

C H A P T E R 2

 2 Hello IOKit: Creating a Device
Driver With Project Builder
This document describes how to write and debug an I/O Kit device driver for Mac
OS X. It emphasizes how to edit the driver’s XML file, write a its code, and use GDB
to perform remote debugging. The driver you’ll create is a simple HelloIOKit driver
that prints text messages but doesn’t actually control any hardware.

For remote debugging, you need two machines. On the development machine,
you’ll write and build the driver, and then run the debugger. On the
target-machine, you’ll load and run the driver. Both machines must be running the
same version of Mac OS X, must be connected via TCP/IP, and must be on the same
subnet.

The previous tutorial “Hello Kernel: Creating a Kernel Extension With Project
Builder” (page 1) emphasizes how to create the kernel extension’s project and
correct bugs.

Here’s how you’ll create the device driver:

1. “Create and Build the Device Driver Project” (page 15)

2. “Debug the Device Driver” (page 29)

Create and Build the Device Driver Project

This section describes how to create the project that will create your device driver.

An I/O Kit device driver is a special type of kernel extension that tells the kernel
how to handle a particular device or family of devices. In Mac OS X, all kernel
Create and Build the Device Driver Project 15

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

extensions are implemented as bundles, folders that the Finder treats as single files.
A driver can contain the following:

� Info-macos.xml describes the driver’s contents, settings, and requirements. It’s a
text file in XML format. A driver can contain nothing more than an
Info-macos.xml file.

� Modules are the driver’s binary code. This is what’s loaded into the kernel.
Generally, a driver has only one, but it can have more or none. If it has none, its
Info-macos.xml file would reference a module in another driver and change its
default settings.

� Resources are useful if your driver needs to display a dialog box or menu.

Here’s how you’ll create the device driver project:

1. “Create a Device Driver Project and a Module Subproject” (page 16)

2. “Edit the Driver’s CustomInfo.xml file” (page 17)

3. “Edit the Module’s CustomInfo.xml file” (page 20)

4. “Create a Source File and Header File” (page 23)

5. “Implement the Needed Methods” (page 23)

6. “Build the Project” (page 28)

Create a Device Driver Project and a Module
Subproject
To create the device driver project, choose Project > New, enter “HelloIOKit” as the
name, and Kernel Extension as the Project Type.
16 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

To create the module’s subproject, choose Project > New Subproject, enter
“HelloIOKit” as the name, and choose Kernel Module as the Project Type.

Edit the Driver’s CustomInfo.xml file
Your project contains two files named CustomInfo.xml: one in the driver project
and the other in the module subproject. These files tell the operating system what
your driver contains and what it needs. When Project Builder builds your project, it
will combine all its CustomInfo.xml files into one file named Info-macos.xml.
Create and Build the Device Driver Project 17

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

To find the driver’s CustomInfo.xml file, go to the Project Window’s browser and
follow this path: Other Resources / CustomInfo.xml.

This CustomInfo.xml file contains a dictionary with four entries.

� Name: The name used for the driver’s bundle. By default it’s the name of the
project.

� Vendor: Your company’s name.

� Version: The driver’s version number. It can contain any combination of
numbers or characters.

� Date: The date the driver was created.

Here’s the CustomInfo.xml file for this driver:

 Listing 2-1 The Driver’s CustomInfo.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist
 SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
18 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

<plist version="0.9">
<dict>
 <key>Name</key>

<string>HelloIOKit</string>
 <key>Vendor</key>

<string>Your-Company</string>
 <key>Version</key>

<string>0.1</string>
 <key>Date</key>

<string>September 15, 1999</string>
</dict>
</plist>

For this tutorial, you don’t need to change any of the entries. However, you can
change the vendor, version, and date, if you like. Leave the name as it is.

Important: Don’t change the text between the <key> and </key> markers. Instead,
change the text between <string> and </string>.
Create and Build the Device Driver Project 19

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

Edit the Module’s CustomInfo.xml file
To find the module’s CustomInfo.xml file, go to the Project Window’s browser and
follow this path: Subprojects / HelloIOKit / Other Resources / CustomInfo.xml.

