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This chapter covers specific low-level details of the PowerPC runtime 
environment, including the following:

• data storage types 

• stack structure

• routine calling conventions

These conventions may be useful for low-level programming (if you are 
writing in assembly language, for example) or for optimizing higher-level 
code. 

 

Data Types

 

The following table lists the binary data types and their sizes in the 
PowerPC runtime environment. 

All numeric and pointer data types are stored in big-endian format (that is, 
high bytes first, then low bytes). Signed integers use two’s-complement 
representation. 

 

Type Size
(bytes)

Alignment
(bytes)

Range Notes

 

UInt8 1 1 0 to 255

SInt8 1 1 –128 to 127

SInt16 2 2 –32,768 to 32,767

UInt16 2 2 0 to 65,535

SInt32 4 4 –2

 

–31

 

 to 2

 

31

 

 –1

UInt32 4 4 0 to 2

 

32

 

–1

Boolean 1 1 0 = false, nonzero = true

float 4 4 ±(2

 

-149

 

 to 2

 

127

 

) IEEE 754 standard

double 8 8 ±(2

 

-1074

 

 to 2

 

1023

 

) IEEE 754 standard

Pointer 4 4 0 to FFFFFFFF
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Data Alignment

 

The PowerPC runtime environment supports multiple data alignment modes. 
These alignments fall into two categories:

• the

 

 natural alignment

 

, which is the alignment of a data type when allocated in 
memory or assigned a memory address

• the 

 

embedding alignment

 

, which is the alignment of a data type within a 
composite data item

For example, the alignment of a 

 

UInt16

 

 variable may differ from that of a 

 

UInt16

 

 
data item embedded in a data structure. 

 

Note: 

 

Data items passed as parameters in a routine call have their own special 
alignment rules. See “Routine Calling Conventions,” beginning on page 16, for 
more information.

The binary data type table shows the natural alignment of each data type, which 
is simply the size of the data type. This alignment is fixed. 

In data structures, you can specify an embedding alignment that varies 
depending on the alignment mode selected. Typically you can select the 
alignment mode using compiler options or pragmas. The table below shows the 
possible alignment modes.

In all but the 68K alignment mode, the embedding alignment of a composite 
(for example, a data structure or an array) is determined by the largest 

 

Data type PowerPC 68K Packed Natural

 

SInt8
UInt8
Boolean

1 1 1 1

SInt16
UInt16

2 2 1 2

SInt32
UInt32

4 2 1 4

float 4 2 1 4

double 4 or 8 2 1 8

Pointer 4 2 1 4

Composite 4 or 8 2 1 16
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embedding alignment of its members. The total size of a composite is 
rounded up to be a multiple of its embedded alignment. 

In 68K alignment mode, the embedded alignment of a composite is always 
2 bytes. The total size of the composite is rounded up to a multiple of two. 

In PowerPC alignment mode, if the first embedded element in a data 
structure is type 

 

double

 

, then the embedding alignment of all type 

 

double

 

 
members in the structure is 8. In such cases, the embedding alignment for 
the entire structure is also 8 bytes.

Note that you may need to adjust embedded alignments if you are 
converting code from the classic 68K environment to the PowerPC (or 
CFM-68K) runtime environments. If you wish to enforce classic 68K 
alignment on your PowerPC code, you can often specify compiler pragmas 
or options to do so. Note, however, that the PowerPC processor is less 
efficient when accessing data that is not placed according to its natural 
alignment. 
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PowerPC Stack Structure

 

The PowerPC runtime environment uses a grow-down stack that contains 
linkage information, local variables, and a routine’s parameter information as 
shown in Figure 1..

 

Figure 1.  

 

The PowerPC stack

 

The typical PowerPC stack conventions use only a stack pointer (held in 
register GPR1) and no frame pointer. This configuration assumes a fixed stack 
frame size, which is known at compile time. Parameters are not passed by 
pushing them onto the stack. 

The calling routine’s stack frame includes a parameter area and some linkage 
information. The 

 

parameter area

 

 has space for the parameters of any routines the 
caller calls (

 

not

 

 the parameters of the caller itself). Since the calling routine might 
call several different routines, the parameter area must be large enough to 
accomodate the largest parameter list of all the routines the caller calls. It is the 
calling routine’s responsibility for setting up the parameter area before each call 
to some other routine, and the called routine’s responsibility for accessing the 
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parameters placed within it. See “Routine Calling Conventions,” 
beginning on page 16, for more information about the calling conventions. 

