
TN 1170: The Printing Plug-ins Manager Page: 1

Technote 1170
The Printing Plug-ins Manager

CONTENTS

About This Technote

Information for Plug-in Creators

Printing Plug-ins Manager APIs

Utility Routines

Errors

Summary

New to PrintingLib 8.6 is functionality built into the

SettingsLib library contained in the PrintingLib file. This
functionality allows straightforward use of plug-in
modules contained in either the PrintingLib file or in a
special folder called “Printing Plug-ins” in the
Extensions folder in the user’s System folder. Plug-in
modules are shared libraries whose behavior is
unspecified.

The “Printing Plug-ins Manager” is intended to make it
straightforward for software clients to create, load, and use
shared libraries which can be treated as printing plug-ins.
The Download Manager has been implemented using the
Printing Plug-ins Manager to manage its plug-ins. Future
printing software will use the Printing Plug-ins Manager
to manage other plug-ins.

This Technote is directed at application developers who
wish to write plug-in modules.

About This Technote

This document is divided into two main sections: Information for Plug-in Creators and Plug-ins Manager
APIs.

The section Information for Plug-in Creators describes the requirements the Printing Plug-ins Manager
imposes on the files it manages. These requirements are minimal and are probably similar to requirements
a client would otherwise impose. This section applies to developers of Download Manager plug-in low
level converters, Desktop Printer Utility plug-ins, and Custom Hoses since these plug-ins are managed by
the Printing Plug-ins Manager.

The section Printing Plug-ins Manager APIs describes the APIs used by clients of the Printing Plug-ins
Manager. This section consists of a “simple” call to obtain a list of plug-ins of given type, a more
complex version of this call for specialized clients, and a set of utility routines. This section applies only to
developers who wish to put plug-ins into the Printing Plug-ins Folder and use the Printing Plug-ins
Manager APIs to manage them. For example, an installer program for a plug-in module might use the
psGetPrintingPluginsFolder routine to install printing plug-ins into the proper folder for use with the
Download Manager.

Please see Technote 1169: The Download Manager for information about one client of the Printing
Plug-ins Manager.

Back to top

Information for Plug-in Creators
Plug-ins managed by the Printing Plug-ins Manager are required to have a resource of type 'PLGN' with

TN 1170: The Printing Plug-ins Manager Page: 2

ID -8192 that contains information about the library. If they do not, they cannot be used and are ignored
by the Printing Plug-ins Manager. They are also required to have a standard 'cfrg' resource describing
the code fragments in the data fork of the file.

The 'PLGN' resource contains information about how many plug-in shared libraries are contained in this
file and for each shared library the type of plug-in that it is, the subtype that library handles and the library
name. A subtype of '????' means that particular plug-in can handle multiple subtypes (as is the case for
the Download Manager Plug-ins).

The 'PLGN' resource is defined as follows (using Rez syntax):

type 'PLGN' {
 integer = $$Countof(PluginLibInfo);
 array PluginLibInfo {
 literal longint; /* Type */
 literal longint; /* subtype */
 pstring; /* library name */
 align word;
 };
};

A ResEdit template resource ('TMPL') for the 'PLGN' resource is contained within PrintingLib versions
8.6 and later.

The PluginLibInfo structure in C syntax is:
typedef OSType SettingsDataType;
typedef OSType SettingsDataSubType;

short num; // the number of shared libraries this 'PLGN' describes
PluginLibInfo libInfo[num];

typedef struct PluginLibInfo{
 SettingsDataType type;
 SettingsDataSubType subtype;
 unsigned char libraryName[]; // pascal string
 // word aligned
}PluginLibInfo;

type is the type of plug-in that is described by this PluginLibInfo.

subtype is the subtype of data that can be handled by the plug-in described by this PluginLibInfo .

libraryName is the library name of the code fragment in the plug-in file described by this
PluginLibInfo.

Note:
A single file can contain multiple plug-in libraries.

