



Technical Publications
© Apple Computer, Inc. 2000



I n s i d e M a c O S X

Directory Services Plug-ins

Draft. Preliminary. April 11, 2000

Draft. Preliminary.



 Apple Computer, Inc.



Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5

Preface About This Manual 7

Conventions Used in This Manual 7
For More Information 8

Chapter 1 About Directory Services Plug-ins 11

Required Entry Points 12
Processing Directory Services Requests 12
Processing Concurrent Requests 14
Directory Services Callbacks 14
Calling Mac OS Functions 15
Managing References 15
Standard Record and Attribute Types 15
Authentication 15
Providing a Configuration Control Panel 16
Building a Directory Services Plug-in 16

Chapter 2 Directory Services Plug-in Reference 17

Directory Service Plug-in Entry Points 17
Directory Services Callback Routines 20
Request Structures 22

Index 29
3
Draft. Preliminary.  Apple Computer, Inc.

4
Draft. Preliminary.  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1 About Directory Services Plug-ins 11

Figure 1-1 Directory Services plug-in state diagram 11

Table 1-1 Directory Services functions that are passed to plug-ins 13
5
Draft. Preliminary.  Apple Computer, Inc.

6
Draft. Preliminary.  Apple Computer, Inc.

P R E F A C E

About This Manual

This manual describes the programming interface for Directory Services
plug-ins for Mac OS 8, Mac OS 9, and Mac OS X. Directory Services provides an
abstraction layer that isolates Directory Services clients from the actual
implementation of a directory system. Each Directory Services plug-in is
responsible for responding to Directory Services clients that request service
from the directory system that the plug-in represents.

You would want to write a Directory Services plug-in if you want to provide
support for directory services that are not supported by Mac OS.

Conventions Used in This Manual 0

The Courier font is used to indicate server control calls, code, and text that you
type. Terms that are defined in the glossary appear in boldface at first mention
in the text. This guide includes special text elements to highlight important or
supplemental information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲

▲ W A R N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲
7
Draft. Preliminary.  Apple Computer, Inc.

P R E F A C E

For More Information 0

The following books provide information that is important for Directory
Services developers:

■ Directory Services. Apple Computer, Inc.
8

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

About Directory Services
Plug-ins 1
A Directory Services plug-in is a Mac OS X dynamically loaded library that
responds to requests for directory service from applications that are clients of
Directory Services.

This chapter describes the runtime environment for Directory Services plug-ins,
the entry points that a Directory Services plug-in must provide, the requests
that a Directory Services plug-in must be prepared to respond to, the Directory
Services callback routines that the plug-in can call to write entries in the
Directory Services log file and to register and unregister nodes. This chapter
also describes how to build and configure a Directory Services plug-in.

Runtime Environment 1

Plug-ins are loaded by Directory Services, which may instruct the plug-in to
make itself active or inactive at any time in response to instructions entered by
an administrator in the Directory Services control panel.

Figure 1-1 shows the state diagram for a Directory Services plug-in.
Runtime Environment 9
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

Figure 1-1 Directory Services plug-in state diagram

Before Directory Services starts a plug-in, the plug-in is in the unloaded state.
After the plug-in loads, it is in the “loaded but not initialized” state. Until the
plug-in successfully completes initialization, it is in the “attempting
initialization” state. When the plug-in successfully initializes itself, it enters the
active state.

As shown in Figure 1-1, a plug-in that is in the active state can enter the busy,
inactive, and shutdown states. A plug-in that is in the busy state can only enter
the active state, and a plug-in that is in the inactive state can only enter the
active state. A plug-in that is in the shutdown state cannot enter any other state.

While in the active state, the plug-in should be prepared to be called through its
periodic task, process request, shutdown, and set plug-in state entry points, as
described in the next section, “Required Entry Points.”

While in the busy state, the plug-in should be prepared to be called through its
periodic task and process request entry points (as described in the next section,
“Required Entry Points”) and should schedule the task or request at the
appropriate time.

While in the inactive state, the plug-in should be prepared to be called through
its period task, set plug-in state, and shutdown entry points, as described in the
next section, “Required Entry Points.”

