

C H A P T E R 2

 2 AboutBox: Creating a Framework
With Project Builder
This tutorial shows how to create a project that builds both a framework and an
application that uses that framework. The framework contains a function that
displays a dialog box, a resource file with that dialog box, and a header file that
declares the function. To do this, you’ll create a project that builds an application,
then create a framework it will use. Along the way, you’ll learn a little on how Mac
OS X stores software configuration information.

This tutorial assumes that you’re familiar with Mac OS programming.

1. “Create the Project” (page 15)

2. “Create and Build the New Framework” (page 19)

3. “Add the Framework to the Test Application” (page 30)

4. “Build and Run the Test Application” (page 34)

Create the Project

Choose File > New Project. Select Carbon Application, and click Next. Name the
project AboutBoxApp, choose a location, and click Finish. Project Builder creates a
new project and opens its project window. The project contains sample files you can
compile and run without change. Later, you’ll excerpt a function from these sample
files that displays an About box, and build a framework around it.

Take a moment to look at the framework and the target already in the project. Later,
you’ll create a new target and framework.
Create the Project 15

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

The Carbon framework contains all the Mac OS functions that are
Carbon-compliant. To open the Carbon framework, click the disclosure triangle
next to it. Project Builder displays a folder of headers. When you open that folder,
you can see all of Carbon’s header files. Your source files can include any of these
files, and Project Builder will know to search for them within this framework. A
framework contains a shared library and all the resources and headers files it uses.

The framework you’ll be creating in this tutorial contains not only its header file but
also its own resource file. To use the framework in a new application, you need to
add only one file to your project, instead of adding separate library, resource, and
header files.
16 Create the Project

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

The AboutBoxApp target builds a simple Carbon application. To look at this target,
click the Targets tab and click AboutBoxApp.
Create the Project 17

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

Click the Files & Build Phases tab. This displays the files list for the AboutBoxApp
target.

This list contains a subset of the files in the project: only the files this target needs.
Notice that the files fall into four categories according to how the build system
handles them:

� Headers: Files that aren’t compiled, but that the target needs to manipulate
somehow, such as copying them into a framework.

� Bundle Resources: Files to copy into the product’s resource folder. These are
usually files of localized strings, Nib files, sounds, and pictures. Note that if a file
needs to be compiled by Rez, it belongs in the ResourceManager Resources
category.

� Sources: Files that need to be compiled, such as C++, Objective-C, or Java source
files.
18 Create the Project

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

� Frameworks & Libraries: Files of already compiled code the product needs to
link against.

� ResourceManager Resources: Files to merge into the product’s resources. These
are usually Rez (.r) files and resource (.rsrc) files.

The other tabs contain options that control how Project Builder builds the target.
You won’t need to change their settings in this tutorial.

Create and Build the New Framework

In this section, you’ll create and build a new framework that displays an About box.

1. “Create the Framework Target” (page 19)

2. “Add Any Necessary Frameworks” (page 19)

3. “Add the Source, Header, and Resource Files” (page 20)

4. “Mark the Public Header Files” (page 26)

5. “Assign a Bundle Identifier and Executable Name to the Framework” (page 27)

6. “Build the Framework” (page 28)

7. “Regroup the Files” (page 28)

Create the Framework Target
Choose Project > New Target. Select Framework as the project type, and name it
AboutBox. This creates a new target that builds a framework named AboutBox.

Add Any Necessary Frameworks
Because the AboutBox target will use functions from Carbon, you must add the
Carbon framework to it. Just click the Files tab, select AboutBox in the pop-up menu
above the Files list, and click beside Carbon.framework. A circle appears beside it to
Create and Build the New Framework 19

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

show that it’s now part of the target that’s displayed in the pop-up menu above the
files list.

Add the Source, Header, and Resource Files

� Choose Project > Add Files, and select AboutBox.c, AboutBox.h, and AboutBox.r.