This CustomInfo.xml file contains two dictionaries. For now, don’t concern yourself
with the first one, called “personality.” Instead, concentrate on the second one,
called “module,” which contains six entries:

� Name: The official name for this module. The operating system will use this to
identify the module.

� Target: What the module will be linked against. In this version, the only option
is kernel.

� Initialize: What the module will call when it’s loaded. Don’t change this if you’re
writing an IOKit module

� Finalize: What the module will call when it’s unloaded. Don’t change this if
you’re writing an IOKit module

� File: The name of the module’s file. It does not have to be the same as the above
name, although it generally is.
20 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

� Format: The binary format for the module. In this version, the only option is
mach-o.

� Requires: An array of other drivers that this one depends upon. It can have zero
or more members.

For this tutorial, leave the name, file, initialize, finalize, target, and format entries
as they are.

 Listing 2-2 The module’s CustomInfo.xml file, after editing

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist
 SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<!-- Welcome to XML. Anything you see surrounded like this is a comment. -->
<dict>
 <!--
 Currently Personality is only needed by IOKit extensions.
 If you are not writing an IOKit extension then delete the entire
 Personality key with it's dictionary below.
 -->
 <key>Personality</key>
 <dict>
 <key>Name</key>
 <string>HelloIOKit</string>
 <key>Module</key>
 <string>HelloIOKit</string>

 <!-- The name of the class for registry to 'alloc' when probing. -->
 <key>IOClass Names</key>
 <string>HelloIOKit</string>

 <!-- IOKit matching properties, setup for a debug node by default. -->
 <key>IOImports</key>
 <string>IOResources</string>
 <key>IONeededResources</key>
 <string>IOKit</string>
 <key>IOMatchCategory</key>
 <string>HelloIOKit</string>
 </dict>
Create and Build the Device Driver Project 21

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

 <key>Module</key>
 <dict>
 <!-- You probably should leave the next two keys alone -->
 <key>Name</key>
 <string>HelloIOKit</string>
 <key>File</key>
 <string>HelloIOKit</string>

 <!-- Delete this key if this module doesn't require another module -->
 <key>Requires</key>
 <array></array>

 <!--
 Change these to your start and stop routines,

 unless you are an IOKit module in which case leave alone.
 -->
 <key>Initialize</key>
 <string>IOKitRelocStart</string>
 <key>Finalize</key>
 <string>IOKitRelocStop</string>

 <!-- Keys reserved for future use, please leave -->
 <key>Target</key>
 <string>Kernel</string>
 <key>Format</key>
 <string>mach-o</string>
 </dict>
</dict>
</plist>
22 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

Create a Source File and Header File
Choose File > New in Project. For the file’s name, enter HelloIOKit.cpp. Choose the
Classes suitcase, and turn on the “Create header” option.

Implement the Needed Methods
Replace the contents of HelloIOKit.h and HelloIOKit.cpp with the following code.
You can copy and paste the code from this document if you’re reading it online.
Create and Build the Device Driver Project 23

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

This is where you’ll find the HelloIOKit.h file in the project window:

And this is the code for HelloIOKit.h:

 Listing 2-3 HelloIOKit.h

#include <IOKit/IOService.h>

class HelloIOKit : public IOService
{
 OSDeclareDefaultStructors(HelloIOKit)

public:

 virtual bool init(OSDictionary *dictionary = 0);
 virtual void free(void);

 virtual bool attach(IOService *provider);
 virtual void detach(IOService *provider);
24 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

 virtual IOService *probe(IOService *provider, SInt32 *score);

 virtual bool start(IOService *provider);
 virtual void stop(IOService *provider);
};

This is where you’ll find the HelloIOKit.cpp file in the project window:

And this is the code for HelloIOKit.cpp. Note that the init method contains a call
to PE_enter_debugger. When you’re finished debugging your driver, you can
remove this call

 Listing 2-4 HelloIOKit.cpp

#include <IOKit/IOLib.h>
#include "HelloIOKit.h"
extern "C" {
#include <pexpert/pexpert.h>
}

