
 



 

Technical Publications
© Apple Computer, Inc. 1998-2000

 

3/24/00

 



 

I n s i d e  M a c  O S  X

 

Network Kernel Extensions



 



 

Apple Computer, Inc.
© 1998-2000 Apple Computer, Inc.
All rights reserved. 
No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form 
or by any means, mechanical, 
electronic, photocopying, recording, 
or otherwise, without prior written 
permission of Apple Computer, Inc., 
except to make a backup copy of any 
documentation provided on 
CD-ROM. 
The Apple logo is a trademark of 
Apple Computer, Inc. 
Use of the “keyboard” Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws. 
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual 
property rights associated with the 
technology described in this book. 
This book is intended to assist 
application developers to develop 
applications only for Apple-labeled 
or Apple-licensed computers.
Every effort has been made to ensure 
that the information in this manual is 
accurate. Apple is not responsible for 
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and 
Macintosh are trademarks of Apple 
Computer, Inc., registered in the 
United States and other countries.
Adobe, Acrobat, and PostScript are 
trademarks of Adobe Systems 
Incorporated or its subsidiaries and 
may be registered in certain 
jurisdictions.

Helvetica and Palatino are registered 
trademarks of Linotype-Hell AG 
and/or its subsidiaries.
ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.

Simultaneously published in the 
United States and Canada.

 

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 
QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS SOLD “AS 
IS,” AND YOU, THE PURCHASER, ARE 
ASSUMING THE ENTIRE RISK AS TO 
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE 
FOR DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES RESULTING FROM ANY 
DEFECT OR INACCURACY IN THIS 
MANUAL, even if advised of the 
possibility of such damages.

THE WARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLUSIVE 
AND IN LIEU OF ALL OTHERS, ORAL 
OR WRITTEN, EXPRESS OR IMPLIED. 
No Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion or 
limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights 
which vary from state to state.



 

3

 

Contents

 

Figures, Tables, and Listings 5

 

Preface

 

About This Manual

 

7

Conventions used in this manual 7
For more information 8

 

Chapter 1

 

About Network Kernel Extensions

 

9

NKE Implementation 10
Review of 4.4 BSD Network Architecture 10
NKE Types 11
Global and Programmatic NKEs 13
Tracking NKE Usage 13
Modifications to 4.4BSD Networking Architecture 13

PF_NKE Domain 14
Socket NKE Control Commands 17

About Protocol Family NKEs 17
About Protocol Handler NKEs 18
About Socket NKEs 18
About Data Link NKEs 21

DLIL Static Functions 22
Changes to the ifnet and if_proto Structures 23
Installing and Removing Data Link NKEs 26
Sending Data 28
Receiving Data 29

 

Chapter 2

 

Using Network Kernel Extensions

 

33

Example: VMSify NKE 33
Example: TCPLogger 34
Example: A Packet-Viewing NKE 34



 

4

 

Chapter 3

 

Network Kernel Extensions Reference

 

37

Kernel Utilities 37
protosw Functions 38
ifaddr Functions 39
mbuf Functions 40
Socket Functions 41
Socket Buffer Functions 45
Protocol Family NKE Functions 51
Protocol Handler NKE Functions 53
Data Link NKE Functions 54

Calling the DLIL From the Network Layer 55
Calling the Network Layer From the DLIL 63
Calling the Driver Layer From the DLIL 68
Calling the DLIL From the Driver Layer 71
Calling Interface Modules From the DLIL 76
Calling the DLIL From a DLIL Filter 79

NKE Structures and Data Types 84

 

Appendix A

 

Sample Code

 

93

Sample Source Code for VMSify NKE 93
Sample Source Code for TCPLogger 103

 

Glossary

 

119

 

Index

 

121



 

5

 

Figures, Tables, and Listings

 

Chapter 1

 

About Network Kernel Extensions

 

9

 

Figure 1-1

 

4.4BSD network architecture 11

 

Figure 1-2

 

NKE architecture 12

 

Table 1-1

 

Dispatch entries used by the pr_usrreq function for PF_NKE 
protocols 16

 

Figure 1-3

 

Domain structure and protosw interconnections 19

 

Figure 1-4

 

Data Link Interface Layer 22

 

Figure 1-5

 

DLIL static functions 23

 

Figure 1-6

 

Sample 

 

ifnet

 

 structure in relation to a protocol and a network 
driver 25

 

Figure 1-7

 

Protocol and interface extensions in relation to the DLIL 27

 

Figure 1-8

 

Example of sending an IP packet 28

 

Figure 1-9

 

Example of receiving a packet 30

 

Appendix A

 

Network Kernel Extensions Reference

 

37

 

Listing 3-1

 

VMSIfy.c 93

 

Listing 3-2

 

TCPLogger.h 103

 

Listing 3-3

 

TCPLogger.c 104



 

6



 

7

 

P R E F A C E

 

About This Manual

 

This manual describes Network Kernel Extensions for Mac OS X. Network 
Kernel Extensions provide a mechanism for adding and removing protocol 
families, individual protocols, and other networking modules to the Mac OS X 
kernel while the kernel is running.

Note

 

The information presented in this manual is preliminary 
and subject to change. 

 

◆

 

Conventions used in this manual 0

 

The Courier font is used to indicate text that you type or see displayed. This 
manual includes special text elements to highlight important or supplemental 
information:

Note

 

Text set off in this manner presents sidelights or interesting 
points of information. 

 

◆

IMPORTANT

 

Text set off in this manner—with the word Important—
presents important information or instructions. 

 

▲

▲ W AR N I N G

 

Text set off in this manner—with the word Warning—
indicates potentially serious problems. 

 

▲



 

8

 

 

 

P R E F A C E

 

For more information 0

 

The following sources provide additional information that may be of interest to 
developers of network kernel extensions:

 

■

 

The Design and Implementation of the 4.4 BSD Operating System

 

 . M. K. 
McKusick. et al., Addison-Wesley, Reading, 1996.

 

■

 

Unix Network Programming, Second Edition, Volume 1

 

. Richard W. Stevens, 
Prentice Hall, New York, 1998.

 

■

 

TCP/IP Illustrated, Volume 1, The Protocols

 

. Richard W. Stevens, 
Addison-Wesley, Reading, 1994.

 

■

 

TCP/IP Illustrated, Volume 2, The Implementation

 

. Richard W. Stevens and Gary 
R. Wright, Addison-Wesley, Reading, 1995.

 

■

 

TCP/IP Illustrated, Volume 3, Other Protocols

 

. Richard W. Stevens, 
Addison-Wesley, Reading, 1996.

The following websites provide information about the Berkeley Software 
Distribution (BSD):

 

■

 

http://www.FreeBSD.org

 

■

 

http://www.NetBSD.org

 

■

 

http://www.OpenBSD.org/

Apple Computer’s developer website (http://www.apple.com/developer/) is 
a general repository for developer documentation.



 

9

 

C H A P T E R  1

 

About Network Kernel Extensions1Figure 1-0
Listing 1-0
Table 1-0

 

Network kernel extensions (NKEs) provide a way to extend and modify the 
networking infrastructure of Mac OS X while the kernel is running and 
therefore without requiring the kernel to be recompiled, relinked, or rebooted.

NKEs allow you to

 

■

 

create protocol stacks that can be loaded and unloaded dynamically and 
configured automatically.

 

■

 

create modules that can be loaded and unloaded dynamically at specific 
positions in the network hierarchy. These modules can monitor network 
traffic, modify network traffic, and receive notification of asynchronous 
events at the data link and network layers from the driver layer, such as 
power management events and interface status changes.

An NKE is a specific case of a Mac OS X kernel extension. It is a separately 
compiled module (produced, for example, by Project Builder using the Kernel 
Extension project type).

An installed and enabled NKE is invoked automatically, depending on its 
position in the sequence of protocol components, to process an incoming or an 
outgoing packet. Loading (installing) a kernel extension is handled by the 

 

kextload

 

(8) command line utility, which adds the NKE to the running Mac OS X 
kernel as part of the kernel’s address space. Eventually, the system will provide 
automatic mechanisms for loading extensions. Currently, automatic loading is 
only possible for IOKit extensions and other extensions that IOKit extensions 
depend on.

As a kernel extension, an NKE provides initialization and termination routines 
that the Kernel Extension Manager invokes when it loads or unloads an NKE. 
The initialization routine handles any operations needed to complete the 
incorporation of the NKE into the kernel, such as updating 

 

protosw

 

 and 

 

domain

 

 
structures. Similarly, the termination routine must remove references to the 
NKE from these structures in order to unload itself successfully. NKEs must 



 

C H A P T E R  1  

 

About Network Kernel Extensions

 

10

 

NKE Implementation

 

provide a mechanism, such as a reference count, to ensure that the NKE can 
terminate without leaving dangling pointers.

 

NKE Implementation 1

 

Review of 4.4 BSD Network Architecture 1

 

Mac OS X is based on the 4.4BSD UNIX operating system. The following 
structures control the 4.4BSD network architecture:

 

■

 

socket

 

 structure, which the kernel uses to keep track of sockets. The 

 

socket

 

 
structure is referenced by file descriptors from user mode.

 

■

 

domain

 

 structure, which describes protocol families.

 

■

 

protosw

 

 structure, which describes protocol handlers. (A protocol handler is 
the implementation of a particular protocol in a protocol family.)

 

■

 

ifnet

 

 structure, which describes a network device and contains pointers to 
interface device driver routines.

None of these structures is used uniformly throughout the 4.4BSD networking 
infrastructure. Instead, each structure is used at a specific level, as shown in 
Figure 1-1.



 

C H A P T E R  1

 

About Network Kernel Extensions

NKE Implementation

 

11

 

Figure 1-1

 

4.4BSD network architecture

 

The 

 

socket

 

 structure is used to manage the socket while the 

 

domain

 

, 

 

protosw

 

, and 

 

ifnet

 

 structures are used to manage packet delivery to and from the network 
device.

 

NKE Types 1

 

Making the 4.4BSD network architecture dynamically extensible requires 
several NKE types that are used at specific locations within the kernel.

 

■

 

socket NKEs, which reside between the network layer and protocol handlers 
and are invoked through a 

 

protosw

 

 structure. Socket NKEs use a new set of 
override dispatch vectors that intercept specific socket and socket buffer 
utility functions.

 

■

 

protocol family NKEs, which are collections of protocols that share a 
common addressing structure. Internally, a 

 

domain

 

 structure and a chain of 

 

protosw

 

 structures describe each protocol. 

 

■

 

protocol handler NKEs, which process packets for a particular protocol 
within the context of a protocol family. A 

 

protosw

 

 structure describes a 
protocol handler and provides the mechanism by which the handler is 

User mode

Kernel mode

Device

Protocol stack

Data link layer

Socket management

Packet delivery

socket structure

ifnet structure

domain structure
protosw structure

control blocks



C H A P T E R  1  

About Network Kernel Extensions

12 NKE Implementation

invoked to process incoming and outgoing packets and for invoking various 
control functions.

■ data link NKEs, which are inserted below the protocol layer and above the 
network interface layer. This type of NKE can passively observe traffic as it 
flows in and out of the system (for example, a sniffer) or can modify the 
traffic (for example, encrypting or performing address translation). Data link 
NKEs can provide media support functions (performing demultiplexing, 
framing, and pre-output functions, such as ARP) and can act as “filters” that 
are inserted between a protocol stack and a device or above a device.)

Figure 1-2 summarizes the NKE architecture.

Figure 1-2 NKE architecture

Socket infrastructure (fixed)Socket Layer

IP

Socket NKE

Data link NKEs

DLIL (fixed)

Data link NKEs

IOKit

Data Link Layer

ifnet,
DLIL structures

Protocol Layer
socket, domain,
protosw, pdb
structures

socket == kernel structure

User Mode
socket == file descriptor

Kernel Mode

IPX AppleTalk . . .



C H A P T E R  1

About Network Kernel Extensions

NKE Implementation 13

Global and Programmatic NKEs 1

Socket NKEs can operate in one of two modes: programmatic or global.

A global NKE is an NKE that is automatically enabled for sockets of the type 
specified for the NKE.

A programmatic NKE is a socket NKE that is enabled only under program 
control, using socket options, for a specfic socket.

Data link ‘filters’ are essentially global in that they can’t be accessed by specific 
sockets.

Tracking NKE Usage 1

To support the dynamic addition and removal of NKEs in Mac OS X, the kernel 
keeps track of the use of NKEs by other parts of the system.

Use of protocol family NKEs is tracked by the dom_refs member of the domain 
structure, which has been added to support NKEs in Mac OS X. The kernel’s 
socreate function increments dom_refs each time socreate is called to create a 
socket in an NKE domain. The socreate function is called when user-mode 
applications call socket or when sonewconn successfully connects to a local 
listening socket. The dom_refs member is decremented each time soclose is 
called to close a socket connection.

Use of protocol handler NKEs is tracked by the pr_refs member of the protosw 
structure, which has been added to support NKEs in Mac OS X. Like the 
dom_refs member of the domain structure, the pr_refs member of the protosw 
structure tracks the use of the protocol between calls to socreate and sonewconn 
to create a socket and soclose to close a socket.

The most important aspect of removing an NKE is ensuring that all references 
to NKE resources are eliminated and that all system resources allocated by the 
NKE are returned to the system. The NKE must track its use of resources, such 
as socket structures and protocol control blocks, so that the NKE’s termination 
routine can eliminate references and return system resources.

Modifications to 4.4BSD Networking Architecture 1

To support NKEs in Mac OS X, the 4.4BSD domain and protosw structures were 
modified as follows:



C H A P T E R  1  

About Network Kernel Extensions

14 PF_NKE Domain

■ The protosw array referenced by the domain structure is now a linked list, 
thereby removing the array’s upper bound. The new dom_maxprotohdr 
member defines the maximum protocol header size for the domain. The new 
dom_refs member is a reference count that is incremented when a new socket 
for this address family is created and is decremented when a socket for this 
address family is closed.

■ The protosw structure is no longer an array. The pr_next member has been 
added to link the structures together. This change has implications for protox 
usage for AF_INET and AF_ISO input packet processing. The pr_flags member 
is an unsigned integer instead of a short. NKE hooks have been added to link 
NKE descriptors together (pr_sfilter).

PF_NKE Domain 1

Mac OS X defines a new domain — the PF_NKE domain— whose purpose is to 
provide a way for applications to configure and control NKEs. The PF_NKE 
domain has two protocols: 

■ NKEPROTO_SOCKET for configuring and controlling NKEs that the operate at the 
socket layer

■ NKEPROTO_DLINK for configuring and controlling NKEs that operate at the data 
link layer

The PF_NKE domain’s initialization function is called when the PF_NKE domain is 
initially added to the system. The initialization function adds the 
NKEPROTO_SOCKET and NKEPROTO_DLINK protocols to the domain’s protosw list and 
performs other initialization tasks.

Each protocol in the PF_NKE domain has its own protosw structure. Each protosw 
structure contains pointers to functions that operate on the protocol for that 
protosw structure. The functions associated with each protocol in the PF_NKE 
domain are

■ pr_input — allows a control program to read data from an NKE. The format 
of the data is specific to the NKE. For an example of an NKE that uses 
pr_input, see “Sample Source Code for TCPLogger” in Appendix A.

■ pr_output — allows a control program to send data to an NKE. The effect of 
sending data to an NKE is specific to the NKE.



C H A P T E R  1

About Network Kernel Extensions

PF_NKE Domain 15

■ pr_ctlinput — handles events from the NKE. These are the PRC_* constants 
defined in protosw.h.

■ pr_ctloutput — allows NKE-specific socket options to be processed.

■ pr_init — initializes protocol handlers.

■ pr_fasttimo — a 200 millisecond timer.

■ pr_slowtimo — a 500 millisecond timer.

■ pr_usrreq — points to a table of function pointers that dispatch functions for 
handling the socket operations listed in Table 1-1.

Note
In earlier versions of BSD, socket operations were handled 
by a single procedure (pr_usrreq), using PRU_* constants as 
function selectors. In recent versions of FreeBSD, these 
operations are handled by individual functions, specified in 
the pr_usrreqs table. Corresponding functions begin with 
pru_. Mac OS X networking is based on FreeBSD 3.1. ◆



C H A P T E R  1  

About Network Kernel Extensions

16 PF_NKE Domain

Table 1-1 Dispatch entries used by the pr_usrreq function for PF_NKE protocols

pru_abort Abort the connection to the NKE.
pru_accept Accept a connection from an NKE.
pru_attach Attach to a protocol. Allows the calling process to attach to 

an NKE independent of its normal operation. This entry is 
invoked when you want to access a specific NKE, for 
example, to configure the NKE for a specific operation.

s = socket(SOCK_RAW, PF_NKE, val) where val is the 
constant NKEPROTO_DLINK or NKEPROTO_SOCKET.

pru_bind Not used.
pru_connect Establish a connection to an NKE.
pru_connect2 Not used.
pru_control Call the NKE’s ioctl routine to perform control operations.
pru_detach Detach from a protocol. This entry is used to terminate a 

connection with an NKE.
pru_disconnect Disconnect from an NKE.
pru_fasttimo Execute a specified task for 200 ms.
pru_listen Listen for a connection.
pru_peeraddr Get the address of the remote socket.
pru_protorcv Not used. 
pru_protosend Not used.
pru_rcvd Not supported.
pru_rcvoobu Retrieve out-of-band data.
pru_shutdown Indicate that the controlling application won’t send or 

receive any more data.
pru_send Send the specified data to the NKE.
pru_sendoob Send out-of-band data.
pru_sense Return zero.
pru_slowtimo Execute a specified task for 500 ms.
pru_sockaddr Get the address of the local socket.
pru_sopoll

pru_soreceive

pru_sosend



C H A P T E R  1

About Network Kernel Extensions

About Protocol Family NKEs 17

Socket NKE Control Commands 1

Socket NKEs can be configured, started, and halted by control commands. The 
following generic control commands are defined:

■ FILT_CONFIG — passes a structure, by agreement with the NKE, describing 
the configuration the NKE is to use.

