TN 1104: Interrupt-Safe Routines Page: 1

Technote 1104

| nter rupt-Safe Routines

CONTENTS
Introduction

Execution Levels

Execution Levelsin Other
Documentation

What Interrupt Routines Can't Do

I nterrupt-Safe Routines by
Manager

Summary of Interrupt-Safe
Routines

Downloadables

The traditional Mac OS has a badly defined set of

heterogeneous programming environments. In some of these
environments, your code can access some system services
but not others. Furthermore, the names given to these
environments are often overloaded and confusing. This
resultsin alot of programmer confusion.

This Technote attempts to clear up this confusion by
assigning each of the execution levels a unique name,
describing how and why your code might find itself running
at aparticular execution level, and outlining the restrictions
your code might face when running at that level.

This Technote isimportant for anyone programming any
Mac OS code that might run at "interrupt time," and vital for
anyone doing system-level programming under the
traditional Mac OS.

TN 1104: Interrupt-Safe Routines

| ntroduction

There has been much confusion about which Mac OS routines can be used at interrupt time and which
cannot. This Technote lists the Mac OS routines which can be used at interrupt time.

This Technote list routines which are safe at interrupt time, rather than those that are unsafe. As the system
evolves, more routines are added, and it may become necessary to do more work in existing routines. So
routines that just happen to be interrupt-safe may become otherwise. Thus, any list of interrupt-unsafe
routines will grow over time, and consequently is hard to maintain. A list of routines that are safe is more
likely to remain accurate.

DTS recommends that you assume all routines absent from thislist are unsafe to call at interrupt time.
Thisisagenera defensive programming guideline, not a definitive pronouncement. If you know of a
routine which you aways considered to be interrupt-safe that is not listed here, please let us know. As an
example of how your feedback is vauable to us, thefirst version of this technote failed to mention that
Set Cur sor was interrupt-safe. This was an obvious omission which has now been corrected, and it's
likely that there are others.

A interrupt-safe routine can become unsafeif it is patched inappropriately. When you patch aroutine
which isinterrupt-safe, you should assume that your patch is running at interrupt time and avoid doing
thingsthat areillegal at interrupt time.

Note:
DTS till recommends against patching, as it has always has. The above comments reflect the pragmatic
attitude that, if you're going to patch, you should do it correctly.

The old Inside Macintosh , volume 6, appendix B had alist of routines which can be called at interrupt
time. This Technote is an updated list of those routines, along with comments as appropriate. Do not rely
on thelist of interrupt-safe routinesin Inside Macintosh , volume 6, appendix B.

Back to top
Execution Levels

The traditional Mac OS supports the following execution levels:

e Hardware Interrupt
e Deferred Task
e System Task

In addition, the native device driver model defines the following execution levels:

e Native-Hardware Interrupt
e Secondary Interrupt

e Task

e Software Interrupt

Since these execution levels are modeled after the execution level s supported by Copland, their
implementation on the traditional Mac OS is somewhat imprecise. In broad terms, the following analogies

apply:

e native-hardwareinterrupt islike hardware interrupt
e secondary interrupt islike deferred task

Page: 2

TN 1104: Interrupt-Safe Routines

e taskislike system task
e softwareinterruptis not supported

However, the distinction between these analogous pairs isimportant in certain circumstances, as explained
later in this note.

Note:
Y ou can read more about native device driver execution levelsin Designing PCl Cards and Drivers for
Power Macintosh Computers, page 67.

IMPORTANT:

This Technote does not discuss the PowerPC hardware interrupt mechanism. On PowerPC computers
running the traditional Mac OS, PowerPC hardware interrupts are handled by a nanokernel, which routes
the interrupt through the 68K emulator. Where this note references 68K -specific concepts, you can
safely assume that this behavior is emulated by the low-level PowerPC system software on machines
with PowerPC processors.

IMPORTANT:

The execution level islargely independent of the processor interrupt mask, i.e., the value stored in the
680x0 SR register. In some cases, interrupts can be enabled during an interrupt (e.g., while running a
deferred task); in other cases, interrupts can be disabled at system task time (e.g., Enqueue disables
interrupts to guarantee mutual exclusion). The interrupt mask is not areliable way to detect whether you
are at "interrupt time."

This remainder of this section describes each of the execution levelsin detail.

Hardware I nterrupt
What isit?

Hardware interrupt-level execution happens as adirect result of a hardware interrupt request. Software
executed at hardware interrupt level includes installable interrupt handlers for NuBus and other devices, as
well asinterrupt handlers supplied by Apple.

How do you get there?

Y ou get to hardware interrupt level asthe direct result of ainstalling a hardware interrupt handler (e.g., a
NuBus handler installed with SI nt I nst al | or by changing the interrupt vector tablesin low memory) or
by being called by something that is directly invoked by a hardware interrupt handler (e.g., aSCS|
Manager 4.3 completion routine). Note that Time Manager tasks and VBL s are also executed at hardware
interrupt level.

What can you do there?

Hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager,
and Open Transport. The associated restrictions are described later in this document.

