TN 1174: Optimization Strategies for Mac OS Page: 1

Technote 1174
Optimization Strategiesfor Mac OS

CONTENTS P

Introduction erformance tuning isacritical part of all application
development. Customers don’t like sluggish applications, and

AnaysisTools are willing to vote with their money. The good newsis that
small changesin an application can result in solid increasesin

The Macintosh Architecture the overall performance. This technote attemptsto gather a

significant amount of lore on tuning Mac OS applications for
Mac OS Optimization Strategies the best possible performance.

Optimizing C code

PowerPC Assembly

Bibliography

| ntroduction

Thefirst step to optimizing your application isto define your goas. Are you trying to improve overall
performance of the application, or are their specific features in the application that are critical enough to
need separate performance tuning? I's there a minimum acceptable performance level? How can it be
measured? The more detail you can put into your goals, the easier it will be to determine how to improve
your application.

When defining your goals, you need to determine your target platforms. AniMac with 32 megabytes of
memory will behave significantly differently than PowerMac G3 with 256 megabytes of memory. You
should determine at least one low-end and one high-end configuration, and use these configurationsin al
of your performance-tuning efforts.

Programmers are routinely bad at guessing where the bottlenecks are in their code. While you should be
thinking about optimization during the design process, you will want to focus your optimization efforts on
the sections of code that contribute the largest amount to your total execution time. So, the next stepin
optimizing your codeisto instrument your code and generate data that measures the execution of your
code. Later on, we' |l cover some of the tools that are available, and discuss when each might be useful.

After you' ve determined the bottlenecks in your code, the next step is to analyze your accumulated data
and determine exactly why that particular code is ow. It might be low because it is calling the operating
system, or it could be an incorrect choice of algorithms, or even poorly generated assembly code.
Understanding the exact behavior of your codeis critical to changing the code correctly.

Low-hanging fruit are smple flaws in the code that can provide immediate performance improvements if
repaired. One common example here would be making multiple system calls when only asingle set of
calsisnecessary. This could be setting QuickDraw port variablesinside aloop, or it could smply be
accidentally calling the same function twice.

After this, the next major place to optimize your code isin the agorithms. This technote covers both
Macintosh hardware and Mac OS technologies, so that you can understand how different algorithms may
be affected by the underlying system.

TN 1174: Optimization Strategies for Mac OS Page: 2

Memory management plays akey rolein any algorithms you choose to implement in your code. Good
memory management in an application can often mean orders of magnitude in performance.

Parallelism is becoming more common in modern computer architectures. With multiprocessor Power
Macintoshes already in the marketplace, and Power Macintoshes with AltiVec shipping in the future, you
should look at ways to exploit parallelism in your algorithms.

Finally, if the application performance still suffers, specific functions can be hand-optimized in C or
assembly language to produce more efficient code.

One golden rule of optimization isto hide the work where the user doesn’t notice it. For example, if the
user is not currently performing any actions, your code could precal culate data that may be used in the
future. This significantly reduces the time required to actually perform the task. For example, many chess
programs are computing their next move while waiting for the player to decide on their move. This
significantly reduces the perceived time the computer takes to make amove.

This technote describes techniques and agorithms without regard to other considerations, such as
flexibility in design, ease of coding, ease of debugging, and so on. As such, they may be inappropriate
except in areas of the application where performanceis most critical .

Back to top
Analysis Tools

Asdescribed above, it is critical to analyze your application to determine exactly where your program is
spending the majority of itstime. It is also important to understand exactly why your application is
spending itstime in that section of the code. Why is almost more important than where, because it will
suggest the changes required to improve the code.

With thisin mind, let’ s look at some of the toolsthat are available, and their best uses.

M etr ower ks Profiler

CodeWarrior shipswith a built-in profiling package that makesit smple to profile your code. Just turn on
Profiling in the Project options, make a couple of smple changesto your code, and compile.

The Metrowerks Profiler provides asummary of al of the callsin your application, how many times they
were called, and the total amount of time spent in each call. It also keepstrack of the shortest and longest
times each function call was made.

Thisisagood tool for getting an overall sense of where your application is spending itstime. The
summary information can quickly give you the top 5 or 10 functions where the application is spending
most of itstime.

The Metrowerks Profiler doesn’t give you any information on how much time you are spending inside the
operating system, nor does it really provide the context in which the function callswere made. That is, you
cantell that Foo was called 987,200 times, but you don’t really know when, or by whom, without
performing additional code inspection.

Still, this profiler is an excellent place to start when looking to optimize your application.

Instrumentation Library

Apple shipsacomplete SDK that alows you to wire up any application to log trace events. These trace
events are stored in afile that can be parsed by the Instrumentation Viewer, and displayed in anumber of
different formats. In addition to summary information, you can also see atime-based progression that
shows any subset of the events you wish to see.

TN 1174: Optimization Strategies for Mac OS

Thetypical way that thisisused isto log atrace event at the beginning and end of afunction. The
instrumentation viewer trandates this into a picture that shows the exact time spent in that function.

Redraw “iMac sleep”™ view

Selection: Ewvent Range Event Tag: O=00000000
Start Time: 1:539:55.601238 End Time: 1:59:556.116952
Duration: 00000515114 Total Events: 2
15953 262 1:59:54 262 1:59:55.262 1:59:56 262 1:59:57 .1
TimeLineDraw¥iewerPane() B
UpdateCachedData()

—— —_—

TLPointContainer _MoveTol)

TLPointContainer _ScanForward()

- —
_.*
TLPointContainer _AssignRows()
ey [————

Blast pixels

Figure 1l - Logging atrace event

One advantage this mechanism hasisthat you can see exactly when or where events certain events took
place in relation to others. For example, you could see exactly how long a function spends before calling
another function, then see how long it takes when that function returns. This gives us more detailed
information on exactly where each function spends itstime, rather than asimple summary.

Other types of events can be logged as well. For example, in addition to start and stop events, you can log
middle events at various points. Thisis useful for functionsthat are easily broken into different sections.
This alows each section of the function to be timed separately. In addition to time information, an
application can also log its own numeric information. For example, amemory allocator could log the
amount of memory requested by each call. Thiswould allow additiona analysis to be performed to
determine the frequency of different memory requests.

All thisflexibility comes with some cost. It takes additional effort to set up the Instrumentation Profiler,
because the support is not automatically in the compiler. Generally speaking, this can be done by running
atool (MrPlus) on an existing binary, and having it instrument alist of CFM imports or exports. This can
also be done by directly adding code to your application, which is something that will have to be donein
any case to obtain more sophisticated information.

In short, the instrumentation library is particularly useful once you see where your hot spots are, because
you can then drill down and analyze the hot spot in detail, and determine exactly what isbeing called (in
the OS or in your own code), how often, and for how long.

The instrumentation library is available on the Apple SDK web page.

e http://devel oper.apple.com/sdk
e ftp://ftp.apple.com/devel oper/Development KitsInstrumentation SDK.hgx

4PM

The 604 and G3 processors include performance-monitoring features that alow an application to record
statistics about its execution. Similarly, the MPC106 PCI controller used on theiMac and 1999 G3
models can a so monitor and log detailed performance information.

Page: 3

TN 1174: Optimization Strategies for Mac OS

4PM isaprogram and a shared library that allows an application to monitor a set of performance statistics.
Most of these performance statistics are related to processor-specific features, such as cache misses or

PCI performance. Aswe'll see when we talk about memory issues, some of these are crucia things to
consider to get the fastest possible applications.

While 4PM can be used to examine the overall performance, the shared library adds the capability to
selectively start and stop the monitor functions from within your application. So, if you' ve used the
Instrumentation Library to determine the hot spots inside your application, and it isn’t readily obvious why
your code is running slower than normal, 4PM could be used to provide additional details on how your
code is executing.

4PM isn't agreat tool for examining the application as awhole, but it can provide vauable information to
understanding why a section of code is running poorly.

e http://devel oper.apple.com/tools
SIM_G4

Motorola has created a cycle-accurate simulator of the G4 processor that can test the execution of a block
of code under different starting conditions. For example, you could test a snippet of code with both hot
and cold caches and compare the performance characteristics.

SIM_G4 works by creating atrace file using tracing features on the PowerPC processor. Thistracefileis
imported into SIM_ G4, and then those instructions can be ssimulated to give you a representation of how
your code passed through the various processor pipeline stages. Thistoal is particularly useful for
understanding how your instructions are scheduled and executed. As such, it is essential for scheduling
assembly code to run on the G4 processor.

The G4 is different enough from the earlier processors that scheduling for the G4 may not transfer back to
the earlier processors. So, while thistool isuseful, it will not solve al your problems.

Detailed information about using SIM_G4 is available on the AltiVec web page. SIM_G4 is only made
available as part of the Apple Developer seeding program.

Build Your Own Tools

Occasionally, you'll find that the existing tools don’t provide enough details on what is actually happening
in aprogram. In those cases, it is valuable to design your own tools to accumulate data on the operation of
your code.

When designing any subsystem of your code, you should think about the types of information you need
to understand the operation of that subsystem. Importantly, thisinformation serves a second purpose:
debugging that section of the code when there is a problem.

While any specifics are up to the individua application, the most common thing to log is state changes and

parameters that were passed to that code. Note that simple state changes and parameters are easy to log
with Instrumentation Library; you only need to write your own logging for complex systems.

Back to top
The Macintosh Architecture

PowerPC processors are very efficient at processing data, so much so that memory, not the processor, is
often the bottleneck in Mac OS applications. Slow memory accesses can completely stall the processor so
that little work is being performed.

Code that exhibits poor memory characteristics will run at speeds no faster than main memory or, even
worse, at the speed of virtual memory reading from ahard disk. Clearly, alocation and utilization of

Page: 4

TN 1174: Optimization Strategies for Mac OS Page: 5
memory are critical to achieving the best possible performance in an application.

Programming in a high-level language hides the complexities of the memory subsystems on modern
computers, in order to make it easier to write applications. Unfortunately, thisis not an advantage when
doing performance tuning. Understanding exactly how the memory system works is key to writing code
that will work with the memory system rather than against it. To understand this, we're going to discuss
the architecture of the Mac in detail. We'll first introduce some common architectural concepts; the
following section will cover the Macintosh in detail. This technote can only give a brief introduction to
computer architectures; for amore detailed discussion, see the Bibliography.

Most computer programs tend to exhibit patterns of memory accesses, which is usually referred to as
locality. Spatial L ocality refersto memory accesses that appear adjacent to an access you just
completed; thisis common when reading different pieces of datafrom a C struct. Tempor al locality
refers to multiple memory accesses to the same section of memory; in other words, if you just read
something from memory, you are likely to read it again in the near future.

Modern computer architectures use a hierarchical memory model to take advantage of spatial and temporal
locality. Thismodel is built on caches. A cacheisasmaller block of memory that can be accessed faster
than the level it sits on top of. When ablock of memory isloaded from the lower levels of the hierarchy, it
is copied into the cache. Future accesses to the same memory will retrieve the data from the cache, which
means the processor isless likely to stall waiting for something to be fetched from memory. Processors
areincreasing in speed faster than memory technol ogies, so multiple levels of cache are becoming more
common.

