
Technote 1025 - GetDriverInformation: A Bug & 
Workaround

Page: 1

Technotes

Download

Acrobat file (K)

Download

AppleWorks file (44K)

Driver Loader Library Call GetDriverInformation: A Bug & Workaround

Technote 1025 FEBRUARY 1996

This Technote describes a workaround to a bug in the first version of the Driver Loader Library in System 7.5.2
and System Update 7.5.3. (The bug should be fixed in later versions of the Mac OS.) As of this writing, the
Driver Loader Library is only available on Power Macintoshes that support PCI cards (for example:Power Mac
7200, 7500, 8500 and 9500). There is a bug in the routine GetDriverInformation that can possibly cause an
overwriting past the end of the name string that is passed in. 

This Technote is directed primarily at writers or family experts and especially applications that get information
about drivers.

Contents

Defining the Problem
Solving the Problem
Sample Code Using GetDriverInformation To Iterate Over the Driver Unit Table
Reference for GetDriverInformation
Summary

Defining the Problem
In the Driver Loader Library, there is a bug in the routine GetDriverInformation that can possibly cause an
overwriting past the end of the name string that is passed in. 

This bug surfaces only when calling GetDriverInformation() for a driver that has had its Device Control Entry
fields zeroed when it was closed (the Chooser driver has been observed to exhibit this behavior). The bug occurs
because GetDriverInformation() does not check for zeroed fields before using the dCtlDriver field to reference
the driver's name; instead, it copies a garbage string from low memory into the name string passed as a
parameter to GetDriverInformation(). 

If the first byte of this garbage string is larger than the number bytes of storage allocated by the caller for the
name string, then the caller's data located just past the end of name's storage will be overwritten with garbage.

You can see the zeroing out of fields for the Chooser's driver by following these steps using any version of
MacsBug:

1. Open the Chooser.

2. Drop into MacsBug and type:

        drvr      <return> 



Technote 1025 - GetDriverInformation: A Bug & 
Workaround

Page: 2

3. Look down the list of drivers in the Driver column of the drvr display and see the Chooser (on my machine
it's at dNum 0xF).
To see what the Chooser's DCE fields look like before the zeroing type:

        dm      xxxxx   dctlentry       <return>

(where xxxxx is the hexidecimal number in the Chooser's row in the "DCE at"column in the drvr display)

4. Exit Macsbug by hitting Command-g.

5. Close the Chooser window.

6. Drop into MacsBug and type:

        drvr   <return>

You'll see that name Chooser is replace by blanks in the row that it was in.

7. To see the zeroing of DCE fields type:

        dm      xxxxx   dctlentry       <return>

(again, where xxxxx is the hexidecimal number in the Chooser's row in the "DCE at" column in the drvr
display).

You'll see that all fields except the RefNum field have been zeroed. 

It's doubtful that any expert code will encounter this problem if the expert code executes pre-Finder; applications
that execute after  the Finder boots are the most likely victims. If your code calls GetDriverInformation() after a
user has a chance to close one of these "zeroed-out" drivers (and the DCE fields are thus zeroed), then you will
need this workaround. If you call GetDriverInformation only for a driver that you know doesn't have its Device
Control Entry fields zeroed upon closing, then you don't need this workaround because the bug will not appear.
It is only when you traverse the unit table, calling GetDriverInformation for unknown drivers, that you need to be
aware of the workaround.

GetDriverInformation

Here is the declaration for GetDriverInformation as gleaned from the universal headers file, Devices.h:

extern OSErr 
GetDriverInformation (DriverRefNum refNum, 
                        UnitNumber *unitNum, 
                        DriverFlags *flags, 
                        DriverOpenCount *count,
                        StringPtr name,    // ** this is the field we are 
                                                        concerned with//
                        RegEntryID *device, 
                        CFragHFSLocator *driverLoadLocation, 
                        CFragConnectionID *fragmentConnID, 
                        DriverEntryPointPtr *fragmentMain, 
                        DriverDescription *driverDesc);

It is the StringPtr name parameter that we are concerned with. If you allocate, for example, a Str31 to use to pass
in as the StringPtr, then (if the erroneous byte GetDriverInformation thinks is the length byte of the garbage
string is greater than 0x1f, or 31 decimal) GetDriverInformation will unwittingly copy all the garbage bytes to
your code without regard to the actual location of the end of the name string.

Solving the Problem
The workaround is simple:allocate a String255 for the name parameter passed into GetDriverInformation()
rather than some shorter-length string. This means any garbage copied to the string will be contained in that
string rather than any other data. If you're familiar with GetDriverInformation, that's all you need to know:use a
Str255 for the name parameter rather than a shorter string and you're protected. If you're not familiar with
GetDriverInformation and would like to see some code to traverse the unit table, sample code is provided here



Technote 1025 - GetDriverInformation: A Bug & 
Workaround

Page: 3

for your information. You also have to take precautions about using the garbage string data as well (if you were
going to display the driver name in an application, you would probably want to check for non-printing characters
if displaying them would cause problems in your code. You might want to make sure the garbage length of the
name string isn't too long for your code to handle).