Create and Build the Device Driver Project 25

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

#define super IOService
 // Declare super to be HelloIOKit's superclass

OSDefineMetaClassAndStructors(HelloIOKit, IOService)
 // REQUIRED! This macro defines the class's constructors, destructors,
 // and several other methods I/O Kit requires. Do NOT use super as the
 // second parameter. You must use the literal name of the superclass.

bool HelloIOKit::init(OSDictionary *dictionary)
{

PE_enter_debugger("Debug"); // Remove this when you’re done debugging.
bool res = super::init(dictionary);

 IOLog("Initializing\n");

 return res;
}

void HelloIOKit::free(void)
{
 IOLog("Freeing\n");
 super::free();
}

bool HelloIOKit::attach(IOService *provider)
{
 bool res = super::attach(provider);
 IOLog("Attaching\n");

 return res;
}

void HelloIOKit::detach(IOService *provider)
{
 IOLog("Detaching\n");
 super::detach(provider);
}

IOService *HelloIOKit::probe(IOService *provider, SInt32 *score)
{
 IOService *res = super::probe(provider, score);
 IOLog("Probing\n");
26 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

 return res;
}

bool HelloIOKit::start(IOService *provider)
{
 bool res = super::start(provider);
 IOLog("Starting\n");

 return res;
}

void HelloIOKit::stop(IOService *provider)
{
 IOLog("Stopping\n");
 super::stop(provider);
}

There are a couple macros used in these files that are very important. If you don’t
use these macros in the proper places, your driver won’t work properly:

� OSDeclareDefaultStructors In the header file, this macro must be the first line
in the class’s declaration. It takes one argument: the class’s name. It declares the
class’s constructors and destructors for you, in the manner the I/O Kit expects.

� OSDefineMetaClassAndStructors In the source file, this macro must appear
before you define any of the class’s methods. It takes two arguments: your
class’s name and the name of your class’s superclass. It defines the class’s
constructors, destructors, and several other methods I/O Kit requires.

The following list describes the entry points that the I/O Kit uses. Most of the
methods come in pairs: one performs some action and creates some data structures,
the other undoes those actions and releases those data structures. Generally a
module defines only the start and stop methods, and uses its superclass’s
definitions for the rest.

� init is the first method called when your driver is loaded (or unloaded); free is
the last method called when your driver is unloaded. Note that neither method
can talk to the hardware. They can only create or release data structures.

� attach is called when your driver is inserted in the registry; detach is called
when it’s removed.
Create and Build the Device Driver Project 27

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2

� probe is called if your driver needs to talk to the hardware to determine whether
there’s a match. This method must leave the hardware in a good state.

� start is the last method called when your driver is loaded; stop is the first
method called when your driver is unloaded. They can talk to the hardware and
create or release data structures.

Build the Project
Click the Build button in the Project Window, which looks like the one below:

After the Build panel appears, click its Build button. If Project Builder asks you
whether to save some modified files, select all the files and click “Save and build”.

Project Builder starts building your project.
28 Create and Build the Device Driver Project

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
Debug the Device Driver

This section describes how to debug your device driver. The debugger you’ll use is
GDB, a command-line debugger.

Here’s how you’ll debug the driver:

1. “On Target Machine, Enable Kernel Debugging” (page 29)

2. “On Development Machine, Connect to the Target Machine” (page 30)

3. “On Target Machine, Load the Device Driver” (page 32)

4. “On Development Machine, Load the Debugger” (page 33)

5. “On Target Machine, Start Running the Device Driver” (page 34)

6. “On Development Machine, Start Debugging the Device Driver” (page 35)

7. “Stop the Debugger” (page 36)

The steps in this section include terminal output from an sample session in which
the development machine is called dev.my-company.com and the target machine is
called target.my-company.com.

On Target Machine, Enable Kernel Debugging
By default, the System does not let you debug the kernel. So before you can debug
your driver, you must enable kernel debugging.

On the target machine, do the following:

1. From the login screen, log in as root.

2. Start the Terminal application.

It’s in the Apple menu, under Server Administration.

3. Set the kernel debug flag.

If you’re using a Blue & White Power Macintosh G3 or a Power Macintosh G4,
enter this command:
Debug the Device Driver 29

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
target# nvram boot-args="debug=0xe"

If you’re using any other Macintosh, enter this command:

target# nvram boot-command="0 bootr debug=0xe"

4. Reboot the computer.

Enter this command:

target# reboot

The computer reboots and displays the login screen.

