

1

 Application Design for Scripting, Documents, and
Undo

Contents

:

Model-View-Controller
Scripting
Document Architecture
Undo and Redo

Three of the more recent features of the Yellow Box frameworks—scripting,
the document architecture, and undo support—have a great deal in common
conceptually. This document explains their shared conceptual underpinnings.
It does not go into great detail about the specifics of the classes implementing
these features or how to use them. Instead it concentrates on the recommended
structure of an application and how that structure supports these new features.

This document uses Objective-C to describe specific APIs. However, all
scripting, document, and undo APIs are also available in Java. Special issues
related to Java are discussed where appropriate, and if Java isn’t mentioned
specifically, it is because there is nothing special to say about it.

This document begins by describing the Model-View-Controller (MVC)
pattern because this pattern informs application design that is most supportive
of scripting, document-based applications, and undo. It does not fully describe
the MVC design pattern in any formal way, since that’s not really its purpose,
but it does discuss the pattern enough to give some background for the
remaining discussion.

Application Design for Scripting, Documents, and Undo

2

Model-View-Controller

The Model-View-Controller pattern is quite old. It has been around at least since
the early days of Smalltalk. It is a high-level pattern in that it concerns itself with
the global architecture of a program and tries to provide a classification of the
different kinds of objects that make up an application.

According to the pattern, there are three types of objects: model objects, view
objects, and controller objects. The pattern defines the roles that these types of
objects play in the application; as a developer, you design your classes to fall into
these three groups.

Model Objects Represent Data and Basic Behaviors

Model objects are the data-bearing objects of your application. A well-designed
MVC application has all its important data encapsulated in model objects. Any
data that is part of the persistent state of the application (whether that persistent
state is stored in files or databases or punch cards) should reside in the model
objects once the data is loaded into the application.

Ideally, a model object has no connection to the user interface used to present
and edit it. For example, if you have a model object that represents a person (say
you are writing an address book), you might want to store a birth date. That’s a
good thing to store in your Person model object. However, storing a date format
string or other information on how that date is to be presented is probably better
off somewhere else.

In practice, this separation is not always the best thing, and there is some room
for flexibility here, but in general a model object should not be concerned with
interface and presentation issues. One example where a bit of an exception is
reasonable is a drawing application that has model objects that represent the
graphics displayed. It makes sense for the graphic objects to know how to draw
themselves since the main reason for their existence is to define a visual thing.
But even in this case, the graphic objects should not rely on living in a particular
view or any view at all, and they should not be in charge of knowing when to
draw themselves. They should be asked to draw themselves by the view object
that wants to present them.

View Objects Present Information to the User

A view object knows how to display and possibly edit data from the application’s
model. Ideally, the view should not store the data it is displaying. (This is
intended semantically, of course. A view can cache data or do similar tricks for
performance reasons). A view object can be in charge of displaying just one part

Model-View-Controller

3

of a model object, or a whole model object, or even many different model
objects. Views come in many different varieties.

A view should ensure it is displaying the model correctly. Consequently, it
usually needs to know about changes to the model. Because model objects
should not be tied directly to view objects, they need a generic way of
indicating that they have changed. Toward this end, they can either post
NSNotifications when they are altered or define another general way for
passing change notifications to the views, usually through the controller
layer.

Controller Objects Tie the Model to the View

A controller object acts as the intermediary between the application’s view
objects and its model objects. Typically controller objects have logic in them
that is specific to an application. Controllers are often in charge of making
sure the views have access to the model objects they need to display and
often act as the conduit through which views learn about changes to the
model.

By confining application-specific code to controller objects, you make
model and view objects more general and reusable. Controllers are often the
least reusable objects in an application, but that’s acceptable. You can’t reuse
everything and if you keep the non-reusable code in the controller layer, you
have a much better chance of reusing the other objects.

The controller layer frequently contains many lines of code. To make this
quantity of code more manageable, it is sometimes useful to subdivide the
controller layer further into “model-controllers” and “view-controllers”.
(This split fits well with the document architecture discussed elsewhere in
this document.)

