TN 1132: Version Territory

Technote 1132

Version Territory

Page: 1

CONTENTS F
inder 6.1 introduced version (' vers') resources as a
way to allow the creator of afileto identify the version of

Version Number Contents

Apple's Version Number Scheme afile, aswell asthe version of a set of files which includes
,) thisfile. The format of thisresourceis described in Inside
Comparing Version Numbers M acintosh: Macintosh Toolbox Essentials.

'vers Resource Structure

This Note, originally Technote OV 12- Version

Territory , clarifiesthe format of datain the Numver si on
structure used in aversion resource, and provides
guidelines for the use of version resources based on the
version numbering scheme used at Apple.

All Mac OS programmers who distribute program files of
any type should include version resources in their files.

Version Number Contents

While the version resource structure is described in Inside Macintosh, it does not clearly describe the
format for the datain al the fields of the Numver si on structure, which is the data type for the

nurer i cVer si on field in aversion resource. The commentsin Mac Types. h from Universal Interfaces 3
aren't any more helpful, which has lead to different interpretation of the content of the fieldsin the
NunVer si on structure.

A NunVer si on structure is defined as containing four Ul nt 8 values. Thisallows aNunver si on vaueto
be used as a structure to access individual fields, or cast to an unsigned long for the purpose of
comparing version numbers. There is a problem you should be aware of when comparing version
number as unsigned long values.

The vauesin the maj or Rev and ni nor AndBugRev fields are stored in binary-coded decimal (BCD)
format where each digit hasarange of 0 - 9 (normal binary digits have arange of 0 - 15). The naj or Rev
field contains two BCD digits for the mgjor revision level. The M nor AndBugRev field contains two
values, each stored asasingle BCD digit -- the minor revision level and the bug revision level. This
means that a version number can range from 0.0.0 to 99.9.9.

ThevalueinthenonRel Rev field is stored as an unsigned binary integer value. This give the nonRel Rev
field arange of 0 - 255. Thisisthefield that is most often interpreted incorrectly, that is, asa BCD vaue
rather than as abinary value.

Consequences of Using BCD for nonRel Rev Values

Aslong as version resources are consistently created the same way the only consequence to using BCD
valuesisthat there are fewer nonRel Rev values available: 100 using BCD and 256 using binary.
Consistency isimportant, since BCD and binary values won't compare as equa even though they
represent the same value. For example, aBCD revison 10is0x10 and abinary revision 10 is0x0A.

TN 1132: Version Territory Page: 2

Since most comparisons of version numbers are done by first casting the nurrer i cVer si on field to an
unsigned long, the use of BCD vauesfor the nonRel Rev field does not affect this comparison if the
versions resource being compared were created the same way, whether as BCD or binary values.

There have been some applications, notably ResEdit, which have interpreted the nonRel Rev as BCD.

Resorcerer was changed in version 2.0 to correctly interpret the nonRel Rev field as an unsigned binary
value.

Apple'sVersion Number Scheme

Apple uses aversion numbering scheme for its software products which you might want to adopt. Table
1 summarizes the scheme, which involves three numbers, each separated by periods.

Event Version
First released version 1.0
First revision 11

First bug fix to thefirst revision 111
First mgor revision or rewrite 20

Table 1-Appl€e's Version Numbering Scheme

Note that Apple increments the first number when it releases a mgor revision, the second number when it
releases aminor revision, and the third number when it rel eases a version to address bugs (the third
number isomitted if it is zero).

During product development, Apple uses a version number followed by a suffix which indicates the
stage of development. Table 2 presents afew examples.

Event Version Stage

First version 1.0d1, 1.0d2, ... development
Product feature defined (begintesting) 1.0al, 1.0a2, ... apha
Product is stable (begin final testing) 1.0bl, 1.0b2, ... beta

Final candidate (almost ready to ship) 1.0fcl, 1.0fc2, ... final

First revision shipped 1.0 final

First revision 1.1d1,...,1.141,...,1.1b1,...,1.1

First bug fix to first revision 1.1.1d1,...,1.1.1a1,...,2.1.1b1,...,1.1.1

First mgjor revision 2.0d1,...,2.0a1,...,2.0pb1,...,2.0

Table 2-Development Version Numbering

TN 1132: Version Territory

Comparing Version Numbers

A problem can arise when comparing version numbers by casting them to unsigned longs. When
compared thisway, Golden Master (GM) version numbers will compare as being older than any of the
final candidate versions.

For the GM release of afile, the version resource will havethe st age field settofi nal and the

nonRel Rev field set to zero. Most final candidate releases will contain a version resource, which hasthe
st age field settofi nal and thenonRel Rev field set to some value greater than zero. The problem here
isthat when the version numbers are cast to unsigned longs, the nonzero value in the nonRel Rev field of
final candidate version resources causesit to compare as greater than--and thus newer than--the GM
version, which isin fact the newest version available.