Directory Services
starts a plug-in

Plug-in
active

Plug-in
inactive

System
shutdown

Plug-in
busy
10 Runtime Environment

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

Required Entry Points 1

Every Directory Services plug-in must provide the entry points described in this
section. The entry points are

■ Initialize, a routine that Directory Services calls so that the plug-in can
initialize itself.

■ PeriodicTask, a routine that Directory Services calls to perform periodic
tasks.

■ ProcessRequest, a routine that Directory Services calls to pass requests from
Directory Services clients. This routine is described in detail in the next
section, “Processing Directory Services Requests.”

■ Shutdown, a routine that Directory Services calls to tell the plug-in that
Directory Services is shutting down. For example, this routine would be
called when the system shuts down. The plug-in’s shutdown routine should
release memory and perform any other necessary tasks.

■ SetPluginState, a routine that Directory Services calls to notify the plug-in of
a change in state. For example, this routine would be called if the network
administrator enabled or disabled this plug-in.

Processing Directory Services Requests 1

Directory Services passes to the appropriate Directory Services plug-in certain
requests from Directory Services clients. The requests correspond to a subset of
the Directory Services function calls described in Inside Mac OS X: Directory
Services. Every Directory Services plug-in must be prepared to process each of
the requests described in this section even if only to respond that the requested
service is not available (eDSServiceUnavailable). To indicate the outcome of
processing a request, the plug-in should return a result code from the list of
result codes documented in Inside Mac OS X: Directory Services.
Required Entry Points 11
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

The plug-in must be prepared to process requests for each of the Directory
Services functions described in this section.

*Applies only to Directory Services plug-ins that run on Mac OS 8 or Mac OS 9.

Directory Services plug-ins must also be prepared to receive messages that
Directory Services may send, such as notification of power management
information, the ejection of a CD-ROM disc, or an IP address change.

Processing Concurrent Requests 1

Directory Services plug-ins may be called multiple times by multiple
applications. For example, the following requests may occur at the same time:

Table 1-1 Directory Services functions that are passed to plug-ins

dsAddAttribute dsGetAttributeValue dsRemoveAttribute

dsAddAttributeValue dsGetCustomAllocate dsRemoveAttributeVal
ue

dsCloseDirNode dsGetCustomThread* dsSetAttributeAccess

dsCloseRecord dsGetDirNodeInfo dsSetAttributeFlags

dsCreateRecord dsGetRecordAttributeInfo dsSetAttributeValue

dsCreateRecordAndOpe
n

dsGetRecordAttributeValu
eByID

dsSetRecordAccess

dsDeleteRecord dsGetRecordEntry dsSetRecordFlags

dsDoAttributeValueSe
arch

dsGetRecordList dsSetRecordName

dsDoDirNodeAuth dsGetRecordReferenceInfo dsSetRecordType

dsDoSetPassword dsOpenDirNode dsUnRegisterCustomMe
mory*

dsDoPluginCustomCall dsOpenRecord dsUnRegisterCustomTh
read*

dsFlushRecord dsRegisterCustomMemory*

dsGetAttributeEntry dsRegisterCustomThread*
12 Processing Concurrent Requests

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

■ Application A makes a request that takes a long length of time to complete.

■ Application B makes a request that takes a short length of time to complete.

■ Application C makes a request that takes a medium length of time to
complete.

Directory Services passes requests to the responsible plug-in as the requests
come in and does not manage or serialize requests in any way. The plug-in is
responsible for handling multiple concurrent requests in any way that it deems
appropriate. It may choose to process Application A’s request first and
Application A’s request last, process the requests serially, or use some other
algorithm for determining the order in which to process concurrent requests.

Directory Services Callbacks 1

Directory Services plug-ins can call Directory Services callback routines. The
callback routines are:

■ DebugLog. Writes an entry in the Directory Services log file. All records
written by all Directory Services plug-ins are written to the same log file in
the order by which Directory Services receives them.

■ RegisterNode. Registers a node so that it appears in the Directory Services
control panel, thereby allowing an administrator to make the plug-in active.