• A model-controller is a controller that concerns itself mostly with the model
layer. It “owns” the model; its primary responsibilities are to manage the
model and communicate with any view-controller objects.

• A view-controller is a controller that concerns itself mostly with the view
layer. It “owns” the interface (the views); its primary responsibilities are to
manage the interface and communicate with the model-controller.

The section “Document Architecture” provides a little more detail on the
distinction between model-controller and view-controller.

Application Design for Scripting, Documents, and Undo

4

Why Is MVC Important?

Apple is adding many new features to the Yellow Box frameworks. Some of these
features, such as scripting and undo, are relatively high-level compared to the
kind of things that the Application Kit and Foundation frameworks have
provided in the past. As more and more higher-level features are added to these
frameworks, the assumption will grow that applications using these features are
based on high-level designs, such as MVC. A a developer, you need to become
more involved in the areas of application design related to these features.

Although developers have always been encouraged to use the MVC pattern, with
the advent of new features such as the document architecture, undo support, and
scriptability, it is more important than ever for application designers to take the
MVC pattern to heart. All of these new high-level features will work best if your
application design follows the MVC pattern. It should be almost effortless to use
these new features if your application has a good MVC separation, but it will
take more effort to use the new features if you don’t have a good separation.

(The Application Kit is mostly a view framework although recently some of the
newer classes are beginning to get into the controller layer and there are also a
few model objects in there as well. The Foundation framework has mostly model
objects along with some controller objects.)

Scripting

5

Scripting

Scripting and the Model Layer

AppleScript has always aimed at scripting the model layer of an application.
This is a good thing. Much of the time, the most efficient way for a script to
do something is not the best way for a user to do the same thing. If scripting
were concerned solely with providing access to the user interface of an
application, it would just be glorified journaling. Sometimes, however, you
do want to affect certain aspects of the user interface while scripting, usually
in scripts that are more like macros.

Scripts that work with model objects are like batch processing. They go in
and do their thing and do not need or want the user’s involvement. A
scripting system that extracts data from a database, processes it through
other applications and then sends it all to a page-layout program to generate
the classified ads page for a newspaper is an example of such batch
processing. The whole idea in these batch-processing cases is not to involve
the user. In these cases, you want to go directly to the application’s model
objects and just get the work done.

Scripts that work with view objects are like macros. They do a very specific
manipulation of an application, usually a relatively small and self-contained
one, and their purpose is to automate a small repetitive task for the user. For
instance, a script that gets the selected graphic in a page-layout program,
adds a caption beneath it, and sets up blue-line guides along the outer edges
of the resulting group to aid with alignment would be a script of this type.
The macro characteristic of these types of scripts is that the user does a little
preparation (like selecting the graphic), invokes the script, then continues on
when it is done. For this type of script, your application should expose some
of its user-interface structure to scripts. You should make things such as
windows and selections scriptable to enable this type of scripting. However,
the exposure of these user-interface structures should be an addition to the
support provided for directly scripting the model objects of your
application.

The scriptability support in the Yellow Box frameworks is geared towards
making it easy for an application to expose its model objects to scripters.
Scriptability is the easiest to implement when the actual model objects of
your application are the objects it wants to support for scripting. Keep this
fact in mind when you design your application’s model layer.

There are certain programming practices to avoid when you design your
application’s model layer for scripting. Many simple applications keep state

Application Design for Scripting, Documents, and Undo

6

in their view layer (that is, in a user-interface object). For instance, a Preferences
panel controller might be implemented so that the state of a Boolean attribute is
“stored” in a checkbox in the Preferences panel and is retrieved and set with the

state

 and

setState:

 methods. First, keeping state in a view object is generally
not a good strategy for data that is part of a document’s model because it is
antithetical to the MVC pattern. If a script needs to be able to access and modify
state, the state value should be separated from the view layer and stored in a
model object or, if it doesn’t belong in the model layer, in a controller object.
Often this separation is necessary or desirable even without scripting as a
consideration. For example, if a Preferences-panel controller stores current
preference settings only in the controls of the panel, it cannot answer any
questions about the current settings without loading the panel. If other parts of
the application need to find out about preferences even if the user has not brought
up the Preferences panel (a likely situation), then it would be much better if the
preferences controller itself stored the settings. This would allow it to avoid
having to load a nib file (a somewhat expensive activity) until it is actually
needed.

