OPENSTEP DEVELOPMENT:
TOOLS & TECHNIQUES

Apple Computer, Inc.

Tools & Techniques
© 1997 Apple Computer, Inc.
All rights reserved.

May 1997

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without prior written permission of Apple Computer, Inc.,
except to make a backup copy of any documentation provided on CD-ROM. Printed
in the United States of America.

The Apple logo is a trademark of Apple Computer, Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for commercial purposes without the prior written consent of
Apple may constitute trademark infringement and unfair competition in violation of
federal and state laws.

No licenses, express or implied, are granted with respect to any of the technology
described in this book. Apple retains all intellectual property rights associated with
the technology described in this book. This book is intended to assist application
developers to develop applications only for Apple-labeled or Apple-licensed
computers.

Every effort has been made to ensure that the information in this manual is
accurate. Apple is not responsible for printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, and the Apple logo are trademarks of Apple Computer, Inc., registered in the
United States and other countries. NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP
logo, Digital Librarian, NeXTmail, and Workspace Manager are trademarks of NeXT
Computer, Inc. All other trademarks mentioned belong to their respective owners.

Creating a project

Setting indexing preferences
Grouping projects

Changing a project's name
Setting the application icon
Setting document icons

Setting system-defined
document icons

Creating and

| have a bit of FIAT in my soul,
And can myself create my little world.
Thomas Lovell Beddoes

But from these create he can
Forms more real than living man,
Nurslings of immortality!

Percy Bysshe Shelley

I must Create a System, or be enslav’d by another Man’s;
I will not Reason and Compare: my business is to Create.
William Blake, Jerusalem

Creating and Managing a Project

Creating a project

In Project Builder, choose New
from the Project menu.

Inthe New Project panel, choose
the project’s type from the
Project Type pop-up list.

Name the project.

Choose OK.

Use the Open command on
the Project menu to open a
project that already exists.

In the Open panel, select the
project’s folder.

A projectis aset of files that produces a given end product, such as an application,
a tool, a library, or a loadable bundle. When you create a project in Project
Builder, you create a directory that will hold all of the project’s code files and
resource files. Project Builder adds several supporting files, such as project
makefiles and templates that you can use to create source files, to that directory.

New Project

MyBugs_25'44g;r BundleExample
Objectives.it.com CurrencyConverte
Objectives.rid.co Docsialore -
Programming I find tiff
RonsReview.rfco Search.hib

Serwces frame wapContentiiew
Status 1 12.17 AlTaskEwample ¢
_ISt ¥ | AraveteteT T

7
Mame |CurrencyConvener

Project Builder creates a directory named
CurrencyConverter and places the project’s
supporting files in it.

Froject Type: application

e |ﬁ

Project Types

Project Builder can create these types of

projects:

Application A standalone OPENSTEP
application.

Tool A server or command-line tool.

Loadable Bundle A directory of resources,
such as images, sounds, character strings,
nib files, and dynamically loadable
executable code, to be used by one or more
applications.

Library A static or dynamic shared library.

Framework A bundle that contains a
dynamic shared library plus resources. See
“Frameworks: Easyto Use, Easyto Create” in
this chapter.

Choose the project type from this list.
Remember to choose the project type; you can't
change the type of an Application project later.

Palette A static Interface Builder
palette—a palette with code that you must
compile before it can be used.

Legacy A project for which Project Builder
doesn‘t maintain the makefile. Use this when
you have created your own makefile. See
“Legacy Projects” in this chapter.

Aggregate A collection of loosely related
projects. See “Grouping projects” in this
chapter.

For the most part, the only difference
between project types is the kind of
executable they produce. However, there
are some special issues involved in
frameworks and libraries. See Chapter 12 for
more information.

Creating a project

Managing Project Files With Project Builder

Project Builder makes it easy for you to manage a project's files.
It organizes your project for you by grouping files into the
following types (not all types are available for all projects):

Classes The “.m" files thatimplement an Objective-C class.

Headers The “.h" files that define a class’s interface or declare
C functions, data types, and variables.

Documentation The documentation files for framework
projects, which must be RTF files.

Context Help The help files for this project, which must be RTF
files. This only exists for application projects and subprojects.

Other Sources Objective-C files that don’timplement a class or
files containing code in other languages, such as C, C++,
Objective-C++, or PostScript.

Interfaces Interface Builder nib files that define the user
interface. Nib files are described further in Chapter 2.

Images

Other Resources Files containing other resources (such as
sound files or eomodels) that the project uses.

Subprojects Subprojects. See “Grouping projects” in this
chapter.

[R s L

This button showas you a list
of the files that are already

Image files, such as TIFF or EPS files, other than icons.

Supporting Files Makefiles and other files the project does not
use directly.

Libraries Libraries that the project links to, such as those in
[usr/lib or /lib.

Frameworks Dynamic shared libraries that the project links to,
such as the Application Kit. OPENSTEP-supplied frameworks are
in /NextLibrary/Frameworks. (See “Frameworks: Easy to Use,
Easy to Create” in this chapter.)

Non ProjectFiles Files thatyou have opened thataren't part of
the project.

In addition, Project Builder creates and maintains some files for
you. For all projects, it creates a makefile and templates for a
class’s interface (“.h") and implementation (“.m") files. For
application projects, it also creates a Project_main.m file, which
contains the main function, and a nib file, which defines your
application’s interface. You can customize both of these files for
your application.

Of course, you can add your own files to the project. You can also
remove files, rename files, create new files, and even open files
that aren’t part of the project using commands on the File menu.

byl b et e qrews)

— This is shaded when the file
has been modified.

loaded. You can use that list to
jump between files quickly.

To add a file, double-click one
of these types.

The browser shows the files
in the project, the classes in
that file, and the methods in
that class.

4

= The code editor shows the
currently selected file and
allows you to edit it.

Creating and Managing a Project

Setting indexing preferences

Choose Info ™ Preferences.

In the Preferences panel, choose
Indexing from the pop-up list.

Select or deselect the
preferences you want.

For you to take full advantage of Project Builder, the source code must be
indexed. When a project is indexed, Project Builder keeps track of each symbol
in the project, what that symbol defines (such as a class or a function), where it
is declared, and where it is used. The Indexing Preferences panel allows you to
control when and how a project is indexed.

Preferences

Indexing = Choose Indexing from this list.

Indexing
¥|Indexwhen praject is opened

| Invalidate when quitting
__|Re-indexwhen file is saved

Host: |

Automatic indexing controls. Indexing is turned
on by default. Deselect all of these to turn it off.

— Sort Symbols In Browser By —
{” File position

" Symbol name — Controls for how symbols are listed in the
(" Symbol type and narme browser in the main window.

By default, “Index when project is opened” and “Invalidate when quitting™ are
selected. These preferences cause Project Builder to create a new index in
memory each time it is opened and to delete the index when you quit the
application. (This ensures that the index is updated at least when you quit
Project Builder.) If you deselect “Invalidate when quitting,” the project index
will persist until you reboot.

Indexing requires overhead. To improve performance, you can turn indexing
off; however if you do this, many useful features, such as project-wide name
completion and language-based searching, aren’t available. Another option is to
have the indexing process run on another computer on your network. To do this,
enter that computer’s host name in Host field of the Indexing Preferences panel.

Setting indexing preferences

Chapter 9, Building, describes
the Build Attributes inspector
and how to build the project on
another host.

Tip: If the project indexes incorrectly, make sure that you have set the
information in the Project Attributes and Build Attributes inspectors. Use the
same host to index the project as you use to build the project.

When you index, the browser
can show you information
about afile’s contents.

The classes, protocols,
and other symbols the
selected file defines.

B Traveliaietie

Uk Fides Lrdn Py THing

The methods defined for
that class or protocol.

The editor jumps to
the class or method
you select.

inbulavton
el

.
,

id rommenis sbe
P—————

)

vy B

The Project Server

Indexing is actually performed by a background process called
the project server. The project server is the brains behind
Project Builder. When you request information stored in the
index, Project Builder asks the project server for that
information, then relays it to you.

start up a project server when you reboot.

When you set the Host attribute on the Preferences panel, the
project server runs on that host. If other people on the network
use the same computer for their project servers, one project
server is created per user.

The project server starts up as soon as you open a project. In

just a shorttime, project server can build a cache of symbol If you need to control the project server, use the commands on

information about your project.

The project server is a continually running process. Even after
you quit Project Builder, the project server may continue
running. This saves time at startup; Project Builder only has to

the Indexing menu under the Project menu. The command
Purge Indices kills the current project server. After you use this
command, use Index Source Code to starta new project server
and reindex your project.

Creating and Managing a Project

Grouping projects

» Toincorporate the build result of
one project into the build result
of another project, create a
subproject.

» To group together related
projects of any type, create an
Aggregate project.

If you have many projects that relate to each other, you may want to organize
them as a single project in Project Builder. You can group projects into a single
project in two ways: by creating a subproject and by creating an Aggregate
project.

If one of the projects is clearly a part of the other, create it as a subproject of that
other project. To create a subproject within a project, choose New Subproject
from the Project menu to bring up the New Subproject panel, choose the type
of subproject you want to create, type a name for the subproject in the Name
field, and click OK.

New Subproject

/ Type the subproject’s name here.
Matme:| Cleanp 7
: |)
Type: Component = Choose the type here. If none of the available

types matches, choose Component.

Cancel | Ok I

When you create a subproject, you are creating a project whose build result
(executable or bundle) is incorporated into the build result of the main project.
(A bundle is simply a file package directory that contains all of the resources the
user needs to execute the program.) If the main project produces a bundle as its
build result, the subproject’s executable or bundle is placed inside the main
project’s bundle. Component subprojects produce an object file that is linked
with the main project’s executable. A component’s resources are merged into
the resource directory of the main project.

For example, if you are creating an application named MyApp and one of the
application’s commands invokes a tool named aTool, you might want to have the
aTool project be a subproject of the application project. When you build the
application, aTool is built as well. After all of the code in both projects has been
compiled and linked, Project Builder creates a directory (bundle) named
MyApp.app. That directory contains aTool as well as the application’s executable
and its resources.

By creating a subproject, you are creating a project that is subordinate to the
main project. In some cases, a subordinate relationship doesn’t make sense. For
example, you can’t have one application be a subproject or another application.

Grouping projects

If the projects’ executables don’t need to be tied to each other but you want to
group them together as a convenience, create an Aggregate project. Then make
those projects be subprojects of the aggregate. (You create an Aggregate project
the same way you create any other type of project.)

Classes
Headers
Other Sources
Interfaces
Images
Other Resourc
ubprojects
ﬁ Supporting Fil
| ¥[|Libraries

An aggregate project contains only
subprojects and a makefile that
builds all of the subprojects at once.

¥ F R AT

The only purpose of an aggregate project is to group other projects together.
The aggregate itself produces no executable or bundle. Because of this, you can
have any type of project, even applications and frameworks, be a subproject of
an aggregate.

For example, suppose you've created several tools to test a framework that
you’re working on. If you want to manage all of these projects as a single unit,
you can create an aggregate project and include the tools and the framework as
subprojects of the aggregate.

Tip: To have all subprojects be listed in the top level of the browser (rather than
under Subprojects), set the preference on the Miscellaneous Preferences panel.

Frameworks: Easy to Use, Easy to Create

Frameworks are new in OPENSTEP 4.0. A
framework is just a simpler, more convenient
way to package a dynamic shared library
and the resources associated with it.

In previous releases, you had to install
essential library components inthree different
locations: the library file in /usr/local/lib,
header files in /LocalDeveloper/Headers, and
documentation in
/LocalLibrary/Documentation. Now, you can
store all three of these components in one
directory, the framework directory, which you
install in /LocalLibrary/Frameworks. Plus, you
can package other resources (such as nib
files and images) in your framework.

All OPENSTEP kits, including the Application
Kit, are now distributed as frameworks. You
can find these in /NextLibrary/Frameworks.

Another big advantage to frameworks is that
ProjectBuilder can see inside the framework
package. For example, if you select
AppKit.framework in Project Builder's
browser, you can access its header files and
documentation. This means you can look up
how to use a method without ever leaving
Project Builder!

To find out how to create your own
framework, see Chapter 12 in this book.

Creating and Managing a Project

Changing a project’s nume

Click the Inspector button.

In the Project Inspector panel,
choose Project Attributes.

Type the new name in the Project
Name field.

Press Return.

By default, the project’s name is the name of the directory you chose when you
created the project. The same name is used for the executable or bundle that
the project creates. If this isn’t the name you want to use, change it in the Project
Attributes inspector.

ﬁ o | Click this button, or choose Inspector
TN from the Tools menu.

Exchange — Project Inspector

Froject Attributes — Select Project Attributes.

Froject Name:l CurrencyConverter — Type the new name here.

Language:| English

Application Class:l Application

hain Mib File:| CurrencyConyertar

OPEMSTEF for Mach =

Help File

application lcon
| application.if

Document [cons

|_ Extension |lcon Hame

Al
Remove |
The Project Attributes inspector contains information Project Builder needs to
know to build the project and to maintain the project makefiles. Different types

of projects have different Project Attributes inspectors, but all of them have the
Project Name attribute.

For application projects, this panel contains the language used to develop the
application, the class for the application object, the name of the main nib file,
and the icons used by the application in addition to the project name. You can
change these attributes as well.

Setting the application icon

Add the icons to the project
under Images.

Bring up the Inspector and
choose Project Attributes.

Place the cursor in the
Application Icon field.

Drag the application’s icon from
the main window into the icon
well.

For most applications, you’ll want

to use a unique icon. You can create your

application icon using any graphics tool, but it must be a 48 X 48 pixel
TIFF image. Once you’ve created the icon for your application, add it to the
project and to the Project Attributes inspector.

SNaE|ot=]—

Click here, or choose Inspector
from the Tools menu.

Currency Converter — Project Inspe |] | X

Project attributes =&

Select Project Attributes.

Project Name:l CurrencyConverter

Language:lEnglish

Application Class:| Application

hain Mikb FiIe:l CurrencyConverter

OPEMSTEP for kach =

Help File

Application lcon
|app|icati0n.tiﬁ

Daocument lcans

|— Extension |lcon Hame

Remave

[——_TIFF

L}
o
=)

Legacy Projects

If Project Builder can’t understand a

Makefile.preamble or Makefile.postamble

project’s Makefile, it decides that the project
is a legacy project, a project created using
a previous release. Project Builder won't
create or maintain the Makefile for legacy
projects; you must do that yourself.

You don‘t have to use the legacy project type
every time you want to control the Makefile.
Instead, you can make your changes in the

files. The project Makefile includes
Makefile.preamble at the beginning of the
build and Makefile.postamble at the end of
the build. Project Builder won't overwrite
these files, so making changes to them is
safe.

For more information about Makefiles, see
Chapter 9in this book.

10

Creating and Managing a Project

Setting document icons

Add the icons to the project If an application creates documents of a unique type, you should create an icon
under Images. for that document type in addition to the icon for the application itself. Like the
application icon, the document icon must be a 48 X 48 pixel TIFF image. Again

Bring up the Project Inspector . L . .
and choose Project Attributes. like the application icon, you add the document icon to the project, and then to

the Project Attributes inspector.
Click Add Row.

Drag the icon from the main .

window into the icon well. a&| | | 61& (f:rlé%(tlllwir?o%scg%%szf Inspector
Type the file extension to be

represented by this icon in the

Name field of the Document
Icons table. ToDo — Project Inspector

Project Atiributes

Select Project Attributes.

Praject Nane:| ToDo

Language:lEninsh

Application Classzl M3 Application
hain hlib File:| ToDo

(OPEMSTEP for hach =
Help File
application lcon ‘ ; I

| TaDatiff

~TIFF

Document [cons

_ | calendar.tiff
N .
add

Type the file extension here.

:

Remove

Are you creating a multi-
document application? Be sure to
read the section on multi-
document applications in
Discovering OPENSTEP,

1

Setting system-defined document icons

Setting system-defined document icons

Bring up the Project Inspector

and choose Project Attributes.

Click Add Row.

Type the file extension in the
Name field of the Document
Icons table.

In addition to listing the file types that the application can create, the Document
Icons table should list the file types that the application can read but cannot
create. For example, if you are creating a word processing application that can
open RTF files and translate them into its own unique file type, you should list
the RTF extension in this table.

{& o —————— Click this button, or choose Inspector
i from the Tools menu.

ToDo — Project Inspector

Project Atiributes

Select Project Attributes.

Project Name:|TUDD

Language:| English

application Class:| NSapplication
Main Mib File:| TaDa

OPEMSTEF for Mach =

Help File

Application lcon
| TaDo.tiff

Document lcons

|— Exztension |lcon MName

d calendar tiff
Laystem Defined

add =—— Click here.

[Type the file extension here.

12

Opening a nib file
Creating a nib file

Using palettes

Placing interface objects
Initializing text
Removing objects
Duplicating objects
Sizing interface objects

Shrinking objects to their
minimum size

Making interface objects the
same size

Positioning and sizing
precisely

Sizing windows and panels

Moving objects to other
windows

Arranging objects

Grouping objects

Creating matrices of objects
Creating menus

Layering objects

Composing the Interface

The last thing one knows in constructing a work is what to
put first.
Blaise Pascal, Pernsées

Measurement began our might.
W. B. Yeats, “Under Ben Bulben”

14

Chapter 2

Composing the Interface

Opening a nib file

» Double-click a nib file in Project
Builder.

Oor

» Double-click a nib file in the
Workspace's File Viewer.

or

» In Interface Builder, choose
Document » Open and selecta
nib file in the Open panel.

Nib files (files that have a .nib
extension) are file packages that
archive the class definitions,
objects, and the connections
between objects when you create
an interface in Interface Builder.
See “What’s ina Nib File” in this
chapter for some conceptual
background.

15

You’ll usually open a nib file from Project Builder, since that is the central tool
for application development. When you create an application project, Project
Builder creates a nib file that has the same name as the project and, like all nib
files, ends with the extension .nib. Opening a nib file switches control to the
Interface Builder application, which you use to create the interface.

’7 F [[FmeMachine.ni
Interfaces [

N
¥

Nib files are
under
Interfaces.

Double-click the
nib file or its icon.

You can also open nib files using the standard methods of opening files, such as

using the Open panel.

Z
A

Time Machine _| English.lproj
English.Ipraj L= Timerdachine. nib

Select the appropriate .Iproj
directory.

English.Iproj contains nib files and
other resources for applications that
are localized for readers of English.

Select a nib file.

Click here to open the nib file.

Opening a nib file

When Interface Builder Starts Up

When you open a nib file, Interface Builder displays several
windows and panels on your screen.

The palette window Holds all currently loaded palettes of
objects. You select a palette by clicking its icon. Then you drag
objects from the palette to the appropriate surface.

The interface window This window or panel displays the actual
interface that you're working on. If this is the first time you've
opened a main nib file in Project Builder, an empty window is
displayed.

The nib file window This window contains multiple views that
display the contents of the nib file. These views show archived
objects, the connections among objects, the current class
hierarchy (including any custom classes that you may have

| P Palette
'd window
nm_1 TELd
§| AT ’l‘fl | ||
K |
Twel Tile Mol -
. 5 LT |
| LTH|
_Femain =
i v
o RS

Interface
window

Exchange Fus ger §1) [
Doders in Sonver: [0
#engeard in Cthes Curmency: [son

o] €

created), and the images and sounds stored in the nib file. Click a
tab to switch the view.

The Inspector panel This multiform panel displays the
attributes, connections, and size of a selected object. It also
presents the object’s resizing characteristics, its associated help,
and which class it inherits from.

You can control whether the palette window and the Inspector
panel appear when Interface Builder starts up by checking the
appropriate boxes in the Preferences panel.

B Twracsss tina i n Hachararl rafrshlors) (=1 Ni_b file
S - . window

i@] =

i - et e e Wi N

.

= |

=

o' LT

=

panel

T We Windes

Fus e Crogme
I~ herarbnad [T~ |
L, T iy |
" Bl Fraon k||

paan

AR sy] |

1 k4 o achein

ELTEE G Toe B]
= T |

Cra Lhal

[inruprsl 0N 1N
‘Wanh b b oan |

16

Chapter 2

Composing the Interface

Creating a nib file

» Choose one of the commands in
the New Modules submenu of the
Document menu.

Or

» Choose New Empty from the New
Modules submenu, then drag a
window or panel from the
Windows palette.

Or

» Choose New Application from the
Document menu.

You can have auxiliary nib files,
such as an Info panel, that you
load into your program only when
you need to. The programming
technigue of loading nib files on
demand (lazy instantiation) is
described in Chapter 11,
“Dynamic Loading.”

One reason to use New
Application is to create a version
of your interface for Microsoft
Windows. For more information
see Chapter 18.

17

Sometimes you need to create nib files directly in Interface Builder, typically
when you want to add additional windows and panels to your application.

Most commands of the New Module submenu create nib files that contain a
special kind of ready-made panel; your application can later load these nib files
when it needs them. For example, if you choose New Info Panel, you’ll get the
following template panel:

My Applieation

by o

The New Empty command just creates an empty nib file; you must create the
windows and panels for it by dragging these objects from the Windows palette.
The Document » New Application command can create your application’s
main nib file (a nib file with the owner of NSApplication) if that hasn’t already
been done for you in Project Builder.

Saving the Nib File

An UNTITLED nib file window appears for menu and specify a path and file name in the
each newly created nib file. After you make Save panel. Interface Builder may ask if you
changes to an interface, remember to save want to insert the file into your project;

the nib file. Choose Save from the Document confirm by clicking Yes.

) swe

Traveladvisor English.lproj

Alrplane.eps Traveladvisor.nib
Converter.h

Select a localized resource
subdirectory (.Iproj extension) of the
project directory.

erived_src
AI dynamic_ohj
v ; B S .
¥l|Engiisn Ipro —— Type the name of the nib file. The .nib
extension is automatically added if you
leave it off.

Mame | UNTITLED.nib 7

gl ﬂl ﬂ Cancel | oK q—— Click here to save the file.
1 1

Creating a nib file

What's in a Nib File

Every application has at least one nib file (actually a file package).
The main nib file contains the main menu and often a window and
other objects. An application can have other nib files as well. Each
nib file contains:

Archived Objects Encoded information on OPENSTEP objects,
including their size, location, and position in the object hierarchy
(for view objects, determined by superview/subview relationship).
At the top of the hierarchy of archived objects is the File’s Owner
object, a proxy object that points to the actual object that owns the
nib file. (For a description of File’s Owner, see the concept
summary on File’s Owner, First Responder, and Font Manager in
Chapter 4.)

Sounds and Images Any sound orimage files (TIFF or EPS) that
you drag and drop over the nib file window.

Class References Interface Builder can store the details of
OPENSTEP objects and objects that you palettize (static palettes),
but it does not know how to archive instances of your custom
classes since it doesn’t have access to the code. For these
classes, Interface Builder stores a proxy object to which it
attaches class information.

Connection Information Information about how objects within
the object hierarchy are interconnected. Connector objects
special to Interface Builder store this information. When you save
the document, connector objects are archived in the nib file along
with the objects they interconnect.

When You Load a Nib File

In your code, you can load a nib file by sending the NSBundle
class the message loadNibNamed:owner: or
loadNibFile:externalNameTable:withZone:. When you do this,
the following things happen:

¢ The run-time system unarchives the objects from the object
hierarchy, allocating memory for each object and sending it an
initWithCoder: message.

¢ ltunarchives each proxy object and queries it to determine the
identity of the class that the proxy represents. Then it creates
an instance of this custom class (alloc and init) and frees the
proxy.

¢ The system unarchives the connector objects and allows them
to establish connections, including connections to File's
Owner.

¢ Asthe final step, the run-time system sends awakeFromNib to
all objects that were derived from information in the nib file,
signalling that the loading process is complete.

MyClass = {
ACTIONS ={
dothis;

Button |

I
OUTLETS ={
textField;

I
SUPERCLASS =
NSObject;

Text

Archived Objects Custom Class Info

TIFF

BEutton

dothis:,

(}
textField

Tewst

e

Connection Info Images & Sound

18

Chapter 2

Composing the Interface

Using palettes

Choose the palette you want.

Drag an object from the palette to
the appropriate “surface.”

Release the mouse hutton.

“Where Palette Objects Go” in
this chapter illustrates the proper
“surfaces” for interface objects.

See the Enterprise Objects
Framework Developer's Guide for
more information on Enterprise
Objects Framework palettes.

See “Managing palettes” in
Chapter 5 for instructions on
loading and installing palettes.

19

The palette window of Interface Builder displays all currently loaded palettes.
Each palette is represented in the window by an icon.

I e icon o
choose a palette.
SFEES T
]

i

Drag an object from the palette to the

I appropriate part of the interface.
Release the mouse button when the
object is in position.

The palettes for the Application Kit are loaded by default. These palettes
provide windows, panels, browsers, scroll views, buttons, text fields, and a
number of other interface objects. You can also load palettes for other
frameworks, such as Enterprise Objects , and you can load your own custom
palettes.

Note: Where you “drop” a window or panel is important, because it sets its initial
position on the screen—the location where the window appears when the
application starts up or when this particular nib file is loaded.

Placing interface objects

Placing interface objects

Select the object you want to
move.

Drag the object to the new

location in the window or panel.

You can adjust the size and
location of objects precisely by
specifying their origins, width,
and height in the Size display of
the object’s Inspector.

See “Positioning and sizing
precisely” in this chapter for
details.

To move an object around the “surface” of a window or panel, select the object
and drag it with the mouse. The currently selected object has resize handles—
small, gray rectangles— around its perimeter.

4
o : handles appear.

Click the object so the resizing

\ Buﬁond—— When you drag the object,

you can move it anywhere
inside the window or panel.

When you move an object, make sure that the mouse pointer is inside the object
and not on a resize handle.

For greater precision, select an object and press the arrow keys; this moves the
object an incremental distance in the required direction. If the alignment grid is
off, this distance is one pixel; if it is on, the distance is eqaul to the size of the
grid.

Selecting Multiple Objects

You can select multiple objects and then
move, copy, or do other things with them as a
group. There are two ways to select more
than one object:

¢ Hold down the Shift key while you click
objects in succession.

¢ Clickin an empty area, then draw a
“rubberbanding” rectangle around all
objects you want selected.

After making the selection, press (don't
momentarily click) the mouse pointer on one
of the objects and drag the group to the new
location. (Or do another suitable operation,
such as copy and paste.)

To deselect an objectin a grouped selection,
hold down the Shift key and click that object.

You cannot do sizing operations on multiple
selected objects.

To select all objects in a window or panel,
first select the window or panel, and then
choose Select All from the Edit menu. You
can also use thiscommand to select all items
in the Instances or Classes display of the nib
file window. The key equivalent for Select All
is Command-a.

20

21

Chapter 2 Composing the Interface

You put items from the Views, TabulationViews, and DataViews
palettes anywhere within the bounds of a window or panel. These
items include buttons, labels, fields, boxes, text fields, scroll
views, browsers, and custom views.

Placing interface objects

You can put windows and panels anywhere in the work space.
Nothing contains them except the screen.

You drag a menu item from the Menus palette and drop it in the
application’s menu. When you release the mouse button,
Interface Builder inserts the item between the two menu
commands underneath it.

=|iFEC

s [eechatin <
Wik} 1
L] I Py [—_—
; i;u '
- ol ! Fl.d L LEE) Lk
R Sl . oy i
"crud ! Cikn m
Andre 1 om | f
[l]
Sqraclk I Pl LT r

Composing the Interface

Chapter 2

You drag a formatter from the Formatters palette and drop it on a
text field or a cell in a tableview. That formatter will control the

formatting for all of the cells in that column.

H+44F-HArF+Ftt A FHAdAFAF Pt R

rAd+ndnnknd+F++ddddndnnkFnt htd 4+

Ll Rl Bk Bl LR L L ek Bl ok o L
*ndkFAdFh+Fdddddddd b=k nd b+ ke
MU LML ML MAL Al A MM P EL N L

Bl e L o T e P o T R o T

dlalaafalELlrllllalaabfalGlElL
M il o W g Mop ook ek] b W g E R
EER-L-R-T-RR-NJ-FREFE-EN-ER-L-J- 0N 4 VN5

OO LOATCETTTTATRINOLEOTOTETT
B n—.—.l.—Tl_—.T+—.++++._+n—._T|_—.T+T+—.++

TAAAAFATFTTTTATAIAACATATT TT
Ll ol Bl ol LR L L Rl b o L

Some palettes, like the one for the Enterprise Objects Framework,

carry objects that do not appear on an interface. These usually

are controller objects that perform management or computational

functions. Drop these objects anywhere on the Instances display

of the nib file window.

23

Initializing text

Initializing text

Select the object.

Double-click the text inside the
interface object.

Edit the text.

Deselect the text by clicking
outside of the object.

“Creating matrices of objects™ in
this chapter describes how to
create these compound objects.
Also see “Compound Objects” in
Chapter 3 for a conceptual
summary of matrices and other
compound objects.

Many of the palette objects include text as a component. Buttons of all sorts
usually have titles, boxes usually name the elements they group, and so on.
Interface Builder initially sets the text in most of these objects to the name of
the object itself (such as “Button” or “Text”). After you drag the palette object
onto a window or panel, you will probably want to delete these text strings or
rename them to something meaningful. This text is what is initially displayed
when your application loads the nib file; the text can change later if one of the
objects in your application requests it.

" My App [X] Id My App
Field 1| Field1|
Fieldz | Fieldz |

Double-click the line to select it. Type the new text. When finished, click
outside the object to set the text.

When text is selected, you can move the cursor among the characters by
pressing the left and right arrow keys. You can delete characters by pressing the
Delete key.

Matrices—compound objects, such as radio buttons and form fields—need a
slightly different procedure for selecting text for initialization: You must double-
click the embedded text item twice, the first time to select the embedded
object, and the second time to select the text inside the object.

My App d My App

| et] |
s :
Fieldz |
£

-) -]

Sarted _| Sarted |

il |
Double-click again to select the text.

In matrices, double-click the text to
select the embedded object.

24

Chapter 2 Composing the Interface

Removing objects

Select one or more objects. To delete objects from an interface, select the objects and choose the Cut
command. You can also use the Delete command, but the differences are

Choose Cut from the Edit menu. significant. Cut saves the selected objects to the pasteboard, so you can retrieve

the objects with the Paste command (Command-v). The Delete command
permanently deletes the selected items.

Last Hame: |

Hrst Name: 3

Select one or more objects.

Choose Cut from the Edit menu or press
Command-x.

The Coordinate System in Interface Builder

The Size display of an object’s Inspector panel shows that object’s
precise location and dimensions. The x and y fields hold the origin
point (horizontal and vertical) for the object within the drawing
context of its enclosing window, panel, or superview. The w and
h fields hold the width and height. All values are in pixels.

Within a window or panel, the lower left corner is origin 0,0. This
is the point of reference for objects within that window or panel.

The origins and dimensions of
view objects are based on the
origin point of the window or
panel that contains them. (The
origin does not include the resize
bar.)

Therefore, when you move or size objects downward or to the left,
the values in the Size display are decreased.

The point of reference for a window or panel (or origin 0,0) is the
lower-left corner of the screen. This means that the same
relationship applies: if you decrease its x value in the Size display,
itmoves to the left; if you decrease its y value, it moves toward the
bottom of the screen.

Lod

In this example the window’s
placement is 340,300 relative to s
the screen origin. This same 400,400
point on the screen is the origin
for views in the window.

The origins and dimensions of
windows and panels are based .
on the screen’s origin point. 08

i
3
i
i

o] e ™

Duplicating objects

Duplicating objects

Select an object.
Choose Copy from the Edit menu.
Choose Paste from the Edit menu.

Position the new object.

You can also duplicate groups of
selected objects by copying them
and then pasting them. See
“Selecting Multiple Objects” in
this chapter for details on making
multiple selections of objects.

You can duplicate an object just as you would with geometric shapes in a
drawing application. The copied object has the dimensions and most other
attributes of the original object.

i1 k! | LR
rawrarmmaroxraxay rarrarczazraixa
I'hl-!h'-:I . . —y | Tra L e [} =
|

I |
Select an object. Choose Copy, then Paste The copy of the object is slightly
from the Edit menu. offset over the original object.

In addition to the objects that appear on the interface, you can copy your custom
non-Ul objects—represented as cubes in the icon mode of the nib file window
Instances display—as well as your windows and panels. Just click to select them
and then copy and paste.

Tip: Instead of choosing Copy and Paste from the Edit menu, you can press
Command-c (Copy) and Command-v (Paste).

26

Chapter 2

Composing the Interface

Sizing interface objects

1 Select an object.

2 Drag aresize handle in the
desired direction.

You can adjust the size and
location of objects precisely by
specifying their origins, width,
and height in the Size display of
the object’s Inspector panel. See
“Positioning and sizing
precisely” for details.

27

Interface objects in Interface Builder resize to any practical dimension. You can,
for instance, increase the size of a button so it fills a window. Most interface
objects, however, do not resize below a certain minimum size of usefulness.

§Tex1 L. Click an object to select it,
B then drag a resize handle in
the direction of growth.

Release the mouse when the
object reaches the desired
size.

To affect just one dimension of the object, drag a top, bottom or side handle. To
adjust both dimensions simultaneously, drag one of the corner handles. To size
both dimensions proportionally, hold down the Shift key while you drag a corner
resize handle.

Shrinking objects to their minimum size

Shrinking objects to their minimum size

To conserve screen real estate, or to enhance the appearance of your interface,
you might want to have view objects just large enough for any text they contain.
You can do this with the Size to Fit command.

1 Select one or more objects.

2 Choose Format »
Size » Size to Fit.

[d Window [X] 4 Window]
. Name:| . Name:|
e — | m
-Company: -Campany:
. :Phohe:_:(ggg)ggg-gégg 2 - :PhDhE:E(ggg)gg_g-gggg:
L L L L

Choose Format P
Size P Size to Fit

The copy of the object is slightly

Select an object that you want to shrink.
offset over the original object.

The Size to Fit command has no affect on matrices, custom views, and some
other objects. If you delete the text from a button, text field, or other object that
holds text, and then apply the Size to Fit command to it, that object shrinks to
its minimum (and probably unusable) size.

28

Chapter 2

Composing the Interface

Making interface objects the same size

Select the reference object.

Add to the same selection the

objects that you want resized.

Choose Format »
Size » Same Size.

29

To lend a look of consistency to your interface, you often want to make similar
objects have the same size. Buttons across the bottom of an attention panel, for
instance, should be the same exact size. Interface Builder gives you an easy way
to do this, allowing you resize selected objects to a r¢ference object. You designate
the reference object differently, depending on your method of selection:

= |fyou press the Shift key while clicking objects in succession, the first object
clicked is the reference object.

= |f you draw a selection rectangle around a group of objects, selecting the
objects simultaneously, the topmost object in the selection (often the most
recently added object) is the reference object.

| My App X
Last Hame: |

First Hame: |

35 Number: |

] o a] a4 m o

m Show E s Delete L om o Mew

= |

—r—
1

Select the

Select the other

reference object. objects.

Choose Format P
Size P Same Size

4 My App]

Last Name: |

First Hame: |

55 Number: |

] o -] - o
u Show E m [Delete E m Mew E
| |

The objects become the
same size.

Tip: In most situations, you should select multiple objects by Shift-clicking them
because this method gives you more control (you know which object will be the
reference object).

Positioning and sizing precisely

Positioning and sizing precisely

Select an object.

Choose Tools » Inspector to
bring up the Inspector panel.

Choose Size from the Inspector
pop-up list.

Modify the object's origin point
or its dimensions.

See “Automatically resizing
objects” in Chapter 3 for
information on the Autosizing
area.

You can move and resize objects in your interface with numerical exactness
using the Inspectors for those objects. You’ll occasionally find need for such
exactness, such as when you want to size an image view to the same dimensions
as the image that it will display. More frequently, you’ll use this method to align
objects or make sure they’re the same size.

7] My App [X]
Last Hame: | Note the size and location of
» - - the object that is the desired
First Hame: i size.

Select the object you wish to
adjust.

C N

TextFeld Inspector E:{

Size =] Choose Size here, or press
Command-3.
Frame
«l a5 wel 188 Modify the values in the origin
I I (x and y) and dimension (w
w79 hif 21 and h) fields.
Autasizing

When you press Return in an origin or dimension field, the object moves to the
new position or expands or contracts to the new size.

Tip: You can also move selected objects incrementally—and precisely—by
pressing the arrow key that points in the required direction. Each incremental
“nudge” moves the object the distance of the grid or, if the grid is turned off,
one pixel.

30

Chapter 2

Composing the Interface

Sizing windows and panels

» Drag the resize bar in the
direction you want the window to
grow.

Or

Select the window by clicking
its titlebar.

Choose Tools » Inspector to
bring up the inspector window.

Enter the dimensions in the Size
display of the Inspector panel.

You can also use the Inspector
panel to size interface objects
with numerical exactness. See
“Positioning and sizing
precisely” for more information.

Also see “The Coordinate
System in Interface Builder” for
some conceptual background.

31

After you drag a window or panel from the Windows palette and drop it on the
screen, you’ll probably want to resize the object to a suitable dimension. To
resize a window, drag the resize bar in the required direction.

If resize bar is not
visible, click here.

Drag corner
sideways to

change width only. \

N

Windowr

Drag corner in

diagonal direction

to change both
— length and width.

+—> 7]

73

27— Resize bar.

Drag center of bar
down to change

length only.

N

To resize windows or panels with greater precision, enter the exact dimensions
in the Size display of the Inspector panel.

Window Inspector K{

— Choose Size here, or press
Command-3.

/)

7 Frame

x| 388 w:| 307

y:| 396 hf 185

rinimum Size

\: |—|:Z Current |

Type the origin point for the
window relative to the lower left
corner of the screen. Press
Return.

Type the width and height of the
window or panel (in pixels) and
press Return.

Moving objects to other windows

Moving objects to other windows

Select one or more objects. To move objects from one window or panel to another within the same nib file,
hold down the Alternate key and drag them between windows. This action
moves the objects if the windows are in the same nib file and copies them if they
windows are in the different nib files.

Alternate-drag the objects to the
other window or panel.

Last Hame: i

First Hame: ; Select an object (or multiple
objects). Press on the Alternate
key while dragging the object to
its new window or panel.

Panel N\ [[x

| B Release the mouse
button when the

object is at the

desired location.

If the windows are in the same nib file and you want to copy rather than move
the selected objects, you have two alternatives:

= Copy the objects using the Copy command; click the other window or panel
to activate it, and use the Paste command to copy the objects from the
pasteboard.

= Copy and paste the objects in one window, then Alternate-drag the
duplicated objects to their new window or panel.

Copying Objects to Other Interfaces

To copy objects to different nib files, simply ¢ Non-Ul objects must be dropped over the
select a group of objects in one nib file and nib file window.
Alternate-drag those objects to the

appropriate “surface” of the other nib file. * View objects are dropped over a window

or panel or over the nib file window.
You can copy entire windows or panels as
well as custom, non-Ul objects between
interfaces.

¢ Windows and panels must be dropped
over the nib file window.

The basic technique of Alternate-drag also
copies the connections among selected
objects. See “Copying interconnected
objects” in Chapter 4 for details.

The surface you drop objects onto must be
compatible:

32

Chapter 2

Composing the Interface

Arranging objects

Choose Format » Align »
Alignment to bring up the
Alignment panel.

Set the characteristics of the grid
in the Alignment panel.

Choose Format » Align » Turn
Grid On to turn on the grid.

Align objects with the grid.

33

When you compose your interface, you usually want to arrange the objects in
that interface in some appealingly regular way. You want buttons, for instance,
to be aligned on the same invisible horizontal or vertical line. Or you want the
distance between text fields in a form application to be exactly the same.
Interface Builder gives you a set of tools for arranging objects.

Every window or panel has a grid associated with it. You may turn this grid off
and on. When it is on and you move an object, an edge of that object “snaps,”
like a nail to a magnet, to the adjacent intersecting lines of the grid.

You set the dimensions of this grid and the edges of alignment in Interface
Builder’s Alignment panel.

Alignment %]
Align
(" Left edges / Bottom edges
" Centers
" Right edges / Top edges

Click a button to set the
edges of alignment for
objects.

Move the slider to set
the dimensions of the
grid (set to 5X5 pixels
in thes example).

The buttons in the Align section of the Alignment panel determine what point
or edge of interface objects snaps to the grid.

When Right
edges/Top edges is When Centers is
clicked. clicked.

Eutton | ‘EII»

Once you have your grid set up, make sure the grid is turned on: Choose Format
» Align » Turn Grid On. If you also want the grid visible, choose Show Grid
from the same menu.

Arranging objects

Now align the objects, either individually or as a group, using the grid.

4 Window X
"""""""" Dots represent the
"""""" /S intersections of the grid.

D i ——a—— Drag the object until it
__________ *‘ . snaps into alignment.

There are other ways to align objects that don’t require using the mouse. With
the grid turned off, you can drag view objects from a palette and visually align
them as precisely as possible. Then set the grid spacing, turn the grid on, and

choose the Align to Grid command.

Once the grid is set and on, align the objects, either individually or as a group.

T]
8 onEmel E rGmed
8 Tl | ——— | & Tied
- 3Comgany | Scompany |

With grid off, place objects for Choose Format P Align Objects become aligned, in this
alignment and then select them. PAlign to Grid case moving on the grid to their
left.

With the Align to Grid command, the direction of alignment is toward the origin
point of the window or panel (in other words, toward the lower-left corner). You
should be aware of this when placing objects for later alignment.