These files should be in the same folder as this tutorial (/System/Documentation/
Developer/DeveloperTools/ProjectBuilder/AboutBox/).

� Copy the files into the folder, and add the files to the AboutBox target.

Select “Copy into group’s folder.” In the Add to Targets box, make sure that
AboutBox is checked and AboutBoxApp is not checked. The setting of
20 Create and Build the New Framework

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

“Recursively create groups for added folders” doesn’t matter since you are not
adding folders.

Project Builder adds these files to the project, copies them to the project’s folder,
and adds them to the AboutBox target.
Create and Build the New Framework 21

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

To see the new contents of the AboutBox target, click the AboutBox target, click the
Files & Build Phases tab, and open all the categories. Project Builder added each file
to the appropriate category, according to the file’s extension.

AboutBox.c defines the function DoAboutBox, which displays a simple dialog box
with the application’s name. AboutBox.h declares that function. And AboutBox.r
contains the resources for the dialog box it displays. Here are the contents of
AboutBox.c:

 Listing 2-1 AboutBox.c

#include <MacWindows.h>
#include <Dialogs.h>
#include <CoreFoundation/CFBundle.h>
#include "AboutBox.h"

#define kAboutBox200/* Dialog resource for About box */
22 Create and Build the New Framework

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

void DoAboutBox(void)
{
 CFBundleRef appBundle, fwBundle;
 CFStringRef cfVersionString;
 Str255 pascalVersionString;
 short ierr, globalRefNum, localRefNum;

 /* Get the application's short version string. */
 appBundle = CFBundleGetMainBundle();
 cfVersionString = (CFStringRef) CFBundleGetValueForInfoDictionaryKey(
 appBundle, CFSTR("CFBundleShortVersionString"));
 if ((cfVersionString == CFSTR("")) || (cfVersionString == NULL))
 cfVersionString = CFSTR("Nameless Application");
 CFStringGetPascalString(cfVersionString, pascalVersionString, 256,
 CFStringGetSystemEncoding());

 /* Open the framework's resource fork. */
 fwBundle = CFBundleGetBundleWithIdentifier(
 CFSTR("com.apple.tutorial.aboutbox"));
 ierr = CFBundleOpenBundleResourceFiles(fwBundle, &globalRefNum,
 &localRefNum);

 /* Display the about box (from the framework)
 with the version string (from the application). */
 ParamText(pascalVersionString,"\p","\p","\p");
 (void) Alert(kAboutBox, nil);

 /* Close the framework's resource fork. */
 CFBundleCloseBundleResourceMap(fwBundle, globalRefNum);
 CFBundleCloseBundleResourceMap(fwBundle, localRefNum);
}

This code makes heavy use of Mac OS X’s new features for configuring software. An
application or framework is a bundle, a folder of files that the Finder treats as a
single unit. In this tutorial, both the application and its framework are bundles.

The first block of code retrieves the application’s short version string, which is the
application’s name and version number. A bundle’s information dictionary stores
that string, as well as the location of the bundle’s icon, the document types it can
open, and other configuration information. A Classic Mac OS application stores this
Create and Build the New Framework 23

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

sort of data in a variety of resources, such as the BNDL, SIZE, and vers resources. A
Mac OS X application stores it in two places inside the bundle: an XML file called
Info.plist and in localized string files called InfoPlist.strings. Info.plist
contains information that doesn’t need to be translated into different languages,
such as the executable’s name on the disk and the bundle’s unique identifier that are
used only in code. InfoPlist.strings contains information that does need to be
translated, such as the Get Info string and short version string, both of which are
seen by users. A bundle can contain several InfoPlist.strings files, each stored in
a different localization directory, such as English.lproj and Japanese.lpoj, along
with other localized resources. You’ll enter the short version string for the
AboutBoxApp target in “Assign a Short Version String to the Application” (page
32).

