TN 1095 - Apple's Object Support Library Page: 1

TECHNOTE 1095
Object Support Library Version History

CONTENTS T
his Technote is an attempt to clarify the version history of Apple's

Object Support Library (OSL). Thislibrary provides routines that
The World As We Know It applications can use to support the Open Scripting Architecture (OSA)
object model.

In the Beginning of OSL

Known Bugs in the OSL

OSL was originaly released asa 68K static library. With the
introduction of Power Macintosh systems, OSL was repackaged as a
shared library. When the Code Fragment Manager 68K Runtime
Enabler (CFM-68K) was released, it became afat library containing
both Power PC and CFM-68K versions of OSL.

Download OSL 1.2

This Technote lists all versions of OSL that are currently available,
along with abrief history and description of each one, and
recommendations as to which versions to use (and not use).

If you develop Macintosh applications that provide OSA object model
support, or need to use applications that do, you should read this
Technote.

TN 1095 - Apple's Object Support Library Page: 2

In the Beginning of OSL

When the OSL wasfirst released, it was a 68K static library (AEQwj ect Suppor t Li b. o) that was
statically linked into applications that supported the OSA object moddl. Thisis till the case for classic
68K applications.

With the rel ease of the Power Macintosh and the accompanying CFM shared library application model,
it was decided that a shared library version of the OSL (Qoj ect Suppor t Li b), rather than an ".0" file,
should be provided for PowerPC-native applications. Thiswould alow native applications to take
advantage of the shared library application model.

The OSL PowerPC shared library was released as version 1.0.2. It was included with the first Power
Macintosh system software (version 7.1.2) and the AppleScript SDK version 1.1. It is currently still
available on the Mac OS SDK CDs. This version of the OSL has a number of known bugsinits
handling of whose clauses. (These bugs are listed in the Known Bugs in the OSL section of this
Technote)

Thisfirst shared library introduced the first OSL-shared library problem. The OSL was written in
Pascal, but there were no PowerPC Pascal compilers, so it contained a small PowerPC-native library that
loaded a 68K code resource containing the OSL.

But thisloading was not done properly; the Qbj ect Support Li b's resource file often ended up in the
middle of an application's resource chain. This problem was worked around in system 7.5.2 by forcing
the Finder to load the OSL when it started up, thus forcing OSL's resource file to be located in the
system, where it did no harm. This work-around masked the problem for all system versions after 7.5.2,
but the problem is still there for earlier system versions.

After the introduction of the Power Macintosh, work began to convert the OSL source code from Pascal
to C. This conversion was needed in order to provide a shared library containing both PowerPC and
CFM-68K code. The converted fat OSL was released as version 1.0.4, which was included on the E.T.O.
CD-ROM releases until recently.

There were anumber of problems, however, with this version of the OSL, the worst of which wasthat a
Gestalt selector installed by version 1.0.2 was not being installed by version 1.0.4. This prevented
applications that tested for this Gestalt selector from detecting the presence of the OSL shared library.

Note: A Gestalt selector is not the best method for detecting the presence of the OSL, but this decision
was made early in the development of the code fragment model, and the liabilities of using Gestalt were
not yet well understood. The preferred method would have been to have devel opers compare asymbol in
thelibrary to kUnr esol vedCFr agSynbol Addr ess. (For details of this process, see Technote 1083:
"Weak-Linking to a Code Fragment Manager-based Shared Library".)

The other mgjor problem with this version of the OSL was a number of bugsin the code that handled
whose clause resolution (in addition to those previously mentioned). These bugs would cause an
application to return incorrect results and/or error messages when they were presented with valid
requests. Because of the missing Gestalt selector which prevented this version's use, thewhose clause
resolution bugs were not discovered until much later.

TN 1095 - Apple's Object Support Library

No Code Changes, Just Version Changes

Somewhere between versions 1.0.2 and 1.0.4, amistake was made in the build process for the
AppleScript 1.1 SDK, which led to version 1.0.2 of the OSL being released asversion 1.1. Thereisno
difference in the actual code, only anew version number.

This meant we now had a 1.1 version which isreally older than version 1.0.4. But installers complain
when you try to install v1.0.4 over 1.1 because they think you are replacing a newer version with an older
one. So when Apple shipped the Apple Telecom software version of OSL, 1.0.4 was changed to 1.1.1.
Thisalowed the installer to replace the old version with the new. Again, no code changes, just aversion
change. (All the old problems, of course, were till there.)

Thisisthe point where many people started having problems; we now had a situation where a (generaly)
well-behaved version 1.1 was being replaced with abroken version 1.1.1.

A Valiant Attempt To Fix Things

The AppleScript team, at this point, decided that enough was enough -- it was time to move forward and
fix things. They released aversion that fixed the Gestalt selector problem and called it 1.1.1. But no one
had told them about the Apple Telecom OSL version 1.1.1, so they changed the versionto 1.1.2. But,
again, someone else had already made alimited release of an OSL version 1.1.2.

