Technote 1071 - Working with Apple's Multiprocessing API

Technotes
ownload Download
FOF A
i]
Acrobat file (176K) AppleWorksfile (22K)

Working with Apple's Multiprocessing API

Technote 1071 October
1996

This Technote describes the basic steps required to use the Apple Multiprocessing API and attempts to
clarify the things that can and cannot be done from tasks created using that API.

This Technote is directed primarily a devel opers working with, or preparing to work with the
Multiprocessing API. Although the examples given are aimed at application writersit contains
information useful for system level engineers aso.

CONTENTS
o About the Apple Multiprocessing AP
o Using Multiprocessing

o Multiprocessing Do's and Don'ts
e Summary

About the Apple Multiprocessing API

The Apple Multiprocessing API provides aset of callsthat allow an application to create separate
threads of execution called tasks. Tasks are preemptively scheduled on the available processorsin the
system, even if thereis only one. Tasks have the same view of system memory as the application.

An application creates tasks that are used to perform work on the application's behalf. Since the work
can be performed simultaneously by the tasks in a multiprocessor system, the work throughput of the
application can be increased.

For example, an image-processing application can create tasks that transform arbitrary blocks of image
data. When the user chooses to transform an image, the application splits the data into smaller pieces
and then asks each of the tasksto transform one of the pieces. This processis repeated until all of the
pieces have been transformed. Since the pieces are processed simultaneously, the time required to
transform the entire image is greatly reduced.

Another exampleis development environments. An environment could use tasks to compile different
files. In thisway multiple files could be compiled simultaneoudly, reducing the timeit takesto build a
project.

Using Multiprocessing

Using TheLibrary

To use multiprocessing, the Multiprocessing API Library should be added and weak-linked into your
project. To weak link to the library in Metrowerks, use the pull down menu next to the library namein

the project window and select ‘weak link'. Thiswill ensurethat if the library is not present your
application will ill be launched.

Page: 1

Technote 1071 - Working with Apple's Multiprocessing API

Near the beginning of the application you should test for the presence of the Multiprocessing AP
Library. In thefile in which you want to do thisinclude the file MP.h. To test for the presence of the
library, call MPLi br aryl sLoaded. MPLi br ar yl sLoaded iSamacro that tests for the presence of one of
thelibrary entry points. If MPLi br ar yI sLoaded returnstrue, then the library is present and its services
are available. Otherwise, your application should run without invoking any multiprocessing services.

Deciding How Many Tasks To Create

Use MPPr ocessor s to count the number of processorsin the system. If thereis only one, you may wish
to proceed as though the multiprocessing services are not available. However, you can still create
preemptive tasks in asingle processor environment if you want to.

The count returned by MPPr ocessor s isusually used as an indication of how many tasksto create.
There are a number of factors that should go into this decision.

First and foremost, your application should strive to keep al the processors busy. The simplest way to
dothisisto create at least as many tasks as there are processors. The application then splits the work to
be done into that many pieces and asks each task to work on a piece. The application waits on the tasks
to finish before proceeding. If your tasks take more than one tenth of a second to finish their pieces,
then the application should test for events while it iswaiting for the tasks to complete.

An aternative and frequently-adopted technique is to create one less task than there are processors. In
this case, the application till breaks the work into anumber of pieces equivalent to the number of
processors. Each task is asked to work on a piece and then the main application works directly on the
remaining piece. When the application isfinished, it then waits on the tasks to finish. If the work was
split reasonably evenly, then the tasks should be finished or just about finished when the application
starts to wait. This approach isvery popular becauseit allows for easy generalization of the single
processor case: the number of tasks created is zero and the application naturally ends up doing al the
work. It isaso aconvenient path to follow when the Multiprocessing API Library isnot available for
some reason. Note that since the application is now involved in performing work, it isimportant to limit
the time required to perform the work to less than one tenth of a second, so that events can be checked
frequently enough and the application's responsiveness can be preserved.

