Technote 1169

The Download M anager

TN 1169: The Download Manager

CONTENTS

Introduction

Section 1:
Download Manager Client APIs

Downloading Files

The Status-1dle Procedure
Utility Functions For A
Client’'s Use of the
Download Manager
Downloading Streams
Additional Utility Functions

Section 2 :
Low-level Converter Interface

Streams Information
Additional Functions For
Random-A ccess Streams
Low-level Converting
Routines

Getting Information For A
Client

Peeking At The Data
Queries

Doing The Conversion
Converter Capabilities
Utility Functions

Errors

Logging

Summary
Downloadables

This Technote is divided into two sections. Section 1

discusses the Download Manager API that Download
Manager clientswould use to call the Download Manager
to cause afile, or other data, to be downloaded to a
PostScript printer. (The Desktop Printing softwareis an
example of aDownload Manager client that usesthis
APIL.) Writers of low-level converters should read Section
1 to get an overview of the environment in which their
converter will operate.

Section 2 discusses the APIs that the Download Manager
usesto call the low-level converters. Thismaterid is
intended for the writers of the low-level converters which
are called by the Download Manager.

In addition to downloading files to a PostScript output
device, itispossible for aclient to provide the datafrom a
source other than afile or to obtain the PostScript output
dataitself rather than have it transmitted to a device.
Programmers who wish to create a Download Manager
client that supplies the data to convert and/or aclient that
receives the Download Manager generated PostScript
output should read the discussion of streamsin Section 2.

Moreoever, programmers who wish to create a Download
Manager client that only downloads files to a PostScript
output device need not read Section 2.

| ntroduction

PrintingLib version 8.6, which isincluded with LaserWriter 8 version 8.6, adds new functionality. One

part of thisfunctionality is the Download Manager, which allows clientsto print data to PostScript printers

without launching a separate application. LaserWriter 8.6 also added the Printing Plug-ins Manager and
Custom Hose support. These other features will be described in separate Technotes.

The Download Manager alows a client, such as Desktop Printing, to print documents directly to a
PostScript printer without launching a separate application. There are several benefitsto printing the data
directly. Since applications tend to be memory intensive and relatively slow to launch, the Download
Manager can call aconverter plug-in and start the job printing more quickly. Rather than having an

application convert the data to QuickDraw and then have the printer driver convert the QuickDraw data to
PostScript, the Download Manager alows the image data to be converted directly to PostScript. This

TN 1169: The Download Manager

lowers the overhead involved with converting adata format to PostScript, and also allows more efficient
PostScript code to be generated. An extra benefit to this processis that the user need not necessarily have
an application which can open and print the document.

Here' s how it works: the user drags a given file onto a desktop printer. The Desktop Printing software
then asks the Download Manager whether it knows how to download thisfile. If the Download Manager
says yes, the Desktop Printing software calls the Download Manager to download the file. If the
Download Manager cannot handle the file, Desktop Printing opens the application with aprint event asit
did before the Download Manager existed and the user can print the document from the application.

Note:
The Download Manager is not restricted to use by the Desktop Printing software and can be used by
other clients.

The design of the Download Manager is intended to be modular, so that it can download new data types
without being changed itself. It doesthis by using converter module plug-ins, referred to here as
“low-level converters.” These components are the functional units which convert agiven datatype into
PostScript language code appropriate for sending to a PostScript printer. These low-level converters are
shared libraries which conform to the interface required by the Download Manager.

The Download Manager currently provides severa built-in converters together with the ability to drop new
low-level convertersinto aspecial folder so they are available for use with the Download Manager.
PrintingLib version 8.6 and later provide converters to handle PostScript and EPSfiles, PICT datafiles,
and non-progressive JPEG images.

To provide an idea how this dl tiestogether in Mac OS 8.5, Desktop Printing is a client of the Download
Manager. The Download Manager uses the Printing Plug-ins Manager to manage its plug-ins, which
include low-level converters and custom hoses. Low-level converterstake afile of a given type and convert
it directly to PostScript, without going through an application or adriver. The Download Manager then
sends the generated PostScript to the printer using a custom hose, which is specified by the Desktop
Printer.

Page: 2

TN 1169: The Download Manager

Download
Manager
Client
(e.g. DTP)

Download Manager ‘ Custom
Hose
+_+ fj : $
JPEG PSIEPS PICT
Converter converter s converter

Low Level Conventers m

Back to top

Section 1

This section discusses the calls that a Download Manager client uses to download data through the
Download Manager. Most Download Manager clients can ignore Section 2, which discusses the APIs
that the Download Manager itself usesto call the low-level converters. The section File Download

Example is an example of using the Download Manager to download afile. Thisis the approach that the
Desktop Printing software uses.

Download Manager APls

The Download Manager APIsallow a client to determine whether the Download Manager, together with
the current set of low-level converter modules available, can convert and download a given piece of data.
This data may be the datafork of afile, or it may be supplied by the client via a stream mechanism which
is defined below. Once the client has determined if the Download Manager can handle the data, it callsthe
Download Manager routine to invoke the processes of conversion and downloading.

Back to top
Downloading Files

This section of the document describes the high-level APIsthat a client of the Download Manager, such as
the Desktop Printing software, would call to download fi | es. Firgt, the client callsthe
psCanDownl oadFi | e routine:

Page: 3

TN 1169: The Download Manager Page: 4

psCanDownl oadFi | e

CSSt at us psCanDownl oadFi | e(const FSSpec *fil eSpecP,
Col l ection hints, Handl e papaHandl e,
Bool ean *canDownl oadP,
Downl oader | nf o *downl oader | nfoP, Str255 errReason);

psCanDownl oadFi | e asksthe Download Manager whether it can download the file represented by
fil eSpecP.

fil eSpecP isapointer to an FSSpec corresponding to the file to be downloaded.

hi nt s isaCollection containing information about the destination output device and possibly user
requests for how the data should be converted and downl oaded.

papaHandl e isahandleto aPAPA for the target output destination.

canDownl oadP isapointer to aBoolean that is set to true or false depending on whether the file can be
downloaded by one of the low-level converters available to the Download Manager.

downl oader I nf oP isapointer to aDownl oader | nf o structure that the client usesto call the
psDownl oadFi | e routine of the Download Manager (described below). The Downl oader | nf o Structureis
defined asfollows:

typedef struct Downl oader | nf of
unsi gned char converterl D 256];
} Downl oader | nf o;

The Download Manager routine psCanDownl oadFi | e writes information into the Downl oader | nf o
structure, which it can later use to select which low-level converter to use for the download.

Theer r Reason argument to psCanDownl oadFi | e isapointer to ast r 255 which may befilled in with a
text string message should an error occur during this call. Thisis supplied to facilitate reporting problems
back to clients of the Download Manager.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

Note that whether the Download Manager can handle a given file may be dependent on the hi nt s
collection and papaHandl e passed to psCanDownl oadFi | e. If thetarget device changes,

psCanDownl oadFi | e should be called again to ensure that indeed the Download Manager can download
the file to the new target device. It is possible that thiswill not be the case, or, the Downl oader I nf o
returned will differ from that originally obtained. This comment is specifically directed to clients such as
the Desktop Printing software, where dragging files from one DTP queue to another must be considered.

Once aclient determines that the document can be downloaded by the Download Manager, it can call the
routinepsGet Downl oadDocunent | nf o to obtain information (such as number of pages) about the
document. The structure Downl oadDocunent | nf o (described shortly) isfilled in by this call with
information determined by the Download Manager and the low-level converter.

psGet Downl oadDocunent | nf o
CSSt at us psGet Downl oadDocunent | nf o(const FSSpec *fil eSpecP,
Col I ection hints,
const Downl oader | nfo *downl oader I nf oP,
Downl oadDocunent | nf o *downl oadDocl nf oP,
Str255 errReason);

TN 1169: The Download Manager

psGet Downl oadDocurrent | nf o asks the Download Manager to gather document information about afile.
fil eSpecP isapointer to an FSSpec corresponding to the file for which the information is requested.

hi nt s isaCallection containing information about the destination output device and possibly user
requests for how the data should be converted and downl oaded.

downl oader I nf oP iSapointer to the data returned by psCanDownl oadFi | e when it can download the
file. This allowsthe Download Manager to find the converter which it determined can handle the download
during theps CanDownl oadFi | e call.

Note that the Downl oader I nf o datareturned by psCanDownl oadFi | e can be stored and reused at alater
time. There is nothing in the Downl oader | nf o structure that can’t be used across reboots. It is possible
that the low-level converter referenced in the Downl oader | nf o Structure may not be available at alater time
due to user actions such as deleting the converter. Download Manager clients should be prepared for the
error er r I nval i dDownl oader | nf o if asaved Downl oader | nf o structureis used. An additional
disadvantage of saving the Downl oader | nf o Structure isthat alow-level converter later added to the
system will not be used, evenif it is better able to handle the data.

downl oadDocl nf oP isapointer to a Downl oadDocunent | nf o structure. The Downl oadDocunent | nf o IS
astructure to receive the dataand is defined shortly.

err Reason isapointer to ast r 255 which may be filled in with atext string message should an error

occur during thiscall. Thisis supplied to facilitate reporting problems back to clients of the Download
Manager.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

DownloadDocument! nfo structure

The Downl oadDocunent | nf o structure filled in by psGet Downl oadDocunent | nf o isdefined as:

t ypedef struct Downl oadDocunent | nf of

Sl nt 32 versi on; /1 caller must set to 1

GCSType type;

Bool ean i sManual Feed; //true if job is manual feed, el se false.
Sl nt 32 pages; /1l Unknown = -1

Sl nt 32 copi es; /1 Unknown = -1

Str 255 creator; /1 unknown for npbst converters use "\p"
Str255 title; /1 unknown for nobst converters use "\p"

} Downl oadDocunent | nf o;

Thever si on field should be set to the version of the structure that the caller of
psGet Downl oadDocument | nf o supplies. Thisalows for the ability in the future to supply a pointer to a
larger structure that potentially provides additional data. The only version defined at thistimeisversion 1.