The same argument holds for primitive behaviors as well. For instance, if you
have a Find panel, instead of implementing the logic to actually perform the find
in the action method invoked by the Find Next button, you should probably
define some API on your document class or on your model objects that is capable
of performing the find. The Find Next button’s action method would then invoke
this API. The advantage of this scheme is that when you want scripts to be able
to search documents, you can let the script go through the document or model
API instead of having to hack up scripted access to the Find panel itself, which
is less desirable.

Scripting and Key-Value Coding

Scripting in Mac OS X relies heavily on key-value coding (KVC) to provide
automatic support for executing AppleScript commands. Key-value coding is a
very simple concept. Each model object defines a set of keys that it supports. A
key represents a specific piece of data that the model object has. Some examples
of keys familiar to those who have used AppleScript are “words,” “font,”
“documents,” and “color.” The key-value coding API provides a generic and
automatic way to query an object for the values of its keys and to set new values
for those keys. The primitive methods for KVC are

valueForKey:

 and

takeValue:forKey:

. NSObject has generic implementations of these methods
that first look to use standard accessor set and get methods based on the key (such
as

color

 and

setColor:

 for the key named “color”). If the class of the object
does not implement accessor methods, KVC directly sets or gets the value of the
instance variable (“color”). KVC defines many other extended methods that are
implemented in terms of the two primitives as well, but these aren’t discussed

Scripting

7

here since they have little bearing on how you should implement scripting
support.

You should define the set of keys for your model objects and implement the
accessor methods. As you design the objects of your application, think about
what the keys of these objects should be and write them down somewhere
as part of your design. Then when you define the scripting suites for your
application, you specify the keys that each scriptable class supports. If you
do this, then a great deal of scripting support comes for free.

Keys fall into three categories which have their roots in relational databases
(KVC derives from the Enterprise Objects Framework, which primarily
provides access to relational databases). Keys are either attribute keys (for
example, “color”), to-one relationship keys (a document’s NSTextStorage
object), or to-many relationship keys (an application’s documents). This
categorization makes sense in situations other than relational databases,
including scripting. In AppleScript parlance, these key types map clearly to
properties and elements. Think of AppleScript elements as relationship keys
(where no distinction is made between to-one and to-many relationships)
and think of AppleScript properties as attribute keys.

So why is key-value coding so important for scripting? In AppleScript,
“object hierarchies” define the structure of the model objects in an
application. For instance, a drawing application has documents and those
documents have graphic objects. The graphic objects in turn have a fill color
and line thickness. Most AppleScript commands specify one or more objects
within your application by drilling down this object hierarchy from parent
container to child element. For instance, some graphics might be identified
by the statement “graphics 5 thru 7 of the document ‘MyDocument’ of
application ‘MyDraw’”. There has to be some way of finding these graphics
so they can be acted upon. KVC makes this search entirely automatic. An
application has the key “documents,” which is a to-many relationship
(because the application can open multiple documents). Each document has
a “name” key that identifies the file it represents. To find the document
named MyDocument the framework can ask for all the documents of the
application and check each one’s name until it finds the one named
MyDocument. Because KVC defines a uniform way of asking for the value
of a key (

valueForKey:

), all this work can be done automatically with no
extra effort from the developer. Similarly, once the KVC-driven scripting
system finds the document, it obtains the “graphics” key and from it gets
elements 5 thru 7.

Those familiar with AppleScript probably recognize that the work just
described is, on the Mac OS side, accomplished by the Object Support

Application Design for Scripting, Documents, and Undo

8

Library. The Yellow Box version of the Object Support Library knows how to use
KVC to evaluate object specifiers. Instead of specifically invoking the library
and passing in all sorts of evaluation handlers, the Yellow Box developer simply
relies on the KVC mechanism. Of course, you can be more directly involved in
the evaluation if you need to do so for performance reasons or if your scripting
model does not match your internal model closely enough for the automatic
support to work.