■ UnregisterNode. Unregisters a node that was previously registered. A node
that is not registered does not appear in the Directory Services control panel.

Calling Mac OS Functions 1

Directory Services plug-ins can call any Mac OS functions that are safe to call.
Directory Services Callbacks 13
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

Managing References 1

Directory Services allocates Directory Service references, such as open directory
node references, open record references, and attribute list value references, and
passes them to the appropriate plug-in as part of a process request. Plug-ins can
use these references to keep track of their own data. When a reference becomes
invalid, such as when an open directory node is closed, the plug-in must free
any memory that is associated with the now invalid reference.

Standard Record and Attribute Types 1

Plug-ins must honor all standard record and attribute types as documented in
Inside Mac OS X: Directory Services by mapping the standard record and
attribute types to the plug-in’s native record and attribute types. Plug-ins must
also honor the meta types described in that document. (Meta types are types
that are created dynamically, such as a user’s current location.)

Plug-ins are free to support as many native record band attribute types as they
want.

Authentication 1

Directory Services plug-ins should provide support for at least one
authentication type. The standard authentication types are

■ Clear text

■ Two-way random

■ APOP

■ UNIX encryption

■ SMB

■ Node native
14 Managing References

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

Plug-ins can also support as many native authentication types as desired.

Building a Directory Services Plug-in 1

A Directory Services plug-in is a standard Mac OS X “package” and follows the
guidelines defined for Mac OS X packages.

Directory Services plug-ins are loaded from the following directory:

/System/Library/Frameworks/DirectoryServices/Resources/Plugins

or from other directories that may be defined later by Mac OS X.

Directory Services plug-ins use CFLOAD.

No special linker commands required to build a plug-in.

To build a Directory Services plug-in, you must include a property list file. Here
is the property list file for a plug-in named SamplePlugin:

Listing 1-1 Property list for a sample plug-in

{
"CFBundleExecutable" = "SamplePlugin";
"CFBundleIdentifier" = "com.apple.iServers.SamplePlugin";
"CFBundleVersion" = "1.0.0d1";
"CFBundlePackageType" = "dspi";
"CFBundlePackageSignature" = "adss";
"CFPlugInDynamicRegistration" = "NO";
"CFPlugInFactories" = {

"D970D52E-D515-11D3-9FF9-000502C1C736" = "ModuleFactory";
};
"CFPlugInTypes" = {

"697B5D6C-87A1-1226-89CA-000502C1C736" =
("D970D52E-D515-11D3-9FF9-000502C1C736");

};
"DSPluginPrefix" = "SamplePlugin";
"DSServerSignature" = "Samp";

}

Building a Directory Services Plug-in 15
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 1

About Directory Services Plug-ins

In Listing 1-1, the plug-in is responsible for setting the values of
CFBundleExecutable, CFBundleIdentifier, CFBundleVersion, CFBundlePackageType,
DSPlugInTypes, DSPluginPrefix, and DSServerSignature. The value of
CFPlugInFactories must always be the value shown in Listing 1-1.

The value of DSPlugInTypes must be a UNIX unique identifier (UUID). Use the
makeUUID utility to generate the identifier for your plug-in.

The value of CFPluginDynamicRegistration must be NO.

Configuring a Directory Services Plug-in 1

Developers must provide a control panel for the system administrator to use to
configure the plug-in.
16 Configuring a Directory Services Plug-in

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0

Directory Services Plug-in
Reference 2
This chapter describes the entry points and requests that a Directory Services
plug-in must support as well as the callback routines that a Directory Services
plug-in can call.

Directory Service Plug-in Entry Points 2

This section describes the entry points that a Directory Services plug-in must
provide.

Initialize 2

Initializes the plug-in

sInt32 Initialize (uInt32 inSignature);

inSignature A value of type uInt32 that uniquely identifies the plug-in.

result A value of type sInt32. If the Initialize routine completes
successfully, it should return dsNoErr. If it encounters an error, it
should return ePlugInInitError.