Thet ype field of this structure is the type of document being downloaded. The type of data may in some
cases not be known by the Macintosh Finder TYPE information, but instead might be only known to a
low-level converter that knows how to handle the data. The type returned here is available for aclient to use
asit wishes; for example, aclient could have a specia icon for different document types. Thelist of types
which might be returned by this call is unlimited since new converter modules can be added via Plug-Ins.
The types which have been defined to date are:

e 'EPSF': Encapsulated PostScript File
e 'PSDC'": PostScript file, clamsto be DSC 3.0 conformant or greater
e 'PSUN': PostScript file, does not claim to be DSC 3.0 conformant or greater

Page: 5

TN 1169: The Download Manager

‘JFIF: JPEG datafile

'PICT": Macintosh PICT datafile

'TIFF: TIFF datafile

TEXT": Plain text fileto be treated as unformatted text
'PDF ': Adobe Systems' PDF document format

Thei smanual Feed field allows the Download Manager to notify the caller that this download job
requests manual feed. This alows aclient, such asthe Desktop Printing software, to notify the user when a
manual feed job begins. Note that it is possible that the print job requests manual feed, but itisa
save-to-disk job. In this case, it would be inappropriate to aert the user that a manual feed job is starting
sinceadisk fileisbeing written and isnot a print job to alive printer. A routineis availablein

Feat ureUti | sLi b called psl sJobPri nt ToDi sk which Download Manager clients can call if

i sManual Feed iSSet to true.

Thepages field of the Downl oadDocunent | nf o isthe number of pagesin the document. For some types
of documents handled by the Download Manager it may be unknown and thisisindicated by use of the
vaue-1.

Thecopi es field of the Downl oadDocunent I nf o isthe number of copies of the document which will be
printed. (Thisistypically 1, but there are some situations where it might be different. For many low-level
converters handling of features, this reflects the default number of copiesthat the user has as their saved
defaults for the Print Dialog. If the user has a different saved default for the number of copies, many
converters respect that and report it here.) Currently there is no straightforward way to know the number
of copies for most PostScript files and thisisindicated by the value -1 for the number of copies.

Thecr eat or field of the Downl oadDocument | nf o isatext string indicating the name of the application
used to create the original file. Thisis unknown for many document types, but for PostScript files
containing the 984Cr eat or comment, the application creating the document may be available. If the
document cresator is not available, the creator field of the Downl oadDocurrent | nf o is azero-length string.

Theti t1 e field of the Downl oadDocunent I nf o isatext string which indicates what the origina file name
was when creating thisfile. Thisis unknown for many document types, but for PostScript files containing
the9edi t | e comment, the name of the original document may be available. If the origina document titleis
not available, thetitle field of the Downl oadDocunent I nf o iSazero-length string.

psDownloadFile

Once the Download Manager client has determined that the file can be handled by the Download Manager,
it callsthe psDownl oadFi | e routine to perform the download:

CSSt at us psDownl oadFi | e(const FSSpec *fil eSpecP,
Col l ection hints, Handl e papaHandl e,
const Downl oader | nfo *Downl oader | nf oP,
Statusl dl eProcUPP idl eProc, void *clientldl eParans,
Str255 errReason);

psDownl oadFi | e causes the Download Manager to download the file represented by f i | eSpecP using
the converter specified in downl oader | nf oP.
fil eSpecP isapointer to an FSSpec corresponding to the file to be downloaded by psDownl oadFi | e.

hi nt s isaCallection containing information about the destination output device and possibly user
requests for how the data should be converted and downl oaded.

papaHandl e isahandleto a PAPA for the target output destination.

Downl oader | nf oP isapointer to the data returned by psCanDownl oadFi | e when it can download the

Page: 6

TN 1169: The Download Manager

file. This allows the Download Manager to find the converter which it determined can handle the download
during a prior psCanDownl oadFi | e call.

Note:
The Downl oader I nf o datareturned by psCanDownl oadFi | e can be stored and reused at alater time.

Thereisnothing in the Downl oader I nf o structure that can’t be used across reboots; however, it is
possible that the low-level converter referenced in the Downl oader | nf o structureisnot available at alater
time due to user actions such as deleting the converter. Download Manager clients should be prepared
for errors when a saved Downl oader | nf o structure is used.

i dl eProc isaUniversa Proc Pointer to aroutine supplied by the caller of psDownl oadFi | e, i.e, the
Download Manager client. The Download Manager callsthisi di ePr oc routine with status information
during the download. Thei dI ePr oc routine isresponsible for giving time to other applications, reporting
status information to the user and handling user interactions with the client as the download proceeds.

client!dl ePar ans isapointer to data supplied by the Download Manager client. This pointer is
supplied as part of the data passed to each call of thei dI ePr oc during the download.

Note:
The resource chain at thetimethei di ePr oc iscalled is not guaranteed. The Download Manager and its

low-level converters may open resource files and add them to the resource chain during their execution.
Clientswhosei dI ePr oc routines require resources from their resource files should take care to ensure
that any additional open resource files are not in the way. The most straightforward way for a client to do
thisisto have afield intheir cl i ent | dI ePar ans structure which isthe current resource file at the time
they call psDownl oadFi | e. Inaddition, ani di ePr oc muse preserve the resource chain. If you change
the resource chain in your i dl ePr oc, you must save and restore the resource chain using Cur ResFi | e

and UseResFi | e.

Theer r Reason argument to psDownl oadFi | e isapointer to a st r 255 which may befilled in with atext
string message should adownload fail. Thisis supplied to facilitate reporting problems back to clients of
the Download Manager.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

The error value er r Cant Handl eThi sDownl oadDat a (defined in DownloadMgrLib.h) is a specia error
value that may be returned by the psDownl oadFi | e cal if aconverter module determines that, even though
it previoudy reported that it could download afile, it has now determined that it can’t download that file.

This should be arare occurrence.

Back to top

Page: 7

TN 1169: The Download Manager

The Status-1dle Procedure

Thei dI ePr oc supplied to the call psDownl oadFi | e isaUniversal Proc Pointer containing a procedure of
typest at usl dl eProc. Thisisdefined asfollows:

t ypedef pascal OSStatus(*Statusldl eProc)(Downl oadl dl el nfo *param;
This procedure is called with a pointer to a Downl oadl dl el nfo structure.

This structure is defined as foll ows:
t ypedef struct Downl oadl dl el nf o

void *clientldl ePararns; /*the client's Idl eParam data */
| ong current Page; /* -1 means Unknown */
| ong t ot al Pages; /* -1 nmeans Unknown */

short percentageDownl oaded; /* -1 means Unknown, otherwi se
/* ranges fromO to 100 */
PSSecti on section; /* one of the PSSection
val ues from PSSectionlnfo.h */
PSSubsecti on subsecti on; /* one of the PSSubsection
val ues from PSSectionlnfo.h */
voi d *statuslnfoP; /* pointer to data appropriate
for this download idle call.
See PSSectionlnfo.h for
detail s.
*/
} Downl oadl dl el nf o;

Thest at usl dl ePr oc issupplied by the client and is called by the Download Manager during the
download. cl i ent | dl ePar ans iSthe data pointer supplied by the client asthecl i ent | dl ePar ans
parameter to the psDownl oadFi | e call.

Thecurrent Page andt ot al Pages fieldsarefilled in if and when the Download Manager can determine
this data.

Theper cent ageDownl oaded field reflects the progress of the download. The Download Manager uses
the percentage of the input data read by the converter during the download as its way of reporting
progress.

Note:

If alow-level converter does not read the file datain a sequential fashion, the Download Manager will set
theper cent ageDownl oaded field to “Unknown” and no longer update the per cent ageDownl oaded
field during that download. Since thisfield may be* Unknown, ” a status bar should properly change its
indicator to “ Unknown” accordingly.

The section field indicates which phase of the download is currently in progress. Currently the possible
section values are kSect Cover Page, kSect Anon, kSect Peek, kSect Quer yJob, and kSect Job.

The subsection field contains Document Structuring Conventions information or other section information
about the PostScript data being downloaded (see the heading Downloadl dlelnfo Section, Subsection and
Statusinfo below).

Thest at usl nf oP field contains a pointer to information corresponding to the current subsection. For
example, if the subsection iskSubsSt at usSect i on, theinformationin st at usl nf oP isapointer to a
Pascal string containing a status message from the printer and should be treated accordingly. If the
subsection iskSubBegi nFont , thest at usl nf oP contains a pointer to a DSCDat a structure describing the
font being downloaded. If the subsection iSskSubPr i nt er Er r or Sect i on, thest at usl nf oP containsa
pointer to a Pascal string describing a printer error condition, such as out of paper, that requires user
intervention.

Page: 8

TN 1169: The Download Manager Page: 9

Theclient’sst at usl dI ePr oc isrequired to give timeto other applications, handle user interactions with
the client and report status to the user. If St at us! dl ePr oc returns an error, the Download Manager aborts
the download.

