

Contents

Table of Contents
Contents i

The Objective-C Compiler 9

Which Language? 11

GNU CC Command Options 12
Options Controlling the Kind of Output 13

Specifying the language 14

-x 14
Specifying which stages of compilation to peform 14

-c 14

-S 14

-E 15

Other output options 15

-o 15

-v 15

-pipe 15

Compiling C++ Programs 16

Options Controlling C Dialect 16

-ansi 16

-ObjC 17

-fno-asm 17

-fno-builtin 17

-trigraphs 18

-traditional 18

-traditional-cpp 19

-fcond-mismatch 19

-fpascal-strings 19

-funsigned-char 20

-fsigned-char 20

-fsigned-bitfields -funsigned-bitfields -fno-signed-bitfields -fno-unsigned-bit-
fields 20

-fwritable-strings 21

-fallow-single-precision 21

Options Controlling C++ Dialect 21

-ObjC++ (Not supported on PDO platforms) 21

-fno-access-control 21

-fall-virtual 22

-fcheck-new 22

-fconserve-space 22
-fenum-int-equiv 22

-fexternal-templates 22

-falt-external-templates 23

-ffor-scope -fno-for-scope 23

-fno-gnu-keywords 23

-fno-implicit-templates 23

-fhandle-exceptions 23

-fhandle-signatures 24

-fhuge-objects 24

-fno-implement-inlines 24

-fmemoize-lookups -fsave-memoized 24

-fstrict-prototype 25

-fno-nonnull-objects 25

-foperator-names 25

-fthis-is-variable 25

-fvtable-thunks 26

-nostdinc++ 26

-traditional 26

-fno-default-inline 26

-Wenum-clash -Woverloaded-virtual -Wtemplate-debugging 27

+e 27

Options to Request or Suppress Warnings 27

-fsyntax-only 27

-pedantic 27

-pedantic-errors 28

-w 28

-Wno-import 28

-Wno-precomp 28

-Wchar-subscripts 28

-Wcomment 28

-Wformat 29

-Wimplicit 29

-Wno-four-char-constants 29

-Wparentheses 29

-Wreturn-type 29

-Wstyle 29

-Wswitch 30

-Wtrigraphs 30

-Wunused 30

-Wuninitialized 30

-Wenum-clash 31
iii

-Wreorder (C++ only) 32

-Wtemplate-debugging (C++ only) 32

-Wall 32

-Wmost -W 32

-Wtraditional 33

-Wshadow 34

-Wid-clash-len 34

-Wlarger-than-len 34

-Wpointer-arith 34

-Wbad-function-cast 34

-Wcast-qual 34

-Wcast-align 34

-Wwrite-strings 34

-Wconversion 35

-Waggregate-return 35

-Wstrict-prototypes 35

-Wmissing-prototypes 35

-Wmissing-declarations 35

-Wredundant-decls 35

-Wnested-externs 36

-Winline 36

-Woverloaded-virtual 36

-Wsynth 36

-Werror 36

Options for Debugging Your Program or GNU CC 37

-g 37

-gcodeview 37

-ggdb 37

-gstabs 37

-gstabs+ 38

-g -ggdb -gstabs -gcodeview (on Windows NT only) 38

-p (Not available on Windows NT) 38

-pg (Not available on Windows NT) 38

-a 38

-d 39

-fpretend-float 40

-save-temps 40

-print-file-name 40

-print-prog-name 40

-print-libgcc-file-name 40

-print-search-dirs 41

Options That Control Optimization 41

-O -O1 41
iv
-O2 41

-O3 42

-O0 42

-ffloat-store 42

-ffppc (Not available on Windows NT) 43

-fno-default-inline 43

-fno-defer-pop 43

-fforce-mem 43

-fforce-addr 43

-fomit-frame-pointer 43

-fno-inline 44

-finline-functions 44

-fkeep-inline-functions 44

-fno-function-cse 44

-ffast-math 44

-fstrength-reduce 45

-fthread-jumps 45

-fcse-follow-jumps 45

-fcse-skip-blocks 45

-frerun-cse-after-loop 45

-fexpensive-optimizations 45

-fdelayed-branch (Not available on Windows NT) 46

-fschedule-insns 46

-fschedule-insns2 46

-fcaller-saves 46

-funroll-loops 46

-funroll-all-loops 46

-fno-peephole 47

Options Controlling the Preprocessor 47

-framework 47

-include 47

-imacros 48
-idirafter 48

-iprefix 48

-iwithprefix 48

-iwithprefixbefore 48

-isystem 48

-nostdinc 48

-undef 49

-E 49

-C 49

-P 49

-M 49

-MM 50

-MD 50

-MMD 50

-MG 50

-H 50

-A 50

-D 50

-D 50

-U 51

-dM 51

-dD 51

-dN 51

-trigraphs 51

-Wp 51

Passing Options to the Assembler 51

-W 51

Options for Linking 52

object-file-name 52

-c -S -E 52

-l 52

-framework 53

-nostartfiles 53

-nodefaultlibs 53

-nostdlib 53

-s 53

-static 54

-shared 54

-symbolic 54

-undefined error, -undefined warning, -undefined suppress 54

-Xlinker 54

-Wl 54

-u 55

Options for Directory Search 55

-I 55

-I- 55

-L 56

-F 56

-B 56

Hardware Models and Configurations 57

M680x0 Options 57

-m68881 58

-m68030 58
-m68040 58

-m68020-40 58

-malign-mac68k 58

-malign-power 58

-msoft-float 58

-mshort 59

-mno-align-mac68k 59

-mno-align-power 59

-mnobitfield 59

-mbitfield 59

-mrtd 59

SPARC Options 60

-mno-app-regs -mapp-regs 60

-mfpu -mhard-float 60

-mno-fpu -msoft-float 60

-mhard-quad-float 60

-msoft-quad-float 60

-mno-epilogue -mepilogue 61

-mno-flat -mflat 61

-mno-unaligned-doubles -munaligned-doubles 61

-mv8 -msparclite 62

-mcypress -msupersparc 62

-mmedlow 62

-mmedany 63

-mint64 63

-mlong32 63

-mlong64 -mint32 63

-mstack-bias -mno-stack-bias 63

Intel 386 Options 63

-m486 -m386 63

-mieee-fp -mno-ieee-fp 63

-mno-fp-ret-in-387 64

-mno-fancy-math-387 64

-malign-double -mno-align-double 64

-munaligned-text (Not available on Windows NT) 64

-msvr3-shlib -mno-svr3-shlib 64

-mno-wide-multiply -mwide-multiply 65

-mrtd 65

-mreg-alloc 65

-mregparm 66

-malign-loops 66

-malign-jumps 66

-malign-functions 66
v

HPPA Options 66

-mpa-risc-1-0 66

-mpa-risc-1-1 66

-mjump-in-delay 66

-mmillicode-long-calls 67

-mdisable-fpregs 67

-mdisable-indexing 67

-mfast-indirect-calls 67

-mportable-runtime 67

-mgas 67

-mschedule 68

-msoft-float 68

Options for Code Generation Conventions 68

-dynamic, -static 68

-fpcc-struct-return 69

-freg-struct-return 69

-fshort-enums 69

-fshort-double 69

-fshared-data 69

-fno-common 70

-fno-ident 70

-fno-gnu-linker 70

-finhibit-size-directive 70

-fverbose-asm 70

-fvolatile 71

-fvolatile-global 71

-fpic 71

-fPIC 71

-ffixed 71

-fcall-used 71

-fcall-saved 72

-fpack-struct 72

+e0 +e1 72

Environment Variables Affecting GNU CC 73

TMPDIR 73

GCC_EXEC_PREFIX 73

COMPILER_PATH 74

LIBRARY_PATH 74

C_INCLUDE_PATH CPLUS_INCLUDE_PATH OBJC_INCLUDE_PATH 74

DEPENDENCIES_OUTPUT 74
vi
C Programming Notes 75
String Constants and Static Strings 75

Function Prototyping 75

Automatic Register Allocation 76

Declarations of External Variables and Functions 77

typedef and Type Modifiers 77

Identifying the Compiler Version 78

Writing Architecture-Independent Code 78

__ARCHITECTURE__ 78

__BIG_ENDIAN__, __LITTLE_ENDIAN__ 78

Objective-C Programming Notes 79
Accessing Instance Variables in Class Methods 79

Syntax Checking 79

Sending Objective-C Messages to Converted C++ Objects 79

Extensions to the C Language Family 80
Statements and Declarations in Expressions 81

Locally Declared Labels 82

Labels as Values 82

Nested Functions 83

Constructing Function Calls 86

__builtin_apply_args () 86

__builtin_apply () 86

__builtin_return () 86

Naming an Expression’s Type 86

Referring to a Type with “typeof” 87

Generalized Lvalues 88

Conditionals with Omitted Operands 89

Double-Word Integers 90

Complex Numbers 90

Arrays of Length Zero 91

Arrays of Variable Length 91

Macros with Variable Numbers of Arguments 92

Non-Lvalue Arrays May Have Subscripts 93

Arithmetic on “void”- and Function-Pointers 94

Non-Constant Initializers 94

Constructor Expressions 94

Labeled Elements in Initializers 95

Case Ranges 96

Cast to a Union Type 97

Declaring Attributes of Functions 98

noreturn 98

const 99

format (archetype, string-index, first-to-check) 99

section (“section-name”) 100

constructor destructor 100

unused 100

weak 101

alias () 101

regparm () 101

stdcall 101

stdcall 101

Prototypes and Old-Style Function Definitions 102

C++ Style Comments 103

Dollar Signs in Identifier Names 103

The Character ESC in Constants 103

Inquiring on Alignment of Types or Variables 103

Specifying Attributes of Variables 104

aligned () 104

mode () 105

nocommon 106

packed 106

section () 106
transparent_union 107

unused 107

weak 107

Specifying Attributes of Types 108

aligned () 108

packed 110

transparent_union 110

An Inline Function is As Fast As a Macro 110

Assembler Instructions with C Expression Operands 112

Controlling Names Used in Assembler Code 116

Variables in Specified Registers 116

Defining Global Register Variables 117

Specifying Registers for Local Variables 118

Alternate Keywords 119

Incomplete enum Types 119

Function Names as Strings 120

C++ Programming Notes 120
Multiple Virtual Inheritance 120

Pointers to Member Functions 121

Implicit Cast From void* to C++ Object Pointer 122

Extensions to the C++ Language 122
Named Return Values in C++ 123

Minimum and Maximum Operators in C++ 124

“goto” and Destructors in GNU C++ 125

Declarations and Definitions in One Header 125

#pragma interface 126

#pragma implementation 126

#pragma cplusplus 127

Type Abstraction using Signatures 127

Known Causes of Trouble with GNU CC 129
Problems in the Compiler 129

Interoperation 130

Incompatibilities of GNU CC 132

Disappointments and Misunderstandings 136

Common Misunderstandings with GNU C++ 137

Declare and Define Static Members 137

Temporaries May Vanish Before You Expect 138

Warning Messages and Error Messages 139
vii

Legal Considerations 139
GNU GENERAL PUBLIC LICENSE 140

Preamble 140

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
141

NO WARRANTY 145

How to Apply These Terms to Your New Programs 146

Index 149
viii

The Objective-C Compiler

1

The Objective-C compiler is based on version 2.7.2 of the GNU C
compiler, an ANSI-standard C compiler produced by the Free Software
Foundation. The 2.7.2 compiler has been modified and extended as a
compiler for the Objective-C language by Apple Computer. This
document describes how to compile a C program using the Objective-C
compiler.

This chapter is a modified version of documentation provided by the Free
Software Foundation; see the section Legal Considerations at the end of
this document for important related information.

This chapter Copyright  1988, 1989, 1992, 1993, 1994, 1995 by Free
Software Foundation, Inc. and Copyright  1991-1998 by Apple Computer.

The following sections describe command options available when
compiling a C program, incompatibilities between C as interpreted by this
compiler and non-ANSI versions of C, GNU extensions to the C language,
and implementation-specific details related to using C.

For a description of the Objective-C language, see Object-Oriented
Programming and the Objective-C Language.

Which Language?

The C, C++, Objective-C, and Objective-C++ versions of the compiler are
integrated; the GNU C compiler can compile programs written in C, C++,
or Objective-C. Source code for any of these languages can be ASCII text
or Rich Text Format; the preprocessor strips out all RTF directives, leaving
only ASCII text for the compiler itself.

“GCC” is a common shorthand term for the GNU C compiler. This is both
the most general name for the compiler, and the name used when the
emphasis is on compiling C programs.

When referring to C++ compilation, the compiler is occasionally referred to
as “G++”. Since there is only one compiler, it is also accurate to call it
“GCC” no matter what the language context.

We use the name “GNU CC” to refer to the compilation system as a whole,
and more specifically to the language-independent part of the compiler.
For example, we refer to the optimization options as affecting the behavior
of “GNU CC” or sometimes just “the compiler”.
11

1

The Objective-C Compiler

G++ is a compiler, not merely a preprocessor. G++ builds object code directly
from your C++ program source. There is no intermediate C version of the
program. (By contrast, for example, some other implementations use a program
that generates a C program from your C++ source.) Avoiding an intermediate C
representation of the program means that you get better object code, and better
debugging information. The GNU debugger, GDB, works with this
information in the object code to give you comprehensive C++ source-level
editing capabilities. See The GNU Source-Level Debugger for more information.

Note: Mac OS X includes two preprocessors: the standard GNU C preprocessor
(cpp) and the precompilation preprocessor (cpp-precomp). The two preprocessors
are largely similar, except for some rarely used extensions. The precompilation
preprocessor(cpp-precomp) is the default preprocessor for C and Objective-C code.
(See /System/Documentation/Developer/YellowBox/Reference/DevTools/Preprocessor/ for more
information.) The standard preprocessor (cpp) is the default preprocessor for
Objective-C++ code. To switch to the standard preprocessor (cpp) on platforms
on which precompiled headers are available, use the -traditonal-cpp flag on the cpp
command line.

GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation,
assembly and linking. The “overall options” allow you to stop this process at an
intermediate stage. For example, the -c option says not to run the linker. Then
the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the
preprocessor and others the compiler itself. Yet other options control the
assembler and linker; most of these are not documented here, since you rarely
need to use any of them.

Most of the command line options that you can use with GNU CC are useful for
C programs; when an option is only useful with another language (usually C++),
the explanation says so explicitly. If the description for a particular option does
not mention a source language, you can use that option with all supported
languages.

See Compiling C++ Programs for a summary of special options for compiling
C++ programs.
12

GNU CC Command Options

The gcc program accepts options and file names as operands. Many options
have multiletter names; therefore multiple single-letter options may not be
grouped: -dr is very different from -d -r.

You can mix options and other arguments. For the most part, the order you
use doesn’t matter. Order does matter when you use several options of the
same kind; for example, if you specify -L more than once, the directories are
searched in the order specified.

Many options have long names starting with -f or with -W—for example, -
fforce-mem, -fstrength-reduce, -Wformat and so on. Most of these have both positive
and negative forms; the negative form of -ffoo would be -fno-foo. This manual
documents only one of these two forms, whichever one is not the default.

Options Controlling the Kind of Output
Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three stages
apply to an individual source file, and end by producing an object file;
linking combines all the object files (those newly compiled, and those
specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

File Description

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii Objective-C++ or C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library libobjc.a to make
an Objective-C program work.

file.mm
file.M

Mixed Objective-C and C++ source code.

file.h C header file (not to be compiled or linked).

file.C
file.cc
file.cxx
file.cpp

C++ source code which must be preprocessed. Note that in .cxx, the last two letters
must both be literally x. Likewise, .C refers to a literal capital C.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized suffix
is treated this way.
13

1

The Objective-C Compiler

Specifying the language
You can specify the input language explicitly with the -x option:

-x
-x language

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next -x option. Possible values for language
are: c objective-c c++ c-header cpp-output c++-cpp-output assembler
assembler-with-cpp

-x none

Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if -x has not been used at all).

Specifying which stages of compilation to peform
If you only want some of the stages of compilation, you can use -x (or filename
suffixes) to tell gcc where to start, and one of the options -c, -S, or -E to say where
gcc is to stop. Note that some combinations (for example, -x cpp-output -E) instruct
gcc to do nothing at all.

-c
-c

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix
.c, .i, .s, etc., with .o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S
-S

Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the
suffix .c, .i, etc., with .s.

Input files that don’t require compilation are ignored.
14

GNU CC Command Options

-E
-E

Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.

Input files which don’t require preprocessing are ignored.

Other output options

-o
-o file

Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an
assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use -
o when compiling more than one input file, unless you are producing an
executable file as output.

If -o is not specified, the default is to put an executable file in a.out, the object
file for source.suffix in source.o, its assembler file in source.s, and all
preprocessed C source on standard output.

-v
-v

Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.

-pipe
-pipe

(Not available on Windows NT) Use pipes rather than temporary files for
communication between the various stages of compilation. This fails to
work on some systems where the assembler is unable to read from a pipe;
but the GNU assembler has no trouble.

See Hardware Models and Configurations for information on the -arch flag,
which allows you to specify the target platform when compiling on Mach.
15

1

The Objective-C Compiler

Compiling C++ Programs
C++ source files conventionally use one of the suffixes .C, .cc, .cpp, or .cxx;
preprocessed C++ files use the suffix .ii. GNU CC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the
same way as for compiling C programs (usually with the name gcc). Objective-
C++ (mixed Objective-C and C++) source files use a .M suffix by convention.

However, C++ programs often require class libraries as well as a compiler that
understands the C++ language—and under some circumstances, you might
want to compile programs from standard input, or otherwise without a suffix that
flags them as C++ programs. g++ is a program that calls GNU CC with the
default language set to C++, and automatically specifies linking against the
GNU class library libg++. On many systems (but not Windows NT), the script
g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any language; or
command-line options meaningful for C and related languages; or options that
are meaningful only for C++ programs. See Options Controlling C Dialect, for
explanations of options for languages related to C. See Options Controlling C++
Dialect, for explanations of options that are meaningful only for C++ programs.

Options Controlling C Dialect
The following options control the dialect of C (or languages derived from C,
such as C++ and Objective-C) that the compiler accepts:

-ansi
-ansi

Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C,
such as the asm, inline and typeof keywords, and predefined macros such as unix and
vax that identify the type of system you are using. It also enables the undesirable
and rarely used ANSI trigraph feature, disallows $ as part of identifiers, and
disables recognition of C++ style // comments.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to
work despite -ansi. You would not want to use them in an ANSI C program, of
course, but it is useful to put them in header files that might be included in
compilations done with -ansi. Alternate predefined macros such as __unix__ and
__vax__ are also available, with or without -ansi.
16

GNU CC Command Options
The -ansi option does not cause non-ANSI programs to be rejected
gratuitously. For that, -pedantic is required in addition to -ansi. See Options to
Request or Suppress Warnings for more information.

The macro __STRICT_ANSI__ is predefined when the -ansi option is used. Some
header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ANSI standard doesn’t call for;
this is to avoid interfering with any programs that might use these names for
other things.

The functions alloca, abort, exit, and _exit are not builtin functions when -ansi is
used.

-ObjC
-ObjC

(Not supported on PDO platforms) Compile a source file that contains
Objective-C language code (the file can have either a .c or a .m extension).

-fno-asm
-fno-asm

Do not recognize asm, inline or typeof as a keyword, so that code can use these
words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. -ansi implies -fno-asm.

In C++, this switch only affects the typeof keyword, since asm and inline are
standard keywords. You may want to use the -fno-gnu-keywords flag instead, as
it also disables the other, C++-specific, extension keywords such as headof.

-fno-builtin
-fno-builtin

Don’t recognize builtin functions that do not begin with two leading
underscores. Currently, the functions affected include abort, abs, alloca, cos, exit,
fabs, ffs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions
more efficiently; for instance, calls to alloca may become single instructions
that adjust the stack directly, and calls to memcpy may become inline copy
loops. The resulting code is often both smaller and faster, but since the
function calls no longer appear as such, you cannot set a breakpoint on those
calls, nor can you change the behavior of the functions by linking with a
different library.
17

1 The Objective-C Compiler
The -ansi option prevents alloca and ffs from being builtin functions, since these
functions do not have an ANSI standard meaning.

-trigraphs
-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage.
The -ansi option implies -trigraphs.

-traditional
-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they are written inside of a
function definition. This includes implicit declarations of functions.

• The newer keywords typeof, inline, signed, const and volatile are not recognized.
(You can still use the alternative keywords such as __typeof__, __inline__, and so
on.)

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating point literals are not an error.

• Certain constructs which ANSI regards as a single invalid preprocessing
number, such as 0xe-0xd, are treated as expressions instead.

• String “constants” are not necessarily constant; they are stored in writable
space, and identical looking constants are allocated separately. (This is the
same as the effect of -fwritable-strings.)

• All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ANSI C: automatic variables not declared volatile
may be clobbered.

• The character escape sequences \x and \a evaluate as the literal characters x
and a respectively. Without -traditional, \x is a prefix for the hexadecimal
representation of a character, and \a produces a bell.

• In C++ programs, assignment to this is permitted with -traditional. (The option
-fthis-is-variable also has this effect.)

• You may wish to use -fno-builtin as well as -traditional if your program uses names
that are normally GNU C builtin functions for other purposes of its own.
18

GNU CC Command Options
• You cannot use -traditional if you include any header files that rely on
ANSI C features. Some vendors are starting to ship systems with ANSI
C header files and you cannot use -traditional on such systems to compile
files that include any system headers.

In the preprocessor, comments convert to nothing at all, rather than to a
space. This allows traditional token concatenation.

In preprocessing directive, the # symbol must appear as the first character of
a line.

In the preprocessor, macro arguments are recognized within string constants
in a macro definition (and their values are stringified, though without
additional quote marks, when they appear in such a context). The
preprocessor always considers a string constant to end at a newline.

The predefined macro __STDC__ is not defined when you use -traditional, but
__GNUC__ is (since the GNU extensions which __GNUC__ indicates are not
affected by -traditional). If you need to write header files that work differently
depending on whether -traditional is in use, by testing both of these
predefined macros you can distinguish four situations: GNU C, traditional
GNU C, other ANSI C compilers, and other old C compilers. The
predefined macro __STDC_VERSION__ is also not defined when you use -traditional.
See “Standard Predefined Macros” in The GNU C Preprocessor for more
discussion of these and other predefined macros.