DISCUSSION

The Initialize routine initializes the plug-in and prepares it to run.
Directory Service Plug-in Entry Points 17
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
PeriodicTask 2

Performs a periodic task.

sInt32 PeriodicTask (void);

result A value of type sInt32. If the PeriodicTask routine completes
successfully, it should return dsNoErr. If it encounters an error, it
should return ePlugInError.

DISCUSSION

The PeriodicTask routine performs a periodic task.

ProcessRequest 2

Processes requests.

sInt32 ProcessRequest (void *inData);

inData A pointer to an arbitrary value containing the request that is to
be processed.

result A value of type sInt32. If the ProcessRequest routine completes
successfully, it should return dsNoErr. If it encounters an error, it
should returns an appropriate result code from the list of result
codes described in Inside Mac OS X: Directory Services.

DISCUSSION

The ProcessRequest routine processes the request pointed to by inData. The
request consists of a structure whose fields vary depending on the request type,
which is always identified by the first byte of the request.
18 Directory Service Plug-in Entry Points

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
SetPluginState 2

Processes requests.

sInt32 SetPluginState (ePluginState inNewState);

inNewState A value of type ePluginState containing the new plug-in state.
See the Discussion section below for possible values.

result A value of type sInt32. If the SetPluginState routine completes
successfully, it should return dsNoErr. If it routine encounters an
error, it should returns an appropriate result code from the list
of result codes described in Inside Mac OS X: Directory Services.

DISCUSSION

The SetPluginState routine sets the plug-in’s state to the state specified by
inNewState.

The following enumeration defines values for inNewState:

typedef enum {
kUninitalized = 0x00000000,
kActive = 0x00000001,
kInactive = 0x00000002,
kSleep = 0x00000004

} ePluginState;x

Shutdown 2

Prepares the plug-in for shut down.

sInt32 Shutdown (void);

result A value of type sInt32. If the Shutdown routine completes
successfully, it should return dsNoErr. If it routine encounters an
error, it should returns an appropriate result code from the list
of result codes described in Inside Mac OS X: Directory Services.
Directory Service Plug-in Entry Points 19
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
DISCUSSION

The Shutdown routine is called when prepares the plug-in for shut down.

Directory Services Callback Routines 2

This section describes Directory Services callback routines that Directory
Services plug-ins can call.

RegisterNode 2

uInt32 RegisterNode (const uInt32 inSignature,
tDataList *inNode,
eDirNodeType inNodeType);

inSignature A value of type uInt32 that uniquely identifies the plug-in.

inNode A pointer to a value of tDataList that specifies the name of the
node that is to be registered.

inNodeType A value of type eDirNodeType that specifies the type of the node
that is to be registered. See the Discussion section below for
possible values.

result A value of type uInt32 that indicates success or failure. A value
of dsNoErr indicates success.

DISCUSSION

The RegisterNode routine registers the specified node.

The eDirNodeType enumeration defines values for the inNodeType parameter:

typedef enum {
kUnknownNodeType= 0x00000000,
kDirNodeType = 0x00000001,
kLocalNodeType = 0x00000002,
kSearchNodeType = 0x00000004

} eDirNodeType;
20 Directory Services Callback Routines

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
UnregisterNode 2

uInt32 UnregisterNode (const uInt32 inSignature,
tDataList *inNode);

inSignature A value of type uInt32 that uniquely identifies the plug-in.

inNode A pointer to a value of tDataList that specifies the name of the
node that is to be unregistered.

result A value of type uInt32 that indicates success or failure. A value
of dsNoErr indicates success.

DISCUSSION

The UnregisterNode routine unregisters the specified node.

DebugLog 2

uInt32 DebugLog (const uInt32 inSignature,
const char *inFormat,
va_list inArgs);

inSignature A value of type uInt32 that uniquely identifies the plug-in.

inFormat A pointer to a character array.

inArgs A value of type va_list.