The above cases assume that the tasks are all doing pretty much the same thing. If your application
creates tasks that do very different types of work, then how many tasks you create will more likely
depend on what different kinds of work need to get done. The important thing to bear in mind isthat the
processors should be kept as busy as possible. To do this, make sure that at |east as many tasks as there
are processors will have something to do during the times when you wish to maximize throughput.
Don't forget that four processor systems are not at all uncommon and more powerful systems should be
expected in the future.

Communicating With Tasks

Communication between the application and tasks occursin two basic ways.shared memory, and
synchronization methods. Since al memory is shared, anything the application writes into memory is
availableto atask and vice-versa. However, before atask tries to access memory that has been prepared
by the application, the task MUST synchronize with the application using one of the three methods
availablein the Multiprocessing API Library. Thisis extremely important. The PowerPC architecture
alowsfor writes to memory to be deferred. Thisis aresource management feature that helpsthe
PowerPC achieve its tremendous speed. In order for another processor to see the correct valuesin
memory, certain hardware dependent instructions need to be executed. When atask usesa
synchronization method these instructions are executed, thus ensuring that the processorsinvolved have
aconsistent view of memory from that point on. It is aso important to use synchronization methods so
that when one of the communicantsis not yet ready to synchronize for some reason, the other one can
yield the processor it is on. This makes the processor immediately available to some other task that may
be able to make more productive use of it.

The synchronization methods available in the Multiprocessing API Library are queues, semaphores and
critical regions.

Queues arefirgt-in-first-out queues of 96-bit messages. Inserting and extracting elementsis an atomic
operation -many tasks can try to extract the next message from a given queue but only one will

Page: 2

Technote 1071 - Working with Apple's Multiprocessing API
successfully obtainit.

Semaphor es represent a single 32-bit value that can be atomically incremented up to a predetermined
maximum and atomically decremented to a minimum of zero.

Critical regions prevent sections of code that they encompass from being executed by more than one
task or the application at once.

Before creating tasksit is usually agood ideato create the means by which to synchronize with them.
Queues and semaphores are the two most common methods used. People starting out with
multiprocessing generally use queues since they provide the most flexibility and are relatively easy to
understand. Semaphores are quicker and less memory intensive but do not offer the same degree of
flexibility. Queues and semaphores are usually created in pairs.one by which to signal arequest, the
other by which to signal results. A classic mistake often made by beginners (the author is speaking from
experience here) isto create only one synchronization object and to try to useit for both purposes. This
does not work. After arequest is posted, the application will at some point start waiting for results. If it
waits at the same place the request was posted, the request itself may appear to be the result. Sincethe
application clears the request in the mistaken belief that it was aresult, nowork at ALL getsdone. This
iswhy it isimportant to use two distinct entities for two-way communication.

Creating Tasks

Creating atask isdone by calling MPCr eat eTask. Thefirst parameter to thiscall isapointer to a
function that will become the running task. The task function must have the following prototype:

CSSt atus f Task(void *paraneter);

The task receives a 32-bit parameter when it starts up and should return a 32-bit result when it finishes.
The parameter received at startup is specified as the second parameter to the MPCr eat eTask cal. It is
through this parameter that al the initial information that the task will need is communicated to it. It can
be anything at al, a message queue id, apointer to a C++ object, etc. It is not uncommon for it to be a
pointer to atask specific block of memory through which the application will communicate various
information throughout the task's lifetime.

Everything up to this point, from calling MPLi br ar yI sLoaded to caling MPCr eat eTask can be done
when your application starts up. Leaving tasks running for the lifetime of an application isusualy a
more efficient strategy than creating and destroying them as needed. If you find yourself creating alot
of different tasks that do different types of things you should consider creating atask that can call many
different types of functions through a selector based scheme, or through a variable function pointer.