The preprocessor considers a string constant to end at a newline (unless the
newline is escaped with \). (Without -traditional, string constants can contain
the newline character as typed.)

-traditional-cpp
-traditional-cpp

Controls which preprocessor is used. The default is cpp_precomp; if you
specify this flag, the standard GNU cpp will be used instead.

-fcond-mismatch
-fcond-mismatch

Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void.

-fpascal-strings
-fpascal-strings
19

1 The Objective-C Compiler
Allows Pascal strings, which are strings containing an initial "\p". The compiler
replaces the string's initial "\p" with a byte containing the length of the string
(not including the "\p"). The type of a Pascal string is unsigned char *. It is an error
for any Pascal string to be longer than 255 characters. If you do not use the -
fpascal-strings flag and the compiler sees "\p" in a string, it will issue a warning for
an unknown escape sequence.

-funsigned-char
-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when it
depends on the signedness of an object. But many programs have been written
to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char, even
though its behavior is always just like one of those two.

-fsigned-char
-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the negative form of -
funsigned-char. Likewise, the option -fno-signed-char is equivalent to -funsigned-char.

-fsigned-bitfields -funsigned-bitfields -fno-signed-bitfields -fno-unsigned-bitfields
-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when the
declaration does not use either signed or unsigned. By default, such a bitfield is
signed, because this is consistent: the basic integer types such as int are signed
types.

However, when -traditional is used, bitfields are all unsigned no matter what.
20

GNU CC Command Options
-fwritable-strings
-fwritable-strings

Store string constants in the writable data segment and don’t uniquize
them. This is for compatibility with old programs which assume they can
write into string constants. The option -traditional also has this effect.

Writing into string constants is a very bad idea; “constants” should be
constant.

-fallow-single-precision
-fallow-single-precision

Do not promote single precision math operations to double precision, even
when compiling with -traditional.

Traditional K&R C promotes all floating point operations to double
precision, regardless of the sizes of the operands. On the architecture for
which you are compiling, single precision may be faster than double
precision. If you must use -traditional, but want to use single precision
operations when the operands are single precision, use this option. This
option has no effect when compiling with ANSI or GNU C conventions
(the default).

Options Controlling C++ Dialect
This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in. For example, you might
compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, only -felide-constructors is an option meant only for C++
programs; you can use the other options with any language supported by
GNU CC.

Here is a list of options that are only for compiling C++ programs:

-ObjC++ (Not supported on PDO platforms)
-ObjC++

Overrides the path extension so that file contents are interpreted as C++ or
Objective-C++ language code.

-fno-access-control
-fno-access-control
21

1 The Objective-C Compiler
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fall-virtual
-fall-virtual

Treat all possible member functions as virtual, implicitly. All member functions
(except for constructor functions and new or delete member operators) are treated
as virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made
through the internal table of virtual functions. Under some circumstances, the
compiler can determine that a call to a given virtual function can be made
directly; in these cases the calls are direct in any case.

-fcheck-new
-fcheck-new

Check that the pointer returned by operator new is non-null before attempting to
modify the storage allocated. The current Working Paper requires that operator
new never return a null pointer, so this check is normally unnecessary.

-fconserve-space
-fconserve-space

Put uninitialized or runtime-initialized global variables into the common
segment, as C does. This saves space in the executable at the cost of not
diagnosing duplicate definitions. If you compile with this flag and your program
mysteriously crashes after main() has completed, you may have an object that is
being destroyed twice because two definitions were merged.

-fdollars-in-identifiers Accept $ in identifiers. You can also explicitly prohibit use
of $ with the option -fno-dollars-in-identifiers. (GNU C++ allows $ by default on some
target systems but not others.) Traditional C allowed the character $ to form part
of identifiers. However, ANSI C and C++ forbid $ in identifiers.

-fenum-int-equiv
-fenum-int-equiv

Anachronistically permit implicit conversion of int to enumeration types. Current
C++ allows conversion of enum to int, but not the other way around.

-fexternal-templates
-fexternal-templates
22

GNU CC Command Options
Cause template instantiations to obey #pragma interface and implementation;
template instances are emitted or not according to the location of the
template definition.

-falt-external-templates
-falt-external-templates

Similar to -fexternal-templates, but template instances are emitted or not
according to the place where they are first instantiated.

-ffor-scope -fno-for-scope
-ffor-scope

-fno-for-scope

If -ffor-scope is specified, the scope of variables declared in a for-init-
statement is limited to the for loop itself, as specified by the draft C++
standard. If -fno-for-scope is specified, the scope of variables declared in a
for-init-statement extends to the end of the enclosing scope, as was the case
in old versions of gcc, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and
give a warning for old-style code that would otherwise be invalid, or have
different behavior.

-fno-gnu-keywords
-fno-gnu-keywords

Do not recognize classof, headof, signature, sigof or typeof as a keyword, so that code
can use these words as identifiers. You can use the keywords __classof__,
__headof__, __signature__, __sigof__, and __typeof__ instead. -ansi implies -fno-gnu-
keywords.

-fno-implicit-templates
-fno-implicit-templates

Never emit code for templates which are instantiated implicitly (that is, by
use); only emit code for explicit instantiations.

-fhandle-exceptions
-fhandle-exceptions

Allows you to use C++ exception handling with the try and catch keywords.
Note that you must also link with the System framework.This option
disables function inlining. It is recommended that you also disable
optimization to avoid possible compiler errors.
23

1 The Objective-C Compiler
-fhandle-signatures
-fhandle-signatures

Recognize the signature and sigof keywords for specifying abstract types. The
default (-fno-handle-signatures) is not to recognize them. See Type Abstraction using
Signatures.

-fhuge-objects
-fhuge-objects

Support virtual function calls for objects that exceed the size representable by a
short int. Users should not use this flag by default; if you need to use it, the
compiler will tell you so. If you compile any of your code with this flag, you must
compile all of your code with this flag (including libg++, if you use it).

This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines
-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by
#pragma implementation. This will cause linker errors if these functions are not inlined
everywhere they are called.

-fmemoize-lookups -fsave-memoized
-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster. These heuristics are not enabled by default,
since they are only effective for certain input files. Other input files compile
more slowly.

The first time the compiler must build a call to a member function (or reference
to a data member), it must (1) determine whether the class implements member
functions of that name; (2) resolve which member function to call (which
involves figuring out what sorts of type conversions need to be made); and (3)
check the visibility of the member function to the caller. All of this adds up to
slower compilation. Normally, the second time a call is made to that member
function (or reference to that data member), it must go through the same
lengthy process again. This means that code like this:

cout << “This “ << p << “ has “ << n << “ legs.\n”;

makes six passes through all three steps. By using a software cache, a “hit”
significantly reduces this cost. Unfortunately, using the cache introduces
another layer of mechanisms which must be implemented, and so incurs its own
overhead. -fmemoize-lookups enables the software cache.
24

GNU CC Command Options
Because access privileges (visibility) to members and member functions
may differ from one function context to the next, G++ may need to flush the
cache. With the -fmemoize-lookups flag, the cache is flushed after every function
that is compiled. The -fsave-memoized flag enables the same software cache,
but when the compiler determines that the context of the last function
compiled would yield the same access privileges of the next function to
compile, it preserves the cache. This is most helpful when defining many
member functions for the same class: with the exception of member
functions which are friends of other classes, each member function has
exactly the same access privileges as every other, and the cache need not be
flushed.

The code that implements these flags has rotted; you should probably avoid
using them.

-fstrict-prototype
-fstrict-prototype

Within an extern “C” linkage specification, treat a function declaration with no
arguments, such as int foo ();, as declaring the function to take no arguments.
Normally, such a declaration means that the function foo can take any
combination of arguments, as in C. -pedantic implies -fstrict-prototype unless
overridden with -fno-strict-prototype.

This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
-fno-nonnull-objects

Don’t assume that a reference is initialized to refer to a valid object.
Although the current C++ Working Paper prohibits null references, some
old code may rely on them, and you can use -fno-nonnull-objects to turn on
checking.

At the moment, the compiler only does this checking for conversions to
virtual base classes.

-foperator-names
-foperator-names

Recognize the operator name keywords and, bitand, bitor, compl, not, or and xor as
synonyms for the symbols they refer to. -ansi implies -foperator-names.

-fthis-is-variable
-fthis-is-variable
25

1 The Objective-C Compiler
Permit assignment to this. The incorporation of user-defined free store
management into C++ has made assignment to this an anachronism. Therefore,
by default it is invalid to assign to this within a class member function; that is,
GNU C++ treats this in a member function of class X as a non-lvalue of type X *.
However, for backwards compatibility, you can make it valid with -fthis-is-variable.

-fvtable-thunks
-fvtable-thunks

Use thunks to implement the virtual function dispatch table (vtable). The
traditional (cfront-style) approach to implementing vtables was to store a pointer
to the function and two offsets for adjusting the this pointer at the call site. Newer
implementations store a single pointer to a thunk function which does any
necessary adjustment and then calls the target function.

This option also enables a heuristic for controlling emission of vtables; if a class
has any non-inline virtual functions, the vtable will be emitted in the translation
unit containing the first one of those.

-nostdinc++
-nostdinc++

Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
libg++.)

-traditional
-traditional

For C++ programs (in addition to the effects that apply to both C and C++), this
has the same effect as -fthis-is-variable. See Options Controlling C Dialect.

In addition, these optimization, warning, and code generation options have
meanings only for C++ programs:

-fno-default-inline
-fno-default-inline

Do not assume inline for functions defined inside a class scope. See Options That
Control Optimization.
26

GNU CC Command Options
-Wenum-clash -Woverloaded-virtual -Wtemplate-debugging
-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging

Warnings that apply only to C++ programs. See Options to Request or
Suppress Warnings.

+e
+en

Control how virtual function definitions are used, in a fashion compatible
with cfront 1.x. See Options for Code Generation Conventions.

Options to Request or Suppress Warnings
Warnings are diagnostic messages that report constructions which are not
inherently erroneous but which are risky or suggest there may have been an
error.

You can request many specific warnings with options beginning -W, for
example -Wimplicit to request warnings on implicit declarations. Each of these
specific warning options also has a negative form beginning -Wno- to turn off
warnings; for example, -Wno-implicit. This manual lists only one of the two
forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU
CC:

-fsyntax-only
-fsyntax-only

Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all
programs that use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without
this option (though a rare few will require -ansi). However, without this
option, certain GNU extensions and traditional C features are supported as
well. With this option, they are rejected.

-pedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with __. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files
27

1 The Objective-C Compiler
should use these escape routes; application programs should avoid them. See
Alternate Keywords.

This option is not intended to be useful; it exists only to satisfy pedants who
would otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to use -pedantic to check programs for strict ANSI C conformance.
They soon find that it does not do quite what they want: it finds some non-ANSI
practices, but not all—only those for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some
instances, but would require considerable additional work and would be quite
different from -pedantic. We recommend, rather, that users take advantage of the
extensions of GNU C and disregard the limitations of other compilers. Aside
from certain supercomputers and obsolete small machines, there is less and less
reason ever to use any other C compiler other than for bootstrapping GNU CC.

-pedantic-errors
-pedantic-errors

Like -pedantic, except that errors are produced rather than warnings.

-w
-w

Inhibit all warning messages.

-Wno-import
-Wno-import

Inhibit warning messages about the use of #import.

-Wno-precomp
-Wno-precomp

Inhibit warning messages reltaing to not being able to use precompiled headers.

-Wchar-subscripts
-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment
-Wcomment

Warn whenever a comment-start sequence /* appears in a comment.
28

GNU CC Command Options
-Wformat
-Wformat

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified.

-Wimplicit
-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wno-four-char-constants
-Wno-four-char-constants

Does not warn when the compiler sees a four-character constants (such as
'TEXT'). The Mac OS makes heavy use of file types and file creators (in a
C type called OSType), written as character constants containing four
characters.

-Wparentheses
-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is
an assignment in a context where a truth value is expected, or when
operators are nested whose precedence people often get confused about.

-Wreturn-type
-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function
whose return-type is not void.

-Wstyle
-Wstyle

Warn when assignments are used as conditionals in if, for, and while
statements. For example, consider the following line of code:

if (i = foo()) { ... }

The warning suggests an extra set of parenthesis around the assignment,
like:

if ((i = foo())) { ... }

The intent behind this warning is to catch situations where you really
meant to test for equivalence (==) and not assignment (=).
29

1 The Objective-C Compiler
-Wswitch
-Wswitch

Warn whenever a switch statement has an index of enumeral type and lacks a case
for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) case labels outside the enumeration range also
provoke warnings when this option is used.

-Wtrigraphs
-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused
-Wunused

Warn whenever a variable is unused aside from its declaration, whenever a
function is declared static but never defined, whenever a label is declared but
not used, and whenever a statement computes a result that is explicitly not used.

To suppress this warning for an expression, simply cast it to void. For unused
variables and parameters, use the unused attribute (see Specifying Attributes of
Variables).

-Wuninitialized
-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they
require data flow information that is computed only when optimizing. If you
don’t specify -O, you simply won’t get these warnings.

These warnings occur only for variables that are candidates for register
allocation. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.
30

GNU CC Command Options
These warnings are made optional because GNU CC is not smart enough
to see all the reasons why the code might be correct despite appearing to
have an error. Here is one example of how this can happen:

{

int x;

switch (y) {

case 1:

x = 1;

break;

case 2:

x = 4;

break;

case 3:

x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC
doesn’t know this. Here is another common case:

{

int save_y;

if (change_y)

save_y = y, y = new_y;

...

if (change_y)

y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Declaring Attributes of Functions.

-Wenum-clash
-Wenum-clash

Warn about conversion between different enumeration types. (C++ only).
31

1 The Objective-C Compiler
-Wreorder (C++ only)
-Wreorder

Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for i and j will be
rearranged to match the declaration order of the members.

-Wtemplate-debugging (C++ only)
-Wtemplate-debugging

When using templates in a C++ program, warn if debugging is not yet fully
available.

-Wall
-Wall

All of the above -W options combined. These are all the options which pertain to
usage that we recommend avoiding and that we believe is easy to avoid, even in
conjunction with macros.

The remaining -W... options are not implied by -Wall because they warn about
constructions that we consider reasonable to use, on occasion, in clean programs.

-Wmost -W
-Wmost

-W

Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These
warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem
because longjmp cannot in fact be called at the place which would cause a
problem.

• A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:
32

GNU CC Command Options
foo (a) {

if (a > 0)

return a;

}

• An expression-statement or the left-hand side of a comma expression
contains no side effects. To suppress the warning, cast the unused
expression to void. For example, an expression such as x[i,j] will cause a
warning, but x[(void)i,j] will not.

• An unsigned value is compared against zero with < or <=.

• A comparison like x<=y<=z appears; this is equivalent to (x<=y ? 1 : 0) <= z,
which is a different interpretation from that of ordinary mathematical
notation.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about unused arguments.

• An aggregate has a partly bracketed initializer. For example, the
following code would evoke such a warning, because braces are missing
around the initializer for x.h:

struct s {

int f, g;

};

struct t {

struct s h;

int i;

};

struct t x = { 1, 2, 3 };

-Wtraditional
-Wtraditional

Warn about certain constructs that behave differently in traditional and
ANSI C.

• Macro arguments occurring within string constants in the macro body.
These would substitute the argument in traditional C, but are part of
the constant in ANSI C.

• A function declared external in one block and then used after the end
of the block.

• A switch statement has an operand of type long.
33

1 The Objective-C Compiler
-Wshadow
-Wshadow

Warn whenever a local variable shadows another local variable.

-Wid-clash-len
-Wid-clash- len

Warn whenever two distinct identifiers match in the first len characters. This
may help you prepare a program that will compile with certain obsolete, brain-
damaged compilers.

-Wlarger-than-len
-Wlarger-than- len

Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions.

-Wbad-function-cast
-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type. For example, warn
if int malloc() is cast to anything *.

-Wcast-qual
-Wcast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines where
integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
-Wwrite-strings

Give string constants the type const char[LENGTH] so that copying the address of one
into a non-const char * pointer will get a warning. These warnings will help you
find at compile time code that can try to write into a string constant, but only if
34

GNU CC Command Options
you have been very careful about using const in declarations and prototypes.
Otherwise, it will just be a nuisance; this is why we did not make -Wall
request these warnings.

-Wconversion
-Wconversion

Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed point argument
except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted
to an unsigned type. For example, warn about the assignment x = -1 if x is
unsigned. But do not warn about explicit casts like (unsigned) -1.

-Waggregate-return
-Waggregate-return

Warn if any functions that return structures or unions are defined or called.
(In languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes
-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument
types. (An old-style function definition is permitted without a warning if
preceded by a declaration which specifies the argument types.)

-Wmissing-prototypes
-Wmissing-prototypes

Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself provides a
prototype. The aim is to detect global functions that fail to be declared in
header files.

-Wmissing-declarations
-Wmissing-declarations

Warn if a global function is defined without a previous declaration. Do so
even if the definition itself provides a prototype. Use this option to detect
global functions that are not declared in header files.

-Wredundant-decls
-Wredundant-decls
35

1 The Objective-C Compiler
Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs
-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline
-Winline

Warn if a function can not be inlined, and either it was declared as inline, or else
the -finline-functions option was given.

-Woverloaded-virtual
-Woverloaded-virtual

Warn when a derived class function declaration may be an error in defining a
virtual function (C++ only). In a derived class, the definitions of virtual functions
must match the type signature of a virtual function declared in the base class.
With this option, the compiler warns when you define a function with the same
name as a virtual function, but with a type signature that does not match any
declarations from the base class.

-Wsynth
-Wsynth

Warn when g++’s synthesis behavior does not match that of cfront. For instance:

struct A {

operator int ();

A& operator = (int);

};

main () {

A a,b;

a = b;

}

In this example, g++ will synthesize a default A& operator = (const A&);, while cfront
will use the user-defined operator =.

-Werror
-Werror

Make all warnings into errors.
36

GNU CC Command Options
Options for Debugging Your Program or GNU CC
GNU CC has various special options that are used for debugging either your
program or GCC:

-g
-g

Produce debugging information in the operating system’s native format.
GDB can work with this debugging information.

On most systems that use stabs format, -g enables use of extra debugging
information that only GDB can use; this extra information makes
debugging work better in GDB but will probably make other debuggers
crash or refuse to read the program. If you want to control for certain
whether to generate the extra information, use -gstabs+, -gstabs, or, on
Windows NT, -gcodeview or -gcodeview+ (see below).

Unlike most other C compilers, GNU CC allows you to use -g with -O. The
shortcuts taken by optimized code may occasionally produce surprising
results: some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be
executed because they compute constant results or their values were
already at hand; some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it
reasonable to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the
capability for more than one debugging format.

-gcodeview
-gcodeview

Produce debugging information in the stabs format, including Codeview
extensions if at all possible.

-ggdb
-ggdb

Produce debugging information in the stabs format, including GDB
extensions if at all possible.

-gstabs
-gstabs
37

1 The Objective-C Compiler
Produce debugging information in stabs format, without GDB extensions.

-gstabs+
-gstabs+

Produce debugging information in stabs format, using GNU extensions
understood only by the GNU debugger (GDB). The use of these extensions is
likely to make other debuggers crash or refuse to read the program.

-g -ggdb -gstabs -gcodeview (on Windows NT only)
-g level

-ggdb level

-gstabs level

-gcodeview level

Request debugging information and also use level to specify how much
information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and no
line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use -g3.

-p (Not available on Windows NT)
-p

Generate extra code to write profile information suitable for the analysis
program prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-pg (Not available on Windows NT)
-pg

Generate extra code to write profile information suitable for the analysis
program gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-a
-a

Generate extra code to write profile information for basic blocks, which will
record the number of times each basic block is executed, the basic block start
address, and the function name containing the basic block. If -g is used, the line
number and filename of the start of the basic block will also be recorded. If not
38

GNU CC Command Options
overridden by the machine description, the default action is to append to
the text file bb.out.

This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should
be extended to process this data.

-d
-d letters

Says to make debugging dumps during compilation at times specified by
letters. This is used for debugging the compiler. The file names for most of
the dumps are made by appending a word to the source file name (e.g.
foo.c.rtl or foo.c.jump). Here are the possible letters for use in letters, and their
meanings:

Letter Desription

y Dump debugging information during parsing, to standard error.

r Dump after RTL generation, to file.rtl.

x Just generate RTL for a function instead of compiling it. Usually used with r.

j Dump after first jump optimization, to file.jump.

s Dump after CSE (including the jump optimization that sometimes follows CSE), to file.cse.

L Dump after loop optimization, to file.loop.

t Dump after the second CSE pass (including the jump optimization that sometimes follows CSE), to
file.cse2.

f Dump after flow analysis, to file.flow.

c Dump after instruction combination, to the file file.combine.

S Dump after the first instruction scheduling pass, to file.sched.

l Dump after local register allocation, to file.lreg.

g Dump after global register allocation, to file.greg.

R Dump after the second instruction scheduling pass, to file.sched2.

J Dump after last jump optimization, to file.jump2.

d Dump after delayed branch scheduling, to file.dbr.

k Dump after conversion from registers to stack, to file.stack.

a Produce all the dumps listed above.

m Print statistics on memory usage, at the end of the run, to standard error.

p Annotate the assembler output with a comment indicating which pattern and alternative was used.
39

1 The Objective-C Compiler
In addition, the following letters are preprocessor flags and can only be used
with -traditional-cpp:

-fpretend-float
-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same
floating point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GNU CC would make when running on the target machine.

-save-temps
-save-temps

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling foo.c
with -c -save-temps would produce files foo.i and foo.s, as well as foo.o.

-print-file-name
-print-file-name= library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GNU CC does not
compile or link anything; it just prints the file name.

-print-prog-name
-print-prog-name= program

Like -print-file-name, but searches for a program such as cpp.

-print-libgcc-file-name
-print-libgcc-file-name

Same as -print-file-name=libgcc.a.

This is useful when you use -nostdlib or -nodefaultlibs but you do want to link with
libgcc.a. You can do

gcc -nostdlib FILES... gcc -print-libgcc-file-name

Letter Description

M Dump all macro definitions, at the end of preprocessing, and write no output.