The usefulness of key-value coding does not stop with object-specifier
evaluation. Most of the core commands defined by AppleScript have default
implementations in the Yellow Box based on KVC. For instance, the Get Data
and Set Data commands require no extra code for your objects to support if the
classes for these objects define their keys properly and implement the standard
accessors. The same holds true of the Move, Clone, Delete, Create, Count, and
Exists commands. Most script commands have been generically implemented
with KVC so most model objects will not have to worry about them at all. If your
model class must handle a particular command in a special way, even if the
command has a default implementation, it can do so.

Object Specifiers

Object specifiers use key-value coding to evaluate the underlying objects they
represent. Object specifiers in AppleScript are expressions such as “words whose
color is red of the fourth paragraph of the front document of application
‘TextEdit’”. Object specifiers in Yellow Box applications are objects of the
NSObjectSpecifier class. Concrete subclasses of this abstract class represent the
different reference forms supported by AppleScript, such as index references
(“word 5”) and filter references (tests or “whose” clauses).

NSObjectSpecifiers are nested, so the example in the preceding paragraph would
actually be represented by a chain of three references: one for the words, one for
the paragraph, one for the document. (The “application ‘TextEdit’” part does not
need representation since the specifier exists in TextEdit by the time the
command is executed.) NSObjectSpecifiers know how to evaluate themselves
within their containing specifier. The explicit top-level specifier (“front
document” in the example) evaluates itself within a default top-level container,
which is usually the application itself.

Usually you don’t have to worry about specifiers when you make an application
scriptable. However, it helps to understand them if you wish to support
recordability in your application, which requires you to create them.

Scripting

9

Script Commands

A script command is a single AppleScript statement. Script commands are
what an application receives when it is being scripted. It may receive many
of them consecutively, but each one is separate, distinct and complete. Script
commands are represented by NSScriptCommand objects in the Yellow
Box. Sometimes script commands are instances of NSScriptCommand
subclasses; if the command has a default implementation based on KVC, it
has a specific NSScriptCommand subclass that implements that default
behavior. Or if a command has arguments that need special processing, a
subclass might do the processing required to provide the arguments in a
useful form. However, NSScriptCommand objects can be used by
themselves, without the need for subclassing.

An NSScriptCommand has an object specifier that identifies the receiver (or
receivers) of the command and can have another object specifier for any
arguments defined by the command. Command arguments can be actual
values or object specifiers that identify where to find the actual values within
the application’s object hierarchy.

A scriptable class declares what commands it supports. For commands that
have a default implementation, scriptable classes can choose to use it, or
they can choose to implement the behavior required by the command
themselves. For commands without default implementations, scriptable
objects must implement and specify a method that handles the command.

It could seem somewhat odd that script commands are separate from the
classes that support them, but this is the nature of AppleScript. AppleScript
wants to have a small set of commands that act on a wide set of objects and
therefore it defines the commands separately. At least at first, this seems at
odds with object-oriented design where you want the behavior and the data
rolled up into an a single entity: an object. However, there are some
advantages to having them separate, even though the issue is to some degree
forced on the frameworks by AppleScript. Having them separate gives the
Yellow Box frameworks the ability to support default implementations for
commands that are generic enough to be implementable through KVC.

Script Suites

AppleScript groups chunks of scriptability API in “suites.” Suites consist of
a set of class descriptions, a set of command descriptions, and a set of
terminologies for each supported AppleScript dialect. In the Mac OS, the
suites an application supports are defined in the “aete” resource of the
application. In the Yellow Box frameworks, suites are defined in property
lists. Currently there are no special tools for creating property lists; you must

Application Design for Scripting, Documents, and Undo

10

create them by hand. Any bundle-including frameworks and applications-can
declare script suites. The set of suites an application supports is a result of the
union of all the suites defined by the application itself, the frameworks it links
against, and the bundles it loads dynamically. The Yellow Box frameworks
declare two suites and thus any scriptable application automatically supports
these suites. These suites are the Core suite (NSCoreSuite) and the Text suite.
Thus, if you expose access to an NSTextStorage object through your object
hierarchy, that NSTextStorage object is fully and automatically scriptable
through the standard Text suite. If your application uses the Application Kit’s
document architecture (discussed below), it automatically supports all the Core
suite commands that can be applied to documents.