Note:
The subtype 'zsys' is reserved for use by the Printing Plug-ins Manager and cannot be used by a client.

A file containing plug-ins for use with the Printing Plug-ins Manager is not required to have any specific
Finder Type or Creator. However, the Finder Type 'bird' is a type that is auto-routed by the Finder into
the Printing Plug-ins Folder when Mac OS 8.5 and PrintingLib 8.6.1 (or later) are used. For this reason, it
is recommended that developers of Printing Plug-ins use 'bird' as the Finder Type for the file. Note that
the Finder Type has no connection to the SettingsDataType referred to by the PluginLibInfo
contained in the 'PLGN' resource.

TN 1170: The Printing Plug-ins Manager Page: 3

Back to top

Printing Plug-ins Manager APIs

Definitions

A LibraryLocator is a structure which can be used by a client to open a particular shared library using
GetDiskFragment. It contains information about the FSSpec, the library name, and for the currently
executing architecture, the offset of the shared library in the file and the library’s length.

typedef struct LibraryLocator{
 FSSpec librarySpec;
 Str63 libraryName;
 SInt32 libraryOffset; // for the currently executing
 // architecture
 SInt32 libraryLength; // for the currently executing
 // architecture
}LibraryLocator;

For many operations, the Printing Plug-ins Manager maintains a cache of information about the installed
Printing Plug-ins. The cache is updated as new plug-ins are installed or existing ones are removed or
updated. This cache allows the Printing Plug-ins Manager to respond quickly in its search for a plug-in of
a requested type and subtype.

Simple Case

OSStatus psGetSubtypeLocators(SettingsDataType type,
 SettingsDataSubType subtype, long *numLocatorsP,
 LocatorListH *locatorListHP);

A client calls this routine to get a handle containing a list of LibraryLocators. The LibraryLocators
are the plug-ins available with the type and subtype requested by the caller. The caller is required to
dispose of the handle when it is done. The returned handle is NULL if there is an error or if there are no
LibraryLocators of the type and subtype.

Calling psGetSubtypeLocators causes the Printing Plug-ins Manager to determine if its cache of
plug-ins for the type and subtype specified by the call is current. If it is not, the cache is updated. Once the
cache is up to date, the Printing Plug-ins Manager returns the number of locators matching the specified
type and subtype in *numLocatorsP. If the number of LibraryLocators matching the type, subtype is
greater than zero, a handle that points to the list of matching LibraryLocators is returned in
*locatorListHP. It is up to the caller of psGetSubtypeLocators to dispose of this handle.

If the list contains more than one LibraryLocator the caller must determine which of the
LibraryLocators in the list is of interest. Note that LibraryLocators that correspond to libraries in the
Printing Plug-ins Folder are returned first (external plug-ins have precedence in this list). If a client needs
more information to determine which library is the one to use, it should probably use the more complex
call psGetPreferredSubtypeLocators described below.

Note:
The subtype 'zsys' is reserved for use by the Printing Plug-ins Manager and cannot be used by a client.
If a client calls psGetSubtypeLocators with a subtype of 'zsys', an errInvalidPluginSubType is
returned.

More Complex Case

TN 1170: The Printing Plug-ins Manager Page: 4

OSStatus psGetPreferredSubtypeLocators(SettingsDataType type,
 SettingsDataSubType subtype, SInt32 clientDataVersion,
ClientBuildCacheDataCallBackUPP buildcallback,
ClientProcessCacheDataCallBackUPP processcallback,
 void *clientrefcon, long *numLocatorsP,
 LibraryLocatorListH *locatorListHP);

typedef pascal OSStatus (*ClientBuildCacheDataCallBack)
 (const LibraryLocator *thisLocator,
 void *clientrefcon, CacheData cache);

typedef pascal OSStatus (*ClientProcessCacheDataCallBack)
 (const LibraryLocator *thisLocator,
 void *clientrefcon, SInt32 size, const void *dataPtr,
 Boolean *addThisLocator);

OSStatus psAddSettingsSubTypeData(CacheData cache,
 SettingsDataSubType subtype, SInt32 size,
 const void *dataPtr);

The psGetPreferredSubtypeLocators routine is available when a client has more complex needs. This
is the case if a plug-in of a given type can handle multiple subtypes. In this situation, there is some
additional work that a client must do to categorize the subtypes that such a plug-in can handle. A second
situation where the psGetPreferredSubtypeLocators call is useful is if there is data associated with the
plug-in type and subtype that is used to further refine which plug-in is the needed one. This might be the
case if there are multiple plug-ins of a given type and subtype.