N Dump all macro names, at the end of preprocessing.

D Dump all macro definitions, at the end of preprocessing, in addition to normal output.
40

GNU CC Command Options
-print-search-dirs
-print-search-dirs

Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message installation problem, cannot exec
cpp: No such file or directory. To resolve this you either need to put cpp and the
other compiler components where gcc expects to find them, or you can set
the environment variable GCC_EXEC_PREFIX to the directory where you
installed them. Don’t forget the trailing /. See Environment Variables
Affecting GNU CC.

Options That Control Optimization
These options control various sorts of optimizations:

-O -O1
-O

-O1

Optimize. Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.

Without -O, the compiler’s goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are
independent: if you stop the program with a breakpoint between
statements, you can then assign a new value to any variable or change the
program counter to any other statement in the function and get exactly the
results you would expect from the source code.

Without -O, the compiler only allocates variables declared register in registers.
The resulting compiled code is a little worse than produced by PCC
without -O.

With -O, the compiler tries to reduce code size and execution time.

When you specify -O, the compiler turns on -fthread-jumps and -fdefer-pop on all
machines. The compiler turns on -fdelayed-branch on machines that have delay
slots, and -fomit-frame-pointer on machines that can support debugging even
without a frame pointer. On some machines the compiler also turns on other
flags.

-O2
-O2
41

1 The Objective-C Compiler
Optimize even more. GNU CC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. The compiler does not perform loop
unrolling or function inlining when you specify -O2. As compared to -O, this
option increases both compilation time and the performance of the generated
code.

-O2 turns on all optional optimizations except for loop unrolling and function
inlining. It also turns on the -fforce-mem option on all machines and frame pointer
elimination on machines where doing so does not interfere with debugging.

-O3
-O3

Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns
on the inline-functions option.

-O0
-O0

Do not optimize.

If you use multiple -O options, with or without level numbers, the last such
option is the one that is effective.

Options of the form -fflag specify machine-independent flags. Most flags have
both positive and negative forms; the negative form of -ffoo would be -fno-foo. In
the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing no- or adding it.

-ffloat-store
-ffloat-store

Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

The floating-point hardware in the i386 and m68k architectures is IEEE-
compliant. However, they normally deliver results to extended precision (which
the IEEE Standard allows), whereas on other platforms—such as hppa and
sparc—results can be delivered to any supported precision. The -ffppc flag is used
to make arithmetic behave more like that on other platforms. -ffloat-store will
achieve this purpose in many cases, but certainly not all, and at a fairly high cost
in terms of performance. -ffppc will achieve this purpose on m68k in most cases at
a much lower cost in terms of performance. On i386, -ffppc will achieve this
purpose more often than -ffloat-store, in most cases at a much lower cost in terms
of performance. -ffloat-store is likely to achieve this purpose in cases where -ffppc
doesn’t.
42

GNU CC Command Options
-ffppc (Not available on Windows NT)
-ffppc

Ensures that generated code is fully IEEE compliant. Use this option
instead of -ffloat-store. See the explanation of -ffloat-store, above, for more
information.

-fno-default-inline
-fno-default-inline

Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you specify -O,
member functions defined inside class scope are compiled inline by default;
that is, you don’t need to add inline in front of the member function name.

-fno-defer-pop
-fno-defer-pop

Always pop the arguments to each function call as soon as that function
returns. For machines which must pop arguments after a function call, the
compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.

-fforce-mem
-fforce-mem

Force memory operands to be copied into registers before doing arithmetic
on them. This produces better code by making all memory references
potential common subexpressions. When they are not common
subexpressions, instruction combination should eliminate the separate
register-load. The -O2 option turns on this option.

-fforce-addr
-fforce-addr

Force memory address constants to be copied into registers before doing
arithmetic on them. This may produce better code just as -fforce-mem may.

-fomit-frame-pointer
-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the Vax, this flag has no effect, because the
standard calling sequence automatically handles the frame pointer and
43

1 The Objective-C Compiler
nothing is saved by pretending it doesn’t exist. The machine-description macro
FRAME_POINTER_REQUIRED controls whether a target machine supports this flag.

-fno-inline
-fno-inline

Don’t pay attention to the inline keyword. Normally this option is used to keep
the compiler from expanding any functions inline. Note that if you are not
optimizing, no functions can be expanded inline.

-finline-functions
-finline-functions

Integrate all simple functions into their callers. The compiler heuristically
decides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static,
then the function is normally not output as assembler code in its own right.

-fkeep-inline-functions
-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.

-fno-function-cse
-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math
-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or
specifications in the interest of optimizing code for speed. For example, it allows
the compiler to assume arguments to the sqrt function are non-negative numbers
and that no floating-point values are NaNs.

This option should never be turned on by any -O option since it can result in
incorrect output for programs which depend on an exact implementation of
IEEE or ANSI rules/specifications for math functions.
44

GNU CC Command Options
The following options control specific optimizations. The -O2 option turns
on all of these optimizations except -funroll-loops and -funroll-all-loops. On most
machines, the -O option turns on the -fthread-jumps and -fdelayed-branch options,
but specific machines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of
optimizations to be performed is desired.

-fstrength-reduce
-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of
iteration variables.

-fthread-jumps
-fthread-jumps

Perform optimizations where the compiler checks to see if a jump branches
to a location where another comparison subsumed by the first is found. If so,
the first branch is redirected to either the destination of the second branch
or a point immediately following it, depending on whether the condition is
known to be true or false.

-fcse-follow-jumps
-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE will follow
the jump when the condition tested is false.

-fcse-skip-blocks
-fcse-skip-blocks

This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, -fcse-skip-blocks causes CSE to follow the jump around the
body of the if.

-frerun-cse-after-loop
-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has
been performed.

-fexpensive-optimizations
-fexpensive-optimizations
45

1 The Objective-C Compiler
Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch (Not available on Windows NT)
-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

-fschedule-insns
-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

-fschedule-insns2
-fschedule-insns2

Similar to -fschedule-insns, but requests an additional pass of instruction scheduling
after register allocation has been done. This is especially useful on machines
with a relatively small number of registers and where memory load instructions
take more than one cycle.

-fcaller-saves
-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around such
calls. Such allocation is done only when it seems to result in better code than
would otherwise be produced.

This option is enabled by default on certain machines, usually those which have
no call-preserved registers to use instead.

-funroll-loops
-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops whose
number of iterations can be determined at compile time or run time. -funroll-loop
implies both -fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops
-funroll-all-loops
46

GNU CC Command Options
Perform the optimization of loop unrolling. This is done for all loops and
usually makes programs run more slowly. -funroll-all-loops implies -fstrength-
reduce as well as -frerun-cse-after-loop.

-fno-peephole
-fno-peephole

Disable any machine-specific peephole optimizations.

Options Controlling the Preprocessor
These options control the C preprocessor, which is run on each C source file
before actual compilation.

If you use the -E option, nothing is done except preprocessing. Some of
these options make sense only together with -E because they cause the
preprocessor output to be unsuitable for actual compilation.

Note: Mac OS X includes two preprocessors: the standard GNU C
preprocessor (cpp) and the precompilation preprocessor (cpp-precomp). The
two preprocessors are largely similar, except for some rarely used
extensions. The precompilation preprocessor(cpp-precomp) is the default
preprocessor for C and Objective-C code. (See
/System/Documentation/Developer/YellowBox/Reference/DevTools/Preprocessor/ for more
information.) The standard preprocessor (cpp) is the default preprocessor
for Objective-C++ code. To switch to the standard preprocessor (cpp) on
platforms on which precompiled headers are available, use the -traditonal-cpp
flag on the cpp command line.

-framework
-framework framework-name

Search the framework named framework-name for header files. The
directories searched include /Local/Library/Frameworks and /System/Library/Frameworks
(both are prefaced by $NEXT_ROOT on Windows NT).

-include
-include file

Process file as input before processing the regular input file. In effect, the
contents of file are compiled first. Any -D and -U options on the command line
are always processed before -include file, regardless of the order in which they
are written. All the -include and -imacros options are processed in the order in
which they are written.
47

1 The Objective-C Compiler
-imacros
-imacros file

Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the only
effect of -imacros file is to make the macros defined in file available for use in the
main input.

Any -D and -U options on the command line are always processed before -imacros
file, regardless of the order in which they are written. All the -include and -imacros
options are processed in the order in which they are written.

-idirafter
-idirafter dir

Add the directory dir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the
directories in the main include path (the one that -I adds to).

-iprefix
-iprefix prefix

Specify prefix as the prefix for subsequent -iwithprefix options.

-iwithprefix
-iwithprefix dir

Add a directory to the second include path. The directory’s name is made by
concatenating prefix and dir, where prefix was specified previously with -iprefix. If
you have not specified a prefix yet, the directory containing the installed passes
of the compiler is used as the default.

-iwithprefixbefore
-iwithprefixbefore dir

Add a directory to the main include path. The directory’s name is made by
concatenating prefix and dir, as in the case of -iwithprefix.

-isystem
-isystem dir

Add a directory to the beginning of the second include path, marking it as a
system directory, so that it gets the same special treatment as is applied to the
standard system directories.

-nostdinc
-nostdinc
48

GNU CC Command Options
Do not search the standard system directories for header files. Only the
directories you have specified with -I options (and the current directory, if
appropriate) are searched. See Options for Directory Search for information
on -I.

By using both -nostdinc and -I-, you can limit the include-file search path to
only those directories you specify explicitly.

-undef
-undef

Do not predefine any nonstandard macros. (Including architecture flags).

-E
-E

Run only the C preprocessor. Preprocess all the C source files specified and
output the results to standard output or to the specified output file.

-C
-C

Tell the preprocessor not to discard comments. Used with the -E option.

-P
-P

Tell the preprocessor not to generate #line directives. Used with the -E
option.

-M
-M

Tell the preprocessor to output a rule suitable for make describing the
dependencies of each object file. For each source file, the preprocessor
outputs one make-rule whose target is the object file name for that source file
and whose dependencies are all the #include header files it uses. This rule
may be a single line or may be continued with \-newline if it is long. The list
of rules is printed on standard output instead of the preprocessed C
program.

-M implies -E.

Another way to specify output of a make rule is by setting the environment
variable DEPENDENCIES_OUTPUT (see Environment Variables Affecting GNU
CC).
49

1 The Objective-C Compiler
-MM
-MM

Like -M but the output mentions only the user header files included with #include
“file”. System header files included with #include <file> are omitted.

-MD
-MD

Like -M but the dependency information is written to a file made by replacing
“.c” with “.d” at the end of the input file names. This is in addition to compiling
the file as specified—-MD does not inhibit ordinary compilation the way -M does.

In Mach, you can use the utility md to merge multiple dependency files into a
single dependency file suitable for using with the make command.

-MMD
-MMD

Like -MD except mention only user header files, not system header files.

-MG
-MG

Treat missing header files as generated files and assume they live in the same
directory as the source file. If you specify -MG, you must also specify either -M or
-MM. -MG is not supported with -MD or -MMD. This flag is not supported on Mach.

-H
-H

Print the name of each header file used, in addition to other normal activities.
This flag is not supported on Mach.

-A
-A question (answer)

Assert the answer answer for question, in case it is tested with a preprocessing
conditional such as #if #question(answer). -A- disables the standard assertions that
normally describe the target machine. This flag is not supported on Mach.

-D
-D macro

Define macro macro with the string 1 as its definition.

-D
-D macro =defn
50

GNU CC Command Options
Define macro macro as defn. All instances of -D on the command line are
processed before any -U options.

-U
-U macro

Undefine macro macro. -U options are evaluated after all -D options, but
before any -include and -imacros options.

-dM
-dM

Tell the preprocessor to output only a list of the macro definitions that are
in effect at the end of preprocessing. Used with the -E option. This flag is
not supported on Mach.

-dD
-dD

Tell the preprocessing to pass all macro definitions into the output, in their
proper sequence in the rest of the output. This flag is not supported on
Mach.

-dN
-dN

Like -dD except that the macro arguments and contents are omitted. Only
#define name is included in the output. This flag is not supported on Mach.

-trigraphs
-trigraphs

Support ANSI C trigraphs. The -ansi option also has this effect.

-Wp
-Wp, option

Pass option as an option to the preprocessor. If option contains commas, it is
split into multiple options at the commas.

Passing Options to the Assembler
You can pass options to the assembler.

-W
-Wa, option
51

1 The Objective-C Compiler
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

Options for Linking
These options come into play when the compiler links object files into an
executable output file. They are meaningless if the compiler is not doing a link
step.

object-file-name
object-file-name

A file name that does not end in a special recognized suffix is considered to name
an object file or library. (Object files are distinguished from libraries by the linker
according to the file contents.) If linking is done, these object files are used as
input to the linker.

-c -S -E
-c

-S

-E

If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Options Controlling the Kind of Output.

-l
-l library

Search the library named library when linking.

It makes a difference where in the command you write this option; the linker
searches processes libraries and object files in the order they are specified. Thus,
foo.o -lz bar.o searches library z after file foo.o but before bar.o. If bar.o refers to
functions in z, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named liblibrary.a. The linker then uses this file as if it had been specified
precisely by name.

The directories searched include several standard system directories plus any
that you specify with -L.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not
defined. But if the file that is found is an ordinary object file, it is linked in the
usual fashion. The only difference between using an -l option and specifying a
52

GNU CC Command Options
file name is that -l surrounds library with lib and .a and searches several
directories.

-framework
-framework framework-name

Search the framework named framework-name when linking.

The linker searches a standard list of directories for the framework. The
linker then uses this file as if it had been specified precisely by name.

The directories searched include /Local/Library/Frameworks and
/System/Library/Frameworks (both prefaced by $NEXT_ROOT on Windows
NT), plus any that you specify with -F.

-nostartfiles
-nostartfiles

Do not use the standard system startup files when linking. The standard
system libraries are used normally, unless -nostdlib or -nodefaultlibs is used.

-nodefaultlibs
-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries
you specify will be passed to the linker. The standard startup files are used
normally, unless -nostartfiles is used.

-nostdlib
-nostdlib

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker.

One of the standard libraries bypassed by -nostdlib and -nodefaultlibs is libgcc.a, a
library of internal subroutines that GNU CC uses to overcome
shortcomings of particular machines, or special needs for some languages.
In most cases, you need libgcc.a even when you want to avoid other standard
libraries. In other words, when you specify -nostdlib or -nodefaultlibs you should
usually specify -lgcc as well. This ensures that you have no unresolved
references to internal GNU CC library subroutines. (For example, __main,
used to ensure C++ constructors will be called)

-s
-s

Remove all symbol table and relocation information from the executable.
53

1 The Objective-C Compiler
-static
-static

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

-shared
-shared

Produce a shared object which can then be linked with other objects to form an
executable. Only a few systems support this option.

-symbolic
-symbolic

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option -Xlinker -z
-Xlinker defs). Only a few systems support this option.

-undefined error, -undefined warning, -undefined suppress
-undefined error

-undefined warning

-undefined suppress

Controls the behavior of the linker when symbols are undefined and cannot be
resolved. -undefined error stipulates the default behavior, which causes the linker to
generate an error message; no executable is produced. -undefined warning causes an
executable to be generated, along with a warning indicating the unresolved
symbols. -undefined suppress causes the executable to be generated, with no warning
about unresolved symbols.

On Windows NT, -undefined warning and -undefined suppress are synonymous.

-Xlinker
-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use -Xlinker twice,
once for the option and once for the argument. For example, to pass -assert
definitions, you must write -Xlinker -assert -Xlinker definitions. It does not work to write -
Xlinker “-assert definitions”, because this passes the entire string as a single argument,
which is not what the linker expects.

-Wl
-Wl, option
54

GNU CC Command Options
Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

-u
-u symbol

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use -u multiple times with different symbols to force
loading of additional library modules.

Options for Directory Search
These options specify directories to search for header files, for libraries and
for parts of the compiler:

-I
-I directory

Add the directory directory to the head of the list of directories to be
searched for header files. This can be used to override a system header file,
substituting your own version, since these directories are searched before
the system header file directories. If you use more than one -I option, the
directories are scanned in left-to-right order; the standard system directories
come after.

When compiling a C++ file (extension .C, .M, or .cc), the compiler adds
System/Developer/Headers/g++ to its header search path. This allows libg++ classes
to be used without having to specify additional command-line options.

-I-
-I-

Any directories you specify with -I options before the -I- option are searched
only for the case of #include “file”; they are not searched for #include <file>.

If additional directories are specified with -I options after the -I-, these
directories are searched for all #include directives. (Ordinarily all -I directories
are used this way.)

In addition, the -I- option inhibits the use of the current directory (where the
current input file came from) as the first search directory for #include “file”.
There is no way to override this effect of -I-. With -I. you can specify
searching the directory which was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by default, but
it is often satisfactory.
55

1 The Objective-C Compiler
-I- does not inhibit the use of the standard system directories for header files.
Thus, -I- and -nostdinc are independent.

-L
-L dir

Add directory dir to the list of directories to be searched for -l.

-F
-F dir

Add the directory dir to the head of the list of directories to be searched for
frameworks. If you use more than one -F option, the directories are scanned in
left-to-right order; the standard framework directories (Local/Library/Frameworks,
followed by System/Library/Frameworks) come after.

In your Objective-C code, include framework headers using the following
format:

#include < framework / include_file .h>

Where framework is the name of the framework (such as “AppKit” or
“Foundation”—don’t include the extension) and include_file is the name of the
file to be included.

-B
-B prefix

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms cpp, cc1, as and
ld. It tries prefix as a prefix for each program it tries to run, both with and without
machine/version/ (see Hardware Models and Configurations).

For each subprogram to be run, the compiler driver first tries the -B prefix, if any.
If that name is not found, or if -B was not specified, the driver tries two standard
prefixes, which are /usr/lib/gcc/ and /usr/local/lib/gcc-lib/. If neither of those results in a
file name that is found, the unmodified program name is searched for using the
directories specified in your PATH environment variable.

-B prefixes that effectively specify directory names also apply to libraries in the
linker, because the compiler translates these options into -L options for the
linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into -isystem options for the preprocessor. In this
case, the compiler appends include to the prefix.
56

GNU CC Command Options
The run-time support file libgcc.a can also be searched for using the -B prefix,
if needed. If it is not found there, the two standard prefixes above are tried,
and that is all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the -B prefix is to use the
environment variable GCC_EXEC_PREFIX. See Environment Variables Affecting
GNU CC.

Hardware Models and Configurations
Specify the target architecture you are compiling for with -arch arch_type.
The list of acceptable values for arch_type includes anything that arch can
return (see arch(3) for more information), Typically, arch_type would be either
m68k, i386 (i386 represents the processor family which includes the i486 and
Pentium processors), or sparc.

The option -arch arch_type specifies the target architecture, arch_type, of the
operations to be performed. The operations affected by -arch are:
preprocessing, precompiling, compiling, assembling, and linking. The
specification of multiple architectures results in the production of “fat”
output files and the creation of multiple “thin'” intermediate files from each
stage. It is an error to use -E, -S, -M, and -MM with multiple architectures as the
output form is textual in these cases.

In addition, each of these target machine types can have its own special
options, starting with -m, to choose among various hardware models or
configurations—for example, 68010 vs 68020, floating coprocessor or none.
A single installed version of the compiler can compile for any model or
configuration, according to the options specified.

Some configurations of the compiler also support additional special options,
usually for compatibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine
description. The default for the options is also defined by that macro, which
enables you to change the defaults.

M680x0 Options
These are the -m options defined for the 68000 series. The default values
for these options depends on which style of 68000 was selected when the
compiler was configured; the defaults for the most common choices are
given below.
57

1 The Objective-C Compiler
-m68881
-m68881

Generate output containing 68881 instructions for floating point. This is the
default for most 68020 systems unless -nfp was specified when the compiler was
configured.

-m68030
-m68030

Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040
-m68040

Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. If your 68040 does not have code to emulate
those instructions, use -m68040.

-m68020-40
-m68020-40

Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

-malign-mac68k
-malign-mac68k

In structs that are larger than 2 bytes, the compiler will align its fields on 2-byte
boundaries. This is equivalent to -mno-align-power. By default, this option is off.

-malign-power
-malign-power

In structs that are larger than 2 bytes, the compiler will align its fields on 4-byte
boundaries. This is equivalent to -mno-align-mac68k. By default, this option is on.

-msoft-float
-msoft-float

Generate output containing library calls for floating point.
58

GNU CC Command Options
-mshort
-mshort

Consider type int to be 16 bits wide, like short int.

-mno-align-mac68k
-mno-align-mac68k

In structs that are larger than 2 bytes, the compiler will align its fields on 4-
byte boundaries. This is equivalent to -malign-power. By default, this option is
on.

-mno-align-power
-mno-align-power

In structs that are larger than 2 bytes, the compiler will align its fields on 2-
byte boundaries. This is equivalent to -malign-mac68k. By default, this option
is off.

-mnobitfield
-mnobitfield

Do not use the bit-field instructions.

-mbitfield
-mbitfield

Do use the bit-field instructions. This is the default if you use a
configuration designed for a 68020.

-mrtd
-mrtd

Use a different function-calling convention, in which functions that take a
fixed number of arguments return with the rtd instruction, which pops their
arguments while returning. This saves one instruction in the caller since
there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on Mac
OS X and supported UNIX systems, so you cannot use it if you need to call
libraries included with the system software.

Also, you must provide function prototypes for all functions that take
variable numbers of arguments (including printf); otherwise incorrect code
will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)
59

1 The Objective-C Compiler
SPARC Options
These -m switches are supported on the SPARC:

-mno-app-regs -mapp-regs
-mno-app-regs

-mapp-regs

Specify -mapp-regs to generate output using the global registers 2 through 4, which
the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify -
mno-app-regs. You should compile libraries and system software with this option.

-mfpu -mhard-float
-mfpu

-mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu -msoft-float
-mno-fpu

-msoft-float

Generate output containing library calls for floating point.

Warning: The requisite libraries are not available for all SPARC targets. Normally
the facilities of the machine’s usual C compiler are used, but this cannot be done
directly in cross-compilation. You must make your own arrangements to provide
suitable library functions for cross-compilation. The embedded targets sparc-*-
aout and sparclite-*-* do provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only
useful if you compile all of a program with this option. In particular, you need to
compile libgcc.a, the library that comes with GNU CC, with -msoft-float in order for
this to work.

