
Technote 1094: Virtual Memory Application
Compatibility

Page: 1

TECHNOTE 1094
Virtual Memory Application Compatibility

Although Virtual Memory (VM) has been available on the Mac OS since the release of System 7, its

use has become more widespread in recent years. This is because of a combination of factors, including

the introduction of the Power Macintosh, on which VM radically reduces application memory
usage

the popularity of third-party products, such as RAM Doubler, which behave in a manner similar
to that of standard virtual memory

the release of System 7.5.5, which significantly improved the performance and reliability of the
VM implementation

the release of Mac OS 7.6, which file maps CFM-68K PEF containers to reduce memory usage
just like a Power Macintosh.

Because VM is so widely used, it's critically important to make sure that your software is compatible with
it. This Technote, which is divided into two parts, provides you with

1. an introduction to how VM works, both in theory and its specific implementation under System 7

2. a detailed explanation of the steps you need to follow in order to ensure that your software
executes successfully under VM.

All Mac OS programmers should read this Note. For application developers, this Note supplants and
extends the information presented in Technote ME 09, "Coping With VM and Memory Mappings".
Device driver writers should continue to refer to Technote ME 09.

Note

This note uses the term application to denote both

standard Mac OS applications

other code resources that run in the application environment, e.g.'CDEF's, 'WDEF's, control
panels, and so on.

As far as VM is concerned, the important distinction is between application code and device drivers.

Contents

Technote 1094: Virtual Memory Application
Compatibility

Page: 2

VM Compatibility Checklist
How VM Works

Theoretical Background
System 7-Style Virtual Memory
Address Ranges Controlled by VM
Creating an Address Range
Holding and Locking
User vs Supervisor Mode
Privileged Instruction Emulation

VM Implementation Details
Preventing Fatal Page Faults
Running Old Drivers
Synchronous SCSI Manager
Asynchronous SCSI Manager
ATA Manager

Disabling User Code
What is User Code?
What Isn't User Code?
DeferUserFn -- The Guts of the
Solution
Correct Way To Defer
How User Code is Disabled

Programming Implications
Direct SCSI or ATA Manager Calls
Hardware Interrupt Handlers &
Physical Addressing
AppleTalk Socket Listeners
Calling Non-Interrupt Safe Routines
Switching Stacks at Interrupt Time

Ways to Improve Performance
Grouping Commonly Used Code and
Data
Sensible Memory Management
Paging Control API
Judicious Use of HoldMemory
Emulated Instructions
VM and Interrupt Latency

VM Weirdnesses
System Heap is Held
Holding Memory at Interrupt Time
Holding Memory with Interrupts
Disabled
Open and Close Asynchronous
What Form of Address to Pass?
Allocating Memory Above BufPtr at
INIT time
Compatibility with Accelerator Upgrades
VM and Passwords

Things to Do in MacsBug When You're Dead
Recognizing a Fatal Page Fault
Is This a Double Page Fault?
What Was the First Page Fault?
New System Errors
MacsBug 'dcmd's

Summary
Glossary

Change history:

1.0 03/97 initial version

1.1 3/98
updated to reference the Mac OS 8.1 VM paging control

APIs, and to describe the requirement that
private interrupt-time stacks must be held resident.

Technote 1094: Virtual Memory Application
Compatibility

Page: 3

VM Compatibility Checklist
In general, programs should be able to ignore VM and operate successfully. Specific problems may
occur under the following conditions:

Does your program call SCSI or ATA Managers directly?
Does it use hardware interrupt handlers?
Does it use physical (as opposed to logical) addresses?
Does it contain an AppleTalk socket listener?
Does it call system services that are not interrupt-safe while paging is not safe?
Does it switch stacks at interrupt time?

If your program does none of the operations listed, it should already be VM-compatible. If you want to
improve your code's performance under VM, you should read the section Ways to Improve Performance
in this Note.