The calling routine’s 

 

linkage area

 

 holds a number of values, some of which are 
saved by the calling routine and some by the called routine. Figure 2. shows 
the structure of the linkage area.

 

Figure 2.  

 

A stack frame’s linkage area

 

The elements within the linkage area are as follows:

• The base register (GPR2) value is saved at 

 

20(SP)

 

 by the calling routine 
prior to the call if the call is to an imported routine or the call is a pointer-
based call (which may or may not be cross-fragment). This ensures that 
the calling routine can still access its own direct data area upon return. 
Local calls do not need to save this value. 

• The Link Register (LR) value is saved at 

 

8(SP)

 

 by the 

 

called routine

 

 if 
it chooses to do so. 

• The Condition Register (CR) value may be saved at 

 

4(SP)

 

 by the 

 

called 
routine

 

. As with the Link Register value, the called routine is not 
required to save this value. 

• The stack pointer is always saved by the calling routine as part of its 
stack frame. 

Note that the linkage area is at the top of the stack, adjacent to the stack 
pointer. This positioning is necessary so the calling routine can find and 
restore the values stored there and also to enable the called routine to find 
the caller’s parameter area. This placement means that a routine cannot 
push and pop parameters from the stack once the stack frame is set up. 
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The stack frame also includes space for the called routine’s local variables. In 
general, the general-purpose registers GPR13 through GPR31 and the floating-
point registers FPR14 through FPR31 are reserved for the routine’s local 
variables. However, if the routine contains more local variables than would fit in 
the registers, it uses additional space on the stack. The size of the local variable 
area is determined at compile time; once a stack frame is allocated, the size of 
the local variable area cannot change. 

 

Prologs and Epilogs

 

The called routine is responsible for allocating its own stack frame, making sure 
to preserve 16-byte alignment on the stack. This action is accomplished by the 
prolog before entering the actual routine. The compiler-generated prolog code 
does the following:

• Decrements the stack pointer to account for the new stack frame.

• Writes the previous value of the stack pointer to its own linkage area. This 
procedure ensures that the stack can be restored to its original state after 
returning from the call. 

• Saves all nonvolatile general-purpose and floating-point registers into the 
saved-registers area. Note that if the called routine does not change a 
particular nonvolatile register, it does not save it. 

• Saves the Link Register and Condition Register values in the caller’s 
linkage area, if needed. 

 

Note: 

 

The order in which the prolog executes these actions is determined by 
convention, not by any requirements of the PowerPC runtime architecture.

The following is a sample of prolog code. Note that the order of these actions 
differs from the order previously described. 

 

linkageArea: set 24 ; size in PowerPC environment

params: set 32 ; callee parameter area

localVars: set 0 ; callee local variables

numGPRs: set 0 ; volatile GPRs used by callee

numFPRs: set 0 ; volatile FPRs used by callee)

spaceToSave: set linkageArea + params + localVars

spaceToSave: set spaceToSave + 4*numGPRs + 8*numFPRs

.moo: ; PROLOG

mflr r0, ; extract return address 

stw r0,8(SP) ; save the return address

stwu SP, -spaceToSave(SP) ; skip over caller save area
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After the called routine exits, the epilog code executes, which does the 
following:

• Restores the nonvolatile general-purpose and floating-point registers 
that were saved in the stack frame. 

• Restores the Condition Register and Link Register values that were 
stored in the linkage area.

• Restores the stack pointer to its previous value.

• Returns to the calling routine using the address stored in the Link 
Register.

Below is some sample epilog code.

 

; EPILOG

lwz r0,spaceToSave(SP)+8 ; get the return address

mtlr R0 ; reset Link Register

addic SP,SP,spaceToSave ; restore stack pointer

blr ; return

 

The calling routine is responsible for restoring its GPR2 value immediately 
after returning from the called routine. 

 

The Red Zone

 

The space beneath the stack pointer, where a new stack frame would 
normally be allocated, is called the Red Zone. This area, as shown in 
Figure 3., may be used for any purpose as long as a new stack frame does 
not need to be added to the stack. 

