

Preliminary

5/17/00



Implementing Security
Features Using Keychain

For Keychain 2.0



Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

Preliminary



Apple Computer, Inc. 5/17/00

Contents

Chapter 1

Introduction

9

Chapter 2

Keychain Manager Concepts

11

Keychain Manager Implementation 11
Accessing the Keychain 12
Keychain Items 13
Using Multiple Keychains 14
Searching Keychains 14
Interacting With the Keychain Access Application 15

Chapter 3

Keychain Manager Tasks

23

Determining Keychain Manager Availability and Version Information 24
Creating a Keychain Reference 24
Creating a New Keychain 25
Locking and Unlocking a Keychain 25
Setting and Obtaining the Default Keychain 26
Setting and Retrieving Keychain Information 26
Searching Keychains 27
Storing and Retrieving Keychain Items 27
Creating Keychain Item References 29
Setting and Obtaining Keychain Item Attribute Data 29
Manipulating Keychain Items 30
Searching for Keychain Items 31
Working With Certificates 31
Managing User Interaction 32
Responding to Keychain Events 32

4

Preliminary



Apple Computer, Inc. 5/17/00

C O N T E N T S

Chapter 4

Keychain Manager Reference

35

Keychain Manager Functions 35
Determining Availability and Version Information 36

KeychainManagerAvailable 36
KCGetKeychainManagerVersion 36

Creating a Keychain Reference 37
KCMakeKCRefFromFSSpec 37
KCMakeKCRefFromAlias 38
KCMakeAliasFromKCRef 38
KCReleaseKeychain 39

Creating a New Keychain 39
KCCreateKeychain 39

Setting and Obtaining the Default Keychain 41
KCSetDefaultKeychain 41
KCGetDefaultKeychain 41

Setting and Obtaining Keychain Information 42
KCChangeSettings 42
KCGetStatus 43
KCGetKeychainName 43

Locking and Unlocking Keychains 44
KCUnlock 44
KCLock 45

Searching for Keychains 46
KCCountKeychains 46
KCGetIndKeychain 46

Storing and Retrieving Passwords 47
KCAddAppleSharePassword 48
KCFindAppleSharePassword 49
KCAddInternetPassword 52
KCAddInternetPasswordWithPath 53
KCFindInternetPassword 55
KCFindInternetPasswordWithPath 57
KCAddGenericPassword 60
KCFindGenericPassword 61

Creating a Keychain Item Reference 62
KCNewItem 63
KCReleaseItem 64

C O N T E N T S

5

Preliminary



Apple Computer, Inc. 5/17/00

Setting and Obtaining Keychain Item Attribute Data 64
KCSetAttribute 65
KCGetAttribute 66
KCSetData 67
KCGetData 68

Manipulating Keychain Items 69
KCAddItem 70
KCDeleteItem 70
KCUpdateItem 71
KCCopyItem 72
KCGetKeychain 72

Searching for Keychain Items 73
KCFindFirstItem 74
KCFindNextItem 75
KCReleaseSearch 76

Working With Certificates 76
KCFindX509Certificates 76
KCChooseCertificate 77

Managing User Interaction 78
KCSetInteractionAllowed 79
KCIsInteractionAllowed 79

Registering Your Keychain Event Callback Function 79
KCAddCallback 80
KCRemoveCallback 81

Creating and Managing Universal Procedure Pointers 81
NewKCCallbackUPP 82
InvokeKCCallbackUPP 82
DisposeKCCallbackUPP 83

Keychain Manager Callback 84
KCCallbackProcPtr 84

Keychain Manager Data Types 85
AFPServerSignature 86
KCAttribute 86
KCAttributeList 87
KCAttrType 87
KCCallbackInfo 88
KCItemRef 89
KCPublicKeyHash 89

6

Preliminary



Apple Computer, Inc. 5/17/00

C O N T E N T S

KCRef 89
KCSearchRef 90

Keychain Manager Constants 90
Authentication Type Constants 91
Certificate Search Option Mask Constants 92
Default Authentication Type Constant 94
Default Port Constant 95
Default Protocol Constant 95
Keychain Event Constants 96
Keychain Event Mask Constants 97
Keychain Item Attribute Tag Constants 99
Keychain Item Class Constants 104
Keychain Protocol Type Constants 105
Keychain Status Mask Constants 106
Verification Criteria Constants 107

Keychain Manager Result Codes 108

Chapter 5

API and Document Revision History

113

7

Preliminary



Apple Computer, Inc. 5/17/00

Figures, Listings, and Tables

Chapter 2

Keychain Manager Concepts

11

Figure 2-1 Create/Unlock Keychain dialog 15
Figure 2-2 Create Keychain dialog 16
Figure 2-3 Choose Keychain dialog 17
Figure 2-4 Allow Access dialog 18
Figure 2-5 Allow Unrestricted Access dialog 19
Figure 2-6 Turn Off Warnings alert 20
Figure 2-7 Unlock Keychain dialog 20
Figure 2-8 Read-only Keychain alert 21

Chapter 3

Keychain Manager Tasks

23

Listing 3-1 Storing password data 28
Listing 3-2 Registering your callback function 34
Listing 3-3 Creating your own callback function 34

Chapter 4

Keychain Manager Reference

35

Table 4-1 Keychain Manager result codes 108

Chapter 5 API and Document Revision History

113

Table 5-1 Implementing Security Features With Keychain revision
history 113

8

Preliminary



Apple Computer, Inc. 5/17/00

L O F A T

9

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 1

1 Introduction

This document introduces the Keychain Manager. The Keychain Manager provides
a uniform way to handle passwords for multiple users, multiple databases, or any
situation in which a user must enter single or multiple passwords. You can use the
Keychain Manager to provide secure storage for a user’s passwords, cryptographic
keys, and digital certificates. Your application should use Keychain Manager if it
requires the user to enter a password for access to some document or service.

This document describes the Keychain Manager in the following sections:

�

“Keychain Manager Concepts” (page 11) provides a conceptual overview of the
Keychain Manager.

�

“Keychain Manager Tasks” (page 23) provides an introduction to programming
the Keychain Manager.

�

“Keychain Manager Reference” (page 35) provides a complete description of the
Keychain Manager 2.0 API, including its functions, data types, constants, and
result codes.

�

“API and Document Revision History” (page 113) provides a history of changes
to this document, as well as changes to the Keychain Manager API from version
1.0.1 to 2.0.

All code listings in this document are shown in C, except for listings that describe
resources, which are shown in Rez-input format. Many listings are taken from the
MenuScripter sample application, which is available through Apple’s developer
website at

<http://developer.apple.com/>

10

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 1

Introduction

Although the sample code in this document has been compiled and tested to some
degree, Apple Computer does not recommend that you directly incorporate this
code into your application. For example, only limited error handling is shown—you
should develop your own techniques for detecting and handling errors.

Keychain Manager Implementation

11

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

2 Keychain Manager Concepts

This chapter introduces the Keychain Manager and describes how the user can use
it to store passwords, use multiple keychains, access the keychain, provide secure
storage for a user’s passwords, cryptographic keys, and digital certificates.

The following sections provide a conceptual overview of Keychain Manager:

“Keychain Manager Implementation” (page 11)

“Accessing the Keychain” (page 12)

“Keychain Items” (page 13)

“Using Multiple Keychains” (page 14)

“Searching Keychains” (page 14)

“Interacting With the Keychain Access Application” (page 15)

Keychain Manager Implementation

The first public release of Keychain Manager was version 2.0, which is supported
on computers running Mac OS 9 or later. Keychain Manager 1.0.1 SDK was the first
version of Keychain Manager released to developers. For a brief summary of the
changes to the Keychain Manager API from 1.0.1 to 2.0, see “API and Document
Revision History” (page 113).

12

Accessing the Keychain

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

Accessing the Keychain

A

keychain

 is a secure repository for user-centric data, such as keys, passwords and
certificates. The repository may be a file, a network database, a smart card, or other
storage media. The Keychain Manager enables your application to store multiple
passwords in a keychain. The keychain is accessed by one passphrase or master
password. A

passphrase

 is a master password that unlocks the keychain and allows
applications to access all the user’s application and service passwords. The
passphrase provides

transparent authentication

 to the user, such that the user can
access all their passwords in that keychain with a single sign on. The passphrase is
not stored on the disk and is not accessible to applications.

Since a computer can be shared by more than one user, the Keychain Manager
specifies a

default keychain

. The

default keychain

 is the currently unlocked
keychain to which new items are added. When the Keychain Manager is called and
it detects that no default keychain is available, the user is prompted to create one via
the Keychain Access application, described in “Interacting With the Keychain
Access Application” (page 15). This application allows users to view and manage
items in a keychain. After the user has created and unlocked a keychain, your
application can begin using it.

The default keychain is automatically configured by the Keychain Manager when a
keychain is created for the first time on the user's machine. If the default keychain
isn't configured (that is, if there is no preference file for the default keychain in
Internet Config), the user is prompted to choose among the locked keychains (first
one chosen in the list). When an unspecified keychain is to be unlocked, the default
keychain is automatically selected for the user. The user can modify the preference
file of the default keychain using the Keychain Access application. For more
information, see “Interacting With the Keychain Access Application” (page 15).

When the computer is started up, all keychains are locked. Keychains remain locked
until the user establishes authentication and unlocks the keychain. Until this time,
your application cannot access items in the keychain.

C H A P T E R 2

Keychain Manager Concepts

Keychain Items

13

Preliminary



Apple Computer, Inc. 5/17/00

Keychain Items

A

keychain item

is a chunk of data with attached information that identifies
attributes of a keychain item. The data and attributes in a keychain item are
encrypted. Every active keychain has a lock interval timer, which locks the keychain
automatically after a period of time that you specify. This feature is useful for
security reasons. Without a lock interval timer, a user might forget to lock the
keychain before leaving the computer, and anyone else with access to that computer
can potentially access the user’s passwords. When a keychain is unlocked, the user’s
passwords are available to any application running on their machine.

There are five different types of keychain items: AppleShare passwords, Internet
passwords, generic passwords, cryptographic keys, and digital certificates. Each
type of keychain item has a unique set of

attributes

, as well as some attributes that
are common to all keychain items. Examples of common attributes include item
type, creation date, description, modification date, and comments. The Keychain
Manager has access to item attributes for the purposes of searching keychains. You
can use keychain item attributes to perform such tasks as recording and tracking
passwords the user has chosen in your application.

Digital certificates are stored in a user’s keychain along with their own personal
certificate and the root certificates they have allowed to be added. Digital
certificates are used to refer to people the user knows.

Cryptographic keys can be symmetric or asymmetric. Symmetric keys are typically
used for session or password-based encryption. This is synonymous with a shared
secret key. These keys can only be generated using the Keychain Manager
API.Asymmetric key pairs are used to do signing and encryption without a shared
secret. When an asymmetric key pair is generated, it is typically associated with a
digital certificate. Future versions of the Keychain Manager may provide the ability
to create, store, and display symmetric asymmetric keys. These keys can currently
be generated using the Certificate Assistant or Signing application.

14

Using Multiple Keychains

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

Using Multiple Keychains

The Keychain Manager enables the user to open multiple keychains
simultaneously. The user can use drag and drop to manipulate keychain contents.
In addition, the user can drag certificates to and from the keychain, effectively
importing or exporting them. This allows users to have their secure data spread
across multiple keychains and be able to access the information no matter where it
resides.

Searching Keychains

Prior to version 2.0 of this technology, the Keychain Manager only searched
unlocked keychains. In version 2.0 and later, when trying to find a password, the
Keychain Manager searches all unlocked keychains first, starting with the default
keychain. If a match is found in more than one keychain, the user might be
presented with a dialog asking them to select the item they want to use.

If a password is not found in an unlocked keychain, the Keychain Manager searches
all locked keychains. If the password is found in a locked keychain, the user will be
prompted to unlock the keychain so the password can be retrieved. If no match is
found in any keychain, locked or unlocked, the Keychain Manager returns the
result code

itemNotFound

 and requires user interaction.

In Mac OS X, the user has the option of selecting the search order and the keychains
to be searched.

C H A P T E R 2

Keychain Manager Concepts

Interacting With the Keychain Access Application

15

Preliminary



Apple Computer, Inc. 5/17/00

Interacting With the Keychain Access Application

Keychain Access is an application that enables the user to view and manage items
in a keychain. Specifically, it allows the user to

�

create a default keychain

�

modify the preference file of the default keychain

�

unlock a keychain

�

view the items stored in a keychain

Figure 2-1 (page 15) shows the dialog that is displayed when the user first opens
Keychain Access. Keychain Access prompts them to either create a keychain or
unlock an existing one.

Figure 2-1

Create/Unlock Keychain dialog

16

Interacting With the Keychain Access Application

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

If the user has not yet created a keychain, they should select the Create button. In
this case, Keychain Access displays the Create Keychain dialog shown in Figure 2-2
(page 16) prompting them to create a keychain.

Figure 2-2

Create Keychain dialog

C H A P T E R 2

Keychain Manager Concepts

Interacting With the Keychain Access Application

17

Preliminary



Apple Computer, Inc. 5/17/00

If the user has already created a keychain, they should select the Unlock Other
button. In this case, Keychain Access prompts them to select the keychain that they
wish to unlock. Figure 2-3 (page 17) shows the Choose Keychain dialog.

Figure 2-3

Choose Keychain dialog

18

Interacting With the Keychain Access Application

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

When the system or an application needs to access a password in the keychain,
Keychain Access displays the Allow Access dialog shown in Figure 2-4 (page 18).

Figure 2-4

Allow Access dialog

C H A P T E R 2

Keychain Manager Concepts

Interacting With the Keychain Access Application

19

Preliminary



Apple Computer, Inc. 5/17/00

If the user selects the Unlock button, Keychain Access displays the Allow
Unrestricted Access dialog shown in Figure 2-5 (page 19). This dialog prompts the
user to indicate whether they wish to give an application unrestricted access to the
contents of their keychain.

Figure 2-5

Allow Unrestricted Access dialog

20

Interacting With the Keychain Access Application

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

If the user selects the Allow button, the Turn Off Warnings alert shown in Figure 2-6
(page 20) is displayed. This alert warns the user of the repercussoins of allowing
access to the keychain without warning.

Figure 2-6

Turn Off Warnings alert

If a keychain already exists when the user first opens Keychain Access, the dialog
shown in Figure 2-7 (page 20) is displayed. The Unlock Keychain dialog prompts
the user for their password.

Figure 2-7

Unlock Keychain dialog

C H A P T E R 2

Keychain Manager Concepts

Interacting With the Keychain Access Application

21

Preliminary



Apple Computer, Inc. 5/17/00

If the user previously marked the keychain as read-only in the Keychain Access
application, the Read-only Keychain alert shown in Figure 2-8 (page 21) is
displayed. In this case, the password for the keychain cannot be saved.

Figure 2-8

Read-only Keychain alert

22

Interacting With the Keychain Access Application

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 2

Keychain Manager Concepts

23

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 3

3 Keychain Manager Tasks

This chapter describes how you can modify your application to handle passwords,
cryptographic keys, and digital certificates using the Keychain Manager. The
Keychain Manager provides both high and low level functions for providing secure
storage and transparent authentication to any application that uses AppleShare,
Internet, or generic passwords.

Most applications only need to use high-level Keychain Manager functions, which
enable you to store and retrieve passwords without requiring that the user unlock
or create a new keychain. Low-level Keychain Manager functions require that you
unlock a keychain in order to access keychain item data. To edit the contents of a
keychain, it must be created with read/write access. You might wish to use
low-level Keychain Manager functions if you are a network administrator writing a
logging application that keeps track of network or system events.

The following sections provide an introduction to programming the Keychain
Manager:

“Determining Keychain Manager Availability and Version Information” (page 24)

“Creating a Keychain Reference” (page 24)

“Creating a New Keychain” (page 25)

“Locking and Unlocking a Keychain” (page 25)

“Setting and Obtaining the Default Keychain” (page 26)

“Setting and Retrieving Keychain Information” (page 26)

“Searching Keychains” (page 27)

“Storing and Retrieving Keychain Items” (page 27)

“Creating Keychain Item References” (page 29)

24

Determining Keychain Manager Availability and Version Information

Preliminary



Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

“Setting and Obtaining Keychain Item Attribute Data” (page 29)

“Manipulating Keychain Items” (page 30)

“Searching for Keychain Items” (page 31)

“Working With Certificates” (page 31)

“Managing User Interaction” (page 32)

“Responding to Keychain Events” (page 32)

Determining Keychain Manager Availability and

Version Information

You should call the

function KeychainManagerAvailable

 (page 36) to determine
whether the Keychain Manager is available before calling any other Keychain
functions.

The function

KCGetKeychainManagerVersion

 (page 36) returns a pointer to the
version number of the Keychain Manager installed on the current system.

Creating a Keychain Reference

The Keychain Manager provides two functions you can use to create a keychain
reference. The Keychain Manager uses a keychain reference to uniquely identify a
keychain. The function

KCMakeKCRefFromFSSpec

 (page 37) enables you to create a
keychain reference from a file specification record. The function

KCMakeKCRefFromAlias

 (page 38) enables you to create a keychain reference from a
handle to an alias. You can obtain an alias handle to a keychain by calling the
function

KCMakeAliasFromKCRef

 (page 38). You may wish to call this function if you
wish to determine the location of a keychain.