Downloadl dlel nfo Section, Subsection, and Statuslnfo

TheDownl oadl dlI el nf o structure has fields which supply status information about the download to a
client’s st at usl di ePr oc. Thefirst of thesefieldsis the section field which is of type PSSect i on. A
PSSect i on value provides overall information about what part of the download isin progress. PSSect i on
values consist of kSect Anon, kSect Quer yJob, kSect Cover Page, kSect Job, and kSect Peek. The
definition of PSSect i on isin the “PSSectioninfo.h” header file. The Download Manager is responsible
for setting the section field of the Downl oadl dl el nf o structure and does this as it processes the different
sections of the download job.

ThePssect i on field corresponds to the various parts of a download: the query, peeking at the data that a
low-level converter can do as part of a download, the cover page (if thereis one) and the actual download
jobitself. A converter doesn't start generating PostScript data until the kSect Cover Page Or kSect Job
PSSection values are seen.

The subsection field is of type PSSubsect i on. A subsection value provides finer granularity in the
reporting of progress of the download job. Typically the subsection values correspond to Document
Structure Conventions (DSC) comments which have awell-defined meaning. A few subsection values
have been added to provide additional information. Each section can contain the same subsection values,
although most of the subsections apply only to the kSect Job, kSect Cover Page, and kSect Peek sections.

The Download Manager generates status and error subsection values. Beyond that, each low-level
converter moduleis responsible for generating subsection values during the download. While any
subsection value from the list in “PSSectioninfo.h” is possible, Table 1 lists those most likely to be
generated by existing low-level converters. No one converter necessarily generates all of these subsection
valuesfor each job.

TheDownl oadl dl el nf o structure contains ast at us| nf oP field which isdeclared asa (voi d*) field.
Thest at usl nf oP field may be NULL in any subsection, meaning that the subsection valueis being
reported without any additional information. If the dataisnon- NULL, it isapointer to a data type that
depends on the subsection being reported in the Downl oadl dli el nf o structure. The complete list of
subsections together with their info field structure islisted in "PSSectioninfo.h." Table 1 below liststhe
ones most likely to be seen.

Note:
Itisimportant for ani di ePr oc to check that the st at us! nf oP field isnot NULL before attempting to
dereferenceit.

For example, the low-level PostScript converter module (which downloads PostScript and EPS input data)
generates the k SubPages subsection when the section iskSect Job or kSect Peek and it encounters the
wPages DSC comment in the PostScript data. At that time, it reports the kSubPages subsection with the
st at usl nf oP field pointing to an SI nt 32 vaue that is the number of pagesin the document.

Tablel

Subsection I DSC Comment		statuslnfo structure		
kSkSubPSAdobe		%! PS-Adobe-x.y		Fixed
kSubPSAdobeEPS		%! PS-Adobe-x.y EPSF-a.b		EPSFVersion
kSubBoundingBox		%6%6BoundingBox	[DSCBBoX	
kSubDocData		%%DocumentData	[DSCDocumentDatA	
kSubEndComments		%%EndComments	[none	

|

|kSubL angL evel || %%6L anguagel_evel |[SInt32

TN 1169: The Download Manager

[kSubPages |[%6%Pages I[Sint32 |
|kSubContinue || %%+ |[DSCContinuationData |
|kSubBeginProlog ||%%BeginProlog |[none |
EndProlog %%EndProlog none
[KSubEndProl |[%%EndProl I |
kSubBeginSetup		%6%6BeginSetup	[none
kSubEndSetup		%%EndSetup	[none
kSubBeginPageSetup		%6%6BeginPageSetup	[SInt32 (page #)
kSubEndPageSetup		%%EndPageSetup	[SInt32
kSubPage		%6%6Page	[DSCPage
kSUbEOF		%%EOF	[none
DocN Res Yo%DocumentN Resources	[DSCData		
[kSubDocNeeded (%9 eeded [DSC			
DocSuppliedRes %%DocumentSuppliedResources		DSCData	
kSubDocSupplied Supplied SC			
SubDocFonts %%DocumentFonts DSCData			
kSt			
oc onts 0%Document onts ata			
[kSubDocNeededF	[%2%6D NeededF [DSCD		
kSubDocSuppliedFonts		%%DocumentSuppliedFonts	
kSubBeginFeature		%6%6BeginFeature	
kSubEndFeature		%%EndFeature	[none
kSublncludeFeature		%%l ncludeFeature	
kSubBeginFont		%6%BeginFont	[DSCData
kSubEndFont		%%EndFont	[none
kSubBeginBitmapFont		%6RBIBeginBitmapFont	
kSubEndBitmapFont		%RBIEndBitmapFont	[none
kSubBeginTrueTypeFont		%RBIBeginTrueTypeFont	
KSubEndTrueTypeFont		%RBIENdTrueTypeFont	[none
kSubBeginTrueTypeScaler		%RBIBeginFontRasterizer	[none
kSubEndTrueTypeScaler		%RBIEndFontRasterizer	[none
kSubl ncludeFont		%%l ncludeFont	[DSCData
kSubBeginResource		%6%6BeginResource	[DSCData
kSubEndResource		%%EndResource	[none
kSublncludeResource		%6%6I ncludeResource	[DSCData
kSubStatusSection		(see below)	
kSubPrinterErrorSection		(see below)	
kSubFatal PrinterErrorSection		(see below)	
kSubGiveUpTime		(see below)	[none
kSubL ogWarningData		(see below)	[DSCLogData
kSubL ogErrorData		(see below)	[DSCLogData

A few of the subsections do not correspond to DSC comments but instead are used to convey information
to the client such as status data, printer error conditions, and error or warning messages from a converter.

TheksSubst at usSect i on subsection contains the normal status during the download as reported from a

Page: 10

TN 1169: The Download Manager

live printer or the save-to-disk process. Thisisnormally seen as a status narration line in the Download
Manager client’s downloading dialog.

ThekSubPri nt er Error Sect i on subsection is used to report a printer error condition that should be
reported to the user. Usually a client reports the error through a notification. This subsection is supplied
repeatedly until the printer error condition is cleared. These messages are strings such as “ out of paper”,
“cover open”, and “paper jam”.

ThekSubFat al Print er Error Sect i on subsection is used to report fatal printer errors to the user. The
fata printer error isusually a PostScript error.

ThekSubG veUpTi me subsection isused by alow-level converter when it has no data to write but wants to
give timeto the Download Manager and its clients.

ThekSubLogWar ni ngDat a subsection is used by alow-level converter to report warning conditions to the
client. These are not fatal errors, but rather conditions which might lead to afailure in the download. For
example, the PostScript converter suppliesawarning if the document being downloaded requires a
PostScript language level greater than the target output device supports. Thiswill very likely resultina
PostScript error during the download, but the warning itself does not result in an error. A savvy client
could warn the user, if it were so configured.

ThekSubLogEr r or Dat a subsection is used by alow-level converter to report an error condition to the
client. After reporting this error, the psDownl oadFi | e call will terminate with an error supplied by the
low-level converter. In thiscase, theer r Reason returned by psDownl oadFi | e isfilled in with atext
message supplied by the low-level converter.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

ThekSubLogWar ni ngDat a and kSubLogEr r or Dat a subsections can supply a pointer to a DSCLogDat a
structure asthe st at us| nf oP structure. This structure is defined as.

typedef struct DSCLogDat a{
PSSubsection | ogSubsecti on;
voi d *info;

Str 255 | ogMessage;

} DSCLogDat a;

Thel ogSubsecti on fieldisaPSSubsect i on value and it is the subsection to which the warning or error
corresponds. It iskSubAnon if it doesn’t correspond to any other PSSubsect i on. Theinfofieldisa
pointer to a structure which corresponds to the | ogSubsect i on value. That is, if theinfo fieldina
DSCLogDat a structure isnon- NULL, it points to whatever structure is appropriate for the PSSubsect i on
value of thel ogSubsect i on field, asdescribed in Table 1 above. Thel ogMessage fildisa st r 255
containing the actual text message.

For example, when the PostScript converter supplies awarning that the document being downloaded
requires a PostScript language level greater than the target output device supports, it suppliesa

DSCLogDat a structure wherethel ogSubsect i on vaueiskSubLangLevel .The structure pointed to by the
info field isan sI nt 32 with the vaue of the document’ s language level requirement (which, in this case,
exceeds that of the target output device). It also supplies awarning text message in thel ogMessage field.

Back to top
Utility Functions For A Client’s Use of the Download M anager
psCreateDM JobCollection

The Download Manager makes available aroutine called psCr eat eDMIobCol | ect i on. Thiscall provides

Page: 11

TN 1169: The Download Manager

one-stop shopping for clientsto prepare a collection for use with a given Download Manager job. For
example, the Desktop Printing software makes this call with information about the current driver, the PAPA
to use with that driver and apointer to aFSSpec representing the file to download. If thereis no error,
psCr eat eDMJobCol | ect i on returnsacollection to the caller which is appropriate for use with the
Download Manager routines ps CanDownl oadFi | e and psDownl oadFi | e. The collection represents the
printer defaults and those collection items appropriate for this particular download.

Depending on how aclient operates, it may be appropriate to call psCr eat eDMIobCol | ect i on once per
download job. It is necessary to call psCr eat eDMIobCol | ect i on only once to obtain a collection for
passing to ps CanDownl oadFi | e and the same collection can be passed to psDownl oadFi | e if the
collection is used immediately. If the collection needs to be stored, the target driver or printer changes, or
there isany chance that saved user defaults have changed, a client should call psCr eat eDMIobCol | ecti on
again to obtain a collection for passing to psDownl oadFi | e.