 

Figure 3.  
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For example, the Red Zone may be used by a leaf procedure. A leaf procedure 
is a routine that does not call any other routines. Since it does not call any other 
routines, it does not need to allocate a parameter area on the stack. 
Furthermore, if it does not need to use the stack to store local variables, it need 
save and restore only the nonvolatile registers that it uses for local variables. 
Since by definition no more than one leaf procedure is active at any time, there 
is no possibility of multiple leaf procedures competing for the same Red Zone 
space. 

A leaf procedure does not allocate a stack frame nor does it decrement the stack 
pointer. Instead it stores the Link Register and Condition Register values in the 
linkage area of the routine that calls it (if necessary) and stores the values of any 
nonvolatile registers it uses in the Red Zone. This streamlining means that a leaf 
procedure’s prolog and epilog do only minimal work; they do not have to set up 
and take down a stack frame. 

When an exception handler is called, the Exception Manager automatically 
decrements the stack pointer by 224 bytes (the largest possible area used to save 
registers), to skip over any possible Red Zone information, and then restores the 
stack pointer when the handler exits. The Exception Manager does this because 
an exception handler cannot know in advance if a leaf procedure is executing at 
the time the exception occurs. If you are writing code that modifies the stack at 
interrupt time, you must similarly decrement the stack pointer by 224 bytes to 
preserve any Red Zone information and restore it after the interrupt call. 

 

Note: 

 

The value of 224 bytes is the space occupied by nineteen 32-bit general-
purpose registers plus eighteen 64-bit floating-point registers, rounded up to the 
nearest 16-byte boundary. If a leaf procedure’s Red Zone usage would exceed 
224 bytes, then it must set up a stack frame just like routines that call other 
routines.

 

Routine Calling Conventions

 

This section details the process of passing parameters or other information to a 
routine in the PowerPC runtime environment. 

 

Note: 

 

These parameter passing conventions are part of Apple’s standard for 
procedural interfaces. Object-oriented languages may use different rules for 
their own method calls. For example, the conventions for C++ virtual function 
calls may be different from those for C functions.
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Indirect Calls

 

A routine that branches indirectly to another routine must store the target 
of the call in the GPR12 register. This convention applies to all code used 
with the dynamic compiler flag, which is on by default for all user code. It 
does not apply to kernel or driver code. Standardizing the register used to 
store the target address makes it possible to optimize dynamic code 
generation in the future. All code must adhere to this standard from the very 
first release of Mac OS X compilers in order to take advantage of it later.

As an example, the following code:

 

foo() {

bar();

}

 

Compiled with this command:

 

% cc -arch ppc -S -O foo.c

 

Produces the following assembly output:

 

.text

.align 2

.globl _foo

_foo:

mflr r0

stw r0,8(r1)

stwu r1,-64(r1)

# end prolog

bl L_bar$stub

# start epilog

addi r1,r1,64

lwz r0,8(r1)

mtlr r0

blr

.picsymbol_stub

L_bar$stub:

.indirect_symbol _bar

mflr r0

bl L0$_bar

L0$_bar:

mflr r11

mtlr r0

# load value to branch to into r12 from lazy pointer location

addis r11,r11,ha16(L_bar$lazy_ptr-L0$_bar)

lwz r12,lo16(L_bar$lazy_ptr-0L0$_bar)(r11)

# move branch location to the counter register

mtctr r12
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addi r11,r11,lo16(L_bar$lazy_ptr-L0$_bar)

bctr

.lazy_symbol_pointer

L_bar$lazy_ptr:

.indirect_symbol _bar

.long dyld_stub_binding_helper

 

Because the target address needs to be stored in a register in any event, this 
convention simply standardizes what register to use. Routines that may have 
been called directly should not depend on the value of GR12, because in the 
case of a direct call its value is not defined.

 

Parameters

 

A routine can have a fixed or variable number of arguments. In an ANSI-style C 
syntax definition, a routine with a variable number of arguments typically 
appears with ellipsis points (…) at the end of its input parameter list.

A variable-argument routine may have several required (that is, fixed) 
parameters preceding the variable parameter portion. For example, the 
routine definition

 

mooColor(

 

number

 

,

 

[

 

color1. . .