The second block of code opens the framework’s resources, which contain a simple
dialog box. To open the resources, which are in the framework’s bundle, the
framework finds the bundle with its unique identifier
"com.apple.tutorial.aboutbox". You’ll assign that identifier to the framework in
“Assign a Bundle Identifier and Executable Name to the Framework” (page 27).

The last two blocks of code display the dialog box and close the resources.

The rest of this section describes how this function works, line-by-line. If you want,
you can skip to “Mark the Public Header Files” (page 26).

Retrieving the Application’s Short Version String

This code is useful in any code that needs to access individual keys in a bundle’s
information dictionary. To see what keys are available, click a target and click its
Application Settings or Framework Settings tab. To see what keys are localizable,
look at the InfoPlist.strings file. For more information on what the keys mean, see
Software Configuration (at /System/Documentation/Developer/SystemOverview/
SoftwareConfig.pdf)

/* Get the application's short version string. */
appBundle = CFBundleGetMainBundle(); // 1
cfVersionString = (CFStringRef) CFBundleGetValueForInfoDictionaryKey(// 2
 appBundle, CFSTR("CFBundleShortVersionString"));
if ((cfVersionString == CFSTR("")) || (cfVersionString == NULL)) // 3
 cfVersionString = CFSTR("Nameless Application");
CFStringGetPascalString(cfVersionString, pascalVersionString, 256, // 4
 CFStringGetSystemEncoding());
24 Create and Build the New Framework

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2

1. CFBundleGetMainBundle retrieves the main bundle, which, in this case, is the
bundle for the application that’s using this framework. To find another bundle,
use CFBundleGetBundleWithIdentifier.

2. CFBundleGetValueForInfoDictionaryKey retrieves the value that’s stored for the
specified key, which is "CFBundleShortVersionString". First, it looks in the
InfoPlist.strings file for the user’s region. If it can’t find the value there, it
looks in the Info.plist file

3. If the application doesn’t specify a short version string, the if statement uses
"Nameless Application" instead.

4. CFStringGetPascalString converts a Core Foundation string to a Pascal string.
It’s needed because CFBundleGetValueForInfoDictionaryKey returned a Core
Foundation string, but ParamText, below, needs a Pascal string

Opening the Framework’s Resources

This code is useful in any framework that has its own resources.

/* Open the framework's resource fork. */
fwBundle = CFBundleGetBundleWithIdentifier(// 1
 CFSTR("com.apple.tutorial.aboutbox"));
ierr = CFBundleOpenBundleResourceFiles(fwBundle, &globalRefNum, // 2
 &localRefNum);

1. CFBundleGetBundleWithIdentifier returns a reference to the AboutBox
framework, by searching for its unique identifier
"com.apple.tutorial.aboutbox". Later in this tutorial, you’ll assign that
identifier to the framework.

2. CFBundleOpenBundleResourceFiles opens the bundle’s resources, both the global
and the localized versions. Note that a bundle’s resources are usually stored as
a separate file inside the bundle.

Displaying the About Box

This code displays the About box and closes the resources.

/* Display the about box (from the framework)
 with the version string (from the application). */
ParamText(pascalVersionString,"\p","\p","\p"); // 1
(void) Alert(kAboutBox, nil); // 2
Create and Build the New Framework 25

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
/* Close the framework's resource fork. */
CFBundleCloseBundleResourceMap(fwBundle, globalRefNum); // 3
CFBundleCloseBundleResourceMap(fwBundle, localRefNum);

1. The dialog box contains a text field with the string "^0". ParamText substitutes its
argument (the application’s short version string) for that string.

2. Alert displays the dialog box.

3. CFBundleCloseBundleResourceMap closes the framework’s global and localized
resources.

Mark the Public Header Files
Public header files declare the public API for your framework. These are put inside
your framework in a folder called Headers, and anyone who uses your framework
has access to them.

A framework can also have private and internal header files. Private headers are
placed in your framework in a folder called Private Headers, and are usually
removed from your framework when it’s distributed to others. Internal headers are
not placed in your framework.