For example, each Download Manager plug-in can potentially handle multiple subtypes. Further, the
Download Manager may have multiple plug-ins that can handle a given subtype of data, and there is data
about each plug-in that the Download Manager uses to narrow the list of plug-ins which are available for a
given download. This data can be stored in the Printing Plug-ins Manager's cache and used to process the
psGetPreferredSubtypeLocators call.

A client calls psGetPreferredSubtypeLocators with ClientBuildCacheDataCallBack and
ClientProcessCacheDataCallBack procedures. If the plug-in manager cache for this type needs to be
rebuilt (which it does the first time a given type is seen and later when the cache becomes invalid), the
ClientBuildCacheDataCallBack procedure is called for each library of that type. Once the cache and
cached data are up to date, the Printing Plug-ins Manager calls the supplied
ClientProcessCacheDataCallBack to examine the results.

The ClientBuildCacheDataCallBack procedure is responsible for gathering its data from each library
(e.g., the Download Manager calls into the library to obtain the data it needs) and it should call the
psAddSettingsSubTypeData routine for each subtype for which it has data to add to the cache. For each
psAddSettingsSubTypeData call made, the Printing Plug-ins Manager replaces any data which may
have already been added to its cache for this library and subtype. Note that the plug-in subtype for a
library passed to the ClientBuildCacheDataCallBack procedure may not correspond to the subtype
passed in to the psGetPreferredSubtypeLocators call since the process of rebuilding the cache
processes each library of a given type.

Once the cache has been updated, the Printing Plug-ins Manager calls the
ClientProcessCacheDataCallBack procedure for each LibraryLocator which supports the subtype
requested by the psGetPreferredSubtypeLocators call. This gives the client an opportunity to use the
data the ClientBuildCacheDataCallBack has cached for each LibraryLocator to pick the appropriate
LibraryLocator. The ClientProcessCacheDataCallBack can make further calls to the shared library
corresponding to that LibraryLocator in order to aid in its processing. Once a given LibraryLocator
has been processed, the ClientProcessCacheDataCallBack routine returns a Boolean indicating
whether to keep this LibraryLocator in its list of LibraryLocators to return from
psGetPreferredSubtypeLocators in the locatorListHP variable.

For example, the Download Manager uses the psGetPreferredSubtypeLocators call. Download

TN 1170: The Printing Plug-ins Manager Page: 5

Manager plug-ins all have the subtype '????' because they potentially each handle multiple subtypes of
data. In its ClientBuildCacheDataCallBack routine, the Download Manager obtains information about
what type of data a given Download Manager converter library can handle and it supplies that data as its
data to cache for that library. This data is cached by the Printing Plug-ins Manager so that further calls to
psGetPreferredSubtypeLocators do not call the ClientBuildCacheDataCallBack routine unless the
set of Printing Plug-ins has changed. Once the cache is up to date, the
psGetPreferredSubtypeLocators calls the supplied ClientProcessCacheDataCallBack routine.

In its ClientProcessCacheDataCallBack routine, the Download Manager uses the cached information
about what type of data a given converter library can handle to determine if it needs to call the library itself
for more information. For each library which can handle a given type of data, the Download Manager
loads and calls that library to refine the search further.

The parameter clientDataVersion passed to the psGetPreferredSubtypeLocators call is a number
supplied by the caller and is used to put a version tag on the data the client puts in the cache. Since the
client may change over a period of time, it is important to ensure that a new client doesn’t receive cached
data that was created by an older version of the client. A client only needs to change its version data when
the client’s custom cached data type changes.

