TN1021: Creating Off-Screen Bitmaps When Speed is Page: 1
Critical

Technotes
ownl o Download
FOF TR
4
Acrobat file () AppleWorksfile (42K)

Creating Off-Screen Bitmaps When Speed is Critical

Technote 1021 FEBRUARY 1996

This Technote provides an example of creating an off-screen bitmap by hand, drawing to it, and then copying fromit to
the screen. Apple encourages the use of GWorlds for your off-screen needs. In some cases, however, creating your own
off-screens can be beneficia. The resulting off-screen bitmaps can be used like a 1-bit GWorld, but with improved
performance.

Thistechniqueis useful for the creation of regions when OpenRgn is not an option. For example, in making aregion
from aline, draw theline in an offscreen and call BitMapToRegion to convert the offscreen's bitmap to aregion. These
offscreen bitmaps can be also be substituted for pixmaps in routines such as CopyMask, where the mask is black and
white, and speed is of great importance.

This Technote is written primarily for those involved in speed-critical projects, such as game developers and graphics
applications devel opers.

Note:
Thistechnique for creating off-screen bitmaps isintended for black and white uses only. If your needs include
only color ports, you should review Macintosh Technical Note QD 13 - "Principia Off-Screen Graphics
Environments."

Contents

o Drawing Off-Screen Bitmaps
e Summary

Drawing Off-Screen Bitmaps

Thefollowing is an example of creating and drawing to an off-screen bitmap, then copying from it to an on-screen
window. The exampleis supplied in both a C and Pascal versions, and will work with al compilers.

Creating an Off-Screen Bitmap in C

Let'slook at agenera purpose function to create an off-screen bitmap. This function creates the GrafPort on the heap.
Y ou can also create it on the stack and pass the uninitialized structure to afunction similar to this one.

Bool ean CreateO fscreenBitMap(G af Ptr *newCr fscreen, Rect *inBounds)

{
G af Ptr savePort;

Graf Ptr newPort;

Get Port (&savePort); /* need this to restore thePort after OpenPort */

TN1021: Creating Off-Screen Bitmaps When Speed is Page: 2

Critical
newPort = (GrafPtr) NewPtr(sizeof (GafPort)); /* allocate the grafPort */
if (MenError() != noErr)
return fal se; /* failed to allocate the off-screen port */
/*

the call to OpenPort does the following . . .
al | ocates space for visRgn (set to screenBits. bounds) and
clipRgn (set w de open)
sets portBits to screenBits
sets portRect to screenBits. bounds
(See Inside Mac: Imaging with QuickDraw,
pages 2-38 to 2-39)
side effect: does a SetPort (&of fScreen)
*/
OpenPort (newPort) ;
/* make bitmap the size of the bounds that caller supplied */
newPor t - >port Rect = *i nBounds;
newPor t - >port Bi t s. bounds = *i nBounds;
Rect Rgn(newPort - >cl i pRgn, i nBounds); /* avoid wi de-open clipRgn, be safe */
Rect Rgn(newPort - >vi sRgn, i nBounds); /* in case newBounds is screen bounds */

/* rowBytes is size of row, it must be rounded up to an even nunber of bytes */
newPort->portBits.rowBytes = ((inBounds->right - inBounds->left +
15) >> 4) << 1,

/* nunber of bytes in BitMap is rowBytes * number of rows */
/* see notes at end of Technote about using _NewHandl e rather than _NewPtr*/
newPort - >port Bi ts. baseAddr =

NewPt r (newPort->portBits.rowBytes * (long) (inBounds->bottom

- inBounds->top));
if (newPort->portBits.baseAddr == nil) { /* check to see if we had
enough room for the bits */
Set Port (savePort);

Cl osePort (newPort); /* dunmp the visRgn and clipRgn */
Di sposPtr((Ptr)newPort); /* dunp the GrafPort */
return false; /* tell caller we failed */

/* since the bits are just menory, let's clear thembefore we start*/

Er aseRect (i nBounds) ; /* OpenPort did a SetPort(newPort) so we are ok */
*newf f screen = newPort;

Set Port (savePort);

return true; /* tell caller we succeeded! */

}
Eliminating an Off-Screen Bitmap in C

To eliminate an off-screen bitmap created by the previous function, use this function:

voi d DestroyOffscreenBitMap(G af Ptr ol dOf f screen)

{
Cl osePort (ol dO f screen); /* dunp the visRgn and clipRgn */
Di sposPtr (ol dOF f screen->port Bi ts. baseAddr) ; /* dump the bits */
Di sposPtr((Ptr)ol dOfscreen); [* dunp the port */

}

Using an Off-Screen Bitmap in C

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions of using one. First,
let's define a few things to make the NewWindow call alittle clearer.

