



January 11, 2000
Technical Publications
© 2000 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Apple Type Services for Unicode
Imaging Reference

For ATSUI 1.2

1/11/00



 Apple Computer, Inc.



Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS

QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures and Tables 7

Chapter 1 Introduction 11

Chapter 2 ATSUI Reference 13

Gestalt Constants 19
Gestalt Selectors for ATSUI 19
ATSUI Version Constants 20
ATSUI Attribute Constants 21

Functions 23
Creating, Manipulating, and Disposing of Style Objects 24
Copying Style Contents 31
Flattening and Unflattening Style Objects 35
Manipulating Style Run Attributes 36
Manipulating Font Features 44
Manipulating Font Variations 50
Finding Compatible Fonts 55
Searching a Font Name Table 59
Converting Font IDs and Font Family Numbers 66
Obtaining Font Tracking Information 68
Obtaining Font Feature Information 70
Obtaining Font Variation Data 77
Obtaining Font Instance Data 80
Creating and Disposing of Text Layout Objects 84
Manipulating Text Layout Attributes 95
Manipulating Text Layout Attributes in a Line 102
Assigning and Updating Text 111
Obtaining and Updating Text Memory Location 115
Assigning and Updating Style Runs 117
Obtaining Style Run Information 119
3
1/11/00  Apple Computer, Inc.

Mapping Font Fallbacks 122
Hit-Testing 129
Determining Cursor Offsets 136
Handling Text Insertion and Deletion 143
Measuring Typographic and Image Bounds 146
Manipulating Line Breaks 156
Drawing Text 163
Highlighting and Unhighlighting Text 165
Performing Background Processing 173
Controlling Memory Allocation 174

Callbacks 177
Data Types 181
Resource 194
Constants 202

Clear All Constant 203
Current Pen Location Constant 203
Cursor Movement Constants 204
Font Fallback Constants 205
Glyph Bound Constants 206
Glyph Direction Constants 207
Glyph Orientation Constants 207
Heap Specification Constants 208
Invalid Font ID Constant 209
Line Alignment Constants 210
Line Height Constant 210
Line Justification Constants 211
Line Layout Option Mask Constants 212
Line Layout Width Constant 214
Miscellaneous Constants 215
Style Comparison Constants 216
Style Run Attribute Tag Constants 217
Text Layout Attribute Tag Constants 226
Text Length Constant 230
Text Offset Constant 231

Result Codes 231
4
1/11/00  Apple Computer, Inc.

Appendix A Document Revision History 235

Appendix B History of API Additions and Changes in ATSUI 237

Appendix C Summary of Style Run and Text Layout Attribute Tag
Information 241

Appendix D New Constants and Data Types Used by ATSUI 247

About Unicode Utilities 247
Unicode Utilities Reference 247

Unicode Utilities Data Type 247
About Script Manager 248
Script Manager Reference 248

Script Manager Constants 248
Region Code Constants 249

About Apple Advanced Typography 256
Apple Advanced Typography Reference 257

Apple Advanced Typography Data Type 257
Apple Advanced Typography Constants 257

Annotation Feature Selector Constants 259
Baseline Type Constants 260
CJK Roman Width Feature Selector Constants 262
Character Alternates Feature Selector Constants 262
Character Shape Feature Selector Constants 263
Cursive Connection Font Feature Selector Constants 264
Design Complexity Feature Selector Constants 265
Diacritical Mark Font Feature Selector Constants 266
Font Feature Type Constants 267
Font Feature Type Selector Constants 270
Font Name Code Constants 271
Font Name Language Constants 274
Font Name Platform Constants 284
5
1/11/00  Apple Computer, Inc.

Fraction Font Feature Selector Constants 286
Ideographic Spacing Feature Selector Constants 287
Justification Override Mask Constants 287
Justification Priority Constants 289
Kana Spacing Feature Selector Constants 290
Letter Case Font Feature Selector Constants 291
Ligature Font Feature Selector Constants 292
Linguistic Rearrangement Font Feature Selector Constants 294
Macintosh Platform Script Code Constants 295
Mathematical Extras Feature Selector Constants 300
Microsoft Platform Script Code Constants 301
Number Case Feature Selector Constants 301
Number Width Feature Selector Constants 302
Ornament Sets Feature Selector Constants 303
Prevention of Glyph Overlap Font Feature Selector Constants 305
Style Options Feature Selector Constants 306
Swash Font Feature Selector Constants 306
Text Width Feature Selector Constants 308
Transliteration Feature Selector Constants 309
Typographic Extras Feature Selector Constants 310
Unicode Decomposition Feature Selector Constants 311
Unicode Platform Script Code Constants 311
Vertical Position Font Feature Selector Constants 313
Vertical Substitution Font Feature Selector Constants 313

Glossary 315

Index 323
6
1/11/00  Apple Computer, Inc.

Figures and Tables

Chapter 1 Introduction 11

Figure 2-1 Standard and typographic bounding rectangle 153
Figure 2-2 Overview of a 'ustl' resource 195
Figure 2-3 Header section of a 'ustl' resource 196
Figure 2-4 Flattened text layout data 197
Figure 2-5 Flattened style run data 199
Figure 2-6 Flattened style list data 200

Table 2-1 ATSUI-specific result codes 232

Appendix A Document Revision History 235

Table A-1 Apple Type Services for Unicode Imaging Reference revision
history 235

Appendix B History of API Additions and Changes in ATSUI 237

Table B-1 Functions whose implementation has changed in ATSUI 1.2 237
Table B-2 Functions new to ATSUI 1.1 238
Table B-3 Functions whose implementation has changed with ATSUI

1.1 239

Appendix C Summary of Style Run and Text Layout Attribute Tag Information 241

Table C-1 Style run attribute tags and the data type, size, and default values of
the style run attributes they identify 241

Table C-2 Text layout attribute tags and the data type, size, and default value of
the attributes they identify 245

Appendix D New Constants and Data Types Used by ATSUI 247

Figure D-1 Traditional and simplified versions of a Chinese character 263
Figure D-2 Non contextual cursive connection in a Roman font 265
7
1/11/00  Apple Computer, Inc.

Figure D-3 Hebrew text with diacritical marks shown (upper) and hidden
(lower) 266

Figure D-4 Accented forms 267
Figure D-5 Fractions 286
Figure D-6 Levels of ligature formation controlled with ligature feature

selectors 293
Figure D-7 Use of diphthong ligatures 294
Figure D-8 The word “hindi” drawn with rearrangement tuned on (upper) and off

(lower) 295
Figure D-9 Uppercase and lowercase numerals 302
Figure D-10 Fixed-width and proportional-width numerals 303
Figure D-11 Ornamental glyphs 304
Figure D-12 Allowing and preventing glyph overlap 305
Figure D-13 Specifying different swashes with feature selectors 308
Figure D-14 Vertical substitution forms in a font 314

Table D-1 Feature selectors for the kAnnotationType feature type 259
Table D-2 Feature selectors for the kCJKRomanSpacingType feature

type 262
Table D-3 Feature selectors for the kCharacterAlternativesType feature

type 262
Table D-4 Feature selectors for the kCharacterShapeType feature type 263
Table D-5 Feature selectors for the kCursiveConnectionType feature

type 265
Table D-6 Feature selectors for the kDesignComplexityType feature

type 265
Table D-7 Feature selectors for the kDiacriticsType feature type 266
Table D-8 Examples of feature types 268
Table D-9 Feature selectors for the kAllTypographicFeaturesType font

feature type 271
Table D-10 Feature selectors for the kFractionsType feature type 286
Table D-11 Feature selectors for the kIdeographicSpacingType feature

type 287
Table D-12 Feature selectors for the kKanaSpacingType feature type 290
Table D-13 Feature selectors for the kLetterCaseType feature type 291
Table D-14 Feature selectors for the kLigaturesType feature type 292
Table D-15 Feature selectors for the kLinguisticRearrangementType feature

type 294
Table D-16 Feature selectors for the kMathematicalExtrasType feature

type 300
Table D-17 Feature selectors for the kNumberCaseType feature type 302
Table D-18 Feature selectors for the kNumberSpacingType feature type 303
Table D-19 Feature selectors for the kOrnamentSetsType feature type 304
8
1/11/00  Apple Computer, Inc.

Table D-20 Feature selectors for the kOverlappingCharactersType feature
type 305

Table D-21 Feature selectors for the kStyleOptionsType feature type 306
Table D-22 Feature selectors for the kSmartSwashType feature type 307
Table D-23 Feature selectors for the kTextSpacingType feature type 309
Table D-24 Feature selectors for the kTransliterationType feature

type 309
Table D-25 Feature selectors for the kTypographicExtrasType feature

type 310
Table D-26 Feature selectors for the kUnicodeDecompositionType feature

type 311
Table D-27 Feature selectors for the kVerticalPositionType feature

type 313
Table D-28 Feature selectors for the kVerticalSubstitutionType feature

type 313
9
1/11/00  Apple Computer, Inc.

10
1/11/00  Apple Computer, Inc.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction 1
Apple Type Services for Unicode Imaging (ATSUI) enables the rendering of
Unicode-encoded text with advanced typographic features. It automatically
handles many of the complexities inherent in text layout, including how to
correctly render text in bidirectional and vertical script systems.

This document describes the ATSUI application programming interface (API)
through version 1.2 and may be useful to developers who are writing new text
editors or word processing applications that renders Unicode-encoded text. You
can also use the ATSUI API if you wish to modify your existing application to
support Unicode text rendering.

If you are a font designer or want more information about fonts, see the Apple
font group site:

<http://fonts.apple.com/>.

This document describes the ATSUI API in the following chapters:

� “ATSUI Reference” (page 19) describes the complete API through ATSUI 1.2,
including functions, data types, constants, and result codes.

� “Document Revision History” (page 235) provides a history of revisions to
this document.

� “History of API Additions and Changes in ATSUI” (page 237) provides a
history of changes to the API since ATSUI 1.0.

� “Summary of Style Run and Text Layout Attribute Tag Information”
(page 241) provides tabular summaries of the Apple-defined style run and
text layout attribute tags and the data type, size, and default values of the
attributes they identify.

� “New Constants and Data Types Used by ATSUI” (page 247) describes new
constants and data types used by ATSUI from Unicode Utilities, the Script
Manager, AAT Font Table Text Rendering Utilities, and AAT Font Table Text
Layout Utilities.
11
1/11/00  Apple Computer, Inc.

C H A P T E R 1

Introduction

� “Glossary” (page 315) provides an alphabetical listing of typographic and
ATSUI-specific terms.
12
1/11/00  Apple Computer, Inc.

C H A P T E R 2

Contents

1/11/00



 Apple Computer, Inc.

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 ATSUI Reference
Gestalt Constants 13
Gestalt Selectors for ATSUI 13
ATSUI Version Constants 14
ATSUI Attribute Constants 15

Functions 17
Creating, Manipulating, and Disposing of Style Objects 18

ATSUCreateStyle 18
ATSUCreateAndCopyStyle 19
ATSUCompareStyles 20
ATSUSetStyleRefCon 21
ATSUGetStyleRefCon 22
ATSUStyleIsEmpty 23
ATSUClearStyle 23
ATSUDisposeStyle 24

Copying Style Contents 25
ATSUCopyAttributes 25
ATSUOverwriteAttributes 26
ATSUUnderwriteAttributes 28

Flattening and Unflattening Style Objects 29
ATSUCopyToHandle 29
ATSUPasteFromHandle 30

Manipulating Style Run Attributes 30
ATSUSetAttributes 31
ATSUGetAttribute 32
ATSUGetAllAttributes 34
ATSUClearAttributes 36
ATSUCalculateBaselineDeltas 37
13

C H A P T E R 2
Manipulating Font Features 38
ATSUSetFontFeatures 38
ATSUGetFontFeature 40
ATSUGetAllFontFeatures 41
ATSUClearFontFeatures 43

Manipulating Font Variations 44
ATSUSetVariations 44
ATSUGetFontVariationValue 45
ATSUGetAllFontVariations 46
ATSUClearFontVariations 48

Finding Compatible Fonts 49
ATSUFontCount 49
ATSUGetFontIDs 50
ATSUFindFontFromName 51

Searching a Font Name Table 53
ATSUCountFontNames 54
ATSUGetIndFontName 55
ATSUFindFontName 57

Converting Font IDs and Font Family Numbers 60
ATSUFONDtoFontID 60
ATSUFontIDtoFOND 61

Obtaining Font Tracking Information 62
ATSUCountFontTracking 62
ATSUGetIndFontTracking 63

Obtaining Font Feature Information 64
ATSUCountFontFeatureTypes 65
ATSUGetFontFeatureTypes 66
ATSUCountFontFeatureSelectors 67
ATSUGetFontFeatureSelectors 68
ATSUGetFontFeatureNameCode 70

Obtaining Font Variation Data 71
ATSUCountFontVariations 71
ATSUGetIndFontVariation 72
ATSUGetFontVariationNameCode 74

Obtaining Font Instance Data 74
ATSUCountFontInstances 75
ATSUGetFontInstance 76
ATSUGetFontInstanceNameCode 77
14 Contents

1/11/00  Apple Computer, Inc.

C H A P T E R 2
Creating and Disposing of Text Layout Objects 78
ATSUCreateTextLayout 79
ATSUCreateTextLayoutWithTextPtr 80
ATSUCreateTextLayoutWithTextHandle 82
ATSUCreateAndCopyTextLayout 85
ATSUSetTextLayoutRefCon 86
ATSUGetTextLayoutRefCon 86
ATSUClearLayoutCache 87
ATSUDisposeTextLayout 88

Manipulating Text Layout Attributes 89
ATSUCopyLayoutControls 89
ATSUSetLayoutControls 90
ATSUGetLayoutControl 92
ATSUGetAllLayoutControls 93
ATSUClearLayoutControls 95

Manipulating Text Layout Attributes in a Line 96
ATSUCopyLineControls 97
ATSUSetLineControls 98
ATSUGetLineControl 100
ATSUGetAllLineControls 102
ATSUClearLineControls 103

Assigning and Updating Text 105
ATSUSetTextPointerLocation 105
ATSUSetTextHandleLocation 107

Obtaining and Updating Text Memory Location 109
ATSUGetTextLocation 109
ATSUTextMoved 111

Assigning and Updating Style Runs 111
ATSUSetRunStyle 112

Obtaining Style Run Information 113
ATSUGetRunStyle 113
ATSUGetContinuousAttributes 115

Mapping Font Fallbacks 116
ATSUSetFontFallbacks 117
ATSUGetFontFallbacks 118
ATSUMatchFontsToText 119
ATSUSetTransientFontMatching 122
ATSUGetTransientFontMatching 123
Contents 15
1/11/00  Apple Computer, Inc.

C H A P T E R 2
Hit-Testing 123
ATSUPositionToOffset 124
ATSUOffsetToPosition 128

Determining Cursor Offsets 130
ATSUNextCursorPosition 130
ATSUPreviousCursorPosition 132
ATSURightwardCursorPosition 134
ATSULeftwardCursorPosition 135

Handling Text Insertion and Deletion 137
ATSUTextDeleted 137
ATSUTextInserted 139

Measuring Typographic and Image Bounds 140
ATSUGetGlyphBounds 140
ATSUMeasureText 144
ATSUMeasureTextImage 147

Manipulating Line Breaks 150
ATSUBreakLine 151
ATSUSetSoftLineBreak 153
ATSUGetSoftLineBreaks 154
ATSUClearSoftLineBreaks 156

Drawing Text 157
ATSUDrawText 157

Highlighting and Unhighlighting Text 159
ATSUHighlightText 159
ATSUUnhighlightText 162
ATSUGetTextHighlight 164

Performing Background Processing 167
ATSUIdle 167

Controlling Memory Allocation 168
ATSUCreateMemorySetting 168
ATSUSetCurrentMemorySetting 170
ATSUGetCurrentMemorySetting 170
ATSUDisposeMemorySetting 171

Callbacks 171
ATSUCustomAllocFunc 172
ATSUCustomGrowFunc 173
ATSUCustomFreeFunc 174

Data Types 175
16 Contents

1/11/00  Apple Computer, Inc.

C H A P T E R 2
ATSJustPriorityWidthDeltaOverrides 176
ATSTrapezoid 178
ATSUAttributeInfo 179
ATSUAttributeValuePtr 180
ATSUCaret 180
ATSUFontFeatureType 181
ATSUFontFeatureSelector 182
ATSUFontID 182
ATSUFontVariationAxis 182
ATSUFontVariationValue 183
ATSUMemoryCallbacks 183
ATSUMemorySetting 184
ATSUStyle 185
ATSUTextLayout 185
ATSUTextMeasurement 186
ConstUniCharArrayPtr 186
UniChar 186
UniCharArrayHandle 187
UniCharArrayOffset 187
UniCharArrayPtr 188
UniCharCount 188

Resource 188
ustl 188

Constants 196
Clear All Constant 197
Current Pen Location Constant 197
Cursor Movement Constants 198
Font Fallback Constants 199
Glyph Bound Constants 200
Glyph Direction Constants 201
Glyph Orientation Constants 201
Heap Specification Constants 202
Invalid Font ID Constant 203
Line Alignment Constants 204
Line Height Constant 204
Line Justification Constants 205
Line Layout Option Mask Constants 206
Line Layout Width Constant 208
Contents 17
1/11/00  Apple Computer, Inc.

C H A P T E R 2
Miscellaneous Constants 209
Style Comparison Constants 210
Style Run Attribute Tag Constants 211
Text Layout Attribute Tag Constants 220
Text Length Constant 224
Text Offset Constant 225

Result Codes 225
18 Contents

1/11/00  Apple Computer, Inc.

C H A P T E R 2
ATSUI Reference 2

This chapter describes the ATSUI application programming interface (API)
through ATSUI version 1.2, as follows:

� “Gestalt Constants” (page 19)

� “Functions” (page 23)

� “Callbacks” (page 177)

� “Data Types” (page 181)

� “Resource” (page 194)

� “Constants” (page 202)

� “Result Codes” (page 231)

Gestalt Constants 2

� “Gestalt Selectors for ATSUI” (page 19)

� “ATSUI Version Constants” (page 20)

� “ATSUI Attribute Constants” (page 21)

Gestalt Selectors for ATSUI 2
Before calling any functions dependent upon ATSUI, you should pass the
gestaltATSUVersion selector to the Gestalt function to determine which version
of ATSUI is available. You should pass the gestaltATSUFeatures selector to
Gestalt to determine which features of ATSUI are available.

enum {
gestaltATSUVersion = 'uisv',
gestaltATSUFeatures = 'uisf'

};

Constant descriptions

gestaltATSUVersion The Gestalt selector you pass to determine the version of
ATSUI installed on the user’s system. On return, Gestalt
passes back a Fixed value that represents the version of
Gestalt Constants 19
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUI that is installed on the user’s system. You can also
determine version information by testing for the feature
bits described in “ATSUI Attribute Constants” (page 21).

gestaltATSUFeaturesThe Gestalt selector you pass to determine which features
of ATSUI are available. On return, Gestalt passes back a
32-bit mask, described in “ATSUI Attribute Constants”
(page 21), which you can test to determine which features
are available.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUI Version Constants 2
When you pass the gestaltATSUVersion selector to the Gestalt function, on
return, Gestalt passes back one of these constants indicating which version of
ATSUI is available.

enum {
gestaltOriginalATSUVersion = (1 << 16),
gestaltATSUUpdate1 = (2 << 16),
gestaltATSUUpdate2 = (3 << 16)

};

Constant descriptions

gestaltOriginalATSUVersion
A Fixed value that indicates that version 1.0 of ATSUI is
installed on the user’s system. Available beginning with
ATSUI 1.0.

gestaltATSUUpdate1
A Fixed value that indicates that version 1.1 of ATSUI is
installed on the user’s system. Available beginning with
ATSUI 1.1.

gestaltATSUUpdate2
A Fixed value that indicates that version 1.2 of ATSUI is
installed on the user’s system. Available beginning with
ATSUI 1.2.
20 Gestalt Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

This enumeration is available beginning with ATSUI 1.0. Additional constants
added with ATSUI 1.1 and 1.2.