Tip: You can align selected objects to a grid, singly or as a group, by pressing the
arrow keys in the direction of alignment. When the grid is turned on, the unit of
increment changes from one pixel to whatever the grid spacing is.

34

Chapter 2

Composing the Interface

35

Making Columns and Rows of Objects

It is more efficient to align groups of objects than to align single objects
successively. With the Make Column and Make Row commands, Interface
Builder aligns groups of selected objects to a r¢ference object. You designate the
reference object by the way you select multiple objects.:

= |fyou press the Shift key while clicking objects in succession, the first object
clicked is the reference object.

= |f you draw a selection rectangle around a group of objects, and so select
objects simultaneously, the topmaost object in the selection (often the most
recently added object) is the reference object.

For most purposes, Shift-clicking objects is the preferred method because it
permits more control.

4 Window] d Window x|
............... Reference s
. / object [.
- . . - m .
B rfmed | B rfmed |
8 Tued | | — | 8 el |
...... . . m o= .

Cm | ‘CU.mEaW:l
acompanys L
L 1 1 L

Click the reference object first, Choose Format P Align The objects become vertically

then Shift-click the remaining PMake Column aligned to the reference object.

objects to select them.

Arranging objects

NeXT's Basic Ul Design Philosophy

Composing a user interface involves much more than techniques
for placing, sizing, and arranging objects on a window. When you
put your application's Ul together in Interface Builder, keep in
mind the following principles that NeXT has developed, through
trial and test, to guide interface designers.

Make It Consistent

When all applications share the same basic interface, each
application benefits. Consistency makes each application easier
to learn, and so increases the likelihood of acceptance and use.
Just as with so many natural “interfaces” in life, conventions
count for a great deal. Although different applications are
designed to accomplish different tasks, they all share, to some
degree, a set of common operations such as selecting, editing,
scrolling, and setting options. Reliable conventions are possible
only when these operations are carried out the same way for all
applications.

Make it Feel Natural

Try to make the screen a visual metaphor for the real world, so
that the objects in it reflect the way the represented things
actually behave. That's what an “intuitive” interface is — it
behaves as we expect based on our experience with objects in
the real world.

Modeled objects don't have to mimic every detail of their real
counterparts, but they should behave in similar ways. For
example, objects in the real world stay where we put them; they
don’t disappear and reappear again, unless someone causes
them to do so. Users should immediately recognize the objects in
your interface and should use them for the sorts of operations that
people typically use their real counterparts for.

Put the User in Charge

Users should have the widest freedom of action. If an action
makes sense, your application should allow it. In particular, avoid
setting up arbitrary modes, periods during which only certain
actions are permitted. On occasion, however, modes are a
reasonable way of solving a problem, particularly in these forms:

¢ attention panels
¢ modal tools
¢ “spring-loaded” mode (while mouse or key down)

But these modes should be freely chosen, provide an easy way
out, be visually apparent, and keep the user in control.

At the same time, you should try to anticipate what users will do
and ease their way, reducing the actions they must perform. Give
them freedom, but still act on their behalf without waiting for their
instructions. These helping actions should be simple and
convenient, like, in the Open panel, preselecting a directory that
is probably in the path of the final selection.

Focus on the Mouse

The mouse is the most appropriate instrument for a graphical
interface. The keyboard is principally used for entering text, but
the mouse is the instrument by which users manipulate the
objects of yourinterface. Your userinterface should supportthree
paradigms of mouse action:

¢ Direct manipulation
¢ Targeted action

¢ Modal tool

36

Chapter 2

Composing the Interface

Grouping objects

Select the objects you want
grouped.

Choose Format »
Group » Group in Box.

See Chapter 3 “Setting an
Object’s Attributes” for other
things you can do with box
objects.

See the specifications of the
NSScrollView and NSSplitView
classes in the Application Kir
Reference.

37

When you group objects, Interface Builder draws a box around them. You select,
move, copy, cut, and paste the objects within the box as a group. Interface
Builder gives you two ways to group objects.

In the first method, you select the objects of the group and choose a menu
command. The box has atitle, initially “Title.” To change this, double-click the
title to select it (as in the example above, on the right). Then type the new name
for the grouped objects.

Liripida

Lir i

i

i
§

Choose Format PGroup
PGroup in Box

The objects of your group A box encloses the objects.

should be adjacent.

To ungroup the objects, making each object individually selectable again, select
the group and choose Format » Group » Ungroup.

In the second method, you use the box object in the Views palette. First, drag a
box onto a window or panel. Then add its contents:

Hia

Double-click the box; its resize
handles become truncated.

Drag an object from the palette and
r position it within the box. The black
N e e line inside the boundaries of the box
indicates that grouping is taking
place.

The Group submenu has two other interesting commands. With Group in Scroll
View, you can bind an NSText object (or your own custom view object) to
horizontal and vertical scrollbars. With Group in Split View, you can group two
related views (often a custom view and a browser object) in a split view, which
has a sizing bar between the views.

Creating matrices of objects

Creating matrices of objects

Drag a suitable object from the
Views or TabulationViews
palette.

Alternate-drag a resize handle of
the object.

You can easily transform certain objects in the standard Interface Builder
palettes into matrices of those objects. A matrix (defined by class NSMatrix)
imposes a regular size and intervening distance on a set of identical objects.
Matrices afford an easy way to compose forms, arrays of buttons and sliders, and
multiple-column browsers. To create a matrix, drag one of these objects to a
window or panel and size it to the maximum dimension you anticipate for a cell
in the matrix:

text field

button

switch button

radio button

form field

slider (vertical or horizontal)

| by Wi Fr
— While pressing the Alternate
key, drag a resize handle in the
desired direction.
I TaLcroaspter /_
Cohekro
o

Ruir L S Y
Amac Sk
Nedc L |

'1_— Release the mouse button
when you reach the
| desired dimensions of the

| matrix.

E Trecd, guad=iE I e ¢ = u0a

Tip: To make a browser with more than one column, drag a browser object from
the TabulationViews palette onto your interface; then Alternate-drag the right
resize handle until the desired number of columns appear.

38

Chapter 2

Composing the Interface

Creating menus

Drag a menu item from the
Menus palette.

Drop it between two menu items
in your application’s menu.

You can make menu items active
or inactive by default. Select the
item and set the Disabled button
in the Attributes display of the
cell’s Inspector. See Chapter 3,
“Setting an Object’s Attributes”
for more information on using the
Inspector panel.

See Chapter 4, “Making and
Managing Connections” to learn
what you must do to connect
menu items with the objects that
are to handle menu commands.

39

Menus are just as important as windows and panels for an interface. Menu
commands initiate most of the standard functions of an application, such as
printing, opening files, or cutting and pasting text. That’s why Interface
Builder’s Menus palette holds a number of ready-made submenus and menu
items.

Choose the Menus palette.

I
= it

—— Drag a Menu item from the palette...
e v o 1
Cuogimers /] _Teaa 1

'
Fursad 1| codin e -
Lo F Document §“'|::|- ...and drop it between two items.
SErACEc ' Subrnarra '

Windows I~

Services I

Hide h

Quit q

Click several menu items in your application’s main menu and note how some
cells in the submenus are dimmed. Dimmed cells indicate that, as the default,
the command is inactive until some condition occurs in your code that causes
your application to activate the command.

You delete amenu item just as you do with any other object in Interface Builder:
select it, then choose the Cut command from the Edit menu (Command-x) or
press the Delete key. Also, as with other Interface Builder objects that display
text, you can easily change the titles of menu items:

= Double-click the text to select it
= Type the new title or edit the old one
= Click outside the cell to set the new title or press Enter

You can also do two special tasks with menu items: re-sequencing and assigning
Command keys. By re-sequencing, you change the order in which items are
listed in a menu. By assigning a Command key to an item, you give the user of
your application a command key equivalent—a shortcut way to invoke the
command (as Command-X is a shortcut for invoking the Edit menu’s Cut
command).

Creating menus

Info I

Document =3 Eincsr

Celit -

Tools o 17

Windows
Print...

|

P
Services |
Hide il
Cluit g

align Lent

Center

Align Right
Show Ruler |r
Copl Ruler 1
Paste Ruler 2

Custom menus

Resequencing

Drag the menu item from its old location
(shown by a black rectangle) and drop it
between two menu items (its new location).

Command-key Assignment

Double-click the menu item near its right
edge. In the square, type the letter for the
Command key.

Make sure that the Command-key letter is
not assigned to some other menu
command in your application.

In addition to the standard menu commands and submenus, Interface Builder
makes it easy for you to compose your own custom menus. Use the Submenu

cell in the Menus palette to create custom submenus and use the Item cell for
custom menu commands. The Print command is frequently added as a custom

1 ka7l 1
e iwtfd | Te:a I
Ccid ' Frd I
Farmar |- E] sl L
AsTTITAL I W

LR &l § SdamniL !

cell.
ek '
el
A 3
SPrear D
- i B
i F
el 1

Drag the Submenu item from
the Menus palette and drop it
between two menu items in the
application’s main menu.

Change the title of Submenu and click the cell to expand it. Then add Items
from the Menus palette to the new submenu and change their titles.

40

Chapter 2

Composing the Interface

Layering objects

1 Select an object.

2 Choose Format » Bring to Front
or Format » Send to Back.

41

Every object on awindow or panel in Interface Builder is on its own layer. That’s
why when you move one object over another object, the first object moves in
front of the second or moves behind it. The most recently added object is
generally on the topmost layer.

Occasionally, you need to alter the layering order to make an object visible or to
have it appear behind other objects. To do this, apply the Bring to Front
command or the Send to Back command (on the Format menu) to selected
objects.

These commands are only useful while you are editing the interface; the final
version of your interface must not have overlapping views.

Instructions Instructions

ﬁ
& k-l [-] L] £ L}
3 omues B oo @ 3 |ndex ; Go Back F
The buttons are behind the Choose Format PBring The buttons appear in front of
ScrollView. To fix this, select the to Front the ScrollView.

buttons.

Layering objects

42

Examining an object's
attributes

Customizing windows and
panels

Setting button attributes

Associating images or sounds
with buttons

Managing images and sounds

Customizing titles, text fields,
and scroll views

Setting textual attributes

Setting text and background
colors

Setting mnemonics
Setting box (group) attributes
Customizing browsers

Setting attributes of menu
items and pop-up lists

Setting matrix attributes
Setting up table views
Automatically resizing objects

Using tags

Setting an Object’s Attributes

But four young Oysters hurried up,
All eager for the treat;
Their coats were brushed, their faces washed,
Their shoes were clean and neat —
And this was odd, because, you know,
They hadn’t any feet.
Lewis Carroll, T%rough the Looking Glass

Is it a world to hide virtues in?
Shakespeare, Twelfth Night

44

Chapter 3

Setting an Object’s Attributes

Examining an object’s attributes

1 Choose Inspector from the Tools
menu.

2 Select an object in the interface.

45

You can examine the attributes of any object, whether that object is a graphical
object such as a button or panel, or a non-Ul object in the Instances display.

The Inspector panel displays the attributes of the currently selected object.

To switch to the Connections, Size,

L Ter T
Help, or Custom Class displays for the
B 1 S selected object, pull down this menu
and make the appropriate choice.
-
s e s
Tl LiEx
LI
P11t

——— Many attribute buttons have to do with
an object’s appearance. Click some of

=1L these to see their effects on the object.
Eolnam |

o
T P

Tig 9

Tip: You can also bring up the Attributes display of the Inspector panel by
pressing Command-1.
Once the Inspector panel is visible on the screen, it stays there until you close

it. As you select different objects, their attributes are displayed (or dimensions
or connections or help links—whatever Inspector display is current).

Examining an object’s attributes

You can also select objects in the Instances display and examine their attributes.
Some of these objects (like First Responder) have no attributes. Others, like an
instance of a custom class, have only one attribute.

Select an object. In this case
the object is an instance of a
custom class.

L 4
[el - - -

L.FNIVYEFEd3RD
L -RAODELIOD
L e ~-VDETIOD

For custom instances, the Attributes
display is the same as the Custom
Class display.

The class of the selected custom
instance is displayed. If you want to,
you can change its class in this display
by selecting another class name.

Chapter 3

Setting an Object’s Attributes

Customizing windows and panels

Set the window title.
Determine how the Window

Server huffers window contents.

Choose the window's controls.
Set the window’s options.

47

A single Attributes display serves for both windows and panels.

/—— Change the window’s
title (what appears in
the window’s title bar).

T W Wndos

Choose the window'’s \
backing (the way its Euscerg Ceryme
contents are buffered). ™ herarunad Mrrlkadll
I~ Ryre Cudn] —T—— Choose the controls for
(T T] Fraos bar || the window.
Lpaans

T T [|
1 - o deecteein

Select the window’s SR mr:ﬂ

options. v b
Cinrudsl J00F @R
“Warh b b o _|

Window Backing

The backing determines how to redraw part of a window when that part is re-
exposed after being covered by another window.

= Nonretained: The application is responsible for all drawing on the screen
because there is no buffer. If the application does nothing, the re-exposed
part is replaced by the background color. Nonretained windows are
appropriate for transitory images that you don’t need to save.

m Retained: The Window Server copies the covered part’s pixels to a buffer.
When the obscured part of the window is later revealed, the Window Server
redraws only that part, not the rest of the window. A retained window is the
appropriate choice for most situations.

= Buffered: The Window Server first draws in the buffer and then copies the
buffer to the screen. When an obscured part is revealed, the Window Server
refreshes the entire window using the buffer. A buffered window is
appropriate when you don’t want users watching complicated images being
rendered on-screen. It is also the best choice for animation or for redrawing
lines of rapidly typed text.

Customizing windows and panels

Window Controls

qm

Miniaturize button Close button

== |
I

Resize bar

Window Options

Option Description

Release when closed

The window object is sent a release message when it is closed.

Hide on deactivate

The window should disappear when the application is deactivated.

Vlsible at launch time

The window should appear when the nib file is loaded.

Deferred

A window device for this object is deferred until it's placed on-screen.

One shot

The window device is released when it is removed from the screen.

Dynamic depth limit

The window's depth limit can change to match the depth of the screen.

Wants to be color

The window is displayed on a color screen (2-monitor systems only).

What's the Difference Between a Window and a Panel?

A panel is a window that serves an auxiliary function within an
application. Because it's intended for a supporting role, a panel
typically has these features:

Also, a panel usually has fewer controls: only a close button;
rarely a resize bar; and sometimes no controls at all.

You can make some panels exhibit special behavior for

¢ A panel can be the key window, but never the main window. specialized roles:

* When the application is deactivated, the panel moves off-
screen (it's removed from the screen list). When the
application is reactivated, the panel appears again.

e Apanel can be precluded from becoming the key window until
the user makes a selection in it.

¢ Some panels (e.g., palettes) can float above windows and

¢ When a panel is closed, it moves off-screen; it isn't destroyed. other panels.

* When instantiated programmatically, panels have a grey * You can have a panel receive mouse and keyboard events
background by default, while programmatically created while an attention panel is on-screen. Actions within the panel
windows have a white background. can thus affect the attention panel.

48

v

Chapter 3 Setting an Object’s Attributes

Setting button attributes

Enter the button's main and The Attributes display for buttons enables you to set a button’s type, title, icon,
alternate titles. alternate title and icon, and various other characteristics. The object labeled
Select the button type. Button on the Views palette is only one style of button (albeit the most common
Specify any key equivalent. style). The palette also holds radio buttons and switch buttons. Using the
Specify button options. Attributes display for buttons, you can customize any palette button, making it

something that is uniquely suitable for a particular circumstance.

o iled -
" B The button’s main
o ~lln and alternate title.
e I]— The button’s main
Holds an integer that & won | and alternate icons.
The Icon Position and Pixels)g)u f‘?n t%se btott —\sml
Inset controls as well as the iaentily the button. Ty kiy ——— The key equivalent to
Sound and Icon fields are Sets the type of button. sk I Gl T clicking the button.
. . . Al "ok w
described in detail in the next = = El- "l\
task, “Associating images or Options controlling the | E‘:"""“" o SRR N Aligns the text within
sounds with buttons.” button’s appearance Tl“':':ﬁ 5 ru | the button boundaries.
') and state. Crabncim | =0
For more information on the Tag Ll | S
field, see “Using tags” in this Tawecied | : 4
chapter.

You might think of storing
specially configured buttons on a
dynamic palette. See Chapter 5,
“Using Dynamic Palettes,” for
complete information.

The Anatomy of a Button

A button is essentially a two-state NSControl ~ compound object: an NSButton object and
object. When a user clicks a button, an an NSButtonCell object. (See “Compound
action message is sentto atargetobject. Itis Objects” inthis chapter.) Most of NSButton's
two-state because it is either on or off, and methods matchidentically declared methods
when itis on, it typically sends its action in NSButtonCell. Aside from dispatching the
message. For a button, the states are also action message, NSButton’s unique role is to
known as “normal” (off) and “alternate” (on). set the font of the key equivalent, and to
manage the highlighting or depiction of the

Like most objects on the Views palette in NSButton's current state.

Interface Builder, a button is actually a

49

Setting button attributes

Button Titles and Icons

The Title field’s value is what appears in most buttons; you can set the title by
double-clicking inside the button. The Icon field identifies an image stored in
the nib file (Images display) that appears within the button. The alternate title
(Alt. Title) and the alternate icon (Alt. Icon) appear when the user clicks a
button of type Momentary Change or Toggle.

Button Key

The Key field identifies a keyboard alternative to clicking the button. Possible
values are: \e (Escape), \r (Return), and any normal letter or number.

Button Type

Type

Button Behavior When Clicked

Momentary Push

Button is highlighted, appears to be pressed.

Momentary Change

Alternate button title and icon appear (while mouse button is pressed).

Momentary Light

Button is highlighted, but no illusion of being pressed.

Push On/Push Off

First click highlights button with illusion of being pushed in; second
click returns it to normal.

On/Off

First click highlights button. Second click returns it to normal.

Toggle

First click displays alternate title and button. Second click returns to
normal.

Button Options

Option Description

Bordered Aline is drawn around the button’s border.

Transparent The button has no border, text, icon, or background color.
Continuous The button sends its action message continuously when pressed.
Disabled Prevents activation of the button; title is in gray.

Selected The button, when initialized, is to be selected (applies to switch and

radio buttons).

50

Chapter 3 Setting an Object’s Attributes

Associating images or sounds with buttons

Drag the icon representing an When you click a button that has a sound associated with it, it plays the sound.
image or sound from the nib file Images appear in buttons with or without text.

window or the Workspace and

drop it over a button.

or

Enter the file name of the image
or sound in the appropriate field
of the button’s Attributes

inspector. Drag the image (in this case)
or sound icon from the nib

file window...

...and drop over
the button.

When you drag an image or sound from the File Viewer, it automatically gets
added to the Images or Sounds section of the nib file.

Drag the image or (in this
case) sound file icon from
the File Viewer...

...and drop it over
the button.

51

Associating images or sounds with buttons

Before you type in the file name,
you should insert the resource
into the nib file or the project.
Usually, you want to add the
resource to the project. See
“Managing images and sounds”
for more information.

Several fields and controls in the Inspector’s Attributes display for buttons relate
to images and sounds.

N e =
L ||
oH “ln
won]— The button’s main
& con | and alternate icons.
Snu'\dl =t
Tl vl The name of the sound
I'puk ANprail file played when button
Fimindars _ gl _.l | s .|| is clicked.
Bl [(H L] P\m.n:n\
nE':::_ﬁﬂ S5O PN— Positions title and icon
Credncm |) o relative to each other.
L] _| Foams AN
Sabind _| . _,i\
N—— Adjusts icon distance
from button boundary.

Note that the name of an image or sound in this display is the file name (find.tiff
and Peit.snd, for example) minus the extension. Instead of dragging and dropping
image and sound icons, you can type their file names (minus the extension) in
the appropriate field.

Icon Position and Pixels Inset

The six buttons in the Icon Position group position the button title and icon
relative to each other. Thus, you can have the title above, below, to the left, or
to the right of the icon, or show only one or the other. The Pixels Inset pop-up
list gives several pixel distances for adjusting the spacing between the icon and
the nearest edge of the button.

Tip: If you want to import images into your interface for decorative purposes, use
the image view object on the DataViews palette. You simply drop the image on
the image view. You’ll probably want to deselect the bordered option and the
Editable option in the image view’s Attributes inspector.

52

Chapter 3

Setting an Object’s Attributes

Managing images and sounds

To add an image or sound, drag
its file icon from the File Viewer
and drop it over the nib file
window.

Examine the image or sound in

the Inspector's Attributes display.

As shown in “Associating images
or sounds with buttons,” you can
add images and sounds to a nib
file as a side effect of associating
them with a button.

53

You can add images and sounds to a nib file. The image or sound is added to the
appropriate display no matter what display is currently showing.

.;l iy ‘Hpumr ﬂ
L T Lhaw ot
1 TIFE Drag the image (in this case)
or sound icon from the File
L T e Viewer...
S AR ARE LR N I — s Py
6 L g bl
= Imngnc
Traand 2 uif il
Tin=r -r
0| FE | ...and drop it over
the nib file window.

Although the association of images and sounds with buttons is an important
reason for putting them into a nib file, there are other reasons. When you
composite an image or play a sound in your code, the search path (if your code
supplies no path) starts with the application’s executable (already loaded
resources), the main bundle, and the main bundle’s .Iproj directories. Then the
standard directories are searched:

m the appropriate subdirectory of the user’s ~/Library directory
m the appropriate directory in /LocallLibrary
m the appropriate directory in /NextLibrary

If you do not want to risk an image or sound not being in one of these standard
directories, then you should store it in a nib file or in the project.

Tip: For most situations, the recommended course of action is to add images and
sounds to your project. If you add them only to a nib file, they won’t be available
to an application until the nib file is loaded.

Managing images and sounds

Images and sounds have their own Attributes displays. For images, this is mostly
useful for images that are too large to show in the nib file window.

The image itself.

The dimensions of the
image, in pixels.

If your system has a microphone or some other input source connected, you can
record new sounds. Click OK to save new sounds.

Riiprvir Criticailk SLbor s b rograere ey

Select a sound and then Controls to record and

select the Attributes play sound. Above the
display to see the sound’s controls is a horizontal
waveform. You can cut, sound meter.
copy, and paste the
waveform.

Click to get back the

original sound.

54

Chapter 3

Setting an Object’s Attributes

Customizing titles, text fields, and scroll views

» Set background and text color,
text alignment, border style, tag,
and options affecting access to
text.

Atagisan internal identifier of an
object that you can use in your
code. See “Using tags” in this
chapter for more information.

For more information on the
NSTextField, NSScrollView,
NSScroller, NSText, and
NSClipView classes, see the
Application Kit Reference.

55

The objects that exist principally to display text—text fields, titles, and scroll

views—nhave controls for initializing those objects with various characteristics.
To see what certain effects look like, drag a text field onto a window and click
the buttons on this display. The Title object is just a specially configured text
field: non-selectable with transparent backgrounds and no borders.

s i -
Bl 1@ i
Color of the bounding ~—=——— I |
rectangle behind the text. ey s
rid Likn
-l ——+—— Color of the text.
P 1
Alignment of the text =~ ——f——————|=||F4|| =|| -==|}=]
within the bounding
rectangle. Buowiger
;|n|. |—— No border, black border,
3-D border.
Cphom
Eolaaw |
+ - f—————1— Options affecting user
An internal identifier of AT FTTI | operations on the text.
the text field or scroll up'a
view.

An NSScrollView object is a compound object consisting of one or two
NSScroller objects and an NSClipView object, which has as its document view
(subview) an NSText object in Interface Builder. The document view is what is
scrolled. The NSScrollView object has a slightly different Attributes display: no
text alignment buttons and a different set of options.

Text Field and Scroll View Options

Option Description

Editable Allows the user to edit text.
Selectable Allows the user to select text.
Scrollable (NSTextField) Text scrolls to the left if necessary.

Multiple fonts allowed (NSScrollView) Textis in RTF format.

Graphics allowed (NSScrollView) Text is in RTFD format (graphics can be inserted).

Setting textual attributes

Setting textual attributes

» Set the font characteristics of
selected text using the Font
Panel.

Almost all palette objects—from buttons to browsers—can display text. You can
set the font and alignment attributes of this text.

» Set the alignment of selected
text within its boundaries using

commands on the Text menu. i
r - 1
ﬂl :_Mi' ,ﬁ,pp_lmaﬁg" | Select the text.
Oy ..
™ | Zre Errn s !—, Click to display the font panel.
Datammn: Tl OcH .13
A V| [z R k. i
. | AT FI1.-|\ 1 FEPIe . .
— = ETrRTEo Click to display the Text submenu.
dimdugn 1| dmep " =ul=-dnl
Bl r| e =jirear
Cnisker | Fagd _paal B Coap Fenl
Hdi r Hg-ry kan]
AT C

The Text submenu of the Format menu also has commands that affect selected
text; it offers options for aligning text and for displaying, copying, and pasting
the ruler in a Text object. With rulers you can set tabs and indentation. Note that
rulers can only appear in NSText objects (for instance, inside a scroll view).

EIEET

Helwelbica bedionm 18,6 21

Shows an example of the
selected font.

Select font family.

| Trpetms | S |
Lohl W —t—— Type font size or select in column
r .,
rwn_rgqyl(il P (T T beneath this field.
Fakas Cardarand L1

Liphd (ohd g

e hlr.\-:-'-l
= e Cartarand W —— Select typeface within font family.
LA CmamarcThe Camerapi 01
E-“ :5." Hamre CHEa
P [[kl
HI Figtm by o) Ty putin e Contains options for using default
AC Uk e shae —— system or user fonts, or for using

selected font.

Click to apply font to selected text.

s | _pgen | _sm H—
AN

N——————— Click to display example of font in

field above.

56

Chapter 3 Setting an Object’s Attributes

Setting text and badkground colors

Select an NSTextField, You can set the color of any of the text objects (NSTextField, NSScrollView, and
NSScrollView, or NSMatrix NSMiatrix). You can specify both a color for the text and a color for the
object. background.

In the Inspector panel, select the

Background or Text color well. Click the border of the color

well to bring up the Colors
panel.

In the Colors panel, choose a
color.

Choose System to select from
the system default colors. This
allows user preferences to
decide the color scheme.

Select a color here, and the
color in the color well changes.

As with setting fonts, you can either choose to enforce a specific color or allow
the user to select the color. For example, if you choose Black for the Text Color
from the NeXT list in the PANTONE view, the text will be black for all users.
However, if you choose textColor from the System list, the text will be the color
the user selects in the system default settings (which is black unless the user
changes it).

Currency Converter

The selected text field’s background
and text color change as you choose
colors in the Attributes display.

As a shortcut, drag a color from the Colors panel directly to the object to color its
text. If you hold down the Shift key when you drag, the background is colored
instead.

57

Setting mnemonics

Setting mnemonics

» Alternate-double-click aletterto
choose that as the mnemonic.

Mnemonics, together with inter-
field tabbing, allow users to
navigate through objects in a
window using only the keyboard.
Inter-field tabbing allows users to
select objects by tabbing. See
Chapter 4 for more information.

You can set a mnemonic in any object that displays a title, such as a form, a text
field, or a button. Users can select that object by holding down the Alternate key
and pressing the mnemonic you’ve chosen for the object. In this way, you give
your users the option of navigating through the interface through the keyboard

instead of the mouse.

Carancy Corrvariar

Exchange Figln par £.1:

Doliers 1 Coamam

moeunl a0 Saer Currency: |— — Hold down the Alternate key and
& = double-click the letter to set the
mnemonic. The letter is underlined.
]
YAE T

To delete a mnemonic, Alternate-double-click the letter again.

58

Chapter 3

Setting an Object’s Attributes

Setting box (group) attributes

> Settitle position, border style,
and horizontal and vertical
offsets.

See Chapter 2, “Composing the
Interface,” to learn how to group

objects inside of a box.

For more information on box
objects, see the NSBox class

specification inthe Application Kir

Reference.

59

When you group a selection of objects in a box, that box (actually the box’s
content view) becomes the superview of the enclosed objects. In Interface
Builder, you can move, copy, paste, and delete the group of objects as one. The
box has several attributes that you can set.

O s =
%
: Sets the location of the title in relation
to the box, or removes the title.
o /— Sets the border style of the box.
Slal=]-|
Homarbd Cofal
PR | P ——————— Adjusts the distance (in pixels) between
arh the enclosed objects and the left and
.. .".l:.“"I . right edges of the box.
I
Adjusts the distance (in pixels) between
the enclosed objects and the top and
bottom edges of the box.

You can drag a box onto your interface and then programmatically replace its
content view (blank by default) with another NSView object, or
programmatically add subviews to the content view. You can also manipulate
this box to make decorative rectangles and lines.

Tip: To make a line in an interface (such a a divider line between sections of a
panel), drag a box onto the interface. Then switch off the title and make the box
as narrow as possible in the required dimension (vertically or horizontally).
Finally, set the offset (vertical or horizontal, whichever is applicable) to zero.

Customizing browsers

Customizing browsers

» Select the browser options.

Browsers display lists of data and allow users to select items from the list. They
can hold one-dimensional lists or hierarchically organized lists of data such as
directory paths. Browsers display these hierarchical levels in columns, which
users can navigate using buttons or scrollers. An entry in a column can be either
a leaf node or a branch node. L_eaf nodes terminate a path; branch nodes, which
have a right-arrow icon, lead into the next level in the hierarchy. A browser’s
attributes affect its navigation controls, methods of selection, and appearance.

= - FL1J
AR g o e |
AR b Lo]
A¥cw brarc hnleten |
- e . I |
D gann et
AR At Cih s

Select options for browser.

Browser Options

Option

Description

Allow multiple selection

The user can select more than one node at a time.

Allow empty selection

Makes it possible to have no cells selected; otherwise, the first cell in
the column is selected by default.

Allow branch selection

The user can select branch nodes (such as directories).

Separate columns

Separates columns with a bezeled bar (if not set, a black line appears).

Display titles

Titles are above columns and column divider is bezeled bar.

Allow horizontal scroller

Allows users to scroll horizontally as well as vertically.

60

Chapter 3

Setting an Object’s Attributes

Setting attributes of menu items and pop-up lists

» Set whether the list is a pop-up

or pull-down type (notapplicable
to menu items).

» Set whether the item is initially

disabled.

» Assign a tag to the item.

Atagisan internal identifier of an
object that you can use in your
code. See the task, “Using Tags,”
in this chapter for more
information.

Once you expose a pop-up list’s
menu items, you can add more
menu items to it from the Menus
palette. See “Creating menus” in
Chapter 2 for details.

61

Menus and pop-up or pull-down lists (NSPopUpButton instances) are
compound objects containing objects that conform to the NSMenultem
protocol. The Attributes displays for menu items and NSPopUpButtons are
almost identical. The following is the display for NSPopUpButtons.

SN =g =
Sets whether the list behaves
- i/ as a pop-up or pull-down menu
- rtﬁmi (NSPopUpButton only).
Cpkoh
Omshed] ————+—— Sets whether the menu item is
4 initially deactivated (text grayed
Tag | out).
N————— Enter an internal identifier of
the menu item.

If you choose Disabled, the menu item’s text is gray at application launch. When
the user clicks the item, no action message is sent. If conditions change to make
the items’s function relevant, your code must re-enable the item.

Pop-Up Lists and Pull-Down Lists

An NSPopUpButton contains a trigger button and three menu items. Double-
click the trigger button to see the menu items; you can initialize their titles or
(in the Attributes display) disable them and assign them tags.

Menu items
(when activated).

u_ Trigger button =
(when deactivated). -

A pop-up list’s trigger button always displays the item that was last selected. In a
pull-down list the trigger button’s title is fixed. A pull-down list is effective for
selecting actions in a very specific context, like the “Operations” pull-down list
in Interface Builder’s Classes display.

Setting attributes of menu items and pop-up lists

Compound Objects

Most of the objects you can drag from the standard Interface
Builder palettes are actually compound objects. They consist of
two or more objects that work together in specific ways.

Controls and Cells

A control (an instance of an NSControl subclass) functions as an
event translator. It translates a user event like a mouse click into
an action message and directs that message to another objectin
the application (the target).

Controls supply the mechanism but not the content of the
target/action paradigm. They need action cells (or instances of
NSActionCell subclasses) to hold this information:

* target the objectreceiving the action message
¢ action the method that specifies what the target is to do

At least one of these cells occupies the same area as its control.
Because it descends from NSCell, a cell also has content (text or
image), which it draws upon request from the control.

This division of responsibility makes for greater efficiency
because a control can have multiple cells and send a different
action message to a different target for each of those cells.
Because cells are lightweight objects, it is more efficient in some
contexts to associate one control with many cells.

Matrices

A matrix (an instance of the NSMatrix class) is a control that
manages more than one cell. It organizes its cells in rows and
columns. The cells must be the same size and usually are of the
same class (although a matrix can have instances of different
subclasses of NSCell).

Each cell in a matrix can have its own action and target. A matrix
also has its own action and target. If a cell doesn't have an action,
the matrix’s action is sent to its target. If a cell doesn't have a
target, the matrix sends the cell's action to its own target.

In Interface Builder, you can convert a single-celled control (such
as an NSButton, NSSlider or NSTextField) into a matrix by
Alternate-dragging a resize handle of that control. The associated
cell, whether an NSButtonCell, NSSliderCell, or NSTextFieldCell,
is duplicated for each row and column of the matrix.

Forms are a special type of matrix (NSForm inherits from
NSMatrix). They have special cells (NSFormCell instances) that
compose both the form entry fields and the titles of those fields.

Special Compound Objects

Some objects on Interface Builder's standard palettes are of a
more complex composition.

» Scroll View This object coordinates the interaction between
NSScroller objects and an NSClipView object to scroll a
document. It consists of one or two NSScrollers, an
NSClipView, and the document view, which is generally
NSText.

¢ Browser Thisobjecthasscroll barsfor controls and columns
to show hierarchically organized data. Each column is a matrix
of NSBrowserCell objects.

* Pop-Up List This object has a trigger button and an array of
objects that conform to the NSMenultem protocol.

e Menu Thisobject’s contentarea contains an array of objects
that conform to the NSMenultem protocol.

* Table View See “Inside the NSTableView Object” in this
chapter.

\'SScrollView NSBrowser
NSPopUpButton
This Text Haomer.snd
ohject is Iyle snd
initialized with moo:snd Itemi b
this text... NSClipView O snd NSMatrix ltemz NSArray
(content view) spin.snd B Ey
TEIE snd
i thankiousnd
) NSMenultem NSButton
VSScroller NSText NSScroller NSBrowserCell

(document view)

62

Chapter 3 Setting an Object’s Attributes

Setting matrix attributes

Set the background gray of the The Attributes display for matrices allows you to determine how a matrix and its
matrix. cells look and behave.
Set the matrix selection mode.

Set autosizing behavior and

other properties of cels T
Inspect the cell prototype and o=
change it, if necessary. Fua bgrand Coka

r |

Draws the background
color of the matrix.

D Bcegroira |
e Determines how cells
I T & Fpasgn track the mouse and
[wam T L whether selections are
exclusive or inclusive.
Prd 1yt
Shows what the _—t I~ Awkn
prototype cell looks like.
CHlc
Aricace _|

Various options
i | affecting the cells of the

Haﬂ:nrmf | matrix.

An internal identifier of Taq |

the matrix.

Matrix Selection Mode

The selection modes specify how cells behave when a user is dragging a mouse
within a matrix. They also determine if the user can select multiple items in the
matrix—a column of switch buttons, for example, allows multiple selection.

m Track: The cells track the mouse when it is within their bounds but do not
highlight themselves. This mode would be suitable for a “graphic equalizer”
matrix of sliders. Dragging the mouse causes the sliders to move.

m Radio: Only one cell in the matrix can be selected at a time, as is the typical
case with a matrix of radio buttons.

= Highlight: Each cell is highlighted while it tracks the mouse and is
unhighlighted when done tracking. This mode allows multiple selections. A
matrix of switch buttons commonly has this mode.

m List: Cells are highlighted as the mouse is dragged across them, but they do not
track the mouse. In this mode, a matrix supports multiple selection, enabling
a user, for instance, to select a range of text in a matrix of text objects.

63

Setting matrix attributes

Cells Options

Option

Description

Autosize

If set, the cells resize when the matrix is resized, keeping the space
between cells constant. If not set, the space between cells changes.

Selection by rect

Allows users to select multiple cells by dragging the mouse around
them.

Match Prototype

Applies the new prototype to the selected matrix’s existing cells.

Atagisan internal identifierofan ~ Tags = Position
object that you can use in your

code. See “Using tags™ in this

chapter for more information.

Resequences the cell's tags if you've added cells to a previously
created matrix. When you create a matrix, cells are assigned
consecutive tags starting from zero. For two dimensional matrices, the
progression is from left to right (row), then down (column). When you
later add new cells, they all have tags of zero.

Changing the Prototype Cell

When a matrix creates its cells, it typically makes them by
copying a prototype cell stored as an instance variable. (It can
also instantiate its cells from their class.)

You can examine and alter this prototype cell’s attributes through
the Inspector’s Prototype display. This display is only available
when you select a matrix.

If you change the prototype, you must click the Match Prototype
button on the Attributes display of the matrix for the existing cells
to reflect the changes.

Fin kb —— Choose Prototype here
to display the prototype
cell’s attributes.

"W P
H Tl
£on | rsiRadng e
o Ko | K 8
Seard |
T | Kix
Iyuk ARprwl
Zags 2 - el
SR 17 1 Fumn
Erapnemn |) al -
Timaspanni _|
Credaici || ™
Llbe] | Feams rAn
Sabcind _| . o

64

Chapter 3

Setting an Object’s Attributes

Setting up table views

Set the type of selections the
user can make.

Set whether the table view
should scroll vertically,
horizontally, or both.

Set the height for table rows.

Set if the user can resize
columns, reorder rows, and if
cells are bordered.

65

A table view displays information in a table and allows the user to select and
change that information. Table views contain rows and columns of information.
When you create a table view in Interface Builder, you create the number of
columns you want. Rows are added programmatically.

Tip: To add a column to a table view, select an existing column, then copy and
paste.

il -
Zauckn Controls how the users
Akran Fupw Saierhen | are able to select

idloma WalphrSabecher_| information in the table.

Aot Cobarn Selschen_|

Controls how the user

werkcm | Houcnid 3 can scroll the table.

Roren

Heigm | ———+—— Height of each row.
Cphune ————— Options affecting how
B data is displayed.
Al Anoy 1]
QW H R e

The Selection options control how the user can select information in the table
view. By default, the user can select rows in the table one at a time. Allows
Column Selection means the user can select columns of information. Allows
Multiple Selection means the user can select more than one row or column at a
time.

Table View Options

Option Description

Show Grid Lines are drawn around each cell in the table.

Allows Resizing The user can resize the table columns.

Allows Reordering The user can rearrange the table rows.

Setting up table views

Inside the NSTableView Object

NSTableView used to be available only to people using the
Enterprise Objects Framework or, before that, DBKit. Now,
NSTableView is part of the Application Kit, so every application
can take advantage of its features.

When you drag a table view from the TabulationViews palette to
your interface, you're actually getting several objects. The
NSTableView is nested inside of an NSScrollView. The
NSTableView itself is made up of one NSTableColumn object for
each column and an NSTableHeaderView, which displays the
column headings.

Each NSTableColumn has an NSCell associated with it that is
used to draw all of the cells in that column. The NSCell may have
an NSFormatter associated with it that defines how the contents
of that cell are formatted. You can associate an NSFormatter with
the NSTableColumn’s NSCell in Interface Builder by dragging one
from the Formatters palette.

Also associated with an NSTableView is an object conforming to
the NSTableDataSource protocol. You don't create this object in
Interface Builder unless you're creating an application based on
the EQ Framework. The data source controls the display of data in
the NSTableView. Youimplement methods defined by the protocol
to retrieve values from the table, to change values in the table, or
to add rows to the table.

For more information about table views, see the NSTableView
class specification in the Application Kit Reference.

NSTableColumn

NSTableView

. }— NSScrollView

66

Chapter 3 Setting an Object’s Attributes

Avtomatically resizing objects

Select an object. When you resize a window, the objects in the window must often adjust their
size or the distances between themselves and other objects. The Size display of
the Inspector panel lets you tell a selected object how to resize itself. The lines
inside and outside the box affect different aspects of resizing behavior.

Choose the Size display of the
Inspector panel.

In the Autosizing view of the
display, click lines to make them
springs or click springs to make
them lines.

——— Choose Size here.

Fidmi
| T
1 1 W] J 0k

W T Rl e
e 0 D —

—— Click to toggle between a
line and a spring, setting
resizing characteristic..

BITIICE

Inside the box

This spring indicates that, when the window or superview
is resized vertically, the object resizes itself to maintain its
distance from the top and bottom edges of the window
or superview.

This sraight line indicates that, when the window or
superview is resized horizontally, the object maintains its

il
1

initial size.
For examples of the effects of
these “autosizing” characteristics R
on views within a resized Outside the box))

. « This spring indicates that, when the window or superview
window, see “Some Effects of is resized vertically, the space between the top edge of
Automatic Resizing.” the object and the top of the enclosing view or window is

adjusted proportionally.

This sraight line indicates that, when the window or
superview is resized, the object maintains the initial distance
between its bottom edge and the bottom of the enclosing
view or window.