■ FILT_START — starts the NKE.

■ FILT_HALT — terminates the NKE, but the NKE remains installed and ready 
to be started again.

The PF_NKE domain receives these commands from the controlling program via 
a setsockopt call specifying NKEPROTO_DLINK or NKEPROTO_SOCKET and passes them 
to the NKE after examining and possibly modifying them.

Other socket options can be defined for individual NKEs. By definition, 
NKE-specific control commands are a matter of agreement between the NKE 
and the control program. Like the generic socket options, NKE-specific control 
commands are passed from the control program to the NKE by the setsockopt 
call with a FILTERPROTO_* level. The filter manager passes to the NKE without 
modification any commands that the filter manager does not recognize. 

NKE control commands invoke the NKE’s PRCO_SETOPT function using 
pru_control in the pr_usrreq table in the NKE’s protosw structure. 

About Protocol Family NKEs 1

Adding and removing protocol family NKEs is accomplished by calling 
net_add_domain and net_del_domain, respectively. These calls are described in 
“Protocol Family NKE Functions” (page 51). For detailed information about 
implementing protocol families, see The Design and Implementation of the 4.4 BSD 
Operating System by M. K. McKusick. et al. and TCP/IP Illustrated by Richard W. 
Stevens.



C H A P T E R  1  

About Network Kernel Extensions

18 About Protocol Handler NKEs

About Protocol Handler NKEs 1

Adding and removing protocol handler NKEs is accomplished by calling 
net_add_proto and net_del_proto, respectively. These calls are described in 
“Protocol Handler NKE Functions” (page 53). For detailed information about 
implementing protocol families, see The Design and Implementation of the 4.4 BSD 
Operating System by M. K. McKusick. et al. and TCP/IP Illustrated by Richard W. 
Stevens.

About Socket NKEs 1

Socket NKEs are installed in the kernel by calling register_sockfilter 
typically from the NKE’s initialization routine. Each socket NKE provides a 
descriptor structure that is linked into a global list (nf_list). A second chain 
runs through the filter descriptor to link it to a protosw for global NKEs. 
Figure 1-3 shows the interconnections for these data structures.



C H A P T E R  1

About Network Kernel Extensions

About Socket NKEs 19

Figure 1-3 Domain structure and protosw interconnections

domain structure

protosw structure protosw structure

NFDescriptor NFDescriptor NFDescriptor

NFDescriptor NFDescriptor NFDescriptor

_GLOBAL _PROGR

nf_list:

_GLOBAL

socket structure
kextcb

kextcb

sockif

sockif

sockutil

sockutil

fcb

fcb



C H A P T E R  1  

About Network Kernel Extensions

20 About Socket NKEs

When you call socreate to create a socket, any global NKEs associated with the 
corresponding protosw structure are attached to the socket structure using the 
so_ext field to link together ketcb structures that are allocated when the socket 
is created. (See Figure 1-3.) These ketcb structures are initialized to point to the 
extension descriptor and two dispatch vectors of intercept functions (one for 
socket operations and one for socket buffer utilities).

The filter descriptor for a programmatic NKE is linked into the nf_list in the 
same way as are global NKEs but the file descriptor does not appear in the list 
associated with a protosw. A program can call setsocketopt using socket option 
SO_NKE) to insert a programmatic NKE into its NKE chain in the same way that 
it would call setsocketopt to insert a global NKE.

Each socket NKE has two dispatch vectors, a sockif structure and a sockutil 
structure, that contain pointers to the NKE’s implementation of these functions. 
The functions are called when the corresponding socket and sockbuf functions 
are are called. The dispatch vectors permit the NKE to selectively intercept 
socket and socket buffer utilities. Here is an example:

int (*sf_sobind)(struct socket *, struct mbuf *, st kextcb);

The kernel’s sobind function calls the NKE’s bind entry point with the 
arguments passed to sobind and the kextcb pointer for the NKE. The sockaddr 
structure contains the name of the local endpoint being bound.

Each of the intercept functions can return an integer value. A return value of 
zero is interpreted to mean that processing at the call site can continue. A 
non-zero return value is interpreted as an error (as defined in <sys/errno.h>) 
that causes the processing of the packet or opertation to halt. If the return value 
is EJUSTRETURN, the calling function (for example, sobind) returns at that point 
with a value of zero. Otherwise, the function returns the non-zero error code. In 
this way, an NKE can “swallow” a packet or an operation. An NKE may reinject 
the packet at a later time. (Note that the injection mechanism is not yet defined.)

A program can insert a socket NKE on an open socket by calling setsockopt as 
follows:

setsockopt(s, SOL_SOCKET, SO_NKE, &so_nke, sizeof (struct so_nke);

The so_nke structure is defined as follows:



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 21

struct so_nke
{

unsigned int nke_handle;
unsigned int nke_where;
int nke_flags;

};

The nke_handle specifies the NKE to be linked to the socket (with the so_ext 
link). It is the programmer’s task to locate the appropriate NKE, assure that it is 
loaded, and retain the returned handle for use in the setsockopt call.

The nke_where value specifies an NKE assumed to be in this linked list. If 
nke_where is NULL, the NKE represented by nke_handle is linked at the beginning 
or end of the list, depending on the value of nke_flags.

The nke_flags value specifies where, relative to nke_where, the NKE represented 
by nke_handle will be placed. Possible values are NFF_BEFORE and NFF_AFTER 
defined in <net/kext_net.h>.

The nke_handle and nke_where values are assigned by Apple Computer from the 
same name space as the type and creator codes used in Mac OS 8 and Mac OS 9 
and using the same registration mechanism.

About Data Link NKEs 1

This section describes the programming interface for creating data link NKEs, 
which are inserted below the protocol layer and above the network interface 
layer. Data link NKEs depend on the Data link interface layer (DLIL), shown in 
Figure 1-4, which provides a fixed point for the insertion of data link NKEs. 



C H A P T E R  1  

About Network Kernel Extensions

22 About Data Link NKEs

Figure 1-4 Data Link Interface Layer

DLIL Static Functions 1

The DLIL defines the following static functions, which are called by protocols 
and drivers:

■ dlil_attach_protocol, which attaches network protocol stacks to specific 
interfaces

■ dlil_detach_protocol, which detaches network protocol stacks from the 
interfaces to which they were previously attached

■ dlil_if_attach, which registers network interfaces with the DLIL

■ dlil_if_detach, which deregisters network interfaces that have been 
registered with the DLIL

■ dlil_ioctl, which sends ioctl commands to a network driver

■ dlil_input, which sends data to the DLIL from a network driver

■ dlil_output, which sends data to a network driver

■ dlil_event, which processes events from other parts of the network and from 
IOKit components. (Note that the event mechanisms are still under 
development.)

In Figure 1-5, the DLIL static functions are shown in relation to the DLIL, the 
protocol layer, and the network driver layer.

User mode

Kernel mode

Protocol layer

Network interface layer

Network layer

Data link layer

Data link interface layer

data link NKE

data link NKE



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 23

Figure 1-5 DLIL static functions

Changes to the ifnet and if_proto Structures 1

To support data link NKEs, the traditional ifnet structure as been extended in 
Mac OS X: the driver or software that supports the driver must allocate a 
separate ifnet structure for each logical interface. When an interface is attached 
(by calling dlil_if_attach)to the DLIL, the DLIL receives a pointer to that 
interface’s ifnet structure.

IP AppleTalk IPX/SPXProtocol

Data link

Ethernet Family
interface module

ATM Family
interface module

X Family
interface module

DLIL
static

functions

Common network driver code

DEC
Ethernet
driver

MACE
Ethernet
driver

ATM
driver

X
driver

PPP
serial
driverlayer

layer

interface
layer

Driver

dl
il_

if_
at

ta
ch

dl
il_

if_
de

ta
ch

dl
il_

iin
pu

t

dl
il_

ev
en

t

dl
il_

io
ct

l
dl

il_
at

ta
ch

_p
ro

to
co

l

dl
il_

de
ta

ch
_p

ro
to

co
l

dl
il_

ou
tp

ut



C H A P T E R  1  

About Network Kernel Extensions

24 About Data Link NKEs

Each interface can transmit and receive packets for multiple network protocol 
families, so for each attached protocol family the DLIL creates an if_proto 
structure chained off the ifnet structure for that interface.

The if_proto structure contains function pointers that the DLIL uses to pass 
incoming packets and event information to the protocol stack, as well as a 
pointer to the protocol dependent “pre-output” function that performs 
protocol-family specific operations such as network address translation on 
outbound packets.

Figure 1-6 shows the ifnet and if_proto structures in relation to a generic 
protocol and a generic interface.



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 25

Figure 1-6 Sample ifnet structure in relation to a protocol and a network driver

Protocol YProtocol

Data link

layer

DLIL
static
functions

Media
specific

code

Common network driver code

dl_ioctl

if_output
if_ioctl
if_set_bpf_tap
if_free
if_reset

DLIL-to-driver
functions

interface module
entry points

if_demux
if_framer

dl_offer
dl_input

dl_event

layer
Driver X

ifnet structure for interface X

entry points
protocol module

interface

layer

Driver

Interface module for interface X

dl
il_

ou
tp

ut
dl

il_
io

ct
l

ifproto structure for interface X

if_proto structure

dl_pre_output

dl
il_

at
ta

ch
_p

ro
to

co
l

dl
il_

de
ta

ch
_p

ro
to

co
l

dl
il_

if_
at

ta
ch

dl
il_

if_
de

ta
ch

dl
il_

iin
pu

t

dl
il_

ev
en

t



C H A P T E R  1  

About Network Kernel Extensions

26 About Data Link NKEs

Installing and Removing Data Link NKEs 1

To support the dynamic insertion of filters into the data and control streams 
between the network layer and the interface layer and the removal of inserted 
filters, the DLIL defines the following static functions:

■ dlil_attach_protocol_filter, which inserts an NKE between the DLIL and 
one of the attached protocols. Such an extension is known as a DLIL protocol 
filter. This type of NKE provides access to all function calls between the DLIL 
and the attached protocol for a specific protocol/interface pair.

■ dlil_attach_interface_filter, which inserts an NKE between the DLIL and 
an attached interface. Such a filter is known as an DLIL interface filter. This 
type of NKE provides access to all frames flowing to or from an interface. 

■ dlil_detach_filter, which removes previously inserted DLIL protocol and 
interface filters.

Figure 1-7 shows the relationship of protocol and interface filters to the protocol 
stack layer, DLIL, and network driver layer. 



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 27

Figure 1-7 Protocol and interface extensions in relation to the DLIL

Protocol

Data link

layer

Ethernet-
specific

code

Common network driver code
Network

layer

interface

layer

driver

Protocol A

Driver X

DLIL

static

functions

if_output
if_ioctl
if_set_bpf_tap
if_free
if_reset

DLIL-to-driver functions

if_demux
if_framer

ifnet structure for interface X

DLIL protocol filter

DLIL interface filter

the if_proto structure

Family interface
module for
driver X

Each interface filter
applies to all calls to 

a single

Each protocol filter is
applied between a

family and interface

interface module
entry points

dl_ioctl

dl_offer
dl_input

dl_event
entry points

protocol moduleif_proto structure

dl_pre_output

for driver X

single protocol

and from 
interface



C H A P T E R  1  

About Network Kernel Extensions

28 About Data Link NKEs

Sending Data 1

Figure 1-8 shows the sequence of calls required to send an IP packet over the 
MACE Ethernet interface (en0).

Figure 1-8 Example of sending an IP packet

Protocol

Ethernet-
specific

code

layer
IP AppleTalk IPX/SPX

Data link
interface
layer

dlil_output

function

Ethernet
framing
module

ifnet structure for en0

if_proto list

if_framer

IP AppleTalk IPX/SPX

dl
_p

re
_o

ut
pu

t

if_output

DEC
Ethernet
driver

MACE
Ethernet
driver for

ATM
driver

X
driver

PPP
serial
driver

1.

ip_output

dl
il_

ou
tp

ut

2.

3.

4.

5.

6.

en0

ifnet structure for en0

Network
driver
layer



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 29

The following steps correspond to the numbers in Figure 1-8 and describe the 
process of sending a packet:

1. The ip_output routine in the IP protocol stack calls dlil_output, passing the 
dl_tag value for the stack’s attachment to en0.

2. Using the dl_tag value, the dlil_output function locates the dl_pre_output 
pointer in the if_proto structure for IP.

3. The dlil_output function uses the dl_pre_output pointer in the if_proto 
structure to call IP’s interface-specific output module. This module calls its 
arpresolve routine to resolve the target IP address into a media access control 
(MAC) address.

4. When IP’s interface-specific output module returns, the dlil_output function 
uses the if_framer pointer in the ifnet structure to call the appropriate 
framing function in the DLIL interface module. The framing function 
prepends interface-specific frame data to the packet.

5. The dlil_output function calls the function pointed to by the if_output field 
in the ifnet structure for en0 and sends the frame to the MACE Ethernet 
driver.

Receiving Data 1

Figure 1-9 shows the sequence of calls required to receive an IP packet from the 
MACE Ethernet interface (en0).



C H A P T E R  1  

About Network Kernel Extensions

30 About Data Link NKEs

Figure 1-9 Example of receiving a packet

The following steps correspond to the numbers in Figure 1-9 and describe the 
process of receiving a packet:

Protocol

Ethernet-
specific

code

layer
IP AppleTalk IPX/SPX

Data link
interface
layer

dlil_input

function

Ethernet
demultiplexing
module

ifnet structure for en0

if_proto list IP AppleTalk IPX/SPX

dl
_i

nt
pu

t

if_demux

DEC
Ethernet
driver

MACE
Ethernet
driver for

ATM
driver

X
driver

PPP
serial
driver

4.

3.

2.
1.

en0

ifnet structure for en0

ipintr

5.

Network
driver
layer



C H A P T E R  1

About Network Kernel Extensions

About Data Link NKEs 31

1. The MACE Ethernet driver or its support code calls dlil_input with pointers 
to its ifnet structure and mbuf chain.

2. The dlil_input function uses the if_demux entry in the ifnet structure to call 
the demultiplexing function for the interface family (Ethernet in this case).

3. The demultiplexing function identifies the frame and returns an if_proto 
pointer to dlil_input.

4. The dlil_input function calls the protocol input module through the 
dl_input pointer in the if_proto structure.

Note
The Ethernet-specific module for IP receives the frame, 
removes the 802.2 or SNAP header (if any) and delivers the 
packet to the protocol’s ipintr routine.



C H A P T E R  1  

About Network Kernel Extensions

32 About Data Link NKEs



Example: VMSify NKE 33

C H A P T E R  2

Using Network Kernel 
Extensions 2

Figure 2-0
Listing 2-0
Table 2-0

This chapter summarizes provides an overview for two sample NKEs (the code 
for these two NKEs is provided in Appendix A) and describes the development 
of a third NKE. 

Example: VMSify NKE 2

The VMSify NKE converts remotely echoed characters typed into a telnet 
session to upper case.

When the VMSify NKE is loaded into the kernel, it is added to the list of TCP 
extensions. Thereafter, for each new TCP connection, the VMSify NKE checks 
the destination port. If the destination port is telnet, the VMSify NKE marks the 
kextcb structure for that socket. If the kextcb is marked when packets come in, 
the VMSify NKE maps lower-case characters in the packet to upper-case 
characters.

Given an unload command, the VMSify NKE removes itself from operation on 
new sockets, even if the unload command fails.

The VMSify NKE removes itself from sockets that aren’t outbound telnet 
sessions by nullifying the dispatch vector pointers in the kextcb structure for 
this socket/filter pair. This works because no state is kept on a per-socket basis. 
For similar NKEs, you could replace the “normal” pointers with pointers to 
other dispatch vectors that clean up only at the end of a connection.

The source code for the VMSify NKE is provided in the section “Sample Source 
Code for VMSify NKE” in Appendix A.



C H A P T E R  2  

Using Network Kernel Extensions

34 Example: TCPLogger

Example: TCPLogger 2

TCPLogger is a socket NKE that is invoked for each TCP connection. It records 
detailed information about each connection, including the number of bytes sent 
to and from the system, the time the connection was up, and the remote IP 
address. When TCPLogger is loaded and initialized, it installs itself in the TCP 
protocol structure so that it is automatically invoked for each incoming and 
outgoing connection without direct knowledge or intervention by the program 
that caused the connection to be made.