On the other hand, if your program does any of these operations, you'll want to read the next section,
Programming Implications, which explains how to make your program VM-compatible. That section is
also a good place to start if your program is incompatible with VM and all you want to do is fix it as
quickly as possible.

For an overview of VM theory, terminology, and implementation under System 7, you'll want to go to the
How VM Works section.

Programming Implications
If your program does any of the things listed above, you should read the next few sections for
information on how to execute safely under VM.

Direct SCSI Manager or ATA Manager Calls

Some applications, such as scanning programs or hard disk formatters, need to call the SCSI or ATA
Managers directly. These applications must take special care when VM is enabled. For example, if such
an application was to grab exclusive access to the SCSI bus and then take a page fault, VM would be
unable to swap in the new page, making the page fault fatal.

The solution is simple: if your program calls the SCSI or ATA Manager directly, you must make sure
that any code executed or data accessed while paging is unsafe is held in memory.

If you're writing an application, meeting that requirement can be tricky because it's hard to hold just part
of an application's code in memory. For this reason, your application might want to implement this
functionality as a bundled device driver or other code resource. This separation makes it easy for the
application to ensure that the code running while paging is unsafe is held.

Technote 1094: Virtual Memory Application
Compatibility

Page: 4

Hardware Interrupt Handlers and Physical Addressing

Some applications need to drive hardware devices directly; for example, a data capture program that talks
to a dedicated PCI card. Such applications typically install hardware interrupt handlers (either using
SIntInstall, the native Interrupt Manager on PCI machines, or the low memory interrupt dispatch
tables) and program a DMA controller using physical addresses. Because this sort of operation is
typically the realm of device drivers, the steps you take to operate under VM are specified in device driver
documentation. The following references are useful:

1. IM:Memory, Virtual Memory Manager chapter

2. Technote ME 09 - "Coping With VM and Memory Mappings"

3. Designing PCI Cards and Drivers for Power Macintosh Computers

The basic rules for device driver writers are:

1. If you install a hardware interrupt handler, you must ensure that all code and data it accesses is
held resident in memory.

2. If you have a hardware device that uses physical addressing (typically a DMA peripheral), you
must translate the logical addresses you are accessing into physical addresses before passing
them to the hardware.

For further explanation, see the above references.

As an aside, in future versions of the Mac OS it is likely that these functions will be privileged and
inaccessible from applications. If your application does this sort of thing, it is most probably a good idea
to prepare for the future by factoring your code into an application and a bundled device driver.

AppleTalk Socket Listeners

AppleTalk socket listeners are also not VM-safe. An AppleTalk socket listener on a slow computer using
LocalTalk networking has very difficult real-time goals. Deferring this while waiting for a page fault
would cause serious packet loss. So, for performance reasons, VM does not defer socket listeners until
paging is safe. Socket listeners must be written so that they don't cause a page fault.

The way to make your socket listener VM-safe is to ensure that all code that can be called by the socket
listener, and the data it accesses, is either held in memory or deferred using DeferUserFn. This can be
tricky to do from an application. Technote NW 13 "AppleTalk: The Rest of the Story" demonstrates a
technique that you can use.

Technote 1094: Virtual Memory Application
Compatibility

Page: 5

Calling Non-Interrupt-Safe Routines

If your code calls routines that are not interrupt-safe while handling a non-deferred hardware interrupt
(or, for that matter, any time paging is unsafe), you may encounter a problem running on Mac OS 7.6
and future releases of the Mac OS that use System 7-style VM.

In older Mac OS implementations, large parts of system software were in the system heap simply so that
they could be shared between applications. These parts caused the system heap to grow in size. Because
the system heap is always held, these parts were resident, even though they didn't need to be. This
reduced the number of physical pages of RAM that VM had available to use as a cache for its various
logical address ranges. This reduction made the system slower.

Under versions of the Mac OS that use System 7-style VM, these system parts are being moved out of
the system heap and into file-mapped CFM containers. This makes them available for paging, and
increases the number of physical pages available to VM. In general, this helps system performance.