DISCUSSION

The DebugLog routine writes the data specified by into the Directory Services log
using the format specified by inFormat.
Directory Services Callback Routines 21
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
Request Structures 2

This section describes the structures that Directory Services passes to the
plug-in’s ProcessRequest entry point.

sOpenDirNode 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sOpenDirNode structure when a Directory Services client application calls the
dsOpenDirNode function to open a directory node. The sOpenDirNode structure is
defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirReference fInDirRef;
tDataListPtr fInDirNodeName;
tDirNodeReferencefOutNodeRef;

} sOpenDirNode;

fType Always kOpenDirNode.

fResult A value of type sInt32 that indicates whether the plug-in was
able to open the directory node specified by fInDirNodeName.

fInDirRef A value of type tDirReference that was created when the calling
application opened the Directory Services session for which this
directory node is to be opened.

fInDirNodeNameA value of type tDataListPtr containing the name of the node
that is to be opened.

fOutNodeRef A value of type tDirNodeReference that uniquely identifies the
opened node if the open was successful.
22 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
DISCUSSION

When a Directory Services plug-in receives a request to open a directory node,
it uses the fInDirNodeName field to determine the name of the node to open.

If the plug-in can open the specified node, it sets fResult to dsNoErr and
fOutNodeRef to a value that uniquely identifies the opened node and returns. If
the plug-in cannot open the node, it sets fResult to an appropriate result code
as described in Inside Mac OS X: Directory Services and returns.

sCloseDirNode 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sCloseDirNode structure when a Directory Services client application calls the
dsCloseDirNode function to close a directory node. The sCloseDirNode structure
is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirReferencefInNodeRef;

} sCloseDirNode;

fType Always kCloseDirNode.

fResult A value of type sInt32 that indicates whether the plug-in was
able to close the directory node specified by fInNodeRef.

fInNodeRef A value of type tDirReference that identifies the node that is to
be closed. The node reference was created when the calling
application opened the node that is to be closed.

DISCUSSION

When a Directory Services plug-in receives a request to close a directory node, it
uses the fInNodeRef field to determine the node to close.

If the plug-in can close the specified node, it sets fResult to eDSNoErr and
returns. If the plug-in cannot open the node, it sets fResult to an appropriate
result code as described in Inside Mac OS X: Directory Services and returns.
Request Structures 23
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sGetDirNodeInfo 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetDirNodeInfo structure when a Directory Services client application calls the
dsGetDirNodeInfo function to get information about a directory node. The
sGetDirNodeInfo structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataListPtr fInDirNodeInfoTypeList;
tDataBufferPtr fOutDataBuff;
bool fInAttrInfoOnly;
unsigned long fOutAttrInfoCount;
tAttributeListRef fOutAttrListRef;
tContextData fOutContinueData;

} sGetDirNodeInfo;

fType Always kGetDirNodeInfo.

fResult A value of type sInt32 that indicates whether the plug-in was
able to get information about the node identified by fInNodeRef.

fInNodeRef A value of type tDirNodeReference that identifies the node for
which information is to be obtained. The node reference was
created when the calling application opened the node.

fInDirNodeInfoTypeList
A value of type tDataListPtr that points to a data list containing
the attribute types for which information is being requested.

fOutDataBuff A value of type tDataBufferPtr pointing to a tDataBuffer
structure. If the plug-in obtains the requested information, it
puts the data in the data buffer pointed to by fOutDataBuff.

inAttrInfoOnlyA Boolean value set to TRUE if the plug-in is only to provide
information about attributes or set to FALSE if the plug-in is to
provide the values of the attributes as wells as information
about the attributes.
24 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
fOutAttrInfoCount
On output, outAttributeInfoCount points to the number of
attribute types present in the buffer pointed to by fOutDataBuff.

outAttrListRefA value of type tAttributeListRef that uniquely identifies a
tAttributeEntry structure.

fOutContinueData A value of type tContextData. If there is more information
than can fit into fOutDataBuff, set fOutContinueData to a
plug-in–defined value. Otherwise, set fOutContinueData to NULL.

