

Preliminary

5/12/00



Transferring Data With the
URL Access Manager

For URL Access Manager 2.0.3



Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Macintosh,
and WebObjects are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Enterprise Objects is a trademark of
Apple Computer, Inc.
NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are registered
trademarks of Heidelberger
Druckmaschinen AG, available from
Linotype Library GmbH.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
ORACLE is a registered trademark of
Oracle Corporation, Inc.
SYBASE is a registered trademark of
Sybase, Inc.
UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.
Windows NT is a trademark of
Microsoft Corporation.
All other trademarks mentioned
belong to their respective owners.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Chapter 1 Introduction 9

Chapter 2 URL Access Manager Tasks 11

URL Access Manager Implementation 12
Determining Availability and Version Information 12
Creating a URL Reference 12
Getting and Setting Information About a URL 13
Performing Simple Data Transfer 15
Controlling Data Transfer 16
Obtaining Information About a Data Transfer Operation 17
Responding to Data Transfer Events 18
Responding to System Events During Data Transfer 19
Using the URL Access Manager with AppleScript 20
A Case Study: Downloading Data From a URL 20
A Case Study: Downloading Data From Multiple URLs 26

Chapter 3 URL Access Manager Reference 31

URL Access Functions 31
Determining Availability and Version Information 32

URLAccessAvailable 32
URLGetURLAccessVersion 32

Creating and Disposing of URL References 32
URLNewReference 33
URLDisposeReference 33

Getting and Setting Information About a URL 34
URLGetPropertySize 34
URLGetProperty 35
URLSetProperty 36

Performing Simple Data Transfer 37
3
Preliminary  Apple Computer, Inc. 5/12/00

C O N T E N T S

URLSimpleDownload 38
URLDownload 40
URLSimpleUpload 43
URLUpload 45

Controlling Data Transfer 47
URLOpen 47
URLAbort 49
URLGetDataAvailable 50
URLGetBuffer 51
URLReleaseBuffer 52

Obtaining Information About a Data Transfer Operation 52
URLGetError 52
URLGetCurrentState 53
URLGetFileInfo 54
URLIdle 54

Creating and Managing Universal Procedure Pointers 55
NewURLNotifyUPP 55
NewURLSystemEventUPP 56
InvokeURLNotifyUPP 56
InvokeURLSystemEventUPP 57
DisposeURLNotifyUPP 58
DisposeURLSystemEventUPP 58

URL Access Callbacks 59
URLNotifyProcPtr 59
URLSystemEventProcPtr 60

URL Access Data Types 62
URLReference 62
URLCallbackInfo 62

URL Access Constants 63
Authentication Type Constant 64
Data Transfer Event Constants 65
Data Transfer Event Mask Constants 67
Data Transfer Options Mask Constants 71
Data Transfer State Constants 74
HTTP and HTTPS URL Property Name Constants 76
Universal URL Property Name Constants 78

URL Access Result Codes 80
4

Preliminary  Apple Computer, Inc. 5/12/00

C O N T E N T S

Chapter 4 Document Revision History 83
5

Preliminary  Apple Computer, Inc. 5/12/00

C O N T E N T S
6

Preliminary  Apple Computer, Inc. 5/12/00

Figures, Listings, and Tables

Chapter 2 URL Access Manager Tasks 11

Listing 2-2 The SamplePost.h file 21
Listing 2-3 SamplePost’s main function 21
Listing 2-4 Verifying the availability of the URL Access Manager 22
Listing 2-5 Allocating memory and creating a URL reference 22
Listing 2-6 Setting URL properties 23
Listing 2-7 Setting the URLDownload parameters 24
Listing 2-8 Calling the URLDownload function 24
Listing 2-9 Displaying the downloaded data 25
Listing 2-10 SamplePost’s system event callback function 25
Listing 2-11 The Downloader application’s main function 26
Listing 2-12 Downloader’s DoDownload function 27
Listing 2-13 Downloader’s system event callback function 28
Listing 2-1 Displaying the value of each URL property 13

Chapter 3 URL Access Manager Reference 31

Table 3-1 URL Access Manager result codes 81

Chapter 4 Document Revision History 83

Table 4-1 Transferring Data With the URL Access Manager revision
history 83
7
Preliminary  Apple Computer, Inc. 5/12/00

8

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 1

1 Introduction
This document describes the URL Access Manager. You can use the URL Access
Manager to perform data transfer to and from a URL from within your application.

Some of the features of URL Access Manager includes support for

■ automatic decompression of compressed files

■ automatic file extraction from Stuffit archives (with version 5.0 of Stuffit)

■ firewalls, HTTP proxy servers, and SOCKS gateways

URL Access Manager allows you to use any of the following protocols during
download operations: File Transfer Protocol (FTP), Hypertext Transfer Protocol
(HTTP), secure Hypertext Transfer Protocol (HTTPS), or a URL representing a local
file (begins with file:///). You might use the latter to test your application on a
computer that does not have access to a HTTP or FTP server. For upload operations,
you must use an FTP URL.

The URL Access Manager allows you to upload data to an FTP URL using either
anonymous or authenticated FTP sessions and supports both passive and active
FTP connections. You can use FTP to download and upload files and directories, as
well as to set and obtain URL properties.

If you use HTTP or HTTPS when downloading data, you will be able to perform
data transfer with 40-bit RSA encryption, send HTML form information to a URL,
and set and obtain URL properties.

You should read the following sections to get more information about the URL
Access Manager:

■ “URL Access Manager Tasks” (page 11) provide an introduction to
programming the URL Access Manager.
9

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 1

Introduction

■ “URL Access Manager Reference” (page 31) describes the URL Access Manager
API through version 2.0.3, including functions, data types, constants, and result
codes.

■ “Document Revision History” (page 83) provides a history of changes to this
document.

All code listings in this document are shown in C, except for listings that describe
resources, which are shown in Rez-input format. Many listings are taken from the
SamplePost.h sample application, which is available through Apple’s developer
site at

<http://developer.apple.com/>

Note: Although the sample code in this document has been
compiled and tested to some degree, Apple Computer does not
recommend that you directly incorporate this code into your
application. For example, only limited error handling is
shown—you should develop your own techniques for
detecting and handling errors.
10

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

2 URL Access Manager Tasks
This chapter describes how to modify your application to use the URL Access
Manager to transfer data to and from a uniform resource locator (URL).

The following sections provide an introduction to programming the URL Access
Manager:

“URL Access Manager Implementation” (page 12)

“Determining Availability and Version Information” (page 12)

“Creating a URL Reference” (page 12)

“Getting and Setting Information About a URL” (page 13)

“Performing Simple Data Transfer” (page 15)

“Controlling Data Transfer” (page 16)

“Obtaining Information About a Data Transfer Operation” (page 17)

“Responding to Data Transfer Events” (page 18)

“Responding to System Events During Data Transfer” (page 19)

“Using the URL Access Manager with AppleScript” (page 20)

“A Case Study: Downloading Data From a URL” (page 20)

“A Case Study: Downloading Data From Multiple URLs” (page 26)
11

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

URL Access Manager Implementation

The URL Access Manager is supported on computers running Mac OS 8.6 and 9.0.
It is implemented as a shared library called the URL Access Library. The URL
Access Manager is not currently in Carbon. As a result, in Mac OS X, you should
weak link against the URL Access Library and test to see if the functions are
available.

Determining Availability and Version Information

You should call the function URLAccessAvailable (page 32) to determine whether
the URL Access Manager is available before calling any other URL Access Manager
functions. Note that because the URL Access Manager is not currently in Carbon, in
Mac OS X, you should weak link against the URL Access Library and test to see if
the functions are available. The function URLGetURLAccessVersion (page 32) returns
the version number of the URL Access Manager installed on the current system.

Creating a URL Reference

The URL Access Manager provides the function to create a URL reference. The URL
Access Manager uses a URL reference to uniquely identify a URL. The function
URLNewReference (page 33) enables you to create a URL reference given the name of
the URL. After you are finished with a URL reference, you should call the function
URLDisposeReference (page 33) to dispose of the memory it occupied.
12 URL Access Manager Implementation

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

Getting and Setting Information About a URL

The URL Access Manager provides the functions URLGetProperty (page 35) and
URLSetProperty (page 36) to get and set information associated with a URL You
must pass the correct data type of the property value you wish to get or set in the
propertyBuffer parameter of both functions. Before calling these functions, you
should call the function URLGetPropertySize (page 34) to determine the size of the
buffer to allocate for the property value.

You may wish to call these functions before calling the functions URLDownload
(page 40) and URLUpload (page 45) to get and set information associated with the
specified URL in the urlRef parameter.

Once you have obtained the value and size of a URL property, you can create a
function to display the properties. Listing 2-1 (page 13) illustrates how the function
displayProperties creates a propertyList array containing each of the twenty-one
Apple-defined URL properties. It obtains the size of each property by calling
URLGetPropertySize (page 34), obtains the value of each property by calling and
URLGetProperty (page 35), and then displays each property value.

Listing 2-1 Displaying the value of each URL property

void displayProperties(URLReference urlRef)
{

OSErr err = noErr;
int propCount = 0;
const char* propertyList[21];
Size propertySize = 0;
Handle theProperty = NULL;
propertyList[0] = kURLURL;
propertyList[1] = kURLResourceSize;
propertyList[2] = kURLLastModifiedTime;
propertyList[3] = kURLMIMEType;
propertyList[4] = kURLFileType;
propertyList[5] = kURLFileCreator;
propertyList[6] = kURLCharacterSet;
Getting and Setting Information About a URL 13

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

propertyList[7] = kURLResourceName;
propertyList[8] = kURLHost;
propertyList[9] = kURLAuthType;
propertyList[10] = kURLUserName;
propertyList[11] = kURLPassword;
propertyList[12] = kURLStatusString;
propertyList[13] = kURLIsSecure;
propertyList[14] = kURLCertificate;
propertyList[15] = kURLTotalItems;
propertyList[16] = kURLHTTPRequestMethod;
propertyList[17] = kURLHTTPRequestHeader;
propertyList[18] = kURLHTTPRequestBody;
propertyList[19] = kURLHTTPRespHeader;
propertyList[20] = kURLHTTPUserAgent;

// Get the size of each property, allocate a handle to store the
// property’s value, get the property value, and display it.

for(propCount = 0; propCount < 21; propCount++)
{

// Get the size of the property’s value.
err = URLGetPropertySize(urlRef, propertyList[propCount], &propertySize);
if(err != noErr)

printf("Error %d getting property size %s. Size returned was: %d\n", err,
propertyList[propCount], propertySize);

else
printf("Property size is %d: %s\n", propertySize);

// Now get a handle for the property value.
theProperty = NewHandleClear(propertySize + 1);
err = MemError();
if(err != noErr)

printf("Error %d getting property handle %s\n", err,
propertyList[propCount]);

else
printf("Got handle for %s: %s\n", propertyList[propCount]);

// Now get the property’s value.
err = URLGetProperty(urlRef, propertyList[propCount],

*theProperty, propertySize);
if(err != noErr)
14 Getting and Setting Information About a URL

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

printf("Error %d getting property %s\n", err, propertyList[propCount]);
else

printf("Property %s: %s\n", propertyList[propCount], *theProperty);

// Clean up.
DisposeHandle(theProperty);
printf("\n");

}
return;
}

Performing Simple Data Transfer

URL Access Manager provides four high-level functions for downloading and
uploading data synchronously. Synchronous functions return control to your
application upon completion. If you wish instead to perform asynchronous data
transfer, see “Controlling Data Transfer” (page 16).

The functions URLSimpleDownload (page 38) and URLSimpleUpload (page 43) require
that you specify the URL as a character string. These functions are easy to use
because they allow you to start a download or upload operation with a minimal
amount of preparation or intervention.

The functions URLDownload (page 40) and URLUpload (page 45) also allow you to
download and upload data synchronously. These functions differ from
URLSimpleDownload and URLSimpleUpload in that you use a URL reference to specify
the URL. Using a URL reference allows you to get and set information associated
with a URL by calling the URLGetProperty (page 35) and URLSetProperty (page 36)
functions.

All four functions have an openFlags parameter which you can use to specify
whether an existing file should be replaced, a progress indicator is displayed during
the transfer, or an authentication dialog box is displayed if the URL requires
authentication. You can also use this parameter to specify that encoded files are to
be decoded and expanded if the Stuffit Engine is installed, indicate that the URL is
a directory, or specify that you want to download a directory listing instead of the
contents of a file or directory.
Performing Simple Data Transfer 15

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

In addition, these functions allow you to specify an application-defined system
event callback function in the eventProc parameter that the URL Access Manager
calls in order to convey system events to your application during the download
process.

Controlling Data Transfer

The URL Access Manager provides the function URLOpen (page 47) to transfer data
to and from a URL asynchronously. Asynchronous functions return control to your
application immediately. If you wish instead to perform synchronous data transfer,
see “Performing Simple Data Transfer” (page 15).

When you call URLOpen, you must specify a valid file for upload operations. For
download operations, if you do not specify a file in which to store the data, you
must repeatedly call the function URLGetBuffer (page 51). This function retrieves the
next buffer of data from the URL Access Manager’s buffers so that you can
manipulate the data or write it to the destination of your choice. If you do not
specify a file in which to store the data, you can define an event notification function
and the events for which you want to receive notification.

You can use the openFlags parameter of URLOpen to specify whether an existing file
should be replaced, whether a progress indicator is displayed during the transfer,
and whether an authentication dialog is displayed if the URL requires
authentication. You can also use this parameter to specify that encoded files are to
be decoded and expanded if the Stuffit Engine is installed, indicate that the URL is
a directory, or specify that you want to download a directory listing instead of the
contents of a file or directory.