-mhard-quad-float
-mhard-quad-float

Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float
-msoft-quad-float
60

GNU CC Command Options
Generate output containing library calls for quad-word (long double)
floating point instructions. The functions called are those specified in the
SPARC ABI. This is the default.

As of this writing, there are no sparc implementations that have hardware
support for the quad-word floating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the -msoft-quad-float option
is the default.

-mno-epilogue -mepilogue
-mno-epilogue

-mepilogue

With -mepilogue (the default), the compiler always emits code for function exit
at the end of each function. Any function exit in the middle of the function
(such as a return statement in C) will generate a jump to the exit code at the
end of the function.

With -mno-epilogue, the compiler tries to emit exit code inline at every
function exit.

-mno-flat -mflat
-mno-flat

-mflat

With -mflat, the compiler does not generate save/restore instructions and will
use a “flat” or single register window calling convention. This model uses
%i7 as the frame pointer and is compatible with the normal register window
model. Code from either may be intermixed although debugger support is
still incomplete. The local registers and the input registers (0-5) are still
treated as “call saved” registers and will be saved on the stack as necessary.

With -mno-flat (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles -munaligned-doubles
-mno-unaligned-doubles

-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.

With -munaligned-doubles, GNU CC assumes that doubles have 8 byte
alignment only if they are contained in another type, or if they have an
absolute address. Otherwise, it assumes they have 4 byte alignment.
Specifying this option avoids some rare compatibility problems with code
61

1 The Objective-C Compiler
generated by other compilers. It is not the default because it results in a
performance loss, especially for floating point code.

-mv8 -msparclite
-mv8

-msparclite

These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARClite), GCC
generates code for the v7 variant of the SPARC architecture.

-mv8 will give you SPARC v8 code. The only difference from v7 code is that the
compiler emits the integer multiply and integer divide instructions which exist
in SPARC v8 but not in SPARC v7.

-msparclite will give you SPARClite code. This adds the integer multiply, integer
divide step and scan (ffs) instructions which exist in SPARClite but not in
SPARC v7.

-mcypress -msupersparc
-mcypress

-msupersparc

These two options select the processor for which the code is optimised.

With -mcypress (the default), the compiler optimizes code for the Cypress
CY7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is also
appropriate for the older SparcStation 1, 2, IPX etc.

With -msupersparc the compiler optimizes code for the SuperSparc cpu, as used in
the SparcStation 10, 1000 and 2000 series. This flag also enables use of the full
SPARC v8 instruction set.

In a future version of GCC, these options will very likely be renamed to -
mcpu=cypress and -mcpu=supersparc.

These -m switches are supported in addition to the above on SPARC V9
processors:

-mmedlow
-mmedlow

Generate code for the Medium/Low code model: assume a 32 bit address space.
Programs are statically linked, PIC is not supported. Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.
62

GNU CC Command Options
-mmedany
-mmedany

Generate code for the Medium/Anywhere code model: assume a 32 bit text
segment starting at offset 0, and a 32 bit data segment starting anywhere
(determined at link time). Programs are statically linked, PIC is not
supported. Pointers are still 64 bits.

It is very likely that a future version of GCC will rename this option.

-mint64
-mint64

Types long and int are 64 bits.

-mlong32
-mlong32

Types long and int are 32 bits.

-mlong64 -mint32
-mlong64

-mint32

Type long is 64 bits, and type int is 32 bits.

-mstack-bias -mno-stack-bias
-mstack-bias

-mno-stack-bias

With -mstack-bias, GNU CC assumes that the stack pointer, and frame pointer
if present, are offset by -2047 which must be added back when making
stack frame references. Otherwise, assume no such offset is present.

Intel 386 Options
These -m options are defined for the i386 family of computers:

-m486 -m386
-m486

-m386

Control whether or not code is optimized for a 486 instead of an 386. Code
generated for a 486 will run on a 386 and vice versa.

-mieee-fp -mno-ieee-fp
-mieee-fp

-mno-ieee-fp
63

1 The Objective-C Compiler
Control whether or not the compiler uses IEEE floating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-mno-fp-ret-in-387
-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double
in an FPU register, even if there is no FPU. The idea is that the operating
system should emulate an FPU.

The option -mno-fp-ret-in-387 causes such values to be returned in ordinary CPU
registers instead.

-mno-fancy-math-387
-mno-fancy-math-387

Some 387 emulators do not support the sin, cos and sqrt instructions for the 387.
Specify this option to avoid generating those instructions. This option is the
default on FreeBSD. As of revision 2.6.1, these instructions are not generated
unless you also use the -ffast-math switch.

-malign-double -mno-align-double
-malign-double

-mno-align-double

Control whether GNU CC aligns double, long double, and long long variables on a two
word boundary or a one word boundary. Aligning double variables on a two word
boundary will produce code that runs somewhat faster on a Pentium at the
expense of more memory.

Warning: If you use the -malign-double switch, structures containing the above types
will be aligned differently than the published application binary interface
specifications for the 386.

-munaligned-text (Not available on Windows NT)
-munaligned-text

Turns off all alignment for instructions. Occasionally this may be interesting if
the code size is significant in low-level stuff.

-msvr3-shlib -mno-svr3-shlib
-msvr3-shlib

-mno-svr3-shlib
64

GNU CC Command Options
Control whether GNU CC places uninitialized locals into bss or data. -msvr3-
shlib places these locals into bss. These options are meaningful only on
System V Release 3.

-mno-wide-multiply -mwide-multiply
-mno-wide-multiply

-mwide-multiply

Control whether GNU CC uses the mul and imul that produce 64 bit results
in eax:edx from 32 bit operands to do long long multiplies and 32-bit division by
constants.

-mrtd
-mrtd

Use a different function-calling convention, in which functions that take a
fixed number of arguments return with the ret NUM instruction, which
pops their arguments while returning. This saves one instruction in the
caller since there is no need to pop the arguments there.

You can specify that an individual function is called with this calling
sequence with the function attribute stdcall. You can also override the -mrtd
option by using the function attribute cdecl. See Declaring Attributes of
Functions

Warning: This calling convention is incompatible with the one normally used
on Mac OS X and supported UNIX systems, so you cannot use it if you
need to call libraries included with the system software.

Also, you must provide function prototypes for all functions that take
variable numbers of arguments (including printf); otherwise incorrect code
will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mreg-alloc
-mreg-alloc= regs

Control the default allocation order of integer registers. The string regs is a
series of letters specifying a register. The supported letters are: a allocate
EAX; b allocate EBX; c allocate ECX; d allocate EDX; S allocate ESI; D
allocate EDI; B allocate EBP.
65

1 The Objective-C Compiler
-mregparm
-mregparm= num

Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You can
control this behavior for a specific function by using the function attribute
regparm. See Declaring Attributes of Functions

Warning: If you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-malign-loops
-malign-loops= num

Align loops to a 2 raised to a num byte boundary. If -malign-loops is not specified,
the default is 2.

-malign-jumps
-malign-jumps= num

Align instructions that are only jumped to to a 2 raised to a num byte boundary.
If -malign-jumps is not specified, the default is 2 if optimizing for a 386, and 4 if
optimizing for a 486.

-malign-functions
-malign-functions= num

Align the start of functions to a 2 raised to num byte boundary. If -malign-jumps is
not specified, the default is 2 if optimizing for a 386, and 4 if optimizing for a 486.

HPPA Options
These -m options are defined for the HPPA family of computers:

-mpa-risc-1-0
-mpa-risc-1-0

Generate code for a PA 1.0 processor.

-mpa-risc-1-1
-mpa-risc-1-1

Generate code for a PA 1.1 processor.

-mjump-in-delay
-mjump-in-delay
66

GNU CC Command Options
Fill delay slots of function calls with unconditional jump instructions by
modifying the return pointer for the function call to be the target of the
conditional jump.

-mmillicode-long-calls
-mmillicode-long-calls

Generate code which assumes millicode routines can not be reached by the
standard millicode call sequence, linker-generated long-calls, or linker-
modified millicode calls. In practice this should only be needed for
dynamicly linked executables with extremely large SHLIB_INFO
sections.

-mdisable-fpregs
-mdisable-fpregs

Prevent floating point registers from being used in any manner. This is
necessary for compiling kernels which perform lazy context switching of
floating point registers. If you use this option and attempt to perform
floating point operations, the compiler will abort.

-mdisable-indexing
-mdisable-indexing

Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under
MACH.

-mfast-indirect-calls
-mfast-indirect-calls

Generate code which performs faster indirect calls. Such code is suitable for
kernels and for static linking. The fast indirect call code will fail miserably
if it’s part of a dynamically linked executable and in the presense of nested
functions.

-mportable-runtime
-mportable-runtime

Use the portable calling conventions proposed by HP for ELF systems.

-mgas
-mgas

Enable the use of assembler directives only GAS understands.
67

1 The Objective-C Compiler
-mschedule
-mschedule= cpu type

Schedule code according to the constraints for the machine type cpu type. The
choices for cpu type are 700 for 7N0 machines, 7100 for 7N5 machines, and 7100 for
7N2 machines. 700 is the default for cpu type.

Note the 7100LC scheduling information is incomplete and using 7100LC often
leads to bad schedules. For now it’s probably best to use 7100 instead of 7100LC for
the 7N2 machines.

-msoft-float
-msoft-float

Generate output containing library calls for floating point.

Warning: The requisite libraries are not available for all HPPA targets. Normally
the facilities of the machine’s usual C compiler are used, but this cannot be done
directly in cross-compilation. You must make your own arrangements to provide
suitable library functions for cross-compilation. The embedded target hppa1.1-*-
pro does provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only
useful if you compile all of a program with this option. In particular, you need to
compile libgcc.a, the library that comes with GNU CC, with -msoft-float in order for
this to work.

Options for Code Generation Conventions
These machine-independent options control the interface conventions used in
code generation.

Most of them have both positive and negative forms; the negative form of -ffoo
would be -fno-foo. In the table below, only one of the forms is listed—the one
which is not the default. You can figure out the other form by either removing
no- or adding it.

-dynamic, -static
-dynamic

-static

The compiler generates position-independent code by default when it builds
libraries, bundles, and executables. You can control the code generation style
using the -dynamic and -static compiler flags; -dyamic specifies that position-
independent code generation is to be used, whereas -static specifies position-
dependent code generation.
68

GNU CC Command Options
If you are building drivers and kernel servers, be sure to include -static on the
command line so that position-dependent code is generated. Compilation
with the -dynamic option assumes that the dynamic link editor (/usr/lib/dyld) is
present in the running program, and that is not the case for modules to be
loaded into the kernel.

-fpcc-struct-return
-fpcc-struct-return

Return “short” struct and union values in memory like longer ones, rather than
in registers. This convention is less efficient, but it has the advantage of
allowing intercallability between GNU CC-compiled files and files
compiled with other compilers.

The precise convention for returning structures in memory depends on the
target configuration macros.

Short structures and unions are those whose size and alignment match that
of some integer type.

-freg-struct-return
-freg-struct-return

Use the convention that struct and union values are returned in registers when
possible. This is more efficient for small structures than -fpcc-struct-return.

If you specify neither -fpcc-struct-return nor its contrary -freg-struct-return, GNU
CC defaults to whichever convention is standard for the target. If there is no
standard convention, GNU CC defaults to -fpcc-struct-return, except on targets
where GNU CC is the principal compiler. In those cases, it choses the more
efficient register return alternative.

-fshort-enums
-fshort-enums

Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the
smallest integer type which has enough room.

-fshort-double
-fshort-double

Use the same size for double as for float.

-fshared-data
-fshared-data
69

1 The Objective-C Compiler
Requests that the data and non-const variables of this compilation be shared data
rather than private data. The distinction makes sense only on certain operating
systems, where shared data is shared between processes running the same
program, while private data exists in one copy per process.

-fno-common
-fno-common

Allocate even uninitialized global variables in the bss section of the object file,
rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you will
get an error when you link them. The only reason this might be useful is if you
wish to verify that the program will work on other systems which always work
this way.

-fno-ident
-fno-ident

Ignore the #ident directive.

-fno-gnu-linker
-fno-gnu-linker

Do not output global initializations (such as C++ constructors and destructors)
in the form used by the GNU linker (on systems where the GNU linker is the
standard method of handling them). Use this option when you want to use a
non-GNU linker, which also requires using the collect2 program to make sure the
system linker includes constructors and destructors. (collect2 is included in the
GNU CC distribution.) For systems which must use collect2, the compiler driver
gcc is configured to do this automatically.

-finhibit-size-directive
-finhibit-size-directive

Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at
locations far apart in memory. This option is used when compiling crtstuff.c; you
should not need to use it for anything else.

-fverbose-asm
-fverbose-asm

Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).
70

GNU CC Command Options
-fvolatile
-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatile-global
-fvolatile-global

Consider all memory references to extern and global data items to be
volatile.

-fpic
-fpic

Generate position-independent code (PIC) suitable for use in a shared
library. Such code accesses all constant addresses through a global offset
table (GOT). If the GOT size for the linked executable exceeds a machine-
specific maximum size, you get an error message from the linker indicating
that -fpic does not work; in that case, recompile with -fPIC instead. (These
maximums are 8k on the Sparc and 32k on the m68k. The 386 has no such
limit.)

-fPIC
-fPIC

Emit position-independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table.

-ffixed
-ffixed- reg

Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are
machine-specific and are defined in the REGISTER_NAMES macro in the machine
description macro file.

This flag does not have a negative form, because it specifies a three-way
choice.

-fcall-used
-fcall-used- reg

Treat the register named reg as an allocatable register that is clobbered by
function calls. It may be allocated for temporaries or variables that do not
71

1 The Objective-C Compiler
live across a call. Functions compiled this way will not save and restore the
register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved
-fcall-saved- reg

Treat the register named reg as an allocatable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct
-fpack-struct

Pack all structure members together without holes. Usually you would not want
to use this option, since it makes the code suboptimal, and the offsets of
structure members won’t agree with system libraries.

+e0 +e1
+e0

+e1

Control whether virtual function definitions in classes are used to generate code,
or only to define interfaces for their callers. (C++ only).

These options are provided for compatibility with cfront 1.x usage; the
recommended alternative GNU C++ usage is in flux. See Declarations and
Definitions in One Header.

With +e0, virtual function definitions in classes are declared extern; the declaration
is used only as an interface specification, not to generate code for the virtual
functions (in this compilation).
72

GNU CC Command Options
With +e1, G++ actually generates the code implementing virtual functions
defined in the code, and makes them publicly visible.

Environment Variables Affecting GNU CC
This section describes several environment variables that affect how GNU
CC operates. They work by specifying directories or prefixes to use when
searching for various kinds of files.

Note that you can also specify places to search using options such as -B, -I
and -L (see Options for Directory Search). These take precedence over
places specified using environment variables, which in turn take
precedence over those specified by the configuration of GNU CC.

TMPDIR
TMPDIR

If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC
uses temporary files to hold the output of one stage of compilation which is
to be used as input to the next stage: for example, the output of the
preprocessor, which is the input to the compiler proper.

GCC_EXEC_PREFIX
GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix
is combined with the name of a subprogram, but you can specify a prefix
that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries
looking in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is prefix/lib/gcc-lib/ where prefix is the
value of prefix when you ran the configure script.

Other prefixes specified with -B take precedence over this prefix.

This prefix is also used for finding files such as crt0.o that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to
search for header files. For each of the standard directories whose name
normally begins with /usr/local/lib/gcc-lib (more precisely, with the value of
GCC_INCLUDE_DIR), GNU CC tries replacing that beginning with the specified
prefix to produce an alternate directory name. Thus, with -Bfoo/, GNU CC
73

1 The Objective-C Compiler
will search foo/bar where it would normally search /usr/local/lib/bar. These alternate
directories are searched first; the standard directories come next.

COMPILER_PATH
COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.
GNU CC tries the directories thus specified when searching for subprograms, if
it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.
When configured as a native compiler, GNU CC tries the directories thus
specified when searching for special linker files, if it can’t find them using
GCC_EXEC_PREFIX. Linking using GNU CC also uses these directories when
searching for ordinary libraries for the -l option (but directories specified with -L
come first).

C_INCLUDE_PATH CPLUS_INCLUDE_PATH OBJC_INCLUDE_PATH
C_INCLUDE_PATH

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable’s
value is a colon-separated list of directories, much like PATH. When GNU CC
searches for header files, it tries the directories listed in the variable for the
language you are using, after the directories specified with -I but before the
standard header file directories.

DEPENDENCIES_OUTPUT
DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependencies for Make
based on the header files processed by the compiler. This output looks much
like the output from the -M option (see Options Controlling the Preprocessor),
but it goes to a separate file, and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make
rules are written to that file, guessing the target name from the source file name.
Or the value can have the form file target, in which case the rules are written to
file file using target as the target name.
74

C Programming Notes
C Programming Notes

This section contains miscellaneous notes about programming in C with
Apple’s version of the GNU C compiler. It also describes some
incompatibilities between GNU C and traditional non-ANSI versions of C.

String Constants and Static Strings
GNU CC normally makes string constants read-only, and if several identical
string constants are used, GNU CC stores only one copy of the string.

Some C libraries incorrectly write into string constants. The best solution
to this problem is to use character array variables with initialization strings
instead of string constants. If this isn’t possible, use the -fwritable-strings flag,
which directs GNU CC to handle string constants the way most C compilers
do.

Also note that initialized strings are normally put in the text segment by the
GNU compiler, and attempts to write to them cause segmentation faults. If
your program depends on being able to write initialized strings, there are
two ways to get around this problem:

• Compile your program with the -fwritable-strings compiler option.

• Declare your string as an unbounded array of chars, which will force it to
appear in the data segment:

char *non_writable = "You can’t write this string";

char writable[] = "You can write this string";

Function Prototyping
Function prototypes are a new and important feature of the ANSI standard.
You should use function prototypes in your C programs, so the compiler can
generate more efficient code (because it knows what the called function is
expecting). The compiler can also warn you when you pass the wrong
number or wrong type of arguments to a function.

Extra care must be taken in using function prototypes. Be sure to follow
these rules:

• Each function must be declared explicitly (with a prototype) before
calling the function. Multiple declarations must agree exactly.
Incorrect code can be generated by a call that isn’t prototyped if the
function itself is declared as a prototype.
75

1 The Objective-C Compiler
• The parameter declarations for the prototyped function must be in the same
form as the prototype declaration.

Here are a few points about prototyping that might cause you some trouble.

• You might think it’s a bug when GNU CC reports an error for code like this:

int foo (short);

int foo (x)

short x;

{ . . . }

The error message is correct. The code is wrong because the old-style
nonprototype definition passes subword integers in their promoted types.
In other words, the argument is really an int, not a short. The correct
prototype is this:

int foo (int)

• You might think it’s a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);

struct mumble { . . . };

int foo (struct mumble *x);

{ . . . }

This code is also wrong. Because of the scope of struct mumble, the prototype
is limited to the argument list containing it. It doesn’t refer to the struct
mumble defined with file scope immediately below—they are two unrelated
types with similar names in different scopes. But in the definition of foo,
the file-scope type is used because that is available to be inherited. Thus,
the definition and the prototype don’t match and you get an error. You can
make the code work by simply moving the definition of struct mumble above
the prototype.

“Suggested Reading” lists several C books that provide detailed information
about the use (and abuse) of function prototypes.

Automatic Register Allocation
When you use setjmp() and longjmp(), the only automatic variables guaranteed to
remain valid are those declared volatile. This is a consequence of automatic
76

C Programming Notes
register allocation. If you use the -W option with the -O option, you’ll get a
warning when GNU CC thinks such a problem is possible. For example:

jmp_buf j;

foo ()

{

 int a, b;

 a = fun1 ();

 if (setjmp (j))

 return a;

 a = fun2 ();

 /* longjmp (j) may occur in fun3. */

 return a + fun3 ();

}

Here, a may or may not be restored to its first value when the longjmp()
function is called. If a is allocated in a register, its first value is restored;
otherwise, it keeps the last value stored in it.

Declarations of External Variables and Functions
Declarations of external variables and functions within a block apply only
to the block containing the declaration (in some C compilers, such
declarations affect the whole file). ANSI C states that external declarations
should obey normal scoping rules. For example:

{

 {

 extern int a;

 a = 0;

 }

 a = 1; /* Illegal */

}

You can use the -traditional option if you want all extern declarations to be
treated as global.

typedef and Type Modifiers
In traditional C, you can combine unsigned, for example, with a typedef name
as shown here:

typedef long int Int32;

unsigned Int32 i; /* Illegal in ANSI C*/
77

1 The Objective-C Compiler
In ANSI C this isn’t allowed: unsigned and other type modifiers require an explicit
int. Because this criterion is expressed by Bison grammar rules rather than C
code, the -traditional flag can’t alter it.

The same difficulty applies to typedef names used as function parameters.

Identifying the Compiler Version
The compiler has additional predefined macros that can be used to determine
the release version of the compiler (these macros are not available on Windows
NT). Every effort should be made to minimize the use of these macros. For each release
of the compiler there will be a macro defined such as NX_COMPILER_RELEASE_3_0 and
NX_COMPILER_RELEASE_3_1. There will also be a macro NX_CURRENT_COMPILER_RELEASE.
One can conditionally compile code by numerically comparing these macros.
For example:

#if NX_CURRENT_COMPILER_RELEASE > NX_COMPILER_RELEASE_3_0

...

#endif

Writing Architecture-Independent Code
This compiler predefines new macros to aid in writing architecture-
independent code.

__ARCHITECTURE__
__ARCHITECTURE__

In addition to the existing predefines which identify specific target architectures
(for example, m68k, i386), the compiler also predefines the macro __ARCHITECTURE__
to be a string constant identifying the target architecture (“m68k”, “i386”).
This macro is used by system header files to include the architecture-specific
files without having to enumerate all supported architectures.

__BIG_ENDIAN__, __LITTLE_ENDIAN__
__BIG_ENDIAN__

__LITTLE_ENDIAN__

The compiler predefines either __BIG_ENDIAN__ or __LITTLE_ENDIAN__, as appropriate
for the target architecture.
78

Objective-C Programming Notes
Objective-C Programming Notes

Accessing Instance Variables in Class Methods
It used to be common programming style in Objective-C to assign to self in
a class method and then access instance variables. This is bad style because
self in the context of a class method stands for the class object—and
shouldn't be redefined to stand for a particular instance of the object.