C H A P T E R 3

Keychain Manager Tasks

Creating a New Keychain

25

Preliminary



Apple Computer, Inc. 5/17/00

Your application should not assume a keychain is a file, because keychains may be
stored on other media (such as a smart card) in future versions of Keychain
Manager.

After you are finished with a keychain reference, you should call the function

KCReleaseKeychain

 (page 39) to dispose of the memory it occupied. On return,

KCReleaseKeychain

 sets the reference to

NULL

. You should not use it after this.

Creating a New Keychain

You can call the function

KCCreateKeychain

 (page 39) to create a new keychain.

KCCreateKeychain

 asks for a pointer to the password string that will be used to
protect the new keychain, and a pointer to the keychain reference indicating where
it should create the new keychain. You can pass

NULL

 for both parameters. If you
pass

NULL

 for the password string, the Create Keychain dialog will be displayed to
obtain it. In this case, the keychain is automatically unlocked after creation. If you
pass a keychain reference whose location is unspecified or invalid,

KCCreateKeychain

creates the new keychain in the Keychains folder.

After you are finished with a keychain reference, you should call the function

KCReleaseKeychain

 (page 39) to dispose of the memory it occupied. On return,

KCReleaseKeychain

 sets the reference to

NULL

. You should not use it after this.

Locking and Unlocking a Keychain

The function

KCUnlock (page 44) unlocks a keychain. In most cases, your application
does not need to call the function KCUnlock, since most Keychain Manager functions
requiring an unlocked keychain call KCUnlock automatically. KCUnlock may display
the Unlock dialog if the keychain is currently locked. If your application needs to
verify that a keychain is unlocked, call the function KCGetStatus (page 43).

26 Setting and Obtaining the Default Keychain

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

You can call the function KCLock (page 45) to lock an unlocked keychain. Your
application should not call KCLock unless you are directly responding to a user's
request to lock a keychain. In general, you should leave the keychain unlocked so
that the user does not have to unlock it again in another application.

Setting and Obtaining the Default Keychain

In most cases, your application should not set the default keychain. If you need to,
call the function KCSetDefaultKeychain (page 41). You should call this function if
you want to change where keychain items are added. If you indicate a locked
keychain, the Unlock Keychain dialog will be displayed to prompt the user to
unlock it.

You should call the function KCGetDefaultKeychain (page 41) to obtain a reference to
the default keychain. You should call KCGetDefaultKeychain to obtain the name of
the default keychain. To do so, pass the returned reference to the function
KCGetKeychainName (page 43).

Setting and Retrieving Keychain Information

The Keychain Manager enables you to create and display dialogs that allow a user
to set up and access their keychain, as well as to enable them to supply and modify
passwords. It provides these dialogs to ensure user interaction in creating and
opening keychains. For security reasons, a keychain cannot be unlocked
programmatically. When the user clicks on the Keychain icon in the Control Strip,
a dialog appears prompting the user to create a new keychain, unlock an existing
keychain, or change the identity of an existing keychain.

You can call the function KCChangeSettings (page 42) to display a dialog that enables
the user to change the name, password, and settings associated with a keychain.
Pass NULL in the keychain parameter to indicate the default keychain.

C H A P T E R 3

Keychain Manager Tasks

Searching Keychains 27

Preliminary  Apple Computer, Inc. 5/17/00

The function KCGetStatus (page 43) retrieves the status of a keychain. It passes back
a bit mask that you can test to determine the status of the specified keychain. See
“Keychain Status Mask Constants” (page 106) for a description of this mask. The
function KCGetKeychainName (page 43) retrieves the name of a keychain.

Searching Keychains

You can use the functions KCCountKeychains (page 46) and KCGetIndKeychain
(page 46) to obtain a keychain reference corresponding to an indexed keychain. Pass
a value between 1 and the number returned by the function KCCountKeychains in the
index parameter of KCGetIndKeychain.

Storing and Retrieving Keychain Items

Prior to Keychain Manager 2.0, the user had to unlock a keychain before your
application could determine whether a password was in the keychain. In 2.0 and
later, when the Keychain Manager searches for a keychain item, it searches all
unlocked keychains first, then searches all locked keychains. If the password is
found in a locked keychain, the user will be prompted to unlock the keychain so the
password can be retrieved. If it is not found in any keychain, the result code
itemNotFound will be returned and user interaction will be required.

You can call the functions KCAddAppleSharePassword (page 48) and
KCFindAppleSharePassword (page 49) to store and retrieve AppleShare passwords.
To store Internet passwords, call the functions KCAddInternetPassword (page 52) and
KCAddInternetPasswordWithPath (page 53). To retrieve them, call the functions
KCFindInternetPassword (page 55) and KCFindInternetPasswordWithPath (page 57).
Generic passwords are stored by the function KCAddGenericPassword (page 60) and
retrieved by the function KCFindGenericPassword (page 61). Note that all of the
functions listed above have alternate functions which perform the same task but
take C strings instead of Pascal strings. See the function discussions for more
information.

28 Storing and Retrieving Keychain Items

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

If you wish to select or retrieve certificates, you can call the functions
KCChooseCertificate (page 77) and KCFindX509Certificates (page 76), respectively.

Listing 3-1 (page 28) demonstrates how your application could use these high-level
Keychain Manager functions to store password data. Note that an explicit call to the
function KCUnlock (page 44) to unlock the keychain is not required.

As illustrated, you should call the function KeychainManagerAvailable (page 36)
before calling the rest of the API to determine whether the Keychain Manager is
available. Your application must call the Memory Manager function MaxApplZone to
utilize the maximum memory available.

Listing 3-1 Storing password data

OSStatus StorePasswordInKeychain (ConstStr255Param password)
{

OSStatus status;

if (!KeychainManagerAvailable ()) // is it there?
return ((OSStatus) MY_ERROR);

KCItemRef item;
status = KCAddGenericPassword (

"\pMy_App_Pwd", // service name
"\pBill Braskey", // account name
password[0], // length of password
&password[1], // pointer to password data
&item);

return (status);
}

C H A P T E R 3

Keychain Manager Tasks

Creating Keychain Item References 29

Preliminary  Apple Computer, Inc. 5/17/00

Creating Keychain Item References

The Keychain Manager provides the function KCNewItem (page 63) to create a
keychain item reference. A keychain item reference is a reference to an opaque
structure that contains information about the keychain item. The Keychain Manager
uses a keychain reference to uniquely identify a keychain item.

After you are finished with a keychain item reference, you should call the function
KCReleaseItem (page 64) to dispose of the memory it occupied. On return,
KCReleaseItem sets the reference to NULL. You should not use it after it has been
released.

Setting and Obtaining Keychain Item Attribute Data

You can call the functions KCSetAttribute (page 65) and KCSetData (page 67) to set
or modify attribute data for a keychain item. The difference between the two
functions is that KCSetData requires that you pass the length of the data and a
pointer to that data as separate parameters rather than fields in a keychain item
attribute structure.

You can only set or modify standard item attributes identified by the tag constants
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kTypeKCItemAttr, and kCustomIconKCItemAttr. In addition, each
class of keychain item has attributes specific to that class which may be set or
modified. See “Keychain Item Attribute Tag Constants” (page 99) for a description
of item attribute tags.

You can call the functions KCGetAttribute (page 66) and KCGetData (page 68) to
obtain keychain item attribute data. The difference between the two functions is that
KCGetAttribute requires that you pass the length of the data buffer as a field in a
keychain item attribute structure rather than as a separate parameter. It passes a
pointer to the attribute structure rather than a pointer to the attribute data and the
actual length of that data as separate parameters.

30 Manipulating Keychain Items

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

You can only obtain standard item attributes identified by the tag constants
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr,
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kScriptCodeKCItemAttr, and kCustomIconKCItemAttr. In
addition, each class of keychain item has attributes specific to that class which may
be obtained. See “Keychain Item Attribute Tag Constants” (page 99) for a
description of item attribute tags.

Before calling these functions to access keychain item data, you must call the
function KCUnlock (page 44) to unlock the keychain. Note that a keychain must allow
read/write access for you to edit its contents.

Manipulating Keychain Items

You can call the functions KCAddItem (page 70) and KCDeleteItem (page 70) to add
and delete keychain items from the default keychain. After calling KCDeleteItem,
you should call the function KCReleaseItem (page 64) when you are finished with an
item, since KCDeleteItem does not dispose the memory occupied by the item
reference.

You can call the function KCUpdateItem (page 71) to update an item after changing
its attributes or data. The item is written to the keychain's permanent data store.
KCUpdateItem may display the Unlock Keychain dialog if the keychain containing
the item is currently locked.

You can use the function KCCopyItem (page 72) to copy a keychain item from one
keychain to another. The function KCGetKeychain (page 72) retrieves the location of
a keychain item.

C H A P T E R 3

Keychain Manager Tasks

Searching for Keychain Items 31

Preliminary  Apple Computer, Inc. 5/17/00

Searching for Keychain Items

You can use the function KCFindFirstItem (page 74) to find the first the first
keychain item in a keychain that matches certain attributes. KCFindFirstItem passes
back a reference to the item and to the current search criteria. You pass the search
reference returned by to KCFindFirstItem to the function KCFindNextItem (page 75).
KCFindNextItem finds the next keychain item matching the criteria used by
KCFindFirstItem and returns a reference to the matching item, if any.

When you are completely finished with a search performed by calling the functions
KCFindNextItem (page 75) or KCFindNextItem (page 75), call the function
KCReleaseSearch (page 76) to release the memory occupied by a search criteria
reference.

Working With Certificates

The Keychain Manager provides two functions to give you limited access to
certificates. The function KCFindX509Certificates (page 76)finds certificates in a
keychain that match the given search criteria. You set these criteria by passing a bit
mask in the options parameter. This mask is described in “Certificate Search Option
Mask Constants” (page 92). The function KCChooseCertificate (page 77) displays a
list of certificates that the user can choose from. If only one certificate is available
matching the criteria, KCChooseCertificate does not present a user interface, and
instead passes back the certificate reference in the certificate parameter.

Note that both certificate functions are supported on Mac OS 9, but will not be
supported in the first release of OS X.

32 Managing User Interaction

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

Managing User Interaction

You can call the function KCSetInteractionAllowed (page 79) to tell Keychain
Manager functions that display user interface whether to do so. If you pass true in
the state parameter, user interaction is allowed. If you pass false, user interaction
is not allowed. In this case, Keychain functions that normally display a user
interface will instead return an error. Failing to re-enable user interaction will affect
other clients of the Keychain Manager. The interaction allowed state is reset when
the machine reboots to the default state, that is, user interaction allowed.

The function KCIsInteractionAllowed (page 79) returns a Boolean value indicating
whether Keychain Manager functions that display user interface will do so. If true,
user interaction is allowed, and Keychain Manager is free to show a user interface
when needed.

Responding to Keychain Events

A keychain event is generated when one of the following situations occurs:

� The lock state of a keychain changes

� The settings of a keychain change

� The default keychain changes

� A keychain item is found

� A system event occurs while your application wants to update its windows

� Data is read from a item keychain item

� A keychain item is added, updated, or removed

� A keychain call takes more than five ticks (at 60 ticks per second) to complete

C H A P T E R 3

Keychain Manager Tasks

Responding to Keychain Events 33

Preliminary  Apple Computer, Inc. 5/17/00

The simplest approach to handling keychain events is to respond to the event
kSystemKCEvent when the Keychain Manager causes an update event to occur for
your application’s user interface. Applications that are interested in receiving
keychain events must first call the function KCAddCallback (page 80) to register a
callback that handles the event. You indicate the events you want to receive in the
eventMask parameter of this function. Once you have registered your function, the
Keychain Manager will invoke your callback when the specified keychain event(s)
occur. When you no longer want to handle keychain events, call the function
KCRemoveCallback (page 81) to unregister your callback function.

You may wish to write your own callback function to enable the dialogs displayed
by Keychain Manager to be movable and resizable. Set the bit specified by the mask
constant kSystemKCEvent in the eventMask parameter of the function KCAddCallback
(page 80) to ensure that window updating occurs correctly.

All keychain API calls are synchronous. They do not return until complete. If called
within a thread, this is not normally an issue. However, if your application is not
threaded, you may wish to write your own callback function to handle keychain
idle events. Your callback function will be called periodically until the function
completes. Your application must call the functions YieldToAnyThread or
WaitNextEvent when an idle event is generated. If your callback does not specify
that it will handle idle events, the Keychain Manager will periodically call
YieldToAnyThread.

When a keychain event occurs, the Keychain Shared Library calls your callback
function. Allocating memory or calling Mac OS Toolbox functions that do so is
unsafe in this circumstance, unless the event is an idle event. When an idle event
occurs, your application is free to make Toolbox calls and perform memory
allocation.

Listing 3-2 (page 34) shows how your application might register your callback
function to handle keychain events. Listing 3-3 (page 34) illustrates a sample
keychain event handling callback function.

34 Responding to Keychain Events

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 3

Keychain Manager Tasks

Listing 3-2 Registering your callback function

OSStatus RegisterMyCallBackProc (Ptr myDataPtr)
{

OSStatus status = noErr;
static KCCallbackUPP myCallbackUPP = nil;

if (!myCallbackUPP)
{

// create a UPP for callback function
myCallbackUPP = NewKCCallbackProc(MyCallbackProc);

}
status = KCAddCallback(myCallbackUPP, kcEveryEvent, myDataPtr);
return (status);

}

Listing 3-3 Creating your own callback function

pascal void MyCallbackProc (
KCEvent inEvent,
KCCallbackInfo *info,
void *userContext)

{
MyDataPtrType myDataPtr = (MyDataPtrType) userContext;
if (inEvent == kcIdleEvent)
{

YieldToAnyThread();
}
else if (myDataPtr != nil)
{

// it may not be safe to allocate or move memory here,
// so you may want to queue the event for later processing
myDataPtr–>event = inEvent;
myDataPtr–>item = inInfo->Item;
myDataPtr–>gotAnEvent = True;

}
}

Keychain Manager Functions 35

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

4 Keychain Manager Reference

The following sections provide a complete description of the Keychain 2.0 API,
including its functions, data types, constants, and result codes.

“Keychain Manager Functions” (page 35)

“Keychain Manager Callback” (page 84)

“Keychain Manager Data Types” (page 85)

“Keychain Manager Constants” (page 90)

“Keychain Manager Result Codes” (page 108)

Keychain Manager Functions

“Determining Availability and Version Information” (page 36)

“Creating a Keychain Reference” (page 37)

“Creating a New Keychain” (page 39)

“Setting and Obtaining the Default Keychain” (page 41)

“Setting and Obtaining Keychain Information” (page 42)

“Locking and Unlocking Keychains” (page 44)

“Searching for Keychains” (page 46)

“Storing and Retrieving Passwords” (page 47)

“Creating a Keychain Item Reference” (page 62)

36 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

“Setting and Obtaining Keychain Item Attribute Data” (page 64)

“Manipulating Keychain Items” (page 69)

“Searching for Keychain Items” (page 73)

“Working With Certificates” (page 76)

“Managing User Interaction” (page 78)

“Registering Your Keychain Event Callback Function” (page 79)

“Creating and Managing Universal Procedure Pointers” (page 81)

Determining Availability and Version Information

KeychainManagerAvailable — Determines whether the Keychain Manager is
available. (page 36)

KCGetKeychainManagerVersion — Determines the version of the Keychain Manager
installed on the user’s system. (page 36)

KeychainManagerAvailable

Determines whether the Keychain Manager is available.

Boolean KeychainManagerAvailable (void);

function result A Boolean value indicating whether the Keychain Manager is
available. If true, your application can call Keychain Manager
functions.

Discussion
You should call the KeychainManagerAvailable function to determine whether the
Keychain Manager is available before calling any other Keychain functions.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetKeychainManagerVersion

Determines the version of the Keychain Manager installed on the user’s system.

OSStatus KCGetKeychainManagerVersion (UInt32 *returnVers);

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 37

Preliminary  Apple Computer, Inc. 5/17/00

returnVers
On return, a pointer to the version number of the Keychain Manager
installed on the current system.

Discussion
Your application can call the KCGetKeychainManagerVersion function to find out
which version of the Keychain Manager is installed on the user's system.

Version Notes
Available beginning with Keychain Manager 1.0.

Creating a Keychain Reference

KCMakeKCRefFromFSSpec — Creates a keychain reference from a file specification
record. (page 37)

KCMakeKCRefFromAlias — Creates a keychain reference from a keychain alias.
(page 38)

KCMakeAliasFromKCRef — Creates an alias to a keychain reference. (page 38)

KCReleaseKeychain — Disposes of the memory associated with a keychain reference.
(page 39)

KCMakeKCRefFromFSSpec

Creates a keychain reference from a file specification record.

OSStatus KCMakeKCRefFromFSSpec (
FSSpec *keychainFSSpec,
KCRef *keychain);

keychainFSSpec
A pointer to a keychain file specification record.

keychain
On return, a pointer to a reference to the keychain specified by the
file in the keychainFSSpec parameter.

Version Notes
Available beginning with Keychain Manager 2.0.

38 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it. You should not
use the reference after it has been released.

KCMakeKCRefFromAlias

Creates a keychain reference from a keychain alias.

