

1

Creating Suite Definitions and Suite Terminologies

If a scriptable application is going to provide any scripting support beyond that
defined by the Yellow Box frameworks or any other imported framework or
loaded bundle, it must include a “suite definition” and, for each supported
language, a “suite terminology.”

A suite definition describes the scriptable objects of an application,
framework, or bundle in terms of their attributes (properties), relationships
(elements), and supported commands. A suite terminology describes the
allowable AppleScript terms and phrases for each supported natural language.
The attribute and relationship keys in the suite definition are mapped to the
corresponding names in the suite terminology. The suite definition and the
suite terminology also serve as the source of the summary information
displayed by the Script Editor application.

Both sets of information are in files with distinct names and locations:

• Suite definitions are in files named

suiteName

.scriptSuite

 where

suiteName

 is a
name uniquely identifying the suite, and corresponding to the name of the
suite terminology, if any. There should be only one file per suite. The file
should be among the application’s language-independent resources (that is, in
the top level of the application wrapper’s Resources directory).

• Suite terminologies are in files named

suiteName

.scriptTerminology

 where

suiteName

 is a name uniquely identifying the suite, and corresponding to the
name of the suite definition. A file for each localized language should be in the
appropriate

language

.lproj

 directory of the application’s resources.

The information in suite definitions and suite terminologies must be in a
structured textual format known as a “property list.” For the current release
you must build these property lists “by hand”—that is, by using a text editor.

Creating Suite Definitions and Suite Terminologies

2

A Primer on ASCII Property Lists

In the Yellow Box, A property list is a structured representation of object data. It
can be in binary or ASCII (that is, textual) format. The primary value of a
property list is that it can be stored as an external source and read by a program
at run time. Suite definitions and terminology definitions are property lists that
represent the scriptable properties, elements, commands, and special terms of
an application. They are loaded by an application when it is launched.

When an application loads an ASCII property list, the items in the property list
are converted into Yellow Box objects based on how they are structured. These
objects include NSString, NSData, NSArray, and NSDictionary objects.
NSArrays and NSDictionaries are collection objects and thus can contain
NSStrings and NSDatas as well as nested NSArrays and NSDictionaries.

A property list uses punctuation (curly braces, equal signs, parentheses,
quotation marks, commas, and semicolons) to define its structure. Although
indentation has no affect on how items are interpreted, property lists are
frequently indented to improve readability. To represent NSDictionaries (as are
suite terminologies and suite terminologies), you must enclose the entire
property list in curly braces:

{

 // NSStrings, NSDatas, NSArrays,

 // and NSDictionaries represented here

}

The remainder of this section discusses how NSStrings, NSArrays, and
NSDictionaries are represented in property lists. Because NSData objects are
rarely represented in property lists—and do not occur in suite definitions or
terminology definitions—they are not discussed here.

NSString

You represent an NSString by enclosing a symbol in quotation marks, for
example:

“NSDocument”

(Sometimes quotes are optional, but it is recommended that you always use
them.) The elements of an array are frequently NSStrings. The left (key) side of
a key/value assignment used to define an item in a dictionary must be an
NSString; the right (value) side

may

 be an NSString. For example:

“Type” = “NSTextStorage”;

3

NSArray

You represent an NSArray by enclosing a comma-divided list with
parentheses:

(“cha “, “ctxt”, “font”)

NSArrays are usually on the right (value) side of NSDictionary key/value
assignments:

“SynonymAppleEventCodes” = (“cha “, “ctxt”, “font”);

(As noted earlier, you must always represent dictionary keys as NSStrings.)
The elements of a represented array can be NSStrings, NSDatas,
NSDictionaries, or other NSArrays. For example:

“TopLevelArray” = (“x”, (“a”, “b”, “c”), “y”, {“z” = “hello”});

NSDictionary

An item in an NSDictionary is a key/value pair represented as an assignment
(that is, it uses an equals sign as a separator and terminates with a
semicolon). For example:

“AppleEventCode” = “aevt”;

The left side of the assignment is referred to as the “key”; the key must be
an NSString. The right side of the assignment is known as the “value”; it
can be any allowable property-list type. For example, it could be another
NSDictionary, which can itself nest other NSDictionaries:

{

// top-level dictionary

// other stuff...