In addition, you should make every attempt to minimize the amount of time you spend at hardware
interrupt level. Hardware interrupt level requiresthat al interrupts with lower interrupt priority be disabled
for the duration of the hardware interrupt handler. The longer you spend in your hardware interrupt
handler, the longer the interrupt latency of the computer will be. Increased interrupt latency may result in a
poor user experience -- such as sound breakup or mouse tracking problems -- or worse. If you need to do

Page: 3

TN 1104: Interrupt-Safe Routines Page: 4

extended processing at interrupt time, you should schedule a deferred task (using DTI nst al |) to perform
the operation.

Ispaging safe?

Paging is not safe at hardware interrupt level unless the interrupt has been deferred using Def er User Fn.
Some system interrupt handlers (Device Manager completion routines, VBLS, dot VBLS, Time Manager
tasks) automatically defer their operation until VM-safe time, but other hardware interrupt handlers must
be sure not to cause page faults. If you need to access memory that might page fault, you should defer that
operation using Def er User Fn.

Note:
Do not confuse the semantics of Def er User Fn, which defers ahardware interrupt until paging is safe,
with those of DTI nst al | , which schedules a deferred task to be executed when interrupts are re-enabled.

Deferred Task
What isit?

A deferred task is a mechanism whereby hardware interrupt-level code can schedule aroutine to be
executed when interrupts have been re-enabled, but before the return from the interrupt. Hardware
interrupt handlers do thisin order to minimize the amount of time spent in the hardware interrupt handler,
and thereby minimize system interrupt latency.

How do you get there?

The most common way to get to deferred task leve isto have your hardware interrupt handler call
DTI nst al | to schedule aroutine, which the system calls back at deferred task time. The interrupt system
executes deferred tasks just before returning from interrupts, but after re-enabling interrupts.

Y ou can aso get to deferred task level by being called by something that is executing at deferred task
level. A good example of this are Open Transport notifier functions, which are often called at deferred task
level.

What can you do there?

Deferred tasks are considered "interrupt time" as defined by the toolbox. The associated restrictions are
described |ater in this document.

I spaging safe?
Paging is safe at deferred task level.
Special Considerations

Another useful feature of deferred tasks is that they are seriadlized. The system will not interrupt a deferred
task in order to run another deferred task. This makes areally neat mutua exclusion mechanism.

System Task
What isit?
System task level isthe level at which most application code runs.

The name is derived from an obsolete Mac OS system call, Syst enirask. Prior to the introduction of

TN 1104: Interrupt-Safe Routines

MultiFinder (now known as the Process Manager), applications were required to call Syst enirask at
regular intervalsto alow device driverstime to do things that could not be done at interrupt time.

Note:
The Syst enfrask routine itself is now obsolete because Wai t Next Event automatically calsit for you.
However, the name lives on as a testament to those hardy Mac OS pioneers who actualy had to call it.

How do you get there?

An application's main entry point is called at system task level. Cooperatively scheduled Thread Manager
threads also run at system task level. For other types of code, Technote 1033: "Interruptsin Need of (a
Good) Time" describes how to get to system task level from interrupt level.

What can you do there?

Code running at system task level isnot considered "interrupt time" by anything. Y ou can do virtually
anything at system task level.

I s paging safe?
By default paging is safe at system task level. The exceptions occur when your code is accessing some

resource that the system needs to support paging. For example, if you obtain exclusive access to the SCS|
bus using SCSI Get , you must not cause a page fault even at system task level.

Native Hardware I nterrupt
What isit?

Native hardware interrupt level isvirtually identical to normal hardware interrupt level except that it only
comes into play on machinesthat have the native driver architecture.

Note:

The native in the name of thislevel does not imply fully native-interrupt processing. Under the traditional
Mac OS, the nanokernel vectors all interrupts through the 68K emulator in order to ensure 68K interrupt
priorities and instruction atomicity. Therefore, even native hardware interrupts involve Mixed Mode
Manager switches.

How do you get there?

Y ou get to native hardware interrupt level by installing a hardware interrupt handler using the native
Interrupt Manager, or by being called by something that is directly invoked by such ahandler.

What can you do there?

Native hardware interrupts are considered "interrupt time" as defined by the toolbox, Virtua Memory
Manager and Open Transport. The associated restrictions are described |ater in this document.

Aswith code running at hardware interrupt level, you should make every attempt to minimize the amount
of time you spend at native hardware interrupt level. If you need to do extended processing in response to
anative hardware interrupt, you should schedule a secondary interrupt (using

QueueSecondar yl nt er r upt Handl er) to continue the interrupt processing.

I spaging safe?

Page: 5

TN 1104: Interrupt-Safe Routines Page: 6

Paging is not safe at native hardware interrupt level.

Secondary Interrupt
What isit?

The native driver model provides secondary interrupts -- which are much like deferred tasks -- allowing
native drivers to defer complex processing in order to minimize interrupt latency.

How do you get there?

Y ou can get to secondary interrupt level by having your native hardware interrupt handler call
QueueSecondar yl nt er r upt Handl er to schedule aroutine which the system calls back at secondary
interrupt level. Theinterrupt system executes secondary interrupts after re-enabling interrupts but before
running deferred tasks and returning from the interrupt handler.

Y ou can aso execute a secondary interrupt handler directly from task level using
Cal | Secondar yl nt er r upt Handl er 2.

What can you do there?

Secondary interrupts are considered "interrupt time" as defined by the toolbox, Virtual Memory Manager
and Open Transport. The associated restrictions are described later in this document.

I spaging safe?