The function URLAbort (page 49) terminates a data transfer operation that was
started by calling URLOpen. When your application calls URLAbort, the URL Access
Manager changes the state returned by the function URLGetCurrentState (page 53)
to kURLAbortingState and passes the constant kURLAbortInitiatedEvent to your
notification callback function. When data transfer is terminated, the URL Access
Manager changes the state returned by URLGetCurrentState to kURLCompletedState
and passes the constant kURLCompletedEvent in the event parameter of your
notification callback function.
16 Controlling Data Transfer

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks

The function URLGetDataAvailable (page 50) determines the number of bytes
remaining in a buffer after a call to the function URLGetBuffer (page 51). You should
only call URLGetDataAvailable if you have initiated a download process. The
returned size does not include the number of bytes in transit to a buffer, nor does it
include the amount of data not yet transferred from the URL. If you wish to
calculate the amount of data remaining to be downloaded, pass the name constant
kURLResourceSize in the property parameter of the function URLGetProperty
(page 35) and subtract the amount of data copied.

The function URLGetBuffer (page 51) obtains the next buffer of data in a download
operation. URLGetBuffer does not enable you to retain or modify the transferred
data. If you pass NULL in the fileSpec parameter of the function URLOpen (page 47),
you should call URLGetBuffer to retrieve data as it is downloaded.

You should call URLGetBuffer repeatedly until URL Access Manager passes the
event constant kURLCompletedEvent or kURLAbortInitiatedEvent in the event
parameter of your notification callback function, or until the function
URLGetCurrentState (page 53) returns the state constant kURLTransactionComplete or
kURLAbortingState. Between calls to URLGetBuffer, you should call the function
URLIdle (page 54) to allow time for the URL Access Manager to refill its buffers.

The function URLReleaseBuffer (page 52) releases the buffer obtained by calling
URLGetBuffer. To prevent the URL Access Manager from running out of buffers, you
should call URLReleaseBuffer after each call to URLGetBuffer.

Obtaining Information About a Data Transfer
Operation

You can use these functions to determine the error code returned when a data
transfer operation fails, determine the status of a data transfer operation, yield time
so that the URL Access Manager can refill its buffers, or get information about a file.

You may want to call the function URLGetError (page 52) when a data transfer
operation fails. URLGetError passes back the error code associated with the failed
transfer, which may be a system error code, a protocol-specific error code, or one of
the error codes listed in “URL Access Result Codes” (page 80).
Obtaining Information About a Data Transfer Operation 17

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
The function URLGetCurrentState (page 53) passes back the status of a data transfer
operation. You may wish to call URLGetCurrentState periodically to monitor the
status of a download or upload operation. If you pass a valid file specification in the
fileSpec parameter of the function URLOpen (page 47), your notification callback
function will not be notified of data available and transaction completed states as
identified by the constants kURLDataAvailableState and
kURLTransactionCompleteState.

The function URLGetFileInfo (page 54) obtains the file type and creator codes for a
specified filename. The type and creator codes are determined by the Internet
configuration mapping table and are based on the filename extension. For example,
if you pass the filename "jane.txt", URLGetFileInfo will return 'TEXT' in the type
parameter and 'ttxt' in the creator parameter.

The function URLIdle (page 54) gives the URL Access Manager time to refill its
buffers during download operations. If you pass NULL in the fileSpec parameter of
the function URLOpen, you should call the function URLGetBuffer (page 51) to retrieve
data as it is downloaded. To allow time for the URL Access Manager to refill its
buffers, call URLIdle in between calls to URLGetBuffer.

Responding to Data Transfer Events

Data transfer events are generated during a call to the function URLOpen (page 47)
when one of the following situations arises:

■ URLOpen has been called but the location specified by the URL reference has not
yet been accessed.

■ the location specified by the URL reference has been accessed and is valid.

■ a download operation is in progress.

■ a data transfer operation has been aborted.

■ all operations associated with a call to URLOpen have been completed.

■ an error occurred during data transfer.

■ data is available in buffers.
18 Responding to Data Transfer Events

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
■ a download operation is complete because there is no more data to retrieve from
buffers.

■ an upload operation is in progress.

■ a system event has occurred.

■ the size of the data being downloaded is known.

■ a time interval of approximately one quarter of a second has passed.

■ a property such as a filename has become known or changed.

If you want to be notified of data transfer events, pass a Universal Procedure Pointer
(UPP) to your callback in the notifyProc parameter of URLOpen. To create a UPP to
your notification callback, call the function NewURLNotifyUPP (page 55). For
information on how to write your own notification callback function, see
URLNotifyProcPtr (page 59). You can specify which data transfer events you want to
receive in the eventRegister parameter of URLOpen. Whenever these data transfer
events occur during a call to URLOpen, your application will be notified.

Your application’s notification callback function should process the event record
passed by the event parameter and return 0. The only restriction that the URL
Access Manager imposes on the functionality of your notification callback function
is that it should not call the function URLDisposeReference (page 33). For more
information on how to write a notification callback function, see URLNotifyProcPtr
(page 59).

Responding to System Events During Data Transfer

System events may occur during a call to the functions URLSimpleDownload (page 38),
URLDownload (page 40), URLSimpleUpload (page 43), and URLUpload (page 45) if you
indicate that a progress indicator or authentication dialog box should be displayed
by these functions and the user interacts with it. To indicate that these user
interfaces should be displayed, you must specify the mask constants
kURLDisplayProgressFlag and kURLDisplayAuthFlag in the openFlags parameter.

If you want to be notified of such events, pass a Universal Procedure Pointer (UPP)
to an event callback function in the eventProc parameter of the these functions. To
create a UPP to your notification callback, call the function NewURLSystemEventUPP
Responding to System Events During Data Transfer 19

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
(page 56). For information on how to write your own event callback function, see
URLSystemEventProcPtr (page 60). If you do not create a callback function to handle
system events and you specify the mask constants kURLDisplayProgressFlag and
kURLDisplayAuthFlag in the openFlags parameter, the URL Access Manager displays
a nonmovable modal progress indicator and authentication dialog box during
when appropriate.

Your application’s system event callback function should process the event record
passed by the event parameter and return 0. The only restriction that the URL
Access Manager imposes on the functionality of your application’s system event
callback function is that it should not call the function URLDisposeReference
(page 33). For more information on how to write a system event callback function,
see URLSystemEventProcPtr (page 60) and “Downloader’s system event callback
function” (page 28).

Using the URL Access Manager with AppleScript

You can use AppleScript to call URL Access Manager functions. If your AppleScript
application uses the URL Access Manager for operations that may take a substantial
amount of time, such as transferring large amounts of data over a low-speed
connection, be sure to set the timeout to large value. Setting the timeout to a large
value , such as 60,000 seconds, will avoid unnecessary AppleEvent errors.

For information about the standard scripting addition commands distributed with
AppleScript, see the AppleScript section of the Mac OS Help Center, or visit the
following web site: http://www.apple.com/applescript.

A Case Study: Downloading Data From a URL

This section describes how the sample application SamplePost posts information to
an HTTP URL and download the URL’s response using the URL Access Manager
function URLDownload (page 40).
20 Using the URL Access Manager with AppleScript

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
Listing 2-2 (page 21) shows the header file for the application, SamplePost.h, which
contains definitions of the URL from which data is to be downloaded (kSampleURL)
and the structure urlDownInfo, as well as declarations of the function DoSamplePost,
which calls URLDownload, and a system event callback function, MyURLCallbackProc,
which is a place holder for code that handles system events that occur during the
download.

Listing 2-2 The SamplePost.h file

#define kSampleURL "http://www.internic.net/cgi-bin/itts/whois"
typedef struct urlDownInfo *URLDownInfoPtr;

typedef struct urlDownInfo {
URLReference urlRef;
FSSpec * destination;
Handle destinationHandle;
URLOpenFlags openFlags;
URLSystemEventProcPtr eventProc;
void * userContext;
Boolean done;
OSStatus errorCode;

} URLDownloadInfo;

static void DoSamplePost ();
pascal OSStatus MyURLCallbackProc(void*, EventRecord *);

SamplePost is a multi-threaded application. As a result, in Listing 2-3 (page 21),
SamplePost’s main function calls the Memory Manager functions MaxApplZone and
MoreMasters in its main function. Note that all URL Access Manager functions are
threaded with Thread Manager cooperative threads. These threads are
nonreentrant on PowerPC.

Listing 2-3 SamplePost’s main function

#include <stdio.h>
#include <Events.h>
#include <Threads.h>
#include <Processes.h>
A Case Study: Downloading Data From a URL 21

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
#include <Files.h>
#include "URLAccess.h"
#include "SamplePost.h"
int main (void){

OSStatus err = noErr;
// Call MaxAppleZone() when using the Thread Manager.

MaxApplZone();
for (i = 0; i < 20; i++) {

MoreMasters();
}

Listing 2-4 (page 22) shows SamplePost calling the function URLAccessAvailable
(page 32) to verify that the URL Access Manager is available. If the URL Access
Manager is available, DoSamplePost is called.

Listing 2-4 Verifying the availability of the URL Access Manager

// Make sure the URL Access Manager is available.
if (URLAccessAvailable()) {

DoSamplePost();
}
else {

// Call error handling function.
}

In Listing 2-5 (page 22), DoSamplePost defines a URLDownloadInfo structure named
myRef that is uses to store information for calling URLDownload. The DoSamplePost
function then calls NewHandle to allocate the memory in which the downloaded
information will be stored, and creates a URL reference stores it in myRef.urlRef.

Listing 2-5 Allocating memory and creating a URL reference

static void DoSamplePost (void){
OSStatus err = noErr;
ThreadID threadID = 0;
URLDownloadInfo myRef;
Handle downloadHandle = NULL;
long downloadSize = 0;
22 A Case Study: Downloading Data From a URL

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
printf("<•>DoSamplePost() Enter\n");
downloadHandle = NewHandle(0);

if (downloadHandle == NULL) {
// Call error handling function.

}
// Create a URLReference

err = URLNewReference(kSampleURL, &myRef.urlRef);
if (err != noErr) {

// Call error handling function.
}

As shown in Listing 2-6 (page 23), DoSamplePost calls the function URLSetProperty
(page 36) to set the HTTP request method property value to the 4-byte string "POST"
and the value of the HTTP request body property value to the 19-byte string
"whois_nic=apple.com". When you set the property identified by
kURLHTTPRequestBody, the URL Access Manager automatically adds the length of the
value identifed by kURLHTTPRequestHeader to the request, so you do not need to set
the request header explicitly.

Listing 2-6 Setting URL properties

URLSetProperty (myRef.urlRef, kURLHTTPRequestMethod, "POST", 4);
URLSetProperty (myRef.urlRef, kURLHTTPRequestBody, "whois_nic=apple.com", 19);

Next, DoSamplePost uses the remaining fields of the myRef structure to store values
that will be used as parameters for calling URLDownload.

■ DoSamplePost sets myRef.destination to NULL. When NULL is provided as the
destination parameter to the URLDownload, the calling application indicates that
the downloaded data is not going to be written to a file on disk.

■ DoSamplePost sets myRef.destinationHandle to the value of downloadHandle,
which is the location in memory at which the downloaded data is to be stored.

■ DoSamplePost sets myRef.OpenFlags to kURLDisplayProgressFlag. When the value
of the openFlags parameter to URLDownload is kURLDisplayProgressFlag,
URLDownload displays a progress indicator during the download process. You
may wish to provide a system event callback function to handle system events
that occur.
A Case Study: Downloading Data From a URL 23

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
■ DoSamplePost sets myRef.eventProc to the address of the SamplePost
application’s system event callback function. When DoSamplePost calls
URLDownload, it will specify myRef.eventProc as the eventProc parameter. If a
system event occurs while the progress indicator is displayed, the URL Access
Manager will call the function specified by the eventProc parameter and will
pass to it the value of the userContext parameter, which is described next.

■ DoSamplePost sets myRef.userContext to 1. When DoSamplePost calls URLDownload,
it will specify myRef.userContext as the userContext parameter. Your application
can use the user context to associate any particular call of URLDownload with any
particular call of the system event callback function.

Listing 2-7 (page 24) illustrates setting these values.

Listing 2-7 Setting the URLDownload parameters

myRef.destination = NULL;
myRef.destinationHandle = downloadHandle;
myRef.openFlags = kURLDisplayProgressFlag;
myRef.eventProc = &MyURLCallbackProc;
myRef.userContext = "1";
myRef.errorCode = 0;

Once the URL reference has been created, its properties set, and the parameters for
URLDownload prepared, DoSamplePost is ready to call URLDownload, as shown in Listing
2-8 (page 24). If the download is successful, DoSamplePost calls the function
URLGetProperty (page 35) to obtain the size of the downloaded data using the
downloadSize parameter.

Listing 2-8 Calling the URLDownload function

err = URLDownload(myRef.urlRef,myRef.destination,myRef.destinationHandle,
myRef.openFlags, myRef.eventProc, myRef.userContext);

myRef.errorCode = err;
if (myRef.errorCode != noErr) {

// Call error handling function.
}
else {

// Successful download. Get the size of the downloaded data.
24 A Case Study: Downloading Data From a URL

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
err = URLGetProperty(myRef.urlRef, kURLResourceSize, &downloadSize, 4);
if (err != noErr) {

// Call error handling function.
}

In Listing 2-9 (page 25) DoSamplePost calls SetHandleSize to set the size of
downloadHandle to downloadSize + 1 and sets the value of the last byte of
downloaded data to NULL. Now that data can be displayed by calling the function
printf. DoSamplePost concludes by disposing of the URL reference.

Listing 2-9 Displaying the downloaded data

downloadSize = GetHandleSize(downloadHandle);
SetHandleSize(downloadHandle, (downloadSize+1));
(*myRef.destinationHandle)[downloadSize] = NULL;
printf("<•>==================== Downloaded Data ==================\n");
printf("%s", *myRef.destinationHandle);
DisposeHandle(downloadHandle);
URLDisposeReference(myref.urlRef);
}

Listing 2-10 (page 25) shows a placeholder for SamplePost’s system event callback
function. The userContext parameter can be used to associate any particular call of
URLDownload with any particular call of the system event callback function.