ATSUI Attribute Constants 2
When you pass the gestaltATSUFeatures selector to the Gestalt function, on
return, Gestalt passes back a bit mask which you can use to test for available
features in ATSUI.

You can also test the bit mask to determine which version of ATSUI is installed.
If any of the bits specified by the mask constants gestaltATSUTrackingFeature,
gestaltATSUMemoryFeature, gestaltATSUFallbacksFeature,
gestaltATSUGlyphBoundsFeature, gestaltATSULineControlFeature,
gestaltATSULayoutCacheClearFeature, or
gestaltATSULayoutCreateAndCopyFeature are set, ATSUI 1.1 is installed. If the bit
specified by the mask constant gestaltATSUTextLocatorUsageFeature is set,
ATSUI 1.2 is installed.

enum {
gestaltATSUTrackingFeature = 0x00000001,
gestaltATSUMemoryFeature = 0x00000001,
gestaltATSUFallbacksFeature = 0x00000001,
gestaltATSUGlyphBoundsFeature = 0x00000001,
gestaltATSULineControlFeature = 0x00000001,
gestaltATSULayoutCacheClearFeature = 0x00000001,
gestaltATSULayoutCreateAndCopyFeature = 0x00000001,
gestaltATSUTextLocatorUsageFeature = 0x00000002

};

Constant descriptions

gestaltATSUTrackingFeature
If the bit specified by this mask constant is set, the
functions ATSUCountFontTracking (page 68) and
ATSUGetIndFontTracking (page 69) are available. Available
beginning with ATSUI 1.1.

gestaltATSUMemoryFeature
If the bit specified by this mask is set, the functions
ATSUCreateMemorySetting (page 174),
ATSUSetCurrentMemorySetting (page 176),
Gestalt Constants 21
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetCurrentMemorySetting (page 176), and
ATSUDisposeMemorySetting (page 177) are available.
Available beginning with ATSUI 1.1.

gestaltATSUFallbacksFeature
If the bit specified by this mask is set, the functions
ATSUSetFontFallbacks (page 123) and ATSUGetFontFallbacks
(page 124) are available. Available beginning with ATSUI
1.1.

gestaltATSUGlyphBoundsFeature
If the bit specified by this mask is set, the function
ATSUGetGlyphBounds (page 146) is available. Available
beginning with ATSUI 1.1.

gestaltATSULineControlFeature
If the bit specified by this mask is set, the functions
ATSUCopyLineControls (page 103), ATSUSetLineControls
(page 104), ATSUGetLineControl (page 106),
ATSUGetAllLineControls (page 108), and
ATSUClearLineControls (page 109) are available. Available
beginning with ATSUI 1.1.

gestaltATSULayoutCacheClearFeature
If the bit specified by this mask is set, the function
ATSUClearLayoutCache (page 93) is available. Available
beginning with ATSUI 1.1.

gestaltATSULayoutCreateAndCopyFeatureIf the bit specified by this mask is set,
the function ATSUCreateAndCopyTextLayout (page 91) is
available. Available beginning with ATSUI 1.1.

gestaltATSUTextLocatorUsageFeature
If the bit specified by this mask is set, the text break locator
attribute is available for both style and text layout objects.
Available beginning with ATSUI 1.2.

VERSION NOTES

This enumeration is available beginning with ATSUI 1.1. Additional constants
added with ATSUI 1.2.
22 Gestalt Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Functions 2

� “Creating, Manipulating, and Disposing of Style Objects” (page 24)

� “Copying Style Contents” (page 31)

� “Flattening and Unflattening Style Objects” (page 35)

� “Manipulating Style Run Attributes” (page 36)

� “Manipulating Font Features” (page 44)

� “Manipulating Font Variations” (page 50)

� “Finding Compatible Fonts” (page 55)

� “Searching a Font Name Table” (page 59)

� “Converting Font IDs and Font Family Numbers” (page 66)

� “Obtaining Font Tracking Information” (page 68)

� “Obtaining Font Feature Information” (page 70)

� “Obtaining Font Variation Data” (page 77)

� “Obtaining Font Instance Data” (page 80)

� “Creating and Disposing of Text Layout Objects” (page 84)

� “Manipulating Text Layout Attributes” (page 95)

� “Manipulating Text Layout Attributes in a Line” (page 102)

� “Assigning and Updating Text” (page 111)

� “Obtaining and Updating Text Memory Location” (page 115)

� “Assigning and Updating Style Runs” (page 117)

� “Obtaining Style Run Information” (page 119)

� “Mapping Font Fallbacks” (page 122)

� “Hit-Testing” (page 129)

� “Determining Cursor Offsets” (page 136)

� “Handling Text Insertion and Deletion” (page 143)
Functions 23
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� “Measuring Typographic and Image Bounds” (page 146)

� “Manipulating Line Breaks” (page 156)

� “Drawing Text” (page 163)

� “Highlighting and Unhighlighting Text” (page 165)

� “Performing Background Processing” (page 173)

� “Controlling Memory Allocation” (page 174)

Creating, Manipulating, and Disposing of Style Objects 2
ATSUI provides the following functions for creating, manipulating, and
disposing of style objects:

� ATSUCreateStyle (page 24) creates a style object.

� ATSUCreateAndCopyStyle (page 25) creates a copy of a style object.

� ATSUCompareStyles (page 26) compares the contents of two style objects.

� ATSUSetStyleRefCon (page 27) sets application-specific style object data.

� ATSUGetStyleRefCon (page 28) obtains application-specific style object data.

� ATSUStyleIsEmpty (page 29) indicates whether a style object is empty.

� ATSUClearStyle (page 29) removes all previously set style run attribute, font
feature, and font variation values from a style object.

� ATSUDisposeStyle (page 30) disposes of a style object.

ATSUCreateStyle 2
Creates a style object.

OSStatus ATSUCreateStyle (ATSUStyle *oStyle);

oStyle A pointer to a reference of type ATSUStyle (page 191). On return,
the newly-created style object. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231).
24 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUCreateStyle function creates an “empty” style object that contains
default style run attribute, font feature, and font variation values. The default
font feature and variation values are defined by the font; default style attribute
values are described in Table C-1 (page 241). You can set the style run attribute
values in a style object by calling the function ATSUSetAttributes (page 37). To
set font features and font variations in a style object, call the functions
ATSUSetFontFeatures (page 44) and ATSUSetVariations (page 50), respectively.

To create a copy of an existing style object, call the function
ATSUCreateAndCopyStyle (page 25). You can copy a portion of a style object into
an existing style object by calling the functions ATSUCopyAttributes (page 31),
ATSUOverwriteAttributes (page 32), and ATSUUnderwriteAttributes (page 34).

SPECIAL CONSIDERATIONS

ATSUCreateStyle allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCreateAndCopyStyle 2
Creates a copy of a style object.

OSStatus ATSUCreateAndCopyStyle (
ATSUStyle iStyle,
ATSUStyle *oStyle);

iStyle A reference of type ATSUStyle (page 191). Pass a valid style
object to be copied. You cannot pass NULL for this parameter.

oStyle A pointer to a reference of type ATSUStyle (page 191). On return,
oStyle references a style object that contains the same style run
attributes, font features, and font variations set in the iStyle
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
Functions 25
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUCreateAndCopyStyle function creates a copy of the contents of the style
object you pass in the iStyle parameter, including those style run attribute, font
feature, and font variation values that are not set in this style object. Those style
run attributes that are not set in the source style object will be set to the default
values listed in Table C-1 (page 241) in the newly-created style object. Those
font features and font variations that are not set in the source style object will be
set to font-default values in the newly-created style object.
ATSUCreateAndCopyStyle does not copy reference constants.

If you wish to copy the entire contents of a style object into an existing style
object, call the function ATSUCopyAttributes (page 31). To copy style run
attributes, font features, and font variations that were previously set in the
source style object into the destination style object, regardless of whether or not
these values are set in the destination style object, call the function
ATSUOverwriteAttributes (page 32). To copy only those style run attributes, font
features, and font variations that were previously set in the source style object
but not set in the destination style object, call the function
ATSUUnderwriteAttributes (page 34).

SPECIAL CONSIDERATIONS

ATSUCreateAndCopyStyle allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCompareStyles 2
Compares the contents of two style objects.

OSStatus ATSUCompareStyles (
ATSUStyle iFirstStyle,
ATSUStyle iSecondStyle,
ATSUStyleComparison *oComparison);
26 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFirstStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose contents you want to compare. You
cannot pass NULL for this parameter.

iSecondStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose contents you want to compare. You
cannot pass NULL for this parameter.

oComparison A pointer to a value of type ATSUStyleComparison. On return,
oComparison points to a comparison of the contents. See “Style
Comparison Constants” (page 216) for a description of possible
values. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCompareStyles function determines whether the style run attribute, font
feature, and font variation values set in two style objects are the same, different,
or a subset of one another. It does not consider reference constants or
application-defined style run attributes in the comparison. You should call
ATSUCompareStyles to implement style sheets and tables of style runs.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUSetStyleRefCon 2
Sets application-specific style object data.

OSStatus ATSUSetStyleRefCon (
ATSUStyle iStyle,
UInt32 iRefCon);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose application-specific data you want to
set. You cannot pass NULL for this parameter.

iRefCon A 32-bit value, pointer, or handle to application-specific style
data.
Functions 27
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetStyleRefCon function enables you to associate application-specific
data with a style object. When you copy or clear a style object that contains a
reference constant, the reference constant will not be copied or removed. When
you dispose of a style object that contains a reference constant, you are
responsible for freeing any memory allocated for the reference constant. Calling
the function ATSUDisposeStyle (page 30) will not do so.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetStyleRefCon 2
Obtains application-specific style object data.

OSStatus ATSUGetStyleRefCon (
ATSUStyle iStyle,
UInt32 *oRefCon);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose application-specific data you want to
obtain. You cannot pass NULL for this parameter.

oRefCon A pointer to a 32-bit value, pointer, or handle to
application-specific style data.You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231).

VERSION NOTES

Available beginning with ATSUI 1.0.
28 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUStyleIsEmpty 2
Indicates whether a style object is empty.

OSStatus ATSUStyleIsEmpty (
ATSUStyle iStyle,
Boolean *oIsClear);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object. You cannot pass NULL for this parameter.

oIsClear A pointer to a value of type Boolean. On return, the value
indicates whether the style object contains any previously set
style run attribute, font feature, or font variation values. If true,
the style object contains only default values. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUStyleIsEmpty function indicates whether a style object contains any
previously set style run attribute, font feature, and font variation values. If so,
ATSUStyleIsEmpty passes back false in the oIsClear parameter, indicating that it
is not an empty style object. the ATSUStyleIsEmpty does not consider reference
constants in its evaluation.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearStyle 2
Removes all previously set style run attribute, font feature, and font variation
values from a style object.

OSStatus ATSUClearStyle (ATSUStyle iStyle);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose contents you wish to clear. You cannot
pass NULL for this parameter.
Functions 29
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUClearStyle function removes all previously set style run, font feature,
and font variation values from a style object, including application-defined
attributes. It does not remove reference constants.

If you wish to remove only the style run attributes, font features, or font
variations from a style object, call the functions ATSUClearAttributes (page 42),
ATSUClearFontFeatures (page 49), and ATSUClearFontVariations (page 54),
respectively.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUDisposeStyle 2
Disposes of a style object.

OSStatus ATSUDisposeStyle (ATSUStyle iStyle);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to the
style object you want to dispose of. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUDisposeStyle function only frees memory associated with the style
object and its internal structures, including style run attributes.
ATSUDisposeStyle does not dispose of the memory pointed to by
application-defined style run attributes or reference constants. You are
responsible for doing so.

VERSION NOTES

Available beginning with ATSUI 1.0.
30 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Copying Style Contents 2
ATSUI provides the following functions for copying style contents:

� ATSUCopyAttributes (page 31) copies the entire contents of a style object into
an existing style object.

� ATSUOverwriteAttributes (page 32) copies previously set style run attributes,
font features, and font variations from one style object into another.

� ATSUUnderwriteAttributes (page 34) copies those style run attributes, font
features, and font variations that were previously set in the source style
object but not set in the destination style object.

ATSUCopyAttributes 2
Copies the entire contents of a style object into an existing style object.

OSStatus ATSUCopyAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose values you want to copy. You cannot
pass NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose values you want to replace. You cannot
pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCopyAttributes function copies the contents of the style object you
pass in the iSourceStyle parameter into the destination style object, including
those style run attribute, font feature, and font variation values that are not set
in the source style object. Those style run attributes that are not set in the source
style object will be set to the default values listed in Table C-1 (page 241) in the
destination style object. Those font features and font variations that are not set
in the source style object will be set to font-default values in the destination
style object.
Functions 31
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCopyAttributes does not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. You are responsible for ensuring that this memory remains valid
until the source style object is disposed of.

To create a copy of the entire contents of a style object, call the function
ATSUCreateAndCopyStyle (page 25). To copy style run attributes, font features,
and font variations that were previously set in the source style object into the
destination style object, regardless of whether or not these values are set in the
destination style object, call the function ATSUOverwriteAttributes (page 32). To
copy only those style run attributes, font features, and font variations that were
previously set in the source style object but not set in the destination style
object, call the function ATSUUnderwriteAttributes (page 34).

SPECIAL CONSIDERATIONS

ATSUCopyAttributes may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUOverwriteAttributes 2
Copies previously set style run attributes, font features, and font variations
from one style object into another.

OSStatus ATSUOverwriteAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose previously set values you want to copy.
You cannot pass NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose corresponding values you want to
replace. You cannot pass NULL for this parameter.
32 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUOverwriteAttributes function copies style run attributes, font features,
and font variations that were previously set in the source style object into the
destination style object, regardless of whether or not these values are set in the
destination style object. All other quantities in the destination style object are
left unchanged.

ATSUOverwriteAttributes does not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. You are responsible for ensuring that this memory remains valid
until the source style object is disposed of.

To create a copy of the entire contents of a style object, call the function
ATSUCreateAndCopyStyle (page 25). If you wish to copy the entire contents of a
style object into an existing style object, you should call the function
ATSUCopyAttributes (page 31). To copy only those style run attributes, font
features, and font variations that were previously set in the source style object
but not set in the destination style object, call the function
ATSUUnderwriteAttributes (page 34).

SPECIAL CONSIDERATIONS

ATSUOverwriteAttributes may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 33
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUUnderwriteAttributes 2
Copies those style run attributes, font features, and font variations that were
previously set in the source style object but not set in the destination style
object.

OSStatus ATSUUnderwriteAttributes (
ATSUStyle iSourceStyle,
ATSUStyle iDestinationStyle);

iSourceStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose previously set values you want to copy.
You cannot pass NULL for this parameter.

iDestinationStyle
A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose corresponding unset values you want to
replace. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUUnderwriteAttributes function copies those style run attributes, font
features, and font variations that were previously set in the source style object
but not set in the destination style object. All other quantities in the destination
style object are left unchanged.

ATSUUnderwriteAttributes does not copy the contents of memory referenced by
pointers or handles within custom style run attributes or within reference
constants. You are responsible for ensuring that this memory remains valid
until the source style object is disposed of.

To create a copy of the entire contents of a style object, call the function
ATSUCreateAndCopyStyle (page 25). If you wish to copy the entire contents of a
style object into an existing style object, you should call the function
ATSUCopyAttributes (page 31). To copy style run attributes, font features, and
font variations that were previously set in the source style object into the
destination style object, regardless of whether or not these values are set in the
destination style object, call the function ATSUOverwriteAttributes (page 32).
34 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUUnderwriteAttributes may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Flattening and Unflattening Style Objects 2
NOT RECOMMENDED 2

ATSUI provides the following functions for flattening and unflattening style
objects:

� ATSUCopyToHandle (page 35) copies styled Unicode text data from a style
object to a handle.

� ATSUPasteFromHandle (page 36) pastes styled Unicode text data from a handle
to a style object.

ATSUCopyToHandle 2
NOT RECOMMENDED 2

Copies styled Unicode text data from a style object to a handle.

OSStatus ATSUCopyToHandle (
ATSUStyle iStyle,
Handle oStyleHandle);

DISCUSSION

The ATSUCopyToHandle function does not produce the correct data format for
displaying ATSUI style data. You should instead use the clipboard data block
format described in ustl (page 194) when you want to provide clipboard
support or copy and paste styled text between applications or within an
application.
Functions 35
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUPasteFromHandle 2
NOT RECOMMENDED 2

Pastes styled Unicode text data from a handle into a style object.

OSStatus ATSUPasteFromHandle (
ATSUStyle iStyle,
Handle iStyleHandle);

DISCUSSION

The ATSUPasteFromHandle function does not produce the correct data format for
displaying ATSUI style data. You should instead use the clipboard data block
format described in ustl (page 194) when you want to provide clipboard
support or copy and paste styled text between applications or within an
application.

Manipulating Style Run Attributes 2
ATSUI provides the following functions for manipulating style run attributes in
a style object:

� ATSUSetAttributes (page 37) sets style run attribute values in a style object.

� ATSUGetAttribute (page 38) obtains a style run attribute value from a style
object.

� ATSUGetAllAttributes (page 40) obtains style run attribute information for a
style object.

� ATSUClearAttributes (page 42) removes previously set style run attributes
from a style object.

� ATSUCalculateBaselineDeltas (page 43) calculates the optimal baseline
positions in a style object.
36 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetAttributes 2
Sets style run attribute values in a style object.

OSStatus ATSUSetAttributes (
ATSUStyle iStyle,
ItemCount iAttributeCount,
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose style run attributes you want to set. You
cannot pass NULL for this parameter.

iAttributeCount
The number of style run attributes you want to set. This value
should correspond to the number of elements in the iTag and
iValueSize arrays.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to the style
run attribute value you wish to set. See “Style Run Attribute Tag
Constants” (page 217) for a description of the Apple-defined
style run attribute tag constants. If you pass a text layout
attribute tag constant or an ATSUI-reserved tag constant in this
parameter, ATSUSetAttributes returns the result code
kATSUInvalidAttributeTagErr. You cannot pass NULL for this
parameter.

iValueSize An array of values of type ByteCount. Each element in the array
must contain the size (in bytes) of the corresponding style run
attribute value being set. If you pass a size that is less than
required, ATSUSetAttributes returns the result code
kATSUInvalidAttributeSizeErr, and the function sets no
attributes. If, after having checked all the given sizes and found
them acceptable, ATSUSetAttributes sets style run attributes. You
cannot pass NULL for this parameter.

iValue An array of pointers of type ATSUAttributeValuePtr (page 186).
Each pointer in the array must reference a style run attribute
value that corresponds to a tag in the iTag array, and the value
referenced by the pointer must be legal for that tag. If you pass
Functions 37
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
an invalid or undefined value, ATSUSetAttributes returns the
result code kATSUInvalidAttributeValueErr. You cannot pass
NULL for this parameter.

function result A result code. If there is a function error, ATSUSetAttributes will
not set any style run attributes. If you try to set the font attribute
identified by the tag constant kATSUFontTag, the result code
kATSUNoFontCmapAvailableErr indicates that no 'CMAP' table can
be accessed or synthesized for the font. The result code
kATSUNoFontScalerAvailableErr indicates that there is no font
scaler available for the font.For a list of other ATSUI-specific
result codes, see “Result Codes” (page 231).

DISCUSSION

The ATSUSetAttributes function sets one or more style run attribute value(s) for
a style object. Unset style run attributes retain the default values listed in Table
C-1 (page 241).

SPECIAL CONSIDERATIONS

ATSUSetAttributes may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetAttribute 2
Obtains a style run attribute value from a style object.

