

7/17/00

© Apple Computer, Inc. 2000



Carbon Porting Guide

For Mac OS X Public Beta

Preliminary



Apple Computer, Inc.
© 1999-2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript,
AppleTalk, ColorSync, HyperCard,
LaserWriter, Mac, Macintosh, MPW,
QuickDraw, QuickTime, SANE, and
WorldScript are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company, Ltd.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Preliminary



 Apple Computer, Inc. 7/17/00

Contents

Figures, Listings, and Tables

7

Chapter 1

Introduction

9

What is Carbon? 9
What are the Benefits of Carbon? 10
What is in Carbon Today? 10
What’s Not in Carbon? 11
How Does Carbon Work? 12
Carbon and the Mac OS Application Model 13

Preemptive Scheduling and Application Threading 14
Separate Application Address Spaces 14
Virtual Memory 14
Resources 15
Code Fragments and the Code Fragment Manager 15
Mixed Mode Manager 15
Printing 15
Control Panels 16
The Trap Table 16
Standard and Custom Definition Procedures 16
Application-Defined Functions 16
Data Structure Access 17

Additional Information and Feedback 17

Chapter 2

Preparing Your Code For Carbon

19

Using Carbon Dater 19
Analyzing Your Application 20
Reading the Report 20

4

Preliminary



 Apple Computer, Inc. 7/17/00

C O N T E N T S

Analysis of Imports 21
Analysis of Access to Low Memory Addresses 21
Analysis of Resources Loaded into the System Heap 21

Additional Reports 22
The Carbon Specification 22

Essential Steps for Carbonizing Your Application 22
Begin With the Current Universal Interfaces 23
Make Sure All Your Code is PowerPC-Native 23
Use the Carbon SDK 23
Target Mac OS 8 and 9 First 23
Begin With CarbonAccessors.o 24
Replace Macro Calls to the Mixed Mode Manager With UPP Accessor
Functions 25
Remove Direct Access to Low-Memory Globals 26
Use Casting Functions to Convert DialogPtrs and WindowPtrs 28
Use DebuggingCarbonLib 28
Update Modified or Obsolete Functions 28
Adopt Required Carbon Technologies 28
Add a 'carb' 0 Resource 29
Conditionalize “Quit” Menu Items 29

Additional Porting Issues 30
Determine the Appropriate CarbonLib Version 30
Draw Only Within Your Own Windows 31
Do Not Patch Traps 32
Don’t Pass Pointers Across Processes 32
Check Your OpenGL Code 32
Examine Your Plug-Ins 32
Linking to Non-Carbon-Compliant Code 33
Window Manager Issues 34

Drawing into Windows without QuickDraw 34
Bypassing the Window Manager Port 34
Window Dragging and Resizing Q&A 35

C O N T E N T S

5

Preliminary



 Apple Computer, Inc. 7/17/00

Optimizing Your Code for Carbon 39
Manage Memory Efficiently 39
Avoid Polling and Busy Waiting 40
Use “Lazy” Initializations for Shared Libraries 41
Adopt HFS+ APIs 41
Consider Mach-O Executables 42
Begin Transitioning to the Aqua Interface 42
Adopt a Terse Name for the Application Menu 43
Provide Thumbnail Icons for Your Application 43

Chapter 3

Building Carbon Applications

47

Native Mac OS 9 vs. Mac OS X’s Classic Environment 47
Development Scenarios 48

Using CodeWarrior to Build a CFM Carbon Application 48
Using CodeWarrior to Build a Mach-O Carbon Application 49
Using Project Builder to Build a Mach-O Carbon Application 49

Building a CFM Carbon Application with CodeWarrior 49
Preparing Your Development Environment 50
Building Your Application 51

Running Your Application on Mac OS 9 51
Running Your Application on Mac OS X 52
Building a Mach-O Carbon Application with CodeWarrior 52

Preparing Your Development Environment 53
Building Your Application 53
Running Your Application on Mac OS X 53

Building a Mach-O Carbon Application with Project Builder 53
Debugging Your Application 53

Appendix A

New Carbon Functions

57

Custom Definition Procedures 57
Functions For Accessing Opaque Data Structures 58

Casting Functions 58

6

Preliminary



 Apple Computer, Inc. 7/17/00

C O N T E N T S

Accessor functions 59
Utility functions 69

Functions in CarbonAccessors.o 69
Debugging Functions 73

CheckAllHeaps 73
IsHeapValid 73
IsHandleValid 74
IsPointerValid 74

Resource Chain Manipulation Functions 74
InsertResourceFile 74
DetachResourceFile 75
FSpResourceFileAlreadyOpen 75

Appendix B

Document Version History

77

7

Preliminary



 Apple Computer, Inc. 7/17/00

Figures, Listings, and Tables

Chapter 1

Introduction

9

Figure 1-1 Current and future composition of the Carbon API 11
Figure 1-2 Calling Carbon Functions on Mac OS X and Mac OS 8 and 9 13

Chapter 2

Preparing Your Code For Carbon

19

Figure 2-1 Outline feedback as a user resizes a window 37
Figure 2-2 Thumbnail icons in a .icns file, displayed by Icon Browser 44
Table 2-1 Summary of Carbon Low Memory Accessor Support 27

Appendix A

New Carbon Functions

57

Listing A-1Example of unsupported data structure access 59
Listing A-2Example using Carbon-compatible accessor functions 60
Table A-1 Summary of Carbon Human Interface Toolbox Accessors 62
Table A-2 QuickDraw Accessor functions 66
Table A-3 Functions in CarbonAccessors.o 70
Table A-4 Functions removed from CarbonAccessors.o 73

Appendix B

Document Version History

77

Table B-1 Carbon Porting Guide revision history 77

What is Carbon?

9

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 1

1 Introduction

The Carbon Porting Guide is intended to help experienced Macintosh developers
convert existing Mac OS applications into Carbon applications that can run on Mac
OS X as well as Mac OS 8 and 9. This chapter introduces Carbon and provides an
overview of the changes you’ll need to be aware of as you convert your application.

What is Carbon?

Carbon is the set of programming interfaces based on the Classic Mac OS APIs that
will run on Mac OS X. Here we define Classic Mac OS as being those technologies
and functions that were designed for Mac OS 9 and earlier.

In addition to being able to run on Mac OS X, Carbon applications built for Mac OS
X can also run on Mac OS 8 and 9 when the CarbonLib system extension is installed.
(As always, you should test for the existence of specific features before using them.)

Carbon includes about 70 percent of the existing Mac OS APIs, covering about 95
percent of the functions used by applications. Because it includes most of the
functions you rely on today, converting to Carbon is a straightforward process.
Apple provides tools and documentation to help you determine the changes you
will need to make in your source code, as well as the header files and libraries
necessary to build a Carbon application.

Mac OS X brings important new features and enhancements that developers have
asked for, and Carbon allows you to take advantage of them while preserving your
investment in Mac OS source code. As Apple moves the Mac OS forward, Carbon
ensures you won’t be left behind.

10

What are the Benefits of Carbon?

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 1

Introduction

What are the Benefits of Carbon?

Carbon applications gain these benefits when running under Mac OS X:

�

Greater stability
Protected address spaces help prevent errant applications from crashing the
system or other applications.

�

Improved responsiveness
Each application is guaranteed processing time through preemptive
multitasking, resulting in a more responsive user experience.

�

Dynamic resource allocation
More efficient use of system resources, including the elimination of fixed size
heaps, means your application can allocate memory and other shared resources
based on actual needs rather than predetermined values. Each application can
have up to 4GB of potential addressable memory.

�

Aqua look and feel. Apple’s newest user interface is available only to
applications that run natively on Mac OS X.

What is in Carbon Today?

The Carbon programming interface consists of the following types of APIs:

�

Classic Mac OS APIs that can run unchanged on Mac OS X. These comprise the
majority of the APIs in your current application.

�

Classic Mac OS APIs that have been modified to work on Mac OS X. For
example, some functions may now require a context (or process) ID parameter
to distinguish itself in a preemptively-scheduled environment.

C H A P T E R 1

Introduction

What’s Not in Carbon?

11

Preliminary



 Apple Computer, Inc. 7/17/00

�

New APIs that can run on both Mac OS X and Mac OS 8 and 9. For example, Core
Foundation and the Carbon Event Manager provide additional benefits for
Carbon applications but are not required for porting.

�

New APIs that can run only on Mac OS X.

Currently, the Classic Mac OS APIs take up the largest proportion of Carbon APIs,
as shown in Figure 1-1. However, because Carbon is a first class application
framework on Mac OS X, new X-specific APIs will be added in the future to enhance
its capabilities.

Figure 1-1

Current and future composition of the Carbon API

What’s Not in Carbon?

If Carbon does not support a Classic Mac OS function, it is generally for one of the
following reasons:

�

The function performs actions that are illegal or make no sense in Mac OS X. For
example, functions that are 68K-specific, or functions that allocate memory in
the system heap (Mac OS X has no concept of a system heap).

�

The function directly accesses hardware. The Carbon environment was
designed to be fully abstracted from hardware, so such functions are not
allowed.

New APIs for Mac OS 8 and 9
and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs

New APIs for Mac OS 8 and 9
and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs

Now Future

12

How Does Carbon Work?

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 1

Introduction

�

The function was there for legacy purposes only, and has more modern
replacements. For example, File Manager functions that use working directories.

In addition, certain Classic Mac OS programming practices are no longer allowed:

�

No 68K code allowed. All Carbon code must be PowerPC-based.

�

No trap table access. The trap table and Patch Manager are 68K-specific.

�

Limited access to data structure fields. See “Data Structure Access” (page 17).

How Does Carbon Work?

Carbon lets you create one executable file that can run on both Mac OS X and Mac
OS 8 and 9. To make this happen, your application links with a single stub library,
CarbonLibStub at build time. At runtime your application links with the
appropriate Carbon implementation stored as shared libraries (or DLLs).

On Mac OS X, your application links dynamically to the Carbon framework, which
is a hierarchy of libraries and resources that contains the implementation of Carbon.

On Mac OS 8 and 9, the Carbon implementation is stored as a system extension,
CarbonLib. This library contains

�

implementations of all functions specific to Carbon.

�

exports of functions currently available in system software. For example, calls to
a Menu Manager function available in both Carbon and Mac OS 8 and 9 will
merely call through to the implementation in InterfaceLib.

Figure 1-2 shows Carbon functions called on Mac OS X and Mac OS 8 and 9.

Note:

At this point in the development cycle, the implementation of Carbon
functions on Mac OS X does not match those in CarbonLib. To work around this
discrepancy, there are two different stub libraries,

CarbonStub9

 and

CarbonStubX

,
and you should link against the appropriate one depending on the platform you
are targeting. This implementation discrepancy will be removed before Mac OS
X GM.

C H A P T E R 1

Introduction

Carbon and the Mac OS Application Model

13

Preliminary



 Apple Computer, Inc. 7/17/00

Figure 1-2

Calling Carbon Functions on Mac OS X and Mac OS 8 and 9

In general, for a pure Carbon application, the only library you should link against
is

CarbonLib

. See “Linking to Non-Carbon-Compliant Code” (page 33) for special
cases where you may need to link to other libraries.

Carbon and the Mac OS Application Model

The Mac OS application model remains fundamentally unchanged in Carbon.
Carbon applications employ system services in essentially the same manner for
both Mac OS 8 and 9 and Mac OS X. But because Mac OS 8 and 9 and Mac OS X are
built on different architectures, there will be slight differences in the way your
application uses some system services. This section highlights the most important
changes you need to be aware of. Chapter 2, “Preparing Your Code For Carbon,”
provides more detailed information on each of these subjects.

Runtime
Mac OS X

Carbon.framework

myCarbonApp

Runtime
Mac OS 8 and 9

InterfaceLib

CarbonLib

myCarbonApp

or

myCarbonApp

CarbonStub

Build Time

14

Carbon and the Mac OS Application Model

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 1

Introduction

Preemptive Scheduling and Application Threading

In Mac OS X, each Carbon application is scheduled preemptively against other
Carbon applications. For calls to most low-level operating system services,
Mac OS X also supports preemptive threading within an application. Because most
Human Interface Toolbox functions are not reentrant, however, a multithreaded
application will initially be able to call these functions only from cooperatively
scheduled threads. Thread-based preemptive access to all system services—
including the Human Interface Toolbox—is an important future direction for the
Mac OS.

