

C H A P T E R 1

 1 Hello Kernel:
Creating a Kernel Extension With
ProjectBuilderWO
This document describes how to write and build an kernel extension for Mac OS X.
The extension you’ll create is a simple HelloKernel extension that prints text
messages when loading and unloading.

The next tutorial “Hello IOKit: Creating a Device Driver With ProjectBuilderWO”
(page 15) describes how to build and debug a device driver, a special kind of kernel
extension that tells the kernel how to handle a device. It emphasizes how to write
the driver’s code and perform remote debugging with GDB.

Here’s how you’ll create the kernel extension:

1. “Create the Kernel Extension Project” (page 2)

2. “Build the Kernel Extension” (page 10)

3. “Running the Kernel Extension” (page 11)

Note: This tutorial uses ProjectBuilderWO (Project Builder for WebObjects)
which will not be included in the final version of Mac OS X. A new kernel
development kit will soon be available that uses the new Project Builder. Apple’s
developer web site (www.apple.com/developer) will contain instructions on
how to get that kit when it’s available.
1

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

Create the Kernel Extension Project

This section describes how to create the project that will create your kernel
extension.

To better understand what you’re doing in this section, it helps to know what’s
inside an kernel extension. In Mac OS X, a kernel extension is implemented as a
bundle, a folder that the Finder treats as a single file. It can contain the following:

� Info-macos.xml describes the kernel extension’s contents, settings, and
requirements. It’s a text file in XML format. An extension can contain nothing
more than an Info-macos.xml file.

� Modules are the extension’s binary code. This is what’s loaded into the kernel.
Generally, a kernel extension has only one, but it can have more or none. If it has
none, its Info-macos.xml file would reference a module in another extension and
change its default settings.

� Resources are useful if your extension needs to display a dialog box or menu.

Here’s how you’ll create the kernel extension project:

1. “Create a Kernel Extension Project” (page 3)

2. “Create a Kernel Module Subproject” (page 4)

3. “Edit the Module’s CustomInfo.xml file” (page 5)

4. “Create a Source File” (page 8)

5. “Implement the Needed Methods” (page 8)
2 Create the Kernel Extension Project

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

Create a Kernel Extension Project
Choose Project > New. For the name, enter “HelloKernel”. For the Project Type,
choose Kernel Extension.
Create the Kernel Extension Project 3

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

ProjectBuilderWO creates the new project and displays its project window.

Create a Kernel Module Subproject
The kernel module is the binary code the extension executes. Usually, a extension
has only one, but can have more.

Choose Project > New Subproject. For the name, enter “HelloKernel”. For the
Project Type, choose Kernel Module.
4 Create the Kernel Extension Project

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

ProjectBuilderWO creates the new subproject. To see what’s in the subproject, click
the word Subprojects in the project window, then click HelloKernel.kmodproj.

Edit the Module’s CustomInfo.xml file
Your project contains two files named CustomInfo.xml, which tell the operating
system what your driver contains and what it needs. In the next tutorial, you’ll learn
more about them. In this tutorial, you’ll just edit the module’s CustomInfo.xml.
Create the Kernel Extension Project 5

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

To find the module’s CustomInfo.xml file, go to the Project Window’s browser and
follow this path: Subprojects / HelloKernel / Other Resources / CustomInfo.xml.

Edit two of the lines in this file. Change the Initialize entry so its value is
<string>hello</string> and change the Finalize entry so its value is
<string>goodbye</string> . The listing below shows the modified file, with the
changed lines highlighted.

 Listing 1-1 The module’s CustomInfo.xml file, after editing

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist
 SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<!-- Welcome to XML. Anything you see surrounded like this is a comment. -->
<dict>

Important: Don’t change the text between the <key> and </key> markers. Instead,
change the text between <string> and </string>.
6 Create the Kernel Extension Project

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

<key>Module</key>
 <dict>
 <!-- You probably should leave the next two keys alone -->
 <key>Name</key>
 <string>HelloKernel</string>
 <key>File</key>
 <string>HelloKernel</string>

 <!-- Delete this key if this module doesn't require another module -->
 <key>Requires</key>
 <array></array>

 <!-- Change these to your start and stop routines,
 unless you are an IOKit module in which case leave alone.