Listing 2-10 SamplePost’s system event callback function

pascal OSStatus MyURLCallbackProc (void *userContext, EventRecord *event)
{

printf("<•>System callback thread fired! Thread: %u\n", userContext);
return 0;

}

A Case Study: Downloading Data From a URL 25

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
A Case Study: Downloading Data From Multiple URLs

This section describes how the sample application Downloader downloads data
from multiple URLs and stores it in multiple files using the URL Access Manager
function URLDownload (page 40). Downloader obtains the URLs to be downloaded by
reading a text file in which they have been stored.

Listing 2-11 (page 26) illustrates how Downloader’s main function sets up the main
event loop and calls the function getURL to obtain a URL from a file of URLs.

Listing 2-11 The Downloader application’s main function

#include <Events.h>
#include <stdio.h>
#include "URLAccess.h"
#include "string.h"
#include "Memory.h"

void main (void){
OSStatus err = noErr;
char url[255];
int count, fileCount = 0;
EventRecord ev;

// Call MaxApplZone, MoreMasters.
// Initialize graphics port, fonts, menus, cursor, and dialogs.
// Clear the screen.
while (url != NULL) {

// Handle Events through each loop
WaitNextEvent(everyEvent, &ev, 0, NULL);
eventHandler(NULL, &ev);

// Obtain a URL from the file of URLs
result = getURL(url); // getURL function not shown
26 A Case Study: Downloading Data From Multiple URLs

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
if (result == eofErr) { // Handle error condition. }

// Call Download function.
result = DoDownload(url);

if (result != noErr) { // Handle error condition. }
{
printf("\n All of the URLs have been downloaded.\n");
}

The DoDownload function shown in Listing 2-12 (page 27) does the actual work of
downloading data from the URL. It creates a file specification for the data that is to
be downloaded and a URL reference. It specifies the mask
kURLReplaceExistingFlag in the openFlags parameter to replace an existing file (if
any) with the downloaded data and to display a progress indicator during the
download. Lastly, it calls the function URLDownload (page 40) to download the data.

Listing 2-12 Downloader’s DoDownload function

void DoDownload (void){
URLReference urlRef;
FSSpec dest, *destPtr = NULL;
destPtr = &dest;
Handle destHandle = NULL;
int openFlags = kURLReplaceExistingFlag + kURLDisplayProgressFlag;
Str255 newFile;

// Create the file specification for the download.
sprintf((char*)newFile, "File %d", fileCount);
c2pstr((char*)newFile);
fileCount++;
err = FSMakeFSSpec(0, 0, newFile, &dest);

// Create the URLReference.
err = URLNewReference(theURL, &urlRef);
if (err != noErr) printf("URLNewReference failed\n");

// Download the data.
err = URLDownload(urlRef, destPtr, destHandle, openFlags, &eventHandler,

(void*)&fileCount);
if (err != noErr) printf("URLDownload failed\n");
A Case Study: Downloading Data From Multiple URLs 27

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
// Clean up.
err = URLDisposeReference(urlRef);
if (err != noErr) printf("URLDisposeReference failed\n");
return err;

}

Listing 2-10 (page 25) illustrates Downloader’s general event handling function
eventHandler. This function handles system events that might occur during calls to
the functions URLSimpleDownload (page 38), URLDownload (page 40), URLSimpleUpload
(page 43), and URLUpload (page 45). The userContext parameter can be used to
associate any particular call of URLDownload with any particular call of the system
event callback function. In this context, it is an integer.

Listing 2-13 Downloader’s system event callback function

pascal long eventHandler(void * userContext, EventRecord* eventPtr){
EventRecord* ev;
int what = 0;
int context = 0;
int* intPtr = NULL;

// Convert the event pointer into an event record.
ev = (EventRecord*)eventPtr;
what = ev->what;

// Convert the void* to an integer.
intPtr = (int*)userContext;
context = *intPtr;
if (context < 0 || context > 99)

context = -1; // Unknown context
switch (what) {

case 0 : // Null Event
break;

case mouseDown:
printf("Handler Called: mouseDown User Context: %d\n", context);

// Call function to handle event.
break;
28 A Case Study: Downloading Data From Multiple URLs

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
case updateEvt:
printf("Handler Called: updateEvt User Context: %d\n", context);

// Call function to handle event.
break;

case activateEvt:
printf("Handler Called: activateEvt User Context: %d\n", context);

// Call function to handle event.
break;

case keyDown:
printf("Handler Called: keyDown User Context: %d\n", context);

// Call function to handle event.
break;

default:
printf("Handler Called: Default User Context: %d\n", context);
break;

}
return NULL;
}

A Case Study: Downloading Data From Multiple URLs 29

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 2

URL Access Manager Tasks
30 A Case Study: Downloading Data From Multiple URLs

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3
3 URL Access Manager Reference
The following sections provide a complete description of the URL Access Manager
2.0.3 API, including functions, callbacks, data types, constants, and result codes.

“URL Access Functions” (page 31)

“URL Access Callbacks” (page 59)

“URL Access Data Types” (page 62)

“URL Access Constants” (page 63)

“URL Access Result Codes” (page 80)

URL Access Functions

“Determining Availability and Version Information” (page 32)

“Creating and Disposing of URL References” (page 32)

“Getting and Setting Information About a URL” (page 34)

“Performing Simple Data Transfer” (page 37)

“Controlling Data Transfer” (page 47)

“Obtaining Information About a Data Transfer Operation” (page 52)

“Creating and Managing Universal Procedure Pointers” (page 55)
URL Access Functions 31

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Determining Availability and Version Information

URLAccessAvailable — Indicates whether the URL Access Manager is available.
(page 32)

URLGetURLAccessVersion — Determines the version of URL Access Manager
installed on the user’s system. (page 32)

URLAccessAvailable

Indicates whether the URL Access Manager is available.

Boolean URLAccessAvailable ();

function result A Boolean value indicating whether the URL Access Manager is
available. If true, your application can call URL Access Manager
functions. You should call the URLAccessAvailable function to
determine whether the URL Access Manager is available before
calling any other URL Access Manager functions. In Mac OS X,
URLAccessAvailable is always available.

Discussion
The URL Access Manager is available on computers running Mac OS 9.0, but is not
currently supported in Carbon. As a result, in Mac OS X, you should weak link
against the shared library and test to see if the functions are there.

URLGetURLAccessVersion

Determines the version of URL Access Manager installed on the user’s system.

OSStatus URLGetURLAccessVersion (UInt32 *returnVers);

returnVers
On return, a pointer to the version number of the URL Access
Manager installed on the user’s system.

Creating and Disposing of URL References

URLNewReference — Creates a URL reference. (page 33)
32 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLDisposeReference — Disposes of the memory associated with a URL reference.
(page 33)

URLNewReference

Creates a URL reference.

OSStatus URLNewReference (
const char *url,
URLReference *urlRef);

url
A pointer to a C string representing the name of the URL you want
to create a reference for.

urlRef
On return, a pointer to the newly-created URL reference.

Discussion
The URLNewReference function creates a URL reference that you can use in
subsequent calls to the URL Access Manager. When you no longer need a URL
reference, you should dispose of its memory by calling the function
URLDisposeReference (page 33).

URLDisposeReference

Disposes of the memory associated with a URL reference.

OSStatus URLDisposeReference (URLReference urlRef);

urlRef
A reference to the URL whose associated memory you wish to
dispose of. You should call the URLDisposeReference function to
release the memory occupied by a URL reference when you are
finished with it.

Special Considerations
You must call the URLDisposeReference function to dispose of the reference
associated with a URL reference even if the data transfer operation fails. Failure to
call URLDisposeReference may result in thread or memory leaks.
URL Access Functions 33

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Getting and Setting Information About a URL
You can use these functions to set and obtain information about a URL or the
resource the URL points to:

URLGetPropertySize — Determines the size of a URL property. (page 34)

URLGetProperty — Obtains the value of a URL property. (page 35)

URLSetProperty — Sets the value of a URL property. (page 36)

URLGetPropertySize

Determines the size of a URL property.

OSStatus URLGetPropertySize (
URLReference urlRef,
const char *property,
Size *propertySize);

urlRef
A reference to the URL whose property size you want to determine.

property
A pointer to a C string representing the name of the property value
whose size you want to determine. For a description of property
name constants, see “Universal URL Property Name Constants”
(page 78) and “HTTP and HTTPS URL Property Name Constants”
(page 76).

propertySize
On return, a pointer to the size (in bytes) of the specified property
value. If the size is not available, URLGetPropertySize passes back -1
in this parameter.

Discussion
The URLGetProperty function obtains the size of the property value identified by the
property name constant passed in the property parameter. For a description of
property name constants and data types of the corresponding property values, see
“Universal URL Property Name Constants” (page 78) and “HTTP and HTTPS URL
Property Name Constants” (page 76).
34 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
You should call the URLGetPropertySize function before calling the functions
URLGetProperty (page 35) and URLSetProperty (page 36) to determine the size of the
buffer containing the property value you wish to obtain or set. Pass the returned
value in the bufferSize parameter of these functions.

URLGetProperty

Obtains the value of a URL property.

OSStatus URLGetProperty (
URLReference urlRef,
const char *property,
void *propertyBuffer,
Size bufferSize);

urlRef
A reference to the URL whose property value you want to
determine.

property
A pointer to a C string representing the name of the property value
you want to determine. For a description of property name constants
and their corresponding data types, see “Universal URL Property
Name Constants” (page 78) and “HTTP and HTTPS URL Property
Name Constants” (page 76).

propertyBuffer
A pointer to a buffer containing the property value you want to
obtain. You must also pass the correct data type of the property value
you wish to obtain. Before calling URLGetProperty, allocate enough
memory in this buffer to contain the property value you wish to
obtain. On return, a pointer to a buffer containing the property value.
If you do not allocate enough memory for the buffer, URLGetProperty
does not pass back the property value in this parameter and returns
the result code kURLPropertyBufferTooSmallError.

bufferSize
The size (in bytes) of the buffer pointed to by propertyBuffer. To
determine the buffer size, call the function URLGetPropertySize
(page 34). If the buffer size is too small, URLGetProperty returns the
result code kURLPropertyBufferTooSmallError and does not pass
back the property value in the propertyBuffer parameter.
URL Access Functions 35

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
function result The result code kURLPropertyBufferTooSmallError indicates that you
did not allocate enough memory for the buffer in the propertyBuffer
parameter. The result code kURLPropertyNotYetKnownError indicates
that the value of the property is not yet available.

Discussion
The URLGetProperty function obtains the value of a URL property identified by the
property name constant specified in the property parameter. Note that you must
also pass the correct data type of the property value in the propertyBuffer
parameter so you know how to display it.

URLSetProperty

Sets the value of a URL property.

OSStatus URLSetProperty (
URLReference urlRef,
const char *property,
void *propertyBuffer,
Size bufferSize);

urlRef
A reference to the URL whose property value you want to set.

property
A pointer to a C string representing the name of the property value
you want to set. You can only set property values identified by the
constants kURLFileType, kURLFileCreator, kURLUserName,
kURLHTTPRequestMethod, kURLHTTPRequestHeader,
kURLHTTPRequestBody, and kURLHTTPUserAgent. For a description of
these property name constants and their corresponding data types,
see “Universal URL Property Name Constants” (page 78) and
“HTTP and HTTPS URL Property Name Constants” (page 76). To
clear the value of a property, pass NULL in this parameter.

propertyBuffer
A pointer to a buffer containing the property value you want to set.
You must also pass the correct data type of the property value you
wish to set.
36 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
bufferSize
The size (in bytes) of the buffer pointed to by propertyBuffer. To
determine the buffer size, call the function URLGetPropertySize
(page 34). If the buffer size is too small, URLSetProperty returns the
result code kURLPropertyBufferTooSmallError and does not pass
back the property value in the propertyBuffer parameter.

function result If there is a function error, URLSetProperty will not set the property
value. The result code kURLUnsettablePropertyError indicates that a
property value cannot be set. The result code
kURLUnknownPropertyError indicates that a property is invalid or
undefined.

Discussion
The URLSetProperty function enables you to set those property values identified by
the following constants: kURLFileType, kURLFileCreator, kURLUserName,
kURLPassword, kURLHTTPRequestMethod, kURLHTTPRequestHeader,
kURLHTTPRequestBody, and kURLHTTPUserAgent. For a description of these property
name constants and their corresponding data types, see “Universal URL Property
Name Constants” (page 78) and “HTTP and HTTPS URL Property Name
Constants” (page 76).

You may wish to call URLSetProperty before calling the function URLDownload
(page 40) or URLUpload (page 45) to set a URL property before a data transfer
operation.

Performing Simple Data Transfer
You can use these high-level function to download from and upload to a URL
Unlike the function URLOpen (page 47), these functions are synchronous, returning
control to your application only after the function is done executing.

URLSimpleDownload — Downloads data from a URL specified by a character string.
(page 38)

URLDownload — Downloads data from a URL specified by a URL reference. (page 40)

URLSimpleUpload — Uploads a file or directory to an FTP URL specified by a
character string. (page 43)

URLUpload — Uploads a file or directory to an FTP URL specified by a URL reference.
(page 45)
URL Access Functions 37

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLSimpleDownload

Downloads data from a URL specified by a character string.