In both Mac OS 8 and 9 and Mac OS X, you can use the Multiprocessing Services
API to create preemptively scheduled tasks.

Separate Application Address Spaces

In Mac OS X, each Carbon application runs in its own protected address space. An
application can’t reference memory locations—or corrupt another application’s
data—outside of its assigned address space. This separation of address spaces
increases the reliability of the user’s system, but it may require small programming
changes to applications that use zones, system memory, or temporary memory. For
example, temporary memory allocations in Mac OS X will be allocated in the
application’s address space, and Apple will define new functions for sharing
memory between applications. “Manage Memory Efficiently” (page 39) provides
more detailed information about memory management for Carbon applications.

Virtual Memory

Mac OS X uses a dynamic and highly efficient virtual memory system that is always
enabled. Your Carbon application must therefore assume that virtual memory is
turned on at all times. In addition, the Mac OS X virtual memory system introduces
a number of changes to the addressing model that are discussed in “Manage
Memory Efficiently” (page 39).

C H A P T E R 1

Introduction

Carbon and the Mac OS Application Model

15

Preliminary



 Apple Computer, Inc. 7/17/00

Resources

Mac OS X supports resources, but you should consider moving all your resources
to the data fork of your application. Doing so will ensure that this information will
not be lost if your application is copied by a method that does not recognize
resource forks.

Note that you can no longer store executable code in resources.

Code Fragments and the Code Fragment Manager

Carbon fully supports the Code Fragment Manager, and the Mac OS X runtime
environment supports code compiled into code fragments. For Mac OS X, however,
all code fragments must contain only native PowerPC code. In addition,
resource-based fragments are no longer allowed.

Mixed Mode Manager

While the Mixed Mode Manager is no longer needed to handle calls between
PowerPC and 68K code, there may be instances where it must handle calls between
CFM-based code and Mach -O code (the native executable format on Mac OS X). In
any case, you must replace the macros for creating and disposing routine
descriptors with new Carbon functions for creating, invoking, and disposing
universal procedure pointers (UPPs). See “Replace Macro Calls to the Mixed Mode
Manager With UPP Accessor Functions” (page 25) for more information.

Printing

Carbon introduces a new Printing Manager that allows applications to print on
Mac OS 9 using current printer drivers and on Mac OS X using new printer drivers.
The functions and data types defined by the Carbon Printing Manager are
contained in the header file

PMApplication.h.

 Preliminary documentation for the
Carbon Printing Manager is provided with the OS X Beta Developer Tools CD and
at the following website:

http://developer.apple.com/techpubs/carbon/multimedia/
CarbonPrintingManager/carbonprintingmgr.html

16

Carbon and the Mac OS Application Model

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 1

Introduction

Control Panels

Carbon does not support control panels. If possible you should package your
control panel as an application.

The Trap Table

The trap table is a 68K-specific mechanism for dispatching calls to Mac OS Toolbox
functions. Because Mac OS X does not support 68K code, the Trap Manager is
unavailable in Carbon, and your application should not dispatch calls through the
trap table. Likewise, the Patch Manager is unsupported in Carbon, and your
application should not attempt to patch the trap table or any operating system entry
points. If your application relies on patches, please tell us why, so that we can help
you remove this dependency.

Standard and Custom Definition Procedures

Carbon supports the standard Mac OS definition procedures (also known as
defprocs) for such human interface elements as windows, menus, and controls.
Custom definition procedures are also supported (as long as they are compiled as
PowerPC code), but there are new procedures for creating and packaging them.
These new functions are discussed in “Custom Definition Procedures” (page 57).

Application-Defined Functions

Carbon supports most Mac OS application-defined (callback) functions. Mac OS X
will fully support callback functions within an application’s address space. In
Carbon, callback functions use native PowerPC conventions instead of 68K
conventions, but Carbon doesn’t change these function definitions. As usual you
should pass universal procedure pointers when specifying your callback functions.

C H A P T E R 1

Introduction

Additional Information and Feedback

17

Preliminary



 Apple Computer, Inc. 7/17/00

Data Structure Access

So that future versions of Mac OS can support access to all system services through
preemptive threads, Carbon limits direct application access to some Mac OS data
structures. Carbon allows three levels of data structure access, depending on which
is appropriate for a given structure:

�

Direct access—your application can read from and write to the data structure
without restriction.

�

Direct access with notification—your application can read from and write to the
data structure, but after modifying the structure your application must call a
function to notify the operating system that the structure has been changed.

�

Indirect access—your application has no direct access to the data structure.
Instead, your application can obtain and set values in the structure only by using
accessor functions. Structures of this type are said to be “opaque” because their
contents are not visible to applications.

Opaque data structures and the functions for using them are discussed in
“Functions For Accessing Opaque Data Structures” (page 58).

Additional Information and Feedback

Apple is working hard to deliver the features and performance you expect from
Carbon. We encourage you to keep abreast of current developments by visiting the
Carbon website at

http://developer.apple.com/macosx/carbon/

where you’ll find the complete Carbon Specification, preliminary documentation,
and links to other useful information.

If you have comments or suggestions about Carbon, please send them to

carbon@apple.com

.

Using Carbon Dater

19

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 2

2 Preparing Your Code For Carbon

This chapter describes the modifications you need to make to your source code to
create a Carbon application. These changes are divided into three categories:

�

Essential changes. Applications that follow these steps should run on Mac OS X,
but may suffer from performance or responsiveness problems.

�

Other porting issues. These are topics that could affect the porting process
depending on the capabilities and needs of your application.

�

Optimization steps. This section describes steps and issues to consider so your
application can take best advantage of Mac OS X. Apple highly recommends
that you address at least some of the topics described in this section.

To make your job easier, we recommend you begin by using the Carbon Dater tool
to analyze the current compatibility level of your application.

Using Carbon Dater

Apple has developed a tool called Carbon Dater to analyze compiled applications
and libraries for compatibility with Carbon. You can use Carbon Dater to obtain
information about the compatibility of your existing code and the scope of your
future conversion efforts.

Carbon Dater works by examining PEF containers in application binaries and CFM
libraries. It compares the list of Mac OS symbols your code imports against Apple’s
database of Carbon-supported functions.

20

Using Carbon Dater

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

You’ll find the Carbon Dater tool and complete instructions online at

http://developer.apple.com/macosx/carbon/dater.html

Analyzing Your Application

Using Carbon Dater is a two-step process. You begin by dropping your compiled
application or CFM library file onto the Carbon Dater tool. The tool examines the
first PEF container in your file and outputs a text file named filename

.CCT

 (Carbon
Compatibility Test). You can drop more than one file onto the Carbon Dater tool to
get a combined report, but the tool examines only the first PEF container in each file.

The CCT file contains a list of all the Mac OS functions referenced by your code. If
applicable, it may also include information about your application’s use of direct
access to low memory addresses, or resources stored in the system heap.

The second step is to send your CCT file to Apple for analysis. The information
gathered by the Carbon Dater tool is used to create a compatibility report for your
application. Attach the CCT file as an e-mail enclosure (preferably compressed) and
send it to

CarbonDating@apple.com

Important

Carbon Dater does not expose any proprietary information
about your product. The CCT file only lists calls to Mac OS
functions and certain other potential compatibility issues.
You can examine the CCT file to verify its contents.

Reading the Report

The CCT file you send to Apple will be processed by an automated analysis tool.
The analyzer compares the list of Mac OS functions your code calls against Apple’s
Carbon API database, and returns a report to you via e-mail. This report is an HTML
document that provides a snapshot of your application’s Carbon compatibility
level.

C H A P T E R 2

Preparing Your Code For Carbon

Using Carbon Dater

21

Preliminary



 Apple Computer, Inc. 7/17/00

Analysis of Imports

For each Mac OS function your code calls that is not fully supported in Carbon, the
compatibility report specifies whether the function is

�

supported but modified in some way from how it is used in previous versions
of the Mac OS

�

supported but not recommended—that is, you can use the function, but it may
not be supported in the future

�

unsupported

�

not found in the latest version of Universal Interfaces

The report includes a chart that shows the percentages of Mac OS functions in each
category. For many functions, the report also describes how to modify your
application. For example, text accompanying an unsupported function might
describe a replacement function or recommended workaround.

Analysis of Access to Low Memory Addresses

This section of the compatibility report lists instances where your code makes a
direct access to low memory. For information on how to access low memory
correctly, see “Remove Direct Access to Low-Memory Globals” (page 26). If the
tested code was built with symbolic debugging information enabled, the report
specifies the names of the routines that access low memory directly. Many of the
low-memory accessor functions currently defined in the Universal Interfaces are
implemented as inline macros that insert load or store instructions directly in your
code. Carbon Dater can’t tell the difference between one of these macros and code
you wrote yourself, so you’ll need to verify that you’re using an approved accessor
function.

Analysis of Resources Loaded into the System Heap

This section of the compatibility report lists resources that have their system heap
bit set, indicating they should be stored in the system heap. For each flagged
resource, the report lists the resource type and ID, as well as the resource name if
one is available. Applications do not have access to the system heap in Mac OS X,
so Carbon applications cannot store resources there.

22

Essential Steps for Carbonizing Your Application

Preliminary



 Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Additional Reports
You can obtain additional compatibility reports as often as you wish. This is a good
way to see how much progress you’ve made in your porting effort. Also, as work
on Mac OS X and Carbon continues, there may be changes in the level of support
for some functions, which Carbon Dater may bring to your attention.

Important
The Carbon Dating process cannot guarantee that your
application is entirely compatible with Carbon and
Mac OS X, even if your report lists no specific
incompatibilities. For example, applications might access
low memory in a way that is not supported but that cannot
be detected by the compatibility analyzer.

The Carbon Specification
Carbon Dater uses the Carbon Specification available at

http://developer.apple.com/techpubs/carbon/Carbon_Specification/
CarbonSpecTOC.html

to determine compatibility. You can browse this document for general
compatibility information. Apple plans to update the Carbon Specification
regularly to reflect the latest state of the Carbon APIs.

Essential Steps for Carbonizing Your Application

This section describes the bare minimum steps you need to Carbonize your
application. Applications ported by following these instructions will run on Mac OS
8 and 9 and Mac OS X, but may not function optimally. To further improve
performance and responsiveness, see the guidelines in “Optimizing Your Code for
Carbon” (page 39).

In addition to reading this section, you should also read the information provided
in “Additional Porting Issues” (page 30) before beginning to port your application.

C H A P T E R 2

Preparing Your Code For Carbon

Essential Steps for Carbonizing Your Application 23
Preliminary  Apple Computer, Inc. 7/17/00

Begin With the Current Universal Interfaces
Your transition to Carbon will be easier if your application already compiles using
the latest version of Universal Interfaces (as of this writing, the most recent
development version is 3.4d2). Although updating is not a requirement, doing so
will minimize the number of compatibility problems. Once your project compiles
without errors, you should switch to the Carbon headers provided with this SDK.

You’ll find the most recent Universal Interfaces on Apple’s website at

http://developer.apple.com/sdk/

Make Sure All Your Code is PowerPC-Native
Because Mac OS X requires 100% native PowerPC code, you will need to remove
any dependencies on 68K instructions. This applies to custom definition procedures
(defprocs) and plug-ins as well as your main application. See “Custom Definition
Procedures” (page 57) for information about new functions for creating native
defprocs.

Use the Carbon SDK
The Carbon SDK contains the headers, stub libraries, extensions and other material
that you will need to build your Carbon application. You can download it from the
following website:

http://developer.apple.com/sdk/#Carbon

Target Mac OS 8 and 9 First
To ease the transition to Carbon, you should initially focus on getting your
application running on Mac OS 8 and 9 with the CarbonLib extension. Then you can
test your application on Mac OS X.

Note that just because your Carbon application runs on Mac OS 8 and 9, there is no
guarantee that it will correctly run on Mac OS X. For example, Mac OS X is stricter
about direct casting of types, so what is allowable on Mac OS 8 and 9 may not work
on X.

