
Technote 1001 - On Power Macintosh Interrupt
Management

Page: 1

Technotes

Download

Acrobat file (149K)

Download

AppleWorks file (41K)

On Power Macintosh Interrupt Management

Technote 1001 OCTOBER 1995

The Note briefly addresses porting existing 68K interrupt code to the NuBus PowerPC. It then
discusses the new interrupt management scheme developed for PCI PowerPC.

This Note is written for driver writers developing drivers of type 'ndrv' for PCI Macintosh computers
and for any developer whose code makes calls to the Device Manager as a client of these drivers.

Contents

About Power Macintosh Interrupt Management
PCI-Based Power Macintosh Interrupt Management
Summary

About Power Macintosh Interrupt Management
Both the 68K and PowerPC microprocessors can be run in two modes: user and supervisor. The Mac
OS runs in supervisor mode on both 68K and PowerPC Macintoshes. On 68K Macintoshes, the Mac
OS allows any code to access supervisor mode. All code, therefore, has access to the status register,
which can be used to program interrupts. With the introduction of the PowerPC, the Mac OS enforced
the lock between the PowerPC user and supervisor modes. As a result, the PowerPC status register is no
longer available for working with interrupts. To compound the interrupt problem, the 68K
microprocessor has seven levels of available interrupts while the RISC- based PowerPC only has one
interrupt level, requiring a different interrupt model.

Note:
Not all interrupt levels are used by the 68K Mac OS.

Porting 68K Interrupt Code to PowerPC

All code dealing with 68K interrupts (seven levels) is emulated on the PowerPC, since there is no
transformation from seven levels to one. The mechanism for dealing with 68K code on PowerPC is the
68LC040 emulator. Therefore, developers may choose not to port at all and can be assured that their
68K interrupt code will run on the PowerPC.

For those few who choose to port parts of 68K 'DRVR'driver to a native PowerPC code, 68K
non-interrupt code can be ported, but the interrupt handling code must remain emulated because a native
interrupt handler would not be able to access the PowerPC status register to block interrupts. If you
were to use any PowerPC assembly language instructions dealing with that status register, you would
cause a fatal supervisory exception. By leaving the interrupt handler as 68K code, that code could

Technote 1001 - On Power Macintosh Interrupt
Management

Page: 2

continue to "access" the 68K status register because the emulator provides these services to drivers. The
native portions of these drivers will have to use UPPs to interface correctly with the 68K Device
Manager. Even though the PowerPC code will have to go through a mixed mode switch for interrupt
handling, the developer may choose to go this way because the bulk of the remaining code is PowerPC
and could increase performance. This Note, however, does not address the details of using the Mixed
Mode Manager.

See Inside Macintosh: PowerPC System Software for using 68K code with PowerPC code via the
Mixed Mode Manager.

Note:
For more details, see Inside Macintosh: PowerPC System Software , p. 1-6.

PCI-Based Power Macintosh Interrupt Management
With the introduction of the 9500 Power Macintosh, Apple has replaced its NuBus I/O model with the
PCI I/O model and defined a new interrupt management scheme. This scheme is explained in detail in
Designing PCI Cards and Drivers for Power Macintosh Computers , Chapter 9, Driver Services
Library (DSL).

In this new I/O model, there are multiple levels of executions, including application, secondary, and
primary execution levels that replace the old method of using interrupts to protect data. The primary and
secondary execution levels are specifically for drivers and cannot use Toolbox services. Note that not a
single Toolbox Manager is available. The services supplied at these primary and secondary levels via the
Driver Services Library (DSL) include interrupt services. Other services, which replace the need to turn
off interrupts that protect your data, include:

memory management
timing services
atomic operations
queue operations
string operations
debugging support

There are limitations placed on the execution context for some of these services. If you're an application
developer, this means that some of these services - including interrupts - are off limits to your
application. For the PCI driver writer, it means that these services, which exclude the Toolbox, are now
your domain.