67

Automatically resizing objects

Interface Builder includes a test
mode that simulates the actual
operation of the interface. In test
mode, you can test the resizing
behavior of your windows and
views, see how connected objects
communicate, play sounds
associated with buttons, and do
similar operations. See “Testing
the Interface” in Chapter 4,
“Making and Managing
Connections,” for more
information.

If you do not make a view resize itself when its superview or window resizes,
some ugly behavior could result. For instance, if the user makes a window small,
objects that don’t resize themselves could become truncated by the resized
window’s borders. One recourse to this unwanted outcome is to specify a
minimum size for the window.

"Wrdaee Inagaclor)

s -

Enter the minimum width and height
of the window. Resizing will stop at
these dimensions.

Or click here to make the window's
current dimensions the minimum size.

&
i i Lk Set all springs to have the window
proportionally positioned on a screen
g of different size. Unset a spring to have

window maintain the absolute distance
to the screen edge.

You might need to make several iterations in Interface Builder—setting resizing
characteristics in objects and shrinking the window in test mode—to determine
what the ideal minimum size should be.

When There Are Conflicts

You can create an impossible resizing relationship, such as specifying as fixed the
object’s dimensions and its distance from the window’s edges. In cases of
conflict, an object’s fixed dimension takes precedence over its fixed distance
from a border. If all dimensions are made resizable, adjustments to the window
or superview’s changed dimensions are made equally to the object and its
distance from a border.

68

Chapter 3 Setting an Object’s Attributes

69

Some Effects of Automatic Resizing

The window below has two identical scroll view objects. Different
autosizing “springs” are setin each, and then the window is
resized in test mode. The screen shots under After Resizing show
you the results.

In the first example, one object resizes vertically while the other
doesn't (distances to borders are absolute for both). The result:
the objectthat doesn't resize itself is truncated when the window
is vertically shortened.

Varsirinsg Exmrpin

Object A Object B

In the second example, both objects resize themselves, but
Object B maintains its distance to surrounding objects. This
causes Object B to be more severely resized than Object A.

To learn more about the effects of resizing, try some experiments
on your own using different combinations of objects and
autosizing attributes.

After Resizing

BiTAT D T

TR G

I A |

=l Iawrg [sron F=

Automatically resizing objects

Automatic Resizing: An Example

This example interface incorporates autosizing attributes in such
a combination that the window can shrink to a very small size and
still be usable.

>
=

000,

3

The window’s minimum
size is set to a dimension
just large enough for the
main view to show content
and for the slider and
button to be manipulated.

E[;ﬂ- ﬂ

The window is resized.

The box containing the
slider keeps the same
distance from the window’s
adjacent edges, but resizes
the gaps between itself and
the other views. It resizes
itself horizontally, but not
vertically.

The button’s autosizing
attributes complements the
box’s attributes. It keeps
the same distance from the
window’s adjacent edges,
but resizes all other
distances. It also resizes
itself horizontally, but not
vertically.

The main view of the
interface (a custom view)
maintains a constant
distance from the window’s
edges, but s itself resizable
in all directions.

70

Chapter 3

Setting an Object’s Attributes

Using tags

In Interface Builder, specify the
tag integers for objects.

If the integers are not
intrinsically meaningful, define
constants for them in your source
code.

Send the tag message to a tagged
object to get the integer.

Evaluate the integer and actupon
it.

Al

Tags are integers that you use in your code to identify objects. They offer a
convenient alternative to such methods of object identification as fetching an
object’s title. (What if the object’s title changes while the application is running,
or the application is localized?) Tags can also carry useful information associated
with an object, and thus make it easier to integrate that information into a
program. Tags are commonly assigned to the cells contained by matrices.

You can specify tags in the Tag fields of most Attributes displays.

Opcoen
Cuprang |

L —

Enter a number to identify the object
in your source code.

You can also set tags programmatically in most NSView objects by sending those

objects the setTag: message.

Using tags

The integers that you assign could have some intrinsic value; for instance, they
could be numbers that are multiplication factors for a document-zoom feature,
or numbers that correspond to the number of a keypad in a calculator
application. If the tag numbers are not intrinsically meaningful (that is, they’re
arbitrary), it’s prudent to define constants to express them.

typedef enum {
LEFT =1,
RIGHT,
BOTTOM,
TOP,
HORIZONTAL_CENTERS,
VERTICAL_CENTERS,
BASELINES

} AlignmentType;

When you need to identify a tagged objects in your code, use the tag method.

- (void)align:sender

{
[self alignBy:(AlignmentType)[[sender selectedCell] tag]];

}

72

Connecting objects

Making connections in outline
mode

Examining connections

Identifying objects in outline
mode

Enabling inter-field tabbing
Disconnecting objects

Copying interconnected
objects

Testing the interface

Making and Managing Connections

It could be said of me that in this book | have only made up
a bunch of other men’s flowers, providing of my own only
the string that binds them together.

Montaigne, Essais

Let him look to his bond.
Shakespeare, Merchant of Venice

74

Chapter 4

Making and Managing Connections

75

Communicating With Other Objects: Outlets and Actions

Qutlets

An outlet is an instance variable that points to another object.
Objects use outlets to communicate with other objects; they
simply send messages to the object identified by the outlet.

Using Interface Builder, you can declare and set outlets for the
custom objects in your application. You can also set ready-made
outlets in many Application Kit objects, such as browsers. Once
initialized, the connection information for the outlet is stored in the
nib file. At run time, the nib file is unarchived and the outlet is
reinitialized with the connection information.

The Application Kit defines two types of outlets that you can use
to establish specialized connections with other objects:
delegates and targets.

Delegates

A delegate is an object that acts on behalf of another object.
Many Application Kit classes define delegate outlets as an
alternative to subclassing. All your object must do is register itself
as a delegate of the Application Kit object. Atimportant junctures
in its life cycle, the Application Kit object sends messages to its
delegate, giving it an opportunity to participate in processing and
sometimes the chance to veto behavior.

Outlet

For example, browsers ask their delegates to supply the cells for
browser columns, and the application informs its delegate when
itis initialized, hidden, and activated.

Targets

Targets are a special kind of outlet. They identify objects that can
respond to action messages. When a user activates an NSControl
object (for instance, clicking a button or moving a slider), that
object sends an action message to the target. The action
message gives application-specific meaning to the original
mouse or key event. For example, you could connect a custom
objectin your application as the target of a button so that when
the button is clicked, your object performs a method thatfills all of
the text fields in the window with appropriate information.

Like a delegate, a target must implement methods to respond to
the messages it's sent. But unlike a delegate, which receives
messages chosen from a limited set defined by another object, a
target responds to any action message you choose to define.

You can also make one object a target of a second object
programmatically by sending setTarget: to the second object.

'“

Ay s

dataFor

Y

Hene|
Ao |
Fhme|

@interface Controller : Object

id dataForm;

}

- storeData: sender;

@end

Actions

When a user manipulates an NSControl object, the object
receives an event message, which it translates into a message
that is meaningful within the application. It then send this
message to another object. These application-specific messages
initiated by an NSControl object are called action messages, and
the methods they invoke are called action methods.

NSControl, an abstract class, defines for its many subclasses
(such as NSButton, NSScroller, NSTextField, and NSForm) a
paradigm for inter-object communication—action messages. But
NSControl objects don't act alone: they always contain one or
more NSActionCells (or one of its subclasses). The NSActionCell
superclass defines instance variables for the two elements
essential to an action message:

Action

* target the objectthat's responsible for responding to the
user's action

» action the method that specifies what the target is to do

Action methods take a single argument, the id of the NSControl
object that sends the message. This argument enables the
receiver to ask the control for more information, if it's needed.

An NSControl can send a different action message to a different
target for each NSActionCell it contains. Different NSControls
dispatch action messages differently; for instance, an NSButton
generally sends action messages on a mouse-up event, but an
NSSlider usually sends action messages continuously, as long as
the mouse button is pressed.

Feme|
e rews
Fhionex|

@interface Controller : Object

id dataForm;

- storeData: sender;

@end

76

Chapter 4

Making and Managing Connections

Connecting objects

Select an object.

Control-drag a connection to
another object.

In the Inspector panel's
Connections display, select an
outlet or action.

Click the Connect button.

If the Connect button doesn’t
become active when you select
an outlet or action, you probably
have connections locked. See
“When You Don’t Want to
Disconnect” in this chapter.

77

In an object-oriented application, isolated objects have little value; they need to
send messages to each other to get the work of the application done. Interface
Builder gives you a way to establish connections between objects.

When you Control-drag between two objects, the Inspector panel becomes the
key window. Its Connections display shows the current and potential
connections for the destination object.

—riprAlmglizh iy

I

h
[I Hold down the Control key and drag

the mouse from one object toward
the destination object. A line appears.

Release the mouse button when a
box encircles the destination object.

Select an outlet (The dimples indicate
outlets that are already connected to
other objects).

Click here to make the connection.

Connecting objects

Outlets are destination objects
specified as instance variables.
Actions are methods that
NSControl objects (such as
buttons) invoke in another
object. See “Communicating
With Other Objects: Outlets and
Actions” in this chapter for more
information.

Chapter 6, “Subclassing,”
describes connecting the outlets
and actions of custom objects in
the context of creating a class.

Outlet Connections

In the previous example, the connection is made from a controller object—a
custom object that manages the application—to a text field. The controller
object (ConverterController) declares several our/ers—identifiers of destination
objects—as instance variables.

The example shows a connection between an object in the nib file window
Instances display and an object in the interface. You can also make outlet
connections between two objects in the Instances display.

O Curmancyfomvurie rib

e TaginhUpng B

Control-drag a connection line and release
the mouse button when a box appears
around the destination object.

o raraterian rrdr oy drs

-

When you make a connection between objects, the first column of the
Connections display shows the source object’s outlets (“‘source” meaning the
object from which a connection line is drawn).

Action Connections

When you make a connection by dragging a line fr0 an NSControl object in the
interface—a button, slider, text field, menu command, pop-up list, or matrix—
odds are that the destination object is a za7ger

and that you can complete the connection by selecting an aczion method.

78

Chapter 4

Making and Managing Connections

See “Compound Objects” in
Chapter 3 for descriptions of the
interaction between NSControl
objects and NSCell objects, and
of the role NSMatrix objects play.

79

Cormmey Gaervverber

To make a connection involving an
action message, Control-drag a line
from an NSControl object to the

object that responds to the message
you want the NSControl to perform.

The destination object in an action connection is frequently a custom object
that manages the application or a particular window (controller object).

When you make a connection from an NSControl object, the Inspector panel
shows the Connections display for the destination object.

Click here to display actions currently
defined for the target object. Actions
appear listed under the second column.

Click to select an action.

Click to make the connection.

Connecting objects

You can connect text fields and
form fields so that when the user
presses the Tab key, the cursor
moves to another field. See
“Enabling inter-field tabbing” in
this chapter for information on
this procedure.

When the user manipulates the NSControl object, such as clicking a button or
moving a slider, the action message is sent to the destination object (the target).

Connections Within the Interface
Sometimes you can connect two objects on an interface. These connections can
involve both outlets and actions.

Exomanpe Anee per$o:
—_— Control-drag a connection line from
Collera o Canvert ﬁ one object to another, then release the
mouse button.
Bl el 4 Ol Corrlncy. |_
Joaepn |

Connections within an interface can also involve two Application Kit objects.
Two examples are interconnecting text fields (so the user can tab from field to
field), and connecting a menu command such as Print to an NSText object.

Tip: To enable printing of an NSText object, drag a connection line from the Print
menu command (or other NSControl object that initiates printing) and select
the print: action in the Connections display.

80

Chapter 4

Making and Managing Connections

81

Click to switch to outline mode.

The Modes of the Instances Display

When you open a nib file in Interface Builder, the Instances
display of the nib file window first shows objects as icons. This
icon mode doesn’t show all objects, just the top-level objects—
those objects that are not contained by another object. Windows
and panels and most controller objects (that is, objects that
manage an application or a window) are top-level objects;
although they may contain other objects (for instance, a window
contains one or more views), no other object contains them.

Icon Mode

The graphical representation of objects in icon mode makes it an
ideal interface for many operations. Its simple, intuitive, and
uncluttered nature makes it easy to do the basic things, such as
making connections between top-level and interface objects.

For more complex operations, the Instances display has another
mode—outline mode—that shows more detail about objects in
the nib file, including their connections with each other.

m

a]

Contsnl

AT D=

Corsse I nCane

=

—— Top-level objects

The mostimportant advantage of the outline mode is that it shows
all objects in the nib file, not merely the top-level objects. It also
shows all connections, both connections into an object and
connections from an object to other objects.

The outline mode starts by listing the top-level objects in the nib
file. By clicking the open button next to an instance, you can see
what other objects it contains. Click a connection button (triangle
button) to see what connections go into or out of an object.

Outline Mode

B currenc s Comvaries rib

=l mgirhlprey

You can connect objects in outline mode; there’s no need to drag
a connection line to the interface. Outline mode also has facilities
that make it easy to identify objects in the interface and to
disconnect objects.

Objects in outline mode are identified first by class name and
then, in parentheses, by title. If the title is obscured, you can
resize the nib file window until it is visible.

Numbers indicate the number of
¥ . connections if more than one.

Click to switch to icon mode.

IGrird 1 bl vlerm 1,
If this button is filled, click it to show, —— !

+ PRl [FI Cheh
o R Rnn P RELE RN

— Click the triangle that points in to see
connections in to the object.

in an indented list, all contained
objects. Click button again (now
unfilled) to collapse the expanded
list.

—— Click the triangle that points out to see
connections out from the object.

Drag this column divider sideways

to expose details of instances or
connections.

Connecting objects

Expanding Objects in Outline Mode

In outline mode, objects that contain other objects have a small
circle button to their left that is filled with gray. The subordinate
objects are usually subviews of a window, panel, or another view
object, but can be objects that are part of another object not
visible on the screen. You display these contained objects by
expanding the container object.

H fursscy Converiornin

Click a circle button to expand an object into a list of its
component objects; click it again to collapse the list. Expansions
can be nested many levels. To expand everything within an object,
Command-click the circle button. Collapse the list back to the
original level by Command-clicking the circle button again.

See “The View Hierarchy” in this chapter for a description of the
relationship between superview and subview.

i ey =

Click a filled circle button to
expand an object.

. hEARE exbon (T Cwran -
*. FrrAscparder (Fni Pagpasded - a4
| ® REGRerrdarkdmy)
Q|+ Cond e | Conta iy LR

B Conre R oA R Civra THC ORI 4 a3

Ll Torrsary Comverioronin i g e M !

Click the now-unfilled button

again to collapse the
indented list.

Outline mode uses indentation to
represent objects contained by
other objects. The Fail button is a
subview of the Grade box, which
contains it.

o

*. Correnrier | Cona e - d
. Cnmariet bl omadent okl s ax

. RETRafF o) |Eamirags RIBARINT | = -

- haTwFn| 1
» bl e ol |Coudma K e bi1) -
w hSMoeE sl]| 2

= hST=fF w il | inodHha Cunemey

m

[P e L e e s e
2l 1 e iCnIF 1P] En]
LR LIETILEER] o]

n W redaa WA Indoas

Te=F e

TeoF o7 53awm iy

Sipde

S, 1

Oulcnil s

82

Chapter 4 Making and Managing Connections

Making connections in outline mode

Select an object. You can make connections between objects in the outline mode of the Instances
display as well as its icon mode. The connections can be between an object in

Control-drag a connection to the outline and an object in the interface or between two objects listed in the

another object.)
outline.
In the Inspector panel's
Connections display, select an Before you make a connection involving an object in outline mode, make sure
outlet or action. that the object is visible in the display. (You might have to expand the object’s

Click the Connect button “parents” in outline mode to do this.)

Corrency{nrsorizepi i aglizh iprey

When you Control-drag from the
selected object, a connection
line appears.

When the destination object is
outlined, release the mouse
button.

Select an unconnected outlet
(one without a dimple next to it).

=_| —

Remember
Click here to
get outline
mode.

Click here to make the connection.

Making connections in outline mode

The outline mode offers a useful capability for making connections without
leaving the nib file window. In this example, the same connection is made as in

the previous example.

If necessary, expand the object’s parent
so that you can see both objects.

Control-drag a connection line between
two objects.

Complete the connection as before.

Chapter 4

Making and Managing Connections

Examining connections

In the interface:

Select an object and look at the
Connections display of the
Inspector panel.

In the Instances display:

Select an object and look at the
Connections display of the
Inspector panel.

In the Connections display:
Click a dimpled outlet to see the
connection line drawn.

In outline mode:
Click a triangle button in the
column to the right of an object.

85

Interface Builder gives you

many ways to examine and verify connections

between objects. It makes it easy, for example, to discover what outlets and
actions are associated with an object in the interface.

e

" W s b =

SFackim -

Deruras |

perg. |
o |
vy,
e Select an object in the interface.

AN

N\

The outlet or action involved in
the connection is highlighted
and dimpled.

— The connection, highlighted
here, shows the object on the
other side of the connection.

You can also select an object in the Instances display (in both icon and outline
modes) and examine the Inspector panel as described above to find out what

object it is connected to.

Examining connections

You can also examine object connections going in the other direction too, from
the Connections display to the interface and the Instances display.

Click an object’s outlet or
action in the Connections
display (must have a dimple).

"l Commcyinrsurincnb i agliizhiprny
'
f
—

.

— A line appears between the
objects that are connected
through the outlet or action.

The Connections display allows you to see one connection at a time. The
outline mode of the Instances display shows you «// connections an object has,
both connections into the object and connections from that object to other
objects.

This column displays, for each object,
the number of connections out (left) and
the number of connections in (right).

If triangle is three-dimensional, but has
no number, the object has only one
connection in that direction.

Click the left triangle to see details on
connections out of the object.

Triangles that are grayed out indicate
no connections in that direction.

86

Chapter 4

Making and Managing Connections

87

When you click a three-dimensional triangle, lines appear to show the
connections between objects. The name and class of each connected object is
highlighted in bold. Each connection is labelled with the name of an outlet or
action.

To see more of a column, drag the
column divider sideways.

*. hEFcrikburam / - 7
u WEAFHETAME F— The right-pointing triangle indicates
EIL S T o O connection-out. Lines show you where
T Golkgetie - the connections lead to.

n Sk | - B vahsaShian
v WEFcim:F
" —— The left-pointing triangle indicates
P AR At o o connection-in. The electrical outlet icon
FITT. T represents an outlet;the name of the
e] outlet follows.

& Indicates action.
@ Indicates outlet.

Note that an object may have multiple connections with another object, both in
and out, both outlets and actions. In these cases, the outline mode lets you
toggle between the connections.

B tussConik Ty oo ol ey

The cross-hairs icon represents a
connection involving an action.

Connections with colon-separated
numbers indicate multiple connections
(here it means "1 of 2"). Click the colon
to toggle between the connections.

To make the connection lines disappear, click the triangle button again.

Identifying objects in outline mode

Identifying objects in outline mode

» To see arepresentation of an
object, Alternate-click it in
outline mode of the Instances
display.

» To have an arrow point at the
interface object, Control-Shift-
click the object in outline mode.

See “The Modes of the Instances
Display” in this chapter for an
introduction to outline mode.

In the outline mode of the Instances display, you might want to verify what an
object is before connecting it to another object. You have two graphical ways to
identify an interface object. One technique displays an image representing the

selected object.

=

1. i

NN iy - -

Make sure the object is exposed before
you Alternate-click it.

If the object is a view, interface Builder
displays it beneath the cursor.

When you Alternate-click non-view objects in outline mode, the images that
represent them in icon mode are displayed (cubes for custom objects, mini-
windows for panels and windows). The File’s Owner, First Responder, and

Main Menu objects don’t display icons.

The second technique locates an object in the interface with a large arrow.

While pressing Control and Shift,
click an object.

|r =

Opllers o Comaer |

Exchanes Rae perdl. |

sohound i Othar Swrsanee [

{-:mﬂ|

the interface.

Control-Shift-Clicking the File’s Owner, First Responder, and Main Menu

objects has no effect.

An arrow points at the object in

88

Chapter 4

Making and Managing Connections

89

Standard Objects in the Instances Display: File’s Owner, First Responder, and Font Manager

File’s Owner

Every nib file has one owner, represented by the File’s Ownericon.
The owner is an object, external to the nib file, that channels
messages between the objects unarchived from the nib file and
the other objects in your application.

Not only must the owning object be external to its nib file, it must
exist before the nib file is unarchived. This is because the same
method that loads a nib file (loadNibNamed:owner: and its
variants) also specifies the file's owner.

The typical owner of an auxiliary nib file (such as one containing
an Info panel) is an instance of the class you assign to File's
Owner in Interface Builder. This class is almost always a custom
class, and is frequently the class of the object that manages your
application. Once you make the assignment, File’s Owner serves
as a proxy instance of your class, which you can then connect to
the interface. (By the way, the typical owner of an application’s
main nib file is NSApp, the global NSApplication object.)

See Chapter 11, “Dynamic Loading,” for more on the role of File’s
Owner in the loading of auxiliary nib files and for details on
assigning classes to File's Owner.

File’s Owner

First Responder

The First Responder is the object within a window that first
receives keyboard events, mouse-moved events, and action
messages from NSControl objects that don't have an explicit
target (for example, cut and paste). The First Responder object is
the active window's focus for future events. Although technically
an object, First Responder is really a status conferred on an
object.

Usually, when you click an object that accepts key events (such
as a textfield), that object becomes the window's First Responder.
First Responder status also changes when you make another
window key in your application. (Because of this, First Responder
can be useful when you build multiple-document applications.)
Over time, many different objects can become the First
Responder, but at any one time only one object has this status.
The First Responder icon stands for the object that currently has
this status, no matter which actual object it is within your
application.

infoPanel Controller

Identifying objects in outline mode

The First Responder figures into the event-handling behavior
defined by the NSResponder class. In a window, objects
inheriting from NSResponder (including NSView, NSApplication,
and NSWindow) are part of a linked list of event-handling objects
called a responder chain. The responder chain contains (in this
general order) a view, the view's superview, the view's window,
the main window, and then the application. (The application and
window delegates are in this chain as well, although they aren’t
NSResponders.) If the First Responder can't respond to an event
message, its next responder is given a chance to respond. If an
NSResponder can't handle the message, the message continues
to be passed up the chain from object to object in search of an
NSResponder that can. Messages are passed in one direction
only: up the view hierarchy toward the window and application.

In Interface Builder you can connect an NSControl object in the
interface to the First Responder icon. Thereafter, when the user
manipulates this NSControl (say, by clicking a menu item entitled
Copy) an action message (copy:) is sent to the object that is
currently First Responder. If you examine in Interface Builder the
default connections from the Edit menu, you'll discover that its
menu cells are all connected to First Responder.

First Responder

]

Zut

Organizaﬂon:lNe}{T
Wark Phone: | (4 15) 745-9993

Home F'hnne:l

!
y

Font Manager

The Font Manager icon represents an instance of the
NSFontManager class that is shared among the objects of an
application. Interface Builder automatically creates and adds this
object to your project when you drag the Font menu into your
application’s menu. The Font Manager is the center of activity for
font conversion. It accepts messages from font conversion user-
interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by
sending a changeFont: message up the responder chain. See the
documentation on the NSFontManager class for more
information.

Contacts X

Mame:| John Smith

b
Copy =
Paste Y
selectall a First Responder

]

Zut

Organizatiun:lNe}{T
Wark Phone:| (4 15) 745-9993
Home Phone:| (4 15) 745-9353

Contacts]

Mame:| John Smith

*
Copy E
Paste Y
selactall a First Responder

90

Chapter 4

Making and Managing Connections

Enabling inter-field tabbing

Control-drag between the
window and a view object.

In the Connections display of the
Inspector panel, select
initialFirstResponder and click
Connect.

Control-drag between two view
objects.

In the Connections display,

select nextKeyView and click
Connect.

91

In OPENSTEP applications, users can navigate between fields and controls on
the interface solely through use of the keyboard. Users can change the first
responder by pressing the Tab key or Shift-Tab, can navigate through cells in a
matrix by pressing the arrow key, and can change the state of a button or select
a cell in a matrix by pressing the Spacebar.

You get most of this keyboard navigation feature in your application for free; you
don’t have to do anything special to allow users to navigate between cells in a
matrix or fields in a form. However, you’ll want to control what the Tab key does,
that is, which view the cursor should go to next when the user presses the Tab
key. You do this by connecting NSView objects to each other through the
nextKeyView outlet.

First, decide which view should respond to keyboard events when the window
becomes key, and connect the NSWindow initialFirstResponder outlet to that view.

Excharee Fae pzr'in: :

Control-drag a connection from
the window to the object in the
window that should initially take
keyboard events.

Select the initialFirstResponder
outlet.

Click here to make the connection.

Enabling inter-field tabbing

Next, use NSView’s nextKeyView outlet to connect view objects to each other.

Cornmcy Tasrsurias

If you want users to be able to tab
from one view to the next, Control
drag between the two views.

| Select the nextKeyView outlet.

| | Click here to make the connection.

Don’t connect views that the user cannot select or edit. In the example above,
we skip over the gray text field because it exists to show the result of the
Convert button’s action. The user cannot enter text into this text field, so it does
not make sense to make a nextKeyView connection to it. You also should be careful
not to connect to NSCell objects. For example, you shouldn’t connect to an
. individual cell of a matrix or form; instead hook the preceding object to the

You should also assign key

equivalents to buttons, The entire matrix or form. The NSMatrix and NSForm objects determine the

default button typically has a keyboard navigation between their own cells.

Return key equivalent, and the

Cancel button typically has the

Esc key equivalent. See
Chapter 3 for more information.

If you don’t make nextKeyView
connections, default connections
are made at run time. You can use
Interface Builder’s Test Interface
command to see if these
connections are satisfactory. See
“Testing the interface” in this
chapter.

RIGHT:
Connecting an
NSView to an
NSView (NSMatrix
in this case).

WRONG:
Connecting an
NSView to an
NSCell.

92

Chapter 4 Making and Managing Connections

1 Select an object in the interface.

2 Inthe Connections display of the

Inspector panel, selecta
connection.

3 Click Disconnect.
or

1 Inthe nib file window's outline
mode, click a triangle button to
display a connection.

2 Control-click the connection
line.

See “Examining connections™ in
this chapter to learn how to use
outline mode to display the
connections between objects.

93

LEmTEey

Tzl

Interface Builder gives you two ways to break the connections between objects.
The first method uses the Inspector panel.

Make sure a single object is selected.

If the Inspector is not already
displayed, choose Inspector from
the Tools menu and choose
Connections here.

Select an outlet or action with a
dimple next to it (indicating a
connection).

Verify the connection before you
break it (the item on the right is the
object on the other side of the
connection).

Click here to break the connection.

You can also initiate this procedure by selecting objects in icon mode of the
Instances display, and then disconnecting them in the Inspector panel as above.

Disconnecting objects

The alternative method for disconnecting objects allows you to perform the
operation in one place: in the outline mode of the nib file window’s Instances
display. First show connections for an object by clicking a three-dimensional
triangle button.

= [hrpOcens

Mrope sy ke sginhupry B

A — Click to show the connections for an

e o T 110 chengewsen 22 s object (left triangle for connections out,
o | right triangle for connections in).

W r

Control-click a connection line to server
r connection.

You must Control-click on the rig/z side of the column divider (nearest the
connection-out and connection-in triangle buttons) to get the scissors to appear,
and thus be able to break the connection. When you Control-click on the /gfz
side of the column divider, it begins a connection operation.

When You Don’t Want to Disconnect

After all of the objects in your interface are
connected the way you want them, you may
want to make sure that they stay that way.
When you delete an object from the
interface, all of the connections to that object
are broken. If all you're doing is fine-tuning
the interface’s appearance, you want to
make sure this doesn't happen.

To prevent someone from accidentally
changing connections, set the Lock all
connections preference on the General
preferences panel display. (Choose
Preferences from the Info menu to bring up
the Preferences panel.) When this
preference is set, you can't connect objects,

disconnect objects, or delete objects that
have connections.

When you're localizing an application, it's a
good time to use this connection locking
feature. When you localize a nib file, you
want the interface objects to behave the
same way, but you want their titles to
change. Sometimes, it's necessary to move
and resize the interface objects to make
room for titles in other languages that tend to
have longer words. By locking connections,
you make sure that you don't make a change
to the interface that will change the way the
application behaves.

94

Chapter 4

Making and Managing Connections

Copying interconnected objects

Select the objects that are
connected.

Alternate-drag the objects into
another nib file window or onto
another window or panel.

The various scenarios for copying
objects and their connections
between nib files is quite similar
to the procedures for copying
objects to dynamic palettes. See
Chapter 5, “Using Dynamic
Palettes,” for more information
on this Interface Builder feature.

95

You can easily copy objects—with their connections— between nib files. You'll
probably use this feature most often to copy a window and its views along with
the custom object that manages those views.

= SarplaiCelcnbh — gk Calosislor] s fngiaa oy B

—— Shift-click the connected
objects in succession.

Alternate-drag the objects
into the other nib file window.

Notice the icon representing the copied objects in the example above. Under
the cursor is the icon representing the object that is actually dragged. The plus
sign indicates that more than one object is involved in the operation. When the
copying process completes, the new nib file window holds duplicates of the
objects that include their connections to each other.

You can use the same basic technique to copy connected objects on an interface.
In the next example, an instance of an NSView subclass is connected to the Run
and Stop buttons. You can copy these objects and their connections by
Alternate-dragging them onto a window in another nib file.

Copying interconnected objects

Select a group of connected objects.

Alternate-drag the grouped objects to
the new window or panel.

Release the mouse button when the
group is positioned in its new location.

Another occasion for copying connected interface objects is when you want to
make copies of text fields or form fields and preserve the connections between

fields.

From the outline mode of the Instances display, you can copy an individual view
object, a custom non-view object, and the connections between the two.

MEE Ty T
|

You can also copy interconnected
interface objects to another
window in the same nib file. See
“Moving objects to other
windows” in Chapter 2.

R Y]
ol ol sk =

Shift-click to select the custom object
and the view object. Begin Alternate-
dragging the objects with the mouse
over the view object.

Release the mouse button when the
view object is over the window of the
other nib file. The plus sign indicates
that the custom object is included in
the copy.

96

Chapter 4

Making and Managing Connections

Testing the interface

Choose Test Interface from the
Document menu.

Check the functioning of
OpenStep objects.

Choose Quit from the application

menu or double-click the switch
icon in the application dock.

97

After you create an interface, Interface Builder lets you see how it works from
the user’s perspective.

Interface Builder’s menu, windows, and panels disappear, leaving only the
actual interface and (if you are testing the application’s main nib file) the main
menu. Give your interface a test ride. Here’s some of the things you might try:

= \erify that the cursor moves from field to field when you press Tab.
= Verify that you can copy, cut, and paste text (First Responder actions).

m See if you can print (the Print menu item must be connected to an
appropriate view object’s print: action method).

Note: When you test your interface, the behavior provided by your custom classes
is not called into play (with the exception of static, compiled palette objects).
You can only test the behavior that OpenStep and static palette objects exhibit
in themselves and when they send messages to each other. To test all
components of your application, you must compile and run it.

When you are finished testing the interface, exit from test mode.

If testing the mainnib file: 2 7 If testing an auxiliarynib file:
Ity I Click here to end test & i Double-click the test mode
Edit I mode and return to 2 7 icon in the application dock
; Interface Builder. to exit test mode.
Hide h
cuit g

Testing the interface

The View Hierarchy

When you expand an NSWindow object in outline mode and then
expand the NSView objects indented beneath, you are looking at
a view hierarchy. All the NSView objects within a window are
linked together in this hierarchy, an abstracttree structure similar
to the class inheritance hierarchy.

Within every window’s content rectangle—the area enclosed by
the border, title bar, and resize bar— is its content view. The

contentview is at the top of the view hierarchy. All other views of
the window descend from it. Each view has one other view as its
superviewand can be the superview for any number of subviews.

What physically determines a view's place in the hierarchy is
enclosure. A superview encloses its subviews. NSView stores
pointers to three objects that reflect a view's physical
relationships to other views in the window and locate the view in
the hierarchy:

e window identifies the view's window (the window points to
the content view)

* superview identifies the view's superview

e subviews a list of the view's subviews

The defining relationship of enclosure makes it easier to draw a
view:

e |tallows youto construct a view object (the superview) from its
subviews.

myWindow myContents

Responder (nil)
contentView

nextResponder
superview
subviews

7
window 1

frontView

backView

Responder nextResponder
superview superview
subviews (nil) SUDVIEWS st
window

pe \ViNOW

longView

b NEXtRESpPONder
e SUpETViEW
subviews (nil)
window

¢ Views are positioned within the coordinates of their
superviews, so when a view is moved or its coordinate system
is transformed, all its subviews are moved and transformed
with it.

e Each view has its own coordinate system for drawing. Since a
view draws within its own coordinate system, its drawing
instructions can remain constant no matter where it or its
superview moves on the screen.

E[Window m’

@ Subview of Content View

Subview of A

@ Subview of A

Two other attributes, the frame and bounds rectangles, set the
location, dimensions, and coordinate systems of a view. frame
holds the position and size of a view within its superview's
coordinate system. The frame rectangle defines the area in which
drawing can occur. The origin point of a frame locates the lower-
left corner of the rectangle in the superview’s coordinates. The
bounds rectangle occupiesthe same area as the frame rectangle,
butitis stated in a different coordinate system; the frame's origin
becomes the origin (0.0, 0.0) of the view’s drawing coordinates
(bounds.origin). The bounds rectangle is thus expressed in the
view's own drawing coordinates.

Another attribute, inherited from the NSResponder class,
determines how events are handled within the view hierarchy.
The nextResponder by default identifies a view's superview. If a
view receives an event message (for example, mouseDown:) and
cannot handle it, that message is passed on to the view identified
by nextResponder. See the specifications of the Application Kit's
NSView and NSResponder classes in the Application Kit
Reference for more information on the view hierarchy and event
handling.

98

Creating and saving dynamic
palettes

Storing view objects on
dynamic palettes

Arranging objects on dynamic
palettes

Storing top-level objects on
dynamic palettes

Putting connected view and
top-level objects on a dynamic
palette

Managing palettes

Using Dynamic Palettes

Who hath not seen thee oft amid thy store?
Sometimes whoever seeks abroad may find
Thee sitting careless on a granary floor,
Thy hair soft-lifted by the winnowing wind...
John Keats, from 70 Autumn

The superfluous is very necessary.
\oltaire

100

Chapter 5

Using Dynamic Palettes

Creating and saving dynamic¢ palettes

To create a palette, choose
Tools » Palettes » New.

To save a palette, choose
Tools » Palettes » Save.

You can customize the icon for
your dynamic palette. The task
“Managing palettes” in this
chapter tells you how to do this
and also describes how to unload
palettes in Interface Builder.

101

When you create a dynamic palette, an empty palette appears in the Palette

window.

HJEE

e T G

DN

The palette’s icon is initially a cube. Later,
if another palette is displayed, click this icon
to go back to your palette.

When the palette icon isn’t visible, move
the slider to bring it into view.

The palette is initially empty. This is the
surface onto which you put objects for
later reuse.

As with the standard Application Kit palettes, you can choose an existing
dynamic palette by clicking its icon in the Palette window (when created,
dynamic palettes have the generic cube icon). To use an object on a dynamic
palette, follow the same procedure as for objects on the standard palettes: Drag
the object from the palette and drop it onto an appropriate surface.

You must save your dynamic palettes. If you do not save a palette after you
create it, you lose it when you quit Interface Builder. (Interface Builder prompts
you if you try to quit without saving a palette.) Choose the Save command to
save dynamic palettes, bur the Save command from the Palettes menu, not the

Document menu.
1B Tools Palettes
Infa - | Calors... Cpen...
Document I* | Inspector... ey
Edit I~ | Palettes | Save —— Choose this Save command
Farmat = Save As... to save palettes.
Tools I~ Revertto Saved
Windows I Palettes...
Frint... p Close Palette
Services I
Hide h
Cluit q

Creating and saving dynamic palettes

Interface Builder brings up the Save panel, allowing you to designate a name for

the palette.

'gﬁ Eavg

Select the directory to hold the

padn / - ::r
L dAaps I n

Cavrkme

il TR

[LETIEE T T

E s £ ok L
Evaban®rm_ rird5 |

palette file.

Type the name of the new palette
file, replacing "Untitled"; The

| extension .palette is added

automatically.

EJH ﬂ Coxcal | IE—— Click to save the file as named.

Tools for Interface Crafters: Static and Dynamic Palettes

A palette is a special display that holds one or more reusable
objects. You can drag these objects from the palette to your
application’s interface. There are two types of palettes: static and
dynamic. To the user, they seem identical, but the differences are
many.

Static palettes are built as a project and have code defining their
objects; dynamic palettes include no special code—they're
unique configurations of (mostly) standard OpenStep objects.
Consequently, static palettes must be compiled, but you can
create dynamic palettes on the fly, without writing and compiling
code. Objects on static palettes can have inspectors and editors,
which dynamic-palette objects cannot have.

Creating static palettes (and their inspectors and editors) is a
more complex process than creating dynamic palettes, but the
resulting product has more value added to it. For example, if you
want to store a button that has the title 0K, you use a dynamic
palette because the change involves only the Interface Builder
Inspector panel. However, if you want to store a custom subclass
of NSButton, you use a static palette. A static palette can store
both the button and your custom code.

Dynamic palettes are a great convenience. You can save
collections of your objects, with or without their interconnections,

to a dynamic palette at any time. You can save dynamic palettes
and store them in the file system, just as you do with the traditional
compiled palette. You can remove the palette from the Palette
window and, when you need it again, just load it back into
Interface Builder.

The possible practical uses of dynamic palettes are numerous
You can use them to:

¢ Store collections of often-used view objects configured with
specific sizes and other attributes.

¢ Hold windows and panels that are replicated in your projects
(such as Info panels).

¢ Store versions of interfaces.

* Keep interconnected objects as a template that you can later
use as-is or modify for particular circumstances. For instance,
you could store a group of text fields and their delegate, or a set
of controls and their connections to a controller object.

You can also use dynamic palettes for prototyping and group
work. For instance, you could design an interface or a part of an
interface, store the objects on a dynamic palette, and then mail
the palette file to all interested parties.

102

2

3

Chapter 5

Using Dynamic Palettes

Storing view objects on dynamic palettes

Configure one or more view
objects.

Select the objects.

Alternate-drag them to the
palette.

Once an object is on a palette,
you can move it around the
palette or remove it from the
palette. See the next task,
“Arranging objects on dynamic
palettes” for details.

You can also store view objects
that are connected to top-level
objects. See “Storing top-level
objects on dynamic palettes” for
more information.

103

You can save any single view object or group of view objects to a dynamic palette
so that you can use them again. The objects stored in this manner preserve the
size and other attributes they have when you store them.

First, size each object to be stored and, through the Inspector panel, set its
important attributes. If you are storing a group of objects, such as a set of controls
within a box, make sure to position all objects in proper relation to each other.

ir| i Waakas =]
Lerg
Ui I
St | —-+—————— When you begin copying the objects

by Alternate-dragging them, the

" Baca Uity pslei b — ,-“,J copies of the original objects are
-~ - - o= EI outlined in white.
el=]

=f = £
VR e

=

['I'l]

Hrcurn Y

gl —==+—— When the objects are positioned on
the palette, release the mouse button.

If there are several objects you want to store on a palette, you can drag each
object onto the palette individually, or you can make a multiple selection in the
interface. (Draw a selection rectangle around the objects, or Shift-click the
objects in succession.) If you store a group of objects that are connected—say
the three fields above were grouped in a box and connected through the
nextKeyView outlet—their connections are copied also.

Tip: You can also copy view objects to a dynamic palette from the outline mode
of the Instances display.

Arranging objects on dynamic palettes

Arranging objects on dynamic palettes

» To position a palette object,
Alternate-drag it within the
palette.

» To remove a palette object,
Alternate-drag it off the palette.

You can do two things to objects once they’re on a dynamic palette: move them

around the palette and delete them from the palette.

UL B S mu sy UL s T
FFS S rmrmnrmnrd B rm AAY

——— —— To reposition an object, Alternate-drag
F-T'IT ; it to its new location on the palette.

pEl" =2 == s

PETIODENFE
L

To remove an object, Alternate-drag it
until it is off the palette, then release
the mouse button.

If you store an object on a dynamic palette and later discover that its size,
connections, or attributes must be changed, you must:

= Remove it from the palette.
m Resize it, reconnect it, or reset its attributes.
m Store it on the palette again (by Alternate-dragging it).

104

Chapter 5 Using Dynamic Palettes

Storing top-level objects on dynamic palettes

In the Instances display, select You can put custom objects, windows, and panels on dynamic palettes and reuse

one or more windows, panels, or them again and again. You can store these top-level objects individually or as

custom objects. connected sets of objects. When you select a controller object and awindow and

Alternate-drag them and drop store them together, the connections between them are also stored on the

them on a dynamic palette. dynamic palette. In addition, all connections between a window or panel and its
views are preserved as well as the connections among the views themselves.

To store a single top-level object on a dynamic palette, Alternate-drag it from
the Instances view of the nib file window and drop it onto the palette. To store
multiple, connected objects, make sure they’re selected as a group first.

O e bl | b re iy, (B

Shift-click to select multiple

1 TR /0 objects.

N
3

objects onto the palette, the
icon representing the object
under the mouse pointer

Lmirimajdsiie — - :4 When you Alternate-drag the
| |
|
appears.