Sample Code Using GetDriverInformation To Iterate Over the
Driver Unit Table
To drive the point home about using a Str255, and also to alert you to another mandatory initializing of the
FSSpec field of the driverLoadLocation struct, (another input of GetDriverInformation), here is some barebones
sample code. Note that traversing the unit table using GetDriverInformation() is not the most efficient way to
discover which units are empty and which are full. Use the Driver Loader Library routine, LookupDrivers() for
that.

void TraverseDrivers()
{

        OSErr                           err = noErr;
        DriverRefNum                    refNum;
        UnitNumber                      unitNum; 
        DriverFlags                     flags; 
        DriverOpenCount                 count;
        RegEntryID                      device;                 
        CFragHFSLocator                 driverLoadLocation;
        DriverDescription               driverDesc;
        // Str63                        theName; // BAD, not long enough
        Str255                          theName;  // GOOD:THIS IS THE WORKAROUND!
        FSSpec                          loadLocSpec;
        short i;

//  this is another caveat about using GetDriverInformation();  you must 
//  initialize the FSSpec ptr field of the driverLoadLocation struct to 
//  point to an allocated FSSpec because GetDriverInformation assumes you 
//  have.  This is done is the next line below.
          driverLoadLocation.u.onDisk.fileSpec = &loadLocSpec;

        for( i = 0;  i <= HighestUnitNumber(); ++i ){
                refNum = ~i;  // convert the unit number to a driver refNum.
                err =   GetDriverInformation(   refNum, 
                                                &unitNum, 
                                                &flags,
                                                &count,
                                                theName, 
                                                &device, 
                                                &driverLoadLocation, 
                                                &fragmentConnID, 
                                                &fragmentMain, 
                                                &driverDesc);
                if( err != noErr ){ // there's a driver for this refNum
                
                        // Do whatever it was you wanted to do with the information
                        //  BEWARE: If the driver is a non-native driver, that is a
                        //  68k driver of pre-PCI-supporting Macintosh, the device,     
                        //  driverLoadLocation, fragmentConnID, fragmentMain, and 
                        //  driverDesc inputs above will be set to nil after the call
                        //  because these fields don't apply to 68k drivers.
                }
        } // for 
}  //  end  TraverseDrivers()

Reference for GetDriverInformation

GetDriverInformation

GetDriverInformation returns a number of pieces of information about an installed driver.



Technote 1025 - GetDriverInformation: A Bug & 
Workaround

Page: 4

OSErr GetDriverInformation
        (DriverRefNum           refNum,
        UnitNumber              *unitNum,
        DriverFlags             *flags,
        DriverOpenCount         *count,
        StringPtr               name,
        RegEntryID              *device,
        CFragHFSLocator         *driverLoadLocation,
        CFragConnectionID       *fragmentConnID,
        DriverEntryPointPtr     *fragmentMain,
        DriverDescription       *driverDesc);

refNum                  refNum of driver to examine
unit                    resulting unit number
flags                   resulting DCE flag bits
count                   number of times driver has been opened
name                    resulting driver name
device                  resulting Name Registry device specification
driverLocation          resulting CFM fragment locator (from which the driver 
                                                        was loaded)
fragmentConnID          resulting CFM connection ID
fragmentMain            resulting pointer to DoDriverIO 
driverDesc              resulting pointer to DriverDescription

DESCRIPTION

GetDriverInformation is used by driver experts in PCI-bus-supporting machines, software that
makes decisions about which driver to load for a particular device -- or by any software that
needs to get information about a driver for a device. 

Given the Unit Table reference number of an installed driver, GetDriverInformation returns the
driver's unit number in unit, its DCE flags in flags, the number of times it has been opened in
count, its name in name, its RegEntryID value in device, its CFM fragment locator in
driverLocation, its CFM connection ID in fragmentConnID, its DoDriverIO entry point in
fragmentMain, and its Driver Description in driverDesc. 

Note: 
With 68K drivers, GetDriverInformation returns meaningful information in only the unit, flags, count,
and name parameters. 

Warning:  
You must allocate the FSSpec field of the CFragHFSLocator * driverLocation before passing it in to
GetDriverInformation(). 

RESULT CODES

        noErr             0     No error                                                
        badUnitErr      -21     Bad unit number 
        unitEmptyErr    -22     Empty unit number       

Summary
To protect yourself against having GetDriverInformation copy garbage into the passed StringPtr  name
parameter when a driver has its Device Control Entry (DCE) fields zeroed upon closing (the Chooser, for
example), allocate a large enough string (for example, String255) for the name parameter. This will assure that
any garbage copied to the string will be contained in that string.

See Designing PCI Cards and Drivers for Power Macintosh Computers  for further documentation on
GetDriverInformation or any other Driver Loader Library calls.

Technotes
Previous Technote | Contents | Next Technote