The AboutBox framework has only one header file and it’s public. In this step, you’ll
mark it as public.

1. Click the Targets tab, select AboutBox, and click the Files & Build Phases tab.

2. Turn on the public header option for AboutBox.h.

If you can’t see AboutBox.h, click the triangle beside Headers.

To turn on the public header option, find the word “Pub” that’s to the right of
AboutBox.h and click it so it turns black (instead of gray).
26 Create and Build the New Framework

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
If “Priv” is black, the header is private. If neither “Pub” nor “Priv” is black, the
header is internal.

Keep the target’s editor open since you’ll use it in the next section.

Assign a Bundle Identifier and Executable Name to
the Framework
The executable name is the name of the shared library file inside the framework. The
bundle identifier is used by the framework’s code to find the bundle that contains
its resources. To ensure that it’s unique, the bundle identifier should be Java-style
package name; for example, "com.mybusiness.myframework" or
"edu.StateU.psych.myapp".

1. In the target editor for AboutBox, click the Framework Settings tab.

2. In the CFBundleExecutable field, enter AboutBox.

3. In the CFBundleIdentifier field, enter "com.apple.tutorial.aboutbox".

It should look like this:

Note that this panel lists several other useful properties. For more information
on what they do, see Software Configuration (at /System/Documentation/
Developer/SystemOverview/SoftwareConfig.pdf).
Create and Build the New Framework 27

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
Build the Framework
Click the column beside the AboutBox target so that a checkmark appears. This is
the same as choosing a target from the pop-up menu above the files list.

All the buttons along the top of the project window apply to the selected target.
Click the Build button to build the framework.

Regroup the Files
Optionally, you can move the files into groups that make more sense: placing all the
framework files into one group and all the application files into another. Here’s one
suggested way to do it.

1. Create a new group and name it AboutBox.

Choose Project > New Group. Project Builder creates a new group in the file list
and automatically selects its name. Type AboutBox and press Return.
28 Create and Build the New Framework

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
2. Move the files AboutBox.c, AboutBox.h, and AboutBox.r into the AboutBox group.

Select all three files and drag them into the group.

3. Rename the Sources folder to AboutBoxApp.

Select the Sources folder and choose Project > Rename. Project Builder selects its
name. Type AboutBoxApp and press Return.

4. Move main.r and InfoPlist.strings from the Resources group into the
AboutBoxApp group.

5. Move Carbon.framework out of External Frameworks & Libraries to the top level
of the file pane.

6. Move AboutBoxApp.app and AboutBox.framework to the top level of the file pane.

7. Remove the empty groups: Resources, External Frameworks & Libraries,
Products.

Select the two groups and choose Edit > Delete. When Project Builder asks if you
want to delete them from the disk as well, click No.
Create and Build the New Framework 29

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
The file pane should look like this:

Even though main.r is no longer in the Resources group, Project Builder still treats
it as a resource file. And even though you’ve changed the groups the files are in, you
haven’t changed where the files are on disk. If you go back to the Finder and look
at the project’s directory, you’ll notice they’re still there, in the same directory.

Add the Framework to the Test Application

Now you’ll add the AboutBox framework to the project’s AboutBoxApp target.

1. “Update the Test Application” (page 31)

2. “Replace the Application’s Resource File” (page 31)

3. “Assign a Short Version String to the Application” (page 32)

4. “Add the Built Framework to the Project” (page 32)

5. “Make the Application Target Dependent on the Framework Target” (page 33)
30 Add the Framework to the Test Application

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
Update the Test Application
In this sample, the test application is mostly written for you. All you need to do is
include a header file and delete some items that are now in the framework.

1. In main.c, include AboutBox.h.

Go to the beginning of main.c. After the #include <MacWindows.h> statement, add
#include "AboutBox.h".