OSSt at us psCr eat eDMJobCol | ecti on(const FSSpec *dri ver FSSpecP,
Handl e papaHandl e, const FSSpec *theFil eP,
Col I ection *hintsP);

dri ver FSSpecP isapointer to aFSSpec corresponding to the driver for the target Desktop Printer (DTP).

It does not have to be the current system printer driver. Calling psCr eat eDMJobCol | ect i on does not
change the current system printer driver.

papaHandl e isthe PAPA to use for the target output device. It does not have to be the current PAPA in the
driver corresponding to dri ver FSSpecP, nor does this routine change the current PAPA for the driver
pointed to by dri ver FSSpecP.

t heFi | eP isapointer to an FSSpec for thefile to be downloaded.

If thereis no error, psCr eat eDMJobCol | ect i on returns a Collection corresponding to the default for the
current printer, updated appropriately with hints for a Download Manager job in * hi nt sP. This collection
isonly intended to be passed to the Download Manager and must not be used to update the any saved
defaults for agiven printer. The caler isresponsible for disposing of the collection properly.

File Download Example

For a Download Manager client such as the Desktop Printing software, downloading afileisfairly
straightforward. The following example illustrates the basics:

#i ncl ude " Downl oadMyr Li b. h"
#include "CientSample.h" // included with Sanple code
CSSt at us Downl oadFi | e(const FSSpec *dri ver FSSpecP,
const FSSpec *fsSpecToDownl oadP,
Handl e papaHandl e)

{
/*

dri ver FSSpecP isapointer to the FSspec for the PostScript driver for the target DTP. It does NOT have
to be the current system printer driver.

f sSpecToDownl oadP isa pointer to the FSSpec for thefile to download.

papaHandl e isahandle to the PAPA for the target output device. It does not have to be the current PAPA

contained in the driver corresponding to dr i ver FSSpecP, nor will this routine change that driver’s current
PAPA.

*/
OSStatus err = noErr;

Page: 12

TN 1169: The Download Manager Page: 13

Str 255 err Reason;

Col l ection hints = NULL;

Bool ean canDownl oad,;

Downl oader | nf o downl oader | nf o;

Downl oadDocunent | nf o downl oadDocunent | nf o;

/* We'll get our hints collection for use with this job.

*/

err = psCreateDMJobCol | ecti on(driver FSSpecP, papaHandl e,
f sSpecToDownl oadP, &hints);

/'l check to see if the Downl oad Manager can downl oad the file
if(lerr)err = psCanbDownl oadFi | e(f sSpecToDownl oadP, hints,
papaHandl e, &canDownl oad, &downl oader| nfo,
err Reason) ;

/1 get the information about the docunent
if(lerr &% canDownl oad) {
downl oadDocunent | nf o. version = 1;
/]l set the version
err = psGet Downl oadDocunent | nf o(f sSpecToDownl oadP,
hi nts, &downl oader| nfo, &downl oadDocunent | nf o,
err Reason) ;

if(lerr){
/1 do whatever we need with the docunent information
/'l we gathered in psGet Downl oadDocunent | nfo

}el se

// DM couldn't download the file so we'll set our

/1 our client’s private i DMCant Downl oadData error code
// to tell the caller of this routine that the DM

/!l couldn’t handle the data

err = i DMCant Downl oadDat a;

if(lerr){
/1 idleProc is a Universal Proc Ptr to our status
/1 idle routine downl oadl dl e
St at usl dl eProcUPP i dl eProc = MakeProcPtr (downl oadl dl e,
St at usl dl ePr ocUPP) ;
Di al ogPtr dial og = Get NewDi al og(STATUSDI ALOG | D, NULL,
(WndowPtr)-1);
i f(dialog){
ShowwW ndow(di al og) ;
DrawDi al og(di al og);

}

el se

err = ResError();
if(lerr){

Client Parans ourl dl ePar ans;
our |l dl ePar ans. st at usDi al og = di al og;
err = psDownl oadFi | e(f sSpecToDownl oadP,
hi nts, papaHandl e, &downl oader | nf o,
i dl eProc, &ourldl eParans, errReason);
Yoo . . .
i f(di al og) Di sposeDi al og(di al og);
i f(hints)DisposeCol | ection(hints);

/[l if we return the error code i DMCant Downl oadDat a t hen
// the caller will assune that the DM coul dn’'t handl e

TN 1169: The Download Manager

/] the data and will take alternative action, i.e. |aunch
/1 the application with a print event

return err;

}

The code example assumes that we' ve defined aroutine downl oadl di e to handle the statusidle calls and
that the routine MakePr ocPt r creates auniversal procedure pointer of type St at us! dl ePr oc UPP to be
used by the Download Manager to call the client’s downloadable routine.

The code example uses stack alocation for the er r Reason, downl oader I nf o, and
downl oadDocunent | nf o variables. Devel opers who are concerned about stack space usage may wish to
allocate these variables dynamically.

Back to top
Downloading Streams

Some Download Manager clients may have datawhich isnot in afile, but isinstead supplied in another
fashion. Other clients may want to direct the output to something other than a Desktop Printer and receive
the converted PostScript output data directly. In these cases, the client provides an input stream for reading
the data to convert and an output stream to which the Download Manager and the low-level converters
write,

psCanDownloadStream

Note that the details of the PSSt r eamdata type are discussed in detail in the section Streams Information
in Section 2.

CSSt at us psCanDownl oadSt r ean(PSSt r eam *stream OSType type,
Col | ection hints, Bool ean *doDownl oad,
Downl oader | nfo *downl oader | nfoP, Str255 errReason);

Thisfunction is similar to the psCanDownl oadFi | e routine except that, instead of supplying an FSSpec,
the caller provides a stream for reading the data and the type of the data. Here, the type of the dataisthe
same as the Finder Type would be if the data were stored in afile. When using this call, the client
guarantees that the stream is a stream type that can be positioned by users of the stream (see the section
Streams Information in Section 2 for more information about positioning a stream). That is, the Download
Manager and the converter modulesit calls are able to rewind or otherwise reposition the stream as
necessary.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

psCanDownloadData

If the client has data that allowsit to be read only once, the ps CanDownl oadDat a routine must be used
instead:

CSSt at us psCanDownl oadDat a(Str15 firstBytes, OSType type,
Col | ection hints, Bool ean *doDownl oad,

Downl oader | nfo *downl oader | nfoP, Str255 errReason);

Page: 14

TN 1169: The Download Manager Page: 15

Thisfunction is similar to the psCanDownl oadSt r eamroutine except that the caller providesthefirst 15
bytes of the datainthef i r st Byt es parameter. The Download Manager usesfi r st Byt es and the type of
data to determine which, if any, converter module best handles the download. Thisroutine is provided for
clients who cannot provide a stream which can be repositioned. Note that a number of low-level converters
may be completely excluded when using this type of stream.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

psDownloadStream

CSSt at us psDownl oadSt r eam(PSSt r eam *i nput St r eam
PSSt r eam *out put Stream Col | ection hints,
const Downl oader | nfo *downl oader | nf oP,
Str255 errReason);

Thisfunction is similar to psDownl oadFi | e except the client is responsible for providing both the data
input stream and the output stream for the converted data. If i nput St r eamis of atype that can be
rewound, the Download Manager callsthe psLowPeekConver t routine of the low-level converter used for
the download; otherwise, it does not. The Download Manager queries the output stream using

out put St r eamonly if the hints collection contains the kHi nt Downl oader DoQuer y Tag hint with value
true; if it doesn't, the creator of the stream is responsible for handling any queries and supplying their
results in the hints collection. If the Download Manager does not perform the queries, alow-level
converter does not have the opportunity to specify any queries.

A careful reader will notice that the ps CanDownl oadSt r eamcall does not have St at usl dl ePr oc or
client!dl ePar anms arguments. Because the Download Manager creates input and output streams for
psDownl oadFi | e, it knows how and when to extract data from those streams for the call to the client’s

i dl eProc. Sincethe client supplies these streams to the ps Downl oadSt r eamcall, the client isresponsible
for ensuring that the stream callback routines allow the client to give itself status information and other
applications processing time.

Note:
Even if an error occurs, er r Reason may contain a zero-length string.

Note:

The Download Manager and its low-level converters may change the current port and gDevi ce at the
time of their operation. Therefore the current gr af Port and gDevi ce a the time the client’s stream
routines are called is not guaranteed. Clients which require a specific gr af Port and gDevi ce are
responsible for setting that port in their stream routine’s equivalent of thei di ePr oc code. Thisaso
applies to the current resource chain: new resource files may be opened and added to the resource chain
by the Download Manager and its low-level converters. In addition, ani di ePr oc must preserve the
resource chain. If you change the resource chain in your i di ePr oc, you must save and restore the
resource chain using Cur ResFi | e and UseResFi | e.

Note:

The streams passed into the ps CanDownl oadSt r eam psCanDownl oadDat a and psDownl oadSt r eam
functions have functions which are called by the Download Manager and the low-level converters. The
callers of these functions are doing so using CFM-calling conventions and assume that the code they are
caling is of the same architecture as the machine. This forces the following constraint: these functions
must be PPC native on PPC machines and 68k code on 68k machines. More unusual is the requirement
that these routines must obey CFM-calling conventions on 68k machines, which means they must be
contained in aCFM library on both 68k and PPC machines.