OSStatus KCMakeKCRefFromAlias(
AliasHandle keychainAlias,
KCRef *keychain);

keychainAlias
A handle to an alias record of the keychain file. Since the keychain is
a file, an alias can be made to the keychain file.

keychain
On return, a pointer to a reference to the keychain specified by the
alias in the keychainAlias parameter.

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it. You should not
use the reference after it has been released.

KCMakeAliasFromKCRef

Creates an alias to a keychain reference.

OSStatus KCMakeAliasFromKCRef(
KCRef keychain,
AliasHandle *keychainAlias);

keychain
A reference to the keychain for which you want to create an alias.

AliasHandle
On return, a pointer to an alias handle to the file referred to by the
keychain reference.

Discussion
You may wish to call the KCMakeAliasFromKCRef function to determine the location
of a keychain.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 39

Preliminary  Apple Computer, Inc. 5/17/00

Version Notes
Available beginning with Keychain Manager 2.0.

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it.

KCReleaseKeychain

Disposes of the memory associated with a keychain reference.

OSStatus KCReleaseKeychain (KCRef *keychain);

keychain
A pointer to a keychain reference. Pass the keychain reference whose
memory you want to release. On return, the reference is set to NULL
and should not be used again.

Discussion
You should call the KCReleaseKeychain function to release the memory occupied by
a keychain reference when you are finished with it. You should not use the
reference after it has been released.

Version Notes
Available beginning with Keychain Manager 1.0.

Creating a New Keychain

KCCreateKeychain — Creates a new keychain. (page 39)

KCCreateKeychain

Creates a new keychain.

OSStatus KCCreateKeychain (
StringPtr password,
KCRef *keychain);

40 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

password
A pointer to a Pascal string representing the password string which
will be used to protect the new keychain. If you pass NULL, the
Keychain Setup dialog will be displayed to obtain it.

keychain
A pointer to a reference to the keychain you wish to create. You
create a reference by calling the function KCMakeKCRefFromFSSpec
(page 37). If you pass a NULL pointer, KCCreateKeychain creates the
new keychain in the Keychains folder. If you pass a valid reference
pointing to NULL, the Keychain Manager allocates the memory for the
keychain reference and returns it in this parameter. In this case, the
keychain will be created in the Keychain folder.

function result The result code userCanceledErr indicates that the user pressed the
Cancel button in the create keychain. The result code
errKCDuplicateKeychain indicates that the user tried to create a
keychain which already exists. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid. Additional errors
may be returned if the keychain could not be created (for example, a
file system or network error may be returned if there is no write
access to the storage media).

Discussion
The KCCreateKeychain function creates a new empty keychain optionally defined by
the keychain and password parameters. If the specified keychain reference is NULL or
points to NULL, the new keychain will be created in the Keychains folder within the
Preferences folder of the System folder. If you pass a keychain reference whose
location is unspecified or invalid, the Keychain Manager will fill in the location to
the Keychains folder. If the Keychain Manager posts a user interface to create a
keychain, that keychain is automatically unlocked after creation.

You can also call the function kccreatekeychain to create an empty keychain. The
difference between the two functions is that kccreatekeychain takes a pointer to a C
string instead of a Pascal string in the password parameter.

Version Notes
Available beginning with Keychain Manager 1.0.

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 41

Preliminary  Apple Computer, Inc. 5/17/00

Setting and Obtaining the Default Keychain

KCSetDefaultKeychain — Sets the default keychain. (page 41)

KCGetDefaultKeychain — Obtains the default keychain. (page 41)

KCSetDefaultKeychain

Sets the default keychain.

OSStatus KCSetDefaultKeychain (KCRef keychain);

keychain
A reference to a keychain that you want to make the default.

function result The result code errKCNoSuchKeychain indicates that the specified
keychain could not be found. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid.

Discussion
In most cases, your application should not set the default keychain. If you need to,
call the KCSetDefaultKeychain function. You should call this function if you want to
change where keychain items are added. If you indicate a locked keychain, the
Unlock Keychain dialog will be displayed to prompt the user to unlock it.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetDefaultKeychain

Obtains the default keychain.

OSStatus KCGetDefaultKeychain (KCRef *keychain);

keychain
On return, a pointer to a reference to the default keychain.

function result The result code errKCNoDefaultKeychain indicates that there is no
default keychain.

42 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Discussion
You should call the KCGetDefaultKeychain function to obtain a reference to the
default keychain. You should call KCGetDefaultKeychain to obtain the name of the
default keychain. To do so, pass the returned reference to the function
KCGetKeychainName (page 43).

Version Notes
Available beginning with Keychain Manager 1.0.

Setting and Obtaining Keychain Information

KCChangeSettings — Displays a dialog for changing the keychain name, password,
and settings associated with a specified keychain. (page 42)

KCGetStatus — Obtains the status of a keychain. (page 43)

KCGetKeychainName — Obtains the name of a keychain. (page 43)

KCGetKeychain — Retrieves the location of a keychain item. (page 72)

KCChangeSettings

Displays a dialog for changing the keychain name, password, and settings
associated with a specified keychain.

OSStatus KCChangeSettings (KCRef keychain);

keychain
A reference to an unlocked keychain. Pass in NULL to specify the
default keychain.

function result The result code errUserCanceled indicates that the user pressed the
Cancel button in the Change Settings dialog. The result code
errKCNoDefaultKeychain indicates that the default keychain could
not be found. The result code errKCInvalidKeychain indicates that
the specified keychain is invalid.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 43

Preliminary  Apple Computer, Inc. 5/17/00

Discussion
You application should not normally call the KCChangeSettings function, unless
responding directly to a user's request to change keychain settings. An application
cannot directly change a keychain's passphrase. For security reasons, your
application can effect a change to the passphrase only by calling KCChangeSettings
to allow the user to change the passphrase interactively.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetStatus

Obtains the status of a keychain.

OSStatus KCGetStatus (
KCRef *keychain,
UInt32 *keychainStatus);

keychain
A pointer to the keychain reference whose status you wish to
determine. Pass NULL to obtain the status of the default keychain.

keychainStatus
On return, a pointer to a bitmask that you can test to determine the
status of the specified keychain. See “Keychain Status Mask
Constants” (page 106) for a description of this mask.

function result The result code errKCNoSuchKeychain indicates that the specified
keychain could not be found. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetKeychainName

Obtains the name of a keychain.

OSStatus KCGetKeychainName (
KCRef keychain,
StringPtr keychainName);

keychain
A reference to the keychain whose name you wish to obtain.

44 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

keychainName
A pointer to a Pascal string. On return, this string contains the name
of the keychain.

function result The result code errKCInvalidKeychain indicates that the keychain is
invalid.

Discussion
You can also call the function kcgetkeychainname to obtain the name of a keychain.
The difference between the two functions is that kcgetkeychainname takes a pointer
to a C string instead of a Pascal string in the keychainName parameter.

Version Notes
Available beginning with Keychain Manager 2.0.

Locking and Unlocking Keychains

KCUnlock — Unlocks a keychain. (page 44)

KCLock — Locks a keychain. (page 45)

KCUnlock

Unlocks a keychain.

 OSStatus KCUnlock (
KCRef keychain,
StringPtr password);

keychain
A reference to the keychain to unlock. Pass NULL to specify the default
keychain. If you pass NULL and the default keychain is currently
locked, the keychain will appear as the default choice. If you pass a
locked keychain, KCUnlock will display the Unlock Keychain dialog
and the keychain will appear as the chosen menu item in keychain
popup menu. If the default keychain is currently unlocked, the
Unlock Keychain dialog is not displayed and KCUnlock returns noErr.

password
A pointer to a Pascal string representing the password string for this
keychain. Pass NULL if the user password is unknown. In this case,
KCUnlock displays the Unlock Keychain dialog, and the

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 45

Preliminary  Apple Computer, Inc. 5/17/00

authentication user interface associated with the keychain about to
be unlocked. If you specify an invalid password, you will not be able
to unlock the keychain with a specified password until the machine
is rebooted. In this case, KCUnlock returns errKCInteractionRequired.

function result The result code noErr does not guarantee that the specified keychain
is unlocked, because the user can select any available keychain and
unlock it. The result code errUserCanceled indicates that the user
pressed the Cancel button in the Unlock Keychain dialog. The result
code errKCAuthFailed indicates that authentication failed because of
too many unsuccessful retries. The result code
errKCInteractionRequired indicates that user interaction is required
to unlock the keychain. In this case, you will not be able to unlock the
keychain with that password until the machine is rebooted.

Discussion
In most cases, your application does not need to call the KCUnlock function directly,
since most Keychain Manager functions requiring an unlocked keychain call
KCUnlock automatically. KCUnlock may display the Unlock Keychain dialog if the
keychain is currently locked. If your application needs to verify that a keychain is
unlocked, call the function KCGetStatus (page 43). KCUnlock replaces the function
KCUnlockKeychain, which was available in Keychain Manager 1.0.

You can also call the function kcunlock to unlock a keychain. The difference
between the two functions is that kcunlock takes a pointer to a C string instead of a
Pascal string in the password parameter.

Version Notes
Available beginning with Keychain Manager 2.0.

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it.

KCLock

Locks a keychain.

OSStatus KCLock (KCRef keychain);

keychain
A reference to the keychain to lock. Pass NULL to lock all unlocked
keychains.

46 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

function result The result code errKCNoSuchKeychain indicates that specified
keychain could not be found. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid.

Discussion
The KCLock function locks a keychain if it is unlocked. Your application should not
call KCLock unless you are directly responding to a user's request to lock a keychain.
In general, you should leave the keychain unlocked so that the user does not have
to unlock it again in another application. KCLock replaces the function
KCLockKeychain, which was available in Keychain Manager 1.0.

Version Notes
Available beginning with Keychain Manager 1.0.

Searching for Keychains

KCCountKeychains — Determines the number of available keychains. (page 46)

KCGetIndKeychain — Obtains an indexed keychain reference. (page 46)

KCCountKeychains

Determines the number of available keychains.

UInt16 KCCountKeychains (void);

function result The number of available keychains. This includes all keychains in the
Keychains folder, as well as any other keychains known to the
Keychain Manager.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetIndKeychain

Obtains an indexed keychain reference.

OSStatus KCGetIndKeychain (
UInt16 index,
KCRef *keychain);

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 47

Preliminary  Apple Computer, Inc. 5/17/00

index
An index of the list of available keychains. Pass a value between 1
and the number returned by the function KCCountKeychains
(page 46).

keychain
A pointer to the keychain reference corresponding to the index in the
index parameter.

function result The result code errKCNoSuchKeychain indicates that the index value is
out of range.

Version Notes
Available beginning with Keychain Manager 1.0.

Special Considerations
The memory that the keychain reference occupies must be released by calling the
function KCReleaseKeychain (page 39) when you are finished with it.

Storing and Retrieving Passwords

KCAddAppleSharePassword — Adds a new AppleShare server password to the default
keychain. (page 48)

KCFindAppleSharePassword — Finds the first AppleShare password in the default
keychain that matches the specified parameters. (page 49)

KCAddInternetPassword — Adds a new Internet server password to the default
keychain. (page 52)

KCAddInternetPasswordWithPath — Adds a new Internet server password with a
specified path to the default keychain. (page 53)

KCFindInternetPassword — Finds the first Internet password in the default keychain
that matches the specified parameters. (page 55)

KCFindInternetPasswordWithPath — Finds the first Internet password in the default
keychain that matches the specified parameters, including path information.
(page 57)

KCAddGenericPassword — Adds a new generic password to the default keychain.
(page 60)

KCFindGenericPassword — Finds the first generic password in the default keychain
matching specified parameters. (page 61)

48 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCAddAppleSharePassword

Adds a new AppleShare server password to the default keychain.

OSStatus KCAddAppleSharePassword(
AFPServerSignature *serverSignature,
StringPtr serverAddress,
StringPtr serverName,
StringPtr volumeName,
StringPtr accountName,
UInt32 passwordLength,
const void *passwordData,
KCItemRef *item);

serverSignature
A pointer to a 16-byte Apple File Protocol server signature block.
Pass a value of type AFPServerSignature (page 86). Pass NULL to
match any server signature. The Keychain Manager identifies the
location for the password by the information passed in the
serverAddress and serverSignature parameters. You must pass a
valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may
be specified as an AppleTalk zone name, a DNS domain name (in the
format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for
the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least
one of these parameters.

serverName
A pointer to a Pascal string containing the server name.

volumeName
A pointer to a Pascal string containing the volume name.

accountName
A pointer to a Pascal string containing the account name.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCAddAppleSharePassword, allocate enough memory for
the buffer to hold the data you want to store.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 49

Preliminary  Apple Computer, Inc. 5/17/00

item
On return, a pointer to a reference to the added item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCDuplicateItem
indicates that you tried to add a password that already exists in the
keychain. The result code errKCDataTooLarge indicates that you tried
to add more data than is allowed for a record of this type.

Discussion
The KCAddAppleSharePassword function adds a new AppleShare server password to
the default keychain that is uniquely identified by the serverName, volumeName,
accountName parameters, and a location specified either by serverAddress or
serverSignature. KCAddAppleSharePassword optionally returns a reference to the
newly added item.

Most applications do not need to store AppleShare password data, as this is
handled transparently by the AppleShare client software. To be compatible with the
AppleShare client, you should store a fully-specified File Manager structure
AFPXVolMountInfo as the password data.

You can also call the function kcaddapplesharepassword to add an AppleShare
server password to the default keychain. The difference between the two functions
is that kcaddapplesharepassword takes a pointer to a C string instead of a Pascal
string in the serverAddress, serverName, volumeName, accountName, and passwordData
parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

KCFindAppleSharePassword

Finds the first AppleShare password in the default keychain that matches the
specified parameters.

OSStatus KCFindAppleSharePassword(
AFPServerSignature *serverSignature,
StringPtr serverAddress,
StringPtr serverName,
StringPtr volumeName,
StringPtr accountName,
UInt32 maxLength,

50 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

void *passwordData,
UInt32 *actualLength,
KCItemRef *item);

serverSignature
A pointer to a 16-byte Apple File Protocol server signature block.
Pass a value of type AFPServerSignature (page 86). Pass NULL to
match any server signature. The Keychain Manager identifies the
location for the password by the information passed in the
serverAddress and serverSignature parameters. You must pass a
valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may
be specified as an AppleTalk zone name, a DNS domain name (in the
format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for
the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least
one of these parameters.

serverName
A pointer to a Pascal string containing the server name. Pass NULL to
match any server name.

volumeName
A pointer to a Pascal string containing the volume name. Pass NULL
to match any volume name.

accountName
A pointer to a Pascal string containing the account name. Pass NULL
to match any account name.

maxLength
The length of the buffer pointed to by passwordData. Pass 0 if you
want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the passwordData parameter.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCFindAppleSharePassword, allocate enough memory
for the buffer to hold the data you want to store. Pass NULL if you
want to obtain the item reference but not the password data. In this
case, you must also pass 0 in the maxLength parameter. On return, a
pointer to the returned password data.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 51

Preliminary  Apple Computer, Inc. 5/17/00

actualLength
On return, the actual length of the password data that was retrieved.
If the buffer pointed to by passwordData is smaller than the actual
length of the data, KCFindAppleSharePassword returns the result code
errKCBufferTooSmall. In this case, your application must allocate a
new buffer of sufficient size before calling KCFindAppleSharePassword
again.

item
On return, a pointer to a reference to the found item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain was found. The result code errKCItemNotFound indicates
that no matching password item was found. The result code
errKCBufferTooSmall indicates that your application must allocate a
new buffer of sufficient size before calling KCFindAppleSharePassword
again.

Discussion
The KCFindAppleSharePassword function finds the first AppleShare password item
which matches the attributes you provide. The buffer specified in the passwordData
parameter must be large enough to hold the password data, otherwise
KCFindAppleSharePassword returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling
KCFindAppleSharePassword again. KCFindAppleSharePassword optionally returns a
reference to the found item.

You can also call the function kcfindapplesharepassword to find the first
AppleShare server password matching specified attributes. The difference between
the two functions is that kcfindapplesharepassword takes a pointer to a C string
instead of a Pascal string in the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

52 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCAddInternetPassword

Adds a new Internet server password to the default keychain.

OSStatus KCAddInternetPassword (
StringPtr serverName,
StringPtr securityDomain,
StringPtr accountName,
UInt16 port,
OSType protocol,
OSType authType,
UInt32 passwordLength,
const void *passwordData,
KCItemRef *item);

serverName
A pointer to a Pascal string containing the server name.

securityDomain
A pointer to a Pascal string containing the security domain. This
parameter is optional, as not all protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in
“Default Port Constant” (page 95), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol
Type Constants” (page 105) for a description of possible values. Pass
the constant kAnyProtocol, described in “Default Protocol Constant”
(page 95), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type
Constants” (page 91) for a description of possible values. Pass the
constant kAnyAuthType, described in “Default Authentication Type
Constant” (page 94), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCAddInternetPasswordWithPath, allocate enough
memory for the buffer to hold the data you want to store.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 53

Preliminary  Apple Computer, Inc. 5/17/00

item
On return, a pointer to a reference to the added item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCDuplicateItem
indicates that you tried to add a password that already exists in the
keychain. The result code errKCDataTooLarge indicates that you tried
to add more data than is allowed for a record of this type.