“NSTextStorage” = {

 “Superclass” = “NSCoreSuite.AbstractObject”;

 “Attributes” = {

 “foregroundColor” = {

 “Type” = “NSColor”;

 “AppleEventCode” = “colr”;

 };

// more other stuff...

}

The Structure of a Suite Definition

The property list for a suite definition consists of a series of nested
dictionaries. Use appropriate Apple event codes or, if none exists for a

Creating Suite Definitions and Suite Terminologies

4

certain class of object, attribute, or relationship, use a four-letter Apple event
code that you know to be unique.

5

Suite Dictionary

Class List Dictionary

Class Dictionary

Property List Dictionary

Key Value Type or
Reference

Description

“Name” NSString Name of suite (required)

“AppleEventCode” NSString Four-letter Apple event code for this suite (required)

“Classes” Class List Dictionary optional (no classes defined by default)

“Commands” Command List
Dictionary

optional (no classes defined by default)

“Synonyms” Synonym List
Dictionary

optional (no synonyms defined by default)

Key Reference Description

“

className

” Class Dictionary One per each scriptable class. Must be the name of an Objective-C or Yellow
Box Java class.

Key Value Type or
Reference

Description

“Superclass” NSString Scriptable superclass; must be the name of an Objective-C or Yellow Box Java
class. All attributes, relationships, and supported commands are inherited
and can be overriden. You can use the notation

suiteName

.

className

 to
designate the class. (Optional.)

“AppleEventCode” NSString Four-letter Apple event code for this class (required)

“Attributes” Property List
Dictionary

Attributes (properties) of the class (optional)

“ToOneRelationships” Property List
Dictionary

One-to-one relationships (elements) of the class (optional)

“ToManyRelationships” Property List
Dictionary

One-to-many relationships (elements) of the class (optional)

“SupportedCommands” Supported
Commands
Dictionary

Commands supported by the class (optional)

“InverseRelationships” Inverse
Relationship
Dictionary

An inverse relationship maps a given relationship to the relationship in the
destination class of that relationship that points back to this class (optional).

Key Reference Description

“

propertyName

” Property Dictionary Definition of attribute or relationship.

propertyName

 should map to an
instance variable of the class for which there are accessor methods.

Creating Suite Definitions and Suite Terminologies

6

Property Dictionary

Supported Commands Dictionary

Inverse Relationship Dictionary

Command List Dictionary

Command Dictionary

Key Value Type Description

“Type” NSString Name of class for values of this property (required)

“AppleEventCode” NSString Four-letter Apple event code for this suite (required)

“ReadOnly” NSString “Yes” or “No” (“No” is default; optional)

Key Value Type Description

“

commandName

” NSString Name of method this class uses to implement the command or ““ if the
default implementation is sufficient.

commandName

 should be in

suiteName

.

commandName

 notation if command is not in the same
suite as the class.

Key Value Type Description

“

relationshipName

” NSString Name of an inverse relationship. An inverse relationship specifies a
relationship to a class that points back to this class.

Key Reference Description

“

commandName

” Command
Dictionary

Command definition.

Key Value Type or
Reference

Description

“CommandClass” NSString Class of command (optional; NSScriptCommand by default). If not
default, must be a subclass of NSScriptCommand.

“AppleEventCode” NSString Four-letter Apple event code for this command (required)

“AppleEventClassCode” NSString Four-letter Apple event class code for this command (optional, is the
Apple event code of the suite definition by default)

“Type” NSString Class name of result of command or ““ if no result (optional, no result
by default)

“ResultAppleEventCode” NSString Four-letter Apple event code for the return type of the command. Must
be present if “Type” value is assigned. Can be “****” if the return type
is variable.

“Arguments” Argument List
Dictionary

Arguments of command (optional, no arguments by default)

7

Argument List Dictionary

Synonym List Dictionary

Suite Definition Example

The following example is the Core suite (

NSCoreSuite.scriptSuite

) provided by the
Yellow Box frameworks. This file has probably changed since its inclusion
in this document; you can obtain an updated version of this file in

/System/Library/Frameworks/Scripting.framework/Resources

.

The AbstractObject class specifies a base class that your scriptable classes
can inherit from; the “Abstract” prefix indicates that an application should
never export instances of the class.