Back to top

TN 1169: The Download Manager

Additional Utility Functions
psGetDownloadMgrLibVersion

The Download Manager provides an additional call for use by its clients:

OSSt at us psGet Downl oadMgr Li bVer si on(CFMVer si on *versi on) ;

ThepsGet Downl oadMr Li bVer si on routine allows clients and low-level converters to determine CFM
version data for the Download Manager library. The CFWer si on structureis defined as follows:

typedef struct CFMVersi on{
I ong definition;
I ong i npl ement ati on;
I ong current;

} CFMWer si on;

Readers familiar with the Code Fragment Manager will notice that thisinformation mirrorsthe version
information built into aCFM library. Unfortunately, in some versions of the system software, the

Get Di skFragment routine has abug that won't allow it to load alibrary unless the definition,
implementation, and current version numbers built into the library are al 0. To work around this bug, the
Download Manager must all have these version numbers set to zero. To make it possible for aclient of the
Download Manager to determine the actual version information of the Download Manager, this call
returns the version information for the Download Manager.

The Download Manager API does not contain any information about how to determine the location of the

plug-insfolder that it uses for its plug-in converters. See Technote 1170: The Printing Plug-ins Manager
for more information about calls relating to the “ Printing Plug-ins’ folder.

Back to top
Section 2

This section describes the public interface to the low-level converters that the Download Manager calsto
perform the data conversion portion of the download. Developers writing programs which only invoke
the Download Manager to download files to a desktop printer do not need to read this section to
understand how to call the Download Manager.

L ow-level Converter APIs

This section describes the APIs that the Download Manager usesto call the low-level convertersthat it
knows about. The Download Manager knows about the built-in converters (a set of shared libraries built
into PrintingLib) aswell as converter modulesin the “Printing Plug-ins’ folder in the Extensions folder.
Files containing converter module plug-ins must contain aresource of type ‘PLGN’, 1D -8192 with the

plug-in type ‘down’ and subtype ‘ ???? . Details of the PLGN resource are described in Technote 1170:
The Printing Plug-ins Manager.

Back to top

Streams I nfor mation

Low-level converters don’t know where the data they are converting comes from, nor do they know the
ultimate destination of their PostScript output data. Instead, they read the data from input procedures and
write data to output procedures. These procedures are packed into structures called streams.

Page: 16

TN 1169: The Download Manager

PSStream structure

Thelow-level converters read and write data from stream structures of type PSSt r eam PSSt r eamis
defined as:

t ypedef struct PSStrean{

PSSt r eaniType type; /'l The type of Stream used to pick

/1 fromthe union bel ow.
voi d *reserved,; /'l For use by the stream i npl enentation.
uni on{

PSReservedSt reanTypel nul | ;
PSReser vedSt r eanType2 spool ;
PSSeri al St ream ps;
PSRandomAccessStream fil e;
Ty
} PSSt r eam

The PSStreanflype is defined as:
t ypedef enuni
kReser vedSt r eanTypel,
kReservedSt r eanType2,
kPSSeri al Stream /'l For streams that can not be positioned.
kPSRandomAccessStream // For streans that can be positioned.
} PSSt r eanilype;

The PSSeri al Stream and PSRandomAccessStream are defined as:
typedef struct{

PSQut Proc write; /'l output proc

PSI nProc read; /'l input proc

U nt 32 reserved; !/l reserved

PSPosi ti on pos; /'l structural info about where we are

/1 in the PostScript stream
} PSSeri al St ream

t ypedef struct{
PSSeri al Stream seri al Stream
PSGet PosPr oc get Pos;
PSSet PosPr oc set Pos;
PSGet EOFPr oc get ECF;
} PSRandomAccess St r eam

ThePSRandomAccess St r eamstream has the same callbacks and data asthe PSSer i al St r eam but it aso
has functions to get the current stream position, set the current stream position and get the size of thefile.

The read and write procedures of the PSSer i al St r eamand PSRandomAccess St r eamtypes are used to
read data from and write data to the stream. They are declared asfollows:

t ypedef OSStatus (*PSInProc) (PSStream *psStream
void *data, SInt32 *nBytes);

Theread field of the PSSer i al St r eamstructure contains a function of type PSI nPr oc which isused to
read data from the stream. The ps St r eamparameter is a pointer to the stream being read. The data
parameter is a pointer to a client-supplied buffer into which the dataisread. The caller sets* nByt es to the
number of bytesto read into the data buffer. It is up to the caller to ensure that the data buffer it supplies
has enough room for * nByt es of data. After the function call, * nByt es contains the number of bytes
actudly read.

Page: 17

TN 1169: The Download Manager

t ypedef OSStatus (*PSCut Proc) (PSStream *psStream
const void *data, SlInt32 nBytes);

Thewr i t e field of the PSSer i al St r eamstructure contains a function of type PSaut Pr oc which is used to
write data to the stream. The ps St r eamparameter is a pointer to the stream being written to. The data
parameter is a pointer to the data to be written to the stream. ThenByt es parameter specifies the number

of bytesto be written.

ThePsI nPr oc routine of the input stream is used by the low-level converter to read and examine the data
to be converted to determine if it can handle this data stream. During the psLowPeekConvert and
psLowDoConvert cals (described below), the low-level converter calsthe PScut Pr oc routine of the

i nput stream to give time and status to the client. The PSPosi t i on structureis used to pass Document
Structuring Conventions data and status information back to the client i di ePr oc.

When actually converting data, alow-level converter is passed an output stream of type kPSSer i al St ream
for it to write the converted data. The converter uses the PScut Pr oc of the output stream to write its
converted data to the output device (or file). It reads data returned from the output device back channel via
the PSI nPr oc of theout put stream. It writes the data read from the back channel to the PScut Pr oc of the
irp}put setlream, alowing the Download Manager to report any status information coming from the back
channel.

Note that some output streams have no PSI nPr oc routine (such as a print to file stream). The PSI nPr oc
routine in an output stream should be tested for NULL before calling the procedure.

Back to top

Additional functions for random-access streams

Streams of type kPSRandomAccess St r eamhave additiona procedures available:

ThePSGet PosPr oc procedure determines the current position of the mark in the stream corresponding to

thefile (or file-like stream). This position is based on the last data read from the stream, not the underlying
file since the datamay be buffered. The prototype for thisfunction is:

t ypedef 0SSt atus (*PSGet PosProc) (PSStream *psStream
Sl nt 32 *current Pos);

ThepssSt r eamparameter points to the stream whose position you want to obtain; the value of
*cur r ent Pos returned is the current stream position.

The position value is zero-based; that is, the value of * cur r ent Pos iSO if the stream position mark is
positioned at the beginning of the stream.

ThePsSet PosPr oc procedure sets the position of the stream mark. The next data read from the stream is
the first byte after the stream mark.

t ypedef 0SSt atus (*PSSet PosProc) (PSStream *psStream
Sl nt 32 positionMde, SInt32 posOifset);

For the PSSet PosPr oc cdl, theposi t i onMbde isthe positioning mode and posOf f set isthe positioning
offset. Theposi ti onMbde parameter indicates how to position the mark; it must contain one of the
following values:

Page: 18

TN 1169: The Download Manager

enuni

fsFronttart = 1, //set mark relative to beginning of stream
f sFronLECF 2, [/lset mark relative to |ogical end-of-stream
f sFr omvar k 3 //set mark relative to current nmark

};

Theposi ti onMbde parameter works like the Macintosh file system call Set FPos. These supported values
of theposi ti onMbde constants are defined in the Macintosh header file “Files.h.” These constants | et
you position the mark relative to either the beginning of thefile, the logical end-of-file, or the current mark.
You must also passin posOf f set , abyte offset (either positive or negative) from the specified point. If
you specify f sFr om_EOF, thevaluein posOf f set must be less than or equal to 0.

Note:

If alow-level converter usesthe PSSet PosPr oc to reposition the stream to a new position before that of
the previous stream position during the call psLowboConver t , the Download Manager cannot determine
the percentage progress of the download and it will report that the percentage progress is unknown for
the remaining duration of the download.

ThePSGet EOFPr oc procedure is used to determine the size of the stream. Not all streams which can be
positioned have a procedure which can determine the size. When using a stream of type
kPSRandomAccessSt r eam it isimportant for the user of astream to verify that the PSGet EOFPr oc
procedure pointer is not NULL before calling it.

t ypedef OSStatus (*PSGet EOFProc) (PSStream *psStream
Sl nt 32 *streanti ze);

Note:

low-level converters should be prepared to handle input streams that do not alow random access, i.e., are
not of typekPSRandomAccessSt ream If agiven converter cannot handle such a stream, it should
properly advertise itself as unable to download such a stream. See the discussion for psLowCanConver t
and psLowGet Convert er | nf or mati on below.

One additional comment about the streams used by the Download Manager and the low-level convertersis
that they each call stream routines as native code, without using Cal | Uni ver sal Pr oc. In addition to
requiring the stream functions to be native code, this also means that these functions must obey
CFM-calling conventions, even on 68k machines.

Back to top
L ow-level Converting Routines

When aclient such as the Desktop Printing software calls the Download Manager routine

psCanDownl oadFi | e, the Download Manager usesthe first 15 bytes of the file and its GSType to see
which low-level converters can potentially handle the download. The Download Manager then callsthe
psLowCanConvert routine for each of those converters. This gives each of those converters an
opportunity to examine the input data and determine if the converter can handleiit.