1 The plus sign indicates that the
i represented object includes

{ another object.
|

Tip: You can perform this same task whether in the outline or the icon mode of
the Instances display.

105

Storing top-level objects on dynamic palettes

When you drag the object or objects from the dynamic palette to add them to
another nib file (or to duplicate them in the same nib file), make sure that the
“surface” on which you drop the object (as represented by the icon) is
compatible.

rAaTr-r—TaTwT

| Unissipan L

To reuse the connected objects,
drag the object and drop it over
LR a suitable surface.

L J AN Y
i?l##-lﬂlil-l-l-ll
S AN LTI
[PO PEEEE
ABOBLDE
1]
I

dNEFOODE
dbaddbe

dxpBoBcaBET
AapliAmApAEY
LI LN LN Y

You’ll know which surface is compatible by the icon representing the object. If
it’s a cube (custom object), you must drop it over the nib file window. If it’s a
window or panel, you can drop it anywhere on the screen, including over the nib
file window.

106

Chapter 5

Using Dynamic Palettes

Putting connected view and top-level objects on a dynamic palette

In outline mode, select a
connected top-level objectand a
view object.

Alternate-drag the objects to the
palette.

107

There might be situations when you don’t want to store an entire window with
the custom object that manages that window’s views. You just want to store the
custom object and some of the window’s views, or you want to store the window
and only some of its views. You can do this from Instances view outline mode.

For example, here’s how three slider objects hooked up to a controller object
(ImageController) look in outline mode when the connections are displayed.

[0 veksaGreblsT.nik

-MrepraaTirs)

Select the top-level object and view object by Shift-clicking them. You can
select only one view object and one top-level object.

=] Wiksa Grabber ik

o o

=
reurcH g

Msrafa el naparming £

. FinFrapunnnidFrdFacaanidnf
H F RN)
0F REWWHI Tl AR g i
Lo o] A o s eyl
w5
« P F I | 0l
FLTH. =T

Select a top-level object and

a view object connected to it.
(In this case, the view is a box
containing several subviews.)

When you Alternate-drag the
selected objects onto the
dynamic palette, a
representation of the object
under the mouse pointer
appears.

The plus-sign icon indicates that
this palette object contains
multiple objects, including all
their connections with each
other.

Putting connected view and top-level objects on a dynamic palette

Because you can only store one view object per top-level object with this
technique, you first might want to group all view objects you want stored (if
they’re not already grouped). To make a group, select all the objects and then
choose Format » Group » Group in Box. If you don’t want the enclosing box
around the grouped objects, remove the Bordered option in the Inspector’s
Attributes display for boxes.

Tip: A useful selection technique is to first click a view object in the interface,
then choose Enter Selection from the Edit menu. The view object becomes
highlighted in the nib file window.

To verify the objects you stored, first drag the view object (with plus sign) that
represents the combined objects from the dynamic palette and drop it over a
new window or panel. Go to outline mode of the Instances view. The top-level
and view objects you dragged off the palette are listed in the outline. Click the
triangle button to verify that the connections are still there.

O Vi Grebbarml — -Mrognarimig

—— Click to see connections.

'_| Tdmizen i

Iorsge Lazbrob
e o
LETTE TT S
g [T

108

Chapter 5

Using Dynamic Palettes

Managing palettes

Customize the palette icon:
Drag and drop an image file over
the palette.

Install and uninstall palettes:
Double-click a palette icon in the
Palettes display of the
Preferences panel.

Load a palette:
Choose Tools > Palettes » Open
and select a palette file.

Unload a palette:
Alternate-drag a palette icon off
the Palettes display of the
Preferences panel.

109

Interface Builder gives you facilities for managing static and dynamic palettes.
These management functions include:

= Customizing the palette icon (dynamic palettes only)
= |nstalling and uninstalling palettes on the Palette window
m L oading and unloading palettes

Customizing the Palette Icon

For dynamic palettes, Interface Builder gives you the option of specifying the
icon that identifies the palette in the Palette window.

Krib i Loy A
R T IR I IR
== Drag an image file (TIFF or EPS)
from the Workspace Manager’s
. File Viewer...
|
"

Ve Toe -|ﬁ
| L [l — ...and drop it over the palette.

Tip: Since Interface Builder scales the image to fit into the icon rectangle, create
or choose a TIFF or EPS image that is 35 X 35 pixels.

You can also customize the icons of static palettes, but you must do this
programmatically, specifying the image file in a palette.table file.

Managing palettes

Installing and Uninstalling Palettes

Palettes can be installed or uninstalled; installed palettes appear in the Palette
window. Interface Builder stores as a user preference the names of the palettes
you have previously installed and whether you currently want them installed.
You can find out which palettes are uninstalled in the Palettes display of the
Preferences panel. To see this display, choose Preferences from the Info menu.

Choose the Palettes display.

The names of uninstalled

palettes are in black. To install,
double-click the icon above the
title. (The title changes to gray).

To uninstall a palette, double-click its icon in the Preferences panel or use the
Palette menu’s Close Palette command.

110

Chapter 5

Using Dynamic Palettes

111

Loading and Unloading Palettes

If the palette doesn’t appear in the Preferences panel, open it using the Open
command of the Palettes menu (not the Open command of the Document

menu).

LLr] ' | Codor

Decursyd || hrpssling
Ex1 LB

Hiw

Clime Fuein

o La

FurEp

Choose this Open command.

Select the directory holding
the palette file.

Select the palette file
(extension of .palette).

— Click to load the file.

You can also open palettes by dragging them from the Workspace Manager’s File
Viewer onto the Palettes Preferences panel.

You unload palettes—thereby removing from your user preferences—by
Alternate-dragging them off the Palettes display of the Preferences panel.

Managing palettes

112

A roadmap to making or
adding custom classes

Naming a new class
Specifying outlets and actions

Creating an instance of your
class

Connecting your class’s
outlets

Connecting your class’s
actions

Generating source code files

Implementing a subclass of
NSObject

Making your class a delegate

Implementing a subclass of
NSView

Adding existing classes to
your nib file

Updating a class definition

Subclassing

I inherited it brick, and left it marble.
Emperor Augustus

They rightly do inherit heaven’s graces,
And husband nature’s riches from expense.
Shakespeare, Sonnets

Observe how system into system runs,
What other planets circle other suns.
Alexander Pope, An Essay on Man

114

Chapter 6

Subclassing

A roadmap to making or adding custom dasses

» Determine which flowchart
applies to your situation.

> Follow the tasks in this chapter
in the order specified by that
flowchart.

115

This chapter differs from the other chapters in this book because its subject is
different. Creating a class (or adding an existing class) is not a set of discrete,
modular tasks, but a process consisting of many interdependent tasks. The
order of tasks in this chapter is therefore significant; with some exceptions, you
need only follow the tasks sequentially, from first task to last task, and you’ll end
up with a useful class.

But those exceptions are significant, and so flowcharts are provided to point the
way. The flowchart on the facing page guides you through the tasks required to
define and implement a subclass of the NSObject class or of the NSView class.
An additional flowchart identifies the tasks you must complete to integrate an
existing class into an application.

This chapter also differs from other chapters in this book because it covers a
topic that involves both Interface Builder and Project Builder. To start creating
a class, you use Interface Builder. It helps you locate the class in the hierarchy,
name it, connect an instance of it with other objects in an application, and
generate template source files. When Interface Builder’s role is done, you switch
to Project Builder and provide the most important contribution, the source code
that gives your class its distinctive behavior. (As an alternative, you can start
creating a class in Project Builder then add it to Interface Builder and make the
connections to other objects later.)

A roadmap to making or adding custom classes

Flowchart Legend

) Main Flow

Decision Point

— Optional

_ Task in Chapter

If you branch to “Implementing a
subclass of NSView” after
specifying outlets and actions,
complete only the step “Making an
Instance of an NSView Subclass”in
that task for now, and go on to the
next task. Do the rest of
“Implementing a subclass of
NSView” after you've generated
code files.

After generating code files, you
must switch over to Project Builder
and open the header and
implementation files.

NSView or Non-NSView Subclass?

Non-NSView

What is Superclass?

NSView

116

Chapter 6 Subclassing

Flowchart Legend

) Main Flow

NSView or Non-NSView Subclass?

Decision Point

Non-NSView NSView

—_— Optional

-I Task in Chapter

117

A roadmap to making or adding custom classes

The Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller
(MVC). MVC derives from Smalltalk-80; it proposes three types of
objects in an application, separated by abstract boundaries and
communicating with each other across those boundaries.

View

Model Objects

This type of object represents special knowledge and expertise.
Model objects hold a company's data and define the logic that
manipulates that data. For example, a Customer object, common
in business applications, is a Model object. It holds data
describing the salient facts of a customer and has access to
algorithms that access and calculate new data from those facts.
A more specialized Model class might be one in a meteorological
system called Front; objects of this class would contain the data
and intelligence to represent weather fronts. Model objects are
notdisplayable. They often are reusable, distributed, and portable
to a variety of platforms.

View Objects

A View object in the paradigm represents something visible on
the user interface (a window, for example, or a button). A View
objectis “ignorant” of the data it displays. The Application Kit
usually provides all the View objects you need: windows, text
fields, scroll views, buttons, browsers, and so on. But you might
want to create your own View objects to show or represent your
data in a novel way (for example, a graph view). View objects,
especially those in kits, tend to be very reusable and so provide
consistency between applications.

Controller Object

Acting as a mediator between Model objects and View objects in
an application is a Controller object. There is usually one per
application or window. A Controller object communicates data
back and forth between the Model objects and the View objects.
It also performs all the application-specific chores, such as
loading nib files and acting as window and application delegate.
Since what a Controller does is very specific to an application, it
is generally not reusable even though it often comprises much of
an application’s code.

Because of the Controller’s central, mediating role, Model objects
need not know about the state and events of the user interface,
and View objects need not know about the programmatic
interfaces of the Model objects. You can make your View and
Model objects available to others from a palette in Interface
Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances.
Sometimes its best to combine roles. For instance, in a graphics-
intensive application, such as an arcade game, you might have
several View objects that merge the roles of View and Model. In
some applications, especially simple ones, you can combine the
roles of Controller and Model; these objects join the special data
structures and logic of Model objects with the Controller's hooks
to the interface.

118

Chapter 6

Subclassing

Naming a new dass

In Interface Builder, display the
Classes display of the nib file
window.

Select the class you want your
class to inherit from.

Choose Subclass from the
Operations menu.

Type the name of your class over
the highlighted “default” name.

See “A Short Practical Guide to
Subclassing™ in this chapter for
more on the relation between
superclasses and subclasses.

119

When you create an application, you must create at least one subclass to do
anything meaningful. The OpenStep frameworks do a lot of the work for you,
but you must always supply, in one or more subclasses, the distinctive logical
and computational flow of your application.

Click here for classes display.

o | =

Fiia"% D Fual Rponkn Fdedntdenu
Coavarkr bty W rad oy TaACanbmlkar

When you subclass, the first thing you must do is select your class’s superclass.
Ideally, the superclass of your class should behave much the way you want your
class to behave. Your class merely adds the behavior you want to what the
superclass offers, or modifies the superclass’s behavior in some way. Often the
behavior you want is so bound to resolving a particular problem that the proper
choice of superclass is NSObject because it provides the most generic behavior.

E Traveladvisor.nib — ..eladvisorfEnglishdproj O |3
Classes
O MNSObject Click to highlight the class that is to be
&) CETIEE @ @ your class’s superclass.
o Country (@) @
2 FirstResponder o 56
o |Blnspector @ 4@
o |EPalette 1@ &
& MNSarray () &
& MNSCell o 4
DOperations
Subclass LI Choose this command to insert your

\rstantiate (undefined) class into the class hierarchy.

Edit Class
Fieadl File
Create Files

Tip: Pressing Return when a class is selected is equivalent to choosing the
Subclass command.

Naming a new class

The new class is listed under its superclass with a default name: the superclass
name prefixed with “My” (such as “MyNSObject”). Replace this default name
with the new name.

fid N o pal-

L L AR

- L Type the name of your Class over the
~ AP .
default name. Press Return.
woF 1B a@
wOE [0 = I

Later, if you want to rename the class, first re-select the class name by double-
clicking it. Then type the new name, replacing the selected text.

A Perspective on the Class Hierarchy

The Classes display of the nib file window shows the classes that
the current nib file is aware of. The display lets you browse
through both OpenStep classes and custom classes. The Classes
display also depicts (by indentation) class-inheritance
relationships and reveals the names of each class’s outlets and

actions.

The Classes display shows
hierarchy by indentation (for
example, NSApplication inherits
from NSResponder). If the circle
button is filled, the class has
subclasses that are not shown.

Click the button to display the

subclasses.

If the class name is black, it is a
custom class. If the class name
is gray, the class is a NeXT-

provided class.

Keyboard Navigation Move up and down in the list of classes
pressing the up arrow and the down arrow. When a class is
highlighted, show its subclasses by pressing the right arrow;
collapse anindented list by selecting the superclass and pressing
the left arrow. If the nib file window is active, incremental search

is active: just type the first few letters of a class until its name is

highlighted.

E TravelAdvisor.nib — ..eladvisor/English.Iproj

Clagses

=fPX

i —
O MIResponder (o] &
o MEapplication 1@
& [EView z@/ =
& FMIWindow zZ@ 10@
o MSTableCalumn D] &
" o Sound 1@ 5@
I TaController [m] B
Al Ohject @ 23]
|

~ Outlet (electrical-outlet icon)
and target/action (cross-hairs
icon) buttons. Click to display
class outlets and actions.

i~ A pull-down list of operations

related to creating a class.

120

Chapter 6

Subclassing

Specifying outlets and actions

Click the button for an outlet or
an action.

Select Outlets or Actions.

Choose the appropriate
command from the Operations
menu.

Enter the name of the outlet or
action in place of the default
name.

For background information on
outlets and actions, see
“Communicating With Other
Objects: Outlets and Actions” in
Chapter 4, “Making and
Managing Connections.”

121

An object isolated from other objects is of little use. Interface Builder provides
two ways for you to specify how objects of your class communicate with other
objects: outlets and actions.

Before you begin this task, take a moment to consider what other objects you
want instances of your class to send messages to, and the requests that instances
of your class are apt to receive from other objects. The procedure itself is simple,
and almost identical for outlets and actions.

Adding Outlets
Outlets are instance variables that identify other objects. In the Classes display,
you access the outlets of a class by clicking the electrical-outlet button.

Click this button to view or add outlets.

Outlets and Actions appear then
underneath the class, with Outlets
highlighted.

Next, choose Add Outlet.

o TAController
Clitials
my Cutlet

Type the name of an outlet in place of
the default name.

When you press Return, the outlet is renamed and Interface Builder highlights
the new outlet. If you have another outlet to specify, choose Add Outlet again
from the Operations menu and type the outlet’s name over the default name.

Specifying outlets and actions

Adding Actions

Actions are methods invoked as a direct consequence of the manipulation of
NSControl objects in the interface, such as when users click a button. In the
Classes display, you access a class’s actions by clicking the cross-hairs button.

B TravelAdvisor.nib — ..eladvisor/Englishdproj |5 3¢

Classes

& TaAController @———— Click this button to view or add actions.
Clutiers
Celsius

Outlets and actions then appear
underneath the class, with Actions
highlighted.

Add Action —
Instantiate N—]
Eclit Clazs

Figard File

=T

Next, choose Add Action.

E Traveladvisornib — ..eladvisorfEnglish.lproj | O |:¢

Classes

< TAController
Clietvats
celsius

Acticns /

my A ction:

Type the name of an action in place of
the default name.

When you press Return, the action is renamed and Interface Builder highlights
the new action. If you have another action to specify, choose Add action from the
Operations menu, and type the new action’s name over the default action name
(“MyAction™).

When you are finished specifying outlets and actions, click the class name to
collapse the list of outlets and actions.

Tip: When an outlet or action (but not its text) is highlighted, you can add a new
outlet or action by pressing the Return key instead of using the menu.

122

Chapter 6

Subclassing

123

A Short Practical Guide to Subclassing

Subclassing is not an esoteric art but one of the most common
and essential tasks in object-oriented programming. Butit doesn't
need to be a difficult chore, especially if you take the time to learn
what's in the class hierarchy.

What is Subclassing?

The principal notion behind subclassing is inheritance. Classes
stand in relation to other classes as child to parent or parent to
child. A class might have many child classes (or subclasses), but
always has only one parent class (superclass). Atthe head of this
class hierarchy is the root class.

Set Instance
Variables

Class When Object

Is Drawn

Instance Variables:

BOOL visible; VDB

Shape

Inherits

visible = YES;
radius = 0.75;
fill = NX_DKGRAY;

Instance Variables:
float radius;
float fill;

Circle

Inherits

visible = YES;
radius = 0.5;

fill = NX_BLACK; ,
maskOffset =

{-0.25,-025});

Instance Variables:

Crescent NXPoint maskOffset;

The attributes (instance variables) and behavior (methods)
defined by a class are shared by all descendents of that class. To
putitanotherway, each new classis the accumulation of all class
definitions in its inheritance chain.

For example, the NSView class defines two instance variables for
location and size (frame for the superview orientation, and
bounds for within the view) from which all instances of its
numerous subclasses derive their own basic position and
dimensions. The NSView class also defines several methods for
setting and getting these instance variables; again, all subclasses
of NSView inherit the behavior defined by these methods. You can
send the same messages to any instance of an NSView subclass
to have it resize itself.

So subclassing is usually the extension and specialization of the
inheritance chain. When you define a class that inherits from
another class, you are specifying how it differs from that
superclass.

But there are reasons for creating a subclass—or a “branch” of
subclasses—other than getting different behavior. You may want
to define a class that dispenses generic functionality to its
subclasses, such as an Qutput class that performs tasks common
to both a Printer class and a Fax class. You might want a class to
declare methods (perhaps unimplemented) that set up a protocol
that future subclasses can implement. Code reusability is an
additional motive: the behavioral elements shared among
classes can go into a single superclass for those classes.

Analyzing the Inheritance Chain

Asthe firststep in subclassing you should analyze the inheritance
chain. This point may seem obvious, but it is important enough to
emphasize. You should do more than just identify the most
suitable superclass; you want to understand exactly what it does
and how it interacts with other classes.

Carefully read the specifications. Note which methods are
available. Determine what the methods do and how they are
related to each other; identify the accessor methods, those that
get and set the instance variables; identify the interfaces to
instances of other classes (such as outlets).

If the behavior you want for your class is targeted at a special
problem, even if that problem is managing an application or
window, it might make the most sense to subclass NSObject.
These kind of subclasses, often called controller or model
classes, are common in OpenStep applications. See
“Implementing a subclass of NSObject” for details on creating
typical controller classes. Also, see “The Model-View-Controller
Paradigm” in this chapter for a description of the distinguishing
characteristics of controller and model types of classes.

Specifying outlets and actions

Instance Variables: To Add or Not to Add

Instance variables represent an object’s attributes and hold
pointers to other objects (outlets). If instances of your class
require special attributes or outlets, add them.

But, as a general rule, avoid adding instance variables unless
they are absolutely necessary. Instance variables add weight to
objects. You sometimes generate certain objects (for example,
cells in a file-system browser) in large numbers. The more data
these objects carry, the more memory gets consumed.

This example illustrates the effects of polymorphism and inheritance in
a hypothetical class hierarchy. The Shape class provides basic
functionality and a single instance variable. The Circle class, a subclass
of Shape, adds more instance data and actually implements drawing.
The Crescent class supplements its superclass (Circle) with more
specialized behavior and data.

Often you can compute values from other values. Sometimes you
can get pointers to other objects without having to specify outlets.
Oryou can represent attributes in lightweight fashion, especially
if they are Boolean in nature, by encoding them as bits in an
integer.

If you do not want to give subclasses of your class access to its
instance variables, put the @private directive before the
declarations of the instance variables you want to conceal.
(Many instance variables are private in OpenStep classes.)

Class Set Instance When Object
Variahles Is Drawn
Shape Instance Variables: visible =YES;
p BOOL visible;
Inherits
. Instance Variables: visible = YES;
Circle float radius; radius = 0.75;
float fill; fill = NSDarkGray
Inherits
visible = YES;
Crescent Instance Variables: ?ltljl—usN:Sgl-S;k' \
NSPoint maskOffset; = ack;
maskOffset =
{-0.25, -0.25};

124

Chapter 6

Subclassing

A Short Practical Guide to Subclassing (continued)

Determining Your Class’s Methods

Look at your class from the perspective of potential clients. What
will they want it to do? What information will they expect back?
The answers to these and similar questions will lead to the set of
methods for your class. Based on relation to superclass, methods
generally come in three types:

Added methods These new methods extend the class
definition. They include accessor methods for new instance
variables.

Replacement methods These types of methods completely
override the superclass method of the same name. They can
also, by being a “null” implementation, block the invocation of
the superclass method.

Extended methods These methods also override a
superclass method, but then in the implementation invoke the
superclass method by calling super. This is a common
technique for adding behavior or getting cumulative behavior
(such as archiving) across the inheritance chainin response to
a single message (such as encodeWithCoder:).

What is Public, What is Private?

When designing your subclass, also identify the code that is part
of the interface and code that is private to the class.

Public methods These implement your class’s interface.
External objects invoke these methods by sending messages
to instances of your class. Among these types of methods are
accessor methods, which mediate client access to instance
variables. You declare public methods in the header file for
your class.

Private methods These methods can be invoked by objects
within a project but are invisible to external objects. You usually
declare them in a private header file and prefix the method
name with an underscore character.

Functions Non-library static C functions are also private to
your class. They are marginally faster than methods because
they don't involve the overhead of the run-time object system.

Use a method if you're accessing instance variables, and use a
public method if that method is part of your public interface.

Alternatives to Subclassing

¢ Delegation

Sometimes you can get particular behavior without additional
subclassing. OpenStep and the Objective-C language give you

many ways to merge and synchronize your class’s behavior with
the behavior of OpenStep classes and even other custom classes.

An object can send, on specific occasions,
messages to another object registered as its delegate. If the
delegate implements the methods so invoked, it can participate
in the work of the object. For example, an NSBrowser object
sends messages to its delegate requesting cells to insertinto a
column. Other major Application Kit classes with delegation
protocols are NSApplication, NSWindow, and NSText.

¢ Notifications Many objects post notifications to all

interested observers when a particular event takes place or is
about to take place. Notifications allow observing objects to
coordinate related activities and sometimes give them a
chance to veto the event. This can be better than delegation
because an object can have many observers but only one
delegate. See the specification for NSNotificationCenter (a
Foundation Framework class) for details on adding an observer
object and on responding to notifications.

Protocols A protocol is a list of method declarations
associated with a particular purpose but unattached to a class
definition. By adopting the protocol and implementing the
methods, your class can interact with OpenStep classes and
accomplish that purpose. OpenStep publishes many protocols,
including those for copying objects and encoding objects for
archiving.

Categories These are Objective-C constructs that enable
you to add methods to a class without having to subclass it. The
methods become part of the class, inherited by all of its
subclasses. The only major drawback is that you cannot
declare new instance variables (however, you can access all
existing instance variables). Besides extending a class
definition, you use categories to group, manage, and configure
methods in large classes.

Creating an instance of your class

Creating an instance of your dass

1 Selectyour class in the
Classes display.

2 Choose Instantiate from the
Operations menu.

For details on creating an
instance of an NSView subclass,
see “Implementing a subclass of
NSView” later in this chapter.

You cannot connect classes to other classes. Only instances of classes—objects—
can really communicate with each other. Interface Builder requires a real
instance of your class to enable the connection of your object to other objects.

The procedure for generating instances of non-NSView classes in Interface
Builder is simple. T%is procedure applies only to classes that don’t inkerit from the
NSView class.

{ Trawrlfalty iso il — bl ES o ETvglisliujeog

T EE
“ MACunat

& M langy
F AR R g
L Homw)e

W AR pouLn
CHGTale oy,
L= 1T T]

& TAC e

| Select a custom class.

ratwial: p——— Choose Instantiate from this menu.

A TravilEaisns g s LSl PR T i T
Fik" Qeanin Fuoal RESip o M e ridEnu
|___ An instance of the class appears in the
Instances display.
Convariar bty W rad ooy TaACanimilar

When the new instance appears in the Instances display, it takes the same name
as the class. Rename it, if you want, to something more indicative of an object.
(Double-click the text to select it, then type the new name.) For example,
AppController could become AppControllerObject. Be aware, however, that
this name is merely a convenient way to identify the object in Interface Builder;
it does not create an identifier that you can reference in code.

126

Chapter 6 Subclassing

Connecting your dass’s outlets

1 Control-drag a connection line You initialize an outlet in Interface Builder by making a connection from your
from the instance to another instance to another Object.
object.

2 Inthe Inspector’s Connections
display, select the outlet that
identifies the destination object.

3 Click the Connect button.
Control-drag a connection
line from the instance of
your class.

When the destination object
is outlined, release the
mouse button.

When you establish the line connection, the Inspector panel for the destination
object becomes the key window. Specify the outlet identifier for this object.

Custom Object Inspector
lif

Outlets

celsms Select the intended outlet.
This task and the next one
“Connecting your class’s
actions,” summarize information
more fully presented in
Chapter 4, “Making and ||:
Managing Connections.”

Cunnectmns

Click here to make the connection.

127

Connecting your class’s actions

Connecting your dass’s actions

1 Control-drag a connection line Action connections go from an NSControl object to your class’s instance.
from a Control object to your
class’s instance.

2 Inthe Inspector’s Connections
display, select the appropriate
action.

3 Click the Connect button.
Locate an NSControl object

and Control-drag a
connection line from it.

The destination object is usually a custom object whose
class has defined action methods. Release the mouse
button when this object is outlined..

When the line is set between the objects, the second column of the Connections
display shows the action methods that the target object (your instance) has
declared. Select the action for this NSControl object.

HSButton Inspector

Connections |
Outlets Actions
target — ' Select the target, which is your
instance.
deleteRecord: Select an action defined for the class.

You can make connections
between objects entirely within
the outline mode of the Instances
display. For more information on
the outline mode, see Chapter 4,
“Making and Managing

Connections.” Connections

A dimple indicates that a connection
already exists for the action.

Click here to make the connection.

128

Chapter 6 Subclassing

Generating source code files

Select your class in the Classes Before you begin specifying the behavior of your class in code, you typically

display. generate template source code files for your class from the information
. contained in the nib file. The header file (MyC/assh) created by Interface
Choose Create Files from the
Operations pull-down list. Builder declares the outlets you specified as instance variables (of type id) and
declares the actions as instance methods of the form method Name:sender. The
Click Yes in the subsequent _ jmplementation file (1/yC/ass.m) contains empty function blocks for each of

attention panels/ :
attention panels/message hoxes these methods.

1 Tresdfsteser wh warhemariBnifish ks

20 Sy R A 128
G HEN ke T 10
a HiPad Zd@ 0
2 HEEu T 10
2 HATab e M [Select your custom class.
21 Sl 1@ Bl
o Tal ol a@ e
B Onell = &
i

- J=]
] Pl
Crasts Mia ——— Choose the Create Files command.

When you generate source code files, Interface Builder displays an attention
panel/message box to confirm creation of the files.

yj Create Files

Create
fiostrem/Programming/Travel Advisor T AContraller.[h
m]?

no | i L Click to confirm.

If you confirm creation and the nib file is associated with a project, another
attention panel/message box subsequently asks if you wish to add the template
code files to the project. Click Yes to add the files to the project.

129

Generating source code files

Click to confirm.

o mircer sapmmar e ra
I e el A e e

I TR LA
[- Y

I e Vel e
1N oo L
1 oy ie,
I el o Lkd
18 ease A lefinla

The header and implementation
files appear in the project.

o aliat bl b 4
LILL S Sl H SR e N
= IS AEETT - IR
7

= v ek o R el

=

130

vvyyVvyvVvyy

vy

Chapter 6

Subclassing

Implementing a subdass of NSObject

Import header files.

Declare new instance variables.
Implement accessor methods.
Define target/action behavior.

Define initialization and
deallocation behavior.

Define how objects are copied.
Define how objects are
compared.

Implement archiving and
unarchiving.

Define special behavior for
your class.

For more on the NSObject class,
see its description in the
Foundation Framework Reference.

The book Object-Oriented
Programming and the Objective-C
Language describes in detail many
topics related to the NSObject
class and class creation.

131

This task summarizes the steps that you must complete—and can optionally
complete—to implement a subclass of NSObject. With this kind of subclass, the
subtleties arising from inherited behavior are simplified. Still, the interaction of
your class with the root class is very important and applies to all subclasses.

The task assumes that you have completed the following prerequisites in
Interface Builder, presented earlier in this chapter:

= Naming a class, positioning it in the class hierarchy

m Specifying outlets and actions for the class

m Creating an instance of the class

m Connecting the instance to other objects through the outlets and actions
m Generating code files from the nib file

When you have generated code files in Interface Builder, switch over to the
Project Builder application and open your project. Open your class’s header file
(ClassNameh) and implementation file (ClassName.m).

N4l 109 nemsnme A1)

Select a file here.

Edit it here. You can press
Command-2 to split the view and
see two files at once.

Implementing a subclass of NSObject

Importing Header Files

This step is little different from what you must do in regular C programming: At
the beginning of your implementation file include the header files declaring all
types and functions that your code is using, as well as the header files for all
referenced classes, protocols, and methods. Instead of #include, however, use the
#import directive; #import ensures that the file is included only once.

Remember to import your class’s header file. By doing so you include the
interface files for all inherited classes. To include the Application Kit classes, all
you need to do is #import <AppKit/AppKit.h>. (Interface Builder imports both AppKith
and your class header files for you automatically).

/* TAController.h */
#import <AppKit/AppKit.n>
#import "Country.h"

/* TAController.m (implementation file) */
#import "TAController.h"
#import "Converter.h"/* Needed in implementation, not interface */

Declaring New Instance Variables

The header file that Interface Builder generates declares outlets as instance
variables. You might want to add new instance variables for your class to this list.
All instance variables should be data that is essential to an instance of your
class. They can be strings, integers, floating-point values, and other objects.

@interface TAController:NSObject

{
id tableView;

NSMutableDictionary *countryDict;

Notes on the code: In this example, the instance variable tableView derives from an outlet specified in
Interface Builder. It is written to the header file when template files are generated. The instance variable
countryDict has been added to identify an instance of the Foundation class NSMutableDictionary.
Explicit typing is recommended.

132

Chapter 6

Subclassing

133

Implementing Accessor Methods

Accessor methods retrieve and set the values of instance variables. They
provide the encapsulation of an object’s data, which only the object itself (and
usually instances of subclasses) can directly access. Accessor methods mediate
access to instance variables, allowing client objects to get and set values through
an object’s interface—that is, by sending messages.

Accessor methods that 7ezieve the value of an instance variable by convention
take the same name as the instance variable. They usually have a single
statement that returns the value of the instance variable. Methods that sez the
value of an instance variable by convention take the name of the instance
variable (first letter capitalized) prefixed with “set.” Set methods often test
passed-in values for validity before assigning them.

- (NSString *)name
{

return name;

}

- (void)setName:(NSString *)str
{

[name autorelease];
name = [str copy];

}

Notes on the code: The name method retrieves the value of the instance variable name; it simply returns
the value. The setName: method sets the value of the instance variable name. Because name is an
object, it releases the instance variable before assigning it the new value. Again because name is an
object, the new value is copied to make sure that it remains valid.

Your class might not need to implement accessor methods if it has no need for
client objects to set or retrieve the values of its objects’ instance variables.

Implementing a subclass of NSObject

Defining Target/Action Behavior

When you defined your class in Interface Builder, you specified certain methods
(actions) that NSControl objects in the interface invoke in your object (the zazsger)
when an certain user event occurs. In implementing your class, you must specify
the behavior of these methods. The sole argument of action methods is sender,

the object sending the message.

- (void)handleTVClick:(id)sender

{
Country *newerRec;
int index = [sender selectedRow] ;
if (index >= 0 && index < [countryKeys count]) {
newerRec = [countryDict objectForKey:[countryKeys
objectAtindex:index]];
[self populateFields:newerRec];
[commentsLabel setStringValue:[NSString stringWithFormat:
@"Notes and ltinerary for %@",
[countryField stringValue]]];
recordNeedsSaving=NO;
[tableView tile];
}
return;
}

Notes on the code: This method updates other fields in a window with information from an NSDictionary
when the user selects a row in a table view. It uses sender, which identifies the NSControl object sending
the message, to find out which key to use when retrieving the information from the NSDictionary.

handleTVClick: is an abbreviated
version of a method you
implemented if you worked
through the Travel Advisor
tutorial in Discovering
OPENSTEP Programming.

134

Chapter 6

Subclassing

For more on designated
initializers, see the description of
the init method in the NSObject
class specification in the
Foundation Framework Reference
or see Object-Oriented
Programming and the Objective-C
Language.

135

Defining Initialization and Deallocation Behavior

The NSObject class defines methods that subclasses must override to initialize their
instances and to deallocate them. These methods are invoked at the start and end of
an object’s life. Initialization sets the initial values of instance variables and
dynamically allocates and initializes variables. Deallocation frees the memory
allocated to these variables.

Subclasses of NSObject almost always need to override init and dealloc. (An
exception is a subclass that has no instance variables; in this case, it can rely on
NSObject’s implementation of init, which simply returns self.) You can define
other initialization methods for your class that take arguments and perform more
specialized initializations. However, a subclass of NSObject must always
implement init, even if init only invokes one of these specialized initializers,
passing in a default value.

Designated Initializer One of a subclass’s initialization methods must be the
designated initializer. The designated initializer invokes its superclass’s
designated initializer (in NSObject’s case, init), performs most of the work, and
returns self. The other initialization methods in a class eventually end up
invoking the designated initializer.

Invoking super's Initializer Since an object’s full complement of attributes includes
those instance variables declared and initialized by superclasses, initialization
should cascade down the inheritance chain, starting with the NSObject class.
This means that initialization should almost always 4egiz with the invocation of
the superclass’s designated initializer. For the same reason, deallocation should
almost always ez by invoking the superclass’s dealloc method, after deallocating
its own dynamically allocated instance variables. If your dealloc method invokes
super’s dealloc first, the object will be deallocated before it has had a chance to
free its own allocated storage.

Implementing a subclass of NSObject

Remember, if you create an
object (such as a instance of
NSString) in your initialization
code or elsewhere, you are
responsible for its deallocation
(with autorelease or release). If
you create an object in an
initialization method, the proper

place for releasing it is in dealloc.

See “Creating and Deallocating
Different Types of Objects” in
this chapter for some
background. For complete
details, read the introduction to
the Foundation Framework
Reference.

- (id)init
{

[super init];

name=@"";
airports=@"";
airlines=@"";
transportation=@"";
hotels=@"";
languages=@"";
currencyName=@"";
comments=@"";

return self;

- (void)dealloc

{
[name release];
[airports release];
[airlines release];
[transportation release];
[hotels release];
[languages release];
[currencyName release];
[comments release];

[super dealloc];

Notes on the code: This example shows the init method (which is also the designated initializer in this
case) starting off by sending init to super to have its superclass (NSObject) complete its initializations
first. It then sets the object’s instance variables to initial values (empty strings here) and returns self. Until
it returns self, the object is in an unusable state. The dealloc method mirrors the init method. It releases
all dynamically allocated instance variables. The release method decrements an object's reference
count and, ifthe count afterwards is zero, dealloc is invoked and the object is deallocated. It then invokes
super's dealloc method to have the superclass deallocate its own instance variables.

136

Chapter 6

Subclassing

137

Defining How Objects Are Copied

If you expect that objects of your class will be copied, adopt the NSCopying protocol;
if your class can create mutable versions of an object, also adopt the
NSMutableCopying protocol.

@interface MyClass : NSObject <NSCopying, NSMutableCopying>

Next implement the protocol methods, copyWithZone: and mutableCopyWithZone:.
These are simple implementations of these methods:

- (id)copyWithZone:(NSZone *)zone {
return [[MyClass allocWithZone:zone] init];

}

- (idymutableCopyWithZone:(NSZone *)zone {
return [[MyMutableClass allocWithZone:zone] init];

}

Defining How Objects are Compared

A problem similar to copying objects is comparing objects. NSObject’s default
behavior, in the isEqual: method, is to compare the identifiers of objects (their
ids). If the ids of the receiving and argument objects are equal, the objects are
considered equal. You might find this behavior acceptable for instances of your
class, but if you don't, override isEqual:.

Suppose you have a class named Color, and this class has one instance variable,
an integer which holds an industry-accepted identifier of a color. What is
important in demonstrating equality of objects in this case is not the equality of
ids, but of the values of their color instance variables.

Implementing a subclass of NSObject

Implementing Archiving and Unarchiving

When an object of your class has been around for awhile, responding to events
and to messages from other objects, its state—the values of its instance
variables—is likely to change. “Off” might change to “on,” true to false, red to
green. When the user quits the application owning your object, you want to save
the important parts of that object’s state and then restore them the next time the
application runs. This is called archiving.

The mechanism for archiving and unarchiving objects is implemented using the
classes NSCoder, NSArchiver, and NSUnarchiver and the protocol NSCoding.
It encodes an application’s object in a way that enhances their persistency and
distributability. The repository of this encoded object information can be a file
or an NSData object. You should archive any instance variables or other data
critical to an object’s state.

When a class adopts the NSCoding protocol, it receives a message requesting
that it encode itself and a message asking that it decode and initialize itself. You
implement two NSCoding methods to intercept these messages:
encodeWithCoder: and initWithCoder:.

Both encodeWithCoder: and initWithCoder: should begin by invoking the
corresponding superclass method so that the superclass archives or unarchives
its instance variables first. (If the class inherits directly from NSObject or any
other class that does not adopt NSCoding, however, these methods should not
invoke the superclass method.) The invocation of super’s initWithCoder: returns the
partially initialized object (self). End initWithCoder: by returning self.

NSArchiver and NSUnarchiver provide methods that write data to and read data
from the archive. Among these are encodeObject:, encodeValues0fObjCTypes:,
decodeObject;, and decodeValues0f0ObjCTypes:. You send the message encodeRootObject:
or archiveRootObject:toFile: to the NSArchiver class to invoke an encodeWithCoder:
method. To invoke an initWithCeder: method, you send the message
unarchiveObjectWithFile: or decodeObject to the NSUnarchiver class. You never
invoke encodeWithCoder: Or initWithCoder: directly.

138

Chapter 6 Subclassing

- (void)encodeWithCoder:(NSCoder *)coder
{
[coder encodeObject:name];
[coder encodeObject:transportation];
[coder encodeObject:hotels];
[coder encodeObject:languages];
[coder encodeValueOfObjCType:"s" at:&englishSpoken];
[coder encodeObject:currencyName];
[coder encodeValueOfObjCType:"f" at:¤cyRate];
return;

}

- (id)initWithCoder:(NSCoder *)coder
{
name = [[coder decodeObiject] copy];
transportation = [[coder decodeObiject] copy];
hotels = [[coder decodeObject] copy];
languages = [[coder decodeObject] copy];
[coder decodeValueOfObjCType:"s" at:&englishSpoken];
currencyName = [[coder decodeObject] copy];
[coder decodeValueOfObjCType:"f" at:¤cyRate];
return self;

Notes on the code: NSCoder defines matching sets of methods for encoding and decoding objects of
different types. In this example, several objects are encoded using the encodeObject: method and
decoded using the decodeObject: method. One Boolean and one float variable are encoded and decoded
using encodeValue0fObjCType: and decodeValue0f0bjCType:, respectively. Note that the data, by type,
must be decoded in the same sequence as it was encoded. The superclass method is not invoked
because the class inherits directly from NSObject, which does not conform to NSCoding.

You don’t need to archive every instance variable of your class. Some of these
values you can re-create from scratch and others are transitory and hence
unimportant (such as a seconds variable used for timing the period since a
certain event). Application Kit objects configured in Interface Builder are
automatically unarchived from their nib file, but only as you originally initialized
them. If you want to retain some changed attribute of these objects, you should
archive the attribute and then initialize the object with the unarchived attribute
in the awakeFromNib method. (An awakeFromNib message is sent to each of the
objects unarchived from a nib file after all of the objects in the nib file have been
unarchived and all of the outlets are set.)

139

Implementing a subclass of NSObject

- (void)awakeFromNib

{
[countryField selectText:self];
[commentsField setDelegate:self];
[currencyRateField setDelegate:self];
}

Notes on the code: In this implementation of awakeFromNib, the object must communicate with fields
onits interface through the outlets countryField, commentsField, and currencyField. It places the cursor
inside countryField and makes itself the delegate of the fields commentsField and currencyRateField.
These initializations are done here and not in init because the connection between the objects must be

unarchived from the nib file first.

Defining Special Behavior

The final step in implementing a subclass of NSObject is writing the methods
that are special to your class, those methods that give it its distinctive behavior.
This step is all up to you. If you want examples that you can use as models, look

in (SNEXTROOT)/NextDeveloper/Examples.

Other NSObject Methods You Could Override

There are several other NSObject methods
that you might want to implement:

description Implement this method to
return a descriptive debugging message as
an NSString object. When you're debugging,
gdb displays your message whenyou use the
po command.

awakeAfterUsingCoder: Implement this
method to re-initialize the object, providing it
one last chance to propose another objectin
its place.

replacementObjectForCoder: Implement
this method to substitute another object for
your object during encoding.

initialize Implement this class method if
you want to initialize your class before it
receives its first message. This is a good
place to set the version of your class
(setVersion:).

forwardInvocation: Implementthis method
if you want to forward messages with
unrecognized selectors to another object
that can handle the message.