{

 “Name” = “NSCoreSuite”;

 “AppleEventCode” = “core”;

 “Classes” = {

 “AbstractObject” = {

 “Attributes” = {

 “className” = {

 “Type” = “NSString”;

 “AppleEventCode” = “pcnm”;

 “ReadOnly” = “YES”;

 };

 “classCode” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pcls”;

 “ReadOnly” = “YES”;

 };

 };

 “SupportedCommands” = {

 “NSCoreSuite.Get” = ““;

 “NSCoreSuite.Count” = ““;

 “NSCoreSuite.Exists” = ““;

 “NSCoreSuite.Move” = ““;

Key Value Type or
Reference

Description

“Type” NSString Name of class for this argument (required)

“AppleEventCode” NSString Four-letter Apple event code for this argument (required)

“Optional” NSString “Yes” or “No” (optional, “No” by default)

Key Value Type or
Reference

Description

“

Apple event code

” NSString Class name for which four-letter Apple event code is a synonym.

Creating Suite Definitions and Suite Terminologies

8

 “NSCoreSuite.Copy” = ““;

 “NSCoreSuite.Create” = ““;

 “NSCoreSuite.Delete” = ““;

 “NSCoreSuite.Set” = ““;

 };

 “AppleEventCode” = “cobj”;

 };

 “NSApplication” = {

 “Superclass” = “NSCoreSuite.AbstractObject”;

 “Attributes” = {

 “name” = {

 “Type” = “NSString”;

 “AppleEventCode” = “pnam”;

 “ReadOnly” = “YES”;

 };

 “isActive” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pisf”;

 “ReadOnly” = “YES”;

 };

 “version” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “vers”;

 “ReadOnly” = “YES”;

 };

 };

 “ToManyRelationships” = {

 “orderedDocuments” = {

 “Type” = “NSDocument”;

 “AppleEventCode” = “docu”;

 “ReadOnly” = “YES”;

 };

 “orderedWindows” = {

 “Type” = “NSWindow”;

 “AppleEventCode” = “cwin”;

 “ReadOnly” = “YES”;

 };

 };

 “AppleEventCode” = “capp”;

 };

 “NSDocument” = {

 “Superclass” = “NSCoreSuite.AbstractObject”;

 “Attributes” = {

 “lastComponentOfFileName” = {

 “Type” = “NSString”;

 “AppleEventCode” = “pnam”;

 };

 “fileName” = {

 “Type” = “NSString”;

9

 “AppleEventCode” = “ppth”;

 };

 “isDocumentEdited” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “imod”;

 “ReadOnly” = “YES”;

 };

 };

 “SupportedCommands” = {

 “NSCoreSuite.Print” = ““;

 “NSCoreSuite.Save” = “handleSaveScriptCommand:”;

 “NSCoreSuite.Close” = “handleCloseScriptCommand:”;

 };

 “AppleEventCode” = “docu”;

 };

 “NSWindow” = {

 “Superclass” = “NSCoreSuite.AbstractObject”;

 “Attributes” = {

 “hasCloseBox” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “hclb”;

 “ReadOnly” = “YES”;

 };

 “hasTitleBar” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “ptit”;

 “ReadOnly” = “YES”;

 };

 “orderedIndex” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pidx”;

 };

 “isFloatingPanel” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “isfl”;

 “ReadOnly” = “YES”;

 };

 “isModalPanel” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pmod”;

 “ReadOnly” = “YES”;

 };

 “isResizable” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “prsz”;

 “ReadOnly” = “YES”;

 };

 “isZoomable” = {

 “Type” = “NSNumber”;

Creating Suite Definitions and Suite Terminologies

10

 “AppleEventCode” = “iszm”;

 “ReadOnly” = “YES”;

 };

 “isZoomed” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pzum”;

 };

 “isMiniaturizable” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “ismn”;

 “ReadOnly” = “YES”;

 };

 “isMiniaturized” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pmin”;

 };

 “title” = {

 “Type” = “NSString”;

 “AppleEventCode” = “pnam”;

 };

 “isVisible” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “pvis”;

 };

 };

 “ToOneRelationships” = {

 “document” = {

 “Type” = “NSDocument”;

 “AppleEventCode” = “docu”;

 “ReadOnly” = “YES”;

 };

 };

 “AppleEventCode” = “cwin”;

 };

“NSColor” = {

 “Superclass” = “NSCoreSuite.AbstractObject”;

