Tn 1016: Where Has My qd Gone?

Technotes
Download Download
anl
Acrobat file (K) AppleWorksfile (41K)

WhereHas My qd Gone? How Do | Use QDGlobals Correctly?

Technote 1016 FEBRUARY 1996

This Note addresses the genesis of and changesto the gd variable and the QDGlobals data type. The qd
variable contains all QuickDraw global variables. This Note aso demonstrates the correct usage of the
gd variable and the QDGlobals data type.

This Noteis of genera interest to developersinvolved in Macintosh programming in C and C++.
Contents

e Defining gd Now: Why and How?

e TheEarly Pasca Declaration

e TheC Declaration

e Using gd in Environments Other Than MPW

e Summary

Defining gd Now: Why and How?

At one time in the evolution of the Macintosh it was not necessary to define the variable gd. In fact, there
was no system global variable called qd. As devel opment environments changed from Pascal to C and
internal data structures matured, however, a set of globa variables were grouped together and called gd.
The definition of this variable was, for the most part, hidden from the Macintosh programmer. Today,
one by-product of using shared librariesis that you must globally define gd.

The Early Pascal Declaration
In the early days (before qd), agroup of global variables were declared thus:

thePort: GafPtr;
white: Pattern;

bl ack: Pattern;
gray: Pattern;
ItGray: Pattern;
dkGray: Pattern;
arrow. Cursor;
screenBits: BitMp;

Page: 1

Tn 1016: Where Has My qd Gone? Page: 2

randSeed: LONG NT;

and could be accessed directly asfollows:

InitGaf (@hePort);

But that was back in the days when Pasca was the programming language of choice for Macintosh
development.

The C Declaration

When Apple and most Macintosh developers moved to C, it was decided that this group of variables
should be tied together as a single data structure. The data structure was given the name gd, and declared
thus:

extern struct {

char privates[76];
| ong randSeed,;

Bit Map screenBits;
Cursor arrow,
Pattern dkG ay;
Pattern |t G ay;
Pattern gray;
Pattern bl ack;
Pattern white;

G afPtr thePort;

}aqd;

without adata type in Quickdraw.h. It was defined for Macintosh programmers in the library Runtime.o
(i.e., the actual storage for qd was provided by Runtime.o). This meant that to access qd or any of its
fields, you didn't haveto defineit. The fields of gd could no longer be accessed directly asthey once
were, but only through qd as follows:

InitGaf(&qd. thePort);

At alater point the data structure was changed, given a datatype and declared thus:

struct Qbd obal s {

char privates[76];
| ong randSeed;

Bi t Map screenBits;
Cur sor arrow,
Pattern dkGr ay;
Pattern It G ay;
Pattern gray,;

Pattern bl ack;
Pattern white;
GafPtr t hePort ;

}
typedef struct QDA obals @A obal s, *QDbd obal sPtr, **QDd obal sHdl ;
extern QA obal s qd;

With the introduction of the PowerPC came the Code Fragment Manager, and with the Code Fragment
Manager came shared libraries. If an application used five shared libraries and each linked with the old
Runtime.o module, each library would have a separate copy of gd, and not the one passed by the
application to InitGraf! This meant that it was possible to have more than one gd variable defined at a
time. There were problems with this approach. For example, if you had multiple qds, updating one

Tn 1016: Where Has My qd Gone?

would necessitate propagating those changes to all qds, which would be time-consuming on one hand.
On the other hand, if that wasn't done, then these qds could easily get out of sync with each other.

Moreover, it was not alogical reflection of the world. For example, the gd variable has aways been used
as an abstraction of the user's computer screen, of which thereislogically only one. qd was thus
removed from the statically linked runtime library in the PowerPC environment. This meant that to link
for the PowerPC environment, your application had to take on the added responsibility of defining qd.

To avoid separate code bases for 68K and PowerPC Macintoshes, it was recommended that the
following definition be added to each application that made use of the qd global:

#i f def power pc

Q4 obal s qd;
#endi f

Thisworked fine until CFM-68K came along. The shared librariesin the CFM-68K environment
suffered the same problems with multiple definitions of gd. During the development of CFM-68K, it
was initially recommended that the previous definition be changed to the following:

#i f GENERATI NGCFM

QDA obal s qd;
#endi f

As development of CFM-68K continued, it became apparent that the runtime libraries needed to be
reorganized to better reflect the realities of how they were used, and to reduce duplication of code
between the Pascal libraries and the three versions of the C libraries. In the process of this
reorganization, the library Runtime.o was replaced with MacRuntime.o and IntEnv.o.

In addition, when the libraries were reorganized, the default 1/0O operations were redone, modeled on the
newer PowerPC versions. Previoudly, if an application wrote to stdout or stderr, the output was written to
adiaog box. To put up thisdialog, the libraries needed to be able to draw to the screen, and so needed a
gd global. Since the libraries already had one, it seemed logical to provideit to user. In the new 1/0
moddl, if an application writesto stdout or stderr, afile by that nameis created, and the output sent there.
The libraries no longer need to draw to the screen, and no longer need aqd global for their own use.

Because of the problems exposed by shared libraries, the changes to the 1/O model, and to reduce the
amount of CFM-specific code, it was concluded that it was no longer appropriate for the C Language
libraries to define the qd variable. With the release of MPW 3.4, therefore, each program that requires
gd isnow required to provide a single definition of qd regardless of the runtime environment:

QD4 obal s qd;
Using gd in Environments Other Than MPW

Currently neither Metrowerks nor Symantec support CFM-68K, but are expected to in the near future.
Both Metrowerks and Symantec's runtime architectures for the PowerPC are the same as MPW's, but
as of thiswriting both continue to use the old classic 68K runtime architecture. If you need to develop in
multiple environments, such as MPW, Metrowerks or Symantec, you need to use a preprocessor
conditional statement. For example:

#i f GENERATI NGCFM
QA obal s qd; /1l Required for all CFM environnents
#el se

#i f ndef SYMANTEC C || SYMANTEC CPLUS

Page: 3

Tn 1016: Where Has My qd Gone?

#define _ MPWONLY_

#endi f

#if defined (__SC) && defined(__ MPWONLY_)

QDG obal s qd; /1 Required for SCin MPWconpil ations
#endi f

#undef _ MPWONLY__

#endi f

Summary

With the release of the MPW 3.4 runtime libraries, when writing a standard Macintosh application that
uses standard Macintosh graphics, such as a graph port, you must now provide a single definition of the
gd variable in order to allocate storage for it in your application. This definition is usually donein the
global space of thefile that contains the main() function.

e ETO#19, MPW Release Notes, p.6-26, 7-10.

e Inside Macintosh: Volume| pagel-162, |-165.

e Inside Macintosh: Imaging With QuickDraw page 2-36, 2-62.

e Inside Macintosh: Power PC System Software , page 59.

Technotes
Previous Technote | Contents | Next Technote

Page: 4