140

Chapter 6

Subclassing

The Structure of Header Files and Implementation Files

#import <AppKit/AppKit.h>

@interface TAController:NSObject

{

id tableView;

BOOL recordNeedsSaving;
}

/* target/action */

- (void)addRecord:(id)sender;

- (void)deleteRecord:(id)sender;
/* housekeeping methods */

- (id)init;

- (void)awakeFromNib;

- (void)dealloc;

@end

141

#import "TAController.h"
@implementation TAController
- (void)addRecord:(id)sender

{

/* some code here */

return;

}

- (id)init

{
/* some code here */
return self;

}

...

@end

Header File

* Begin by importing header files
for declaration types (#import).

¢ @interface begins class interface
declaration. Class name precedes
superclass, separated by a colon.

¢ Putthe declarations of instance
variables within curly braces.

 After right curly brace declare
your methods.

¢ Action methods take the argument
sender.

¢ End class interface declaration
with @end.

Implementation File

* Begin by importing relevant
header files, especially the class
header file.

* @implementation followed by
class name begins implementation
section.

* Implement all methods.

* End implementation section
with @end.

Making your class a delegate

Making your dass a delegate

Connect your instance to an
object that has delegates.

Select the delegate outlet in the
Connections inspector.

Click Connect.

Implement the delegate methods.

Messages to delegates
sometimes notify them of
impending or just-transpired
events, and sometimes request
them to complete some work.
Major classes with delegate
methods are NSApplication,
NSWindow, NSText, and
NSBrowser. See the Application
Kit Reference for details on
delegate methods.

Several OpenStep classes allow you to register an object as their delegate. As
certain events occur, the objects send messages to their delegates, giving them
the opportunity to participate in processing. In Interface Builder, you can easily
designate your class’s instance as a delegate.

O T alsilyiiseo mli = leranilsmain l s iufr =1 H
.' L]
] 1 —
8 0o B oobe 0gw hly " —— Make a connection from an object of
the class with delegate methods to the
q 1 instance of your class
(=11 [T Tirmidrhor TA.Canim

The delegate outlet is in
the first column of the
connections display.

Click to make the connection.

Next, implement the delegate methods you want your class to respond to. In
this example, the object acting as delegate archives itself before the application
terminates.

- (void)applicationWillTerminate:(NSNotification *)note

{
[NSArchiver archiveRootObject:self toFile:@"TravelData'"[;

Tip: You can programmatically set an object’s delegate by sending it the
setDelegate: method.

142

Chapter 6 Subclassing

Implementing a subdass of NSView

1 Identify the class and its outlets Making a subclass of the NSView class is a procedure that differs from making

and actions. a subclass of the NSObiject class. But it starts out the same. In the Classes

2 Place and resize an object from displfely of Interfac_e Builder, chopse_Supclass fr.om the Operations menu while
the Views palette on a window NSView or one of its subclasses is highlighted in the browser. Then name your
or panel. class and add outlets and actions.

3 Assign your class as the class of
the object.

4 Connect the instance to other
objects in the interface.

5 Generate code files. popupLisEkon

rhil Yy
ned Ky Gihuesy
neA K ey ey

6 Complete programming tasks
necessary for any object.

7 Complete programming tasks
specific to NSView objects:

> Initialize an NSView object Making an Instance of an NSView Subclass
> Draw an NSView object. Place an instance of your class on your interface. If you’re subclassing an
> lf necessary, handle events. NSView subclass (such as NSButton or NSTextField), drag the object that

represents that class (that is, the button or the text field) from the palette
window into your interface’s the window. If you’re subclassing NSView directly,
use the CustomView object on the Views palette.

| Drag the object whose class you
want to directly subclass
(NSScrollView here) from the
palette...

\ ...and drop it on a window or panel

of your interface.

143

Implementing a subclass of NSView

Position and resize the object, and while it’s still selected, bring up the Custom
Class display of the Inspector panel by typing Command/Control-5. Assign a
class name to the object; this creates an instance of your NSView subclass.

TileScrollView Inspector

= Choose Custom Class here or type Command-5.

Class
TileScrollView

Click your class name to assign it to the
object. This step creates an instance of
your class in Interface Builder.

Tip: Make sure you choose the appropriate superclass. If you subclass an NSView
subclass, rather than subclassing NSView directly, you can still set the that class’s
attributes for your object using the Inspector panel’s Attributes display. If you
subclass NSView directly, you lose the ability to set attributes using the
Inspector panel.

144

Chapter 6

Subclassing

145

The next three steps that you must complete are the same tasks that follow the
instantiation of NSObject subclasses:

m Connect the instance to other objects in the interface (“Connecting your
class’s outlets” and “Connecting your class’s actions’). But now the instance
appears as part of the interface, and not as an icon in the Instances display of
the nib file window.

m Generate code files and have them inserted in your project (“Generating
source code files™).

m Switch over to the project in Project Builder that contains the nib file, and
open your class’s code files.

Since NSView inherits from NSObject, next complete some of the same
programming tasks recommended for subclasses of NSObject:

Declaring new instance variables
Implementing accessor methods
Implementing target/action methods
Archiving and unarchiving

To create a functional subclass of NSView, you must complete two additional
steps (and might want to complete another), which are described on the
following pages.

Implementing a subclass of NSView

The NSView class offers your
subclass a wealth of inherent
functionality. It includes
methods for managing the view
hierarchy, for converting
coordinates and modifying the
coordinate system, for managing
cursors and events, and for
focusing, clipping, scrolling,
dragging, and printing. See the
description of the NSView class
in the Application Kit Reference.

Initializing NSView Objects

Subclasses of NSView override initWithFrame: instead of init. In initWithFrame:
(NSView’s designated initializer) you initialize a just-allocated instance of your
class, setting its attributes to an initial state. The method’s sole argument is the
rectangle in which drawing is to occur (usually the frame of the view).

In this example, initWithFrame: initializes instance variables of varying types and
performs other housekeeping chores.

- (id)initWithFrame:(NSRect)frameRect {

[super initWithFrame:frameRect];

glist = [[NSMutableArray allocWithZone:[self zone]]
init];

slist = [[NSMutableArray allocWithZone:[self zone]]
init];

cachelmage = [self createCacheWithSize:[self bounds].size];

[self cache:[self bounds] andUpdateLinks:NO];

gvFlags.grid = 10;

gvFlags.gridDisabled = 1;

[self allocateGState];

gridGray = DEFAULT_GRID_GRAY;

PSinit();

currentGraphic = [Rectangle class]; /* default graphic */

[* trick to allow NSApp to control currentGraphic */

currentGraphic = [self currentGraphic];

editView = [self createEditView];

[[self class] initClassVars];

[self registerForDragging];

spellDocTag = 0;

return self;

Notes on the code: The implementation of an initWithFrame: method begins by invoking super's
initWithFrame: method, ends by returning self, and in between sets the instance variables to initial
values. Often the attributes set have a visual aspect, and affect how the view is drawn.

As with NSObject subclasses, you might have to implement the dealloc method
to deallocate dynamically allocated storage.

146

Chapter 6

Subclassing

The PostScript functions and
operators available for use are
described in DPSClientl ibrary
Reference.

pswrap isaprogram that createsa
C function to correspond to a
sequence of PostScript code.
Note that your custom pswrap
code (extension .psw) must go in
Project Builder under Other
Sources. pswrap is described in
detail in Adobe Systems’ pswrap
Reference Manual.

147

Drawing NSView Objects

An NSView object draws itself with the drawRect: method. To invoke drawRect:,
another object must send display to the NSView object. The drawRect: method is
also invoked automatically when windows are resized and exposed, when
NSViews are scrolled, and when similar events happen.The NSRect argument
passed to drawRect: indicates how much of the NSView needs to be drawn.

- (void)drawRect:(NSRect)rect
{

int grid,;

float gray;

grid = [spacing intValue];

grid = MAX(grid, 0.0);

PSsetgray(NSWhite);

NSRectFill(rect);

if (grid >= 4) {
gray = [grayField floatValue];
gray = MIN(gray, 1.0);
gray = MAX(gray, 0.0);
PSsetgray(gray);
PSsetlinewidth(0.0);
[self drawGrid:grid];

}

PSsetgray(NSBlack);

NSFrameRect([self bounds]);

Notes on the code: The example above shows drawRect.. This example fills in the view with a white
background, draws a grid using a user-selectable gray value, then uses NSFrameRect() to draw a black
border around the view.

In implementing drawRect:, write whatever code helps to draw your NSView. You
can call pswrap-generated functions to send PostScript code to the Window
Server. You can send messages to bitmap objects, requesting them to composite
source images stored in off-screen windows. You can change font styles and text
colors. If your NSView uses an NSCell to do any of its drawing, you can send
drawWithFrame:inView: Or drawlInteriorWithFrame:inView: to the NSCell within
drawRect:.

Implementing a subclass of NSView

The NSEvent class is described
in the Application Kit Reference.

The drawRect: method defines an NSView’s static appearance on the screen. Your
subclass can also add other methods for dynamic drawing in response to user
events. In these methods you might highlight the NSView, drag it from one
place to another, or animate it. The Application Kit locks focus automatically
when drawRect: is invoked. In dynamic-drawing contexts you must lock and
unlock focus yourself when drawing.

If you want your view to respond to mouse clicks, key presses, or other user
events, you must do at least two things:

= Re-implement NSView’s acceptsFirstResponder method to return YES.

= Decide which event types you want to respond to and implement the
appropriate methods: mouseUp:, mouseDown:, keyDown:, mouseEntered:, and so on.

The event methods are defined in the NSResponder class, where the default
implementation is to forward the event message to the next responder.

When it invokes an event method, the input system passes in an NSEvent
object. This object holds details related to the event: the type of event, the
mouse’s location (in the window’s base coordinates), the window number, atime
value associated with the event, flags indicating modifier keys and mouse
buttons, and supplementary data.

You can find or derive much of the information required for handling an event
in the NSEvent parameter. For instance, you can convert the NSEvent mouse
location to your NSView’s base coordinate system with convertPointfromView:. You
can check for modifier keys or mouse buttons using the keyboard-state flags
masks.

The following example illustrates several of these techniques.

148

Chapter 6 Subclassing

- (void)ymouseDown:(NSEvent *)event
{

NSPoint p, start;

int grid, gridCount;

start = [event locationinWindow];

start = [self convertPoint:start fromView:nil];
grid = MAX([spacing intValue], 1.0);
gridCount = (int)MAX(start.x, start.y) / grid;
gridCount = MAX(gridCount, 1.0);

event = [[self window] nextEventMatchingMask:
NSLeftMouseDraggedMask|NSLeftMouseUpMask];
while ([event type] != NSLeftMouseUp) {
p = [event locationInWindow];
p = [self convertPoint:p fromView:nil];
grid = (int)MAX(p.X, p.y) / gridCount;
grid = MAX(grid, 1.0);
if (grid != [spacing intValue]) {
[form abortEditing];
[spacing setIntValue:grid];
[self display];
}
event = [[self window] nextEventMatchingMask:
NSLeftMouseDraggedMask|NSLeftMouseUpMask];

Tip: If you want your NSView to handle target/action messages sent to the First
Responder (for example, copy and paste), be sure to override
acceptsFirstResponder to return YES, and then implement the appropriate
methods (copy: and paste:).

149

Implementing a subclass of NSView

Creating and Deallocating Different Types of Objects

As you create objects, you need to make sure that they are going
to be deallocated eventually, and you also need to make this
doesn’t happen until you don‘t need the object anymore. You do
this by sending messages that increment and decrement the
object’s reference count, a count of how many objects refer to it.
When and how you should do this depends on when and how you
create the object.

The Autorelease Pool

OpenStep uses an autorelease pool to automatically deallocate
objects. When you send an autorelease message to an object, it
adds the object to the autorelease pool. At the top of the event
loop, the pool sends every object in it the release message.
release decrements the reference count. If the reference count
becomes 0, it deallocates the object (by sending dealloc).

Application projects automatically have an autorelease pool, just
as they automatically have an event loop. If you're working on a
non-Application project, you can create an autorelease pool by
creating an instance of the Foundation NSAutoreleasePool class.
(See its specification in the Foundation Framework Reference.)

Temporary Objects

If you create an object inside a method and you want that object
to go away after the method has finished executing, use a
+classname method (so called because their names begin with
the name of the class minus the NS prefix) to create the object.
These methods allocate the object (which increments the
reference count), initialize it, and send it an autorelease message
so that it is deallocated at the top of the event loop. For example,
this NSNumber object will exist only for one event cycle:

NSNumber *intObject = [NSNumber
numberWithInt:anint];

The methods alloc, copy, and mutableCopy increment an object's
reference count, so if you use one of these to create a temporary
object, be sure to send that same object an autorelease message.

Instance Variables

Objects that are instance variables should be created when an
object is initialized and not go away until that object is
deallocated. If you use a +classname method to create an
instance variable, it will be deallocated at the top of the event
loop. To prevent this, send retain to the object immediately after
you create it. retain increments the reference count. Another way
to make sure that an instance variable is not deallocated is to use
the alloc method directly (or copy or mutableCopy) to create it.

No matter which method you use to create the instance variable,
send it a release message in your object’s dealloc method to
indicate that you're done with it.

Sometimes you have two objects with instance variables that
refer to each other. In this case, only one of the objects should
retain the other. For example, an NSView object has a superview
and one or more subviews, each pointing to other NSView
objects. If an NSView object retained both its superview and its
subviews, no NSView would ever be deallocated. The superview
won't release its subview instance variables until it is
deallocated, and it can’t be deallocated because the subviews
don't release the superview until they are deallocated. For this
reason, NSView objects retain their subviews, but not their
superviews.

As a rule of thumb, if your application has a similar object
hierarchy, the “parent” object should retain its “children,” but the
children should not retain their parents.

Custom Objects Created in Interface Builder

If you create a custom object that does not inherit from NSView
or NSWindow in Interface Builder, send it a release message in
your object’s dealloc method. Custom objects have a retain count
of 1 when they’re unarchived from the nib file.

NSView Objects Created in Interface Builder

Views created in Interface Builder are retained and released
automatically. Superviews retain all subviews as they are added
to the hierarchy and release them as they are removed. If you
swap views in and out of the hierarchy or move views from one
window to another, you should retain the views that are notin the
hierarchy (and release them either after you add them to the
hierarchy or in dealloc).

NSWindow Objects Created in Interface Builder

Windows created in Interface Builder are not released until the
user quits the application. If you want a window to be released
when the user closes it, set the “Release when closed” attribute
in Interface Builder.

For more on this topic, see the introduction to the Foundation
Framework Reference.

150

Chapter 6

Subclassing

Adding existing classes to your nib file

Drag the header file from the File
Viewer/Desktop, File Manager,
or Project Builder into the nib file
window.

Or

Copy a class in one nib file and
paste it in another.

If you are going to write a header
file and then drag the file into
Interface Builder, follow the
conventions for header files
described in “The Structure of
Header Files and
Implementation Files,” in this
chapter.

151

The easiest way to add a class to your nib file is to drag the header file for an
existing custom class from the Workspace Manager’s File Viewer/Desktop or
File Manager or from Project Builder’s main window into Interface Builder.

4 Select a header file in Project
Builder, drag its icon over
Interface Builder’s nib file
window, and drop it.

B Traveifabaizns iinrredosirevaPrmogpamning

S EEo|o

Curingh 1
TACanimglieih 1

The new class appears in the Classes display under its subclass and with its
outlets and actions defined. After adding the class, you must still connect it to
other objects through its outlets and actions. To do this, complete these steps:

m Make an instance of the class (for NSView subclasses, that means assigning
your class to a view object).

m Connect the instance’s outlets and actions to other objects in the nib file.

Adding existing classes to your nib file

Creating Classes in Project Builder

Instead of defining a class in Interface Builder and using Create Files to create
the source code, you can create the source code in Project Builder first and add
the class to Interface Builder later. To create a class in Project Builder, use the
File p New in Project command to create template source code files, write your
code, then drag the header file into the nib file window. When you create a class
in this manner, any method you’ve defined that takes a single argument named
sender and that returns id or veid is considered an action. Any instance variable
that is type id or has the IBOutlet keyword prefixed to its declaration is an outlet.

#import <AppKit/AppKit.h>

#define IBOutlet /*Needed to avoid compiler errors. */

@interface TAController:NSObject

{
IBOutlet NSTableView *tableView;

idcommentsLabel;

NSMutableDictionary *countryDict;

}
[* target/action */

- (void)addRecord:(NSButton *)sender;
- (void)convertCelsius:(id)sender;

/* Data read and write methods */
- (void)populateFields:(Country *)aRec;

@end

/*an outlet*/
/*another outlet*/

/*notan outlet. */

/* an action */
/* another action */

/* not an action */

152

Chapter 6 Subclassing

Copying Classes Between Nib Flles

You can copy class definitions between nib files, in the same or different
projects, by copying a class in one nib file and pasting it into another nib file.

Select the class to be copied and
choose the Copy command from the
Edit menu.

Select the superclass in the
destination nib file. Then choose the
Paste command from the Edit menu.

A duplicate of the original class appears in the Classes display of the destination
nib file. Generate an instance of the class in the destination nib file and connect
it to other objects in the nib file through its outlets and actions.

153

Updating a class definition

Updating a dass definition

» Choose the Read File command
and select a header file in the

Open panel/dialog.

If you later add outlets and actions to the header file, or delete them from it,
Interface Builder allows you to update the nib file with this new information.

E Traveladvisor.nib — ...elAdvisor/English.Iproj

Classes

T =3 =

o SoundView 4@ 12@
o MEWindow Z2@ 106
o MEPanel 2@ 106
£ MShenu 2@ 108
o NSTahleColungs fm} & In the Classes display, select the class
o Sound 1@ 5@ to be updated.

o TACaontroller

L Subiclass H

Instantiate

Ediit Class

Fiead File —
Create Files

Choose the Read File command.

Interface Builder brings up an Open panel/dialog for you to confirm (or select)
the class definition to update.

jﬁj REIEE

Programming TravelAdvisor

urrencyConverte -
DocsGalore I
Frameworks I-
SwapContentYiew
TaskExample I
Timehkdachine I-
AI ToDo -
llTraveIAduisor [

<>

The header file of the class selected in
the Classes display is highlighted. If you
did not select a class in the Classes
display, select one now or type its name.

Travel&dvisorapp -

Mame |TACOntr0IIer.h

ﬁl Ell @ Cancel | oK :I——- Click to have the new information
1 1

parsed into the nib file.

If there are any new outlets and actions, remember to connect these outlets and
actions to other objects in the nib file.

Tip: You can also use the Read File command to add an existing class to a nib file,
or you create a header file in Project Builder using the New in Project command
and read it into a nib file using this command.

154

Moving, copying, deleting, and
replacing code

Checking delimiters

Indenting code

Navigating within code files
Navigating between code files

Using name completion in
editing

Displaying multiple views of
code

Undoing and redoing changes

Formatting and inserting
graphics in RTF text

Editing Code

Then, arising with Aurora’s light,

The Muse invoked, sit down to write;
Blot out, correct, insert, refine,
Enlarge, diminish, interline.

On Poetry
Jonathan Swift

I write until beer o’clock.

Stephen King

156

Chapter 7 Editing Code

Moving, copying, deleting, and replacing code

1 Select the code to be copied or As you can in other OpenStep applications, you can use the Copy, Move, and
moved. Paste commands to delete, move, copy, and replace code.

2 Choose the appropriate
command from the Edit menu:

H

- {void)calendarMatrix: (CalendarMatrix *)matrix didChangeToDate:(N3Date *)date

Co,)
> Py i Tl [[[MS4pp delegate] i tor] delegste] —— Drag horizontally or
id inspController = pp delegate] inspector] delegate]” .
0/’ A8 [[itemMatrix window] makeFirstResponder:[itemMatrix window]]; d/a[?onallylacrqss
» Cut [self saveDocItems]: code to select it.

To select a single

ff use date as key to get currentltems array line triple—click it

[self setCurrentltems:[activeDavs objectForkey:[date description]]]:

[davlabel setStringValue:[date descriptionWithCalendarFormst @"To Do on ¥a X8 &d &Y
timeZone: [M3TimeZone defaultTimefone] locale:nil]]:

if {inspContraoller) [inspController setCurrentItem:nil]

[self updateMatrix]:

3 Insertthe cursor where you want
the code to go.

4 Choose Paste from the Edit menu.

}

- {void)calendarMatrix: (CalendarMatrix *)matrix didChangeToMonth: {short)mo wear: (short)yr
I

id inspController = [[[NSApp delegate] inspector] delegate];
\?lf savelocItens]:

.

= X} 3 i1a
AN 1

\

The cursor marks the point where
pasted code is inserted.

When you choose the Copy or Cut commands, the selected code goes into a £/
buffer. The Paste command puts the contents of this buffer into the stream of
characters at the location marked by the cursor. You can issue multiple Paste
commands to copy the same contents multiple times. Of course, if you only
want to delete code, don't follow the Cut command with Paste.

Several techniques can help you move and copy code:

= Ifthe “Indent pasted lines” option is checked in the Indentation preferences,
pasted code will be automatically indented.

You can use the delimiter-

checking feature as a shortcut for = To replace code rather than inserting it, select the destination code before

selecting messages or blocks of pasting the new code in place of it.

code prior to copying, moving, or) o]

replacing them. See “Checking m To delete code without copying it to the kill buffer, select the code and then
delimiters” on page 158. press the Delete key.

Several Emacs commands also
allow you to copy, cut, and paste
code. See “Emacs Key Bindings”
on page 162 for details.

157

Checking delimiters

Checking delimiters

» Double-click a brace to highlight One common source of compiler errors is mismatched code delimiters: braces
the block it delimits. for blocks of code, brackets for message expressions, and parentheses for C
> Double-clickasquare bracketto expressions and function arguments. Project Builder’s code editor allows you to

highlight the message it delimits. 001 \which delimiters match just by double-clicking.

» Double-click a parenthesis to
highlight the function arguments
or C expression delimited.

if {[self activelays])

You can double-click either the starting delimiter
or the ending delimiter to highlight code.

Put the cursor as close as possible over the delimiter

}

[cell release];
zelectedDay = [

refurn self;

This is a good way to check for nested messages.

In addition to checking for missing or extra delimiters, you can use this

You can also enable your right technique for selecting the code in between (and including) the delimiters.

mouse button so that when you

click anywhere in a type or . T . . .
message expression, that type o If a matching delimiter is missing, the code editor displays the error in the status

message is selected and zien the area in its upper-right corner. Project Builder also checks for delimiters as you

Project Find panel performs a type code. When you type a delimiter of any type, the cursor briefly jumps to
definition lookup. See <<x- the opposite delimiter. If the opposite delimiter is out of view, the line it’s on
ref?>> for more on this feature. appears in the status area.

158

Chapter 7

Editing Code

Indenting code

To customize automatic code
indentation, choose Preferences
from the Info menu and select
the desired Indentation
preferences.

To indent a line of code, click
anywhere in the line and choose
Edit » Indentation»- Indent.

To force indentation left or right,
select code and then chose Shift
Left or Shift Right from the
Indentation menu.

To format messages with many
arguments, choose Expand
Message Expression from the
Indentation menu.

159

One of the more tedious tasks programmers must do is indenting code: aligning
statements and blocks of code with the same scope on the same tab stop. Project
Builder alleviates much of this tedium by providing options for both automatic

and manual indentation.

In the Indentation preferences display, you can tell the code editor when to
indent each line of code based on the final character of the previous line. You can
also specify how many spaces lines should be indented, based on certain

conditions.

Preferences

Indentation .ll

Auto-Indent Characters
| Mewline v|calan | Semi-zalon
_|Mumbersign »|Leftbrace |Right brace

Spaces to Indent

Perleve|:|_4 Ca\(statement:l_z

Sololeftbrace| 2 Wrappedlines:l 4

Auto-Insert matching right brace
A|l¥ Indent pasted lines
¥ ¥ Indlent 7 comments

Preview.. |
AN

Select the characters after which the
following line is indented.

"Per level" is the default indentation spacing ; the
other fields define spacing for special cases.

In this browser you can request
indentation on certain conditions

L Click Preview to see how the indentation

Indentation Example

- {void) foo
i
if (x)

[self doThis: 1
andThat: 2];

you've requested would look.

Tip: The Key Bindings preference display has options related to using the Tab
key for indentation: “Indent only at beginning of line” and “Indent always.”
Use the second option if you want to use Tab to indent a line when the cursor is

anywhere in that line.

For both single lines and ranges of lines, you can you can issue commands to
indent according to the indentation characteristics specified in Preferences; or
you can give commands to force a certain indentation.

¥
if {[doc iskKindOfClass:[ToDoboc class]]h o
result = NSRundlertPanel{@"To Do", @"Save M@7". @"Sawe".
@"Don’t Save", @"Cancel”, [[M3App keyWindow] representedFilename]);
switchiresult) {
case NSAlerkDefaultReturn:

When indenting single
lines of code, you can
Insert the cursor
if ([doc isKindDfClass: [ToboDoc class]]) { anywhere.

result = NSRunAlertPanel{@"To Do", @"Save X@?", @"SJawe".

@"bon’t Sawve”, @"Cancel”, [[NSApp keyWindow] representedFilename]): Choose I,ndent from the
switch{result) { Indentation menu to

case NShlerkDefaultReturn: indent the line according
to preferences

Select multiple lines of code
to indent them as a group.

lines force-indented right
after Shift Right is chosen
- {woidjdealloc twice from the Indentation

menu.

Messages with multiple arguments can be hard to read. Project Builder gives
you a command on the Indentation menu with which to format them.

/¢ compose date

selDate = expression, preferably

one with many

3 Select a message
: arguments.

/7 conpose date - When you choose the
selbate = Expand Message
Expression command, the
message is formatted so
arguments are aligned.

To return a formatted message expression to an unformatted message
expression (in other words, reverse the sequence in the above example), select
the expression and choose Edit » Indentation » Compress White space.

160

Chapter 7

Editing Code

Navigating within code files

» Go directly to methods and
functions by selecting their
names in the project browser.

» Enter a line number in the Line
Range panel to go that line.

You can use Emacs key bindings
to move around in code without

ever touching the mouse. See

“Emacs Key Bindings” on page

162 for a list of enabled Emacs
commands.

The incremental-search feature

(Emacs binding Control-s) is a

powerful code-navigation tool for
locating text strings within afile.
You can also use the Find panel

and especially the Project Find
panel to find (and replace)
specific definitions, reference,

and text strings. See the chapter
“Finding Information” for details

on all of these search features.

161

You can, of course, go from one place in a source-code file to another place in the
same file by scrolling the code editor. Although this mode of navigation is
sometimes inescapable, you have other navigation techniques at your disposal.

You can set the sort order
of names in the browser
as a preference.

Italicized names indicate class
interface declarations. Other type
declarations are unitalicized.

W
AlalEe] i

ToDoController.m

> -updatetdatrix
I -itemChecked:
P -initiithFile:
= -awakeFromMib
I -activateDoc
P -dealloc
= -itemMhdatrix
-markhatrix
ﬂ—activeDays

Calendarhdatrix.m
SelectionMotifidatri

X% U Y YUY Yy

FRERERERRRoilr STARTUR AND SHUTDOWN #hkiokiorioriorHag ey Ra_nge

Hange:l 64
NSErumerator *dayenum;

NSDate *itembate; %utu-update Select ¢ |
[super init]; \

VA AN 1

initWithFile: (N35tring *)aFile

Check this to have the line number
in the panel automatically updated
as you move from line to line.

Display this panel by choosing
Edit mfind mLine Number.

Methods, functions, and types appear in the project browser only if the project
has been indexed. In the Indexing preferences, you can specify how items in
the browser should be sorted: by position in the file, by symbol name (that is,
alphabetically), or by symbol name within type.

As its name suggests, you can use the Line Range panel not only to navigate to
specific line numbers, but to select ranges of text by specifying colon-separated
line numbers. The panel is also a useful tool for learning the current line
number. One place where this might be useful is gdb (run from the command
line) where you can set breakpoints within methods by fi/e:/ine number.

Tip: You can “visit” a line of code and return directly to your original location with
a couple of Emacs commands. First set a mark by pressing Escape, then the
spacebar. Naviagate to the other line, view it (or copy it, or whatever), and press
Control-x Control-x to return the marked line.

Navigating within code files

Emacs Key Bindings

Emacs is an interactive, customizable, richly featured code editor
that is popular among many programmers, especially UNIX
programmers. Project Builder’s code editor incorporates many
common Emacs commands.

You issue Emacs commands with the Control key (Ctl) or the
Escape (Esc) key, but how you give the command differs with
each key. You press the Control key just before the character key,
and keep pressing them together. For Escape commands, press
the Escape key first, then press the character key. Also, some
commands begin with Control-x and are followed by a separate
key press. The separation of the final character in Control-x and
Escape commands is represented by a space.

Notes:

¢ 0On OpenStep for Windows, many Emacs key bindings conflict
with the standard bindings for Control keys on Windows
applications (for example, Ctl-v is scroll forward in Emacs but
is Paste in Windows). Windows key binding override any
corresponding Emacs key bindings.

¢ To use the Emacs commands that begin with the Escape key
(Esc), you must select the “Act as Emacs Meta key” option in
the Key Bindings preferences display.

Moving Around

Command What It Does

Ctl-f Move forward one character

Ctl-b Move backward one character

Esc f Move forward one word

Escb Move backward one word

Ctl-n Move to the next line

Ctl-p Move to the previous line

Ctl-e Move to the end of the line

Ctl-a Move to the beginning of the line

Ctl-v Scroll foward a “page”

Escv Scroll backward a “page”

Esc > Go to the end of the edited file

Esc < Go to the beginning of the edited file

Ctl-I Center cursor in middle of displayed code
Ctl-x Ctl-x Exchange point and mark (return to mark)
Ctl-s Search forward incrementally

Ctl-r Search backward incrementally

Editing, Deleting, and Copying

Command What It Does

Ctl-d
Ctl-k
Ctl-y
Esc-d
Esc-Del
Ctl-x u
Ctl-i
Esc w
Escy

Delete character under cursor

Delete (kill) to end of line

Paste (yank) contents of kill buffer

Delete next word or to end of current word
Delete previous word

Undo last change (applies successive undos)
Indent line

Copy region

Yank-pop: paste previously cut text in kill buffer

Files and Views (Buffers)

Command What It Does
Ctl-x 2 Split current view into two views (Split command)
Ctl-x 1 Make one view (Maximize command)
Ctl-x o Edit in other view
Ctl-x Ctl-b Open Loaded Files panel
Ctl-x b Next loaded file
Ctl-x Ctl-f Display Open Quickly panel
Ctl-x Ctl-s Save current view to file
Ctl-x Ctl-w Write to file (Save As)
Ctl-x s Save all loaded files
Ctl-x i Insert file
Ctl-x k Close current file
Miscellaneous
Command What It Does

Ctl-x space Sets a mark which, with point, marks a region.

Ctl-x *

Ctl-x p
Esc.

Ctl-q

Ctl-g

Go to next error (as displayed in Build panel
exception browser)

Go to previous error

Find definition of current symbol using Project
Find panel (as identified by location of cursor)

Quote next character (for example, a control
sequence)

Quit current command

162

Chapter 7

Editing Code

Navigating between code files

Select souce-code files in the
project browser.

Use the Loaded Files browser to
navigate among opened files
Use the “Open File or Project”
panel to locate and open project
or non-project files.

163

When you select header files, Objective-C implementation files, and other
source-code files in the project browser, those files are displayed in the code
editor. Although this is a useful feature, it can sometimes require complicated
mouse work, especially if you have many project files spread across many
categories. The Loaded Files browser provides a navigational focus for the set
of files you’re most interested in—the files that you’ve already opened.

To display the Loaded Files
browser, click here or
choose Tools m Loaded
Files.

i

TalCaCa ik |

—— Click afile to redisplay it in
the code editor.

Iwatgak -
|7 | ot Py !

[l Sl el ity S LDl
[l4alr oeleinare| CAlerala At

The default sort order is
by time visitied. You can
change the order to

W ToOcCinhdmim

My ToDoirpactor o bl alphabetical by choosing
% ToDb Tools mLoaded File m
et e v e Wk Sort by Name.

To remove a file from the Loaded Files browser, select it and choose Close from
the Edit menu.

A quick way to locate files in the file system, especially good for non-project
files, is to use the “Open File or Project” panel. To display this panel, choose
Open Quickly from the File menu.

Open File or Project

Cpen File: | Ajdono/ProjectsTravelsdvisor-2/TAController.b

Cancel | Ok, <”'|

Press the spacebar or Escape to invoke
name completion. The next possibly
matching file or directory is underlined.

Tip: You can use several Emacs commands to edit the path in the Open File field:
Control-a (beginning of line), Control-e (end of line), Control-k (delete to end
of line), Control-f (forward character), Escape b (backward “word), and so on.

You can also drag document icons from the File Viewer and drop them over the
code editor to open and display them.

Using name completion in editing

Using name completion in editing

» To cycle through the symbols

localto a given scope and having

thesame prefix, type the prefix
and press Escape repeatedly.

» To cycle through all project
symbols with the same prefix,
type the prefix and press
Alternate-Escape repeatedly

» To display a list of all global
symbols with the same prefix,
type the prefix and press
Alternate-I.

Name completion is available in

many other contexts, including

the fields of the Project Find and
Find panels, and in some fields of

the Project Inspector panel. In
addition, you can use name
completion to complete file
names and pathnames in all

Open and Save panels and in the

Open Quickly file (where the
space bar rather than Escape is
used). See chapter 9, “Finding

Information,” to learn how name

completion is used in find and
replace operations.

Name completion is a feature that displays all completions of a partial symbol
name, including classes, methods, functions, constants, structures, and even
local variables. Its has several uses in code editing: It allows you to locate
symbols that are only vaguely familiar; it also helps to prevent compilation errors
due to misspellings; and it simply a convenient way to insert symbols without
having to type them. With name completion, you can obtain symbols local to a
file or global to the project.

The part of the symbol that
completes the prefix is
underlined.

Choose a name by clicking
the mouse or pressing any
key other than Escape.
Cancel by pressing the
Backspace key.

You must type at least a one-character
prefix or insert the cursor within an
existing symbol.

If you insert the cursor within an existing symbol, any symbol chosen from name
completion will be inserted before the existing symbol.

If you prefer not to cycle through all symbols with a given prefix, you can display
a panel that lists possible completions from among the project’s global symbols.

-
@implementation TaboCell =
12 completions | X
- {idyinit
(When you select a
NSString *path; symbol name, it's
[super initTextCell:@""]; immediately
N3Bundle .
inserted.
tristate = notlone: |
Al spoint Click Cancel to undo
 Ynisview / the insertion, click 0K
to confirm it.
Cancel | oK |
] 1

To use name completion, the project must be indexed. When a project is
indexed, it “knows” about all symbols—both those that the project internally
defines and those that it imports.

164

Chapter 7

Editing Code

Displaying multiple views of code

> To open a new view in the code
editor, chose File » View » Split.

» To tear off a window from the
code editor, chose File » View
» Tear Off.

165

You can edit code in multiple views in the code editor. The views can display
different areas of the same file or different files. The multiple-view feature
permits you to view and edit related sections of code—like method declarations
in a header file and their implementations in the .m file—without have to
navigate among files, and lose context in the process.

: . When you split a
W. view, the new view
—| o andly b [wirmfie B e £ et occupies the lower
Shispate DT . Li) half of the previous
= . . view and displays
[Leenlag . sben ane] the same general
7| we e contents.
Tl bolar m r
J LA Click in a view to
Al o = [[select it. Open a file
[E SEPLPTREP or select it from the
H _ ptetms project or Loaded
0 WXMla ':I"-:- . Files browser to
O s] dlSp/ale.

You can split views repeatedly, with each split view being halved. As you edit in
one view, your changes are reflected in all other views of that same file.

Tip: Press Control-x o to cycle through the current views, selecting each one in

turn.

You can enlarge the editing area temporarily by “closing” views. To do this,
move a divider (a bar with adimple in its center) to the top or bottom of the code

editor, or to an adjacent divider.

NSArray ClassCluster.rtfd £ -application Should Terminate: —
See also: setArray:, — removeOhject:

initWithCapacity:
— (idyinitWithCapacity: (unsigned inthzamiterns

Inidalizes a newly allocated array, g it enough mermeory to hold
numitems objects. Murable array#/expand as needed, so nemitems
sirnply establishes the object’ gihidal capacity, Retumns self.

NSAmay.h e
ToDoController.m s

These two views are
dragged "closed,”
enlarging the editing
area. To restore
them, you’d drag the
dividers upward.

To remove a specific view, select it and choose File » View » Close (the
“parent” view is automatically selected next). To remove all views except the
one you’re working in, select that view and choose File » View » Maximize.

Instead of cluttering the code editor with views that become smaller and smaller
as you add each subsequent view, you can “tear off” a view and put it in its own
window. To tear off a view, select it and choose File » View » Tear Off.

ETERL IR

S0 alS0! - DV, - FHC. <l

You can also create
a tear-off window by
Alternate-dragging

keiimilow the file icon off the
- (NSt erar "y Project Builder main
window.

Rehgme the key windaw, the
ewenry, Bthere 5 no ey wir
peireer ppaboanan, dub mer

S plsa; - i Lo,

= ALY AL e D] 0
ol L T R T B T
- [PEPEirEkR @ s i racioas

= Mk s ks

- | THEA, ke v

- | HEL st dden

- {EL fisfurerirs

= Legidichenciivate.

The window of the tear-off view behaves like any other window, except that
editing of its contents is synchronized with any other view displaying the same
file. To close a tear-off window, click the close button. Do not choose Close from

the View menu.

Note: You cannot display files in tear-off windows by dragging file icons into them
and you cannot split tear-off windows. You also cannot use the Emacs command
Control-x o to jump to other tear-off windows or views in the code editor.

166

Chapter 7

Editing Code

Undoing and redoing changes

» To undo a change, choose
Edit » Undo » Undo .

» Toredo an undone change,
choose Edit » Undo » Redo .

167

Project Builder saves every editing change you make to a £/ buffer. If you make
a mistake, or decide that a modification you made earlier is not what you want,
you can undo the change. Because the kill buffer is a stack, when you give the
Undo command, you’re undoing the most recent change; the next Undo
command (without any other intervening command) undoes the previous
modification, and so on until the beginning of the editing session (that is, when
the file last had no unsaved modifications).

r

C: ..,_I:;:.'lI.:':-;I:EE._.,':,.::"m"}h'-" ST LR LS S You delete these
Coimi i i o Radh A7 SPR— T S - variables and their
srniegped Al o [reiinte yesr DI cssondr g initializations.

P
i1 ol
P Lrsedaraiatss B EATA STt S| imbe = | 50T 56| A Ledobe | S =
I s
E| i
E id --!!.I. o
W Lo baTa e I FATIS IRt Bmi| Ihe = | 527 58 |pL Lefdihe |, W= =
= e et dane] Choose the Undo
i i, command once.
ururgnad AL e« [aedPeken seariroaanrErel.)
O b, g et After deselecting the
1 call restored text, choose
. Undo again.
I s If you leave the text
VUi L | T [e Emts Sk TR | selected, the change is
pruresd e TR ien o [Reiimte ear i pend T el left undone when you
| hari derpaInbeeet perform the next Undo.
id oall

In undoing changes, deselect code if you want to retain it; keep the code
selected to continue cycling through Undos.

To reinstate a change that you’ve just undone, give the Redo command. For
example, if you decide that you don’t want the currentMonth variable you’ve just
restored by undoing (last illustration, above), choosing Redo will yield this:

Ca

Successive Redo

I Realrceriuns rimaclTonin, walieke = [611 Selectocbar]. =w »
[lara s dans] commands reverse
El . R the effects of each
PV ST WP s i
T ST LR R e successive Undo.

Instead of undoing changes in succession by repeatedly choosing the Undo
command, you can simultaneously undo all changes made to a region of code
since the beginning of the last editing session. Simply select the region and
choose Edit » Undo » Undo Region.

Formatting and adding graphics to RTF text

Formatting and adding graphics to RTF text

Create or add an RTF or RTFD file
as a project or non-project file.

Format the text using the
commands on the Format menu
or on one of its submenus.

If you want to add graphics, drag
and image from the File Manager
or from the Images suitcase and
drop it over the code editor.

You can create and format RTF (rich text) and RTFD files in Project Builder.
These files can be project or non-project files. Typical RTF project files are
context-sensitive help files and, for framework projects, reference
documentation. A common non-project RTF file might be a README file.

Fregecl Bedder

Project Browaer

Tk Biiras od Erbork i @i MOF GO0 FiErd) Bl DR Mk atd pediides
mmigrradon aboul e prajcts TiEs

Tt i ooy ol mmi The reer] ol Bein ik
AT e o0 e ek b O T T
Daliyed

|
CHNEH r MECT 15t
S

Create or add context
help files here. Non-
project files go in the
Non Project Files
"suitcase" of the
project browser.

Text can have various
attributes, including
font, size, style, and
color. It can also
include graphical
images.

You can find RTF editing commands on the Format menu and its submenus.
Possibly the most important of these is the one that displays the Font panel
(Format » Font » Font Panel). The Font menu also has submenus of
commands for performing fairly sophisticated typographical operations

Font Submenus Description

Kern Adjusts the spacing between selected letters.