Thiswas unfortunate, but not amajor problem -- they just incremented the version to 1.1.3. Thisversion,
which contained the fixed Gestalt selector, got alimited developer release. Now the applications which
couldn't load it before due to the Gestalt selector bug could use the OSL. But when these applications
loaded the OSL, they revealed all sorts of interesting behaviors resulting from the OSL's inability to

resol]ye é\g S)se clauses. (Remember that no one had actually executed this code before the Gestalt bug
was fixed.

Back to the Drawing Board

The AppleScript team started looking at the 1.0.4/1.1.1 code stream in more detail and, after considering
what afix might mean to the stability of existing applications, it was decided that the risk of further
trouble was too great. The decision was made to return to the older 1.0.2/1.1 code stream for the next
release of the OSL.

Asaresult, the resource-loading source stream in version 1.0.2 was revised so it could be compiled as a
native PowerPC and CFM-68K library. The resource-loading bug was also addressed. This revised
library was tested, sent to a small group of developersfor further testing, and then approved for fina
build asversion 1.1.4.

Along the way, though, there was a new wrinkle added to this story. In order to fit in with the Mac OS
reference release strategy, the fil€'s creator type got changed, aong with with its version number, which
changed to 1.1.6.

Note:
Version 1.1.4 appears on the Developer CD Series and the Mac OS SDK CD, while version 1.1.6
appearson certain E.T.O. CDs.

But we still have moreto our story. It seems that the test suite used to validate the OSL tested for the
presence of the Gestalt selector, but did not determineif it was properly installed. Basically, native OSL
resource-loading code wasn't doing the right thing when it installed its Gestalt selector, which could lead
to crashesin certain situations.

In the meantime, Version 1.1.6 wasincluded as part of the Harmony (Mac OS 7.6) 3 build that was
seeded to developers. When this latest OSL problem was discovered, the decision was made to take the
version 1.0.2 of OSL and reversioniit (again) asversion 1.1.8. Thisisthe version of OSL that is
included in the GM version of Mac OS 7.6.

Page: 3

TN 1095 - Apple's Object Support Library

The biggest problem with thisversionisthat it isn't fat, asit doesn't contains CFM-68K code (recall that
1.0.2 didn't, either). Thiswasn't an immediate problem, since Mac OS 7.6 shipped without support for
CFM-68K. In fact, 7.6 explicitly checks for the presence of the current CFM-68K extension and
disablesit to prevent its loading with this version of the system. If you can't run CFM-68K, you don't
need afat OSL.

A New Hope

Thanks to the efforts of a number of engineers, the OSL got a more thorough rewrite which fixed both
the Gestalt selector and resource file bugs. The testing was completed and the problems were resolved.
Thistime, the OSL was released as version 1.2, which now generally works as expected. It till contains
the bugs related to whose clause resolution, but they are not fatal and are easy for developersto work
around (see Known Bugsin the OSL).

TheWorld AsWeKnow It

With al this said and done, you're probably scratching your head and wondering, “What version should
| be using, anyway?" At thistime (October, 1998) the answer to that question is (drum roll, please):

NOTE:
Y ou should be using version 1.2 of the Object Support Library.

With the release of Mac OS 8.0, version 1.2 of the Object Support Library is now integrated in the
System file, and will be part of al future Mac OS System files. Any Object Support Library file found in
the Extensions folder will be ignored and not loaded unlessits version is newer than 1.2.

For Mac OS versions prior to 8.0, if you don't have access to version 1.2 you should use 1.1.8 (or one
of itstwins, versions 1.0.2 or 1.1). Keep in mind that these older versionsare not fat libraries,
which means that they won't work with CFM-68K applications. If you need to run a CFM-68K
application, you must use version 1.2.

And, of course, you should install newer version of the OSL asthey are released.

TheHistory of OSL

|Version ||Status

|
11.0.2 ||First PowerPC shared library, resource file bug |
11.0.4 |[New code base, no Gestalt selector, other bugs |
111 ||Really just 1.0.2 in disguise, new creator code |
1111 ||1.0.4'stwin (warts and all) |
11.1.2/1.1.3 |[Never publically released, so don't ook for it |
11.1.4 ||[Doesn't work, but released on OS SDK CD |
11.1.6 ||Version that shipped with Harmony f3 |
11.1.8 ||Version that shipped with Mac OS 7.6 (another 1.0.2 clone) |
12 Shipped with CFM-68K 4.0; fixes al known crashing bugs. Included in Mac OS 8.0

systemfile.

Page: 4

TN 1095 - Apple's Object Support Library Page: 5

Known Bugsin the OSL

There are till severa known bugsin the OSL, but they all have workarounds.

Unlocked Handles Passed To Compare Functions

You can install an object comparison function for use when resolving whose clauses. When the OSL
calls your comparison function, it passes pointers to two AEDescs: one for the object being compared,
and one for the object or descriptor to compare to thefirst.

The problem hereisthat the memory blocks containing the descriptor records pointed to by the
parameters are located in relocatabl e blocks that are not locked and may move after the compare function
iscalled.

The workaround for this problem isto copy the descriptor records pointed to by the parametersto aloca
variable as soon as you enter the object comparison routine.

