

1

Preliminary Draft.



 Apple Computer, Inc. 4/18/00

C H A P T E R 1

1 Introduction to the
Carbon Event Manager

The Carbon Event Manager offers a simple yet flexible approach to event handling
that greatly reduces the amount of code needed to write a basic application. Under
the Classic event model, every application must include code to handle typical user
interface actions such as mouse events and menu tracking. The Carbon Event
Manager provides standard handlers for most types of user interaction, so you can
concentrate on writing code that’s unique to your application. You don’t need to
write your own event handlers unless you want to override a default behavior.

In addition, the Carbon Event Manager provides a unified event model that
replaces Classic events, notifications, and defproc messages with a single method:
Carbon events. This simplified system is easier to use, but allows a high degree of
control for those who need it. For example, a single callback function,

InstallEventHandler

, is all you need to attach your own event handler to any
Toolbox object. And while the Classic event record was limited to 16 event types,
the opaque Carbon event object can handle any number of event types.

Finally, the Carbon Event Manager’s streamlined event handling enhances system
performance on Mac OS X through more efficient allocation of processing time.
Applications that use the Carbon Event Manager not only run better on Mac OS X,
they help improve overall performance and responsiveness, creating a better
experience for our customers.

This document introduces the key features of the Carbon Event Manager, and offers
some simple steps you can take to improve your application’s performance when
running on Mac OS X. Although you can port your application to Carbon without
adopting the Carbon Event Manager, it will not run as efficiently under Mac OS X,
and may actually reduce overall system performance under certain conditions
(described later in this document). For this reason, Apple encourages all developers
to begin using the Carbon Event Manager.

2

Overview

Preliminary Draft.



 Apple Computer, Inc. 4/18/00

C H A P T E R 1

Introduction to the Carbon Event Manager

Overview

The Carbon Event Manager provides the underlying event system for Mac OS X.
Classic Event Manager functions such as

WaitNextEvent

 are built on top of this
foundation and emulated by the Carbon Event Manager. On Mac OS 8 and 9, the
Carbon Event Manager is available as an alternative to the Classic Event Manager.

Figure 1-1

Relationship Between Applications and the Carbon Event Manager on

Mac OS X

Under the Classic event model, applications call

WaitNextEvent

 or

GetNextEvent

 to
receive events, and then determine what to do with them. A high percentage of time
is spent in the event loop simply handling common user interface events such as
keystrokes and mouse clicks.

By contrast, the underlying principle of the Carbon Event Manager is that events are
dispatched directly to the Toolbox objects in your application, to be handled
automatically by standard event handlers unless you choose to override the default
behavior. This means your application no longer needs to manage common
interface tasks such as handling menu selections, moving and resizing windows, or
interacting with control widgets such as buttons and sliders.

Carbon Application Handlers

Carbon Event Manager
Event Queue

Event Loop

WaitNextEvent
GetNextEvent
EventAvail

RunApplicationEventLoop

C H A P T E R 1

Introduction to the Carbon Event Manager

3

Preliminary Draft.



 Apple Computer, Inc. 4/18/00

Getting Started

The Carbon Event Manager is designed to allow gradual adoption. In fact, you
don’t need to adopt any of the new Carbon Event Manager functions to port an
existing application to Carbon. However, your application will run more efficiently
on Mac OS X if you observe the guidelines presented here.

1. Use TrackMouseLocation

If you currently track the mouse using the

WaitMouseUp

 or

StillDown

 functions, you
should use

TrackMouseLocation

 instead. The

TrackMouseLocation

 function makes
more efficient use of processor time because it does not return control to your
application until the mouse is moved or a button is released.

Code that uses Classic Event Manager functions to track the mouse location inside
a tight loop will needlessly consume processor cycles on Mac OS X. Here is a typical
example:

GetMouse(&loc);
while (StillDown())
{
 ...
 GetMouse(&loc);
}

Your application should instead call

TrackMouseLocation

 when it receives a mouse
down event. Each time the function returns, the

result

 parameter indicates what
type of mouse activity occurred, and the

outPt

 parameter contains the current
mouse location.

4

Getting Started

Preliminary Draft.



 Apple Computer, Inc. 4/18/00

C H A P T E R 1

Introduction to the Carbon Event Manager

Here is the equivalent code using

TrackMouseLocation

:

TrackMouseLocation(curPort, &loc, &result);
while (result != kMouseTrackingMouseReleased)
{
 ...
 TrackMouseLocation(curPort, &loc, &result);
}

2. Don’t Poll the Keyboard

As with mouse tracking, polling the keyboard is a very inefficient use of processor
time. The Carbon Event Manager provides a variety of functions that return
information about keyboard events. You can obtain high-level information such as
the Unicode character represented by a keyboard event, or low-level information
such as individual key down and key up events.

A common use of keyboard polling is to determine when a modifier key is pressed.
The following code snippet shows how you can install an event handler that will be
called whenever the modifier keys change state:

// first create an EventTypeSpec to specify the events you want to receive:
const EventTypeSpec kMyKeyModsChanged = { kEventClassKeyboard,

kEventKeyModifiersChanged };
...
InstallEventHandler(GetApplicationEventTarget(),

NewEventHandlerUPP(MyKeyModChangedHandler),
1, // number of event types in your EventTypeSpec
kMyKeyModsChanged, // your EventTypeSpec
NULL, // user data (optional)
NULL // event handler reference (optional)

);

3. Use Timers Instead Of Timeouts

For periodic tasks such as cursor animation or blinking the insertion point, you
should use timers instead of calling

WaitNextEvent

 with a small

sleep

 value. In fact,
we recommend that you set the

sleep

 value to

MAXINT

 and use timers for all periodic
tasks. This allows the Carbon Event Manager to allocate processor time more
efficiently.

C H A P T E R 1

Introduction to the Carbon Event Manager

5

Preliminary Draft.



 Apple Computer, Inc. 4/18/00

For example, you might use code like this to do some idle processing:

gotEvent = WaitNextEvent(everyEvent, theEvent, 60, NULL);
if (!gotEvent)

MyDoIdleStuff();

Instead, you should install a timer that will be called by the Carbon Event Manager
at the specified interval (in this case, every second):

InstallEventLoopTimer(GetCurrentEventLoop(), // the target event loop
 0, // delay before first timer fire
 1 * kEventDurationSecond, // timer interval
 NewEventLoopTimerUPP(MyTimerProc), // timer proc
 0, // user data (optional)
 timerRef // returns a reference to the installed timer
);

Another advantage of this approach is that you can call

InstallEventLoopTimer

 from
anywhere in your application—you no longer need to be in the main event loop to
receive idle time.

	Introduction to the Carbon Event Manager
	Overview
	Getting Started
	1.Use TrackMouseLocation
	2.Don ’t Poll the Keyboard
	3.Use Timers Instead Of Timeouts