Such parts of the system are only made pageable if none of their routines can be called at interrupt time.
Otherwise, a non-deferred hardware interrupt might call these routines and cause a fatal page fault.

However, some programs call non-interrupt-safe routines when paging isn't safe. This works under
earlier versions of Mac OS because the code for these routines was in the system heap, and hence
resident. Such software has problems under newer versions of Mac OS when VM is turned on because
these routines are no longer held. If your software was previously compatible with VM and broke under
Mac OS 7.6, you should check to be sure that you are not calling non-interrupt-safe routines when
paging is unsafe.

Switching Stacks at Interrupt Time

If your code switches stacks at interrupt time (usually this is done to guarantee a minimum amount of
available stack space), it must ensure that the stack is held. This is true even if your code runs at times
when paging is normally safe, such as deferred task time.

For a detailed explanation of why this is necessary, see User vs Supervisor Mode.

Ways to Improve Performance
This section describes a number of things that you can do to make your application work better under
VM.

Grouping Commonly Used Code and Data

Perhaps the best thing you can do to make your application work better under VM is to analyze its
working set. The working set of a program is the set of memory pages that the program accesses most
often. The smaller you make your working set, the better your program will run under VM. If the
working set of all the active processes exceeds the amount of physical memory available for paging, the
system begins to take an excessive number of page faults. This state is known as thrashing.

Under System 7 there are no good tools for analyzing your application's working set automatically.
However, you can do some things to empirically adjust your working set. One good thing is to 'segment'
your CFM-based applications sensibly.

Most development environments provide a mechanism for CFM-based applications to sort routines in
their PEF container according to a "group" that is set using compiler directives. This is analogous to the
classic runtime segmentation model. You can use these directives to group rarely used functions together
and away from the commonly used functions. This helps keep rarely used code paged out, which reduces
your working set.

Technote 1094: Virtual Memory Application
Compatibility

Page: 6

Sensible Memory Management

Another good place to look when analyzing your working set is your memory management system.
Some memory management systems are VM-friendly, and some are not. For example, if your memory
management system looks at every block in the heap when a block is freed, it has pathologically bad VM
performance.

On PowerPC machines, the system Memory Manager (also known as the Modern Memory Manager)
has been optimized to be as VM-friendly as possible. It's important that you be compatible with the
Modern Memory Manager, for this and other reasons.

On 680x0 machines, the Memory Manager has some behaviors that cause excessive page faults under
VM. Unfortunately, there's not a lot you can do about the system Memory Manager on these machines
other than avoid using it.

If you're using your own memory management scheme (for C++ objects, for example), you should look
at its implementation to determine whether it's VM-friendly. A VM-friendly memory manager attempts
to reduce the number of times it looks at bytes located in different pages, and thus minimizes the
program's working set. You may be able to switch memory managers and get VM performance benefits.

Another way to avoid thrashing is to minimize your use of Process Manager temporary memory. While
it may appear that this memory is free for application use, under VM this memory has often been paged
out, and therefore is not 'real'. So if you look at temporary memory and see that there's a huge amount of
free space, do not allocate and use it all. This will likely cause the system to thrash. Only allocate as
much temporary memory as you actually need.

Paging Control API

Mac OS 8.1 introduced a new API for the Virtual Memory Manager, the VM paging control API. Your
application can use this API to advise VM on how it is using memory. This allows VM to optimize its
paging behavior to improve application, and overall system, performance.

You can read more about the VM paging control API in the Mac OS 8.1 Technote.

Judicious Use of HoldMemory

The HoldMemory call causes a certain range of logical memory to be marked as ineligible for paging.
The call was designed to allow system and user programs to avoid fatal page faults by forcing critical
chunks of code and data to be held in real memory.

However, sometimes the HoldMemory call is useful for applications to allow them to meet real-time
goals. For example, it's possible for high quality sound playback to break up when playing on a machine
running VM. One way to avoid this is to hold the buffer that contains the sound, to avoid it being paged
out to disk.