Discussion
The KCAddInternetPassword function adds a new Internet server password to the
default keychain. Required parameters to identify the password are serviceName
and accountName (you cannot pass NULL for both parameters). In addition, some
protocols may require an optional securityDomain when authentication is
requested. KCAddInternetPassword optionally returns a reference to the newly
added item.

You can also call the function kcaddinternetpassword to add a new Internet server
password to the default keychain. The difference between the two functions is that
kcaddinternetpassword takes a pointer to a C string instead of a Pascal string in the
serverAddress, serverName, volumeName, accountName, and passwordData parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

KCAddInternetPasswordWithPath

Adds a new Internet server password with a specified path to the default keychain.

OSStatus KCAddInternetPasswordWithPath (
StringPtr serverName,
StringPtr securityDomain,
StringPtr accountName,
StringPtr path,
UInt16 port,
OSType protocol,
OSType authType,
UInt32 passwordLength,
const void *passwordData,
KCItemRef *item);

serverName
A pointer to a Pascal string containing the server name.

54 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

securityDomain
A pointer to a Pascal string containing the security domain. This
parameter is optional, as not all protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

path
A pointer to a Pascal string containing additional information that
specifies a file or directory on the server specified by serverName. In
a typical URL, path information begins directly after the first slash
(“/”) character following the server name. This parameter is
optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in
“Default Port Constant” (page 95), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol
Type Constants” (page 105) for a description of possible values. Pass
the constant kAnyProtocol, described in “Default Protocol Constant”
(page 95), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type
Constants” (page 91) for a description of possible values. Pass the
constant kAnyAuthType, described in “Default Authentication Type
Constant” (page 94), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCAddInternetPasswordWithPath, allocate enough
memory for the buffer to hold the data you want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCDuplicateItem
indicates that you tried to add a password that already exists in the
keychain. The result code errKCDataTooLarge indicates that you tried
to add more data than is allowed for a record of this type.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 55

Preliminary  Apple Computer, Inc. 5/17/00

Discussion
The KCAddInternetPasswordWithPath function enables you to specify path
information when adding a new Internet server password to the default keychain.
Required parameters to identify the password are serviceName and accountName
(you cannot pass NULL for both parameters). In addition, some protocols may require
an optional securityDomain when authentication is requested.
KCAddInternetPasswordWithPath optionally returns a reference to the newly added
item.

You can also call the function kcaddinternetpasswordwithpath to add a new Internet
server password to the default keychain. The difference between the two functions
is that kcaddinternetpasswordwithpath takes a pointer to a C string instead of a
Pascal string in the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with Keychain Manager 2.0.

KCFindInternetPassword

Finds the first Internet password in the default keychain that matches the specified
parameters.

OSStatus KCFindInternetPassword (
StringPtr serverName,
StringPtr securityDomain,
StringPtr accountName,
UInt16 port,
OSType protocol,
OSType authType,
UInt32 maxLength,
void *passwordData,
UInt32 *actualLength,
KCItemRef *item);

serverName
A pointer to a Pascal string containing the server name. Pass NULL to
match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL
to match any domain.

56 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

accountName
A pointer to a Pascal string containing the account name. Pass NULL
to match any account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in
“Default Port Constant” (page 95), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol
Type Constants” (page 105) for a description of possible values. Pass
the constant kAnyProtocol, described in “Default Protocol Constant”
(page 95), to match any protocol.

authType
The authentication scheme used. See “Authentication Type
Constants” (page 91) for a description of possible values. Pass the
constant kAnyAuthType, described in “Default Authentication Type
Constant” (page 94), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData. Pass 0 if you
want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the passwordData parameter.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCFindInternetPassword, allocate enough memory for
the buffer to hold the data you want to store. Pass NULL if you want
to obtain the item reference but not the password data. In this case,
you must also pass 0 in the maxLength parameter. On return, a
pointer to the returned password data.

actualLength
On return, the actual length of the password data that was retrieved.
If the buffer pointed to by passwordData is smaller than the actual
length of the data, KCFindInternetPassword returns the result code
errKCBufferTooSmall. In this case, your application must allocate a
new buffer of sufficient size before calling KCFindInternetPassword
again.

item
On return, a pointer to a reference to the found item. Pass NULL if you
don’t want to obtain this reference.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 57

Preliminary  Apple Computer, Inc. 5/17/00

function result The result code errKCNoDefaultKeychain indicates that no default
keychain was found. The result code errKCItemNotFound indicates
that no matching password item was found. The result code
errKCBufferTooSmall indicates that your application must allocate a
new buffer of sufficient size before calling KCFindInternetPassword
again.

Discussion
The KCFindInternetPassword function finds the first Internet password item which
matches the attributes you provide. The buffer specified in the passwordData
parameter must be large enough to hold the password data, otherwise
KCFindInternetPassword returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling
KCFindInternetPassword again. KCFindInternetPassword optionally returns a
reference to the found item.

You can also call the function kcfindinternetpassword to find the first Internet
password item matching specified attributes. The difference between the two
functions is that kcfindinternetpassword takes a pointer to a C string instead of a
Pascal string in the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

KCFindInternetPasswordWithPath

Finds the first Internet password in the default keychain that matches the specified
parameters, including path information.

OSStatus KCFindInternetPasswordWithPath (
StringPtr serverName,
StringPtr securityDomain,
StringPtr accountName,
StringPtr path,
UInt16 port,
OSType protocol,
OSType authType,
UInt32 maxLength,
void *passwordData,
UInt32 *actualLength,
KCItemRef *item);

58 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

serverName
A pointer to a Pascal string containing the server name. Pass NULL to
match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL
to match any domain.

accountName
A pointer to a Pascal string containing the account name. Pass NULL
to match any account name.

path
A pointer to a Pascal string containing additional information that
specifies a file or directory on the server specified by serverName. In
a typical URL, path information begins directly after the first slash
(“/”) character following the server name. This parameter is
optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in
“Default Port Constant” (page 95), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol
Type Constants” (page 105) for a description of possible values. Pass
the constant kAnyProtocol, described in “Default Protocol Constant”
(page 95), to match any protocol.

authType
The authentication scheme used. See “Authentication Type
Constants” (page 91) for a description of possible values. Pass the
constant kAnyAuthType, described in “Default Authentication Type
Constant” (page 94), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData. Pass 0 if you
want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the passwordData parameter.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCFindInternetPasswordWithPath, allocate enough
memory for the buffer to hold the data you want to store. Pass NULL
if you want to obtain the item reference but not the password data.
In this case, you must also pass 0 in the maxLength parameter. On
return, a pointer to the returned password data.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 59

Preliminary  Apple Computer, Inc. 5/17/00

actualLength
On return, the actual length of the password data that was retrieved.
If the buffer pointed to by passwordData is smaller than the actual
length of the data, KCFindInternetPasswordWithPath returns the
result code errKCBufferTooSmall. In this case, your application must
allocate a new buffer of sufficient size before calling
KCFindInternetPasswordWithPath again.

item
On return, a pointer to a reference to the found item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain was found. The result code errKCItemNotFound indicates
that no matching password item was found. The result code
errKCBufferTooSmall indicates that your application must allocate a
new buffer of sufficient size before calling
KCFindInternetPasswordWithPath again.

Discussion
The KCFindInternetPasswordWithPath function finds the first Internet password
item which matches the attributes you provide, including path information. The
buffer specified in the passwordData parameter must be large enough to hold the
password data, otherwise KCFindInternetPasswordWithPath returns the result code
errKCBufferTooSmall. In this case, your application must allocate a new buffer of
sufficient size before calling KCFindInternetPasswordWithPath again.
KCFindInternetPasswordWithPath optionally returns a reference to the found item.

You can also call the function kcfindinternetpasswordwithpath to find the first
Internet password item matching specified attributes. The difference between the
two functions is that kcfindinternetpasswordwithpath takes a pointer to a C string
instead of a Pascal string in the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with Keychain Manager 2.0.

60 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCAddGenericPassword

Adds a new generic password to the default keychain.

OSStatus KCAddGenericPassword (
StringPtr serviceName,
StringPtr accountName,
UInt32 passwordLength,
const void *passwordData,
KCItemRef *item);

serviceName
A pointer to a Pascal string containing an application-defined service
name.

accountName
A pointer to a Pascal string containing an application-defined
account name.

passwordLength
The length of the password data to be stored.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCAddGenericPassword, allocate enough memory for
the buffer to hold the data you want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCDuplicateItem
indicates that you tried to add a password that already exists in the
keychain. The result code errKCDataTooLarge indicates that you tried
to add more data than is allowed for a record of this type.

Discussion
The KCAddGenericPassword function adds a new generic password to the default
keychain. Required parameters to identify the password are serviceName and
accountName, which are application-defined strings. KCAddGenericPassword
optionally returns a reference to the newly added item.

You can use KCAddGenericPassword to add passwords for accounts other than
Internet or Appleshare. For example, you might add passwords for your database
or scheduling programs.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 61

Preliminary  Apple Computer, Inc. 5/17/00

You can also call the function kcaddgenericpassword to add a new generic password
to the default keychain. The difference between the two functions is that
kcaddgenericpassword takes a pointer to a C string instead of a Pascal string in the
serverAddress, serverName, volumeName, accountName, and passwordData parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

KCFindGenericPassword

Finds the first generic password in the default keychain matching specified
parameters.

OSStatus KCFindGenericPassword(
StringPtr serviceName,
StringPtr accountName,
UInt32 maxLength,
void *passwordData,
UInt32 *actualLength,
KCItemRef *item);

serviceName
A pointer to a Pascal string containing an application-defined service
name. Pass NULL to match any service name.

accountName
A pointer to a Pascal string containing an application-defined
account name. Pass NULL to match any account name.

maxLength
The length of the buffer pointed to by passwordData. Pass 0 if you
want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the passwordData parameter.

passwordData
A pointer to a buffer which will hold the returned password data.
Before calling KCFindGenericPassword, allocate enough memory for
the buffer to hold the data you want to store. Pass NULL if you want
to obtain the item reference but not the password data. In this case,
you must also pass 0 in the maxLength parameter. On return, a
pointer to the returned password data.

62 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

actualLength
On return, the actual length of the password data that was retrieved.
If the buffer pointed to by passwordData is smaller than the actual
length of the data, KCFindGenericPassword returns the result code
errKCBufferTooSmall. In this case, your application must allocate a
new buffer of sufficient size before calling KCFindGenericPassword
again.

item
On return, a pointer to a reference to the found item. Pass NULL if you
don’t want to obtain this reference.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain was found. The result code errKCItemNotFound indicates
that no matching password item was found. The result code
errKCBufferTooSmall indicates that your application must allocate a
new buffer of sufficient size before calling KCFindGenericPassword
again.

Discussion
The KCFindGenericPassword function finds the first generic password item which
matches the attributes you provide. The buffer specified in the passwordData
parameter must be large enough to hold the password data, otherwise
KCFindGenericPassword returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling
KCFindGenericPassword again. KCFindGenericPassword optionally returns a
reference to the found item.

You can also call the function kcfindgenericpassword to find the first generic
password matching specified attributes. The difference between the two functions
is that kcfindgenericpassword takes a pointer to a C string instead of a Pascal string
in the serverAddress, serverName, volumeName, accountName, and passwordData
parameters.

Version Notes
Available beginning with Keychain Manager 1.0.

Creating a Keychain Item Reference

KCNewItem — Creates a reference to a keychain item. (page 63)

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 63

Preliminary  Apple Computer, Inc. 5/17/00

KCReleaseItem — Disposes of the memory occupied by a keychain item reference.
(page 64)

KCNewItem

Creates a reference to a keychain item.

OSStatus KCNewItem (
KCItemClass itemClass,
OSType itemCreator,
UInt32 length,
const void *data,
KCItemRef *item);

itemClass
The type of item (that is, a certificate, AppleShare password, Internet
password, or generic password) that you want to create. See
“Keychain Item Class Constants” (page 104) for a description of
possible values.

itemCreator
The creator code of the application that owns this item.

length
The length of the data to be stored in this item.

data
A pointer to a buffer containing the data to be stored in this item.
Before calling KCNewItem, allocate enough memory for the buffer to
hold the data you want to store.

item
On return, a pointer to a reference to the newly-created item.

function result The Memory Manager result code memFullErr indicates that you did
not allocate enough memory in the current heap to create the item.

Discussion
The KCNewItem function creates a new keychain item from the specified parameters.
Note that a copy of the data buffer pointed to by data is stored in the item.

Version Notes
Available beginning with Keychain Manager 1.0.

64 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Special Considerations
If you want to store an item permanently, you must call the function KCAddItem
(page 70) after calling KCNewItem. When the item reference is no longer required, call
the function KCReleaseItem (page 64) to deallocate memory occupied by the item.
You should not use the reference after it has been released.

KCReleaseItem

Disposes of the memory occupied by a keychain item reference.

OSStatus KCReleaseItem (KCItemRef *item);

item
A pointer to a keychain item reference. Pass the keychain item
reference whose memory you want to release. On return, the
reference is set to NULL and should not be used again.

Discussion
You should call the KCReleaseItem function to release the memory occupied by a
keychain item reference when you are finished with it.

Version Notes
Available beginning with Keychain Manager 1.0

Setting and Obtaining Keychain Item Attribute Data

KCSetAttribute — Sets or modifies keychain item attribute data specified by a
pointer to an attribute structure. (page 65)

KCGetAttribute — Obtains keychain item attribute data specified by a pointer to an
attribute structure. (page 66)

KCSetData — Sets or modifies keychain item attribute data specified by the data
length and a pointer to data. (page 67)

KCGetData — Obtains keychain item attribute data specified by the data length and
a pointer to data. (page 68)

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 65

Preliminary  Apple Computer, Inc. 5/17/00

KCSetAttribute

Sets or modifies keychain item attribute data specified by a pointer to an attribute
structure.

OSStatus KCSetAttribute (
KCItemRef item,
KCAttribute *attr);

item
A reference to the keychain item whose attribute data you wish to
modify.

attr
A pointer to a structure of t ype KCAttribute (page 86) containing
keychain item attribute data. Before calling KCSetAttribute, fill in the
tag, length, and data fields of this structure with the tag identifying
the attribute you wish to modify or set, the length of the attribute
data you wish to set, and a pointer to that data, respectively.

function result The result code errKCInvalidItemRef indicates that the keychain item
reference was invalid. The result code errKCNoSuchAttr indicates that
the item attribute you wish to set is undefined for the specified item.
The result code errKCDataTooLarge indicates that more data was
supplied than is allowed for this attribute.

Discussion
You can call the KCSetAttribute function to set or modify keychain item attribute
data. You can also call the function KCSetData (page 67) to set or modify attribute
data. The difference between the two functions is that KCSetData requires that you
pass the length of the data and a pointer to that data as separate parameters rather
than fields in a keychain item attribute structure.

Before calling KCSetAttribute to access keychain item data, you must call the
function KCUnlock (page 44) to unlock the keychain. The keychain must allow read/
write access for you to successfully modify or set its contents.

You can only set or modify standard item attributes identified by the tag constants
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kTypeKCItemAttr, and kCustomIconKCItemAttr. In addition, each
class of keychain item has attributes specific to that class which may be set or
modified. See “Keychain Item Attribute Tag Constants” (page 99) for a description
of item attribute tags.

66 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetAttribute

Obtains keychain item attribute data specified by a pointer to an attribute structure.

OSStatus KCGetAttribute (
KCItemRef item,
KCAttribute *attr,
UInt32 *actualLength);

item
A reference to the keychain item whose attribute data you wish to
retrieve.

attr
A pointer to a KCAttribute (page 86) structure containing keychain
item attribute data. Before calling KCGetAttribute, fill in the tag,
length, and data fields (the data field should contain a pointer to a
buffer of sufficient length for the type of data to be returned). On
return, KCGetAttribute fills in the data field with the retrieved
attribute data.

actualLength
On return, a pointer to the actual length of the attribute data. This
may be more than the length you allocated in the length field of the
attribute structure.

function result The result code errKCInvalidItemRef indicates that the specified
keychain item reference was invalid. The result code
errKCNoSuchAttr indicates that you tried to set an attribute which is
undefined for this item class. The result code errKCBufferTooSmall
indicates that your application must allocate a new buffer of
sufficient size before calling KCGetAttribute again.

Discussion
You can call the KCGetAttribute function to obtain keychain item attribute data. You
can also call the function KCGetData (page 68) to obtain attribute data. The difference
between the two functions is that KCGetData requires that you pass the length of the
data buffer as a separate parameter rather than as a field in a keychain item attribute
structure. It passes back a pointer to the attribute data you requested and the actual
length of that data, rather than filling in the fields of the attribute structure.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 67

Preliminary  Apple Computer, Inc. 5/17/00

Before calling KCGetAttribute to access keychain item data, you must call the
function KCUnlock (page 44) to unlock the keychain.

You can only obtain standard item attributes identified by the tag constants
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr,
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kScriptCodeKCItemAttr, and kCustomIconKCItemAttr. In
addition, each class of keychain item has attributes specific to that class which may
be obtained. See “Keychain Item Attribute Tag Constants” (page 99) for a
description of item attribute tags.

Version Notes
Available beginning with Keychain Manager 1.0.

KCSetData

Sets or modifies keychain item attribute data specified by the data length and a
pointer to data.