0SSt at us psLowCanConvert (PSSt ream *i nput St r eanP,
Col l ection hints, LowConverterlnfo *datal nf oP,
Fi xed *priority);

The*i nput St r eanP parameter isapointer to a stream of PSSt r eaniType, kPSRandomAccess St r eam OF
kPSSeri al St ream Thelow-leve converter callsthe PSI nPr oc of i nput St r eanP to obtain the data.

Page: 19

TN 1169: The Download Manager

hi nt s isacollection passed to the low-level converter for use during its attempt to determine if it can
download thefile. It may contain information about the “job” being downloaded that is useful for the
low-level converter. Thelow-level converter should not add or change any hints in the hints collection
during thepsLowCanConvert cal since other low-level converters might be affected by such changes.

dat al nf oP iSapointer to aLowConvert er | nf o structure. It isused by the low-level converter to help
determine if the data/fileis atype that it can handle.

typedef struct LowConverterl nfof
Ul nt 32 version;
GSType type;

} LowConvert er | nf o;

The version field of the LowConvert er | nf o structureis 1 for the first version of the Download Manager.
Thetypefield isthe osType of the data supplied to the low-level converter.

*priority isafixed number filled in by the psLowCanConvert cal. Vaues greater than zero indicate that
the converter can handle the stream. The larger the number, the more suitable the converter isfor the data.
Currently avalue of 10 (0x000A0000 Fi xed) indicatesthe converter isthe best converter possible for the
given data. Since the Download Manager simply looks for the best” result, anew converter could
advertiseitsdf ashaving alarger value to become the favored converter for a given type of data.
(Remember that Nigel’s amplifier can be set to 11.)

Note:

The low-level convertersin the “Printing Plug-ins’ folder with agiven priority are chosen over a
converter that isbuilt into PrintingLib which claims the same priority. This alows an external converter in
the Printing Plug-in’ sfolder to override a built-in converter.

Note:

It is unfortunate that for some downloads we don’t always know about the output device when
psCanDownl oadFi | e iscalled. For example a JPEG converter could always download non-progressive
JPEG datato aLevel 2 printer, even if QuickTime isn't available on the host. Since we might not know
the PostScript level of the output device, we don't know if we need QuickTime. If the client does know
the printer isa Level 2 printer, specifying that would let the low-level converter know it doesn’t need
QuickTime. The best we can do with this designisfor the client to supply in the hints collection the best
information it has about the output device and let the low-level converter decide what it can do based on
that information plus the input stream data.

Once the Download Manager establishes the best converter for the job (i.e., the one returning the highest
priority), the psCanDownl oadFi | e routine returns and if the file is downloadable, the Download Manager
client calls the Download Manager routine ps Downl oadFi | e to download thefile.

Note:

low-level converters should be prepared to handle input streams that do not allow random access, i.e., are
not of typekPSRandomAccessSt r eam |f agiven converter cannot handle such a stream, it should return
apriority of Oif psLowCanConvert iscalled with adifferent stream type.

Back to top
Getting Information For A Client
When a Download Manager client calls the Download Manager routine psGet Downl oadDocument | nf o,

the Download Manager asks the low-level converter to obtain the document information by calling the
low-level converter’ spsLowGet St r eard nf o routine.

Page: 20

TN 1169: The Download Manager Page: 21

CSSt at us psLowGet St ream nf o(PSSt ream *i nput St r eanP,
Col I ection hints, Downl oadDocument | nfo *downl oadDocl nf oP);

*i nput St r eanP represents the stream of data to gather information from. The low-level converter callsthe
PSI nPr oc Of i nput St r eanP to obtain the data.

hi nt s isacollection passed into the low-level converter for its use during the information gathering. It
may contain information about the “job” being downloaded that is useful for the low-level converter
during this phase. During acall to psLowGet St r eant nf o, alow-level converter can add or change hintsin
the hints collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be used
by alow-level converter for their normal, intended purpose.

Note:

If aconverter wants to have private hints, it should use the collection tag ‘ APPL’ with acollection ID
valueidentica to its assigned application creator. This ensuresthat private hints will not collide with other
software’ s hints.

The updated hints collection returned from psLowGet St r eam nf o may or may not be passed by the
Download Manager and its clients to the other low-level converter calls psLowPeekConvert ,
psLowAddConvert er Queri es, and psLowDoConvert (see the description of

psGet Downl oadDocument | nf o in Section 1). A low-level converter should not require any data it addsto
the hints collection in the psLowGet St r eam nf o routine being available during any other low-level
converter call.

*downl oadDocl nf oP isa pointer to a Downl oadDocunent | nf o structure (described above in Section 1)
to befilled in by the low-level converter. This structure isinitialized by the Download Manager to
correspond to unknown values for each field. If the low-level converter does not know the information
corresponding to agiven field, it should not fill in that field.

Back to top
Peeking at the Data

When a Download Manager client calls the Download Manager routines ps Downl oadFi | e Of

psDownl oadSt r eam the Download Manager determinesif it can alow the low-level converter the
opportunity to peek at the data before doing the conversion. If the stream is of atype that can be
repositioned (i.e., type kPSRandomAccess St r eam), the Download Manager callsthe psLowPeekConver t
routine of the low-level converter. With a stream that cannot be repositioned, the act of peeking would
prevent the stream from being converted.

Note:
If the client adds the hint kHi nt Downl oader Peek Tag with avalue of fase, the Download Manager will
not call psLowPeekConvert regardless of whether the stream supports peeking.

0SSt at us psLowPeekConvert (PSSt ream *i nput St r eanP,
Col l ection hints);

Thisroutineis called by the Download Manager to allow the low-level converter an opportunity to look at
the data to be downloaded and thereby collect useful information. Such information might be collected to
provide information back to the Download Manager for reporting to the Download Manager client (such
asfonts used in adocument, etc). Other information might be collected by the low-level converter for
passing back to itself when it islater asked to “ convert” and download the document with the
psLowDoConvert call (described in the section Doing the Conversion below). For example, a PostScript
gonvelrt; might read DSC comments to determine what fonts the document requires as part of the
ownload.

TN 1169: The Download Manager Page: 22

*i nput St r eanP represents the stream of datato peek at. The low-level converter callsthe PSI nPr oc of
i nput St r eanrP to obtain the data.

hi nt s isacollection passed into the low-level converter for its use during peeking. It may contain
information about the “job” being downloaded that is useful for the low-level converter during the peek
phase. During acall to psLowPeekConvert , alow-level converter can add or change hintsin the hints
collection. Collection tag values used by LaserWriter 8/PrintingLib are reserved but can be used by a
low-level converter for their normal, intended purpose.

Note:

If aconverter wants to have private hints, it should use the collection tag ‘ APPL’ with acollection ID
valueidentical to their assigned application creator. This ensuresthat private hintswill not collide with
other software’s hints.

The updated hints collection returned from psLowPeekConvert ispassed by the Download Manager to
the low-level converter callspsLowAddConver t er Queri es and psLowDoConvert (described in the
sections Queries and Doing the Conversion respectively). By adding private hints to the collection during
the peek phase, alow-level converter can passitself thisinformation when the Download Manager callsthe
psLowAddConvert er Quer i es and psLowDoConvert routines.

Examples of data put into the hints during the peek phase by alow-level converter might be:

e Font requirement data based on %%DocumentNeededResources commentsin a PSfile

e DSC information such as “user”, “pages’, “creator”, etc.

e Information about the procedure sets required, such as those required by a PICT converter

e Bounding Box information for handling EPS data

While alow-level converter should always be prepared to handle the fact that a peek pass may not be
made, it may still find it useful to peek at the datawhen it is given the chance to do so. Thismeansthat a
low-level converter should be prepared to operate without data it would normally collect during a possible
psLowPeekConvert cal.

Note:
While alow-level converter is required to implement apsLowPeekConver t routine, the implemented
routine can simply return without doing any examination of the data stream.

Back to top
Queries

When aclient makes a call to psDownl oadFi | e, the Download Manager is responsible for querying the
printer and providing the results from the queries to the low-level converter. Prior to any queries
performed by the Download Manager, the low-level converter gets a chance to add its queries to the set of
gueries which the Download Manager will make. A low-level converter can add any or al of the queries
currently available through PSUt i | sLi b.The low-level converter does not do the query itself, but instead
the Download Manager calls the routine psLowAddConver t er Quer i es supplied by alow-level converter
to determine the queriesthe low-level converter needs.

OSSt at us psLowAddConverter Queri es(Col |l ection hints,
Col |l ecti on query);

Thisroutineis passed the hints collection for the current job. If the low-level converter routine
psLowPeekConvert was called, the hints collection as returned from that cal is passed to
psLowAddConvert er Queri es. ThepsLowAddConvert er Queri es routineis also passed a query
collection so that the low-level converter can add query hints for use by the Download Manager. The
low-level converter can use the hints collection to decide whether to add any queriesto the query

TN 1169: The Download Manager Page: 23

collection. When the psLowAddConver t er Quer i es routine returns, the Download Manager uses the deta
in the query collection to query the target output device. The Download Manager copies the results of the
queriesinto the hints collection that is used for the call to psLowbDoConvert (seethe section Doing the
Conversion below).

Basic Queries

Most queriesfal into the category of basic queries. Examples of these queries are the PostScript language
level, PostScript version information, color or black and white device knowledge, and so forth. Such
gueries are generated by adding the appropriate hints to the query collection, with default values chosen by
the converter for its own conservative handling approach. For example, to cause the Download Manager to
guery for the PostScript language level, the following code is used:

kHi nt LanguagelLevel Var | angl evel = UnknownLevel;
err = AddCol | ectionlten{queryCol | ecti on, kH ntlLanguagelLevel Tag,
kHi nt LanguagelLevel 1d, sizeof (langlevel), & anglevel);

Note here that the default value used isUnknownLevel S0 that, if the query is not done (see the section
Using Query Results below), getting this collection item later reflects this defauilt.