The TCPLogger NKE keeps a buffer of connection records. If no control 
program attaches to it, the buffer is continually overwritten as connections are 
established and terminated. To retain or view the information that the 
TCPLogger NKE gathers, the system manager runs the TCPLogger program, 
which creates a PF_NKE socket, binds to the TCPLogger NKE, configures the 
TCPLogger NKE to send log records to the logger program. The TCPLogger 
program then loops, displaying and writing log records as the TCPLogger NKE 
creates them.

The source code for the TCPLogger NKE is provided in the section “Sample 
Source Code for TCPLogger” in Appendix A.

Example: A Packet-Viewing NKE 2

This example consists of a packet-viewing DLIL protocol filter NKE that uses no 
additional system resources and a corresponding packet-viewing program. To 
examine packets on the network, the user launches the packet-viewing 
program. When invoked, the packet-viewing program does the following:

■ calls the kernel extension library to load the packet-viewing data link NKE 

■ opens a PF_NKE socket

■ calls connect to bind packet-viewing DLIL protocol filter NKE

■ sends the FILT_CONFIG socket option to the packet-viewing DLIL protocol 
filter NKE with a configuration structure that specifies the system’s IP stack 



C H A P T E R  2

Using Network Kernel Extensions

Example: A Packet-Viewing NKE 35

as the “top” and en0 (the driver for the built-in Ethernet interface) as the 
bottom.

■ calls recv to receive full Ethernet packets for the packet-viewing program to 
display.

To expand the functionality of the packet-viewing program and DLIL protocol 
filter NKE to inject packets into the network, the packet-viewing program 
would call send on its socket using self-generated packets as data. The 
packet-viewing DLIL protocol filter NKE would send these packets to en0 by 
calling dlil_inject_pr_output.



C H A P T E R  2  

Using Network Kernel Extensions

36 Example: A Packet-Viewing NKE



Kernel Utilities 37

C H A P T E R  3

Network Kernel Extensions 
Reference 3

Figure 3-0
Listing 3-0
Table 3-0

This chapter describes the functions that NKEs can call and NKE-specific data 
types. The functions are organized into the following sections:

■ “Kernel Utilities” (page 37) lists the kernel utilities that NKEs can call.

■ “protosw Functions” (page 38) describes functions that access the protosw 
structure.

■ “ifaddr Functions” (page 39) describes functions that access the ifnet 
structure.

■ “mbuf Functions” (page 40) describes functions that access the mbuf 
structure.

■ “Socket Functions” (page 41) describes functions that access the socket 
structure.

■ “Socket Buffer Functions” (page 45) describes functions that access the 
sockbuf structure.

■ “Protocol Family NKE Functions” (page 51) describes NKE functions that 
protocol families call.

■ “Protocol Handler NKE Functions” (page 53) describes NKE functions that 
protocol handlers call.

■ “Data Link NKE Functions” (page 54) describes functions that data link 
NKEs call.

Kernel Utilities 3

NKEs can call the following kernel utility functions:

■ _MALLOC



C H A P T E R  3  

Network Kernel Extensions Reference

38 protosw Functions

■ _FREE

■ kalloc

■ kfree

■ kprintf

■ psignal

■ splimp

■ splnet

■ splx

■ suser

■ timeout

■ tsleep

■ untimeout

■ wakeup

protosw Functions 3

This section describes the functions that access the protosw structure.

pffindproto 3

The pffindproto function obtains the protosw corresponding to the protocol 
family, protocol, and protocol type (or NULL). These values are passed to the 
socket(2) call from user mode.

extern struct protosw *pffindproto(int, int, int);

pffindtype 3

The pffindtype function obtains the protosw corresponding to the protocol and 
protocol type requested. These values are passed to the socket(2) call from user 
mode.



C H A P T E R  3

Network Kernel Extensions Reference

ifaddr Functions 39

extern struct protosw *pffindtype(int, int);

ifaddr Functions 3

This section describes the functions that access the ifaddr structure.

ifa_ifwithaddr 3

The ifa_ifwithaddr function searches the ifnet list for an interface with a 
matching address.

struct ifaddr *ifa_ifwithaddr(struct sockaddr *);

ifa_ifwithdstaddr 3

The ifa_ifwithdstaddr function searches the ifnet list for an interface with a 
matching destination address.

struct ifaddr *ifa_ifwithdstaddr(struct sockaddr *);

ifa_ifwithnet 3

The ifa_ifwithnet function searches the ifnet list for an interface with the most 
specific matching address.

struct ifaddr *ifa_ifwithnet(struct sockaddr *);



C H A P T E R  3  

Network Kernel Extensions Reference

40 mbuf Functions

ifa_ifwithaf 3

The ifa_ifwithaf function searches the ifnet list for an interface with the first 
matching address family.

struct ifaddr *ifa_ifwithaf(int);

ifa_ifafree 3

The ifa_ifafree function frees the specified ifaddr structure.

void ifafree(struct ifaddr*);

ifa_ifaof_ifpforaddr 3

The ifa_ifaof_ifpforaddr function searches the address list in the ifnet 
structure for the one matching the sockaddr structure. The matching rules are 
exact match, destination address on point-to-point link, matching network 
number, or same address family.

struct ifaddr *ifaof_ifpforaddr(struct sockaddr *, struct ifnet *);

mbuf Functions 3

struct mbuf *m_copy(struct mbuf *, int, int, int);
struct mbuf *m_free(struct mbuf *);
struct mbuf *m_get(int, int);
struct mbuf *m_getclr(int, int);
struct mbuf *m_gethdr(int, int);
struct mbuf *m_prepend(struct mbuf *, int, int);
struct mbuf *m_pullup(struct mbuf *, int);
struct mbuf *m_retryhdr(int, int);



C H A P T E R  3

Network Kernel Extensions Reference

Socket Functions 41

void m_adj(struct mbuf *, int);
int m_clalloc(int, int);
void m_freem(struct mbuf *);
struct mbuf *m_devget(char *, int, int, struct ifnet, void  );
void m_cat(struct mbuf *, struct mbuf *);
void m_copydata(struct mbuf *, int, int, caddr_t);
void m_freem(struct mbuf *);
int m_leadingspace(struct mbuf *);
int m_trailingspace(struct mbuf *);

Socket Functions 3

This section describes the socket functions.

soabort 3

The soabort function calls the protocol’s pr_abort function at slpnet.

soabort(struct socket *);

soaccept 3

The soaccept function calls the protocol’s pr_accept function.

soaccept(struct socket *, struct mbuf *);



C H A P T E R  3  

Network Kernel Extensions Reference

42 Socket Functions

sobind 3

The sobind function calls the protocol’s pr_bind function.

sobind(struct socket *, struct mbuf *);

soclose 3

The soclose function aborts pending and in-progress connections, calls 
sodisconnect for connected sockets, and sleeps if any connections linger or 
block. It then calls the protocol’s pr_detach function and frees the socket.

soclose(struct socket *);

soconnect 3

If connected or connecting, the soconnect function tries to disconnect. It also 
calls the pr_connect function.

soconnect(struct socket *, struct mbuf *);

soconnect2 3

The soconnect2 function calls the pr_connect2 function. This function is 
generally not supported, but it is used to support pipe usage in the AF_LOCAL 
domain.

soconnect2(struct socket *, struct socket *);



C H A P T E R  3

Network Kernel Extensions Reference

Socket Functions 43

socreate 3

The socreate function links the protosw structure and the socket. It calls the 
protocol’s pr_attach function.

socreate(int, struct socket**, int, int);

sodisconnect 3

The sodisconect function calls the protocol’s pr_disconnect function.

sodisconnect(struct socket *);

sofree 3

The sofree function removes the caller from q0 and q queues, releases the send 
sockbuf, flushes the receive sockbuf, and frees the socket.

sofree(struct socket *);

sogetopt 3

The sogetopt function processes SOL_SOCKET requests and always calls the 
PRCO_SETOPT function.

sogetopt(struct socket *, int, int, struct mbuf **);



C H A P T E R  3  

Network Kernel Extensions Reference

44 Socket Functions

sohasoutofband 3

The sohasoutofband function indicates that the caller has an out-of-band notifier.

sooutofband(struct socket *);

solisten 3

The solisten function calls the protocol’s pr_listen function and sets the queue 
backlog.

solisten(struct socket *, int);

soreceive 3

The soreceive function receives data.

soreceive(struct socket *,
struct mbuf **,
struct uio *,
struct mbuf **,
struct mbuf **,
int *);

soflush 3

The soflush function locks the socket, marks it as “can’t receive,” unlocks the 
socket, and calls sbrelease.

soflush(struct socket *);



C H A P T E R  3

Network Kernel Extensions Reference

Socket Buffer Functions 45

sosend 3

The sosend function sends data.

sosend(struct socket *,
struct mbuf *,
struct uio *, struct mbuf *,
struct mbuf *,
int);

sosetopt 3

The sosetopt function processes SOL_SOCKET requests and always calls the 
PRCO_SETOPT function.

sosetopt(struct socket *,
int,
int,
struct mbuf *);

soshutdown 3

The soshutdown function calls the sorflush function (FREAD) and the pr_shutdown 
function (FWRITE).

soshutdown(struct socket *,
int,
int,
struct mbuf *);

Socket Buffer Functions 3

This section describes the socket buffer functions.



C H A P T E R  3  

Network Kernel Extensions Reference

46 Socket Buffer Functions

sb_lock 3

The sb_lock function locks a sockbuf structure. It sets WANT and sleeps if the 
structure is already locked.

sb_lock(struct sockbuf *);

sbappend 3

The sbappend function conditionally calls sbappendrecord and calls sbcompress.

sbappend(struct sockbuf *,
struct mbuf *);

sbappendaddr 3

The sbappendaddr function conditionally calls sbappendrecord and sbcompress.

sbappendaddr(struct sockbuf *,
struct sockaddr *,
struct mbuf *,
struct mbuf *);

sbappendcontrol 3

The sbappendcontrol function calls sbspace and sballoc.

sbappendcontrol(struct sockbuf *,
struct mbuf *,
struct mbuf *);



C H A P T E R  3

Network Kernel Extensions Reference

Socket Buffer Functions 47

sbappendrecord 3

The sbappendrecord function calls sballoc and sbcompress.

sbappendrecord(struct sockbuf *,
struct mbuf *);

sbcompress 3

The sbcompress function calls sballoc.

sbcompress(struct sockbuf *,
struct mbuf *,
struct mbuf *);

sbdrop 3

The sbdrop function calls sbfree.

sbdrop(struct sockbuf *, int);

sbdroprecord 3

The sbdroprecord function calls sbfree.

sbdroprecord(struct sockbuf *);



C H A P T E R  3  

Network Kernel Extensions Reference

48 Socket Buffer Functions

sbflush 3

The sbflush function calls sbfree.

sbflush(struct sockbuf *);

sbinsertoob 3

The sbinsertoob function calls sballoc and sbcompress.

sbinsertoob(struct sockbuf *,
struct mbuf *);

sbrelease 3

The sbrelease function calls sbflush and clears the selwait structure.

sbrelease(struct sockbuf *);

sbreserve 3

The sbreserve function sets up the sockbuf counts.

sbreserve(struct sockbuf *, u_long);

sbwait 3

The sbwait function sets SB_WAIT and calls tsleep on sb_cc.

sbwait(struct sockbuf *);



C H A P T E R  3

Network Kernel Extensions Reference

Socket Buffer Functions 49

socantrcvmore 3

The socantrcvmore function marks socket and wakes up readers.

socantrcvmore(struct socket *);

socantsendmore 3

The socantsendmore function marks socket and wakes up writers.

socantsendmore(struct socket *);

soisconnected 3

The soisconnected function sets state bits. It calls soqremque, soqinsque, 
sorwakeup, and sowwakeup.

soisconnected(struct socket *);

soisconnecting 3

The soisconnecting function sets state bits. 

soisconnecting(struct socket *);

soisdisconnected 3

The soisdisconnected function sets state bits, calls timer wakeup, and wakes up 
readers and writers.

soisdisconnected(struct socket *);



C H A P T E R  3  

Network Kernel Extensions Reference

50 Socket Buffer Functions

soisdisconnecting 3

The soisdisconnecting function sets state bits, calls timer wakeup, and wakes 
up readers and writers.

soisdisconnecting(struct socket *);

su_sonewconn1 3

The su_sonewconn1 function allocates socket, sets state, inserts into head queue, 
and calls pr_attach.

struct socket *su_sonewconn1(struct socket *, int);

soqinsque 3

The soqinsque function adds the socket to q or q0 of “head.”

soqinsque(struct socket *,
struct socket *,
int);

soqremque 3

The soqremque function removes socket from q or q0 of “head.”

soqremque(struct socket *, int);



C H A P T E R  3

Network Kernel Extensions Reference

Protocol Family NKE Functions 51

soreserve 3

The soreserve function sets up send and receive sockbuf structures.

soreserve(struct socket *,
struct sockbut *);

Protocol Family NKE Functions 3

This section describes the functions that support the dynamic addition and 
removal of protocol family NKEs.

net_add_domain 3

Adds a domain structure to the kernel’s domain list.

void net_add_domain(struct domain *domain);

domain On input, a pointer to a domain structure to be linked into the 
system’s list of domains.

function result None.

DISCUSSION

The net_add_domain function adds a domain (represented by the domain 
parameter) to the kernel’s list of domains. 

The net_add_domain function locks the domain structure, calls the domain’s init 
function, and calls the protocol’s init function for each attached protocol. The 
domain’s init function updates certain system global structures, such as 
max_protohdr, and protects itself from repeated calls. You can choose whether to 
include the protosw structures in domain. The alternative is to attach protocol 
handler NKEs by calling net_add_proto (page 53).

This function does not return a value because it cannot fail.



C H A P T E R  3  

Network Kernel Extensions Reference

52 Protocol Family NKE Functions

net_del_domain 3

Removes a domain structure from the kernel’s domain list.

int net_del_domain(struct domain *domain);

domain On input, a pointer to the domain structure that is to be removed.

function result 0 to indicate success, EBUSY when the reference count for the 
specified domain structure is not zero, and EPFNOSUPPORT if the 
specified domain structure cannot be found.

DISCUSSION

The net_del_domain function removes a domain structure from the kernel’s list of 
domain structures. 

You are responsible for reclaiming resources and handling dangling pointers 
before you call net_del_domain.

This function is only called from a domain implementation.

pffinddomain 3

Finds a domain.

struct domain *pffinddomain(int x);

x On input, a PK constant, such as PF_INET or PF_NKE.

function result A pointer to the requested domain structure or NULL, which 
indicates that the domain could not be found. If pffinddomain 
returns NULL, the caller should return EPFNOSUPPORT in addition to 
performing normal error cleanup.

DISCUSSION

The pffinddomain function locates the domain structure for the specified protocol 
family in the kernel’s list of domain structures.



C H A P T E R  3

Network Kernel Extensions Reference

Protocol Handler NKE Functions 53

Note
This function depends on matching an integer value with a 
value in the kernel. You can verify that the proper domain 
structure has been located by checking the value of the 
dom_name field in the domain structure. ◆

Protocol Handler NKE Functions 3

This section describes the functions that support the dynamic addition and 
removal of protocol handler NKEs.

net_add_proto 3

Adds the specified protosw structure to the list of protosw structures for the 
specified domain.

int net_add_proto (struct protosw *protosw,
struct domain *domain);

protosw On input, a pointer to a protosw structure.

domain On input, a pointer to a domain structure.

function result 0 to indicate success or EEXISTS if the pr_type and the 
pr_protocol fields in the protosw structure that is being added 
match the pr_type and pr_protocol fields in an existing protosw 
entry for the specified domain.

DISCUSSION

The net_add_proto function adds the specified protosw to the domain’s list of 
protosw structures. 

If the protosw structure is successfully added, the protocol’s init function (if 
present) is called.



C H A P T E R  3  

Network Kernel Extensions Reference

54 Data Link NKE Functions

net_del_proto 3

Removes a protosw structure from the list of protosw structures for the specified 
domain.

int net_del_proto(int type,
int protocol,
struct domain *domain);

type On input, an integer value that specifies the type of the protosw 
structure that is to be removed.

protocol On input, an integer value that specifies the protocol of the 
protosw structure that is to be removed.

domain On input, a pointer to a domain structure.

function result 0 to indicate success or ENXIO if the specified values for type and 
protocol don’t match a protosw structure in the domain’s list of 
protosw structures.

DISCUSSION

The net_del_proto function removes the specified protosw structure from the list 
of protosw structures for the specified domain structure.

Data Link NKE Functions 3

This section describes the Data Link Layer Interface (DLIL) functions. The 
section is organized under the following topics:

■ “Calling the DLIL From the Network Layer” (page 55)

■ “Calling the Network Layer From the DLIL” (page 63)

■ “Calling the Driver Layer From the DLIL” (page 68)

■ “Calling the DLIL From the Driver Layer” (page 71)

■ “Calling Interface Modules From the DLIL” (page 76)

■ “Calling the DLIL From a DLIL Filter” (page 79)



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 55

Calling the DLIL From the Network Layer 3

This section describes DLIL functions that are called from the network layer. 
The functions are

■ dlil_attach_protocol_filter (page 55) which is called to attach a protocol 
filter.

