors properly. And there may be applications which aren't as
conscientious as yours. Y ou should be extra careful to check error return values and build
assertions into your code, so that your app is ready to cope with other apps which unexpectedly
deviate from the conventions documented in this Note.

Using f | avor TypeHFS

In theory, usingf | avor TypeHFS data appears smple, but in practice there are afew tricks you need to
know. The following sections document afew of those tricks for you. For quick reference, here's a copy
of the HFSFI avor declaration from <Dr ag. h>:

struct HFSFl avor

{

OSType fil eType; /Il file type

CSType fileCreator; /'l file creator

unsi gned short fdFl ags; /'l Finder flags

FSSpec fil eSpec; /1l file system specification
s

typedef struct HFSFlI avor HFSFI avor;

Sending flavor TypeHFS

Page: 2

TN 1085: Drag Manager and File System Entities

To originate adrag containing f | avor TypeHFS data, you must first declare an HFSFI avor record. This
record contains an FSSpec and afew other fields which allow some potential drag receiversto avoid
caling FSpGet FI nf o.

The next stepistoinitializethef i | eSpec field appropriately, then decide whether the datarefersto a
file. If so, smply setthefi | eType,fil eCreator, andf dFl ags fieldsto match the appropriate
information for the file. If thef | avor TypeHFS datarefersto adirectory or volume, set thefi | eType and
fil eCreator fieldsintheHFSFI avor record according to Table 1:

Tablel. The fileType and fileCreator fieldsfor the HFSFlavor record

entity type fileCreator fileType
directory (folder) MACS fold
volume (disk) MACS di sk

These values are ahint to potential drag receiversthat they are dealing with something other than afile.
They are the same as the ones you would use in your application's bundle resource to let Finder know
your app will accept folders and disks dropped onto your application'sicon.

Snippet #1: Deciding howto setthe fileCreator and fileType fields

pascal OSErr MakeHFSFI avor
(short vRefNum 1long dirlD, ConstStr255Param pat h,
HFSFI avor regi ster *hfsFl avor P)

OSErr err = noErr;

if (!(err = FSMakeFSSpec
(vRef Num di r I D, pat h, & hf sFl avor P->fi | eSpec))))
{

ClnfoPBPtr cipbp =
(CInfoPBPtr) NewPtrC ear (sizeof (*cipbp));
if ('(err = MenkError ()))

ci pbp->hFil el nfo.i oVRef Num =

hf sFl avor P->f i | eSpec. vRef Num
ci pbp->hFilelnfo.ioDirlID =

hf skl avor P- >f i | eSpec. par | D;
ci pbp->hFil el nfo.i oNanePtr =

hf sFl avor P- >f i | eSpec. nane;

if (!(err = PBGetCatlnfoSync (cipbp)))

hf sFl avor P- >f dFl ags =
ci pbp->hFi | el nfo. i oFl Fndr I nf o. f dFl ags;

if (hfsFlavorP->fil eSpec.parlD == fsRtParl D)

hf skl avor P->fi | eCr eat or
hf sFl avor P->fi | eType

' MACS' ;
"di sk';

}
else if (cipbp->hFilelnfo.ioFl Attrib & ioDirMsk)

" MACS' ;
‘fold;

hf sFl avor P->fi | eCr eat or
hf sFl avor P->fi | eType

}

el se

hf sFl avor P->fi | eCr eat or

Page: 3

TN 1085: Drag Manager and File System Entities Page: 4

ci pbp->hFi | el nfo. i oFl Fndr I nfo. f dCr eat or
hf sFl avor P->fi | eType _
ci pbp->hFi | el nfo.i oFl Fndr | nfo. f dType;

}

Di sposePtr ((Ptr) cipbp);
if (terr) err = MenError ();

}

return err;

Coping with Finder Bugs

Dragging f | avor TypeHFS data from your application to Finder has always supposed to have been
possible. However, Finder bugs have prevented most applications from successfully using this feature.

From Finder's perspective, there are two cases for receiving f | avor TypeHFS data. The second caseis
more interesting.