On Development Machine, Connect to the Target
Machine
Your development and target machines must be continuously connected by a
reliable network connection. This section creates such a connection.

On the development machine, do the following:

1. Start the Terminal application.

It’s in the Apple menu, under Server Administration.

2. From the command line, log in as root.

Enter this command:

su

Enter the root password when it asks.

For example:

dev> su
Password:
dev#

3. Make sure your development machine can connect to your target machine:

Enter this command:

ping -c 1 target-machine

where target-machine is your target machine’s hostname, such as
target.my-company.com.
30 Debug the Device Driver

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
This command makes sure your development machine can reach your target
machine and creates a temporary connection between them.

For example:

dev# ping -c 1 target.my-company.com
PING target.my-company.com (17.203.35.103): 56 data bytes
64 bytes from 17.203.35.103: icmp_seq=0 ttl=255 time=2.099 ms

--- target.my-company.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 2.099/2.099/2.099 ms

4. Note the hardware Ethernet address of the target machine.

Enter this command:

arp -a

This command lists all the Ethernet addresses of all machines your development
machine has recently connected to. Note the entry that contains your target
machine’s Ethernet address.

For example:

dev# arp -a
niil33 (17.203.34.250) at 0:0:f:0:86:c3
target (17.203.35.103) at 0:5:2:b0:b3:20
dev (17.203.35.104) at 0:5:2:59:2f:20 permanent

In this example, the hardware Ethernet address to remember is 0:5:2:b0:b3:20.

5. Remove the temporary connection between your development and target
machines.

Enter this command

arp -d target-machine

For example:

dev# arp -d target.my-company.com
target.my-company.com (17.203.35.103) deleted

6. Create a permanent connection between your development and target
machines.

Enter this command:
Debug the Device Driver 31

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
arp -s target-machine ethernet-address

For example:

dev# arp -s target.my-company.com 0:5:2:b0:b3:20

7. Make sure the connection was made correctly.

Enter this command:

arp -a

Make sure the entry for your target machine contains the word “permanent.”

For example:

root# arp -a
niil33 (17.203.34.250) at 0:0:f:0:86:c3
target (17.203.35.103) at 0:5:2:b0:b3:20 permanent
dev (17.203.35.104) at 0:5:2:59:2f:20 permanent

8. Log out as root.

Enter this command:

exit

For example:

dev# exit
dev>

On Target Machine, Load the Device Driver
On the target machine, do the following:

1. From the login screen, log in as console.

Type “console” as the user name, leave the password blank, and press Return.
The screen turns black and looks like an old ASCII terminal.

2. Log in as root.

For example:

4BSD (target) (console)

login: root
32 Debug the Device Driver

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
Password for root:
target#

3. Move to the directory that contains your module.

For example:

target# cd ~me/Projects/HelloIOKit/HelloIOKit.kext

4. Load the driver and create a sym-file for it.

Enter this command:

kmodload -o /module-name.sym module-name

This command loads your driver and then creates a sym-file named
module-name.sym, which contains information that the debugger needs to debug
your driver.

For example:

target# kmodload -o /HelloIOKit.sym HelloIOKit

5. Copy the sym-file to your driver’s directory.

Log in to your user account with su, then copy the symbol file to your driver’s
directory.

For example:

target# su me
Password:
target> cp /HelloIOKit.sym ~me/Projects/HelloIOKit/HelloIOKit.kext/
target> exit
target#

On Development Machine, Load the Debugger
On the development machine, do the following from the Terminal application:

1. Move to the directory that contains your module.

For example:

dev> cd ~me/Projects/HelloIOKit/HelloIOKit.kext

2. Start the debugger on the kernel.

Enter this command:
Debug the Device Driver 33

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
gdb /mach_kernel

This command can take as long as five minutes.