[] Fegisters

|:| L1 Cache

| | L2 Cache

| | Ln Cache

| | Memary

Hard drive/Virtual Memary
| | (slowest)

Figure2 - Memory hierarchy

When the block of datais not available in aparticular level of memory, that isknown as acache miss. A
cache missis actually dower than the original transaction would have been in asingle-level memory
system.

Clearly, to take best advantage of a cache, you want to reduce the number of cache misses by taking
advantage of locality in your application. Some areas of memory can be marked uncached so that the
processor will always fetch them from main memory. This can sometimes be very useful when the datais
infrequently accessed.

Caches can be designed in a number of different ways, so we need to discuss some of the parameters that
affect a cache’ s operations. Theseinclude:

e Size

TN 1174: Optimization Strategies for Mac OS Page: 6

e Cachdinesize

e Set Associativity

e Replacement Strategy

e Write-policy/Cache coherency

Increasing the size of the cache increases the probability that previously accessed datawill still bein the
cache the next time the processor attempts to access it.

Caches are organized into blocks of data, called cachelines. When the processor executes a load
instruction, it must fetch one or more cachelines of datain order to fill the request. Cachelines are
generally larger than the size of the processor’ sregisters; they need to be large enough to take advantage
of spatia locality without taxing the lower levels of the memory subsystem.

Set associativity describes where anew cacheline can be stored in the cache. In afull-associative cache,
anew cacheline can be stored into any available cacheline inside the cache. Most processor caches are not
fully associative because of the small amount of time available to search such acache. An n-way
associative cache means that the cachelinehasn locations that it could theoretically be placed inside the
cache. For example, an eight-way associative cache means that any particular block of memory can only be
placed in one of eight different cache blocksinside the cache. We' Il discuss exactly how thisworks later
on when we discuss the PowerPC processor.

If there are no empty cachelines available when the processor attempts to load a new cacheline, one of the
current cachelines must be thrown out. Thisis known as areplacement strategy. Most processors use a
least-recently used (LRU) strategy, but others are possible.

When the processor wants to modify the data stored inside a cacheline, the write-policy determines
exactly how thiswrite is performed. A write-through cache writes the data both into the cacheline and
into the lower levels of the memory subsystem. The cacheline and memory will always stay in sync; they
are said to be cache coherent. If that cacheline must be discarded to make room for newer data, then the
processor doesn’'t need to do any additional work. A copy-back cache defers writes until that block is
needed for newer data. When the block is removed from the cache, it is written out to memory. Copy-back
caches are generally faster, but require additional synchronization if multiple processors attempt to access
the same block of memory. If a processor attempts to access a cacheline of memory held by another
processor, it must retrieve the modified data and not the origina cacheline from main memory. This may
require the cacheline to be written back to main memory, or the processors may be able to communicate
directly with one another.

A Look at theiMac

To put thisin perspective, we' || examine the iMac/333 in detail. Although ultimately this information will
be dated as the Macintosh continues to evolve, it is useful to look at a specific example and how its
memory system is architected. For all Macintoshes, the best way to understand the machineis to read the
developer note for the specific machine you are targeting.

TN 1174: Optimization Strategies for Mac OS

|:| 32 Integer, 32 FI' Registers
|:| L1 32K Data /32K Instruction
| | L2 Cache (512K Unified)
| | Memory (3¢ME SDEAM)
| | Hard Drive (1 GE)

Figure 3 - Memory Registers

Registers

The G3 processor has 32 integer and 32 floating point registers. Generaly, any value stored in aregister is

immediately available to instructions executed by the processor, making this the fastest memory subsystem
on theiMac. Clearly, anything that will be accessed repeatedly should stay in aregister if possible.
Register allocation is usually controlled by the compiler, but the source code can include hints as to what
should be placed in aregister. For crucia sections of code, assembly language may be able to beat the
register allocation performed by the compiler.

L1 Cache

The L1 caches are located inside the G3 processor, and any register can be loaded from the L1 cachein
two processor cycles. Importantly, multiple load instructions can be pipelined for an overall throughput of
1 load per cycle. In other words, if an application knows that a piece of dataisin the cache, it can dispatch
aload and expect the data to be there two cycles later.

The L1 cacheis actually two separate caches: 32K for dataand 32K for instructions. Each cacheis
eight-way associative with 32 byte cachelines. This meansthat effectively there are eight 4K rows, which
are split into 128 different cachelines.

&3 L1 Data Cache
32K
32-hj,r'te cachelines

128 cachelines per raw

Figure4 - L1 cachelines

Whenever amemory access is made, the bottom 12 bits of the address determine exactly where to look in

Page: 7

TN 1174: Optimization Strategies for Mac OS Page: 8

the cache. Of these 12 bits, the top 7 bits [20..26] determine which column to examine, and the bottom 5
bits [27..31] determine which part of the cacheline to read into the register.

0 31
ojojojojojojojojoj0j0T OO 1 0joR {11 |OJOJ1 jOJOJOJOJD

1 |
address of addrezs

the cacheline inzide
cacheline

Figure5- Memory access

When amemory accessis made, the specific column is searched in al eight rows ssmultaneously to see if
the required datais already in the cache. If the dataisn’t in one of those cachelines, then one of those
cachelinesisflushed out to the L2 cache (using a pseudo-L RU agorithm), and the new datawill be loaded
into that cacheline.

L2 Cache

The L2 cache on theiMac/333 isa512K, two-way set associative cache with 64 byte cachelines, for atota
of 8,192 entries. Typicaly, the accesstime to the L2 cacheis about 10 to 15 cycles. Inside the L2 cache,
bits 14 through 25 of the address will be used to determine which column can hold our data. Because the
rows are much longer, thereisless chance of two transactions overlapping inside the L2 cache; thisis
good because collisions will tend to flush useful data outside of the cache sooner.

o a1
gjojojojojojoj0jojojjo 1 jojopr 1 oo 1|1 {0jog1 jojojojojo

1 | |
addrezz= of the L2 cacheline addrezs inside L2
cacheline

Figure 6 - L2 cache

The L2 cache holds both instructions and data, so both may be fighting for resources—but only when the
code is large enough to spill outside the L1 cache.

Main Memory

When the information isn’t available inside the L2 cache, then we must fetch it from main memory. Main
memory accesses usually take about twice aslong as accesses inside the L2 cache. The memory used in
theiMac is SDRAM, which is organized so that adjacent reads from that memory in a short period of time
will be more efficient than completely random reads. The same code transformations that improve caching
will aso help to maximize SDRAM performance.

Virtual Memory

Up to this point, we' ve ignored virtual memory, so now we'll [ook at it in detail. Mac OS organizes virtua
memory into pages that are 4K in size. A page tableis stored in main memory that mapslogica pagesto

the actual physical pagesin memory. When a page is requested that is not presently in memory, itis
:_oi?ded fr(%m disk, possibly gecting another page back to disk. Virtual memory can be seen to act exactly
ikeacache.

Given that the page maps are stored in main memory, it might appear that each load and store instruction is
going to cause multiple memory transactions—first to read the page table, and then to fetch the actual data.
To avoid this, the G3 processor keeps a cache of the most recent page accesses. This cacheis known as

TN 1174: Optimization Strategies for Mac OS Page: 9

theTranglation L ookaside Buffers, or TLB. This cache is much smaller than the ones we saw for the
L1 and L2 caches; a 128-entry, two-way set associative cache. Bits 14 through 19 of the address are used
to look up the entriesin the TLB.

o a1
gjojojojojojoj0jojojjo 1 jojopr oo |11 {0jog1 jojojojojo

|]
Logical Wirtual Memoby Fage info address ihside ¥ W page

uzed for TLE IIZIIZIEL-IFI

Figure 7 - Translation L ookaside Buffers

A TLB misswill cause asignificant penalty in accessing that block of memory. Worsg, if you repeatedly
access pages that are not located in memory, repeated page faults will ow the Macintosh down to the
speed of the hard disk, about amillion times dlower than RAM accesses.

Access Strategies

Y ou probably didn’t want to know how the iMac’s memory subsystems work; you really want to know
how to write your application so that it accesses memory as quickly as possible. Clearly, the goal isto
spend as much time working inside the L1 cache, where memory accesses are fast and predictable, and as
little time as possible in the other memory subsystems. The good news is that we can apply most of our
effort to optimizing the L 1 cache performance; all the other layers will benefit from those optimizations
automatically.

Steps to optimize code performance:

Align your data.

Reducing cache misses is more important than reducing the number of instructions executed.
Don't givein to code bloat; code has to be read from memory as well.

Usethe lowest stride possible; aunit strideisidedl.

Avoid large strides are powers of 2.

Work on data sets that will fit inside the L1 cache for aslong as possible.

Use VM functionsto explicitly page your data.

Use cache instructions to explicitly manage how your datais cached.

Watch out for hidden memory accesses.

PCI memory is special, so you can’t do things the same way.

Avoid writing to the same block of memory from two different preemptive tasks.

Alignment

Whenever possible, al forms of data should be aligned to their natural size boundary. For example, a
32-hit long should have an address that is a multiple of 4. A 64-bit floating point double should be aligned
to an 8-byte address. AltiVec registers should be aligned to a 16-byte boundary.

If an application doesn't properly align avariable, it will take a penaty every timeit executes aload or
store on that section of memory. For integer instructions, the penalty is one cycle. Remember, floating
point doubles; the G3 processor does not handle alignment in hardware. Instead, an exception occurs and
the alignment is handled in software. Thisworks correctly, but at a sever e performance pendty, and
should always be avoided.

AltiVec registers can only be loaded or stored on aligned boundaries. When an load or store generated for
one of the AltiVec registersis performed, the bottom four bits of the address are ignored completely. This
ensures that all loads and stores are aligned in memory, but requires the programmer to perform the
alignment manually. If you need to read or write misaligned data using the altivec registers, consult the
Apple AltiVec web page or the AltiVec Programming Environments Manual.

TN 1174: Optimization Strategies for Mac OS Page: 10

While aligned loads and stores will always fall insde a cacheline, misaligned data can straddle two
different cache lines, or even two different virtual memory pages. This can result in additional performance
penalties as more data is loaded into the caches or from disk.

Whenever possible, align both your reads and writes. If you have to choose oneto align first, align the
reads, since most code stalls on reads, not writes.

If you alocate a data structure using PowerPC alignment conventions, then the structure will automatically
be padded correctly to maintain proper aignment. However, if your structure includes doubles or vector
registers, at least one must appear at the beginning of the struct to maintain proper alignment.

The standard C function mal | oc does not guarantee any sort of alignment. Mac OS 8.6 aligns all handles
and pointer blocksto a 16-byte boundary. If you need to align your own data, allocate a larger block of
memory and calculate an aligned pointer to writeinto it. Y ou need to save the old pointer so that you can
properly dispose of the memory block when you are done with it.