Application programs should not make arbitrary decisions to hold large chunks of memory. You should
only resort to holding memory if you have an identifiable problem under VM. Remember that the Virtual
Memory Manager acts like a cache. Every time you hold a chunk of memory, that memory becomes
unavailable for paging for the rest of the system, effectively decreasing the size of the cache. If you do
this without due care and attention, you cause the system to thrash.

Technote 1094: Virtual Memory Application
Compatibility

Page: 7

Emulated Instructions

When you execute a privileged 680x0 instruction, the Virtual Memory Manager emulates that instruction
to prevent a privilege violation exception. This emulation takes time. You should avoid executing
privileged 680x0 instructions where possible. This list of these instructions is given in the section
Privileged Instruction Emulation.

One common use of emulated instructions is disabling interrupts to ensure atomicity. In a lot of cases,
you can avoid this by using the processor's built-in synchronization primitives. This includes the CAS
instruction on the 68020 and higher, and the lwarx and stwcx instructions on the PowerPC. Some
system services, specifically Open Transport's OTLIFO lists and OTGate, are based on top of these
instructions and provide for fast atomic operations without using any privileged instructions or Mixed
Mode switches.

Note

The CAS instruction is not available on the 68000 processor. However, as VM does not work on
computers with that processor, this should not be a problem: you can just use privileged instructions
without any speed penalty.

Important

You should not use the TAS instruction as a replacement for CAS because it is not supported on certain
Mac OS computers.

VM and Interrupt Latency

If interrupt latency is important to you, VM presents further challenges. Because VM defers user code
until page faults are no longer fatal, it can increase the latency between when the interrupt is signalled and
when the user code executes.

There are some things you can do to reduce specific interrupt latency problems when running under
VM:

The Time Manager has a special "back door" that allows you to install Time Manager tasks that
bypass the safety net provided by VM. Technote 1063 "Inside Macintosh: Processes: Time
Manager Addenda" documents this technique.
Device Drivers that are marked as VM-immune are ignored by the Virtual Memory Manager.
As such, the Virtual Memory Manager does not defer the completion routines issued by these
device drivers. If you have your own private device driver, and you can guarantee that all the
driver's clients are prepared to be called at times when paging is not safe, you can set this bit in
your device driver and decrease the interrupt latency to your clients. Technote NW 13
"AppleTalk: The Rest of the Story" describes this technique.

Both techniques employ the same basic idea, which is that you deliberately take some of your user code
and turn it into non-user code to avoid VM's latency.

Some VM Weirdnesses
This section describes a few little things about VM -- its weirdnesses -- that you should know about.

System Heap is Held

Under Apple's current VM implementation, the entire system heap is automatically held resident in
physical memory. This is done to provide compatibility with old device drivers that would not otherwise
be compatible with VM. There may be future Apple VM implementations (or current non-Apple VM
implementations) that do not hold the entire system heap. Thus, you should not rely on this safety net. If
you want something to be held, you should explicitly hold it.

Technote 1094: Virtual Memory Application
Compatibility

Page: 8

Holding Memory at Interrupt Time

The VM API routines for holding memory resident (HoldMemory, LockMemory, LockMemoryForOutput)
are safe to call at interrupt time if one of the following conditions is met:

paging is safe, or
paging is unsafe but the range of pages passed to HoldMemory is already held, or
paging is unsafe but the range of pages passed to LockMemory is already locked.

These routines can cause paging activity as VM swaps in the memory that is to be held. Obviously, this is
bad when paging is unsafe. So you must either ensure that paging is safe or that the call won't cause any
paging activity.

Holding Memory with Interrupts Disabled

On computers running system software prior to System 7.1.2, VM specifically prohibited all routines
based on the _MemoryDispatch trap (the most important being HoldMemory) from being called at
interrupt time. This restriction has now been lifted.