1. If thedrop location is on the same volume asthef | avor TypeHFS data, Finder smply movesthe
file to the drop location.
2. If thethedrop location is on a different volume, Finder needs to copy the file to the new volume.

Finder is AppleEvent-intensive. It sendsitself AppleEventsto order itself to do all sorts of things,
including displaying the progress window for copying files. However, Finder's drag-receiving code
mistakenly sends these particular AppleEvents to the front process instead of the current process. The
front processis generally the application which originated the drag. Since the application does not have
handlers for these events, AppleEvent Manager returns an error to Finder's AESend call and Finder
cancels the entire operation.

Until this bug isfixed, your application can work around the problem by "handling” these AppleEvents.
On systems under which Finder has been fixed, the handler will simply lie dormant in your app, because
the AppleEvents will be sent to Finder, not your app. Unfortunately, it doesn't do any good to "reflect”
these events back to the Finder; trust us, we've tried. This means you'll have to do without the progress
diaog, but thisis better than abject failure.

Snippet #2: Receiving bogus AppleEvents from Finder

pascal OSErr BogusFi nder Event Handl er
(const Appl eEvent *, Appl eEvent *, |ong)

return noErr; // just drop that bad boy on the floor

}

pascal OSErr | nstall BogusFi nder Event Handl er (voi d)

{ CSErr err = noErr;
static AEEvent Handl er UPP bogusFi nder Event Handl er UPP.
i f (!bogusFi nder Event Handl er UPP)

bogusFi nder Event Handl er UPP =
NewAEEvent Handl er Proc (BogusFi nder Event Handl er) ;

i f (!bogusFi nder Event Handl er UPP)
err = nil Handl eErr;

TN 1085: Drag Manager and File System Entities

el se

{
err = AElnstal |l Event Handl er

("cwin',"****" phogusFi nder Event Handl er UPP, O, f al se);
if (err)

{
Di sposeRouti neDescri ptor (bogusFi nder Event Handl er UPP) ;

bogusFi nder Event Handl er UPP = ni | ;

}

return err;

Recelving f | avor TypeHFS

Receiving f | avor TypeHFS, often from Finder, is much like receiving any other flavor of data. However,
be aware that some applicationswill offer you atruncated record; they do not provide the unused bytes at
the end of the namefield of thef i | eSpec field of the HFSFI avor record. (Thisisabug in the sending
application, but if it's not your app, you probably don't have an opportunity to fix it.)

Snhippet #3: Calculating minimum bytesfor FSSpec
(called from snippets #4 , #6, and #14)

static pascal Size M ni munByt esFor FSSpec (const FSSpec *fss)

/'l callers can and do assume this does not nove nenory
return sizeof (*fss) - sizeof (fss->nane) + *(fss->name) + 1;

Snippet #4: Extracting flavorTypeHFS data

pascal OSErr Get HFSFI avor FronDr agRef er ence
(DragRef erence dragRef, ItenReference itenRef,
HFSFI avor *hf sFl avor)

CSErr err = nofErr;

Si ze size = sizeof (*hfsFlavor);
err = GetFl avorDat a
(dragRef,itenRef, flavor TypeHFS, hf sFl avor, &si ze, 0) ;

if (lerr)
{
Si ze mi nSize = sizeof (*hfsFlavor) -
si zeof (hfsFlavor->fileSpec);
nm nSi ze += M ni nunByt esFor FSSpec (&(hf sFl avor->fil eSpec));
/'l see snippet 3 for M ni munByt esFor FSSpec
if (size < mnSize)
err = cant Get Fl avorErr;

}

return err;

Page: 5

TN 1085: Drag Manager and File System Entities

Using f | avor TypePr oni seHFS

Using f | avor TypePr oni seHFS datais significantly more complicated than using f | avor TypeHFS data.
The chief areaof confusion is centered on the multi-part nature of f | avor TypePr omi seHFS data. For
quick reference, here's a copy of the Pr om seHFSFI avor declaration from <Dr ag. h>:

struct Prom seHFSFI avor

{
OSType fil eType; /Il file type
CSType fileCreator; /1l file creator
unsi gned short fdFl ags; /1l Finder flags
Fl avor Type prom sedFl avor; /1 prom sed flavor
1

t ypedef struct Prom seHFSFI avor Prom seHFSFl avor;

Sending f | avor TypePr oni seHFS
Promisingto Create a File

Before calling Tr ackDr ag, your application should call AddDr agl t enFl avor twice, passing the same
I t enRef er ence value both times, once for each part of the data.