OSStatus ATSUGetAttribute (
ATSUStyle iStyle,
ATSUAttributeTag iTag,
ByteCount iMaximumValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);
38 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose attribute value you want to obtain. You
cannot pass NULL for this parameter.

iTag An array of values of type ATSUAttributeTag. Pass a valid tag
that corresponds to the style run attribute value you wish to
determine. See “Style Run Attribute Tag Constants” (page 217)
for a description of the Apple-defined style run attribute tag
constants. If you pass a text layout attribute tag constant or an
ATSUI-reserved tag constant in this parameter,
ATSUGetAttribute returns the result code
kATSUInvalidAttributeTagErr. You cannot pass NULL for this
parameter.

iMaximumValueSize
The maximum size of the style run attribute value. To determine
the size of an application-defined style run attribute value, see
the discussion below. If you pass a size that is less than required,
ATSUGetAttribute returns the result code
kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 186). Before
calling ATSUGetAttribute, pass a pointer to memory you have
allocated for the attribute value. If you are uncertain of how
much memory to allocate, see the discussion below. On return,
oValue points to the style run attribute value. If the attribute
was not previously set, ATSUGetAttribute passes back its default
value in this parameter and returns the result code
kATSUNotSetErr.

oActualValueSize
A pointer to a count. On return, the actual size (in bytes) of the
attribute value. You should examine this parameter if you are
unsure of the size of the attribute value you wish to obtain, as in
the case of custom style run attributes.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Before calling the ATSUGetAttribute function, call the function
ATSUGetAllAttributes (page 40) to obtain an array of the tags and data sizes
corresponding to all previously set style run attribute values in a style object. To
Functions 39
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
determine the value of a style run attribute identified by a particular style run
attribute tag, you should pass the appropriate tag and data size pair passed
back in the oAttributeInfoArray array of ATSUGetAllAttributes to
ATSUGetAttribute.

If you do not know the size of the style run attribute value you wish to
determine, call ATSUGetAttribute twice:

1. Pass a reference to the style object containing the attribute in the iStyle
parameter, NULL for the oValue parameter, and 0 for the other parameters.
ATSUGetAttribute returns the size of the attribute value in the
oActualValueSize parameter.

2. Allocate enough space for a value of the returned size, then call the function
again, passing a pointer in the oValue parameter; on return, the pointer
references the attribute value.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetAllAttributes 2
Obtains attribute information from a style object.

OSStatus ATSUGetAllAttributes (
ATSUStyle iStyle,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose style run attribute information you
want to obtain. You cannot pass NULL for this parameter.

oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 185).
Before calling ATSUGetAllAttributes, pass a pointer to memory
that you have allocated for this array. If you are uncertain of
how much memory to allocate, see the discussion below. On
40 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
return, the array contains the tag and data size pairs
corresponding to all previously set style run attribute values in
the style object.

iTagValuePairArraySize
The maximum number of tags and data sizes in the style object.
Typically, this is equivalent to the number of ATSUAttributeInfo
structures in the oAttributeInfoArray array. To determine this
value, see the discussion below.

oTagValuePairCount
A pointer to a count. On return, the actual number of
ATSUAttributeInfo structures in the style object. This may be
greater than the value you specified in the
iTagValuePairArraySize parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetAllAttributes function obtains an array of the tags and data sizes
corresponding to all previously set style run attributes in a style object. You can
obtain a particular attribute value by passing the corresponding tag and data
size pair to the function ATSUGetAttribute (page 38).

The best way to use ATSUGetAllAttributes is to call it twice:

1. Pass a reference to the style object containing the attribute in the iStyle
parameter, NULL for the oAttributeInfoArray parameter, and 0 for the other
parameters. ATSUGetAllAttributes returns the size of the tag and data size
arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oAttributeInfoArray parameter; on return,
the pointer references the array of tag and data size pairs.

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 41
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUClearAttributes 2
Removes previously set attributes from a style object.

OSStatus ATSUClearAttributes (
ATSUStyle iStyle,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose attributes you want to remove. You
cannot pass NULL for this parameter.

iTagCount The number of attributes you want to remove. To remove all
previously set attributes, pass the constant kATSUClearAll in this
parameter. In this case, the value in the iTag parameter will be
ignored.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that identifies the style run
attribute value you want to remove. See “Style Run Attribute
Tag Constants” (page 217) for a description of the Apple-defined
style run attribute tag constants. If you pass a text layout
attribute tag constants or an ATSUI-reserved tag constant in this
parameter, ATSUClearAttributes returns the result code
kATSUInvalidAttributeTagErr.

function result A result code. See “Result Codes” (page 231). You can remove
unset attribute values from a style object without a function
error.

DISCUSSION

The ATSUClearAttributes function removes those previously set style run
attribute values, including application-defined attributes, that are identified by
tag constants in the iTag array. It replaces them with the default style run
attribute values described in Table C-1 (page 241).

If you wish to remove all previously set style run attribute values from a style
object, pass kATSUClearAll in the iTagCount parameter. To remove all previously
set style run attribute, font feature, and font variation values from a style object,
call the function ATSUClearStyle (page 29). To remove all previously set font
variation values from a style object, call the function ATSUClearFontVariations
42 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
(page 54). To remove all previously set font feature types and selectors from a
style object, call the function ATSUClearFontFeatures (page 49).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCalculateBaselineDeltas 2
Calculates the optimal baseline positions in a style object.

OSStatus ATSUCalculateBaselineDeltas (
ATSUStyle iStyle,
BslnBaselineClass iBaselineClass,
BslnBaselineRecord oBaselineDeltas);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose baseline positions you want to control
placement of all the glyphs in a single line or in each line of a
text layout object. You cannot pass NULL for this parameter.

iBaselineClass
A value of type BslnBaselineClass. Pass the primary baseline
from which to calculate the distance to each of the other baseline
types. See “Baseline Type Constants” (page 260) for a
description of possible values. Pass the constant
kBSLNNoBaselineOverride if you want to use the standard
baseline value from the current font.

oBaselineDeltas
An array of type BslnBaselineRecord (page 257). On return, the
array contains the distances from a specified baseline to each of
the other baseline types in the style object. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

You can call the ATSUCalculateBaselineDeltas function to calculate the distances
from a specified baseline type to each of other baseline types in a specified style
Functions 43
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
object. ATSUCalculateBaselineDeltas takes into account font and text size when
performing these calculations.

ATSUI uses these distances to determine the cross-stream shifting to apply to
the glyphs in a style run. You can use the resulting array to set or obtain the
optimal baseline positions of lines in a text layout object identified by the text
layout attribute tag kATSULineBaselineValuesTag. For a description of this tag
constant, see “Text Layout Attribute Tag Constants” (page 226).

VERSION NOTES

Available beginning with ATSUI 1.0.

Manipulating Font Features 2
ATSUI provides the following functions for manipulating font features in a
style object:

� ATSUSetFontFeatures (page 44) sets font features in a style object.

� ATSUGetFontFeature (page 46) obtains the font feature type and selector for an
indexed font feature.

� ATSUGetAllFontFeatures (page 47) obtains font feature information from a
style object.

� ATSUClearFontFeatures (page 49) removes previously set font features from a
style object.

ATSUSetFontFeatures 2
Sets font features in a style object.

OSStatus ATSUSetFontFeatures (
ATSUStyle iStyle,
ItemCount iFeatureCount,
ATSUFontFeatureType iType[],
ATSUFontFeatureSelector iSelector[]);
44 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font features you want to set. You
cannot pass NULL for this parameter.

iFeatureCount The number of font features you want to set. This value should
correspond to the number of elements in the iType and
iSelector arrays.

iType An array of values of type ATSUFontFeatureType (page 187). Each
element in the array must represent a valid feature type. You
cannot pass NULL for this parameter.

iSelector An array of values of type ATSUFontFeatureSelector (page 188).
Each element in the array must represent a feature selector that
is valid for the corresponding feature type in the iType
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetFontFeatures function sets one or more font feature(s). Unset font
features retain their font-defined default values. To set a particular font feature,
you must specify both the feature type and selector.

The order that ATSUSetFontFeatures sets font features depends on the
font-defined order, not the chronological order in which they were set in a call
to ATSUSetFontFeatures.

Prior to ATSUI 1.2, ATSUSetFontFeature would not remove contradictory font
features. You are responsible for maintaining your own list and remove
contradictory settings when they occur. Beginning with ATSUI 1.2,
ATSUSetFontFeatures will remove contradictory font features.

SPECIAL CONSIDERATIONS

ATSUSetFontFeatures may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).
Functions 45
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0. Beginning with ATSUI 1.2, if you set
contradictory font features, ATSUSetFontFeatures will remove contradictory
features. Prior to ATSUI 1.2, you should maintain a list of font feature settings
and removing contradictory settings when they occur.

ATSUGetFontFeature 2
Obtains the font feature type and selector for an indexed font feature.

OSStatus ATSUGetFontFeature (
ATSUStyle iStyle,
ItemCount iFeatureIndex,
ATSUFontFeatureType *oFeatureType,
ATSUFontFeatureSelector *oFeatureSelector);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font feature value you want to obtain.
You cannot pass NULL for this parameter.

iFeatureIndex A 0-based index. Pass a value between 0 and one less than the
value passed back in the oActualFeatureCount parameter of the
function ATSUGetAllFontFeatures (page 47).

oFeatureType A pointer to a value of type ATSUFontFeatureType (page 187) or
one of the font feature types described in “Font Feature Type
Constants” (page 267). On return, the font feature type
corresponding to iFeatureIndex. If the font feature type has not
been set, ATSUGetFontFeature passes back the font-specified
default value and returns the result code kATSUNotSetErr.

oFeatureSelector
A pointer to a value of type ATSUFontFeatureSelector (page 188)
or one of the font feature selector constants described in “Apple
Advanced Typography Constants” (page 257). On return, the
font feature selector. If the feature selector value has not been
set, ATSUGetFontFeature passes back the font-specified default
value and returns the result code kATSUNotSetErr.

function result A result code. See “Result Codes” (page 231).
46 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

Before calling the ATSUGetFontFeature function, call the function
ATSUGetAllFontFeatures (page 47) to obtain an array of all the feature types and
selectors that were previously set for a particular style object. To determine the
font feature type and selector for a given indexed font, pass a value between 0
and one less than the value passed back in the oActualFeatureCount parameter
of ATSUGetAllFontFeatures in the iFeatureIndex parameter of
ATSUGetFontFeature.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetAllFontFeatures 2
Obtains font feature information from a style object.

OSStatus ATSUGetAllFontFeatures (
ATSUStyle iStyle,
ItemCount iMaximumFeatureCount,
ATSUFontFeatureType oFeatureType[],
ATSUFontFeatureSelector oFeatureSelector[],
ItemCount *oActualFeatureCount);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font feature information you want to
obtain. You cannot pass NULL for this parameter.

iMaximumFeatureCount
The maximum number of feature types and selectors in the style
object. Typically, this is equivalent to the number of feature
types in the oFeatureType array. To determine this value, see the
discussion below.

oFeatureType An array of values of type ATSUFontFeatureType (page 187) or
one of the font feature types described in “Font Feature Type
Constants” (page 267). Before calling ATSUGetAllFontFeatures,
pass a pointer to memory that you have allocated for this array.
Functions 47
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If you are uncertain of how much memory to allocate, see the
discussion below. On return, the array contains the font feature
types that have been set in the style object.

oFeatureSelector
An array of values of type ATSUFontFeatureSelector (page 188)
or one of the font feature selector constants described in “Apple
Advanced Typography Constants” (page 257). Before calling
ATSUGetAllFontFeatures, pass a pointer to memory that you
have allocated for this array. If you are uncertain of how much
memory to allocate, see the discussion below. On return, the
array contains the font feature selectors that have been set in the
style object.

oActualFeatureCount
A pointer to a count. On return, the actual number of font
feature types and selectors in the style object. This may be
greater than the value passed in the iMaximumFeatureCount
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetAllFontFeatures function obtains an array of the feature type and
selector pairs corresponding to all previously set font features in a style object.
You can use the value passed back in the oActualFeatureCount parameter to
calculate the maximum font feature index to pass in the iFeatureIndex
parameter of the function ATSUGetFontFeature (page 46).

The best way to use ATSUGetAllFontFeatures is to call it twice:

1. Pass a reference to the style object containing the font feature in the iStyle
parameter, NULL for the oFeatureType and oFeatureSelector parameters, and
0 for the other parameters. ATSUGetAllFontFeatures returns the sizes of the
feature type and selector arrays in the oActualFeatureCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oFeatureType and oFeatureSelector
parameters; on return, the pointers references arrays of feature types and
selectors, respectively.
48 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearFontFeatures 2
Removes previously set font features from a style object.

OSStatus ATSUClearFontFeatures (
ATSUStyle iStyle,
ItemCount iFeatureCount,
ATSUFontFeatureType iType[],
ATSUFontFeatureSelector iSelector[]);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font features you want to remove. You
cannot pass NULL for this parameter.

iFeatureCount The number of font features you want to remove. To remove all
previously set font features, pass the constant kATSUClearAll in
this parameter. In this case, the values in the iType and
iSelector parameters will be ignored.

iType An array of values of type ATSUFontFeatureType (page 187). Each
element in the array must contain a valid feature type that
identifies a font feature you want to remove.

iSelector An array of values of type ATSUFontFeatureSelector (page 188).
Each element in the array must contain a valid feature selector
that specifies the setting for the font feature that you want to
remove.

function result A result code. See “Result Codes” (page 231). You can remove
unset font feature values from a style object without a function
error.

DISCUSSION

The ATSUClearFontFeatures function removes those previously set font features
that are identified by the feature selector and type constants in the iSelector
and iType arrays. It replaces them with their font-defined default values.
Functions 49
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If you wish to remove all previously set font features from a style object, pass
kATSUClearAll in the iFeatureCount parameter. To remove all previously set
style run attribute, font feature, and font variation values from a style object,
call the function ATSUClearStyle (page 29). To remove just the previously set
font variation values from a style object, call the function
ATSUClearFontVariations (page 54).

VERSION NOTES

Available beginning with ATSUI 1.0.

Manipulating Font Variations 2
ATSUI provides the following functions for manipulating font variations in a
style object:

� ATSUSetVariations (page 50) sets font variations in a style object.

� ATSUGetFontVariationValue (page 51) obtains the font variation value of a
font variation axis.

� ATSUGetAllFontVariations (page 52) obtains font variation information from
a style object.

� ATSUClearFontVariations (page 54) removes previously set font variations
from a style object.

ATSUSetVariations 2
Sets font variations in a style object.

OSStatus ATSUSetVariations (
ATSUStyle iStyle,
ItemCount iVariationCount,
ATSUFontVariationAxis iAxes[],
ATSUFontVariationValue iValue[]);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font variations you want to set. You
cannot pass NULL for this parameter.
50 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iVariationCount
The number of font variations you want to set. This value
should correspond to the number of elements in the iAxes and
iValue arrays.

iAxes An array of values of type ATSUFontVariationAxis (page 188).
Each element in the array must represent a valid variation axis.
You cannot pass NULL for this parameter.

iValue An array of values of type ATSUFontVariationValue (page 189).
Each element in the array must contain a value that is valid for
the corresponding variation axis in the iAxes parameter. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetVariations function sets one or more font variation (s). Unset font
variations retain their font-defined default values. If the font does not support
the specified variation axis, the variations will have no visual effect.

SPECIAL CONSIDERATIONS

ATSUSetVariations may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetFontVariationValue 2
Obtains the font variation value of a font variation axis.

OSStatus ATSUGetFontVariationValue (
ATSUStyle iStyle,
ATSUFontVariationAxis iATSUFontVariationAxis,
ATSUFontVariationValue *oATSUFontVariationValue);
Functions 51
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font variation value you want to obtain.
You cannot pass NULL for this parameter.

iATSUFontVariationAxis
A value of type ATSUFontVariationAxis (page 188). Pass the font
variation axis whose value you want to obtain.

oATSUFontVariationValue
A pointer to a value of type ATSUFontVariationValue (page 189).
On return, the value corresponding to the font variation axis. If
this value has not been set, ATSUGetFontVariationValue passes
back the font-defined default value and returns the result code
kATSUNotSetErr. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Before calling ATSUGetFontVariationValue, call the function
ATSUGetAllFontVariations (page 52) to obtain an array of variation axes
corresponding to all previously set font variations. You can then call
ATSUGetFontVariationValue with the appropriate variation axis to determine the
corresponding variation value.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetAllFontVariations 2
Obtains font variation information from a style object.

OSStatus ATSUGetAllFontVariations (
ATSUStyle iStyle,
ItemCount iVariationCount,
ATSUFontVariationAxis oVariationAxes[],
ATSUFontVariationValue oATSUFontVariationValues[],
ItemCount *oActualVariationCount);
52 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iStyle A reference of type ATSUStyle (page 191). Pass a reference to the
style object whose font variation information you want to
obtain. You cannot pass NULL for this parameter.

iVariationCount
The maximum number of font variations in the style object.
Typically, this is equivalent to the number of font variation axes
in the ATSUFontVariationAxis array. To determine this value, see
the discussion below.

oVariationAxes
An array of values of type ATSUFontVariationAxis (page 188).
Before calling ATSUGetAllFontVariations, pass a pointer to
memory that you have allocated for this array. If you are
uncertain of how much memory to allocate, see the discussion
below. On return, the array contains the previously set font
variation axes in the style object.

oATSUFontVariationValues
An array of values of type ATSUFontVariationValue (page 189).
Before calling ATSUGetAllFontVariations, pass a pointer to
memory that you have allocated for this array. If you are
uncertain about how much memory to allocate, see the
discussion below. On return, the array contains the font
variation values that correspond to the font variation axes
passed back in the oVariationAxes array.

oActualVariationCount
A pointer to a count. On return, the actual number of font
variations set in the style object. This may be greater than the
value passed in the iVariationCount parameter. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetAllFontVariations function obtains an array of the variation axes
and values corresponding to all previously set font variations in a style object.
You can obtain a particular variation value by passing its corresponding
variation axis to the function ATSUGetFontVariationValue (page 51).

The best way to use ATSUGetAllFontVariations is to call it twice:
Functions 53
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
1. Pass a reference to the style object containing the font variation in the iStyle
parameter, NULL for the oVariationAxes and oATSUFontVariationValues
parameters, and 0 for the other parameters. ATSUGetAllFontVariations
returns the size of the axes and value arrays in the oActualVariationCount
parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oVariationAxes and
oATSUFontVariationValues parameters; on return, the pointers reference
arrays of variation axes and values, respectively.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearFontVariations 2
Removes previously set font variations from a style object.

OSStatus ATSUClearFontVariations (
ATSUStyle iStyle,
ItemCount iAxisCount,
ATSUFontVariationAxis iAxes[]);

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose font variations you want to remove.
You cannot pass NULL for this parameter.

iAxisCount The number of font variations you want to remove. To remove
all previously set font variations, pass the constant
kATSUClearAll in this parameter. In this case, the value in the
iAxes parameter will be ignored.

iAxes An array of values of type ATSUFontVariationAxis (page 188).
Each element in the array must contain a valid variation axis
that corresponds to the variation value you want to remove.

function result A result code. See “Result Codes” (page 231). You can remove
unset font variation values from a style object without a
function error.
54 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUClearFontVariations function removes those previously set font
variations identified in the iAxes array. It replaces them with their font-defined
default values.

If you wish to remove all previously set font variations from a style object, pass
kATSUClearAll in the iAxisCount parameter. To remove all previously set style
run attribute, font feature, and font variation values from a style object, call the
function ATSUClearStyle (page 29). To remove just the previously set font
features from a style object, call the function ATSUClearFontFeatures (page 49).

VERSION NOTES

Available beginning with ATSUI 1.0.

Finding Compatible Fonts 2
ATSUI provides the following functions for finding fonts that are compatible
with ATSUI:

� ATSUFontCount (page 55) counts the number of ATSUI-compatible fonts
installed on a user’s system.

� ATSUGetFontIDs (page 56) obtains the IDs of all ATSUI-compatible fonts
installed on a user’s system.

� ATSUFindFontFromName (page 57) finds the ID of the first font in a name table
with a particular font name code, language, platform, and script.

ATSUFontCount 2
Counts the number of ATSUI-compatible fonts installed on a user’s system.

