
TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 1

Technote 1162
Introduction to MRJ Scripting with AppleScript for Java

CONTENTS

How MRJ Scripting Works

Scripting the Applet Runner or Java
Application

Applet Runner ApplicationProperties

Java Objects as AppleScript Objects

Java Methods as AppleScript
Commands

Scripting Java Applets

Creating a Scriptable Java Application

Generating an 'aete' resource for a
Java Application

Summary

Downloadables

With the release of MRJ 2.1, AppleScript support in

Java applets and applications is now a reality. This
Technote covers the technical information you will need to
take full advantage of AppleScript in your Java
application.

Apple Applet Runner and the MRJShellLib (inside of
MRJLib) support the Macintosh Open Scripting
Architecture. As a result, the Apple Applet Runner, the
applets it runs, and applications created with JBindery can
be scripted by AppleScript or any other OSA scripting
language. The only additional work required (for scripting
of java-based applications) is the inclusion of the scripting
resources 'aete' and 'scsz'. No other specific scripting
support is required from the Java applet or application.
This enables MRJ users to download Java applets or
applications from the Internet and use them as scriptable
components on the Macintosh.

This document provides a brief overview of MRJ
Scripting. It assumes that you are familiar with
AppleScript and the OSA Architecture. As more
information about MRJ Scripting becomes available, it
will be posted on the MRJ Developer Page.

How MRJ Scripting Works
MRJ Scripting works by exporting public Java class, property, and method names as OSA scripting
terminology so that they are visible to scripters. When a script runs, MRJ scripting translates the Apple
Event data types and events into Java data types and method calls. A scripter can thus set and get data in
property fields of Java objects, and invoke Java methods on those objects.

The OSA scripting terminology is generated dynamically by the Applet Runner or Java application. When
you compile a script that targets the Apple Applet Runner, the Script Editor (or any other OSA
development environment) fetches its dynamic terminology. That terminology includes AWT Component
objects for each open applet. For example, the sample applet "Lightweight Gauge" has a formal applet
name of ExampleApplet; if you open the Applet Runner dictionary while Lightweight Gauge is running,
you will see that it includes suites that look like this:

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 2

ExampleApplet:
init: public void

ExampleApplet.init()

init reference
 Class Example Applet:
 Properties:
 <Inheritance> Applet [r/o]
 Gauge:
 Class Gauge:
 Properties:

<Inheritance> Component [r/o]
 total Amount integer [r/o] -- public int Gauge.getTotalAmount()
 preferred Size point [r/o] -- public java.awt.Dimension
Gauge.getPreferredSize()
 minimum Size point [r/o] -- public java.awt.Dimension
Gauge.getMinimumSize()
 current Amount integer -- public int Gauge.getCurrentAmount()
&
 -- public void
Gauge.setCurrentAmount(int)

Because the ExampleApplet is running, the Applet Runner now exposes a Gauge class that inherits its
properties from the Component class, a read-only property totalAmount, and a writable property
currentAmount.

Methods and properties of Java objects are exposed to the scripter in this manner. Occasionally some Java
object, method, or property names will conflict with AppleScript reserved word namespace, or be illegal in
AppleScript (for example, an item that contains periods like user.name). When this happens, the Java
names will be published enclosed in AppleScript's literal quotation marks, the vertical bars (|). For
example, a Java Applet parameter named "columns" can be written as |columns| and will not conflict with
the AppleScript terminology "columns". Notice that identifiers inside vertical bars are case sensitive,
whereas normal AppleScript terminology is not.

In an applet that uses AWT, the entire AWT component hierarchy is exported for scripting, so every
function of the applet that can be driven by the user interface can also be driven by scripting. To script an
applet, you do not have to know about its internal methods; you can script its buttons, menus, and display
objects directly. This is different from normal Macintosh application scripting, where you normally script
the semantic objects of the application. The principal advantage to the MRJ's scripting method is that all
aspects of the applet's operation are scriptable, without any special assistance from the applet. The
principal disadvantage is that internal or semantic information stored in the applet can only be accessed by
pulling the "puppet strings" of the user interface by scripting the AWT components. Thus, developers
should include semantic objects as properties of the top-level Component in their Java applets or
applications. Then you can script Java applets or applications in the preferred way of Macintosh scripting.

Important:
Obfuscated java classes are unscriptable for all practical purposes.