For thefirst call, declare arecord of type Pr omi seHFSFI avor and put' fssP' (0x66737350) in the
proni sedFl avor field. The Drag Manager Programmer's Guide tellsyou to put any vaueyou like
into pr om sedFl avor , but we're now recommending this specific value. (Details can be found below; if
your application already uses something else, don't worry too much right now unlessit's' rwrt' .) Fill in
the other fields of the Pr omi seHFSFI avor record appropriately and add the record to the

Dr agRef er ence, passingf | avor TypePr oni seHFS for theFl avor Type parameter.

With the second call to AddDr agl t enFl avor , pass' f ssP' for theFl avor Type parameter. Pass O for the
dat aPt r and dat aSi ze parametersto set up apromise to be kept later.

Snippet #5: Adding flavorTypePromiseHFS data

pascal OSErr AddDragltentl avor TypePromn seHFS
(DragRef erence dragRef, ItenReference itenRef,
CSType fil eType, OSType fileCreator,
U nt16 fdFl ags, FlavorType proni sedFl avor)

OSErr err = nokrr;

Prom seHFSFI avor phfs;

phfs.fil eType = fil eType;
phfs.fil eCreator = fileCreator;
phfs. f dFl ags = fdFl ags;

phfs. prom sedFl avor pr om sedFl avor;

if (!(err = AddDragltenfl avor
(dragRef,itenRef, fl avor TypeProm seHFS,
&phf s, si zeof (phfs), fl avor Not Saved)))

err = AddDragltentl avor
(dragRef,itenRef, prom sedFl avor, ni |, 0, fl avor Not Saved) ;

}

return err;

Page: 6

TN 1085: Drag Manager and File System Entities

Important
Dueto abug in some versions of Finder, your application should add f | avor TypePr oni seHFS
flavor data before any other, followed immediately by the flavor datafor the pr ori sedFl avor
field. If your application does not add these flavorsin this order, Finder will position the file's
icon incorrectly.

Note
If your application hasn't already attached a Dr agSendDat aPr oc to theDr agRef er ence with a
cal to Set Dr agSendDat aPr oc, you'll need to add this functionality.

Add any other flavors you might want to provide in this Dr agRef er ence, and you're ready to call
TrackDr ag.

Keeping the Promise

When Drag Manager requests aFl avor Type equa to the pr omi sedFl avor field of your

f 1 avor TypePr oni seHFS data, it's your cue to keep your promise by delivering the file. Keeping the
promise involves finding out where the drag receiver wants the file to end up, deciding where to create the
file, and creating the file. You'll do thisin your Dr agSendDat aPr oc associated with the Dr agRef er ence.

Getting the Drop L ocation

First, your Dr agSendDat aPr oc will need to find out where the drag receiver wantsthefile. You'll need to

cal Get DropLocat i on, which will produce an AEDesc record. The type of the datafound in thisrecord is

defined by the drag receiver. Finder, for example, providest ypeAl i as data. To convert this datato an
FSSpec, coerceitstypetot ypeFss and copy the FSSpec data out of the resulting descriptor.

Snippet #6: Extracting the drop folder

Page: 7

TN 1085: Drag Manager and File System Entities

pascal OSErr GetDropDirectory (DragReference dragRef, FSSpecPtr fssQut)
{
CSErr err = noErr;
AEDesc dropLocAlias = { typeNull, nil };
if (!'(err = GetDropLocation (dragRef, &ropLocAlias)))
{
if (dropLocAlias.descriptorType = typeAlias)
err = parangrr;
el se
AEDesc dropLocFSS = { typeNull, nil };

if (!(err = AECoerceDesc
(&dr opLocAl i as, t ypeFSS, &r opLocFSS)))