OSStatus URLSimpleDownload (
const char *url,
FSSpec *destination,
Handle destinationHandle,
URLOpenFlags openFlags,
URLSystemEventUPP eventProc,
void *userContext);

url
A pointer to a C string representing the pathname of the URL from
which data is to be downloaded. If the pathname specifies a file, the
file is downloaded regardless of whether you specify
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in the
openFlags parameter.

destination
A pointer to a file specification structure that identifies the file or
directory into which data is to be downloaded. If you wish to
download data into memory, pass NULL in this parameter and a valid
handle in the destinationHandle parameter. If you pass a file
specification that does not identify a file or directory, the name of the
file or directory specified by the pathname in the url parameter is
used. If you pass a file or directory that already exists, and do not
specify kURLReplaceExistingFlag in the openFlags parameter,
URLSimpleDownload creates a new file or directory whose name has a
number appended before the extension. For example, if the URL
specifies a file named file.txt, URLSimpleDownload changes the
filename to file1.txt.

destinationHandle
A handle to the destination in memory where you want the data
downloaded. Before calling URLDownload, create a zero-sized handle.
If you wish to download data into a file or directory, pass NULL in this
parameter and a valid file specification in the destination parameter.

openFlags
A bitmask that indicates the data transfer options to use. You can
specify any of the following masks for downloading options:
kURLReplaceExistingFlag, kURLExpandFileFlag,
kURLExpandAndVerifyFlag, kURLDisplayProgressFlag,
kURLDisplayAuthFlag, kURLIsDirectoryHintFlag,
38 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLDoNotTryAnonymousFlag, and kURLDirectoryListingFlag. See
“Data Transfer Options Mask Constants” (page 71) for a description
of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback
function, if one exists. For information on how to write a system
event callback, see URLSystemEventProcPtr (page 60). If you want to
handle events that occur while a progress indicator or authentication
dialog box is being displayed, specify the appropriate mask (either
kURLDisplayProgressFlag or kURLDisplayAuthFlag) in the openFlags
parameter and pass a UPP to your callback function in this
parameter. Pass NULL if you do not want to receive notification of
these events. In this case, the URL Access Manager displays a
nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your
system event callback function, if one exists. Your application can
use this to associate any particular call of URLSimpleDownload with
any particular call of the system event callback function.

function result If your application is multi-threaded, and more than one thread calls
URLSimpleDownload simultaneously, URLSimpleDownload returns the
result code kURLProgessAlreadyDisplayedError if you specify
kURLDisplayProgressFlag in the openFlags parameter and the URL
Access Manager is already displaying a progress indicator.

Discussion
The URLSimpleDownload function downloads data from a URL specified by a
pathname to a specified file, directory, or memory. It does not return until the
download is complete. If you want to download data from a URL identified by a
reference rather than a pathname, call the function URLDownload (page 40). The
difference between the two functions is that URLDownload allows you to set URL
property values by calling the function URLSetProperty (page 36) prior to the call. If
you want more control over a data transfer operation, call the function URLOpen
(page 47).

If you wish to download data to a file or directory, pass a valid file specification in
the destination parameter. If you instead wish to download data to memory, pass
a valid handle in the destinationHandle parameter.
URL Access Functions 39

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
When URLSimpleDownload downloads data from a URL that represents a local file
(that is, a URL that begins with file:///), the data fork is downloaded but the
resource fork is not.

Version Notes
In Mac OS 8.6, if the file type of the file to be downloaded is unknown,
URLSimpleDownload assumes that the file is of type text. In this case, the end-of-line
character is changed to the Mac style end-of-line character 0x0d0x0a. In Mac OS 9,
when a file of unknown type is downloaded, URLSimpleDownload does not assume
that it is a text file. Instead, it identifies it as an unknown file type and does not
change the end-of-line character.

Special Considerations
URLSimpleDownload yields time to other threads. Your application should call
URLSimpleDownload from a thread other than the main thread so that other
processes have time to run.

URLDownload

Downloads data from a URL specified by a URL reference.

OSStatus URLDownload (
URLReference urlRef,
FSSpec *destination,
Handle destinationHandle,
URLOpenFlags openFlags,
URLSystemEventUPP eventProc,
void *userContext);

urlRef
A reference to the URL from which data is to be downloaded. You
call URLDownload, you cannot use the same reference if you call
URLDownload again. Instead, you must create a new URL reference by
calling the function URLNewReference (page 33).

destination
A pointer to a file specification structure that identifies the file or
directory into which data is to be downloaded. If you wish to
download data into memory, pass NULL in this parameter and a valid
handle in the destinationHandle parameter. If you pass a file
specification that does not identify a file or directory, the name of the
file or directory specified by the pathname in the urlRef parameter is
used. If you want to replace the file you pass in this parameter,
40 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
terminate the pathname with a slash character (/), and specify
kURLReplaceExistingFlag in the openFlags parameter. If you specify
a name that already exists on the server and do not specify
kURLReplaceExistingFlag, URLDownload returns the result code
kURLDestinationExistsError. If you do not specify a name, do not
specify kURLReplaceExistingFlag in the openFlags parameter, and the
name already exists on the server, the URL Access Manager creates
a unique name by appending a number to the original name before
the extension, if any. For example, if the URL specifies a file named
file.txt, URLDownload changes the filename to file1.txt.

destinationHandle
A handle to the destination in memory where you want the data
downloaded. Before calling URLDownload, create a zero-sized handle.
If you wish to download data into a file or directory, pass NULL in this
parameter and a valid file specification in the destination parameter.

openFlags
A bitmask that indicates the data transfer options to use. You can
specify any of the following masks for downloading options:
kURLReplaceExistingFlag, kURLExpandFileFlag,
kURLExpandAndVerifyFlag, kURLDisplayProgressFlag,
kURLDisplayAuthFlag, kURLIsDirectoryHintFlag,
kURLDoNotTryAnonymousFlag, and kURLDirectoryListingFlag. See
“Data Transfer Options Mask Constants” (page 71) for a description
of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback
function, if one exists. For information on how to write a system
event callback, see URLSystemEventProcPtr (page 60). If you want to
handle events that occur while a progress indicator or authentication
dialog box is being displayed, specify the appropriate mask (either
kURLDisplayProgressFlag or kURLDisplayAuthFlag) in the openFlags
parameter and pass a UPP to your callback function in this
parameter. Pass NULL if you do not want to receive notification of
these events. In this case, the URL Access Manager displays a
nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your
system event callback function, if one exists. Your application can
use this to associate any particular call of URLDownload with any
particular call of the system event callback function.
URL Access Functions 41

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
function result If your application is multi-threaded, and more than one thread calls
URLDownload simultaneously, URLDownload returns the result code
kURLProgessAlreadyDisplayedError if you specify
kURLDisplayProgressFlag in the openFlags parameter and the URL
Access Manager is already displaying a progress indicator.

Discussion
The URLDownload function downloads data from a URL specified by a URL
reference to a file, directory, or memory. It does not return until the download is
complete. If you want to download data from a URL identified by a pathname
rather than a reference, call the function URLSimpleDownload (page 38). The
difference between the two functions is that URLDownload allows you to set URL
property values by calling the function URLSetProperty (page 36) prior to the call. If
you want more control over a data transfer operation, call the function URLOpen
(page 47).

If you wish to download data to a file or directory, pass a valid file specification in
the destination parameter. If you instead wish to download data to memory, pass
a valid handle in the destinationHandle parameter. If the URL specified in the
urlRef parameter is a file, the file is uploaded regardless of whether the bit specified
by the mask constant kURLDirectoryListingFlag or KURLIsDirectoryHintFlag is set
in the openFlags parameter.

When URLDownload downloads data from a URL that represents a local file (that is, a
URL that begins with file:///), the data fork is downloaded but the resource fork is
not.

Version Notes
In Mac OS 8.6, if the file type of the file to be downloaded is unknown, URLDownload
assumes that the file is of type text. In this case, the end-of-line character is changed
to the Mac style end-of-line character 0x0d0x0a. In Mac OS 9, when a file of unknown
type is downloaded, URLDownload does not assume that it is a text file. Instead, it
identifies it as an unknown file type and does not change the end-of-line character.

Special Considerations
URLDownload yields time to other threads. Your application should call URLDownload
from a thread other than the main thread so that other processes have time to run.
42 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLSimpleUpload

Uploads a file or directory to an FTP URL specified by a character string.

OSStatus URLSimpleUpload (
const char *url,
const FSSpec *source,
URLOpenFlags openFlags,
URLSystemEventUPP eventProc,
void *userContext);

url
A pointer to a C string representing the pathname of the URL to
which a file or directory is to be uploaded. If you wish to replace the
destination directory of this URL with the file or directory that you
pass in the source parameter, terminate this pathname with a slash
character (/), and specify kURLReplaceExistingFlag in the openFlags
parameter. If you specify a name that already exists on the server and
do not specify kURLReplaceExistingFlag, URLSimpleUpload returns the
result code kURLDestinationExistsError. If you do not specify a
name, do not specify kURLReplaceExistingFlag in the openFlags
parameter, and the name already exists on the server, the URL
Access Manager creates a unique name by appending a number to
the original name before the extension, if any. For example, if the
URL specifies a file named file.txt, URLSimpleUpload changes the
filename to file1.txt.

source
A pointer to a file specification structure that describes the file or
directory you want to upload.

openFlags
A bitmask that indicates the data transfer options to use. You can
specify any of the following masks for uploading options:
kURLReplaceExistingFlag, kURLBinHexFileFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, and
kURLDoNotTryAnonymousFlag. See “Data Transfer Options Mask
Constants” (page 71) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback
function, if one exists. For information on how to write a system
event callback, see URLSystemEventProcPtr (page 60). If you want to
handle events that occur while a progress indicator or authentication
dialog box is being displayed, specify the appropriate mask (either
URL Access Functions 43

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLDisplayProgressFlag or kURLDisplayAuthFlag) in the openFlags
parameter and pass a UPP to your callback function in this
parameter. Pass NULL if you do not want to receive notification of
these events. In this case, the URL Access Manager displays a
nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your
system event callback function, if one exists. Your application can
use this to associate any particular call of URLSimpleUpload with any
particular call of the system event callback function.

function result The result code kURLDestinationExistsError indicates that you
specified a pathname that already exists on the server but did not set
the bit specified by the mask constant kURLReplaceExistingFlag in
the openFlags parameter. If your application is multi-threaded, and
more than one thread calls URLSimpleUpload simultaneously,
URLSimpleUpload returns the result code
kURLProgessAlreadyDisplayedError if you specify
kURLDisplayProgressFlag in the openFlags parameter and the URL
Access Manager is already displaying a progress indicator.

Discussion
The URLSimpleUpload function uploads a file or directory to an FTP URL specified
by a pathname. It does not return until the upload is complete. If you want to
upload data from a URL identified by a reference rather than a pathname, call the
function URLUpload (page 45). The difference between the two functions is that
URLUpload allows you to set URL property values by calling the function
URLSetProperty (page 36) prior to the call. If you want more control over a data
transfer operation, call the function URLOpen (page 47).

When URLSimpleUpload uploads data to a URL that represents a local file (that is, a
URL that begins with file:///), the data fork is uploaded but the resource fork is
not.

Version Notes
In Mac OS 8.6, if the file type of the file to be uploaded is unknown, URLSimpleUpload
assumes that the file is of type text. In this case, the end-of-line character is changed
to the Mac style end-of-line character 0x0d0x0a. In Mac OS 9, when a file of unknown
type is uploaded, URLSimpleUpload does not assume that it is a text file. Instead, it
identifies it as an unknown file type and does not change the end-of-line character.
44 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Special Considerations
URLSimpleUpload yields time to other threads. Your application should call
URLSimpleUpload from a thread other than the main thread so that other processes
have time to run.

URLUpload

Uploads a file or directory to an FTP URL specified by a URL reference.

OSStatus URLUpload (
URLReference urlRef,
const FSSpec *source,
URLOpenFlags openFlags,
URLSystemEventUPP eventProc,
void *userContext);

urlRef
A reference to the URL to which data is to be uploaded. You cannot
use the same reference if you call URLUpload again. Instead, you must
create a new URL reference by calling the function URLNewReference
(page 33). If the URL refers to a file, the file is uploaded regardless of
whether you specify kURLDirectoryListingFlag or
KURLIsDirectoryHintFlag in the openFlags parameter.

source
A pointer to a file specification structure that describes the file or
directory you want to upload.

openFlags
A bitmask that indicates the data transfer options you want used.
You can specify any of the following masks for uploading options:
kURLReplaceExistingFlag, kURLBinHexFileFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, and
kURLDoNotTryAnonymousFlag. See “Data Transfer Options Mask
Constants” (page 71) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback
function, if one exists. For information on how to write a system
event callback, see URLSystemEventProcPtr (page 60). If you want to
handle events that occur while a progress indicator or authentication
dialog box is being displayed, specify the appropriate mask (either
kURLDisplayProgressFlag or kURLDisplayAuthFlag) in the openFlags
parameter and pass a UPP to your callback function in this
URL Access Functions 45

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
parameter. Pass NULL if you do not want to receive notification of
these events. In this case, the URL Access Manager displays a
nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your
system event callback function, if one exists. Your application can
use this to associate any particular call of URLUpload with any
particular call of the system event callback function.

function result The result code kURLDestinationExistsError indicates that you
specified a pathname that already exists on the server but did not
specify kURLReplaceExistingFlag in the openFlags parameter. If your
application is multi-threaded, and more than one thread calls
URLUpload simultaneously, URLUpload returns the result code
kURLProgessAlreadyDisplayedError if you specify
kURLDisplayProgressFlag in the openFlags parameter and the URL
Access Manager is already displaying a progress indicator.

Discussion
The URLUpload function uploads a file or directory to an FTP URL specified by a
URL reference. It does not return until the upload is complete. If you want to upload
data from a URL identified by a pathname rather than a reference, call the function
URLSimpleUpload (page 43). The difference between the two functions is that
URLUpload allows you to set URL property values by calling the function
URLSetProperty (page 36) prior to the call. If you want more control over a data
transfer operation, call the function URLOpen (page 47).

If the URL specified in the urlRef parameter is a file, the file is uploaded regardless
of whether you specified kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in
the openFlags parameter.

When URLUpload uploads data to a URL that represents a local file (that is, a URL
that begins with file:///), the data fork is uploaded but the resource fork is not.

Version Notes
In Mac OS 8.6, if the file type of the file to be uploaded is unknown, URLUpload
assumes that the file is of type text. In this case, the end-of-line character is changed
to the Mac style end-of-line character 0x0d0x0a. In Mac OS 9, when a file of unknown
type is uploaded, URLUpload does not assume that it is a text file. Instead, it identifies
it as an unknown file type and does not change the end-of-line character.
46 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Special Considerations
URLUpload yields time to other threads. Your application should call URLUpload
from a thread other than the main thread so that other processes have time to run.