24 Essential Steps for Carbonizing Your Application
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Begin With CarbonAccessors.o
CarbonAccessors.o is a static library that may help ease your transition to Carbon by
allowing you to begin using certain Carbon features while continuing to link
against InterfaceLib and other non-Carbon libraries.

Because many toolbox data structures are opaque in Carbon, one of the first steps
you should take in porting your application is to begin using the new accessor
functions. It’s easier to do this if you can continue compiling as a classic
InterfaceLib-based application, because you can keep your application running
and qualify your changes incrementally. CarbonAccessors.o facilitates this by
providing implementations of the accessor functions for opaque toolbox data
structures. For a list of the functions in CarbonAccessors.o, see Table A-3 (page 70).

We recommend that as the first step in the porting process, you add
CarbonAccessors.o to your link, and then begin modifying your source code to use
Carbon accessor functions, one file at a time. You can do this by setting the
following conditional macro at the top of each source file you plan to convert:

#define ACCESSOR_CALLS_ARE_FUNCTIONS 1

This conditional makes the prototypes for the accessor functions available to that
source file.

When you have converted all of your source files to use accessor functions, you can
add the following conditional macro to your build options to ensure that you are no
longer directly accessing any opaque toolbox data structures:

#define OPAQUE_TOOLBOX_STRUCTS 1

At this point you have an application that uses the Carbon accessor functions but
does not link against the Carbon libraries. You can continue to run and test your
application on any Mac OS release, because it does not require the CarbonLib
extension at runtime.

The next step in the conversion process is to allow only Carbon-compatible APIs in
your code by adding the following conditional macro to your build options:

#define TARGET_API_MAC_CARBON 1

You can now begin modifying your code so that it no longer calls functions that are
obsolete in Carbon. At this point you must stop linking against InterfaceLib (and
CarbonAccessors.o) and begin linking against CarbonLib.

C H A P T E R 2

Preparing Your Code For Carbon

Essential Steps for Carbonizing Your Application 25
Preliminary  Apple Computer, Inc. 7/17/00

Important
Apple does not support the use of CarbonAccessors.o as
anything other than a porting tool. To build a Carbon
application you must link against CarbonLib..

Replace Macro Calls to the Mixed Mode Manager
With UPP Accessor Functions
Carbon introduces significant changes to the Mixed Mode Manager. Static routine
descriptors are not supported, and you must use the system-supplied functions for
creating, invoking, and disposing of universal procedure pointers. For example,
Carbon provides the following functions to replace the macros previously used to
create, invoke, and dispose of universal procedure pointers:

ControlActionUPP NewControlActionUPP (ControlActionProcPtr userRoutine);
void InvokeControlActionUPP (ControlRef theControl,

 ControlPartCode partCode
 ControlActionUPP userUPP);

void DisposeControlActionUPP (ControlActionUPP userUPP);

Similar functions are provided for all supported UPPs. Note that Carbon does not
support the generic functions NewRoutineDescriptor, DisposeRoutineDescriptor,
and CallUniversalProc.

On Mac OS 9, the UPP creation functions allocate routine descriptors in memory
just as you would expect. On Mac OS X, the implementation of UPPs depends on
various factors, including the object file format you choose. Universal procedure
pointers will allocate memory if your application is compiled as a CFM binary, but
are likely to return a simple ProcPtr if your application is compiled as a Mach-O
binary.

On Mac OS X, UPPs are opaque types that may or may not require memory
allocation, depending on the particular function and the runtime it is created in. By
using the system-supplied UPP functions, your application will operate correctly in
either environment. You must dispose of your UPPs using the system-supplied
functions, to ensure that any allocated memory is released. See “Consider Mach-O
Executables” (page 42) for more information about the differences between these
formats.

Your own plug-ins must be compiled as PowerPC code, so there is no need to create
UPPs for them. Use ProcPtrs instead.

26 Essential Steps for Carbonizing Your Application
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Remove Direct Access to Low-Memory Globals
Low-memory globals are system and application global data located below the
system heap in the Mac OS 9 runtime environment. They typically fall between the
hexadecimal addresses $100 and $2800. Carbon applications can continue to use
many of the existing low-memory globals, although in some cases the scope and
impact of the global has changed. But in all cases, Carbon applications must use the
supplied accessor routines to examine or change global variables. Attempting to
access them directly with an absolute address will crash your application when
running on Mac OS X.

The complete list of low-memory globals supported in Carbon is not yet finalized,
but your transition to Carbon will be easier if you follow these guidelines:

� Use high-level calls instead of low-memory accessors whenever possible.
For example, use GetGlobalMouse instead of LMGetMouseLocation.

� If a high-level call is not available, use an accessor function.

� Rely on global data only from Mac OS managers supported in Carbon.
For example, because the driver-related calls in the Device Manager are not
supported in Carbon, low-memory accessors like LMGetUTableBase are not likely
to be available. Similarly, direct access to hardware is not supported in Carbon,
so calls like LMGetVIA will no longer be useful.

Table 2-1 lists some frequently used low-memory accessors that are unsupported in
Carbon. Refer to the Carbon Specification for the most recent information.

C H A P T E R 2

Preparing Your Code For Carbon

Essential Steps for Carbonizing Your Application 27
Preliminary  Apple Computer, Inc. 7/17/00

Table 2-1 Summary of Carbon Low Memory Accessor Support

Accessor Replacement

LMGet/SetAuxCtlHead not supported

LMGet/SetAuxWinHead not supported

LMGet/SetCurActivate not supported

LMGet/SetCurDeactive not supported

LMGet/SetDABeeper not supported

LMGet/SetDAStrings GetParamText, ParamText

LMGet/SetDeskPort not supported

LMGet/SetDlgFont not supported

LMGet/SetGhostWindow not supported

LMGetGrayRgn GetGrayRgn

LMGetMBarHeight GetMBarHeight

LMSetMBarHeight not supported

LMGet/SetMBarHook not supported

LMGet/SetMenuHook not supported

LMGetMouseLocation GetGlobalMouse

LMSetMouseLocation not supported

LMGet/SetPaintWhite not supported

LMGetWindowList GetWindowList

LMSetWindowList not supported

LMGet/SetWMgrPort not supported

28 Essential Steps for Carbonizing Your Application
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Use Casting Functions to Convert DialogPtrs and
WindowPtrs
You cannot directly cast a DialogPtr or WindowPtr to a GrafPtr, but instead you must
use the new functions described in “Casting Functions” (page 58). Direct casting
will not affect compilation, but it will cause inexplicable crashes on Mac OS X.

Use DebuggingCarbonLib
The debugging version of CarbonLib on Mac OS 8 and 9 checks for the validity of
ports and windows, so using it is a good way to quickly identify potential problem
areas. However, you should be aware that it runs considerably slower than the
nondebugging version of the library.

Update Modified or Obsolete Functions
From the list given to you by Carbon Dater, you should replace all functions listed
as “out” or “modified” with their suggested replacements.

Adopt Required Carbon Technologies
Carbon requires you to replace some older system services with newer ones as
follows:

� Navigation Services replaces the Standard File Package. For documentation, see
the web site:
http://developer.apple.com/techpubs/carbon/Files/NavigationServices/
navigationservices.html

� The Carbon Printing Manager replaces the old Mac OS Printing Manager. For
documentation, see the web site:
http://developer.apple.com/techpubs/carbon/multimedia/
CarbonPrintingManager/carbonprintingmgr.html

C H A P T E R 2

Preparing Your Code For Carbon

Essential Steps for Carbonizing Your Application 29
Preliminary  Apple Computer, Inc. 7/17/00

Add a 'carb' 0 Resource
On Mac OS X, Carbon applications that do not contain a 'carb' 0 resource will open
in the Classic Compatibility Environment and will not gain all the advantages of
Mac OS X. To ensure that your application opens in the Mac OS X environment,
your application must include a resource of type 'carb' with ID 0 . The contents
may be arbitrary, typically four bytes of zero data.

Conditionalize “Quit” Menu Items
Mac OS X applications are automatically assigned a “Quit” menu item under the
Application menu, so your application does not need to add one to the File menu as
in the past. As long as your application supports the 'quit' Apple event, it will quit
normally. However, because Mac OS 8 and 9 applications still require a “Quit” item,
you must conditionalize your code to add one in the File menu when running under
Mac OS 8 or 9. The easiest way to identify the current operating system is to check
the gestaltMenuMgrAquaLayoutBit bit of the gestaltMenuMgrAttr gestalt selector. If
the bit is set, the application is running on Mac OS X.

For example, you could use code such as the following to conditionalize your
menus:

Gestalt(gestaltMenuMgrAttr, &result);
if (result & gestaltMenuMgrAquaLayoutMask)

menuBar = GetNewMBar(rSysXMenuBar);
else

menuBar = GetNewMBar(rMenuBar);

This method uses two different 'MBAR' resources, each with a different 'MENU'
resource for the File menu.

If you must enable and disable the “Quit” item programmatically, you can use the
new functions DisableMenuCommand and EnableMenuCommand to do so. Pass NULL for the
menu reference and 'quit' for the Command ID.

30 Additional Porting Issues
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Additional Porting Issues

In addition to the steps described in the “Essential Steps for Carbonizing Your
Application” (page 22), you should be aware of these other issues that can affect the
porting process.

Determine the Appropriate CarbonLib Version
Just like system software, CarbonLib also exists in various versions, each of which
contains different levels of functionality. Because some calls to CarbonLib merely
call through to the underlying system software, the functions available can depend
on the system software version.

CarbonLib
Version

Reflects
Universal
Interfaces
Version

Compatible
Back to Notes

1.0 3.3.1 Mac OS 8.1 Shipped with Mac OS 9. Do not develop
with this version.

1.0.4 3.3.1 Mac OS 8.1 Includes the following:

All Carbon APIs available with Mac
OS 8.1

Toolbox accessor functions

Control, Window, and Menu
properties

Navigation Services

Core Foundation

Carbon Printing Manager

C H A P T E R 2

Preparing Your Code For Carbon

Additional Porting Issues 31
Preliminary  Apple Computer, Inc. 7/17/00

Draw Only Within Your Own Windows
Because Mac OS X is a truly preemptive system, any number of applications may be
drawing into their windows at the same time. Carbon applications, therefore,
cannot draw outside their own windows. In the past you could call the GetWMgrPort
function and use that port to draw anywhere on the screen. This port does not exist
in Mac OS X, so you will need to use alternate methods to implement window
dragging and resizing. For more detailed information about handling windows in
Carbon, see “Window Manager Issues” (page 34).

1.1 3.4 Mac OS 8.6 Adds the following:

Appearance Manager 1.1

Carbon Event Manager

XML

URL Access Manager

Apple Type Services for Unicode
Imaging (ATSUI)

IB Carbon Runtime

Font Sync

Apple Help Viewer

Font Management

Mac OS 9 Adds the following:

DataBrowser

Keychain Manager

CarbonLib
Version

Reflects
Universal
Interfaces
Version

Compatible
Back to Notes

32 Additional Porting Issues
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Do Not Patch Traps
Carbon applications should not patch traps because there is no trap table in
Mac OS X. The Patch Manager is unsupported, and functions like GetTrapAddress
and SetTrapAddress are not available in Carbon. You can, of course, conditionalize
your code and continue to patch traps when running under Mac OS 9, but your
programs will be much easier to maintain if you avoid patching entirely.

Don’t Pass Pointers Across Processes
In Mac OS X, every process has its own address space, so attempting to pass a
pointer to another process is meaningless at best and may cause your application to
misbehave. Threads or tasks created by an application (for example,
Multiprocessing Services tasks or Thread Manager threads) occupy the
application’s address space, so you can pass pointers between them.

Check Your OpenGL Code
If you use OpenGL in your application, be aware that the APIs in the
OpenGLMemory library are not Carbon-compliant, as they address issues that do
not exist on Mac OS X. Otherwise, you should continue to link to the
OpenGLLibrary and OpenGLUtility stubs as you would for non-Carbon
applications. On Mac OS X these functions will link with the OpenGL framework.

Examine Your Plug-Ins
Carbonized applications can load nonCarbon plug-ins. However, you must be
careful that your plug-ins do not link to InterfaceLib. On Mac OS 8 and 9 this will
not cause a problem, but it can cause a crash on Mac OS X (because InterfaceLib is
unavailable).