{
/| assume M ni munByt esFor FSSpec does not nove nenory
FSSpecPtr fss = (FSSpecPtr) *(dropLocFSS. dat aHandl e);
Bl ockMoveData (fss, fssQut, M ni nunByt esFor FSSpec(fss));
/'l see snippet 3 for M ni munByt esFor FSSpec
err = AED sposeDesc (&dropLocFSS);

}

}
i f (dropLocAlias. dataHandl e)

CSErr err2 = AED sposeDesc (&dropLocAli as);
if (lerr) err = err2;

}

return err;

Note

TheFsspec data describes adirectory; it is not an FSSpec you can use for creating your file. To
get the directory 1D for the file you want to create, use PBGet Cat | nf o, asis done in the function
in Appendix C.

If the drop location datais not of t ypeAl i as, the call to AECoer ceDesc will fail. Y our

Dr agSendDat aPr oc Will probably want to provide no data and return an error in this situation. However,
be aware that applications other than Finder are free to provide adrop location of t ypeAl i as (and some
even do), so don't rely ont ypeAl i as signifying that Finder isthe drop receiver.

Note

Finder currently has afew bugs having to do with deciding where to allow

fl avor TypePr om seHFS drops. Aliasesto folders, aliases to the Trash, and applications which
accept the file type presented in the Pr omi seHFSFI avor record will highlight asif they are
going to accept adrag. However, they reject the drag when the mouse button is released. In the
latter case (applications), the drop location will be an diasto the application fileitself. Thereis
no good workaround for this problem.

Page: 8

TN 1085: Drag Manager and File System Entities Page: 9

Note
Don't try to create the file on avolume other than the one specified by the drop location. Finder
will not copy thefile to the drop location.

Creating theFile

Once you've decided where to put thefile, you can create it by calling afunction like this one:

Snippet #7: Creating the promised file or folder

pascal OSErr CreateProni sedFil eO Fol der
(const Promni seHFSFI avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

{
OSErr err = noFErr;
i f (phfs->prom sedFl avor == kProm sedFl avor Fi ndFi | e)
err = parangrr;
else if (phfs->fileType == "disk')
err = parangrr;
else if (phfs->fileType == "fold")
err = CreateProni sedFol der (phfs,fss,scriptTag); // see Snippet 9
el se
err = CreatePronisedFile (phfs,fss,scriptTag); // see Snippet 8
return err;
}

Snippet #8: Called by snippet #7

static pascal CreateProm sedFile
(const Prom seHFSFl avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

{
OSErr err = noErr,;
if (!(err = FSpCreate
(fss,phfs->fileCreator, phfs->fil eType, scriptTag)))
i f (phfs->fdFl ags)
FI nfo finderl nfo;
if (!(err = FSpGetFInfo (fss, & inderinfo)))
{
finderlnfo.fdFl ags = phfs->fdFl ags;
err = FSpSet FInfo (fss, & inderlnfo);
}
}
}
return err;
}

Snippet #9: Called by Snippet #7

static pascal CreateProm sedFol der
(const Prom seHFSFl avor *phfs, const FSSpec *fss,
Scri pt Code scri pt Tag)

TN 1085: Drag Manager and File System Entities

{
CSErr err = noErr;
long newbDirID; // scratch
if (!(err = FSpDirCreate (fss, scriptTag, &ewDirlD)))
{
i f (phfs->fdFl ags)
{
DI nfo finderl nfo;
/1l see Appendi x B for FSpGet Dl nfo and FSpSet DI nfo
if (!'(err = FSpGet DI nfo (fss, & inderlnfo)))
{
finderlnfo.frFlags = phfs->fdFl ags;
err = FSpSetDInfo (fss, & inderlnfo);
}
}
}
return err;
}

Deferring Writing the File

Oncethefileis created, you may or may not want to write its contentsin your Dr agSendDat aPr oc. If the
fileislarge or your app needs some time to generate the data that will be in the file, you may want to defer
writing the file. Since Process Manager context switches are disabled during Drag Manager callbacks,
other applications would get no execution time if you were to spend time writing the file, eveniif it were
safeto periodically call vai t Next Event , whichitisnot.