■ dlil_attach_interface_filter (page 57) which is called to attach an interface 
filter.

■ dlil_attach_protocol (page 58) which a protocol calls to attach itself to the 
DLIL.

■ dlil_detach_filter (page 59) which a protocol calls to attach itself to the 
DLIL.

■ dlil_detach_protocol (page 60) which a protocol calls to deattach itself from 
the DLIL.

■ dlil_output (page 60) which a protocol calls to send data to a network 
interface.

■ dlil_ioctl (page 62) which a protocol calls to send ioctl commands to a 
network interface.

dlil_attach_protocol_filter 3

Inserts a DLIL protocol filter between a protocol and the DLIL.

int dlil_attach_protocol_filter(
u_long dl_tag,
struct dlil_pr_flt_str *protocol_filter,
u_long *filter_id,
int insertion_point);

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the protocol/
interface pair between which the NKE is to be inserted.

protocol_filter
A pointer to a dlil_pr_fil_str structure that contains pointers 
to the functions the DLIL is to call when it intercepts calls. Each 



C H A P T E R  3  

Network Kernel Extensions Reference

56 Data Link NKE Functions

function pointed to by a member of this structure corresponds to 
a function pointed to by the ifnet structure for this protocol/
interface pair.

filter_id On input, a pointer to a u_long. On output, filter_id points to a 
tag value that identifies the NKE that has been inserted. The tag 
value is required to remove the NKE or insert another NKE after 
the current NKE.

insertion_point
On input, a value of type int. If this is the first DLIL protocol 
filter to be inserted, set insertion_point to DLIL_LAST_FILTER. If 
this is the second or greater insertion, set insertion_point to the 
value of filter_id returned by a previous call to 
dlil_attach_protocol_filter or to DLIL_LAST_FILTER to insert 
the filter at the end of the chain of inserted filters.

function result 0 for success.

DISCUSSION

The dlil_attach_protocol_filter function inserts a DLIL protocol filter 
between the specified protocol and the DLIL.

When more than one DLIL protocol filter is inserted, the DLIL calls the 
appropriate function of the first filter with the parameters provided by the 
caller. When that call returns successfully, the DLIL calls the appropriate 
function for the second filter with the parameters returned by the first filter, and 
so on until the appropriate functions have been called for each filter in the list. 
When the last filter in the list has been called, the DLIL calls the original 
destination function with the parameters returned by the last filter.

The DLIL skips any function pointers that are NULL, which allows DLIL protocol 
filters to intercept only a subset of the calls that may be made by a protocol to 
the interface to which the protocol is attached.

If a DLIL protocol filter returns a status other zero (which indicates success) or 
EJUSTRETURN, the DLIL frees any associated mbuf chain (for the 
filter_dl_pre_output and filter_dl_input functions only) and returns with 
that status.

If a DLIL protocol filter returns a status of EJUSTRETURN, the DLIL returns zero to 
indicate success without freeing any associated mbuf chain. The DLIL protocol 
filter is responsible for freeing or forwarding any associated mbuf chain.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 57

dlil_attach_interface_filter 3

Inserts a DLIL interface filter between the DLIL and the interface.

int dlil_attach_interface_filter(
struct ifnet *ifnet_ptr,
struct dlil_if_flt_str *interface_filter,
int *filter_id,
u_long insertion_point);

ifnet_ptr A pointer to the ifnet structure for this interface.

interface_filter
A pointer to a dlil_if_fil_str structure that contains pointers 
to the function calls that the DLIL is to call when the family 
interface module calls common network driver code for the 
specified interface. Each function pointed to by a member of this 
structure corresponds to a function pointed to by the ifnet 
structure.

filter_id On input, a pointer to a value of type int. On output, filter_id 
points to a value that identifies the NKE that has been inserted. 
This value is required to remove the NKE or insert another NKE 
after it.

insertion_point
On input, a value of type u_long. If this is the first insertion, set 
insertion_point to DLIL_LAST_FILTER. If this is the second or 
greater insertion, set insertion_point to the value of filter_id 
returned by a previous call to dlil_attach_interface_filter or 
to DLIL_LAST_FILTER to insert the filter at the end of the chain of 
inserted filters.

function result 0 for success. Other possible errors are defined in <errno.h>.

DISCUSSION

The dlil_attach_interface_filter function inserts a DLIL interface filter 
between the DLIL and an interface. When the filter is in place, the DLIL 
intercepts all calls between itself and the interface’s driver and passes the call 
and its parameters to the filter.

You can insert multiple DLIL interface filters, in which case the DLIL calls the 
filters in the order specified by insertion_point at the time of insertion. The 



C H A P T E R  3  

Network Kernel Extensions Reference

58 Data Link NKE Functions

order in which filters are executed is reversed when an incoming packet is 
being processed (that is, the last filter called for an outbound packet will be the 
first filter called for an inbound packet).

When more than one DLIL interface filter is installed, the DLIL calls the 
appropriate function for the first filter with the parameters provided by the 
caller. When that call returns successfully, the DLIL calls the appropriate 
function for the second filter with the parameters returned by the first filter, and 
so on until the appropriate functions have been called for each filter in the list. 
When the last filter has been called, the DLIL calls the original destination 
function with the parameters returned by the last filter.

The DLIL skips any null function pointers, which allows DLIL interface filters 
to intercept only a subset of the calls that the DLIL may make to the driver for 
the specified interface.

If a DLIL interface filter returns a status other than zero (which indicates 
success) or EJUSTRETURN, the DLIL frees any associated mbuf chain (for the 
filter_if_output and filter_if_input functions only) and returns with that 
status.

If a DLIL interface extension returns a status of EJUSTRETURN, the DLIL returns 
zero to indicate success. The DLIL interface filter is responsible for freeing or 
forwarding any associated mbuf chain.

With a return value of zero, the DLIL continues to process the list of NKEs.

dlil_attach_protocol 3

Attaches a protocol to the DLIL for use with an interface.

int dlil_attach_protocol(
struct dlil_proto_reg_str *proto_reg,
u_long *dl_tag);

proto_reg On input, a pointer to a dlil_proto_reg_str (page 84) structure 
containing all of the information required to complete the 
attachment. 



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 59

dl_tag On input, a pointer to a value of type u_long. On output, dl_tag 
points to an opaque value identifying the interface/protocol 
pair that is passed in subsequent calls to the dlil_output, 
dlil_ioctl, and dlil_detach functions.

function result 0 for success and ENOENT if the specified interface does not exist. 
Other possible errors are defined in <errno.h>.

DISCUSSION

The dlil_attach_protocol function attaches a protocol to the DLIL for use with 
a specific network interface. For example, you would call dlil_attach_protocol 
to attach the TCP/IP protocol family to en0, which is the first Ethernet family 
interface.

dlil_detach_filter 3

Removes a DLIL interface filter or a DLIL protocol filter.

int dlil_detach_filter( u_long filter_id );

filter_id A value of type u_long obtained by previously calling 
dlil_attach_interface_filter (page 57) or 
dlil_attach_protocol_filter (page 55).

function result 0 for success or ENOENT of the specified filter does not exist.

DISCUSSION

The dlil_detach_filter function removes a DLIL interface filter or a DLIL 
protocol filter that was previously attached by calling 
dlil_attach_interface_filter (page 57) or dlil_attach_protocol_filter 
(page 55).

If the filter has a detach routine and a function pointer to it was supplied when 
the filter was attached, the DLIL calls the filter’s detach routine before 
detaching the filter. The detach routine should complete any clean up tasks 
before it returns.



C H A P T E R  3  

Network Kernel Extensions Reference

60 Data Link NKE Functions

dlil_detach_protocol 3

Detaches a protocol from the DLIL.

int dlil_detach_protocol( u_long dl_tag );

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the protocol and 
the interface from which the protocol is to be detached.

function result 0 for success and ENOENT if the defined protocol is not currently 
attached. Other possible errors are defined in <errno.h>.

DISCUSSION

The dlil_detach_protocol function detaches a protocol that was previously 
attached to the DLIL by calling dlil_attach_protocol (page 58). Before 
detaching the protocol, the DLIL calls the detach filter callback functions for any 
NKEs that may have been inserted between the protocol and the interface that 
is being detached from.

The DLIL keeps a reference count of protocols attached to each interface. When 
the reference count reaches zero as a result of calling dlil_detach_protocol, the 
DLIL calls the if_free (page 70) function for the affected interface to notify the 
driver that no protocols are attached to the interface. The reference count can 
only reach zero if the driver detaches the interface.

dlil_output 3

Sends data to a network interface.

int dlil_output (u_long dl_tag,
struct mbuf *buffer,
caddr_t route,
struct sockaddr *dest,
int raw);



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 61

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

buffer On input, a pointer to the mbuf chain, which may contain 
multiple packets.

route On input, a pointer to an opaque pointer-sized value whose use 
is specific to each protocol family, or NULL.

dest On input, a pointer to an sockaddr structure that defines the 
target network address that the DLIL passes to the associated 
dl_pre_output function. If raw is FALSE, this parameter is ignored.

raw On input, a Boolean value. Setting raw to TRUE indicates that the 
mbuf chain pointed to by buffer contains a link-level frame 
header (which means that no further processing by the protocol 
or by the interface family modules is required). If raw is FALSE, 
protocol filters are not called, but any interface filters attached to 
the target interface are called.

function result 0 for success.

DISCUSSION

The dlil_output function is a DLIL function that the network layer calls in 
order to send data to a network interface. The dlil_output function executes as 
follows:

1. If the raw parameter is TRUE, go to step 4. Otherwise, if the raw parameter is 
FALSE and the attached protocol identified by dl_tag has defined a 
dl_pre_output function, the DLIL calls that dl_pre_output function and 
passes to it all of the parameters passed to dl_output by the caller, as well as 
pointers to two buffers in which the dl_pre_output function can pass back the 
frame type and destination data link address.

2. If any data link protocol extensions are attached to the protocol/interface 
pair, those NKEs are called in the order they were inserted. If any NKE 
returns a value other than zero for success or EJUSTRETURN, the DLIL stops 
processing the packet, dlil_output frees the mbuf chain, and returns an error 
to its caller. When any NKE returns EJUSTRETURN, packet processing 
terminates without freeing the mbuf chain. In this case, the NKE is responsible 
for freeing or forwarding the mbuf chain.



C H A P T E R  3  

Network Kernel Extensions Reference

62 Data Link NKE Functions

3. If an if_framer function is defined for this interface, the DLIL calls the 
if_framer function. The if_framer function adds any necessary link-level 
framing to the outbound packet. This function usually prepends the frame 
header to the beginning of the mbuf chain.

4. If any data link interface NKEs have been attached to the interface specified 
by dl_tag, those NKEs are called in the order they were inserted. If any NKE 
returns a value other than zero for success or EJUSTRETURN, the DLIL stops 
processing the packet, frees the mbuf chain, and returns an error to its caller. 
When any NKE returns EJUSTRETURN, packet processing terminates without 
freeing the mbuf chain. In this case, the NKE is responsible for freeing or 
forwarding the mbuf chain.

5. As the last step, dlil_output calls if_output in order to pass the mbuf chain 
and a pointer to the ifnet structure to the interface’s driver.

dlil_ioctl 3

Accesses DLIL-specific or driver-specific functionality.

int dlil_ioctl (u_long dl_tag,
struct ifnet *ifp,
u_long ioctl_code,
caddr_t ioctl_arg);

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair. If not zero, the DLIL uses the value of 
dl_tag to identify the target protocol module. If dl_tag is zero, 
ifp is not NULL, and the interface has defined an if_ioctl 
function, the DLIL calls the interface’s if_ioctl function and 
passes to it the parameters supplied by the caller.

ifp On input, a pointer to the ifnet structure associated with the 
target interface. This parameter is not used if dl_tag is non-zero.

ioctl_code On input, a value of type u_long that specifies the specific ioctl 
function that is to be accessed.

ioctl_arg On input, a value of type caddr_t whose contents depend on the 
value of ioctl_code.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 63

function result 0 for success.

DISCUSSION

The dlil_ioctl function is a DLIL function that the network layer calls in order 
to send ioctl commands to a network interface.

Calling the Network Layer From the DLIL 3

This section describes network layerfunctions called by the DLIL. The functions 
are

■ dl_pre_output (page 63), which the DLIL calls in order to perform 
protocol-specific processing (such as resolving the network address to a 
link-level address) for outbound packets.

■ dl_input (page 65), which the DLIL calls in order to pass incoming packets to 
the protocol.

■ dl_offer (page 66), which the DLIL calls in order to identify incoming 
frames.

■ dl_event (page 67), which the DLIL calls in order to pass events from the 
driver layer to a protocol.

dl_pre_output 3

Obtains the destination link address and frame type for outgoing packets.

int (*dl_pre_output) (struct mbuf *mbuf_ptr,
caddr_t route_entry,
struct sockaddr *dest,
char *frame_type,
char *dest_linkaddr,
u_char dl_tag);

mbuf_ptr On input, a pointer to an mbuf structure containing one or more 
outgoing packets.



C H A P T E R  3  

Network Kernel Extensions Reference

64 Data Link NKE Functions

route_entry On input, a value of type caddr_t that is passed to the DLIL 
when a protocol calls dlil_output (page 60).

dest On input, a pointer to a sockaddr structure that describes the 
packets’ destination network address, or NULL. This parameter is 
passed to the DLIL when the protocol calls dlil_output 
(page 60). The format of the sockaddr structure is specific to each 
protocol family.

frame_type On input, a pointer to a byte array of undefined length. On 
output, frame_type contains the frame type for this protocol.

dest_linkaddr On input, a pointer to a byte array of undefined length. On 
output, dest_linkaddr contains the destination link address.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

function result 0 for success. Errors are defined in <errno.h>.

DISCUSSION

The dl_pre_output function obtains the link address and frame type for 
outgoing packets whose destination is described by the dest parameter.

The dl_pre_output function pointer in the if_proto structure is optionally 
defined when a protocol calls the function dlil_attach_protocol (page 58) to 
register a protocol family. The DLIL calls the dl_pre_output function when a 
protocol calls dlil_output (page 60).

In addition to defining the destination link address and the frame type, the 
dl_pre_output function may also add a packet header, such as 802.2 or SNAP.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 65

dl_input 3

Receives incoming packets.

int (*dl_input) (struct mbuf *mbuf_ptr,
char *frame_header,
struct ifnet *ifnet_ptr,
caddr_t dl_tag,
int sync_ok);

mbuf_ptr On input, a pointer to an mbuf structure.

frame_header On input, a pointer to a byte array of undefined length 
containing the frame header.

ifnet_ptr On input, a pointer to the ifnet structure for this protocol/
interface pair.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

sync_ok Reserved.

function result 0 for success. Errors are defined in <errno.h>.

DISCUSSION

The dl_input function is called by the DLIL. When a DLIL module receives a 
frame from the driver and finishes interface-specific processing, it calls the 
target protocol through the dl_input function pointer. The interface family’s 
demultiplexing module identifies the target protocol by matching the data 
provided in the demultiplexing descriptors when the protocol was attached.

The dl_input function pointer in the if_proto structure is defined by the input 
member of the dlil_proto_reg_str (page 84) structure, which the function 
dlil_attach_protocol (page 58) passes to the DLIL when a protocol is attached.



C H A P T E R  3  

Network Kernel Extensions Reference

66 Data Link NKE Functions

dl_offer 3

Examines unidentified frames.

int (*dl_offer) (struct mbuf *mbuf_ptr,
char *frame_header;
u_long dl_tag);

mbuf_ptr On input, a pointer to an mbuf structure containing incoming 
frames.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

frame_header On input, a pointer to a byte array containing the frame header 
as received from the driver. The length of frame_header depends 
on the interface family.

function result DLIL_FRAME_ACCEPTED or DLIL_FRAME_REJECTED.

DISCUSSION

The dl_offer function accepts or rejects a frame that was not identified by a 
protocol’s demultiplexing descriptors.

When the interface family demultiplexing module receives a frame that does 
not match any of the protocol’s demultiplexing descriptors, the module calls 
any defined dl_offer function and passes to it the unidentified frame. The 
dl_offer function can accept or reject the frame.

The dl_offer function pointer in the if_proto structure is optionally defined by 
the offer member of the dlil_proto_reg_str (page 84) structure, which the 
dlil_attach_protocol (page 58) function passes to the DLIL when a protocol is 
attached.

If a dl_offer function accepts the frame, the frame is not offered to any other 
protocol’s dl_offer function. If no dl_offer function accepts the frame, the 
frame is dropped.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 67

Note
The dl_offer function only indicates whether it will accept 
the frame. It does not modify the frame or start processing 
it. Processing occurs when dlil_input calls the protocol’s 
dl_input function. ◆

dl_event 3

Receives events passed by the DLIL from the interface’s driver.

void (*dl_event) (struct event_msg *event,
u_long dl_tag);

event On input, a pointer to an event_msg structure.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair. The dl_event function uses dl_tag to 
determine the interface that was the source of the event.

function result None.