Back to top

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 3

Scripting the Applet Runner or Java Application
The Applet Runner is a scriptable application that supports the Required and Standard suites of events, as
well as a small number of custom events. Java applications should also have a dictionary that supports
these events. The supported events are:

print - prints an AWT component.
exists - tests if a Java object exists
check... belongs to - checks to see if a Java object belongs to a certain class
apply to - calls a method by name. This can be useful if the terminology is not present and as a
result, you cannot call it the normal way.
save object - serialize the Java object into a .jar file
load object - load an object from a .jar file
start tool - the tool can be any jar file with visible bean inside. Since it is a tool with Java classes
you can script it the usual manner. The developer can build up useful AppleScript tools to do
things such as display an AEList as a tree.
type .. keystrokes - a low-level event to deliver keystrokes to Java windows
click - a low-level event to simulate mouse clicks on AWT components. This can also be used to
do some UI scripting such as clicking on a menu item by name

See the Applet Runner dictionary for the full parameters and results of these events.

Back to top

Applet Runner Application Properties
Like most scriptable applications, the Applet Runner application or Java applications support global
properties that control its operation. All system properties of the Java engine are exposed as application
properties of the Applet Runner or Java application. Remember that because most system properties are
illegal as AppleScript identifiers, they are enclosed in vertical bars and are case sensitive:

tell
application "Apple Applet Runner"
 get its |user.name|
end tell

There are two new system properties that control specific aspects of MRJ Scripting:

tell
application "Apple Applet Runner"
 set its |macos.scripting.debug| to true
 set its |macos.menu.contextual.disable| to true
end tell

If a method returns a Java object, it is normally returned as the opaque class of the Java object. With
|macos.scripting.debug| set to true, a Java object will be translated into a text string using the Java
method toString(). While this may not be useful from a scripting perspective, it can be very useful for
debugging purposes.

MRJ Scripting provides automatic contextual menu support for Java TextComponent objects. You can
disable this capability by setting |macos.menu.contextual.disable| to true or turning it off from the
help menu.

Back to top

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 4

Java Objects as AppleScript Objects

When an applet is opened in the Applet Runner, it is available as an implicit top-level element of the
application (much like desktop files are implicit top-level objects in the Finder). To experiment with this,
open the "Lightweight Gauge" applet in the Applet Runner and execute the following script:

tell
application "Apple Applet Runner"
 restart ExampleApplet 1
end tell

The Java objects that make up this applet are contained by the ExampleApplet object.

Important:
In this version of the Applet Runner, the containment relationships of Java AWT components are
exposed through the components property of the Container object. This object returns a list of Java
components enclosed by that container. There is no formal "element" relationship between a container
and its contents, but the Applet Runner accepts element-style references and translates them to the correct
Java object references. This means that the normal AppleScript commands that act on elements (count,
each, whose, etc.) do not operate on items contained by a container object even though you can perform
some of those operations on the components property of that container.

(Note that in the applet runner, the window is a container of the Applet and is not the Applet object itself. The Applet
Runner's Window class is useful only for manipulating the windows the Applet Runner displays. You can also
address the applet directly.)

Discovering the correct name of a component through trial and error can be difficult. MRJ Scripting assists you in
determining object specifiers (when the |macos.scripting.debug| property is set to true). If you turn on Balloon
Help, you may point to any object, and the balloon will give you a useful object specifier for that object. The object
specifier is also output to the Java console.

Following AppleScript conventions, the contents of containers are referred to using 1-based indices, even though the
standard for Java is zero-based indices. So the first component in a container is component 1, not component 0.

Most properties of the Java object are available as properties of the AppleScript object, and the AppleScript get and
setcommands can be used to examine and change the values. For example, using the Lightweight Gauge applet as an
example, the value for the second bar can be accessed with:

get current Amount of Gauge 2 of PrettyPanel 1 of Double Buffer Panel 1 of Example Applet 1

It can be set accordingly with the AppleScriptset command if the property is not marked as [r/o] (read only) in the
dictionary.

Back to top

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 5

Java Methods as AppleScript Commands
Most method calls on a Java object are available as AppleScript commands. In the dictionary displayed by
the Script Editor, each Java class is listed in its own suite with an AppleScript class representing the Java
class and a list of commands in that suite that correspond to the methods.

Important:
Note that AppleScript is lax about associating commands with objects. A script that sends a command to
an object that does not support that method will compile, although it will get a runtime error.