The property list that describes a suite contains all the information about the
classes and commands in that suite that are needed by the scripting frameworks.
For classes, this includes all the supported keys (attribute and relationship keys)
for the class and their types. It also includes all the commands that the class
supports (both from the class’s own suite and others). For commands this
includes the number and types of the arguments, whether they are required, and
the return data type. The suite definition also includes information needed to map
the classes and commands to the appropriate four-letter codes used to structure
the data in an Apple event representing a script command. The scripting support
uses Apple events as its transport mechanism to provide interscriptability
between the Blue and Yellow Box environments. As a Yellow Box application
developer, you should not have to deal with an Apple event directly to support
scripting, but you will have to provide the information necessary to map classes,
commands, keys, and related information to the codes used in Apple events.

In addition to the suite definition, which is a language-independent resource, a
suite terminology contains dialect-specific terminology information that
identifies the actual scripting vocabulary used for the various classes and
commands.

Built-in Suites

The Yellow Box frameworks define several of the standard suites, particularly the
Core and Text suites. In addition, Yellow Box classes implement scriptability for
these standard suites so that, for instance, the NSTextStorage object is
completely scriptable using the Text suite and the NSDocumentController and
NSDocument objects support the Core scripting commands that make sense for
documents.

Custom Suites

Any application can define its own suites. In these suites they can define new
script classes and new script commands.

Scripting

11

Coming Features

Recordability—the capability of an application to record user actions in a
script—is still under investigation, but is likely to work in a way similar to
undo (see “Undo and Redo” for details). The current proposal is that
approximately in the same places that you register an action name with the
undo manager for a user-initiated action, you also construct a script
command which represents the action to be recorded.

The ability to script other applications directly from your application is
under investigation. Eventually you should be able to execute script
commands or even whole scripts directly from your application that script
your application, other applications, or a combination of the two.

Application Design for Scripting, Documents, and Undo

12

Document Architecture

The new document architecture in the Application Kit is based on three classes:
NSDocument, NSWindowController, and NSDocumentController.
NSDocument is the principal class. It represents a single document in your
application. Developers must subclass NSDocument to give it knowledge of the
application’s model layer and to implement persistence (loading and saving).
NSWindowControllers own and control the application’s user interface. An
NSDocument has one or more NSWindowControllers. Developers often
subclass NSWindowController to add specific knowledge of the view layer that
the controller is responsible for managing. NSDocumentController is a singleton
class. Each document-based application has a single instance of
NSDocumentController to track and manage all open documents. Developers
typically don’t need to subclass NSDocumentController.

NSDocuments Are Model-Controllers

NSDocument is a model-controller class. Its main job is to own and manage the
model objects that make up a document and to provide a way of saving those
objects to a file and reloading them later. Any and all objects that are part of the
persistent state of a document should be considered part of that document’s
model. Sometimes the NSDocument itself has some data that would be
considered part of the model. For example, the Sketch example application has
a subclass of NSDocument subclass named Document; objects of this class
might have an array of Graphic objects that comprises the model of the
document. In addition to the actual Graphic objects, the Document object
contains some data that should technically be considered part of the model since
the order of the graphics within the document’s array matters in determining the
front-to-back ordering of the Graphics.

An NSDocument should not contain or require the presence of any objects that
are specific to the application’s user interface. Although a document can own and
manage NSWindowController objects—which present the document visually
and allow the user to edit it—it should not depend on these objects being there.
For example, it might be desirable to have a document open in your application
without having it visually displayed. For instance, a script might have opened a
document to do some processing on it. If the script does not need the user to
become involved in the processing, the script might want the document to be
opened, manipulated, saved, and closed again, without it ever appearing
onscreen.