Controlling Data Transfer
You can use these functions to have more control over a data transfer operation than
is afforded by the functions URLSimpleDownload (page 38), URLDownload (page 40),
URLSimpleUpload (page 43), and URLUpload (page 45). These functions are
asynchronous, returning control to your application immediately.

URLOpen — Opens a URL and starts an asynchronous download or upload
operation. (page 47)

URLAbort — Terminates a data transfer operation. (page 49)

URLGetDataAvailable — Determines the amount of data available for retrieval in a
download operation. (page 50)

URLGetBuffer — Obtains the next buffer of data in a download operation. (page 51)

URLReleaseBuffer — Releases a buffer. (page 52)

URLOpen

Opens a URL and starts an asynchronous download or upload operation.

OSStatus URLOpen (
URLReference urlRef,
FSSpec *fileSpec,
URLOpenFlags openFlags,
URLNotifyUPP notifyProc,
URLEventMask eventRegister,
void *userContext);

urlRef
A reference to the URL to or from which you wish to transfer data.
You cannot use the same reference if you call URLOpen again. Instead,
you must create a new URL reference by calling the function
URLNewReference (page 33). If the URL refers to a file, the file is
uploaded regardless of whether you specify
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in the
openFlags parameter.
URL Access Functions 47

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
fileSpec
A pointer to a file specification that identifies the file or directory into
which data is to be uploaded or downloaded. For upload operations,
you must pass a valid file specification. For download operations,
you can pass NULL. In this case, you must call the function
URLGetBuffer (page 51) to retrieve the data as it is downloaded. For
more information, see the discussion.

openFlags
A bitmask that indicates the data transfer options to use. You can
specify any of the following masks when uploading data:
kURLReplaceExistingFlag, kURLBinHexFileFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, and
kURLDoNotTryAnonymousFlag. You can specify any of the following
masks when downloading data: kURLReplaceExistingFlag,
kURLExpandFileFlag, kURLExpandAndVerifyFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag,
kURLIsDirectoryHintFlag, kURLDoNotTryAnonymousFlag, and
kURLDirectoryListingFlag. See “Data Transfer Options Mask
Constants” (page 71) for a description of possible values.

notifyProc
A Universal Procedure Pointer (UPP) to your notification callback
function, described in URLNotifyProcPtr (page 59). You can define an
event notification callback function if you do not specify a file in
which to store the data. You indicate the type of data transfer events
you want to receive by passing a bitmask of the desired events in the
eventRegister parameter. Pass NULL in this parameter if you do not
want to receive notification of data transfer events.

eventRegister
A bitmask that URLOpen will test to determine the data transfer events
your notification callback function (if one exists) will receive. See
“Data Transfer Event Mask Constants” (page 67) for a description of
this mask.

userContext
A pointer to application-defined storage that will be passed to your
notification callback function, if one exists. Your application can use
this to associate any particular call of URLOpen with any particular
call of the notification event callback function.
48 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Discussion
The URLOpen function starts an asynchronous download or upload operation and
returns control to your application immediately. For download operations, if you
do not specify a file in which to store the data, you must repeatedly call the function
URLGetBuffer (page 51). This function retrieves the next buffer of data from the URL
Access Manager’s buffers so that you can manipulate the data or write it to the
destination of your choice. If you do not specify a file in which to store the data, you
can define an event notification function and the events for which you want to
receive notification.

For download operations, if you specify a valid file, your application will not have
access to buffer state information provided by the function URLGetCurrentState
(page 53) and cannot call the functions URLGetBuffer (page 51), URLReleaseBuffer
(page 52), or URLGetDataAvailable (page 50).

If you want to replace the file you passed in the fileSpec parameter, terminate the
pathname with a slash character (/), and specify kURLReplaceExistingFlag in the
openFlags parameter. If you specify a name that already exists on the server and do
not specify kURLReplaceExistingFlag, URLOpen returns the result code
kURLDestinationExistsError. If you do not specify a name, do not specify
kURLReplaceExistingFlag in the openFlags parameter, and the name already exists
on the server, the URL Access Manager creates a unique name by appending a
number to the original name before the extension, if any. For example, if the URL
specifies a file named file.txt, URLOpen changes the filename to file1.txt.

When URLOpen uploads data to or downloads data from a URL that represents a local
file (that is, a URL that begins with file:///), the data fork is uploaded or
downloaded but the resource fork is not.

Version Notes
In Mac OS 8.6, if the file type of the file to be uploaded or downloaded is unknown,
URLOpen assumes that the file is of type text. In this case, the end-of-line character is
changed to the Mac style end-of-line character 0x0d0x0a. In Mac OS 9, when a file of
unknown type is uploaded or downloaded, URLOpen does not assume that it is a text
file. Instead, it identifies it as an unknown file type and does not change the
end-of-line character.

URLAbort

Terminates a data transfer operation.

OSStatus URLAbort (URLReference urlRef);
URL Access Functions 49

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
urlRef
A reference to the URL whose data transfer operation you wish to
terminate.

Discussion
The URLAbort function terminates a data transfer operation that was started by
calling the function URLOpen (page 47). When your application calls URLAbort, the
URL Access Manager changes the state returned by the function
URLGetCurrentState (page 53) to kURLAbortingState and passes the constant
kURLAbortInitiatedEvent to your notification callback function. When data transfer
is terminated, the URL Access Manager changes the state returned by
URLGetCurrentState to kURLCompletedState and passes the constant
kURLCompletedEvent in the event parameter of your notification callback function.

URLGetDataAvailable

Determines the amount of data available for retrieval in a download operation.

OSStatus URLGetDataAvailable (
URLReference urlRef,
Size *dataSize);

urlRef
A reference to the URL whose buffer size you want.

dataSize
On return, a pointer to the size (in bytes) of data available for
retrieval in a download operation.

Discussion
The URLGetDataAvailable function determines the number of bytes remaining in a
buffer after a call to the function URLGetBuffer (page 51). The returned size does not
include the number of bytes in transit to a buffer, nor does it include the amount of
data not yet transferred from the URL. You should only call URLGetDataAvailable if
you have initiated a download process.

URLGetDataAvailable does not calculate the amount of data remaining to be
downloaded. If you wish to determine this, pass the name constant
kURLResourceSize in the property parameter of the function URLGetProperty
(page 35) and subtract the amount of data copied.
50 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLGetBuffer

Obtains the next buffer of data in a download operation.

OSStatus URLGetBuffer (
URLReference urlRef,
void **buffer,
Size *bufferSize);

urlRef
A reference to the URL whose data is being downloaded.

buffer
On return, a handle to a buffer containing the downloaded data.

bufferSize
On return, a pointer to the number of bytes of data in the buffer.

Discussion
The URLGetBuffer function obtains the next buffer of data in a download operation.
URLGetBuffer does not enable you to retain or modify the transferred data. If you
pass NULL in the fileSpec parameter of the function URLOpen (page 47), you should
call URLGetBuffer to retrieve data as it is downloaded.

You should call URLGetBuffer repeatedly until URL Access Manager passes the
event constant kURLCompletedEvent or kURLAbortInitiatedEvent in the event
parameter of your notification callback function, or until the function
URLGetCurrentState (page 53) returns the state constant kURLTransactionComplete or
kURLAbortingState. Between calls to URLGetBuffer, you should call the function
URLIdle (page 54) to allow time for the URL Access Manager to refill its buffers.

To determine the number of bytes remaining in the buffer, call the function
URLGetDataAvailable (page 50). The size returned by URLGetDataAvailable does not
include the number of bytes in transit to a buffer, nor does it include the amount of
data not yet transferred from the URL.

Special Considerations
You should release the returned buffer as soon as possible after a call to
URLGetBuffer by calling the function URLReleaseBuffer (page 52). This prevents the
URL Access Manager from running out of buffers.
URL Access Functions 51

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLReleaseBuffer

Releases a buffer.

OSStatus URLReleaseBuffer (
URLReference urlRef,
void *buffer);

urlRef
A reference to the URL whose buffer you want to release.

buffer
A pointer to the buffer you want to release.

Discussion
The URLReleaseBuffer function releases the buffer obtained by calling the function
URLGetBuffer (page 51). To prevent the URL Access Manager from running out of
buffers, you should call URLReleaseBuffer after each call to URLGetBuffer.

Obtaining Information About a Data Transfer
Operation
You can use these functions to determine the error code returned when a data
transfer operation fails, determine the status of a data transfer operation, yield time
so that the URL Access Manager can refill its buffers, or get information about a file.

URLGetError — Determines the error code of a failed data transfer operation.
(page 52)

URLGetCurrentState — Determines the status of a data transfer operation. (page 53)

 URLGetFileInfo — Obtains the file type and creator of a file. (page 54)

URLIdle — Gives the URL Access Manager time to refill its buffers during download
operations. (page 54)

URLGetError

Determines the error code of a failed data transfer operation.

OSStatus URLGetError (
URLReference urlRef,
OSStatus *urlError);
52 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
urlRef
A reference to the URL whose data transfer operation failed.

urlError
A pointer to a C string representing the name of the error code
returned by the failed operation.

Discussion
The URLGetError function determines the error code returned when a data transfer
operation fails. The error code may be a system error code, a protocol-specific error
code, or one of the error codes listed in “URL Access Result Codes” (page 80).

URLGetCurrentState

Determines the status of a data transfer operation.

OSStatus URLGetCurrentState (
URLReference urlRef,
URLState *state);

urlRef
A reference to the URL whose data transfer state you want to
determine.

state
On return, a pointer to the state of data transfer. See “Data Transfer
State Constants” (page 74) for a description of possible values. All
constants except kURLDataAvailableState and kURLCompletedState
can be returned at any time. If you pass a valid file specification in
the fileSpec parameter of the function URLOpen (page 47), your
notification callback function will not be notified of data available
and transaction completed states as identified by the constants
kURLDataAvailableState and kURLTransactionCompleteState.

Discussion
The URLGetCurrentState function determines the current status of a data transfer
operation. You may wish to call URLGetCurrentState periodically to monitor the
status of a download or upload operation.
URL Access Functions 53

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URLGetFileInfo

Obtains the file type and creator of a file.

OSStatus URLGetFileInfo (
StringPtr fName,
OSType *fType,
OSType *fCreator);

fName
A pointer to a Pascal string representing the name of the file for
which you want information.

fType
On return, a pointer to the file type code of the specified filename.

fCreator
On return, a pointer to the file creator code of the specified filename.

Discussion
The URLGetFileInfo function obtains the file type and creator codes for a specified
filename. The type and creator codes are determined by the Internet configuration
mapping table and are based on the filename extension. For example, if you pass the
filename "jane.txt", URLGetFileInfo will return 'TEXT' in the type parameter and
'ttxt' in the creator parameter.

URLIdle

Gives the URL Access Manager time to refill its buffers during download
operations.

OSStatus URLIdle (void);

Discussion
The URLIdle function gives the URL Access Manager time to refill its buffers during
download operations. If you pass NULL in the fileSpec parameter of the function
URLOpen (page 47), you should call URLGetBuffer (page 51) to retrieve data as it is
downloaded. To allow time for the URL Access Manager to refill its buffers, call
URLIdle in between calls to URLGetBuffer.
54 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Creating and Managing Universal Procedure
Pointers
You can use these functions to create and manage universal procedure pointers
(UPPs) to your notification and system event callback functions.

NewURLNotifyUPP — Creates a UPP to your notification callback function. (page 55)

NewURLSystemEventUPP — Creates a UPP to your system event callback function.
(page 56)

InvokeURLNotifyUPP — Invokes your notification callback function. (page 56)

InvokeURLSystemEventUPP — Invokes your system event callback function. (page 57)

DisposeURLNotifyUPP — Disposes of a UPP to your notification callback function.
(page 58)

DisposeURLSystemEventUPP — Disposes of a UPP to your system event callback
function. (page 58)

NewURLNotifyUPP

Creates a UPP to your notification callback function.

URLNotifyUPP NewURLNotifyUPP (URLNotifyProcPtr userRoutine);

userRoutine
A pointer to your notification callback function. For information on
how to create a notification callback function, see URLNotifyProcPtr
(page 59).

function result A UPP to your notification callback function. You can register your
notification callback function by passing this UPP in the notifyProc
parameter of the function URLOpen (page 47).

Discussion
The NewURLNotifyUPP function creates a pointer to your notification callback
function. You pass a pointer to your callback function in the notifyProc parameter
of the function URLOpen (page 47) if you want your application to receive data
transfer events. Pass a bitmask in the eventRegister parameter of URLOpen indicating
which data transfer events you want to receive.
URL Access Functions 55

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Special Considerations
When you are finished with a UPP to your notification callback function, you
should dispose of it by calling the function DisposeURLNotifyUPP (page 58).

NewURLSystemEventUPP

Creates a UPP to your system event callback function.

URLSystemEventUPP NewURLSystemEventUPP (
URLSystemEventProcPtr userRoutine);

userRoutine
A pointer to your system event callback function. For information on
how to create a system event callback function, see
URLSystemEventProcPtr (page 60).

function result A UPP to your system event callback function. You can register your
system event callback function by passing this UPP in the eventProc
parameter of the functions URLSimpleDownload (page 38),
URLSimpleUpload (page 43), URLDownload (page 40), and URLUpload
(page 45).

Discussion
The NewURLSystemEventUPP function creates a pointer to your system event callback
function. You pass a pointer to your callback function in the notifyProc parameter
of the functions URLSimpleDownload (page 38), URLSimpleUpload (page 43),
URLDownload (page 40), and URLUpload (page 45) if you want to handle events that
occur while a progress indicator or authentication dialog box is being displayed.

Special Considerations
When you are finished with a UPP to your notification callback, you should dispose
of it by calling the function DisposeURLNotifyUPP (page 58).

InvokeURLNotifyUPP

Invokes your notification callback function.