DISCUSSION

The dl_event function receives events from the interface’s driver. When the 
DLIL receives an event from the driver, the module calls the defined dl_event 
functions of all protocols that are attached to the interface, passing in event_msg 
an event-specific code and an event value that is interpreted by the dl_event 
function.

If dlil_attach_protocol (page 58) was called with a null pointer for the 
dl_event function, no action is taken for that protocol family. 

The dl_event function pointer in the if_proto structure is optionally defined by 
the event member of dlil_proto_reg_str (page 84) structure, which 
dlil_attach_protocol (page 58) passes to the DLIL when a protocol is attached.



C H A P T E R  3  

Network Kernel Extensions Reference

68 Data Link NKE Functions

Calling the Driver Layer From the DLIL 3

The functions described in this section are called by the DLIL to an interface’s 
driver. The functions are

■ if_output (page 68), which the DLIL calls in order to pass outgoing packets 
to the interface’s driver.

■ if_ioctl (page 69), which the DLIL calls in order to pass ioctl commands to 
the interface’s driver.

■ if_set_bpf_tap (page 69), which the DLIL calls in order to enable or disable a 
binary packet filter tap.

■ if_free (page 70), which the DLIL calls in order to free the ifnet structure for 
an interface.

if_output 3

Accepts outgoing packets and passes them to the interface’s driver.

int (*if_output) (struct ifnet *ifnet_ptr,
struct mbuf *buffer);

ifnet_ptr On input, a pointer to the ifnet structure for this interface.

buffer On input, a pointer to an mbuf structure containing one or more 
outgoing packets.

function result 0 for success. Errors are defined in <errno.h>.

DISCUSSION

The if_output function sends outgoing packets to the interface’s driver. The 
DLIL calls if_output when the associated protocol calls dlil_output (page 60).

The if_output function must accept all of the packets in the mbuf chain.

The if_output function pointer is defined in the interface’s ifnet structure and 
is initialized by the interface driver before the interface driver calls 
dlil_if_attach (page 71).



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 69

if_ioctl 3

Processes ioctl commands.

int (*if_ioctl) (struct ifnet *ifnet_ptr,
u_long ioctl_code,
caddr_t ioctl_arg);

ifnet_ptr On input, a pointer to the ifnet structure for this interface.

ioctl_code On input, a value of type u_long containing the ioctl command.

ioctl_arg On input, a value of type caddr_t whose contents depend on the 
value of ioctl_code.

function result 0 for success. Other results are specific to the driver’s ioctl 
function.

DISCUSSION

The if_ioctl function accepts and processes ioctl commands that access 
driver-specific functionality.

The if_ioctl pointer is defined in the interface’s ifnet structure and is 
initialized by the interface driver before the interface driver calls dlil_if_attach 
(page 71).

if_set_bpf_tap 3

Enables or disables a binary packet filter tap for an interface.

int (*if_set_bpf_tap) (int mode,
struct ifnet *ifnet_ptr,
void (*bpf_callback) (
struct ifnet *ifnet_ptr,
struct mbuf *mbuf_ptr,
int direction);



C H A P T E R  3  

Network Kernel Extensions Reference

70 Data Link NKE Functions

mode On input, a value of type int that is BPF_TAP_DISABLE (to disable 
the tap), BPF_TAP_INPUT (to enable the tap on incoming packets), 
BPF_TAP_OUTPUT (to enable the tap on outgoing packets), or 
BPF_TAP_INPUT_OUTPUT (to enable the tap on incoming and 
outgoing packets).

ifnet_ptr On input, a pointer to the ifnet structure for this interface.

callback On input, a function pointer to the tap.

function result 0 for success.

DISCUSSION

The if_set_bpf_tap function enables or disables a read-only binary packet filter 
tap for an interface. A tap is different from a NKE in that it is read-only and that 
it operates within the driver. Any network driver attached to the DLIL can be 
tapped.

The if_set_bpf_tap function pointer is defined in the interface’s ifnet structure 
by the driver before the driver calls dlil_if_attach (page 71).

If the value of the mode parameter is BPF_TAP_INPUT, BPF_TAP_OUTPUT, or 
BPF_TAP_INPUT_OUTPUT, the bfp_callback parameter points to a C function the 
driver calls when transmitting or receiving data over the interface (depending 
on the value of mode). If the value of mode is BPF_TAP_DISABLE, the tap is disabled 
for incoming and outgoing packets.

When the driver calls its bpf_callback function, it passes a pointer to the 
interface’s ifnet structure and a pointer to the incoming or outgoing mbuf chain.

if_free 3

Frees the inet structure for an interface.

void (*if_free) (struct ifnet *ifnet_ptr);

ifnet_ptr On input, a pointer to the ifnet structure that is to be freed.

function result None.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 71

DISCUSSION

The if_free function frees the ifnet structure for an interface. It is called by the 
DLIL in response to a previous dlil_if_detach call from the driver that 
returned DLIL_WAIT_FOR_FREE.  Once all references to the ifnet structure have 
been deallocated, the DLIL calls if_free (page 70) to notify the driver that the 
associated ifnet structure pointed to by ifnet_ptr is no longer being referenced 
and can be deallocated.

The if_free pointer is defined in the interface’s ifnet structure before the 
interface driver calls dlil_if_attach (page 71).

Calling the DLIL From the Driver Layer 3

Drivers call the following DLIL functions:

■ dlil_if_attach (page 71) to attach an interface to the DLIL.

■ dlil_if_detach (page 72) to detach an interface from the DLIL.

■ dlil_reg_if_modules (page 73) to register an interface family module.

■ dlil_find_dl_tag (page 74) to locate the dl_tag value for a protocol and 
interface family pair.

■ dlil_input (page 75) to pass incoming packets to the DLIL.

■ dlil_event (page 75) to pass event codes to the DLIL.

dlil_if_attach 3

Attaches an interface to the DLIL for use by a specified protocol.

int dlil_if_attach( struct ifnet *ifnet_ptr );

ifnet_ptr A pointer to an ifnet structure containing all of the information 
required to complete the attachment. The ifnet structure may be 
embedded within an interface-family–specific structure, in 
which case the ifnet structure must be the first member of that 
structure.



C H A P T E R  3  

Network Kernel Extensions Reference

72 Data Link NKE Functions

function result 0 for success and ENOENT if no interface family module is found. 
Other possible errors are defined in errno.h.

DISCUSSION

The dlil_if_attach function attaches an interface to the DLIL. If the DLIL 
interface family module for the specified interface has not been loaded, an error 
is returned. (See dlil_reg_if_modules (page 73).)

The DLIL calls the add_if (page 76) function for the interface family module in 
order to initialize the module’s portion of the ifnet structure and perform any 
module-specific tasks. At minimum, the add_if function is responsible for 
initializing the if_demux (page 79) and if_framer function pointers in the ifnet 
structure. Later, the DLIL uses the if_demux function pointer to call the 
demultiplexing descriptors for the interface in order to demultiplex incoming 
frames and uses the if_framer function pointer to frame outbound packets.

Once add_if initializes the members of the ifnet structure for which it is 
responsible, the DLIL places the interface on the list of network interfaces, and 
dlil_if_attach returns.

dlil_if_detach 3

Detaches an interface from the DLIL.

int dlil_if_detach( struct ifnet *ifnet_ptr );

inet_ptr A pointer to an ifnet structure that was previously used to call 
dlil_if_attach (page 71).

function result 0 for success. DLIL_WAIT_FOR_FREE if the driver must wait for the 
DLIL to call the if_free (page 70) callback function before 
deallocating the ifnet structure.

DISCUSSION

The dlil_if_detach function detaches a network interface from the DLIL, 
thereby disabling communication to and from the interface. Then the DLIL 
marks the interface as detached in the interface’s ifnet structure. To notify the 
protocols that are attached to the interface that the interface has been detached, 



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 73

the DLIL then calls the dl_event function for all of the protocols have defined 
such a function. In response, attached protocols should call 
dlil_detach_protocol to detach themselves from the interface.

The protocols or the socket layer may still have references to the ifnet structure 
for the detached interface, so interface drivers should wait to deallocate the 
interface’s ifnet structure until the DLIL calls the interface’s if_free (page 70) 
function to notify the driver that all protocols have detached from the interface.

dlil_reg_if_modules 3

Registers an interface family.

dlil_reg_if_modules(u_longinterface_family,
int (*add_if),
int (*del_if),
int (*add_proto),
int (*del_proto),
int (*shutdown)());

interface_family
On input, a value of type u_long specified that uniquely 
identifies the interface family. Values for the current interface 
families are defined in <net/if_var.h>. You can define new 
interface family values by contacting DTS.

add_if On input, a pointer to the interface family module’s add_if 
function.

del_if On input, a pointer to the interface family module’s del_if 
function.

add_proto On input, a pointer to the interface family module’s add_proto 
function.

del_proto On input, a pointer to the interface family module’s del_proto 
function.

shutdown On input, a pointer to the interface family module’s shutdown 
function.

function result 0 for success. Other errors are defined in errno.h.



C H A P T E R  3  

Network Kernel Extensions Reference

74 Data Link NKE Functions

DISCUSSION

The dlil_reg_if_modules function registers an interface family module that 
contains the necessary functions for processing inbound and outbound packets 
including if_demux and if_framer functions. Any null function pointers are 
skipped in DLIL processing.

dlil_find_dl_tag 3

Gets the dl_tag for an interface and protocol family pair.

dlil_find_dl_tag(u_longif_family;
short unit;
u_long proto_family;
u_long *dl_tag);

if_family On input, a value of type u_long that uniquely identifies the 
interface family. See <net/if_var.h> for possible values.

unit On input, a value of type short containing the unit number of 
the interface.

proto_family On input, a value of type u_long that uniquely identifies the 
protocol family. See <net/if_var.h> for possible values.

dl_tag On input, a pointer to a value of type u_long in which the dl_tag 
value for the specified interface and protocol family pair is to be 
returned.

function result 0 for success. EPROTONOSUPPORT if a matching pair is not found.

DISCUSSION

The dlil_find_dl_tag function locates the dl_tag value associated with the 
specified interface and protocol family pair.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 75

dlil_input 3

Passes incoming packets to the DLIL.

int dlil_input(struct ifnet *ifp,
struct mbuf *m);

ifp On input, a pointer to the ifnet structure for this interface.

m On input, a pointer to the head of a chain of mbuf structures 
containing one or more incoming frames.

function result 0 for success.

DISCUSSION

The dlil_input function is called by the driver layer to pass incoming frames 
from an interface to the DLIL. The dlil_input function performs the following 
sequence:

1. Any interface filters attached to the associated interface are called.

2. Assuming all filters return successfully, if_demux (page 79) is called to 
determine the target protocol family. If if_demux cannot find a matching 
protocol family, dlil_input calls the dl_offer functions (if any) defined by 
the attached protocol families.

3. If no target protocol family is found, the frame is dropped.

4. Any protocol filters attached to the target protocol family/interface are 
called.

5. If all protocol filters return successfully, the frame is passed to the protocol 
family's dl_input function. DLIL frame processing is finished.

dlil_event 3

Notifies the DLIL of significant events.

void (*dlil_event) (struct ifnet *ifnet_ptr,
struct event_msg *event);



C H A P T E R  3  

Network Kernel Extensions Reference

76 Data Link NKE Functions

ifnet_ptr On input, a pointer to the ifnet structure for this interface.

event On input, a pointer to an event_mgs structure containing a 
unique event code and a pointer to event data.

function result A result code.

DISCUSSION

The dlil_event function is called by the driver layer to pass event codes, such 
as a change in the status of power management, to the DLIL. The DLIL passes a 
pointer to the ifnet structure for this interface and the event parameter to those 
protocols that are attached to this interface and that have provided a pointer to 
a dl_event function for receiving events. The protocols may or may not react to 
any particular event code.

Calling Interface Modules From the DLIL 3

The DLIL calls the following interface module functions:

■ add_if (page 76) to add an interface.

■ del_if (page 77) to remove an interface.

■ add_proto (page 77) which is called to add a protocol.

■ del_proto (page 78) which is called to remove a protocol.

add_if 3

Adds an interface.

int (*add_if) struct ifnet *ifp);

ifp On input, a pointer to the ifnet structure for the interface that is 
being added.

function result 0 for success.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 77

DISCUSSION

The add_if function is called by the DLIL in response to a call to 
dlil_if_attach (page 71). The DLIL calls add_if in the interface family module 
in order to initialize the module’s portion of the ifnet structure and perform 
any module-specific tasks. 

At minimum, the add_if function initializes the if_demux (page 79) and 
if_framer function pointers in the ifnet structure. Later, the DLIL uses the 
if_demux function pointer to call the demultiplexing function for the interface to 
demultiplex incoming frames and calls the if_framer function to frame 
outbound packets.

del_if 3

Deinitializes portions of an ifnet structure.

int (*del_if) struct ifnet *ifp);

ifp On input, a pointer to the ifnet structure for the interface that is 
being deinitialized.

function result 0 for success.

DISCUSSION

The del_if function is called by the DLIL to notify an interface family module 
that an interface is being detached. The interface family module should remove 
any references to the interface and associated structures.

add_proto 3

Adds a protocol.

int (*add_proto)(struct ddesc_head_str *demux_desc_head)
struct if_proto *proto,
u_long dl_tag);



C H A P T E R  3  

Network Kernel Extensions Reference

78 Data Link NKE Functions

demux_desc_head
On input, a pointer to the head of a linked list of one or more 
protocol demultiplexing descriptors for the protocol that is 
being added.

proto On input, a pointer to the if_proto structure for the protocol 
that is being added.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

function result 0 for success.

DISCUSSION

The add_proto function is an interface family module function that processes 
the passed demux descriptor list, extracting any information needed to identify 
the attaching protocol in subsequent incoming frames.

del_proto 3

Removes a protocol.

int (*del_proto) (struct if_proto *proto,
u_long dl_tag);

proto On input, a pointer to the if_proto structure for the protocol 
that is being removed.

dl_tag On input, a value of type u_long, previously obtained by calling 
dlil_attach_protocol (page 58), that identifies the associated 
protocol/interface pair.

function result 0 for success.

DISCUSSION

The del_proto function is called by the DLIL to remove a protocol family from 
an interface family module’s list of attached protocol families. Any references to 
the associated if_proto structure pointer should be removed before returning.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 79

if_demux 3

Locates demultiplexing descriptors.

void (*if_demux) (struct ifnet *ifnet_ptr,
struct mbuf *mbuf_ptr,
char * frame_header);

ifnet_ptr On input, a pointer to the ifnet structure for this interface.

mbuf_ptr On input, a pointer to an mbuf structure containing one or more 
incoming frames.

frame_header On input, a pointer to a character string in the mbuf structure 
containing a frame header.

function result 0 for success.

DISCUSSION

The if_demux function is an interface family function called by dlil_input 
(page 75) to determine the target protocol family for an incoming frame. This 
function uses the demultiplexting data passed in from previous calls to the 
add_proto function. When a match is found, if_demux returns the associated 
if_proto pointer.

Calling the DLIL From a DLIL Filter 3

DLIL filters call the following DLIL functions in order to inject data into a data 
path:

■ dlil_inject_if_input (page 80) is called by a DLIL interface filter to inject 
frames into the inbound data path.

■ dlil_inject_if_output (page 81) is called by a DLIL interface filter to inject 
packets into the outbound data path.

■ dlil_inject_pr_input (page 82) is called by a DLIL protocol filter to inject 
frames into the inbound data path.

■ dlil_inject_pr_output (page 83) is called by a DLIL protocol filter to inject 
packets into the output data path.



C H A P T E R  3  

Network Kernel Extensions Reference

80 Data Link NKE Functions

dlil_inject_if_input 3

Injects frames into the inbound data path from the interface filter level.

int dlil_inject_if_input (struct mbuf *buffer,
char *frame_header,
ulong from_id);

buffer On input, a pointer to a chain of mbuf structures containing the 
packets that are to be injected.

frame_header On input, a pointer to a byte array of undefined length 
containing the frame header for the frames that are to be 
injected.

from_id On input, a value of type ulong containing the filter ID of the 
calling filter obtained by previously calling 
dlil_attach_interface_filter (page 57). If from_id is set to 
DLIL_NULL_FILTER, all attached interface filters are called.

function result 0 for success.

DISCUSSION

The dlil_inject_if_input function is called by an interface filter NKE to inject 
frames into the inbound data path. The frames can be frames that the filter 
generates or frames that were previously consumed.

When a filter injects a frame, the DLIL invokes all of the input interface filter 
NKEs that would normally be invoked after the filter identified by filter_id. 
The behavior is identical to the processing of a frame passed to dlil_input 
(page 75) from the driver layer except that all interface filter NKEs preceding 
and including the injecting filter are not executed.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 81

dlil_inject_if_output 3

Injects packets into the outbound data path from the interface filter level.

int dlil_inject_if_output (
struct mbuf *buffer,
ulong from_id);

buffer On input, a pointer to a chain of mbuf structures containing the 
packets that is to be injected.

from_id On input, a value of type ulong containing the filter ID of the 
calling filter obtained by previously calling 
dlil_attach_interface_filter (page 57). If from_id is set to 
DLIL_NULL_FILTER, all attached interface filters are called.

function result 0 for success.