#define alignPtrToBoundary(nyPtr,align) (((myPtr)+(align)-1) & ~((align)-1))

enum

{

cacheSi ze = 32,
vPageSi ze = 4096
b

Ptr savePtr, thePtr;

savePtr = NewPtr (nySize + cacheSi ze);
thePtr = alignPtrToBoundary(savePtr, cacheSi ze);

Choosing Stride Values and a Memory Access Pattern

Thestride isthe offset between consecutive memory accessesin your code. A good rule of thumb isto
choose the natural length of the item being fetched (aunit stride). For example, the unit stride of an array
of Ul nt 32s would be 4 bytes. The unit stride would only touch a new cacheline after every eight loads.
Contrast this with a 32-byte stride, which would touch a new cacheline for each load.

If you can’t choose a unit stride, you should try to choose a stride that is no larger than a cacheline. Once
you choose alarger stride, you may skip cachelines, leaving a percentage of the cache unused. Larger
stride values that are powers of 2 will use adramatically smaller portion of the cache. For example, look
back at the diagram of the L1 cache. If we chose a stride of 4096, we would be walking vertically through
the cache, using atotal of 8 cachelinesin the L1 cache. Thiswould actually use lessthan 1% of the L1
cache, and 2% of the L2 cache. However a stride vaue of 4092, only 4 bytes lower, will use the entire
cache. However, large strides are ways bad because they will cause many virtual memory pagesto be
touched, resulting in many page faults.

This technote comes with an application named Cacheline Optimizer. Given astride value, it will smulate
the cache utilization for the L1 and L2 caches on an iMac, aswell as giving an approximate idea of the
TLB usage. It givesthe percentage utilization as well as how many iterations before you will begin to evict
data from the cache.

Y ou should optimize your cache utilization for the data that is used most frequently. For example, let’s
assume we' ve got an array of data records on which we need to search and perform operations.

TN 1174: Optimization Strategies for Mac OS

struct Foo
int key
int[7] data;

Foo records[kDat aSi ze] ;

for (loop = 0; loop < kDataSi ze; | oop++)
if (records[loop].key == keyVal ue)

Per f or mAct i on(& ecords[| oop]);
}
}

This code has a stride of 32 bytes; we actually load a cacheline every time we iterate on the search loop.
Unless we frequently hit inside the loop, we are actually wasting most of the cacheline on unused data.
Instead, this structure could be transformed into a pair of arrays, one for the keys and one for the data.

struct Foo
int[7] data;

Foo records[kDat aSi ze];

int Kkeys[kDataSi ze] ;

for (loop = 0; loop < kDataSi ze; | oop++)
i{f (keys[l oop] == keyVal ue)

Per f or mAct i on(& ecords[| oop]);

}
}

Thisresultsin no wasted space in the cache; we only load datainto the cache when we successfully find a
key. A test on the code above showed that the second set of search code executes in roughly 60% of the
time of thefirst test.

Another common example is multidimensional arrays. Array accesses should always start with the
innermost dimension, working outwards. For example, the following array could be accessed in two
different ways:

Page: 11

TN 1174: Optimization Strategies for Mac OS

float matrix[1024][1024];

/* Stride = 4 */
for (loopX = 0; loopX < 1024; | oopX++)

for (loopY = 0; |oopY < 1024; |oopY++)

sum = sum+ matrix[y][x];

}
}

[* Stride = 4096 */
for (loopY = 0; |loopY < 1024; | oopY++)

for (loopX = 0; |oopX < 1024; | oopX++)

sum = sum+ matrix[y][x];
}
}

In the first case, we have a unit stride, with the best possible cache utilization. The second case givesus a
power of 2 stride, giving extremely poor L1 and L2 cache utilization. In this particular case, thefirst set of
code will run about five times faster than the second.

High Performance Computing (see Bibliography) discusses a number of access patterns for optimizing
cache utilization of arrays and isauseful place to look for more ideas on transforming your data.

When talking about data, we can’t ignore lookup tables. Lookup tables used to be a very efficient way to
perform computations, but the processors have become much faster than the memory systems, so it if
often faster to do the calculations than to rely on alookup table. Lookup tables are generaly only efficient
for small tables that are accessed extremely frequently inside atight inner loop. Large tables, or tables that
are accessed infrequently will only result in displacing other data from the caches.

Temporal Locality

We ve seen how choosing agood stride value improves the spatia locality of ablock of code. However,
temporal locality is equally important. A block of code should work on datain relatively small chunks, and
work on those chunks for as long as possible before moving on to other data. Ideally, those chunks should
fitinsde the L1 cache, to absolutely minimize the time spent operating on the data.

For example, the following code performs three different functions on our data structure.

Page: 12

struct record

int data[8];

enum

kNunber Records = 262144
H

record entries[kDataSize];

TN 1174: Optimization Strategies for Mac OS

for (loop= 0; |oop < kNumber Records; | oop++)

foo(&entries[loop]);

for (loop= 0; |oop < kNumber Records; | oop++)

bar (&entries[| oop]);

for (loop= 0; |oop < kNumber Records; | oop++)

baz(&entries[loop]);

}

This code isinefficient because the function walks an eight-megabyte block of data. Thisislarge enough
to completely fill the L1 and L2 caches. Since we walk each function separately, this code will completely
reload the L1 and L2 cachesin each loop. Under cramped memory conditions, it will aso thrash the virtua

memory system aswell.

Instead, this code should perform all three functions on a block of data before moving on to the next one.

for (loop= 0; loop < kDataSi ze
{

foo(&entries[loop]);
bar (&entries[| oop]);
baz(&entries[|oop]);

}

| oop++)

Page: 13

TN 1174: Optimization Strategies for Mac OS Page: 14

Thiswill not evict any datafrom the L1 cache until al three functions have been executed, resulting in
about 1/3 the memory accesses of the first example.

The example above shows no dependenciesin the code. Most real-world examples exhibit dependencies
between different blocks of code. The god isto calculate as far ahead as possible without evicting useful
data out of the L1 cache. For example, if bar required the previous four data records, we would want to
perform afew calculations of f oo() before starting into the single combined loop.

A safe number is generally half the size of the L1 cache; this allows for other data and global variablesto
have space in the cache.

Optimizing Virtual Memory Usage

If you optimize your datato fit in the L1 caches, you have already optimized your code to work efficiently
with the Mac OS virtual memory system. For example, ablock of code executing on a four-byte stride will
only incur one page fault every 1,024 iterations. In many cases you can provide additional hintsto the Mac
OS to further improve your virtual memory performance.

Starting in Mac OS 8.1, there are a set of functions that allow you to prepage VM pages into and out of
memory. Complete documentation isin Technote 1121, “Mac OS 8.1", but to summarize:

MakeMenor yResi dent —pulls a set of pagesin from the disk.

MakeMenor yNonResi dent —flushes a set of pages out to disk and marks those pages as available to the
VM system.

FI ushMvenor y—flushes a set of pages out to disk, but leaves them resident in memory.
Rel easeMenor yDat a—mMmarks a set of pages as clean, so that they will not be written out to disk.

For example, let’ srevisit our previous example. We know the code is about to walk an eight-megabyte
block of memory linearly. In the worst case, al of our dataiis currently on disk and we' d take 2,048 page
faultsto bring in this data and operate on it. Disk and file system overhead will make this operation slow,
even though we optimized our memory accesses appropriately. However, we know we' re going to walk the
entire block, so we can prepage the information in.

struct record

int data[8];

enum

kNunber Records = 262144
}s

record entries[kDataSize];

MakeMenor yResi dent (&entries, kNunberRecords * sizeof (record));
for (loop= 0; |oop < kNumber Records; | oop++)

This code hints to the operating system, allowing these pages to be read into memory in much larger
chunks. For a piece of code similar to the above test, this roughly doubled the VM performance.
Importantly, adding this function call isonly useful if the data has likely been previoudy paged to disk;
otherwise, thisjust adds a small amount of overhead to the function.

Similarly, if the application has modified alarge chunk of data, it can cal FI ushMenor y and alow the
system to write these pages out to disk efficiently. In many cases, the operating system aready combines

TN 1174: Optimization Strategies for Mac OS

adjacent dirty pages, but adding a hint can be agood idea. The places where you want to use thisare less
obvious and using FI ushMenor y improperly can actually reduce performance, by initiating writes that may
never have happened otherwise.

MakeMenor yNonResi dent iSamore extreme version of Fl ushMenor y, sinceit allows that entire range of
VM pagesto be used to satisfy new VM requests. It should only be used for datathat isn’t going to be
used again for awhile.

Finaly, if the application has a chunk of data that doesn’t need to be stored to disk (because the entire
page of datawill be recreated next timeiit is needed), then the pages can be invaided via

Rel easeMenor yDat a and then made non-resident using the MakeMenor yNonResi dent calls. This
eliminates unnecessary writes to disk and aso provides virtual memory pagesto the system that it can use
to satisfy page faults. This can prevent useful information from being paged out by mistake.

Working With the Cache

The PowerPC processor has anumber of instructions that allow a program to hint to the processor about
its cache utilization, much like the function calls we just described for virtual memory. The G4 processor
has more advanced streaming instructions that allow even further optimizations to be made. This note will
only cover theinstructions that are available on the G3 processor; information on the cache streaming
architecture is available on Apple s AltiVec web page.

Hinting to the processor allows it to use spare memory bandwidth to prefetch new data beforeit is needed
by the processor. Under the best circumstances, where computations and loading are balanced perfectly,
this can result in adoubling of the actual performance of your code.

Compilers will not automatically emit these instructions; you need either to write assembly language or use
special compiler intrinsics to add these instructions to your code.

dcbt —data cache block touch

The dcbt instruction hints to the processor that you will be using information from a particular block of
memory in the near future. If the processor has spare memory bandwidth, it can use them to fetch this data
so that it is ready immediately when you need it. Thisinstruction will not cause page faults or other
exceptions.

If welook at our previous example, we found that our record fit exactly into a cacheline. If our records
were aligned to a cache boundary, we could use adcbt instruction to prefetch the next record while we're
performing calculations on the current record. When the calculation and load times are comparable, this
can result in a100% speed increase.

Thisinstruction is only useful when the number of calculationsis large enough that there are idle memory
cyclesand when our dataiis usually not already in the L1 cache. For something like a ssimple memory to
memory copy, there are no calculations to overlap with the dcbt instruction, so thisisjust awaste of
processor cycles. If the datais already in the L1 cache, then again, we're just adding additional

unnecessary cycles.

Cache touch instructions have a very significant effect on the G4 processors, often doubling the available
memory bandwidth. dcbt instructions and their more powerful stream-based counterparts should aways
be considered when optimizing code specifically for the G4 processor.

dcbz—data cache block zero

Thedcbz instruction is not a hint to the processor. Given amemory address, it calculates the correct
cacheline, writing that data out exactly as for any other cacheline operation. However, while aload or store
instruction would fetch data from memory to fill the cacheline, the dcbz instruction just fillsin the
cacheline with zeros. This instruction should only be used on data that has been properly aligned, because
otherwise you might wipe out useful data by mistake.