OSStatus InvokeURLNotifyUPP (
void *userContext,
URLEvent event,
URLCallbackInfo *callbackInfo,
URLNotifyUPP userUPP);
56 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
userContext
A pointer to application-defined storage. The URL Access Manager
passes this value in the userContext parameter of your notification
callback function.

event
The data transfer events you want your application to receive. See
“Data Transfer Event Constants” (page 65) for a description of
possible values. The URL Access Manager tests the bitmask you pass
in the eventRegister parameter of the function URLOpen (page 47) to
determine which events to pass to your callback function. See “Data
Transfer Event Mask Constants” (page 67) for a description of this
bitmask.

callbackInfo
A pointer to a structure of type URLCallbackInfo (page 62) that
provides information about the data transfer event to your callback
function. The URL Access Manager passes a pointer to this structure
in the callbackInfo parameter of your notification callback function.

userUPP
A Universal Procedure Pointer to your notification callback function.
For information on how to create a notification callback function, see
URLNotifyProcPtr (page 59).

Discussion
The URL Access Manager calls the InvokeURLNotifyUPP function when you pass a
UPP to your callback function in the notifyProc parameter of the function URLOpen
(page 47), and the data transfer event that you specified in the eventRegister
parameter occurs.

InvokeURLSystemEventUPP

Invokes your system event callback function.

OSStatus InvokeURLSystemEventUPP (
void *userContext,
EventRecord *event,
URLSystemEventUPP userUPP);

userContext
A pointer to application-defined storage. The URL Access Manager
passes this value in the userContext parameter of your system event
callback function.
URL Access Functions 57

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
event
A pointer to an event record that provides information about the
system event to your callback function.

userUPP
A Universal Procedure Pointer to your system event callback
function. For information on how to create a system event callback
function, see URLSystemEventProcPtr (page 60).

Discussion
The URL Access Manager calls the InvokeURLSystemEventUPP function when you
pass a UPP to your callback function in the eventProc parameter of the functions
URLSimpleDownload (page 38), URLSimpleUpload (page 43), URLDownload (page 40), or
URLUpload (page 45), and a system event occurs while a progress indicator or
authentication dialog box is being displayed.

DisposeURLNotifyUPP

Disposes of a UPP to your notification callback function.

void DisposeURLNotifyUPP (
URLNotifyUPP userUPP);

userUPP
A UPP to your notification callback function.

Discussion
When you are finished with a UPP to your notification callback function, you
should dispose of it by calling the DisposeURLNotifyUPP function.

DisposeURLSystemEventUPP

Disposes of a UPP to your system event callback function.

void DisposeURLSystemEventUPP (
URLSystemEventUPP userUPP);

userUPP
A UPP to your system event callback function.

Discussion
When you are finished with a UPP to your system event callback function, you
should dispose of it by calling the DisposeURLSystemEventUPP function.
58 URL Access Functions

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URL Access Callbacks

URLNotifyProcPtr — Defines a pointer to your notification callback function. Your
notification callback function handles certain data transfer events that occur during
data transfer operations. (page 59)

URLSystemEventProcPtr — Defines a pointer to your system event callback function.
Your system event callback function handles system events that occur during a data
tranfer operation. (page 60)

URLNotifyProcPtr

Defines a pointer to your notification callback function. Your notification callback
function handles certain data transfer events that occur during data transfer
operations.

OSStatus *URLNotifyProcPtr (
void *userContext,
URLEvent event,
URLCallbackInfo *callbackInfo);

You would declare your notification callback function like this if you were to name
it MyURLNotifyCallback:

OSStatus MyURLNotifyCallback(
void *userContext,
URLEvent event,
URLCallbackInfo *callbackInfo);

userContext
A pointer to application-defined storage that your application
previously passed to the function URLOpen (page 47). Your
application can use this to associate any particular call of URLOpen
with any particular call of the notification callback function.

event
The data transfer event that your application wishes to be notified of.
See “Data Transfer Event Constants” (page 65) for a description of
possible values. The type of event that can trigger your callback
URL Access Callbacks 59

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
depends on the event mask you passed in the eventRegister
parameter of the function URLOpen (page 47), and whether you pass a
valid file specification in the fileSpec parameter of URLOpen. For
more information, see the discussion.

callbackInfo
A pointer to a structure of type URLCallbackInfo (page 62). On return,
the structure contains information about the data transfer event that
occurred. The URL Access Manager passes this information to your
callback function via the callbackInfo parameter of the function
InvokeURLNotifyUPP (page 56).

function result Your notification callback function should process the system event
and return noErr.

Discussion
Your notification callback function handles certain data transfer events that occur
during data transfer operations performed by the function URLOpen (page 47). You
can define an event notification function and the events for which you want to
receive notification only if you do not specify a file in which to store the data for
download operations. In order to be notified of these events, you must pass a UPP
to your notification callback function in the notifyProc parameter. You indicate the
type of data transfer events you want to receive via a bitmask in the eventRegister
parameter.

Special Considerations
Do not call the function URLDisposeReference (page 33) from your notification
callback function. Doing so may cause your application to stop working. Your
application may call any function. For example, your notification callback can
update its user interface, allocate and deallocate memory, or call the Thread
Manager function NewThread.

URLSystemEventProcPtr

Defines a pointer to your system event callback function. Your system event
callback function handles system events that occur during a data tranfer operation.

void *URLSystemEventProcPtr (
void *userContext.
EventRecord *event);
60 URL Access Callbacks

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
You would declare your system event callback function like this if you were to name
it MyURLSystemEventProc:

void MyURLSystemEventProc (
void *userContext.
EventRecord *event);

userContext
A pointer to application-defined storage that your application
previously passed to the function URLSimpleDownload (page 38),
URLDownload (page 40), URLSimpleUpload (page 43), or URLUpload
(page 45). Your application can use this to associate any particular
call of these functions with any particular call of the system event
callback function.

event
A pointer to an event record containing information about the
system event that occurred during the data transfer operation.

function result Your system event callback function should process the system event
and return noErr.

Discussion
Your system event callback function handles system events that may occur during
a call to the functions URLSimpleDownload (page 38), URLDownload (page 40),
URLSimpleUpload (page 43), and URLUpload (page 45) if you indicate that a progress
indicator or authentication dialog box should be displayed by these functions and
the user interacts with it. If you wish these functions to display a movable progress
indicator or authentication dialog box during the data transfer operation, you
should specify the appropriate masks, kURLDisplayProgressFlag or
kURLDisplayAuthFlag, in the openFlags parameter and a UPP to your callback
function in the eventProc parameter of these functions. If you pass NULL in the
eventProc parameter, the URL Access Manager displays a nonmovable modal
progress indicator and authentication dialog box.

When your system event callback function is called, it should process the event
immediately.

Special Considerations
Do not call the function URLDisposeReference (page 33) from your system event
callback function. Doing so may cause your application to stop working. Your
application may call any function. For example, your system event callback can
update its user interface, allocate and deallocate memory, or call the Thread
Manager function NewThread.
URL Access Callbacks 61

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
URL Access Data Types

URLReference — Represents a reference to a URL. (page 62)

URLCallbackInfo — Contains information about a data transfer event. (page 62)

URLReference

Represents a reference to a URL.

typedef struct OpaqueURLReference* URLReference;

Discussion
The URLReference type represents a reference to an opaque structure that identifies
a URL. You should call the function URLNewReference (page 33) to create a URL
reference. The function URLDisposeReference (page 33) disposes of a URL reference
when no longer needed. You pass a reference of this type to URL Access Manager
functions that operate on a URL in some way.

URLCallbackInfo

Contains information about a data transfer event.

struct URLCallbackInfo{
UInt32 version;
URLReference urlRef;
const char *property;
UInt32 currentSize;
EventRecord *systemEvent;
};
typedef struct URLCallbackInfo URLCallbackInfo;

Field descriptions
version

The version of this structure.
urlRef

A reference to the URL associated with the data transfer event.
62 URL Access Data Types

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
property

A pointer to a C string representing the name of the URL property
that has changed, if relevant. This field is only valid if a property
change event occurs as identified by the event constant
kURLPropertyChangedEvent, described in “Data Transfer Event
Constants” (page 65). For a description of name constants and data
types of the corresponding property values, see “Universal URL
Property Name Constants” (page 78) and “HTTP and HTTPS URL
Property Name Constants” (page 76).

currentSize

The size (in bytes) of the property value identified by the name
constant in the property parameter, if relevant. This field is only
valid if a property change event occurs as identified by the constant
kURLPropertyChangedEvent.

systemEvent

A pointer to an event record containing information about the
system event that occurred, if relevant. If the event is not a system
event, as identified by the event constant kURLSystemEvent, described
in “Data Transfer Event Constants” (page 65), this field is not valid.

Discussion
The URLCallbackInfo type represents a structure that contains information about the
data transfer event that you want to notification of. The URL Access Manager
passes a pointer to this structure in the callbackInfo parameter of your notification
callback function. For information on how to write a notification callback function,
see URLNotifyProcPtr (page 59).

URL Access Constants

Authentication Flag Constant — Represents the default value of the property value
identified by the property name constant kURLAuthType. (page 64)

Data Transfer Event Constants — Identify data transfer events that occur during a
data transfer operation. (page 65)
URL Access Constants 63

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Data Transfer Event Mask Constants — Represent a mask that identifies the data
transfer events occurring during a data transfer operation that your application
wants notification of. (page 67)

Data Transfer Options Mask Constants — Represent a mask that identifies the data
transfer options to use when uploading or downloading data. (page 71)

Data Transfer State Constants — Identifies the current state of a data transfer
operation. (page 74)

HTTP and HTTPS URL Property Name Constants — Identify property values specific
to HTTP and HTTPS URLs. (page 76)

Universal URL Property Name Constants — Identify property values universal to all
URLs. (page 78)

Authentication Type Constant

Represents the default value of the property value identified by the property name
constant kURLAuthType.

enum{
kUserNameAndPasswordFlag = 0x00000001

};

Constant descriptions
kUserNameAndPasswordFlag

Represents the default value of the property value identified by the
property name constant kURLAuthType, described in “Universal
URL Property Name Constants” (page 78). This value indicates that
both the user name and password are used for authentication.

Discussion
This constant represents the default value of the authentication type property value.
The authentication type property value is identified by the property name constant
kURLAuthType, described in “Universal URL Property Name Constants” (page 78). If
you do not set the kURLAuthType property, the default value will be used for the
authentication type. In this case, both the user name and password are used for
authentication purposes.
64 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Data Transfer Event Constants

Identify data transfer events that occur during a data transfer operation.

enum{
kURLInitiatedEvent = kURLInitiatingState,
kURLResourceFoundEvent = kURLResourceFoundState,
kURLDownloadingEvent = kURLDownloadingState,
kURLAbortInitiatedEvent = kURLAbortingState,
kURLCompletedEvent = kURLCompletedState,
kURLErrorOccurredEvent = kURLErrorOccurredState,
kURLDataAvailableEvent = kURLDataAvailableState,
kURLTransactionCompleteEvent = kURLTransactionCompleteState,
kURLUploadingEvent = kURLUploadingState,
kURLSystemEvent = 29,
kURLPercentEvent = 30,
kURLPeriodicEvent = 31,
kURLPropertyChangedEvent = 32
};
typedef UInt32 URLEvent;

Constant descriptions
kURLInitiatedEvent

Indicates the function URLOpen (page 47) has been called but the
location specified by the URL reference has not yet been accessed.

kURLResourceFoundEvent

Indicates that the location specified by the URL reference has been
accessed and is valid.

kURLDownloadingEvent

Indicates that a download operation is in progress.
kURLAbortInitiatedEvent

Indicates that a data transfer operation has been aborted. When your
application calls the function URLAbort (page 49), the URL Access
Manager changes the state returned by the function
URLGetCurrentState (page 53) to kURLAbortingState and passes the
constant kURLAbortInitiatedEvent to your notification callback
function. When data transfer is terminated, the URL Access Manager
changes the state returned by URLGetCurrentState to
kURLCompletedState and passes the constant kURLCompletedEvent in
the event parameter of your notification callback function.
URL Access Constants 65

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLCompletedEvent

Indicates that all operations associated with a call to URLOpen have
been completed. This includes the successful completion of a
download or upload operation or the completion of cleanup work
after aborting a download or upload operation. For example, when
a data transfer operation is aborted, the URL Access Manager
changes the state returned by the function URLGetCurrentState to
kURLCompletedState and passes the constant kURLCompletedEvent in
the event parameter of your notification callback function.

kURLErrorOccurredEvent

Indicates that an error occurred during data transfer. If you receive
this event, you may wish to call the function URLGetError (page 52) to
determine the nature of the error.

kURLDataAvailableEvent

Indicates that data is available in buffers. If you receive this event,
you can call the function URLGetBuffer (page 51) to obtain the next
buffer of data. You may wish to call the function
URLGetDataAvailable (page 50) to determine the amount of data
available for retrieval in a download operation. Note that if you pass
a valid file specification in the fileSpec parameter of URLOpen, your
notification callback function will not be called for data available
events.

kURLTransactionCompleteEvent

Indicates that a download operation is complete because there is no
more data to retrieve from buffers. Note that if you pass a valid file
specification in the fileSpec parameter of URLOpen, your notification
callback function will not be called for transaction completed events.

kURLUploadingEvent

Indicates that an upload operation is in progress.
kURLSystemEvent

Indicates that a system event has occurred.
kURLPercentEvent

Indicates that the size of the data being downloaded is known. In this
case, an increment of one percent of the data was transferred into
buffers.

kURLPeriodicEvent

Indicates that a time interval of approximately one quarter of a
second has passed.
66 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLPropertyChangedEvent

Indicates that a property such as a filename has become known or
changed. In this case, the name of the changed property will be
passed to your notification function via the property field of the
callbackInfo structure.