Ligature Use All or Use Default joins certain combinations of characters, such
as “fl".

Baseline Superscript and Subscript commands lower and raise the selected

text's baseline by a set amount. The Raise and Lower commands

adjusts the baseline incrementally.

168

Chapter 7

Editing Code

169

You can display a ruler above RTF text by choosing Format » Text » Show

Ruler. This ruler enables you to set margins and tabs in selected text, to adjust

line height (spacing between lines), to set alignment, and to lock changes.

Line helght amount.

Click to set text alignment: left-aligned,
centered, justified, and right-aligned.

Decrements and increments line
height by specified amount.

WT

Unfixes and fixes minimum line height.

Tab well: left,
centered,
right, decimal
tabs

To set a tab, drag it from the tab well and place it
on the ruler; reposition tabs by dragging them across

the ruler; remove by dragging off the ruler.

Note: T he unfixed (open lock icon) and fixed (closed lock icon) buttons affect the

minimum line height. If the fixed button is selected, users can decrement the

line height below the limit set by the highest character. If the unfixed button is
selected, the line height cannot be adjusted below that limit.

Code files are ASCI| files by default. You can, however, convert them to RTF

by inserting the cursor anywhere in the file and choosing Make Rich Text from

the Format menu. You can then give portions of the code their own attributes;

for instance, comments can be in blue and recently modified text can be in bold
face. Code with RTF attributes can be safely compiled.

Customizing the Editing Environment

In the Fonts, Sizes & Colors preferences
panel, you can customize the default
attributes of the code editor, including text
color and font, background color, and the
size of tear-off windows. Attributes take
effect when the next file is opened or
when you create the next tear-off window.

Drag a color into one of the Text Colors
color wells to set the default foreground
(text) and background colors.

The plain text font should be a fixed-pitch
font to ensure that indented lines are
aligned properly.

| ¥||Contaxt Help -
Colors

1l
if ([cell izHighlighted])

Fonts, Sizes & Colorg .ll

Plain Text Font

. ;~wu_u

% Rich TextFont —————
Set

|Times-F~!0man 14\

et

— Tear-Off Window Size —

Columns ISD

W .
Foreground |

Background I |

Lines ISU

temFont0fSize:12]]:

[cell setCellAttribute:WSCellHighlighted to:MWO]:

Formatting and adding graphics to RTF text

RTFD files are Rich Text Format files that can display graphical images. You
can easily add EPS and TIFF images to RTF text displayed in Project Builder.

You add images by dragging them from the File Viewer or Project Builder and
dropping them in the code editor; they’re inserted where the cursor is. (These
files become RTFD files in the process, if they’re not already:.).

Eltobo —~tProjcts [5[x]

IntroReference.rt

Context Help 1=

170

Using the project find panel
Searching for project symbols
Searching for any text

Looking up reference
documentation

Looking up man pages
Replacing code all at once

Replacing code sequentially

Finding Information

Attempt the end, and never stand to doubt;
Nothing's so hard, but search will find it out.
Robert Herrick

As the power of endurance weakens with age, the urgency
of the pursuit grows more intense...And research is always
incomplete.

Mark Pattison

Where ask is have, where seek is find,
Where knock is open wide.
Christopher Smart

174

Chapter 8

Finding Information

Using the project find panel

Click the Project Find button in
Project Builder’s main window.

Entertextto search forinthe Find
field.

Choose the type of search from
the pop-up list.

Click the Find button.

The Project Find panel makes
use of the project index. If your
project is not indexed, you can
only perform textual searches.
For more information on the
project’s index, see Chapter 1.

175

The Project Find panel isn’t just a find panel—it’s an information source. It
searches your entire project, including the frameworks. It can tell you what type
of symbol (such as class, method, or variable) the string you entered is, how that
symbol is defined, where that symbol is used, and if there’s documentation.
Then, like any good find panel, it takes you right where you want to go.

W T Bl

ke o S e b TP D i

" Fravslishvisor — Progect Fisd

O |

==

O Soires |
[11-u- a1 I
FlHL !
LMol Fiiriely unt: 1
Subpig{ech |
CoabzsdHep 1
B

FIna | e-tridit
Mpi=n

i

Flignem Caca

I:||ll'n'lml/ il
Pl F el —

o] &

Fin

_I™tnawnes < umn|)

n=ance i

H Tl b e

A ST s
TaCanhoeer

Faad ETE SRR e SRt P BT T LT [

S Db e S et Cm il

-

£ Pl |] O bl C Sl ar

= o e A e | 5 B b T
« [R i 145
-1, sy A gt 3 Fcr W St "1y
v o AR 4 DRk bon 6

These buttons allow you to limit the search.

Click here or choose Project
Find from the Tools menu.

Type the text you want to
search for and choose the type
of search from the list.

Click here.

The search results appear
here. Click a line to go to that
location.

Using the project find panel

Definition Search Shortcut

10 (LE

[ooyl aoal Frsdo s B Lot b | us
Control-Shift-click or Control-

double-click a symbol name (here
convertAmount:byRate:).

The Project Find panel shows you
where that symbol is defined.

Reference Search Shortcut

L Imtwrmnfpal L o Infimlve 4). Place the cursor in a symbol
/ (here setString:) and press
[e bl sen SR g 7T, Command-0.

The Project Find panel shows you
where that symbol is used.

Previous Finds

Definitions |
3: -set5iring; r Choose a search from the Previous Finds
listto see the results of that search without
having to perform it again.

176

Chapter 8

Finding Information

Searching for project symbhols

To find out how and where a
symbol is defined, choose
Definition search in the Project
Find pop-up list.

To find where a symbol is used,
choose Reference search in the
pop-up list.

177

If you need to look up the syntax of a method or he type of a variable, perform
a Definitions search in the Project Find panel. Project Find looks for any and all
symbols named with the specified string and then shows both the line where the
symbol is declared and where it is defined.

Choose Definitions from the pop-up list

Find: |convertémount : bvRate: Diefinitions Y = RSN] 1 the
- - % to find the symbol’s definition.
Replace: Previous Finds =] e
2 found ﬂlgnure Case JWthE Waords JCurremFiIe
Instance kethods
I: Converer: - (loaficonvertamount:(floafamt by Rate:(floaflr | The results are classified by symbol
Conwerter: - (MoaticonverfAmorifloat)amt yRafesfoatira type and contain the locations of both

declarations and implementations.

Quick Find

If you know the name of a symbol, you can Class @class

quickly and directly ascertain where it is Protocol tocob

defined or referenced. Type a known class, RLCIE, <protoco

protocol, method, function, macro, ortype in |nstance method —method

the Find field using a special syntax

described below. Then click the Find button Class method +method

to display definitions. Method in partuclar class [class method]
Function function()
Macro #macro

Searching for project symbols

Sometimes, you want to know where a symbol is used rather than where it is
defined. In these cases, you should choose References from the panel’s pop-up
list. The Reference search will show you each line of code that references the
specified symbol. Click one of the lines to jump to that location.

Choose References from the pop-up
list to find where the symbol is
referenced.

The results show all uses of the symbol
within your source code.

178

Chapter 8 Finding Information

Searching for any text

To search for a string ina
particular file, choose Find from
the Edit menu.

To search for a partial string
within afile, type Control-s to use
the incremental search facility.

To search for a string project
wide, use the Project Find panel
and choose searching Textually.

Sometimes it’s better to perform a text-based search than a language-based
search. For example, if you know you’re in the correct file and you just want to
go to a different place in that file, you can use the text-based search within a file.
Just choose Find from the Edit menu or type Command/Control-f, and the
standard OpenStep find panel is displayed.

179

R:ﬁumm| animn-l Faplace & Fam | Fﬁmm“ Hel |

Choose Find from the Edit menu,

Find | =imore 7
then type the string here and
Aepacewrh [press Return.
Faspbars Al Feaps Farsll Gy Evre.
™ Erima Fra Zinam Caze
I~ SHkman o i

_rmne Saaer

Kalrim If the current file contains the
:_ ! ; string, Project Builder selects it.
M1k ing bursraportats
" Trwelidetier — Project Frl [a]=
L |—,_ AT Trceheal Or you can choose Textually
W Fian b = L{ here, and search for all
+oo| Ruplace | Fravicut Fingn ~ | B occurrences of the string in the
i project.
Caa s caa et _Cunem Fl
Caunme b
WG Hin e “uirgar.
- |NERmp fmperts
HEEES it E R LT- R R
Cauhv |
WO
jrperiys miesce]
o ol e e L b L e |

Cutomizing Searching

Project Builder's Preferences panel allows you some control over
incremental searching and over the Project Find panel. To see
these preferences, choose Preferences from the Info menu and
choose Find from the pop-up list.

The first two groups of preferences control incremental
searching. Turn on the wrapping preferences if you want
incremental searching to wrap around to the beginning of the file
when it reaches the end.

Allow searching for newlines lets you enter a newline in the
search string. By default, typing a newline will exit the
incremental search window.

If Ignore case is set, incremental searching ignores the case of
the characters you type, instead searching for both the upper and
lower-case version of the letter. If you want a case-sensitive
search, turn off this preference.

The Language-based find preferences control the searches you
perform from the Project Find panel. If you normally use the right
mouse button to display the menu in OPENSTEP applications, you
can enable the right mouse button in Project Builder as an
alternative to the Control-Shift-clicking a symbol. (It performs a
Definition search on that symbol.) The Order results by type
options groups definition searches by the file in which they were
found rather than by the Objective-C symbol type.

Searching for any text

Note: When you choose Textually in the Project Find panel, only your project’s
files are searched. Frameworks and documentation aren’t serached.

Another nifty way to get to where you want to go is to use the incremental search
and replace facility. Incremental searching is a quick way to search if you know
you’re in the right file and you only know part of the symbol’s name (or you want
to type as few characters as possible).

r
ange OT1T1CET10n ¥)R0T1TLCat1ion

recordiesdsSaving=YES;

(void)controlTextbidChange: (NSNotification #*)notification

recordiesdsSaving=YES;

' Press Control-s, then begin

- (BDDL%tShouldBeuinEditinu: {NSText *)textlb § typing a string.

Al
v

1
Find: [textd mext | Prev | cancel| ok |
AN

AN ~
\ \ \ These buttons allow you to

search forward or backward,
to cancel the search, or to end
it.

Lal As you continue typing, the
selection moves. When you
want to stop, press Return or
click the mouse anywhere.

M Delegation and notification methods */

- {void)textbidChange : (MSNotification #*jnotification

recordiesdsSaving=YES;

Find: [textedi Mest | Prev | cancel] ok |

Tip: You can also use incremental search to navigate through the hits in the
Project Find panel. Just type Control-s while the Project Find window is key.

In addition to the file-based Find panel and the incremental search facility, the
Project Find panel can also perform text-based searches. This might be useful
when you’re trying to find text inside a comment and you don’t know which file
contains the comment.

180

Chapter 8

Finding Information

Looking up reference documentation

Open the Project Find panel.

Perform a search for definitions
of project symbols.

Click the book icon to the leftof a
search-result item.

Examine the documentation
displayed in the code editor.

181

The Project Find gives you access to documentation on the OpenStep
frameworks imported by your projects. For applications, these frameworks
always include the Application Kit and Foundation. By linking descriptions in
the documentation to individual results of searches for symbol definitions,
Project Find enables you to navigate quickly to a particular description.

E ToDo-4 —||=]] ToDo — Project Find X

Find: | -initWithFrame: N Definitions e Bl 7l
™ || Replace: Previous Finds T Y L=
nore Case

Context HY 2 fourd _|Whole Words _|Current File
Supporting e

e [[Frameworl CalendarkAatrix: - (ichinit¥AthFrames(M Rect)frameRect | ..}
] Libraries CalendartAatrix: - (i)t Aame. ectiframeRect
Testsubpr | Li@ nsContral: - (id)iitiizhAamer NSRectitigeRect

¥ von Projed LAl e s = (it WithframeNSRechrameRec

1 [g MNEWiew: - (idkntiiRRane NSRect)frameRect
@ NShatrix: - (il e NSRectrameRect A
@ NSkAatrix: - (id)FadWiiRAame NSRect)frameRect sradein

I @ NSPopUpButton: - (it Rane N SRechhuttonF rame Deown BOOL)
¥ @ NSCStringText: - (iR ane N SRectiframeRect ZexfINSString “)theTe
TITCYFICITE T Time s .
— (ig)initWithFrame: (N SRect)frame Rece Ifyou know which
framework
Y Initializes an NS TextView object to have a frame of frameRece, This symbol you want
¥| merthod creates the entire collecton of obhjects associared with an ?ocumen tation
| or, your search

can be narrow
and explicit.

The book icon indicates that reference documentation on the
class, protocol, method, function, or other type is available.

Therelated passage in the documentation appears in the code editor. From here
you can browse through the rest of the file; if the file you’re viewing is a class or
protocol specification, you can go to the beginning of the file to read an overall
description of the class (or protocol) and its methods. Project Builder puts
documentation files in Non Project Files so you can access and examine these
files throughout a coding session. As with code files, you can display
documentation in a separate tear-off window or in an additional view in the code
editor.

Looking up man pages

Looking up man pages

Choose Edit » Find » Man Page.

In the “Show man page” panel,
type the name of a standard C
library routine, or command-line
program.

Click the OK button.

Examine the man page in Non
Project Files.

For access to OPENSTEP
documentation other than
framework reference, access the
Digital Librarian bookshelf
NextDeveloper.bshlf. This
bookshelf also provides
instructions for creating your own
bookshelf and customizing it
with documentation targets.

Rhapsody includes the man pages facility, which displays information on
standard C library routines, command-line programs, and (for Mach), custom
programming tools provided by NeXT. Project Builder gives you access to this
facility, eliminating the need to switch contexts in order to issue the man
command at a Terminal shell.

E ToDo-4 — ~/Projects Er

L

METextWiew rfd
otool

N

|_‘C0ntext Help
Supporting File

.
.
Frameworks I
P
.
P

atoal

Libraries
Test.subproj
Mon Project File

0TOOL (1) B ot You must type the
Show man page complete name of
NAME the routine, tool, or
otool - object 1 utility. Name
Show man page for: atonl/ completion is

SWMOPSIS disabled in this
otool [option . Cancel | QK | field because
these names are
DESCRIPTION L L not part of the
The otool command displays specified parts of object files project.
ot libraries. The file arguments may be of the form
libx.a{foo.0), to request information about only that object
file and not the entire library. {Twpically this argument
must be quoted, ""libx.affoo.o)*’. to get it past the
shell.) Otool understands both Mach-0 (Mach object) files
_I and fat file formats: it no longer understands 4. 3650 a.out
ll file formats. Otool can display the specified information

The related man page appears in the code editor. Project Builder puts
referenced man pages in Non Project Files so you can access and examine these
files throughout a coding session. As with code files, you can display man pages
in a separate tear-off window or in an additional view in the code editor.

182

Chapter 8

Finding Information

Replacing code all at once

1 Open the Project Find panel.

2 Perform a search for symbol
definitions or references, or for
text strings.

3 Type in the Replace field the text
to replace the entry in the Find
field.

4 Replace the text globally or
selectively:

» Globally: Click the Replace
button.

Or
» Selectively: Select the items in

the search results to replace,
then click the Replace button.

5 Confirm the replacement.

See the following task,
“Replacing code sequentially,
for this alternate search-and-
replace technique.

183

The Project Find panel allows you to replace symbols in your code or other text
at one time. Use the Project Find panel when you prefer simultaneous
replacement project-wide rather than sequential replacement within a file.

|_:-:|.-- 1 — il

T

Talin — Frmjecd Funal I
T 2]
Fi r r

You can select items and review them to determine if they The Replace button
should be replaced. Shift-click to unselect items.

Select contiguous multiple items by dragging across them; select non-
contiguous items by Shift-clicking. If you want the replacement made to every
item in the search results, leave all items unselected.

When you click the Replace button, Project Builder prompts you for
confirmation before performing the replacement.

You can undo replacement changes with successive Edit » Undo » Undo
commands.

Replacing code sequentially

Replacing code sequentially

Choose Edit » Find » Find Panel.

Type the string of text to find in
the Find field.

In the Replace field type the
string of text to replace what's in
the Find field.

Click Next.

Review the highlighted text in
context, replace (or don't
replace) the text, and:

Go on to the next occurrence.
or

Conclude the find session.

or

Replace all occurrences to the
end of the file.

The Find panel differs from the Project Find in a couple of significant ways. It
limits the text that it replaces to the file currently displayed in the code editor
(or to a selected region). And it allows you to replace code or other text
sequentially by highlighting each successive find in the code editor, thereby
giving you the opportunity to evaluate the change in context before making it.

Q6 [——

Fing: Irelease
r [Classes

Replace with: | sutorslease

Replace All Scope — Find Options
" Entire File _lignore Case
" Selection —|whole word

¥|tethod Search

EE;:;NEEI;E;E?EZE Replace All | Replace | Replace g Find | Previous [[et |

[[inspHotifMinute 1 — e /

datefFmt = [[NSDateFormatteL@i—L@e—]—iﬁM@t@F&rmat:@"%W%-:I.-’%y'
allowMaturallanguage: YES]:

[[inzpSchedDbate cell] setFormatter dapeFmt]:

[dateFmt relesse];

[inspPoplp selectItematIndex:8]:

[inspMotes setDelegate: self]:

[self newlnspectorView: self]:

[[MSMotificationCenter defaydiCenter] addObserwver:self
selector :@selector{curentItemChanged:) name:TololtemChangedMotification
object: nil];

i

Z 1

To replace code, click one/
of these buttons.

Click to begin the search in
reverse direction.

Once you begin a search, you have several replacement options at each
matching occurrence of text:

Find

Click Selection to limit the global
replacement to a highlighted region

Find: |release

Replace with: |autoreleasi/ of text.
Replace Al Scope — ——— Find Options
" Entire File _lignore Case
" Selection _whate ward
ZIMEthDd Search

Click this or Previous to skip to the
next matching occurrence.

Replace All | Replace | Replace § Find | Previous || new—H
N\

Replace and quit. \

Replace all occurrences in the file or selection.

Replace the text and go on to the
nextoccurrence.

You can undo replacement changes with successive Edit » Undo » Undo
commands.

184

Building the program

Building for multiple
architectures

Building on a remote computer
Using build targets

Creating your own build
targets

Setting search paths

Setting compiler and linker
options

Creating a precompiled
header

Customizing your makefiles

Building

When we build, let us think that we build for ever.
John Ruskin

Well building hath three Conditions: Commodity, Firmness,
and Delight.
Sir Henry Wotton, E/lements of Architecture

Burrow awhile and build, broad on the roots of things.
Robert Browning, Abr Vogler

186

Chapter 9

Building

Building the program

Click the Build button to bring up
the Project Build panel.

In the Project Build panel, click
the Build button to start the build.

Before you build, you might want
to set specific build options for
the project or modify its
makefiles. The rest of this
chapter describes these tasks.

If the build fails because of link
errors, chances are you aren’t
linking against the correct library
or framework. See “Some
OPENSTEP Libraries” in this
chapter.

187

When you build a program in Project Builder, you are really invoking the make
utility to create an executable. The make utility invokes the compiler and linker
using information from the project makefile.

Click this button or choose
Build Panel from the Tools menu.

Click here to start the build.

Click an error or warning message
in the Project Build panel to go to
the source of the message.

Before the build begins, Project Builder prompts you to save any unsaved
source files, nib files, or the project itself. In this way, Project Builder ensures
that you are always building the latest version of the project.

If the build fails because of link errors, look in the bottom browser for more
information.The bottom browser shows the exact compiler and linker
commands being executed, and it shows all messages produced by these
commands. If the Project Build panel appears to only have one browser, drag the
split view knob up until you can see the bottom browser.

Building the program

All About make and gnumake

make is a standard command-line program that builds programs.
Its main purpose is to make it easy for you to perform incremental
builds. Project Builder uses gnumake, a version of make written
by the Free Software Foundation.

A make Terminology Primer

You tell make how to build a program by creating a makefile. A
makefile consists of rules, which in turn are made up of build
targets, a list of dependencies, and one or more commands.

Build targets are the targets of the make command, that is, what
you want to build. In Project Builder, there are several provided
targets that build the project in different ways. The default is to
build an optimized, debuggable executable. You can select a
different target to turn optimizations off, to generate profiling
information, and to install the project in its end location. (One
special target is clean, which removes all object files and
executables, forcing a full build the next time around.)

Dependencies are the input files used to create the target. For
example, an executable depends on the object files linked
together to create it. When make is asked to build an executable,
itchecks all objectfiles listed as dependencies. If the objectfile is
out of date or does not exist yet, it creates that object file by
compiling the source file. Once all object files listed as
dependencies are created and are up-to-date, make can link
them together to create the executable.

Commands are the commands used to create the target. For
example, to create an application, you need to specify commands
that compile all of the source code files into object files, link the
object files into an executable, create the application’s wrapper
directory, and copy the executable and the application’s
resources into that directory.

A makefile can also contain macros, which make it easier to write
consistent makefile rules. Makefile macros serve the same
purpose as #define macros in a C program. They make it easier to
update the makefile. For example, you can define a macro
CFLAGS to be all of the flags you usually pass to the Objective-C
compiler and use it everywhere you specify a compile command.
Then, if you want to change one of these options, you only need
to change itin one place, in the definition of CFLAGS.

If you need to update makefiles at all in Project Builder, you
usually only need to redefine some provided macros. If you want
to, you can also create your own targets. This chapter describes
how to perform these tasks.

gnumake

gnumake, from the Free Software Foundation, is now the default
make utility for OPENSTEP. gnumake has many features that
aren’t available in other make utilities.

Some of the unique things you can do if you use gnumake are:
¢ Perform parallel compiles so that your project builds faster.

¢ Use conditional statements in a rule. You can use this feature
to specify in a single rule different compiler arguments based
onwhich type of compiler you are using. In other make utilities,
you would have to define two different rules.

* Use a standard set of functions to manipulate strings and
filenames used in the makefile. For example, gnumake
provides functions that return a specified file's extension, its
basename, and its directory.

¢ Define a macro based on its own previous definition. For
example, gnumake allows you to say ‘CFLAGS :=$(CFLAGS) -0’
which assigns to the macro CFLAGS its previous definition with
-0 appended to it.

¢ Define a macro that contains a newline using the define
directive.

¢ Use MAKELEVEL to keep track of recursive use of make.
¢ Declare a phony target with .PHONY.

* Specify a search path for included makefiles and specify extra
makefiles to be read with an environment variable.

* Use vpath to specify a search path for files with a particular
extension.

* Use a special search mechanism for libraries by specifying
-Iname as a dependency. This causes gnumake to search for
the library in the VPATH, then in vpath, then in /lib, /usr/lib, and
[ust/local/lib.

For More Information

A number of books describe make in general terms. If you need to
learn more about gnumake, see the document “GNU Make”
provided by the Free Software Foundation.

188

Chapter 9

Building

Building for multiple architectures

Click the Build button to bring up
the Project Build panel.

In the Project Build panel, click
the check-mark button.

In the Build Options panel, select

the architectures you want to
build for.

189

Usually when you build, you create an executable that runs only on the type of
computer you used. If you build on an Intel computer, the executable will run
only on Intel computers. If you want the executable to run on more than one
type of computer, you need to set this up in the Build Options panel. You can
build executables for any architecture that OPENSTEP currently supports:
Intel, NeXT, and SPARC. You must have the libraries for that architecture
installed on your computer.

TravelAdvisor — Project Build

z| Target: ao0
L otatus:

Click this button.

Build Options

Arguments:l
Host:l
Target: app ..|
Build For
e |l v NeXT
__|Build after error < 1

I (e A Intel Click to check each architecture
ll HFP& that you want the resulting
executable to run on.

Portability Do’s and Don’ts

If you build multiple architecture (“fat”) * Douse sizeof when passing the size value
binaries or you build code on one to malloc(). Don'tuse a constant.
architecture to run on another, make sure
you're writing portable code. If you use the
OpenStep libraries and avoid hard-wired
datavalues, your application will probably be
portable. Here's a list of some specific do's
and don'ts for writing portable code.

* Doreferto a structure’s fields and a
function’s parameters by name. Don'ttry
to deconstruct data formats, such as float
or struct, or a function’s argument list
yourself.

e Do use the OpenStep objects NSData,
NSString, and NSDictionary to read and
write external data. Don‘trely on a
particular byte order or alignment when

* Douse the NSEvent characters method to reading and writing external data.
find out what key was pressed. Dont use
keyCode.

* Do use relative values when positioning
windows on the screen. Don'tuse
absolute positions.

Building for multiple architectures

Building a Multiple Architecture (“Fat”) Binary

The following sequence of events occurs when you build a fat
binary:

» Each source file is compiled once for each architecture to
produce thin object files.

The object files are stored in subdirectories under
dynamic_obj (or dynamic_debug_obj) that are named for the
processor. For example, if you build for both Intel and NeXT,
there are two directories under dynamic_obj: i386, containing
object files for Intel, and m68k, containing object files for NeXT.

archl object files

After all of the source files have been compiled, the linker is
invoked once for each architecture to produce thin
executables.

Each executable has an extension that describes the type of
processor it runs on, for example, MyProject.m68k.

After an executable has been built for each processor, the lipo
command is invoked to combine the executables into one
binary file named MyProject.

libraries

archl executable

i frameworks

arch2 executable

fat executable

190

Chapter 9 Building

191

Three Ways to Set Build Options

You can set build options in three different places: in the
Preferences panel, in the Project Inspector panel, and in the Build
Options panel. Each panel has a unique purpose.

» Use the Build Preferences panel to set options you're always
going to use, no matter which project you’re working on.

For example, you may want to change the sound you hear upon
each successful build. To open the Build Preferences panel,
choose Info » Preferences, then choose Build from the pop-
up listin the Preferences panel.

 Use the Build Attributes inspector to set options that apply to a
specific project, no matter which user is working on the project.

For example, you might define a build target specific to one

project. Or you might want to use a specific compiler option for
one project. To bring up the Build Attributes inspector, choose
Tools » Inspector » Show Panel, then choose Build
Attributes from the pop-up list in the Project Inspector panel.

Use the Build Options panel to set your preferences for a
specific project. Options on this panel apply only when you
yourself are building the project..

To bring up this panel, click the check mark button on the
Project Build panel. The options on the Build Options panel
remain set even after you quit Project Builder.

B Travelavisor — ~/Programiming
é& S ﬂ g» TAContrallerh
Classes . LogisticsFormT -eFecont
Headers - @ FAContofer - -convertCeisius:
- e [[other sources -convertCumensy:
Build Atiibues = Images 2 -anaeT Vit
IOthEr Resaurc I iz Fretits.
subprojects -poputate Fretds:
CurrencyConverter |A || supporting File - esaractrasiets:
Header Search Order 4 Ci
enun LogisticsFornTags {
LBairports.
(a LGairlines.
LStransportation.
,— LGhotels
=
Set Remove Add .
@inter face TACBAEFGLLER:NSObject <NSCoding=
Compiler Flags: 1
id tabletiew:
Linker Flags: id celsius.
Install In:| $(HOMEWApps id commentslabel:
id commentsField:
Build In
id corwverter:
Build Tool| /hin/gnumake id countryField:
|&f| id currencybollarsField:
l‘ id currencylocalField:
'
Build |
Arguments:
N B ToDo — /Het/seaportiprojects/PubsStaffjostremiDevEny
Success:| /MNexiLibrary/Sounds/Poit snd Set & Q o 3" TravelAdvisor — Project Build o x
Failure:| /NextLibrary/Sounds/Basso.snd || Set Target: 3 3
ety o] T | v %A
ToDoCellm 1~ b
Build For Build Aftributes 4| TaDoControlle -
[Current ToDoDocm 1 e " .
_| Continue after error T ext B ToDofemm Build Options x
_|Prompt on clean vi
ntzl Header Search Order = Arguments:
Host
Target: app =
The Build preferences panel Builld For
sets options for all projects. O #import: “ToDolten h” | m{BUaleEren ol NexT .
- Al Intel
@implementation ToDoltem J
= Fe— PR _|Gotafirst errar v Heea
- {id)initWithMame: (NSString *)name andDate: (NSDate ¥)date
1 ¢
IR —mm—m [self setDay:date]:
Linker Flags [self setltemName:name]
[self setStatus:incomplete]: . N .
Installlng] L ocalApps notes = 4" The Build Options panel overrides
Sl the user preferences for this project.
return self.
Build Toal:| /bin/gnumake '
i - (id)copyHithZone: (NSZone *)zone
The Build Attributes inspeclor Toboltem *newobj = [[Tobolten alloc] inithithName:[self itenNane]
set options per project.

Building on a remote computer

Building on a remote computer

Click the Build button to bring up
the Project Build panel.

In the Project Build panel, click
the check-mark button.

Type the host name of the
computer that should perform
the build in the Host field.

Build the program.

A build takes up a lot of your computer’s CPU time and disk resources. You can
still perform other tasks while the build is running, but these other tasks may
run slower. If this happens, you may choose to build remotely on another
computer on your network. This way, the CPU on your computer can be
dedicated to the other tasks you are performing.

TravelAdvisor — Project Build

Click this button.

Build Options

Arguments:l

Host:l Type the name of the
TatE — computer (host) that should
3 —lapp = perform builds here.
Build Far
MeXT
_|Build after errar [A L

4| Intel

_IGotafirsterror ¥ Hepa

There’s no difference in what you see when you build on another host; the
Project Build panel still displays the status of the build and updates as the build
status changes.

Note: Be sure you know what version of OPENSTEP the host is running before
you use it to build your project.

The App Wrapper and Other Bundles

Some project types (namely Application,
Loadable Bundle, and Framework) don’t just
produce an executable when you build them.
They create the executable, and then they
create a directory containing the executable
and the project’s resources (the files under
Images, Interfaces, and Other Resources in
the project browser).

SND Other

Interfaces

Images app wrapper [l
TIFF E| (7]

The generic term for a directory containing
such items is “bundle.” When the bundle
contains an application, it is often called an
“app wrapper” because it wraps up all of the
things an application needs into a single unit.

executable

192

Chapter 9

Building

Using build targets

Click the Build button to bring up
the Project Build panel.

In the Project Build panel, click
the check-mark button.

In the Build Options panel,
choose a target from the Target
pop-up list.

To do a make clean, click the
broom button on the Project
Build panel. As described in “All
About make and gnumake,”
make clean is a special target that
deletes all object and executable
files.

193

A build rarget is an argument passed to the make utility that tells it which makefile
rules to use when building. The default build target, which is named for the
project type, produces an optimized, debuggable executable and places it in the
project directory. This target is often suitable, so in many cases you don’t have
to worry about the build target. If you need a different target, choose it from the
Build Options panel before you build the project

Travelfdvisor — Project Build

7| Target: 350

Click this button.

Build Options

P.rguments:l
Hnstzl
Target: app -: — Choose the build target here.
Euild For
_ |Build after errar 2] et L

4| Intel
_IGotofirsterrar ¥ Heea

If you’re running OPENSTEP on a RISC architecture and you need to debug,
you may want to choose a target that does not optimize your code.

Other Build Targets

Besides the defaulttarget, the one namedfor profile Generates (with -DPROFILE, -pg,

the project type, the other available targets and all warnings on) a file containing code to

are: generate a gprof report. Use this target when
. . you are tuning the performance of an

deb_uq (_Zomplles L _.DDEBUG i application. See the gprof man page for

optimizations off. Use this target if your details.

program uses the DEBUG macro to provide

more debugging information or if you want <default> Uses the first target listed in the

to make sure local variables do not get makefile. Warning: If you place a target at

optimized while you are debugging. the end of the Makefile.preamble file, it

) . becomes the default target.
install Places the executable in the Y

installation directory specified in the Build
Attributes inspector.

Creating your own build targets

Creating your own build targets

Define a new target in the
Makefile.postamble file and save
the file.

Click the Project Inspector
button and choose Build
Attributes in the Project
Inspector panel.

Type the name of the target in the
Build Targets list.

Project Builder uses the
information you specify in the
Build Attributes inspector to
index the project and to update
the project makefile. You’ll read
about the other fields in the Build
Attributes inspector later in this
chapter.

If you refer to the executable
name in your target, use the
EXECUTABLE_EXT makefile
macro to give it the correct
extension. EXECUTABLE_EXT is
.exe in Windows environments
and nothing on Rhapsody and
supported UNIX environments.
For other makefile macros, see
the section “Customizing your
makefiles” in this chapter.

If the targets provided by Project Builder don’t meet your needs, you can define
your own target in the file Makefile.postamble.

The makefiles are under Supporting Files.

Click here or choose Inspector from
the Tools menu.

Put your new build target and any other
make rule you want to define here.

R Tualil ~ Bnkedan — Choose Build Attributes here.
—rt
= e i - ol
R Gl Targrl ———alb—— Choose Build Targets here.
v i
-
*
JLH —— Type the name of the target here
and press Return.
| Hympdp |
= wlwn _|.|

Your target shows up here.

Caution: Don’t use Makefile.postamble to redefine targets that are already defined (debug, install, profile,
app, and so on). If you do, the results are unpredictable.

After you define a target, you need to let Project Builder know about it so that it
appears in the Target pop-up list in the Build Options panel. You do this using
the Build Attributes inspector.

194

Chapter 9 Building

Setting search paths

Click the Project Inspector The compiler and linker search a standard set of directories for library
button and choose Build executables and header files. If you link with a library or framework that is not
:‘“"b“tes in the Project stored in one of the standard locations, you need to add its location to the search
nspector panel.

path. You do this from the Build Options inspector.

&| | | o-l-g Click here or choose Inspector from the

Tools menu.

Add the library's location to the
Library Search Order list.

Add the location of its head
files to the Header Search Order
list.

Or ToDo — Project Inspector

. W— Choose Build Attributes.
Add the framework’s location to

the Framework Search Order list. ToDo

Library Search Order -I‘I Choose the appropriate search order list.

Met/GroupProjects/lib

—— Nonstandard directories that are already a part
of the search path are displayed here.

[smeviib

Set.. | Remove | Add I
<
OPENS}SEforMach =

Campiler Flag}li Or click here and choose the directory to be searched
Linker Flagszl from the panel that appears.

I~ Type the directory to be searched here and click Add.

Install In:IfLocaIP.pps
Build In:|
Build Toal: | in/gnumake

The standard search paths are:

Type of file Search path

Frameworks /LocalLibrary/Frameworks
/NextLibrary/Frameworks

Header files the project directory
/LocalDeveloper/Headers
/NextDeveloper/Headers

Libraries /lib
fusr/lib
[usr/local/lib

195

Setting search paths

For libraries in nonstandard locations, add the library location to Library Search
Order and the header file location to Header Search Order. For frameworks, just
add the framework location to Framework Search Order; Project Builder already
knows to look inside of a framework for its header files.

Some OPENSTEP Libraries

Most of the OPENSTEP libraries are now
delivered as frameworks. Because all of the
files associated with a framework are in one
location, it's pretty easy to find out which
framework you need to link with if you import
one of its headers.

There are still a few old-style libraries
delivered with OPENSTEP. Here's a list of the
more commonly used ones and when you
would link against them:

* /usr/lib/libcurses Contains cursor
control functions. Link with this library if
you import the header file curses.h.

e [fusr/lib/libdbm Contains database
subroutines. Link with this library if you
import the header file dbm.h.

[fusr/lib/libDriver Link with this library if
your program interacts with a device
driver.

fusr/lib/libg++ Contains the C++
libraries. Link with this library for projects
that contain C++ code.

[usr/lib/libiostream Contains C++ |/0
streams support.

[usr/lib/libMallocDebug Contains a
special implementation of mallec. Link
with this library if you want to use the
MallocDebug application to examine your
application’s memory usage.

196

Chapter 9 Building

Setting compiler and linker options

Click the Project Inspector The make utility passes the same options to the compiler and linker every time
button and choose Build you build a project. You can add to these options using the Build Attributes
Attributes in the Project - : : : :
Inspector panel inspector. The compiler and linker options you specify here are also added to

' the compiler and linker options used when building the project’s subprojects.

u'(‘.| Q\ | _j | ﬂ‘i—g— Click here or choose Inspector from the

Tools menu.

Type compiler options in the
Compiler Flags field.

Type linker options in the Linker
Flags field.

Tl — Progpees] s s o

[EGEAEEWEL =H——————— Choose Build Attributes.

Talm
Hamdni Smarch Crdn -I
The pop-up list above the
compiler flags controls the target
platform for those flags. You can |
specify different values for the
bottom five options depending s | o o] - |
on what platform you are SPERSTEP 1 Math =
building fo—Mach, Windows, or Comi Flags | . - ‘ ‘ o ‘ ‘
aPDO platform. For more —— Type compiler and linker options in these fields. For library
N A Linkmi Flag | projects, the linker options are passed to libtool.
information, see “The Platform 5 P o
Pop-Up’s Purpose.” Bk |
BLid Tl |t nsgrusmshs

Interesting Compiler and Linker Options

Here are some interesting compiler and linker options you may Linker Options
want to try. For more options, see the cc(1) and Id(1) man pages. . » .
-sectorder Order the blocks in a specified section.

Compiler Options -undefined Specify how undefined symbols are treated: as

. . . errors, warnings, or ignored.
-ansi Use strict ANSI C definition. g g

-traditional Use the traditional Kernigan & Ritchie C definition. -whyload - Indicate why each member of a library is loaded.

bsd Use strict BSD semantics. -ysym For a given symbol, list files that referenced it.

-Yn For the first n undefined symbols, lists the file that

-Whpointer-arith Print a warning if pointer arithmetic is used on referenced the symbol.

a void pointer or a function pointer.
-finline-functions Make all simple functions inline.

-pipe Use pipes in place of temporary intermediate files.

197

Setting compiler and linker options

Dynamic Linking

OPENSTEP 4.0 introduces dynamic linking. When you use
dynamic linking, references are resolved at run time instead of at
link time. This means you don’t have to relink your application
every time a definition in a dynamic library changes. You get the
benefit of the changes without having to perform a build.

Dynamic linking is the default, and you must use it if you link with
a dynamic shared library. All frameworks are dynamic shared
libraries. (If you want to create your own dynamic shared library,
see Chapter 12, “Creating Frameworks and Dynamic Shared
Libraries.”)

Static Linking

1. B}l ———>| libraryl
2. EUlse] ———>| library2
3. Bl ——> | library3
symboll resolved

The main difference between static and dynamic linking is in how
libraries are searched for unresolved references. When you use
static linking, each library is searched for unresolved references
exactly once.

When you use dynamic linking, the static linker must simulate the
dynamic link editor to see if there are any unresolved references.
It places each library in a search list. Then, whenever an
unresolved reference is encountered, it searches each library in
the search listin order until it can resolve the symbol. With
dynamic linking, a library might be searched several times.

Dynamic Linking

1. Bl ———>| library1
library2
library3

symboll resolved

198

Chapter 9

Building

Creating a precompiled header

Select the header file in the
project browser.

Click the Inspector button.

Choose File Attributes in the
Inspector panel.

Select Precompiled Header in
the inspector.

If you select both Public Header
and Precompiled Header in the
File Attributes inspector, the .h
file is installed, not the .p file. If
you want the .p file installed (for
example, if you're building a
Framework or Library, see
“Installing a precompiled
header” in Chapter 12, “Creating
Frameworks and Dynamic
Shared Libraries/DLLs.”

199

A precompiled header is a header file that has been parsed and preprocessed,
thereby improving compile time and reducinng symbol table size. Only those
macros and external declarations needed to compile the file are read from the
prcompiled header. Precompiled headers have a .p extension. You can define
one for any type of project.

Click here, or choose
Inspector from the
Tools menu.

—— Select the header file you
want to make public.

= F.___

f
I'mgacl rapEe-ie

Choose File Attributes.

h | MM cLme it Private i P

i =

P € e
_|Picped] Hamdn
_JFruccangad wil Header

Deselect Public Header.

e riareanen N
e Ll M PR

When you create a header file that you intend to precompile, follow these
guidelines:

m Make sure that you import files in the proper order to avoid undefined symbol
errors. If ClassA defines an instance variable of the ClassB, ClassB’s header
should be listed before ClassA's header in the precompiled header.

= Only import the system headers that are necessary for the interface.

A system header imports many other headers. The more headers you import
into your precompiled header, the greater the risk of having a name conflict.
For example, a system file might define a public struct that conflicts with a
private struct declared in your project’s headers. If a name conflict occurs,
the compiler won’t used the precompiled header.

Creating a precompiled header

To avoid name conflicts, import all of the project’s header files into one
precompiled header, and import all other header files separately. Make sure that
system files that aren’t necessary for the interface aren’t imported indirectly
either.

For example, suppose you have a project with a precompiled header named
Precomp.h that imports ClassA.h along with all other header files in the project.
ClassA defines an object that uses Foundation API in its interface declaration,
and the implementation of ClassA uses functions from libc. ClassA.h should
import the Foundation’s precompiled header and Precomp.h. It should not import
libc.h because the interface declaration doesn’t need it and importing it increases
the risk of a name conflict. Instead, libe.h should be imported in the
implementation file, ClassA.m, because it is necessary for the implementation.

ClassA.h

#import <Foundation/Foundation.h>
#import "Precomp.h" /* use this for faster compiles */

@interface ClassA : NSObject

{

NSString *aString;
}
- (NSString *)aString;

@end

ClassA.m

#import "ClassA.h"
#import <libc/libc.h>

@implementation ClassA

@end

200

Chapter 9

Building

Customizing your makefiles

» Setinformation in the Build
Attributes inspector.