In this situation, you'll want to open the file in your Dr agSendDat aPr oc and leave it open. In addition, set
aflag to tell another part of your application it needsto write the file. After Tr ackDr ag returns, have that
part of your app write the file with periodic callsto Wi t Next Event .

Finishing the Drag

Once (and only if) the file has been successfully created, you should let the drag receiver know what the
filename was and where the file was created. To do this, call Set I t enFl avor Dat a. For the Fl avor Type
parameter, pass the value of the pr oni sedFl avor field of the Pr omi seHFSFI avor record. For the flavor
data, pass an FSSpec record describing the name and location of the file. The pr oni sedFl avor data
should always be an FSSpec, not an HFSFI avor . This snippet consists of simple glue which adds the data

correctly:
Snippet #10: Adding the promised FSSpec

pascal OSErr Set Proni sedHFSFI avor Dat a
(DragRef erence dragRef, I|tenReference itenRef,
const Prom seHFSFI avor *phfs, const FSSpec *fss)

return SetDragltenfFl avorDat a
(dragRef,itenRef, phfs->prom sedFl avor, fss, si zeof (*fss), 0);

I mpersonating Find File

If you need to provide aDr agRef er ence which refersto an existing file or files, then if at all possible you
should be sending f | avor TypeHFS. But if you discover a compelling reason to send
f | avor TypePr oni seHFS instead, make sure you:

Page: 10

TN 1085: Drag Manager and File System Entities

e Set thepronmi sedFl avor field of your Pr oni seHFSFI avor record to 'r wiil' (0x72576D31).
e When Drag Manager asks your Dr agSendDat aPr oc for' r wil' dataand Get Dr opLocat i on
produces an AEDesc Whosedescr i pt or Type field containst ypeNul |, provide the origina

location of thefile.

e If Get DropLocati on produces an AEDesc wWhosedescr i pt or Type field containst ypeAl i as,
copy thefileinto the drop location. ' rwriL' isonly ahint to the drag receiver, and the drag
receiver may not take the hint.

Important
Perform these stepsfor al drag items or none; don't mix and match.

The section Coping with Find File elsewhere in this Note details why these steps are necessary. The
following snippet implements a decision tree which tellsits caller whether to copy afilethecdler is

dropping:
Snippet #11: Deciding whether to copy a dropped file

pascal OSErr Shoul dCopyToDropLoc
(Dr agRef erence dragRef, Flavor Type proni sedFl avor,
Bool ean *shoul dCopy)

{
CSErr err = nofErr;
AEDesc dropLoc = { typeNull, nil };
*shoul dCopy = fal se;
if (!'(err = GetDropLocation (dragRef, &roplLoc)))
i f (dropLoc. descriptorType == typeAli as)
/1 no hint or receiver mssed it
*shoul dCopy = true;
}
el se if (dropLoc. descriptorType != typeNull)
/'l unknown drop | ocation descriptor type
err = parantrr;
el se if (prom sedFlavor != kProm sedFl avor Fi ndFi | e)
/1l null descriptor but no hint intended (DragPeeker)
err = di rNFErr;
}
i f (dropLoc. dat aHandl e)
CSErr err2 = AED sposeDesc (&droplLoc);
if (lerr) err = err2;
}
return err;
}

Recelving f | avor TypePr om seHFS

Most applications have no need to receivef | avor TypePr omi seHFS data; f | avor TypeHFS should suffice
for most needs. More senders providef | avor TypeHFS, athough thereis at least one important
application (Find File) which providesf | avor TypePr omi seHFS. In any case, seriously consider

Page: 11

TN 1085: Drag Manager and File System Entities
f1 avor TypeHFS before investing effort inf | avor TypePr onmi seHFS.
Getting the Two Flavors

In your drag tracking handler, you may retrievethef | avor TypePr oni seHFS data, whichisa
Pr oni seHFSFI avor , but don't try to retrieve the pr omi sedFl avor data. Y our drag tracking handler can't
know whether a given window in your application will be the ultimate receiver of the data - the ultimate
receiver might be another window in your app or one of the windows of another app. If your drag tracking
handler were to ask for the pr oni sedFl avor data, Drag Manager would call the sender's SendDat aPr oc,
and the data would thereafter be cached in the Dr agRef er ence. Consequently, other potential receivers
\(/jvoultlzl get the cached data and the sender would not have a chance to adjust it according to the receiver's
rop location.