OSStatus KCSetData (
KCItemRef item,
UInt32 length,
const void *data);

item
A reference to the keychain item whose data you wish to set.

length
The length of the data buffer pointed to by the data parameter.

data
A pointer to a buffer containing the data to be stored in this item.
Before calling KCSetData, allocate enough memory for the buffer to
hold the data you want to store.

function result The result code errKCInvalidItemRef indicates that the specified
keychain item reference was invalid. The result code
errKCDataTooLarge indicates that the data was too large for the
supplied buffer. The result code errKCDataNotModifiable indicates
that the data cannot be set for this item.

68 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Discussion
You can call the KCSetData function to set or modify keychain item attribute data.
You can also call the function KCSetAttribute (page 65) to set or modify attribute
data. The difference between the two functions is that KCSetData requires that you
pass the length of the data and a pointer to that data as separate parameters rather
than fields in a keychain item attribute structure.

Before calling KCSetData to access keychain item data, you must call the function
KCUnlock (page 44) to unlock the keychain. The keychain must allow read/write
access for you to successfully modify or set its contents.

You can only set or modify standard item attributes identified by the tag constants
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kTypeKCItemAttr, and kCustomIconKCItemAttr. In addition, each
class of keychain item has attributes specific to that class which may be set or
modified. See “Keychain Item Attribute Tag Constants” (page 99) for a description
of item attribute tags.

Version Notes
Available beginning with Keychain Manager 1.0.

KCGetData

Obtains keychain item attribute data specified by the data length and a pointer to
data.

OSStatus KCGetData (
KCItemRef item,
UInt32 maxLength,
void *data
UInt32 *actualLength);

item
A reference to the keychain item whose data you wish to retrieve.

maxLength
The length of the data buffer pointed to by the data parameter.

data
A pointer to a buffer which will hold the returned data. Before
calling KCGetData, allocate enough memory for the buffer to hold the
data you want to store. On return, a pointer to the attribute data you
requested.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 69

Preliminary  Apple Computer, Inc. 5/17/00

actualLength
On return, a pointer to the actual length of the data being retrieved.
If the buffer pointed to by data is smaller than the actual length of the
data, KCGetData returns the result code errKCBufferTooSmall. In this
case, your application must allocate a new buffer of sufficient size
before calling KCGetData again.

function result The result code errKCInvalidItemRef indicates that the specified
keychain item reference was invalid. The result code
errKCBufferTooSmall indicates that your application must allocate a
new buffer of sufficient size before calling KCGetData again. The
result code errKCDataNotModifiable indicates that the data is not
available for this item.

Discussion
You can call the KCGetData function to obtain keychain item attribute data. You can
also call the function KCGetAttribute (page 66) to obtain attribute data. The
difference between the two functions is that KCGetAttribute requires that you pass
the length of the data buffer as a field in a keychain item attribute structure rather
than as a separate parameter. It passes a pointer to the attribute structure rather than
a pointer to the attribute data and the actual length of that data as separate
parameters.

Before calling KCGetData to access keychain item data, you must call the function
KCUnlock (page 44) to unlock the keychain. You cannot call KCGetData for a private
key. KCGetData requires that you unlock the keychain in order to access item data.

You can only obtain standard item attributes identified by the tag constants
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr,
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr,
kCreatorKCItemAttr, kScriptCodeKCItemAttr, and kCustomIconKCItemAttr. In
addition, each class of keychain item has attributes specific to that class which may
be obtained. See “Keychain Item Attribute Tag Constants” (page 99) for a
description of item attribute tags.

Version Notes
Available beginning with Keychain Manager 1.0.

Manipulating Keychain Items

KCAddItem — Adds a keychain item to the default keychain. (page 70)

70 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCDeleteItem — Deletes a keychain item from the default keychain. (page 70)

KCUpdateItem — Updates a keychain item. (page 71)

KCCopyItem — Copies a keychain item from one keychain to another. (page 72)

KCAddItem

Adds a keychain item to the default keychain.

OSStatus KCAddItem (KCItemRef item);

item
A reference to the keychain item you wish to add. If you pass an
existing item in the keychain, the item is updated. If you pass an item
that has not been previously added to the keychain and an identical
item already exists in the keychain, KCAddItem returns the result code
errKCDuplicateItem.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The
result code errKCDuplicateItem indicates that you tried to add a new
item that already exists in the keychain.

Discussion
You can use the KCAddItem function to add a keychain item to the permanent data
store of the default keychain. If you want to add an item to a specific keychain,
bracket this call with the functions KCGetDefaultKeychain (page 41) and
KCSetDefaultKeychain (page 41). Calling these functions enable you to change
where items are added. KCAddItem may display the Unlock Keychain dialog if the
keychain containing the item is currently locked.

Version Notes
Available beginning with Keychain Manager 1.0.

KCDeleteItem

Deletes a keychain item from the default keychain.

OSStatus KCDeleteItem (KCItemRef item);

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 71

Preliminary  Apple Computer, Inc. 5/17/00

item
A reference to the keychain item you wish to delete. If you pass an
item that has not been previously added to the keychain,
KCDeleteItem does nothing and returns noErr.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid.

Discussion
You can use the KCDeleteItem function to delete a keychain item from the
permanent data store of the default keychain. KCDeleteItem may display the Unlock
Keychain dialog if the keychain containing the item is currently locked.

Version Notes
Available beginning with Keychain Manager 1.0.

Special Considerations
KCDeleteItem does not dispose the memory occupied by the item reference. To do
so, call the function KCReleaseItem (page 64) when you are finished with an item.

KCUpdateItem

Updates a keychain item.

OSStatus KCUpdateItem (KCItemRef item);

item
A reference to the keychain item you wish to update. If you pass an
item that has not been previously added to the keychain,
KCUpdateItem does nothing and returns noErr.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid.

Discussion
You can use the KCUpdateItem function to update a keychain item after changing its
attributes or data. The item is written to the keychain's permanent data store.
KCUpdateItem may display the Unlock Keychain dialog if the keychain containing
the item is currently locked.

72 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Version Notes
Available beginning with Keychain Manager 1.0.

KCCopyItem

Copies a keychain item from one keychain to another.

OSStatus KCCopyItem (
KCItemRef item,
KCRef destKeychain,
KCItemRef *copy);

item
A reference to the keychain item you wish to copy.

destKeychain
A reference to the keychain into which the item is to be copied.

copy
A pointer to a reference to the new copied keychain item.

function result The result code errKCReadOnly indicates that the destination
keychain is read only. The result code errKCNoSuchClass indicates
that the item has an invalid keychain item class. The result code
errKCInvalidItemRef indicates that the specified keychain item
reference was invalid.

Discussion
You can use the KCCopyItem function to copy a keychain item from one keychain to
another. KCCopyItem returns the copied item in the copy parameter. KCCopyItem may
display the Unlock Keychain dialog if the keychain containing the item is currently
locked.

Version Notes
Available beginning with Keychain Manager 2.0.

KCGetKeychain

Retrieves the location of a keychain item.

OSStatus KCGetKeychain(
KCItemRef item,
KCRef *keychain);

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 73

Preliminary  Apple Computer, Inc. 5/17/00

item
A reference to the keychain item whose keychain location you wish
to determine. If you pass a reference to a keychain item whose
keychain is locked, KCGetKeychain returns the result code
errKCInvalidItemRef.

keychain
On return, a pointer to the keychain containing the specified item.

function result The result code errKCInvalidItemRef indicates that the specified
keychain item reference was invalid.

Discussion
You can use the KCGetKeychainfunction to find the location of keychain items. The
search is only performed on unlocked keychains. KCDeleteItem may display the
Unlock Keychain dialog if the keychain containing the item is currently locked.

Version Notes
Available beginning with Keychain Manager 2.0.

Special Considerations
The keychain reference returned by KCGetKeychain should be released by calling the
function KCReleaseItem (page 64).

Searching for Keychain Items

KCFindFirstItem — Finds the first keychain item in a specified keychain that
matches specified attributes. (page 74)

KCFindNextItem — Finds the next keychain item matching the previously specified
search criteria. (page 75)

KCReleaseSearch — Disposes of the memory occupied by a search criteria reference.
(page 76)

74 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCFindFirstItem

Finds the first keychain item in a specified keychain that matches specified
attributes.

OSStatus KCFindFirstItem (
KCRef keychain
const KCAttributeList *attrList,
KCSearchRef *searchRef,
KCItemRef *item);

keychain
A reference to the keychain that you wish to search. If you pass a
locked keychain, the Unlock Keychain dialog is displayed. If you
pass NULL, KCFindFirstItem search all unlocked keychains.

attrList
A pointer to a list of 0 or more structures containing information
about the keychain item attributes to be matched. Pass NULL to match
any attribute.

searchRef
On return, a pointer to a reference to the current search criteria.

item
On return, a pointer to the first matching keychain item.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCItemNotFound
indicates that no matching keychain item was found. The result code
errKCNoSuchAttr indicates that the specified attribute is undefined
for this item class.

Discussion
The KCFindFirstItem function finds the first keychain item matching a list of zero
or more specified attributes in the specified keychain. KCFindFirstItem returns a
reference to the matching item and the current search criteria. You can use the
returned search criteria for subsequent calls to the function KCFindNextItem
(page 75).

Version Notes
Available beginning with Keychain Manager 1.0.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 75

Preliminary  Apple Computer, Inc. 5/17/00

Special Considerations
When you are completely finished with the search, call the functions KCReleaseItem
(page 64) and KCReleaseSearch (page 76) to release the keychain item reference and
search criteria reference, respectively.

KCFindNextItem

Finds the next keychain item matching the previously specified search criteria.

OSStatus KCFindNextItem (
KCSearchRef searchRef,
KCItemRef *item);

searchRef
A reference to the previously-specified search criteria. Pass the
reference passed back in the searchRef parameter of the function
<codeXRefText>KCFindFirstItem (page 74).

item
On return, a pointer to the next matching keychain item, if any.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCItemNotFound
indicates that no matching keychain item was found. The result code
errKCInvalidSearchRef indicates that the specified search reference
was invalid.

Discussion
The KCFindNextItem function finds the next keychain item matching the search
criteria previously specified by a call to KCFindFirstItem (page 74). KCFindNextItem
returns a reference to the matching item, if any.

Version Notes
Available beginning with Keychain Manager 1.0.

Special Considerations
When you are completely finished with the search, call the functions KCReleaseItem
(page 64) and KCReleaseSearch (page 76) to release the keychain item reference and
search criteria reference, respectively.

76 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCReleaseSearch

Disposes of the memory occupied by a search criteria reference.

OSStatus KCReleaseSearch (KCSearchRef *search);

search
A pointer to a search criteria reference. Pass the search criteria
reference whose memory you want to release. On return, the
reference is set to NULL and should not be used again.

function result The result code errKCInvalidSearchRef indicates that the specified
search reference was invalid.

Discussion
You should call the KCReleaseSearch function to release the memory occupied by a
search criteria reference when you are completely finished with a search performed
by calling the functions KCFindFirstItem (page 74) or KCFindNextItem (page 75).

Version Notes
Available beginning with Keychain Manager 1.0

Working With Certificates

KCFindX509Certificates — Finds certificates in a specified keychain that match the
specified search criteria. (page 76)

KCChooseCertificate — Displays a list of certificates that the user can choose from.
(page 77)

KCFindX509Certificates

Finds certificates in a specified keychain that match the specified search criteria.

OSStatus KCFindX509Certificates (
KCRef keychain,
CFStringRef name,
CFStringRef emailAddress,
KCCertSearchOptions options,
CFMutableArrayRef *certificateItems);

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 77

Preliminary  Apple Computer, Inc. 5/17/00

keychain
A reference to the keychain you want to search. If the specified
keychain is locked, the Unlock Keychain dialog is displayed.

name
A pointer to a C string containing the certificate owner's common
name.

emailAddress
A pointer to a C string containing the certificate owner’s e-mail
address.

options
The search criteria used when retrieving certificates. You can use the
masks described in “Certificate Search Option Mask Constants”
(page 92) to set the criteria.

certificateItems
On return, a pointer to an array reference of the certificate items that
were found. Pass NULL if you don’t want to obtain these references.

function result The result code errKCNoDefaultKeychain indicates that no default
keychain could be found. The result code errKCBufferTooSmall
indicates that the certificate data was too large for the supplied
buffer. In this case, your application must allocate a new buffer of
sufficient size before calling KCFindX509Certificates again. The
result code errKCItemNotFound indicates that no matching certificate
object was found.

Version Notes
Available beginning with Keychain 2.0.

Carbon Porting Notes
The KCFindX509Certificates function is fully supported in Mac OS 9. In the first
release of Mac OS X, KCFindX509Certificates returns unImpErr. Your application
should handle this error accordingly.

KCChooseCertificate

Displays a list of certificates that the user can choose from.

OSStatus KCChooseCertificate (
CFArrayRef items,
KCItemRef *certificate,
CFArrayRef policyOIDs,
KCVerifyStopOn stopOn);

78 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

items
A Core Foundation array of certificate keychain item references.

certificate
On return, a pointer to the certificate keychain item. This is returned
if the items array contains one keychain item. In this case, no user
interface is displayed.

policyOIDs
A Core Foundation array of policy OIDs that determine the trust
policy. To obtain a pointer to an array of policy OIDs for Macintosh
file signing, call the function SecMacGetDefaultPolicyOIDs.

stopOn
One of the constants defined by the KCVerifyStopOn enumeration. For
a description of these values, see “Verification Criteria Constants”
(page 107).

function result The result code userCanceledErr indicates that the user cancelled out
from the user interface presented.

Discussion
The KCChooseCertificate function displays a list of the certificates the user can
chose if the items array contains at least two keychain items. Otherwise, it returns
the single keychain item in the certificate parameter with no user interface.

Version Notes
Available beginning with Keychain 2.0.

Carbon Porting Notes
The KCChooseCertificate function is fully supported in Mac OS 9. In the first release
of Mac OS X, KCChooseCertificate returns unImpErr. Your application should
handle this error accordingly.

Managing User Interaction

KCSetInteractionAllowed — Tells Keychain functions that display user interface
whether to do so. (page 79)

KCIsInteractionAllowed — Reports whether user interaction is allowed. (page 79)

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 79

Preliminary  Apple Computer, Inc. 5/17/00

KCSetInteractionAllowed

Tells Keychain functions that display user interface whether to do so.

OSStatus KCSetInteractionAllowed (Boolean state);

state
A flag that toggles the user interface state. If you pass true, user
interaction is allowed. By default, user interaction is allowed. If you
pass false, user interaction is not allowed. In this case, Keychain
functions that normally display a user interface will instead return
an error.

Discussion
Failing to re-enable user interaction will affect other clients of the Keychain
Manager. The interaction allowed state is reset when the machine reboots to the
default state, that is, user interaction allowed.

Version Notes
Available beginning with Keychain Manager 2.0.

KCIsInteractionAllowed

Reports whether user interaction is allowed.

Boolean KCIsInteractionAllowed (void);

function result A Boolean value indicating whether user interaction is permitted. If
true, user interaction is allowed, and Keychain Manager is free to
show a user interface when needed.

Version Notes
Available beginning with Keychain Manager 2.0.

Registering Your Keychain Event Callback Function

KCAddCallback — Registers your keychain event callback function. (page 80)

KCRemoveCallback — Unregisters your keychain event callback function. (page 81)

80 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCAddCallback

Registers your keychain event callback function.

OSStatus KCAddCallback (
KCCallbackUPP callbackProc,
KCEventMask eventMask,
void *userContext);

callbackProc
A Universal Procedure Pointer (UPP) to your keychain event
callback function, described in KCCallbackProcPtr (page 84). You
indicate the type of keychain events you want to receive by passing
a bitmask of the desired events in the eventMask parameter. To create
a UPP to your callback function, call the function NewKCCallbackUPP
(page 82).

eventMask
A bitmask indicating the keychain events that your application
wishes to be notified of. See “Keychain Event Mask Constants”
(page 97) for a description of this bitmask. The Keychain Manager
tests this mask to determine the keychain events that you wish to
receive, and passes these events in the keychainEvent parameter of
your callback function. See “Keychain Event Constants” (page 96)
for a description of these events.

userContext
A pointer to application-defined storage that will be passed to your
callback function. Your application can use this to associate any
particular call of KCAddCallback with any particular call of your
keychain event callback function.

function result The result code errKCDuplicateCallback indicates that your callback
function is already registered.

Discussion
You can register your callback function by passing a UPP to it in the callbackProc
parameter of the KCAddCallback function. Once you done so, the Keychain Manager
calls the function InvokeKCCallbackUPP (page 82) when the keychain event specified
in the eventMask parameter occurs. In turn, InvokeKCCallbackUPP passes the
keychain event, information about the event, and application-defined storage to
your keychain event callback function.

Version Notes
Available beginning with Keychain 1.0.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 81

Preliminary  Apple Computer, Inc. 5/17/00

KCRemoveCallback

Unregisters your keychain event callback function.

OSStatus KCRemoveCallback (KCCallbackUPP callbackProc);

callbackProc
A Universal Procedure Pointer (UPP) to your keychain event
callback function that was previously registered with the function
KCAddCallback (page 80).

function result The result code errKCInvalidCallback indicates that the callback
function was not previously registered.

Discussion
After you pass a UPP to your keychain event callback function to the
KCRemoveCallback function, it will no longer be called by the Keychain Manager.

Version Notes
Available beginning with Keychain 1.0.