Paging is not safe at secondary interrupt level.
Task

What isit?

Under the traditional Mac OS, the native driver model definestask level to be any code that's not at native
hardware interrupt level and not at secondary interrupt level.

How do you get there?

The most common source of task level execution is standard system task level execution, i.e., normal
application code. However, other execution levelsthat are traditionally considered to be interrupt levels,
such as non-native hardware interrupts and deferred tasks, are also considered to be task level. Remember
that under the traditional Mac OS, task level is defined as either non- native interrupt level or secondary
interrupt level.

What can you do there?

The environment restrictions of task level are defined by the underlying execution level that'sreally being
executed.

I's paging safe?

The native driver model definesthat paging is always safe at task level. However, on the traditional Mac
OS, paging isonly safe at task level if the underlying execution level definesit to be safe.

Softwar e Interrupt

TN 1104: Interrupt-Safe Routines
What isit?
The native driver model defines the concept of a software interrupt, the ability to force atask to
immediately execute aroutine in the context of that task. Thisisdistinct from, but commonly confused
with, secondary interrupt level.
How do you get there?

Software interrupts are not supported under Mac OS. Thisis clearly stated in Designing PCI Cards and
Driversfor Power Macintosh Computers, page 262:

Currently, SendSof t war el nt er r upt calsthe user back at the same execution level. In
future versions of Mac OS it can be used to force execution of code that can't be called at
interrupt time.

Thismeansisthat if you call SendSof t war el nt er r upt at execution level X, the software interrupt will
run at execution level X. This makes software interrupts effectively useless on the traditional Mac OS.

What can you do there?

Software interrupts are defined to run at task level, in the context of the task to which the software
interrupt was sent.

I s paging safe?

The native driver model defines that paging is aways safe at software interrupt level.

Note:

When the native driver modedl was designed, it was designed with Copland in mind. The goal wasthat a
native driver (binary, not source) would run without modification on both the traditional Mac OS and
Copland. A lot of effort was put into both operating systems to support this goal.

In general, the support for the native driver model on the traditiona Mac OS is acceptable. However, in

some cases, it isjust not possible to support features of Copland under the traditional Mac OS. The most

obvious of these is software interrupts. These require significant microkernel support and were not
implemented on the traditional Mac OS.

Given that Copland is dead, software interrupts linger on in name only, the vestigia appendix on the
intestine that is the native driver model.

Page: 7

TN 1104: Interrupt-Safe Routines Page: 8

Back to top
Execution Levelsin Other Documentation

In generd, the following execution levels are considered to be "interrupt time.”

e Hardware Interrupt

e Deferred Task

e Native Hardware Interrupt
e Secondary Interrupt

However, the use of the term "interrupt time" can vary from manager to manager. This section
documents some of the more confusing cases.

Toolbox
Most toolbox routines cannot be called at "interrupt time,” asit is defined above.

There are many different reasons why toolbox routines cannot be called at interrupt time. Some routines,
like al of the Memory Manager, rely on global data structures that are not interrupt-safe. Other routines
might move or purge unlocked handles, which is equivalent to calling the Memory Manager. Still others,
like synchronous calls to the File Manager, are architecturally inaccessible. Finally, some routines, like
ReadDat eTi me, rely oninterruptsin order to complete, and hence cannot be called when interrupts are
disabled.

The fact that a routine doesn't move or purge memory does not mean it is interrupt-safe.

Virtual Memory Manager

The Virtua Memory Manager documentation (_ chapter 3 of Inside Macintosh: Memory and Technote
ME 09: "Coping with VM and Memory Mappings') says that page faults are not allowed at "interrupt
time." This has caused alot of confusion among programmers who have heard that, for example, Device
Manager completion routines are "interrupt time,” and hence assume that paging is unsafe in MacTCP
completion routines. In the light of the above description, it's easy to clear up that confusion.

Asfar asthe Virtua Memory is concerned, "interrupt time" means any hardware interrupt that hasn't
been deferred by VM itself or using Def er User Fn. SO it is safe to take page faults from Device
Manager completion routines, even though other documentation might refer to that execution level as
"Iinterrupt time."

For the full story about virtual memory on the traditional Mac OS, check out Technote 1094 "Virtua
Memory Application Compatibility".

Open Transport

The original Open Transport documentation caused much confusion by saying that Open Transport
could not be called at "interrupt time." This means that you can only call Open Transport from system
task level or deferred task level. So you can call Open Transport at execution levels that would normally
be considered "interrupt time" (specifically, from a deferred task) aslong as you don't call it from
hardware interrupt level (or native hardware or secondary interrupt levels).