DISCUSSION

The dlil_inject_if_output function is called by an interface filter NKE to inject 
frames into the outbound data path. The packets can be packets that the filter 
generates or packets that were previously consumed.

When a filter injects a packet, the DLIL invokes all of the output interface filter 
NKEs that would normally be invoked after the filter that calls 
dlil_inject_if_output (page 81). This behavior is identical to the last steps of 
packet processing done by dlil_output, except that all output interface filter 
NKEs preceding and including the injecting filter are not executed.

Note
The injected packets must contain any frame header that 
the driver layer requires. ◆



C H A P T E R  3  

Network Kernel Extensions Reference

82 Data Link NKE Functions

dlil_inject_pr_input 3

Injects frames into the inbound data path from the protocol filter level.

int dlil_inject_pr_input (struct mbuf *buffer,
char *frame_header,
ulong from_id);

buffer On input, a pointer to a chain of mbuf structures containing the 
data that is to be injected.

frame_header On input, a pointer to a byte array of undefined length 
containing the frame header for the frames that are to be 
injected.

from_id On input, the filter ID of the calling filter obtained by previously 
calling dlil_attach_protocol_filter (page 55). If from_id is set 
to the constant DLIL_NULL_FILTER, all attached interface filters are 
called.

function result 0 for success.

DISCUSSION

The dlil_inject_pr_output function is called by a protocol filter NKE to inject 
frames into the outbound data path. The frames can be frames that the filter 
generates or frames that were previously consumed.

When a protocol filter calls dlil_inject_pr_output, the DLIL invokes all of the 
input protocol filter NKEs that would normally be invoked after the filter that 
calls dlil_inject_pr_input. This behavior is identical to the last steps of 
processing that occur when a frame is passed to dl_input (page 65), except that 
all protocol filter NKEs preceding and including the injecting filter are not 
executed.



C H A P T E R  3

Network Kernel Extensions Reference

Data Link NKE Functions 83

dlil_inject_pr_output 3

Injects packets into the outbound data path from the protocol filter level.

int dlil_inject_pr_output (
struct mbuf *buffer,
struct sockaddr *dest,
int raw,
char *frame_type,
char *dst_linkaddr,
ulong from_id);

buffer On input, a pointer to a chain of mbuf structures containing the 
data that is to be injected.

dest On input, a pointer to an opaque pointer-sized variable whose 
use is specific to each protocol family, or NULL.

raw On input, a Boolean value. Setting raw to TRUE indicates that the 
mbuf chain pointed to by buffer contains a link-level frame 
header, which means that no further processing by the protocol 
or the interface family modules is required. The value of raw 
does not affect whether the DLIL calls any NKEs that are 
attached to the protocol/interface pair.

frame_type On input, a pointer to a byte array of undefined length 
containing the frame type. The length and content of frame_type 
are specific to each interface family.

dst_linkaddr A pointer to a byte array of undefined length containing the 
destination link address.

from_id On input, a value of type ulong containing the filter ID of the 
calling filter obtained by previously calling 
dlil_attach_protocol_filter (page 55). If from_id is set to 
DLIL_NULL_FILTER, all attached interface filters are called.

function result 0 for success.



C H A P T E R  3  

Network Kernel Extensions Reference

84 NKE Structures and Data Types

DISCUSSION

The dlil_inject_pr_output function is called by a protocol filter NKE to inject 
packets into the outbound data path. The packets can be packets that the filter 
generates or packets that were previously consumed.

When a protocol filter calls dlil_inject_pr_output, the DLIL invokes all of the 
output protocol filter NKEs that would normally be invoked after the filter that 
calls dlil_inject_pr_output. This behavior is identical to the execution of 
dlil_output following the call to dl_pre_output except that all output protocol 
filters preceding and including the injecting filter are not executed.

NKE Structures and Data Types 3

This section describes the NKE structures and data types. The structures are

■ dlil_proto_reg_str (page 84) which provides the information necessary to 
attach a protocol to the DLIL.

■ dlil_proto_reg_str (page 84) which provides the information necessary to 
identify a protocol’s packets.

■ dlil_if_flt_str (page 88) which contains pointers to all of the functions the 
DLIL may call when sending or receiving a frame from an interface.

■ dlil_if_flt_str (page 88) which contains pointers to all of the functions the 
DLIL may call when it passes a call to an NKE.

Note
With the exception of the ifnet structure, the DLIL makes 
its own copy of all structures that are passed to it. ◆

dlil_proto_reg_str 3

The dlil_proto_reg_str structure is passed as a parameter to the 
dlil_attach_protocol (page 58) function, which attaches network protocol 
stacks to interfaces.



C H A P T E R  3

Network Kernel Extensions Reference

NKE Structures and Data Types 85

struct dlil_proto_reg_str {
struct ddesc_head_str demux_desc_head;
u_long interface_family;
u_long protocol_family;
short unit_number;
int default_proto;
dl_input_func input;
dl_pre_output_func pre_output;
dl_event_func event;
dl_offer_func offer;
dl_ioctl_func ioctl;

};

Field descriptions
ddesc_head_str The head of a linked list of one or more protocol 

demultiplexing descriptors. Each demultiplexing 
descriptor defines several sub-structures that are used to 
identity and demultiplex incoming frames belonging to one 
or more attached protocols. When multiple methods of 
frame identification are used for an interface family, a chain 
of demultiplexing descriptors may be passed to 
dlil_attach_protocol (page 58) and to add_if (page 76) to 
identify each method. 

interface_family A unique unsigned long value that specifies the interface 
family. Values for current interface families are defined in 
<net/if_var.h>. Developers may define new interface 
family values through DTS.

protocol_family A unique unsigned long value defined that specifies the 
protocol family being attached. Values for current protocol 
families are defined in <net/dlil.h>. Developers may 
define new protocol family values through DTS.

unit_number Specifies the unit number of the interface to which the 
protocol is to be attached. Together, the interface_family 
and unit_number fields identify the interface to which the 
protocol is to be attached.

default_proto Reserved. Always 0.
input Contains a pointer to the function that the DLIL is to call in 

order to pass input packets to the protocol stack.



C H A P T E R  3  

Network Kernel Extensions Reference

86 NKE Structures and Data Types

pre_output Contains a pointer to the function that the DLIL is to call in 
order to perform protocol-specific processing for outbound 
packets, such as adding an 802.2/SNAP header and 
defining the target address.

event Contains a pointer to the function that the DLIL is to call in 
order to notify the protocol stack of asynchronous events, 
or is NULL. If this field is NULL, events are not passed to the 
protocol stack.

offer Contains a pointer to the function that the DLIL is to call in 
order to offer a frame to the attached protocol, or is NULL. If 
offer is NULL, the DLIL will not be able to offer frames that 
cannot be identified to the protocol and the frame may be 
dropped.

ioctl Contains a pointer to the function that the DLIL is to call in 
order to send ioctl calls to the interface’s driver. 

dlil_demux_desc 3

The dlil_demux_desc structure is a member of the dlil_proto_reg_str (page 84) 
structure. The dlil_demux_desc structure is the head of a linked list of protocol 
demultiplexing descriptors that identify the protocol’s packets in incoming 
frames.

struct dlil_demux_desc {
TAILQ_ENTRY(dlil_demux_desc) next;
int type;
u_char *native_type;
union {

struct {
u_long proto_id_length;
u_char *proto_d;
u_char *proto_id_mask;

} bitmask;

struct {
u_char dsap;
u_char ssap;
u_char control_code;



C H A P T E R  3

Network Kernel Extensions Reference

NKE Structures and Data Types 87

u_char pad;
} desc_802_2;

struct {
u_char dsap;
u_char ssap;
u_char control_code;
u_char org[3];
u_short protocol_type;

} desc_802_2_SNAP;
} variants;

}

TAILQ_HEAD{ddesc_head_str, dlil_demux_desc};

Field descriptions
next A link pointer used to chain multiple descriptors.
type Specifies which variant of the descriptor has been defined. 

For Ethernet, the possible values are DESC_802_2, 
DESC_802_2_SNAP, and DESC_BITMASK.

native_type A pointer to a byte array containing a self-identifying 
frame ID, such as the two-byte Ethertype field in an 
Ethernet II frame. This field may be used by itself, may be 
used in combination with other identifying information, or 
may not be used at all, in which case, its value is NULL.

variants Three structures that comprise a union. The bitmask 
structure describes any combination of bits that identify 
frames that do not match Ethernet 802.2 frames and 
Ethernet 802.2/SNAP frames. The desc_802_2 structure and 
the desc_802_2_SNAP structure describe Ethernet 802.2 
frames and Ethernet 802.2/SNAP frames, respectively.

For each Ethernet interface, the following sequence must take place. The actual 
implementation may optimize the process.

1. The first if_proto structure is referenced. The structure is found through the 
proto_head pointer in the associated ifnet structure.

2. The frame is compared with the first demultiplexing descriptor in the 
protocol’s list of demultiplexing descriptors (the bitmask structure).



C H A P T E R  3  

Network Kernel Extensions Reference

88 NKE Structures and Data Types

3. If the native type is NULL or if the interface family’s frame doesn’t have a 
frame type field, go to step 4. Otherwise, the octet string in native-type is 
compared with the interface family’s native frame-type specification field. 
The frame format for each interface family defines the number of bits to 
compare. If there is a match and the proto_id and proto_id_mask fields are 
defined, go to step 4. If there is a match and the proto_id and proto_id_mask 
fields are NULL, the frame is passed to the protocol’s input function, thereby 
terminating DLIL processing of the frame.

4. If the proto_id or proto_id_mask fields in the bitmask structure are NULL, or if 
the proto_id_length field is 0, go to step 5. Otherwise, compare the first 
proto_id_length bytes of the frame’s data field with proto_id, ignoring any 
bits defined as zero in the proto_id_mask. If there is a match, the frame is 
passed to the protocol’s input function, thereby terminating DLIL processing 
of the frame.

5. This demultiplexing descriptor could not provide a match. Advance to the 
next demultiplexing descriptor in the list and go to step 3.

6. None of the demultiplexing descriptors could provide a match. If there is 
another if_proto structure in the interface’s protocol list, go back to step 2 
using the first demultiplexing descriptor for this protocol.

7. No match could be found using any demultiplexing descriptor for any of the 
protocols attached to the interface. Go back through the if_proto structures 
for the attached protocols and call any defined dl_offer function. If a 
dl_offer function returns DLIL_FRAME_ACCEPTED, the DLIL passes the frame to 
the responding protocol’s dl_input function, thereby terminating DLIL 
processing of the frame.

8. None of the protocols attached to this interface have accepted the frame. The 
mbuf chain is freed and the frame is dropped.

The bitmask structure or one of the predefined 802.2 structures can be used to 
identify frames.

dlil_if_flt_str 3

The dlil_ir_flt_str structure is a parameter to the 
dlil_attach_interface_filter (page 57) function, which inserts DLIL interface 
filters between the DLIL and an interface.



C H A P T E R  3

Network Kernel Extensions Reference

NKE Structures and Data Types 89

This structure contains pointers to all of the functions that are called at the point 
at which the filter is placed.

struct dlil_if_flt_str {
caddr_t cookie;
int (*filter_if_input) (caddr_t cookie,

struct ifnet **ifnet_ptr,
struct mbuf **mbuf_ptr,
char **frame_ptr);

int (*filter_if_event) (caddr_t cookie,
struct ifnet **ifnet_ptr,
struct event_msg **event_msg_ptr);

int (*filter_if_output) (caddr_t cookie,
struct ifnet **ifnet_ptr,
struct mbuf **mbuf_ptr);

int (*filter_if_ioctl) (caddr_t cookie,
struct ifnet **ifnet_ptr,
u_long ioctl_code_ptr,
caddr_t ioctl_arg_ptr);

int (*filter_if_free) (caddr_t cookie,
struct ifnet **ifnet_ptr);

int (*filter_detach) (caddr_t cookie);
};

Field descriptions
filter_if_input A pointer to the filter_if_input function for this DLIL 

interface filter. The parameters for this function are cookie, 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for this 
interface, a pointer to an mbuf structure, and pointer to the 
frame.

filter_if_event A pointer to the filter_if_event function for this DLIL 
interface filter. The parameters for this function are cookie, 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for this 
interface, and a pointer to an event_msg structure 
containing the event that is being passed to the extension.



C H A P T E R  3  

Network Kernel Extensions Reference

90 NKE Structures and Data Types

filter_if_output A pointer to the filter_if_output function for this DLIL 
interface filter. The parameters for this function are cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for this 
interface, and a pointer to the memory buffer for this 
packet.

filter_if_ioctl A pointer to the filter_if_ioctl function for this DLIL 
interface filter. The parameters for this function are cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for this 
interface, an unsigned long that points to the I/O control 
code for this call, and a pointer to parameters that the DLIL 
passes to the filter_if_ioctl function.

filter_if_free A pointer to the filter_if_free function for this DLIL 
interface filter. The parameters for this function are cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments) and a pointer to the ifnet structure for this 
interface.

filter_detach A pointer to the filter_detach function for this DLIL 
interface filter. The parameter for this function is cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments). For details, see dlil_detach_filter (page 59).

dlil_pr_flt_str 3

The dlil_pr_flt_str structure is a parameter to the function 
dlil_attach_protocol_filter (page 55), which inserts DLIL protocol filters 
between a protocol and the DLIL.

This structure contains pointers to all of the functions that are called at the point 
at which the filter is placed.



C H A P T E R  3

Network Kernel Extensions Reference

NKE Structures and Data Types 91

struct dlil_if_flt_str {
caddr_t cookie;
int (*filter_dl_input) (caddr_t cookie,

struct mbuf **m,
char **frame_header,
struct ifnet **ifp);

int (*filter_dl_output) (caddr_t cookie,
struct mbuf **m,
struct ifnet **ifp,
struct sockaddr **dest,
char *dest_linkaddr,
char *frame_type);

int (*filter_dl_event) (caddr_t cookie,
struct event_msg *event_msg);

int (*filter_dl_ioctl) (caddr_t cookie,
struct ifnet **ifp,
u_long ioctl_cmd,
caddr_t ioctl_arg);

int (*filter_detach) (caddr_t cookie);
};

Field descriptions
filter_dl_input A pointer to the filter_dl_input function for this DLIL 

protocol filter. The parameters for this function are cookie, 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to an mbuf structure, and a pointer 
to the ifnet structure for the interface. 

filter_dl_output A pointer to a filter_dl_output function for this DLIL 
protocol filter. The parameters for this function are cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for the 
interface, a pointer to the socket address for this 
destination, a pointer to the link address for this 
destination, and a pointer to the frame type.

filter_dl_event A pointer to the filter_pr_event function for this DLIL 
protocol filter. The parameters for this function are cookie, 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 



C H A P T E R  3  

Network Kernel Extensions Reference

92 NKE Structures and Data Types

attachments), a pointer to the ifnet structure for the 
interface, and a pointer to an event_msg structure 
containing the event that is being passed to the extension.

filter_dl_ioctl A pointer to a filter_if_ioctl function for this DLIL 
protocol filter. The parameters for this function are cookie 
(an opaque value that is passed by the filter and is returned 
so that the filter can identify one attachment among many 
attachments), a pointer to the ifnet structure for the 
interface, an u_long that points to the I/O control command 
for this call, and a pointer to parameters that the DLIL 
passes to the filter_if_ioctl function.

filter_detach A pointer to the filter_detach function for this DLIL 
protocol filter. The parameter for this function is cookie (an 
opaque value that is passed by the filter and is returned so 
that the filter can identify one attachment among many 
attachments).



Sample Source Code for VMSify NKE 93

A P P E N D I X  A

Sample Code A

Sample Source Code for VMSify NKE 3

Here is a sample code for an NKE that converts to uppercase remotely echoed 
characters typed into a telnet session.

Listing 3-1 VMSIfy.c

/*
 * VMSIfy - a Mac OS X global filter NKE *
 */

#define DO_LOG 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/socketvar.h>
#include <net/route.h>
#include <sys/domain.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <sys/fcntl.h>
#if DO_LOG
#include <sys/syslog.h>
#endif

#include <sys/malloc.h>
#include <sys/queue.h>
#include <net/kext_net.h>

Figure A-0
Listing A-0
Table A-0



A P P E N D I X  A  

Sample Code

94 Sample Source Code for VMSify NKE

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>

#include <mach/kern_return.h>
#include <mach/vm_types.h>
#include <mach/kernel_extension.h>

#define sotoextcb(so) (struct kextcb *)(so->so_ext)

extern char *inet_ntoa(struct in_addr);
extern void kprintf(const char *, ...);
extern int splhigh(void);
extern void splx(int);

struct socket *ctl;             /* Non-null if controlled */

/*
 * Theory of operation:
 * At init time, add us to the list of extensions for TCP.
 * For each new connection (active only), check the destination
 * port.  If telnet, mark the 'kextcb'.  On input, if the 'kextcb'
 * is marked, map lower- to upper-case.