Special Considerations
After calling KCRemoveCallback, you should call the function DisposeKCCallbackUPP
(page 83) to dispose of the UPP to your callback function.

Creating and Managing Universal Procedure
Pointers
You can use these functions to create and manage universal procedure pointers
(UPPs) to your keychain event callback function.

NewKCCallbackUPP — Creates a UPP to your keychain event callback function.
(page 82)

InvokeKCCallbackUPP — Invokes your keychain event callback function. (page 82)

DisposeKCCallbackUPP — Disposes of a UPP to your keychain event callback
function. (page 83)

82 Keychain Manager Functions

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

NewKCCallbackUPP

Creates a UPP to your keychain event callback function.

KCCallbackUPP NewKCCallbackUPP (KCCallbackProcPtr userroutine);

userroutine
A pointer to your keychain event callback function. For information
on how to create a keychain event callback, see KCCallbackProcPtr
(page 84).

function result A UPP to your callback function. You can register your callback
function by passing this UPP in the callbackProc parameter of the
function KCAddCallback (page 80).

Discussion
The NewKCCallbackUPP function creates a pointer to your keychain event callback
function. You pass a pointer to your callback function in the callbackProc
parameter of the function KCAddCallback (page 80) if you want your application to
receive data transfer events.

Version Notes
Available beginning with Keychain 1.0.

Special Considerations
When you are finished with a UPP to your keychain event callback function, you
should dispose of it by calling the function DisposeKCCallbackUPP (page 83).

InvokeKCCallbackUPP

Invokes your keychain event callback function.

OSStatus InvokeKCCallbackUPP(
KCEvent keychainEvent,
KCCallbackInfo *info,
void *userContext,
KCCallbackUPP userUPP);

keychainEvent
The keychain events you want your application to receive. See
“Keychain Event Constants” (page 96) for a description of possible
values. The Keychain Manager tests the bitmask you pass in the
eventMask parameter of the function KCAddCallback (page 80) to

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Functions 83

Preliminary  Apple Computer, Inc. 5/17/00

determine which events to pass to your callback function. See
“Keychain Event Mask Constants” (page 97) for a description of this
bitmask.

info
A pointer to a structure of type KCCallbackInfo (page 88) that
provides information about the keychain event to your callback
function. The Keychain Manager passes a pointer to this structure in
the info parameter of your callback function.

userContext
A pointer to application-defined storage. The Keychain Manager
passes this value in the userContext parameter of your callback
function. Your application can use this to associate any particular call
of InvokeKCCallbackUPP with any particular call of the keychain
event callback function.

userUPP
A Universal Procedure Pointer to your keychain event callback
function. For information on how to create a keychain event callback
function, see KCCallbackProcPtr (page 84).

Discussion
The Keychain Manager calls the InvokeKCCallbackUPP function when you pass a
UPP to your callback function in the callbackProc parameter of the function
KCAddCallback (page 80), and the keychain event that you specified in the eventMask
parameter occurs.

DisposeKCCallbackUPP

Disposes of a UPP to your keychain event callback function.

OSStatus DisposeKCCallbackUPP (KCCallbackUPP userUPP);

userUPP
A Universal Procedure Pointer (UPP) to your keychain event
callback function.

Discussion
When you are finished with a UPP to your keychain event callback function, you
should dispose of it by calling the DisposeKCCallbackUPP function.

Version Notes
Available beginning with Keychain 1.0.

84 Keychain Manager Callback

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Callback

KCCallbackProcPtr — Defines a pointer to your keychain event callback function.
Your keychain event callback function handles events that occur when the user
accesses the keychain. (page 84)

KCCallbackProcPtr

Defines a pointer to your keychain event callback function. Your keychain event
callback function handles events that occur when the user accesses the keychain.

OSStatus *KCCallbackProcPtr
(KCEvent keychainEvent, KCCallbackInfo *info, void *userContext);

You would declare your Keychain event callback function like this if you were to
name it MyKCCallback:

OSStatus MyKCCallback(
KCEvent keychainEvent
KCCallbackInfo *info,
void *userContext);

keychainEvent
The keychain event that your application wishes to be notified of. See
“Keychain Event Constants” (page 96) for a description of possible
values. The type of event that can trigger your callback depends on
the bitmask you passed in the eventMask parameter of the function
KCAddCallback (page 80). For more information, see the discussion.

info
A pointer to a structure of type KCCallbackInfo (page 88). On return,
the structure contains information about the keychain event that
occurred. The Keychain Manager passes this information to your
callback function via the info parameter of the function
InvokeKCCallbackUPP (page 82).

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Data Types 85

Preliminary  Apple Computer, Inc. 5/17/00

userContext
A pointer to application-defined storage that your application
previously passed to the function KCAddCallback (page 80). You can
use this value to perform operations like track which instance of a
function is operating.

function result Your keychain event callback function should process the keychain
event and return noErr.

Discussion
Your keychain event callback function handles those keychain events that you
indicate. In order to be notified of these events, you must pass a UPP to your
notification callback function in the callbackProc parameter of KCAddCallback
(page 80). You indicate the type of data transfer events you want to receive via a
bitmask in the eventMask parameter. When you no longer wish to receive
notification of keychain events, you should call the function KCRemoveCallback
(page 81) to dispose of the UPP to your keychain event callback function.

Keychain Manager Data Types

AFPServerSignature — Represents a 16-byte Apple File Protocol server signature
block. (page 86)

KCAttribute — Contains information about a keychain item attribute. (page 86)

KCAttributeList — Lists attributes in a keychain item. (page 87)

KCAttrType — Identifies a keychain item attribute value. (page 87)

KCCallbackInfo — Contains information about a keychain event. (page 88)

KCItemRef — Represents a reference to a keychain item. (page 89)

KCPublicKeyHash — Represents a 20-byte public key hash. (page 89)

KCRef — Represents a reference to a keychain. (page 89)

KCSearchRef — Represents a reference to the current search criteria. (page 90)

86 Keychain Manager Data Types

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

AFPServerSignature

Represents a 16-byte Apple File Protocol server signature block.

typedef UInt8 AFPServerSignature[16];

Discussion
The AFPServerSignature type represents a 16-byte Apple File Protocol server
signature block. You can pass a value of this type in the serverSignature parameter
of the functions KCAddAppleSharePassword (page 48) and KCFindAppleSharePassword
(page 49) to represent an Apple File Protocol server signature. You can use a value
of this type with the keychain item attribute constant kSignatureKCItemAttr to
specify an Apple File Protocol server signature.

KCAttribute

Contains information about a keychain item attribute.

struct KCAttribute {
KCAttrType tag;
UInt32 length;
void *data;

};
typedef struct KCAttribute KCAttribute,
typedef KCAttribute * KCAttributePtr;

Field descriptions
tag

Identifies a keychain item attribute value. See “Keychain Item
Attribute Tag Constants” (page 99) for a description of the
Apple-defined tag constants and the data types of the values they
identify. Your application can create application-defined tags of type
KCAttrType (page 87).

length

The length of the attribute data.
data

A pointer to the attribute data. When calling the function
KCSetAttribute (page 65), you should set this field to a pointer to the
attribute data you wish to add. When calling the function
KCGetAttribute (page 66), you should set this field to a pointer to a
buffer of sufficient length for the type of data to be returned. On
return, this field contains the requested attribute data.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Data Types 87

Preliminary  Apple Computer, Inc. 5/17/00

Discussion
The KCAttribute type represents a structure containing information about the
attribute of a keychain item. It contains a tag that identifies a particular keychain
item attribute value, the length of the attribute value, and a pointer to the attribute
value. You can modify attribute data for a keychain item attribute by passing a
pointer to this structure in the attr parameter of the function KCSetAttribute
(page 65). The function KCGetAttribute (page 66) passes back a pointer to this
structure in the attr parameter.

KCAttributeList

Lists attributes in a keychain item.

struct KCAttributeList {
UInt32 count;
KCAttribute *attr;

};
typedef struct KCAttributeList KCAttributeList;

Field descriptions
count

The number of keychain item attribute structures in this list.
attr

A pointer to the first keychain item attribute structure in this list.

Discussion
The KCAttributeList type represents a list of structures containing information
about the attributes in a keychain item. You pass a pointer to this list of 0 or more
structures in the attrList parameter of the function KCFindFirstItem (page 74) to
indicate the attributes to be matched.

KCAttrType

Identifies a keychain item attribute value.

typedef OSType KCAttrType;

Discussion
The KCAttrType type represents a tag that identifies a keychain item attribute value.
You can use this value in the tag field of the structure KCAttribute (page 86) to
identify the keychain item attribute value you wish to set or obtain. See “Keychain

88 Keychain Manager Data Types

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Item Attribute Tag Constants” (page 99) for a description of the Apple-defined tag
constants and the data types of the values they identify. Your application can create
application-defined tags of type KCAttrType.

KCCallbackInfo

Contains information about a keychain event.

struct KCCallbackInfo{
UInt32 version;
KCItemRef item;
ProcessSerialNumber processID;
EventRecord event;
KCRef keychain;
};
typedef struct KCCallbackInfo KCCallbackInfo;

Field descriptions
version

The version of this structure.
item

A reference to the keychain item in which the event occurred. If the
event did not involve an item, this field is not valid.

processID

A 64-bit quantity containing the process serial number of the process
in which the event occurred.

event

The keychain event that occurred. If the event is a system event as
indicated by kSystemKCEvent, the Keychain client can process events.
If the event is not a system event, this field is not valid.

keychain

A reference to the keychain in which the event occurred. If the event
did not involve a keychain, this field is not valid.

Discussion
The KCCallbackInfo type represents a structure that contains information about the
keychain event that your application wants to be notified of. The Keychain Manager
passes a pointer to this structure in the info parameter of your callback function via
the function InvokeKCCallbackUPP (page 82), which invokes your callback function.
For information on how to write a keychain event callback function, see
KCCallbackProcPtr (page 84).

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Data Types 89

Preliminary  Apple Computer, Inc. 5/17/00

KCItemRef

Represents a reference to a keychain item.

typedef struct OpaqueKCItemRef* KCItemRef;

Discussion
The KCItemRef type represents a reference to an opaque structure that identifies a
keychain item. You should call the function KCNewItem (page 63) to create a keychain
item reference. The function KCReleaseItem (page 64) disposes of a keychain item
reference when no longer needed. You pass a reference of this type to Keychain
Manager functions that operate on a keychain item in some way.

KCPublicKeyHash

Represents a 20-byte public key hash.

typedef UInt8 KCPublicKeyHash[20];

Discussion
The KCPublicKeyHash type represents a hash of a public key. You can use the tag
constant kPublicKeyHashKCItemAttr, described in “Keychain Item Attribute Tag
Constants” (page 99), to set or retrieve a certificate attribute value of this type.

Carbon Porting Notes
The KCPublicKeyHash type is fully supported in Mac OS 9 but will not be supported
in the first release of OS X.

KCRef

Represents a reference to a keychain.

typedef struct OpaqueKCRef* KCRef;

Discussion
The KCRef type represents a reference to an opaque structure that identifies a
keychain. You should call the function KCMakeKCRefFromFSSpec (page 37) or
KCMakeKCRefFromAlias (page 38) to create a keychain reference. The function
KCReleaseKeychain (page 39) disposes of a keychain reference when no longer
needed. You pass a reference of this type to Keychain Manager functions that
operate on a keychain in some way.

90 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

KCSearchRef

Represents a reference to the current search criteria.

typedef struct OpaqueKCSearchRef* KCSearchRef;

Discussion
The KCSearchRef type represents a reference to an opaque structure that identifies
the current search criteria. The function KCFindFirstItem (page 74) passes back a
reference of this type in the search parameter for subsequent calls to the function
KCFindNextItem (page 75). You must release this reference when you are finished
with a search by calling the function KCReleaseSearch (page 76).

Keychain Manager Constants

Authentication Type Constants — Represent the type of authentication to use in
storing and retrieving Internet passwords. (page 91)

Certificate Search Option Mask Constants — Represent a mask that specifies the
search criteria to use when retrieving certificates. (page 92)

Default Authentication Type Constant — Indicates that any authentication type can
be used. (page 94)

Default Port Constant — Indicates that any port can be used. (page 95)

Default Protocol Constant — Indicates that any protocol can be used. (page 95)

Keychain Event Constants — Identify Keychain-related events. (page 96)

Keychain Event Mask Constants — Represent a mask that indicates the
Keychain-related events your notification callback function will receive. (page 97)

Keychain Item Attribute Tag Constants — Represent tags that identify keychain
item attribute values. (page 99)

Keychain Item Class Constants — Identify the type of the keychain item you want
to create. (page 104)

Keychain Protocol Type Constants — Represent the type of protocol to use in
storing and retrieving Internet passwords. (page 105)

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 91

Preliminary  Apple Computer, Inc. 5/17/00

Keychain Status Mask Constants — Represent a mask identifying the status of a
keychain. (page 106)

Verification Criteria Constants — Represent the verification criteria to use in
selecting certificates. (page 107)

Authentication Type Constants

Represent the type of authentication to use in storing and retrieving Internet
passwords.

enum {
kKCAuthTypeNTLM = 'ntlm',
kKCAuthTypeMSN = 'msna',
kKCAuthTypeDPA = 'dpaa',
kKCAuthTypeRPA = 'rpaa',
kKCAuthTypeHTTPDigest = 'httd',
kKCAuthTypeDefault = 'dflt'
};
typedef FourCharCode KCAuthType;

Constant descriptions
kKCAuthTypeNTLM

Specifies Windows NT LAN Manager authentication.
kKCAuthTypeMSN

Specifies Microsoft Network authentication.
kKCAuthTypeDPA

Specifies Distributed Password authentication.
kKCAuthTypeRPA

Specifies Remote Password authentication.
kKCAuthTypeHTTPDigest

Specifies HTTP Digest Access authentication.
kKCAuthTypeDefault

Specifies default authentication.

Discussion
The KCAuthType enumeration defines constants you can use to identify the type of
authentication to use in storing and retrieving Internet passwords. You can pass a
constant of this type in the authType parameter of the functions
KCAddInternetPassword (page 52), KCAddInternetPasswordWithPath (page 53),
KCFindInternetPassword (page 55), and KCFindInternetPasswordWithPath (page 57).

92 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Certificate Search Option Mask Constants

Represent a mask that specifies the search criteria to use when retrieving
certificates.

enum {
kCertSearchShift = 0, /* start at bit 0 */
kCertSearchSigningIgnored = 0,
kCertSearchSigningAllowed = 1 << (kCertSearchShift + 0),
kCertSearchSigningDisallowed = 1 << (kCertSearchShift + 1),
kCertSearchSigningMask = ((kCertSearchSigningAllowed) |

(kCertSearchSigningDisallowed)),
kCertSearchVerifyIgnored = 0,
kCertSearchVerifyAllowed = 1 << (kCertSearchShift + 2),
kCertSearchVerifyDisallowed = 1 << (kCertSearchShift + 3),
kCertSearchVerifyMask = ((kCertSearchVerifyAllowed) |

(kCertSearchVerifyDisallowed)),
kCertSearchEncryptIgnored = 0,
kCertSearchEncryptAllowed = 1 << (kCertSearchShift + 4),
kCertSearchEncryptDisallowed = 1 << (kCertSearchShift + 5),
kCertSearchEncryptMask = ((kCertSearchEncryptAllowed) |

(kCertSearchEncryptDisallowed)),
kCertSearchDecryptIgnored = 0,
kCertSearchDecryptAllowed = 1 << (kCertSearchShift + 6),
kCertSearchDecryptDisallowed = 1 << (kCertSearchShift + 7),
kCertSearchDecryptMask = ((kCertSearchDecryptAllowed) |

(kCertSearchDecryptDisallowed)),
kCertSearchWrapIgnored = 0,
kCertSearchWrapAllowed = 1 << (kCertSearchShift + 8),
kCertSearchWrapDisallowed = 1 << (kCertSearchShift + 9),
kCertSearchWrapMask = ((kCertSearchWrapAllowed) |

(kCertSearchWrapDisallowed)),
kCertSearchUnwrapIgnored = 0,
kCertSearchUnwrapAllowed = 1 << (kCertSearchShift + 10),
kCertSearchUnwrapDisallowed = 1 << (kCertSearchShift + 11),
kCertSearchUnwrapMask = ((kCertSearchUnwrapAllowed) |

(kCertSearchUnwrapDisallowed)),
kCertSearchPrivKeyRequired = 1 << (kCertSearchShift + 12),
kCertSearchAny = 0
};
typedef UInt32 KCCertSearchOptions;

Constant descriptions
kCertSearchShift

kCertSearchSigningIgnored

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 93

Preliminary  Apple Computer, Inc. 5/17/00

kCertSearchSigningAllowed

kCertSearchSigningDisallowed

kCertSearchSigningMask

kCertSearchVerifyIgnored

kCertSearchVerifyAllowed

kCertSearchVerifyDisallowed

kCertSearchVerifyMask

kCertSearchEncryptIgnored

kCertSearchEncryptAllowed

kCertSearchEncryptDisallowed

kCertSearchEncryptMask

kCertSearchDecryptIgnored

kCertSearchDecryptAllowed

kCertSearchDecryptDisallowed

kCertSearchDecryptMask

kCertSearchWrapIgnored

kCertSearchWrapAllowed

94 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kCertSearchWrapDisallowed

kCertSearchWrapMask

kCertSearchUnwrapIgnored

kCertSearchUnwrapAllowed

kCertSearchUnwrapDisallowed

kCertSearchUnwrapMask

kCertSearchPrivKeyRequired

kCertSearchAny

Discussion
The KCCertSearchOptions enumeration defines masks that you can use to set the
search criteria to use when retrieving certificates. in the options parameter of the
function KCFindX509Certificates (page 76).