Thereisacomplication to this problem involving Classic 68K applications and the segment loader. If the
comparison function and the AEQbj ect Suppor t Li b. o library are not in the same segment when you
build your application, it's possible for the descriptor records to move before they are copied if the
segment containing the OSL is not aready loaded.

The workaround for this problem isto make sure that the comparison function and the
AEbj ect Suppor t Li b. o library arein the same segment when you build your application.

Memory Leak in Object Comparison Callback Function During whose Clause
Resolution

Thereisamemory leak when the OSL calls an application-supplied comparison callback function while
resolving whose clausesin object specifiers. When the OSL passes objects to the comparison callback
function, those objects will often be application-defined tokens that are created by object accessor
functions.

The problem isthat the OSL calls AEDi sposeDesc on these token objects rather than AEDi sposeToken,
which causes amemory leak -- any data the application has attached to the token is not properly
disposed of.

This problem is further complicated by the unlocked handles bug described above. The workaround isto
combine the unlocked handles fix with disposing the tokens yourself. The example code below shows
the basic method used to work-around this problem, and al so the unlocked handle problem above:

TN 1095 - Apple's Object Support Library Page: 6

Pascal version

functi on M ConpareObj ects(conpari sonQperator: DescType;
(CONST) VAR t heObj ect : AEDesc;
(CONST) VAR obj Or DescToConpar e: AEDesc;
VAR conpar eResul t: bool ean): OSErr;
var
t heCbj ect Copy . AEDesc;
obj Or DescToConpar eCopy . AEDesc;
begi n

{ First make copies of the descriptors because the OSL has them pointing
into a rel ocatabl e bl ock, which can be noved by the code bel ow. }

t heCbj ect Copy : = thehj ect;

obj Or DescToConpar eCopy : = obj O DescToConpar €;

{ Now set the original desciptors to the null descriptor since we have
to di spose of the objects bel ow because of this OSL bug! }

Set ToNul | Desc(theOhject);

Set ToNul | Desc(obj Or DescToConpare);

{ Code to do the conparison goes here }
MyConpar eObj ect s : = DoTheConpari son(conpari sonOperator, theObject Copy,
obj Or DescToConpar eCopy, conpareResult);

{ These descriptors are supposed to be const, but the OSL never calls
our dispose token call back function, so we dispose of themhere in
case one of themis an application-defined token. }

MyDi sposeToken(thehject Copy);

M/Di sposeToken(obj O DescToConpar eCopy);

end;

C version

pascal OSErr MyConpar ebj ects(DescType conpar i sonOper at or,
const AEDesc *t heQbj ect
const AEDesc *obj Or DescToConpar e,
Bool ean *conpareResul t)

{

AEDesc t he(bj ect Copy;
AEDesc obj Or DescToConpar eCopy;
CSEr r ankErr;

t heCbj ect Copy = *t he(bj ect ;
obj Or DescToConpar eCopy = *obj Or DescToConpar €;

Set ToNul | Desc(const _cast <AEDesc*>(theCbject));
Set ToNul | Desc(const _cast <AEDesc*>(obj OrDescToConpare));

anErr = DoTheConpari son(conpari sonOperator, &t heCbject Copy,
0&bj Or DescToConpar eCopy, &conpareResult);

MyDi sposeToken(&t heChj ect Copy);
MyDi sposeToken(&obj Or DescToConpar eCopy) ;

TN 1095 - Apple's Object Support Library Page: 7

Memory Leak in mar ki ng Callback Functions During whose Clause Resolution

Thereisamemory leak when the OSL calls application-provided marking functions during the
processing of whose clausesin object specifiers.

In the process of resolving an object specifier, a descriptor record is created and passed to the mar k

t oken callback function (asthe cont ai ner Token parameter) and object-marking callback function (as
thet heToken parameter). The problem isthat the OSL never disposes of this descriptor, either through
AEDi sposeToken Or AEDi sposeDesc.

The problem can be avoided by having your application resolve all whose clausesit receives on its own.
Thisway it can avoid calling AEResol ve. This can be advantageous, especialy for the most common
types of object specifiers. However, you can potentially receive "uncommon" object specifiersthat are
better handled by the OSL using your callback functions; if you handled them yourself you'd end up
duplicating most of the OSL.

Fortunately, the workaround for this problem isrelatively smple: dispose of the descriptor record at the
end of the object-marking function and set it to a null descriptor. Thisfix should not cause problems if

thisbug isfixed in afuture release of the OSL, sinceit's always safe to dispose of a null descriptor
record.

Function to set descriptor record to null descriptor

voi d Set ToNul | Desc(AEDesc *theQbject)

t heCbj ect - >descri ptor Type = typeNul | ;
t hebj ect - >dat aHandl e = nil;

Further Reference

o Technote 1083: Weak-Linking to a Code Fragment Manager-based Shared Library

Downloadables

E Acrobat version of this Note (K).

ChangeHistory

e Originally written in February 1998 as Technote 1095.
e In November 1998, this Technote was updated to reflect updated history and version
recomendations. Bugsin C sample code were fixed.

To contact us, please use the Contact Us page.
Updated: 2-November-98

Technotes
Previous Technote | Contents| Next Technote