The typical reason for calling HoldMemory with interrupts disabled is that you are calling it at interrupt
time. If so, you must make sure you follow the rules in the previous section.

Open and Close Asynchronous

Technote ME 09,"Coping With VM and Memory Mappings" says:

As it turns out, when you make an asynchronous _Open or _Close call to a device driver,
any completion routine you supply is never called. Since Virtual Memory patches _Open
and _Close, and generates an entry for the completion routine in the user function queue,
the implication is that the user functions are never executed and the queue may simply fill
up.

This statement is erroneous in one respect. VM does not patch _Open or _Close, so calling these routines
asynchronously will not mess up the VM patches. However, for other reasons, you should not open or
close drivers using asynchronous calls. If you are acting on a device driver, you should always use the
high-level glue routines OpenDriver and CloseDriver.

What Form of Address to Pass?

All of the VM API routines (HoldMemory, LockMemory, etc) work as expected in either 24-bit mode or
32-bit mode. In 24-bit mode, for instance, master pointer flags or other garbage in the high-order eight
bits are ignored and assumed to be zero. When switching between 24-bit and 32-bit modes, remember to
use _StripAddress as outlined in Technote ME 06 "_StripAddress: The Untold Story".

Note

Mac OS 7.6 and beyond do not support 24-bit mode. PowerPC-based Mac OS computers do not
support 24-bit mode.

Allocating Memory Above BufPtr at Startup Time

Inside Macintosh, Volume IV describes, on page 257, a method of static allocation for drivers or other
data structures that has been popular with a number of developers:

Static allocation off the address contained in the global variable BufPtr is useful when a

Technote 1094: Virtual Memory Application
Compatibility

Page: 9

large amount of space is needed which will never be deallocated (once space is allocated,
it may not be deallocated unless no one has allocated space below). An 'INIT' resource
may obtain permanent space by moving BufPtr down, but no further than the location of
the boot blocks (MemTop/2 + 1KB).

The main thing to remember about allocating memory above BufPtr is that memory allocated in this way
is not held in physical memory by default. If you require that this memory be resident, you must be
explicitly hold it yourself. This is in contrast with memory in the system heap, which is automatically held
in the current VM implementation.

In addition, when allocating memory above BufPtr, always use the equation given above. The actual
configuration of memory at boot time is much more complicated than the illustration in Inside Macintosh
IV indicates, especially with System 7 and VM. The System 7 boot code passes a specially-conditioned
version of MemTop to system extensions, which guarantees that the equation has valid results.

Due to the way memory is organized with VM in 24-bit addressing, you may not be able to achieve nearly
as much memory above BufPtr as you would think possible for a given virtual memory size. This is due
to the possibility of VM fragmentation. Without VM, the available space above BufPtr is generally
somewhat less than half the amount of memory installed in the machine. With 24-bit VM, the available
space may be significantly less, and is probably far less than one half of the virtual memory size. The
conditioning of the MemTop variable takes this into account.

Compatibility with Accelerator Upgrades

The burden of compatibility has long been on the shoulders of accelerator manufacturers. VM may
present some additional compatibility challenges for these manufacturers.

Virtual Memory requires services which are not present in the ROMs of 68000-based machines, so VM is
not supported on the Macintosh SE, even one with a 68030 accelerator. The same is true of the Macintosh
Plus, the Macintosh Classic, Macintosh Portable and PowerBook 100. Apple's VM only works on
machines which Apple intended to include MMUs.

Virtual Memory depends on low-memory globals to indicate the presence of a memory management unit
at a very early stage of the boot process. If the hardware features of an accelerator are significantly
different from those of the stock Macintosh computer, the low-memory globals are not properly set by the
boot code in ROM. The most likely problems are exhibited by 68000 Macintosh computers, 68020
Macintosh computers with 68030 accelerators, and Macintosh computers with 68040 accelerators.

It's not that VM does not work with any accelerators, but rather that System 7-style VM is not guaranteed
to support third-party accelerators.