You can use the MPW tool DumpPEF with the -loader i library option to find
unintentional links to nonCarbon libraries.

C H A P T E R 2

Preparing Your Code For Carbon

Additional Porting Issues 33
Preliminary  Apple Computer, Inc. 7/17/00

Linking to Non-Carbon-Compliant Code
In some cases, your CFM application may need to call code that is not
Carbon-compliant to maintain cross-platform compatibility between Mac OS 8 and
9 and Mac OS X. For example, say your application makes calls to the Device
Manager. The Device Manager is not part of Carbon as it cannot run on Mac OS X.
However, its replacement, I/O Kit, is a Mac OS X technology that cannot run on
Mac OS 8 and 9. The only way to maintain your application’s functionality is to fork
your code and make calls to either the Device Manager or I/O Kit depending on the
platform.

Forking your code in this manner brings up some build issues. For example, if you
had set preprocessor directives to build with Carbon, the Universal Interfaces will
conditionalize out any non-Carbon functions; attempting to call nonCarbon
functions will generate a compiler error indicating missing prototypes.

The easiest way to work around this problem is to compile your noncompliant code
separately, using non-Carbon headers. You can package your non-Carbon code as
a shared library, which you can then call from your application.

The safest method for calling non-Carbon functions in shared libraries is to prepare
the fragment and locate the symbols manually. That is, call GetSharedLibrary to
prepare the library and use FindSymbol to get the symbol address. You can then call
the function through the returned pointer. This method gives you maximum
flexibility in handling missing symbols or libraries. See the sample code included
with the OS X Beta Developer Tools CD for examples.

34 Additional Porting Issues
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Window Manager Issues
This section addresses common issues encountered when porting code that draws
or otherwise manipulates windows.

Drawing into Windows without QuickDraw

If you draw directly into the bitmap of your windows (without using QuickDraw),
you’ll need to wrap those blits with two new calls that signal the Window Manager
not to update the window until your drawing operation completes. Here are the
basic steps:

1. Use the GetWindowPort function to get the window’s port.

2. Use the LockPortBits function to lock the port’s pixel map.

3. Use the GetPortPixMap function to get a handle to the port’s pixel map.
The baseAddr field of the PixMap structure contains the base address of the actual
port bits in memory.

Important

The port address is valid only after you’ve locked the port using the
LockPortBits function, and is invalid after you call the UnlockPortBits function.

4. Perform your drawing operation as quickly as possible. Because the
LockPortBits function blocks all other updates to the port, it’s important that
your drawing code be small and fast to avoid impacting system performance.

5. Call the UnlockPortBits function to release the port. The PixMapHandle is
automatically disposed when you call this function. Do not attempt to reuse the
handle.

Note that the UnlockPortBits function does not initiate a window update, it merely
allows any pending or future updates to occur. An update is initiated either by the
BeginUpdate/EndUpdate routines or when the QDFlushPortBuffer function is called.

Bypassing the Window Manager Port

Prior to Carbon and Mac OS X, any Mac application could access the Window
Manager port, which included all available screens. Using that port, an application
could write directly to the screen on top of all windows. Developers used this
capability to implement a number of features, such as custom window grow
outlines and custom window dragging.

C H A P T E R 2

Preparing Your Code For Carbon

Additional Porting Issues 35
Preliminary  Apple Computer, Inc. 7/17/00

Because recent releases of Mac OS 8 and 9 offer improved Window Manager
functionality, as well as robust drag and drop support through the Drag Manager,
many applications no longer need to use the Window Manager port. That’s a good
thing, because in Mac OS X, there is no Window Manager port, and Carbon
provides no access to the Window Manager port for applications running in
Mac OS 8 and 9.

The Carbon Window Manager does supply alternate mechanisms to implement
features that may have relied on use of the Window Manager port. To learn more
about when to use these mechanisms, see “Window Dragging and Resizing Q&A”
(page 35).

If your application is drawing in the Window Manager port and you don’t see an
alternate mechanism described, you should consider whether you can achieve the
same results by modifying your user interface. If that’s not appropriate, let us know
what you need. We may add some APIs to support additional features.

Window Dragging and Resizing Q&A

This section answers some frequently asked questions about dragging and resizing
windows in Carbon and Mac OS X. For related information, see “Bypassing the
Window Manager Port” (page 34).

� Q. What is the standard window dragging feedback supplied by DragWindow?

A. In Mac OS X, if you call DragWindow for a buffered window, the Carbon
Window Manager provides live dragging—that is, the contents of the window
remain visible as a user moves the window around the screen. For a window
that isn’t buffered, the Window Manager provides the traditional outline
feedback.

For a Carbon application running in Mac OS 8 or 9, DragWindow supplies the
traditional outline feedback.

� Q. Can I still use DragGrayRegion?

A. Although DragGrayRegion is fully supported in Carbon, it only applies to the
current port. If you’re currently using DragGrayRegion with the Window
Manager port, you should instead use one of the other mechanisms described
here, such as calling DragWindow or using Carbon event handlers.

36 Additional Porting Issues
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

� Q. How do I implement custom window dragging—for example, to modify the
position and shape of a tool palette as the user moves it to dock with another
palette?

A. You can implement features of this type using a Carbon event handler that
tracks move events. When a user starts to drag a window, your handler receives
a move window event. If you so request, your event handler can also receive
periodic move window events as the user continues to drag the window. When
the user completes the move, your handler receives a window moved event that
includes the final position of the window. In the example of docking a palette to
another palette, you can either make changes to the palettes during the move as
the current position warrants, or you can modify them after the move is
complete.

Keep in mind that using a move event handler that receives and processes
events during the move may have an impact on performance.

The Carbon Window Manager may also support custom dragging as part of an
API to be added later. However, in OS X this approach would only provide
outline feedback for the drag, rather than live feedback.

� Q. What is the standard window resizing feedback supplied by GrowWindow?

A. If you do not supply a resize event handler (described in another question),
GrowWindow provides the traditional outline feedback.

Figure 2-1 shows the traditional outline feedback for resizing a window.

C H A P T E R 2

Preparing Your Code For Carbon

Additional Porting Issues 37
Preliminary  Apple Computer, Inc. 7/17/00

Figure 2-1 Outline feedback as a user resizes a window

38 Additional Porting Issues
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

� Q. How do I take advantage of live resizing in Mac OS X?

A. If you want live resizing in Mac OS X—that is, the contents of a window
remain visible and are adjusted and redrawn as needed as a user resizes the
window—you must provide a resize event handler. The Carbon Window
Manager sends events to your handler that indicate when it should adjust its
scrollbars, redraw its content, and so on, as the user resizes the window.

Carbon applications running in Mac OS 8 and 9 will only get outline resizing.

� Q. How do I implement custom window resize feedback—for example, to make
the window snap to a grid as a user resizes the window?

A. You can implement custom resizing using the same Carbon event handler
you use to support live resizing. When a user starts to resize a window, your
handler receives a resize window event. Your handler also receives periodic
events as the user continues the resize. When the user completes the resize, your
handler receives a window resized event that includes the final size. You can
constrain resizing to the desired grid as the user resizes, or do so after the resize
is complete.

If you are already using a custom window definition (WDEF) and you do not
need live resizing, the easiest way to provide custom resize feedback is to
support the new WDEF message kWindowMsgGrowImageRegion. Your WDEF
receives this message periodically as the user moves the mouse during a resize
operation. You can use this message to override the region that gets displayed
during resize. To get these messages, your WDEF must report the
kWindowSupportsSetGrowImageRegion feature bit.

� Q. Do I need to make any other changes to my existing WDEF?

A. In most cases, you should not have to change your custom window
definition. Prior to Carbon and Mac OS X, custom window definitions expected
to draw directly in the global port. Now the Carbon Window Manager
automatically sets up an appropriate port for drawing. When your window
definition gets a draw message, it can go ahead and draw—but it shouldn’t
assume it’s drawing in a global port, because it isn’t.

� Q. I use the Window Manager port to implement custom drag and drop with
translucent drag images. How do I keep my translucent drag images without the
Window Manager port?

A. The Drag Manager has supported translucent dragging since version 1.3 and
System 7.5.3. This feature is fully supported in Carbon, so you don’t need to
write any custom code.

C H A P T E R 2

Preparing Your Code For Carbon

Optimizing Your Code for Carbon 39
Preliminary  Apple Computer, Inc. 7/17/00

� Q. How can I capture a region of the current global screen?

A. There is currently no way to do this in Carbon, although we are considering
providing an interface that will allow you to grab an arbitrary screen region.

You should not rely on calling CreateNewPort and determining the location of the
screen bits from the new port. This behavior is no longer supported and code
that relies on it is likely to break in future versions of Mac OS X.

� Q. How can I write a screen saver or other application that needs to take over the
whole screen?

A. Use the QuickTime functions BeginFullScreen and EndFullScreen. For more
information, see the QuickTime documentation at

http://developer.apple.com/techpubs/quicktime/quicktime.html

� Q. I don’t want to modify my user interface and I don’t see anything described
here that will help me do what I want to do.

A. That’s not really a question, but let us know what you need.

Optimizing Your Code for Carbon

This section describes steps and issues you should consider for your application to
take best advantage of the Mac OS X environment.

Manage Memory Efficiently
Memory management doesn’t change much for Carbon applications running on
Mac OS 9. You’ll need all the code you use today to handle heap fragmentation, low
memory situations, and stack depth.

However, there are some techniques you can adopt now that will help your
application perform well when running on Mac OS X, which uses an entirely
different heap structure and allocation behavior. The most significant change is in
determining the amounts of free memory and stack space available. For example,
you should avoid preallocating memory, as doing so will not make best use of the
allocators available in Mac OS X. Similarly, using suballocators (that is, allocating a
block of memory and then allocating from within the block) is not suggested.

40 Optimizing Your Code for Carbon
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

The functions FreeMem, PurgeMem, MaxMem, and StackSpace are all included in Carbon.
You should, however, think about how and why you are using them. You’ll
probably want to consider additional code to better tune your performance.

The FreeMem, PurgeMem, and MaxMem functions behave as expected when your Carbon
application is running on Mac OS 9, but they’re almost meaningless when it’s
running on Mac OS X, where the system provides essentially unlimited virtual
memory. Although you can still use these calls to ensure that your memory
allocations won’t fail, you shouldn’t use them to allocate all available memory.
Allocating too much virtual memory will cause excessive page faults and reduce
system performance. Instead, determine how much memory you really need for
your data, and allocate that amount.

Before Carbon, you would use the StackSpace function to determine how much
space was left before the stack collided with the heap. This routine could not be
called at interrupt time, but was useful for preventing heap corruption in code using
recursion or deep call chains. But because a Carbon application may have different
stack sizes under Mac OS 9 and Mac OS X, the StackSpace function is no longer very
useful. You shouldn’t rely on it for your logic to terminate a recursive function. It
might still be useful as a safety check to prevent heap corruption, but for
terminating runaway recursion, you should consider passing a counter or the
address of a stack local variable instead of calling StackSpace.

The Carbon API does not include any subzone creation or manipulation routines. If
you use subzones today to track system or plug-in memory allocations, you must
use a different mechanism. For plug-ins, you might switch to using your own
allocator routines. To prevent memory leaks, make sure all your allocations are
matched with the appropriate dispose calls.

The Carbon API also removes the definition of zone headers. You no longer can
modify the variables in a zone header to change the behavior of routines like
MoreMasters. Simply call MoreMasters multiple times instead, which will allocate 128
master pointers each time.(You can also use the new Carbon call
MoreMasterPointers, which allows you to specify the number of master pointers to
allocate in one relocatable block.)

Avoid Polling and Busy Waiting
Polling for events or using a timer loop is allowable (but not recommended) on Mac
OS 9 but it can cause severe performance problems on Mac OS X. In the Mac OS X
multitasking environment, the OS gives time to all active processes. A process that

C H A P T E R 2

Preparing Your Code For Carbon

Optimizing Your Code for Carbon 41
Preliminary  Apple Computer, Inc. 7/17/00

is busy waiting for an event is considered active, even though it is not actually doing
anything. Such waiting reduces the performance of other active processes. As an
extreme example, multiple instances of a shared library, all polling for an event, can
easily bog down the system. Instead of polling, your code should implement some
sort of notification mechanism (such as an event queue or semaphore).