This confusion has been cleared up in the latest release of 1nside Macintosh: Networking with Open
Transport, which has an extensive table of which Open Transport routines can be called from which
execution levels,

TN 1104: Interrupt-Safe Routines

Back to top
What Interrupt Routines Can't Do

Code running at "interrupt time" cannot do everything that system task code can do. The following list
summarizes the operations that interrupt routines should not perform. An interrupt routine which violates
any of these rules may cause a system crash:

e An interrupt routine must not allocate, move, or purge memory using the Mac OS Memory
Manager.

e Aninterrupt routine cannot rely on the state of any unlocked handle.

e Aninterrupt routine must not call any Memory Manager routine which sets the low memory
global Mentrr .

e Aninterrupt routine must not call any Mac OS routines that violate the above.

e Aninterrupt routine must not do synchronous I/O. Thisincludes File Manager, Device
Manager, PPC Toolbox, and Open Transport 1/0.

e For 68K code, an interrupt routine cannot access application global variables unlessit sets up
the application's A5 world properly. Thistechniqueis explained in the Accessing Application
Globalsin aVBL Task section of Inside Macintosh: Memory.

e For 68K code, an interrupt routine cannot call aroutine from another code segment unless the
segment isloaded in memory and linked into the code's jump table. In addition, the code must
established the correct A5 world before calling across segments at interrupt time.

o Asaspecia case of the above, some of the routines described in Inside Macintosh (for
example, Bi t And, Hi Wr d) are actually implemented as glue that is statically linked to your
program. It'simportant to remember that this glue may be in another segment and, even though
the routine itself does not move memory, the act of calling it might.

e CFM-68K code must comply with the requirements outlined in Technote 1084: "Running
CEFM-68K Code at Interrupt Time: Is Your Code at Risk?"

Back to top
| nter rupt-Safe Routines by M anager

This section describes various interrupt-safe routines, grouped by manager.

IMPORTANT:

Thislist isintended only to document those routines which should always be safe to call at interrupt
time. There may be other routines, not documented here, which are safe by virtue of their current
implementation. Y ou should not rely on such routines continuing to be interrupt-safe.

Memory Manager

There are very few Memory Manager routines that you can safely call at interrupt time. The most common
exceptions are Bl ockMove (including Bl ockMoveDat a and other variants) and St ri pAddr ess; thesetwo
routines may be safely made at all execution levels. At interrupt time, you cannot allocate, move, or purge
memory (either directly or indirectly). Y ou should never rely on the validity of handles to unlock blocks.

There are some routines documented in Inside Macintosh: Memory that are safe. The entire suite of
debugger routines are interrupt-safe. Thisincludes Debugger Ent er , Debugger Exi t , Debugger Get Max,
Debugger LockMenory, Debugger Pol | , PageFaul t Fat al , Debugger Unl ockMenor y, SwapMVUMbde, and
Transl at e24t 032.

The Virtual Memory Manager routines Get PageSt at e, Get Physi cal , Def er User FN, Unhol dMeror y, and

Page: 9

TN 1104: Interrupt-Safe Routines
Unl ockMenor y are interrupt-safe.

The Virtual Memory Manager routines Hol dMerror y, LockMeror y, LockMenor yCont i guous, and
LockMenor yFor Qut put areinterrupt-safe if you guarantee that either page faults are allowed or, if paging is
unsafe, that the routines will not cause a page fault. For example, it'ssafeto call LockMenory on memory
that you can guaranteeis held.

No other Memory Manager routines are interrupt-safe, for one or more of the following reasons:

1. They clear the low-memory globa MenEr r, which isreturned by the Memory Manager call
MenEr r or . Applications regularly use MenEr r or to examine the result of the previous Memory
Manager operation and may not properly detect amemory error if MenEr r changes at interrupt
time.

2. They alocate, move, or purge memory, or rely on the state of unlocked handles.

3. They examine data structures that can be in an inconsistent state at interrupt time.

IMPORTANT:
Developers sometimes think "Calling aroutine that doesn't move memory (like Di sposeHand! e) should
be safe aslong as | save and restore the value of MenEr r." Thisis not true because of point 3 above.

Specificdly, do not call st ackSpace at interrupt time. St ackSpace operates by comparing two low
memory globals in the current process low memory globals. At interrupt time you are not guaranteed that
you are even in avalid process. St ackSpace also clears the low memory global MenEr r, which is returned
by the Memory Manager call Mener r or . Applications regularly uses MenEr r or to examine the result of the
previous Memory Manager operation, and may not properly detect amemory error if MenEr r changes at
interrupt time.

Note:
Unfortunately, there is some shipping software that calls St ack Space at interrupt time. Even more
unfortunately, Apple has -- in the past -- shipped software that calls St ackSpace at interrupt time.

Appleiscommitted to eliminating bugs like this from its system software, and DTS recommends that
developers continue to rely on the results of MenEr r or . However, the paranoid devel oper may wish to
implement awrapper for common Memory Manager routines, as shown below:

static OSErr MyNewHandl e(Si ze byteCount, Handle *result)

{
CSErr err;

Assert(result !'=nil);
err = noErr;
*result = NewHandl e(byt eCount) ;

if (*result == nil) {
err = MenError();
Assert(err !'= noErr);

if (err == noErr) {
err = nmenful | Err;
}
}

return err;

Page: 10

TN 1104: Interrupt-Safe Routines
Operating System Utilities

Enqueue and Dequeue are interrupt-safe, and may be used at any time. For mat RecToSt ri ng (formerly
For mat 2St r), St ri ngToExt ended (formerly For mat X2St r), and Ext endedToSt ri ng (formerly
For mat St r 2X) are interrupt-safe as well.

Note:

Do not call ReadLocat i on a interrupt time. ReadLocat i on needsto get information from the parameter
RAM (PRAM), using the poorly documented ReadXPRAMroutine. Some Mac OS computers
communicate with parameter RAM viainterrupts. If you call ReadXPRAM, or any routine which calls
ReadXPRAM, at interrupt time, the call may hang your system.