Document Architecture

13

NSWindowControllers Are View-Controllers

NSWindowController is a view-controller class. Its main job is to own and
manage the view objects that are used to display and edit a document. A
document that is visible to the user has one or more NSWindowControllers
to own and manage the visual presentation. Although you can use an
NSWindowController instance, most often you must subclass
NSWindowController to add specific knowledge of the interface. An
NSWindowController usually gets its interface from a nib file. Subclasses
often add outlets and actions for the controls and views within the nib file
and the NSWindowController usually acts as the “File’s Owner” for the nib.
In very simple cases where there is only one window for a document, you
may want your NSDocument class to have outlets and actions for the nib. In
this case, the NSDocument subclass acts as the “File’s Owner” for the nib,
but it still creates an NSWindowController to own and manage the objects
that are loaded from the nib.

Type Information and NSDocumentControllers

An NSDocumentController object manages documents. It keeps track of all
open documents; it knows how to create new documents and how to open
existing documents. It knows how to find open documents given either a
window that is part of the document or the path of the file a document was
loaded from. Developers typically won’t have to worry about what it does.
NSDocumentController knows how to read and use the metadata that a
document-based application provides about the types of documents it can
open. NSDocumentController can provide information based on that
metadata, such as lists of file types supported by an application and which
NSDocument subclasses are used for them.

All document-based applications declare information about the document
types they support in the information property list (

CustomInfo.plist

) of the
application. Currently, no development tools directly support the creation of
this metadata, so you must create it by hand. See the NSDocumentController
class specification for details on the

CustomInfo.plist

 keys required by the
document architecture and how to include this metadata in your application
project.

The metadata in the information property list declares the types of
documents supported by an application. The Yellow Box defines a set of
abstract types; these types are usually the same thing as the pasteboard type
that represents such data. For each abstract type, the

CustomInfo.plist

 lists
specific information such as

• The file extensions used to identify files of that type

Application Design for Scripting, Documents, and Undo

14

• The Mac OS four-letter type code for files of that type
• The icon the Workspace should use to display files of that type
• The subclass of NSDocument used by an application to deal with files of that

type

NSDocumentController loads all this type information and uses it. When
NSDocumentController runs an open panel it obtains the list of all file extensions
for document types that your application can read; it passes that list to the open
panel so that it can list the files that can be opened. When the user actually
chooses a file to open, the NSDocumentController uses the metadata to identify
the subclass of NSDocument to use to create the document and load its data.

Typical Usage Patterns

You can use the document architecture in three general ways. The following
discussion starts with the simplest and proceeds to the most complex.

The simplest way to use the document architecture is appropriate for documents
that have only one window and are simple enough so that there isn’t much benefit
in splitting the controller layer into a model-controller and a view-controller. In
this case, the developer needs only to create a subclass of NSDocument. The
NSDocument subclass provides storage for the model and the ability to load and
save document data. It also has any outlets and actions required for the user
interface. It overrides

windowNibName

 to return the nib file name used for
documents of this type. NSDocument automatically creates an
NSWindowController to manage that nib file, but the NSDocument itself serves
as the nib file’s “File’s Owner.”

If your document has only one window, but it is complex enough that you’d like
to split up some of the logic in the controller layer, you can subclass
NSWindowController as well as NSDocument. In this case, any outlets and
actions and other behavior that is specific to the management of the user
interface goes into the NSWindowController subclass. Your NSDocument
subclass must override

makeWindowControllers

 instead of

windowNibName

. The

makeWindowControllers

 method should create an instance of your
NSWindowController subclass and add it to the list of managed window
controllers with

addWindowController:

. The NSWindowController should be
the “File’s Owner” for the nib file because this creates better separation between
the view-related logic and the model-related logic. This approach is
recommended for all but the most simple cases.

If your document requires multiple windows (or allows multiple windows) on a
single document you should subclass NSWindowController as well as
NSDocument. In your NSDocument subclass you override

makeWindowControllers

 just as in the second procedure described above.

Document Architecture

15

However, in this case you might create more than one instance of
NSWindowController, possibly from different subclasses of
NSWindowController. Some applications need several different windows to
represent one document. Therefore you probably need several different
subclasses of NSWindowController and you must create one of each in

makeWindowControllers

. Some applications need only one window for a
document but want to allow the user to create several copies of the window
for a single document (sometimes this is called a multiple-view document)
so that the user can have each window scrolled to a different position, or
displayed in different ways. In this case, your

makeWindowControllers

 may
only create one NSWindowController, but there will be a menu command or
similar control that allows the user to create others.