In the past, thisis most often a problem during installations when installing the GM version of a package
over apervioudy installed final candidate version of the same package. The installer would complain that
you are trying to replace newer versions of the files in the package when thisis clearly not the case. The
Appleinstaler (and most other installers) avoid this problem by comparing the individual fields of
VErsion resources.

The following function will properly compare two NumVer si on values:

pascal SInt16 ConpareVersions(NunVersion *versl, NunmVersion *vers2)

{
U nt 16 nonRel Revl, nonRel Rev2;

if (versl->mgjorRev

if (versl->mmjorRev

if (versl->m nor AndBugRev
i f (versl->m nor AndBugRev
if (versl->stage

if (versl->stage

ver s2- >maj or Rev) return 1,
ver s2- >mgj or Rev) return -1,
ver s2->m nor AndBugRev) return 1,
ver s2->m nor AndBugRev) return -1;
ver s2- >st age) return 1;
ver s2- >st age) return -1;

ANV ANV ANV

ver s1- >nonRel Rev;
ver s2- >nonRel Rev;

nonRel Rev1l
nonRel Rev2

if (versl->stage == final Stage) {
if (versl->nonRel Rev == 0) nonRel Revl = OxFFFF;
i f (vers2->nonRel Rev == 0) nonRel Rev2 = OxFFFF;
}
i f (nonRel Revl > nonRel Rev2) return 1,
i f (nonRel Revl < nonRel Rev2) return -1,
return O;

Page: 3

TN 1132: Version Territory

'vers Resource Structure

The structure of a'vers resourceisdefined in MacTypes. r (from Universal Interfaces 3.1) as.

type 'vers' {

hex byte; /* Major revision in BCD*/
hex byte; /* Mnor revision in BCD*/
hex byte devel opnment = 0x20, /* Rel ease stage */

al pha = 0x40,

beta = 0x60,

final = 0x80, /* or */ release = 0x80;
hex byte; /* Non-final release # */
i nt eger; /* Regi on code */
pstring; /* Short version nunber */
pstring; /* Long version nunber */

b

The structure of the corresponding Ver sRec typeisdefined in MacTypes. h (from Universal Interfaces
3])eas:

struct VersRec {
/* 'vers' resource format */
NumVer sion nunericVersion; [/* encoded version nunber */

short count ryCode; /* country code fromintl utilities */
Str255 short Versi on; [* version nunber string
- worst case */
Str 255 reserved; /* |l ongMessage string packed
after short Versi on*/
i
typedef struct VersRec Ver sRec;
typedef VersRec * Ver sRecPtr;
t ypedef VersRecPtr * Ver sRecHndl ;

The structure of the Numver si on typeis defined in MacTypes. h (from Universal Interfaces 3.1) as:

struct NunVersion {
/* Numeric version part of 'vers' resource */

U nt8 maj or Rev; /* 1st part of version nunber in BCD*/
unt8 m nor AndBugRev; /* 2nd & 3rd part of version nunber
share a byte*/
unt8 st age; /* stage code:
dev, al pha, beta, final*/
Ul nt8 nonRel Rev; /* revision |evel of non-rel eased
ver si on*/
s
typedef struct NunVersion NumVer si on;

The structure of the Nunver si onVari ant typeisdefined in MacTypes. h (from Universal Interfaces
3])eas

uni on NunmVer si onVari ant {
/* NumVersionVariant is a wapper so
NunmVer si on can be accessed as a 32-bit val ue */
NunmVer si on parts;
unsi gned | ong whol e;
|

t ypedef uni on NunVersionVari ant NunVersionVari ant;

Page: 4

TN 1132: Version Territory Page: 5

Mention of third-party sites and third-party productsis for informational purposes only, and constitutes
neither an endorsement nor a recommendation. Apple assumes no responsibility with regard to the
selection, performance, or use of these vendors or products.

Further References

o Inside Macintosh: Providing Version Resources

Downloadables

FOF
H Acrobat version of this Note (K)

FOF
H Acrobat version of Inside Macintosh: Macintosh Toolbox Essentias

W

Universal Interfaces 3.1

ChangeHistory
e Originally written in April 1988.

e Revised in October 1990, as Technote OV 12 -- Version Territory to reflect the changesin MPW C 3.1

e InJune 1998, this Technote was updated to clarify the use of the Numver si on structure.

To contact us, please use the Contact Us page.
Updated: 01-June-98

Technotes
Previous Technote | Contents| Next Technote