Device M anager

The core Device Manager traps (_Open, _Read, _Wite,_Control,_Status,_C ose) areinterrupt-safein
some cases. Some of these traps (_pen, _Read, _Wite,_C ose) are shared with the File Manager and the
behavior is dightly different for Device Manager requests versus File Manager requests. The following
rules summarize the situation:

e Synchronous routines are never interrupt-safe.

e Asynchronous routines are interrupt-safe, if they arelegal at all.

e Immediate routines are interrupt-safe if the receiving driver is prepared to handle immediate
requests at interrupt time. Immediate routines are never legal for files.

e You should always open and close device driverswith GpenDr i ver and d oseDri ver , which must
be called at system task time.

e You should always open afile with one of the "OpenDF" routines (FSpOpenDF, PBOpenDF,
PBHOpenDF). Asynchronous variants of these routines are interrupt-safe.

e Asynchronous variants of the other "Open" routines (PBOpen, PBHOpen) are interrupt-safe when
applied to files. However, you should avoid these routines because they might unexpectedly open a
device driver. For example, if you attempt to open afile called ".Sony", these routines might open
the floppy device driver rather than thefile.

The next section gives details on File Manager routines that are not shared with Device Manager.

If you're patching the Device Manager traps described above, you must ensure that your patch correctly
handles interrupt-time requests. Y our patch should not do interrupt-unsafe things unless it determines that
the request is synchronous.

When implementing a device driver, you receive three types of requests. synchronous, asynchronous, and
immediate. If the driver can be called asynchronously, you must implement both synchronous and
asynchronousrequests asif they were asynchronous, and not do things that areillega at interrupt time.
[Thispoint isdiscussed in great detail in Technote 1067: "Traditional Device Drivers: Sync or Swim".] On
the other hand, immediate requests always execute at the execution level at which the request was made, so if
you know that your client made the request at system task time, you know you are running at system task
time.

Asaspecial case of thislast point, adriver isaways sent accRun control routines as an immediate request
at system task time, so your driver can move or purge memory in response to an accRun call.

File Manager

All asynchronous File Manager routines are interrupt-safe. For example, PBOpenDFAsync can be called at
interrupt time.

Page: 11

TN 1104: Interrupt-Safe Routines Page: 12

File System M anager

The File System Manager service routines Get FSI nf o and Set FSI nf o are interrupt-safe. Other File
System Manager serviceroutines (I nst al | FS, RenoveFS, | nf or nFSM | nf or nFFS) are documented as not
being interrupt-safe.

A File System Manager plug-in should assume that it is running at interrupt time, and not violate the
provisions of this Technote except where noted in the File System Manager documentation. Asa
consequence, most File System Manager utility routines must be interrupt-safe. The routines documented
not to be interrupt-safe are UTAI | ocat eVCB and UTDi sposeVCB. Other File System Manager utility
routines (for example, UTCacheReadl P) are interrupt-safe but have other documented environmental
restrictions.

Driver Services

The native driver support library (Dri ver Ser vi cesLi b) provides alarge number of routinesthat are
"interrupt- safe." The execution level at which these routines may be called is defined in Designing PCI
Cards and Drivers for Power Macintosh Computers, Table 9-2, starting on page 283.

When reading this table, you should note a number of important caveats:

e The column labelled " Software interrupt level" should be [abelled " Secondary interrupt level."

e Towork inthe context of thistechnote, the column labelled "Hardware interrupt level” should be
labelled "Native Hardware Interrupt Level."

e Routinesthat are labelled as alocating memory must be called at task level, and the underlying
execution level must be system task level.

e Routines calable from native hardware interrupt level are dso callable from hardware interrupt
level.

In addition, the vaid execution levelsfor Pr epar eMenor yFor | Oiscovered in DTS Q& A DV 32:
"PrepareM emoryForl O and Execution Levels."

Classic Networking

Classic AppleTak isimplemented as a set of device drivers, and hence may be called at interrupt time as
long as the calls are made asynchronously.

MacTCP is split into two parts. The core TCP, UDP, and ICMP support isimplemented as adevice driver,
and hence may be called at interrupt time as long as the calls are made asynchronoudly.

On the other hand, the Domain Name Resolver (DNR) isimplemented as glue in your application. The

St r ToAddr , Addr ToNane, HI nf o, and MXI nf o routines are safe at interrupt time under MacTCP. However,
these routines will fail (returning an error code) under Open Transport TCP/IP if they arefirst called at
interrupt time. For thisreason, DTS recommends that you do not calls these routines at interrupt time.

Open Transport

The latest release of Inside Macintosh: Networking with Open Transport has an extensive table of which
Open Transport routines can be called from which execution levels.

Power Manager

Installing and removing a sleep queue entry (using Sl eepQ nst al | and SI eepQrenove) issafe, asare
Bat t er ySt at us and Set WJTi ne.

TN 1104: Interrupt-Safe Routines

Note:

On some computers, your sleep queue entry may be called a atime when you are not in a current
process. Thismeans that it is unsafe to implement any user interaction from a sleep queue entry. For
example, the deep switch on the lid of some Duos and some PowerBooks gets noticed by a patch to the
Process Manager when it isin the middle of switching processes. If you call aroutine such as

Modal Di al og at thistime, the Process Manager thinks that there is no current front process, so it failsto
post any eventsfor the dialog. Y ou will hang because your modal dialog filter will never receive any
events.