Page: 15

TN 1174: Optimization Strategies for Mac OS Page: 16

Beyond being the most efficient way to clear cacheable memory, thisinstruction offers another tangible
benefit. If ablock of codeis going to completely overwrite a cacheline of data, then it should explicitly
clear that cachedline before filling it. For example, the following code fills a one-megabyte block of memory
with data.

unt32 ptr;
for (loop = 0; loop < 1024*1024; | oop++)

{
*((Unt32 *)(ptr+loop)) = OxFFFFFFFFUL;

When thefirst write is doneinto a cacheline, the write stalls until the cachdline isloaded from main
memory. Thisread is completely unnecessary since the code is going to overwrite the entire contents of
the cacheline. For our one-megabyte record, thisis 32,768 loads from memory that we didn’t need to
make!

Instead, we could write this code to use the dcbz instruction.

/* assumes this data is aligned to a cacheline boundary */
unt32 ptr;
for (loop = 0; loop < 1024*1024; | oop+=32)

_dcbz (loop, ptr);
/* this could certainly be unrolled for speed */
for (loop2 = |oop; |oop2 < | oop+8; | oop2++)

*((Unt32 *)(ptr+loop2)) = OxFFFFFFFFUL;

This code explicitly clearsthe cacheline and then fills it with the new data. By clearing it, we ve eiminated
asignificant amount of load bandwidth, in some cases more than doubling the overall throughput in
memory.

Thedcbz instruction should only be used on cacheable memory. For uncacheable or write-through
cacheable memory, it generates a processor exception that handlesit correctly, but is much slower than
clearing those bytes by hand.

dcbf —data cache block flush
dcbi —data cache block invalidate

Thedcbf instruction pushes a cacheline of data completely out of the L1 and L2 caches, and marks that
cacheline as unused. Thedcbi instruction just marks a cacheline as unused, without pushing any data
across the bus.

Explicitly flushing data that won’t be used in the near future makes those cachelines available for other
incoming data. This might prevent useful datafrom being purged from the caches by mistake. Like the
MakeMeror yNonResi dent function, it should be used sparingly, sinceit initiates memory bus traffic that
may not have otherwise been necessary. In addition, any block flushed in this fashion must be completely
reloaded from main memory, resulting in considerably worse memory performance.

Thedcbi instruction allows you to mark cache lines of datathat do not need to be written to main
memory. Thisisauseful hint to provide for transient data that must be completely recalculated anyway.
While thedcbz instruction helped reduce unnecessary |oads performed by the processor, the dcbi

TN 1174: Optimization Strategies for Mac OS
instruction minimizes extraneous writes.

Let’s say we had a piece of code that is going to reca culate a chunk of dataevery time could usedcbz
instructionsto clear the cachelines, and dcbi instructions to prevent them from being written to main
memory. Thiswill eliminate any extraneous processor bandwidth from being generated for this chunk of
memory, at the cost of afew cyclesin this code.

Hidden Ways Applications Touch Memory

Most applications access memory in places the programmers never realized. Compilers often generate
unnecessary |oads and stores to keep certain variables synchronized between a register and main memory.
Global variables can aso add additional data into the cache. This section discusses afew ways that this can
result and suggests methods to avoid it.

Global variables are stored in the data portion of a shared library and are accessed via alookup table
(known asthe TOC). Whenever an application accesses aglobal variable, it must first look up the address
of that variable inthe TOC. So, any global is accessed with at least two load instructions. If aglobal is
accessed multiple timesin afunction, the compiler may cache the global’ s address in aregister. However,
thiswill leave this register unavailable for other computations.

Let’sput thisin perspective. A function that accesses eight global variables may use anywhere from eight
to sixteen registers to hold global data, trading off additiona registers for fewer rel oads of the address.
The large number of registers being used means that more registers must be saved and restored when
entering and exiting the function. And finally, all of the TOC lookups mean additional cachelines of data
being loaded into the L 1 cache. For the above code, the worse case would be where each TOC entry isina
different cacheline.

Globalsthat are declared asconst types are not immune to the problems listed above. Applications that
use const for simple integer types should consider using enumerated types, in the same fashion as the
Apple Universal Interfaces.

There are afew ways that an application can work around the above problem. The easiest isto declare a
related set of globalsinto asingle struct. This causes al of the globals to share asingle TOC entry, and
also alocates the data adjacent in memory, which improves the cacheability of the global information.
Because they share asingle TOC entry, asingle TOC address lookup can be used to the entire set of
globals, with no additional penalties over the standard case in the compiler. Using our example above, 8
globals would fit into 9 registers; one that holds the address retrieved from the TOC, and 8 to hold the
actual globals. Thismodel of using asingle addressto look up a set of globalsis close to the model used
for globals used on Windows, so those of you creating cross-platform code should find that this gives you
good performance.

Another important consideration is the scoping of the global. If the global is only used in asingle function,
or inside asingle implementation file, be sure to scope it as a static variable inside the function or file. This
offersthe compiler additional information it can use when optimizing the code.

Even with both of these mechanisms being used, many accesses to globalswill still generate load and store
instructions, even when the data hasn’t changed in memory. Thisis known as aliasing; the compiler can’t
always determineif two different pointers aren’t pointing at the same memory, so it gives up and assumes
memory is accurate and the register is not.

By creating alocal variable, and assigning the globa’ s vaueto it, you explicitly tell the compiler that this
variable is scoped for agiven function and it won’t change. If you do modify the global, you can copy the
value back at the end of the function. Obvioudly this only worksif the function doesn’t call another
function that will change the value of the global. Like most optimizations, thisis best used inside atight
inner loop, where extraneous memory accesses to a single memory location are just wasted cycles.

These same techniques can be applied in other places aswell. Vaues stored inside a structure or C++
class, or anything referenced viaa pointer, will suffer the same aliasing problems as a global variable.
Caching frequently used itemsinto local variables explicitly tells the compiler and alow it to produce

Page: 17

TN 1174: Optimization Strategies for Mac OS

better code. Always scope variables astightly as possible in order to let the compiler aggressively schedule
register usage, preventing unnecessary registers from being saved and restored to the stack.

When programming a function in this manner, it is useful to think of the function as a machine that takes a
bunch of data, storesit in registers, crunches everything inside registers, and then stores it out to memory.
While doing caculations, it isn’t touching memory, offering more bandwidth to other parts of the Mac.

PCI Memory

PCI memory transactions are much slower than those going to main memory, so applications which write
datato PCI must be optimized more closely than those that touch main memory. TheiMac shipswith a
33mhz PCI bus, while the ‘99 G3 and G4 systems ship with 66mhz PCl and AGP. When writing data
over PCI, we want to reduce PCI transaction overhead and maximize the number of PCI cycles spent
writing data.

Cacheable PCI memory worksidentically to main memory; the only difference is the dower timeto burst
cache lines across PCI bus. Because of this, all of the guidelinesfor L1 and L2 cache management are
more critical, because code that thrashesthe L1 and L2 caches will be reduced to the speed of PCl reads
and writes.

However, many devices on PCI are non-cacheable and require additional work on the part of the
programmer. One common case is avideo frame buffer, which must be non-cacheable in order to ensure
that pixel updates happen immediately. If you are writing data to non-cacheable PCI memory, you should
follow the following guidelines:

e Avoid loadsfrom PCl whenever possible

e Alwaysalign your loads and stores to PCI memory.

e Round your loads and storesto at least 4 byte boundaries.

e Usethefloating point registers or vector registers to copy data.

Misalignment penalties when writing to PCI are extremely high, and it is always worth spending additional
instructions to explicitly align ablock of data before posting it over PCl. One easy way to do thisisto
create a buffer on the stack and write your unaligned datainto the buffer. Then, write this buffer over PCI
using double or vector registers. This buffer could be aligned with caches, and explicitly cleared and
invalided, as discussed in the caching section.

When working on a frame buffer, don’t write one- or two-byte quantities if you can gather larger sets of
writes—aone- or two-byte transaction takes just aslong as writing out a four-byte word. If you can, round
all your writes to four-byte boundary (minimum) and write out longs.

As an example, the worse case would be code that aternates writing one byte, and then skipping one byte.
If we write each byte separately, we are effectively writing to each four-byte block twice. If we round each
byte to afour-byte boundary on either side and gather adjacent writes, we immediately half the number of
PCI data writes we are making to the buffer. This requires the intermediate unchanged pixelsto be
coherent with what is presently stored in PCI memory.

In actuality, writing four bytes at atime does not offer the best performance. When larger chunks of data
are being written, code should use the floating point registersto move 64 bits at atime. This reduces the
PCI transaction overhead, resulting in a 50% gain in speed over writing longs. On machines with AltiVec,
writing aligned data with vector registerswill result in speeds more than twice that of an equivaent set of
integer loads and stores.

Multiprocessing

Multiprocessing adds an entirely new set of issuesto worry about. On the positive side, each processor
hasits own L1 caches, which alow larger data sets to be stored in L1 cache simultaneously. However,
multiple processors will share L2 cache and main memory, which means the processors are competing for
a sparse amount of bandwidth.

Page: 18

TN 1174: Optimization Strategies for Mac OS

If your code has aready been optimized to make efficient use of the L1 cache, then the load on the L2 and
memory subsystems will be lower and your application will automatically have better MP performance.

When possible, amultithreaded application should never write to the same cacheline of datafrom multiple
preemptive tasks simultaneously. While thiswill give acceptable performance on single processor systems,
amultiprocessor system will cause alot of overhead keeping cache coherency between the processors.
This overhead is reduced on the G4 processor, but is still worth avoiding.

Instead, divide your work into multiple sections that don’t overlap in memory and give each sectionto a
thread. Each section should follow the rules for spatial and temporal locality.

Back to top

Mac OS Optimization Strategies

Having examined the memory system on the current Macintoshes and how it affects the organization of
your data, we will now turn to the discussion of how to optimize your code to work with the Mac OS.
Applications can’'t change the code in the Mac OS, but they can change how they call the Mac OS. An
understanding of how different components of the Mac OS operate will help determine the correct
algorithms and strategies to use in your code.

Basic OS Optimizations

Don't spend alot of time rewriting basic operations, such as memory moves or string routines. Instead,
you should rely on the low-level operating system servicesor St dCLi b, which implementsthe C library
functions. (Apple can optimize each routine for a specific hardware configuration to maximize
performance.) Y ou should avoid bypassing these routines except in cases where you can provide a
significant improvement in speed; by using your own code, you may end up running slower on future
processors. In addition, your code has to be loaded separately into the caches from the system’s code,
resulting in other code being evicted from the caches.

Similarly, you should avoid embedding any runtime libraries directly into your application binary; instead,
link tost dCLi b. Using St dCLi b resultsin only asingle copy of the library being loaded into memory at
onetime, improving virtual memory and caching performance. Applications that embed runtime librariesin
thel rr] code will have their own copies of the libraries, again, evicting other information from the system
caches.