2. In main.c, delete the declaration and definition of DoAboutBox.

The declaration is soon after the include files and looks like this:

void DoAboutBox(void);

The definition is the last function in the file and looks like this:

void DoAboutBox(void)
{

//Carbon currently has an event problem with modal dialogs
//will put this back soon...

 //(void) Alert(kAboutBox, nil); // simple alert dialog box
}

3. In main.h, delete the definition of kAboutBox.

It’s the last line in the file and looks like this:

#define kAboutBox200 /* Dialog resource for About box */

Replace the Application’s Resource File
Right now, main.r contains resources for both the application and the framework.
In this step, you’ll replace that file with one that contains resources for only the
application.

1. Remove main.r.

Select main.r and choose Edit > Delete. When Project Builder asks whether to
delete the file from the disk as well, press Delete.

2. Add the new main.r to the AboutBoxApp target.

Choose Project > Add Files, and select main.r, which should be in the same
folder as this tutorial (/System/Documentation/Developer/DeveloperTools/PBX/
Add the Framework to the Test Application 31

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
AboutBox/). Select “Copy into group’s folder,” and make sure AboutBoxApp is
checked and AboutBox is not checked.

Project Builder copies the file into your project’s directory and adds it to your
project’s file list and to the AboutBoxApp target.

Assign a Short Version String to the Application
The short version string contains the application’s name and version number. The
framework displays it in the About box.

In InfoPlist.strings, change CFBundleShortVersionString to "AboutBoxApp
0.01d1". You can also change the CFBundleName and CFBundleGetInfoString if you
like, but they’re not used in this tutorial. The file should look like this:

 Listing 2-2 InfoPlist.strings

/* Localized versions of Info.plist keys */

CFBundleName = "AboutBoxApp";
CFBundleShortVersionString = "AboutBoxApp 0.01d1";
CFBundleGetInfoString = "AboutBoxApp version 0.0.1d1, Copyright 2000";

Add the Built Framework to the Project
You need to add the built framework to your application’s target.

1. Select AboutBoxApp from the pop-up menu above the file list.

2. Click beside AboutBox.framework.
32 Add the Framework to the Test Application

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
A circle appears beside it. It should look like this:

Make the Application Target Dependent on the
Framework Target
Now you need to let Project Builder know that the application target is dependent
upon the framework target. Say the framework’s source files have changed since
you last built it, and then you build the application target. As things stand now,
Project Builder won’t update the framework but will use the old version. After this
step, Project Builder will rebuild the framework and use the rebuilt version.

Just click the Targets tab, and drag the AboutBox target onto the AboutBoxApp
target.
Add the Framework to the Test Application 33

Draft. Confidential.  Apple Computer, Inc. 4/24/00

C H A P T E R 2
If you click the triangle beside AboutBoxApp, you’ll see AboutBox underneath it.
That lets you know that AboutBoxApp now depends on AboutBox. If you build
AboutBoxApp, it will make sure AboutBox is built before proceeding.

Build and Run the Test Application

Click the AboutBoxApp target’s icon so an arrow appears in it. Then choose Build
> Build and Run. Project Builder builds and runs your application.

In your application, choose AboutBox > About Hello, and look at your new About
box.
34 Build and Run the Test Application

Draft. Confidential.  Apple Computer, Inc. 4/24/00

	AboutBox: Creating a �Framework With Project Builder
	Create the Project
	Create and Build the New Framework
	Create the Framework Target
	Add Any Necessary Frameworks
	Add the Source, Header, and Resource Files
	Retrieving the Application’s Short Version String
	Opening the Framework’s Resources
	Displaying the About Box

	Mark the Public Header Files
	Assign a Bundle Identifier and Executable Name to the Framework
	Build the Framework
	Regroup the Files

	Add the Framework to the Test Application
	Update the Test Application
	Replace the Application’s Resource File
	Assign a Short Version String to the Application
	Add the Built Framework to the Project
	Make the Application Target Dependent on the Framework Target

	Build and Run the Test Application

