TN 1108: Unknown Sound Features Page: 1

Technote 1108

Unknown Sound Features

CONTENTS M
Thelittle known features of the Sound any developers have complained about festures
Manager they felt were lacking in the Sound Manager. However,
_ many features which were believed to be lacking were
Multiple Sound Output Channels actually available, just under documented. This Technote
is meant to document the more obscure features of the

Multiple Sound Input Channels

Sound Manager.

Volume and Panning

This Technote is directed at application and hardware

Monitoring a Sound Channel developers who work with the Sound Manager and want
to be sure that they are getting the most out of the Sound
Summary Manager and their products.

Thelittle known features of the Sound M anager

The Sound Manager features that this Technote talks about are:
Multiple Sound Output channels

How to output more than just a stereo sound. Using the techniques talked about here an application can
simultaneously output sound on as many channels as the Macintosh has.

Multiple Sound Input Channels

How to record more than just a stereo sound. Using the techniques talked about here, an application can
simultaneously record sound via as many input sources as the Macintosh has.

V olume and Panning

How you can perform snazzy audio effects.

Monitoring a Sound Channel

How to use sound components to monitor the sound output level of a particular sound channel.

TN 1108: Unknown Sound Features

Multiple Sound Output Channels

The Sound Manager has supported this starting with Sound Manager 3.0 which shipped with System
7.0. Inside Macintosh: Sound page 2-128 mentions this feature but doesn't describe how it is used.

When you call SndNewChannel one of the parameters passed is along, which specifies the initiaization
parameters for the channel. Normally, developersjust passnil, or i ni t Mono Or i ni t St er eo, but you can
also pass kUseOpt i onal Qut put Devi ce (which isdefined to be -1).

The use of kUseOpt i onal Qut put Devi ce will allow you to specify adifferent output component to have
the sound played through. With kUseOpt i onal Qut put Devi ce, adeveloper is able to play sounds
simultaneously on as many output devices as are installed. For instance, a hardware developer who has a
six-channel card could make three stereo output components (one for each pair of output channels) and
thekUseOpt i onal Qut put Devi ce selector would alow developers writing software to this card to play
three stereo sounds simultaneously.

ThekUseOpt i onal Qut put Devi ce selector workslike this: First, you have to find the component
instance of the output component you wish to use (this example finds the AIFF Writer sample output
component):

/' Find our output conponent's instance
out put Dev. conponent Type = 'sdev';

out put Dev. conmponent SubType = ' Al FW;

out put Dev. conponent Manuf acturer = "appl';
out put Dev. conmponent Fl ags = 0;

out put Dev. conponent Fl agsMask = O;

t heAl FWConponent = Fi ndNext Conponent (0, &out put Dev);

A generic routine to find all sound output components such as.
| ong Fi ndAl | sdevs (Conponent ** conponentsArray) {

Conponent f oundConponent ,
aConponent ;

Conponent Descri ption | ooki ng;

| ong nunConponent s,
i

aConponent 0;

| ooki ng. conponent Type kSoundQut put Devi ceType; // 'sdev

| ooki ng. conponent SubType = 0;
| ooki ng. conponent Manuf act ur er = 0;
| ooki ng. conponent Fl ags = 0;
| ooki ng. conponent FI agsMask = 0;

nunConponent s = Count Conponents (& ooking);

conmponent sArray = (Conponent) NewPtr (sizeof (Conponent) * numConponents);
if (componentsArray == nil) {

nunConponents = 0; /1 won't be able to list them anyway
}

for (i = 0; i < nunConponents; i++) {
f oundConponent = Fi ndNext Comrponent (aConponent, & ooki ng);
(*conponentsArray)[i] = foundConponent;
aConponent = foundConponent; /1 continue | ooking

}

return nunConponents;

Page: 2

TN 1108: Unknown Sound Features

would be used to present the user with alist of sound output channels so that they could output
multi-channel (greater than 2 channel) sounds without the sound having to be mixed down to two
channels.

Now, al that isleft to do isto make anew sound channel which will use the selected ouput device:

err = SndNewChannel (& heOpti onal Qut put Chan, kUseOpti onal Qut put Devi ce,
(1 ong) t heAl FWConponent, nil);

Thisisadl thereistoit. Whenever asound is played through t heOpt i onal Qut put Chan the sound will
not go to the built-in hardware: instead, it will go to the AIFF Writer output device (which could just as
easily be the third and fourth channels of a multiple-channel output card).