The target or direct object of a command must be the Java object that supports the corresponding method.
You can use the syntax of any of the following AppleScript examples to send a command to a target
object:

restart Example
Applet 1
restart of Example Applet 1
tell Example Applet 1 to restart
tell Example Applet 1
 restart
end tell

Because AppleScript supports named parameters but not ordered parameters, and Java supports ordered
parameters but typically not named parameter information via Java reflection, the parameters are usually
passed in the parameter-named parameters. This is an ordered list containing the values that would appear
between the parenthesis in the Java method invocation. Remember, the parameters must be supplied in the
order they are expected by the Java method; for your convenience, this is listed in the comment line of the
command's dictionary entry. For example, an invocation of the replaceRange command would look like:

replace Range Text Area 1 of MRJ Test 1 parameters {"testing",0,20}

(Because parameter lists are passed directly to Java methods without interpretation, index parameters are
zero-based, not 1-based).

Java classes that implement the BeanInfo interface provides additional information for scripting. MRJ
scripting can then look for Java Parameter Descripter objects to provide named parameters in the
dictionary, and you can use these named parameters directly in AppleScript. As more JavaBeans are
created, this will become more common, but currently very little Java code provides this information.

Most methods take scalar parameters (discrete types such as ints, longs, Booleans, etc.) and return
scalar results. However, the Java objects String, Rectangle, Point, Dimension, and Color are
considered to be scalar for this purpose; they are automatically translated between Java and AppleScript
formats.

Back to top

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 6

Scripting Java Applets
For applets, the applet tag is provided to AppleScript as a property of the Applet object, even though it is
not really a field of the Java Applet class. Furthermore, you can get and set the Applet tag to change
runtime parameters. Setting the Applet tag will result in a relaunch of the Applet with the new Applet tag.
Here is an example of changing the BarChart applet to the vertical orientation:

set applet tag of Applet 1 to {c1:"10", c1_color:"blue", c1_label:"Q1",
c1_style:"striped", c2:"20", ¬ c2_color:"green",
c2_label:"Q2", c2_style:"solid", c3:"5", c3_color:"magenta",
c3_label:"Q3", ¬ c3_style:"striped", c4:"30",
c4_color:"yellow", c4_label:"Q4", c4_style:"solid",
|columns|:"4", ¬ orientation:"vertical",
scale:"5", |title|:"Performance"}

Back to top

Creating a Scriptable Java Application
To script a Java application, the Java application file needs to have 'aete' and 'scsz' resources in its
resource fork. A sample 'aete' resource, "MRJ Scripting aete," is provided in the MRJ 2.1 SDK in the
folder "MRJ Scripting." A similar 'aete' resource is already included with the Applet Runner. The
'aete' resource includes a built-in suite and a first cut at the AWT terminologies. Terminology for other
classes is generated dynamically using Java's reflection feature.

Automatically generated terminologies may not be very user friendly. Their comments are simply the
Java object's name, and they expose most properties and methods to the scripter. You may want to use the
automatically generated terminology as a starting point, then change the comments and delete the
properties and methods that are not useful to the scripter.

Since the 'aete' can be fairly large, it is a good idea to increase the memory partition of Script Editor,
HyperCard, or whatever OSA development environment you are using. You may also need to increase the
memory partition of the Java application or Applet Runner.

Back to top

Generating an 'aete' for a Java application
Scriptable applications must provide a terminology resource (stored in resource 'aete' 0 in the
resource fork) in order to be scriptable with AppleScript and other OSA scripting languages. This
terminology resource associates the four-character event and class codes used in the application's source
code with the English terminology used by the scripter. Normally, a developer compiles the terminology
resource from a .r file with the Rez tool or edits it using a resource editor with an 'aete' template (such
as Resorcerer or ResEdit). For MRJ scripting, the four-character codes used for scripting are generated
automatically and may not be modified by the developer, but you may want to change the terminology to
improve readability.

The automatically generated terminology is a combination of a static basic terminology and dynamic
terminology created by your scriptable Java application. The file "MRJ Scripting aete" includes the basic
terminologies and the AWT component terminologies. MRJ scripting automatically generates additional
terminologies for all components in open windows of Java applications; in this way MRJ generates all
basic terminology needed to make an MRJ application scriptable. To include the basic resources in a Java
application, use JBindery or ResEdit.

Once the basic 'aete' resource is in your Java application, you must run it and touch every part of the
application you want to be scriptable in order for it to generate the dynamic terminology. Open all the

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 7

windows with components that you are interested in, so that AppleScript classes for those components will
be included in the terminology.

If it is not practical to open all the windows manually, or if there are scriptable classes that are not AWT
components, you can use scripting itself to ensure terminologies will be generated for those classes. In the
basic dictionary there is a suite called the "Developer Suite," which contains commands and classes that
designed to assist the developer, not the end user. In this suite, the add terminologies for class event
lets you specify that a particular Java class should be included in the dynamic terminology.