 “AppleEventCode” = “colr”;

};

 };

 “Commands” = {

 “Get” = {

 “CommandClass” = “NSGetCommand”;

 “Type” = “NSObject”;

 “ResultAppleEventCode” = “****”;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “getd”;

 };

11

 “Set” = {

 “CommandClass” = “NSSetCommand”;

 “Type” = ““;

 “Arguments” = {

 “Value” = {

 “Type” = “NSObject”;

 “AppleEventCode” = “data”;

 };

 };

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “setd”;

 };

 “Count” = {

 “CommandClass” = “NSCountCommand”;

 “Type” = “NSObject”;

 “ResultAppleEventCode” = “****”;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “cnte”;

 };

 “Exists” = {

 “CommandClass” = “NSExistsCommand”;

 “Type” = “NSObject”;

 “ResultAppleEventCode” = “****”;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “doex”;

 };

 “Delete” = {

 “CommandClass” = “NSDeleteCommand”;

 “Type” = ““;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “delo”;

 };

 “Move” = {

 “CommandClass” = “NSMoveCommand”;

 “Type” = ““;

 “Arguments” = {

 “ToLocation” = {

 “Type” = “NSPositionalReference”;

 “AppleEventCode” = “insh”;

 };

 };

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “move”;

 };

 “Copy” = {

 “CommandClass” = “NSCopyCommand”;

 “Type” = ““;

 “Arguments” = {

 “ToLocation” = {

Creating Suite Definitions and Suite Terminologies

12

 “Type” = “NSPositionalReference”;

 “AppleEventCode” = “insh”;

 };

 };

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “clon”;

 };

 “Create” = {

 “CommandClass” = “NSCreateCommand”;

 “Type” = “NSObjectReference”;

 “ResultAppleEventCode” = “obj “;

 “Arguments” = {

 “Location” = {

 “Type” = “NSPositionalReference”;

 “AppleEventCode” = “insh”;

 };

 “ObjectClass” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “kocl”;

 };

 “ObjectData” = {

 “Type” = “NSObject”;

 “AppleEventCode” = “data”;

 “Optional” = “YES”;

 };

 “KeyDictionary” = {

 “Type” = “NSDictionary”;

 “AppleEventCode” = “prdt”;

 “Optional” = “YES”;

 };

 };

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “crel”;

 };

 “Save” = {

 “CommandClass” = “NSScriptCommand”;

 “Type” = ““;

 “Arguments” = {

 “File” = {

 “Type” = “NSString”;

 “AppleEventCode” = “kfil”;

 “Optional” = “YES”;

 };

 “FileType” = {

 “Type” = “NSString”;

 “AppleEventCode” = “fltp”;

 “Optional” = “YES”;

 };

 };

13

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “save”;

 };

 “Close” = {

 “CommandClass” = “NSScriptCommand”;

 “Type” = ““;

 “Arguments” = {

 “File” = {

 “Type” = “NSString”;

 “AppleEventCode” = “kfil”;

 “Optional” = “YES”;

 };

 “SaveOptions” = {

 “Type” = “NSNumber”;

 “AppleEventCode” = “savo”;

 “Optional” = “YES”;

 };

 };

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “clos”;

 };

 “Open” = {

 “CommandClass” = “NSScriptCommand”;

 “Type” = ““;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “odoc”;

 };

 “Print” = {

 “CommandClass” = “NSScriptCommand”;

 “Type” = ““;

 “AppleEventClassCode” = “core”;

 “AppleEventCode” = “pdoc”;

 };

 };

}

The Structure of a Suite Terminology

The property list for a suite terminology also consists of a series of nested
dictionaries. Many of the subdictionaries (class, command, argument, and
so on) should have counterparts in the suite definition.

Creating Suite Definitions and Suite Terminologies

14

Terminology Dictionary

Class List Terminology Dictionary

Class Terminology Dictionary

Property List Terminology Dictionary

Property Terminology Dictionary

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of suite (required)

“Description” NSString Human-readable description of suite (optional)

“Classes” Class List
Terminology
Dictionary

Required only if there is a corresponding definition

“Commands” Command List
Terminology
Dictionary

Required only if there is a corresponding definition

“Synonyms” Class Synonym List
Terminology
Dictionary

Required only if there is a corresponding definition

Key Reference Description

“

className

” Class Terminology
Dictionary

One per each scriptable class. Must be the name of an Objective-C or
Yellow Box Java class.