DISCUSSION

When a Directory Services plug-in receives a request to get information about a
directory node, it uses the fInNodeRef field of the sGetDirNodeInfo structure to
determine the node for which information is requested, the data list pointed to
by fInDirNodeInfoTypeList to determine the type of information that is
requested, and fInAttrInfoOnly to determine whether it should also return
attribute values,

If the plug-in can get the specified information about the specified node, it sets
fResult to eDSNoErr, puts the requested information in the buffer pointed to by
fOutDataBuff, and returns. If fOutDataBuff is not large enough to hold all of the
information, the plug-in sets fOutContinueData to a plug-in–defined value
before it returns.

If the plug-in cannot get the requested information, it sets fResult to an
appropriate result code as described in Inside Mac OS X: Directory Services and
returns.

sGetRecordList 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetRecordList structure when a Directory Services client application calls the
dsGetRecordList function to get a list of records. The sGetRecordList structure
is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
Request Structures 25
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
tDirNodeReference fInNodeRef;
tDataBufferPtr fInDataBuff;
tDataListPtr fInRecNameList;
tDirPatternMatch fInPatternMatch;
tDataListPtr fInRecTypeList;
tDataListPtr fInAttribTypeList;
bool fInAttribInfoOnly;
unsigned long fOutRecEntryCount;
tContextData fIOContinueData;

} sGetRecordList;

DISCUSSION

(To be delivered)

sGetRecordEntry 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetRecordEntry structure when a Directory Services client application calls the
dsGetRecordEntry function to get a record. The sGetRecordEntry structure is
defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataBufferPtr fInOutDataBuff;
unsigned long fInRecEntryIndex;
tAttributeListRef fOutAttrListRef;
tRecordEntryPtr fOutRecEntryPtr;

} sGetRecordEntry;

DISCUSSION

(To be delivered)
26 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sGetAttributeEntry 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetAttributeEntry structure when a Directory Services client application calls
the dsGetAttributeEntry function to get an attribute. The sGetAttributeEntry
structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataBufferPtr fInOutDataBuff;
tAttributeListRef fInAttrListRef;
unsigned long fInAttrInfoIndex;
tAttributeValueListReffOutAttrValueListRef;
tAttributeEntryPtr fOutAttrInfoPtr;

} sGetAttributeEntry;

DISCUSSION

(To be delivered)

sGetAttributeValue 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetAttributeValue structure when a Directory Services client application calls
the dsGetAttributeValue function to get an attribute value. The
sGetAttributeValue structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataBufferPtr fInOutDataBuff;
unsigned long fInAttrValueIndex;
tAttributeValueListReffInAttrValueListRef;
tAttributeValueEntryPtrfOutAttrValue;

} sGetAttributeValue;
Request Structures 27
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
DISCUSSION

(To be delivered)

sOpenRecord 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sOpenRecord structure when a Directory Services client application calls the
dsOpenRecord function to open a record. The sOpenRecord structure is defined as
follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataNodePtr fInRecType;
tDataNodePtr fInRecName;
tRecordReference fOutRecRef;

} sOpenRecord;

DISCUSSION

(To be delivered)

sGetRecRefInfo 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetRecRefInfo structure when a Directory Services client application calls the
dsGetRecRefInfo function to get the name and type of a record. The
sGetRecRefInfo structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tRecordEntryPtr fOutRecInfo;

} sGetRecRefInfo;
28 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
DISCUSSION

(To be delivered)

sGetRecAttribInfo 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetRecAttribInfo structure when a Directory Services client application calls
the dsGetRecordAttributeInfo function to get information about an attribute
using an attribute type. The sGetRecAttribInfo structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tDataNodePtr fInAttrType;
tAttributeEntryPtr fOutAttrInfoPtr;

} sGetRecAttribInfo;

DISCUSSION

(To be delivered)

sGetRecAttribValueByIndex 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sGetRecAttribValueByIndex structure when a Directory Services client
application calls the dsGetRecordAttributeValueByIndex function to get the
value of an attribute using an index. The sGetRecAttribValueByIndex structure
is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tDataNodePtr fInAttrType;
Request Structures 29
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
unsigned long fInAttrValueIndex;
tAttributeValueEntryPtrfOutEntryPtr;

} sGetRecAttrValueByIndex;