OSStatus ATSUFontCount(
ItemCount *oFontCount)

oFontCount A pointer to a count. On return, the number of
ATSUI-compatible fonts installed on the user’s system. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
Functions 55
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUFontCount function only counts the number of fonts that are
compatible with ATSUI. Fonts that are incompatible with ATSUI include fonts
that cannot be used to represent Unicode, the last resort font, and fonts whose
names begin with a period or a percent sign. You can use this count to
determine the amount of memory to allocate for the oFontIDs array in the
function ATSUGetFontIDs (page 56).

The number of available fonts may change while your application is running.
Although fonts cannot be removed from the Fonts folder while an application
other than the Finder is running, they can be removed from other locations,
resulting in a decrease in the font number. It is possible for a font to be added
and another removed between two successive calls of ATSUFontCount, leaving
the total number unchanged.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetFontIDs 2
Obtains the font IDs of all ATSUI-compatible fonts installed on a user’s system.

OSStatus ATSUGetFontIDs (
ATSUFontID oFontIDs[],
ItemCount iArraySize,
ItemCount *oFontCount);

oFontIDs An array of values of type ATSUFontID (page 188). Before calling
ATSUGetFontIDs, pass a pointer to memory that you have
allocated for this array. You can determine the amount of
memory to allocate by using the count returned from the
function ATSUFontCount (page 55). On return, the array contains
the IDs of all ATSUI-compatible fonts installed on the system.

iArraySize The maximum number of fonts in the style object. Typically, this
is equivalent to the number of IDs in the oFontIDs array. Call
ATSUFontCount (page 55) to determine this value.
56 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oFontCount A pointer to a count. On return, the actual number of
ATSUI-compatible fonts that are installed on the user’s system.
This may be greater than the value passed in the iArraySize
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetFontIDs function obtains the IDs of all ATSUI-compatible fonts that
are installed on the user’s system. For a description of fonts that are not
compatible with ATSUI, see the discussion for ATSUFontCount (page 55). You
should call ATSUGetFontIDs to rebuild your font menu when your application is
brought to the foreground.

Before calling ATSUGetFontIDs, call ATSUFontCount to determine the number of
ATSUI-compatible fonts installed on the user’s system. You should then allocate
enough memory to contain this number of fonts for the array passed back in the
oFontIDs parameter.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFindFontFromName 2
Finds the ID of the first font in a name table with a particular font name code,
language, platform, and script.

OSStatus ATSUFindFontFromName (
Ptr iName,
ByteCount iNameLength,
FontNameCode iFontNameCode,
FontPlatformCode iFontNamePlatform,
FontScriptCode iFontNameScript,
FontLanguageCode iFontNameLanguage,
ATSUFontID *oFontID);

iName A pointer to a buffer. Pass the name string of the font you want
to obtain.
Functions 57
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iNameLength The length (in bytes) of the font name string.

iFontNameCode
A value of type FontNameCode. Pass the type of the font name
string. See “Font Name Code Constants” (page 271) for a
description of possible values.

iFontNamePlatform
A value of type FontPlatformCode. Pass the encoding of the font
name string. See “Font Name Platform Constants” (page 284)
for a description of possible values. You can pass the
kFontNoPlatform constant if you do not care about the encoding.
In this case, ATSUFindFontFromName will pass back the first font in
the name table matching the other font name parameters.

iFontNameScript
A value of type FontScriptCode. Pass the script ID of the font
name string. Depending upon the font name platform, see
“Macintosh Platform Script Code Constants” (page 295),
“Microsoft Platform Script Code Constants” (page 301), or
“Unicode Platform Script Code Constants” (page 311) for a
description of possible values. You can pass the kFontNoScript
constant if you do not care about the script ID. In this case,
ATSUFindFontFromName will pass back the first font in the name
table matching the other font name parameters.

iFontNameLanguage
A value of type FontLanguageCode. Pass the language of the font
name string. See “Font Name Language Constants” (page 274)
for a description of possible values. You can pass the
kFontNoLanguage constant if you do not care about the language.
In this case, ATSUFindFontFromName will pass back the first font in
the name table matching the other font name parameters.

oFontID A pointer to a value of type ATSUFontID (page 188). On return,
the first font that matches the specified name code, platform,
script, and language. If no installed font matches these
parameters, ATSUFindFontFromName passes back the constant
kATSUInvalidFontID and returns the result code
kATSUInvalidFontErr.

function result A result code. See “Result Codes” (page 231).
58 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

Because ATSUI cannot guarantee the uniqueness of names among installed
fonts, the ATSUFindFontFromName function finds the first (but not necessarily the
only) font that matches the specified name, platform, language, and script. If
you want to find, for an indexed font name, the font name and information
about the name like type, platform, script ID, and language, call the function
ATSUGetIndFontName (page 61). If you want to find the ID of the first font in a
font name table with a particular font name code, language, platform, and
script, call the function ATSUFindFontName (page 63).

ATSUFindFontFromName is provided for convenience only. You may wish to
replicate its functionality if you wish create a more sophisticated
name-matching algorithm or better guarantee the uniqueness of names among
installed fonts.

SPECIAL CONSIDERATIONS

ATSUFindFontFromName may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Searching a Font Name Table 2
ATSUI provides the following functions for searching a font name table:

� ATSUCountFontNames (page 60) counts the number of font names in a font.

� ATSUGetIndFontName (page 61) obtains, for an indexed font name, the font
name and information about the name like type, platform, script ID, and
language.

� ATSUFindFontName (page 63) obtains the index and font name of the first font
in a name table with a particular font name code, language, platform, and
script.
Functions 59
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCountFontNames 2
Counts the number of font names in a font.

OSStatus ATSUCountFontNames(
ATSUFontID iFontID,
ItemCount *oFontNameCount);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose names you want to count.

oFontNameCountA pointer to a count. On return, the total number of entries in
the font name table. This count includes the names of font
features, variations, tracking settings, and instances, as well as
font names identified by name code constants that aren’t
enumerated. You cannot pass a NULL pointer for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to an installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontNames function obtains the total number of font names
defined in a font name table. This includes repetitions of the same name in
different platforms, languages, and scripts, as well as other strings such as the
names of font features, variations, tracking settings, and instances. You can pass
one less than this count in the iFontNameIndex parameter of the function
ATSUGetIndFontName (page 61) to iterate through the entries of a font name table.

VERSION NOTES

Available beginning with ATSUI 1.0.
60 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetIndFontName 2
Obtains, for an indexed font name, the font name and information about the
name like type, platform, script ID, and language.

OSStatus ATSUGetIndFontName (
ATSUFontID iFontID,
ItemCount iFontNameIndex,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
FontNameCode *oFontNameCode,
FontPlatformCode *oFontNamePlatform,
FontScriptCode *oFontNameScript,
FontLanguageCode *oFontNameLanguage);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose indexed font name you want information about.

iFontNameIndex
A 0-based index. Pass a value between 0 and one less than the
count passed back by the function ATSUCountFontNames (page 60).

iMaximumNameLength
The maximum length of the font name. Typically, this is
equivalent to the size of the buffer allocated to contain the font
name pointed to by the oName parameter. To determine this
length, see the discussion below.

oName A pointer to a buffer. Before calling ATSUGetIndFontName, pass a
pointer to memory that you have allocated for this buffer. If you
are uncertain of how much memory to allocate, see the
discussion below. On return, the buffer contains the font name
string. If the buffer you allocate is not large enough,
ATSUGetIndFontName passes back a partial string. You cannot
pass NULL for this parameter.

oActualNameLength
A pointer to a count. On return, the actual length of the font
name string. This may be greater than the value passed in the
iMaximumNameLength parameter. You should check this value to
make sure that you allocated enough memory for the buffer. You
cannot pass NULL for this parameter.
Functions 61
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oFontNameCode A pointer to a value of type FontNameCode. On return, the type of
the font name string. See “Font Name Code Constants”
(page 271) for a description of possible values.

oFontNamePlatform
A pointer to a value of type FontPlatformCode. On return, the
encoding of the font name string. See “Font Name Platform
Constants” (page 284) for a description of possible values.

oFontNameScript
A pointer to a value of type FontScriptCode. On return, the
script ID of the font name string. Depending upon the font name
platform, see “Macintosh Platform Script Code Constants”
(page 295), “Microsoft Platform Script Code Constants”
(page 301), or “Unicode Platform Script Code Constants”
(page 311) for a description of possible values.

oFontNameLanguage
A pointer to a value of type FontLanguageCode. On return, the
language of the font name string. See “Font Name Language
Constants” (page 274) for a description of possible values.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

You should call the ATSUGetIndFontName to iterate through the entries of a font
name table. If you want to find the index and name of the first font in a name
table with a particular font name code, language, platform, and script, call the
function ATSUFindFontFromName (page 57). If you want to find the ID of the first
font in a font name table with a particular font name code, language, platform,
and script, call the function ATSUFindFontName (page 63).

The best way to use ATSUGetIndFontName is to call it twice:

1. Pass the ID of the font whose name table you want to iterate in the iFontID
parameter, NULL for the oName parameter, and 0 for the other parameters.
62 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetIndFontName returns the length of the font name string in the
oActualNameLength parameter.

2. Allocate enough space for a font name buffer of the returned size, then call
the function again, passing a pointer in the oName parameter; on return, the
pointer references the font name string.

SPECIAL CONSIDERATIONS

ATSUGetIndFontName may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFindFontName 2
Obtains the index and font name of the first font in a name table with a
particular font name code, language, platform, and script.

OSStatus ATSUFindFontName (
ATSUFontID iFontID,
FontNameCode iFontNameCode,
FontPlatformCode iFontNamePlatform,
FontScriptCode iFontNameScript,
FontLanguageCode iFontNameLanguage,
ByteCount iMaximumNameLength,
Ptr oName,
ByteCount *oActualNameLength,
ItemCount *oFontNameIndex);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose particular font name you are searching for.

iFontNameCode
A value of type FontNameCode. Pass the type of the font name
string you are searching for. See “Font Name Code Constants”
(page 271) for a description of possible values.
Functions 63
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontNamePlatform
A value of type FontPlatformCode. Pass the encoding of the font
name string you are searching for. See “Font Name Platform
Constants” (page 284) for a description of possible values. You
can pass the kFontNoPlatform constant if you do not care about
the encoding of a font name. In this case, ATSUFindFontName will
pass back the first font in the name table matching the other font
name parameters.

iFontNameScript
A value of type FontScriptCode. Pass the script ID of the font
name string. Depending upon the font name platform, see
“Macintosh Platform Script Code Constants” (page 295),
“Microsoft Platform Script Code Constants” (page 301), or
“Unicode Platform Script Code Constants” (page 311) for a
description of possible values. You can pass the kFontNoScript
constant if you do not care about the script ID. In this case,
ATSUFindFontName will pass back the first font in the name table
matching the other font name parameters.

iFontNameLanguage
A value of type FontLanguageCode. Pass the language of the font
name string you are searching for. See “Font Name Language
Constants” (page 274) for a description of possible values. You
can pass the kFontNoLanguage constant if you do not care about
the language of the font name. In this case, ATSUFindFontName
will pass back the first font in the name table matching the other
font name parameters.

iMaximumNameLength
The maximum length of the font name. Typically, this is
equivalent to the size of the buffer allocated to contain the font
name pointed to by the oName parameter. To determine this
length, see the discussion below.

oName A pointer to a buffer. Before calling ATSUFindFontName, pass a
pointer to memory that you have allocated for this buffer. On
return, the buffer contains the font name string. If the buffer you
allocate is not large enough, ATSUFindFontName passes back a
partial string. You cannot pass NULL for this parameter.
64 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oActualNameLength
A pointer to a count. On return, the actual length of the font
name string. This may be greater than the value passed in the
iMaximumNameLength parameter. You should check this value to
make sure that you allocated enough memory for the buffer. You
cannot pass NULL for this parameter.

oFontNameIndex
A pointer to a count. On return, the 0-based index of the font
name in the font name table.

function result A result code. The result code kATSUNotSetErr indicates that the
font has no name in its name table matching the given
parameters. The result code kATSUInvalidFontErr indicates that
the specified font does not correspond to any installed font. For
a list of other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUFindFontName function obtains the index and font name of the first font
in a name table with a particular font name code, language, platform, and
script. If you want to find the index and name of the first font in a name table
with a particular font name code, language, platform, and script, call the
function ATSUFindFontFromName (page 57). If you want to find, for an indexed
font name, the font name and information about the name like type, platform,
script ID, and language, call the function ATSUGetIndFontName (page 61).

The best way to use ATSUFindFontName is to call it twice:

1. Pass the ID of the font whose name table you are searching in the iFontID
parameter, NULL for the oName parameter, and 0 for the other parameters.
ATSUFindFontName returns the length of the font name string in the
oActualNameLength parameter.

2. Allocate enough space for a font name buffer of the returned size, then call
the function again, passing a pointer in the oName parameter; on return, the
pointer references the font name string.

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 65
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Converting Font IDs and Font Family Numbers 2
ATSUI provides the following functions for converting font IDs and font family
numbers:

� ATSUFONDtoFontID (page 66) finds the ATSUI font ID corresponding to a font
family number.

� ATSUFontIDtoFOND (page 67) finds the font family number corresponding to an
ATSUI font ID.

ATSUFONDtoFontID 2
Finds the ATSUI font ID corresponding to a font family number.

OSStatus ATSUFONDtoFontID (
short iFONDNumber,
Style iFONDStyle,
ATSUFontID *oFontID);

iFONDNumber The font family number of the font whose ID you want to
obtain.

iFONDStyle A value of type Style. Pass the font family style, if it exists, of
the font whose ID you want to obtain. Font family styles exist in
fonts that split a font family into several font family numbers.

oFontID A pointer to a value of type ATSUFontID (page 188). On return,
the ID corresponding to the specified font family number. If
there are no installed fonts with the matching the specified font
family number, ATSUFONDtoFontID passes back the constant
kATSUInvalidFontID and returns the result code
kATSUInvalidFontErr. If a font exists with the specified font
family number and style, but it is incompatible with ATSUI,
ATSUFONDtoFontID passes back the constant kATSUInvalidFontID
and returns the result code kATSUNoCorrespondingFontErr. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
66 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

Font family numbers were used by QuickDraw to represent fonts to the Font
Manager. Some of these fonts do not have font IDs (even if they are compatible
with ATSUI). For a list of fonts that are not compatible with ATSUI, see the
discussion for ATSUFontCount (page 55).

ATSUI assigns font IDs at run-time. As a result, font IDs can change across
installs.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFontIDtoFOND 2
Finds the font family number corresponding to an ATSUI font ID.

OSStatus ATSUFontIDtoFOND (
ATSUFontID iFontID,
short *oFONDNumber,
Style *oFONDStyle);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose font family number you want to obtain.

oFONDNumber A pointer to a value of type short. On return, the font family
number corresponding to the specified font ID. You cannot pass
NULL for this parameter.

oFONDStyle A pointer to a value of type Style. On return, the font family
style, if it exists, corresponding to the specified font ID. You
cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231). If the font does not
correspond to an installed font, ATSUFontIDtoFOND passes back
kATSUInvalidFontID in the oFONDNumber parameter and returns
the result code kATSUInvalidFontErr. If you the font is
incompatible with ATSUI, ATSUFONDtoFontID passes back
kATSUInvalidFontID in the oFONDNumber parameter and returns
the result code kATSUNoCorrespondingFontErr.
Functions 67
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

Font family numbers were used by QuickDraw to represent fonts to the Font
Manager. Some fonts may correspond to a font ID, but not be compatible with
ATSUI. For a list of fonts that are not compatible with ATSUI, see the discussion
for ATSUFontCount (page 55).

ATSUI assigns font IDs at run-time. As a result, font IDs can change across
installs.

VERSION NOTES

Available beginning with ATSUI 1.0.

Obtaining Font Tracking Information 2
ATSUI provides the following functions for obtaining font tracking information:

� ATSUCountFontTracking (page 68) counts the number of font trackings in a
font.

� ATSUGetIndFontTracking (page 69) obtains information about the name code
and values of a font tracking in a font.

ATSUCountFontTracking 2
Counts the number of font trackings in a font.

OSStatus ATSUCountFontTracking (
ATSUFontID iFontID,
ATSUVerticalCharacterType iCharacterOrientation,
ItemCount * oTrackingCount);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose font trackings you want to count.

iCharacterOrientation
A value of type ATSUVerticalCharacterType. Pass the glyph
orientation of the font tracking you want to count. See “Glyph
Orientation Constants” (page 207) for a description of possible
values. You must specify this value because there are different
font trackings for different glyph orientations.
68 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oTrackingCountA pointer to a count. On return, the number of font trackings in
the font. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontTracking function obtains the total number of font trackings
defined in a font. You can pass one less than this count in the iTrackIndex
parameter of the function ATSUGetIndFontTracking (page 69).

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUGetIndFontTracking 2
Obtains information about the name code and values of a font tracking in a
font.

OSStatus ATSUGetIndFontTracking (
ATSUFontID iFontID,
ATSUVerticalCharacterType iCharacterOrientation,
ItemCount iTrackIndex,
Fixed * oFontTrackingValue,
FontNameCode * oNameCode);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose font tracking you want to get name information for.

iCharacterOrientation
A value of type ATSUVerticalCharacterType. Pass the glyph
orientation of the font tracking whose value you want to obtain.
See “Glyph Orientation Constants” (page 207) for a description
of possible values. You must specify this value because there are
different font trackings for different glyph orientations.
Functions 69
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTrackIndex A 0-based index. Pass a value between 0 and one less than the
count passed back in the function ATSUCountFontTracking
(page 68).

oFontTrackingValue
A pointer to a Fixed value. On return, the font tracking value
corresponding to the specified index and character orientation.

oNameCode A pointer to a value of type FontNameCode. On return, the type of
font tracking name. See “Font Name Code Constants”
(page 271) for a description of possible values. You cannot pass
NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUGetIndFontTracking function obtains, for an indexed font tracking, its
value and name code. You can pass this value to the function ATSUFindFontName
(page 63) to find the localized font tracking name identified by this name code.
You can call ATSUGetIndFontTracking to iterate through the entries of a font
tracking table.

VERSION NOTES

Available beginning with ATSUI 1.1.

Obtaining Font Feature Information 2
ATSUI provides the following functions for obtaining font feature information:

� ATSUCountFontFeatureTypes (page 71) counts the number of feature types in a
font.

� ATSUGetFontFeatureTypes (page 72) obtains a list of the available feature types
in a font.

� ATSUCountFontFeatureSelectors (page 73) counts the number of feature
selectors for a given feature type in a font.
70 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUGetFontFeatureSelectors (page 74) obtains a list of the feature selectors
for a given feature type in a font.

� ATSUGetFontFeatureNameCode (page 76) obtains information about the name
code of a feature type or selector in a font feature.

ATSUCountFontFeatureTypes 2
Counts the number of feature types in a font.

OSStatus ATSUCountFontFeatureTypes (
ATSUFontID iFont,
ItemCount *oTypeCount);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose feature types you want to count.

oTypeCount A pointer to a count. On return, the number of feature types in
the font. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontFeatureTypes function counts the total number of feature
types defined in a font. You can use this count to determine how much memory
to allocate for the oTypes array in the function ATSUGetFontFeatureTypes
(page 72).

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 71
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontFeatureTypes 2
Obtains a list of the available feature types in a font.

OSStatus ATSUGetFontFeatureTypes (
ATSUFontID iFont,
ItemCount iMaximumTypes,
ATSUFontFeatureType oTypes[],
ItemCount *oActualTypeCount);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose feature information you want to obtain.

iMaximumTypes The maximum number of feature types in the font. Typically,
this is equivalent to the number of elements in the oTypes array.
To determine this value, see the discussion below.

oTypes An array of values of type ATSUFontFeatureType (page 187).
Before calling ATSUGetFontFeatureTypes, pass a pointer to
memory that you have allocated for this array. On return, the
array contains a list of the feature types defined in the font. If
you are of how much memory to allocate, see the discussion
below. You cannot pass NULL for this parameter.

oActualTypeCount
A pointer to a count. On return, the actual number of feature
types defined in the font. This may be greater than the value
passed in the iMaximumTypes parameter. You cannot pass NULL for
this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUGetFontFeatureTypes function obtains a list of the feature types that are
available in a font.