Font Queries

The Download Manager can query for a specific list of fonts or obtain the entire list of fonts availablein
the target output device. Both of these font queries are specified with the hint kHi nt | ncl udeFont sTag
with the ID valuekHi nt I ncl udeFont sl d. The data contained in this hint determines the type of query.
The dataisaPSFont Handl i ng structure, defined as:

t ypedef struct {
| ong tag;
unsi gned char nare[1]; //packed array of nanes,
/llength O indicates end of |ist
} PSFont Handl i ng;

and the following constants are defined:

enun{
kl ncl udeNoFont s& her Than,

kl ncl udeAl | Font sBut
}s

If thetag field of the PSFont Handl i ng structure iskl ncl udeAl | Font sBut , the query isfor the complete
list of fonts (the equivalent of the* ?2Font Li st query from the PPD file). For thisflavor of the font query,
there should be one name specified whose length is zero. Upon return of the query, the name field will be
apacked array of Pascal strings corresponding to the fonts built into the output device. Thislist of names
will be terminated with a Pascal string whose length is zero.

If thetag field of the PSFont Handl i ng structure iskl ncl udeNoFont sQt her Than, the query isfor a
specified list of fonts (the equivalent of the * ?Font Quer y query from the PPD file). For this flavor of the
font query, thelist of fonts to query for should be in the namefield of the structure. Thelist is a packed
array of Pascal strings and is terminated with a Pascal string with a zero-length byte. After the query, the
name field is a packed array of Pascal strings corresponding to the fonts from the query list which were
not available, i.e., the fonts available in the output device are removed from the list. Again, thislist of names
isterminated with a Pascal string with azero-length byte.

TN 1169: The Download Manager

Note:
Itis quite possible that alow-level converter might request a query with atag of ki ncl udeAl | Font sBut
and the query result may contain aquery with atag of ki ncl udeNoFont sQt her Than Or vice versa.

Communication Channel Queries

A second category of special queriesisthat for the communication channel characteristics. Most low-level
converterswill generate different output dataif the communication pathway to the target output device
supports binary data. There are two hints used to query for whether the output device supports binary data
and both should be consulted.

Thefirgt isthe hint with tag value kHi nt Ei ght hBi t Tag and ID valuekHi nt Ei ght hBi t | d. If the hint
valueistrue, the output stream supports the data range 0x80- 0xFF inclusive. If the value isfalse, the
PostScript output stream generated by the low-level converter should not contain these byte val ues.

The second is the hint with the tag value kHi nt Tr anspar ent Channel Tag and ID value

kHi nt Tr anspar ent Channel | d. If the hint value istrue, the output stream supports the data range
0x00- 0x1F inclusive. If the value is fa se, the PostScript output stream generated by the low-level
converter should not contain these byte values.

Normally alow-level converter will add both of these hintsto the query collection with default values of
false to specify that the Download Manager supply the appropriate query for the channel characteritics.
The vaue for these hints after the query determines the channel characteristics.

Using Query Results

A low-level converter recelvesits query resultsin the hints collection supplied to the call psLowDoConver t
(see the section Doing the Conversion below).

A low-level converter should be prepared to operate without results from a query. Query results can be
unavailablein at least two ways. If the Download Manager isinvoked using the routine

psDownl oadSt r eam the Download Manager only calls psLowAddConver t er Quer i es and generates
queriesif the hints collection contains the kHi nt Downl oader DoQuer yTag hint with vaue true. If the
Download Manager client handles queries, it would set the kHi nt Downl oader DoQuer yTag hint to false.

Another case where queries may not be completed is when the download isto afile without a printer

involved or with any communication channel that does not support a backchannel, such as LPR. In that
case, some of the queries may be satisfied by PPD data, but others return a default value.

Back to top
Doing the Conversion

After the query phase, the Download Manager callsthe psLowbDoConver t routine of the low-level
converter. Thisroutineis defined asfollows:

CSSt at us psLowbDoConvert (PSSt ream *i nput St reanP,
PSSt r eam *out put StreanP, Coll ection hints);

Page: 24

TN 1169: The Download Manager

It isthe responsibility of the low-level converter to read the data supplied in the stream pointed to by
i nput St reanP, “convert” it into appropriate PostScript language output and write that output to the
stream pointed to by out put St r eanP.

*i nput St r eanP represents the stream of datato “convert” into PostScript output. The low-level
converter callsthe PSI nPr oc of i nput St r eanP to read the data from the stream to convert.

*out put St r eanP represents the output stream. The “converted” PostScript output datais written to the
PScut Pr oc of outputStreamP. This may be a stream communicating with a PostScript printer via PAP or
USB, a stream communicating using L PR, a stream to send data to a custom Desktop Printer for further
processing, or it may be a stream generating a PostScript output file. The kind of stream used for output is
determined by the Download Manager client and the Download Manager; the low-level converter smply
writes its PostScript output to this stream.

Theout put St r eanP Stream may contain aread procedure of type PSI nPr oc for returning error messages
or other data from a PostScript output device. The low-level converter isresponsible for reading this
returned data during the download and writing it to the PScut Pr oc of i nput St r eanP. The PSQut Pr oc of

i nput St r eanP isresponsible for forwarding this data to the client for further processing. This datamay
be error messages, return results from the PostScript output device, or device status messages returned
from the printer back channel instead of the status channel.

PSSt r eams Of typekPSSer i al St r eamand PSRandomAccessSt r eamhave afield of type PSPosi ti on.
This structure is defined as:

t ypedef struct PSPosition{

PSSecti on secti on; //filled in by Downl oadMgr not converters
PSSubsecti on subsection; //for DSC data obtained by converters
void *info; //for DSC data obtained or generated by
/lconverters
SInt32 id,; /1l to be updated appropriately by the caller
/1 filling in any of the other fields
} PSPosi ti on;

While processing the data to be converted during psLowPeek Conver t and psLowDoConver t , alow-leve
converter uses this structure to pass information about the data being written to (or read from) from the
stream. The Download Manager uses this data to pass information to the client’s St at usl dl ePr oc so the
client can report the status and progress of the download. If the Download Manager client used the
Download Manager function psDownl oadSt r eamand therefore supplied the input and output stream, that
client isresponsible for handling statusin its streams’ read and write procedures.

The hints collection passed to psLowDoConvert contains information which may be useful for alow-level
converter. It might contain information about the output stream characteristics (8-bit, ASCII/binary), data
stored into this collection by the low-level converter during the peek phase, query results or other data
about the download job that is useful for alow-level converter.

Since callsto psLowbDoConvert may or may not be preceded by callsto psLowPeekConvert or
psLowAddConvert er Queri es, thepsLowDoConver t routine should not rely on hint data collected by
psLowPeekConvert or query results to operate successfully. If data collected by acall to
psLowPeekConver t ispresent in the hints, psLowboConvert may work more efficiently or offer better
resultsthan if it is not present, but it should work regardless.

The following figure attempts to illustrate the way the input and output streams are used by alow-level
converter during the cal to psLowDoConvert :

Page: 25

TN 1169: The Download Manager

| Gt
Inpuidats |e'.|.'e|

COnYerter

Page: 26

channd 1o
PSR Froc PSOUTPTOG P
CoMerilon
ioraliioe i b ol o ps i et dm _‘C‘
|tﬂF3'Ut fig[LTfD ut PS 0L fpu 1 DaMce
| SIrearn |y f uiing otprnter || SEEM
SHT'E ﬂl]'i:;?n FSOUIFTO namgna nFrlle-I 1 FRmETE ﬂhr
||'||:l|]1 iTeam sy chochan nsd

Back to top

Converter Capabilities

At various times, the Download Manager determines what low-level converters are available and then
determines what file types each low-level converter can potentialy handle. It does thisby calling the
psGet Convert er | nf or mat i on routine of each low-level converter.

OSSt at us psLowGet Converter | nformati on(
const ConverterDescription* *theConverterDescription);

ThepsGet Convert er | nf or mat i on routine returns information about the converter. The
ConverterDescri ption structureisloosely modeled after the Dri ver Descri pti on structure used for
PCI Drivers. The Convert er Descri pti on structure is defined as follows:

typedef struct ConverterDescription {
CSType converterDescSi gnat ur e;
ConverterDescVersion converterDescVersion;
ConverterType converterType,
ConverterService converterService;

} ConverterDescription;

Thefirst field inthe Convert er Descri pti on structureis asignature long word designating thisto be a
converter description structure.

enum {
kTheConverter Descri ptionSi gnature = ' dhw'
/*first long word of ConverterDescription*/

};

The second long word of the Convert er Descri pt i on structure indicates the version of the structure
being used. Thisis used to distinguish different versions of converter descriptions which have the same
signature but different values. Thisis defined asfollows:

typedef Ul nt32 ConverterDescVersion;
enum {
kl ni tial ConverterDescriptor =0
/* the initial version of ConverterDescription
supported by the Downl oad Manager
*/
1

The next field of the Convert er Descri pti on istheconvert er Type. This structure contains name and
information string data as well as the converter module version information. It is defined as:

TN 1169: The Download Manager

typedef struct Converter Type{
Str31 nane;
Str 255 info;
NunVer si on version

} Convert er Type;

t ypedef struct NunVer sion{
U nt8 nmajorRev; /*1st part of version nunber in BCD*/
U nt8 m nor AndBugRev; /*2nd and 3rd part of version nunber share a byte*/
U nt8 stage; /*stage code: dev, al pha, beta, final*/
U nt8 nonRel Rev; /*rev |evel of nonrel eased version*/
} NumVer si on;

Thefinal field inthe Convert er Descri pti on structureisaConver t er Ser vi ce structure which contains
information about what types of data the converter can potentially handle. Thisis defined as:

typedef struct Converter Service{
U nt 32 nTypes;
ConverterTypelnfo typelnfo[1];
} ConverterService

t ypedef struct Converter Typel nf of
GSType type;
Fi xed priority;
Str15 matchString

} Convert er Typel nf o;

A given converter may be able to handle a number of different osType data and/or different data types.
ThenTypes field isthe number of different Convert er Typel nf o structures contained in the
Convert er Servi ce.