 * The filter will take itself out of operation (for new sockets) 
 * on an unload command, even if the command fails.

 * The filter tries to remove itself from sockets that aren't outbound
 *  telnet sessions by nullifying the dispatch vector pointers in the
 *  kextcb for this socket/filter pair.
 * This works because there's no state kept on a per-socket basis.  For
 *  others, one could replace the "normal" pointers with pointers to
 *  other dispatch vectors that only clean up at the end of a connection.
 */



A P P E N D I X  A

Sample Code

Sample Source Code for VMSify NKE 95

int     vif_attach(),
        vif_read(), vif_write(),
        vif_get(), vif_set();

void    vif_detach(), vi_input(), vi_ctlinput();

static int vi_initted = 0,
           vi_inhibit = 0;

int
vi_accept(), vi_create(), vi_connect(), vi_close(), vi_listen();

/* Dispatch vector for VMSIfy socket functions */
struct sockif VIsockif =
{       NULL,           /* soabort */
        vi_accept,      /* soaccept */
        NULL,           /* sobind */
        vi_close,       /* soclose */
        vi_connect,     /* soconnect */
        NULL,           /* soconnect2 */
        vi_create,      /* socreate */
        NULL,           /* sodisconnect */
        NULL,           /* sofree */
        NULL,           /* sogetopt */
        NULL,           /* sohasoutofband */
        vi_listen,      /* solisten */
        NULL,           /* soreceive */
        NULL,           /* sorflush */
        NULL,           /* sosend */
        NULL,           /* sosetopt */
        NULL,           /* soshutdown */
        NULL,           /* socantrcvmore */
        NULL,           /* socantsendmore */
        NULL,           /* soisconnected */
        NULL,           /* soisconnecting */
        NULL,           /* soisdisconnected */
        NULL,           /* soisdisconnecting */
        NULL,           /* sonewconn1 */
        NULL,           /* soqinsque */
        NULL,           /* soqremque */



A P P E N D I X  A  

Sample Code

96 Sample Source Code for VMSify NKE

        NULL,           /* soreserve */
        NULL,           /* sowakeup */
};

void
vi_sbappend();
/* Dispatch vector for VMSIfy socket buffer functions */
struct sockutil VIsockutil =
{       NULL,           /* sb_lock */
        vi_sbappend,    /* sbappend */
        NULL,           /* sbappendaddr */
        NULL,           /* sbappendcontrol */
        NULL,           /* sbappendrecord */
        NULL,           /* sbcompress */
        NULL,           /* sbdrop */
        NULL,           /* sbdroprecord */
        NULL,           /* sbflush */
        NULL,           /* sbinsertoob */
        NULL,           /* sbrelease */
        NULL,           /* sbreserve */
        NULL,           /* sbwait */
};

/* Dispatch vectors when VMSIfy has pulled out */
struct sockif VIsockif_null;
struct sockutil VIsockutil_null;

#define VMSIFY_HANDLE 0xfacefeed

struct NFDescriptor VMSIfy =
{       {NULL, NULL},
        {NULL, NULL},
        VMSIFY_HANDLE,
        NFD_GLOBAL,
        vif_attach, vif_detach,
        vif_read, vif_write,
        vif_get, vif_set,
        NULL, NULL
};



A P P E N D I X  A

Sample Code

Sample Source Code for VMSify NKE 97

int vi_use_count = 0;
int VI_recvspace = 8192;        /* SWAG */

/* =================================== */

int
VMSIfy_module_start(kext_info_t *ki, void *data)
{       extern int VI_init(int);
        return(VI_init(0));
}

int
VI_init(int init_arg)
{       int retval;
        struct protosw *pp;

        if (vi_initted)
                return(KERN_SUCCESS);

        /* Find the protosw we want to sidle up to */
        pp = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM);
        if (pp == NULL)
                return(EPFNOSUPPORT);
        VMSIfy.nf_soif = &VIsockif;
        VMSIfy.nf_soutil = &VIsockutil;

        /* Register the filter */
        retval = register_sockfilter(&VMSIfy, NULL, pp, NFF_AFTER);
        if (!retval)
        {       vi_initted = 1;
                retval = KERN_SUCCESS;
        }
#if DO_LOG
        else
                log(LOG_WARNING, "VMSIfy init: %d\n", retval);
#endif
        return(retval);
}



A P P E N D I X  A  

Sample Code

98 Sample Source Code for VMSify NKE

/*
 * Close down the VMSIfy filter
 */

int
VMSIfy_module_stop(kext_info_t *ki, void *data)
{       extern int VI_terminate(int);
        return(VI_terminate(0));
}

int
VI_terminate(int term_arg)
{       int retval;
        struct protosw *pp;
        extern int unregister_sockfilter(struct NFDescriptor *,
                                         struct protosw *, int);

        if (!vi_initted)
                return(0);
        pp = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM);
        if (pp == NULL)
        {
#if DO_LOG
                log(LOG_WARNING, "VMSIfy: No TCP\n");
#endif
                return(EPFNOSUPPORT);
        }
        retval = unregister_sockfilter(&VMSIfy, pp, 0);
        if (vi_use_count == 0)
        {
#if DO_LOG
                if (retval)
                     log(LOG_WARNING, "VMSIfy terminate: %d\n", retval);
#endif
        } else
        {
#if DO_LOG
                log(LOG_WARNING, "VMSIfy termination attempted; 

failed\n");



A P P E N D I X  A

Sample Code

Sample Source Code for VMSify NKE 99

#endif
                retval = EBUSY;
        }

        vi_inhibit = 1;
        return(retval);
}

/*
 * socreate calls this function when a new socket is created
 * Clear the 'fcb' pointer (used as a zero/non-zero flag).
 * If activity is inhibited, clear out the intercept pointers.
 */

int
vi_create(struct socket *so, struct protosw *prp, register struct 

kextcb *kp)
{ 
        if (!vi_inhibit)
        {       kp->e_fcb = (void *)NULL;
                vi_use_count++;
        }
        return(0);
}

/*
 * On input, map incoming text to upper case.  First cut: ignore the
 *  possibility that a byte isn't a character (Telnet options).
 * Make sure we're looking at the receive sockbuf.
 */

void
vi_sbappend(struct sockbuf *sb, struct mbuf *m, struct kextcb *kp)
{       register struct socket *so;
        extern void map_upper(struct mbuf *); 

        so = sbtoso(sb);
        if ((int)kp->e_fcb == 1)
        {       if (sb->sb_flags & SB_RECV)

map_upper(m);



A P P E N D I X  A  

Sample Code

100 Sample Source Code for VMSify NKE

        } else if ((int)kp->e_fcb)
                kprintf("FCB1: %x\n", kp->e_fcb);
}

/* Clear out our presence */
int
vi_close(register struct socket *so, struct kextcb *kp)
{
        if ((int)kp->e_fcb == 1)
        {       vi_use_count--;
                (int)kp->e_fcb = 0;

        } else if ((int)kp->e_fcb)
                kprintf("FCB2: %x\n", kp->e_fcb);
        return(0);
}

/* Check remote port for Telnet.  If so, turn on the receive checking */
int
vi_connect(struct socket *so, struct sockaddr_in *nam, struct kextcb *kp)
{ 
        if (nam->sin_port == 23)        /* A telnet connection! */
                (int)kp->e_fcb = 1;
        else
        {       vi_use_count--;
                kp->e_soif = NULL;
                kp->e_sout = NULL;
        }
#if DO_LOG
        log(LOG_INFO, "Socket %x: Turning on VMSIfy\n", so);
#endif
        return(0);
}

/*
 * An accept() call means that this is an inbound connection.
 * Drop it like a hot rock.
 */



A P P E N D I X  A

Sample Code

Sample Source Code for VMSify NKE 101

int
vi_accept(struct socket *so, struct sockaddr_in **nam, struct kextcb 

*kp)
{
        vi_use_count--;
        kp->e_soif = NULL;
        kp->e_sout = NULL;
#if DO_LOG
        log(LOG_INFO, "Socket %x: Turning off VMSIfy (accept)\n", so);
#endif
        return(0);
}

/* If we're listening, we don't need to look further */
int
vi_listen(struct socket *so, struct kextcb *kp)
{
        vi_use_count--;
        kp->e_soif = NULL;
        kp->e_sout = NULL;
#if DO_LOG
        log(LOG_INFO, "Socket %x: Turning off VMSIfy (listen)\n", so);
#endif
        return(0);
}

/*
 * We have a control (PF_FILTER) socket expressing interest.
 */
int
vif_attach(register struct socket *cso)
{       register int error;

        if (ctl)
                return(EISCONN);

        if (cso->so_snd.sb_hiwat == 0 || cso->so_rcv.sb_hiwat == 0) {
                error = soreserve(cso, 0, VI_recvspace);
                if (error)
                        return (error);
        }



A P P E N D I X  A  

Sample Code

102 Sample Source Code for VMSify NKE

        ctl = cso;
        return(0);
}

void
vif_detach()
{
        ctl = NULL;
}

int
vif_get()
{
        return(0);
}

int
vif_read()
{
        return(0);
}

int
vif_set()
{
        return(0);
}

int
vif_write()
{
        return(0);
}

void
map_upper(register struct mbuf *m)
{       register unsigned char *p;
        register int n;
        register unsigned char ch;



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 103

        while (m)
        {       p = m->m_data;
                n = m->m_len;
                while (n-- > 0)
                {       if ((ch = *p++) >= 'a' && ch <= 'z')
                        {       ch -= 0x20;
                                p[-1] = ch;
                        }
                }
                m = m->m_next;
        }
}

Sample Source Code for TCPLogger 3

Here is a sample code for the TCPLogger NKE, which records detailed 
information about data sent to and from the system via TCP.

Listing 3-2 TCPLogger.h

/*
 * Per-socket control block for the log function
 */
struct TCPLogEntry
{       TAILQ_ENTRY(TCPLogEntry) tl_next;       /* Active filters */
        int tl_flags;
        struct sockaddr_in tl_local;            /* Endpoints */
        struct sockaddr_in tl_remote;
        long int bytes_in;
        long int pkts_in;
        long int pkts_in_null;
        long int bytes_out;
        long int pkts_out;
        long int pkts_out_null;
        struct timeval tl_create;/* socreate timestamp */
        struct timeval tl_start;/* connection complete timestamp */



A P P E N D I X  A  

Sample Code

104 Sample Source Code for TCPLogger

        struct timeval tl_stop; /* connection termination timestamp */
        struct socket *tl_so;   /* Back pointer to owning socket */
};

#define TLE_CONN         0x01           /* Connection completed */
#define TCPLOGGER_HANDLE 0xBABECAFE     /* Temp hack to identify this puppy */

/* Max # log entries to keep if not connected to reader */
#define TCPLOGGER_QMAX  200

Listing 3-3 TCPLogger.c

/*
* TCPLogger - a Mac OS X global filter NKE
*/

#define DO_LOG 1

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/socketvar.h>
#include <net/route.h>
#include <sys/domain.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <sys/fcntl.h>
#if DO_LOG
#include <sys/syslog.h>
#endif
#include <sys/malloc.h>
#include <sys/queue.h>
#include <net/kext_net.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 105

#include <netinet/in_pcb.h>
#include <netinet/tcp.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>

#include <mach/kern_return.h>
#include <mach/vm_types.h>
#include <mach/kernel_extension.h>

#define sotoextcb(so) (struct kextcb *)(so->so_ext)

#include "TCPLogger.h"

/* KEXT_DECL(TCPLogger, "0.1");*/
extern char *inet_ntoa(struct in_addr);
extern void kprintf(const char *, ...);
extern void tl_detach(struct TCPLogEntry *, struct socket *, struct protosw *);
extern void tl_dump_backlog(struct socket *);

/* List of active 'Logging' sockets */
TAILQ_HEAD(tl_list, TCPLogEntry) tl_list;

/* List of terminated TCPLogEntry structs, waiting for harvesting */
struct tl_list tl_done;
int tl_done_count = 0;

struct socket *ctl;             /* Non-null if controlled */

/*
 * Theory of operation:
 * At init time, add us to the list of extensions for TCP.
 * For each new connection (active or passive), log the endpoint
 * addresses, keep track of the stats of the conection and log the
 * results and close time.
 * At a minimum, the stats are: recv bytes, pkts; xmit bytes, pkts
 * The stats and other info are kept in the extension control block.
 */
int     tlf_attach(),
        tlf_read(), tlf_write(),
        tlf_get(), tlf_set(),
        tl_ctloutput(), tl_usrreq();



A P P E N D I X  A  

Sample Code

106 Sample Source Code for TCPLogger

void    tlf_detach(), tl_input(), tl_ctlinput();

static int tl_initted = 0,
           tl_inhibit = 0;

int tl_accept(), tl_bind(), tl_connect(), tl_discon(), tl_free(),
    tl_receive(), tl_send(), tl_shutdown(), tl_create();
void tl_soisconnected();

/* Dispatch vector for TCPLogger socket functions */
struct sockif TLsockif =
{       NULL,           /* soabort */
        tl_accept,      /* soaccept */
        tl_bind,        /* sobind */
        NULL,           /* soclose */
        tl_connect,     /* soconnect */
        NULL,           /* soconnect2 */
        tl_create,      /* socreate */
        tl_discon,      /* sodisconnect */
        tl_free,        /* sofree */
        NULL,           /* sogetopt */
        NULL,           /* sohasoutofband */
        NULL,           /* solisten */
        tl_receive,     /* soreceive */
        NULL,           /* sorflush */
        tl_send,        /* sosend */
        NULL,           /* sosetopt */
        tl_shutdown,    /* soshutdown */
        NULL,           /* socantrcvmore */
        NULL,           /* socantsendmore */
        tl_soisconnected,/* soisconnected */
        NULL,           /*soisconnecting */
        NULL,           /* soisdisconnected */
        NULL,           /* soisdisconnecting */
        NULL,           /* sonewconn1 */
        NULL,           /* soqinsque */
        NULL,           /* soqremque */
        NULL,           /* soreserve */
        NULL,           /* sowakeup */
};



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 107

void tl_sbappend();

/* Dispatch vector for TCPLogger socket buffer functions */
struct sockutil TLsockutil =
{       NULL, /* sb_lock */
        tl_sbappend, /* sbappend */
        NULL, /* sbappendaddr */
        NULL, /* sbappendcontrol */
        NULL, /* sbappendrecord */
        NULL, /* sbcompress */
        NULL, /* sbdrop */
        NULL, /* sbdroprecord */
        NULL, /* sbflush */
        NULL, /* sbinsertoob */
        NULL, /* sbrelease */
        NULL, /* sbreserve */
        NULL, /* sbwait */
};

struct NFDescriptor TCPLogger =
{       {NULL, NULL},
        {NULL, NULL},
        TCPLOGGER_HANDLE,
        NFD_GLOBAL,
        tlf_attach, tlf_detach,
        tlf_read, tlf_write,
        tlf_get, tlf_set,
        NULL, NULL
};

int TL_recvspace = 8192;        /* SWAG */
int TL_sendspace = 8192;

/* =================================== */

int
TCPLogger_module_start(kext_info_t *ki, void *data)
{       extern int TL_init(int);

        return(TL_init(0));
}



A P P E N D I X  A  

Sample Code

108 Sample Source Code for TCPLogger

int
TL_init(int init_arg)
{       int retval;
        struct protosw *pp;

        if (tl_initted)
                return(KERN_SUCCESS);

        if (sizeof (struct TCPLogEntry) > MHLEN)
                return(E2BIG);

        TAILQ_INIT(&tl_list);
        TAILQ_INIT(&tl_done);
        /* Find the protosw we want to sidle up to */
        pp = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM);
        if (pp == NULL)
                return(EPFNOSUPPORT);
        TCPLogger.nf_soif = &TLsockif;
        TCPLogger.nf_soutil = &TLsockutil;
        /* Register the NKE */
        retval = register_sockfilter(&TCPLogger, NULL, pp, NFF_AFTER);
        if (!retval)
        {       tl_initted = 1;
               retval = KERN_SUCCESS;
        }
#if DO_LOG
        else
                log(LOG_WARNING, "TCPLogger init: %d\n", retval);
#endif
        return(retval);
}

/*
 * Close down the TCPLogger NKE
 * For this implant, we can slide it out of the way
 *  without harming the underlying TCP connection.
 * Experiment: soshutdown both sides
 *  Works on the send side (SIGPIPE delivered)
 *  Blows chunks on the "read" side.
 */



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 109

int
TCPLogger_module_stop(kext_info_t *ki, void *data)
{       extern int TL_terminate(int);

        return(TL_terminate(0));
}

int
TL_terminate(int term_arg)
{       int retval;
        struct protosw *pp;
        extern int unregister_sockfilter(struct NFDescriptor *,
                                         struct protosw *, int);

        if (!tl_initted)
                return(0);

        pp = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM);
        if (pp == NULL)
        {
#if DO_LOG
                log(LOG_WARNING, "TCPLogger: No TCP\n");
#endif
                return(EPFNOSUPPORT);
        }
        retval = unregister_sockfilter(&TCPLogger, pp, 0);
        if (tl_list.tqh_first == NULL)
        {
#if DO_LOG
                if (retval)
                        log(LOG_WARNING, "TCPLogger terminate: %d\n", retval);
#endif
        } else
        {
#if DO_LOG
                log(LOG_WARNING, "TCPLogger termination attempted; failed\n");
#endif
                retval = EBUSY;
}
        if (retval == 0)
                while (tl_done.tqh_first)