So, initialy, when you need a service, you should determine whether the system aready has a function that
implements that feature. If it does, you should useit, and only replace it when you absolutely must.

When might you need to replace aroutine? Let’ slook at an example. Bl ockMoveDat a isagenerd
purpose memory copy function in the Mac OS. It will copy aligned or unaligned data of any size. It
correctly deals with overlapping memory blocks. It isvery fast, but because of its flexibility, it must
perform a number of tests before it can start copying data.

If 90% of your Bl ockMoveDat a calls are for small, aligned blocks, you can probably beat
Bl ockMoveDat a by writing asmaller copy routine that eliminates al of the testing overhead of
Bl ockMoveDat a.

Generaly speaking, the easiest way to avoid system overhead is to make fewer system calls on larger
chunks of data. We'll seethisin afew places throughout the rest of this section.

Finaly, while many pieces of the Mac OS run natively, other functions are still implemented in 68K code.

68K code runs significantly slower than PowerPC code. The 68K emulator tendsto fill the L1 and L2
caches with data, evicting useful data out of the caches.

Optimizing the Event L oop

Page: 19

TN 1174: Optimization Strategies for Mac OS

One place applications often lose time isinsde their event loop. Every time you call Wai t Next Event , you
aregiving up alot of CPU cyclesto other applications. Because these other applications are getting time,
they are also flushing your code and data from the caches on the processor. This breaks the temporal
locality of your code and data, lowing down your processing. In generd, if you have calculations to
_perfcf)rm, you should keep the CPU for aslong as possible while still maintaining aresponsive user
interface.

Studies have shown most users expect the frontmost window to be the most responsive, and to complete
work faster. For example, the current Finder uses significantly more time when the frontmost window isa
Copy progress diaog; the user iswaiting for this copy to complete. Applications should adopt the
following guidelines:

e Use preemptive or cooperative threads to perform calculations.
e Caculate for afixed period of time rather than afixed number of iterations.
e Adjust the event loop dynamically at runtime.

Starting with Mac OS 8.6, preemptive tasking is available to all applications, all of the time, and is accessed
through improvements to the Multiprocessor API. In fact, the entire Mac OS cooperative environment is
now run as asingle preemptive task, and is no longer tied to a specific processor.

Preemptive tasks are till limited in what they are allowed to call; calling any 68K code or most operating
system functions is not allowed, making them useful primarily for computational activities. Cooperative
threads are also useful in thisregard, but they can also take advantage of toolbox calls.

When wai t Next Event iscalled under the new environment, your application actually deepsfor the deep
time you provideit, unless an event is received for your application. If al applications are deeping, this
allows the Mac OS task to block completely, giving the processors completely to other preemptive tasks,
and also allowing power saving features to be enabled, extending battery life on PowerBooks. So, if you
are doing most of your work in preemptive tasks, then ahigh sleep valueis preferred, because you want
those tasks to get as much time as possible. On the other hand, if you are doing most of your work in
cooperative threads, you want to use asmall deep value. Otherwise, you are spending most of your time
deeping and very little of it performing computations.

If you are performing calculations inside your Wi t Next Event loop, you don’t want to perform a fixed
number of iterations. As processors get faster, the time spent in your code ends up being smaller, and the
time spent calling Wai t Next Event will increase. Instead, time your computations using Ti ckCount or one
of the other clocks, and only give up time when an event has come in or your time has expired. The Sleep
and work times should be adjusted dynamically based on the amount of work you have to do, and whether
orz_ not your application isin the foreground or the background. The following event loop demonstrates
this:

enum

{
kMaxSl eep = 65535L
i

bool gAppRunni ng;
bool gAppFor eground;
bool gThreaded,;

bool gConput ati ons;

i nt gConput eThr eadsAct i ve; /1 how many conpute threads we have
i nt gAppl eEvent sSent ; /1 how nmany Apple Events we’ve sent
i nt gPendi ngAppl eEvent Replies; // how many Apple Events we need to reply to

long Cal cul ateWsrklnterval ();
long Calcul ateSl eeplnterval ();
bool AppPer f orm ngConput ati ons();
bool EventsPendi ng();

Page: 20

TN 1174: Optimization Strategies for Mac OS

voi d SHEvent | oop(voi d)

{
OSStatus theErr = noErr;
U nt 32 next Ti neToCheckFor Event s;
Event Record anEvent;

gAppRunni ng = true;
gAppFor eground = true;
gComput ati ons = fal se;

gComput eTheadsActive = 0;
gPendi ngAppl eEvent Repl i es = 0;

do

next Ti meToCheckFor Events = Ti ckCount () + Cal cul at eWorkl nterval ();
whi | e (AppPerformn ngConputations() &&
I Event sPendi ng() &&
(next Ti meToCheckFor Events > TickCount()))
conti nue;

/1 retrieve an event, if one is pending, and handle it. An error here
/'l inplies a fatal error in the application.

(voi d) Wit Next Event (everyEvent, &nEvent,
Cal cul at eS|l eepl nterval (), AppCursorRegion());
theErr = AppHandl eEvent (&anEvent);

} while ((theErr == noErr) && gAppRunning);

i nt Cal cul at eWorkl nterval ()
(

/*

A nore sophisticated version of the code could notice the |ast
time a keyboard or nobuse event cane in, and adjust these work
nunbers up if the machine has been idle for a while

*/

/*

if we're in the background, and no one else wants data from us,
we should return control as soon as possi bl e.

*/

if (!gAppForeG ound && (gPendi ngAppl eEvent Replies == 0))
return O;

/*
if we’'re waiting on data from other applications,
we'll only take a small tinme slice because we want

those applications to have tinme to respond to our requests.
*/
i f (gAppl eEventsSent > 0)

return 2;

/*

W' re frontnost, we don’t need anything from anyone el se. Take
a big chunk of tine to performconmputations. |[If we run out

of conputations, the work loop falls through to calling WitNextEvent.

If we're handling text, we should nodify this code to not take nore
time than GetCaretTine.

See | nside Macintosh: Maci ntosh Tool box Essentials, p. 2-86.

*/

return 15;

Page: 21

TN 1174: Optimization Strategies for Mac OS

)
int Cal cul ateSl eepl nterval ()
/1 if no work to do, sleep for as long as possible.

if ((gComputations == fal se) &&
(gComput eThreadsActive == 0) &&
(gPendi ngAppl eEvent Replies == 0))
return kSHvaxSl eep;
/*
If we're waiting on replies fromother apps or if we're in the background
we want to sleep for a while to give other applications tinme to do sone

work. OQherwise, we'll sleep for a snmall bit of tine.
*/

i f (gAppForeG ound && (gAppl eEventsSent == 0))

return 1;

el se

return 10;

)
bool Event sPendi ng()

Event Record i gnor ed;
return (OSEvent Avail (everyEvent, & gnored) || CheckUpdate (& gnored));
}

bool AppPerform ngConput ati ons

i f (gConputations)
Per f or nConput ati ons() ;

i f (gConput eThreadsActive > 0)
Yi el dToAnyThr ead() ;

return (gConputations || (gConputeThreadsActive > 0));

This code always attempts to perform cal culations at least once through each event loop, caling out to
cooperative threads as necessary. Once all work is completed or an event comes in, the code falls through
and callswai t Next Event to service the event, or deep.

The event loop dynamically atersthetimeit usesfor slegping and waking based on whether it isin the
foreground, whether it has any cooperative work to complete, and whether it has sent or received any apple
events. For this code to work properly, AppPer f or ni ngConput at i ons should return time back to the
event loop periodically—rarely more than atick or two of time per call.

Using functions to calculate the work and sleep intervals allows complete customization of the event loop.
For example, applications could dynamically increase the work interval and decrease the deep interval
based on the number of computational tasks they are currently performing. Games will want to maximize
the amount of time used for work, and spend most of their timein AppPer f or m ngConput at i ons. An
application that is sitting idle (with no mouse or keyboard motion) could dynamically increase the amount
of time spent performing work.

Applications that don’t need time should Sleep for aslong as possible. This provides the maximum
amount of time to other applications, and also allows preemptive tasks to get alarger share of the
processor. If no tasks need time on the machine, the processor can go to seep, conserving power on
portable systems.

Applications with animated displays (e.g., ablinking caret in atext editing application) should choose a

Page: 22

TN 1174: Optimization Strategies for Mac OS Page: 23

Sleep value that permits them to update their graphics often enough. See Inside M acintosh: Macintosh
Toolbox Essentials, p. 2-86.

Memory M anager

WEe' ve dready talked about some of the hidden costs of accessing memory. However, alocating and
deallocating memory can aso take a significant amount of time. Macintosh heaps become inefficient when
large number of memory blocks are allocated on them. The memory manager has to walk the heap and
move blocks around to make room for new allocations, causing large amounts of memory thrashing.

When you need to allocate alarge number of small objects, you should allocate small number of handles
or pointers, and suballocate al of your other objectsinside that block. The CodeWarrior MSL libraries
use a suballocator mechanism for C++ new and del et e operations, so you can use these libraries or roll
your own suballocators. Doing this can result in orders of magnitude improvementsin your application’s
memory allocations and deallocations.

Be wary when allocating system data structures. Many items allocated by the operating system are
composed of multiple objects, each of which is a separate pointer or handle block. For example, aGwor | d
iscomposed of aCG af Por t , aPi xMapHandl e, and aGDevi ce; in total, about 27 handles are generated
every timeyou cal NewGwor | d. An game that allocated a separate Gnor | d for every frame of animation
would quickly fill the heap with alarge number of unnecessary handles. Allocating asingle Gwor | d to
hold al of the frames of animation significantly reduces the number of allocations performed by the
operating system. (In this example, allocating the Gwor | d asavertical strip is more cache friendly than a
wide, horizontal strip of images.)

Files

File system optimizations are often overlooked, and are a critical way to make a different in application
performance. A few simple optimizations can double or triple the speed of your file system code. Technote
FL 16, “File Manager Performance and Caching”, discusses file system performance in detail; this note
will touch on some of the important points found in that note.

Buffer file I/O into larger chunks rather than small reads.

Align file accesses to 512-byte boundaries.

Organize data so that it can be read from the file sequentially.

Hint to the file system whether or not it should cache the data.

Use asynchronous calls to process filesin parallel with computation.

Thefile system introduces afair amount of overhead to retrieve data from afile, so the key to improving
file system performance isto request datain large, aligned chunks. Reading individua shorts, ints and
floats directly from the file system is highly inefficient. A better solution isto buffer your file 1/0. Read an
8K chunk from the file into ablock of RAM, and then read the individual bytes from the buffer. This
reduces the number of times the application accesses the file system, resulting in dramatic system
performance.

Included with thistechnote is a piece of code, CBuffFileStream, that implements a buffered file system on
top of the Mac OSfile system.

In order to maximize the benefits of buffered file 1/0, you must organize your data so that it can be read
from the file sequentially. Random access reads and writes will still work, but at adight performance
penalty. In asense, your buffer is acache that holds recently accessed data; accessing datawith similar
gpatial locality will be faster than random accessed memory.