Carbon Porting Notes
The KCCertSearchOptions enumeration is fully supported in Mac OS 9 but will not
be supported in the first release of Mac OS X.

Default Authentication Type Constant

Indicates that any authentication type can be used.

 const OSType kAnyAuthType = 0L;

Constant descriptions
kAnyAuthType

Specifies that any authentication type can be used.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 95

Preliminary  Apple Computer, Inc. 5/17/00

Discussion
You can pass the kAnyAuthType constant in the authType parameter of the functions
KCAddInternetPassword (page 52), KCAddInternetPasswordWithPath (page 53),
KCFindInternetPassword (page 55), and KCFindInternetPasswordWithPath (page 57)
to indicate that any authentication scheme can be used during the add or search
operation.

Default Port Constant

Indicates that any port can be used.

const UInt16 kAnyPort = 0;

Constant descriptions
kAnyPort

Specifies that any port can be used.

Discussion
You can pass the kAnyPort constant in the port parameter of the functions
KCAddInternetPassword (page 52), KCAddInternetPasswordWithPath (page 53),
KCFindInternetPassword (page 55), and KCFindInternetPasswordWithPath (page 57)
to indicate that any port can be used during the add or search operation.

Default Protocol Constant

Indicates that any protocol can be used.

const OSType kAnyProtocol = 0L

Constant descriptions
kAnyProtocol

Specifies that any protocol can be used.

Discussion
You can pass the kAnyProtocol constant in the protocol parameter of the functions
KCAddInternetPassword (page 52), KCAddInternetPasswordWithPath (page 53),
KCFindInternetPassword (page 55), and KCFindInternetPasswordWithPath (page 57)
to indicate that any protocol can be used during the add or search operation.

96 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Keychain Event Constants

Identify Keychain-related events.

enum {
kIdleKCEvent = 0,
kLockKCEvent = 1,
kUnlockKCEvent = 2,
kAddKCEvent = 3,
kDeleteKCEvent = 4,
kUpdateKCEvent = 5,
kChangeIdentityKCEvent = 6,
kFindKCEvent = 7,
kSystemKCEvent = 8,
kDefaultChangedKCEvent = 9,
kDataAccessKCEvent = 10
 };

typedef UInt16 KCEvent

Constant descriptions
kIdleKCEvent

Indicates a NULL event.
kLockKCEvent

Indicates that the keychain was locked.
kUnlockKCEvent

Indicates that the keychain was unlocked.
kAddKCEvent

Indicates that an item was added to a keychain.
kDeleteKCEvent

Indicates that an item was deleted from a keychain.
kUpdateKCEvent

Indicates that a keychain item was updated.
kChangeIdentityKCEvent

Indicates that the identity of the keychain was changed.
kFindKCEvent

Indicates that a keychain item was found.
kSystemKCEvent

Indicates that the event is a system event. In this case, the Keychain
client can process events.

kDefaultChangedKCEvent

Indicates that the default keychain has changed.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 97

Preliminary  Apple Computer, Inc. 5/17/00

kDataAccessKCEvent

Indicates that a process has called the function KCGetData (page 68) to
access a keychain item’s data.

Discussion
The KCEvent enumeration defines constants that identify the Keychain-related
events your callback function wishes to receive. The Keychain Manager tests a mask
that you pass in the eventMask parameter of the function KCAddCallback (page 80) to
determine the data transfer events your notification callback function wishes to
receive. It passes these events in the keychainEvent parameter of the function
InvokeKCCallbackUPP (page 82). For a description of the Keychain-related event
masks, see “Keychain Event Mask Constants” (page 97).

Keychain Event Mask Constants

Represent a mask that indicates the Keychain-related events your notification
callback function will receive.

enum {
kIdleKCEventMask = 1 <<kIdleEvent,
kLockKCEventMask = 1 <<kLockEvent,
kUnlockKCEventMask = 1 <<kUnlockEvent,
kAddKCEventMask = 1 <<kAddEvent,
kDeleteKCEventMask = 1 <<kDeleteEvent,
kUpdateKCEventMask = 1 <<kUpdateEvent,
kChangeIdentityKCEventMask = 1 <<kChangeIdentityKCEvent,
kFindKCEventMask = 1 <<kFindKCEvent,
kSystemEventKCEventMask = 1 <<kSystemKCEvent
kDefaultChangedKCEventMask = 1 << kDefaultChangedKCEvent,
kDataAccessKCEventMask = 1 << kDataAccessKCEvent,
kEveryEventKCEventMask = 0xFFFF /* all of the above */
};
typedef UInt 16 KCEventMask;

Constant descriptions
kIdleKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked during a NULL event.

kLockKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when the keychain is locked.

98 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kUnlockKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when the keychain is unlocked.

kAddKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when an item is added to the keychain.

kDeleteKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when an item is removed from the keychain.

kUpdateKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when a keychain item is updated.

kChangeIdentityKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when the keychain identity is changed.

kFindKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when a keychain item is found.

kSystemEventKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when a keychain client can process events.

kDefaultChangedKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when the default keychain is changed.

kDataAccessKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when a process calls the function KCGetData (page 68).

kEveryEventKCEventMask

If the bit specified by this mask is set, your callback function will be
invoked when any of the above Keychain-related events occur.

Discussion
The KCEventMask enumeration defines masks your application can use to set
Keychain event bits. You pass this mask in the eventMask parameter of the function
KCAddCallback (page 80), thereby defining the Keychain-related events that your
callback will respond to. The Keychain Manager uses this mask to test which events

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 99

Preliminary  Apple Computer, Inc. 5/17/00

your callback function will handle. It passes these events in the keychainEvent
parameter of the function InvokeKCCallbackUPP (page 82). For a description of
Keychain-related events, see “Keychain Event Constants” (page 96).

Keychain Item Attribute Tag Constants

Represent tags that identify keychain item attribute values.

enum { /* Common attributes */
kClassKCItemAttr = 'clas',
kCreationDateKCItemAttr = 'cdat',
kModDateKCItemAttr = 'mdat',
kDescriptionKCItemAttr = 'desc',
kCommentKCItemAttr = 'icmt',
kCreatorKCItemAttr = 'crtr',
kTypeKCItemAttr = 'type',
kScriptCodeKCItemAttr = 'scrp',
kLabelKCItemAttr = 'labl',
kInvisibleKCItemAttr = 'invi',
kNegativeKCItemAttr = 'nega',
kCustomIconKCItemAttr = 'cusi',

/* Unique Generic password attributes */
kAccountKCItemAttr = 'acct',
kServiceKCItemAttr = 'svce',
kGenericKCItemAttr = 'gena',

/* Unique Internet password attributes */
kSecurityDomainKCItemAttr = 'sdmn',
kServerKCItemAttr = 'srvr',
kAuthTypeKCItemAttr = 'atyp',
kPortKCItemAttr = 'port',
kPathKCItemAttr = 'path',

/* Unique Appleshare password attributes */
kVolumeKCItemAttr = 'vlme',
kAddressKCItemAttr = 'addr',
kSignatureKCItemAttr = 'ssig',

/* Unique AppleShare and Internet attributes */
kProtocolKCItemAttr = 'ptcl',

/* Certificate attributes */
kSubjectKCItemAttr = 'subj',
kCommonNameKCItemAttr = 'cn ',
kIssuerKCItemAttr = 'issu',
kSerialNumberKCItemAttr = 'snbr',

100 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kEMailKCItemAttr = 'mail',
kPublicKeyHashKCItemAttr = 'hpky',
kIssuerURLKCItemAttr = 'iurl',

/* Attributes shared by keys and certificates */
kEncryptKCItemAttr = 'encr',
kDecryptKCItemAttr = 'decr',
kSignKCItemAttr = 'sign',
kVerifyKCItemAttr = 'veri',
kWrapKCItemAttr = 'wrap',
kUnwrapKCItemAttr = 'unwr',
kStartDateKCItemAttr = 'sdat',
kEndDateKCItemAttr = 'edat'
};
typedef FourCharCode KCItemAttr;

Constant descriptions
kClassKCItemAttr

Identifies the class attribute. You use this tag to set or get a value of
type KCItemClass that indicates whether the item is an AppleShare,
Internet, or generic password, or a certificate. See “Keychain Item
Class Constants” (page 104) for a description of possible values.

kCreationDateKCItemAttr

Identifies the creation date attribute. You use this tag to set or get a
value of type UInt32 that indicates the date the item was created.

kModDateKCItemAttr

Identifies the modification date attribute. You use this tag to set or
get a value of type UInt32 that indicates the last time the item was
updated.

kDescriptionKCItemAttr

Identifies the description attribute. You use this tag to set or get a
value of type string that represents a user-visible string describing
this item.

kCommentKCItemAttr

Identifies the comment attribute. You use this tag to set or get a value
of type string that represents a user-editable string containing
comments for this item.

kCreatorKCItemAttr

Identifies the creator attribute. You use this tag to set or get a value
of type OSType that represents the item’s creator.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 101

Preliminary  Apple Computer, Inc. 5/17/00

kTypeKCItemAttr

Identifies the type attribute. You use this tag to set or get a value of
type OSType that represents the item’s type.

kScriptCodeKCItemAttr

Identifies the script code attribute. You use this tag to set or get a
value of type ScriptCode that represents the script code for all
strings.

kLabelKCItemAttr

Identifies the label attribute. You use this tag to set or get a value of
type string that represents a user-editable string containing the label
for this item.

kInvisibleKCItemAttr

Identifies the invisible attribute. You use this tag to set or get a value
of type Boolean that indicates whether the item is invisible.

kNegativeKCItemAttr

Identifies the negative attribute. You use this tag to set or get a value
of type Boolean that indicates whether there is a valid password
associated with this keychain item. This is useful if your application
doesn't want a password for some particular service to be stored in
the keychain, but prefers that it always be entered by the user. The
item (typically invisible and with zero-length data) acts as a
placeholder to say “don't use me.”

kCustomIconKCItemAttr

Identifies the custom icon attribute. You use this tag to set or get a
value of type Boolean that indicates whether the item has an
application-specific icon. To do this, you must also set the attribute
value identified by the tag kTypeKCItemAttr to a file type for which
there is a corresponding icon in the desktop database, and set the
attribute value identified by the tag kCreatorKCItemAttr to an
appropriate application creator type. If a custom icon corresponding
to the item's type and creator can be found in the desktop database,
it will be displayed by Keychain Access. Otherwise, default icons are
used.

kAccountKCItemAttr

Identifies the account attribute. You use this tag to set or get a value
of type Str63 that represents the user account. It also applies to
generic and AppleShare passwords.

102 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kServiceKCItemAttr

Identifies the service attribute. You use this tag to set or get a value
of type Str63 that represents the service.

kGenericKCItemAttr

Identifies the generic attribute. You use this tag to set or get a value
of untyped bytes that represents a user-defined attribute.

kSecurityDomainKCItemAttr

Identifies the security domain attribute. You use this tag to set or get
a value of type Str63 that represents the Internet security domain.

kServerKCItemAttr

Identifies the server attribute. You use this tag to set or get a value of
type string that represents the Internet server’s domain name or IP
address.

kAuthTypeKCItemAttr

Identifies the authentication type attribute. You use this tag to set or
get a value of type KCAuthType that represents the Internet
authentication scheme.

kPortKCItemAttr

Identifies the port attribute. You use this tag to set or get a value of
type UInt16 that represents the Internet port.

kPathKCItemAttr

Identifies the path attribute. You use this tag to set or get a value of
type Str255 that represents the path.

kVolumeKCItemAttr

Identifies the volume attribute. You use this tag to set or get a value
of type Str63 that represents the AppleShare volume.

kAddressKCItemAttr

Identifies the address attribute. You use this tag to set or get a value
of type string that represents the zone name, or the IP or domain
name that represents the server address.

kSignatureKCItemAttr

Identifies the server signature attribute. You use this tag to set or get
a value of type AFPServerSignature (page 86) that represents the
server signature block.

kProtocolKCItemAttr

Identifies the protocol attribute. You use this tag to set or get a value
of type KCProtocolType that represents the Internet protocol.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 103

Preliminary  Apple Computer, Inc. 5/17/00

kSubjectKCItemAttr

Identifies the subject attribute. You use this tag to set or get
DER-encoded data that represents the subject distinguished name.

kCommonNameKCItemAttr

Identifies the common name attribute. You use this tag to set or get
a UTF8-encoded string that represents the common name.

kIssuerKCItemAttr

Identifies the issuer attribute. You use this tag to set or get a
DER-encoded data that represents the issuer distinguished name.

kSerialNumberKCItemAttr

Identifies the serial number attribute. You use this tag to set or get a
DER-encoded data that represents the serial number.

kEMailKCItemAttr

Identifies the email attribute. You use this tag to set or get an
ASCII-encoded string that represents the issuer ’s email address.

kPublicKeyHashKCItemAttr

Identifies the public key hash attribute. You use this tag to set or get
a value of type KCPublicKeyHash (page 89) that represents the hash of
the public key.

kIssuerURLKCItemAttr

Identifies the issuer URL attribute. You use this tag to set or get an
ASCII-encoded string that represents the URL of the certificate issuer.

kEncryptKCItemAttr

Identifies the encrypt attribute. You use this tag to set or get a value
of type Boolean that indicates whether the item can encrypt.

kDecryptKCItemAttr

Identifies the decrypt attribute. You use this tag to set or get a value
of type Boolean that indicates whether the item can decrypt.

kSignKCItemAttr

Identifies the sign attribute. You use this tag to set or get a value of
type Boolean that indicates whether the item can sign.

kVerifyKCItemAttr

Identifies the verify attribute. You use this tag to set or get a value of
type Boolean that indicates whether the item can verify.

kWrapKCItemAttr

Identifies the wrap attribute. You use this tag to set or get a value of
type Boolean that indicates whether the item can wrap.

104 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kUnwrapKCItemAttr

Identifies the unwrap attribute. You use this tag to set or get a value
of type Boolean that indicates whether the item can unwrap.

kStartDateKCItemAttr

Identifies the start date attribute. You use this tag to set or get a value
of type UInt32 that indicates the start date.

kEndDateKCItemAttr

Identifies the end date attribute. You use this tag to set or get a value
of type UInt32 that indicates the end date.

Discussion
The KCItemAttr enumeration defines the Apple-defined tag constants that identify
keychain item attribute values. Your application can use one of these tags in the tag
field of the structure KCAttribute (page 86) to identify the keychain item attribute
value you wish to set or retrieve. Your application can create application-defined
tags of type KCAttrType (page 87).

Keychain Item Class Constants

Identify the type of the keychain item you want to create.

enum {
kCertificateKCItemClass = 'cert',
kAppleSharePasswordItemClass = 'ashp',
kInternetPasswordItemClass = 'inet',
kGenericPasswordItemClass = 'genp'
};
typedef FourCharCode KCItemClass;

Constant descriptions
kCertificateKCItemClass

Specifies that the item is a certificate.
kAppleSharePasswordItemClass

Specifies that the item is an AppleShare password.
kInternetPasswordItemClass

Specifies that the item is an Internet password.
kGenericPasswordItemClass

Specifies that the item is a generic password.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 105

Preliminary  Apple Computer, Inc. 5/17/00

Discussion
The KCItemClass enumeration defines constants your application can use to specify
the type of the keychain item you wish to create. You can pass a constant of this type
in the itemClass parameter of the function <codeXRefText>KCNewItem (page 63).
You can use these constants to specify the value of a keychain item identified by the
tag constant kClassKCItemAttr, described in “Keychain Item Attribute Tag
Constants” (page 99).

Keychain Protocol Type Constants

Represent the type of protocol to use in storing and retrieving Internet passwords.

enum {
kKCProtocolTypeFTP = 'ftp ',
kKCProtocolTypeFTPAccount = 'ftpa',
kKCProtocolTypeHTTP = 'http',
kKCProtocolTypeIRC = 'irc ',
kKCProtocolTypeNNTP = 'nntp',
kKCProtocolTypePOP3 = 'pop3',
kKCProtocolTypeSMTP = 'smtp',
kKCProtocolTypeSOCKS = 'sox ',
kKCProtocolTypeIMAP = 'imap',
kKCProtocolTypeLDAP = 'ldap',
kKCProtocolTypeAppleTalk = 'atlk',
kKCProtocolTypeAFP = 'afp ',
kKCProtocolTypeTelnet = 'teln'
};
typedef FourCharCode KCProtocolType;

Constant descriptions
kKCProtocolTypeFTP

Specifies the File Transfer Protocol.
kKCProtocolTypeFTPAccount

Specifies the File Transfer Protocol Account.
kKCProtocolTypeHTTP

Specifies the HyperText Transfer Protocol.
kKCProtocolTypeIRC

Specifies the Internet Relay Channel Protocol.
kKCProtocolTypeNNTP

Specifies the Network News Transfer Protocol.
kKCProtocolTypePOP3

Specifies the Post Office 3 Protocol.