VM and Passwords

Some developers have expressed concern about the safety of passwords under VM. For secure
environments, any possibility of a password being copied to disk is unacceptable. Under VM there is such
a possibility. For example, imagine the following sequence:

1. program asks for password
2. program does authentication
3. program clears out password in memory

If VM pages out the password buffer during step 2 and the system crashes sometime after step 3 but
before VM manages to page out the (now cleared) password buffer, a copy of the password will remain
on disk in the backing store.

The solution is simple: the program should hold the password buffer before step 1 and unhold it after step
3. Holding the password buffer ensures that VM never pages it out while it contains the password.

Technote 1094: Virtual Memory Application
Compatibility

Page: 10

Things to Do in MacsBug When You're Dead
When, after reading through this Note and checking that you follow all the rules given here, you still find
that your software crashes when VM is enabled, there are things you can do to determine what went
wrong.

The most common symptom of failure under VM is that you drop into MacsBug with a bus error because
VM was unable to satisfy a page fault request. Remember that VM is hooked into the bus error handler
and propagates any bus errors that it's unable to handle -- either because it's not in a section of memory
that's under VM control, or because it's already handling a page fault, or for any other reason -- to the bus
error handler pointed to by the low memory pseudo-vector.

There are a number of things you can do to recognize and analyze this situation listed in the following
sections.

Recognizing a Fatal Page Fault

The most obvious symptom of a fatal page fault is that you end up in MacsBug with a bus error.
Unfortunately bus errors have more than one cause. You can a bus error because of a fatal page fault, but
the most common cause for bus errors is dereferencing a bogus pointer.

You can quickly see whether this bus error is a possible fatal page fault by checking whether paging is
safe. If you look on the left side of the MacsBug display, you will see a two character code that describes
the state of VM. If this code is "RM" (Real Memory), VM is not running. If this state is "VM", VM is
running but paging is safe. If the state is "vM", VM is running and paging is not safe. If paging is safe,
the bus error is not a fatal page fault, and you should look elsewhere for the cause.

Of course, not all bus errors that happen when paging is unsafe are fatal page faults. It takes a bit more
work to determine this. For example, imagine dropping into MacsBug with the following message:

 Bus Error accessing 00123456 at PC 4080BB8C
 4080BB8C MOVE.W $0010(A0),D0

MacsBug reports that the instruction that caused the bus error is at address $4080BB8C, but this report is
not always correct. The dynamic recompiling (DR) emulator found on recent PowerPC computers can
cause an imprecise PC address to be reported by MacsBug. However, one piece of information that you
can rely on is the address that was being accessed and caused the page fault. In the above example, this is
address $00123456. You can find out information about this address using the following MacsBug
command:

 dm $00123456
 wh $00123456

If this command indicates that the address is in valid memory (i.e., either the primary address range or one
of the file mapped address ranges), the access should have succeeded. The only reason for this bus error
is a fatal page fault.

If the wh command reports that the address is "not in RAM or ROM", chances are that this bus error is
just a normal bus error, ie one caused by dereferencing a bogus pointer.

Another common form of fatal page fault is reported as:

 Bus Error at 4080BB8C
 while writing long work (data = 0000009B) to 00123456
 4080BB8C LINK A6,#$FFCC

The LINK instruction is touching the stack, which may have been paged out. You can check this by

Technote 1094: Virtual Memory Application
Compatibility

Page: 11

looking at the value of SP, which has most probably just crossed a page (4KB) boundary. You can
confirm that this is a fatal page fault by looking to see whether paging is safe and by checking the target
address 00123456 using wh and dm.

A third form of fatal page fault is reported as:

 Bus Error accessing 00123456 at PC 00123456
 Unable to access that address

In this case, the actual instruction fetch has caused a bus error. You can confirm that this is a fatal page
fault by looking to see whether paging is safe and by checking the target address using wh.

Note

These last two examples may also be complicated by the DR emulator. Remember that you can trust the
"accessing" address reported but not the PC.