The following code illustrates how an application could establish its multiprocessing capabilities soon
after it begins running. It uses the technique of creating one less task than there are processors.

typedef struct {
I ong firstThing;
| ong total Thi ngs;
} sWor kPar ans, *sWor kPar anmsPtr

typedef struct {
MPTaskl D t askl D;
MPQueuel D r equest Queue;
MPQueuel D resul t Queue;
sWor kPar ans par ans;
}sTaskData, *sTaskDataPtr;

| ong gNunProcessors;

sTaskDat aPtr gTaskDat a;
MPQueuel D gNoti fi cati onQueue;
void fStart MP(void) {

CSErr thekErr;
long i;

theErr = noErr;

Page: 3

Technote 1071 - Working with Apple's Multiprocessing API

/* Assunme single processor node */
gNunProcessors = 1,

/* Initialize remaining globals */
gTaskData = NULL;
gNoti ficati onQueue = NULL;

/* If the library is present create the tasks (no tasks on a */
/* single CPU systen */
i f(MPLibrarylsLoaded()) {
gNunProcessors = MPProcessors();
gTaskData = (sTaskDataPtr)NewPtrC ear((gNunProcessors - 1) *
si zeof (sTaskData));
theErr = Mentrror();
if(theErr == noErr)
theErr = MPCreat eQueue(&gNotificati onQueue);
for(i =0; i < gNunmProcessors - 1 && theErr == noErr; i++) {
if(theErr == noErr)
theErr = MPCreat eQueue(&gTaskData[i].request Queue);
if(theErr == noErr)
theErr = MPCreat eQueue(&gTaskData[i].resultQeue);
if(theErr == noErr)
theErr = MPCreateTask(fTask, &gTaskData[i],
kMPUseDef aul t St ackSi ze, gNoti ficati onQueue,
NULL, NULL, kMPNor nmal TaskOpti ons,
&gTaskData[i].tasklD);

}

/* |f sonething went wong, just go back to single processor */
/* noden */
if(theErr !'= noErr) {

f St opMP() ;

gNunProcessors = 1,

}
}

The structure sWorkParams defines the parameters that will be passed into the function called by the
task. The content of this block is specific to the type of work being performed. Among other things, the
parameters should define the specific data that the function isto process.

The structure sTaskData defines the block of datathat the application will use to communicate a variety
of different information to atask. The two main things being communicated are the queue |Ds and work
function parameters.

The global gNumProcessors stores a count of the number of processors found in the system. This
variable is set to oneif the Multiprocessing API Library isnot loaded or if task or queue creation fails
for any reason. Therest of the application code is fashioned in such away that if gNumProcessorsis
one then the application will do all the work itself and never make any Multiprocessing API calls.

The globa gTaskData points to adynamically allocated array of sTaskData blocks. Thereis one entry
for each task to be created.

The global gNotificationQueue is used to receive notification messages from terminating tasks. All the
tasks share one notification queue in this example.

A number of tasks equal to the number of processors minus one are created. Each task has its own pair
of message queues by which the application can communicate with it. The IDs of the queues are stored
in the gTaskData entry for the task. The task is then created using MPCreateTask. The first parameter is
apointer to the function that will become the running task. In this example all the tasks share the same
function:fTask. If afunction can be correctly executed by multiple processors at onceitiscalled
'reentrant’. Note that 'interrupt-safe’ does not necessarily imply ‘reentrant'. Interrupts generally are not
interruptable in the Mac environment and engineers sometimes take advantage of this. However, in an
MP environment you must anticipate that there could be tasks simultaneoudy executing at any point at
any time within your task code.

Page: 4

Technote 1071 - Working with Apple's Multiprocessing API Page: 5

The second parameter isapointer to the task's gTaskData entry. The task will be able to extract the IDs
of the request and result queues it should use from this block. Note that two queues per task is often
unnecessary. I|n many casesit is possible to use two queuestotal. All requests are posted to one queue
and all results are returned on another queue. Thisworks when it isirrelevant which task processes
which request, asis often the case. Note, however, that the parameters for each task must be either
completely contained within the message, or preestablished for every task prior to submitting the first
request.

Thethird parameter isthe desired stack size for the task. Each task hasits own stack. If you are going to
be creating more than a handful of tasks, you should consider limiting the size of the stack each one will
receive. The default sizeis 64K, which can seriously impact the amount of memory available to the
Multiprocessing API Library if large numbers of tasks are going to be created. If you do specify the
stack size, be sure to allocate at least as much space as your task’'s deepest call chain will require.