106 Keychain Manager Constants

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

kKCProtocolTypeSMTP

Specifies the Simple Mail Transfer Protocol.
kKCProtocolTypeSOCKS

Specifies the Secure Proxy Server Protocol.
kKCProtocolTypeIMAP

Specifies the Internet Message Access Protocol.
kKCProtocolTypeLDAP

Specifies the Lightweight Directory Access Protocol.
kKCProtocolTypeAppleTalk

Specifies the AppleTalk Protocol.
kKCProtocolTypeAFP

Specifies the AppleTalk File Protocol.
kKCProtocolTypeTelnet

Specifies the Telnet Protocol.

Discussion
The KCProtocolType enumeration defines constants you can use to identify the type
of authentication to use in storing and retrieving Internet passwords. You can pass
a constant of this type in the protocol parameter of the functions
KCAddInternetPassword (page 52), KCAddInternetPasswordWithPath (page 53),
KCFindInternetPassword (page 55), and KCFindInternetPasswordWithPath (page 57).

Keychain Status Mask Constants

Represent a mask identifying the status of a keychain.

enum{
kUnlockStateKCStatus = 1,
kRdPermKCStatus = 2,
kWrPermKCStatus = 4

};
typedef UInt32 KCStatus;

Constant descriptions
kUnlockStateKCStatus

If the bit specified by this mask is set (bit 0), the keychain is unlocked.
kRdPermKCStatus

If the bit specified by this mask is set (bit 1), the keychain is unlocked
with read permission.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Constants 107

Preliminary  Apple Computer, Inc. 5/17/00

kWrPermKCStatus

If the bit specified by this mask is set (bit 2), the keychain is unlocked
with write permission.

Discussion
The KCStatus enumeration defines masks your application can use to determine the
status of a keychain. This mask is passed back in the keychainStatus parameter of
the function KCGetStatus (page 43).

Verification Criteria Constants

Represent the verification criteria to use in selecting certificates.

enum {
kPolicyKCStopOn = 0,
kNoneKCStopOn = 1,
kFirstPassKCStopOn = 2,
kFirstFailKCStopOn = 3
};
typedef UInt16 KCVerifyStopOn;

Constant descriptions
kPolicyKCStopOn

Indicates that the function KCChooseCertificate (page 77) should use
the trust policy options currently in effect.

kNoneKCStopOn

Indicates that KCChooseCertificate completes after examining all
available certificates.

kFirstPassKCStopOn

Indicates that KCChooseCertificate when one certificate meeting the
verification criteria is found.

kFirstFailKCStopOn

Specifies that KCChooseCertificate completes when one certificate
that fails to meet the verification criteria is found.

Discussion
The KCVerifyStopOn enumeration defines constants your application can use to
identify the verification criteria to use in selecting ceritifcates. You can pass a
constant of this type in the stopOn parameter of the function KCChooseCertificate
(page 77).

108 Keychain Manager Result Codes

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Result Codes

Most Keychain Manager functions return result codes of type OSStatus. This
includes general result codes such as noErr, indicating that the function completed
successfully, and paramErr, indicating that you passed an invalid parameter. In
addition, many Keychain functions may return result codes that are not
Keychain-specific result codes. For example, a file system or network error may be
returned if your application has no write access to a storage device.

The result codes specific to the Keychain Manager are listed in Table 4-1 (page 108).
In some cases, the function result section for a particular function provides more
detail about the meaning of the result code specific to that function.

Table 4-1 Keychain Manager result codes

Result code constant Value Description

errKCNotAvailable -25291 Indicates that the Keychain Manager was not
loaded.

errKCReadOnly -25292 Returned by the function KCCopyItem (page 72) to
indicate that the keychain file is read-only and
cannot be edited.

errKCAuthFailed -25293 Returned by the function KCUnlock (page 44) to
indicate that the authentication failed (too many
unsuccessful retries).

errKCNoSuchKeychain -25294 Returned by the functions KCUnlock (page 44),
KCSetDefaultKeychain (page 41), KCGetStatus
(page 43), and KCGetIndKeychain (page 46) to
indicate that the specified keychain was not
found.

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Result Codes 109

Preliminary  Apple Computer, Inc. 5/17/00

errKCInvalidKeychain -25295 Returned by the functions KCUnlock (page 44),
KCSetDefaultKeychain (page 41), KCGetStatus
(page 43), KCGetKeychainName (page 43),
KCChangeSettings (page 42), and
KCCreateKeychain (page 39) to indicate that the
keychain is not valid.

errKCDuplicateKeychain -25296 Returned by the function KCCreateKeychain
(page 39) to indicate that your application tried to
create a keychain that already exists.

errKCDuplicateCallback -25297 Returned by the function KCAddCallback (page 80)
to indicate that your callback function was
already registered.

errKCInvalidCallback -25298 Returned by the function KCRemoveCallback
(page 81) to indicate that the callback function
was not previously registered.

errKCDuplicateItem -25299 Returned by the functions
KCAddAppleSharePassword (page 48),
KCAddInternetPassword (page 52),
KCAddInternetPasswordWithPath (page 53),
KCAddGenericPassword (page 60), and KCAddItem
(page 70) to indicate that you tried to add an
existing keychain item to the keychain.

errKCItemNotFound -25300 Returned by the functions
KCFindAppleSharePassword (page 49),
KCFindInternetPassword (page 55),
KCFindInternetPasswordWithPath (page 57),
KCFindGenericPassword (page 61), KCFindNextItem
(page 75), and KCFindFirstItem (page 74) to
indicate that no matching item was found.

Table 4-1 Keychain Manager result codes

Result code constant Value Description

110 Keychain Manager Result Codes

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

errKCBufferTooSmall -25301 Returned by the functions
KCFindAppleSharePassword (page 49),
KCFindInternetPassword (page 55),
KCFindInternetPasswordWithPath (page 57),
KCFindGenericPassword (page 61), KCGetAttribute
(page 66), KCGetData (page 68), and
KCFindX509Certificates (page 76) to indicate that
the buffer was not large enough to contain the
password data.

errKCDataTooLarge -25302 Returned by the functions
KCAddAppleSharePassword (page 48),
KCAddInternetPassword (page 52),
KCAddInternetPasswordWithPath (page 53),
KCAddGenericPassword (page 60), KCSetAttribute
(page 65), and KCSetData (page 67) to indicate that
the data is too large.

errKCNoSuchAttr -25303 Returned by the functions KCSetAttribute
(page 65), KCGetAttribute (page 66), and
KCFindFirstItem (page 74) to indicate that no such
attribute exists.

errKCInvalidItemRef -25304 Returned by the functions KCSetAttribute
(page 65), KCGetAttribute (page 66), KCSetData
(page 67), KCGetData (page 68), KCAddItem
(page 70), KCDeleteItem (page 70), KCUpdateItem
(page 71), KCCopyItem (page 72), and
KCGetKeychain (page 72) to indicate that the
keychain item reference is invalid.

errKCInvalidSearchRef -25305 Returned by the functions KCFindNextItem
(page 75) and KCReleaseSearch (page 76) to
indicate that the specified search reference is
invalid.

errKCNoSuchClass -25306 Returned by the function KCCopyItem (page 72) to
indicate that the item class does not exist.

Table 4-1 Keychain Manager result codes

Result code constant Value Description

C H A P T E R 4

Keychain Manager Reference

Keychain Manager Result Codes 111

Preliminary  Apple Computer, Inc. 5/17/00

errKCNoDefaultKeychain -25307 Returned by the functions KCChangeSettings
(page 42), KCSetDefaultKeychain (page 41),
KCGetDefaultKeychain (page 41),
KCAddAppleSharePassword (page 48),
KCAddInternetPassword (page 52),
KCAddInternetPasswordWithPath (page 53),
KCAddGenericPassword (page 60),
KCFindAppleSharePassword (page 49),
KCFindInternetPassword (page 55),
KCFindInternetPasswordWithPath (page 57),
KCFindGenericPassword (page 61), KCCopyItem
(page 72), KCAddItem (page 70), KCDeleteItem
(page 70), KCUpdateItem (page 71), KCFindNextItem
(page 75), KCFindFirstItem (page 74), and
KCFindX509Certificates (page 76) to indicate that
there is no default keychain.

errKCInteractionNotAllowed -25308 Returned by the functions KCCreateKeychain
(page 39), KCChangeSettings (page 42), KCUnlock
(page 44), and KCGetData (page 68) (the latter two
only when the Unlock Dialog and Allow Access
dialogs are needed) to indicate that there is no
start-up keychain.

errKCReadOnlyAttr -25309 Returned by the function KCSetAttribute
(page 65) to indicate that the keychain item
attribute is read-only.

errKCWrongKCVersion -25310 Indicates that the wrong version of Keychain
Manager is installed to perform this operation.

errKCKeySizeNotAllowed -25311 Indicates that the key size is illegal.

errKCNoStorageModule -25312 Returned by functions that prompts the loading
of the Keychain Manager to indicate that the
storage module is not found.

errKCNoCertificateModule -25313 Returned when a function is required for a
certificate and the certificate module is not found.

Table 4-1 Keychain Manager result codes

Result code constant Value Description

112 Keychain Manager Result Codes

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 4

Keychain Manager Reference

errKCNoPolicyModule -25314 Returned when a function is required for a trust
policy and the policy module is not found.

errKCInteractionRequired -25315 Returned by the function KCUnlock (page 44) to
indicate that user interaction is required for this
operation.

errKCDataNotAvailable -25316 Indicates that the requested data is not available.

errKCDataNotModifiable -25317 Returned by the functions KCSetData (page 67)
and KCGetData (page 68) to indicate that the data
cannot be modified.

errKCCreateChainFailed -25318 Returned by the functions KCChooseCertificate
(page 77) and KCFindX509Certificates (page 76)
to indicate that the attempt to create a new
keychain failed.

Table 4-1 Keychain Manager result codes

Result code constant Value Description

113

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 5

5 API and Document Revision
History

This section describes changes to the Keychain Manager API from version 1.0.1 to
2.0, as well as a release history of this document.

The Keychain Manager 1.0.1 SDK was the first version of Keychain released to
developers. Between Keychain Manager 1.0.1 and 2.0, a number of significant
changes have been made to the API in order to accommodate additional features in
the Kaychain software. In general, applications which only make use of the
high-level functions provided in Keychain 1.0.1 will run unmodified in 2.0.
Applications that call lower-level Keychain functions in order to manipulate
keychain items or their attributes, or change keychain information may need to be
revised to be compatible with Keychain Manager 2.0.

If your application uses the Keychain Manager 1.0.1 SDK, you should see “Keychain
Manager 2.0 API Changes” for specific information about API changes since 1.0.1.
It is available as part of the Security SDK at the Apple Developer website at

<http://developer.apple.com/>

This document has had the following releases:

Table 5-1 Implementing Security Features With Keychain revision history

Publication date Notes

May 17, 2000 First public release of document, expanded and revised for
Keychain Manager 2.0. Includes concepts, tasks, and
reference material. New document title: Implementing
Security Features With Keychain.

114

Preliminary  Apple Computer, Inc. 5/17/00

C H A P T E R 5

API and Document Revision History

Aug. 5, 1998 Updated draft of Keychain 1.0 API documentation. This
document was distributed in limited release as a seed draft.
Document title: Enabling Secure Storage With the Keychain
Manager

May 28, 1998 First draft of Keychain 1.0 API documentation. This
document was distributed in limited release as a seed draft.
Document title: Simplifying Password Access With the
Keychain Manager

Table 5-1 Implementing Security Features With Keychain revision history

Publication date Notes

	Implementing Security Features Using Keychain
	Contents
	Figures, Listings, and Tables
	Introduction
	Keychain Manager Concepts
	Keychain Manager Implementation
	Accessing the Keychain
	Keychain Items
	Using Multiple Keychains
	Searching Keychains
	Interacting With the Keychain Access Application

	Keychain Manager Tasks
	Determining Keychain Manager Availability and Version Information
	Creating a Keychain Reference
	Creating a New Keychain
	Locking and Unlocking a Keychain
	Setting and Obtaining the Default Keychain
	Setting and Retrieving Keychain Information
	Searching Keychains
	Storing and Retrieving Keychain Items
	Creating Keychain Item References
	Setting and Obtaining Keychain Item Attribute Data
	Manipulating Keychain Items
	Searching for Keychain Items
	Working With Certificates
	Managing User Interaction
	Responding to Keychain Events

	Keychain Manager Reference
	Keychain Manager Functions
	Keychain Manager Callback
	KCCallbackProcPtr

	Keychain Manager Data Types
	AFPServerSignature
	KCAttrType
	KCItemRef
	KCPublicKeyHash
	KCRef
	KCSearchRef

	Keychain Manager Constants
	Authentication Type Constants
	kKCAuthTypeNTLM
	kKCAuthTypeMSN
	kKCAuthTypeDPA
	kKCAuthTypeRPA
	kKCAuthTypeHTTPDigest
	kKCAuthTypeDefault

	Certificate Search Option Mask Constants
	kCertSearchShift
	kCertSearchSigningIgnored
	kCertSearchSigningAllowed
	kCertSearchSigningDisallowed
	kCertSearchSigningMask
	kCertSearchVerifyIgnored
	kCertSearchVerifyAllowed
	kCertSearchVerifyDisallowed
	kCertSearchVerifyMask
	kCertSearchEncryptIgnored
	kCertSearchEncryptAllowed
	kCertSearchEncryptDisallowed
	kCertSearchEncryptMask
	kCertSearchDecryptIgnored
	kCertSearchDecryptAllowed
	kCertSearchDecryptDisallowed
	kCertSearchDecryptMask
	kCertSearchWrapIgnored
	kCertSearchWrapAllowed
	kCertSearchWrapDisallowed
	kCertSearchWrapMask
	kCertSearchUnwrapIgnored
	kCertSearchUnwrapAllowed
	kCertSearchUnwrapDisallowed
	kCertSearchUnwrapMask
	kCertSearchPrivKeyRequired
	kCertSearchAny

	Default Authentication Type Constant
	kAnyAuthType

	Default Port Constant
	kAnyPort

	Default Protocol Constant
	kAnyProtocol

	Keychain Event Constants
	kIdleKCEvent
	kLockKCEvent
	kUnlockKCEvent
	kAddKCEvent
	kDeleteKCEvent
	kUpdateKCEvent
	kChangeIdentityKCEvent
	kFindKCEvent
	kSystemKCEvent
	kDefaultChangedKCEvent
	kDataAccessKCEvent

	Keychain Event Mask Constants
	kIdleKCEventMask
	kLockKCEventMask
	kUnlockKCEventMask
	kAddKCEventMask
	kDeleteKCEventMask
	kUpdateKCEventMask
	kChangeIdentityKCEventMask
	kFindKCEventMask
	kSystemEventKCEventMask
	kDefaultChangedKCEventMask
	kDataAccessKCEventMask
	kEveryEventKCEventMask

	Keychain Item Attribute Tag Constants
	kClassKCItemAttr
	kCreationDateKCItemAttr
	kModDateKCItemAttr
	kDescriptionKCItemAttr
	kCommentKCItemAttr
	kCreatorKCItemAttr
	kTypeKCItemAttr
	kScriptCodeKCItemAttr
	kLabelKCItemAttr
	kInvisibleKCItemAttr
	kNegativeKCItemAttr
	kCustomIconKCItemAttr
	kAccountKCItemAttr
	kServiceKCItemAttr
	kGenericKCItemAttr
	kSecurityDomainKCItemAttr
	kServerKCItemAttr
	kAuthTypeKCItemAttr
	kPortKCItemAttr
	kPathKCItemAttr
	kVolumeKCItemAttr
	kAddressKCItemAttr
	kSignatureKCItemAttr
	kProtocolKCItemAttr
	kSubjectKCItemAttr
	kCommonNameKCItemAttr
	kIssuerKCItemAttr
	kSerialNumberKCItemAttr
	kEMailKCItemAttr
	kPublicKeyHashKCItemAttr
	kIssuerURLKCItemAttr
	kEncryptKCItemAttr
	kDecryptKCItemAttr
	kSignKCItemAttr
	kVerifyKCItemAttr
	kWrapKCItemAttr
	kUnwrapKCItemAttr
	kStartDateKCItemAttr
	kEndDateKCItemAttr

	Keychain Item Class Constants
	kCertificateKCItemClass
	kAppleSharePasswordItemClass
	kInternetPasswordItemClass
	kGenericPasswordItemClass

	Keychain Protocol Type Constants
	kKCProtocolTypeFTP
	kKCProtocolTypeFTPAccount
	kKCProtocolTypeHTTP
	kKCProtocolTypeIRC
	kKCProtocolTypeNNTP
	kKCProtocolTypePOP3
	kKCProtocolTypeSMTP
	kKCProtocolTypeSOCKS
	kKCProtocolTypeIMAP
	kKCProtocolTypeLDAP
	kKCProtocolTypeAppleTalk
	kKCProtocolTypeAFP
	kKCProtocolTypeTelnet

	Keychain Status Mask Constants
	kUnlockStateKCStatus
	kRdPermKCStatus
	kWrPermKCStatus

	Verification Criteria Constants
	kPolicyKCStopOn
	kNoneKCStopOn
	kFirstPassKCStopOn
	kFirstFailKCStopOn

	Keychain Manager Result Codes

	API and Document Revision History