Once you have touched (manually or by scripting) all the classes you wish to expose, the next step is to
retrieve the dynamic terminologies. You do this with the same 'gdte' event that the Script Editor uses to
fetch the dynamic terminology from an application. Normally this event is hidden from the scripter so
there is no terminology for it; in the Developer Suite we give it the event name get terminologies so
you can write a script that sends it to your application.

In our terminology we also enhance the get terminologies event with an optional boolean parameter
object parameters. Normally, the terminology generated excludes all events that have Java objects as
parameters; if you want to include such events, you may add "with object parameters" when you call the
get terminologies event.

The result of the get terminologies event is a large data object containing both the static and dynamic
terminologies. If you want to edit this dynamic terminology to make it more usable, you need to save it to a
file. There are a number of shareware scripting additions that will do the job. In the following example we
use the add resource command from the GTQ Scripting Library (see
http://www.scriptweb.com/osaxen/gtq_scripting_library.html):

tell
application "test.app"
 add terminology for class "com.acme.test.SpecialButton"
 add terminology for class "com.acme.test.SpecialClass"
 set aeteRes to get terminologies --set aeteRes to get
 terminologies with object parameters
-- NOTE: There is currently an issue with using "get terminologies
-- with object parameters"
-- Use "get terminologies with <<class objt>>"
-- instead

 add resource aeteRes to file "HD:TestRes" of
type "aete" id 0 ¬
 with replacing allowed
end tell

Important:
In the above AppleScript, << and >> must be replaced with their single-character equivalents - the
Option-\ and Option-Shift-\ characters in order for the script to function correctly.

When installing the "Add Resource" scripting addition, increase the partition size of the Script Editor to
about 1500K, and enter and run this script. Then you can find the resource in the resulting "HD:TestRes"
file and edit it with your favorite 'aete' editor: either derez it and edit the .r file, or use Resorcerer or
ResEdit with the 'aete' template.

When cleaning up the terminology for the scripter, you should delete all the events and properties that are
not relevant. You may want to delete non-relevant classes well; however, if dynamic terminology is on, then
the terminologies of classes you have removed will show up again dynamically. Currently, to get around
the problem, you can delete all events and properties of those classes but leave the classes around. Since
the dynamic terminology generation does not try to override the classes already in the 'aete', these
classes would remain empty.

You should never change the four-character codes in the aete. However, you are encouraged to change the
names of events, parameters, classes, and properties if they are generated from programming names and

TN 1162: Introduction to MRJ Scripting with
AppleScript for Java

Page: 8

not the display names. You should also add comments to inform the scripter what the individual classes
are and how they are used.

After you have edited the 'aete' resource into its final form, you should probably delete the Developer
Suite since it is not intended for the scripter.

Dynamic terminology is controlled by the 'scsz' resource. You may edit the 'scsz' resource to disable
dynamic terminology and thus freeze the terminology to be what you declare in the modified 'aete'. (If
you do this, you don't need to worry about automatic generation of unwanted terminology.) But this too
has drawbacks. If your Java application is extensible (for example, through the start tool event), new
classes can be introduced at run time; the only way to make these classes scriptable is to enable dynamic
terminology in the 'scsz' resource.

You are strongly encouraged to edit and trim down your 'aete' resource, otherwise the scripter will likely
be overwhelmed by the number of entries in the dictionary. You should also give the user some
suggestions on where they should direct their scripting efforts. Then the scripter will have a better chance
of fully utilizing your application. It is recommended that you ship sample scripts with your application to
help the scripter with terminology idiosyncrasies and to demonstrate how to make use of scripting support
effectively.

Back to top

Summary
Incorporating AppleScript into your Java application allows increased automation support. Adding basic
scriptability is very simple. You need only to add a pre-generated 'aete' and a 'scsz' resource;
however, more advanced scripting may require careful editing of these resource types for finer control of
which objects and methods are exposed in the dictionary.

Further References

AppleScript Language Guide: English Dialect
MRJ SDK
AppleScript Home Page

Back to top

Downloadables

 Acrobat version of this Note (K).

Mention of third-party sites and third-party products is for informational purposes only and constitutes neither an
endorsement nor a recommendation. Apple assumes no responsibility with regard to the selection, performance, or use of
these vendors or products.

To contact us, please use the Contact Us page.
Updated: 19-April-1999

Technotes | Contents
Previous Technote | Next Technote