Or

» Edit the files Makefile.preamble
and Makefile.postamble.

“Creating your own build
targets,” “Setting search paths,”
and “Setting compiler and linker
options” in this chapter describe
some of the fields in the Build
Attributes inspector.

201

Sometimes it’s necessary to alter the standard build process as defined by the
project makefile. If you need to do this, first look for the options you need to
change in the Build Attributes inspector. Project Builder uses the information
you set in the Build Attributes inspector to index the project. So to make sure
the project index is correct, you should use this inspector instead of editing the
makefile directly. (Project Builder updates the makefile for you.)

v'g| qﬂ | __'|J| ﬂ-lﬂi Click here or choose Inspector from the
Tools menu.

Enalld Adibarkan —— Choose Build Attributes.
=] -
Harder Gearch Crder =

—— Search paths for files in nonstandard locations.

=] I [T | &k I
OPEMETEP v kiach .|||
STFCT ¢ STEF
Caraler Fh.g-hl i e Options for the cc, Id, and libtool commands.
Linksr Flags | 1
nrial Ir|.| L i ————— Where the executable lives after it is installed.
HulH In| ——— Where intermediate files (such as .o files) are placed.

Hull Tn-ull 8 A [~ Path for the make utility.

If the inspector does not have an option for what you need to set, edit the files
Makefile.preamble and Makefile.postamble. Both files contain makefile variable
definitions, and the comments in these files describe what each macro defines.

In general, Makefile.preamble contains macros that add to the standard makefile
definitions, and Makefile.postamble contains macros that override the standard
definitions. For example, the LIBS macro defines the libraries that your program
should link with. The standard makefile sets this macro to the libraries in the
project. If you want to change this definition, you uncomment the LIBS definition
in Makefile.postamble and change the definition. However, if you want to link with
more libraries than those added to the project, set OTHER_LIBS in Makefile.preamble
to the additional library’s name.

Customizing your makefiles

If you’re building a library or
framework, see Chapter 12,
“Creating Frameworks and
Dynamic Shared L.ibraries,” for
more information on setting up
the makefiles.

Reducing Compile Time

Each build begins by exporting any public headers to a location where they are
visible to the rest of the project (for example, headers in subprojects are
exported to the derived_src directory if you mark them as Project Headers in the
File Attributes inspector). If you're building a project that does not export any
headers (no boxes are turned on for header files in the File Attributes inspector),
such as an application or tool with no distributed objects or library API, you can
omit this step by setting this macro in Makefile.preamble:

Preamble Macro Description

SKIP_EXPORTING_HEADERS Skips the exporting headers step of the build.

Adding Make Dependencies

If you add dependencies or targets to the makefile, set these macros in
Makefile.preamble.

Preamble Macro Description

OTHER_PRODUCT_DEPENDS Dependencies you defined that should be used in all builds.

OTHER_INITIAL_TARGETS Targets you defined that should be built before subprojects.

OTHER_INSTALL_DEPENDS Dependencies you defined that should be used for the install target.

Setting Up The Install Target

To set up the install target to work the way you want, set these macros in
Makefile.preamble.

Preamble Macro Description

DSTROOT Path to prepend to the installation path specified in the Build Attributes
inspector. The default is /.

202

Chapter 9

Building

203

And these macros in Makefile.postamble.

Postamble Macro

Description

INSTALL_AS_USER

The owner of the installed files. The default is root.

INSTALL_AS_GROUP

The group for the installed files. The default is wheel.

INSTALL_PERMISSIONS

The installed files’ permissions. The default is read and execute
permissions turned on for all users.

APP_STRIP_OPTS

Stripping options to pass to the strip tool. The default is no options,
which strips debugging symbols out of the executable. Only set options
here if the application loads other bundles.

APP_WRAPPER_EXTENSION The extension to use for application’s output. The default is .app.

Setting Up Make Clean

To set up make clean to work the way you want, set these macros in

Makefile.preamble.

Preamble Macro

Description

OTHER_GARBAGE

Files that should be deleted in addition to object files and executables.

CLEAN_ALL_SUBPROJECTS

If defined, make clean cleans subprojects as well. This macro is
defined by default. To undefine it, comment it out in
Makefile.preamble.

The Platform Pop-Up’s Purpose

Do you want your project to run on multiple platforms? For
example, are you writing an application that you plan to have run
on both Mach and Windows? Or maybe you're writing a
framework that you also want to build on one of the Portable
Distributed Objects (PDO) platforms.

If this is your situation, the platform pop-up list is for you. (This is
the list that appears just above the compiler options on the Build
Attributes inspector.) Different platforms have different
requirements. For example, you might install the application in a
different location on a Windows platform than you would a Mach
platform. You'll need to use different linker options because the
platforms each use a native linker. Set the options as you want

them for one platform, then change the pop-up, and set them for
the other.

The platform pop-up listis just a convenience that allows you to
have one version of the project even though you're building for
two platforms. It doesnt magically build an executable that will
run on all the platforms you want. That is, if you're building an
application on Windows, you'll get an application that runs on
Windows, not on Mach. To get a version that runs on Mach, you'll
need to transfer the project directory to a machine running
OPENSTEP for Mach and build again.

Customizing your makefiles

Overriding Compiler and Linker Options

Most targets produce an optimized, debuggable executable and do not suppress
compiler warnings. To change the compiler options used to produce the usual
executable, override these macros in Makefile.postamble.

Postamble Macro Description

OPTIMIZATION_CFLAG Compiler optimization option, used by all but the debug target.
The default is -0, which reduces code size and execution time.

LOCAL_DIR_INCLUDE_DIRECTIVE Override if you don’t want the current directory in the default
search path. By default, this is defined as -1.

DEBUG_SYMBOLS_CFLAG Compiler debug symbols options, used by all butthe install target.
The default is -g, which produces line number and symbol
information.

WARNING_CFLAGS Compiler warning message level, used by all targets. The default

is -Wall, which suppresses none of the warning messages.

DEBUG_BUILD_CFLAGS Compiler options used only by the debug target. The default is
-DDEBUG, which defines the DEBUG preprocessor macro.

PROFILE_BUILD_CFLAGS Compiler options used only by the profile target. The default is
-pg, which produces information for gprof, and -DPROFILE,
which defines the PROFILE preprocessor macro.

204

Chapter 9

Building

For more information about the
tools listed here, see their man

pages.

205

Setting Up Other Tools

Some tools are invoked by make if the project contains files with certain
extensions. To set up these tools, set these macros in Makefile.preamble.

Preamble Macro Description

PSWFLAGS Options for the pswrap tool (invoked on .psw files).

YFLAGS Options for the yace tool (invoked on .y.c or .ym.m files).

LFLAGS Options for the lex tool (invoked on .l.c or .Im.m files).

MSGFILES Inputfiles for the msgwrap tool. These should have the .msg extension.
DEFSFILES Input files with a .defs extension for the mig tool.

MIGFILES Input files with a .mig extension for the mig tool.

RPCFILES Input files for the rpegen tool (invoked on x files).

Including More Files in the Build

There may be files that you don’t want to add to the project but that should be
included in the build. Use these macros in Makefile.preamble to have the build
handle more files.

Preamble Macro Description

OTHER_LIBS Libraries to link with besides the libraries included in the project.

OTHER_OFILES Object files to link into the executable besides those produced by the
source files in the project.

OTHER_SOURCEFILES Source files besides those included in the project.

INCLUDED_ARCHS Architectures to which this project or subproject should be restricted

to building for. Building for other architectures is skipped. Must be a
subset of the architectures selected in the Build Options panel.

EXCLUDED_ARCHS Similar to INCLUDED_ARCHS, but lists architectures that this project
or subproject shouldn't build for instead of architectures it should build
for. Don't use if using INCLUDED_ARCHS.

Customizing your makefiles

206

Starting a debugging session

Running the program in the
debugger

Interrupting the program
Executing a single line of code

Stepping into a method or
function

Setting breakpoints
Managing breakpoints

Executing several lines of
code

Navigating using the stack

Examining the value of a
variable or an object

Debugging object allocation
and deallocation

Debugging a multithreaded
program

Changing program execution
while debugging

Changing code while
debugging

Debugging multiple projects

Debugging frameworks

Basi< Debugging

A fly, Sir, may sting a stately horse and make him wince; but
one is but an insect, and the other is a horse still.
Samuel Johnson

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.
John Dryden

206

Basic Debugging

Starting a debugging session

You can use Project Builder’s Launch panel to run your program in the debugger
or, if you want, outside of the debugger. The Launch panel provides an interface

Click the launch button to bring
up the Launch panel.

If necessary, click the
checkmark button in the Launch
panel to setthe executable name
and environment.

Click the debug button to start the
debugger.

Oor

Click the launch button to run
your program without debugging.

Project Builder automatically
includes debugging symbols in
your program if you use the
default build target. See
Chapter 9, “Building” for more
information on building a
program.

For a complete list of gdb
commands, see the OPENSTEP
Development Tools Reference.

207

to the Free Software Foundation’s gdb debugger.

'\l"ll o

m IR Cenkaler |

= rru-l.llhlul.r -Ill!l “Treywlfabr3er. qm”

B i [E e —||_w|:~f|

-'-‘-
4
]
b
|
I

Click this button or
choose Launch from
the Tools menu.

Click here to start the
debugger.

When the debugger is
running, this column
displays the program
counter and marks
each breakpoint.

gdb is a command line tool, and it has a rich command-line interface. Project
Builder provides a user interface for the most common debugging tasks. You
perform other debugging tasks using the gdb command line interface.

After gdb starts up, you can click the run button to start up your program.

Starting a debugging session

If the Launch panel isn’t displaying the name of the project executable in its
titlebar, you need to set it in the Launch Options panel before you can run or

debug the program. Needing to set the executable usually occurs when your

project contains subprojects or builds a binary that doesn’t run on its own (for

example, it’s a framework or a loadable bundle)

Click this button to set
up debugger.

Select Executables.

Select one of the
executables listed here.
If there are none, click
Update List. Or click Add
and select the executable
from the Open panel.

208

Basic Debugging

Setting Up the Program’s Environment

Besides allowing you to choose the executable, the Launch Options panel also
lets you set environment variables, pass arguments to your program, and specify
other directories that contain source code for this project.

Comrmoidl Line frgesrmris

Enter any arguments
you want passed to the
executable here, one per
line. Click Add to add a
new line.

If there are environment
variables you want to use,
click Add to enter them
here.

To have gdb look in other directories for
source code, click Add to enter them here.

You can change environment variables and command line arguments while your
program is running, but they won’t take effect until you restart your program.

209

Starting a debugging session

Running the Program Outside of the Debugger

If you want to launch the program outside of the debugger, click the Launch
button instead of the Debug button. The program is started up and operates
independantly, just as if you’d started it outside of Project Builder.

I T
BT RS RS

Click here to run the program.

Attaching to an Already Running Process

Sometimes, a problem occurs only when you launch an process resumes executing. You'll kill the process if you try to quit
application outside the debugger. When you launch itinside gdb, gdb or if you try to start the program from the beginning. (gdb asks
the problem disappears. If this happens, launch the application for confirmation before it allows you to do these things.)

using the launch button and use the gdb command attach to hook , . .
If you're having trouble attaching to a process before the errant

up to it: . .

code is executed, send your program a stop signal as one of the
(gdb) attach pid first messages:
pidis the process ID of the process you want to debug. [NSThread sleepUntilDate:

. . . NSDate distantFuture]];
attach immediately stops the application. When you use attach, [1

you can debug the process justlike you normally would: by setting This indefinitely suspends execution of the application. Once you
breakpoints, modifying storage, and so on. attach in gdb, click the continue button to go on from there.

When you're finished debugging, use detach (which takes no
arguments) to detach the debugger from the process. The

210

Basic Debugging

Running the program in the debugger

» Click the continue button to
continue from where you left off.

or

» Click the run button to start the
program over.

211

The run button starts you program from the beginning. Typically, you only use
the run button to start the program for the first time. If you've interrupted the
program or hit a breakpoint and you want to continue executing from that point,
use the continue button.

Click here to start the program over.
If it was already started, the current
state is thrown away.

Click here to continue from where
the program is stopped.

1 | Ir-I:l|l|l|lu M v
Lty P AR T PR A e

B
U0 L T el b D T el T | L LT T R P G
BT B
Bkt Hml] Tab Db FRH A0
bm DN ZEDH W Tled Lol | o] PR D Do o (0 b, Tk mc il
B = T R T T TR

When you continue,
execution starts here.
When you click the Run
button, it starts over (at
the main() function).

Bomsbamard L [Tyl by el il | | s ol L
bl bWl wd Tasdrwd ler = T
T

Interrupting the program

Interrupting the program

» Click the suspend button.

It’s often necessary to suspend the program that you’re debugging so that you
can examine its state or enter gdb commands. For example, to set a breakpoint
or to see the value of a certain variable, you must interrupt the program first.

¥ Click here to suspend
EF_E the program.

O EDEEE

Fmamarg mpmicdn fiod kgt tula goe
‘B L 2 T F w1 B Al ey WL i sl
o ek B

EEAT il lh TG Al LIS (ke

At 18 4T R M T e A0 [T Tl el et L LT e] R

smfl Ttk Vo Tap0el 01 Cbria Tl pogin

= Iuld mlle
1
[reririoc relewer].
[roedosers el

[

Brosppaind 1 - JULoed poller myshofiosbib] < pod Pef] -HI:
el 2R i Tifoniaclm » I72

g frewbemr I m Orkinl [RCorimller m TR

ourY U

Corfumng

= IV LE ikl MY

Koy mapeirey - [|oeerpdeer sl ow oo wg
BT B B] e T i | o b |
L w [Fer AL] el

A i ®irat Fapld 0
Icomd | lald mlet "l pol P,

The program counter shows where

[1¥eHrtafa ok o= o -'J e the program stopped executing.

It L Foili e

o

I1f you’re debugging an application, it will display the spinning cursor when you
suspend it. The application won'’t accept any input until you continue
execution.

212

4

Basic Debugging

Executing a single line of code

Click the next button.

213

If you know that a particular method has an error in it somewhere, you can
execute that method a line at a time (called szepping) to see exactly where the
error occurs.

Click here .

o Gl A g B

e
L red, et L iz
Wrgrk ol et

[Eaft rrblcE diZi e E vl TEFCE | clla UFpF b B o LN Sretaa] |
[T R o o R e e e e T]

™= gor! mryy P U0
[omrf rip msUhireBeiocior Bosles lor | oeweas O

LF jaedew vo o B e 0 [orirdeec road g |
i = [ordkrviacl bpcifmeer [oerioeen
b e Lk e e] 7.
» ol o diats sl sl],
[] JLEL &g ok rasgnea T
o mcras aia [zwrarers for = (caenT wla eroegvala|])

The program stops here.

]
[l EDde]

The next button always executes until control returns to the line of code directly
below the current line. That is, if the current line contains a function call or
invokes an Objective-C method, the entire function or method is executed, and
the program doesn’t stop until it returns (unless a breakpoint is hit).

Stepping into a method or function

Stepping into a method or function

» Click the step button.

If the program counter is pointing to a line containing a method invocation and
you click the next button, that method executes before the program stops. If you
want the program to stop inside of that method, click the step button instead.

Click here .

et m Gt i gl

] rml, gl B opian

|' Claank 1-
4 A ki v

[
0

— —r———
[Eaft e b i e vl MEFE S [lls’ LPpF i 10 o L Saa] |
[e A o R e R e T

™= gor! mrey P U
[l iy lexior | 3]

LF jaedew vo o B o 0 [oreirdenr roand] |
i = [comkrviacl bpciferbee [oearioenn
I b per LAE Dreden arwder]],
» [elf mpuilaiats sl 1
[canrim] LD | Bl o aagine s oo
Aol ald [orarry for = [carenTusda erogvala|]0

The program stops at the first
line inside populateFields.

]
|| el v £ 0|

The step button executes the program until control reaches a different line in
the program. If the current line contains a method invocation, the program stops
at the beginning of that method. If the method isn’t part of your program (if it’s
in one of the OpenStep frameworks, for example), the entire method is
executed. Execution doesn’t stop until the next line of code you own.

214

Basic Debugging

Setting breakpoints

If the program is running, click
the suspend button to stop it.

In the Project Builder main
window, double-click in the gray
area next to the line where you
want the breakpoint.

Click the continue button to
execute up to the breakpoint.

215

A breakpoint makes your program stop whenever a certain point in the program
is reached. Every time the program encounters the line of code that has the

breakpoint, it stops executing.

Trewvaiiatetnr

MHalrsapor | i aMeln 5 o treeu e Dire | i

il P, rd
al LTI LT

s rrla b
-k Fimnc
seanhnlinea g0
- pn TG,
canegfCabeo
T ERRENT ke
[P]. date

= INELE kbl roTIE

Eeh il e il - | ORE AT RILEE L

Double-click next to the line
where you want the breakpoint.

If you’re debugging an application, the cursor spins when it hits a breakpoint.
When you enter this state, go to the Launch panel and examine the program’s
state (print values of variables, examine the stack, and so on).

Setting breakpoints on data

Sometimes you want to stop the program
whenever the value of a variable changes,
no matter which part of your code is doing
the changing. To do this, use a watchpoint .
To set a watchpoint:

(gdb) watch expr
where expris any expression or variable.

gdb treats watchpoints and breakpoints the
same. Anything you can do to a breakpoint,
you can also do to a watchpoint (see “Cool
Breakpoint Stuff” in this chapter). The

Breakpoints display of the Task Inspector
provides information on both breakpoints
and watchpoints.

When a watchpointis set, your program runs
much more slowly that if you had set a
normal breakpoint, so use watchpoints
sparingly. (One alternative is to set a
conditional breakpoint, described in “Cool
Breakpoint Stuff.”) However, watchpoints
are sometimes the only way to catch an error
when you don‘t know where the error
oceurs.

Setting breakpoints

Cool Breakpoint Stuff

Using gdb commands, you can add more power to your
breakpoints and make debugging a breeze. For complete
information on gdb breakpoints, see the OPENSTEP Development
Tools Reference manual. Here are some highlights.

Setting Breakpoints in Dynamically Loaded Code

gdb doesn’'t know about symbols in dynamically loaded code
(such as code inside frameworks or loadable bundles) because
it's notlaoded until runtime. This means you can’t set a breakpoint
in a framework until after you start the program that uses it. This
is pretty frustrating when the framework is what you want to
debug. However, you can set a future breakpoint when the
framework isn't loaded yet. To do this, use the future-break
command:

(gdb) future-break address

(address can be a method name, a function name, a file name and
line number, and so on.) When you enter this command, gdb
checks the loaded symbols for a symbol matching address. If one
is found, it resolves the breakpoint. If not, it holds on to it. Then,
whenever a dynamic shared library is loaded, gdb checks the
breakpoint against the newly loaded symbols until it can resolve
the symbolin the breakpoint. (Ifthe symbol can never be resolved,
the future-break just sits around doing nothing.)

When you quitthe program, gdb unloads all of the breakpoints set
in dynamic shared libraries. These breakpoints are converted into
future breakpoints—when the library is loaded again, the
breakpoints are resolved again.

Future breakpoints are just like normal breakpoints in every other
respect; you can add commands to them, disable them, enable
them, and so on. In the Breakpoints display of the Task Inspector,
they are listed as “unloaded.”

Conditional Breakpoints

If you only want a breakpoint to stop when a certain condition is
true, use the condition command:

(gdb) condition bnum expression

expression is any Boolean expression and it's associated with
breakpoint number bnum. (The Breakpoints view of the Task
Inspector tells you the breakpoint number.) From now on, this
breakpoint will stop the program only if the value of expressionis
true. To remove a condition from a breakpoint, enter condition
with no expression.

Ignoring Breakpoints

You can disable a breakpoint for a specific length of time with gdb
command ignore:

(gdb) ignore bnum count

This command ignores the breakpoint the next counttimes itis
reached. (0 means the program stops the next time it's reached.)
If the breakpoint is a conditional breakpoint, the condition isn’t
checked unless the ignore count is 0.

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute
when the program stops at it. For example, if you want to know
what the value of the variable x is whenever breakpoint 5 is hit,
enter the following. (You must type end when you're through to
make the gdb prompt return.)

(gdb) commands 5
> print X
> end

This brings up a handy trick for ignoring breakpoints. Often, you
don’t know how many times you want to ignore a breakpoint
(making the ignore command useless), but you know that you
wantto ignore it until a specific pointin a program is reached. For
example, say you wantto stop at a method named setCurrent: but
only if the message is sent by the processParagraph method. In
this case, you can do the following:

(gdb) break setCurrent:
Breakpoint #1 set
(gdb) break processParagraph
Breakpoint #2 set
(gdb) disable 1

(gdb) commands 2

> silent

> enable 1

> continue

>end

(gdb) continue

This example sets two breakpoints, one at the beginning of each
method. Then, it disables the breakpoint at setCurrent:. When the
breakpoint at processParagraph is reached, it enables the
breakpoint at setCurrent: and continues executing. (silent is just
a convenience. It means that gdb won't print the usual stopped at
breakpoint message.)

216

Basic Debugging

Managing breakpoints

To move a breakpoint, drag it to When you no longer need to stop at a breakpoint anymore, you can delete the
where you want it to be. breakpoint; however, you might want to just disable it. When you delete a

To delete a breakpoint, dragitoff preakpoint, it is gone forever. When you disable a breakpoint, it still exists and
the Project Builder window. is still displayed in the Project Builder main window, but the program does not

I‘I’i::(s;b'e a breakpoint, double- 5t at the breakpoint. You can enable the disabled breakpoint later.
To find out information about
breakpoints, bring up the
Breakpoints display of the Task
Inspector.

YRl i R LR LT T R Y

To move a breakpoint, drag it
to where you want it to be.

To delete a breakpoint, drag it
out of the margin.

To disable a breakpoint, Double-
click it. Double-click it again to
reenable it.

217

Managing breakpoints

Sometimes it’s useful to know how many breakpoints you’ve set and where they
are. The Breakpoints view of the Task Inspector provides this information. The
first column of this display gives you the breakpoint number, which is used in
many gdb commands.

Click here.

— Select Breakpoints here.

Breakpoint number.

Breakpoint name.

Using the Breakpoints display, you can also enabled and disable each
breakpoint by clicking the Use column, or you can enable, disable, and remove
all breakpoints. Use the View button to have Project Builder go to the line where
the breakpoint is set.

See “Cool Breakpoint Stuff” in
this chapter for some useful gdb
commands involving
breakpoints.

218

Basic Debugging

219

Executing several lines of code

» Drag the program counter to the
line where you want execution

to stop.

When you’re stepping through code, you often hit a place where you'd like to
execute several lines of code and stop again. For example, if you encounter a for

loop that is executed several dozen times, you probably want to jump through
the for loop and resume stepping after the loop ends. To do this, just drag the
program counter to the first line of code past the for loop. The entire loop
executes, and the program stops when it reaches the line of code you’ve dragged
the counter to. You can then click the next or step button to resume stepping.

Tranl i

5

Maamaprideroga ia Tan S Lef oty Tars Dre

=]

R

LTI n-l

4]

Carelin

Lol 10
T Corb gl e

A el wrdFimi L

il sRLrl - ul
o T 3
caralc N
oA AT AT
L1 -]
Iefrrma
PEEEP

-

¥ | Liwle] oY

Y

P R F—

Drag the program counter past the
lines of code yo want to skip over.

Dragging the program counter is more convenient than setting a breakpoint at
the end of the loop. You don’t have to delete the breakpoint when you’re done.

Navigating using the stack

Navigating using the stack

Click the inspector button on the
Launch panel to bring up the Task
Inspector.

Choose Stack from the pop-up
list.

Click a stack frame to have the
debugger jump to that stack
frame.

Each time your program invokes a C function, a C++ member function, or an
Objective-C method, the information about where in the program the call was
made is saved in a block of data called a stack frame. The frame also contains
the arguments of the call and the local variables of the function that was called.

The Task Inspector displays the stack on the right side of the window. Each row
in the stack display represents one stack frame. The current stack frame is
numbered 0, the frame that called it is 1, and so on.

Trevvalisheoor — Lmrsdi - Trevslfsheyorapo
— Click here to bring up the Task
_IE|E| ; | .'|“|i |fI]|E| |@ Inspector.

T ek mapacior - Trevasheoor. spp”

d ACuiindrwedacl akh| Ned Dl TeatE, L rdecedb?
1 JTACrnd Ky s BFRCEA | HoRe = [PRALE. _reiamiNE Click a row to navigate to a
i ::’i*"rfml I:.m.:'.:;,:;: different stack level.
4 pECarnlisndechon o] £l

~15% -FECel_iwrdSekerdnam| -1

— & -PECHIDAL NS PR I Drag the name column to see

3 FEPAErCEE pEC AN TR more of the name and the
ER e T T T P I arguments to the function or
4 -pEMucs st 4] method.
l -FEAap e son e eenl| -1

o] 11 PG e]

[]

At any given time, one of the stack frames is selected by gdb; many gdb
commands refer implicitly to this selected frame. In particular, whenever you
ask gdb for the value of a variable in the program, the value is found in the
selected frame. You can select any frame by clicking it. You can then examine
the values of variables pertaining to that stack frame. As you navigate to a
different stack frame, the Project Builder main window shows you the currently
executing line of code at that frame.

Tip: You can return from the current level by Shift-clicking the program counter.

220

Basic Debugging

221

Examining the value of a variable or an object

If the program is running, click
the Suspend button to suspend it.

Select the variable in the Project
Builder main window.

In the Launch panel, click the
object button if the variable is an
object.

or

Click the * button if the variable
is a pointer.

Or

Click the Print button.

The three rightmost Debugger buttons print the values of variables or expressions.

Select a variable or an expression. Click one of these buttons.

[

Trecvalieheoor

32|8|8| v

“Trewlfshrser.qm”

I'II]

gdb displays
the value.

The first of the three buttons (the Print button) prints the value of a variable or
expression if it’s not a pointer or an object. If the variable (or the result of the
expression) is a pointer, the Print button prints the address. Usually, you want to
know the value at that address, not the address itself. In that case, use the next
button over (the one with a dereference symbol), which prints the value pointed
to by the selected variable. Similarly, use the button with a cube (the Print-
object button) instead of Print to see the information about Objective-C objects.

Getting Useful Information From Print-object

The Print-object button (which invokes the gdb command print- more useful data. Compared to dumping the contents of the
object) sends the message description to the selected object. underlying struct, an implementation of description can print out
NSObject defines the description method, so all objects respond just the information that is helpful and use a more readable
to it. By default, this method prints the object’s class name and format. Your description method should return an NSString.

hexidecimal address:

<NSApplication: Oxbb5e4>

Many Foundation classes override description. For example,
NSArrays, NSDictionaries, and NSStrings print their contents
instead of their addresses.

However, you can override this method in your classes to provide

Examining the value of a variable or an object

For the Experts: More on Examining Variables

Making Sure Variables Stick Around

When you build the program using the default build target (for
example, app for Application projects), an optimized, debuggable
executable results. This executable is helpful if a bug surfaces
only in the optimized version; however, debugging optimized code
sometimes gives surprising results. Control flow may change and
variables may disappear without a trace. You ask gdb to print
such a variable and even though the source clearly shows itis in
scope, gdb replies:

(gdb) print num
No symbol "num" in current context

To ensure that a variable be available in the debugger even after
optiumization, declare the variable volatile.

Value History

gdb maintains a value history for your session. This means that
every expression you evaluate using the print command (or the
Print, Print *, and PO buttons) is assigned a value number in the
history, like this:

(gdb) print self
$7 = (struct NSApplication *) Oxbb5e4

You can refer to this value as $7 and use it in future expressions:

(gdb) print (char *) [$7 appName]
$8 = 0xb80cc "FunWithGDB"

Once a value is entered into the history, it doesn’t change. The
value is stored as $7, not the expression that generated it. This
means that $7 doesn’t change to hold the new value of self when
your program enters a different scope.

Also, at any time, $ refers to the last value in the history and $$ to
the next-to-last value.

The output command has the same semantics as the print
command, but doesn't add the result to the value history. You can
use this difference to avoid cluttering the value history with
unimportant results. For more sophisticated printing needs, gdb
provides a printf command similar to the C version that provides
for formatted output. Like output, the results from printf are not
entered into the value history.

Any name that begins with a $ can be used as the name of a gdb
convenience variable. These variables are implicitly typed and
created at first reference. Use print to get the value of a
convenience variable and the set command to set or change the
value. You can set the value to any valid C or Objective-C
expression, including methods or functions:

(gdb) p $array = [NSArray array]

$24 = 793052
(gdb) p $num = 1230 % 4
$25=2

All registers have convenience variables associated with them.
The info registers command dumps the contents of all registers
so you can see the names associated with each register. The
register convenience variables most often used are $fp, which
holds the frame pointer, $sp for the stack pointer, and $pc for the
program counter.

Locating Your Variables
To find out how a variable is stored, use this command:

(gdb) info address self
Symbol "self" is a variable in register a2.

info address tells you if the variable is stored on the stack orin a
register. This command is useful to determine if optimizations are
causing problems, particularly on RISC machines.

Examining Raw Memory

Use the command x (for “examine”) to examine memory without
referencing the program's data types.

x is followed by a slash and an output format specification,
followed by an expression for an address:

x/ fmt addr
These fmt letters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (two bytes each).
w Examine words (four bytes each).

g Examine giant words (eight bytes).

These fmt letters specify how to print the contents:

Print as integers in unsigned hexadecimal.

Print as integers in signed decimal.

Print as integers in unsigned decimal.

Print as integers in unsigned octal.

Print as an address, both absolute and relative

Print as character constants (this implies size b).

Print as floating-point. This works only with sizes w and g.
Print a null-terminated string of characters.

Print a machine instruction in assembler syntax (or nearly).

- w ho0o o O c a X

Once you've entered x to see the value at an address, hit return to
see the value at the next address.

222

Basic Debugging

Debugging object allocation and deallocation

Use enableFreedObjectCheck:
inside gdb.

Or

Use the oh tool to see where and

when objects are allocated and

deallocated.

Or

Use the AnalyzeAllocation tool to

see where and when objects are
allocated and deallocated.

223

Ignoring Autorelease Errors

You may want to debug the rest of your program first, saving
the release problems until later. The enableRelease:
convenience method defined in Foundation's
NSAutoreleasePool class helps you ignore autorelease
errors. NSAutoreleasePool defines the application’s
autorelease pool. When an object is autoreleased, itis added
to the autorelease pool. Atthe top of the eventloop, all objects
inthe pool are sent a release message, which decrements the
reference count and potentially deallocates the object.
NSAutoreleasePool allows you to control that pool.

If you receive messages from the debugger indicating that

Object allocation and deallocation are often trouble spots. Two common

problems are using an object after it has been deallocated and releasing an
object too many times. Here are some strategies and tools to debug object
allocation and deallocation.

A typical autorelease error:

objc: FREED(id): message objectForKey: sent to freed object=0xfde44

you are sending messages to deallocated objects, enter this
command:

(gdb) call [NSAutoreleasePool
enableRelease:NO]

This message disables the deallocation of all objects in your
program, ignoring autorelease errors.

Your program must be started when you send this message.
It's often useful to break on main() and send this message
after the first line or two of the program.

Debugging object allocation and deallocation

Debugging Autorelease Errors in gdb

If you are releasing an object too many times, invoke the NSAutoreleasePool
class method enableFreedObjectCheck: and set a breakpoint on
_NSAutoreleaseFreedObject.

enableFreedObjectCheck: causes all autorelease and release messages to first check to
see if the receiving object is already in an autorelease pool. If it is, they won't
deallocate the object. When the program hits the breakpoint, look at the stack
to see what method was releasing the object.

Invoke enableFreedObjectCheck:
and break on
_NSAutoreleaseFreedObject.

Jump to the first stack frame that shows code
from your program to see which line caused
the error.

224

Basic Debugging

225

Using the oh Command

Another way to debug the autorelease and release errors is to use the oh command
in conjunction with gdb. When you start the oh command, it starts recording
allocation and deallocation events related to the process you specify. You set
NSZombieEnabled so that the memory for deallocated objects is not reclaimed.
(Released objects are just turned into “zombies.”) The advantage to setting this
variable is that you can ensure than an object’s address is unique.

Frevaliehste sameh . “Frmosd Sxisr e

Click here to bring up

the options panel.
=
E'WJ = 3

Ef's hixwrsial -
Set NSZombieEnabled
- to YES.
AN N N .M E

i = In a Terminal window,
start oh on the process
ID of the process you're
ez 1 Lo e L debugging.

When you receive an autorelease error perform the command:
% oh pid address

where address is address of the object that is being release twice. oh will produce
a report showing you the stack frame each time that object is allocated, copied,
retained, or released, like the one shown on the next page.

Debugging object allocation and deallocation

== Stacks for address 0xfa31c, in temporal order (oldest first):

(

"+[NSMutableDictionary allocWithZone:]",
"+[NSDictionary dictionary]",

"-[TAController init]",

"-[NSCustomObiject nibInstantiate]",
"-[NSIBObjectData instantiateObject:]",
"-[NSIBObjectData niblnstantiateln:owner:]",

_loadNib,

"+[NSBundle(NSNibLoading) loadNibFile:...]",
"+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

__main,

start

"+[NSDictionary dictionary]",

"-[TAController init]",

"-[NSCustomObject nibInstantiate]",
"-[NSIBObjectData instantiateObject:]",
"-[NSIBObjectData niblnstantiateln:owner:]",

_loadNib,

"+[NSBundle(NSNibLoading) loadNibFile:...]"
"+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

__main,

start

__NSAPDataReleaseToOffset,

"-[NSAutoreleasePool release]",
"+[NSBundle(NSNibLoading) loadNibFile:...]",
"+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

_main,

start

"-[NSConcreteMutableDictionary release]",

__NSAPDataReleaseToOffset,

"-[NSAutoreleasePool release]",
"+[NSBundle(NSNibLoading) loadNibFile:...]",
"+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

__main,

start

226

Basic Debugging

Keeping Memory Allocation Statistics

Another command, AnalyzeAllocation, lets you look at memory allocation after
your program has finished executing. To use AnalyzeAllocation:

1. Set this environment variable:
% setenv NSKeepAllocationStatistics YES

The NSKeepAllocationStatistics variable tells your program to record information
about memory allocation in a file named /tmp/alloc_stats_name_pid.

2. Run a specific task in your application. The allocation statistics file becomes
very large very quickly, so it is important not to run too much of your program
at once with NSKeepAllocationStatistics turned on.

227

3. Turn off the environment variable;

% unsetenv NSKeepAllocationStatistics

4, Perform this command in a Terminal window:

% AnalyzeAllocation -v /tmp/alloc_stats_ name_pid

Common Autorelease Mistakes

Once you find the object with the autorelease error, look for the
following:

* For every autorelease and release message in your
application, make sure there is a corresponding alloc, copy,
mutableCopy, or retain message sent to the same object.
autorelease and release decrement an object’s reference
count. alloc, copy, mutableCopy, and retain increment the
reference count. The number of increments and decrements
for an object must be equal. Another way of thinking about this
is: If you don't allocate, copy, or retain an object, you're not
responsible for releasing it.

e When an NSArray, NSDictionary, or NSSet (known as the
collection objects) is deallocated, the objects stored in the
collection are released as well. If you need to access an object

you stored in a collection after the collection is released, you
must retain that object before you release the collection.

Superviews retain subviews as you add them to the hierarchy
and release subviews as you remove them from the hierarchy.
If you swap views in and out of the hierarchy, you should retain
the views that are not in the hierarchy.

When you change a window's content view, the window
releases the old content view and retains the new content
view.

Objects do not retain their delegates (to avoid retain cycles).

decodeValuesOf0bjCTypes: returns a retained object.
decodeObject returns an autoreleased object. If you
unarchive an instance variable with decodeObject, send itthe
retain or copy message.

Debugging a multithreaded program

Debugging a multithreaded program

» Use the gdb command thread-list
to obtain information about all of
the threads running in the
program.

» Use the thread-select command
to switch to a different thread.

A single program may have more than one thread of execution. A #read is an
executable unit that has its own stack and is capable of independent 1/0, but
shares the address space of the other threads in a zas#.

gdb allows you to observe all threads while your program runs, but whenever gdb
takes control, one thread in particular is always the focus of debugging. This
thread is called the current thread. Debugging commands show program
information from the perspective of the current thread. If you want to change to
a different thread, use the thread-select command (passing it the thread number,
which is displayed in the first column of the thread-list output).

Trvvaliaheoior

Lnet

| T ol

“TresdiEhe o]

B

s aeed

=lefe]v

s gl b

s MW

The thread-list command
shows information about all
of the threads in the program.

Use the thread-select command
to jump to a different thread.

228

Basic Debugging

Changing program execution while debugging

» Use gdb commands to simulate a Once you find out what’s wrong with your program, you might want to test that
solution to a bug before building. the solution you’ve come up with will work before you change the source code
and rebuild. For example, what if you set a variable to a different value? Will that

solve the problem?

Trevvalishetor — Larsdi - Tresulfshesorapo [

olg|@] v > el oSS

-
'
5
o

o P 1 £ You can use the set command to
| o re'res ok o 21 [i 7 set a variable in the program to a
new value then continue executing.

Command Description
call function Executes the function. You can also use this for Objective-C messages.
jump linenum Resume execution at line number /inenum. Execution may stop

immediately if there's a breakpoint there.

The jump command doesn't change the current stack frame, or the
stack pointer, or the contents of any memory location or any register
other than the program counter. If inenumis in a different function
from the one currently executing, the results may be wild if the two
functions expect different patterns of arguments or of local variables.
For this reason, the jump command requests confirmation if the
specified line isn'tin the function currently executing.

jump *address Resume execution at the instruction at address address.

set var=exp Perform an assignment .

229

Changing code while debugging

Changing code while debugging

Use the gdb command kill to quit ~ After you’ve found a bug, you need to fix your code and rebuild the program.

your program in the debugger. You don’t need to quit the debugger. Just edit the file in Project Builder like you
I normally would, save it, and rebuild. When the build finished, stop and restart

Make changes to file in Project ; .

Builder. the program in gdb. When you click the run button, gdb checks for a more recent

version of the executable and loads it if necessary. By not quitting gdb, you can

Click the build buttonto bringup preserve all of your breakpoints.
the Project Build panel.

Click the build button to build the
program.

TR Pt e

Click Build to rebuild
after making a change.

Go back to the Launch panel.

Click the debugger's run button.

— Click Run to reload the
| program.

3 lj,.|_@|_ﬁ|f| = || ol 2| R S

230

Basic Debugging

Debugging multiple projects

Open the first project.

Click the checkmark button in
the Launch panel.

In the Directories display of
Launch Options panel, click the
Add button.

Select the second project’s
directory in the Open panel.

Start the debugger.

231

A debugger session applies to only one project file at a time. If you have more
than one project open, the Launch panel displays the debugger session for the
currently selected project. If you set a breakpoint in one project, it doesn’t affect
the other project’s debugger session.

If you want to debug two projects that relate to each other (for example, and
application and a framework), you need to make the debugging symbols of one
project visible to the other project. You do this in the Launch Options panel.

Click this button to set
up the debugger.

= Laureh Ophiane - Trresbldvinsraqn [

Select Directories.

Click Add.

Select the section
project’s directory.

When you’re debugging multiple projects and the debugger stops in code that’s
part of the unopened project, it displays the appropriate source code file under
Non Project Files. If you want to go to other files in the second project and set
breakpoints there, open them in the current project window.

Debugging frameworks

Debugging frameworks

Create a tool that tests your
framework.

In the framework project, bring
up the Launch Options panel.

Select Executables.
Click the Add button.

Select the tool’s executable in
the Open panel that appears.

Start the debugger.

To debug a framework or library project, you usually create a tool project that
uses all of the framework’s features. However, you don’t really want to debug
the tool’s code; you want to debug the framework’s code. To debug the
framework, you can select a tool’s executable as the framework’s debugger
target. When you click the debugger’s run button, the tool’s executable is what
is run. However, you can set breakpoints in the framework’s code and step
through it, just as if you were debugging an application.

Click this button to set

TS T

Select Executables.

Click Add.

Select the Tool
project’s executable.

232

Dynamic Loading

Loading nib files dynamically: ...to divide is not to take away.
an info panel
Percy Bysshe Shelly

Displaying an attention panel

Creating a window with
multiple displays

Creating dynamicallyloadable Choosing each stone, and poising every weight,
bundles Trying the measures of the breadth and height;
Here pulling down, and there erecting new,
Founding a firm state by proportions true.
Matthew Arnold

How many things | can do without!
Socrates

236

Chapter 11

Dynamic Loading

237

Multiple Nib Files: Good Things in Small Pieces

Why have multiple nib files in an application? Why not put
everything in the main nib file? The answer is simple: Because
multiple nib files enhance the performance of the application.

You can strategically store the resources of an application
(including pieces of the interface) in several nib files. When the
application needs a resource, it loads the nib file containing it.
Because you don't have to load the entire application into
memory at once, the program is more efficient. The application
also will launch faster.

When many sophisticated applications start up, they load only a
minimum of resources in the main nib file—the main menu and
perhaps a window. They display other windows (and load other

nib files) only when users request it or when conditions warrant it.

Types of Auxiliary Nib Files

Nib files other than an application’s main nib file are sometimes
called auxiliary nib files. There are two general types of auxiliary
nib files: special-use and document.