For example:

dev> gdb /mach_kernel
GNU gdb 4.18-19990707 (Apple version gdb-141.4)
Copyright 1998 Free Software Foundation, Inc.
...
Reading symbols from "/mach_kernel"...(no debugging symbols found)...done.
(gdb)

3. Load the symbol file you created.

Enter this command at the GDB prompt:

add-symbol-file module-name.sym

For example:

(gdb) add-symbol-file HelloIOKit.sym

4. Help GDB find your source files.

Enter this command at the GDB prompt:

path path-name

Where path-name is the directory where your module’s source files are.

For example:

(gdb) path ~me/Projects/HelloIOKit/HelloIOKit.kmodproj/

5. Let the debugger know you’re remotely debugging a device driver.

Enter this command at the GDB prompt:

target remote-kdp

On Target Machine, Start Running the Device Driver
Now you can start the driver running. On the target machine, start the driver
running. Enter this command:

kextload driver-name

For example:
34 Debug the Device Driver

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
target# kextload ../HelloIOKit.kext

The machine prints the following and waits for a remote debugger connection:

Debugger(Debug)

Waiting for remote debugger connection.
Options..... Type
------------ ----
continue.... ‘c’
reboot...... ‘r’

On Development Machine, Start Debugging the
Device Driver
Now that the debugger has been loaded on the development machine, and the
target machine is waiting for a debugger connection, you can actually start
debugging.

On the development machine, do the following:

1. Attach to the target machine.

Enter the following command at the GDB prompt:

attach target-machine

The target machine prints:

Connected to remote debugger.

2. Set any necessary breakpoints.

This is the best place to set your breakpoints. For this tutorial, set a breakpoint
at the start method. For example:

(gdb) break HelloIOKit::start
Breakpoint 1 at 0x53d93d0: file HelloIOKit.cpp, line 54.

3. On the development machine, let the target machine continue. Enter the
following command at the GDB prompt:

continue

The driver executes until it hits the breakpoint.
Debug the Device Driver 35

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
For example:

(gdb) continue
Continuing.

Breakpoint 1, HelloIOKit::start (this=0xcdcfc0, dict=0xbcfe40) at
HelloIOKit.cpp:54
54 HelloIOKit.cpp: No such file or directory.
Current language: auto; currently c++

Now you can debug your driver as you would any other executable.

Since driver debugging happens at such a low level, you won’t be able to take
advantage of all of GDB’s features. For example:

� You can’t call a function or method in your driver.

� You can’t debug interrupt routines.

� Kernel debug sessions don’t last long since you must halt kernel to use GDB. In
a short time, internal inconsistencies may appear that cause the target kernel to
panic or wedge, forcing your to reboot.

For more information on GDB, use it’s help command. Here are some things you
can try to do.

1. Step into the superclass’s init method.

2. Go through some code, line-by-line.

3. Step over a method.

4. Examine some data.

If you need to break into the debugger while the driver is running, go to the target
machine and hold down Control-Power for two seconds. Note that you could
reboot the machine if you hold the key down too long. Try doing it like this: While
holding down the Control key, press the Power key and count aloud to two like this
“One thousand one, one thousand two.” Then release the Power key. A prompt
should appear, saying “Debugger (Programmer Key)” and giving you the option to
continue or reboot.

Stop the Debugger
When you’ve finished debugging, do the following:
36 Debug the Device Driver

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
1. On the target machine, hold down Control-Power for two seconds to break into
the debugger.

2. On the development machine, enter this at the GDB prompt:

detach

The debugging session stops.
Debug the Device Driver 37

Draft. Confidential.  Apple Computer, Inc. 1/26/00

C H A P T E R 2
38 Debug the Device Driver

Draft. Confidential.  Apple Computer, Inc. 1/26/00

	Hello IOKit: Creating a Device Driver With Project Builder
	Create and Build the Device Driver Project
	Create a Device Driver Project and a Module Subproject
	Edit the Driver’s CustomInfo.xml file
	Edit the Module’s CustomInfo.xml file
	Create a Source File and Header File
	Implement the Needed Methods
	Build the Project

	Debug the Device Driver
	On Target Machine, Enable Kernel Debugging
	On Development Machine, Connect to the Target Machine
	On Target Machine, Load the Device Driver
	On Development Machine, Load the Debugger
	On Target Machine, Start Running the Device Driver
	On Development Machine, Start Debugging the Device Driver
	Stop the Debugger