Here is an example of this bad style:

@implementation Oval : Object {

int x;

}

+new {

self = [super new];// Now self refers to a class instance

...

x = 4;// Assigns an instance variable

} ...

@end

...

x = [Oval new];// Create an Oval object

To discourage this anachronistic use, the compiler issues a warning if an
instance variable is referenced in a class method.

Here’s a better way to instantiate an object:

x = [[Oval alloc] init];

See Object-Oriented Programming and the Objective C Language for more details.

Syntax Checking
The Objective-C compiler’s syntax checking disallows the nesting of
@interface and @implementation blocks.

Sending Objective-C Messages to Converted C++ Objects
You can send an Objective-C message to a C++ object that has been
converted by a conversion operator (“a smart pointer”). In the following
example, the C++ ptrSquare object aSquare is implicitly converted to the
79

1 The Objective-C Compiler
Objective-C type Square* using the conversion operator Square*(). The converted
object receives the message calculateArea:

@interface Square {

id a;

}

...

@end

class ptrSquare {

Square* value;

public:

operator Square*();

};

square (ptrSquare aSquare) {

float z = [aSquare calculateArea]; // invokes operator Square*()

}

Due to the conversion, the compiler acts as if aSquare is statically typed to Square*
in the message expression.

The above example uses only one conversion operator: operator Square*. You
should avoid having multiple conversion operators in the same class that
produce different pointer types—the compiler may choose the wrong
conversion operator and not produce the desired type. If you need more than
one conversion type, you must use an operator id conversion operator—the
compiler chooses this over an operator converting to any other Objective-C class
pointer type. If the class ptrSquare implemented other operator x*() conversions
besides operator Square*(), it would also have to implement an operator id conversion
so the compiler would know which conversion to look for.

Conversion operators allow you to implement so called “smart pointers” to
Objective-C objects. Smart pointers are objects that act like pointers and
perform some other action in addition whenever an object is accessed through
them. For more information on smart pointers, see Bjarne Stroustrup’s The C++
Programming Language, Second Edition (Addison-Wesley, 1991).

Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C. (The
-pedantic option directs GNU CC to print a warning message if any of these
features is used.) To test for the availability of these features in conditional
80

Extensions to the C Language Family
compilation, check for a predefined macro __GNUC__, which is always defined
under GNU CC.

These extensions are available in C and Objective-C. Most of them are also
available in C++. See Extensions to the C++ Language for extensions that
apply only to C++.

Statements and Declarations in Expressions
A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.

Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces. For example:

({ int y = foo (); int z; if (y > 0) z = y; else z = - y; z; })

is a valid (though slightly more complex than necessary) expression for the
absolute value of foo ().

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the value
of the entire construct. (If you use some other kind of statement last within
the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that
they evaluate each operand exactly once). For example, the “maximum”
function is commonly defined as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either A or B twice, with bad results if the
operand has side effects. In GNU C, if you know the type of the operands
(here let’s assume int), you can define the macro safely as follows:

#define maxint(a,b) \ ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the
value of an enumeration constant, the width of a bit field, or the initial value
of a static variable.

If you don’t know the type of the operand, you can still do this, but you must
use typeof (see Referring to a Type with “typeof”) or type naming (see
Naming an Expression’s Type).
81

1 The Objective-C Compiler
Locally Declared Labels
Each statement expression is a scope in which “local labels” can be declared. A
local label is simply an identifier; you can jump to it with an ordinary goto
statement, but only from within the statement expression it belongs to.

A local label declaration looks like this:

__label__ LABEL;

or

__label__ LABEL1, LABEL2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ({‘, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself.
You must do this in the usual way, with LABEL:, within the statements of the
statement expression.

The local label feature is useful because statement expressions are often used
in macros. If the macro contains nested loops, a goto can be useful for breaking
out of them. However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one function, the
label will be multiply defined in that function. A local label avoids this problem.
For example:

#define SEARCH(array, target) \

({ \

__label__ found; \

typeof (target) _SEARCH_target = (target); \

typeof (*(array)) *_SEARCH_array = (array); \

int i, j; \

int value; \

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \

value = -1; \

found: \

value; \

})

Labels as Values
You can get the address of a label defined in the current function (or a containing
function) with the unary operator &&. The value has type void *. This value is a
constant and can be used wherever a constant of that type is valid. For example:
82

Extensions to the C Language Family
void *ptr; ... ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with
the computed goto statement(1), goto *EXP;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will
serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner, so use that rather than an array
unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels
within the interpreter function can be stored in the threaded code for super-
fast dispatching.

You can use this mechanism to jump to code in a different function. If you
do that, totally unpredictable things will happen. The best way to avoid this
is to store the label address only in automatic variables and never pass it as
an argument.

Note: The analogous feature in Fortran is called an assigned goto, but that
name seems inappropriate in C, where one can do more than simply store
label addresses in label variables.

Nested Functions
A “nested function” is a function defined inside another function. (Nested
functions are not supported for GNU C++.) The nested function’s name is
local to the block where it is defined. For example, here we define a nested
function named square, and call it twice:

foo (double a, double b) {

double square (double z) {

return z * z;

}
83

1 The Objective-C Compiler
return square (a) + square (b);

}

The nested function can access all the variables of the containing function that
are visible at the point of its definition. This is called “lexical scoping”. For
example, here we show a nested function which uses an inherited variable
named offset:

bar (int *array, int offset, int size) {

int access (int *array, int index) {

return array[index + offset];

}

int i;

...

for (i = 0; i < size; i++)

...

access (array, i)

...

}

Nested function definitions are permitted within functions in the places where
variable definitions are allowed; that is, in any block, before the first statement
in the block.

It is possible to call the nested function from outside the scope of its name by
storing its address or passing the address to another function:

hack (int *array, int size) {

void store (int index, int value) {

array[index] = value;

}

intermediate (store, size);

}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this
example) does not exit.

If you try to call the nested function through its address after the containing
function has exited, all hell will break loose. If you try to call it after a containing
scope level has exited, and if it refers to some of the variables that are no longer
in scope, you may be lucky, but it’s not wise to take the risk. If, however, the
nested function does not refer to anything that has gone out of scope, you should
be safe.
84

Extensions to the C Language Family
GNU CC implements taking the address of a nested function using a
technique called “trampolines”. A paper describing them is available from
maya.idiap.ch in directory pub/tmb, file usenix88-lexic.ps.Z.

A nested function can jump to a label inherited from a containing function,
provided the label was explicitly declared in the containing function (see
Locally Declared Labels). Such a jump returns instantly to the containing
function, exiting the nested function which did the goto and any
intermediate functions as well. Here is an example:

bar (int *array, int offset, int size) {

__label__ failure;

int access (int *array, int index) {

if (index > size)

goto failure;

return array[index + offset];

}

int i;

...

for (i = 0; i < size; i++)

...

access (array, i)

...

...

return 0; /* Control comes here from access */

 /* if it detects an error. */

failure:

return -1;

}

A nested function always has internal linkage. Declaring one with extern is
erroneous. If you need to declare the nested function before its definition,
use auto (which is otherwise meaningless for function declarations).

bar (int *array, int offset, int size) {

__label__ failure;

auto int access (int *, int);

...

int access (int *array, int index) {

if (index > size)

goto failure;

return array[index + offset];

}

...

}

85

1 The Objective-C Compiler
Constructing Function Calls
Using the built-in functions described below, you can record the arguments a
function received, and call another function with the same arguments, without
knowing the number or types of the arguments.

You can also record the return value of that function call, and later return that
value, without knowing what data type the function tried to return (as long as
your caller expects that data type).

__builtin_apply_args ()
__builtin_apply_args ()

This built-in function returns a pointer of type void * to data describing how to
perform a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all
registers that might be used to pass arguments to a function into a block of
memory allocated on the stack. Then it returns the address of that block.

__builtin_apply ()
__builtin_apply (function , arguments , size)

This built-in function invokes function (type void (*)()) with a copy of the
parameters described by arguments (type void *) and SIZE (type int).

The value of arguments should be the value returned by __builtin_apply_args. The
argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return
whatever value was returned by function. The data is saved in a block of memory
allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

__builtin_return ()
__builtin_return (result)

This built-in function returns the value described by result from the containing
function. You should specify, for result, a value returned by __builtin_apply.

Naming an Expression’s Type
You can give a name to the type of an expression using a typedef declaration with
an initializer. Here is how to define NAME as a type name for the type of EXP:
86

Extensions to the C Language Family
typedef NAME = EXP;

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:

#define max(a,b) \

({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a and b.

Referring to a Type with “typeof”
Another way to refer to the type of an expression is with typeof. The syntax
of using of this keyword looks like sizeof, but the construct acts semantically
like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or
with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the
values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C
programs, write __typeof__ instead of typeof. See Alternate Keywords.

A typeof-construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

• This declares y with the type of what x points to.

typeof (*x) y;

• This declares y as an array of such values.

typeof (*x) y[4];

• This declares y as an array of pointers to characters:
87

1 The Objective-C Compiler
typeof (typeof (char *)[4]) y;

• It is equivalent to the following traditional C declaration:

char *y[4];

• To see the meaning of the declaration using typeof, and why it might be a
useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *) #define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

Generalized Lvalues
Compound expressions, conditional expressions and casts are allowed as lvalues
provided their operands are lvalues. This means that you can take their
addresses or store values into them.

Standard C++ allows compound expressions and conditional expressions as
lvalues, and permits casts to reference type, so use of this extension is
deprecated for C++ code.

For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are equivalent:

(a, b) += 5 a, (b += 5)

Similarly, the address of the compound expression can be taken. These two
expressions are equivalent:

&(a, b) a, &b

A conditional expression is a valid lvalue if its type is not void and the true and
false branches are both valid lvalues. For example, these two expressions are
equivalent:

(a ? b : c) = 5 (a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-
hand side is a cast works by converting the right-hand side first to the specified
type, then to the type of the inner left-hand side expression. After this is stored,
the value is converted back to the specified type to become the value of the
assignment. Thus, if a has type char *, the following two expressions are
equivalent:
88

Extensions to the C Language Family
(int)a = 5 (int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as += applied to a cast
performs the arithmetic using the type resulting from the cast, and then
continues as in the previous case. Therefore, these two expressions are
equivalent:

(int)a += 5 (int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address
would not work out coherently. Suppose that &(int)f were permitted, where f
has type float. Then the following statement would try to store an integer bit-
pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to
floating point and store it. Rather than cause this inconsistency, we think it
is better to prohibit use of & on a cast.

If you really do want an int * pointer with the address of f, you can simply
write (int *)&f.

Conditionals with Omitted Operands
The middle operand in a conditional expression may be omitted. Then if
the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially
useful. When it becomes useful is when the first operand does, or may (if it
is a macro argument), contain a side effect. Then repeating the operand in
the middle would perform the side effect twice. Omitting the middle
operand uses the value already computed without the undesirable effects of
recomputing it.
89

1 The Objective-C Compiler
Double-Word Integers
GNU C supports data types for integers that are twice as long as long int. Simply
write long long int for a signed integer, or unsigned long long int for an unsigned integer.
To make an integer constant of type long long int, add the suffix LL to the integer.
To make an integer constant of type unsigned long long int, add the suffix ULL to the
integer.

You can use these types in arithmetic like any other integer types. Addition,
subtraction, and bitwise boolean operations on these types are open-coded on
all types of machines. Multiplication is open-coded if the machine supports
fullword-to-doubleword a widening multiply instruction. Division and shifts are
open-coded only on machines that provide special support. The operations that
are not open-coded use special library routines that come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless
you declare function prototypes. If a function expects type int for its argument,
and you pass a value of type long long int, confusion will result because the caller
and the subroutine will disagree about the number of bytes for the argument.
Likewise, if the function expects long long int and you pass int. The best way to
avoid such problems is to use prototypes.

Complex Numbers
GNU C supports complex data types. You can declare both complex integer
types and complex floating types, using the keyword __complex__.

For example, __complex__ double x; declares x as a variable whose real part and
imaginary part are both of type double. __complex__ short int y; declares y to have real
and imaginary parts of type short int; this is not likely to be useful, but it shows
that the set of complex types is complete.

To write a constant with a complex data type, use the suffix i or j (either one; they
are equivalent). For example, 2.5fi has type __complex__ float and 3i has type
__complex__ int. Such a constant always has a pure imaginary value, but you can
form any complex value you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write __real__ exp.
Likewise, use __imag__ to extract the imaginary part.

The operator ~ performs complex conjugation when used on a value with a
complex type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion;
it’s even possible for the real part to be in a register while the imaginary part is
on the stack (or vice-versa). None of the supported debugging info formats has
90

Extensions to the C Language Family
a way to represent noncontiguous allocation like this, so GNU CC describes
a noncontiguous complex variable as if it were two separate variables of
noncomplex type. If the variable’s actual name is foo, the two fictitious
variables are named foo$real and foo$imag. You can examine and set these two
fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat
them as a single variable with a complex type.

Arrays of Length Zero
Zero-length arrays are allowed in GNU C. They are very useful as the last
element of a structure which is really a header for a variable-length object:

struct line {

int length;

char contents[0];

};

{

struct line *thisline =

(struct line *) malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which means
either you waste space or complicate the argument to malloc.

Arrays of Variable Length
Variable-length automatic arrays are allowed in GNU C. These arrays are
declared like any other automatic arrays, but with a length that is not a
constant expression. The storage is allocated at the point of declaration and
deallocated when the brace-level is exited. For example:

FILE * concat_fopen (char *s1, char *s2, char *mode) {

char str[strlen (s1) + strlen (s2) + 1];

strcpy (str, s1);

strcat (str, s2);

return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the
storage. Jumping into the scope is not allowed; you get an error message for
it.

You can use the function alloca to get an effect much like variable-length
arrays. The function alloca is available in many other C implementations (but
not in all). On the other hand, variable-length arrays are more elegant.
91

1 The Objective-C Compiler
There are other differences between these two methods. Space allocated with
alloca exists until the containing function returns. The space for a variable-length
array is deallocated as soon as the array name’s scope ends. (If you use both
variable-length arrays and alloca in the same function, deallocation of a variable-
length array will also deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry tester (int len, char data[len][len]) { ... }

The length of an array is computed once when the storage is allocated and is
remembered for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward
declaration in the parameter list—another GNU extension.

struct entry tester (int len; char data[len][len], int len) { ... }

The int len before the semicolon is a “parameter forward declaration”, and it
serves the purpose of making the name len known when the declaration of data is
parsed.

You can write any number of such parameter forward declarations in the
parameter list. They can be separated by commas or semicolons, but the last one
must end with a semicolon, which is followed by the “real” parameter
declarations. Each forward declaration must match a “real” declaration in
parameter name and data type.

Macros with Variable Numbers of Arguments
In GNU C, a macro can accept a variable number of arguments, much as a
function can. The syntax for defining the macro looks much like that used for a
function. Here is an example:

#define eprintf(format, args...) \ fprintf (stderr, format , ## args)

Here args is a “rest argument”: it takes in zero or more arguments, as many as the
call contains. All of them plus the commas between them form the value of args,
which is substituted into the macro body where args is used. Thus, we have this
expansion:

eprintf (“%s:%d: “, input_file_name, line_number)

==> fprintf (stderr, “%s:%d: “ , input_file_name, line_number)

Note that the comma after the string constant comes from the definition of eprintf,
whereas the last comma comes from the value of args.
92

Extensions to the C Language Family
The reason for using ## is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case, the
second comma in the definition becomes an embarrassment: if it got
through to the expansion of the macro, we would get something like this:

fprintf (stderr, “success!\n” ,)

which is invalid C syntax. ## gets rid of the comma, so we get the following
instead:

fprintf (stderr, “success!\n”)

This is a special feature of the GNU C preprocessor: ## before a rest
argument that is empty discards the preceding sequence of non-whitespace
characters from the macro definition. (If another macro argument precedes,
none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last
preceding sequence of non-whitespace characters. We advise you to write
the macro definition so that the preceding sequence of non-whitespace
characters is just a single token, so that the meaning will not change if GNU
changes the definition of this feature.

Note: Mac OS X includes two preprocessors: the standard GNU C
preprocessor (cpp) and the precompilation preprocessor (cpp-precomp). The
two preprocessors are largely similar, except for some rarely used
extensions. The precompilation preprocessor(cpp-precomp) is the default
preprocessor for C and Objective-C code. (See
/System/Documentation/Developer/YellowBox/Reference/DevTools/Preprocessor/ for more
information.) The standard preprocessor (cpp) is the default preprocessor
for Objective-C++ code. To switch to the standard preprocessor (cpp) on
platforms on which precompiled headers are available, use the -traditonal-cpp
flag on the cpp command line.

Non-Lvalue Arrays May Have Subscripts
Subscripting is allowed on arrays that are not lvalues, even though the unary
& operator is not. For example, this is valid in GNU C though not valid in
other C dialects:

struct foo {

int a[4];

};

struct foo f();

bar (int index) {
93

1 The Objective-C Compiler
return f().a[index];

}

Arithmetic on “void”- and Function-Pointers
In GNU C, addition and subtraction operations are supported on pointers to void
and on pointers to functions. This is done by treating the size of a void or of a
function as 1.

A consequence of this is that sizeof is also allowed on void and on function types,
and returns 1.

The option -Wpointer-arith requests a warning if these extensions are used.

Non-Constant Initializers
As in standard C++, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an
example of an initializer with run-time varying elements:

foo (float f, float g) {

float beat_freqs[2] = { f-g, f+g };

...

}

Constructor Expressions
GNU C supports constructor expressions. A constructor looks like a cast
containing an initializer. Its value is an object of the type specified in the cast,
containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ‘a, 0});

This is equivalent to writing the following:

{ struct foo temp = {x + y, ‘a, 0}; structure = temp; }

You can also construct an array. If all the elements of the constructor are (made
up of) simple constant expressions, suitable for use in initializers, then the
constructor is an lvalue and can be coerced to a pointer to its first element, as
shown here:
94

Extensions to the C Language Family
char **foo = (char *[]) { “x”, “y”, “z” };

Array constructors whose elements are not simple constants are not very
useful, because the constructor is not an lvalue. There are only two valid
ways to use it: to subscript it, or initialize an array variable with it. The
former is probably slower than a switch statement, while the latter does the
same thing an ordinary C initializer would do. Here is an example of
subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed,
but then the constructor expression is equivalent to a cast.

Labeled Elements in Initializers
Standard C requires the elements of an initializer to appear in a fixed order,
the same as the order of the elements in the array or structure being
initialized. In GNU C you can give the elements in any order, specifying
the array indices or structure field names they apply to.

Note: This extension is not implemented in GNU C++, Objective-C, or
Objective-C++.

To specify an array index, write [index] or [index] = before the element value.
For example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write [first ... last] = value.
For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with
fieldname: before the element value. For example, given the following
structure,

struct point { int x, y; };

the following initialization
95

1 The Objective-C Compiler
struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is .fieldname =., as shown here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the period-
equal syntax) when initializing a union, to specify which element of the union
should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element. By
contrast, casting 4 to type union foo would store it into the union as the integer i,
since it is an integer. (See Cast to a Union Type.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does not have
a label applies to the next consecutive element of the array or structure. For
example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the
indices are characters or belong to an enum type. For example:

int whitespace[256] = {

[‘ ‘] = 1,

[‘\t’] = 1,

[‘\h’] = 1,

[‘\f’] = 1,

[‘\n’] = 1,

[‘\r’] = 1

};

Case Ranges
You can specify a range of consecutive values in a single case label, like this:

case LOW ... HIGH:
96

Extensions to the C Language Family
This has the same effect as the proper number of individual case labels, one
for each integer value from LOW to HIGH, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ‘A ... ‘Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong
when you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

Cast to a Union Type
A cast to union type is similar to other casts, except that the type specified
is a union type. You can specify the type either with union tag or with a
typedef name. A cast to union is actually a constructor though, not a cast,
and hence does not yield an lvalue like normal casts. (See Constructor
Expressions.)

The types that may be cast to the union type are those of the members of
the union. Thus, given the following union and variables:

union foo { int i; double d; };

int x;

double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union
type is equivalent to storing in a member of the union:

union foo u;

...

u = (union foo) x == u.i = x u = (union foo) y == u.d = y

You can also use the union cast as a function argument:

void hack (union foo);

...

hack ((union foo) x);
97

1 The Objective-C Compiler
Declaring Attributes of Functions
In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double
parentheses. Eight attributes, noreturn, const, format, section, constructor, destructor, unused
and weak are currently defined for functions. Other attributes, including section are
supported for variables declarations (see Specifying Attributes of Variables) and
for types (see Specifying Attributes of Types).

You may also specify attributes with __ preceding and following each keyword.
This allows you to use them in header files without being concerned about a
possible macro of the same name. For example, you may use __noreturn__ instead
of noreturn.

noreturn
noreturn

A few standard library functions, such as abort and exit, cannot return. GNU CC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For example,

void fatal () __attribute__ ((noreturn));

void fatal (...) {

...

/* Print error message. */

...

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can
then optimize without regard to what would happen if fatal ever did return. This
makes slightly better code. More importantly, it helps avoid spurious warnings
of uninitialized variables.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5. An
alternative way to declare that a function does not return, which works in the
current version and in some older versions, is as follows:

typedef void voidfn ();
98

Extensions to the C Language Family
volatile voidfn fatal;

const
const

Many functions do not examine any values except their arguments, and
have no effects except the return value. Such a function can be subject to
common subexpression elimination and loop optimization just as an
arithmetic operator would be. These functions should be declared with the
attribute const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than the
program says.

The attribute const is not implemented in GNU C versions earlier than 2.5.
An alternative way to declare that a function has no side effects, which
works in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the const must be attached to the return value.