The best way to use ATSUGetFontFeatureTypes is to call it twice:

1. Pass the ID of the font whose feature types you want to obtain in the iFont
parameter, NULL for the oTypes parameter, and 0 for the other parameters.
72 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontFeatureTypes returns the size of the feature type array in the
oActualTypeCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oTypes parameter; on return, the pointer
references the array of feature types.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCountFontFeatureSelectors 2
Counts the number of feature selectors for a given feature type in a font.

OSStatus ATSUCountFontFeatureSelectors (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ItemCount *oSelectorCount);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose feature selectors you want to count.

iType A value of type ATSUFontFeatureType (page 187). Pass a valid
feature type whose feature selectors you want to count.

oSelectorCountA pointer to a count. On return, the number of feature selectors
defined for the feature type in the font. You cannot pass NULL for
this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontFeatureSelectors function counts the number of feature
selectors that are defined for a given feature type. You can use this count to
determine how much memory to allocate for the oSelectors array in the
function ATSUGetFontFeatureSelectors (page 74).
Functions 73
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetFontFeatureSelectors 2
Obtains a list of the feature selectors for a given feature type in a font.

OSStatus ATSUGetFontFeatureSelectors (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ItemCount iMaximumSelectors,
ATSUFontFeatureSelector oSelectors[],
Boolean oSelectorIsOnByDefault[],
ItemCount *oActualSelectorCount,
Boolean *oIsMutuallyExclusive);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font for
whose feature type you want to count the number of feature
selectors.

iType A value of type ATSUFontFeatureType (page 187). Pass a valid
feature type whose font selectors you want to determine.

iMaximumSelectors
The maximum number of feature selectors in the font. Typically,
this is equivalent to the number of elements in the oSelectors
array. To determine this value, see the discussion below.

oSelectors An array of values of type ATSUFontFeatureSelector (page 188)
or one of the feature selector constants described in “Apple
Advanced Typography Constants” (page 257). Before calling
ATSUGetFontFeatureSelectors, pass a pointer to memory that
you have allocated for this array. If you are uncertain of how
much memory to allocate, see the discussion below. On return,
the array contains a list of all the feature selectors available for a
given feature type. You cannot pass NULL for this parameter.

oSelectorIsOnByDefault
An array of Boolean values. Before calling
ATSUGetFontFeatureSelectors, pass a pointer to memory that
you have allocated for this array. If you are uncertain of how
much memory to allocate, see the discussion below. On return,
74 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
each element in the array indicates whether the corresponding
feature selector is on. If true, the feature selector is on by
default. You cannot pass NULL for this parameter.

oActualSelectorCount
A pointer to a count. On return, the actual number of feature
selectors defined for a given feature type in a font. This may be
greater than the value passed in the iMaximumSelectors
parameter. You cannot pass NULL for this parameter.

oIsMutuallyExclusive
A pointer to Boolean value. On return, the value indicates
whether more than one font feature selector can be on at once. If
true, only one selector can be used at a time. You cannot pass
NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUGetFontFeatureSelectors function obtains a list of the feature selectors
that are defined for a given feature type in a font. You can use this information
to set the font features and selectors in a style object.

The best way to use ATSUGetFontFeatureSelectors is to call it twice:

1. Pass the ID of the font whose feature selectors you want to determine in the
iFont parameter, NULL for the oSelectors parameter, and 0 for the other
parameters. ATSUGetFontFeatureSelectors returns the size of the feature type
array in the oActualSelectorCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oSelectors parameter; on return, the pointer
references the array of feature selectors for the given feature type.

3. You can also determine how much memory to allocate for the oSelectors
array by calling the function ATSUCountFontFeatureSelectors (page 73),
which will return the total number of font feature selectors in a particular
feature type.
Functions 75
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetFontFeatureNameCode 2
Obtains information about the name code of a feature type or selector in a font
feature.

OSStatus ATSUGetFontFeatureNameCode (
ATSUFontID iFont,
ATSUFontFeatureType iType,
ATSUFontFeatureSelector iSelector,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose feature type or selector you want to determine the name
code for.

iType A value of type ATSUFontFeatureType (page 187). Pass a valid
feature type whose name code you want to obtain.

iSelector A value of type ATSUFontFeatureSelector (page 188). Pass the
feature selector whose name code you want to obtain. If you
pass the constant kATSUNoSelector, the value passed back in the
oNameCode parameter represents the name code of the feature
type itself.

oNameCode A pointer to a value of type FontNameCode. On return, the type of
the feature type or selector name, depending upon the value
passed in the iSelector parameter. See “Font Name Code
Constants” (page 271) for a description of possible values. You
cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font feature. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 231).
76 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

By default, the ATSUGetFontFeatureNameCode function obtains the name code of
the specified feature selector. If you pass the constant kATSUNoSelector in the
iSelector parameter, ATSUGetFontFeatureNameCode obtains the name code of the
feature type. You can pass this value to the function ATSUFindFontName (page 63)
to find the localized feature selector or feature type name identified by this
name code.

VERSION NOTES

Available beginning with ATSUI 1.0.

Obtaining Font Variation Data 2
ATSUI provides the following functions for obtaining font variation data:

� ATSUCountFontVariations (page 77) determines the number of font variations
in a font.

� ATSUGetIndFontVariation (page 78) obtains information about a font
variation.

� ATSUGetFontVariationNameCode (page 80) obtains information about the name
code of a font variation in a font.

ATSUCountFontVariations 2
Determines the number of font variations in a font.

OSStatus ATSUCountFontVariations (
ATSUFontID iFont,
ItemCount *oVariationCount);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose variations you want to count.

oVariationCountA pointer to a count. On return, the number of font variations
defined in the font. You cannot pass NULL for this parameter.
Functions 77
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontVariations function determines the number of font
variations that are defined in a font.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetIndFontVariation 2
Obtains information about a font variation.

OSStatus ATSUGetIndFontVariation (
ATSUFontID iFont,
ItemCount iVariationIndex,
ATSUFontVariationAxis *oATSUFontVariationAxis,
ATSUFontVariationValue *oMinimumValue,
ATSUFontVariationValue *oMaximumValue,
ATSUFontVariationValue *oDefaultValue);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose font variation you want information about.

iVariationIndex
A 0-based index. Pass a value between 0 and one less than the
count passed back in the function ATSUCountFontVariations
(page 77).

oATSUFontVariationAxis
A pointer to a value of type ATSUFontVariationAxis (page 188).
On return, the axis of the font variation. You cannot pass NULL
for this parameter.
78 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oMinimumValue
A pointer to a value of type ATSUFontVariationValue (page 189).
On return, the minimum value of the variation axis. You cannot
pass NULL for this parameter.

oMaximumValue
A pointer to a value of type ATSUFontVariationValue (page 189).
On return, the maximum value of the variation axis. You cannot
pass NULL for this parameter.

oDefaultValue A pointer to a value of type ATSUFontVariationValue (page 189).
On return, the default value of the variation axis. You cannot
pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUGetIndFontVariation function obtains, for an indexed font variation, its
axis and the default, minimum, and maximum values of that axis. Some fonts
are capable of generating a wide range of stylistic changes. Such a font contains
font variation axes, each of which describes a particular stylistic attribute and
the range of values that the font can use. Each axis has a minimum, maximum,
and default value. The minimum and maximum values determine the range of
values that the variation axis covers. A font may also name specific values along
a variation axis as font instances.

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 79
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontVariationNameCode 2
Obtains information about the name code of a font variation in a font.

OSStatus ATSUGetFontVariationNameCode (
ATSUFontID iFont,
ATSUFontVariationAxis iAxis,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose variation you want to get name information for.

iAxis A value of type ATSUFontVariationAxis (page 188). Pass a valid
variation whose name code you want to obtain.

oNameCode A pointer to a value of type FontNameCode. On return, the type of
the font variation name. See “Font Name Code Constants”
(page 271) for a description of possible values. You cannot pass
NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font variation. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 231).

DISCUSSION

The ATSUGetIndFontVariation function obtains the name code of the specified
font variation. You can pass this value to the function ATSUFindFontName
(page 63) to find the localized font variation name identified by this name code.

VERSION NOTES

Available beginning with ATSUI 1.0.

Obtaining Font Instance Data 2
ATSUI provides the following functions for obtaining font instance data:

� ATSUCountFontInstances (page 81) counts the number of font instances in a
font.
80 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUGetFontInstance (page 82) obtains information about a font instance.

� ATSUGetFontInstanceNameCode (page 83) obtains information about the name
code of a font instance in a font.

ATSUCountFontInstances 2
Counts the number of font instances in a font.

OSStatus ATSUCountFontInstances (
ATSUFontID iFont,
ItemCount *oInstances);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose font instances you want to count.

oInstances A pointer to a count. On return, the number of font instances
defined in the font. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUCountFontInstances function determines the number of font instances
that are defined in a font. You can pass one less than this count in the
iFontInstanceIndex parameter of the function ATSUGetFontInstance (page 82).

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 81
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetFontInstance 2
Obtains information about a font instance.

OSStatus ATSUGetFontInstance (
ATSUFontID iFont,
ItemCount iFontInstanceIndex,
ItemCount iMaximumVariations,
ATSUFontVariationAxis oAxes[],
ATSUFontVariationValue oValues[],
ItemCount *oActualVariationCount);

iFontID A value of type ATSUFontID (page 188). Pass the ID of the font
whose font instance you want information about.

iFontInstanceIndex
A 0-based index. Pass a value between 0 and one less than the
count passed back in the function ATSUCountFontInstances
(page 81).

iMaximumVariations
The maximum number of font variations. Typically, this is
equivalent to the number of elements in the oAxes and oValues
arrays. To determine this value, see the discussion below.

oAxes An array of values of type ATSUFontVariationAxis (page 188).
Before calling ATSUGetFontInstance, pass a pointer to memory
that you have allocated for this array. If you are uncertain of
how much memory to allocate, see the discussion below. On
return, the array contains a list of the font variation axes in the
font. You cannot pass NULL for this parameter.

oValues An array of values of type ATSUFontVariationValue (page 189).
Before calling ATSUGetFontInstance, pass a pointer to memory
that you have allocated for this array. If you are uncertain of
how much memory to allocate, see the discussion below. On
return, the array contains a list of the font variation axes in the
font. You cannot pass NULL for this parameter.

oActualVariationCount
A pointer to a count. On return, the actual number of font
variations. This may be greater than the value passed in the
iMaximumVariations parameter. You cannot pass NULL for this
parameter.
82 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUGetFontInstance function obtains, for an indexed font instance, the
corresponding axis and value.

The best way to use ATSUGetFontInstance is to call it twice:

1. Pass the ID of the font whose font instance you want information about in
the iFont parameter, NULL for the oAxes and oValues parameters, and 0 for
the other parameters. ATSUGetFontInstance returns the size of the oAxes and
oValues arrays in the oActualVariationCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing pointers in the oAxes and oValues parameters; on return, the
pointers reference the array of axes and values corresponding to the font
instances in the font.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetFontInstanceNameCode 2
Obtains information about the name code of a font instance in a font.

OSStatus ATSUGetFontInstanceNameCode (
ATSUFontID iFont,
ItemCount iInstanceIndex,
FontNameCode *oNameCode);

iFont A value of type ATSUFontID (page 188). Pass the ID of the font
whose font instance you want to get name information for.
Functions 83
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iFontInstanceIndex
A 0-based index. Pass a value between 0 and one less than the
count passed back in the function ATSUCountFontInstances
(page 81).

oNameCode A pointer to a value of type FontNameCode. On return, the type of
the font instance name. See “Font Name Code Constants”
(page 271) for a description of possible values. You cannot pass
NULL for this parameter.

function result A result code. The result code kATSUInvalidFontErr indicates
that the ID does not correspond to any installed font. The result
code kATSUNotSetErr indicates that the font has no name in its
name table for the indicated font variation. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 231).

DISCUSSION

The ATSUGetFontInstanceNameCode function obtains the name code of an
indexed font instance. You can pass this value to the function ATSUFindFontName
(page 63) to find the localized font instance name identified by this name code.

VERSION NOTES

Available beginning with ATSUI 1.0.

Creating and Disposing of Text Layout Objects 2
ATSUI provides the following functions for creating and disposing of text
layout objects:

� ATSUCreateTextLayout (page 85) creates an uninitialized text layout object.

� ATSUCreateTextLayoutWithTextPtr (page 86) creates a text layout object with
style runs, a pointer to associated text, and default text layout attribute
values.

� ATSUCreateTextLayoutWithTextHandle (page 88) creates a text layout object
with style runs, a handle to associated text, and default text layout attribute
values.

� ATSUCreateAndCopyTextLayout (page 91) creates a copy of a text layout object.
84 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUSetTextLayoutRefCon (page 92) sets application-specific text layout object
data.

� ATSUGetTextLayoutRefCon (page 92) obtains application-specific text layout
object data.

� ATSUClearLayoutCache (page 93) clears the layout cache of a line or an entire
text layout object.

� ATSUDisposeTextLayout (page 94) disposes of a text layout object.

ATSUCreateTextLayout 2
Creates an uninitialized text layout object.

OSStatus ATSUCreateTextLayout (ATSUTextLayout *oTextlLayout);

oTextLayout A pointer to a reference of type ATSUTextLayout (page 191). On
return, the newly-created text layout object.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCreateTextLayout function creates an empty text layout object that
contains default text layout attributes but no style runs, soft line breaks, or
associated text. The default text layout attribute values are described in Table
C-2 (page 245). You can set non-default text layout attribute values by calling
the function ATSUSetLayoutControls (page 96).

To create a text layout object that contains style runs, text, and soft line breaks,
call the functions ATSUCreateTextLayoutWithTextHandle (page 88) and
ATSUCreateTextLayoutWithTextPtr (page 86).

Most functions that operate on text layout objects require that they have style
runs, text, and soft line breaks. To assign style runs, text, and soft line breaks to
an “empty” text layout object, call the functions ATSUSetRunStyle (page 118),
ATSUSetTextPointerLocation (page 111) or ATSUSetTextHandleLocation
(page 113), and ATSUSetSoftLineBreak (page 159) or ATSUBreakLine (page 157).

To create a copy of an existing text layout object, call the function
ATSUCreateAndCopyTextLayout (page 91).
Functions 85
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUCreateTextLayout allocates memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCreateTextLayoutWithTextPtr 2
Creates a text layout object with style runs, a pointer to associated text, and
default text layout attribute values.

OSStatus ATSUCreateTextLayoutWithTextPtr (
ConstUniCharArrayPtr iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTotalTextLength,
ItemCount iNumberOfRuns,
UniCharCount iRunLengths[],
ATSUStyle iStyles[],
ATSUTextLayout *oTextLayout);

iText A pointer of type ConstUniCharArrayPtr (page 192). Pass a
pointer to the beginning of a text buffer. Note that ATSUI
expects the buffer to contain Unicode text. Your application is
responsible for allocating the memory associated with this
pointer.

iTextOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of range of text that you want ATSUI to perform
layout operations on. If you want the range of text to start at the
beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you want the range of text to cover the entire text
buffer, pass kATSUFromTextBeginning in this parameter and
kATSUToTextEnd in the iTextLength parameter. If the specified
86 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
range of text is outside the text buffer,
ATSUCreateTextLayoutWithTextPtr returns the result code
kATSUInvalidTextRangeErr.

iTextLength A value of type UniCharCount (page 194). Pass the length of the
range of text that you want ATSUI to perform layout operations
on. If you want the range of text to span the end of the text
buffer, you should pass the constant kATSUToTextEnd, described
in “Text Length Constant” (page 230). If you want the range of
text to cover the entire text buffer, pass kATSUToTextEnd in this
parameter and kATSUFromTextBeginning in the iTextOffset
parameter. If the specified range of text is outside the text buffer,
ATSUCreateTextLayoutWithTextPtr returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 194). Pass the length of the
text buffer. This value should be greater than the range of text
you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.

iNumberOfRuns The number of style runs to assign to the text layout object. This
should be equivalent to the number of elements in the
iRunLengths and iStyles arrays.

iRunLengths An array of values of type UniCharCount (page 194). Each
element in the array must contain a style run length that
corresponds to a style object in the iStyles array. You can pass
kATSUToTextEnd for the last style run length if you want it to
extend to end of the text buffer. If the sum of the lengths is less
than the total length of the text buffer (the iTextLength
parameter), the remaining characters are assigned to the last
style run.

iStyles An array of references of type ATSUStyle (page 191). Each
element in the array must contain a valid style object that
corresponds to a style run length in the iRunLengths array.

oTextLayout A pointer to a reference of type ATSUTextLayout (page 191). On
return, the newly-created text layout object. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
Functions 87
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUCreateTextLayoutWithTextPtr function creates a text layout object with
style runs, a pointer to associated text, and default text layout attribute values.
The default text layout attribute values are described in Table C-2 (page 245).
You can create a text layout object that contains a handle to associated text by
calling the function ATSUCreateTextLayoutWithTextHandle (page 88).

Most functions that operate on text layout objects perform these operations on
the range of text that you specify in the iTextOffset and iTextLength
parameters. Typically, this is a subrange of the entire text buffer. If this range is
shorter than the entire text buffer, the text layout object will scan the remaining
text to get the full context for bidirectional processing and other information
about the text.

You are responsible for updating the memory location of the text associated
with a text layout object whenever the user inserts, deletes, or moves text. To
determine the current text memory location, call the function
ATSUGetTextLocation (page 115).

SPECIAL CONSIDERATIONS

ATSUCreateTextLayoutWithTextPtr allocates memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCreateTextLayoutWithTextHandle 2
Creates a text layout object with style runs, a handle to associated text, and
default text layout attribute values.

OSStatus ATSUCreateTextLayoutWithTextHandle (
UniCharArrayHandle iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength,
ItemCount iNumberOfRuns,
88 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
UniCharCount iRunLengths[],
ATSUStyle iStyles[],
ATSUTextLayout *oTextLayout);

iText A pointer of type UniCharArrayHandle (page 193). Pass a handle
that points to the beginning of a text buffer. Note that ATSUI
expects the buffer to contain Unicode text. Your application is
responsible for allocating the memory associated with this
handle. ATSUI functions that need to access text referenced by
this handle will return the handle to its original state (locked or
unlocked) upon function completion.

iTextOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of range of text that you want ATSUI to perform
layout operations on. If you want the range of text to start at the
beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you want the range of text to cover the entire text
buffer, pass kATSUFromTextBeginning in this parameter and
kATSUToTextEnd in the iTextLength parameter. If the specified
range of text is outside the text buffer,
ATSUCreateTextLayoutWithTextHandle returns the result code
kATSUInvalidTextRangeErr.

iTextLength A value of type UniCharCount (page 194). Pass the length of the
range of text that you want ATSUI to perform layout operations
on. If you want the range of text to span the end of the text
buffer, you should pass the constant kATSUToTextEnd, described
in “Text Length Constant” (page 230). If you want the range of
text to cover the entire text buffer, pass kATSUToTextEnd in this
parameter and kATSUFromTextBeginning in the iTextOffset
parameter. If the specified range of text is outside the text buffer,
ATSUCreateTextLayoutWithTextHandle returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 194). Pass the length of the
text buffer. This value should be greater than the range of text
you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.
Functions 89
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iNumberOfRuns The number of style runs to assign to the text layout object. This
should be equivalent to the number of elements in the
iRunLengths and iStyles arrays.

iRunLengths An array of values of type UniCharCount (page 194). Each
element in the array must contain a style run length that
corresponds to a style object in the iStyles array. You can pass
kATSUToTextEnd for the last style run length if you want it to
extend to end of the text buffer. If the sum of the lengths is less
than the total length of the text buffer (the iTextLength
parameter), the remaining characters are assigned to the last
style run.

iStyles An array of references of type ATSUStyle (page 191). Each
element in the array must contain a valid style object that
corresponds to a style run length in the iRunLengths array.

oTextLayout A pointer to a reference of type ATSUTextLayout (page 191). On
return, the newly-created text layout object. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCreateTextLayoutWithTextHandle function creates a text layout object
with style runs, a handle to associated text, and default text layout attribute
values. The default text layout attribute values are described in Table C-2
(page 245). You can create a text layout object that contains a pointer to
associated text by calling the function ATSUCreateTextLayoutWithTextHandle
(page 88).