So, what does adevel oper of multiple-channel hardware have to do to alow the use of the
t heOpt i onal Qut put Chan sdlector?

Not much. All that has to be done is to make an output component for each pair of output channels the
hardware supports. If your hardware has only two channels, one output component is all that is needed.
If your hardware has 20 output channels, 10 output components would be required.

| can amost hear devel opers now: "Ten output components?? Are you crazy? ?'

No. Because of the reusability inherent to components, al that is really required isten 't hng' resources
that register the same output component ten times asiif it was ten different output components.

The output component should be written in such away that the actual hardware channels it outputsto are

abstracted: that way, one code base can talk to al available channels. The output component just looks at
itself at register time to determine which output channelsit controls and saves thisinformation in its

globals. The additional code required isvery minor: just enough code to keep track of which channelsto

output on.

Note:

Y ou can get the Speech Manager to talk through an optional output channel aswell. Call
NewSpeechChannel asyou normally would and then call Set Speechl nf o with the soSoundQut put
selector and the component instance of the output component:

err = Set Speechl nfo (theAl FWspeechChan, soSoundQutput, &t heAl F\WConponent);

Multiple Sound Input Channels

Thisworks in much the same way as multiple sound output channels. The differenceis, with sound
input, adriver isrequired rather than a component.

Because an application can open as many sound input drivers as are available, al that an application must

doiscal sPBOpenDevi ce multiple times, each time with the name of each sound input drivers.

The Sound Manager provides a call which allows a developer to easily enumerate all the available sound
input drivers.

SPBGet | ndexedDevi ce (i ndex, drvrName, &drvrlcon);

Page: 3

TN 1108: Unknown Sound Features Page: 4

By pass an index starting at one (1) and incrementing it until an error is returned, you can quickly and
easly build alist of all available sound input drivers.

The QuickTime Way

Y ou can aso smply use, QuickTime to do your recording by using the Sequence Grabber to set the
input source and do the recording.

This code will bring up the QuickTime sequence grabber sound input panel:

Conponent Resul t err;

SGChannel sgSoundChanRef ;

SeqGr abConponent sgConponent ;

sgConponent = QpenDef aul t Conponent (SeqG abConponent Type, 0);
err = SAnitialize (sgConponent);

if (err == noErr) {
err = SGNewChannel (sgConponent, SoundMedi aType, &sgSoundChanRef);

}
if (err == noErr) {

err = SGSettingsDi al og (sgConponent, sgSoundChanRef, 0, nil, OL, nil, nil);
}
return err;

Sound
—| Source -
: T Speaker: 0n -
Device: | Built-in |
lolume: & { 100
Input: | Microphone -
Gain: g {100]

cever: JURIOON0O0NE

One of the nice features of using QuickTime to record soundsis that QuickTime will rate: convert a
sound for you, so that you can effectively record at any arbitrary samplerate, instead of being limited to
recording at the sample rates that the specific sound input driver offers.

Making multiple sound input driversfor a hardware vendor is alittle more work for the developer, who
has to completely duplicate the driver: but that iswhat isrequired.

TN 1108: Unknown Sound Features Page: 5

Volume and Panning

Adjusting the volume of a sound playing through the Sound Manager can be done with vol umeCnd
issued with a SndDol medi at e call asthis code demonstrates:

SndCommand t heCnd;
U nt16 rightVvol, leftVol;

theCmd. cnd = vol uneCnd;
t heCnd. paran2 = (rightVol << 16) | leftVol;
err = SndDol nmedi at e(chan, &t heCnd);

The left and right volumes are actually 16-bit fixed point numbers. Like their 32-bit counterpart, the high
8 bits are the integer portion of the volume and the low 8 bits are the fractional portion of the volume.
For example, avolume setting of 0x01000100 would be full volume on both channels, while a setting of
0x01000080 would be full volume on the right channel and half volume on the left channel.

A timed sequence of such calls with increasing values for the left volume and decreasing values for the
right volume would make the sound pan from left to right.

Some developers may be asking, "What happensif | set the volume for a channel above 0x0100?" The
answer is: the sound gets louder. That's right, with vol uneCmd you can overdrive the sound level for that
loud crunchy sound so many rockers ook for.

The QuickTime Way

Another (probably better) way to control the volume and panning of soundsisto use QuickTime, The
utility knife. Using QuickTime 2.1 modifiers track allows you to play sounds with complex effects.