Is This a Double Page Fault?

Not all fatal page faults are double page faults. For example, if you take a page fault while the device
driver that's controlled the backing store is busy, the page fault is fatal, even though it isn't a double page
fault. See the "Preventing Fatal Page Faults" section for a description of the various reasons why a page
fault might be fatal.

Determining whether a fatal page fault is a double page fault is reasonably tricky. One good indicator is
whether you're in user or supervisor mode. You can tell this by looking at the S bit in the SR display in
MacsBug. If this is a capital "S", you are in supervisor mode; if this is a lower case "s" you are in user
mode.

You can't get double page faults from user mode. If you get a fatal page fault and you're in user mode, you
know there was some other cause. One good place to start debugging this is to use MacsBug's drvr
command to see if any of the paging device drivers are busy. Remember that you will suffer a resource
constraint fatal page fault if you take a page fault while the paging device driver is busy.

Unfortunately, taking a fatal page fault in supervisor mode still isn't a guarantee that it was a double page
fault. The only certain way to determine whether it was a double page fault is to dump memory starting at
the ISP and look for a bus error exception stack frame on the interrupt stack. Bus error exception stack
frames are relatively easy to recognize because they contain a special word that denotes the frame type.
For a bus errror on a 68040, this value is $7008. For a bus error on the 68020, 68030, and the emulated
680x0 processor of a PowerPC-based computer, this value is $B008.

Note

Under rare circumstances is is possible for the 68020 and 68030 processors to generate a frame type of
$A008 in response to a bus error.

You can also use other fields in the exception frame to confirm that you have found the correct frame. All
of the exception stack frames we're interested in share a common format, as shown below:

 SP + $00 - Status Register
 SP + $02 - High Word of PC
 SP + $04 - Low Word of PC
 SP + $06 - Frame Format, Vector Offset (eg $B008)
 ... and so on

Once you have found the frame type word on the stack, you can look back six bytes to find the value of

Technote 1094: Virtual Memory Application
Compatibility

Page: 12

the Status Register (SR) immediately prior to the bus error. Common values for SR are $0Ixx or $2ixx,
where I is the interrupt level (0 to 7) and xx is "don't care". You can look at this saved SR, see whether its
value is sensible, and use that to confirm whether you have found the bus error exception frame.

Once you find the bus error exception stack frame, you can use the information in M68000 Family
Programmer's Reference Manual to examine the frame and find more clues about the cause.

Important

On PowerPC-based Mac OS computers, the value for the PC stored in the bus error exception frame is
always incorrect. The interaction between the PowerPC processor and the Virtual Memory Manager
causes this PC address to always point to an address within VM itself.

What Was the First Page Fault?

Once you know you've taken a double page fault, you can find out information about the first page fault
by looking at the bus error exception stack frame. The format of this frame is described in the M68000
Family Programmer's Reference Manual. For example, a bus error exception stack frame on a 68040
looks like:

 SP + $00 - Status Register
 SP + $02 - High Word of PC
 SP + $04 - Low Word of PC
 SP + $06 - Frame Format, Vector Offset (contains $7008)
 SP + $08 - High Word of Effective Address
 SP + $0A - Low Word of Effective Address
 ... and so on

Once you find the start of the frame, you can dump the long at offset $02 from the start of the frame to
determine, subject to the restrictions described in the previous section, the address of the instruction that
took the original bus error.

You can also dump the long at offset $08 from the start of the frame to determine the address that the code
was trying to access when it bus errored.

Finally, you can dump the word at offset $00 from the start of the frame to determine the value of the SR
when the bus error occurred. This can be useful to determine the type of code that was running at the time.
For example, interrupt level 4 is used by the Macintosh Serial Communications Controller (SCC) and it's
likely that a fatal page fault that happens when the processor is at interrupt level 4 is somehow related to
serial code.