The fourth parameter isfor an optional notification queue. This queueis very important during task
termination sequences. In fact, it realy isn't optional unless you tightly coordinate task termination with
thetask itsdlf. If you terminate atask without warning, you will definitely need a naotification queue. The
reason for thiswill be given later.

Thefifth and sixth parameters are returned on the notification queue when the task is terminated.

The seventh parameter is for modifying the nature of task creation. There are no options available at this
time.

The eighth parameter isfilled in by MPCr eat eTask. It will bethe ID of the newly created task. For
convenienceit is stored in the task's gTaskData entry. Note that tasks rarely have a need to know what
ID they are.

If anything goes wrong during task creation, f St opMP iscalled. It will delete and terminate everything
that has aready been created. The variable gNumProcessorsis then reset to 1, which will cause the
application to proceed as though there were only one processor available. The function f St opMP is
described later.

Thefollowing is an example task. The first thing it doesis establish a pointer to its gTaskData entry
which was specified in MPCr eat eTask. It obtains the request and result queue from this block. The task
then waits for aregquest on the request queue. It uses the message it receives to select afunction to call.
The parameters for the function are extracted from the task's gTaskData entry which will have been set
up by the application prior to posting the request message. The application must be very careful to
preserve the validity of al the parameters passed to the task until the task sendsits result message. It
would, for example, be catastrophic for an application to move or delete memory being written to by a
currently running task.

#defi ne kMyRequest One 1
#defi ne kMyRequest Two 2
#defi ne kMyResul t Excepti on -1

OSSt atus fTask(void *paraneter) {

OSErr thekErr;
sTaskDat aPtr p;
Bool ean fi ni shed;
| ong nmessage;

theErr = noErr;

/* CGet a pointer to this task's unique data */
p = (sTaskDat aPtr)paraneter ;

/* Process each request handed to the task and return a result */
finished = fal se;
while(!finished) {
theErr = MPWAI t OnQueue(p->request Queue, (void **)&essage,
NULL, NULL, kDurationForever);

Technote 1071 - Working with Apple's Multiprocessing API

if(theErr == noErr) {
/* Pick a function to call and pass in the paraneters. */
/* The paraneters should be set up prior to sending the */
/* message just received. Note that we could al so just */
/* pass in a pointer to the desired function instead of */
/* using a selector. */
switch(nessage) {
case kMyRequest One:
theErr = f MyTaskFuncti onOne(&p->parans);
br eak;
case kMyRequest Two:
theErr = f MyTaskFuncti onTwo(&p- >parans);
br eak;
defaul t:
finished = true;
theErr = kMyResul t Excepti on;

}
MPNot i f yQueue(p->resultQueue, (void *)theErr, NULL, NULL);
}

el se

}

/* Task is finished now */
return(theErr);

}

finished = true;

Using Tasks To Perform Work

When your application needs to perform some work, it should make sure everything the tasks are going
to need isin memory. For each task, the application will establish the parameters of the work that it
wants the task to perform and then it will signal the task through either a queue or a semaphore to begin
performing that work. The specific work that the task should perform can be completely defined within a
message, or possibly in ablock of memory reserved for that task as described above. Both methods are
in common use. Some applications aso passin a pointer to the function that the task should call to
perform the work. That way one task can perform many different types of chores.

Once the task has been signaled, the application can help out with the work, or it could return to its event
loop and just check in on the tasks from time to time using kDurationlmmediate waits.

When kDurationlmmediate is specified to either MPWai t OnQueue, MPWai t OnSemaphor e Or

MPEnt er Cri ti cal Regi on the function awaysreturnsimmediately. If thereturn valueis

kM PTimeoutErr, then whatever was being waited on could not be obtained. That is, no message was
available, the semaphore was zero, or the critica region was being executed by another processor.

Therefore, if the gpplication is checking for task resultsin its event loop, use kDurationl mmediate waits
and check thereturn value. If it is noErr, aresult was present and obtained by the cal. If itis

kM PTimeoutErr, then the tasks have generated no new results since the last time the application
checked. Don't forget that other kinds of errors could be returned aso.

