
Technote 1063 - IM: Processes: Time Manager Addenda Page: 1

Technotes

Download

Acrobat file (K)

Download

AppleWorks file (39K)

T E C H N O T E : Inside Macintosh: Processes: Time Manager Addenda

Technote 1063 September 1996

This Note highlights the usage of two fields -- tmReserved and tmWakeUp -- that might be unclear after
reading the chapter "Time Manager" in Inside Macintosh: Processes .

This Note is intended for all developers who want to do time measurement using the Time Manager
routines.

Setting Up tmReserved
On page 3-8 of Inside Macintosh: Processes , it clearly states that both tmWakeUp and tmReserved
should be set to 0 prior to the first call to InsXTime when using the extended Time Manager:

theTMTask.tmWakeUp = theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 2000);

If you do want to do some time measurement, then you have to call RmvTime to get the current value of
tmCount, which leads later to a new call to InsXTime, and a call to PrimeTime with a 0 delay which has a
special meaning in that case. Although it appears, after much reading, rather clear that you leave the
current value of tmWakeUp untouched in the TMTask structure, you can't be sure what to do about the
value of tmReserved.

The truth is that prior to October, 1992 (System Software 7.1), you didn't care, but it's more of a concern
now, since Apple slightly modified the behavior of the Time Manager to deal with performance issues.

If you leave tmReserved untouched, then, after 127 calls to the following code:

RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);

for some good but can't-be-disclosed reason, your extended time task is converted into a non-extended
time task which, being waked up with a 0 delay PrimeTime (which has no special meaning for a
non-extended time task), will suddenly be called and called again -- more frequently than it should be.

So, if you perform that kind of time measurement, be sure to write instead:

RmvTime((QElemPtr)&theTMTask);
remaining = theTMTask.tmCount;
theTMTask.tmReserved = 0;
InsXTime((QElemPtr)&theTMTask);
PrimeTime((QElemPtr)&theTMTask, 0);

Technote 1063 - IM: Processes: Time Manager Addenda Page: 2

Since the Time Manager, prior to System Software 7.1, doesn't care about tmReserved, then you can set
tmReserved to 0 before each call to InsXTime without checking the system version. You still have, of
course, to ensure that the Time Manager you're using is the extended one (gestaltTimeMgrVersion
'tmgr', answering gestaltExtendedTimeMgr (= 3)), and, at this point, there is no way to tell what's going
to happen under Mac OS 8.

About tmWakeUp
The following sentence, also on page 3-8 in Inside Macintosh: Processes, is incorrect: "The
tmWakeUp field contains the time at which the Time Manager task specified by tmAddr was last
executed (or 0 if it has not yet been executed)." It should say: "The tmWakeUp field contains the time at
which the Time Manager task specified by tmAddr is scheduled to be executed (or 0 if it has not yet
been executed)."

Warning:
Since the format of that field is undocumented and used internally by the Time Manager,
developers are strongly discouraged anyway from performing any kind of calculation or
comparison on the value of this field, since that format could change in the future.

Undeferred Time Manager Tasks
This section describes an optimization that you might want to employ when using the Time Manager in
the presence of virtual memory (VM). Most developers will not be interested in this; however, all users
of the Time Manager should heed the following warning.

Important
Because there is an extremely remote possibility that the memory you've allocated for your
Time Manager task contains the special value listed below, if you want to ensure the behavior
defined in Inside Macintosh: Memory, you should always clear the qLink field in the
TMTask before installing it.

As described in Inside Macintosh: Memory, Time Manager tasks are automatically deferred by the
Virtual Memory (VM) system to avoid double page faults. This was done for backward compatibility
with existing applications that use the Time Manager, but it can seriously increase the latency between
when the timer expires and when your Time Manager task executes.

For more information about interactions between the Time Manager and VM, see Technote 1094,
"Virtual Memory Application Compatibility".

For example, if you set a Time Manager task to execute at time X and, at time (X - delta) some process
takes a page fault, your Time Manager task will not be called until time (X + Y - delta), where Y is the
time required to field a page fault. If the page fault causes the hard disk to seek, Y could be as great as
the hard disk's average seek time, approximately 10ms. If you are trying to use the Time Manager to
measure time in microseconds , this could be a problem.

There is a way you can install Time Manager tasks so the callback is not deferred by VM; however,
before using this technique, you should be aware of the dangers. Because VM does not defer these
special Time Manager tasks, it is possible for them to fire when paging is not safe. To avoid fatal page
faults, you must ensure:

The TMTask record is held for the entire time the Time Manager task is installed. You can do
that using the following code:

 HoldMemory(&theTask, sizeof(TMTask));

The code for the timer task and any data it references is held. If the code for your timer task is
stored in a code resource, you can use the following snippet to make sure it is held. If your
timer task code is not in a code resource, it's very difficult to ensure that it and its data are held.

 // Ensure the code doesn't move in logical memory
 HLock(ttaskCodeHandle);
 // Ensure the code is held in physical memory and cannot be paged to disk
 HoldMemory(*ttaskCodeHandle, GetResourceSizeOnDisk(ttaskCodeHandle));

Technote 1063 - IM: Processes: Time Manager Addenda Page: 3

You timer task code only calls system routines that are guaranteed to meet the above
requirement -- this typically means only that routines that are known to be interrupt-safe.

Important
If you fail to meet these requirements, you will cause a fatal page fault and crash the system.

If you call InsTime or InsXTime with the qLink field set to $65616461, the VM patch on the Time
Manager will recognize your special requirements and execute your timer task as soon as it fires,
regardless of whether paging is safe or not.

Another Way to Perform Time Measurement
Another way to perform time measurement would be to use the Microseconds call, which is much easier
to use and less likely to change in the future:

pascal void Microseconds(UnsignedWide *microseconds);

Warning:
Currently, even with the most recent system software (7.5.3 revision 2) on a PCI Power
Macintosh, both the Time Manager calls and the Microseconds call are still in 68K code and
thus are executed by the emulator. If you call them from PowerPC code, you'll get a switch
from PowerPC code to the 68K emulator, so the values returned are incorrect by a few tenths of
a microsecond. This means that you have to be careful when using either of them to do time
measurement. If you do use Microseconds, then your time measurement is done by the
difference of the 2 values returned by Microseconds before and after the code you measure, and
since the latency induced by the switches is the same in both case, then your time measurement
is correct. If you do use the Time Manager way of performing time measurement, however, the
tmCount field may be off by a few tenths of a microsecond.

Summary
The following points explain what you should and should not do in working with the Time Manager:

Always set tmReserved to 0 before calling InsXTime.
Set tmWakeUp to 0 before the first call to InsXTime, never look at it or modify it (except to set
it to 0 in some cases, no other value is acceptable) afterwards.
tmCount is only valid after a call to RmvTime.
Always clear qLink before calling InsXTime.
Microseconds might be a good alternate way.

Further Reference
Inside Macintosh: Processes , Chapter 3, The Time Manager
Denis G. Pelli's Web page

Technotes
Previous Technote | Contents | Next Technote