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of class (required)

“Description” NSString Human-readable description of class (optional)

“PluralName” NSString Human-readable name for plural form of class (required)

“Attributes” Property List
Terminology
Dictionary

Attributes (properties) of the class (required only if there is a
corresponding definition)

Key Reference Description

“

propertyName

” Property Terminology
Dictionary

Description of attribute (property) or relationship (element) of the class

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of property (required).

“Description” NSString Human readable description of property (optional)

15

“Sex” NSString or NSArray
of NSStrings

“masculine”, “feminine”, or “none” (default).

“Number” NSString or NSArray
of NSStrings

“plural” or “singular” (default).

Key Value Type or
Reference

Description

Creating Suite Definitions and Suite Terminologies

16

Command List Terminology Dictionary

Command Terminology Dictionary

Argument List Terminology Dictionary

Agument Terminology Dictionary

Class Synonym List Terminology Dictionary

Key Reference Description

“

className

” Command
Terminology
Dictionary

Description of command supported by class.

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of command (required)

“Description” NSString Human-readable description of command (optional)

“IsVerb” NSString or NSArray
of NSStrings

“No” or “Yes” (default)

“Arguments” Argument List
Terminology
Dictionary

Description of command arguments (required only if there is a
definition)

Key Reference Description

“

argumentName

” Agument
Terminology
Dictionary

Descriptions of command arguments.

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of argument (required)

“Description” NSString Human-readable description of argument (optional)

“Sex” NSString or NSArray
of NSStrings

“masculine”, “feminine”, “none” (default)

“Number” NSString or NSArray
of NSStrings

“plural” or “singular” (default)

Key Reference Description

“

Apple event code

” Class Synonym
Terminology
Dictionary

Descriptions of Apple event code synonyms for class

17

Class Synonym Terminology Dictionary

Example of Suite Terminology

The following example is the Core suite (

NSCoreSuite.scriptTerminology

) provided
by the Yellow Box frameworks. This file has probably changed since its
inclusion in this document; you can obtain an updated version of this file in

/System/Library/Frameworks/Scripting.framework/Resources/English.lproj

.

{

 “Name” = “Standard Suite”;

 “Description” = “Common classes and commands for most
applications.”;

 “Classes” = {

“AbstractObject” = {

 “Name” = “Abstract object”;

 “Description” = “Abstract object provides a base class for
scripting classes. It is never used directly.”;

 “Attributes” = {

 “className” = {

 “Name” = “classname”;

 “Description” = “The name of the class of the
object.”;

 };

 “classCode” = {

 “Name” = “class”;

 “Description” = “The class of the object.”;

 };

 };

};

“NSApplication” = {

 “Name” = “application”;

 “Description” = “An application’s top level scripting
object.”;

 “PluralName” = “applications”;

 “Attributes” = {

 “name” = {

 “Name” = “name”;

 “Description” = “The name of the application.”;

 };

 “isActive” = {

 “Name” = “frontmost”;

Key Value Type or
Reference

Description

“Name” NSString or NSArray
of NSStrings

Human-readable name of class (required)

“Description” NSString Human-readable description of class (optional)

“PluralName” NSString Human-readable name of plural form of class (required)

Creating Suite Definitions and Suite Terminologies

18

 “Description” = “Is this the frontmost (active)
application?”;

 };

 “version” = {

 “Name” = “version”;

 “Description” = “The version of the application.”;

 };

 };

 };

“NSDocument” = {

 “Name” = “document”;

 “Description” = “A document.”;

 “PluralName” = “documents”;

 “Attributes” = {

 “lastComponentOfFileName” = {

 “Name” = “name”;

 “Description” = “The document’s name.”;

 };

 “fileName” = {

 “Name” = “path”;

 “Description” = “The document’s path.”;

 };

 “isDocumentEdited” = {

 “Name” = “modified”;

 “Description” = “Has the document been modified
since the last save?”;

 };

 };

 };

“NSWindow” = {

 “Name” = “window”;

 “Description” = “A window.”;

“PluralName” = “windows”;

 “Attributes” = {

 “hasCloseBox” = {

 “Name” = “has close box”;

 “Description” = “Whether the window has a close
box.”;

 };