Note that a function that has pointer arguments and examines the data
pointed to must not be declared const. Likewise, a function that calls a non-
const function usually must not be const. It does not make sense for a const
function to return void.

format (archetype, string-index, first-to-check)
format (archetype , string-index , first-to-check)

The format attribute specifies that a function takes printf or scanf style
arguments which should be type-checked against a format string. For
example, the declaration:

extern int my_printf (void *my_object, const char *my_format, ...)
__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for
consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted,
and should be either printf or scanf. The parameter string-index specifies which
argument is the format string argument (starting from 1), while first-to-check
is the number of the first argument to check against the format string. For
functions where the arguments are not available to be checked (such as
99

1 The Objective-C Compiler
vprintf), specify the third parameter as zero. In this case the compiler only checks
the format string for consistency.

In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so
the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format
strings as arguments, so that GNU CC can check the calls to these functions for
errors. The compiler always checks formats for the ANSI library functions printf,
fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such warnings are
requested (using -Wformat), so there is no need to modify the header file stdio.h.

section (“section-name”)
section (“section-name”)

Normally, the compiler places the code it generates in the text section.
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections. The section attribute specifies
that a function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section (“bar”)));

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not
available on all platforms. If you need to map the entire contents of a module to
a particular section, consider using the facilities of the linker instead.

constructor destructor
constructor

destructor

The constructor attribute causes the function to be called automatically before
execution enters main (). Similarly, the destructor attribute causes the function to be
called automatically after main () has completed or exit () has been called. Functions
with these attributes are useful for initializing data that will be used implicitly
during the execution of the program.

These attributes are not currently implemented for Objective-C.

unused
unused

This attribute, attached to a function, means that the function is meant to be
possibly unused. GNU CC will not produce a warning for this function.
100

Extensions to the C Language Family
weak
weak

The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in defining library functions
which can be overridden in user code, though it can also be used with non-
function declarations. Weak symbols are supported for ELF targets, and
also for a.out targets when using the GNU assembler and linker.

alias ()
alias (“target”)

The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void __f () {

/* do something */;

}

void f () __attribute__ ((weak, alias (“__f”)));

declares f to be a weak alias for __f. In C++, the mangled name for the target
must be used.

regparm ()
regparm (number)

On the Intel 386, the regparm attribute causes the compiler to pass up to
number integer arguments in registers EAX, EDX, and ECX instead of on
the stack. Functions that take a variable number of arguments will continue
to be passed all of their arguments on the stack.

stdcall
stdcall

On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless
it takes a variable number of arguments.

stdcall
stdcall

On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless
it takes a variable number of arguments. This is useful to override the
effects of the stdcall switch.
101

1 The Objective-C Compiler
You can specify multiple attributes in a declaration by separating them by
commas within the double parentheses or by immediately following an attribute
declaration with another attribute declaration.

Some people object to the stdcall feature, suggesting that ANSI C’s #pragma should
be used instead. There are two reasons for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for
#pragma. It is basically a mistake to use #pragma for anything.

Prototypes and Old-Style Function Definitions
GNU C extends ANSI C to allow a function prototype to override a later old-
style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */

#if __STDC__

#define P(x) x

#else

#define P(x) ()

#endif

/* Prototype function declaration. */

int isroot P((uid_t));

/* Old-style function definition. */

int isroot (x)

/* ??? lossage here ??? */

uid_t x; {

return x == 0;

}

Suppose the type uid_t happens to be short. ANSI C does not allow this example,
because subword arguments in old-style non-prototype definitions are
promoted. Therefore in this example the function definition’s argument is really
an int, which does not match the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to
traditional C compilers, because the programmer does not know whether the
uid_t type is short, int, or long. Therefore, in cases like these GNU C allows a
prototype to override a later old-style definition. More precisely, in GNU C, a
function prototype argument type overrides the argument type specified by a
later old-style definition if the former type is the same as the latter type before
promotion. Thus in GNU C the above example is equivalent to the following:

int isroot (uid_t);
102

Extensions to the C Language Family
int isroot (uid_t x) {

return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension
is irrelevant.

C++ Style Comments
In GNU C, you may use C++ style comments, which start with // and
continue until the end of the line. Many other C implementations allow
such comments, and they are likely to be in a future C standard. However,
C++ style comments are not recognized if you specify -ansi or -traditional, since
they are incompatible with traditional constructs like dividend//*comment*/divisor.

Dollar Signs in Identifier Names
In GNU C, you may use dollar signs in identifier names. This is because
many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify -
traditional. On a few systems they are allowed by default, even if you do not
use -traditional. But they are never allowed if you specify -ansi.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For
example:

#define foo(a) #a

#define lose(b) foo (b)

#define test$ lose (test)

The Character ESC in Constants
You can use the sequence \e in a string or character constant to stand for the
ASCII character ESC.

Inquiring on Alignment of Types or Variables
The keyword __alignof__ allows you to inquire about how an object is aligned,
or the minimum alignment usually required by a type. Its syntax is just like
sizeof.

For example, if the target machine requires a double value to be aligned on
an 8-byte boundary, then __alignof__ (double) is 8. This is true on many RISC
machines. On more traditional machine designs, __alignof__ (double) is 4 or
even 2.
103

1 The Objective-C Compiler
Some machines never actually require alignment; they allow reference to any
data type even at an odd addresses. For these machines, __alignof__ reports the
recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the
largest alignment that the lvalue is known to have. It may have this alignment
as a result of its data type, or because it is part of a structure and inherits
alignment from that structure. For example, after this declaration:

struct foo {

int x;

char y;

} foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __alignof__ (int), even
though the data type of foo1.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__
((aligned (alignment))); see the following section.

Specifying Attributes of Variables
The keyword __attribute__ allows you to specify special attributes of variables or
structure fields. This keyword is followed by an attribute specification inside
double parentheses. Eight attributes are currently defined for variables: aligned,
mode, nocommon, packed, section, transparent_union, unused, and weak. Other attributes are
available for functions (see Declaring Attributes of Functions) and for types (see
Specifying Attributes of Types).

You may also specify attributes with __ preceding and following each keyword.
This allows you to use them in header files without being concerned about a
possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

aligned ()
aligned (alignment)

This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On a
68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.
104

Extensions to the C Language Family
You can also specify the alignment of structure fields. For example, to create
a double-word aligned int pair, you could write:

struct foo {

int x[2] __attribute__ ((aligned (8)));

};

This is an alternative to creating a union with a double member that forces the
union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of
functions is determined by the machine’s requirements and cannot be
changed. You cannot specify alignment for a typedef name because such a
name is just an alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in
bytes) that you wish the compiler to use for a given variable or structure
field. Alternatively, you can leave out the alignment factor and just ask the
compiler to align a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute
specification, the compiler automatically sets the alignment for the declared
variable or field to the largest alignment which is ever used for any data type
on the target machine you are compiling for. Doing this can often make
copy operations more efficient, because the compiler can use whatever
instructions copy the biggest chunks of memory when performing copies to
or from the variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For
some linkers, the maximum supported alignment may be very very small.)
If your linker is only able to align variables up to a maximum of 8 byte
alignment, then specifying aligned(16) in an __attribute__ will still only provide
you with 8 byte alignment. See your linker documentation for further
information.

mode ()
mode (mode)
105

1 The Objective-C Compiler
This attribute specifies the data type for the declaration—whichever type
corresponds to the mode MODE. This in effect lets you request an integer or
floating point type according to its width.

You may also specify a mode of byte or __byte__ to indicate the mode
corresponding to a one-byte integer, word or __word__ for the mode of a one-word
integer, and pointer or __pointer__ for the mode used to represent pointers.

nocommon
nocommon

This attribute specifies requests GNU CC not to place a variable “common” but
instead to allocate space for it directly. If you specify the -fno-common flag, GNU
CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initialization of zeros.
A variable may only be initialized in one source file.

packed
packed

The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field,
unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows a:

struct foo {

char a;

int x[2] __attribute__ ((packed));

};

section ()
section (“section-name”)

Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable (or function) lives in a
particular section. For example, this small program uses several specific section
names:

struct duart a __attribute__ ((section (“DUART_A”))) = { 0 };

struct duart b __attribute__ ((section (“DUART_B”))) = { 0 };

char stack[10000] __attribute__ ((section (“STACK”))) = { 0 };

int init_data_copy __attribute__ ((section (“INITDATACOPY”))) = 0;

main() {
106

Extensions to the C Language Family
/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable, as
shown in the example. GNU CC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined
once, with the exception that uninitialized variables tentatively go in the
common (or bss) section and can be multiply “defined”. You can force a
variable to be initialized with the -fno-common flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute is
not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker
instead.

transparent_union
transparent_union

This attribute, attached to a function argument variable which is a union,
means to pass the argument in the same way that the first union member
would be passed. You can also use this attribute on a typedef for a union data
type; then it applies to all function arguments with that type.

unused
unused

This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GNU CC will not produce a warning for this variable.

weak
weak

The weak attribute is described in Declaring Attributes of Functions.

To specify multiple attributes, separate them by commas within the double
parentheses: for example, __attribute__ ((aligned (16), packed)).
107

1 The Objective-C Compiler
Specifying Attributes of Types
The keyword __attribute__ allows you to specify special attributes of struct and union
types when you define such types. This keyword is followed by an attribute
specification inside double parentheses. Three attributes are currently defined
for types: aligned, packed, and transparent_union. Other attributes are defined for
functions (see Declaring Attributes of Functions) and for variables (see
Specifying Attributes of Variables).

You may also specify any one of these attributes with __ preceding and following
its keyword. This allows you to use these attributes in header files without being
concerned about a possible macro of the same name. For example, you may use
__aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes either in a typedef
declaration or just past the closing curly brace of a complete enum, struct or
union type definition and the packed attribute only past the closing brace of a
definition.

aligned ()
aligned (alignment)

This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S {

short f[3];

} __attribute__ ((aligned (8));

typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each variable whose type is struct
S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary. On
a Sparc, having all variables of type struct S aligned to 8-byte boundaries allows
the compiler to use the ldd and std (doubleword load and store) instructions when
copying one variable of type struct S to another, thus improving run-time
efficiency.

Note that the alignment of any given struct or union type is required by the ANSI
C standard to be at least a perfect multiple of the lowest common multiple of
the alignments of all of the members of the struct or union in question. This means
that you can effectively adjust the alignment of a struct or union type by attaching
an aligned attribute to any one of the members of such a type, but the notation
illustrated in the example above is a more obvious, intuitive, and readable way
to request the compiler to adjust the alignment of an entire struct or union type.
108

Extensions to the C Language Family
As in the preceding example, you can explicitly specify the alignment (in
bytes) that you wish the compiler to use for a given struct or union type.
Alternatively, you can leave out the alignment factor and just ask the
compiler to align a type to the maximum useful alignment for the target
machine you are compiling for. For example, you could write:

struct S {

short f[3];

} __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute
specification, the compiler automatically sets the alignment for the type to
the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations
more efficient, because the compiler can use whatever instructions copy the
biggest chunks of memory when performing copies to or from the variables
which have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater than
or equal to that is 8, so the compiler sets the alignment for the entire struct S
type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler’s ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type. If you declare or use
arrays of variables of an efficiently-aligned type, then it is likely that your
program will also be doing pointer arithmetic (or subscripting, which
amounts to the same thing) on pointers to the relevant type, and the code
that the compiler generates for these pointer arithmetic operations will
often be more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to
arrange for variables to be aligned up to a certain maximum alignment. (For
some linkers, the maximum supported alignment may be very very small.)
If your linker is only able to align variables up to a maximum of 8 byte
alignment, then specifying aligned(16) in an __attribute__ will still only provide
you with 8 byte alignment. See your linker documentation for further
information.
109

1 The Objective-C Compiler
packed
packed

This attribute, attached to an enum, struct, or union type definition, specified that
the minimum required memory be used to represent the type.

Specifying this attribute for struct and union types is equivalent to specifying the
packed attribute on each of the structure or union members. Specifying the -fshort-
enums flag on the line is equivalent to specifying the packed attribute on all enum
definitions.

You may only specify this attribute after a closing curly brace on an enum
definition, not in a typedef declaration.

transparent_union
transparent_union

This attribute, attached to a union type definition, indicates that any variable
having that union type should, if passed to a function, be passed in the same way
that the first union member would be passed. For example:

union foo {

char a;

int x[2];

} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within the double
parentheses: for example, __attribute__ ((aligned (16), packed)).

An Inline Function is As Fast As a Macro
By declaring a function inline, you can direct GNU CC to integrate that function’s
code into the code for its callers. This makes execution faster by eliminating the
function-call overhead; in addition, if any of the actual argument values are
constant, their known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included. The effect on code size
is less predictable; object code may be larger or smaller with function inlining,
depending on the particular case. Inlining of functions is an optimization and it
really “works” only in optimizing compilation. If you don’t use -O, no function is
really inline.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int inc (int *a) { (*a)++; }

(If you are writing a header file to be included in ANSI C programs, write
__inline__ instead of inline. See Alternate Keywords)
110

Extensions to the C Language Family
You can also make all “simple enough” functions inline with the option -
finline-functions. Note that certain usages in a function definition can make it
unsuitable for inline substitution.

Note that in C and Objective-C, unlike C++, the inline keyword does not
affect the linkage of the function.

GNU CC automatically inlines member functions defined within the class
body of C++ programs even if they are not explicitly declared inline. (You can
override this with -fno-default-inline; See Options Controlling C++ Dialect)

When a function is both inline and static, if all calls to the function are
integrated into the caller, and the function’s address is never used, then the
function’s own assembler code is never referenced. In this case, GNU CC
does not actually output assembler code for the function, unless you specify
the option -fkeep-inline-functions. Some calls cannot be integrated for various
reasons (in particular, calls that precede the function’s definition cannot be
integrated, and neither can recursive calls within the definition). If there is
a nonintegrated call, then the function is compiled to assembler code as
usual. The function must also be compiled as usual if the program refers to
its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume that
there may be calls from other source files; since a global symbol can be
defined only once in any program, the function must not be defined in the
other source files, so the calls therein cannot be integrated. Therefore, a
non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the
definition is used only for inlining. In no case is the function compiled on
its own, not even if you refer to its address explicitly. Such an address
becomes an external reference, as if you had only declared the function, and
had not defined it.

This combination of inline and extern has almost the effect of a macro. The
way to use it is to put a function definition in a header file with these
keywords, and put another copy of the definition (lacking inline and extern) in
a library file. The definition in the header file will cause most calls to the
function to be inlined. If any uses of the function remain, they will refer to
the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear
whether it is better to inline or not, in this case, but GNU found that a
correct implementation when not optimizing was difficult. So they turned
it off.
111

1 The Objective-C Compiler
Assembler Instructions with C Expression Operands
In an assembler instruction using asm, you can now specify the operands of the
instruction using C expressions. This means no more guessing which registers
or memory locations will contain the data you want to use.

You must specify an assembler instruction template much like what appears in
a machine description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:

asm (“fsinx %1,%0” : “=f” (result) : “f” (angle));

Here angle is the C expression for the input operand while result is that of the
output operand. Each has ”f” as its operand constraint, saying that a floating
point register is required. The = in =f indicates that the operand is an output; all
output operands constraints must use =. The constraints use the same language
used in the machine description.

Each operand is described by an operand-constraint string followed by the C
expression in parentheses. A colon separates the assembler template from the
first output operand, and another separates the last output operand from the first
input, if any. Commas separate output operands and separate inputs. The total
number of operands is limited to ten or to the maximum number of operands in
any instruction pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must
be two consecutive colons surrounding the place where the output operands
would go.

Output operand expressions must be lvalues; the compiler can check this. The
input operands need not be lvalues. The compiler cannot check whether the
operands have data types that are reasonable for the instruction being executed.
It does not parse the assembler instruction template and does not know what it
means, or whether it is valid assembler input. The extended asm feature is most
often used for machine instructions that the compiler itself does not know exist.
If the output expression cannot be directly addressed (for example, it is a bit
field), your constraint must allow a register. In that case, GNU CC will use the
register as the output of the asm, and then store that register into the output.

The output operands must be write-only; GNU CC will assume that the values
in these operands before the instruction are dead and need not be generated.
Extended asm does not support input-output or read-write operands. For this
reason, the constraint character +, which indicates such an operand, may not be
used.
112

Extensions to the C Language Family
When the assembler instruction has a read-write operand, or an operand in
which only some of the bits are to be changed, you must logically split its
function into two separate operands, one input operand and one write-only
output operand. The connection between them is expressed by constraints
which say they need to be in the same location when the instruction
executes. You can use the same C expression for both operands, or different
expressions. For example, here we write the (fictitious) combine instruction
with bar as its read-only source operand and foo as its read-write destination:

asm (“combine %2,%0” : “=r” (foo) : “0” (foo), “g” (bar));

The constraint ”0” for operand 1 says that it must occupy the same location
as operand 0. A digit in constraint is allowed only in an input operand, and
it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be in the
same place as another. The mere fact that foo is the value of both operands
is not enough to guarantee that they will be in the same place in the
generated assembler code. The following would not work:

asm (“combine %2,%0” : “=r” (foo) : “r” (foo), “g” (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in
different registers; GNU CC knows no reason not to do so. For example, the
compiler might find a copy of the value of foo in one register and use it for
operand 1, but generate the output operand 0 in a different register
(copying it afterward to foo’s own address). Of course, since the register for
operand 1 is not even mentioned in the assembler code, the result will not
work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this, write a
third colon after the input operands, followed by the names of the
clobbered hard registers (given as strings). Here is a realistic example for the
Vax:

asm volatile (“movc3 %0,%1,%2” : /* no outputs */ : “g” (from), “g”
(to), “g” (count) : “r0”, “r1”, “r2”, “r3”, “r4”, “r5”);

If you refer to a particular hardware register from the assembler code, then
you will probably have to list the register after the third colon to tell the
compiler that the register’s value is modified. In many assemblers, the
register names begin with %; to produce one % in the assembler code, you
must write %% in the input.

If your assembler instruction can alter the condition code register, add cc to
the list of clobbered registers. GNU CC on some machines represents the
condition codes as a specific hardware register; cc serves to name this
113

1 The Objective-C Compiler
register. On other machines, the condition code is handled differently, and
specifying cc has no effect. But it is valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable fashion, add
memory to the list of clobbered registers. This will cause GNU CC to not keep
memory values cached in registers across the assembler instruction.

You can put multiple assembler instructions together in a single asm template,
separated either with newlines (written as \n) or with semicolons if the assembler
allows such semicolons. The GNU assembler allows semicolons and all UNIX
assemblers seem to do so. The input operands are guaranteed not to use any of
the clobbered registers, and neither will the output operands addresses, so you
can read and write the clobbered registers as many times as you like. Here is an
example of multiple instructions in a template; it assumes that the subroutine
_foo accepts arguments in registers 9 and 10:

asm (“movl %0,r9;movl %1,r10;call _foo” : /* no outputs */ : “g” (from),
“g” (to) : “r9”, “r10”);

Unless an output operand has the & constraint modifier, GNU CC may allocate
it in the same register as an unrelated input operand, on the assumption that the
inputs are consumed before the outputs are produced. This assumption may be
false if the assembler code actually consists of more than one instruction. In such
a case, use & for each output operand that may not overlap an input.

If you want to test the condition code produced by an assembler instruction, you
must include a branch and a label in the asm construct, as follows:

asm (“clr %0;frob %1;beq 0f;mov #1,%0;0:” : “g” (result) : “g” (input));

This assumes your assembler supports local labels, as the GNU assembler and
most UNIX assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The
compiler’s optimizers do not know about these jumps, and therefore they cannot
take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate
them in macros that look like functions. For example,

#define sin(x) \

({ double __value, __arg = (x); \

asm (“fsinx %1,%0”: “=f” (__value): “f” (__arg)); \

__value;

})
114

Extensions to the C Language Family
Here the variable __arg is used to make sure that the instruction operates on
a proper double value, and to accept only those arguments x which can convert
automatically to a double.

Another way to make sure the instruction operates on the correct data type
is to use a cast in the asm. This is different from using a variable __arg in that
it converts more different types. For example, if the desired type were int,
casting the argument to int would accept a pointer with no complaint, while
assigning the argument to an int variable named __arg would warn about
using a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes
that the instruction has no side effects except to change the output
operands. This does not mean that instructions with a side effect cannot be
used, but you must be careful, because the compiler may eliminate them if
the output operands aren’t used, or move them out of loops, or replace two
with one if they constitute a common subexpression. Also, if your
instruction does have a side effect on a variable that otherwise appears not
to change, the old value of the variable may be reused later if it happens to
be found in a register.

You can prevent an asm instruction from being deleted, moved significantly,
or combined, by writing the keyword volatile after the asm. For example:

#define set_priority(x) \

asm volatile (“set_priority %0”: /* no outputs */ : “g” (x))

An instruction without output operands will not be deleted or moved
significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that appear
insignificant to the compiler, such as across jump instructions. You can’t
expect a sequence of volatile asm instructions to remain perfectly
consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition code left
by the assembler instruction. However, when GNU attempted to
implement this, they found no way to make it work reliably. The problem
is that output operands might need reloading, which would result in
additional following “store” instructions. On most machines, these
instructions would alter the condition code before there was time to test it.
This problem doesn’t arise for ordinary “test” and “compare” instructions
because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI C
programs, write __asm__ instead of asm. See Alternate Keywords.
115

1 The Objective-C Compiler
Controlling Names Used in Assembler Code
You can specify the name to be used in the assembler code for a C function or
variable by writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm (“myfoo”) = 2;

This specifies that the name to be used for the variable foo in the assembler code
should be myfoo rather than the usual _foo.

On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the linker that
do not start with an underscore.

You cannot use asm in this way in a function definition; but you can get the same
effect by writing a declaration for the function before its definition and putting
asm there, like this:

extern func () asm (“FUNC”);

func (x, y) int x, y;

...

It is up to you to make sure that the assembler names you choose do not conflict
with any other assembler symbols. Also, you must not use a register name; that
would produce completely invalid assembler code. GNU CC does not as yet
have the ability to store static variables in registers. Perhaps that will be added.

Variables in Specified Registers
GNU C allows you to put a few global variables into specified hardware
registers. You can also specify the register in which an ordinary register variable
should be allocated.

• Global register variables reserve registers throughout the program. This may
be useful in programs such as programming language interpreters which
have a couple of global variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The
compiler’s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses.