Discussion
The URLEvent enumeration defines constants that identify data transfer events that
occur during a data transfer operation performed by URLOpen. You can define an
event notification function and the events for which you want to receive notification
only if you do not specify a file in which to store the data for downloads. In order
to be notified of these events, you must pass a UPP to your notification callback
function in the notifyProc parameter. You indicate the type of data transfer events
you want to receive via a bitmask in the eventRegister parameter. For a description
of this bitmask, see “Data Transfer Event Mask Constants” (page 67).

Data Transfer Event Mask Constants

Represent a mask that identifies the data transfer events occurring during a data
transfer operation that your application wants notification of.

enum{
kURLInitiatedEventMask = 1 << (kURLInitiatedEvent – 1),
kURLResourceFoundEventMask = 1 << (kURLResourceFoundEvent – 1),
kURLDownloadingMask = 1 << (kURLDownloadingEvent – 1),
kURLUploadingMask = 1 << (kURLUploadingEvent – l),
kURLAbortInitiatedMask = 1 << (kURLAbortInitiatedEvent – 1),
kURLCompletedEventMask = 1 << (kURLCompletedEvent – 1),
kURLErrorOccurredEventMask = 1 << (kURLErrorOccurredEvent – 1),
kURLDataAvailableEventMask = 1 << (kURLDataAvailableEvent – 1),
kURLTransactionCompleteEventMask = 1 << (kURLTransactionCompleteEvent–1),
kURLSystemEventMask = 1 << (kURLSystemEvent - 1),
kURLPercentEventMask = 1 << (kURLPercentEventMask –1),
kURLPeriodicEventMask = 1 << (kURLPeriodicEvent –1),
kURLPropertyChangedEventMask = 1 << (kURLPropertyChangedEvent – 1),
kURLAllBufferEventsMask = kURLDataAvailableEventMask +

kURLTransactionCompleteMask,
kURLAllNonBufferEventsMask = kURLinitiatedEventMask+

kURLDownloadingMask+
kURLUploadingMask+
kURLAbortInitiatedMask+
kURLCompletedEventMask+
kURLErrorOccurredEventMask+
kURLPercentEventMask+
URL Access Constants 67

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLPeriodicEventMask+
kURLPropertyChangedEventMask,

kURLAllEventsMask = (long)OxFFFFFFFF
};
typedef UInt32 URLEventMask;

Constant descriptions
kURLInitiatedEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when the function URLOpen (page 47) has
been called but the location specified by the URL reference has not
yet been accessed.

kURLResourceFoundEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when the location specified by a URL
reference has been accessed and is valid.

kURLDownloadingMask

If the bit specified by this mask is set, your notification callback
function will be notified when a download operation is in progress.

kURLUploadingMask

If the bit specified by this mask is set, your notification callback
function will be notified when an upload operation is in progress.

kURLAbortInitiatedMask

If the bit specified by this mask is set, your notification callback
function will be notified when a download or upload operation has
been aborted. When your application calls the function URLAbort
(page 49), the URL Access Manager changes the state returned by the
function URLGetCurrentState (page 53) to kURLAbortingState and
passes the constant kURLAbortInitiatedEvent to your notification
callback function. When data transfer is terminated, the URL Access
Manager changes the state returned by URLGetCurrentState to
kURLCompletedState and passes the constant kURLCompletedEvent in
the event parameter of your notification callback function.

kURLCompletedEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when all operations associated with a call to
the function URLOpen (page 47) have been completed. This indicates
either the successful completion of an operation or the completion of
cleanup work after aborting the operation. For example, when a data
transfer operation is aborted, the URL Access Manager changes the
68 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
state returned by the function URLGetCurrentState (page 53) to
kURLCompletedState and passes the constant kURLCompletedEvent in
the event parameter of your notification callback function.

kURLErrorOccurredEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when an error has occurred. If you receive
this event, you may wish to call the function URLGetError (page 52) to
determine the nature of the error.

kURLDataAvailableEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when data is available in buffers. If you
receive this event, you may wish to call the function
URLGetDataAvailable (page 50) to determine the amount of data
available for retrieval in a download operation. Note that if you pass
a valid file specification in the fileSpec parameter of the function
URLOpen (page 47), your notification callback function will not be
called for data available events.

kURLTransactionCompleteEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when the operation is complete because
there is no more data to retrieve from buffers. Note that if you pass a
valid file specification in the fileSpec parameter of the function
URLOpen (page 47), your notification callback function will not be
called for transaction completed events.

kURLPercentEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when an increment of one percent of the
data has been transferred into buffers. This occurs only when the size
of the data being transferred is known. This information is useful if
you want the URL Access Manager to display a progress indicator.

kURLPeriodicEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when a time interval of approximately one
quarter of a second has passed. You can use this event to report the
progress of the download operation when the size of the data is
unknown or for other processing that you wish to perform at regular
intervals.
URL Access Constants 69

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLPropertyChangedEventMask

If the bit specified by this mask is set, your notification callback
function will be notified when the value of a URL property, such as
a filename or user name, has become known or changes.

kURLAllBufferEventsMask

If the bit specified by this mask is set, your notification callback
function will be notified when a buffer-related event indicated by the
event constants kURLDataAvailableEvent or
kURLTransactionCompleteEvent occurred. If you pass a file
specification in the fileSpec parameter of the function URLOpen
(page 47), your notification callback function will not be called for
buffer-related events.

kURLAllNonBufferEventsMask

If the bit specified by this mask is set, your notification callback
function will be notified when an event unrelated to a buffer
occurred. This includes all events except those represented by the
constants kURLDataAvailableEvent and
kURLTransactionCompleteEvent.

kURLAllEventsMask

If the bit specified by this mask is set, your notification callback
function will be notified when any of the above data transfer events
occur. If you pass a file specification in the fileSpec parameter of the
function URLOpen (page 47), your notification callback function will
not be called for buffer-related events.

Discussion
The URLEventMask enumeration defines masks that identify the data transfer events
occurring during a call to the function URLOpen (page 47) that your application wants
notification of. For a description of data transfer events, see “Data Transfer Event
Constants” (page 65). You can define an event notification function and the events
for which you want to receive notification only if you do not specify a file in which
to store the data for downloads. You can indicate which events you want to receive
notification of via a bitmask in the eventRegister parameter of URLOpen.
70 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Data Transfer Options Mask Constants

Represent a mask that identifies the data transfer options to use when uploading or
downloading data.

enum{
kURLReplaceExistingFlag = 1 << 0,
kURLRBinHexFileFlag = 1 << 1, /* Binhex before uploading if

necessary*/
kURLExpandFileFlag = 1 << 2, /* Use StuffIt engine to expand

file if necessary*/
kURLDisplayProgressFlag = 1 << 3,
kURLDisplayAuthFlag = 1 << 4, /* Display auth dialog if guest

connection fails*/
kURLUploadFlag = 1 << 5, /* Do an upload instead of a

download*/
kURLIsDirectoryHintFlag = 1 << 6, /* Hint: the URL is a directory*/
kURLDoNotTryAnonymousFlag = 1 << 7, /* Don't try to connect anonymously

before getting logon info*/
kURLDirectoryListingFlag = 1 << 8, /* Download the directory listing,

not the whole directory*/
kURLExpandAndVerifyFlag = 1 << 9, /* Expand file and then verify using

signature resource*/
kURLNoAutoRedirectFlag = 1 << 10, /* Do not automatically redirect

to new URL*/
kURLDebinhexOnlyFlag = 1 << 11, /* Do not use Stuffit Expander -

just internal debinhex engine*/
kURLReservedFlag = 1 << 31 /* reserved for Apple internal

use*/

};
typedef UInt32 URLOpenFlags;

Constant descriptions
kURLReplaceExistingFileFlag

If the bit specified by this mask is set and the file or directory exists,
the file or directory contents are replaced by the newly downloaded
or uploaded data. If the name of the file or directory is not specified,
the file or directory already exists, and the bit specified by this mask
is not set, a number is appended to the name before any extension
until a unique name is created, and the data is transferred to the new
file or directory name without notifying the calling application that
the name has changed. In the case of a download operation, your
application can check the destination parameter of the functions
URLSimpleDownload (page 38) and URLDownload (page 40) to obtain the
new filename.
URL Access Constants 71

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLBinHexFileFlag

If the bit specified by this mask is set, the URL Access Manager
converts a nontext file that has a resource fork to BinHex format
before uploading it.

kURLExpandFileFlag

If the bit specified by this mask is set, files in BinHex format are
decoded. If version 5.0 of the Stuffit Engine is installed in the System
Folder, the URL Access Manager uses it to expand the file.

kURLDisplayProgressFlag

If the bit specified by this mask is set, the URL Access Manager
displays a nonmovable modal progress indicator during data
transfer operations. If you want to handle events that occur while a
progress indicator is being displayed, pass a UPP to your system
event callback in the eventProc parameter of the functions
URLSimpleDownload (page 38), URLDownload (page 40),
URLSimpleUpload (page 43), and URLUpload (page 45).

kURLDisplayAuthFlag

If the bit specified by this mask is set, the URL Access Manager
displays a nonmovable modal authentication dialog box when user
authentication is required. If you want to handle events that occur
while an authentication dialog box is being displayed, pass a UPP to
your system event callback in the eventProc parameter of the
functions URLSimpleDownload (page 38), URLDownload (page 40),
URLSimpleUpload (page 43), and URLUpload (page 45).

kURLUploadFlag

If the bit specified by this mask is set, the functions URLUpload
(page 45) and URLOpen (page 47) upload the file or directory to the
specified URL.

kURLIsDirectoryHintFlag

If the bit specified by this mask is set, download operations assume
that the URL points to a directory. Note that if you pass a pathname
that specifies a file in the url parameter of the function
URLSimpleDownload (page 38), the file is downloaded regardless of
whether you specify kURLDirectoryListingFlag or
KURLIsDirectoryHintFlag in the openFlags parameter.

kURLDoNotTryAnonymousFlag

If the bits specified by this mask and the mask kURLDisplayAuth are
set, the functions URLSimpleDownload (page 38), URLDownload
(page 40), URLSimpleUpload (page 43), and URLUpload (page 45)
72 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
display an authentication dialog box when attempting to log on to an
FTP server. If this bit is not set, these functions will attempt to log on
anonymously.

kURLDirectoryListingFlag

If the bit specified by this mask is set, a listing of the directory, rather
than the entire directory, is downloaded. If the URL points to a file
instead of a directory, the file is downloaded. Note that if you pass a
pathname that specifies a file in the url parameter of the function
URLSimpleDownload (page 38), the file is downloaded regardless of
whether you specify kURLDirectoryListingFlag or
KURLIsDirectoryHintFlag in the openFlags parameter.

kURLExpandAndVerifyFlag

If this flag is available (that is, the File Signing shared library is
available) and the bit specified by this mask is set, the signature
attached to the file is verified. Success indicates that the file was
signed by the certificate authority, but the certificate will not be
displayed until after the file is downloaded.

kURLNoAutoRedirectFlag

If the bit specified by this mask is set, if an HTTP request returns a
“redirect”status (300, 301, or 302), the URL Access Manager will
return without attempting to redirect to the next URL.

kURLDebinhexOnlyFlag

If the bit specified by this mask is set, the internal engine is used to
decode files, rather than the external Stuffit Engine, even if Stuffit is
installed. This prevents the display of the Stuffit progress user
interface.

kURLReservedFlag

Reserved for internal use.

Discussion
The URLOpenFlags enumeration defines masks you can use to identify the data
transfer options you want used when performing data transfer operations. You pass
this mask in the openFlags parameter of the functions URLSimpleDownload (page 38),
URLDownload (page 40), URLSimpleUpload (page 43), URLUpload (page 45), and URLOpen
(page 47).

For upload operations, you can specify any of the following masks:
kURLReplaceExistingFlag, kURLBinHexFileFlag, kURLDisplayProgressFlag,
kURLDisplayAuthFlag, and kURLDoNotTryAnonymousFlag. For download operations,
you can specify any of the following masks: kURLReplaceExistingFlag,
URL Access Constants 73

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLExpandFileFlag, kURLExpandAndVerifyFlag, kURLDisplayProgressFlag,
kURLDisplayAuthFlag, kURLIsDirectoryHintFlag, kURLDoNotTryAnonymousFlag, and
kURLDirectoryListingFlag.

Data Transfer State Constants

Identifies the current state of a data transfer operation.

enum{
kURLNullState = 0,
kURLInitiatedState = 1,
kURLLookingUpHostState = 2,
kURLConnectingState = 3,
kURLResourceFoundState = 4,
kURLDownloadingState = 5,
kURLDataAvailableState = 0x10 + kURLDownloadingState,
kURLTransactionCompleteState = 6,
kURLErrorOccurredState = 7,
kURLAbortingState = 8,
kURLCompletedState = 9,
kURLUploadingState = 10
};
typedef UInt32 URLState;

Constant descriptions
kURLNullState

Indicates that the function URLOpen (page 47) has not yet been called.
kURLInitiatingState

Indicates that the function URLOpen (page 47) has been called, but the
location specified by the URL reference has not yet been accessed.
The stream enters this state from the kURLNullState state.

kURLLookingUpHostState

Indicates that the function URLOpen (page 47) has been called, and that
the host is being looked up. The stream enters this state from the
kURLInitiatingState state.

kURLConnectingState

Indicates that the function URLOpen (page 47) has been called, and a
connection is being made. The stream enters this state from the
kURLInitiatingState state.
74 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLResourceFoundState

Indicates that the location specified by the URL reference has been
accessed and is valid. The stream enters this state from the
kURLInitiatingState state.

kURLDownloadingState

Indicates that the download operation is in progress but there is
currently no data in the buffers. The stream enters this state initially
from the kURLResourceFoundState state. During a download
operation, the stream’s state may alternate between the
kURLDownloadingState and the kURLDataAvailableState states.

kURLDataAvailableState

Indicates that the download operation is in progress and data is
available in the buffers. The stream initially enters this state from the
kURLDownloadingState state. During a download operation, the
stream’s state may alternate between the kURLDownloadingState and
the kURLDataAvailableState states. If the stream is in the data
available state, you may want to call the function
URLGetDataAvailable (page 50) to determine the amount of data
available for download. If you pass NULL in the fileSpec parameter of
the function URLOpen (page 47), you will need to call the function
URLGetBuffer (page 51) to obtain the next buffer of data.

kURLTransactionCompleteState

Indicates that a download or upload operation is complete. The
stream can enter this state from the kURLDownloadingState state.

kURLErrorOccurredState

Indicates that an error occurred during data transfer. The stream can
enter this state from any state except the kURLAbortingState state. If
the stream is in this state, you may wish to call the function
URLGetError (page 52) to determine the nature of the error.

kURLAbortingState

Indicates that a download or upload operation is aborting. The
stream enters this state from the kURLErrorOccurredState state or as
a result of calling the function URLOpen (page 47) when the stream is
in any other state. When your application calls the function URLAbort
(page 49), the URL Access Manager changes the state returned by the
function URLGetCurrentState (page 53) to kURLAbortingState and
passes the constant kURLAbortInitiatedEvent to your notification
callback function.
URL Access Constants 75

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLCompletedState

Indicates that there is no more activity to be performed on this
stream. In this case, the data transfer has either completed
successfully, been aborted, or an error has occurred. The stream
enters this state from the kURLTransactionCompleteState or the
kURLAbortingState state. When data transfer is terminated after a
data transfer operation is aborted, the URL Access Manager changes
the state returned by URLGetCurrentState to kURLCompletedState and
passes the constant kURLCompletedEvent in the event parameter of
your notification callback function.

kURLUploadingState

Indicates that an upload operation is in progress.