In your drag receive handler, it's safe to retrieve both thef | avor TypePr omi seHFS data and the

proni sedFl avor data. Before requesting the pr omi sedFl avor data, however, make sureto call

Set Dr opLocat i on. The next snippet is afunction which administrates this process. Note that the folder
parameter can be NI L; this means the caller supports Find File; we'll explain how thisworks and why
you'd want to do it alittle |ater.

Snippet #12: Receiving flavorTypeHFS

pascal OSErr Recei veProm sedFil e
(DragRef erence dragRef, I|tenReference itenRef,
HFSFI avor *hf sFl avor, const FSSpec *fol der)

{
CSErr err = noErr;
i f (folder)
/'l see Snippet 13 for SetDropFol der
err = Set DropFol der (dragRef, fol der);
if (terr)
/1 we'll explain 'isSupposedl yFronFindFile' |ater
Bool ean i sSupposedl yFronFindFile = (folder == nil);
err = Get HFSFl avor FronPromi se // see snippet 14
(dragRef, itenRef, hfsFlavor, isSupposedl yFronFindFile);
}
return err;
}

Setting the Drop L ocation

This part of receiving f | avor TypePr omi seHFS isrelatively easy. First, create an aiasto the drop location,
which for f I avor TypePr oni seHFS should always be adirectory. Next, copy the aliasinto an AEDesc.
Findly, call set Dr opLocat i on. This procedure is demonstrated in the next snippet.

Snippet #13: Called by Snippet #12

Page: 12

TN 1085: Drag Manager and File System Entities Page: 13

static pascal OSErr Set DropFol der
(DragRef erence dragRef, const FSSpec *fol der)

{
CSErr err = noErr;
Ali asHandl e aliasH,;
if ('(err = NewAliasM nimal (folder, &aliasH)))
HLockHi ((Handl e) aliasH);
if (!I(err = MenmError ()))
{
Si ze size = GetHandl eSi ze ((Handle) aliasH);
if ('(err = MenkError ()))
{
AEDesc droplLoc;
if (!(err = AECreateDesc
(typeAlias, *aliasH, si ze, &ropLoc)))
{
CSErr err2;
err = SetDropLocati on (dragRef, &roplLoc);
err2 = AED sposeDesc (&droplLoc);
if (lerr) err = err2;
}
}
}
Di sposeHandl e ((Handl e) aliasH);
if (terr) err = MenError ();
}
return err;
}

Coping with Find File

Many drag receivers would like to be able to receive data dragged from a Find File results window. The
first flavor most developers would ook for in the Dr agRef er ence would bef | avor TypeHFS. However,
Find File providesf | avor TypePr oni seHFS instead, in an attempt to work around Finder bugs mentioned
elsewhere in this Technote.

TN 1085: Drag Manager and File System Entities Page: 14

The True Nature of Find File'sEvil: A Sidebar

Find File's workaround works pretty well within the scope of Finder, but it doesn't work very well with
many other applications which receivef | avor TypePr oni seHFS. You'll remember that

f 1 avor TypePr oni seHFS isapromise to create afile which doesn't exist yet, but Find File's results
window contains only existing files. Right away there's semantic conflict. Let's ook at a concrete
example to see how this conflict can cause problems:

If an email application wereto accept f | avor TypePr oni seHFS as an enclosure to a message and
assumed that the drag sender were honoring the semantics of f I avor TypePr oni seHFS as documented
in this Technote, the email app would probably want to set the drop location to its outgoing spool folder
and del ete the file when the associated message were successfully sent. After al, the semantics of

f 1 avor TypePr oni seHFS areto create afile expressy for the exclusive use of the receiving app.

However, if instead Find File were merely to move a pre-existing file into that spool folder, the email app
might well be deleting the user's only copy of that data, and at the very least Find File would be moving a
fileto aplacethe user isn't likely to expect or understand. Thisisin fact what Find File does.