A P P E N D I X  A  

Sample Code

110 Sample Source Code for TCPLogger

                        TAILQ_REMOVE(&tl_done, tl_done.tqh_first, tl_next);
        tl_inhibit = 1;
        return(retval);
}

/*
 * socreate calls this function when a new socket is created
 * Fill in a new TCPLogEntry and tag the socket
 */
int
tl_create(struct socket *so, struct protosw *prp,
          register struct kextcb *kp)
{       register struct TCPLogEntry *tlp;
        extern struct timeval time;

        if (!tl_inhibit)
        {       tlp = (struct TCPLogEntry *)_MALLOC(sizeof (struct TCPLogEntry),
                                                    M_TEMP, M_WAITOK);
                bzero(tlp, sizeof (*tlp));
                TAILQ_INSERT_TAIL(&tl_list, tlp, tl_next);
                tlp->tl_create = time;  /* Record for later */
                kp->e_fcb = (void *)tlp;
        }
        return(0);
}

/*
 * On input, we won't get notified as a protocol (since
 *  we aren't one), so we snag incoming data when it's
 *  appended.  Make sure it's the receive sockbuf we're
 *  looking at.
 */
void
tl_sbappend(struct sockbuf *sb, struct mbuf *m, struct kextcb *kp)
{       register struct TCPLogEntry *tlp;
        register struct socket *so;

        so = sbtoso(sb);
        tlp = (struct TCPLogEntry *)kp->e_fcb;



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 111

        if (sb->sb_flags & SB_RECV)
        {       if (m)
                {       tlp->pkts_in++;
                        do
                                tlp->bytes_in += m->m_len;
                        while ((m = m->m_next));
                } else
                        tlp->pkts_in_null++;
        }
}

/*
 * Called when TWH is complete.  Record start time, endpoint addrs
 */
void
tl_soisconnected(struct socket *so, struct kextcb *kp)
{       register struct TCPLogEntry *tlp;
        register struct inpcb *inp;
        extern struct timeval time;

        inp = sotoinpcb(so);
        tlp = (struct TCPLogEntry *)kp->e_fcb;
        if (tlp->tl_flags & TLE_CONN)
        {
#if DO_LOG
                log(LOG_WARNING, "Called isconnected twice!\n");
#endif
                return;
        }
        tlp->tl_start = time;
        tlp->tl_remote.sin_port = inp->inp_fport;
        tlp->tl_remote.sin_addr.s_addr = inp->inp_faddr.s_addr;
        tlp->tl_local.sin_port = inp->inp_lport;
        tlp->tl_local.sin_addr.s_addr = inp->inp_laddr.s_addr;
#if DO_LOG

log(LOG_WARNING, "Remote Addr: %x:%d\n", tlp->tl_remote.sin_addr.s_addr,
            tlp->tl_remote.sin_port);
#endif
}
/* Record remote addr, update local - noop*/
int



A P P E N D I X  A  

Sample Code

112 Sample Source Code for TCPLogger

tl_accept(struct socket *so, struct sockaddr **m, struct kextcb *kp)
{ 
        return(0);
}

/* Record local address */
int
tl_bind(struct socket *so, struct mbuf *nam, struct kextcb *kp)
{       register struct inpcb *inp;
        register struct TCPLogEntry *tlp;

        inp = sotoinpcb(so);
        tlp = (struct TCPLogEntry *)kp->e_fcb;
        tlp->tl_local.sin_port = inp->inp_lport;
        tlp->tl_local.sin_addr.s_addr = inp->inp_laddr.s_addr;
#if DO_LOG
        log(LOG_INFO, "Socket %x: bound to  %s:%d\n", so,
            inet_ntoa(tlp->tl_local.sin_addr), inp->inp_lport);
#endif
        return(0);
}

/* Log stats */
int
tl_discon(register struct socket *so, struct kextcb *kp)
{       register struct TCPLogEntry *tlp;
        struct timeval now;
        extern struct timeval time;
#if DO_LOG
        int usec, sec;
#endif

        tlp = (struct TCPLogEntry *)kp->e_fcb;
        now = time; 
        tlp->tl_stop = now;
        /* We've gone to all this trouble; we oughta do something with it  */
#if DO_LOG
        sec = now.tv_sec-tlp->tl_start.tv_sec;
        usec = now.tv_usec-tlp->tl_start.tv_usec;
        if (usec < 0)
        {       usec += 100000;



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 113

                sec -= 1;
        }
        log(LOG_INFO, "Socket %x: disconnecting\n", so);
        log(LOG_INFO, "Socket %x: %d.%6d sec duration\n", so, sec, usec);
        log(LOG_INFO, "Socket %x - Payload in: %d pkts, %d bytes\n",
            so, tlp->pkts_in, tlp->bytes_in);
        log(LOG_INFO, "Socket %x - Payload out: %d pkts, %d bytes\n",
            so, tlp->pkts_out, tlp->bytes_out);
        if (tlp->pkts_in_null || tlp->pkts_out_null)
                log(LOG_INFO, "Socket %x - Null payload: %d out, %d in\n",
                    so, tlp->pkts_out_null, tlp->pkts_in_null);
#endif
        TAILQ_REMOVE(&tl_list, tlp, tl_next);
        if (tl_done_count > TCPLOGGER_QMAX)
                TAILQ_REMOVE(&tl_done, tl_done.tqh_first, tl_next);
        else
                tl_done_count++;
        TAILQ_INSERT_TAIL(&tl_done, tlp, tl_next);
        if (ctl)
                tl_dump_backlog(ctl);
        return(0);
}

/* Log stats */
int
tl_shutdown(register struct socket *so, int how, struct kextcb *kp)
{       struct TCPLogEntry *tlp;
        struct timeval now;
        extern struct timeval time;
#if DO_LOG
        int usec, sec;
#endif

        tlp = (struct TCPLogEntry *)kp->e_fcb;
        now = time;
        tlp->tl_stop = now;
#if DO_LOG
        sec = now.tv_sec-tlp->tl_start.tv_sec;
        usec = now.tv_usec-tlp->tl_start.tv_usec;
        if (usec < 0)
        {       usec += 100000;



A P P E N D I X  A  

Sample Code

114 Sample Source Code for TCPLogger

                sec -= 1;
        }
        log(LOG_INFO, "Socket %x: Shutting down\n", so);
        log(LOG_INFO, "Socket %x: %d.%6d sec duration\n", so, sec, usec);        

log(LOG_INFO, "Socket %x - Payload in: %d pkts, %d bytes\n", so, tlp->pkts_in, 
tlp->bytes_in);

        log(LOG_INFO, "Socket %x - Payload out: %d pkts, %d bytes\n", so, 
tlp->pkts_out, tlp->bytes_out);

#endif
        return(0);
}

/*
 * Record out count
 * We could do this here or via sbappend override
 * For output, we'll do it here, to avoid thrashing whilst
 *  sosend() makes up its mind what to send...
 */
int
tl_send(struct socket *so, struct mbuf **m, struct uio **uio,
        struct mbuf **nam, struct mbuf **control, int *flags, struct kextcb *kp)
{       register struct TCPLogEntry *tlp;

        tlp = (struct TCPLogEntry *)kp->e_fcb;
        if (m && *m)
        {       tlp->pkts_out++;
                tlp->bytes_out += (*m)->m_pkthdr.len;   /* heh */
        } else if (uio && *uio)
        {       tlp->pkts_out++;
                tlp->bytes_out += (*uio)->uio_resid;    /* heh */
        } else
                tlp->pkts_out_null++;
        return(0);
}

/* Rely on su_sbappend() to record in-count */
int
tl_receive(struct socket *so, struct mbuf **m, struct uio **uio,
           struct mbuf **nam, struct mbuf **control, int *flags,
           struct kextcb *kp)
{



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 115

        /* For now, it's a no-op */
        return(0);
}

/* Record remote addr */
int
tl_connect(struct socket *so, struct sockaddr *nam, struct kextcb *kp)
{       register struct inpcb *inp;
        register struct sockaddr_in *sp = (struct sockaddr_in *)nam; 
        register struct TCPLogEntry *tlp;

        inp = sotoinpcb(so);
        tlp = (struct TCPLogEntry *)kp->e_fcb;
        tlp->tl_remote.sin_port = sp->sin_port;
        tlp->tl_remote.sin_addr.s_addr = sp->sin_addr.s_addr;
#if DO_LOG
        log(LOG_INFO, "Socket %x: connecting to  %s:%d\n", so,
            inet_ntoa(tlp->tl_remote.sin_addr), inp->inp_fport);
#endif
        return(0);
}

int tl_free(struct socket *so, struct kextcb *kp)
{

return(0);
}

/*
 * We have a control (PF_NKE) socket expressing interest.
 */
int tlf_attach(register struct socket *cso)
{       register int error;

        if (ctl)
                return(EISCONN);

        if (cso->so_snd.sb_hiwat == 0 || cso->so_rcv.sb_hiwat == 0) {
                error = soreserve(cso, TL_sendspace, TL_recvspace);
                if (error)
                        return (error);
        }



A P P E N D I X  A  

Sample Code

116 Sample Source Code for TCPLogger

        ctl = cso;
        tl_dump_backlog(cso);
        return(0);
}

void
tlf_detach(register struct socket *cso)
{
        if (ctl == cso)
                ctl = NULL;
}

int tlf_get()
{
        return(0);
}

int tlf_read()
{
        return(0);
}

int tlf_set()
{
        return(0);
}

int tlf_write()
{
        return(0);
}

/*
 * Called opportunistically to dump log entries from the 'tl_done'
 *  list to the controlling socket.
 */
void
tl_dump_backlog(struct socket *so)
{       struct mbuf *m;



A P P E N D I X  A

Sample Code

Sample Source Code for TCPLogger 117

        struct TCPLogEntry *tlp;
        extern int splimp(void);
        extern int splx(int);

        while ((tlp = tl_done.tqh_first) != NULL)
        {       char *p;

                if (sbspace(&ctl->so_rcv) < sizeof (*tlp))
                        return;
                MGETHDR(m, M_WAITOK, MT_PCB);
                if (m == NULL)  /* Huh? */
                        return;
                tl_done_count--;
                p = m->m_data;
                p = (char *)(((int)p+3)&(~0x3));
                m->m_data = (caddr_t)p;
                bcopy(tlp, mtod(m, caddr_t), sizeof (*tlp));
                m->m_len = sizeof (*tlp);
                m->m_flags |= M_EOR;
                sbappend(&ctl->so_rcv, m);
                sorwakeup(ctl);
                TAILQ_REMOVE(&tl_done, tlp, tl_next);
_FREE(tlp, M_TEMP);
        }
}



A P P E N D I X  A  

Sample Code

118 Sample Source Code for TCPLogger



119

Glossary

domain A complete protocol family.

extension A general term for an object 
module that can be dynamically added to a 
running system. A synonym for kernel 
extension.

Data Link Interface Layer (DLIL) The 
fixed part of the network kernel extension 
architecture that exists between protocol 
stacks and the network drivers.

data link interface module A network 
kernel extension that handles 
demultiplexing or packet framing.

data link NKE A network kernel 
extension that exists between the protocol 
stacks and the device layer.

DLIL interface filter A network kernel 
extension that is installed between the DLIL 
and one or more network interfaces.

DLIL protocol filter A network kernel 
extension that is installed between the DLIL 
and a network protocol stack.

data link protocol module A network 
kernel extension that handles the specific 
interface for the protocol’s attachment to a 
particular interface family.

global NKE An NKE that is automatically 
enabled for sockets of the type specified for 
the NKE.

network kernel extension (NKE) 1) The 
architecture that allows modules to be 
added to the Mac OS X networking 

subsystem while the system is running. 2) A 
module that can be added to a running 
system.

plug-in A general term for an object 
module that can be dynamically added to a 
running system.

programmatic filter NKE An NKE that is 
enabled only under program control, using 
socket options, for a specific socket.

protocol family NKE A network kernel 
extension that implements a domain.

protocol handler A network kernel 
extension that implements a specific 
protocol within a domain.

socket NKE A network kernel extension 
that is installed between the socket layer and 
the protocol stack or network device layers.



G L O S S A R Y

120



121

Index

A

add_if function 76
add_proto function 77

D

Data link NKE functions 54–63
del_if function 77
del_proto function 78
dl_event function 67
dlil 58
dlil_attach_interface_filter function 57
dlil_attach_protocol_filter function 55
dlil_attach_protocol function 58
dlil_demux_desc structure 86
dlil_detach_filter function 59
dlil_detach_protocol function 60
dlil_event function 75
dlil_find_dl_tag function 74
dlil_if_attach function 71
dlil_if_detach function 72
dlil_if_flt_str structure 88
dlil_inject_if_input function 80
dlil_inject_if_output function 81
dlil_inject_pr_input function 82
dlil_inject_pr_output function 83
dlil_input function 75
dlil_ioctl function 62
dlil_output function 60
dlil_pf_flt_str structure 90
dlil_proto_reg_str structure 84
dlil_reg_if_modules function 73
dl_input function 65
dl_offer function 66
dl_pre_output function 63

F

functions
add_if 76
add_proto 77
data link NKE 54–63
del_if 77
del_proto 78
dl_event 67
dlil_attach_interface_filter 57
dlil_attach_protocol 58
dlil_attach_protocol_filter 55
dlil_detach_filter 59
dlil_detach_protocol 60
dlil_event 75
dlil_find_dl_tag 74
dlil_if_attach 71
dlil_if_detach 72
dlil_inject_if_input 80
dlil_inject_if_output 81
dlil_inject_pr_input 82
dlil_inject_pr_output 83
dlil_input 75
dlil_ioctl 62
dlil_output 60
dlil_reg_if_modules 73
dl_input 65
dl_offer 66
dl_pre_output 63
ifa_ifafree 40
ifa_ifwithaddr 39
ifa_ifwithaf 40
ifa_ifwithdstaddr 39
ifa_ifwithnet 39
ifaof_ifpforaddr 40
if_demux 79
if_free 70
if_ioctl 69
if_output 68



I N D E X

122

if_set_bpf_tap 69
net_add_domain 51
net_add_proto 53
net_del_domain 52
net_del_proto 54
pffinddomain 52
pffindproto 38
pffindtype 38
sballoc 47
sbappend 46
sbappendaddr 46
sbappendcontrol 46
sbcantrcvmore 49
sbcantsendmore 49
sbcompress 47
sbdrop 47
sbdroprecord 47
sbflush 48
sbinsertoob 48
sbisconnected 49
sbisconnecting 49
sbisdisconnected 49
sbisdisconnecting 50
sb_lock 46
sbrelease 48
sbreserve 48
sbwait 48
soabort 41
soaccept 41
sobind 42
soclose 42
soconnect 42
soconnect2 42
socreate 43
sodisconnect 43
soflush 45
sofree 43
sogetopt 43
sohasoutofband 44
solisten 44
soqinsque 50
soqremque 50
soreceive 44
sorelease 44
soreserve 51

sosend 45
sosetopt 45
su_sonewconn1 50
utility 37

I

ifa_ifafree function 40
ifa_ifwithaddr function 39
ifa_ifwithaf function 40
ifa_ifwithdstaddr function 39
ifa_ifwithnet function 39
ifaof_ifpforaddr function 40
if_demux function 79
if_free function 70
if_ioctl function 69
if_output function 68
if_set_bpf_tap function 69

N

net_add_domain function 51
net_add_proto function 53
net_del_domain function 52
net_del_proto function 54

P

pffinddomain function 52
pffindproto function 38
pffindtype function 38

S

sballoc function 47
sbappendaddr function 46
sbappendcontrol function 46
sbappend function 46



I N D E X

123

sbcantrcvmore function 49
sbcantsendmore function 49
sbcompress function 47
sbdrop function 47
sbdroprecord function 47
sbflush function 48
sbinsertoob function 48
sbirelease function 48
sbisconnected function 49
sbisconnecting function 49
sbisdisconnected function 49
sbisdisconnecting function 50
sb_lock function 46
sbreserve function 48
sbwait function 48
soabort function 41
soaccept function 41
sobind function 42
soclose function 42
soconnect2 function 42
soconnect function 42
socreate function 43
sodisconnect function 43
soflush function 45
sofree function 43
sogetopt function 43
sohasoutofband function 44
solisten function 44
soqinsque function 50
soqremque function 50
soreceive function 44
sorelease function 44
soreserve function 51
sosend function 45
sosetopt function 45
structures
dlil_demux_desc 86
dlil_if_flt_str 88
dlil_pf_flt_str 90
dlil_proto_reg_str 84

su_sonewconn1 function 50

U

utility functions 37



I N D E X

124