• These local variables are sometimes convenient for use with the extended
asm feature See Assembler Instructions with C Expression Operands if you
want to write one output of the assembler instruction directly into a
particular register. (This will work provided the register you specify fits the
constraints specified for that operand in the asm.)
116

Extensions to the C Language Family
Defining Global Register Variables
You can define a global register variable in GNU C like this:

register int *foo asm (“a5”);

Here a5 is the name of the register which should be used. Choose a register
which is normally saved and restored by function calls on your machine, so
that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type. The register a5 would be
a good choice on a 68000 for a variable of pointer type. On machines with
register windows, be sure to choose a “global” register that is not affected
magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals. For
example, some 68000 operating systems call this register %a5.

Defining a global register variable in a certain register reserves that register
entirely for this use, at least within the current compilation. The register
will not be allocated for any other purpose in the functions in the current
compilation. The register will not be saved and restored by these functions.
Stores into this register are never deleted even if they would appear to be
dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or
from more than one thread of control, because the system library routines
may temporarily use the register for other things (unless you recompile
them specially for the task at hand).

It is not safe for one function that uses a global register variable to call
another such function foo by way of a third function lose that was compiled
without knowledge of this variable (that is, in a different source file in which
the variable wasn’t declared). This is because lose might save the register
and put some other value there. For example, you can’t expect a global
register variable to be available in the comparison-function that you pass to
qsort, since qsort might have put something else in that register. (If you are
prepared to recompile qsort with the same global register variable, you can
solve this problem.)

If you want to recompile qsort or other source files which do not actually use
your global register variable, so that they will not use that register for any
other purpose, then it suffices to specify the compiler option -ffixed-REG. You
need not actually add a global register declaration to their source code.
117

1 The Objective-C Compiler
A function which can alter the value of a global register variable cannot safely be
called from a function compiled without this variable, because it could clobber
the value the caller expects to find there on return. Therefore, the function
which is the entry point into the part of the program that uses the global register
variable must explicitly save and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value
it had at the time of the setjmp. On some machines, however, longjmp will not
change the value of global register variables. To be portable, the function that
called setjmp should make other arrangements to save the values of the global
register variables, and to restore them in a longjmp. This way, the same thing will
happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If
such a declaration could appear after function definitions, the declaration would
be too late to prevent the register from being used for other purposes in the
preceding functions.

Global register variables may not have initial values, because an executable file
has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 ... g7 are suitable registers, but certain
library functions, such as getwd, as well as the subroutines for division and
remainder, modify g3 and g4. g1 and g2 are local temporaries.

On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it will
not do to use more than a few of those.

Specifying Registers for Local Variables
You can define a local register variable with a specified register like this:

register int *foo asm (“a5”);

Here a5 is the name of the register which should be used. Note that this is the
same syntax used for defining global register variables, but for a local variable it
would appear within a function.

Naturally the register name is cpu-dependent, but this is not a problem, since
specific registers are most often useful with explicit assembler instructions (see
Assembler Instructions with C Expression Operands). Both of these things
generally require that you conditionalize your program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name
the registers; then you would need additional conditionals. For example, some
68000 operating systems call this register %a5.
118

Extensions to the C Language Family
Defining such a register variable does not reserve the register; it remains
available for other uses in places where flow control determines the
variable’s value is not live. However, these registers are made unavailable
for use in the reload pass. Excessive use of this feature may leave the
compiler too few available registers to compile certain functions.

Alternate Keywords
The option -traditional disables certain keywords; -ansi disables certain others.
This causes trouble when you want to use GNU C extensions, or ANSI C
features, in a general-purpose header file that should be usable by all
programs, including ANSI C programs and traditional ones. The keywords
asm, typeof and inline cannot be used since they won’t work in a program
compiled with -ansi, while the keywords const, volatile, signed, typeof and inline
won’t work in a program compiled with -traditional.

The way to solve these problems is to put __ at the beginning and end of
each problematical keyword. For example, use __asm__ instead of asm,
__const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords. It looks like this:

#ifndef __GNUC__

#define __asm__ asm

#endif

-pedantic causes warnings for many GNU C extensions. You can prevent such
warnings within one expression by writing __extension__ before the
expression. __extension__ has no effect aside from this.

Incomplete enum Types
You can define an enum tag without specifying its possible values. This
results in an incomplete type, much like what you get if you write struct foo
without describing the elements. A later declaration which does specify the
possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete.
However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum
more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.
119

1 The Objective-C Compiler
Function Names as Strings
GNU CC predefines two string variables to be the name of the current function.
The variable __FUNCTION__ is the name of the function as it appears in the source.
The variable __PRETTY_FUNCTION__ is the name of the function pretty printed in a
language specific fashion.

These names are always the same in a C function, but in a C++ function they
may be different. For example, this program:

extern “C” {

extern int printf (char *, ...);

}

class a {

public: sub (int i) {

printf (“__FUNCTION__ = %s\n”, __FUNCTION__);

printf (“__PRETTY_FUNCTION__ = %s\n”, __PRETTY_FUNCTION__);

}

};

int main (void) {

a ax;

ax.sub (0);

return 0;

}

gives this output:

__FUNCTION__ = sub __PRETTY_FUNCTION__ = int a::sub (int)

These names are not macros: they are predefined string variables. For example,
#ifdef __FUNCTION__ does not have any special meaning inside a function, since the
preprocessor does not do anything special with the identifier __FUNCTION__.

C++ Programming Notes

This section contains miscellaneous notes about programming in C++ with
Apple’s version of the GNU C++ compiler.

Multiple Virtual Inheritance
The C++ compiler invokes virtual functions correctly—except when a non-
virtual function is redeclared as virtual in a subclass. The compiler issues a
warning in this case, however.
120

C++ Programming Notes
In this example, the function f() in class Animal is redeclared virtual in the
subclass Mammal:

class Animal{ void f(); }

class Mammal : public virtual Animal{ virtual void f(); }

class Quadruped : public virtual Animal{ virtual void f(); }

class Dog : public Mammal, public Quadruped{ virtual void f(); }

class Terrier : public Dog{ virtual void f(); }

Invoking the method f() gives the wrong result in the following case:

void zoo(void) {

 Terrier* terrier = new Terrier;

 Mammal* mammal = terrier;

 Quadruped* quadruped = terrier;

 Dog* dog = terrier;

 quadruped->f();// Wrong - invokes Dog::f()

 mammal->f();// Right - invokes Terrier::f()

 dog->f();// Right - invokes Terrier::f()

}

The compiler warns that wrong code may be generated:

warning: method `Animal::f()' redeclared as `virtual Mammal::f()'

If you modify the above hierarchy by making the function f() in Animal virtual,
the invocation works correctly. The workaround is therefore to make f()
virtual throughout the hierarchy:

class Animal{ virtual void f(); }

class Mammal : public virtual Animal{ virtual void f(); }

class Quadruped : public virtual Animal{ virtual void f(); }

class Dog : public Mammal, public Quadruped{ virtual void f(); }

class Terrier : public Dog{ virtual void f(); }

Pointers to Member Functions
The C++ compiler flags as an error the use of member function pointers
with objects that might not recognize the pointer or its contents. Here's an
example of such errors:

class Mammal { public: void f(int); };

class Cat : public Mammal { public: void f(int); };

void g (Cat* aCat, Mammal* aMammal) {

void (Mammal::*mammal_f_ptr)(int) = &Mammal::f;

void (Cat::*cat_f_ptr)(int) = &Cat::f;

121

1 The Objective-C Compiler
(aCat->*mammal_f_ptr)(4); // OK

(aMammal->*cat_f_ptr)(5); // Error (1)

cat_f_ptr = &Cat::f; // OK

mammal_f_ptr = &Cat::f; // Error (2)

}

The local variables mammal_f_ptr and cat_f_ptr are pointers to member functions,
and the function g initializes them to point to the class Cat member function f. It
then attempts to invoke this function through these pointers. Statement (1) is
an error because you can't be sure that a Mammal object, aMammal, “responds to” a
Cat member pointer, cat_f_ptr—especially since cat_f_ptr points to a Cat member
function that Mammal would know nothing about. Even if cat_f_ptr were initialized
to a Mammal member function, cat_f_ptr cannot safely be applied to a Mammal object.
The assignment in (2) is an error because you cannot be sure that some member
function of a derived class (in this case Cat::f) is available in any of its base classes
(in this case Mammal).

Implicit Cast From void* to C++ Object Pointer
The ANSI C++ standard doesn’t allow implicit casts from void* to any C++ object
pointer type. When such a cast is detected, the C++ compiler issues a warning.
For example, if aClass is some arbitrary class, the following implicit cast produces
a warning:

void *vp1;

aClass *obj1, *obj2;

vp1 = &obj1;

obj2 = vp1;// Warning: implicitly casts void pointer

You can still explictly cast with:

obj2 = (aClass *)vp1;

Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs). If you
want to write code that checks whether these features are available, you can test
for the GNU compiler the same way as for C programs: check for a predefined
macro __GNUC__. You can also use __GNUG__ to test specifically for GNU C++ (see
The GNU C Preprocessor for more information).
122

Extensions to the C++ Language
Named Return Values in C++
GNU C++ extends the function-definition syntax to allow you to specify a
name for the result of a function outside the body of the definition, in C++
programs:

TYPE FUNCTIONNAME (ARGS) return RESULTNAME; { ... BODY ... }

You can use this feature to avoid an extra constructor call when a function
result has a class type. For example, consider a function m, declared as X v =
m ();, whose result is of class X:

X m () {

X b;

b.a = 23;

return b;

}

Although m appears to have no arguments, in fact it has one implicit
argument: the address of the return value. At invocation, the address of
enough space to hold v is sent in as the implicit argument. Then b is
constructed and its a field is set to the value 23. Finally, a copy constructor
(a constructor of the form X(X&)) is applied to b, with the (implicit) return
value location as the target, so that v is now bound to the return value.

But this is wasteful. The local b is declared just to hold something that will
be copied right out. While a compiler that combined an “elision” algorithm
with interprocedural data flow analysis could conceivably eliminate all of
this, it is much more practical to allow you to assist the compiler in
generating efficient code by manipulating the return value explicitly, thus
avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid
the temporary allocation and copying by naming r as your return value at the
outset, and assigning to its a field directly:

X m () return r;

{

r.a = 23;

}

The declaration of r is a standard, proper declaration, whose effects are
executed before any of the body of m.
123

1 The Objective-C Compiler
Functions of this type impose no additional restrictions; in particular, you can
execute return statements, or return implicitly by reaching the end of the function
body (“falling off the edge”). Cases like

X m () return r (23);

{

return;

}

(or even X m () return r (23); { }) are unambiguous, since the return value r has been
initialized in either case. The following code may be hard to read, but also works
predictably:

X m () return r;

{

X b;

return b;

}

The return value slot denoted by r is initialized at the outset, but the statement
return b; overrides this value. The compiler deals with this by destroying r (calling
the destructor if there is one, or doing nothing if there is not), and then
reinitializing r with b.

This extension is provided primarily to help people who use overloaded
operators, where there is a great need to control not just the arguments, but the
return values of functions. For classes where the copy constructor incurs a heavy
performance penalty (especially in the common case where there is a quick
default constructor), this is a major savings. The disadvantage of this extension
is that you do not control when the default constructor for the return value is
called: it is always called at the beginning.

Minimum and Maximum Operators in C++
It is very convenient to have operators which return the “minimum” or the
“maximum” of two arguments. In GNU C++ (but not in GNU C),

A <? B is the “minimum”, returning the smaller of the numeric values A and B;

A >? B is the “maximum”, returning the larger of the numeric values A and B.

These operations are not primitive in ordinary C++, since you can use a macro
to return the minimum of two things in C++, as in the following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use int min = MIN (i, j); to set MIN to the minimum value of variables
I and J.
124

Extensions to the C++ Language
However, side effects in X or Y may cause unintended behavior. For
example, MIN (i++, j++) will fail, incrementing the smaller counter twice. A
GNU C extension allows you to write safe macros that avoid this kind of
problem (see Naming an Expression’s Type). However, writing MIN and MAX
as macros also forces you to use function-call notation notation for a
fundamental arithmetic operation. Using GNU C++ extensions, you can
write int min = i <? j; instead.

Since <? and >? are built into the compiler, they properly handle expressions
with side-effects; int min = i++ <? j++; works correctly.

“goto” and Destructors in GNU C++
In C++ programs, you can safely use the goto statement. When you use it to
exit a block which contains aggregates requiring destructors, the destructors
will run before the goto transfers control. (In ANSI C++, goto is restricted to
targets within the current block.)

The compiler still forbids using goto to enter a scope that requires
constructors.

Declarations and Definitions in One Header
C++ object definitions can be quite complex. In principle, your source code
will need two kinds of things for each object that you use across more than
one source file. First, you need an “interface” specification, describing its
structure with type declarations and function prototypes. Second, you need
the “implementation” itself. It can be tedious to maintain a separate
interface description in a header file, in parallel to the actual
implementation. It is also dangerous, since separate interface and
implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For now, you must use
one of two #pragma commands; in a future release of GNU C++, an
alternative mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with #pragma
interface in the source code. This allows the compiler to use the header file
only as an interface specification when ordinary source files incorporate it
with #include. In the single source file where the full implementation belongs,
you can use either a naming convention or #pragma implementation to indicate
this alternate use of the header file.
125

1 The Objective-C Compiler
#pragma interface
#pragma interface

#pragma interface “ subdir/objects .h”

Use this directive in header files that define object classes, to save space in most
of the object files that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,
and the internal tables that implement virtual functions) must be kept in each
object file that includes class definitions. You can use this pragma to avoid such
duplication. When a header file containing #pragma interface is included in a
compilation, this auxiliary information will not be generated (unless the main
input source file itself uses #pragma implementation’). Instead, the object files will
contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you
must specify the same string to #pragma implementation.

#pragma implementation
#pragma implementation

#pragma implementation “ objects .h”

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header
file, in turn, should use #pragma interface. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation files.

If you use #pragma implementation with no argument, it applies to an include file with
the same basename as your source file. (A file’s “basename” was the name
stripped of all leading path information and of trailing suffixes, such as .h or .C or
.cc.) For example, in allclass.cc, #pragma implementation by itself is equivalent to #pragma
implementation “allclass.h”.

In versions of GNU C++ prior to 2.6.0 allclass.h was treated as an implementation
file whenever you would include it from allclass.cc even if you never specified
#pragma implementation. This was deemed to be more trouble than it was worth,
however, and disabled.

If you use an explicit #pragma implementation, it must appear in your source file before
you include the affected header files.

Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use #include to include the header file;
#pragma implementation only specifies how to use the file—it doesn’t actually include
it.)
126

Extensions to the C++ Language
There is no way to split up the contents of a single header file into multiple
implementation files.

#pragma implementation and #pragma interface also have an effect on function
inlining.

If you define a class in a header file marked with #pragma interface, the effect
on a function defined in that class is similar to an explicit extern declaration—
the compiler emits no code at all to define an independent version of the
function. Its definition is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that
declares it as #pragma implementation, the compiler emits code for the function
itself; this defines a version of the function that can be found via pointers (or
by callers compiled without inlining). If all calls to the function can be
inlined, you can avoid emitting the function by compiling with -fno-implement-
inlines. If any calls were not inlined, you will get linker errors.

#pragma cplusplus
#pragma cplusplus

This pragma can be used to resolve the problem of having C++ system
header files. All system header files are by default included in implicit extern
"C". When #pragma cplusplus appears in a header file, the rest of that file is
embedded in an implicit extern "C++" block.

An error is reported if this pragma appears inside an explicit extern "C" {...}.

Type Abstraction using Signatures
In GNU C++, you can use the keyword signature to define a completely
abstract class interface as a datatype. You can connect this abstraction with
actual classes using signature pointers. If you want to use signatures, run the
GNU compiler with the -fhandle-signatures command-line option. (With this
option, the compiler reserves a second keyword sigof as well, for a future
extension.)

Roughly, signatures are type abstractions or interfaces of classes, and are
similar to Objective-C’s protocols. Some other languages have similar
facilities. C++ signatures are related to ML’s signatures, Haskell’s type
classes, definition modules in Modula-2, interface modules in Modula-3,
abstract types in Emerald, type modules in Trellis/Owl, categories in
Scratchpad II, and types in POOL-I. For a more detailed discussion of
signatures, see Signatures: A Language Extension for Improving Type Abstraction
and Subtype Polymorphism in C++ by Gerald Baumgartner and Vincent F.
Russo (Tech report CSD-TR-95-051, Dept. of Computer Sciences, Purdue
127

1 The Objective-C Compiler
University, August 1995, a slightly improved version appeared in Software—
Practice & Experience, 25(8), pp. 863-889, August 1995). You can get the tech
report by anonymous FTP from ftp.cs.purdue.edu in pub/gb/Signature-design.ps.gz.

Syntactically, a signature declaration is a collection of member function
declarations and nested type declarations. For example, this signature
declaration defines a new abstract type S with member functions int foo () and int
bar (int):

signature S {

int foo ();

int bar (int);

};

Since signature types do not include implementation definitions, you cannot
write an instance of a signature directly. Instead, you can define a pointer to any
class that contains the required interfaces as a “signature pointer”. Such a class
“implements” the signature type.

To use a class as an implementation of S, you must ensure that the class has
public member functions int foo () and int bar (int). The class can have other member
functions as well, public or not; as long as it offers what’s declared in the
signature, it is suitable as an implementation of that signature type.

For example, suppose that C is a class that meets the requirements of signature
S (C “conforms to” S). Then

C obj;

S * p = &obj;

defines a signature pointer p and initializes it to point to an object of type C. The
member function call int i = p->foo (); executes obj.foo ().

Abstract virtual classes provide somewhat similar facilities in standard C++.
There are two main advantages to using signatures instead:

1. Subtyping becomes independent from inheritance. A class or signature type
T is a subtype of a signature type S independent of any inheritance hierarchy
as long as all the member functions declared in S are also found in T. So you
can define a subtype hierarchy that is completely independent from any
inheritance (implementation) hierarchy, instead of being forced to use types
that mirror the class inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as
implementations of a signature type. If those class hierarchies are only
available in compiled form, you’re out of luck with abstract virtual classes,
since an abstract virtual class cannot be retrofitted on top of existing class
128

Known Causes of Trouble with GNU CC
hierarchies. So you would be required to write interface classes as
subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration can
contain member function definitions as well as member function
declarations. A signature member function with a full definition is called a
default implementation; classes need not contain that particular interface in
order to conform. For example, a class C can conform to the signature

signature T {

int f (int);

int f0 () {

return f (0);

};

};

whether or not C implements the member function int f0 (). If you define C::f0,
that definition takes precedence; otherwise, the default implementation
S::f0 applies.

Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC. Most
of these are not GNU CC bugs per se—if they were, GNU would fix them.
But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing
features that are too much work to add, and some are places where people’s
opinions differ as to what is best.

Problems in the Compiler

• There are several obscure cases of mis-using struct, union, and enum
tags that are not detected as errors by the compiler.

• When -pedantic-errors is specified, GNU C will incorrectly give an error
message when a function name is specified in an expression involving
the comma operator.

• Loop unrolling doesn’t work properly for certain C++ programs. This is
a bug in the C++ front end. It sometimes emits incorrect debug info,
and the loop unrolling code is unable to recover from this error.
129

1 The Objective-C Compiler
Interoperation
This section lists various difficulties encountered in using GNU C or GNU C++
together with other compilers or with the assemblers, linkers, libraries and
debuggers on certain systems.

GNU C++ does not do name mangling in the same way as other C++ compilers.
This means that object files compiled with one compiler cannot be used with
another.

This effect is intentional, to protect you from more subtle problems. Compilers
differ as to many internal details of C++ implementation, including: how class
instances are laid out, how multiple inheritance is implemented, and how virtual
function calls are handled. If the name encoding were made the same, your
programs would link against libraries provided from other compilers—but the
programs would then crash when run. Incompatible libraries are then detected
at link time, rather than at run time.

• Older GDB versions sometimes fail to read the output of GNU CC version
2. If you have trouble, get GDB version 4.4 or later.

• Use of -I/usr/include may cause trouble.

• On a Sparc, GNU CC aligns all values of type double on an 8-byte boundary,
and it expects every double to be so aligned. The Sun compiler usually gives
double values 8-byte alignment, with one exception: function arguments of
type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address of an
argument of type double and passes this pointer of type double * to a function
compiled with GNU CC, dereferencing the pointer may cause a fatal
signal.

One way to solve this problem is to compile your entire program with GNU
CC. Another solution is to modify the function that is compiled with Sun
CC to copy the argument into a local variable; local variables are always
properly aligned. A third solution is to modify the function that uses the
pointer to dereference it via the following function access_double instead of
directly with *:

inline double access_double (double *unaligned_ptr) {

union d2i {

double d;

int i[2];

};

union d2i *p = (union d2i *) unaligned_ptr;

union d2i u;
130

Known Causes of Trouble with GNU CC
u.i[0] = p->i[0];

u.i[1] = p->i[1];

return u.d;

}

Storing into the pointer can be done likewise with the same union.

• On Solaris, the malloc function in the libmalloc.a library may allocate
memory that is only 4 byte aligned. Since GNU CC on the Sparc
assumes that doubles are 8 byte aligned, this may result in a fatal signal
if doubles are stored in memory allocated by the libmalloc.a library.

The solution is to not use the libmalloc.a library. Use instead malloc and
related functions from libc.a; they do not have this problem.

• The 128-bit long double format that the Sparc port supports currently
works by using the architecturally defined quad-word floating point
instructions. Since there is no hardware that supports these instructions
they must be emulated by the operating system. Long doubles do not
work in Sun OS versions 4.0.3 and earlier, because the kernel emulator
uses an obsolete and incompatible format. Long doubles do not work in
Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles
do work on Sun OS versions 4.1.2 and higher, but GNU CC does not
enable them by default. Long doubles appear to work in Sun OS 5.x
(Solaris 2.x).

• On HP-UX version 9.01 on the HP PA, the HP compiler cc does not
compile GNU CC correctly. We do not yet know why. However, GNU
CC compiled on earlier HP-UX versions works properly on HP-UX
9.01 and can compile itself properly on 9.01.

• On the HP PA machine, ADB sometimes fails to work on functions
compiled with GNU CC. Specifically, it fails to work on functions that
use alloca or variable-size arrays. This is because GNU CC doesn’t
generate HP-UX unwind descriptors for such functions. It may even be
impossible to generate them.