Most functions that operate on text layout objects perform these operations on
the range of text that you specify in the iTextOffset and iTextLength
parameters. Typically, this is a subrange of the entire text buffer. If this range is
shorter than the entire text buffer, the text layout object will scan the remaining
text to get the full context for bidirectional processing and other information
about the text.

You are responsible for updating the memory location of the text associated
with a text layout object whenever the user inserts, deletes, or moves text. To
determine the current text memory location, call the function
ATSUGetTextLocation (page 115).
90 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUCreateTextLayoutWithTextHandle allocates memory in your application
heap, unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCreateAndCopyTextLayout 2
Creates a copy of a text layout object.

OSStatus ATSUCreateAndCopyTextLayout (
ATSUTextLayout iTextLayout,
ATSUTextLayout *oTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose contents you want to
copy. You cannot pass NULL for this parameter.

oTextLayout A pointer to a reference of type ATSUTextLayout (page 191). On
return, the newly-created text layout object. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCreateAndCopyTextLayout function creates a copy of a text layout object
that contains the same text layout attribute values, style runs, and soft line
breaks. ATSUCreateAndCopyTextLayout does not copy reference constants or
layout caches.

SPECIAL CONSIDERATIONS

ATSUCreateAndCopyTextLayout allocates memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).
Functions 91
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUSetTextLayoutRefCon 2
Sets application-specific text layout object data.

OSStatus ATSUSetTextLayoutRefCon (
ATSUTextLayout iTextLayout,
UInt32 iRefCon);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose application-specific
data you want to set. You cannot pass NULL for this parameter.

iRefCon A 32-bit value, pointer, or handle to application-specific text
layout data.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Note that when you copy a text layout object that contains a reference constant,
the reference constant will not be copied. When you dispose of a text layout
object that contains a reference constant, you are responsible for freeing any
memory allocated for the reference constant. Calling ATSUDisposeTextLayout
(page 94) will not do so.

VERSION NOTES

Available with ATSUI 1.0.

ATSUGetTextLayoutRefCon 2
Obtains application-specific text layout object data.

OSStatus ATSUGetTextLayoutRefCon (
ATSUTextLayout iTextLayout,
UInt32 *oRefCon);
92 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose application-specific
data you want to obtain. You cannot pass NULL for this
parameter.

oRefCon A pointer to a 32-bit value, pointer, or handle to
application-specific text layout data.You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 231).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearLayoutCache 2
Clears the layout cache of a line or an entire text layout object.

OSStatus ATSUClearLayoutCache (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose layout cache you want
to clear. You cannot pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the line whose layout cache you want
to discard. To clear the entire layout cache of an text layout
object, pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 231).

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The layout cache contains all the layout information ATSUI needs to draw a
range of text in a text layout object. This includes caret positions, the memory
locations of glyphs, and other information needed to lay out the glyphs. This
information is used when ATSUI redraws text that was recently drawn. It uses
Functions 93
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
information in the layout cache to quickly lay out the text. When you clear the
layout cache of a line or block of text, it takes ATSUI longer to redraw a line,
since glyph layout must be performed again.

The ATSUClearLayoutCache function flushes the layout cache but does not alter
previously set text layout attributes, soft line break positions, or the text
memory location. Individual lines may be redrawn as before. If you do not care
about retaining these values, you should dispose of the text layout object by
calling the ATSUDisposeTextLayout (page 94) function.

You should call ATSUClearLayoutCache when line breaks in a text layout object
are altered (for example, if line justification is set to full justification). You can
call ATSUClearLayoutCache to free memory associated with the layout results of
a text layout object.

It is not an error if some or all of the lines do not already have layout caches.
ATSUClearLayoutCache only clears the layout caches it can find.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUDisposeTextLayout 2
Disposes of a text layout object.

OSStatus ATSUDisposeTextLayout (ATSUTextLayout iTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to the text layout that you want to dispose of. You cannot pass
NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUDisposeTextLayout function only frees memory associated with the text
layout object and its internal structures. This includes text layout attributes,
style runs, and soft line breaks. ATSUDisposeTextLayout does not dispose of the
memory pointed to by reference constants. You are responsible for doing so.
94 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

Manipulating Text Layout Attributes 2
ATSUI provides the following functions for manipulating text layout attributes:

� ATSUCopyLayoutControls (page 95) copies all the text layout attribute values in
a text layout object.

� ATSUSetLayoutControls (page 96) sets text layout attribute values for a text
layout object.

� ATSUGetLayoutControl (page 98) obtains a text layout attribute value from a
text layout object.

� ATSUGetAllLayoutControls (page 99) obtains text layout attribute information
for a text layout object.

� ATSUClearLayoutControls (page 101) removes previously set text layout
attributes from a text layout object.

ATSUCopyLayoutControls 2
Copies all the text layout attribute values in a text layout object.

OSStatus ATSUCopyLayoutControls (
ATSUTextLayout iSource,
ATSUTextLayout iDest);

iSource A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose attributes you want to
copy. You cannot pass NULL for this parameter.

iDest A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object whose attributes you want to
replace. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
Functions 95
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUCopyLayoutControls function copies all the text layout attribute values
in a text layout object. This includes previously set attributes as well as unset
ones, which ATSUI sets to the default values listed in Table C-2 (page 245). If
you wish to copy the text layout attribute values of a single line in a text layout
object, see the function ATSUCopyLineControls (page 103).

ATSUCopyLayoutControls does not copy the contents of memory referenced by
pointers or handles within reference constants. You are responsible for ensuring
that this memory remains valid until the source text layout object is disposed of.

SPECIAL CONSIDERATIONS

ATSUCopyLayoutControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUSetLayoutControls 2
Sets text layout attribute values for a text layout object.

OSStatus ATSUSetLayoutControls (
ATSUTextLayout iTextLayout,
ItemCount iAttributeCount,
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object whose attributes you want to set. You
cannot pass NULL for this parameter.

iAttributeCount
The number of text layout attributes you want to set. This value
should correspond to the number of elements in the iTag and
iValueSize arrays.
96 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to the text
layout attribute value you wish to set. See “Text Layout
Attribute Tag Constants” (page 226) for a description of the
Apple-defined text layout attribute tag constants. If you pass a
style run attribute tag constant or an ATSUI-reserved tag
constant in this parameter, ATSUSetLayoutControls returns the
result code kATSUInvalidAttributeTagErr. You cannot pass NULL
for this parameter.

iValueSize An array of values of type ByteCount. Each element in the array
must contain the size (in bytes) of the corresponding text layout
attribute value being set. If you pass a size that is less than
required, ATSUSetLayoutControls returns the result code
kATSUInvalidAttributeSizeErr, and the function sets no
attributes. If, after having checked all the given sizes and found
them acceptable, ATSUSetLayoutControls sets text layout
attributes. You cannot pass NULL for this parameter.

iValue An array of pointers of type ATSUAttributeValuePtr (page 186).
Each pointer in the array must reference a valid value and
correspond to a tag in the iTag array. If you pass an invalid or
undefined value, ATSUSetLayoutControls returns the result code
kATSUInvalidAttributeValueErr. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231). If there is a
function error, ATSUSetAttributes will not set any style run
attributes.

DISCUSSION

The ATSUSetLayoutControls function sets one or more text layout attribute
value(s) for an entire text layout object. If you wish to set the text layout
attribute values of a single line in a text layout object, see the function
ATSUSetLineControls (page 104). Note that when you set a text layout attribute
value for a line, this value will override the value of the text layout attribute set
for the text layout object containing the line. This is true even if the attributes
for the line are set before those of the entire text layout object containing the
line.
Functions 97
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
SPECIAL CONSIDERATIONS

ATSUSetLayoutControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetLayoutControl 2
Obtains a text layout attribute value from a text layout object.

OSStatus ATSUGetLayoutControl (
ATSUTextLayout iTextLayout,
ATSUAttributeTag iTag,
ByteCount iMaximumValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object whose attribute value you want to obtain.
You cannot pass NULL for this parameter.

iTag A value of type ATSUAttributeTag. Pass a valid tag that
corresponds to the text layout attribute whose value you want
to determine. See “Text Layout Attribute Tag Constants”
(page 226) for a description of the Apple-defined text layout
attribute tag constants. If you pass a style run attribute tag
constant or an ATSUI-reserved tag in this parameter,
ATSUGetLayoutControl returns the result code
kATSUInvalidAttributeTagErr.

iMaximumValueSize
The maximum size of the text layout attribute value. If you pass
a size that is less than required, ATSUGetLayoutControl returns
the result code kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 186). Before
calling ATSUGetLayoutControl, pass a pointer to memory you
have allocated for the attribute value. On return, oValue points
98 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
to the text layout attribute value. If the attribute was not
previously set, ATSUGetLayoutControl passes back its default
value in this parameter and returns the result code
kATSUNotSetErr.

oActualValueSize
A pointer to a count. On return, the actual size (in bytes) of the
attribute value. You should examine this parameter if you are
unsure of the size of the attribute value you wish to obtain, as in
the case of application-defined text layout attributes.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Before calling the ATSUGetLayoutControl function, call the function
ATSUGetAllLayoutControls (page 99) to obtain an array of the tags and data sizes
corresponding to all previously set text layout attribute values for every line in
a text layout object. To determine the value of a text layout attribute identified
by a particular text layout attribute tag, you should pass the appropriate tag
and data size pair passed back in the oAttributeInfoArray array of
ATSUGetAllLayoutControls to ATSUGetLayoutControl. To determine the value of a
text layout attribute value in a single line of a text layout object, call the function
ATSUGetLineControl (page 106).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetAllLayoutControls 2
Obtains text layout attribute information from a text layout object.

OSStatus ATSUGetAllLayoutControls (
ATSUTextLayout iTextLayout,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);
Functions 99
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object whose attribute information you want to
obtain. You cannot pass NULL for this parameter.

oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 185).
Before calling ATSUGetAllAttributes, pass a pointer to memory
that you have allocated for this array. If you are uncertain of
how much memory to allocate, see the discussion below. On
return, the array contains the tag and data size pairs
corresponding to all previously set text layout attribute values
in the text layout object.

iTagValuePairArraySize
The maximum number of tag and data size pairs in the text
layout object. Typically, this is equivalent to the number of
ATSUAttributeInfo structures in the oAttributeInfoArray array.
To determine this value, see the discussion below.

oTagValuePairCount
A pointer to a count. On return, the actual number of
ATSUAttributeInfo structures in the text layout object. This may
be greater than the value you specified in the
iTagValuePairArraySize parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetAllLayoutControls function obtains an array of the tags and data
sizes corresponding to all previously set text layout attribute values for an
entire text layout object. You can obtain a particular attribute value by passing
the corresponding tag and data size pair to the function ATSUGetLayoutControl
(page 98). To obtain the tags and data sizes corresponding to all previously set
text layout attribute values in a line of a text layout object, call the function
ATSUGetAllLineControls (page 108).

The best way to use ATSUGetAllLayoutControls is to call it twice:

1. Pass a reference to the text layout object containing the attribute in the
iTextLayout parameter, NULL for the oAttributeInfoArray parameter, and 0
100 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
for the other parameters. ATSUGetAllLayoutControls returns the size of the
oAttributeInfoArray array in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oAttributeInfoArray parameter; on return,
the pointer references the oAttributeInfoArray array.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearLayoutControls 2
Removes previously set text layout attributes from a text layout object.

OSStatus ATSUClearLayoutControls (
ATSUTextLayout iTextLayout,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object whose attributes you want to remove. You
cannot pass NULL for this parameter.

iTagCount The number of attribute values you want to remove. To remove
all previously set attributes, pass the constant kATSUClearAll in
this parameter. In this case, the value in the iTag parameter will
be ignored.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to the text
layout attribute value you want to remove. See “Text Layout
Attribute Tag Constants” (page 226) for a description of the
Apple-defined text layout attribute tag constants. If you pass a
style run attribute tag constant or an ATSUI-reserved tag in this
parameter, ATSUClearLayoutControls returns the result code
kATSUInvalidAttributeTagErr.

function result A result code. See “Result Codes” (page 231). You can remove
unset attribute values from a text layout object without a
function error.
Functions 101
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUClearLayoutControls function removes those previously set text layout
attribute values that are identified by tag constants in the iTag array. It replaces
them with the default text layout attribute values described in Table C-2
(page 245).

If you wish to remove all previously set text layout attribute values from a text
layout object, pass kATSUClearAll in the iTagCount parameter. If you wish to
remove the previously set text layout attributes in a line of text, call the function
ATSUClearLineControls (page 109).

VERSION NOTES

Available beginningwith ATSUI 1.0.

Manipulating Text Layout Attributes in a Line 2
ATSUI provides the following functions for manipulating text layout attributes
in a line of a text layout object:

� ATSUCopyLineControls (page 103) copies text layout attribute values from one
line to another.

� ATSUSetLineControls (page 104) sets text layout attribute values for a line of
text.

� ATSUGetLineControl (page 106) obtains a text layout attribute value from a
line of text.

� ATSUGetAllLineControls (page 108) obtains text layout attribute information
for a line of text.

� ATSUClearLineControls (page 109) removes previously set text layout
attribute values from a line of text.
102 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCopyLineControls 2
Copies text layout attribute values from one line to another.

OSStatus ATSUCopyLineControls (
ATSUTextLayout iSourceTextLayout,
UniCharArrayOffset iSourceLineStart,
ATSUTextLayout iDestTextLayout,
UniCharArrayOffset iDestLineStart);

iSourceTextLayout
A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object that contains the line whose
attribute values you want to copy. You cannot pass NULL for this
parameter.

iSourceLineStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the line whose attribute values you
want to copy.

iDestTextLayout
A reference of type ATSUTextLayout (page 191). Pass a reference
to the initialized text layout object containing the line whose
attribute values you want to replace. This can be the same text
layout object passed in the iSourceTextLayout parameter if you
want to copy text layout attributes within a text layout object.
You cannot pass NULL for this parameter.

iDestLineStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the line whose attribute values you
want to replace.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCopyLineControls function copies all the text layout attribute values
from a line in a text layout object. This includes previously set attributes as well
as unset ones, which ATSUI sets to the default values listed in Table C-2
(page 245). If you wish to copy the text layout attribute values of an entire text
layout object to another text layout object, see the function
ATSUCopyLayoutControls (page 95).
Functions 103
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUCopyLineControls does not copy the contents of memory referenced by
pointers or handles within reference constants. You are responsible for ensuring
that this memory remains valid until the source text layout object is disposed of.

SPECIAL CONSIDERATIONS

ATSUCopyLineControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUSetLineControls 2
Sets text layout attribute values for a line of text.

OSStatus ATSUSetLineControls (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ItemCount iAttributeCount,
ATSUAttributeTag iTag[],
ByteCount iValueSize[],
ATSUAttributeValuePtr iValue[]);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object that contains the line whose attribute
values you want to set. You cannot pass NULL for this parameter.

iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the line whose attribute values you
want to set.

iAttributeCount
The number of attributes you want to set for the line. This value
should correspond to the number of elements in the iTag,
iValueSize, and iValue arrays.
104 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to a text
layout attribute value in the line. See “Text Layout Attribute Tag
Constants” (page 226) for a description of Apple-defined tag
values. If you pass a style run attribute or an ATSUI-reserved
tag value in this parameter, ATSUSetLineControls returns the
result code kATSUInvalidAttributeTagErr. You cannot pass NULL
for this parameter.

iValueSize An array of values of type ByteCount. Each element in the array
must contain the size (in bytes) of the corresponding text layout
attribute value being set. If you pass a size that is less than
required, ATSUSetLineControls returns the result code
kATSUInvalidAttributeSizeErr, and the function sets no
attributes. If, after having checked all the given sizes and found
them acceptable, ATSUSetLayoutControls sets text layout
attributes. You cannot pass NULL for this parameter.

iValue An array of pointers of type ATSUAttributeValuePtr (page 186).
Each pointer in the array must reference a valid value and
correspond to a tag in the iTag array. If you pass an invalid or
undefined value, ATSUSetLineControls returns the result code
kATSUInvalidAttributeValueErr. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231). If there is a
function error, ATSUSetAttributes will not set any style run
attributes.

DISCUSSION

The ATSUSetLineControls function sets one or more text layout attribute
value(s) for a single line in a text layout object. Note that when you set a text
layout attribute value for a line, this value will override the value of the text
layout attribute set for the text layout object containing the line. This is true
even if the attributes for the line are set before those of the entire text layout
object containing the line. If you wish to set the text layout attribute values for
an entire text layout object, see the function ATSUSetLayoutControls (page 96).

ATSUI functions that operate on a line of text like ATSUDrawText (page 163),
ATSUMeasureText (page 150), ATSUMeasureTextImage (page 153), and
ATSUGetGlyphBounds (page 146), use text layout attributes that have been set by
calling ATSUSetLineControls to calculate dimensions. If none have been set for
Functions 105
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the line, they use those set for the text layout object containing the line. If none
have been set for the text layout object containing the line, ATSUI assigns them
their default value. Default text layout attribute values are described in Table
C-2 (page 245).

SPECIAL CONSIDERATIONS

ATSUSetLineControls may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUGetLineControl 2
Obtains a text layout attribute value from a line of text.

OSStatus ATSUGetLineControl (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUAttributeTag iTag,
ByteCount iExpectedValueSize,
ATSUAttributeValuePtr oValue,
ByteCount *oActualValueSize);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
points to an initialized text layout object that contains the line
whose attribute value you want to obtain. You cannot pass NULL
for this parameter.

iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the line whose attribute value you
want to obtain.

iTag A value of type ATSUAttributeTag. Pass a valid tag that
corresponds to the text layout attribute whose value you want
to determine. See “Text Layout Attribute Tag Constants”
(page 226) for a description of Apple-defined tag values. If you
106 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
pass a style run attribute or an ATSUI-reserved tag value in this
parameter, ATSUGetLineControl returns the result code
kATSUInvalidAttributeTagErr.

iExpectedValueSize
The maximum size of the text layout attribute value. To
determine the size of an application-defined text layout attribute
value, see the discussion below. If the size is less than required,
ATSUGetLineControl returns the result code
kATSUInvalidAttributeSizeErr.

oValue A pointer of type ATSUAttributeValuePtr (page 186). Before
calling ATSUGetLayoutControl, pass a pointer to memory you
have allocated for the attribute value. On return, oValue points
to the text layout attribute value. If the attribute was not
previously set, ATSUGetLineControl passes back its default value
in this parameter and returns the result code kATSUNotSetErr.

oActualValueSize
A pointer to a count. On return, the actual size (in bytes) of the
attribute value. You should examine this parameter if you are
unsure of the size of the attribute value you wish to obtain, as in
the case of application-defined text layout attributes.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Before calling the ATSUGetLineControl function, call the function
ATSUGetAllLineControls (page 108) to obtain an array of the tags and data sizes
corresponding to all previously set text layout attribute values for a line of text.
To determine the value of a text layout attribute identified by a particular text
layout attribute tag, you should pass the corresponding tag and data size pair
passed back from ATSUGetAllLineControls in one of the structures in the
oAttributeInfoArray array to ATSUGetLineControl. If you wish to obtain a
particular text layout attribute value for an entire text layout object, call the
function ATSUGetLayoutControl (page 98).

VERSION NOTES

Available beginning with ATSUI 1.1.
Functions 107
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetAllLineControls 2
Obtains text layout attribute information for a line of text.