#define klsVisible true

#defi ne kNoGoAway fal se

#def i ne kNoW ndowSt or age OL

#defi ne kFront Wndow ((W ndowPtr) -1L)

Here's the body of the test code:

mai n()

TN1021: Creating Off-Screen Bitmaps When Speed is

Critical
{
char* nyString = "\pThe EYE'; /* string to display */
GafPtr of f screen; /* our off-screen bitmap */
Rect oval Rect; /* used for exanple drawi ng */
Rect nmy\W\Bounds; /* for creating wi ndow */
Rect CSRect ; /* portRect and bounds for off-screen bitmap*/
W ndowPt r nmyW ndow;
I ni t Tool box(); /* exercise for the reader */
myWBounds = qd. screenBits. bounds; /* size of main screen */
I nset Rect (&myWBounds, 50,50); /* make it fit better */
nmyW ndow = NewW ndow(kNoW ndowSt or age, &ryWBounds, "\pTest W ndow',
kl sVi si bl e, noG owbDocPr oc, kFront W ndow,
kNoGoAway, 0);
if (!CreateOfscreenBitMp(&offscreen, &myW ndow >portRect)) {
SysBeep(1);
Exi t ToShel | ();
/* Exanple drawing to our off-screen bitnmap*/
Set Port (of f screen);
OSRect = offscreen->portRect; [/* offscreen bitmap's |ocal coordinate rect */
oval Rect = OSRect;
Fill Oval (&oval Rect, qd. bl ack);
| nset Rect (&oval Rect, 1, 20);
Fil |l Oval (&oval Rect, qd.white);
I nset Rect (&oval Rect, 40, 1);
Fill Oval (&oval Rect, qd. bl ack);
MoveTo((oval Rect.left + oval Rect.right - StringWdth(nyString)) >> 1,
(oval Rect.top + oval Rect.bottom- 12) >> 1);
Text Mode(srcXor);
DrawString(nmyString);
/* copy fromthe off-screen bitmap to the on-screen wi ndow. Note
that in this case the source and destination rects are the same size
and both cover the entire area. These rects are allowed to be
portions of the source and/or destination and do not have to be the
sane size. |If they are not the sane size then _CopyBits scales the
i mge accordingly.
*/
Set Port (nyW ndow) ;
CopyBi t s(&of f screen->portBits, & *nyWndow).portBits,
&of f screen- >port Rect, &(*myW ndow) . port Rect, srcCopy, OL);
Dest royOf f screenBi t Map(of f screen); /* dunp the off-screen bitmap*/
while (!Button()); /* give user a chance to see our work of art*/
}

Creating an Off-Screen Bitmap in Pascal

Let'slook at ageneral purpose function to create an off-screen bitmap. This function creates the Graf Port on the heap.

You can also create it on the stack and pass the uninitialized structure to afunction similar to this one.

FUNCTI ON Creat eOf f screenBi t Map(VAR newCf f screen: Graf Ptr; i nBounds: Rect)

BOOLEAN,
savePort : GafPbtr;
newPor t . Gafbtr;
Get Port (savePort); {need this to restore thePort after OpenPort changes it}

newPort := GrafPtr(NewpPtr(sizeof (GafPort))); {allocate the Graf Port}
| F MenError <> noErr THEN BEQ N

CreateO fscreenBitMap := false; {failed to allocate it}

EXI T(Creat e f screenBi t Map) ;
END;

the OpenPort call does the follow ng .

Page: 3

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

al | ocates space for visRgn (set to screenBits.bounds) and clipRgn
(set wi de open)

sets portBits to screenBits

sets portRect to screenBits. bounds

(See Inside Mac: Inmaging with QuickDraw, pages 2-38 to 2-39)

side effect: does a SetPort (of fScreen)

}

OpenPort (newPort) ;

{make bitmap exactly the size of the bounds that caller supplied}

W TH newPort” DO BEG N {portRect, clipRgn, and visRgn are in newPort}

port Rect := inBounds;
Rect Rgn(cl i pRgn, inBounds); {avoi d wi de-open clipRgn, to be safe}
Rect Rgn(vi sRgn, i nBounds); {in case inBounds is > screen bounds}
END;
W TH newPort”. portBits DO BEG N {baseAddr, rowBytes and bounds are in newPort}
bounds : = i nBounds;
{rowBytes is size of row It nust be rounded up to even nunber of bytes}
rowBytes := ((inBounds.right - inBounds.left + 15) DIV 16) * 2;