DISCUSSION

(To be delivered)

sFlushRecord 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sFlushRecord structure when a Directory Services client application calls the
dsFlushRecord function to write a record. The sFlushRecord structure is defined
as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;

} sFlushRecord;

DISCUSSION

(To be delivered)

sCloseRecord 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sCloseRecord structure when a Directory Services client application calls the
dsCloseRecord function to close a record. The sCloseRecord structure is defined
as follows:
30 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;

} sCloseRecord;

DISCUSSION

(To be delivered)

sSetRecordName 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetRecordName structure when a Directory Services client application calls the
dsSetRecordName function to set the name of a record. The sSetRecordName
structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInNewRecName;

} sSetRecordName;

DISCUSSION

(To be delivered)

sSetRecordType 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetRecordType structure when a Directory Services client application calls the
dsSetRecordType function to set the type of a record. The sSetRecordType
structure is defined as follows:
Request Structures 31
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInNewRecType;

} sSetRecordType;

DISCUSSION

(To be delivered)

sDeleteRecord 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sDeleteRecord structure when a Directory Services client application calls the
dsDeleteRecord function to delete a record. The sDeleteRecord structure is
defined as follows:

typedef struct {
uInt32 fType
sInt32 fResult;
tRecordReferencefInRecRef;

} sDeleteRecord;

DISCUSSION

(To be delivered)

sCreateRecord 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sCreateRecord structure when a Directory Services client application calls the
dsCreateRecord function or dsCreateRecordAndOpen to create a record. The
sCreateRecord structure is defined as follows:
32 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataNodePtr fInRecType;
tDataNodePtr fInRecName;
bool fInOpen;
tRecordReferencefOutRecRef;

} sCreateRecord;

DISCUSSION

(To be delivered)

sSetRecordAccess 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetRecordAccess structure when a Directory Services client application calls the
dsSetRecordAccess function to set access controls for a record. The
sSetRecordAccess structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tAccessControlEntryPtrfInNewRecAccess;

} sSetRecordAccess;

DISCUSSION

(To be delivered)

sSetRecordFlags 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetRecordFlags structure when a Directory Services client application calls the
Request Structures 33
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
dsSetRecordFlags function to set a record’s flags. The sSetRecordFlags
structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
unsigned long fInRecFlags;

} sSetRecordFlags;

DISCUSSION

(To be delivered)

sAddAttribute 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sAddAttribute structure when a Directory Services client application calls the
dsAddAttribute function to add an attribute to a record. The sAddAttribute
structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tDataNodePtr fInNewAttr;
tAccessControlEntryPtrfInNewAttrAccess;
tDataNodePtr fInFirstAttrValue;

} sAddAttribute;

DISCUSSION

(To be delivered)
34 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sRemoveAttribute 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sRemoveAttribute structure when a Directory Services client application calls the
dsRemoveAttribute function to remove an attribute from a record. The
sRemoveAttribute structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInAttribute;

} sRemoveAttribute;

DISCUSSION

(To be delivered)

sSetAttributeAccess 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetAttributeAccess structure when a Directory Services client application calls
the dsSetAttributeAccess function to an attribute’s access controls. The
sSetAttributeAccess structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tDataNodePtr fInAttrType;
tAccessControlEntryPtrfInAttrAccess;

} sSetAttributeAccess;

DISCUSSION

(To be delivered)
Request Structures 35
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sSetAttributeFlags 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetAttributeFlags structure when a Directory Services client application calls
the dsSetAttributeFlags function to set an attribute’s flags. The
sSetAttributeFlags structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInAttrType;
unsigned long fInAttrFlags;

} sSetAttributeFlags;

DISCUSSION

(To be delivered)

sAddAttributeValue 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sAddAttributeValue structure when a Directory Services client application calls
the dsAddAttributeValue function to add a value to an attribute. The
sAddAttributeValue structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInAttrType;
tDataNodePtr fInAttrValue;

} sAddAttributeValue;