OSStatus ATSUGetAllLineControls (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUAttributeInfo oAttributeInfoArray[],
ItemCount iTagValuePairArraySize,
ItemCount *oTagValuePairCount);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object that contains the line whose attribute
information you want to obtain. You cannot pass NULL for this
parameter.

iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of the line whose text layout attribute values you
want to determine.

oAttributeInfoArray
An array of structures of type ATSUAttributeInfo (page 185).
Before calling ATSUGetAllAttributes, pass a pointer to memory
that you have allocated for this array. If you are uncertain of
how much memory to allocate, see the discussion below. On
return, the array contains the tag and data size pairs
corresponding to all previously set text layout attribute values
in the text layout object.

iTagValuePairArraySize
The maximum number of tag and data size pairs in the text
layout object. Typically, this is equivalent to the number of
ATSUAttributeInfo structures in the oAttributeInfoArray array.
To determine this value, see the discussion below.

oTagValuePairCount
A pointer to a count. On return, the actual number of
ATSUAttributeInfo structures in a line of the text layout object.
This may be greater than the value you specified in the
iTagValuePairArraySize parameter. You cannot pass NULL for
this parameter.
108 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUGetAllLineControls function obtains, for a line of text, an array of the
tags and data sizes corresponding to all previously set text layout attribute
values. You can obtain a particular attribute value by passing the corresponding
tag and data size pair to the function ATSUGetLineControl (page 106). To obtain
the tags and data sizes corresponding to all previously set text layout attribute
values in an entire text layout object, call the function ATSUGetAllLayoutControls
(page 99).

The best way to use ATSUGetAllLineControls is to call it twice:

1. Pass a reference to the text layout object containing the attribute in the
iTextLayout parameter, NULL for the oAttributeInfoArray parameter, and 0
for the other parameters. ATSUGetAllLineControls returns the size of the
oAttributeInfoArray array in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oAttributeInfoArray parameter; on return,
the pointer references the oAttributeInfoArray array.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUClearLineControls 2
Removes previously set text layout attribute values from a line of text.

OSStatus ATSUClearLineControls (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ItemCount iTagCount,
ATSUAttributeTag iTag[]);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a text layout object that contains the line whose attributes you
want to remove. You cannot pass NULL for this parameter.
Functions 109
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of the line whose text layout attribute values you
want to remove.

iTagCount The number of attributes you want to remove. To remove all
previously set text layout attributes, pass the constant
kATSUClearAll in this parameter. In this case, the value in the
iTag parameter will be ignored.

iTag An array of values of type ATSUAttributeTag. Each element in
the array must contain a valid tag that corresponds to the text
layout attribute value you want to remove. See “Text Layout
Attribute Tag Constants” (page 226) for a description of the
Apple-defined text layout attribute tag constants. If you pass a
style run attribute tag constant or an ATSUI-reserved tag in this
parameter, ATSUClearLayoutControls returns the result code
kATSUInvalidAttributeTagErr.

function result A result code. See “Result Codes” (page 231). You can remove
unset attribute values from a line without a function error.

DISCUSSION

The ATSUClearLineControls function removes, for a line of text, those
previously set text layout attribute values that are identified by tag constants in
the iTag array. It replaces them with the default text layout attribute values
described in Table C-2 (page 245).

If you wish to remove all previously set text layout attribute values from a line
in a text layout object, pass kATSUClearAll in the iTagCount parameter. If you
wish to remove the previously set text layout attributes for an entire text layout
object, call the function ATSUClearLayoutControls (page 101).

VERSION NOTES

Available beginning with ATSUI 1.1.
110 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Assigning and Updating Text 2
ATSUI provides the following functions for assigning and updating text in a
text layout object:

� ATSUSetTextPointerLocation (page 111) assigns or updates text accessed with
a pointer.

� ATSUSetTextHandleLocation (page 113) assigns or updates text accessed with a
handle.

ATSUSetTextPointerLocation 2
Assigns or updates text accessed with a pointer.

OSStatus ATSUSetTextPointerLocation (
ATSUTextLayout iTextLayout,
ConstUniCharArrayPtr iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a valid text layout object.

iText A pointer of type ConstUniCharArrayPtr (page 192). Pass a
pointer to the beginning of a text buffer. Note that ATSUI
expects the buffer to contain Unicode text. Your application is
responsible for allocating the memory associated with this
pointer.

iTextOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of range of text that you want ATSUI to perform
layout operations on. If you want the range of text to start at the
beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you want the range of text to cover the entire text
buffer, pass kATSUFromTextBeginning in this parameter and
kATSUToTextEnd in the iTextLength parameter. If the specified
range of text is outside the text buffer,
ATSUSetTextPointerLocation returns the result code
kATSUInvalidTextRangeErr.
Functions 111
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLength A value of type UniCharCount (page 194). Pass the length of the
range of text that you want ATSUI to perform layout operations
on. If you want the range of text to span the end of the text
buffer, you should pass the constant kATSUToTextEnd, described
in “Text Length Constant” (page 230). If you want the range of
text to cover the entire text buffer, pass kATSUToTextEnd in this
parameter and kATSUFromTextBeginning in the iTextOffset
parameter. If the specified range of text is outside the text buffer,
ATSUSetTextPointerLocation returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 194). Pass the length of the
text buffer. This value should be greater than the range of text
you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetTextPointerLocation function assigns new text or updates existing
text that is accessed by a handle. For uninitialized text layout objects,
ATSUSetTextPointerLocation assigns new text; for initialized text layout objects,
it updates existing text that is accessed by a pointer.
ATSUSetTextPointerLocation clears layout caches. If you want to assign or
update text accessed by a handle, call the function ATSUSetTextHandleLocation
(page 113).

If the user deletes, inserts, or moves text in a text layout object and the range of
text covers the entire text buffer, you should

� call the function ATSUSetTextPointerLocation or ATSUSetTextHandleLocation
(page 113) to update the text

� call ATSUSetRunStyle (page 118) to update the style runs

You can then call the function ATSUDrawText (page 163) to display the updated
text.

Most functions that operate on text layout objects perform these operations on
the range of text that you specify in the iTextOffset and iTextLength
parameters. Typically, this is a subrange of the entire text buffer. If this range is
112 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
shorter than the entire text buffer, the text layout object will scan the remaining
text to get the full context for bidirectional processing and other information
about the text.

SPECIAL CONSIDERATIONS

ATSUSetTextPointerLocation may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUSetTextHandleLocation 2
Assigns or updates text accessed with a handle.

OSStatus ATSUSetTextHandleLocation (
ATSUTextLayout iTextLayout,
UniCharArrayHandle iText,
UniCharArrayOffset iTextOffset,
UniCharCount iTextLength,
UniCharCount iTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a valid text layout object.

iText A handle of type UniCharArrayHandle (page 193). Pass a handle
that points to the beginning of a text buffer. Note that ATSUI
expects the buffer to contain Unicode text. Your application is
responsible for allocating the memory associated with this
handle. ATSUI functions that need to access text referenced by
this handle will return the handle to its original state (locked or
unlocked) upon function completion.

iTextOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset in backing store memory that corresponds to the
beginning of range of text that you want ATSUI to perform
layout operations on. If you want the range of text to start at the
beginning of the text buffer, you should pass the constant
Functions 113
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you want the range of text to cover the entire text
buffer, pass kATSUFromTextBeginning in this parameter and
kATSUToTextEnd in the iTextLength parameter. If the specified
range of text is outside the text buffer,
ATSUSetTextHandleLocation returns the result code
kATSUInvalidTextRangeErr.

iTextLength A value of type UniCharCount (page 194). Pass the length of the
range of text that you want ATSUI to perform layout operations
on. If you want the range of text to span the end of the text
buffer, you should pass the constant kATSUToTextEnd, described
in “Text Length Constant” (page 230). If you want the range of
text to cover the entire text buffer, pass kATSUToTextEnd in this
parameter and kATSUFromTextBeginning in the iTextOffset
parameter. If the specified range of text is outside the text buffer,
ATSUSetTextHandleLocation returns the result code
kATSUInvalidTextRangeErr.

iTextTotalLength
A value of type UniCharCount (page 194). Pass the length of the
text buffer. This value should be greater than the range of text
you passed in the iTextOffset and iTextLength parameters,
unless you want to perform layout operations on the entire text
buffer.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetTextHandleLocation function assigns it new text or updates existing
text that is accessed by a handle. For uninitialized text layout objects,
ATSUSetTextHandleLocation assigns new text; for initialized text layout objects,
it updates existing text that is accessed by a handle. ATSUSetTextHandleLocation
clears layout caches. If you want to assign or update text accessed by a pointer,
call the function ATSUSetTextPointerLocation (page 111).

If the user deletes, inserts, or moves text in a text layout object and the range of
text covers the entire text buffer, you should

� call the function ATSUSetTextPointerLocation (page 111) or
ATSUSetTextHandleLocation to update the text

� call ATSUSetRunStyle (page 118) to update the style runs
114 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You can then call the function ATSUDrawText (page 163) to display the updated
text.

Most functions that operate on text layout objects perform these operations on
the range of text that you specify in the iTextOffset and iTextLength
parameters. Typically, this is a subrange of the entire text buffer. If this range is
shorter than the entire text buffer, the text layout object will scan the remaining
text to get the full context for bidirectional processing and other information
about the text.

SPECIAL CONSIDERATIONS

ATSUSetTextHandleLocation may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Obtaining and Updating Text Memory Location 2
ATSUI provides the following functions for obtaining and updating the
memory location of text:

� ATSUGetTextLocation (page 115) obtains information about text, including its
in physical memory.

� ATSUTextMoved (page 117) updates the location of text in physical memory.

ATSUGetTextLocation 2
Obtains information about text, including its in physical memory.

OSStatus ATSUGetTextLocation (
ATSUTextLayout iTextLayout,
void **oText,
Boolean *oTextIsStoredInHandle,
Functions 115
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
UniCharArrayOffset *oOffset,
UniCharCount *oTextLength,
UniCharCount *oTextTotalLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object.

oText A pointer of type ConstUniCharArrayPtr (page 192) or a handle
of type UniCharArrayHandle (page 193), depending on the value
passed back in oTextIsStoredInHandle. If true, on return, oText
contains a handle pointing to the beginning of the text buffer. If
false, on return, oText contains a pointer to the beginning of the
text buffer.

oTextIsStoredInHandle
A pointer to a Boolean value. On return, the value indicates
whether the text buffer in oText is accessed by a handle or
pointer. If true, the text buffer is accessed by handle; if false, the
text buffer is accessed by pointer.

oOffset A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset in backing store memory that
corresponds to the beginning of range of text that ATSUI
performs layout operations on.

oTextLength A pointer to a value of type UniCharCount (page 194). On return,
the length of the range of text that ATSUI performs layout
operations on.

oTextTotalLength
A pointer to a value of type UniCharCount (page 194). On return,
the length of the entire text buffer.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetTextLocation function obtains the location of text in physical
memory, the length of the range of text and text buffer, and whether the text is
accessed by a pointer or handle.

VERSION NOTES

Available beginning with ATSUI 1.0.
116 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUTextMoved 2
Updates the location of text in physical memory.

OSStatus ATSUTextMoved (
ATSUTextLayout iTextLayout,
ConstUniCharArrayPtr iNewLocation);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iNewLocation A pointer of type ConstUniCharArrayPtr (page 192). Pass the
beginning of the updated location of the text buffer physical
memory of the text buffer.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUTextMoved function updates the location of text in physical memory to
reflect the location that you moved the buffer to. You are responsible for moving
the text. The text buffer should remain otherwise unchanged.

If the user deletes, inserts, or moves text in a text layout object and the range of
text covers the entire text buffer, you should not call ATSUTextMoved. Instead,

� call the function ATSUSetTextPointerLocation (page 111) or
ATSUSetTextHandleLocation (page 113) to update the text

� call the function ATSUSetRunStyle (page 118) to update the style runs

You can then call the function ATSUDrawText (page 163) to display the updated
text.

VERSION NOTES

Available beginning with ATSUI 1.0.

Assigning and Updating Style Runs 2
ATSUI provides the following function for assigning and updating style runs:

� ATSUSetRunStyle (page 118) assigns or updates style runs.
Functions 117
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetRunStyle 2
Assigns or updates style runs.

OSStatus ATSUSetRunStyle (
ATSUTextLayout iTextLayout,
ATSUStyle iStyle,
UniCharArrayOffset iRunStart,
UniCharCount iRunLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to a valid text layout object.

iStyle A reference of type ATSUStyle (page 191). Pass a reference to a
valid style object whose attributes, font features, and font
variations you want to set (if uninitialized) or replace (if
initialized). You cannot pass NULL for this parameter.

iRunStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the style run whose attributes, font
features, and font variations you want to set (if uninitialized) or
replace (if initialized).

iRunLength A value of type UniCharCount (page 194). Pass the length of the
style run whose attributes, font features, and font variations you
want to set (if uninitialized) or replace (if initialized).

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetRunStyle function assigns new style runs or updates existing style
runs. For uninitialized text layout objects, ATSUSetRunStyle assigns new style
runs; for initialized text layout objects, it updates replaces all previously set
attributes, font features, and font variations in the iStyle parameter. After
completion, ATSUSetRunStyle adjusts the lengths of the style runs on either side
of the new or updated style run.

If the user deletes, inserts, or moves text in a text layout object and the range of
text covers the entire text buffer, you should

� call the function ATSUSetTextPointerLocation (page 111) or
ATSUSetTextHandleLocation (page 113) to update the text

� call ATSUSetRunStyle to update the style runs
118 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You can then call the function ATSUDrawText (page 163) to display the updated
text.

SPECIAL CONSIDERATIONS

You are responsible for disposing of the memory allocated for the new style run
when you dispose of it. Calling the function ATSUDisposeTextLayout (page 94)
will not do so. ATSUSetRunStyle may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Obtaining Style Run Information 2
ATSUI provides the following functions for obtaining style run information:

� ATSUGetRunStyle (page 119) finds the style run information at a given location
and the range of text that shares this information.

� ATSUGetContinuousAttributes (page 121) finds the style run information that
is continuous over a range of text.

ATSUGetRunStyle 2
Finds the style run information at a given location and the range of text that
shares this information.

OSStatus ATSUGetRunStyle (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
ATSUStyle *oStyle,
UniCharArrayOffset *oRunStart,
UniCharCount *oRunLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.
Functions 119
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the location whose style run information and the range
of text sharing that information you want to find. To indicate the
beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you pass an edge offset that is outside the text
buffer, ATSUGetRunStyle returns the result code
kATSUInvalidTextRangeErr.

oStyle A pointer to a reference of type ATSUStyle (page 191). On return,
the style run information of the location in iOffset that is shared
by the range of text from oRunStart to oRunLength. If the location
you passed in iOffset is at a style run boundary,
ATSUGetRunStyle passes back the style run information of the
next style run in this parameter.

oRunStart A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset of the beginning of the style run that
includes the location specified in iOffset.

oRunLength A pointer to a value of type UniCharCount (page 194). On return,
the length of the text sharing the same style run attributes, font
features, and font variations.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetRunStyle function finds the style run information at a given
location and the range of text that shares this information (including style run
attributes, font features, and font variations).

If there is only one style run set in the text layout object (whether or not it
covers the entire range of text in the text layout object), ATSUGetRunStyle passes
back the style run information at the specified offset and uses it to set the style
run information of the remaining text.

If you want to find the style run information that is continuous over a range of
text, call the function ATSUGetContinuousAttributes (page 121).

VERSION NOTES

Available beginning with ATSUI 1.0.
120 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUGetContinuousAttributes 2
Finds the style run information that is continuous over a range of text.

OSStatus ATSUGetContinuousAttributes (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
UniCharCount iLength,
ATSUStyle oStyle);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the range of text whose continuous
style run information you want to determine. To indicate the
beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you pass an edge offset that is outside the text
buffer, ATSUGetContinuousAttributes returns the result code
kATSUInvalidTextRangeErr.

iRunLength A value of type UniCharCount (page 194). Pass the length of the
range of text whose continuous style run information you want
to determine. To indicate the end of the text buffer, pass the
constant kATSUToTextEnd, described in “Text Length Constant”
(page 230). If you pass a length that is outside the text buffer,
ATSUGetContinuousAttributes returns the result code
kATSUInvalidTextRangeErr.

oStyle A reference of type ATSUStyle (page 191). Pass a valid style
object. On return, the contents of this object are filled with the
continuous attributes. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetContinuousAttributes function finds the style run information that
is continuous over a range of text, including the default values of unset
attributes, font features, and font variations.
Functions 121
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
You should call ATSUGetContinuousAttributes to determine the style run
information that remains constant over text that has been selected by the user.
For example, the user might select the entire text block associated with a text
layout object or a portion of it, then choose a different font family from your
menu to render the text. ATSUGetContinuousAttributes will determine whether
the style is plain, boldfaced, italicized, underlined, condensed, or extended.

If you want to find the style run information at a given location and the range of
text that shares this information, call the function ATSUGetRunStyle (page 119).

VERSION NOTES

Available beginning with ATSUI 1.0.

Mapping Font Fallbacks 2
ATSUI provides the following functions for fallback mapping:

� ATSUSetFontFallbacks (page 123) indicates the fonts to search and the search
order to use when fallback mapping is needed.

� ATSUGetFontFallbacks (page 124) obtains the fonts to employ and search
order to use when fallback mapping is required.

� ATSUMatchFontsToText (page 125) obtains the first subrange of text whose
character(s) cannot be drawn with the assigned font and recommends a
substitute font.

� ATSUSetTransientFontMatching (page 128) provides automatic font
substitution when a character(s) cannot be drawn with the assigned font.

� ATSUGetTransientFontMatching (page 129) indicates whether automatic font
substitution is enabled.
122 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetFontFallbacks 2
Indicates the fonts to search and the search order to use when fallback mapping
is needed.

OSStatus ATSUSetFontFallbacks (
ItemCount iFontFallbacksCount,
ATSUFontID iFontIDs[],
ATSUFontFallbackMethod iFontFallbackMethod);

iFontFallbacksCount
The number of fonts that you want searched when fallback
mapping is required. This should be equivalent to the number of
elements in the iFontIDs array.

iFontIDs An array of values of type ATSUFontID (page 188). Each element
in the array should represent an ATSUI-compatible font, and the
order of these elements should reflect the order that you want
ATSUI to sequentially search them when fallback mapping is
needed.

iFontFallbackMethod
A value of type ATSUFontFallbackMethod. Pass the order that you
want fonts in the iFontIDs array to be searched. See “Font
Fallback Constants” (page 205) for a description of possible
values.

function result A result code. The result code kATSUInvalidFontErr indicates
that the font does not correspond to any installed font. For a list
of other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUSetFontFallbacks function indicates the fonts to search and the search
order to use when a font does not have all the glyphs for the characters it is
trying to draw. If you do not call ATSUSetFontFallbacks, all valid fonts on the
user’s system will be searched sequentially when a substitute font is needed,
and the first match will be used. You can specify this default search behavior by
passing kATSUDefaultFontFallbacks in the iFontFallbackMethod parameter. This
is equivalent to calling the function ATSUMatchFontsToText (page 125).
ATSUSetFontFallbacks will use the first valid font it finds in the font list you
specify.
Functions 123
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
If you call ATSUSetFontFallbacks and carefully order your chosen font fallbacks,
the amount of time needed by ATSUI to find a suitable fallback for specific text
can be significantly reduced.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUGetFontFallbacks 2
Obtains the fonts to employ and search order to use when fallback mapping is
required.

OSStatus ATSUGetFontFallbacks (
ItemCount iMaxFontFallbacksCount,
ATSUFontID oFontIDs[],
ATSUFontFallbackMethod *oFontFallbackMethod,
ItemCount *oActualFallbacksCount);

iMaxFontFallbacksCount
The maximum number of fonts that you want searched.
Typically, this is equivalent to the number of fonts in the
oFontIDs array. To determine this value, see the discussion
below.

oFontIDs An array of values of type ATSUFontID (page 188). Before calling
ATSUGetFontFallbacks, pass a pointer to memory that you have
allocated for this array. If you are uncertain of how much
memory to allocate, see the discussion below. On return, the
array contains the fonts that you previously set to be searched
for fallback mapping.

oFontFallbackMethod
A pointer to a value of type ATSUFontFallbackMethod. On return,
the previously set order to search fonts in the iFontIDs array. See
“Font Fallback Constants” (page 205) for a description of
possible values.
124 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oActualFallbacksCount
A pointer to a count. On return, the actual number of fonts that
you want searched. This may be greater than the value passed in
the iMaxFontFallbacksCount parameter. You cannot pass NULL for
this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetFontFallbacks function obtains the fonts to employ and search
order to use that you set in a previous set to the function ATSUSetFontFallbacks
(page 123). They can also reflect the default fallback mapping order if you did
not call ATUSetFontFallbacks.