Why? Well, since Finder is buggy, Find File convinces Finder a drop has occurred and then proceeds to
delete the dropped file and send AppleEventsto Finder to induce it to do what it should have done with
f 1 avor TypeHFS on itsown. The only data Find File really wants from Finder is the drop location.

Regardless of any of the background information in this sidebar, your application should conform as
strictly as possible to the rest of this Technote.

Working Around Find File

The Find File engineers didn't just bludgeon the Finder into working the way they wanted; they also
provided away for other applicationsto receive HFS-related drags sensibly. It just hasn't been
documented until now.

In your drag tracking handler, retrieve thef | avor TypePr onmi seHFS dataand compare its
promi sedFl avor fieldto' rwi' (0x72576D31). Thisisthe value which Find File dways uses. If
proni sedFl avor hasthisvaue, set aflagto remind you not to call Set Dr opLocat i on later.

In your drag receive handler, you'd normally call Set Dr opLocat i on before asking for the

promi sedFl avor data. However, if yourereceiving f | avor TypePr oni seHFS datafrom Find File, skip
this step before asking the Drag Manager for the pr oni sedFl avor data (and, of course, in this case
promi sedFl avor will dwayshavethevaue' rwit'). Thiswill produce FSSpec data without inducing
Find File to move or copy thefile.

And now we can see why the value of pr omi sedFl avor isimportant; if it's' r wil' , the data comes from
Find File, and if the value is anything else (we've recommended ' f ssP' [0x66737350]; but if your
program aready uses something else, don't worry about it), the data comes from some other application.
Applications other than Find File should conform to the semantics of f | avor TypePr oni seHFS as
documented in this Technote.

The next snippet shows how to retrieve both flavors, with some extra checking thrown in to make sure
nobody is confused about Find File.

Snippet #14. Called by Snippet #12

TN 1085: Drag Manager and File System Entities Page: 15

static pascal OSErr Get HFSFI avor FronProm se
(DragRef erence dragRef, |tenReference itenRef,
HFSFI avor *hfs, Bool ean i sSupposedl yFronFi ndFi | e)

{
OSEr r err = nofrr;
Pronm seHFSFl avor phfs;
Si ze size = sizeof (phfs);

err = GetFl avorData
(dragRef ,itenRef, flavor TypeProm seHFS, &phf s, &si ze, 0) ;

if (lterr)
if (size !'= sizeof (phfs))
err = cant Get Fl avorErr;

el se

Bool ean i sFronFindFile =

phfs. prom sedFl avor == kProni sedFl avor Fi ndFi | e;
i f (isSupposedl yFronFindFile !'= isFronFindFile)
err = parantrr;
el se
L . .
size = sizeof (hfs->fileSpec);
err = GetFlavorData
(dragRef, i tenRef, phfs. prom sedFl avor,
& hfs->fil eSpec), &si ze, 0);
if (lterr)
{
Size minSize = M ni nunByt esFor FSSpec
(&(hfs->fil eSpec));
/'l see snippet 3 for M ni munByt esFor FSSpec
if (size < mnSize)
err = cant Get Fl avorErr;
el se
hfs->fil eType = phfs.fil eType;
hfs->fileCreator = phfs.fileCreator;
hf s- >f dFl ags = phfs. fdFl ags;
}
}
}

}

return err;

TN 1085: Drag Manager and File System Entities Page: 16

Summary

There are two file system-oriented flavor types associated with the Drag Manager. One, f | avor TypeHFS,
isarelatively ssimple flavor which can be handled like most others except for some simple workarounds
for bugsin Finder. The other, f | avor TypePr oni seHFS, is probably the most complex flavor type
developerswill encounter and requires a high degree of care, attention to detail, and tolerance for intrusive
workarounds to implement correctly.

Here are some important |essons worth repeating:

e For existing files, usef | avor TypeHFS. For fileswhich don't yet exist but you're willing to
create, usef | avor TypePr oni seHFS.

e Don't confuse the Drag Manager's concept of promising flavor datawith
f I avor TypePr oni seHFS. They're both promises, but they are significantly different kinds of
promises.

e Check al error codes and build assertions into your code to avoid being surprised by
applications which don't conform to the behavior you expect.