Notification Manager

Youmay cal NM nst al | and NMRenove at interrupt time.

Note:
A notification response procedureis called at system task time and henceit is safe to call most Toolbox
routines. However, putting up user interface is tricky because you are running in the context of the

front-most process.

Desktop M anager

All asynchronous Desktop Manager routines are interrupt-safe. For example, the PBDTAddAPPLAsync
routine can be called at interrupt time.

Gestal t
Inside Macintosh: Operating System Utilities has thisto say about calling Gest al t at interrupt time:

When passed one of the Apple-defined selector codes, the Gest al t function does not
move or purge memory and therefore may be called at any time, even at interrupt time.
However, selector functions associated with non-Apple selector codes might move or
purge memory, and third-party software can alter the Apple-defined selector functions.

This statement is mostly correct. However, there are two important caveats:.
1. Not all Apple-defined Gest al t selectors are interrupt-safe, and thereis no hard-and-fast rules for
determining which are and which arentt.
2. Prior to Mac OS 8.5, the Gestalt Manager itself has a small concurrency hole (when it grows the
Gest al t table) during which it may return incorrect information. In theory this makes Gest al t
unsafeto call at interrupt time; in practice, the Gest al t table grows very rarely and Apple has not
yet seen a case where this has caused problems.
In summary, our adviceis that you should:

e avoidusing Gest al t at interrupt time in new code,
e attempt to remove any interrupt-time usage of Gest al t , a convenient, when revising old code.

We do not believe that it is necessary for you to revise your code just to address thisissue.

Sound M anager

MACEVer si on, SndGet SysBeepSt at e, SndManager St at us, SndPauseFi | ePl ay, SndSet SysBeepSt at e,
and SndSoundManager Ver si on are dl interrupt-safe.

SndDol mredi at e and SndDoConmand are interrupt-safe if the command issued is interrupt-safe.

Page: 13

TN 1104: Interrupt-Safe Routines
Specificaly, abuf f er Cd IS not interrupt-safe If it requires that the sound output channel be reconfigured.
The sound output channel isreconfigured if the format of the sound changes from one buffer to the next
(i.e., the sound changed from mono to stereo [or the reverse], 8-bit to 16-hit [or the reverse], or its
compression format changed).
It is not safe (with one exception) to start playing a sound at interrupt time, but it is safe to continue playing
asound at interrupt time. The exception isthat you can start playing a sound at interrupt time, if you have

previoudly issued asoundCrd at task level on the same sound channel to allow the Sound Manager to
prepare the sound channel for the type of sound that you will be playing at interrupt time.

IMPORTANT:
SysBeep isnot onthelist. SysBeep can move or alocate memory. Do not cal SysBeep at interrupt
time.

Process M anager

Get Front Process, Get Curr ent Process, Get Next Pr ocess, SanePr ocess, and WakeUpPr ocess are
interrupt-safe.

Time Manager

| nsTi me, | nsXTi me, Pri meTi me, and RnvTi ne are interrupt-safe.
Process to Process Communications Toolbox

All asynchronous PPC Toolbox routines are interrupt-safe.

Deferred Task Manager

Deferred task installation viaDTI nst al | isinterrupt-safe. A deferred task runs at interrupt time with respect
to most of the Mac OS toolbox and should follow the rules for interrupt time code.

Vertical Retrace Manager

Sl ot VI nst al | , VRenove, Sl ot VRenove, At t achVBL, DoVBLTask, and Get VBLQHdr are all interrupt-safe.

Libraries

Set upA5, Set upA4, Set Cur r ent A5, Set Cur r ent A4, and so on are interrupt-safe as long as the
implementations do not reside in an unloaded segment. Y ou should check the code generated by your
development environment before using such routines at interrupt time.

Anything in PLSt ri ngFuncs. h is safe, aslong as the implementations do not reside in an unloaded
segment.

Packages

Do not call any routine implemented in a package (List Manager, Disk Initidization, Standard File, SANE,
International Utilities, Apple Event Manager, PPC Browser, Edition Manager, Color Picker, Database
Access Manager, Help Manager, and the Picture Utilities) at interrupt time. Package routines are not
interrupt-safe, since the package may not be in memory at that time.

Component M anager

Page: 14

TN 1104: Interrupt-Safe Routines

Opening and closing a component is not safe to do at interrupt time, but many other component routines are
interrupt safe. Y ou should check the specifics of the component in question to determine exactly which
functions can be called at interrupt time.

Event Manager

The only interrupt-safe Event Manager routines are Post Event and PPost Event . Other routines,
specifically OsEvent Avai |, Ti ckCount and Get Keys, are not interrupt-safe.

IMPORTANT:

Ti ckCount and Get Keys are not interrupt-safe. Thisis because they support the Journaling Mechanism,
as described in Inside Macintosh |, page 261. While the Journaling Mechanism islong obsolete --
leaving the core implementation of these routines interrupt-safe -- it islegal for third party extensionsto
patch these routines with non-interrupt safe patches.

OSEvent Avai | has not been interrupt-safe since System 7.0 because of a Help Manager patch. This
could be considered a bug in Help Manager, however, the long standing nature of this bug meansthat it
will not be fixed.