Note that triggering actions on null events does not work on Mac OS X, as the
system will notify your application only when real events occur. To work around
this issue you should use Carbon Event Manager timers.

Use “Lazy” Initializations for Shared Libraries
To allow Mac OS X to manage memory efficiently, you should not prepare shared
libraries at application launch time, but rather only when you need them. Also, try
to avoid using initialization functions if possible. See Mac OS Runtime Architectures
for more information about initialization functions.

Adopt HFS+ APIs
HFS+, the Mac OS Extended File Format, is the default file system for Mac OS X, so
you should consider using HFS+ APIs if you need to programmatically access files
on hard drives. Some of the advantages of HFS+ are as follows:

� Support for long Unicode filenames (255 characters)

� Support for files larger than 2 GB

� ßupport for extended file attributes

See the File Manager documentation at

http://developer.apple.com/techpubs/carbon/Files/FileManager/
filemanager.html

for more information about HFS+.

42 Optimizing Your Code for Carbon
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Consider Mach-O Executables
You can build Carbon applications in two object file formats: PEF, which uses the
Code Fragment Manager introduced with PowerPC Macintosh computers, and
Mach-O, which is the preferred format for Mac OS X. Depending on your needs,
you may want to consider creating Mach O-based Carbon applications. There are
advantages and disadvantages:

Advantages:

� Applications get access to all native Mac OS X APIs such as Quartz and POSIX.
CFM-based Carbon applications can access only Carbon APIs.

� Symbolic debugging is easier on Mac OS X (using GDB).

� You can take full advantage of the Interface Builder and Project Buildler
development tools on Mac OS X.

Disadvantages:

� Applications cannot run on Mac OS 8 and 9.

� Doesn’t support the existing CFM plug-in architecture.

� Programmatic manipulation of the Code Fragment Manager (for example,
calling GetSharedLibrary) may not work as expected.

You can also package CFM-based code Mach-O–based executables together in
bundles in a manner analogous to the PowerPC/68K fat applications built during
the transition to PowerPC. Such CFM/Mach-O packages will execute the CFM
version of the application on Mac OS 8 and 9, and the Mach-O version on Mac OS
X. See Inside Mac OS X: System Overview for more information about the Mach-O
format and packaging files in bundles.

Eventually, as customer focus shifts to Mac OS X, you should concentrate on
building Mach O binaries.

Begin Transitioning to the Aqua Interface
If you are using Appearance Manager 1.1 or later, your Carbon application will
automatically adopt the basic Aqua look and feel. However, to provide the best user
experience, you should begin modifying dialog boxes, windows, icons, and so on to

C H A P T E R 2

Preparing Your Code For Carbon

Optimizing Your Code for Carbon 43
Preliminary  Apple Computer, Inc. 7/17/00

meet the Aqua specification. See the document Aqua Layout Guidelines for details.
For additional information on icons, see “Provide Thumbnail Icons for Your
Application” (page 43).

Adopt a Terse Name for the Application Menu
The leftmost pulldown menu in Mac OS X is the application menu. To maximize
space for other menus, you should adopt a short version of your application name
for this menu.

Provide Thumbnail Icons for Your Application
The information in this section supplements the document “Obtaining and Using
Icons With Icon Services,” available at the Apple Developer Connection website at

http://developer.apple.com/techpubs/macos8/HumanInterfaceToolbox/
IconServUtili/IconServices/index.html

In Mac OS X, a user may choose to display very large icons for the desktop, the
application dock, and so on. The Finder uses a high-quality scaling algorithm,
supplied by Icon Services, to generate the variable-sized icons it needs. To help
ensure a pleasing result for your application, you should provide a thumbnail icon
and a thumbnail mask as part of the 'icns' resource for your icon family. Figure 2-2
shows the icon family, including thumbnail icons, for the Classic.app application
in Mac OS X.

44 Optimizing Your Code for Carbon
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 2

Preparing Your Code For Carbon

Figure 2-2 Thumbnail icons in a .icns file, displayed by Icon Browser

A thumbnail icon is 128x128 pixels with 32-bit depth. A thumbnail mask is 128x128
pixels with 8-bit depth (there is no one-bit mask for a thumbnail). Within an icon
family resource, you specify thumbnail elements with the following constants:

enum {
kThumbnail32BitData = 'it32',
kThumbnail8BitMask = 't8mk'

};

You can use these icon types only for an icon element within an 'icns' icon family,
not for an individual icon or icon mask resource.

C H A P T E R 2

Preparing Your Code For Carbon

Optimizing Your Code for Carbon 45
Preliminary  Apple Computer, Inc. 7/17/00

Your application may want to continue to provide small (16x16) and large (32x32)
icons as a complement to its thumbnail icons, especially if you need to preserve
certain fine details at smaller resolutions. Icon Services will pick the best available
icon for a particular size, so providing additional icons gives it more flexibility and
gives you more control.

As of this writing, some third-party resource editor applications support editing of
thumbnail icons, so you can investigate to determine which one best meets your
needs.

If you want to add a thumbnail icon or mask to an icon family yourself, you can do
so with the Icon Services function SetIconFamilyData.

pascal OSErr SetIconFamilyData (
IconFamilyHandle iconFamily,
OSType iconType,
Handle h)

iconFamily
A handle to an iconFamily data structure to be used as the
target.

iconType
A value of type OSType specifying the format of the icon
data you provide. For a thumbnail icon, for example, you specify
kThumbnail32BitData in this parameter. For a thumbnail mask, you
specify kThumbnail8BitMask.

h
A handle to the icon data you provide. For a thumbnail icon, the handle
contains raw image data in the form of 128x128, four bytes per pixel,
RGB data. For a thumbnail mask, the data is in the same format except
that it is one byte per pixel.

When you are finished constructing the icon family, you can write it to a file with
the WriteIconFile function. For more information on these functions, see the
document “Obtaining and Using Icons With Icon Services.”

Native Mac OS 9 vs. Mac OS X’s Classic Environment 47
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 3

3 Building Carbon Applications

This chapter describes how to use the tools and libraries provided with the
Mac OS X Beta Developer Tools CD to build Carbon applications for both Mac OS 9
and Mac OS X. You can also install the Carbon system extension, CarbonLib, to run
Carbon applications on Mac OS versions 8.1 and later.

Native Mac OS 9 vs. Mac OS X’s Classic Environment

If you plan to build, run, and debug Carbon applications for both Mac OS 9 and Mac
OS X on a single system, the Mac OS X application Classic.app (formerly known as
the “Blue Box”) provides a convenient environment for running your development
system. You can easily switch between the two environments, and launch Carbon
applications in either.

For performance reasons, however, you may prefer to develop on a native Mac OS
9 system (that is, a computer running Mac OS 9 instead of Mac OS X), as your
development tools are likely to run somewhat slower in the Classic environment.
In this case you’ll need to reboot to run Mac OS X and test your Carbon application
in that environment.

If you have two computers, you might want to run Mac OS 9 on one computer and
Mac OS X on the other.

48 Development Scenarios
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 3

Building Carbon Applications

You can connect the two computers using Ethernet, and transfer files between them
using FTP. However, doing so requires you to split the resource and data forks for
transmission. Instead, you can use the following simpler methods:

� Launch the Classic.app application on your Mac OS X machine and enable file
sharing. You can then mount the hard drive on your Mac OS 9 machine and
simply copy files using the Finder. Note that the Classic application does not
support TCP/IP, so you must use AppleTalk instead (AppleTalk must be
enabled on the Mac OS X machine as well, using the Setup Assistant or the
Network control panel). In addition, on systems prior to Developer Preview 4,
make sure your Classic environment is not using the same IP address as the
underlying Mac OS X system.

� Activate the Metrowerks remote debugger and select “Debug.” Doing so
transfers the file to Mac OS X and begins a debugging session. After transfer, you
can quit the debugging session, leaving the file ready for launch (or perhaps
GDB debugging).

Development Scenarios

There are a number of tools and processes you can use to build and debug Carbon
applications. This section describes three scenarios that Apple recommends, and the
advantages of each.

Using CodeWarrior to Build a CFM Carbon
Application
This is the most likely scenario if you’re porting an existing Mac OS 9 application to
Carbon, especially if you’re already using CodeWarrior. You’ll continue to use the
Mac OS development tools and processes you’re familiar with, and you’ll create
CFM applications that can run on both Mac OS 9 and Mac OS X. The only difference
is that you’ll include the CarbonLib stub library in your CodeWarrior project.

C H A P T E R 3

Building Carbon Applications

Building a CFM Carbon Application with CodeWarrior 49
Preliminary  Apple Computer, Inc. 7/17/00

Using CodeWarrior to Build a Mach-O Carbon
Application
Metrowerks has developed a cross-compiler that you can use to build Mach-O
applications with CodeWarrior on Mac OS 9. You may want to create a Mach-O
version of your application in order to debug it on Mac OS X using Project Builder.
However, if you have a second computer you may want to investigate whether
Metrowerks’ two-machine debugger better suits your needs, as it can debug CFM
applications on both platforms. Contact Metrowerks for information about these
products.

Using Project Builder to Build a Mach-O Carbon
Application
Project Builder is Apple’s integrated development environment for Mac OS X. It
offers a comprehensive feature set that includes source-level debugging. Project
Builder is a good choice if your application will run only on Mac OS X, and you
want to take advantage of features available only on that platform. However, you
can’t use Project Builder to build a CFM application, so if you want your program
to run on both platforms you’ll need to use CodeWarrior or other tools to create a
CFM version for Mac OS 9.

See the Project Builder online help documentation for more information about
creating Mach-O Carbon applications.

Building a CFM Carbon Application with CodeWarrior

If you plan to use Metrowerks CodeWarrior, we recommend CodeWarrior Pro
version 4.0 or later.

You can run CodeWarrior on either a native Mac OS 9 system or in the Classic
environment on Mac OS X. You must install CodeWarrior on a disk or partition that
uses the HFS Plus volume format (“Mac OS Extended”) if you plan to run
CodeWarrior in the Classic environment.

50 Building a CFM Carbon Application with CodeWarrior
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 3

Building Carbon Applications

Preparing Your Development Environment
Before you start Carbon development with CodeWarrior, you’ll need to install the
tools and libraries provided with the OS X Beta Developer Tools CD or the Carbon
SDK.

1. Copy the Carbon Support folder to the Metrowerks CodeWarrior folder on your
hard disk. The Carbon Support folder should reside in the same folder as the
CodeWarrior IDE application.

2. Copy the appropriate Carbon system extension (CarbonLib or
DebuggingCarbonLib) from the Carbon Support:CarbonLib folder to your
Extensions folder. You should keep only one Carbon extension in your
Extensions folder at any time.

� CarbonLib is the standard implementation of Carbon for Mac OS 8.1 or later.

� DebuggingCarbonLib is a debugging version of CarbonLib.

3. CarbonLib is included in all versions of Mac OS 9 as well as the Classic
environment on Mac OS X. However, to make sure you are using the latest
version, you should replace the default CarbonLib with the latest one available
(in this case version 1.1).

4. To avoid the potential for data loss in the event that you need to reinstall
Mac OS X, ensure that your CodeWarrior project files and source code reside on
a separate hard disk.

C H A P T E R 3

Building Carbon Applications

Running Your Application on Mac OS 9 51
Preliminary  Apple Computer, Inc. 7/17/00

Building Your Application
To build a Carbon version of your application, you’ll need to make the following
changes to your CodeWarrior project.

1. Add the following statement to one of your source files before including any of
the Carbon headers:

#define TARGET_API_MAC_CARBON 1

This conditional specifies that the included header files should allow only
Carbon-compatible APIs and data structures. You can include the conditional in
a prefix file if you wish.

2. Add the CarbonLib stub library to your project.

3. Ensure that your project is not linking to any libraries that are not Carbon
compatible. For example, the MPW ANSI C library is not Carbon compatible.
Note that you should not directly link to InterfaceLib when you are linking
with CarbonLib. On Classic Mac OS, CarbonLib will return an error to the Code
Fragment Manager if your application attempts to link to both CarbonLib and
InterfaceLib, causing the application launch to fail.

4. Ensure that your CodeWarrior access paths and other target settings are
correctly specified. See the sample code included with the Carbon SDK for
examples of how to do this.