Again, there is no way to turn off the one and only interrupt on the PowerPC. If you are writing a driver,
you may need to deal with a hardware-generated interrupts, assuming your device generates one. For
example, a video driver may not generate one while a network driver most likely would. Also, there are
new mechanisms and assumptions on how to deal with hardware generated interrupts.

The following example is one type of transactions between an application and a 'ndrv'driver. There are
other transactions at present and there will be more types defined with future releases of the Mac OS.

An Example - A Simple Read Transaction

Consider the following scenario. A PCI card in an expansion slot is capable of asynchronously reading
data from an external source into the Macintosh main memory. This basic sample will describe this read
transaction and what must be done to service the device generated interrupt. But there is an important
caveat here. The driver in this example is a generic PCI driver of type 'ndrv', as defined in Designing
PCI Cards and Drivers for Power Macintosh Computers .

By choosing to write this kind of driver and following all of the guidelines in the above manual, you
guarantee compatibility with future releases of the MacOS.

When the driver is loaded into memory by the Mac OS, the driver installs its interrupt routines and data
in the Interrupt Source Tree (IST). It does so by using the Driver Services Library (DSL) routine
InstallInterruptFunctions. The routines are used to disable, enable, and service device interrupts.

At some point, code running at the task level makes a PBRead asynchronous call to the driver via the

Technote 1001 - On Power Macintosh Interrupt
Management

Page: 3

Device Manager using a data structure called an I/O Parameter Block (IOPB). Of special note here
is that in the past, calls such as this one may have had private pointers contained in the parameter block
that was passed to the driver. This will not work in future releases of the Mac OS because of the
pending implementation of multiple address spaces. Publicly-documented buffer pointers and IOPB
structures will continue to be supported.

The Device Manager makes a call to DoDriverIO with a read selector. The driver does what is necessary
to set up its device for an asynchronous read and returns to the Device Manager with no return error and
no indication that the read has been completed. The driver has completed its first task. The Device
Manager returns to the caller. When the read has completed, the hardware generates an interrupt which
is detected by the Mac OS. Using the interrupt structure which contains the address of the interrupt
service routine (ISR) for the device, control is passed to the ISR.

The ISR is allowed to complete its function uninterrupted, which is why an ISR must make every effort
to spend as little time as possible servicing its device at the primary interrupt level. The driver should
then queue a secondary interrupt handler to do any remaining work to service the device and/or the data
using the DSL function QueueSecondaryInterruptHandler. This ensures that interrupt latency for
the system is kept to a minimum.

Returning Control to the Mac OS

Having completed those tasks, the ISR returns control to the Mac OS. Secondary interrupt handlers are
run before control is returned to task level code but can still be preempted by other primary interrupt
handlers. By using the secondary interrupt handler to complete non-device-related tasks belonging to the
read transaction, the driver writer is not locking out other code and is behaving appropriately in a
multitasking environment. The secondary interrupt handler finishes any remaining tasks if they exist and
makes a call to IOCommandISComplete passing a completion status, in this case, "read was successful."
The IOPB is updated by the Device Manager and control is passed back to the caller's I/O completion
routine.

And the point of this example? Interrupts are not available to applications, but there are ways for
applications and interrupt handlers to exchange information .

Note:
See Designing PCI Cards and Drivers for Power Macintosh Computers , Chapter 9, Memory
Management Services, p.240.

Summary
The PowerPC interrupt is not available to an application. Until the next major release of the Mac OS,
you can use the emulated 68K interrupt mechanism. Using the interrupt on the PowerPC is not an
option and would be catastrophic if attempted. Interrupts from expansion devices, however, are fully
supported in PowerPC for both NuBus and PCI slots. For more information about how to manage
expansion interrupts on the PowerPC with PCI, refer to Designing PCI Cards and Drivers for Power
Macintosh Computers .

Designing PCI Cards and Drivers for Power Macintosh Computers .
PowerPC 601 RISC microprocessor User's Manual MPC601UM/AD.
M68000 8-/16-/32-Bit microprocessors User's Manual, Sixth Edition, M68000UM/AD Rev 5.
Inside Macintosh: PowerPC System Software , Addison-Wesley

Technotes
Contents | Next Technote