Organizing the data can be done by reordering the file, or it can be done by generating a separate index to
thefile. Thisindex can be sorted into a sequential order that can be used by the loading code to bring in all
of theindividua pieces of data. Assembling the data at the other end of the transaction will be more
complex in this case, however.

Once the data has been reorganized sequentially, increasing the size of the read-ahead buffer will further

TN 1174: Optimization Strategies for Mac OS Page: 24

improve performance. The application can also prefetch the next buffer of data asynchronoudly, since it
knowsthat it will be using this data. Under the right conditions, where computations and file loading are
roughly equal, this can double the performance of your application.

Also, when loading largefiles, you are not likely to be rereading that dataimmediately. Y ou should use the
parameter block-based calls and hint to the file system not to cache those blocks. Thiswill savetime
(because the file system doesn’t make an extra copy of the data) and will also keep useful datainside the
disk cache.

Resour ces

Resources are a critical part of any Macintosh application, and are thus a crucia topic to discuss when
optimizing a Macintosh application. Before we discuss ways to tune performance of resources, it is useful
to discuss the mechanics of the resource manager.

Resource forks are just afile with avery specific format. Resources are just chunks of data with a specific
typeand ID. All of the information about the resources in a particular file are stored in an index, known as
the resource map. An application can have multiple resource files opened at once. The resourcefilesare
kept in the order that they will be searched; thisis known as the resource chain.

When an application makes acall to Get Resour ce, the Resource Manager starts at the top of the chain,
and searches the resource map of thefirst resourcefile. If that resource existsin thefile, then that resource
isloaded from the file into a new handle in memory. Otherwise, the Resource Manager will try each other
resource fork in the chain, until it finds the resource (or returnsar esour ce not found error). Oncea
resource has been loaded into memory, subsequent calls to the resource manager will recognize this and
not load the data from disk a second time.

Clearly, if you have alot of resource files open, this searching process could take along time. Worse,
searching large resource maps will flush your own data from the caches. Clearly, we want to do two
things; first, make searching as efficient as possible, and second, minimize the actual amount of disk
access the resource manager has to make.

Here are some immediate guidelines for optimizing resource usage in an application:

Preload frequently used resources and lock them down.

Never release aresource you use frequently. Mark it purgeable instead.

Never release aresource fork you may need in the near future.

Don't search the entire chain; use single-depth resource calls.

Don't put too few or too many resources in a particular resource fork.

When designing new resources, choose a single large resource over a group of resources.

If your application’s resource fork has frequently used resources, you should set the preload and locked
flags on those resources. They will be loaded low into the heap when the application isfirst launched and
will aways be available when the application needs them. Since users expect asmall delay when the
application is launched, this resource time is hidden from the user.

Y ou should never release any resource you expect to use again in the near future. When you call

Get Resour ce, the system will be forced to reload the resource from disk. Instead, by marking the resource
as purgeable, you only need to reload the resource if it has been purged from memory. LoadResour ce will
explicitly check to seeif the resource needs to be reloaded and will load it if necessary.

Similarly, opening aresource fork is a costly operation, with multiple file reads and alot of preparation
work on the resource map in RAM. Y ou should avoid closing any resource fork that you may use in the
near future.

As mentioned earlier, searching the resource chain is alengthy operation that touches a significant amount
of data. If you know the specific resource file, you should explicitly set the resource file and use a shallow
search of that file (e.g., Get 1Resour ce instead of Get Resour ce). Thislimits the amount of files searched
and keeps more of your datainside the caches.

TN 1174: Optimization Strategies for Mac OS Page: 25

Similarly, you don’'t want to put too many resources into asinglefile. A resource fork cannot be larger
than 16 megabytesin size. In addition, the absolute maximum is 2,727 resources; the actual maximum will
vary based on the number of different resource typesin the fork. All resource manager searches are
performed linearly, so the more resources there are in afile, the longer it will take to search that fork for a
resource.

On the other hand, putting too few resources into afile can result in many more forks being open on the
machine. Mac OS can only have alimited numbers of files open at onetime. Also, if you make acal to the
regular resource manager routines, it will search the entire resource chain.

Custom resources should be created as a single complex resource rather than using alarge number of
smaller associated resources. Thiswill improve searching, both because the list of resourcesis smaller and
because fewer searches are being executed.

Optimizing Resour ce Fork Layout

The resource fork format is flexible and documented, and this allows some additional optimizationsto be
made. The Resource Manager organizes the data into three basic sections: the r esour ce header, which
holds the locations of the other two forks, the r esour ce map, which stores information on al resourcesin
the fork, and the r esour ce data, which contains al of the actual data. These sections are usually organized
so that it is easy for the Resource Manager to modify the fork on disk. However, afork that is expected to
be read-only can be reorganized on disk to optimize opening and searching the fork. This provides
significant benefits when those files are read off of dower media (e.g., CD-ROMS), but are always useful.

In order to perform these optimizations, you need to have a profile of how frequently you load each
resource, and which resources you load at the same time.

e Move the resource map o that it immediately follows the resource header.
e Sort the resource map in order of frequency of use.
e Organize the resource data so that resources used together are adjacent.

When the resource fork is opened, the header isread in, and then the system uses the offsets found there
to read in the resource map. Thisresults in multiple file-system reads to different parts of the file system
cache. If the resource map immediately follows the header, then fewer file seeks are necessary and the
resource fork can be prepared faster.

Asmentioned earlier, the resource map is searched linearly, first by resource type and then by
name/resource ID. Resources that are loaded frequently should be sorted so that they appear at the
beginning of the list; resources that are amost never used should be moved to the end of the search path.
Thiswill improve search times and reduce the effect the Resource Manager has on the cache.

Finaly, since resource datawill be loaded into the file system caches, you can reorganize the data so that
resources that are frequently used together are adjacent in the file (generaly, in the same 512-byte block).
Whilethe first resource loaded will result in afile system call, the other resources will aready bein the
cache and load much faster. Resources that are infrequently used, and don’t work with any other resources
should be moved elsewherein thefile. Thiswill improve the file cache utilization.

QuickDraw

Macintosh applications tend to have very detailed user interfaces, and thus spend alot of time inside
QuickDraw. This section discusses ways to improve QuickDraw performance and suggest places where
bypassing QuickDraw may be more valuable. Optimizing QuickDraw is complicated by hardware
acceleration and where your Pi xMaps are located in memory.

All Macintoshes ship today ship with hardware-accelerated QuickDraw. However, most hardware
accelerators can only accelerate calls when the images are being rendered directly into VRAM. Offscreen
Gwor | ds are currently only created in regular memory, so most QuickDraw calls will be accelerated when
being drawn to awindow and software rendered when being drawn to an offscreen Gnor | d. Hardware

TN 1174: Optimization Strategies for Mac OS

accelerated blitters will amost always beat any software blitter.

However, thisignores the overhead of QuickDraw to get to the actual drawing code. When a QuickDraw
call ismade, alarge complex structureis created that describes the blit. This structure includes any explicit
parameters aswell asimplicit parameter information (usually, the current port and GDevi ce). This
structure is then passed on to each registered accel erator on the machine, who examine the structure and
determineif they can accelerate that call. If no accelerator will accept the cal, then the software blitter will
perform the work. Generating the drawing variables and determining the blitter takes afair amount of time,
and will tend to thrash the caches.

Finaly, copying data from system memory to VRAM is bottlenecked by the PCI bus. Thistends to affect
copying large Pi xMaps with CopyBi t s more than if affects smple shape drawing (e.g., Pai nt Rect).

When an application needs to do sophisticated compositing, it is often better to do this drawing into an
offscreen Gwor | d and then copy the final results to the screen. By matching this Gver | d to the window,
the application can guarantee QuickDraw will choose an efficient blitter to copy the data to the screen.
When copying this datato VRAM, a hardware accelerator will probably DMA this data directly over PCI,
which gtill alows a system memory to VRAM copy to run faster than a software blitter. To get the best
speed out of QuickDraw blits, you should match the pixel format, color tables, and pixel aignment. You
should also perform simple copies with black as the foreground color and white as the background color.
Not doing any of these will result in aless efficient blitter being run inside QuickDraw.

Custom blitters are an option, but think carefully before you really try to beat QuickDraw. Hardware
acceerators will usually beat acustom blitter for any significantly sized blit. However, for small blits, the
overhead of QuickDraw means that a specialized blitter can beat QuickDraw. “Large” and “small” can
change depending on the version of the OS and the underlying graphics hardware, so they are left
intentionally vague. For best results, you should compare QuickDraw and the custom blitter at runtime and
choose whichever oneisfaster.

When writing a blitter, you should read the memory section of thistechnote closely, since understanding
the memory systems will be key to optimal blitter performance. In addition, the custom blitter should be as
specialized as possible; the more genera the blitter, the lesslikely it isthat you'll be able to beat
QuickDraw.

QuickDraw 3D RAVE and OpenGL

RAVE and OpenGL have less overhead than QuickDraw and are agood choice when speed is critical.
Generally, commands are either dispatched immediately to the hardware or are buffered. Buffering usually
allows more efficient utilization of PCI bandwidth.

Technote 1125, “Building a 3D application that calls RAVE”, covers RAVE optimizationsin detail, but
most 3D hardware-accel erated applications are limited by one of three mgjor aress:

e Pixe Fill Rate
e PCl Bandwidth
e Hardware state changes

The pixd fill rateisalimitation of the 3D hardware. In general, thisis ameasure of the clock speed of the
graphics processor and the number of pixelsit can issue on each clock cycle. The larger the frame buffer
gets, the more pixelswill need to befilled. In other words, if pixel fill rate was the only bottleneck in an
application, then rendering a 1280x960 buffer would take four times as long as rendering a 640x480
context. In general, once the pixe fill rate has been reached, thereislittle that can be done to improve the
speed of the graphics engine.

All state changes and geometry must be sent to the 3D accelerator over the PCI bus. Thus, the amount of
bandwidth defines the upper limit on the number of polygons that can be passed across the hardware.

L arge state changes (such as loading new textures) will reduce the amount of bandwidth available for
geometry.

Page: 26

TN 1174: Optimization Strategies for Mac OS Page: 27

Finally, the graphics hardware needs to be configured differently for each graphics mode. In addition to
the necessary bandwidth required to communicate a state change, there is usualy atime delay for
reconfiguring the hardware.

Don't throw every polygon at the rasterizer; cull information as early as possible.
Use different levels of detail inal of your geometry.

Use strips and fans.

Minimize the number of state changes.

Minimize the number of texture downloads.

Use multitexturing to implement multipass a gorithms.

Use compiled vertex arrays.

The fastest way to draw a piece of geometry is not to draw it at all. Rather than sending every polygon to
the programming interface, you should use a higher-level agorithm to eliminate objectsthat aren’t visible
to the user. For example, QuickDraw 3D alows a bounding box to be specified for a piece of geometry; if
the bounding box is inside the viewing area, then no other calculations need to be done for that entire
geometry. Similarly, many games use BSP trees or portals to cull sections of the world. Not drawing a
piece of geometry resultsin fewer vertices being passed to the hardware, and also may reduce or eliminate
other state changes in the hardware.