Warning:
It is not anticipated that a large number of developers will use the psGetPreferredSubtypeLocators
call to manage plug-ins of the same type. It is important that each client of this call with a given type
ensure that the values of clientDataVersion it uses are unique. Failing to do so could potentially
generate collisions in any cached data between clients and possibly return incorrect data to a given client.
Following a simple guideline of choosing a large random number for your clientDataVersion will
satisfy the need to avoid collisions between clients. Small integers are greatly discouraged.

Note:
Negative version numbers are reserved by the implementation and must not be used by clients. In later
versions of SettingsLib, attempting this will generate the error
errInvalidPluginsClientDataVersion.

The parameter clientrefcon passed to the psGetPreferredSubtypeLocators call is a pointer to
client-supplied data. The clientrefcon supplied to this routine is typically a pointer to data that the client
is gathering. The clientrefcon supplied to the psGetPreferredSubtypeLocators will be the
clientrefcon passed to the ClientBuildCacheDataCallBack and
ClientProcessCacheDataCallBacks.

Upon return from the psGetPreferredSubtypeLocators call, *numLocatorsP contains the number of
LibraryLocators for which the ClientProcessCacheDataCallBack returns true in the
*addThisLocator variable. Additionally, the *locatorListHP variable contains a handle which is a list
of the LibraryLocators for which the ClientProcessCacheDataCallBack returned true in the
*addThisLocator variable. If the returned value of *numLocatorsP is zero, the value of
*locatorListHP will be NULL. If the returned value of *numLocatorsP is non-zero, it is up to the caller
of psGetPreferredSubtypeLocators to dispose of the handle returned in locatorListHP.

Note:
The subtype 'zsys' is reserved for use by the Printing Plug-ins Manager and cannot be used by a client.
If a client calls psGetSubtypeLocators with a subtype of 'zsys', the error errInvalidPluginSubType
is returned.

Back to top

Utility Routines
There are several utility routines that may be helpful to clients of the Printing Plug-ins Manager.

TN 1170: The Printing Plug-ins Manager Page: 6

psValidateLibraryLocator

OSStatus psValidateLibraryLocator(
 const LibraryLocator *libLocatorP, Boolean *isValid);

The psValidateLibraryLocator allows a client to have the Printing Plug-ins Manager validate any
LibraryLocator. If the data in the LibraryLocator pointed to by libLocatorP is valid, then *isValid
is set to true; otherwise *isValid is set to false. LibraryLocators returned by the
psGetSubtypeLocators and psGetPreferredSubtypeLocators calls are always valid at the time they
are returned, but they can become invalid because of user actions. If LibraryLocators are stored or
provided to other pieces of software, it is important to validate them with the
psValidateLibraryLocator routine before using them. For example, if the user updates a library and
that library is referenced by a stored LibraryLocator, the LibraryLocator may no longer contain
correct information about the stored shared library, and use of it with GetDiskFragment may cause a
crash.

psGetPrintingPluginsFolder

OSStatus psGetPrintingPluginsFolder(short *vref, long *folderId);

The psGetPrintingPluginsFolder call allows a client to obtain the volume reference number and
folderID information for the folder that is being used as the Printing Plug-ins Folder. This is useful to
clients such as installers who don’t want to use the other Printing Plug-ins Manager calls to manage
plug-in information but do want to know where the Printing Plug-ins Folder is.

psGetPrintingPluginsFolderName

StringPtr psGetPrintingPluginsFolderName(void);

The psGetPrintingPluginsFolderName call allows a client to obtain the name of the folder that is being
used as the Printing Plug-ins Folder. This is useful to clients such as installers who don’t want to use the
other Printing Plug-ins Manager calls to manage plug-in information but do want to know the name of the
folder. The StringPtr returned by this call is only valid while the SettingsLib library is open.