Running Your Application on Mac OS 9

You can launch your application from the Finder on a Mac OS 9 system by
double-clicking. To run Carbon applications on Mac OS 8 (version 8.1 or later), you
must install the CarbonLib or DebugCarbonLib extension in the Extensions Folder.

Note: Moving a project from CodeWarrior Pro 4.0 to earlier CodeWarrior
versions will result in the loss of prefix file information in the C/C++ Language
Preferences panel. Many of the code samples on the OS X Beta Developer Tools
CD make use of a prefix file (usually CarbonPrefix.h) to define
TARGET_API_MAC_CARBON, so if you try to build a sample on an older CodeWarrior
system, you may need to reinstate the prefix file information.

52 Running Your Application on Mac OS X
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 3

Building Carbon Applications

Running Your Application on Mac OS X

As long as your application resides on an HFS + disk, you can launch it by
double-clicking its icon. You cannot launch applications from a standard HFS
format disk on Mac OS X.

You can also use the command-line tool “LaunchCFMApp” to launch CFM
applications from a terminal window in Mac OS X. If the CFM application is in the
current working directory, the command is:

/Developer/Tools/LaunchCFMApp filename

If the application is in a different directory, you must specify the path.

Note that if your application does not contain a 'carb' resource, Mac OS X opens
the application in the Classic Compatibility Environment. To ensure that your
application opens in the Mac OS X environment, your application must include a
resource of type 'carb' with ID 0.

Building a Mach-O Carbon Application with
CodeWarrior

Before building a Mach-O version of your application with CodeWarrior, you
should follow the instructions in the previous section for building a CFM Carbon
application. After you’ve successfully built and tested a CFM version of your
application on Mac OS 9, you can use CodeWarrior to build a Mach-O version for
debugging on Mac OS X.

C H A P T E R 3

Building Carbon Applications

Building a Mach-O Carbon Application with Project Builder 53
Preliminary  Apple Computer, Inc. 7/17/00

Preparing Your Development Environment
To build a Mach-O application with CodeWarrior, you’ll need to install the Mach-O
cross-compiler tools available from Metrowerks.

Building Your Application
Refer to your Metrowerks CodeWarrior documentation for instructions on using
the Mach-O cross-compiler.

Running Your Application on Mac OS X
CodeWarrior creates an executable Mach-O binary that includes a resource fork. As
long as this file resides on an HFS+ disk, the resource fork remains intact and you
can launch the application by double-clicking its icon.

Building a Mach-O Carbon Application with Project
Builder

Project Builder is included on the OS X Beta Developer Tools CD. Instructions for
building Mach-O Carbon applications are available in Project Builder’s online help
documentation.

Debugging Your Application

You can debug Carbon applications on Mac OS 9 using the Metrowerks debugger.
You can also use this debugger with two networked machines, one running Mac OS
9 and the other running Mac OS X. Contact Metrowerks for more information.

54 Debugging Your Application
Preliminary  Apple Computer, Inc. 7/17/00

C H A P T E R 3

Building Carbon Applications

You can also debug Carbon applications on Mac OS X using GDB, which you can
run from a terminal window. Although GDB cannot directly debug a CFM
application at this time, there is a workaround that lets you perform low-level
debugging on a CFM application. You’ll use GDB to debug LaunchCFMApp, a
Mach-O program that launches CFM applications.

This workaround has these features and limitations:

� You can set breakpoints at Mach-O functions. Since the Carbon library is
Mach-O code, you can set breakpoints at Carbon functions. However, you
cannot set breakpoints at CFM functions, including those in your application.

� You can examine the memory contents at any address with the x command.
However, you cannot view variables or expressions, since GDB cannot use the
symbol names in a CFM application.

� You cannot step through your application’s code.

To debug your CFM application:

1. Launch the Terminal application: /Applications/Utilities/Terminal.app.

2. Enter gdb /Developer/Tools/LaunchCFMApp.

GDB loads the LaunchCFMApp program.

3. If you want, set breakpoints at any Carbon function with the br command.

For example, you may want to set a breakpoint at the DebugStr function, because
DebugStr prints its argument without stopping the program’s execution. Enter
br DebugStr at the GDB prompt.

4. At the GDB prompt, enter r <app-pathname>, where <app-pathname> is the full
pathname for your CFM application.

To enter the application’s pathname, drag the application’s icon to the Terminal
window.

LaunchCFMApp launches your application.

To pause your application’s execution at any time, press Control-C in the Terminal
application. To continue your application, enter cont. For more information on
GDB, enter help.

C H A P T E R 3

Building Carbon Applications

Debugging Your Application 55
Preliminary  Apple Computer, Inc. 7/17/00

Here are some additional hints that you might find useful:

� From the terminal window, entering setenv CFMDebugFull 1 directs
LaunchCFMApp to display debugging information at application launch time.

� Entering setenv USERBREAK 1 enables GDB to catch C++ exceptions.

� You can set the environment variable DYLD_IMAGE_SUFFIX to specify an optional
suffix to add to Mach-O libraries when they are loaded. For example, entering
setenv DYLD_IMAGE_SUFFIX _debug provides an easy way to link to the debug
versions of the various frameworks. You can easily toggle between the normal
and debug versions of these libraries without having to rebuild your application
each time. The debug versions often perform more assertions, parameter checks,
and so on, which may simplify debugging.

� You can call functions in Mach-O libraries directly from the GDB command line,
as long as they were explicitly or implicitly loaded. For example, you could call
the CFShow function, which shows the contents of various Core Foundation and
Cocoa objects. Because the Carbon Framework is built as Mach-O binaries, you
can call Carbon functions from GDB, even those not directly called by your
application.

� The remote debugger nub has some command line options which you can view
by entering /usr/libexec/gdb/DebugNub -help

� If you want to examine parameter values for CFM applications in GDB, you can
do so by examining register values. For example, given a function

void loofah (int x, int y, int z);

then print $r3 from the GDB command line obtains the value of x (passed in
GPR3). Remember that the usual calling conventions apply in determining
which parameters are passed in which registers.

Custom Definition Procedures 57
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

A New Carbon Functions

This section provides an overview of some of the new functions introduced in
Carbon. Until complete documentation is available, you should refer to the header
files and sample code included on the Mac OS X Beta Developer Tools CD for
additional information.

Custom Definition Procedures

Custom defprocs (that is, WDEFs, MDEFs, CDEFs, and LDEFs) must be compiled
as PowerPC code and can no longer be stored in resources. Carbon introduces new
variants of CreateWindow and similar calls (such as NewControl and NewMenu) that take
a universal procedure pointer (UPP) to your custom defproc. Instead of creating a
window definition as a WDEF resource, for example, you call the Carbon routine
CreateCustomWindow:

OSStatus CreateCustomWindow(const WindowDefSpec *def,
WindowClass windowClass, WindowAttributes attributes,
const Rect *bounds, WindowPtr *outWindow);

The WindowDefSpec parameter contains a UPP that points to your custom window
definition procedure.

58 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures

A major change introduced in Carbon is that some commonly used data structures
are now opaque—meaning their internal structure is hidden. Directly referencing
fields within these structures is no longer allowed, and will cause a compiler error.
QuickDraw globals, graphics ports, regions, window and dialog records, controls,
menus, and TSMTE dialogs are all opaque to Carbon applications. Anywhere you
reference fields in these structures directly, you must use new casting and accessor
functions described in the following sections.

Casting Functions
Many applications assume that WindowPtr and DialogPtr types have a GrafPort
embedded at the top of their structures. In fact, the current Universal Interfaces
define DialogPtrs and WindowPtrs as GrafPtrs so that you don’t have to cast them
to a GrafPtr before using them. For example:

void DrawIntoWindow(WindowPtr window)
{

SetPort(window);
MoveTo(x, y);
LineTo(x + 50, y + 50);

}

If you compile the above code using the Carbon interfaces, you’ll get a number of
compilation errors due to the fact that WindowPtrs are no longer defined as
GrafPtrs. But you can’t simply cast these variables to GrafPtrs because it will cause
your application to crash under Mac OS X.

Instead, Carbon provides a set of casting functions that allow you to obtain a pointer
to a window’s GrafPort or vice versa. Using these new functions, code like the
previous example must be updated as follows to be Carbon-compliant and compile
without errors:

void DrawIntoWindow(WindowPtr window)
{

SetPort(GetWindowPort(window));

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures 59
Preliminary  Apple Computer, Inc. 7/17/00

MoveTo(x, y);
LineTo(x + 50, y + 50);

}

Casting functions are provided for obtaining GrafPorts from windows, windows
from dialogs, and various other combinations. By convention, functions that cast up
(that is, going from a lower-level data structure like a GrafPort to a window or going
from a window to a dialog pointer) are named
GetHigherLevelTypeFromLowerLevelType. Functions that cast down are named
GetHigherLevelTypeLowerLevelType.

Examples of functions that cast up include:

pascal DialogPtr GetDialogFromWindow(WindowPtr window);
pascal WindowPtr GetWindowFromPort(CGrafPtr port);

Functions that cast down include:

pascal WindowPtr GetDialogWindow(DialogPtr dialog);
pascal CGrafPtr GetWindowPort(WindowPtr window);

Accessor functions
Carbon includes a number of functions to allow applications to access fields within
system data structures that are now opaque. Listing A-1 shows an example of some
typical coding practices that must be modified for Carbon.

Listing A-1 Example of unsupported data structure access

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)
{

if ((WindowPeek) currentWindow->visible)
&& RectIsFourByFour(¤tWindow->portRect))

{
DoSomethingSpecial(currentWindow);

}

60 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

currentWindow = (WindowPtr) ((WindowPeek)
currentWindow->nextWindow);

}
}

There are four problems in Listing A-1 that will cause compiler errors when
building a Carbon application.

1. Checking the visible field directly is not allowed because the WindowPeek type
is no longer defined (it’s only useful when you can assume that a WindowPtr
can be cast to a WindowRecord pointer, which is not the case in Carbon).

2. The currentWindow variable is treated as a GrafPort. You need to use the casting
functions discussed above to access a window’s GrafPort.

3. GrafPorts are now opaque data structures, so you must use an accessor to get the
port’s bounding rectangle.

4. Accessing the nextWindow field directly from the WindowRecord is not allowed.

To compile and run under Carbon, the code above would have to be changed as
shown in Listing A-2.

Listing A-2 Example using Carbon-compatible accessor functions

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)
{

Rect windowBounds;

if (IsWindowVisible(currentWindow)
&&

RectIsFourByFour(GetPortBounds(GetWindowPort(currentWindow),
&windowBounds))

{
DoSomethingSpecial(currentWindow);

}

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures 61
Preliminary  Apple Computer, Inc. 7/17/00

currentWindow = GetNextWindow(currentWindow);
}

}

One thing to note is that the GetPortBounds function returns a pointer to the input
rectangle as a syntactic convenience, to allow you to pass the result of GetPortBounds
directly to another function. Many of the accessor functions return a pointer to the
input in the same way, as a convenience to the caller.

With a few exceptions as noted below, all accessor functions return copies to data,
not the data itself. You must make sure to allocate storage before you access
non-scalar types such as regions and pixel patterns. For example, if you use code
like this to test the visible region of a graphics port:

if (EmptyRgn(somePort->visRgn))
DoSomething();

you’ll have to change it as shown below in order to allow the accessor to copy the
port’s visible region into your reference:

RgnHandle visibleRegion;

visibleRegion = NewRgn();
if (EmptyRgn(GetPortVisibleRegion(somePort, visibleRegion)))

DoSomething();
DisposeRgn(visibleRegion);

A few accessor functions continue to return actual data rather than copied data.
GetPortPixMap, for example, is provided specifically to allow calls to CopyBits,
CopyMask, and similar functions, and should only be used for these calls. The
interface for the CopyBits-type calls will be changing to work around this exception,
but for now be aware that this exception exists. The QuickDraw bottleneck routines,
which are stored in a GrafProc record, continue to operate just like their classic Mac
OS equivalents. That is, the actual pointer to the structure is returned rather than
creating a copy. Other instances where the actual handle is passed back include
cases where user-specified data is carried in a data structure, such as UserHandles
in ListHandles.

62 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

Table A-1 lists common accessor functions for Human Interface Toolbox structures.