If you are writing interrupt-time code, you should use the alternatives shown in the following table.

Routine		Traditional Mac OS ~ [[Carbon		
Ti ckCount		LMGet Ti cks	[Ti ckCount [1]	
Get Keys (modifiers only)		eyMap ($174) [3]		Get Cur r ent KeyModi fi er s
Get Keys (other keys)		eyMap ($174) [3]	[none/Get Keys [2]	
Notes:

1. The Carbon implementation of Ti ckCount on traditional Mac OS calls LMzet Ti cks and is
therefore interrupt safe.
2. Carbon's Get Keys is not interrupt-safe on traditional Mac OS [2409819] but is on Mac OS X.
3. KeyMap isalow-memory global (at location $174) which contains the data returned by
Cet Keys.

QuickDraw

Virtually none of QuickDraw isinterrupt-safe. The exception is Set Cur sor , which is documented as
interrupt-safe. If you patch Set Cur sor , you should be sure that your patch is interrupt-safe because it can
and will be called at interrupt time.

IMPORTANT:

Set CCur sor isnot interrupt-safe and never will be. Set CCur sor isnot interrupt-safe because, anongst
other things, the CCr sr data structure contains unlocked handles. Apple cannot just defineit to be
interrupt-safe, because on real world systems Set CCur sor is patched by interrupt-unsafe third party
extensions.

Apple isaware of the demand for an interrupt-safe mechanism for setting color cursors and is working
on an alternate mechanism.

Do not be tricked into thinking that trivial QuickDraw routines -- such as Set Rect Or Random-- are

Page: 15

TN 1104: Interrupt-Safe Routines

Interrupt-safe: they are not! Thisis partly by definition and partly because it's possible for these routines to
reside in pageable code fragments. If you call these routines at any time paging is unsafe, they could cause a
fatal page faullt.

Text Utilities

Equal String and Rel Stri ng areinterrupt safe, along with any other routines based on the _CnpSt ri ng
($A03C) and _Rel St ri ng ($A050) traps. These routines must be interrupt-safe because they are used by
parts of Mac OS (for example, File Manager and classic AppleTalk) that execute at interrupt time.

IMPORTANT:

These routines are not suitable for comparing user-visible text because they do not make use of any
script or language information. To compare user-visible text, you should use one of the other
(non-interrupt safe) routines declared in " StringOrder.h" (for example, | dent i cal Stri ng,

Conpar eString,and St ri ngOr der).

Note:
Equal String andRel String are suitablefor comparing the following system entities.

e file names, asreturned by the File Manager in Pascal string format (but only if you want the
same order as used internally by HFS)

® resource names

e AppleTak NBP entity names, types and zones

Unicode Converter

It is possible, with some restrictions, to call the Unicode Converter at interrupt time. If you have a specific
product that needs this ability, please contact DTS for details.

Back to top
Summary of Interrupt-Safe Routines

Thisisasummary list of routines which may be called at interrupt time. Those routines with an asterisk
(*) have restrictions on their use; see the main body of this Technote for details:

Addr ToNane *

At t achVBL

Bat t er ySt at us

Bl ockMove

PBCont r ol Async
Debugger Ent er
Debugger Exi t
Debugger Get Max
Debugger LockMenory
Debugger Pol |
Debugger Unl ockMenory
Def er User FN
Dequeue

DoVBLTask

Enqueue

Equal Stri ng

Ext endedToStri ng
For mat 2St r

For mat RecToSt ri ng
For mat St r 2X

For mat X2St r

Page: 16

TN 1104: Interrupt-Safe Routines Page: 17

Get Current Process

Get Front Process

Get FSI nfo

Cet Next Process

Cet PageSt at e

Get Physi cal

Get VBLQHdr

H nfo *

Hol dMernory *

I nsTi me

I nsXTi me

LockMenory *
LockMenoryCont i guous *
LockMenor yFor Qut put *
MACEVer si on

MXI nfo *

NM nst al |

NVRenove

Open Transport routines *
OSEvent Avai |

PBAI | ocCont i gAsync
PBAI | ocat eAsync

PBCat MbveAsync

PBCat Sear chAsync

PBC oseAsync *

PBC oseWDAsync

PBCont r ol Async

PBCont rol | nred *

PBCr eat eAsync

PBCr eat eFi | el DRef Async
PBDTAddAPPLAsSync
PBDTAddI conAsync
PBDTDel et eAsync
PBDTFl ushAsync
PBDTGet APPLAsynNC
PBDTGet Comment Async
PBDTGet | conAsync
PBDTCet | conl nf 0Async
PBDTCet | nf 0Async
PBDTRenmoveAPPLAsynNc
PBDTRenmoveComent Async
PBDTReset Async
PBDTSet Conmrent Async
PBDel et eAsync

PBDel et eFi | el DRef Async
PBDi r Cr eat eAsync
PBExchangeFi | esAsync
PBFI ushFi | eAsync