psGetPluginPrefsFileName

StringPtr psGetPluginPrefsFileName();

The psGetPluginPrefsFileName call allows a client to obtain the name for the file that is being used as
the preferences file by the Printing Plug-ins Manager. This call is currently used only by the Printing
Plug-ins Manager. There should be no need for third parties to access data in the preferences file and all
data in that file is considered private.

psGetTypeLibraryData

OSStatus psGetTypeLibraryData(SettingsDataType type,
 long *numLibrariesP, LibraryDataListH *libraryListHP);

psGetTypeLibraryData returns a list of LibraryData structures for all the plug-ins of the specified
type. The LibraryData structure is defined as:

TN 1170: The Printing Plug-ins Manager Page: 7

typedef struct LibraryData{
 SettingsDataSubType subtype;
 LibraryLocator libraryLocator;
}LibraryData, *LibraryDataListP, **LibraryDataListH;

The subtype field of the LibraryData structure is the subtype of the plug-in library represented by the
libraryLocator field of the LibraryData structure.

A client calls this routine to enumerate all plug-ins of a given type. This call returns a handle containing a list
of LibraryData structures. The LibraryLocators are all those plug-ins available with the type specified
by the caller. The caller is required to dispose of the returned handle when it is done with it. The returned
handle is NULL if there is an error or if there are no plug-ins of the type specified.

Note that LibraryLocators which correspond to libraries in the Printing Plug-ins Folder are returned first;
i.e., external plug-ins have precedence in this list.

Use psGetSubtypeLocators instead of psGetTypeLibraryData when the subtype of the desired plug-in
is known. The psGetSubtypeLocators call caches data to improve performance whereas
psGetTypeLibraryData always looks at all the libraries in PrintingLib and the Printing Plug-ins Folder to
obtain its list of libraries.

Note:
The psGetTypeLibraryData call is only available in PrintingLib version 8.6.5 and later. Clients should
weak-link to PrintingLib and test that the symbol is available before calling psGetTypeLibraryData.
For example:

if(psGetTypeLibraryData != (void *)kUnresolvedCFragSymbolAddress){
 psGetTypeLibraryData(...)
}else{
 // alternative approach ...
}

Back to top

Errors

errInvalidPluginSubType

Returned by the Printing Plug-ins Manager if the requested subtype is an invalid subtype. The only invalid
subtype is the reserved subtype 'zsys'.

errInvalidPluginsCache

Even though the Printing Plug-ins Manager validated its cache before using it, the cache was not valid. This
should never happen, but there is explicit checking to return this error if it does.

errInvalidPluginsClientDataVersion

This error is returned if a caller of psGetPreferredSubtypeLocators passes in an invalid value for the
argument clientDataVersion. Negative versions are reserved by the implementation and cannot be used
by clients.

Back to top

TN 1170: The Printing Plug-ins Manager Page: 8

Summary
The Printing Plug-ins Manager is used by the Download Manager supplied with LaserWriter 8 Version
8.6 to manage Printing Plug-ins, such as low-level converters, custom hoses and Desktop Printer Utility
plug-ins. Developers may wish to use it for writing plug-ins for LaserWriter 8, such as low-level
converters, which will be described in a future Technote. The APIs presented in this Technote are also
needed to install a printing plug-in correctly.

Further References

Technote 1169: The Download Manager
Technote 1165: Introducing the LaserWriter 8 Driver Version 8.6.5
Technote 1144: Writing Custom Hoses for LaserWriter 8.6
Technote 1143: Introducing the LaserWriter 8 Driver Version 8.6
Technote 1113: Customizing Desktop Printer Utility

Back to top

Change History

Originally written in April 1998.
Revised in January 1999.
Revised in May 1999.

Back to top

Downloadables

 Acrobat version of this Note (K).

 Binhexed Routine Descriptor Lib (147K).

Back to top

To contact us, please use the Contact Us page.
Updated: 24-May-99

Technotes | Contents
Previous Technote | Next Technote