Thetype field of the Conver t er Typel nf o structure is the STy pe of data described by the
Convert er Typel nf o. If the converter can handle any type, it should include thetype* ***** (i.e, the
wildcard type) with the appropriate mat chSt r i ng.

Note:
A given low-leve converter may have more than one Conver t er Typel nf o for agiven type. Thiswould
occur if there was more than one priority, mat chSt ri ng pair appropriate for a given datatype.

Themat chst ri ng field isaPascal string of at most 15 bytes (plus a length byte) corresponding to any
identification bytes the converter requires at the beginning of the data. For example, a PostScript converter
requires the identification data“ %!” to be the first 2 bytes of data to be downloaded. If, for agiven
converter, none of thefirst (up to 15) bytes are distinctive for the OSType of the Convert er Typel nf o, the
length of the mat chst ri ng should be set to 0. This indicates to the Download Manager that this OSType
does not have a magic identification string.

The Download Manager usesthe Conver t er Typel nf o datato pare down thelist of candidate low-level
converters which can be used to download the data. It does this by looking at the first 15 bytes of data and
uses the Conver t er Typel nf o datato determine which low-level converters may support the data. After
paring down the list with thisinformation, it normally calls the psLowCanConver t routine of the candidate
low-level convertersto alow further examination of the data.

In some cases the psLowCanConver t routine of the candidate low-level converters cannot be called. This
isthe case where the data is supplied from a stream which cannot be repositioned or randomly accessed.
In these cases, the Download Manager uses the priority field of the Conver t er Typel nf o datato
determine whether the low-level converter can handle the data.

Thepriority fieldinacConverter Typel nf o structureisaFi xed number which isthe priority estimate
of the converter for handling the type of data described by thetypefi el d and themat chSt ri ng. This
priority isused by the Download Manager when only the mat chSt ri ng and type of the data are available

Page: 27

TN 1169: The Download Manager

for determining whether a converter can handle the download. In all other cases, the Download Manager
callsthe psLowCanConver t function with a stream that the low-level converter reads to determine whether
it can handle the data. For this reason, the priority returned here should be the priority that the converter
can guarantee based only on the GsType and themat chSt ri ng data. If a converter requires more than the
15 bytesmat chSt r i ng to be certain it can handle the dataor amat chSt ri ng of O is provided, the priority
should be oxo (i.e., can't convert without looking at more data).

Note:
If the converter cannot handle a stream which cannot be randomly accessed, it should assign a priority of
0x0 for that OSType in theConvert er Typel nf o.

Asan example, hereisasample Convert er Descri pt i on structure for a hypothetical converter module
which “converts’ a PostScript input stream to a PostScript output stream:

ConverterDescription TheConverterDescription =

/'l signature information

kTheConverterDescri pti onSi gnat ure, /'l signature always first
kl ni tial ConverterDescriptor, /] version

/1 type information

"\ pPost Scri pt Downl oader.", // nane

"\'pThi s converter nodul e sends PostScript code to a"
"PostScript printer.", /'l info string

0x1, 0x0, 0x40, 0x2, /] Rev 1.0.0a2

1,
/] ConverterServices

3, //# of ConverterTypelnfo structures

{
" TEXT', /Il file type
0x000A0000, /1 priority hint
"\ p% " /1 match string
H
{
' EPSF', Il file type
0x000A0000, /1 priority hint
"\ p%s " /1 match string
},
{
' 27?7, /Il file type
0x000A0000, /1 priority hint
"\ p% " /1 match string
}
}

}
b

Note that by reporting anon-zero priority hint for each type, this hypothetical converter saysthat it can
operate on a stream that cannot be randomly accessed.

When the Download Manager calls psGet Convert er | nf or mat i on, it expectsto get back a pointer to a
ConverterDescri ption. Thisdataisowned by the converter module. If the Download Manager needs to
keep any of thisdata, it must first copy that data before closing the converter module. The pointer returned
is declared const indicating that the caller of psGet Convert er | nf or mat i on must not change the
ConverterDescri pti on dataitself sincethat datais owned by the converter module.

The converter module is responsible for disposing of any memory it alocates as part of generating the

Page: 28

TN 1169: The Download Manager Page: 29

ConverterDescri pti on returned by psGet Converter | nf or mati on.

Back to top
Utility Functions

OSSt at us psLowGet Convert er Ver si on(CFMVer si on *ver si on) ;

ThepsLowGet Convert er Ver si on reportsthe CFM version information for alow-level converter. This
information may be used by the Download Manager (or other callers of the low-level converters) to
determine version and interface information about a given low-level converter. Though there is no planned
usage for thistoday we have found that it is useful to have thisinformation for other shared libraries used
by LaserWriter 8 and PrintingLib.

Readers familiar with the Code Fragment Manager will notice that thisinformation mirrorsthe version
information built into a CFM library. Unfortunately, in some versions of the system software, the

Get Di skFragment routine has abug that won't alow it to load alibrary unless the definition,
implementation and current version numbers built into the library are all 0. To work around this bug a
low-level converter must al have these version numbers set to zero. To make it possible for aclient of a
low-level converter to determine the actua version information of that converter, this call returnsthe
version information for that low-level converter.

Back to top
Errors

errlnval i dDownl oader I nf o - Thiserror isreturned if the Download Manager is passed a

Downl oader | nf o structure that isno longer valid. This can happen if aclient obtains a Downl oader I nf o
structure from the Download Manager calls psCanDownl oadFi | e, psCanDownl oadSt r eam Of
psCanDownl oadDat a and later suppliesthis data to the Download Manager after the set of converter
modules in the Printing Plug-ins Folder or PrintingLib itself has changed. This should be rare but could
happen if Downl oader I nf o datais persistently stored over aperiod of time.

er r Cant MakeSt r eanFor DTP - Thiserror occursif the client calls psDownl oadFi | e with atarget PAPA for
which PrintingLib cannot make a stream. This should only happen if the client failsto call
psCanDownl oadFi | e with aPAPA for the device for which it later cals psDownl oadFi | e.

er r Cant Handl eThi sDownl oadDat a - Thiserror occursif at some point in downloading afile or stream,
the converter redlizes that there is some problem with the data. This might be the situation if the datais
corrupt, for example.

Note:
Other Mac OS errors can also be returned.

Back to top
L ogging

The Download Manager can log errors and warnings that might be generated by alow-level converter. The
PSSubsect i on values of kSubLogEr r or Dat a and kSubLogWar ni ngDat a are to be used by alow-level
converter (and the Download Manager) to indicate fatal and non-fatal errors which occur during the
download process. The Download Manager is responsible for logging this data appropriately. By default,
thislogging is only turned on in the debug builds of PrintingLib. It can be turned on in arelease build by
changing tge value of the doDownl oadMgr Loggi ng bit in the printing preferences PRF2 resourcein
PrintingL.ib.

The amount of information logged is controlled by the LOGD resource. It is defined by default as:

TN 1169: The Download Manager Page: 30

resour ce kDownl oadMgr Loggi ngType (kPreferencesl D,

#i f gNames

"Downl oad Manager Loggi ng Preferences”
#endi f

pur geabl e) {

32000, /1 the maximumfile size

4000, /1 the maxi mum anopunt to preserve

/1 when size is exceeded
"MPS ', /!l the log file creator
" TEXT', /'l the log file type

"Downl oad Manager Log"

b

/'l the log file nane

When logging is turned on, the log file (default name “Download Manager Log”) is created in the user’s
Printing Prefs folder.

Back to top

Summary

The Download Manager allows Desktop Printing and other clients to quickly send documentsto a
PostScript printer. Applications which wish to bypass QuickDraw can call the Download Manager to
send data directly to the printer. Also, the types of documents handled by the Download Manager can be
extended by third parties creating new “low-level converters.” More information on writing low-level
converterswill be provided in a separate Technote.

Back to top

Further References

e Print Hints: The All-New LaserWriter Driver Version 8.4, develop 27
e Technote 1112: Introducing the LaserWriter Driver Version 8.5.1
e Technote 1143: Introducing the LaserWriter 8 Driver Version 8.6
e Technote 1165: Introducing the LaserWriter 8 Driver Version 8.6.5
°
°

Technote 1170: The Printing Plug-ins M anager
Inside Macintosh, The Collection Manager

ChangeHistory

e Originally written in April 1998.
e Revised in May 1999.

Back to top

Downloadables

FOF
H Acrobat version of this Note (K).

W

Binhexed Routine Descriptor Lib (196K).

TN 1169: The Download Manager Page: 31

Back to top

To contact us, please use the Contact Us page.
Updated: 24-M ay-99

Technotes | Contents
Previous Technote | Next Technote