PBFI ushVol Async

PBGet Al t AccessAsync
PBGet Cat | nf 0Async
PBGet ECFAsyNnc

PBGet FCBI nf oAsync
PBGet FI nf 0Async

PBGet FPosAsync

PBCGet For ei gnPri vsAsync
PBGet UGENnt r yAsync
PBCet VI nf 0Async

PBCet Vol Async

PBGet VDI nf 0Async
PBGet XCat | nf 0Async
PBHCopyFi | eAsync

PBHCr eat eAsync
PBHDel et eAsync
PBHGet Di r AccessAsync
PBHGet FI nf oAsync
PBHGet Logl nl nf oAsync
PBHGet VI nf 0Async
PBHGet Vol Async
PBHGet Vol Par mns Async
PBHMVapl DAsync
PBHVApNameAsync
PBHVbveRenanmeAsync
PBHOpenAsync *
PBHOpenDFAsync
PBHOpenDenyAsync
PBHOpenRFAsync
PBHOpenRFDenyAsync
PBHRenanmeAsync
PBHRst FLockAsync
PBHSet Di r AccessAsync
PBHSet FI nf oAsync
PBHSet FLockAsync
PBHSet Vol Async
PBLockRangeAsync
PBVBkeFSSpecAsync
PBOpenAsync *
PBOpenDFAsync
PBOpenRFAsync
PBOpenWDAsyNnc
PBReadAsync

PBReadl med *
PBRenanmeAsync
PBResol veFi | el DRef Async
PBRst FLockAsync
PBSet Al t AccessAsync
PBSet Cat | nf oAsync
PBSet EOFAsync

PBSet FI nf 0Async
PBSet FLockAsync
PBSet FPosAsync
PBSet FVer sAsync
PBSet For ei gnPri vsAsync
PBSet VI nf 0Async
PBSet Vol Async

PBSt at usAsync

PBSt at usl mred *
PBShar eAsync

PBUNnl ockRangeAsync
PBUnshar eAsync

PBW it eAsync
PBWitel nred *
PBXGet Vol | nf oAsync
PageFaul t Fat al

Post Event

PPost Event

PrineTi ne

Rel String

RmvTi ne

SamePr ocess

Set Cur sor

Set FSI nfo

Set WJTi ne

Sl eepQ nst al |

TN 1104: Interrupt-Safe Routines

Page: 18

Sl eepQrenpve

Sl ot VI nst al |

S| ot VRenpve
SndDoCommand *
SndCGet SysBeepSt at e
SndManager St at us
SndPauseFi | ePl ay
SndSet SysBeepSt at e
SndSoundManager Ver si on
PBSt at usAsync

Str ToAddr *

Stri ngToExt ended
Stri pAddress
SwapMMUMbde

Tr ansl at e24t 032
Unhol dMenory

Unl ockMenory

UTAI | ocat eFCB
UTRel easeFCB
UTLocat eFCB
UTLocat eNext FCB
UTI ndexFCB

UTResol veFCB
UTAddNewVvCB
UTLocat eVCBByRef Num
UTLocat eVCBByNanme
UTLocat eNext VCB
UTAI | ocat eWDCB
UTRel easeWWDCB
UTResol veWDCB

UTFi ndDri ve

UTAd]j ust ECF

UTSet Def aul t Vol
UTGet Def aul t Vol
UTEj ect Vol
UTCheckWDRef Num
UTCheckFi | eRef Num
UTCheckVol Ref Num
UTCheckPer m ssi on
UTCheckVol O fl i ne
UTCheckVol Mbdi fi abl e
UTCheckFi | eMbdi fi abl e
UTCheckDi r Busy
UTPar sePat hnane
UTGet Pat hConponent Nane
UTDet er m neVol
UTGet Bl ock

UTRel easeBl ock

UTFI ushCache
UTMarkDirty

UTTr ashVol Bl ocks
UTTr ashFi | eBl ocks
UTTr ashBl ocks
UTCacheReadl P
UTCacheWitel P
UTBI ockl nFQHashP
UTVol CacheReadl P
UTVol CacheWitel P
VRenove

WakeUpPr ocess

TN 1104: Interrupt-Safe Routines

Page: 19

TN 1104: Interrupt-Safe Routines

Further References

Inside Macintosh: Memory

File System Manager SDK

Designing PCI Cards and Drivers for Power Macintosh Computers

Technote 1033: "Interruptsin Need of (a Good) Time"

Technote 1067: "Traditional Device Drivers: Sync or Swim"

Technote 1084: "Running CFM-68K Code at Interrupt Time: Is Y our Code at Risk"
Technote 1094: "Virtual Memory Application Compatibility".

Technote ME 09: "Coping with VM and Memory Mappings'

Back to top

Downloadables

E Acrobat version of this Note (98K).

ChangeHistory

Originally written in February 1998.

Updated July 1998 with new and revised materia:

an expanded discussion of "interrupt time"

anote about CFM-68K

adiscussion of software interrupt level

Open Transport information is now cross-referenced

complete rewrite of the Device Manager section

anew File System Manager section, with completely rewritten material

added Event Manager and QuickDraw sections

many stylistic improvements.

Updated in November 1999 with new material in the Event Manager section to list OSEvent Avai |
as interrupt-safe (which was a mistake, see the January 2000 revision) and discuss aternativesto
non-interrupt safe routines.

Updated in December 1999 to add the Text Utilities section.

Updated in January 2000 to add the Unicode Converter section and correct the discussion on
OSEvent Avai | [2418891].

OO0OO0OO0OO0O0OO0OO0OO

Page: 20

To contact us, please use the Contact Us page.
Updated: 17-January-2000

Technotes | Contents

Previous Technote | Next Technote