Discussion
The URLState enumeration defines constants that identify the status of a data
transfer operation with respect to a URL. The function URLGetCurrentState
(page 53) passes back one of these constants in the state parameter to indicate the
status of a data transfer operation. All constants except kURLDataAvailableState and
kURLCompletedState can be returned at any time. If you pass a valid file specification
in the fileSpec parameter of the function URLOpen (page 47), your notification
callback function will not be notified of data available and transaction completed
states as identified by the constants kURLDataAvailableState and
kURLTransactionCompleteState.

HTTP and HTTPS URL Property Name Constants

Identify property values specific to HTTP and HTTPS URLs.

 #define kURLHTTPRequestMethod "URLHTTPRequestMethod";
#define kURLHTTPRequestHeader "URLHTTPRequestHeader";
#define kURLHTTPRequestBody "URLHTTPRequestBody";
#define kURLHTTPRespHeader "URLHTTPRespHeader";
#define kURLHTTPUserAgent "URLHTTPUserAgent";
#define kURLHTTPRedirectedURL "URLHTTPRedirectedURL"

Constant descriptions
kURLHTTPRequestMethod

Identifies the HTTP request method property value. You use this
name constant to set or obtain a C string that represents the HTTP
method to be used in the request. If you are posting a form, you must
set this property.
76 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLHTTPRequestHeader

Identifies the HTTP request header property value. You use this
name constant to set or obtain a C string that represents the HTTP
header to be used in the request. You may set this property to contain
all headers needed for the request. If you are posting a form and have
set the properties identified by the name constants
kURLHTTPRequestMethod and kURLHTTPRequestBody, you do not need to
set the property identified by this tag.

kURLHTTPRequestBody

Identifies the HTTP request body property value. You use this name
constant to set or obtain a buffer of data that represents the HTTP
body to be provided in the request. If you set the property identified
by this tag but not that identified by the name constant
kURLHTTPHeader, a body-length header is automatically added to the
request. If you are posting a form, you must set this property.

kURLHTTPRespHeader

Identifies the HTTP response header property value. You use this
name constant to obtain a C string that represents the HTTP response
header to be provided in the request.

kURLHTTPUserAgent

Identifies the user agent property value. You use this name constant
to set or obtain a C string that represents the HTTP user agent string
that is embedded in HTTP requests. By default, the URL Access
Manager sets the user agent string to “URL Access 1.0 (Macintosh;
PPC)”.

kURLHTTPRedirectedURL

Identifies the redirected URL property value.

Discussion
These constants represent Apple-defined name constants that identify property
values specific to HTTP and HTTPS URLs. For a description of the name constants
that identify property values universal to all URLs, see “Universal URL Property
Name Constants” (page 78).

You pass one of these name constants in the property parameter of the functions
URLSetProperty (page 36) and URLGetProperty (page 35), respectively, to set or
obtain a particular property value. Note that you can only set property values
identified by the name constants kURLFileType, kURLFileCreator, kURLUserName, and
kURLPassword. You must also pass the correct data type corresponding to the
property value in the propertyBuffer parameter of these functions.
URL Access Constants 77

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
Version Notes
Prior to version 2.0.3 of the URL Access Manager, the data type of the property
value identified by the name constant kURLHTTPRequestBody was a C string. In 2.0.3
and later, the data type is a buffer of data.

Universal URL Property Name Constants

Identify property values universal to all URLs.

#define kURLURL "URLString";
#define kURLResourceSize "URLResourceSize";
#define kURLLastModifiedTime "URLLastModifiedTime";
#define kURLMIMEType "URLMIMEType";
#define kURLFileType "URLFileType";
#define kURLFileCreator "URLFileCreator";
#define kURLCharacterSet "URLCharacterSet";
#define kURLResourceName "URLResourceName";
#define kURLHost "URLHost";
#define kURLAuthType "URLAuthType";
#define kURLUserName "URLUserName";
#define kURLPassword "URLPassword";
#define kURLStatusString "URLStatusString";
#define kURLIsSecure "URLIsSecure";
#define kURLCertificate "URLCertificate";
#define kURLTotalItems "URLTotalItems";

Constant descriptions
kURLURL

Identifies the name string property value. You use this name
constant to obtain a C string that represents the pathname of the
URL.

kURLResourceSize

Identifies the resource size property value. You use this name
constant to obtain a value of type Size that represents the total size
of the data at the location specified by the URL.

kURLLastModifiedTime

Identifies the modification time property value. You use this name
constant to obtain a value of type UInt32 that represents the last time
the data was modified.

kURLMIMEType

Identifies the MIME type property value. You use this name constant
to obtain a Pascal string that represents the MIME type of the URL.
78 URL Access Constants

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLFileType

Identifies the file type property value. You use this name constant to
set or obtain a value of type OSType that represents the file type as
specified in a call to the function URLOpen (page 47). If the file type
was not specified, kURLFileType obtains the file type compatible with
the MIME type.

kURLFileCreator

Identifies the file creator property value. You use this name constant
to set or obtain a value of type OSType that represents the file creator
as specified in a call to the function URLOpen (page 47). If the file
creator was not specified, kURLFileType obtains the file type
compatible with the MIME type.

kURLCharacterSet

Identifies the character set property value. You use this name
constant to obtain a Pascal string that represents the character set
used by the URL, as returned by the HTTP server.

kURLResourceName

Identifies the resource name property value. You use this name
constant to obtain a Pascal string that represents the name associated
with the data to be downloaded.

kURLHost

Identifies the host property value. You use this name constant to
obtain a Pascal string that represents the host on which the data is
located.

kURLAuthType

Identifies the authentication type property value. You use this name
constant to obtain a value that represents the type of authentication
that the download operation requires. The default authentication
type is kUserNameAndPasswordFlag, described in “Authentication
Type Constant” (page 64).

kURLUserName

Identifies the user name property value. You use this name constant
to set or obtain a Pascal string that represents the user name used for
authentication.

kURLPassword

Identifies the password property value. You use this name constant
to set or obtain a Pascal string that represents the password used for
authentication.
URL Access Constants 79

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLStatusString

Identifies the status property value. You use this name constant to
obtain a Pascal string that represents the current status of the data
stream. You can use this property to display the status of the data
transfer operation.

kURLIsSecure

Identifies the security property value. You use this name constant to
get a Boolean value that indicates whether the download operation is
secure.

kURLCertificate

Identifies the certificate property value. You use this name constant
to obtain a buffer of data that represents the certificate provided by
a remote server.

kURLTotalItems

Identifies the total items property value. You use this name constant
to obtain a value of type UInt32 that represents the total number of
items being uploaded or downloaded.

Discussion
These constants represent Apple-defined name constants that identify property
values universal to all URLs. For a description of the name constants that identify
property values specific to HTTP and HTTPS URLs, see “HTTP and HTTPS URL
Property Name Constants” (page 76).

You pass one of these name constants in the property parameter of the functions
URLSetProperty (page 36) and URLGetProperty (page 35), respectively, to set or
obtain a particular property value. Note that you can only set property values
identified by the name constants kURLFileType, kURLFileCreator, kURLUserName, and
kURLPassword. You must also pass the correct data type corresponding to the
property value in the propertyBuffer parameter of these functions.

URL Access Result Codes

Most URL Access Manager functions return result codes of type OSStatus. This
includes general result codes such as noErr, indicating that the function completed
successfully, and paramErr, indicating that you passed an invalid parameter.
80 URL Access Result Codes

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
The result codes specific to URL Access Manager are listed in Table 3-1 (page 81). In
some cases, the function result section for a particular function provides more detail
about the meaning of the result code specific to that function.

Table 3-1 URL Access Manager result codes

Result code constant Value Description

kURLInvalidURLReferenceError -30770 Returned by functions that operate on
URLs to indicate that the URL reference is
invalid.

kURLProgressAlreadyDisplayedError -30771 Returned by the functions
URLSimpleDownload (page 38), URLDownload
(page 40), URLSimpleUpload (page 43), and
URLUpload (page 45) to indicate that a
progress indicator is already displayed.

kURLDestinationExistsError -30772 Returned by the functions URLSimpleUpload
(page 43) and URLUpload (page 45) to
indicate that the destination file already
exists.

kURLInvalidURLError -30773 Returned by functions that operate on URL
references to indicate that the format of the
URL is invalid.

kURLUnsupportedSchemeError -30774 Indicates that the transfer protocol is not
supported.

kURLServerBusyError -30775 Indicates that the server is busy.

kURLAuthenticationError -30776 Returned by URLSimpleDownload (page 38),
URLDownload (page 40), URLSimpleUpload
(page 43), and URLUpload (page 45)
functions when displaying an
authentication dialog box to indicate that
user authentication failed. <<correct?>>

kURLPropertyNotYetKnownError -30777 Returned by the function URLGetProperty
(page 35) to indicate that the value of the
property is not yet available.
URL Access Result Codes 81

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 3

URL Access Manager Reference
kURLUnknownPropertyError -30778 Returned by function URLSetProperty
(page 36) to indicate that the property is
invalid or undefined.

kURLPropertyBufferTooSmallError -30779 Returned by the function URLGetProperty
(page 35) to indicate that the buffer is too
small to receive the requested property.

kURLUnsettablePropertyError -30780 Returned by the function URLSetProperty
(page 36) to indicate that the property
cannot be set.

kURLInvalidCallError -30781 Indicates that the call is invalid.

kURLFileEmptyError -30783 Indicates that the resource file associated
with the URL is empty.

kURLExtensionFailureError -30785 Indicates that your extension failed to load.

kURLInvalidConfigurationError -30786 Indicates that the configuration is invalid.
This is returned when you attempt to FTP
to an HTTP proxy, since upload through
proxies won’t work.

kURLAccessNotAvailableError -30787 Indicates that the URL Access Manager is
not available.

kURLAccessNotAvailableError -30788 Only available in Mac OS 9. Returned from
a printer when URL Access Manager is
called from within a 68K context to indicate
that it isn’t supported.

Table 3-1 URL Access Manager result codes

Result code constant Value Description
82 URL Access Result Codes

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 4
4 Document Revision History
This document has had the following releases:

Table 4-1 Transferring Data With the URL Access Manager revision history

Publication date Notes

May 15, 2000 First public release of document, expanded and updated for
URL Access Manager 2.0.3. Documentation includes
concepts, tasks, and reference material.

May 7, 1999 First draft of URL Access Manager 1.0 API documentation.
This document was distributed in limited release as a seed
draft.
83

Preliminary  Apple Computer, Inc. 5/12/00

C H A P T E R 4

Document Revision History
84

Preliminary  Apple Computer, Inc. 5/12/00

	Transferring Data With the URL Access Manager
	Contents
	Figures, Listings, and Tables
	Introduction
	URL Access Manager Tasks
	URL Access Manager Implementation
	Determining Availability and Version Information
	Creating a URL Reference
	Getting and Setting Information About a URL
	Performing Simple Data Transfer
	Controlling Data Transfer
	Obtaining Information About a Data Transfer Operation
	Responding to Data Transfer Events
	Responding to System Events During Data Transfer
	Using the URL Access Manager with AppleScript
	A Case Study: Downloading Data From a URL
	A Case Study: Downloading Data From Multiple URLs

	URL Access Manager Reference
	URL Access Functions
	URLAccessAvailable
	URLGetURLAccessVersion
	URLNewReference
	URLDisposeReference
	URLGetPropertySize
	URLGetProperty
	URLSetProperty
	URLSimpleDownload
	URLDownload
	URLSimpleUpload
	URLUpload
	URLOpen
	URLAbort
	URLGetDataAvailable
	URLGetBuffer
	URLReleaseBuffer
	URLGetError
	URLGetCurrentState
	URLGetFileInfo
	URLIdle
	NewURLNotifyUPP
	NewURLSystemEventUPP
	InvokeURLNotifyUPP
	InvokeURLSystemEventUPP
	DisposeURLNotifyUPP
	DisposeURLSystemEventUPP

	URL Access Callbacks
	URLNotifyProcPtr
	URLSystemEventProcPtr

	URL Access Data Types
	URLReference

	URL Access Constants
	Authentication Type Constant
	Data Transfer Event Constants
	Data Transfer Event Mask Constants
	Data Transfer Options Mask Constants
	Data Transfer State Constants
	HTTP and HTTPS URL Property Name Constants
	Universal URL Property Name Constants

	URL Access Result Codes

	Document Revision History