 

]

 

)

 

gives no restriction on the number of 

 

color

 

 arguments, but you must always 
precede them with a 

 

number

 

 argument. Therefore, 

 

number

 

 is a fixed parameter. 

Typically the calling routine passes parameters in registers. However, the 
compiler generates a parameter area in the caller’s stack frame that is large 
enough to hold all parameters passed to the called routine, regardless of how 
many of the parameters are actually passed in registers. There are several 
reasons for this scheme:

• It provides the callee with space to store a register-based parameter if it 
wants to use one of the parameter registers for some other purpose (for 
instance, to pass parameters to a subroutine). 

• Routines with variable-length parameter lists must often access their 
parameters from RAM, not from registers. Such routines must reserve eight 
registers (32 bytes) in the parameter area to hold the parameter values. 

• To simplify debugging, some compilers may write parameters from the 
parameter registers into the parameter area in the stack frame; this allows 
you to see all the parameters by looking only at that parameter area.

You can think of the parameter area as a data structure that has space to hold all 
the parameters in a given call. The parameters are placed in the structure from 
left to right according to the following rules:
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• All parameters are aligned on 4-byte (word) boundaries. 

• Noncomposite parameters smaller than 4 bytes occupy the low order 
bytes of their word. 

• Composite parameters (such as data structures) are followed by padding 
to make a multiple of 4 bytes, with the padding bytes being undefined.

For a routine with fixed parameters, the first 8 words (32 bytes) of the data 
structure, no matter the size of the individual parameters, are passed in 
registers according to the following rules:

• The first 8 words are placed in GPR3 through GPR10 unless a floating-
point parameter is encountered. 

• Floating-point parameters are placed in the floating-point registers 
FPR1 through FPR13.

• If a floating-point parameter appears before all the general-purpose 
registers are filled, the corresponding GPRs that match the size of the 
floating-point parameter are skipped. For example, a 

 

float

 

 item causes 
one (4-byte) GPR to be skipped, while an item of type 

 

double

 

 causes 
two GPRs to be skipped. 

• If the number of parameters exceeds the number of usable registers, 
the calling routine writes the excess parameters into the parameter area 
of its stack frame. 

 

Note: 

 

Currently the parameter area must be at least 8 words (32 bytes) in size.

For example, consider a routine 

 

mooFunc

 

 with this declaration:

 

void mooFunc (SInt32 i1, float f1, double d1, SInt16 s1, double d2, 
UInt8 c1, UInt16 s2, float f2, SInt32 i2);

 

To see how the parameters of 

 

mooFunc

 

 are arranged in the parameter area on 
the stack, first convert the parameter list into a structure, as follows:

 

struct params {
SInt32 p_i1;
float p_f1;
double p_d1;
SInt16 p_s1;
double p_d2;
UInt8 p_c1;
UInt16 p_s2;
float p_f2;
SInt32 p_i2;

};
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This structure serves as a template for constructing the parameter area on the 
stack. (Remember that, in actual practice, many of these variables are passed in 
registers; nonetheless, the compiler still allocates space for all of them on the 
stack, for the reasons just mentioned.)

The “top” position on the stack is for the field 

 

pi_1

 

 (the structure field 
corresponding to parameter 

 

i1

 

). The floating-point field 

 

p_f1

 

 is assigned to the 
next word in the parameter area. The 64-bit double field 

 

p_d1

 

 is assigned to 
the next two words in the parameter area. Next, the short integer field 

 

p_s1

 

 is 
placed into the following 32-bit word; the original value of 

 

p_s1

 

 is in the lower 
half of the word, and the padding is in the upper half. The remaining fields of 
the 

 

params

 

 structure are assigned space on the stack in exactly the same way, 
with unsigned values being extended to fill each field to make it a 32-bit word. 
The final arrangement of the stack is illustrated in Figure 4.. (Because the stack 
grows down, it looks as though the fields of the 

 

params

 

 structure are upside 
down.)

 

Figure 4.  
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To see which parameters are passed in registers and which are passed on the 
stack, you need to map the stack, as illustrated in Figure 4., to the available 
general-purpose and floating-point registers. Therefore, the parameter 
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parameter 

 

f1

 

 is passed in FPR1, the first available floating-point register. 
This action causes GPR4 to be skipped. 