Table A-1 Summary of Carbon Human Interface Toolbox Accessors

Data Structure Element Accessor

Controls

ControlRecord nextControl Use Control Manager embedding hierarchy functions.
(See Mac OS 8 Control Manager Reference.)

contrlOwner Get/SetControlOwner. May be replaced in favor of
Embed/DetachControl.

contrlRect Get/SetControlBounds

contrlVis IsControlVisible, SetControlVisibility

contrlHilite GetControlHilite, HiliteControl

contrlValue Get/SetControlValue, Get/SetControl32BitValue

contrlMin Get/SetControlMinimum, Get/SetControl32BitMinimum

contrlMax Get/SetControlMaximum, Get/SetControl32BitMaximum

contrlDefProc not supported

contrlData Get/SetControlDataHandle

contrlAction Get/SetControlAction

contrlRfCon Get/SetControlReference

contrlTitle Get/SetControlTitle

AuxCtlRec acNext not supported

acOwner not supported

acCTable not supported

acFlags not supported

acReserved not supported

acRefCon Use Get/SetControlProperty if you need more
refCons.

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures 63
Preliminary  Apple Computer, Inc. 7/17/00

PopupPrivateData mHandle Use Get/SetControlData with proper tags.

mID Use Get/SetControlData with proper tags.

Dialog Boxes

DialogRecord window Use GetDialogWindow to obtain the value. There is no
equivalent function for setting the value.

items AppendDITL, ShortenDITL, AppendDialogItemList,
InsertDialogItem, RemoveDialogItems

textH GetDialogTextEditHandle

editField GetDialogKeyboardFocusItem

editOpen Get/SetDialogCancelItem

aDefItem Get/SetDialogDefaultItem

Menus

MenuInfo menuID Get/SetMenuID

menuWidth Get/SetMenuWidth

menuHeight Get/SetMenuHeight

menuProc SetMenuDefinition

enableFlags Enable/DisableMenuItem, IsMenuItemEnabled

menuData Get/SetMenuTitle

Table A-1 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor

64 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

Windows

WindowRecord
CWindowRecord

port Use GetWindowPort to obtain the value. There is no
equivalent function for setting the value.

windowKind Get/SetWindowKind

visible Hide/ShowWindow, ShowHide, IsWindowVisible

hilited HiliteWindow, IsWindowHilited

goAwayFlag ChangeWindowAttributes

spareFlag ChangeWindowAttributes

strucRgn GetWindowRegion

contRgn GetWindowRegion

updateRgn GetWindowRegion

windowDefProc not supported

dataHandle not supported

titleHandle Get/SetWTitle

titleWidth GetWindowRegion

controlList GetRootControl

nextWindow GetNextWindow

windowPic Get/SetWindowPic

refCon Get/SetWRefCon

Table A-1 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures 65
Preliminary  Apple Computer, Inc. 7/17/00

AuxWinRec awNext not supported

awOwner not supported

awCTable Get/SetWindowContentColor

reserved not supported

awFlags not supported

awReserved not supported

awRefCon Use Get/SetWindowProperty if you need more refCons.

Lists

ListRec rView Get/SetListViewBounds

port Get/SetListPort

indent Get/SetListCellIndent

cellSize Get/SetListCellSize

visible Use GetListVisibileCells to obtain the value.
No equivalent function for setting the value.

vScroll GetListVerticalScrollBar, use new API (TBD) to turn
off automatic scroll bar drawing.

hScroll GetListHorizontalScrollBar, use new API (TBD) to
turn off automatic scroll bar drawing.

selFlags Get/SetListSelectionFlags

lActive LActivate, GetListActive

lReserved not supported

listFlags Get/SetListFlags

clikTime Get/SetListClickTime

clikLoc GetListClickLocation

mouseLoc GetListMouseLocation

lClickLoop Get/SetListClickLoop

Table A-1 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor

66 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

Table A-2 provides a summary of accessor functions you can use to access common
QuickDraw data structures.

lastClick SetListLastClick

refCon Get/SetListRefCon

listDefProc not supported

userHandle Get/SetListUserHandle

dataBounds GetListDataBounds

cells LGet/SetCell

maxIndex LGet/SetCell

cellArray LGet/SetCell

Table A-2 QuickDraw Accessor functions

Data Structure Element Accessor

GrafPort device not supported
portBits Use GetPortBitMapsForCopyBits or IsPortColor.
portRect Get/SetPortBounds

visRgn Get/SetPortVisibleRegion

clipRgn Get/SetPortClipRgn

bkPat not supported
fillPat not supported
pnLoc Get/SetPortPenLocation

pnSize Get/SetPortPenSize

pnMode Get/SetPortPenMode

pnPat not supported
pnVis Use GetPortPenVisibility or Show/HidePen.
txFont Use GetPortTextFont or TextFont.
txFace Use GetPortTextFace or TextFace.

Table A-1 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions For Accessing Opaque Data Structures 67
Preliminary  Apple Computer, Inc. 7/17/00

txMode Use GetPortTextMode or TextMode.
txSize Use GetPortTextSize or TextSize.
spExtra Use GetPortSpExtra or SpaceExtra.
fgColor not supported
bkColor not supported
colrBit not supported
patStretch not supported
picSave IsPortPictureBeingDefined

rgnSave not supported
polySave not supported
grafProcs not supported

CGrafPort device not supported
portPixMap GetPortPixMap

portVersion IsPortColor

grafVars not supported
chExtra GetPortChExtra

pnLocHFrac Get/SetPortFracHPenLocation

portRect Get/SetPortBounds

visRgn Get/SetPortVisibleRegion

clipRgn Get/SetPortClipRegion

bkPixPat Use GetPortBackPixPat or BackPixPat.
rgbFgColor Use GetPortForeColor or RGBForeColor.
rgbBkColor Use GetPortBackColor or RGBBackColor.
pnLoc Get/SetPortPenLocation

pnSize Get/SetPortPenSize

pnMode Get/SetPortPenMode

Table A-2 QuickDraw Accessor functions (continued)

Data Structure Element Accessor

68 Functions For Accessing Opaque Data Structures
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

pnPixPat Get/SetPortPenPixPat

fillPixPat Get/SetPortFillPixPat

pnVis Use GetPortPenVisibility or Show/HidePen.
txFont Use GetPortTextFont or TextFont.
txFace Use GetPortTextFace or TextFace.
txMode Use GetPortTextMode or TextMode.
txSize Use GetPortTextSize or TextSize.
spExtra Use GetPortSpExtra or SpaceExtra.
fgColor not supported
bkColor not supported
colrBit not supported
patStretch not supported
picSave IsPortPictureBeingDefined

rgnSave not supported
polySave not supported
grafProcs Get/SetPortGrafProcs

QDGlobals randSeed GetQDGlobalsRandomSeed

screenBits GetQDGlobalsScreenBits

arrow GetQDGlobalsArrow

dkGray GetQDGlobalsDarkGray

ltGray GetQDGlobalsLightGray

gray GetQDGlobalsGray

black GetQDGlobalsBlack

white GetQDGlobalsWhite

GrafPtr thePort GetQDGlobalsThePort

Table A-2 QuickDraw Accessor functions (continued)

Data Structure Element Accessor

A P P E N D I X A

New Carbon Functions

Functions in CarbonAccessors.o 69
Preliminary  Apple Computer, Inc. 7/17/00

Utility functions
Carbon includes a number of utility functions to make it easier to port your
application. Under the classic Mac OS API, new GrafPorts were created by
allocating non-relocatable memory the size of a CGrafPort and calling OpenCPort.
Because GrafPorts are now opaque, and their size is system-defined, Carbon
includes new routines to create and dispose of graphics ports:

pascal CGrafPtr CreateNewPort()
pascal void DisposePort(CGrafPtr port)

These functions provide access to commonly used bounding rectangles:

pascal OSStatus GetWindowBounds(WindowRef window,
WindowRegionCode regionCode, Rect *bounds);

pascal OSStatus GetWindowRegion(WindowRef window,
WindowRegionCode regionCode, RgnHandle windowRegion);

Often you’ll find the need to set the current port to the one that belongs to a window
or dialog box. SetPortWindowPort and SetPortDialogPort allow you to do this:

pascal void SetPortWindowPort(WindowPtr window)
pascal void SetPortDialogPort(DialogPtr dialog)

The new function GetParamText replaces LMGetDAStrings as the method to retrieve
the current ParamText setting. Pass NULL for a parameter if you don’t want a
particular string.

pascal void GetParamText(StringPtr param0, StringPtr param1,
 StringPtr param2, StringPtr param3)

Functions in CarbonAccessors.o

CarbonAccessors.o is a static library that contains implementations of the Carbon
functions for accessing opaque toolbox data structures. See “Begin With
CarbonAccessors.o” (page 24) for information on how you can use this library to
assist in porting your code to Carbon.

70 Functions in CarbonAccessors.o
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

Important
Apple does not support the use of CarbonAccessors.o as
anything other than a porting tool. To build a Carbon
application you must link against CarbonLib

Table A-3 lists the Carbon functions implemented in CarbonAccessors.o. An “•”
indicates a function added since the Developer Preview 3 version of this document.
“••” indicates a function added since Developer Preview 4.

Table A-3 Functions in CarbonAccessors.o

AEFlattenDesc•• AEGetDescData

AEGetDescDataSize AEReplaceDescData•
AESizeOfFlattenedDesc•• AEUnflattenDesc••
c2pstrcpy• CallMenuBar••
CopyCStringToPascal• CopyPascalStringToC•
CreateNewPort DisposePort

FindTSMTEDDialog• GetControlBounds

GetControlDataHandle GetControlHilite

GetControlOwner GetControlPopupMenuHandle

GetControlPopupMenuID GetCorrectPort•
GetDialogCancelItem GetDialogDefaultItem

GetDialogFromWindow GetDialogKeyboardFocusItem

GetDialogPort GetDialogTextEditHandle

GetDialogWindow GetGlobalMouse

GetKCHRDeadKeyState• GetKCHRDeadKeyStatePtr••
GetUCHRDeadKeyState• GetListActive

GetListCellIndent GetListCellSize

GetListClickLocation GetListClickLoop

GetListClickTime GetListDataBounds

GetListDataHandle GetListDefinition

GetListFlags GetListHorizontalScrollBar

GetListMouseLocation GetListPort

GetListRefCon GetListSelectionFlags

GetListUserHandle GetListVerticalScrollBar

A P P E N D I X A

New Carbon Functions

Functions in CarbonAccessors.o 71
Preliminary  Apple Computer, Inc. 7/17/00

GetListViewBounds GetListVisibleCells

GetMenuHeight GetMenuID

GetMenuTitle GetMenuWidth

GetNextWindow• GetParamText

GetPixBounds GetPixDepth

GetPortBackColor GetPortBackPixPat

GetPortBackPixPatDirect GetPortBitMapForCopyBits •
GetPortBounds GetPortChExtra

GetPortClipRegion GetPortFillPixPat

GetPortForeColor GetPortFracHPenLocation

GetPortGrafProcs GetPortHiliteColor

GetPortOpColor GetPortPenLocation

GetPortPenMode GetPortPenPixPat

GetPortPenPixPatDirect GetPortPenSize

GetPortPenVisibility GetPortPixMap

GetPortPrintingReference GetPortSpExtra

GetPortTextFace GetPortTextFont

GetPortTextMode GetPortTextSize

GetPortVisibleRegion GetQDGlobals

GetQDGlobalsArrow GetQDGlobalsBlack

GetQDGlobalsDarkGray GetQDGlobalsGray

GetQDGlobalsLightGray GetQDGlobalsRandomSeed

GetQDGlobalsScreenBits GetQDGlobalsThePort

GetQDGlobalsWhite GetRegionBounds

GetTSMDialogDocumentID GetTSMTEDialogListStorage•
GetTSMTEDialogTSMTERecHandle• GetWindowFromPort

GetWindowList• GetWindowPort

GetWindowPortBounds GetWindowSpareFlag

GetWindowStandardState GetWindowUserState

GrabSpecifiedCFMSymbol• GrowPortGrafVars•
InvalWindowRect InvalWindowRgn

Table A-3 Functions in CarbonAccessors.o (continued)

72 Functions in CarbonAccessors.o
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

IsControlHilited IsCurrentTSMDocumentUnicode••
IsKCHRAvailable• IsPortColor•
IsPortOffscreen IsPortPictureBeingDefined

IsPortRegionBeingDefined IsRegionRectangular

IsTSMTEDialog• IsUCHRAvailable••
IsWindowHilited IsWindowUpdatePending

IsWindowVisible NeedKCHRState••
p2cstrcpy• SetControlBounds

SetControlDataHandle SetControlOwner

SetControlPopupMenuHandle SetControlPopupMenuID

SetKCHRDeadKeyState• SetUCHRDeadKeyState•
SetListCellIndent SetListClickLoop

SetListClickTime SetListFlags

SetListLastClick SetListPort

SetListRefCon SetListSelectionFlags

SetListUserHandle SetListViewBounds

SetMenuHeight SetMenuID

SetMenuTitle SetMenuWidth

SetPortBackPixPat SetPortBackPixPatDirect

SetPortBounds SetPortClipRegion

SetPortDialogPort SetPortFracHPenLocation

SetPortGrafProcs SetPortOpColor

SetPortPenMode SetPortPenPixPat

SetPortPenPixPatDirect SetPortPenSize

SetPortPrintingReference SetPortVisibleRegion

SetPortWindowPort SetQError•
SetQDGlobalsArrow SetQDGlobalsRandomSeed

SetTSMDialogDocumentID SetTSMTEDialogTSMTERecHandle•
SetWindowStandardState SetWindowUserState

TSMDialogIsValid• TSMGetDeadKeyState•
TSMSetDeadKeyState•

Table A-3 Functions in CarbonAccessors.o (continued)

A P P E N D I X A

New Carbon Functions

Debugging Functions 73
Preliminary  Apple Computer, Inc. 7/17/00

The following functions were removed from CarbonAccessors.o.