® Get Droplocati on and Set Dr opLocat i on are your friends.

e Whenreceiving f | avor TypePr oni seHFS for afile you plan to delete, make sure you do the
right thing with Find File to avoid destroying data the user wanted to keep.

Further References

e The Drag Manager Programmer's Guide , available on the Developer CD Series Mac OS
SDK disc. In addition, you can download it here.

® AEDesc isan AppleEvent Manager data structure documented starting on page 3-12 of Inside
Macintosh: Interapplication Communication .

Downloadables

FOF
H Acrobat version of this Note (K)

W
o

Acrobat version of Drag Manager Programmer's Guide (378K)

Binhexed FinderDragPro M etrowerks Project (220K)

Appendices

The Appendices to this Technote contain code snippets which are necessary for afull understanding of
other snippets in the Technote but would have obstructed the flow of the main text stream.

Appendix A
Thisisauutility function called by the functionsin Appendices B and C. It allocates and populates a

Cl nf oPBRec S0 that it contains information on the given directory. The caller is expected to dispose the
Cl nf oPBRec if the function does not return an error.

TN 1085: Drag Manager and File System Entities Page: 17

static pascal OSErr FSpGetDirlnfo
(const FSSpec *spec, ClnfoPBPtr *cipbpp)

{
CSErr err = noErr;
CinfoPBPtr pbp = (CInfoPBPtr) NewPtrC ear (sizeof (*pbp));
*ci pbpp = nil;
if ('(err = MenkError ()))
{
pbp->di r I nf 0. i oVRef Num = spec- >vRef Num
pbp->dirinfo.ioDrDirl D = spec->parl D,
pbp->dirInfo.ioNamePtr = (StringPtr) spec->naneg;
err = PBGet Catl nfoSync (pbp);
if (lerr & !(pbp->hFilelnfo.ioFl Attrib & iobDirMask))
err = dirNFErr;
if (err)
Di sposePtr ((Ptr) pbp);
el se
*ci pbpp = pbp;
}
return err;
}
Appendix B

These functions are intended to follow the same APl as FSpGet Fi nf o and FSpSet FI nf o. They both call
FSpGet Di r | nf o, which can be found in Appendix A.

TN 1085: Drag Manager and File System Entities

static pascal OSErr FSpGetDInfo

{

}

(const FSSpec *spec, DInfo *fndrlnfo)

OSErr err = nofErr;

Cl nf oPBPt r ci pbp;

if ('(err = FSpGetDirlnfo (spec, &ci pbp)))
*fndrinfo = cipbp->dirlinfo.ioDrUsrWs;
Di sposePtr ((Ptr) cipbp);

if (terr) err = MenError ();
}

return err;

static pascal OSErr FSpSet DI nfo

(const FSSpec *spec, const DIinfo *fndrlnfo)

{
CSErr err = noErr;
Cl nf oPBPtr ci pbp;
if ('(err = FSpGetDirlnfo (spec, &ci pbp)))
{
ci pbp->dirlnfo.ioDrUsrWs = *fndrlnfo;
ci pbp->dirinfo.iobrDirlD = spec->parl D;
err = PBSet Cat | nfoSync (cipbp);
Di sposePtr ((Ptr) cipbp);
if (terr) err = MenError ();
}
return err;
}
Appendix C

Thisfunction returns the directory 1D of agiven folder. It callsFSpGet Di r | nf o, which can be found in

Appendix A.

pascal OSErr GetDirectoryl D (const FSSpec *spec, long *dirlD)

{

OSErr err = noErr;

Cl nf oPBPt r ci pbp;

if (!'(err = FSpGetDirlnfo (spec, &ci pbp)))

{ *dirl D = cipbp->dirinfo.ioDDirlD
Di sposePtr ((Ptr) cipbp);

if (lerr) err = MenError ();
}

return err;

Page: 18

TN 1085: Drag Manager and File System Entities Page: 19
e —
-+

To contact us, please use the Contact Us page.
Updated: 10-Feb-97

Technotes
Previous Technote | Contents | Next Technote