• Taking the address of a label may generate errors from the HP-UX PA
assembler. GAS for the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will
not work when using the HP assembler. There simply is no way for
GCC to specify what registers hold arguments for static functions when
using the HP assembler. GAS for the PA does not have this problem.
131

1 The Objective-C Compiler
• In extremely rare cases involving some very large functions you may receive
errors from the HP linker complaining about an out of bounds unconditional
branch offset. This used to occur more often in previous versions of GNU
CC, but is now exceptionally rare. If you should run into it, you can work
around by making your function smaller.

• GNU CC compiled code sometimes emits warnings from the HP-UX
assembler of the form:

(warning) Use of GR3 when frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

Incompatibilities of GNU CC
There are several noteworthy incompatibilities between GNU C and most
existing (non-ANSI) versions of C. The -traditional option eliminates many of
these incompatibilities, but not all, by telling GNU C to behave like the other C
compilers.

• GNU CC normally makes string constants read-only. If several identical-
looking string constants are used, GNU CC stores only one copy of the
string.

One consequence is that you cannot call mktemp with a string constant
argument. The function mktemp always alters the string its argument points
to.

Another consequence is that sscanf does not work on some systems when
passed a string constant as its format control string or input. This is because
sscanf incorrectly tries to write into the string constant. Likewise fscanf and
scanf.

The best solution to these problems is to change the program to use char-
array variables with initialization strings for these purposes instead of string
constants. But if this is not possible, you can use the -fwritable-strings flag,
which directs GNU CC to handle string constants the same way most C
compilers do. -traditional also has this effect, among others.

• -2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so (following the
ANSI C rules) its data type is unsigned long int. Negating this value yields
2147483648 again.
132

Known Causes of Trouble with GNU CC
• GNU CC does not substitute macro arguments when they appear
inside of string constants. For example, the following macro in GNU
CC

#define foo(a) “a”

will produce output ”a” regardless of what the argument A is.

• The -traditional option directs GNU CC to handle such cases (among
others) in the old-fashioned (non-ANSI) fashion.

• When you use setjmp and longjmp, the only automatic variables guaranteed
to remain valid are those declared volatile. This is a consequence of
automatic register allocation. Consider this function:

jmp_buf j;

foo () {

int a, b;

a = fun1 ();

if (setjmp (j))

return a;

a = fun2 ();

/* longjmp (j) may occur in fun3. */

return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp
occurs. If a is allocated in a register, then its first value is restored;
otherwise, it keeps the last value stored in it.

If you use the -W option with the -O option, you will get a warning when
GNU CC thinks such a problem might be possible.

The -traditional option directs GNU C to put variables in the stack by
default, rather than in registers, in functions that call setjmp. This results
in the behavior found in traditional C compilers.

• Programs that use preprocessing directives in the middle of macro
arguments do not work with GNU CC. For example, a program like this
will not work:

foobar (#define luser hack)

ANSI C does not permit such a construct, and neither does GNU
CC—even with -traditional.
133

1 The Objective-C Compiler
• Declarations of external variables and functions within a block apply only to
the block containing the declaration. In other words, they have the same
scope as any other declaration in the same place.

In some other C compilers, a extern declaration affects all the rest of the file
even if it happens within a block.

The -traditional option directs GNU C to treat all extern declarations as global,
like traditional compilers.

• In traditional C, you can combine long, etc., with a typedef name, as shown
here:

typedef int foo;

typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers require an
explicit int. Because this criterion is expressed by Bison grammar rules
rather than C code, the -traditional flag cannot alter it.

• PCC allows typedef names to be used as function parameters. The difficulty
described immediately above applies here too.

• PCC allows whitespace in the middle of compound assignment operators
such as +=. GNU CC, following the ANSI standard, does not allow this. The
difficulty described immediately above applies here too.

• GNU CC complains about unterminated character constants inside of
preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if these
comments contain apostrophes, GNU CC will probably report an error. For
example, this code would produce an error:

#if 0

You can’t expect this to work.

#endif

The best solution to such a problem is to put the text into an actual C
comment delimited by /*...*/. However, -traditional suppresses these error
messages.

• Many user programs contain the declaration long time ();. In the past, the
system header files on many systems did not actually declare time, so it did
not matter what type your program declared it to return. But in systems with
ANSI C headers, time is declared to return time_t, and if that is not the same
as long, then long time (); is erroneous.
134

Known Causes of Trouble with GNU CC
The solution is to change your program to use time_t as the return type
of time.

• When compiling functions that return float, PCC converts it to a double.
GNU CC actually returns a float. If you are concerned with PCC
compatibility, you should declare your functions to return double; you
might as well say what you mean.

• When compiling functions that return structures or unions, GNU CC
output code normally uses a method different from that used by many
other compilers. As a result, code compiled with GNU CC cannot call a
structure-returning function compiled with PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which
is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or union
with any other size is stored into an address supplied by the caller
(usually in a special, fixed register, but on some machines it is passed
on the stack). The machine-description macros STRUCT_VALUE and
STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static storage, and
then returning the address of that storage as if it were a pointer value.
The caller must copy the data from that memory area to the place
where the value is wanted. GNU CC does not use this method
because it is slower and nonreentrant.

• On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GNU CC on most of these machines
uses a compatible convention when returning structures and unions in
memory, but still returns small structures and unions in registers.

You can tell GNU CC to use a compatible convention for all structure
and union returning with the option -fpcc-struct-return.

• GNU C complains about program fragments such as 0x74ae-0x4000 which
appear to be two hexadecimal constants separated by the minus
operator. Actually, this string is a single “preprocessing token”. Each
such token must correspond to one token in C. Since this does not,
GNU C prints an error message. Although it may appear obvious that
what is meant is an operator and two values, the ANSI C standard
specifically requires that this be treated as erroneous.
135

1 The Objective-C Compiler
A “preprocessing token” is a “preprocessing number” if it begins with a
digit and is followed by letters, underscores, digits, periods and e+, e-, E+, or
E- character sequences.

To make the above program fragment valid, place whitespace in front of
the minus sign. This whitespace will end the preprocessing number.

Disappointments and Misunderstandings
These problems are perhaps regrettable, but we don’t know any practical way
around them.

• Certain local variables aren’t recognized by debuggers when you compile
with optimization.

This occurs because sometimes GNU CC optimizes the variable out of
existence. There is no way to tell the debugger how to compute the value
such a variable “would have had”, and it is not clear that would be desirable
anyway. So GNU CC simply does not mention the eliminated variable
when it writes debugging information.

You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

• Users often think it is a bug when GNU CC reports an error for code like
this:

int foo (struct mumble *);

struct mumble {

...

};

int foo (struct mumble *x) {

...

}

This code really is erroneous, because the scope of struct mumble in the
prototype is limited to the argument list containing it. It does not refer to
the struct mumble defined with file scope immediately below—they are two
unrelated types with similar names in different scopes.

But in the definition of foo, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype do not
match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard specifies. It
is easy enough for you to make your code work by moving the definition of
136

Known Causes of Trouble with GNU CC
struct mumble above the prototype. It’s not worth being incompatible with
ANSI C just to avoid an error for the example shown above.

• Accesses to bitfields even in volatile objects works by accessing larger
objects, such as a byte or a word. You cannot rely on what size of object
is accessed in order to read or write the bitfield; it may even vary for a
given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed,
use volatile but do not use bitfields.

• On 68000 and i386 systems, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can find that
a floating point value which is not a NaN is not equal to itself. This
results from the fact that the floating point registers hold a few more bits
of precision than fit in a double in memory. Compiled code moves values
between memory and floating point registers at its convenience, and
moving them into memory truncates them.

You can partially avoid this problem by using the -ffloat-store or -ffppc
options (see Options That Control Optimization earlier in this
document).

Common Misunderstandings with GNU C++
C++ is a complex language and an evolving one, and its standard definition
(the ANSI C++ draft standard) is also evolving. As a result, your C++
compiler may occasionally surprise you, even when its behavior is correct.
This section discusses some areas that frequently give rise to questions of
this sort.

Declare and Define Static Members
When a class has static data members, it is not enough to declare the static
member; you must also define it. For example:

class Foo {

...

void method();

static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar,
and a member function named Foo::method. But you still need to define both
method and bar elsewhere. According to the draft ANSI standard, you must
supply an initializer in one (and only one) source file, such as:
137

1 The Objective-C Compiler
int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a
result, when you switch to g++ from one of these compilers, you may discover
that a program that appeared to work correctly in fact does not conform to the
standard: g++ reports as undefined symbols any static data members that lack
definitions.

Temporaries May Vanish Before You Expect
It is dangerous to use pointers or references to portions of a temporary object.
The compiler may very well delete the object before you expect it to, leaving a
pointer to garbage. The most common place where this problem crops up is in
classes like the libg++ String class, that define a conversion function to type char
* or const char *. However, any class that returns a pointer to some internal
structure is potentially subject to this problem.

For example, a program may use a function strfunc that returns String objects, and
another function charfunc that operates on pointers to char:

String strfunc ();

void charfunc (const char *);

In this situation, it may seem natural to write charfunc (strfunc ()); based on the
knowledge that class String has an explicit conversion to char pointers. However,
what really happens is akin to charfunc (strfunc ().convert ());, where the convert method
is a function to do the same data conversion normally performed by a cast. Since
the last use of the temporary String object is the call to the conversion function,
the compiler may delete that object before actually calling charfunc. The compiler
has no way of knowing that deleting the String object will invalidate the pointer.
The pointer then points to garbage, so that by the time charfunc is called, it gets
an invalid argument.

Code like this may run successfully under some other compilers, especially
those that delete temporaries relatively late. However, the GNU C++ behavior
is also standard-conforming, so if your program depends on late destruction of
temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI C++
committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the temporary a name,
which forces it to remain until the end of the scope of the name. For example:

String& tmp = strfunc ();

charfunc (tmp);
138

Legal Considerations
Warning Messages and Error Messages
The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your program.
GNU CC reports errors with the source file name and line number where
the problem is apparent.

Warnings report other unusual conditions in your code that may indicate a
problem, although compilation can (and does) proceed. Warning messages
also report the source file name and line number, but include the text warning:
to distinguish them from error messages.

Warnings may indicate danger points where you should check to make sure
that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the -W options (for
instance, -Wall requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never
gratuitously rejects a program whose meaning is clear merely because (for
instance) it fails to conform to a standard. In some cases, however, the C and
C++ standards specify that certain extensions are forbidden, and a
diagnostic must be issued by a conforming compiler. The -pedantic option tells
GNU CC to issue warnings in such cases; -pedantic-errors says to make them
errors instead. This does not mean that all non-ANSI constructs get
warnings or errors.

See Options to Request or Suppress Warnings for more detail on these and
related command-line options.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that the
sections entitled “GNU General Public License,” “Funding for Free
Software,” and “Protect Your Freedom—Fight Look And Feel” are included
139

1 The Objective-C Compiler
exactly as in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
the sections entitled “GNU General Public License,” “Funding for Free
Software,” and “Protect Your Freedom—Fight Look And Feel”, and this permission
notice, may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if
you modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make
140

Legal Considerations
sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
141

1 The Objective-C Compiler
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

c. If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the
Program.
142

Legal Considerations
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the
source along with the object code.
143

1 The Objective-C Compiler
5. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
144

Legal Considerations
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation
as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
145

1 The Objective-C Compiler
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

13. END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

ONE LINE TO GIVE THE PROGRAM’S NAME AND A BRIEF IDEA OF
WHAT IT DOES.

Copyright (C) 19YY NAME OF AUTHOR

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version. This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
146

Legal Considerations
Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type show w. This is free software, and you are welcome to
redistribute it under certain conditions; type show c for details.

The hypothetical commands show w and show c should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than show w and show c; they could even be mouse-
clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
Gnomovision (which makes passes at compilers) written by James Hacker.

SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.
147

1 The Objective-C Compiler
148

Index

Index
A

automatic register allocation 76

C

C programming notes 75
automatic register allocation 76
external declarations 77
function prototypes 75
static strings 75
string constants 75
typedef and type modifiers 77

E

external declarations and the C
compiler 77

F

function prototypes 75

P

prototype, function 75

S

static strings and the C compiler 75
string constants and the C compiler 75

T

typedef and type modifiers 77
151

Index
152

	Contents
	The Objective-C Compiler
	Which Language?
	GNU CC Command Options
	Options Controlling the Kind of Output
	Specifying the language
	-x

	Specifying which stages of compilation to peform
	-c
	-S
	-E

	Other output options
	-o
	-v
	-pipe

	Compiling C++ Programs
	Options Controlling C Dialect
	-ansi
	-ObjC
	-fno-asm
	-fno-builtin
	-trigraphs
	-traditional
	-traditional-cpp
	-fcond-mismatch
	-fpascal-strings
	-funsigned-char
	-fsigned-char
	-fsigned-bitfields -funsigned-bitfields -fno-signed-bitfields -fno-unsigned-bitfields
	-fwritable-strings
	-fallow-single-precision

	Options Controlling C++ Dialect
	-ObjC++ (Not supported on PDO platforms)
	-fno-access-control
	-fall-virtual
	-fcheck-new
	-fconserve-space
	-fenum-int-equiv
	-fexternal-templates
	-falt-external-templates
	-ffor-scope -fno-for-scope
	-fno-gnu-keywords
	-fno-implicit-templates
	-fhandle-exceptions
	-fhandle-signatures
	-fhuge-objects
	-fno-implement-inlines
	-fmemoize-lookups -fsave-memoized
	-fstrict-prototype
	-fno-nonnull-objects
	-foperator-names
	-fthis-is-variable
	-fvtable-thunks
	-nostdinc++
	-traditional
	-fno-default-inline
	-Wenum-clash -Woverloaded-virtual -Wtemplate-debugging
	+e

	Options to Request or Suppress Warnings
	-fsyntax-only
	-pedantic
	-pedantic-errors
	-w
	-Wno-import
	-Wno-precomp
	-Wchar-subscripts
	-Wcomment
	-Wformat
	-Wimplicit
	-Wno-four-char-constants
	-Wparentheses
	-Wreturn-type
	-Wstyle
	-Wswitch
	-Wtrigraphs
	-Wunused
	-Wuninitialized
	-Wenum-clash
	-Wreorder (C++ only)
	-Wtemplate-debugging (C++ only)
	-Wall
	-Wmost -W
	-Wtraditional
	-Wshadow
	-Wid-clash-len
	-Wlarger-than-len
	-Wpointer-arith
	-Wbad-function-cast
	-Wcast-qual
	-Wcast-align
	-Wwrite-strings
	-Wconversion
	-Waggregate-return
	-Wstrict-prototypes
	-Wmissing-prototypes
	-Wmissing-declarations
	-Wredundant-decls
	-Wnested-externs
	-Winline
	-Woverloaded-virtual
	-Wsynth
	-Werror

	Options for Debugging Your Program or GNU CC
	-g
	-gcodeview
	-ggdb
	-gstabs
	-gstabs+
	-g -ggdb -gstabs -gcodeview (on Windows NT only)
	-p (Not available on Windows NT)
	-pg (Not available on Windows NT)
	-a
	-d
	-fpretend-float
	-save-temps
	-print-file-name
	-print-prog-name
	-print-libgcc-file-name
	-print-search-dirs

	Options That Control Optimization
	-O -O1
	-O2
	-O3
	-O0
	-ffloat-store
	-ffppc (Not available on Windows NT)
	-fno-default-inline
	-fno-defer-pop
	-fforce-mem
	-fforce-addr
	-fomit-frame-pointer
	-fno-inline
	-finline-functions
	-fkeep-inline-functions
	-fno-function-cse
	-ffast-math
	-fstrength-reduce
	-fthread-jumps
	-fcse-follow-jumps
	-fcse-skip-blocks
	-frerun-cse-after-loop
	-fexpensive-optimizations
	-fdelayed-branch (Not available on Windows NT)
	-fschedule-insns
	-fschedule-insns2
	-fcaller-saves
	-funroll-loops
	-funroll-all-loops
	-fno-peephole

	Options Controlling the Preprocessor
	-framework
	-include
	-imacros
	-idirafter
	-iprefix
	-iwithprefix
	-iwithprefixbefore
	-isystem
	-nostdinc
	-undef
	-E
	-C
	-P
	-M
	-MM
	-MD
	-MMD
	-MG
	-H
	-A
	-D
	-D
	-U
	-dM
	-dD
	-dN
	-trigraphs
	-Wp

	Passing Options to the Assembler
	-W

	Options for Linking
	object-file-name
	-c -S -E
	-l
	-framework
	-nostartfiles
	-nodefaultlibs
	-nostdlib
	-s
	-static
	-shared
	-symbolic
	-undefined error, -undefined warning, -undefined suppress
	-Xlinker
	-Wl
	-u

	Options for Directory Search
	-I
	-I-
	-L
	-F
	-B

	Hardware Models and Configurations
	M680x0 Options
	-m68881
	-m68030
	-m68040
	-m68020-40
	-malign-mac68k
	-malign-power
	-msoft-float
	-mshort
	-mno-align-mac68k
	-mno-align-power
	-mnobitfield
	-mbitfield
	-mrtd

	SPARC Options
	-mno-app-regs -mapp-regs
	-mfpu -mhard-float
	-mno-fpu -msoft-float
	-mhard-quad-float
	-msoft-quad-float
	-mno-epilogue -mepilogue
	-mno-flat -mflat
	-mno-unaligned-doubles -munaligned-doubles
	-mv8 -msparclite
	-mcypress -msupersparc
	-mmedlow
	-mmedany
	-mint64
	-mlong32
	-mlong64 -mint32
	-mstack-bias -mno-stack-bias

	Intel 386 Options
	-m486 -m386
	-mieee-fp -mno-ieee-fp
	-mno-fp-ret-in-387
	-mno-fancy-math-387
	-malign-double -mno-align-double
	-munaligned-text (Not available on Windows NT)
	-msvr3-shlib -mno-svr3-shlib
	-mno-wide-multiply -mwide-multiply
	-mrtd
	-mreg-alloc
	-mregparm
	-malign-loops
	-malign-jumps
	-malign-functions

	HPPA Options
	-mpa-risc-1-0
	-mpa-risc-1-1
	-mjump-in-delay
	-mmillicode-long-calls
	-mdisable-fpregs
	-mdisable-indexing
	-mfast-indirect-calls
	-mportable-runtime
	-mgas
	-mschedule
	-msoft-float

	Options for Code Generation Conventions
	-dynamic, -static
	-fpcc-struct-return
	-freg-struct-return
	-fshort-enums
	-fshort-double
	-fshared-data
	-fno-common
	-fno-ident
	-fno-gnu-linker
	-finhibit-size-directive
	-fverbose-asm
	-fvolatile
	-fvolatile-global
	-fpic
	-fPIC
	-ffixed
	-fcall-used
	-fcall-saved
	-fpack-struct
	+e0 +e1

	Environment Variables Affecting GNU CC
	TMPDIR
	GCC_EXEC_PREFIX
	COMPILER_PATH
	LIBRARY_PATH
	C_INCLUDE_PATH CPLUS_INCLUDE_PATH OBJC_INCLUDE_PATH
	DEPENDENCIES_OUTPUT

	C Programming Notes
	String Constants and Static Strings
	Function Prototyping
	Automatic Register Allocation
	Declarations of External Variables and Functions
	typedef and Type Modifiers
	Identifying the Compiler Version
	Writing Architecture-Independent Code
	__ARCHITECTURE__
	__BIG_ENDIAN__, __LITTLE_ENDIAN__

	Objective-C Programming Notes
	Accessing Instance Variables in Class Methods
	Syntax Checking
	Sending Objective-C Messages to Converted C++ Objects

	Extensions to the C Language Family
	Statements and Declarations in Expressions
	Locally Declared Labels
	Labels as Values
	Nested Functions
	Constructing Function Calls
	__builtin_apply_args ()
	__builtin_apply ()
	__builtin_return ()

	Naming an Expression’s Type
	Referring to a Type with “typeof”
	Generalized Lvalues
	Conditionals with Omitted Operands
	Double-Word Integers
	Complex Numbers
	Arrays of Length Zero
	Arrays of Variable Length
	Macros with Variable Numbers of Arguments
	Non-Lvalue Arrays May Have Subscripts
	Arithmetic on “void”- and Function-Pointers
	Non-Constant Initializers
	Constructor Expressions
	Labeled Elements in Initializers
	Case Ranges
	Cast to a Union Type
	Declaring Attributes of Functions
	noreturn
	const
	format (archetype, string-index, first-to-check)
	section (“section-name”)
	constructor destructor
	unused
	weak
	alias ()
	regparm ()
	stdcall
	stdcall

	Prototypes and Old-Style Function Definitions
	C++ Style Comments
	Dollar Signs in Identifier Names
	The Character ESC in Constants
	Inquiring on Alignment of Types or Variables
	Specifying Attributes of Variables
	aligned ()
	mode ()
	nocommon
	packed
	section ()
	transparent_union
	unused
	weak

	Specifying Attributes of Types
	aligned ()
	packed
	transparent_union

	An Inline Function is As Fast As a Macro
	Assembler Instructions with C Expression Operands
	Controlling Names Used in Assembler Code
	Variables in Specified Registers
	Defining Global Register Variables
	Specifying Registers for Local Variables

	Alternate Keywords
	Incomplete enum Types
	Function Names as Strings

	C++ Programming Notes
	Multiple Virtual Inheritance
	Pointers to Member Functions
	Implicit Cast From void* to C++ Object Pointer

	Extensions to the C++ Language
	Named Return Values in C++
	Minimum and Maximum Operators in C++
	 goto” and Destructors in GNU C++
	Declarations and Definitions in One Header
	#pragma interface
	#pragma implementation
	#pragma cplusplus

	Type Abstraction using Signatures

	Known Causes of Trouble with GNU CC
	Problems in the Compiler
	Interoperation
	Incompatibilities of GNU CC
	Disappointments and Misunderstandings
	Common Misunderstandings with GNU C++
	Declare and Define Static Members
	Temporaries May Vanish Before You Expect

	Warning Messages and Error Messages

	Legal Considerations
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	NO WARRANTY

	How to Apply These Terms to Your New Programs

	Index