Read-Only Memory Exceptions

When VM is enabled, it maps CFM containers into file mapping space. These file-mapped address ranges
are read-only. Any attempt to write to your own code will cause you to drop into MacsBug with the
message:

 PowerPC read-only memory exception at 02314BB8 main+00018

For example, the following snippet of PowerPC code runs just fine when VM is disabled, but dies under
VM:

static void Wibble(void)
{
}

void main(void)

Technote 1094: Virtual Memory Application
Compatibility

Page: 13

{
 char x;

 x = **((char **) Wibble);
 **((char **) Wibble) = x;
}

Note

The extra dereference in the above snippet is required because procedure pointers on a CFM architecture
are actually pointers to transition vectors.

New System Errors

System 7.5.5 introduced two new system errors related to virtual memory. Both errors are completely fatal
for the system, but if you encounter one while debugging, it is useful to know their cause.

dsVMDeferredFuncTableFull (112)
This error is generated when the deferred user function table is full. A common way of getting
this error is to defer an operation that has already been deferred. Another possibility is to install a
Time Manager task which has already been installed.
If you get this error, you can use the "UsersFns" 'dcmd' (part of MacsBug 6.5.4a1 and later) to
dump out the list of deferred user functions. If you see one entry repeated many times, you
should start looking for problems in how you use the system service corresponding to that entry.
Specifically, if you find that there the list of deferred user functions is full of Time Manager user
functions, check that you are calling RmvTime for each time you call InsTime (or InsXTime).
While imbalanced calls to the Time Manager work when VM is disabled, they are not correct and
they will cause this system error when VM is enabled.

dsVMBadBackingStore (113)
This error is generated when VM gets an error while reading or writing a backing store.
Typically, this indicates a genuine hardware problem. It could be a useful debugging aid if you
are developing a paging device driver.

See Technote 1069 - "System 7.5.5" for more details on all of the changes that occurred in the System
7.5.5 release of VM.

MacsBug 'dcmd's

MacsBug contains two 'dcmd's that can be useful when debugging VM problems. The first, VMDump,
dumps the current state of VM on a page-by-page basis. The second, UserFns, displays a the current list
of deferred user functions.

For information about these 'dcmd's, type the following commands in MacsBug:

 help vmdump
 help userfns

Summary
Virtual memory is not rocket science. While its implementation on the Mac OS is complicated by the
constraints of the original design, it's not incomprehensible. Understanding how VM works will help you
know why the rules are important, recognize when you need to apply them, and debug problems when
they arise.

Further References

Technote 1094: Virtual Memory Application
Compatibility

Page: 14

Inside Macintosh: Memory provides a description of the VM API calls.
Technote ME 09 - "Coping With VM and Memory Mappings" Although the information in
ME 09 is supplanted by this Technote for application code, ME 09 still contains useful
information for traditional device driver (DRVR) writers.
Designing PCI Cards and Drivers for Power Macintosh Computers describes the VM rules
that apply to native drivers ('ndrv's)
M68000 Family Programmer's Reference Manual gives detailed information about the 680x0
exception architecture, including the exception vector table and the bus error exception frame.
Inside Macintosh: PowerPC System Software gives a description of the differences between an
emulated 680x0 processor and a real one, including the bus error exception frame format of the
emulated variety.
Technote 1063 - "Inside Macintosh: Processes : Time Manager Addenda" describes how to
mark your Time Manager task "VM immune".
Technote 1069 - "System 7.5.5" describes how to mark your Time Manager task "VM
immune".
Technote NW 13 - "AppleTalk: The Rest of the Story" describes how to mark your device "VM
immune".
Technote ME 06 - "_StripAddress: The Untold Story"
Modern Operating Systems , by Andrew S. Tanenbaum, Prentice-Hall, 1992, ISBN
0-13-588187-0 gives a good introduction to virtual memory in general.

 Acrobat version of this Note (K)

To contact us, please use the Contact Us page.
Updated: 15-April-98

Technotes
Previous Technote | Contents | Next Technote