The parameter 

 

d1

 

 is placed into FPR2 and the corresponding general-
purpose registers GPR5 and GPR6 are unused. The parameter 

 

s1

 

 is placed 
into the next available general-purpose register, GPR7. Parameter 

 

d2

 

 is 
placed into FPR3, with GPR8 and GPR9 masked out. Parameter 

 

c1

 

 is 
placed into GPR10, which fills out the first 8 words of the data structure. 
Parameter 

 

s2

 

 is then passed in the parameter area of the stack. Parameter 

 

f2

 

 
is passed in FPR4, since there are still floating-point registers available. 
Finally, parameter 

 

i2

 

 is passed on the stack. Figure 5. shows the final layout 
of the parameters in the registers and the parameter area. 

 

Figure 5.  

 

Parameter layout in registers and the parameter area

 

If you have a C routine with a variable number of parameters (that is, one 
that does not have a fixed prototype), the compiler cannot know whether to 
pass a parameter in the variable portion of the routine in the general-
purpose (that is, fixed-point) registers or in the floating-point registers. 
Therefore, the compiler passes the parameter in both the floating-point and 
the general-purpose registers, as shown in Figure 6..

 

Figure 6.  
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The called routine can access parameters in the fixed portion of the routine 
definition as usual. However, in the variable-argument portion of the routine, 
the called routine must copy the GPRs to the parameter area and access the 
values from there. The code below shows a routine that accesses values by 
walking through the stack.

 

double dsum (int count, ...) 

{

double sum = 0.0;

double * arg = (double *) (&count + 1 /* pointer arithmetic */);

while (count > 0 ) {

sum += *arg;

arg += 1;   /* pointer arithmetic */

count -= 1;

}

return sum;

}

 

Function Return

 

In the PowerPC runtime environment, floating-point function values are 
returned in register FPR1 (or FPR1 and FPR2 for long double values). Other 
values are returned in GPR3 as follows: 

• Functions returning simple values smaller than 4 bytes (such as type 

 

SInt8

 

, 

 

Boolean

 

, or 

 

SInt16

 

) place the return value in the least significant byte or 
bytes of GPR3. The most significant bytes in GPR3 are undefined.

• Functions returning 4-byte values (such as pointers, including array 
pointers, or types 

 

SInt32

 

 and 

 

UInt32

 

) return them normally in GPR3. 

• If a function returns a composite value (for example, a 

 

struct

 

 or 

 

union

 

 data 
type) or a value larger than 4 bytes, a pointer must be passed as an implicit 
left-most parameter before passing all the user-visible arguments (that is, 
the address is passed in GPR3, and the actual parameters begin with GPR4). 
The address of the pointer must be a memory location large enough to hold 
the function return value. Since GPR3 is treated as a parameter in this case, 
its value is not guaranteed on return.
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Register Preservation 

 

The following table lists registers used in the PowerPC runtime 
environment and their volatility in routine calls. Registers that retain their 
value after a routine call are called nonvolatile. All registers are 4 bytes long. 

Type Register Preserved by a
routine call?

Notes

General- purpose register GPR0 No

GPR1 See next column Used as the stack pointer to store 
parameters and other temporary data 
items. 

GPR2 See next column Used as the base register to access the 
direct data area. GPR2 is preserved by 
direct calls; for indirect calls the caller 
must restore the value after the call.

GPR3 See next column Holds the return value or the address of 
the return value in function calls. For 
routine calls that do not return a value, 
GPR3 is used to pass parameter values. 

GPR4-GPR10 No Used to pass parameter values in 
routine calls. 

GPR11 No

GPR12 No Set to the value of the target before an 
indirect call for dynamic code 
generation. Unless a routine knows it’s 
been called indirectly, it should not 
depend on the value of this register.

GPR13-GPR31 Yes

Floating- point register FPR0 No

FPR1-FPR13 No Used to pass floating- point parameters 
in routine calls. 

FPR14-FPR31 Yes

Link Register LR No Stores the return address of the calling 
routine during a routine call. 

Count Register CTR No

Fixed-point exception 
register

XER No

Condition Registers CR0-CR1 No
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Condition Registers 
(continued)

CR2-CR4 Yes  

CR5-CR7 No

Type Register Preserved by a
routine call?

Notes
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