{nunber of bytes in BitMap is rowBytes * number of rows}
{see note at end of Technical Note about using _NewHandl e rather than _NewpPtr}
baseAddr := NewPtr(rowBytes * LONG NT(inBounds. bottom - inBounds.top));
END;
| F baseAddr == ni| THEN BEG N {see if we had enough roomfor the bits}
Set Port (savePort);
Cl osePort (newPort); {dunp the visRgn and clipRgn }
Di sposPtr(Ptr(newPort)); {dunp the G afPort}
CreateO fscreenBitMap : = fal se;
END
ELSE BEG N
{since the bits are just nmenory, let's erase thembefore we start }
Er aseRect (i nBounds) ; {OpenPort did a SetPort(newPort)}
newXr f screen : = newPort;
Set Port (savePort);
CreateO fscreenBitMap : = true;
END;

Eliminating an Off-Screen Bitmap in Pascal
Here isthe procedure to get rid of an off-screen bitmap created by the previous function:

PROCEDURE DestroyOfscreenBit Map(ol dOFfscreen : GafPtr);

Cl osePort (ol dO f screen); {dump the visRgn and clipRgn }
Di sposPtr (ol dOF f screen”. port Bi ts. baseAddr); {dump the bits }
Di sposPtr(Ptr(ol dOFfscreen)); {dunmp the port };

Using an Off-Screen Bitmap: MPW Pascal

Now that you know how to create and destroy an off-screen bitmap, let'stest one out. Firgt, let's define afew thingsto
make the NewWindow call alittle clearer.

CONST
kl sVisible = true;
kNoGoAway = fal se;
kMakeFr ont W ndow = -1;
nyString = 'The EYE'; {string to display}

Here's the body of the test code:

VAR
of fscreen : GafPtr; {our off-screen bitnmap}
oval Rect : Rect; {used for exanpl e draw ng}
nyWBounds : Rect; {for creating w ndow}
OSRect : Rect; {portRect and bounds for off-screen bitmap}

myW ndow : W ndowPtr;

I ni t Tool box; {exercise left to the reader}

Page: 4

TN1021: Creating Off-Screen Bitmaps When Speed is
Critical

nmyWBounds : = screenBits. bounds; {size of main screen }
I nset Rect (myWBounds, 50, 50); {make it fit better }
nyW ndow : = NewW ndow(NI L, nyWBounds, 'Test Wndow , klsVisible,
noG owDocProc, W ndowPtr (kMakeFront W ndow), kNoGoAway, O0);

| F NOT CreateO fscreenBitMp(offscreen, myW ndow*. port Rect) THEN BEG N
SysBeep(1);
Exi t ToShel I ;

END;

{Exanpl e drawing to our off-screen bitmap }
Set Port (of f screen);
OSRect : = offscreen”. port Rect; {offscreen bitmap's | ocal coordinate rect }
oval Rect := OSRect;
Fil |l Oval (oval Rect, bl ack);
I nset Rect (oval Rect, 1, 20);
Fill Oval (oval Rect, white);
I nset Rect (oval Rect, 40, 1);
Fill Oval (oval Rect, bl ack);
W TH oval Rect DO
MoveTo((l eft+right-StringWdth(nyString)) DV 2, (toptbottom 12) DIV 2);
Text Mode(srcXor);
Drawstring(nmyString);

{copy fromthe off-screen bitmap to the on-screen wi ndow. Note

that in this case the source and destination rects are the same size
and both cover the entire area. These rects are allowed to be
portions of the source and/or destination and do not have to be the
sane size. |If they are not the sane size then _CopyBits scales the
i mge accordi ngly}

Set Port (myW ndow) ;
CopyBi ts(offscreen™. portBits, nyWndow'.portBits,

of f screen”. port Rect, myW ndow*. port Rect, srcCopy, NL);
Dest royOf f screenBi t Map(of f screen); {renmove the evidence}

VWHI LE NOT Button DG, {give user a chance to see the results}.

Summary

In the example code, the hits of the BitMap structure pointed to by the baseAddr field are allocated by a NewPtr call.
Keeping alarge off-screen around for any length of time may lead to heap fragmentation. One alternative that lessens
this problem isto get the bits viaNewHandle, so that the Memory Manager can move them when necessary. To
implement this approach, you need to keep the handle separate from the GrafPort (for example, in a structure that

combines a GrafPort and a Handle). When using the off-screen bitmap, lock the handle and put the dereferenced handle
into the baseAddr field. Y ou can then unlock the handle when not using the off-screen bitmap.

Further Reference

Inside Macintosh: Imaging with QuickDraw

Technotes
Previous Technote | Contents | Next Technote

Page: 5