Debugging Functions

The following functions have been added to MacMemory.h to aid in debugging.

CheckAllHeaps
pascal Boolean CheckAllHeaps(void);

Checks all applicable heaps for validity. Returns false if there is any corruption.

IsHeapValid
pascal Boolean IsHeapValid(void);

Similar to CheckAllHeaps, but checks only the application heap for validity.

Table A-4 Functions removed from CarbonAccessors.o

DisableMenuItem EnableMenuItem

GetControlColorTable GetControlDefinition

GetKeys GetTSMDialogPtr

GetTSMDialogTextEditHandle GetWindowGoAwayFlag

GetWindowKind GetWindowSpareFlag

InvalWindowRect InvalWindowRgn

SetControlColorTable SetControlOwner

SetWindowKind SetKCHRDeadKeyStatePtr

ValidWindowRect ValidWindowRgn

74 Resource Chain Manipulation Functions
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X A

New Carbon Functions

IsHandleValid
pascal Boolean IsHandleValid(Handle h);

Returns true if the specified handle is valid. It is invalid to pass NULL or an empty
handle to IsHandleValid.

IsPointerValid
pascal Boolean IsPointerValid(Ptr p);

Returns true if the specified pointer is valid. It is invalid to pass NULL or an empty
pointer to IsPointerValid.

Resource Chain Manipulation Functions

Three functions have been added to Resources.h to facilitate resource chain
manipulation in Carbon applications.

InsertResourceFile
OSErr InsertResourceFile(SInt16 refNum, RsrcChainLocation where);

If the file is already in the resource chain, it is removed and re-inserted at the
location specified by the where parameter. If the file has been detached, it is added
to the resource chain at the specified location. Returns resFNotFound if the file is not
currently open. Valid constants for the where parameter are:

// RsrcChainLocation constants for InsertResourceFile
enum short
{

kRsrcChainBelowAll = 0, /* Below all other app files in
the resource chain */

kRsrcChainBelowApplicationMap = 1, /* Below the application's
resource map */

A P P E N D I X A

New Carbon Functions

Resource Chain Manipulation Functions 75
Preliminary  Apple Computer, Inc. 7/17/00

kRsrcChainAboveApplicationMap = 2 /* Above the application's
resource map */

};

DetachResourceFile
OSErr DetachResourceFile(SInt16 refNum);

If the file is not currently in the resource chain, this function returns resNotFound.
Otherwise, the resource file is removed from the resource chain.

FSpResourceFileAlreadyOpen
Boolean FSpResourceFileAlreadyOpen
(const FSSpec *resourceFile,
 Boolean *inChain, SInt16 *refNum);

This function returns true if the resource file is already open and known by the
Resource Manager (that is, if the file is either in the current resource chain or if it’s
a detached resource file). If the file is in the resource chain, the inChain parameter is
set to true on exit and the function returns true. If the file is open but currently
detached, inChain is set to false and the function returns true. If the file is open, the
refNum to the file is returned.

77
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X B

B Document Version History

This appendix lists changes to the Carbon Porting Guide:

Table B-1 Carbon Porting Guide revision history

Version Notes

Public Beta Major reorganization of material.

“Introduction” (page 9) rewritten to reflect the current state of Carbon.

Porting guidelines reorganized into sections: “Essential Steps for
Carbonizing Your Application” (page 22), “Additional Porting Issues”
(page 30), and “Optimizing Your Code for Carbon” (page 39).

Some existing porting sections were renamed to better integrate wth the
new sections.

New porting guideline sections added: “Use the Carbon SDK” (page 23),
“Target Mac OS 8 and 9 First” (page 23), “Use DebuggingCarbonLib”
(page 28), “Adopt Required Carbon Technologies” (page 28), “Update
Modified or Obsolete Functions” (page 28), “Determine the Appropriate
CarbonLib Version” (page 30), “Examine Your Plug-Ins” (page 32), “Adopt
HFS+ APIs” (page 41), “Consider Mach-O Executables” (page 42), “Adopt a
Terse Name for the Application Menu” (page 43).

Softened requirements fot the contents of a carb'0' resource in “Add a
'carb' 0 Resource” (page 29). The resource can contain arbitrary data.

Comparision of CFM versus Mach-O object file formats moved to the
porting guidelines chapter under “Consider Mach-O Executables”
(page 42).

78
Preliminary  Apple Computer, Inc. 7/17/00

A P P E N D I X B

Document Version History

“Linking to Non-Carbon-Compliant Code” (page 33) moved to porting
guidelines chapter.

Directory paths in Mac OS X have changed:

Path /System/Developer/Tools/LaunchCFMApp is now /Developer/Tools/
LaunchCFMApp.

Path System/Administration/Terminal.app is now /Applications/
Utilities/Terminal.app.

Function descriptions and other reference-like material moved to the
Appendix: “Custom Definition Procedures” (page 57), “Functions For
Accessing Opaque Data Structures” (page 58), “Functions in
CarbonAccessors.o” (page 69), “Debugging Functions” (page 73), and
“Resource Chain Manipulation Functions” (page 74).

Revised contents of CarbonAccessors.o in Table A-3 (page 70) and Table A-4
(page 73).

Developer
Preview 4

Updated software and header versions to reflect the latest available (for
example, CarbonLib 1.1 and Universal Interfaces 3.4d2).

Added new section, “The Carbon Specification” (page 22).

Added new sections describing preparations for Carbon conversion:“Don’t
Pass Pointers Across Processes” (page 32)“Avoid Polling and Busy Waiting”
(page 40)“Use Casting Functions to Convert DialogPtrs and WindowPtrs”
(page 28)“Use “Lazy” Initializations for Shared Libraries” (page 41)“Check
Your OpenGL Code” (page 32)“Begin Transitioning to the Aqua Interface”
(page 42)“Provide Thumbnail Icons for Your Application” (page 43)

Added information about avoiding preallocation and suballocators in
“Manage Memory Efficiently” (page 39).

Created new section, “Window Manager Issues” (page 34), to cover
Window Manager porting issues in detail.

In Table A-1 (page 62), added SetMenuDefinition as the accessor function
for the MenuProc element in a MenuInfo structure.

Added Table A-2 (page 66) listing QuickDraw accessor functions.

Table B-1 Carbon Porting Guide revision history (continued)

Version Notes

A P P E N D I X B

Document Version History

79
Preliminary  Apple Computer, Inc. 7/17/00

Added information about transferring files between Mac OS 9 and Mac OS
X computers in “Native Mac OS 9 vs. Mac OS X’s Classic Environment”
(page 47).

Revised contents of CarbonAccessors.o in Table A-3 (page 70)..

Added list of functions removed from CarbonAccessors.o in Table A-4
(page 73).

Emphasized that you cannot link with InterfaceLib if you link to CarbonLib
in “Using CodeWarrior to Build a CFM Carbon Application” (page 48)

Created new section, “Linking to Non-Carbon-Compliant Code” (page 33).

Revised “Debugging Your Application” (page 53) to include specific
information about debugging Carbon applications using GDB.

Added this document revision history.

Table B-1 Carbon Porting Guide revision history (continued)

Version Notes

	Carbon Porting Guide
	Contents
	Introduction
	What is Carbon?
	What are the Benefits of Carbon?
	What is in Carbon Today?
	What’s Not in Carbon?
	How Does Carbon Work?
	Carbon and the Mac OS Application Model
	Preemptive Scheduling and Application Threading
	Separate Application Address Spaces
	Virtual Memory
	Resources
	Code Fragments and the Code Fragment Manager
	Mixed Mode Manager
	Printing
	Control Panels
	The Trap Table
	Standard and Custom Definition Procedures
	Application-Defined Functions
	Data Structure Access

	Additional Information and Feedback

	Preparing Your Code For Carbon
	Using Carbon Dater
	Analyzing Your Application
	Reading the Report
	Analysis of Imports
	Analysis of Access to Low Memory Addresses
	Analysis of Resources Loaded into the System Heap

	Additional Reports
	The Carbon Specification

	Essential Steps for Carbonizing Your Application
	Begin With the Current Universal Interfaces
	Make Sure All Your Code is PowerPC-Native
	Use the Carbon SDK
	Target Mac OS 8 and 9 First
	Begin With CarbonAccessors.o
	Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions
	Remove Direct Access to Low-Memory Globals
	Use Casting Functions to Convert DialogPtrs and WindowPtrs
	Use DebuggingCarbonLib
	Update Modified or Obsolete Functions
	Adopt Required Carbon Technologies
	Add a 'carb' 0 Resource
	Conditionalize “Quit” Menu Items

	Additional Porting Issues
	Determine the Appropriate CarbonLib Version
	Draw Only Within Your Own Windows
	Do Not Patch Traps
	Don’t Pass Pointers Across Processes
	Check Your OpenGL Code
	Examine Your Plug-Ins
	Linking to Non-Carbon-Compliant Code
	Window Manager Issues
	Drawing into Windows without QuickDraw
	Bypassing the Window Manager Port
	Window Dragging and Resizing Q&A

	Optimizing Your Code for Carbon
	Manage Memory Efficiently
	Avoid Polling and Busy Waiting
	Use “Lazy” Initializations for Shared Libraries
	Adopt HFS+ APIs
	Consider Mach-O Executables
	Begin Transitioning to the Aqua Interface
	Adopt a Terse Name for the Application Menu
	Provide Thumbnail Icons for Your Application

	Building Carbon Applications
	Native Mac OS 9 vs. Mac OS X’s Classic Environment
	Development Scenarios
	Using CodeWarrior to Build a CFM Carbon Application
	Using CodeWarrior to Build a Mach-O Carbon Application
	Using Project Builder to Build a Mach-O Carbon Application

	Building a CFM Carbon Application with CodeWarrior
	Preparing Your Development Environment
	Building Your Application

	Running Your Application on Mac OS 9
	Running Your Application on Mac OS X
	Building a Mach-O Carbon Application with CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS X

	Building a Mach-O Carbon Application with Project Builder
	Debugging Your Application

	New Carbon Functions
	Custom Definition Procedures
	Functions For Accessing Opaque Data Structures
	Casting Functions
	Accessor functions
	Utility functions

	Functions in CarbonAccessors.o
	Debugging Functions
	CheckAllHeaps
	IsHeapValid
	IsHandleValid
	IsPointerValid

	Resource Chain Manipulation Functions
	InsertResourceFile
	DetachResourceFile
	FSpResourceFileAlreadyOpen

	Document Version History