Y ou should tailor the number of polygons used to draw an object to the size of the object in the scene.
Rendering afully detailed model in the distance may result in triangles that are smaller than apixel in size.
Thisisawaste of bandwidth; instead, alower-detail geometry should be used. Similarly, creating geometry
with shared vertices will aso use bandwidth more efficiently. For example, sending 12 trianglesto the
hardware is normally 36 vertices worth of data. However, if those triangles are arranged in a strip (where
every two triangles share an adjacent edge), then the entire strip can be specified with only 14 vertices, for a
better than 2 to 1 savingsin space.

When possible, you should sort rendering based on the graphics mode being used. Thiswill reduce the
number of state changes being made in the hardware. The more time you spend in a particular mode, the
less time you are spending changing the state, and the more time you are spending actually rendering
polygons.

Textures are a specia form of state change that are worth discussing in more detail. Loading atexture onto
the hardware is a significant drain on the available bandwidth. For example, if we assume that avertex is
32 bytes, then loading a 256x256x32 bit texture isthe equivalent of 8,192 vertices! In addition, thereis
usualy alimited amount of VRAM available to hold textures, so textureswill need to be removed from the
card to make room for other textures.

Like other state changes, sorting your polygon data based on the textures used will help to minimized the
amount of times you change the texture. OpenGL uses aleast-recently used (LRU) agorithm for
determining which textures to throw out. If you use the same texture order every time you draw aframe,
you'll actually get poor performance, because your textures are aways being thrown out before you need
them. Instead, alternate your texture rendering order so that every other frameis drawn backwards through
the sort order.

When changing texturesin GL, use gl Bi ndText ur e rather than recreating the texture. This reduces the
amount of time required to copy the texture into VRAM, since al of the information has already been
generated. Smilarly, if you are updating an existing texture, use the gl TexSubl mage call to change the
texture data; this reduces the amount of information required to update the texture.

Finally, if possible, make sure you are providing the textures to the hardware in aformat they support
natively. This eliminates any costly conversionsto a native format.

Finaly, Apple has implemented two extensions to OpenGL. Multitexturing allows a multi-pass rendering
algorithm to be rendered in asingle pass. This reduces the amount of PCI bandwidth required to render a
polygon, and also usesthefill rate more efficiently. Similarly, compiled vertex arrays are amechanism that
alowsthe application to tell OpenGL that avertex list is not going to change. This allows OpenGL to
efficiently pack thisinformation into the command buffer for rendering. Using compiled vertex arrays and
gl DrawEl enent s calls offer extremely efficient performance.

TN 1174: Optimization Strategies for Mac OS

Networking

Optimizing network operationsis covered in detail in Technote 1059, “On Improving Open Transport
Network Server Performance.”

Sound

The key to optimizing sound code on the Macintosh is to optimize your sound formats to the hardware of
the machine. If your sound doesn't directly match the sound hardware, the sound manager instantiates
additional sound componentsto convert your sound to the correct hardware characteristics; thisintroduces
latency into your sound playing as well as using additional CPU time. See Inside M acintosh:Sound,

Chapter 5.

In order to reduce the latency of the sound being played back, you should optimize your buffersto the
buffer size of the hardware. Y ou can find out the native sample type and buffer size by creating a channel,
playing asound on it, and then calling Get SoundQut put | nf o on the output component.

/*
Returns the size of the output buffer in bytes.
*/
static | ong Get SoundQut put Buf fer Si ze (Conponent out put Devi ce, short
sanpl eSi ze, short nunChannel s, Unsi gnedFi xed sanpl eRate) {
SoundConponent Dat a out put For mat ;
OSEr r err;
SndChannel Ptr chan =nil;
SndCommand cnd;
Ext SoundHeader sndHeader;
| ong buf Si ze = 0;

err = SndNewChannel (&chan, 0, 0, nil);

sndHeader . sanpl ePtr = nil;
sndHeader . nunChannel s = nunChannel s;
sndHeader . sanpl eRat e = sanpl eRat €;
sndHeader . | oopStart = O;

sndHeader . | oopEnd = O0;

sndHeader . encode = ext SH;
sndHeader . baseFrequency = kM ddl eC,
sndHeader . nunfFr anes = 0;

sndHeader . mar ker Chunk = nil;
sndHeader . i nst runent Chunks = nil;
sndHeader . AESRecording = nil;

sndHeader .
sndHeader .
sndHeader .
sndHeader .
sndHeader .

sanpl eSi ze
futureUsel
futureUse2
futureUse3
futureUse4

sanpl eSi ze;

cooo

[« I I T

sndHeader . sanpl eArea[0] = O;
/1 This really isn’'t needed since the Sound Manager currently ignores this val ue.
Unsi gnedFi xedTox80 (sanpl eRate, &sndHeader. Al FFSanpl eRat e) ;

/1l Get the sound channel setup so we can query it.
cnd. cnmd = soundCnd;

crmd. paran? = (I ong) &ndHeader ;

err = SndDoComand (chan, &cnd, true);

if (err == noErr) {
err = CGet SoundQut put I nfo (outputDevice, siHardwareFormat, &outputFormat);
}

Page: 28

TN 1174: Optimization Strategies for Mac OS

buf Si ze = out put For mat . sanpl eCount * (sanpl eSize / 8) * nunChannel s;

return (bufSize);

}

Time Manager

Time manager tasks are deferred by the virtual memory system so that page faults can be taken inside a
task. If you can guarantee that both the data and code for atime manager task are held resident in memory,
you can make your tasks run more efficiently and accurately. See Technote 1063, “Time Manager
Addenda”, for details.

Back to top

Optimizing C code

Most of the discussionsin this technote have been algorithmic in nature: places where the choice of
algorithm affects how you call the operating system or access memory. While algorithmic changes will get
you the most significant improvements, additional improvements are possible by simple changes to the C
code. These changes are often just hints giving the compiler additional information that allowsit to emit
more efficient code. These types of changes are most useful inside computation intensive bottlenecks, but
can be useful injust about any C code.

Scoping Variables

Whenever possible, scope variables astightly as possible. Compilers perform lifetime analysis on every
variable in order to alocate the actual PowerPC registersto the variables. Scoping a variable more tightly
helps the compiler by allowing it to reuse the same registers for multiple local variablesinside a function.
Making aglobal variable static restricts it to asingle source file or function. Either of these allowsthe
compiler to perform additional optimizations on that globa variable. And as mentioned earlier, temporarily

assigning a static variable to alocal variable further restricts the scoping, alowing the compiler to further
improve the compiled code.

Basic Blocks
Most instruction scheduling is performed on basic blocks. A basic block is a set of instructions that are

not interrupted by any branch instructions. A key goal in optimizing C code is to increase the size of the
basic blocks so that the compiler has more instructions to schedule.

Code Copying

Code copying is one way to increase the size of abasic block. It involves taking the same piece of code
and copying it into multiple placesinside the source.

For example, let’sassume | had the following code, where (b), (c), and (d) are relatively small code blocks.

Page: 29

TN 1174: Optimization Strategies for Mac OS Page: 30

Sinced isasmall block, copying it into both conditions of the if statement will increase the size of both
basic blocks.

if (a)
{
b
d
}
el se
{
c
d
}

Thistype of operation is less useful when copying alarge number of instructions, because it tends to add
more cache overhead.

L oop Unrolling

Loop unrolling isasimple form of parallelism that both reduces the amount of loop overhead and
increases the size of the basic block. Loop unrolling involves smply duplicating the inner loop multiple
times. For example, take the following loop:

for (loop = 0; loop < 1000; | oop++)

{
a[i] = b[i]+c[i]*d[i];
}
Thisloop is aperfect place to exploit parallelism because none of the results rely on the previous set of
calculations. We can unroll thisloop twice and get:

for (loop = 0; |oop< 1000; |oop +=4)

afi] = b[i]+c[i]*d[i];

a[i+1] = b[i+1]+c[i +1] *d[i +1];
a[i+2] = b[i+2]+c[i+2]*d[i+2];
a[i+3] = b[i+3]+c[i+3]*d[i+3];

}

TN 1174: Optimization Strategies for Mac OS Page: 31

Firgt, the loop overhead on this loop will be much smaller than regular loop. Second, we now have four
sets of instructions that can be scheduled against each other. While one set of calculations may be stalled,
another may be executed. Loop unrolling tends to avoid stalls caused by waiting on a particular instruction
unit.

Most of the benefits of unrolling aloop will be found on the first two iterations. Unrolling larger loops or
loops with many local variablesis often counterproductive. Because each variable is duplicated, excess
variables may be written into main memory, significantly hindering performance. In addition, this can
significantly increase the size of the code, resulting in more code needing to be loaded into the instruction
cache.

Note that loops that can be unrolled should also be examined for places to support vectorization or
multiprocessing.

When unrolling aloop, don’t continuoudly increment pointers. Instead, use array accesses and asingle
increment instruction. Thiswill result in atighter loop and less unnecessary instructions.

Eliminating Branches

After memory accesses, branches are the next most common place where the PowerPC will stall.
Minimizing the number of branches in a code increases the size of basic blocks and reduces the
opportunities for branch prediction penalties.

First, the common path through the code should be as efficient as possible. Code that rarely executes
should be placed at the end of the function, or in an entirely different function. Thiswill prevent rare code
from being prefetched into the instruction caches.

When possible, perform cal culations without branching. For example, theabs() function is often
calculated using aternary operator in C.

| ong abs_branch (long i)

return ((i>=0) ? i : (0-i));

00000000: 2C030000 cnpwi r3,o

00000004: 41800008 blt *+8 ; $0000000C
00000008: 48000008 b *+8 ; $00000010
0000000C: 7C6300D0 neg r3, r3

00000010: 4E800020 blr

If this function were inlined, it would have two branches, which would break basic blocks and offer
opportunities for mispredicted branches. However, this code can be implemented without branching. The
following code is based on an assembly snippet from the PowerPC Compiler Writer's Guide

TN 1174: Optimization Strategies for Mac OS

| ong abs_nobranch (long i)

{

| ong sign, tenp, result;

sign =i >> 31
temp =i " sign;
result = tenp - sign

return result;

}

00000000: 7CB4FE70 sraw r4,r3, 31
00000004: 7C602278 xor ro,r3,r4
00000008: 7C640050 subf r3,r4,r0

0000000C: 4E800020 blr

Thisversion of the code eliminates all branching and combines two adjacent basic blocks, resulting in
more efficient code. Smilarly, checking to seeif avalue fallswithin arange can be reduced to asingle
branch.

bool InRange(int value, int mn, int max)

return ((unsigned) (value - min) <= (unsigned) (max - nin));

AltiVec offers compare and select instructions that offer greater flexibility in generating code. For a
sequence of code, two different result vectors can be calculated (one for success and one for failure). A
third vector is used to hold the results of acompare instruction. Finally, a select instruction uses the
compare results to choose between the success and failure cases. In addition to the added paralelism, this
code executes without any branches.