As described above, when atask finishes handling the request, it should post aresult to let the
application know that the work has been performed.

An example of an application using tasksto perform work follows. In this case, the applicationis going
to perform part of the work also. Note that events are not being handled, so it is assumed that
f MyTaskFunct i onOne will not take more than atenth of a second to perform the work.

OSErr fDoMP(|l ong real FirstThing, [ong real Total Things) {

long i;

OSErr thekErr;

| ong t hi ngsPer Task;
| ong nessage;

sWor kPar ans appDat a;

Page: 6

Technote 1071 - Working with Apple's Multiprocessing API
theErr = noErr;
t hi ngsPer Task = real Total Thi ngs / gNunProcessors;

/* Start each task working on a unique piece of the total data */
for(i =0; i < gNunProcessors - 1; i++) {
gTaskData[i].params.firstThing = real FirstThing + thingsPerTask * i;
gTaskData[i]. parans.total Things = thi ngsPer Task;
message = kMyRequest One;
MPNot i f yQueue(gTaskData[i].request Queue, (void *)nessage,

NULL, NULL);
}
/* Let the application do whatever is left over. Note that if */
/* gNunmProcessors is one, then the application will do everything */

/* and the Multiprocessing APl Library will not be called. */
appData.firstThing = real FirstThing + thingsPerTask * i;
appDat a. t ot al Thi ngs = real Total Thi ngs - thingsPerTask * i;

f MyTaskFuncti onOne(&appData);

/* Now wait for the tasks to finish */
for(i = 0; i < gNunmProcessors - 1; i++)
MPWAI t OnQueue(gTaskData[i].resultQueue, (void **)&mressage,
NULL, NULL, kDurationForever);

return(theErr);

}

This particular approach isused in alot of real world applications. It is best suited to applications that
transform large blocks of data. Datais split into even pieces for the tasks, they are started, and the
remaining potentially uneven pieceis processed by the application. Once the application has processed
its piece, it then waits for the tasks to finish. A common mistake, even for experienced engineers, isto
assume that the datawill be perfectly divisible by the number of processors.

Applications that work on large uneven pieces, such as a devel opment environment trying to compile
multiple files simultaneoudly, need to approach the problem differently. The application should sitinits
event loop and as each task finishes the work it was assigned, new work, if any, should be assigned to
the task.

Terminating Tasks

When your application finishesit should call MPTer ni nat eTask. Note that MPTer i nat eTask does not
kill arunning task immediately. It only flagsit to be killed at some convenient timein the future.
Therefore, it is very important not to delete any of the resources the task was using until the task istruly
terminated. To be sure that thisisthe case, you should wait on a notification queue that was provided to
the MPCr eat eTask call. Every time MPTer ni nat eTask is called you should immediately wait on the
notification queue for a message. Once you receive one you can be sure that the task is no longer
running and that it is safe to delete any shared resources.

The function f st opMP below is an example of what could be done when the application is about to
terminate. The one important thing to note about fStopM P is that as soon as atask has been terminated
using MPTer mi nat eTask the function halts until a message on the notification queue arrives.

void fStopMP(void) {
long i;

if(gTaskData != NULL) {
for(i =0; i < gNunProcessors - 1; i++) {
i f(gTaskData[i].tasklD != NULL) {
MPTer m nat eTask(gTaskData[i].tasklD, noErr);
MPWai t OnQueue(gNoti ficati onQueue, NULL,
NULL, NULL, kbDurationForever);

}
i f(gTaskData[i].requestQeue != NULL)

Page: 7

Technote 1071 - Working with Apple's Multiprocessing API Page: 8

MPDel et eQueue(gTaskData[i].request Queue);
i f(gTaskData[i].resultQueue != NULL)

MPDel et eQueue(gTaskData[i].resultQeue);
}

if(gNotificationQueue !'= NULL) {
MPDel et eQueue(gNotificationQueue);
gNoti ficati onQueue = NULL;
}

Di sposePtr((Ptr)gTaskData);
gTaskData = NULL;
}

}

Multiprocessing Do'sand Don'ts

Do

If you get amessage at startup telling you that the MPLibrary could not load because it was out of
memory, then you should open your copy of Metronub, which resides in the extension folder, using
ResEdit or Resourcer. Changethe' sysz' resourceto read 2500000. If you till get the problem, keep
increasing the' sysz' vaueby 1 MB at atime until you don't.