Documents and Scripting

Scripting support is the most automatic for applications based on the new
document architecture for several reasons. First, NSDocument and the other
classes of the document architecture directly implement the standard
document scripting class (as expected by AppleScript) and automatically
support many of the scripting commands that apply to documents. Second,
because the document architecture is intended to work with application
designs that use MVC separation, and because scripting support depends on
many of the same design points, applications that use the document
architecture are already in better shape to support scripting than other
applications that are not designed that way. Finally, the document plays an
important role in the scripting API of most applications; NSDocument
knows how to fill that role and provides a good starting point for allowing
scripted access to the model layer of your application.

You can make an application that is not based on the document architecture
scriptable, but it is not as easy as with an application based on that
architecture; you have to duplicate the work you would get for free if the
application used the document architecture. The TextEdit example project
gives an example of how to make a document-based application that is

not

based on NSDocument scriptable. See the Sketch example project for an
example of how to implement a scriptable NSDocument-based application.

Application Design for Scripting, Documents, and Undo

16

Undo and Redo

The Yellow Box frameworks provide support for implementing undo and redo.
NSUndoManager objects are responsible for tracking of the actions necessary to
undo changes that are made to a document. The basic premise of the undo
architecture is that when you are about to do something you first tell the
NSUndoManager how to undo it. The main API is invocation based, so if you
have a

setColor:

 method, it sends a message similar to the following before it
actually sets the new color:

[[undoManager prepareWithInvocationTarget:self] setColor:oldColor]

This message causes the creation of an NSInvocation; if the user chooses Undo,
that invocation (of the method

setColor:

 with the parameter being the old color)
is invoked. Since undone changes are put on a redo stack, if the user chooses the
Redo command, the changes are redone.

Because many discrete changes might be involved in a user-level action, all the
undo registrations that happen during a single cycle of the event loop are usually
grouped together and are undone all at once. NSUndoManager has methods that
allow you to control the grouping behavior further if you need to.

Undo and the Document Architecture

If you use the document architecture, some aspects of undo handling happen
automatically. By default, each NSDocument has an NSUndoManager. (If you
don’t want your application supporting Undo, you can use NSDocument’s

setHasUndoManager:

 to prevent the creation of the undo manager.) You can use
the

setUndoManager:

 method if you need to use a subclass or if you otherwise
need to change the undo manager used by the document.

When an NSDocument has an NSUndoManager, the document automatically
keeps its edited state up to date by watching for notifications from the undo
manager that tell it when changes are done, undone, or redone. In this case, you
should never have to invoke NSDocument’s

updateChangeCount:

 method
directly, since it is invoked automatically at the appropriate times.

The important thing to remember about supporting undo in a document-based
application is that all changes that affect the persistent state of the document
must be undoable. With a multilevel undo architecture, this is very important. If
it is possible to make some changes to the document that cannot be undone, then
the chain of edits that the NSUndoManager keeps for the document can become
inconsistent with the document state. For example, imagine that you have a
drawing program that is able to undo a resize, but not a delete. If the user selects
a graphic and resizes it, the NSUndoManager gets an invocation that can undo

Undo and Redo

17

that resize operation. Now the user deletes that graphic (which is not
recorded for undo). If users now try to undo nothing would happen (at the
very least) since the graphic that was resized is no longer there and undoing
the resize can’t have any visual effect. At worst, the application might crash
trying to send a message to a freed object. So when you implement undo,
remember that everything that causes a change to the document should be
undoable.

Undo and the Model Layer

The most important code supporting undo should be in your model layer.
Each model object in your application should be able to register undo
invocations for all primitive methods that change the object.

It is often useful to structure the APIs of your model object to consist of
primitive methods and extended methods. Examples of this sort of
separation can be found throughout the Foundation framework (including
NSString, NSArray, NSDictionary) as well as in the Sketch example project.
If you have such a separation in your model objects, remember that only the
primitives should register for undo since, by definition, the extended
methods are implemented in terms of the primitives.