Special-use nib files contain objects (and other resources) that
might be used in the normal operation of the application (like a
Preferences panel). Document nib files contain objects that
represent some repeatable entity, such as a word-processor
document. A document nib file functions as a template for
documents: it contains the Ul objects and other resources
needed to make a document. (Creating document nib files is
described at length in the book Discovering OPENSTEP)

File’s Owner

The key step in creating applications with multiple nib files is
assigning the auxiliary nib files File's Owner. The file's owner
object is always external to the nib file it owns. It channels
messages between the objects unarchived from the nib file to the
other objects in your application.

The global NSApplication object owns the main nib file. Special-
use nib files are often owned by the application’s controller
object, which you typically define in the main nib file. A document
nib file is typically owned by a separate controller object, a
document controller.

The main job of the File’s Owner object is to load the auxiliary nib
file. To do so, it sends the message loadNibNamed:owner: to the
NSBundle class object. In the main nib file you define an action
method in the controller class and hook that action up to a control
in the interface. That action method’s implementation sends the
loadNibNamed:owner: message. In this way, the nibfile is loaded
only if the user requests it.

Creating Auxiliary Nib Files

To create an auxiliary nib file, you use one of the commands on the
New Modules menu (which is under the Document menu) in
Interface Builder. New Modules gives you several choices of the
type of nib file to create:

¢ New Info Panel Creates an info panel.

¢ New Attention Panel Creates an attention panel.

* New Empty Creates an empty nib file.
¢ New Palette Creates a static palette.

¢ New Inspector Creates an inspector panel.

The last two commands (New Palette and New Inspector) are
used when creating static palettes. If you're not working on a
palette project, you use the New Empty command to create a nib
file, unless you're specifically creating an info panel or an
attention panel.

You might have noticed that the New Application command also
creates a nib file. This command creates a main nib file—one that
contains a main menu and is owned by the NSApplication object.
However, you usually let Project Builder create the main nib file

for you when you create an application project.

Loading nib files dynamically: an info panel

Loading nib files dynamically: an info panel

Create an outlet for the Info Panel
and an action method that
displays the Info panel in the
application’s controller class.

Connectthe Info Panel command
to the controller object.

Choose Document » New
Modules ™ New Info Panel to

create a nib file for the Info Panel.

Add the controller class to the
new nib file.

Assign the controller class to
File’s Owner.

Connect the Info Panel to the
File’s Owner outlet for the panel.

Implement the action method

that loads the Info Panel’s nib file.

Chapter 6, “Subclassing,”
describes how to add outlets and
actions to your custom class and
shows how to connect them to
instances of your class.

The steps you follow to create, load, and manage an Info Panel are common to
creating any special-use nib file. First, in the main nib file, you create an object
that knows about the Info Panel. Usually, this object is the application’s
controller object. Define the class of this object in the Classes display of the

main nib file. When you do, specify the necessary outlet and action for the Info
Panel.

= Docadiderenid

-~ pjectaiTocs Gk Teglish jpry

“laviee

e
e . —— 5
=5 dai Corvirmlier RS
.- 2 TH
L -k o1
T Specify an outlet to identify the panel and
A= an action message that the Info Panel
L{FE command sends when users click it.
gy
s
TREA

b ' proa

Instantiate the controller class, and connect the action to the menu command.

ecacsime Bt 3 |
| ioh Py, — Control-drag a connection line to the
[wimard 1 E application’s controller object.
Edd v Fl-“: =
Fanl ¥ = Deaadidsren@ — _pjectaiToe Galira Maglish pry B
RLT n -
H L H ’
el It
Lr T | 1

When the box encloses the controller
object, release the mouse button.
Connect to the action in the
Connections display.

238

Chapter 11

Dynamic Loading

239

Now choose the New Info Panel command. When you do, Interface Builder
displays a template panel and creates an untitled nib file to contain it. Be sure to
save the file (as, for instance, InfoPanel.nib).

rén P Modify the template Info Panel to contain
the application icon and name, your name,

b L L L LN L : : * : and version and copyright information.

Pl kR
L R R R LR LN B LR N L LR LN

L B B B LR R R L RN R LR R L e E L
T B R e e o P T

You cannot connect the Info Panel to the controller object in the main nib file
because the panel is in the new auxiliary nib file. You must assign the controller
class to File’s Owner in the auxiliary nib file and then make the outlet
connection between File’s Owner and the panel. The first step in this direction
is to insert the class definition of the controller class into the auxiliary nib file.

rafaabremiT neraEnieg

@ From Project Builder, drag
the header file or the
implementation file for the

controller class and drop it
over the nib file window.

(3 Il — Troap e > S gt
T ik
UasaaallBOABTDO T ULL L L AW
EE™INMNAOGON Sy OOCL™X 2=
Frft-nodA BBRETFTES You can also copy a class
5 -1nnngu@pr Ty definition between nib files
R AN TN vy LT using the Edit menu’s Copy
L L and Paste commands.
e e W LN L Copy the class in one
GFIAEOOdELLASLEN Classes display, select the
L TEFUQUOOUURELLS 2T superclass in the other
B e) Classes display, and then
PR 7 £ LU D C OIS Er paste the class into the nib

£ file.

Loading nib files dynamically: an info panel

Next, assign the controller class to File’s Owner.

IfcFancng YPrajor iUl eiinglizhorj 2

FL]
VIEL11dGuDo N OO 0ULL LLS
L |

I:l_l-DHITIHUl'l-IT' :
- -N-N.1 [-N-B-& &4 - |
r a ezacl arrer [l

. Y

W el e e R

dOLSEELAAALEd
PRIENEEL
ARBEODE

%
L]

Click to select File’s Owner.

Click to select the class.

Now make a connection in Interface Builder between File’s Owner and the title
bar of the panel. Select the info panel outlet in the Connections display and
click Connect.

The final step is to write the code (in the .m file of the controller class) that
implements the action method invoked by the Info Panel command.

- (void)showlInfoPanel:(id)sender
{
if (linfoPanel)
[NSBundle loadNibNamed: @"InfoPanel" owner:self];
[infoPanel makeKeyAndOrderFront:self];

}

Notes on the code: Once an Info Panel is loaded, it is kept in memory until the user quits the application.
The code tests the infoPanel outlet to determine if the auxiliary nib file containing the panel has already
been loaded. If it hasn't, it loads it with loadNibNamed:owner:. It is important to specify self as owner
(self being the object thatimplements the method). Display the panel by sending it the
makeKeyAndOrderFront: message.

240

Chapter 11

Dynamic Loading

Displaying an attention panel

» Call NSRunAlertPanel().
Or

» Create an attention panel in
Interface Builder and load it
dynamically.

The Application Kit defines
other functions related to
NSRunAlertPanel(). For more
information on these functions,
see the “Functions” section of
the Application Kit Reference.

241

When you can accomplish an end programmatically or in Interface Builder, the
recommended course is almost always Interface Builder. A notable exception is
displaying attention panels. You display attention panels to tell the user
something about the current context (such as an error that occurred), to clarify
or complete an action the user is taking, or to give the user a chance to take
corrective steps.

Displaying Attention Panels Programmatically

For most situations requiring attention panels, the easiest and most appropriate
thing to do is call a function: NSRunAlertPanel(). In the following example, the
application informs users that, because of hardware incompatibility, it cannot
proceed:

if(![LiveVideoView doesWindowSupportVideo:bufWindow
standard:&type size:&vidSize])
{
NSRunAlertPanel(@"No Video Present”, @"This machine is not
capable of running video applications. Since this program
is exclusively for Video,it will now exit.", @"OK", nil, nil);
[self terminate:self];

}

Notes on the code: The arguments of NSRunAlertPanel() determine what appears on the panel. The first
argument is the heading (above the dividing line), and the second is the text (below the line). The next
three arguments are the titles of the buttons that appear across the bottom of the panel. The first of these
titles goes to the default button, which has a carriage return associated with it. You can remove a button
by giving nil as its title, but you must specify something for all three arguments. The declaration of
NSRunAlertPanel() permits a variable number of arguments, so you can have printf()-style format
specifiers in the panel heading and text and variables following the third button argument.

The call to NSRunAlertPanel() in the example above creates the following panel:

- Mo Video Present
T

THis mashing k= rol capatile olrinning wideo
appicaticrs. Snce ihis program = ecbsiveky e

vidan, Wil norw el
[= -.""l

Displaying an attention panel

Loading Attention Panels Created in Interface Builder

The panel created by NSRunAlertPanel() might not be adequate for certain
situations. For example, you might want to display an attention panel that has a
special view object, say one that shows the progress of some lengthy process
(such as a progress bar for loading or copying files). And you want to give the user
the options of aborting or pausing that process. You'd want something like this:

H| Lo Resciroes:

Custom attention panels break the
restrictions of NSRunAlertPanel(); they

LE *r Hmh allow things like custom views.
ALtcr | PaLen II Define and implement action methods

for the buttons on the panel.

To implement a custom attention panel, you perform almost identical steps as
you do to create an Info panel:

1. Pick a custom class, typically the application’s controller, to manage the
panel.

. Specify an action and outlet in the controller class.

. Connect the action in the main nib file.

. Create a nib file for the attention panel by choosing Document » New
Modules » New Attention Panel.

. Compose the text, graphics, and other Ul elements of the panel.

. Drag the controller’s header file to the attention panel’s nib file window.

. Assign the controller class to File’s Owner.

. Assign the attention panel to the File’s Owner attention panel outlet.

. In the action method, load the panel’s nib file with loadNibNamed:owner:.

N

©O© 0 ~N O O

There are some important differences between attention panels and Info
panels. With attention panels, you typically load the nib file not as the result of
a user action (for instance, clicking an panel Panel command), but because of
internal conditions in your code. Also, you dismiss an Info Panel by clicking its
close box; you usually dismiss an attention panel by clicking a button on the
panel. This means that, for custom attention panels, you will have to define and
implement action methods for the buttons on the panels. (This is something
NSRunAlertPanel() simulates by returning a code indicating the button clicked.)

242

Chapter 11

Dynamic Loading

Creating a window with multiple displays

In a nib file, create a window
with an empty box in the place
where the display should
change.

Add control objects that allow
the user to change the display,
and hook them to action methods
in a controller class.

For each display, use Document
» New Modules » New Empty
to create a nib file containing a

window with just that display.

Assign the controller to be the
nib file’s owner and connect one
of its outlets to the display.

In the action method’s

implementation, load the
appropriate nib file.

243

One common interface style is to have a window whose display changes upon a
user action, such as clicking a button. For example, Interface Builder’s Inspector
panel changes its display when you choose a different item in the pop-up list.
Another example is Project Builder’s Preferences panel. Both of these panels
have infrequently-used displays, thus it makes sense to store these displays in
nib files that are loaded only if needed.

H!lhll

Heomeoimt =
i When the user selects an item from this list...

Facaar -
Compn | ———————— I WhrudaLnng
!d:i'l:ul i~ Shppry

|

™ Li=yal
Prors W awtin Frmetea]

Cha | Al | =3 |

hull:HI
mnalivk
Finbhirs
“ﬂ'hl =
M T

Ir 2 jr:::-:; ...the middle portion of the window changes.
SIS _IHe il
iorkm| laung

Cka | Ard | >, |

The key to creating a window with multiple displays is the content view
attribute. NSBox, NSScrollView, and NSWindow all have a content view
attribute. The content view is the superview of all of the view objects, such as
button and text fields, inside of the box, scroll view, or window. You can send a
setContentView: message to a box to swap out the entire contents of the box and
replace them with new contents. The rest of this task uses the window shown
above to show you how to create a window with multiple displays.

You can define each of the window’s displays in separate nib files. In the main
nib file, place a box in the area that you want to be changeable.

Creating a window with multiple displays

“Grouping objects” in Chapter 2
describes how to group objects
inside of a box. “Setting box
(group) attributes” in Chapter 3
describes the box’s Attributes
display in the Inspector panel.

Hamram lnke -l

Clwar I Acc I (=)]

— Drag a box from the Views palette
and resize it to be the same width as
the window. In the Attributes
inspector, set the box to have no title
and no border.

Also in the main nib file, define the controller class. Give the controller class an
outlet for each view (in this example, Business Info, Personal Info, and Notes)
plus outlets for the main window and the box on the main window. Also define
an action for the controller class, named something like setContents:, and connect

the pop-up list to that action.

Next, use the New Empty command to create a nib file for each of the displays
that the window can show. In each of these nib files, create a window by
dragging one from the Windows palette. Your application never displays these
windows; they exist only to hold the view objects that the main window will

display.
“dn
" Ty |
Cdmjirs M LT T T
e " Shpmny

R " Ao

i [ty
PR PRl & rErp

Place interface objects in a box in the
auxiliary nib file’s main window.
When you’re done, make the box
invisible by choosing no border and
no title in the Attributes display.

Tip: Use the Size display of the Inspector panel to make sure that this box is just
smaller than the box on the main window. It also helps to make the auxiliary nib
file’s window the same size as the main nib file’s window.

244

Chapter 11

Dynamic Loading

245

Now you need to connect this display to the controller class. Add the controller
class to the nib file and assign it to the File’s Owner object. Then, connect File’s
Owner to the box you just created.

Connect File’s Owner (your
application’s controller class) to
the box on the window.

H Dxinia st i Corvisri e iCagitshuiprmy

-]
b - Assign it to one of the display
outlets, in this case bizView.

"——‘
In this example, we would create two more auxiliary nib files, one for the

“Personal Info” display and one for the “Notes” display, in the same manner as
the Bizlnfo.nib file shown above.

Note: If one of the displays is going to be used frequently, you might want to
create it in an off-screen panel in the main nib file rather than creating a separate
nib file and incurring the overhead of reading it in.

Creating a window with multiple displays

This method uses an
enumerated type (InfoType) to
give meaning to the pop-up list
items’ tags. For more information
on using tags, see “Using tags” in
Chapter 3, “Setting an Object’s
Attributes.”

After all of the nib files have been created, implement the action method that
you connected to the pop-up list. In this example, the action method is named
setContents:. Its implementation is shown here.

- (void)setContents:(id)sender
{
switch((InfoType)[[sender selectedltem] tag]) {
case BUSINESS:
if (!bizView) {
[NSBundle loadNibNamed: @"BizInfo" owner:self];
[bizView retain];
}
[theBox setContentView:bizView];
break;
case PERSONAL:
if (IpersView) {
[NSBundle loadNibNamed: @"PersInfo" owner:self];
[persView retain];
}
[theBox setContentView:persView];
break;
case NOTES:
if (InotesView) {
[NSBundle loadNibNamed: @"Notes" owner:self];
[notesView retain];
}
[theBox setContentView:notesView];
break;

Notes on the code: Based on the pop-up list’s selection, this method loads the appropriate nib file, if
necessary, then sets the contents of the box to the view defined in that nib file. As a view becomes the
box's content view, it is removed from the window in its nib file. The setContentView: method releases
the box’s previous content view and retains the new one. To ensure that the previous content view isn't
deallocated before the next user event, you must retain each view. By preventing the views from being
deallocated, you allow your users to switch back and forth between them. (Be sure to release the views
in your class’s dealloc method.)

246

Chapter 11

Dynamic Loading

247

Finally, you need to have the Business Info display appear when the application
starts up. To set this up, in the main nib file assign your Controller class to be the
NSApplication delegate (NSApplication is the main nib file’s owner).
Implement the delegate method applicationDidFinishLaunching: as shown:

- (void)applicationDidFinishLaunching:(NSNotification *)notify
{

[self setContents:popUp];

[mainWindow makeKeyAndOrderFront:self];

}

Notes on the code: This method is invoked immediately after the NSApplication object has finished
initializing itself. It invokes setContents: to load the nib file for the default display (Business Info) and set
the contents of the box on the main window to be the view defined in that nib file. Then it displays the
main window.

Tip: Make sure that the main window’s “Visible at launch time” attribute is
deselected. Otherwise, there will be a slight lag between the time the window
appears on the screen and the time that the box’s contents appear on screen.

Creating a window with multiple displays

Inside the NSBundle Class

If you look at the NSBundle class specification in the Foundation
Framework Reference, you'll notice that NSBundle can tell you a
lot of useful things: where your program’s resources are, where

its frameworks are, which framework defines a particular class.
It can even tell you how your application’s interface ought to be

localized. Why is it so smart?

Every bundle contains a property list that defines the bundle’s
attributes. This property list is the real brains behind the
NSBundle class; NSBundle is simply reading the property list and
returning the information it contains. Project Builder uses the
information you specify in Project Builder’s Inspector panel to
create and update this property list.

The Principal Class

At the very least, the property list contains the name of the
bundle’s executable. Most property lists (in fact, all of them
besides those used for frameworks) must contain one other
important piece of information: the principal class’s name.

The principal class is the class that performs the main work of the
bundle. For applications, the principal class is either
NSApplication or a subclass of NSApplication. NSApplication
runs the application event loop, during which the custom code
you have written for your application is executed.

For Loadable Bundle projects, the principal class is often a
controller-style class. It knows about all of the other objects
inside of the bundle and can send them messages to have them
perform work. If the bundle contains a nib file, the bundle’s
principal class is often the appropriate choice for the owner of
that nib file (just as NSApplication owns the main nib file of an
application bundle).

The principal class is important because the NSBundle class
uses itto load a bundle into memory. Loading a bundle is typically
atwo step process. Firstyou create an NSBundle object using the
location of the bundle in the file system as input. Then, you send
that bundle the message principalClass. This method returns the
principal class in the bundle. In order to do this, it must read the
property list, which in turn means it must load the bundle into
memory if that bundle has not already been loaded. Thus, asking
an NSBundle for its principal class is the main way you load a
bundle into memory. Fromthere, you can create an instance of the
principal class and send it a message to have it perform work.

If NSBundle can‘tfind out the name of the principal class from the
property list, it assumes that the first class loaded is the principal
class. This is determined by the order in which the objectfiles are
linked.

Application Property Lists

A simple application project contains two more pieces of
information in addition to the executable name and principal class
name: the name of the main nib file, and a list of file formats the
application can read and write. Most applications also have a line
that identifies the application’s icon.

Adding Information to the Property List

Your project is not limited to the information that Project Builder
stores in the property list. You can use this list to store other
information specific to your application. However, because
Project Builder maintains this list, you should never update it
directly. Instead, create a file named Customlnfo.plist and add it
to the project under Other Resources. Project Builder looks for
such a file and merges it with the other information to create
property list. Two reasons that you would create a
CustomInfo.plist file are to advertise a service that your
application performs (on the Services menu of other applications)
or to add on-line help to your application.

248

Chapter 11

Dynamic Loading

Creating dynamically loadable bundles

Create a project or subproject of
type Loadable Bundle.

In the Project Attributes
Inspector, enter the name of the
bundle’s controller class in the
Principal Class field.

Add classes, interfaces, and
resources as you would for any
other project.

Create a class outside of the
bundle that loads the bundle.

Although Loadable Bundle
projects can be stand-alone
projects, they are often created as
subprojects of an application or
framework. For more on
subprojects, see “Grouping
projects” in Chapter 1.

249

The other tasks in this chapter show how to separate the interface into multiple
nib files so that infrequently used parts of the interface are loaded only if
needed. You can do the same thing with the application’s executable code—
divide it into wholly contained pieces that are loaded only if needed.

To separate out a portion of executable code, you create a loadable bundle.
Loadable bundles are file packages that can contain executable code, resources,
and nib files. The main difference between a loadable bundle and an application
is that an application has a main() function and an NSApplication instance.
Loadable bundles typically don’t have main() functions.

The key attribute of a bundle project is its principal class. The principal class is
essentially the controller class for the bundle. You must specify the principal
class in the bundle project’s attributes inspector.

“{\l EL __-|J| &%7 In Project Builder, click here.

Papridichbe s Choose Project Attributes.

FroaxTona Aatik =

PelaL gl Cnk | Frika on i.1—=—1— Type the name of the pricipal
class here.

Loading the Bundle Programmatically

Because a loadable bundle doesn’t have a main() function, you must write code
that loads the bundle and starts executing. The following method does just that:

Creating dynamically loadable bundles

*“Loading nib files dynamically:
an info panel” in this chapter
walks through the major steps of
creating a nib file from the New
Module menu and assigning the
File’s Owner.

- (void)showPreferences:(id)sender
{
Class bundleClass;
id newlnstance;
NSBundle *bundleToLoad =
[NSBundle bundleWithPath:[[NSBundle mainBundle]
pathForResource: @"Preferences” of Type:@"bundle"]];

if (bundleClass = [bundleToLoad principalClass]) {
newlnstance = [[bundleClass alloc] init];
[newlnstance loadPanel;

}

Notes on the code: This method loads the bundle into memory. It starts by telling the NSBundle class
where to find the bundle. In this case, the bundle is in a subproject, which means it resides in the
Resources directory inside the main bundle, so sending pathForResource:ofType: to the main bundle
returns the correct location. The principalClass method finds out the bundle’s principal class, loading the
bundle if necessary. Once the principal class is known, this method creates an instance of that class and
sends it a message. (In this example, the message is to load a panel defined in the bundle.)

Adding a Nib File to a Bundle Project

Because loadable bundles can contain nib files, it’s often convenient to create a
bundle containing an infrequently used part of the interface and the code that
controls it. For example, you could put the Preferences panel and an object that
controls it in a separate bundle project.

To create a nib file in a bundle project, use the Interface Builder command
Document » New Module » New Empty. Add the bundle’s principal class to
the nib file and set the File’s Owner to be that class.

250

Chapter 11

Dynamic Loading

251

Click to select File’s Owner.

Assign the bundle’s
principal class to the 5
I

File’s Owner. Prsiim s i DOy LT

You’ll need to connect this part of the interface to the main nib file. To do so,
have the application’s controller object load the bundle in response to an action
message. In the example shown here, the bundle is loaded when the user
chooses the Preferences command. (showPreferences: method is shown above.)

In the application’s
main nib file, assign
the action message to
a control object. In this
example, the first time
the user chooses the
Preferences command,
it will load the bundle.

Chaz Tk

Creating dynamically loadable bundles

252

Setting up a framework
project

Making a header file private

Installing a precompiled
header

Providing backward
compatibility

Adding public API

Verifying compatibility
between two libraries

Creating Frameworks and

Dynamic Shared Libraries

My library was dukedom large enough.
Shakespeare, 7%e Tempest

| shall sleep, and move with the moving ships
Change as the winds change, veer with the tide.
Algernon Charles Swinburne

Since ‘tis Nature’s law to change, Constancy alone is
strange.
Hon Wilmot, Earl of Rochester, A Dialogue berween
Strephon and Daphne

254

Creating Frameworks and Dynamic Shared Libraries

Setting up a framework project

Create a project with Framework
as the project type.

Add header (.h) and
implementation (.m) files to the

resources.

project.

Specify which header files, if
any, should be private.

255

B e -G

A framework is a bundle containing a dynamic shared library. Both Framework
and Library project types build dynamic shared libraries. The difference is that
frameworks bundle the library file with its headers, documentation, and

izersfaa nanTrograrnmg

P

—— A project linked against a
framework has easy
access to headers.

Prapect i L

You create a framework
or library project from the
New panel, just like any
other project, but you must
do some additional set-up
using the Inspector and
the makefiles.

rAFod L deul
Aria i
P o e ol e Y

The Framework vs. the Library

Because of their convenience, you'll want to create framework
projects instead of library projects in most cases. However, if the
project doesn't use resources and doesn’t contain API that is
public to your users (for example, if you distribute an application
that uses a private library), you may choose to create a library
project instead. If you need to create a static library (and you
shouldn’t need to), you must create a library project instead of a
framework.

Creating a library project is very similar to creating a framework
project. The tasks described in this chapter are things you do when
you create either type of project. The main differences between
creating a library project and creating a framework project are:

* The name of the hinary file. For library projects. The name is

libProjectName.MajorVersion.dylib. For framework projectsitis
just ProjectName.

Publishing header files. For framework projects, all header files
are public by default. In Library projects, header files are private by
default. To install them so that the library’s users may access them,
you must use the File Attributes inspector to mark each header file
as public, and you must specify where to install them using the
PUBLIC_HEADER_DIR macro in the file Makefile.preamble.

Making a header file private

Making a header file private

Select the header file in the
project browser.

Click the Inspector button.

Choose File Attributes in the
Inspector panel.

By default, all of a framework’s header files are public. When the framework is
installed, the headers are installed in the framework’s Headers subdirectory and
the framework’s users can see those headers from their projects. If you have a
header that you don’t want your users to see, you must mark it as private.

B ekt ooy sz inereVrog eearning

) . = Click here, or ch
Deselect Public Header in the f | Q| _|]|'ﬁ/E,!| h Infpec?grefroornftﬁgse
Inspector panel. : PR amhs Pk | Tools menu.
- — —— Select the header file you
want to make public.
Choose File Attributes.
O EN T L]
o BT LOR)
1 | Mipacument prsten FEARRA
LT el
of = T [
br [wors. My Mergrracy P Hésiedir Deselect Public Header.
e Loers PP b —|Pieted Famin
v, [P o] __ | nd Header
A good reason to make a header 1o
file private is to make sure your [y
users don’t use the API. This S
frees you to change it later. See 7
“Tipsand Tricks to Changing the
Major Version™ in this chapter.
Setting the Search Path for Frameworks and Libraries
When you link a program with a framework (or library), the following commands in a Terminal window, the Foo application
framework binary’s full path is recorded in the program will look for the binary file MyFramework in two locations: the
executable. By default, a program only looks in that one location ~ recorded location and in the directory
for the binary. If it can’t find it, the program won't launch. ~[Library/MyFramework.framework.
To have a program look in more than one location, set the % setenv DYLD_LIBRARY_PATH \

environmentvariable DYLD_LIBRARY_PATH. This variable works
like the PATH environment variable. For example, if you enter the

~/Library/MyFramework.framework
% Foo.app/Foo

256

Creating Frameworks and Dynamic Shared Libraries

Installing a precompiled header

Select the Makefile.preamble
file under Supporting Files.

Set the macros that affect the
precompilation of a header after
installation.

Chapter 8 describes how to
precompile a header for internal
use by a project and the things to
consider when you create the
header file that is going to be
precompiled.

257

You might want to install a precompiled header file so that your users’ projects
compile faster. Installing a precompiled header is different from creating a
precompiled header for a project because a header must be precompiled in its
final location. When you create a precompiled header for a project, the header is
compiled before the rest of the project. To install a precompiled header, you
must first build and install the project in its destination, then precompile the
header.

H s Alaerfnire oo g

Select Makefile.preamble
under Supporting Files.

AN 1
(9= nores 1

—— Set these macros.

To precompile a header after it is installed, set these macros in Makefile.preamble:

Preamble Macro Description

PUBLIC_PRECOMPILED_HEADERS The names of the headers (.h extension) that should be
precompiled after they are installed.

PUBLIC_PRECOMPILED_CFLAGS The flags besides -precomp to pass to cc when precompiling.

Installing a precompiled header

Macros for the Makefile Hacker

The files Makefile.preamble and Makefile.postamble define
several macros that affect frameworks and libraries. Using these
macros, you can change the way a framework or library is built or
installed. (See Chapter 9 for a description of the other macros in
these files.)

By default, a framework project builds a bundle named
ProjectName.framework with the subdirectories Headers,
Resources, and Versions. Each major version is installed in a
subdirectory under Versions along with its public headers,
documentation, and resources in the appropriate subdirectories.
Also under Versions is a subdirectory named Current, which
contains links to the latest version. The subdirectories
immediately under ProjectName.framework are really just
symbolic links into Current.

Alibrary project creates a binary file named
libProjectName.MajorVersion.dylib and a symbolic link to this file
named libProjectName.dylib. Both are installed in /usr/lib. No
headers are installed by default.

Makefile.preamble Macros

SECTORDER_FLAGS Arguments to the linker's -sectorder
option. See the Id(1) man page for more information.

OTHER_PUBLIC_HEADERS Header files that should be
installed as public other than those marked as public in the File
Attributes inspector.

OTHER_PRIVATE_HEADERS Header files that should be
installed as private other than those included in the project.

PUBLIC_HEADER_DIR Location in which to install public
headers. You must define this for library projects if you want
header files to be installed when the library is installed. For
frameworks, any header file marked as public is placed in the
Headers subdirectory.

PUBLIC_PRECOMPILED HEADERS Header files to be
precompiled after installation. See “Installing a precompiled
header” in this chapter.

PUBLIC_PRECOMPILED_HEADERS_CFLAGS See
“Installing a precompiled header” in this chapter.

PRIVATE_HEADER_DIR Location in which to install private
headers, which can be stripped away separately from your
product build image. The default is not to install private headers.

PUBLIC_HEADER_DIR_SUFFIX Define this macro if a
framework or library has a subproject whose public headers
should be installed in a subdirectory of the parent's public header

directory. For example, if you define this macro as /sys, they are
installed in Headers/sys.

PRIVATE_HEADER DIR_SUFFIX The same as
PUBLIC_HEADER_DIR_SUFFIX, but for private headers.

LIBRARY_STYLE |If STATIC, builds a static archive library (.a
extension) rather than a dynamic shared library.

BUILD_OFILES_LIST_ONLY If YES, links the object files in the
project together but does not call libtool to create a dynamic
shared library from the object files. This macro is useful if you
want to use the modules in another, larger library project.

Makefile.postamble Macros

CURRENTLY_ACTIVE_VERSION If YES, a symbolic link to the
framework’s binary file is created in the directory
Versions/Current. If NO, the link is not created. The defaultis YES.
Set this to NO if you want to install a new version of a framework
but you still want projects to link against the previously installed
version. This macro does not affect library projects. Using this
macro is the same as checking the current version box on the
Project Attributes inspector.

DEPLOY_WITH_VERSION_NAME This is the same as
changing the version name in the Project Attributes inspector.
See “Providing backward compatibility” in this chapter.

CURRENT_PROJECT_VERSION The minorversion number. See
“CURRENT_PROJECT_VERSION: For That Extra Level of
Checking” in this chapter.

COMPATIBILITY_PROJECT_VERSION The compatibility
version number. See “Adding public API" in this chapter.

DYLIB_INSTALL_NAME The name of the binary file that s built.
The default is lib ProjectName.MajorVersion.dylib for library
projects, ProjectName for frameworks.

DYLIB_INSTALL DIR Sets the path recorded in the library's
binary file. $DYLIB_INSTALL_DIR/$DYLIB_INSTALL_NAME is
passed as the argument to the -install_name option of libtool,
which is used to set the name recorded in the library file to be
something other than its path name. The default is not to use this
option.

LIBRARY_STRIP_OPTS Options to pass to strip for statically
linked libraries. You shouldn’t have to create a static library, so
you shouldn’t have to use this macro.

DYNAMIC_STRIP_OPTS Options to pass to strip for framework
projects and dynamic shared library projects.

258

Creating Frameworks and Dynamic Shared Libraries

Providing backward compatibility

Click the Inspector button.

Choose Project Attributes from the
Inspector panel.

Set the Deploy with version name
field in the Project Attributes
inspector if you have removed or
changed API.

Build the project.

The Install in: field of the Build
Attributes inspector provides the
first half of the framework’s full
name. Variables such as $(HOME)
are expanded sefore the path
name is recorded. For more
information on the Build
Attributes inspector, see
Chapter 9.

259

When you change a framework, you want to make sure not to break existing
programs. If you do one of the following to your framework, you are in danger of
breaking programs that link with it:

= Remove any public API.

m Change any API, such as a method or function declaration or a class name.
= Add instance variables to a class.

= Rearrange the order of instance variables in a class.

m Remove any of the architectures the framework is built for.

FrapnAdnbrin. =

Cwp oy with wandannore | J ———+—— Change the value in this field if you added an instance variable or
changed or removed any other API.
DO are Zonalnd s L v s Kn g:!

Turn this box off if you still want newly built projects to link against the
previous version.

Whenever you make one of these changes, you should increment the
framework’s major version letter and provide both the new and old binary to
your users. That way, programs linked against the older version of the
framework will still run. New programs or modified programs will link with the
newer version of the framework.

A dynamic shared library’s name contains the major version letter. This name is
recorded in the executable when a program links with the library. Thus, any
program that links with a dynamic shared library knows that library’s major
version. The program won’t launch if it can’t find a library with the correct name.

For example, if the program MyProg links with version A of the framework Misc,
the path /LocalLibrary/Frameworks/Misc.framework/Versions/A/Misc is recorded in
MyProg. Suppose you add an instance variable to a class in Misec and change
version to B. This builds Misc.framework/Versions/B/Misc but leaves Versions/A/Misc
intact. Because version A still exists, MyProg can still run. If you change MyProg
and rebuild it, it links with version B.

Providing backward compatibility

Tips and Tricks to Changing the Major Version

If you don’t change the framework’s major version number when
you need to, programs linked with it will fail in unpredictable
ways. If you change the major version number and you don't need
to, you're cluttering up the system with compatible frameworks.
You can avoid errors in changing the major version number if you
follow a few simple tricks.

Don't Do It

The first trick is to avoid having to change the version number in
the first place. Some ways to do this are:

¢ Pad classes and structs with reserved fields. WWhenever you
add aninstance variable to a public class, you must change the
major version number because subclasses depend on a
superclass’s size. However, you can pad a class by defining an
unused instance variable of type id. Then, if you need to add
instance variables to the class, you can instead define a whole
new class containing the storage you need and have your
reserved instance variable point to it.

e Don't publish API unless you want your users to use it. You can
freely change private APl because you can be sure no
programs are using it. Declare any APl in danger of changing
in a private header. See “Making a header file private” in this
chapter.

¢ Don't delete things. If a method or function no longer has any
useful work to perform, leave it in the API for compatibility
purposes. Make sure it returns some reasonable value. (Even
if you add additional arguments to a method, leave the old form
around if at all possible.)

e Remember that if you add API rather than change or delete it,
you don't have to change the major version number because
the old API still exists. The exception to this rule is instance
variables. (You do have to change the compatibility version
number, however. See “Adding public API1” in this chapter.)

If You Do, Don’t Clean It

make clean deletes the entire .framework bundle in the project
directory, which means it deletes the old binaries in addition to
the current binary. The subsequent build creates only the current
version. You have no way of retrieving the earlier versions.

If you must perform a make clean, you'll need to create multiple
copies of the project: one that builds the current version, and one
for each of the previous versions. The projects that build the
previous versions should set the CURRENTLY_ACTIVE_VERSION
macro to NO so that the pointer to the current version is not
changed when these older versions are installed. When you
install, you'll need to install all versions.

Verify Whatever You Do

Use empdylib to make sure you did the right thing. If cmpdylib
says the older library defines symbols that aren’t defined in the
newer library, you need to change the major version number. See
“Verifying compatibility between two libraries” in this chapter.

Version B

Version A Version B
extern int aFunc(id a); Changed—3 | extern float aFunc(id a);
function
extern const int aConst; Changed—3. | extern const int myConst;
constant

@interface ClassA

¢
id b;

id a; id a;
ida; ——Added and—s | g b; id b;
reordered ivars
id reserved; id reserved;
)))
- (id)a; - (id)a; - (id)a;
- (id)b; - (id)b; Added API— - (id)b;
- (void)setA:(id)newA; - (void)setA:(id)newA; N0 Major—s, | - (ClassC *)c;
version change = | _ (void)setA:(id)newA;
- (void)setB:(id)newB; Removed—
method @end
@end @end
@interface ClassC
id d;
id e;
id f;

@interface ClassA
(

extern float aFunc(id a);
extern const int aConst;

@interface ClassA
(

)

260

Creating Frameworks and Dynamic Shared Libraries

Adding public API

1 Change the compatibility project
version number and the current
project version number in
Makefile.postamble.

2 Build the project.

Remember that adding instance variables
to a class is an incompatible change,
which means you should change the
version name instead of the compatibility
version number. See “Tips and Tricks to
Changing the Major Version” for an
explanation.

Increment the value in
CURRENT_PROJECT_VERSION
whenever you change the compatibility
version number. See
“CURRENT_PROJECT_VERSION:
For That Extra Level of Checking” in
this chapter.

261

You shouldn’t change the major version number when you add API (for
example, if you add a class, add a method to an existing class, or add a function
or constant). Adding API doesn’t break existing programs. Existing programs are
guaranteed to be using the older API and will still run because you’ve left the
older API intact. However, new programs might use the new API, and therefore
shouldn’t try to run against older versions of the framework, which don’t define
that API.

H rrsessesris — Flyerafan T rogrsmning

Cluanc
Herim

1
L LE 1
rlrhe Faawcan 1
1
1

Select Makefile.postamble
under Supporting Files.

3
|

. sl b anramartad @ vos BT o Increment the value in
B =00HPAT I B I Py PR IBCT VRN - L COMPATIBILITY_PROJECT_VERSION
- ¥ Ma =il S 2ACrame el Bk VDO SR proe and in CURRENT_PROJECT_VERSION
LB al_RECT_Aaln - 2 Ny . when you add AP, such as methods,

classes, functions, or constants.

When you add API, increment the compatibility version number. The
compatibility version number protects programs linked with newer versions of
a library from running with older versions of the library. In order for a program
to launch, the compatibility version number of the framework it runs with must
be equal to or greater than the CURRENT_PROJECT_VERSION number of the
framework it linked with.

Adding public API

Programs linked with AFramework

Program1l

main (
AFrameworkClass *myObject;

[myObject doSomething];
)

Program2

main (
AFrameworkClass *myObject;

[myObject doSomethingElse];
)

AFramework

@interface AFrameworkClass

Programl can use

either version of —— 2 doSomething;

AFramework @end
~. CURRENT_PROJECT_VERSION=1.0
\\\ COMPATIBILITY_PROJECT_VERSION=1.0
AN
.
~ ~
~ ~
~ ~
~
N

@interface AFrameworkClass

Program2 can only use

)
the newest version of ——{/ (void)doSomething;

- (void)doSomethingElse;
@end

AFramework

CURRENT_PROJECT_VERSION=1.1
COMPATIBILITY_PROJECT_VERSION=1.1

Why shouldn’t you just change the major version number when you add API?
Because programs linked with the previous version of the framework still run
with the new version. If you change the major version number, the previous
version remains installed on your users’ systems. By changing the compatibility
version number instead, you can install just one version.

CURRENT_PROJECT_VERSION: For That Extra Level of Checking

In addition to the major version number, and the compatibility
version number, a dynamic shared library has a third version
number. This is the minor version number or current version
number. You set the current version number in the macro
CURRENT_PROJECT_VERSION, which is in Makefile.postamble.

Atthe veryleast,increment CURRENT_PROJECT_VERSION every
time you increment COMPATIBILITY_PROJECT_VERSION. The
CURRENT_PROJECT_VERSION stored in a program’s executable
is compared with the COMPATIBILITY_PROJECT_VERSION
stored in the library's binary file. The version in the program must
be greater than or equal to the version in the library for the
program to launch.

The intentis thatyouincrement CURRENT_PROJECT_VERSION
every time you distribute the framework when you haven't
changed or added API. For example, if you fix a bug in the way a

method works, you increment CURRENT_PROJECT_VERSION.
Changes involving implementation only are almost always
compatible. Programs linked against older versions of the
framework can run against the new version and in fact are
actually intended to run against the new version. Programs linked
againstthe new version can still run againstthe old version (even
though they will then encounter the bug that you have fixed).

Inrare cases, someone may write a program that needs a fix from
a certain version of the library. That program can use the function
NSVersionOfRunTimeLibrary() to determine the current version
of the library and take the appropriate action if the version isn’t
the one it needs: put up an alert panel, disable some feature of the
program, or disable the entire program. Because of these rare
cases where a program may need to check the version number,
you should always increment CURRENT_PROJECT_VERSION
when you distribute a new framewaork.

262

Creating Frameworks and Dynamic Shared Libraries

Verifying compatibility between two libraries

1 Startup the Terminal application.

2 Perform the cmpdylib command.

263

cmpdylib is a verification tool that you can use to make sure you’ve made the right

choices about version numbers. The syntax is:

cmpdylib o/ZL.ibName newl .ibName

If 0/dLibName and newl.ibName are compatible, this command returns nothing.

If they aren’t compatible, it tells you why.

hinfcsh (ttyp1) x|

jeans cmpdylib Parserkitl Parserkitz

jean= cmpdylib ParserKit? Parserkit3

compatibility wersions are the same but new symbols defined in ParserkKits mnot de
fined in Parserkitz:

.objo_class_name_MifFrame

Jjean= cmpdylib Parserkit3 Parserkit4
symbols defined in Parserkit3 not defined in Parserkit4:
.objo_class_name_MifParaline

r [compatibility wersions are the same but new synbols defined in Parserkit4 not de
fined in Parserkit3:
cobjo_class_name_MifLine0fText
jean= I

These should have
different compatibility
versions because the
newer library has more
symbols.

These should have
different major versions
because the older library
has a symbol not defined

in the newer library.

cmpdylib considers two libraries compatible if:

= They are built for the same architectures.

m o/dLibName defines a subset of the symbols that zewl.ibName does.

m newl.ibName defines symbols not in o/dLibName and has a different
compatibility version number.

The two libraries are incompatible if:

m They are built for different architectures.

m o/dLibName defines symbols that aren’t in newlibName.

m newl.ibName defines symbols not in o/dlLibName and has the same
compatibility version number.

Currently, empdylib only checks C-level API and does not distinguish between
public and private API. For example if you add a method, cmpdylib won’t detect
the change. Also if you change a private class, empdylib will report the change as
an incompatibility.

Verifying compatibility between two libraries

264