Tasks should call functions that perform facel ess processing. Calculation intensive code isreally the
only type of code that should be considered for MP tasks. Thisrule will be substantially relaxed under
Mac OS 8, but even so, throughput will really only be improved by using MP for calculation intensive
code. Under Mac OS 8, responsiveness will be the main thing improved by multitasking other types of
code.

The work performed by atask between request and result signals should be 'substantial’. It can take
several hundred machine cycles to send or receive asigna via one of the synchronization methods. If
your task only takes afew cycles to complete the work that is requested, your application's performance
is going to be dramatically worse with multiprocessing. Tasks should try to consume at least amillion
cycles per request. That's 5 milliseconds on a 200MHz processor and 20 times faster than necessary to
maintain the tenth of a second response time quoted throughout this document.

If your task needsto allocate memory, you will haveto either allocate the memory prior to signaling the
task, or use the function MPAI | ocat e. The function MPAI | ocat e will return ablock of memory
allocated from the application's heap. Unfortunately, MPAIllocate is very slow. It suspendsthe task, asks
the application to fulfill the request, and then resumesthe task. If it isused alot it will significantly
reduce a task's throughput. The best solution to obtaining memory isto preallocate all of it. If you
cannot, then use MPAllocate to alocate one large page of memory at atime and draw smaller blocks
from the page as needed.

Don't

Don't attempt to call 68K code. Thereisno emulator on the secondary processors and they will fault if
they attempt to perform a mixed mode switch.

Do not call the Toolbox. The Toolbox still contains large amounts of 68K code, but even worseitis
largely non-reentrant. For exampleif onetask is calling Newpt r and another task also decidesto call
NewpPt r , both will be manipulating the same global heap structure at the exact same time and they will
amost certainly corrupt it. In Mac OS 8, a number of Toolbox routines will be callable from an MP
task. These routines will be conditionalized by the flag FOR_SY STEM8 PREEMPTIVE in the MacOS
8 interfacefiles.

Do not call into unknown code. If you provide a means by which athird party can specify a callback,
then do not attempt to call that function from atask. There is no telling what the callback is going to do.
Thisrulewill never be relaxed. Unless you specifically require that the callback be reentrant, then there
isaways going to be the possibility that it is not.

Avoid globals. The main cause of non-reentrancy is the manipulation of globals. Tasks that manipulate

Technote 1071 - Working with Apple's Multiprocessing API Page: 9

globals, global state, or buffers pointed to by globals must use synchronization techniques to prevent
other tasks from attempting to do so at the same time. Globals that are read only arefine.

Do not call any MP API routines at interrupt time. The Multiprocessing API Library is not, strictly
speaking, reentrant. While you can call any Multiprocessing API routine from a multiprocessing task
any time, you may not call them from a deferred task, atime manager task or any other system interrupt
handler. Workarounds exist but they are inefficient and generally discouraged. Contact Apple DTS or
DayStar for more information.

Summary

After reading this Technote, you should be comfortable with the basic stepsinvolved in producing a
multi processing-aware application. In short, you need to make sure the Multiprocessing API Library is
available, you need to count the number of processors, you need to create the means by which to
synchronize with tasks, and you need to create a sufficient number of tasks that will keep all the
processors busy. Unique information can be communicated to atask when it is created that will dlow a
task to coordinate with the application when work needs to be performed. When your application quits,
it should delete the synchronization objects and terminate the tasks.

Y ou should be familiar with the types of things atask can do and you should know what atask cannot
do.

Further References

o Multiprocessing SDK.

Technotes
Previous Technote | Contents | Next Technote