 “hasTitleBar” = {

 “Name” = “has title bar”;

 “Description” = “Whether the window has a title
bar.”;

 };

 “orderedIndex” = {

 “Name” = “index”;

 “Description” = “The index of the window in the
back-to-front window ordering.”;

 };

 “isFloatingPanel” = {

19

 “Name” = “is floating”;

 “Description” = “Whether the window floats.”;

 };

 “isModalPanel” = {

 “Name” = “is running modal”;

 “Description” = “Whether the window is the
application’s current modal window.”;

 };

 “isResizable” = {

 “Name” = “is resizable”;

 “Description” = “Whether the window can be
resized.”;

 };

 “isZoomable” = {

 “Name” = “is zoomable”;

 “Description” = “Whether the window can be
zoomed.”;

 };

 “isZoomed” = {

 “Name” = “is zoomed”;

 “Description” = “Whether the window is currently
zoomed.”;

 };

 “isMiniaturizable” = {

 “Name” = “is miniaturizable”;

 “Description” = “Whether the window can be
miniaturized.”;

 };

 “isMiniaturized” = {

 “Name” = “is miniaturized”;

 “Description” = “Whether the window is currently
miniaturized.”;

 };

 “title” = {

 “Name” = “name”;

 “Description” = “The full title of the window.”;

 };

 “isVisible” = {

 “Name” = “is visible”;

 “Description” = “Whether the window is currently
visible.”;

 };

};

};

“NSColor” = {

 “Name” = “color”;

 “Description” = “A color.”;

 “PluralName” = “colors”;

};

 };

Creating Suite Definitions and Suite Terminologies

20

 “Commands” = {

“Get” = {

 “Name” = “get”;

 “Description” = “Get the data for an object.”;

};

“Set” = {

 “Name” = “set”;

 “Description” = “Set an object’s data.”;

 “Arguments” = {

 “Value” = {

 “Name” = “to”;

 “Description” = “The new value.”;

 };

 };

 };

“Count” = {

 “Name” = “count”;

 “Description” = “Return the number of elements of a particular
class within an object.”;

};

“Exists” = {

 “Name” = “exists”;

 “Description” = “Verify if an object exists.”;

};

“Delete” = {

 “Name” = “delete”;

 “Description” = “Delete an object.”;

};

“Move” = {

 “Name” = “move”;

 “Description” = “Move object(s) to a new location.”;

 “Arguments” = {

 “ToLocation” = {

 “Name” = “to”;

 “Description” = “The new location for the object(s).”;

 };

 };

 };

“Copy” = {

 “Name” = “duplicate”;

 “Description” = “Copy object(s) and put the copies at a new
location.”;

 “Arguments” = {

 “ToLocation” = {

 “Name” = “to”;

 “Description” = “The location for the new object(s).”;

 };

21

 };

 };

“Create” = {

 “Name” = “make”;

 “Description” = “Make a new object.”;

 “Arguments” = {

 “Location” = {

 “Name” = “at”;

 “Description” = “The location at which to insert
the object.”;

 };

 “ObjectClass” = {

 “Name” = “new”;

 “Description” = “The class of the new object.”;

 };

 “ObjectData” = {

 “Name” = “with data”;

 “Description” = “The initial data for the
object.”;

 };

 “KeyDictionary” = {

 “Name” = “with properties”;

 “Description” = “The initial values for
properties of the object.”;

 };

 };

 };

“Save” = {

 “Name” = “save”;

 “Description” = “Save an object.”;

 “Arguments” = {

 “File” = {

 “Name” = “in”;

 “Description” = “The file in which to save the
object.”;

 };

 “FileType” = {

 “Name” = “as”;

 “Description” = “The file type in which to save
the data.”;

 };

 };

};

“Close” = {

 “Name” = “close”;

 “Description” = “Close an object.”;

 “Arguments” = {

 “File” = {

 “Name” = “saving in”;

Creating Suite Definitions and Suite Terminologies

22

 “Description” = “The file in which to save the
object.”;

 };

 “SaveOptions” = {

 “Name” = “saving”;

 “Description” = “Specifies whether changes should be
saved before closing.”;

 }};

 };

};

“Open” = {

 “Name” = “open”;

 “Description” = “Open an object.”;

};

“Print” = {

 “Name” = “print”;

 “Description” = “Print an object.”;

};

 };

}