For example, the following code combines a set of 16-hit source pixelswith 16-bit destination pixels using
compare and select. It usesthe top bit of the 16-bit pixel asamask. Wherever the bit is 1, we replace the
destination pixel with the source. This code sets 8 pixels at atime without having to do any comparisons.

/'l generate a vector of all zeros.
vxor vZero, vZero, vZero

| vx vSourcePi xels, 0, rSourcePtr
| vx vDest Pi xel s, 0, rDestPtr

/1Since any pixel with the bit set is effectively a negative nunber,
//we compare agai nst zero to generate the nask.

vcnpgt sh vMask, vZero, vSourcePixels
vsel vDestPixels, vSourcePi xels, vMask
stvx vDestPixels, 0, rDestPtr

Page: 32

TN 1174: Optimization Strategies for Mac OS Page: 33

If you cannot eliminate a branch, place as many instructions as you can between the branch and the
condition it istesting against. This ensures that no branch prediction will occur, eliminating any costly
penalties for a mispredicted branch.

Back to top

Power PC Assembly

A working knowledge of PowerPC assembly is useful when optimizing applications for Power
Macintosh. Whileit israrely essential for anything to be written in PowerPC instructions, it is aways
useful to disassemble the code generated by the compiler. SIM_G4 will aso take the actual code being
executed and provide you instruction-by-instruction details about how your code is executing.

If you need that last 10% out of a particular function, then you might consider writing it directly in
assembly language. Assembly language is also useful when you need to get at instructions that the
compiler won't normally generate.

The key to writing efficient PowerPC assembly language programsis to perform optimizations and use
instruction sequences that the compiler will not normally generate. The following section describes afew
useful code examples that the compilerswill not generate. Also discussed are other areas you should
consider when writing your own assembly functions.

Before writing any assembly language code, you should read the appropriate processor manuals along
with the PowerPC Compiler Writer’s Guide

Special Load and Store Instructions

The PowerPC instruction set provides load and store instructions that automatically perform byte
swapping. If you are frequently loading and storing datain little endian format, these instructions will be
faster than the macros provided in Universal Headers (Endian.h).

The update forms of aload or store will access memory at the offset and updates the address register to
point to the same memory location. This allows atighter loop to be generated by eliminating unnecessary
addition instructions. However, don’t go overboard with these update instructions as too many of them in
arow can stall the processor.

Condition Registers

The condition register is 32 bits wide and can hold results for up to eight different compares at once. Any
compare whose value is not going to change should be placed in one of the condition registers and | eft
there for as long as possible. Some compilers do a poor job of separating compares and branches; leaving
avaue in the condition register means that branches will always be predicted correctly.

If you have alarge number of bit flags, compilers often generate a separate rotate instruction for each test.
Since the rotate and branch are often not separated, this must be branch predicted, with the potentia
misprediction penalties.

Instead, move as many flag bits into the condition register as possible and test on the bits manually.

TN 1174: Optimization Strategies for Mac OS

U nt 32 options;
ntcrf 3,options // nove the bottom 8 bits of options into CR6-7

bf 31, foo // if flag 0 is false, skip
bf 30, bar // if flag 1 is false, skip

bt 29, baz // if flag 2 is true, skip

Thisis more efficient than what most compilerswill generate, and also alows the GPR that holds the
options flag to be reused for other purposes.

Another example is to move the bottom bits of a counter into the condition registers. Thisis useful for
unrolled loops and loops which copy bytes of data. For example, the following code will move 16 bytes at
atime, and then use the condition register bitsto move the remaining 15 bytes.

; r3 = source

. rd4 = destination

; r5 = nunber of bytes

rlwvinm r6,r5,28,4,31 ; how nmany 16 byte bl ocks to nove
mcrf 1, r5 : nove bottom4 bits into CRY

bl e move8 ; no blocks to nove, finish the |ast 15 bytes

; performthe unrolled |loop, noving 16 bytes at a tine.
; this | oop ignores alignnent

| oop:

subi. r6, r6, 1 ; loop counter

lwz r7, 0(r3)

cnmplwi r6,$0000 ; are we done | ooping

lwz r8, 4(r3)
lwz r9, 8(r3)
lwz r10, 12(r3)
addi r3,r3,16
stw r7,0(r4)
stw r8,4(r4)
stw r9,8(r4)
stw r10,12(r4)
addi r4, r4, 16
bne | oop

nmoves

bf 28, npbve4
lwz r7, 0(r3)
lwz r8, 4(r3)
addi r3, r3,8
stw r7,0(r4)
stw r8,4(r4)
addi r4, r4, 8

nove4:

bf 29

lwz r7, 0(r3)
addi r3,r3,4
stw r7,0(r4)
addi r4, r4, 4

Page: 34

TN 1174: Optimization Strategies for Mac OS

nove2

bf 30, npvel
lhz r7, 0(r3)
addi r3,r3,2
sth r7,0(r4)
addi r4, r4, 2

novel

bflr 31

bz r7, 0(r3)
stb r7, 0(r4)
bl r

To summarize, the condition register fields can hold bit flags and other useful data, smplifying the
compare-branch portions of your code, and freeing up general purpose registers that compilers might
allocate to hold flag data.

Counter Register

The PowerPC architecture includes a dedicated counter register, which can be set to afixed number of
iterations. One big advantage of the counter register isthat it aways predicts correctly, so that mispredicted
branches do not happen. For example, the byte-copying code could have used the following code instead:

rlwvinm r6,r5,28,4,31 ; how nmany 16 byte bl ocks to nove
mctr r6 : nove into the counter
ble nove8 ; no blocks to nove, finish the |ast 15 bytes

; performthe unrolled | oop, noving 16 bytes at a tine.
this | oop ignores alignment

| oop:

lwz r7, 0(r3)
lwz 18, 4(r3)
lwz r9, 8(r3)
lwz r10, 12(r3)
addi r3,r3,16
stw r7,0(r4)
stw r8,4(r4)
stw r9,8(r4)
stw r10,12(r4)
addi r4, r4, 16
bdnz | oop

Page: 35

TN 1174: Optimization Strategies for Mac OS Page: 36

However, some loops aren’t always going to benefit from using the counter register. Branches can usually
be folded out by the processor, effectively executing an additional instruction on that cycle. The BDNz
instruction, however, must update the counter register, so it takes up areservation station and must be
completed in order.

Decrementing and testing a register can be faster if both the decrement and compare instructions can be
scheduled into an otherwise empty pipeline dots. For example, the original loop described above was
dominated by the load-store unit, so the integer unit isrelatively dormant. In this case, we can schedule the
decrement, compare and branch for free. Thisloop also only takes one more instruction than the counter
version of the loop.

So, the counter register is best used in loops where other registers are scarce, or where there aren’t enough
instructions to hide the decrement and branch.

The counter register is also used as the destination for a branch. Thisis very useful when you want to
precal culate a code path outside of aloop, because inside the loop you can quickly branch to an efficient
implementation of that function.

Function Calling and Pointer Glue

The PowerPC-calling conventions are designed around high-level languages like C and Pascal. In addition,
they have to be flexible when dealing with pointers to functions, since those functions could exist in either
the application or another shared library.

Within assembly code, many of these ABI restrictions can be relaxed. For example, the standard
cross-TOC glueis normally invoked when going through a function pointer:

lwz r0,0(r12)
stw RTQOC, r 20(SP)

mctr O
lwz RTCC, 4(r12)
bctr

However, when the function being called isin the same library, the RTOC vaues will never change; we can
simplify this glue code to the minimum possible:

lwz r0,0(r12)
mctr O
bctr

TN 1174: Optimization Strategies for Mac OS Page: 37

A leaf function can use any unused registersin R3 through R10 without having to save their vaues off to
memory. Similarly, registers R11 and R12 are normally used as environment glue by the compiler. In an
assembly function, these registers are aso available for the function to use however it wishes.

Asmentioned earlier, the ABI is designed around a high-level language like C or Pascal. Thislimitsthe
ABI to asingle return value being passed back to the caller viaaregister. If multiple values need to be
returned, then the additional values must be passed through memory. An assembly language program can
defineits own functions with its own ABI. While it must adhere to the stack frame design, a custom ABI
could allow for additional input and output parameters to be stored in registers. This significantly reduces
the number of memory transactions and can improve performance.

Rotate I nstructions

The rotate instructions on the PowerPC processor are very powerful and should be used to pack and
unpack data. Most C compilers now emit these instructions aggressively, but understanding themis
important for producing efficient PowerPC assembly functions.

Back to top

Bibliography

General Performance Tuning:

Jon Louis Bentley, Writing Efficient Programs (ISBN 0-13-970244-X)

Kevin Dowd, Charles Severance, High Performance Computing (I1SBN 1-56592-312-X)
David A. Patterson, Computer Architecture: A Quantitative Approach (ISBN 1558603298)
Steve C McConnell, Code Complete : A Practical Handbook of Software Construction (1SBN:
1556154844)

e Rick Booth, Inner Loops (ISBN 0-201-479860-5)

Macintosh Performance Tuning:

Appl€ s Instrumentation SDK

Technote FL 16, “File System Performance and Caching”

Technote QD21, “Of Time and Space and CopyBits’

Technote 1008, “ Understanding PCI Bus Performance”

Technote 1059, “On Improving Open Transport Network Server Performance’

Technote 1063, “ Time Manager Addenda’

Technote 1109, “Optimizing QuickDraw 3D 1.5.3 Applications For Maximum Performance’
Technote 1125, “Building a 3D application that calls RAVE”

Technote 1121, “Mac 0OS 8.1"

Taking Extreme Advantage of PowerPC

Performance Tuning

Baance Of Power: Advanced Performance Profiling
Balance of Power: Enhancing PowerPC Native Speed
Balance of Power: Tuning PowerPC Memory Usage
Chiropractic for Y our Misaligned Data

Power PC Assembly L anguage:

o PowerPC Compiler Writer's Guide (ISBN: 0-9649654-0-2)
e MPC 750 RISC Microprocessor User's Manual (Motorola, MPC750UM/AD) (PDF File)
o MPC 750 RISC Microprocessor User's Manual Errata (Motorola, MPC750UM/AD) (PDF

Flle)

TN 1174: Optimization Strategies for Mac OS

o PowerPC Microprocessor Family: The Programming Environments for 32-bit Microprocessors
(PDF File)

PowerPC Microprocessor Family: The Programmer’ s Reference Guide (PDF file)

Apple s AltiVec Page

Baance of Power: Introducing PowerPC Assembly Language

Understanding the PowerPC Architecture

Understanding PowerPC Assembly Language

Back to top

Downloadables

FOF
ﬂ Acrobat version of this Note (K)

W

Opti mization Sample Code (CBuffFileStream and Cacheline Optimizer)

Page: 38

To contact us, please use the Contact Us page.
Updated: 20-September-1999

Technotes | Contents
Previous Technote | Next Technote