 -->
 <key>Initialize</key>
 <string>hello</string>
 <key>Finalize</key>
 <string>goodbye</string>

 <!-- Keys reserved for future use, please leave -->
 <key>Target</key>
 <string>Kernel</string>
 <key>Format</key>
 <string>mach-o</string>
 </dict>
</dict>
</plist>
Create the Kernel Extension Project 7

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

Create a Source File
Choose File > New in Project. Choose the Other Sources suitcase and entry
HelloKernel.c as the file’s name.

Implement the Needed Methods
Replace the contents of HelloKernel.c with the following code. You can copy and
paste the code from this document if you’re reading it online.
8 Create the Kernel Extension Project

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

This is where you’ll find the HelloKernel.c file in the project window:

And this is the code for HelloKernel.c. Note that it contains a small typo. You’ll
correct the typo in the next section.

 Listing 1-2 HelloKernel.c

#include <sys/systm.h>
#include <mach/mach_types.h>

kern_return_t hello(struct kmod_info *ki, void *data)
{
 printf("Hello Kernel !!!\n") // <--ERROR! Missing semicolon!
 return KERN_SUCCESS;
}

kern_return_t goodbye(struct kmod_info *ki, void *data)
{
 printf("Goodbye Kernel !!!\n");
Create the Kernel Extension Project 9

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

 return KERN_SUCCESS;
}

Build the Kernel Extension

Here’s how to build the kernel extension:

1. “Build the Project” (page 10)

2. “Fix Any Errors” (page 11)

3. “Build the Project Again” (page 11)

Build the Project
Click the Build button in the Project Window, which looks like the one below:

After the Build panel appears, click its Build button. If ProjectBuilderWO asks you
whether to save some modified files, select all the files and click “Save and build”.
10 Build the Kernel Extension

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

ProjectBuilderWO starts building your project and stops when it reaches the error.

Fix Any Errors
Click the build error that appears in the top view of the Build panel. The source code
for the error appears in the editing view below it.

You can edit the source code right inside the Build panel. Correct the error now by
inserting a semicolon at the end of the statement.

Build the Project Again
Click the Build button in the Build panel. When ProjectBuilderWO asks you
whether to save some modified files, select all the files and click “Save and build”.

ProjectBuilderWO starts building your project again, and this time it succeeds.

Running the Kernel Extension

This section shows how to run the kernel extension with the kextload command.
Here’s how you’ll do it:

1. Log in as Root in Console Mode
Running the Kernel Extension 11

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

2. Load and Unload the Kernel Extension

Log in as Root in Console Mode
You’ll log in as root, since only the root account can load kernel extensions. And
you’ll run in console mode, since console mode writes all system messages (like the
kernel extension’s message “Hello Kernel!!!”) directly to your monitor, instead of to
the file /var/log/system log.

1. Log out of your account.

From the Workspace, choose Log Out from the File menu.

2. From the login screen, log in as console.

Type “console” as the user name, leave the password blank, and press Return.
The screen turns black and looks like an old ASCII terminal. This is the console
mode.

3. Log in as root.

Only the root account may load kernel extensions.

For example:

4BSD (dev) (console)

login: root
Password for root:
dev#

Load and Unload the Kernel Extension

1. Move to the directory that contains your module.

For example:

dev# cd ~me/Projects/HelloKernel/HelloKernel.kext

2. Load the extension.

Enter this command:

kmodload module-name
12 Running the Kernel Extension

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1

This command loads your extension by running its initialization function.

For example:

dev# kmodload HelloKernel
Hello Kernel !!!

3. Unload the extension

Enter this command:

kmodunload module-name

This command unloads your extension by running its finalization function.

For example:

dev# kmodunload HelloKernel
Good-bye Kernel !!!

You’ve now written, built, loaded, and unloaded your own kernel extension.
Congratulations!
Running the Kernel Extension 13

Draft. Confidential.  Apple Computer, Inc. 4/19/00

C H A P T E R 1
14 Running the Kernel Extension

Draft. Confidential.  Apple Computer, Inc. 4/19/00

	Hello Kernel: Creating a Kernel Extension With �ProjectBuilderWO
	Create the Kernel Extension Project
	Create a Kernel Extension Project
	Create a Kernel Module Subproject
	Edit the Module’s CustomInfo.xml file
	Create a Source File
	Implement the Needed Methods

	Build the Kernel Extension
	Build the Project
	Fix Any Errors
	Build the Project Again

	Running the Kernel Extension
	Log in as Root in Console Mode
	Load and Unload the Kernel Extension