DISCUSSION

(To be delivered)
36 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sRemoveAttributeValue 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sRemoveAttributeValue structure when a Directory Services client application
calls the dsRemoveAttributeValue function to remove a value from an attribute.
The sRemoveAttributeValue structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReferencefInRecRef;
tDataNodePtr fInAttrType;
unsigned long fInAttrValueID;

} sRemoveAttributeValue;

DISCUSSION

(To be delivered)

sSetAttributeValue 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sSetAttributeValue structure when a Directory Services client application calls
the dsSetAttributeValue function to set the value of an attribute. The
sSetAttributeValue structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tRecordReference fInRecRef;
tDataNodePtr fInAttrType;
tAttributeValueEntryPtrfInAttrValueEntry;

} sSetAttributeValue;

DISCUSSION

(To be delivered)
Request Structures 37
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
sDoDirNodeAuth 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sDoDirNodeAuth structure when a Directory Services client application calls the
dsDoDirNodeAuth function to authenticate a user to a directory node. The
sSDoDirNodeAuth structure is defined as follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataNodePtr fInAuthMethod;
bool fInDirNodeAuthOnlyFlag;
tDataBufferPtr fInAuthStepData;
tDataBufferPtr fOutAuthStepDataResponse;
tContextData fIOContinueData;

} sDoDirNodeAuth;

DISCUSSION

(To be delivered)

sDoAttrValueSearch 2

Directory Services calls a plug-in’s ProcessRequest entry point and passes an
sDoAttrValueSearch structure when a Directory Services client application calls
the dsDoAttributeValueSearch function to search for attributes whose values
match a specified pattern. The sSDoAttrValueSearch structure is defined as
follows:

typedef struct {
uInt32 fType;
sInt32 fResult;
tDirNodeReference fInNodeRef;
tDataBufferPtr fOutDataBuff;
tDataListPtr fInRecTypeList;
tDataNodePtr fInAttrType;
tDirPatternMatch fInPattMatchType;
38 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
tDataNodePtr fInPatt2Match;
unsigned long fOutMatchRecordCount;
tContextData fIOContinueData;

} sDoAttrValueSearch;

DISCUSSION

(To be delivered)
Request Structures 39
Draft. Preliminary.  Apple Computer, Inc.

C H A P T E R 2

Directory Services Plug-in Reference
40 Request Structures

Draft. Preliminary.  Apple Computer, Inc.

Index
41
Draft. Preliminary.  Apple Computer, Inc.

I N D E X
42
Draft. Preliminary.  Apple Computer, Inc. 4/11/00

	Directory Services Plug-ins
	Contents
	Figures, Tables, and Listings
	About This Manual
	Conventions Used in This Manual
	For More Information

	About Directory Services Plug-ins
	Runtime Environment
	Required Entry Points
	Processing Directory Services Requests
	Processing Concurrent Requests
	Directory Services Callbacks
	Calling Mac OS Functions
	Managing References
	Standard Record and Attribute Types
	Authentication
	Building a Directory Services Plug-in
	Configuring a Directory Services Plug-in

	Directory Services Plug-in Reference
	Directory Service Plug-in Entry Points
	Initialize
	PeriodicTask
	ProcessRequest
	SetPluginState
	Shutdown

	Directory Services Callback Routines
	RegisterNode
	UnregisterNode
	DebugLog

	Request Structures
	sOpenDirNode
	sCloseDirNode
	sGetDirNodeInfo
	sGetRecordList
	sGetRecordEntry
	sGetAttributeEntry
	sGetAttributeValue
	sOpenRecord
	sGetRecRefInfo
	sGetRecAttribInfo
	sGetRecAttribValueByIndex
	sFlushRecord
	sCloseRecord
	sSetRecordName
	sSetRecordType
	sDeleteRecord
	sCreateRecord
	sSetRecordAccess
	sSetRecordFlags
	sAddAttribute
	sRemoveAttribute
	sSetAttributeAccess
	sSetAttributeFlags
	sAddAttributeValue
	sRemoveAttributeValue
	sSetAttributeValue
	sDoDirNodeAuth
	sDoAttrValueSearch

	Index