Some situations might require you to temporarily suspend undo registration
for certain actions. For example, a Sketch application lets the user resize a
graphic by grabbing a resize knob and dragging it. During this dragging,
hundreds or thousands of changes may be made to the bounds rectangle of
the selected graphic. Changing the bounds of a graphic is a primitive
operation and would normally result in an undo registration. While the user
is actively resizing, though, it would be better if those thousands of undo
registrations did not happen. In these cases, your model object might
provide API to temporarily suspend and resume some or all of its undo
registration. It is up to you to decide how to handle this. Certainly, it would
work if those thousands of undo registrations did happen, but it would be a
tremendous waste of memory to have to remember all those intermediate
rectangles when you will never have to restore one of those intermediate
states.

Undo and the Control and View Layers

Although the most important part of your undo support should be in the
model, there are two situations where you need some undo-related code in
either your controller or view objects. The first case is when you want the
Undo and Redo menu items to have more specific titles. You can use
NSUndoManager’s

setActionName:

 to give a name to the current undo
group. The last invocation of

setActionName:

 during an event cycle is the

Application Design for Scripting, Documents, and Undo

18

effective one. These names should reflect the intent of the user action, not the
primitive operation that the action results in. Therefore, it is in your action
methods that you should set action names.

It is not absolutely necessary to name an undo group. The menu items just say
“Undo” and “Redo” without being specific about what is to be undone or redone.
But when you do register a name it can help the user to know what will be undone
or redone. It isn’t too hard to sprinkle a few calls to

setActionName:

 in your view
or controller action messages, so it is recommended that you try to give
meaningful action names.

The second case where you might have some undo code in the controller or view
layers is when there are some things that change that do not affect the actual state
of the document but that still need to be undoable. Undoing selection changes is
often such a case. For example, the Sketch application might not consider the
selection to be a part of the document. In fact, if the document can have multiple
views open on it, you might be able to have different selections in each one.
However, you might want changes in the selection to be able to be undone for
the user’s convenience and for visual continuity when the user is actually
undoing things. In this case, the view that displays the graphics might keep track
of the selection. It should register undo invocations as the selection changes.

Controller and view objects can come and go during the lifetime of a document
object, and this is a consideration when controller-layer or view-layer events
must be undoable. Your model objects typically live for the lifetime of the
document and the document also owns the undo manager, so you don’t generally
need to worry about what happens when the model goes away. But you may have
to worry about what happens when the controller and view objects go away. If
your controller or view object registers any undo invocations, you should make
sure that they are cleared from the undo manager when the controller or view is
deallocated. You can use the NSUndoManager’s

removeAllActionsWithTarget:

 method for this purpose. Once a particular view
on your document is closed, there is no point in keeping undo information about
things such as selection changes for that view.

Undo and Scripting

It is usually desirable to make scripted changes undoable as well as user interface
changes. This is just one more reason that your primary undo support should be
in your model objects. Since scripting is usually directed at the model, if your
undo support is in your model primitives, then scripted changes can be undone.
Being able to undo scripted changes is actually most important with macro-like
scripts where the script is being used to automate relatively small tasks that are
interspersed with direct user manipulation. Especially in these cases, you want

Undo and Redo

19

the scripted changes recorded along with the direct user changes for the
same reason: it is important to have all changes to a document recorded. If
an application doesn’t do this, a document can easily become inconsistent
with the undo stack.

	Application Design for Scripting, Documents, and Undo
	Model-View-Controller
	Model Objects Represent Data and Basic Behaviors
	View Objects Present Information to the User
	Controller Objects Tie the Model to the View
	Why Is MVC Important?

	Scripting
	Scripting and the Model Layer
	Scripting and Key-Value Coding
	Object Specifiers
	Script Commands
	Script Suites
	Built-in Suites
	Custom Suites

	Coming Features

	Document Architecture
	NSDocuments Are Model-Controllers
	NSWindowControllers Are View-Controllers
	Type Information and NSDocumentControllers
	Typical Usage Patterns
	Documents and Scripting

	Undo and Redo
	Undo and the Document Architecture
	Undo and the Model Layer
	Undo and the Control and View Layers
	Undo and Scripting