Tween Media handlers

Using the Tween Media handlers supplied by QuickTime 2.5, developers only need to specify the start
and stop volume vaues for each sound channel; the Tween component generates all the intermediate
volume vaues. Thisisin contrast with QuickTime 2.1, which did not have the Tween Media handlers;
volume pans would have to be done with numerous discrete values. The Tween Media handlers smplify
things by alowing the developer to smply specify start and stop values; the Tween Media handler takes
care of coming up with the correct discrete value as the movie (sound) progresses.

For more information about how to use Tween Media handlers, see chapter 13 of the "Developer's
Guide: QuickTime for Macintosh version 2.5".

Modifier tracks are talked about in "Devel oper's Guide: QuickTime for Macintosh version 2.5" starting
on page 1-21.

Monitoring a Sound Channel

Some devel opers wish to monitor sound output channels for various purposes, such aslevel metering. In the past,
such an activity was very difficult because there is no easy way to get the Sound Manager's buffer; you had to guess
where you were in the currently playing sound.

Sound Manager 3.2.1 helpsto solve this problem by allowing usersto install pre-mixer components. These are
components that are installed in the component chain right before the Apple Mixer component.

A pre-mixer component sees the converted sound data from the channel it isinstalled on. That is, it seesthe
uncompressed, rate-converted, channel-converted, and size-converted data that the Apple Mixer isgoing to mix in
with the other currently playing sounds.

TN 1108: Unknown Sound Features Page: 6

Currently, thereisno way to install a post-mixer component which would see the mixed result of all sound channels.
Well, actually thereis, they are called sound output components.

Writing a pre-mixer component isjust like writing any other sound component see Inside Macintosh: Sound
chapter 4 for the required selectors a sound component must support.

Toinstall apre-mixer component, you use anew SPBSet Devi cel nf o selector, si PreM xer SoundConponent and
pass a pointer to SoundConponent Li nk that describes the pre-mixer component you want installed.

This sample function shows how to create a simple sound channel with a specific pre-mixer component installed on
that sound channel.

SndChannel Ptr Creat eChannel Wt hPreM xer (SndCal | BackUPP cal | backRouti ne, OSType pntSubTye)
{

SoundConponent Li nk preM xer Cnp;

SndChannel Pt r t heChannel = nil;

CSErr err;

/* create a new sound channel */
err = SndNewChannel (&t heChannel, sanpledSynth, O,
cal | backRout i ne) ;

if (err == noErr) {
/* define the pre-m xer conponent */
preM xer Cnp. descri pti on. conponent Type = kSoundEf f ect sType;
preM xer Cnp. descri pti on. conponent SubType = pntSubTye,;
preM xer Cnp. descri pti on. conponent Manuf acturer = 0;
preM xer Cnp. descri pti on. conponent Fl ags = 0;
preM xer Cnp. descri pti on. conponent Fl agsMask = 0;
preM xer Chp. i xerI D = nil;
preM xerCnp.linklD = nil;

}
if (err == noErr) {
/* install the pre-m xer conponent BEFCRE the Apple M xer */
err = SndSet | nfo (theChannel, siPreM xer SoundConponent, &preM xer Cp) ;
}
if (err !'= noErr) {
t heChannel = nil;
}

return (theChannel);

To send and receive information to and from your pre-mixer component, use the SndSet | nf o and SndGet | nf o
functions, respectively. For example, this call could get the current value from your level meter component:

err = SndGetlnfo (theChannel, LMWal ue, &l evel);

Significant Restriction

There is one significant restriction on pre-mixer components -- they cannot increase the length of the sound. Thisis
an important restriction if you happen to be writing areverb or fade component. In order for these types of effectsto
work correctly, the sounds that are played must have long silent endings that the component can replace with its
effect. A pre-mixer component can shorten the length of a sound, but it cannot increaseit.

TN 1108: Unknown Sound Features Page: 7

Summary

These are some of the lesser known features of the Sound Manager. Now that you know them, | hope
you will be able to take advantage of them and produce some of the best sounding applications on the
planet.

Further References

o Inside Macintosh: Sound

o The Sound Manager's web page

e Sound Manager addendum

o Technote 1048: Some Sound Advice: Getting the Most Out of the Sound Manager

Downloadables

E Acrobat version of this Note

To contact us, please use the Contact Us page.
Updated: 6-February-98

Technotes
Previous Technote | Contents | Next Technote