The best way to use ATSUGetFontFallbacks is to call it twice:

1. Pass NULL for the oFontIDs parameter and 0 for the other parameters.
ATSUGetFontFallbacks returns the size of the font array in the
oActualFallbacksCount parameter.

2. Allocate enough space for an array of the returned size, then call the function
again, passing a pointer in the oFontIDs parameter; on return, the pointer
references an array of fonts to be searched.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUMatchFontsToText 2
Obtains the first subrange of text whose character(s) cannot be drawn with the
assigned font and recommends a substitute font.

OSStatus ATSUMatchFontsToText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iTextStart,
UniCharCount iTextLength,
ATSUFontID *oFont,
UniCharArrayOffset *oChangedOffset,
UniCharCount *oChangedLength);
Functions 125
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iTextStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the range of text that you want to scan
for character(s) that could not be drawn with the assigned font.
To indicate the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If you pass an edge offset that is outside the text
buffer, ATSUMatchFontsToText returns the result code
kATSUInvalidTextRangeErr.

iTextLength A value of type UniCharCount (page 194). Pass the length of the
of the range of text that you want to scan for character(s) that
could not be drawn with the assigned font. To indicate the
beginning of the text buffer, pass the constant kATSUToTextEnd,
described in “Text Length Constant” (page 230). If you pass a
length that is outside the text buffer, ATSUMatchFontsToText
returns the result code kATSUInvalidTextRangeErr.

oFont A pointer to a value of type ATSUFontID (page 188). On return,
the substitute font recommended by ATSUMatchFontsToText.

oChangedOffset
A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset of the beginning of the range of text
containing character(s) whose font does not have all the glyphs
necessary to draw it.

oChangedLength
A pointer to a value of type UniCharCount (page 194). On return,
the length of the range of text containing character(s) whose font
does not have all the glyphs necessary to draw it.

function result A result code. The result code noErr indicates that all the
characters can be rendered with their currently assigned fonts.
The result code kATSUFontsMatched indicates that at least one
character could not be rendered with its currently assigned font.
In this case, all the characters in the specified text range cannot
be drawn with their currently assigned font, but can be drawn
with the font passed back in the oFont parameter. The result
code kATSUFontsNotMatched indicates that at least one character
could not be rendered with its currently assigned font or with
126 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
any currently active font. In this case, all the characters in the
specified text range can only be rendered by the last resort font,
and the value of oFont is set to kATSUInvalidFontID. For a list of
other ATSUI-specific result codes, see “Result Codes”
(page 231).

DISCUSSION

The ATSUMatchFontsToText function obtains the first subrange of text whose
character(s) cannot be drawn with the assigned font and recommends a
substitute font. It does not actually perform font substitutions. If you want
ATSUI to perform font substitutions, call the function
ATSUSetTransientFontMatching (page 128).

ATSUMatchFontsToText scans all valid fonts on the user’s system for a substitute
font. This is the default search behavior used if you do not call the function
ATSUSetFontFallbacks (page 123), or if you pass the constant
kATSUDefaultFontFallbacks in the iFontFallbackMethod parameter of the
function.

ATSUMatchFontsToText looks for characters in a specified range of text that
cannot be drawn with the fonts in the style run. It passes back an offset to the
first range of text that could not be drawn and suggests an alternative font to
use. For example, if the subrange of text for which you wanted to perform font
substitution was the text “abcde”, and the characters ‘c’ and ‘d’ could not be
drawn with the current font (that is, the font in the styles for this text layout
object) but could be drawn with font F, and the character ‘e’ could either be
drawn with the current font or could not be drawn with font F, then
ATSUMatchFontsToText will pass back the ATSUIFontID of font F in the oFont
parameter and will set oChangedOffset to 2 and oChangedLength to 2.

If the function returns the result codes kATSUFontsMatched or
kATSUFontsNotMatched, you should update the input range and call
ATSUMatchFontsToText again to make sure that all the characters in the range
could be drawn.

SPECIAL CONSIDERATIONS

ATSUMatchFontsToText may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).
Functions 127
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUSetTransientFontMatching 2
Provides automatic font substitution when a character(s) cannot be drawn with
the assigned font.

OSStatus ATSUSetTransientFontMatching (
ATSUTextLayout iTextLayout,
Boolean iTransientFontMatching);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iTransientFontMatching
A Boolean value. Pass a value that indicates whether you want
ATSUI to perform automatic font substitution when a
character(s) could not be drawn with the assigned font. If true,
ATSUI will perform automatic font substitution.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetTransientFontMatching function provides automatic font
substitution when a character(s) cannot be drawn with the assigned font. Like
ATSUMatchFontsToText (page 125), ATSUSetTransientFontMatching uses the
default search behavior of scanning all valid fonts on the user’s system for a
substitute font.

When it performs the substitution, ATSUSetTransientFontMatching does not
change the font attribute in the style object. As a result, if you plan to redraw a
text layout object, you should instead call the function ATSUSetFontFallbacks
(page 123) or ATSUMatchFontsToText (page 125).

To ensure that the last resort font will be used if no other fonts are found, you
can either call ATSUSetTransientFontMatching or pass the
kATSUSequentialFallbacksExclusive constant in the iFontFallbackMethod
parameter of ATSUSetFontFallbacks. If you do not set the last resort font, glyphs
will be denoted by black boxes when a font is not installed on the user’s system.
128 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetTransientFontMatching 2
Indicates whether automatic font substitution is enabled.

OSStatus ATSUGetTransientFontMatching (
ATSUTextLayout iTextLayout,
Boolean *oTransientFontMatching);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

oTransientFontMatching
A pointer to a Boolean value. On return, the value indicates
whether automatic font substitution is enabled. If true, it is
enabled.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetTransientFontMatching function indicates whether automatic font
substitution is enabled by a previous call to the function
ATSUSetTransientFontMatching (page 128).

VERSION NOTES

Available beginning with ATSUI 1.0.

Hit-Testing 2
ATSUI provides the following functions for hit-testing:

� ATSUPositionToOffset (page 130) obtains the edge offset(s) that correspond to
the glyph nearest a mouse-down event.

� ATSUOffsetToPosition (page 134) obtains the caret position(s) that correspond
to an edge offset.
Functions 129
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUPositionToOffset 2
Obtains the edge offset(s) that correspond to the glyph nearest a mouse-down
event.

OSStatus ATSUPositionToOffset (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY,
UniCharArrayOffset *ioPrimaryOffset,
Boolean *oIsLeading,
UniCharArrayOffset *oSecondaryOffset);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iLocationX A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) where the mouse-down event occurred. Pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 203), if you want the location of the
mouse-down event relative to the current pen location in the
current graphics port.

iLocationY A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) where the mouse-down event occurred. Pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 203), if you want the location of the
mouse-down event relative to the current pen location in the
current graphics port.

ioPrimaryOffset
A pointer to a value of type UniCharArrayOffset (page 193).
Before calling ATSUPositionToOffset, pass a pointer to the edge
offset of the beginning of the line containing the character
nearest the mouse-down event. If the line direction is
right-to-left, pass the lowest edge offset. On return, the edge
offset that corresponds to the closest edge of the glyph beneath
the hit point on the screen. You cannot pass NULL for this
parameter.
130 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oIsLeading A pointer to a Boolean value. On return, the value indicates
whether the offset passed back in the ioPrimaryOffset
parameter is leading or trailing. If this value is true, the offset is
leading (more closely associated with the following character in
the backing-store memory). If this value is false, the offset is
trailing (more closely associated with the previous character in
the backing-store memory). This value indicates the line
direction at the location of the mouse-down event.

oSecondaryOffset
A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset that corresponds to the furthest edge of
the glyph beneath the hit point on the screen. This value is the
same as passed back in ioPrimaryOffset unless the mouse-down
event occurs on a line direction boundary.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUPositionToOffset function obtains the edge offset(s) that correspond
to the glyph nearest a mouse-down event. If the mouse-down event occurs at a
line direction boundary, a second offset is passed back in the oSecondaryOffset
parameter representing the offset that corresponds to the furthest edge of the
glyph beneath the hit point on the screen. A line direction boundary can occur
on the trailing edges of two glyphs, the leading edges of two glyphs, or at the
beginning or end of a text segment. The value passed back in the oIsLeading
parameter indicates the line direction of the text at the location of the
mouse-down event.

The user expects that pressing the mouse button correlates to particular actions
in an application. You can use the offset(s) passed back in ATSUPositionToOffset
for providing feedback or performing any actions in response to the user.

For example, if the user presses the mouse button in text, your application
should pass the resulting edge offset to ATSUOffsetToPosition (page 134) to
Functions 131
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
determine the caret position(s) corresponding to this offset. If the user presses
the mouse button while the cursor is on a glyph and drags the cursor across a
range of text, then releases the mouse, your application might want to respond
by highlighting the text between the mouse-down and mouse-up events. To do
this, you would pass the edge offset (s) passed back from ATSUPositionToOffset
that correspond to the mouse-up and mouse-down event positions to the
ATSUHighlightText (page 165) function.

If the user then presses the mouse button outside the highlighted area, your
application should pass the same edge offsets to the ATSUUnhighlightText
(page 168) function. If the user double clicks (word selection) or triple clicks
(paragraph selection), You can pass the resulting primary edge offset to
ATSUOffsetToPosition (page 134) to determine the caret position(s)
corresponding to this offset.

ATSUI does not keep actual line positions. As a result, the coordinates passed in
the iLocationX and iLocationY parameters are relative to the position in the
current graphics port of the origin of the line in which the mouse-down
occurred. The passed back edge offset(s) are thus offsets from the beginning of
the line in which the hit occurred, not from the beginning of the text layout
object’s buffer.

To transform the hit point’s position, you must first call the GlobalToLocal
function, described in “Basic QuickDraw” in Inside Macintosh: Imaging with
QuickDraw, to translate the global coordinates passed back in the where field of
the event record to local coordinates. For more information about responding to
mouse-down events, see the “The Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. You then subtract the hit point (in local coordinates)
from the position of the line’s origin in the current graphics port.

For example, if you have a mouse-down event whose position in local
coordinates is (75,50), you would subtract this value from the position of the
origin of the line in the current graphics port. If the position of the origin of the
line in the current graphics port is (50,50), then the relative position of the hit
that you would pass in the iLocationX and iLocationY parameters would be
(25,0).

ATSUPositionToOffset passes back a Boolean value in the oIsLeading parameter
to tell you the text direction of the primary edge offset. This directionality is
determined by the Unicode directionality of the original character in
backing-store memory. If it passes back true, the primary edge offset is more
closely associated with the following character in the backing-store memory. If
132 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
it passes back false, the primary offset is more closely associated with the
previous character in the backing-store memory.

The following summarizes the possible outcomes of calling
ATSUPositionToOffset:

� When the input pixel location (that is, the location of the hit point on the
screen) is on the leading edge of the glyph, ATSUPositionToOffset passes
back primary and secondary offsets corresponding to that glyph and an
oIsLeading flag of true. If the glyph represents multiple characters and the
style run attribute corresponding to the kATSUNoLigatureSplitTag has been
set for them, ATSUPositionToOffset passes back an edge offset representing
the beginning of this group of characters in memory.

� When the input pixel location is on the trailing edge of the glyph,
ATSUPositionToOffset passes back primary and secondary offsets
representing the ending of this group of characters in memory following the
character or characters represented by the glyph and an oIsLeading flag of
false.

� When the input pixel location is beyond the leftmost or rightmost caret
positions (not taking into account line rotation) such that no glyph
corresponds to the location of the hit, ATSUPositionToOffset passes back the
primary edge offset of the closest edge of the line to the input location. The
oIsLeading flag depends on the directionality of the closest glyph and the
side of the line the input location is closest to. In this case, the secondary
offset is equal to the primary offset, since no glyph was hit.

SPECIAL CONSIDERATIONS

ATSUPositionToOffset may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 133
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUOffsetToPosition 2
Obtains the caret position(s) that correspond to an edge offset.

OSStatus ATSUOffsetToPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOffset,
Boolean iIsLeading,
ATSUCaret *oMainCaret,
ATSUCaret *oSecondCaret,
Boolean *oCaretIsSplit);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOffset A pointer to a value of type UniCharArrayOffset (page 193). Pass
the edge offset whose corresponding caret position(s) you want
to determine. If you wish to visually respond to a mouse-down
event, pass the offset passed back in the ioPrimaryOffset
parameter of the function ATSUPositionToOffset (page 130).

iIsLeading A Boolean value. This value is only relevant if the edge offset is
at a line direction boundary. Pass true if the edge offset is
leading. In this case, it corresponds to the first offset of the line
whose origin is specified in the iLocationX and iLocationY
parameters. Pass false if the edge offset is trailing. In this case,
it corresponds to the last offset of the line whose origin is
specified in the iLocationX and iLocationY parameters. The last
offset has a value equal to the sum of the starting edge offset
and line length.

oMainCaret A pointer to a structure of type ATSUCaret (page 186). On return,
the structure contains the starting and ending pen locations of
the high caret if the value passed back in oCaretIsSplit is true.
If the passed back value is false, the structure contains the
starting and ending pen locations of the main caret.

oSecondCaret A pointer to a structure of type ATSUCaret (page 186). On return,
the structure contains the starting and ending pen locations of
the low caret if the value passed back in oCaretIsSplit is true. If
the passed back value is false, the structure contains the
starting and ending pen locations of the main caret (same as the
oMainCaret parameter).
134 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oCaretIsSplit A pointer to a Boolean value. On return, the value indicates
whether the edge offset specified in iOffset occurs at a line
direction boundary. If true, the offset occurs at a line direction
boundary; otherwise, false.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUOffsetToPosition function determines the caret position(s) that
correspond to an edge offset.

The user expects that pressing the mouse button correlates to the display of a
caret in text. Your application should call the ATSUOffsetToPosition function to
find the caret position(s) corresponding to a mouse-down event.

To determine caret position(s), you must first pass the location of the
mouse-down event to the function ATSUPositionToOffset (page 130).
ATSUPositionToOffset passes back the edge offset (or offsets, if the hit occurs on
a line direction boundary) from the beginning of the line where the hit occurred.

The offset passed back by ATSUPositionToOffset (page 130) is relative to the
beginning of the line in which the hit occurred, not from the beginning of the
text layout object’s buffer. Because this offset is a relative position, you must
transform the starting and ending pen locations of the caret(s) that are passed
back by ATSUOffsetToPosition before drawing them. The passed back carets do
not need to be transformed to reflect angled and split caret appearances.

To do so, add the starting and ending caret coordinates to the coordinates of the
origin of the line (in the current graphics port) in which the hit occurred. For
example, if ATSUOffsettoPosition passed back the starting and ending pen
locations of (25,0), (25,25) in the oMainCaret parameter (and the oSecondCaret
parameter contained the same coordinates, meaning that the caret was not
split), you would add these to the position of the origin of the line in the
graphics port. If the position of the line origin was at (50,50), then the starting
and ending pen locations of the caret on the screen would be (75,50), (75,75).
Functions 135
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
To draw the caret, you can call the QuickDraw functions MoveTo and LineTo, or
equivalent functions.

SPECIAL CONSIDERATIONS

ATSUOffsetToPosition may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Determining Cursor Offsets 2
ATSUI provides the following functions for determining cursor offsets:

� ATSUNextCursorPosition (page 136) obtains the edge offset corresponding to
the next cursor position based on the type of cursor movement.

� ATSUPreviousCursorPosition (page 138) obtains the edge offset corresponding
to the previous cursor position based on the type of cursor movement.

� ATSURightwardCursorPosition (page 140) obtains the edge offset to the right
of the high caret position based on the type of cursor movement.

� ATSULeftwardCursorPosition (page 141) obtains the edge offset to the left of
the high caret position based on the type of cursor movement.

ATSUNextCursorPosition 2
Obtains the edge offset corresponding to the next cursor position based on the
type of cursor movement.

OSStatus ATSUNextCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);
136 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the initial cursor position. To indicate
the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If the edge offset is outside the text buffer,
ATSUNextCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType. Pass the unit distance
that the cursor was moved. See “Cursor Movement Constants”
(page 204) for a description of possible values. You must pass a
value between 2 bytes and a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset corresponding to the new cursor position.
This offset may be outside the text buffer.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in styled data from an invalid
cache. In this case, either the format of the cached data does not
match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUNextCursorPosition function determines the edge offset in backing
store memory corresponding to the previous cursor position based on the type
of cursor movement specified in the iMovementType parameter. You should call
ATSUNextCursorPosition and the function ATSUPreviousCursorPosition
(page 138) if the initial edge offset is not at a line boundary. If the initial edge
offset is at a line direction boundary, you should instead call the functions
ATSURightwardCursorPosition (page 140) and ATSULeftwardCursorPosition
(page 141) to calculate the next and previous cursor positions. Note that at a line
boundary, the caret is split into a high and low caret.
Functions 137
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Note that you may not be able to move the cursor 2-bytes, since doing so might
place the cursor in the middle of a surrogate pair.

SPECIAL CONSIDERATIONS

ATSUNextCursorPosition may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUPreviousCursorPosition 2
Obtains the edge offset corresponding to the previous cursor position based on
the type of cursor movement.

OSStatus ATSUPreviousCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the initial cursor position. To indicate
the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If the edge offset is outside the text buffer,
ATSUPreviousCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType. Pass the unit distance
that the cursor was moved. See “Cursor Movement Constants”
(page 204) for a description of possible values. You must pass a
value between 2 bytes and a word in length.
138 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oNewOffset A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset corresponding to the new cursor position.
This offset may be outside the text buffer.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in styled data from an invalid
cache. In this case, either the format of the cached data does not
match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUPreviousCursorPosition function determines the edge offset in backing
store memory corresponding to the previous cursor position based on the type
of cursor movement specified in the iMovementType parameter. You should call
ATSUPreviousCursorPosition and the function ATSUNextCursorPosition
(page 136) if the initial edge offset is not at a line boundary. If the initial edge
offset is at a line direction boundary, you should instead call the functions
ATSURightwardCursorPosition (page 140) and ATSULeftwardCursorPosition
(page 141) to calculate the next and previous cursor positions. Note that at a line
boundary, the caret is split into a high and low caret.

Note that you may not be able to move the cursor 2-bytes, since doing so might
place the cursor in the middle of a surrogate pair.

SPECIAL CONSIDERATIONS

ATSUPreviousCursorPosition may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.
Functions 139
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSURightwardCursorPosition 2
Obtains the edge offset corresponding to the right of the high caret position
based on the type of cursor movement.

OSStatus ATSURightwardCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the initial cursor position. To indicate
the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If the edge offset is outside the text buffer,
ATSURightwardCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType. Pass the unit distance
that the cursor was moved. See “Cursor Movement Constants”
(page 204) for a description of possible values. You must pass a
value between 2 bytes and a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset corresponding to the new cursor position.
This offset may be outside the text buffer.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in styled data from an invalid
cache. In this case, either the format of the cached data does not
match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).
140 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSURightwardCursorPosition function determines the edge offset in
backing store memory corresponding to the right of the high caret position
based on the type of cursor movement specified in the iMovementType parameter.
You should call ATSURightwardCursorPosition and the function
ATSULeftwardCursorPosition (page 141) when the initial edge offset is at a line
boundary. At a line boundary, the caret is split into a high and low caret. If the
initial edge offset is not at a line direction boundary, you should instead call the
functions ATSUNextCursorPosition (page 136) and ATSUPreviousCursorPosition
(page 138) to calculate the next and previous cursor positions.

Note that you may not be able to move the cursor 2-bytes, since doing so might
place the cursor in the middle of a surrogate pair.

Except in the case of Indic text (and other cases where the font rearranges the
glyphs), for left-to-right text, ATSURightwardCursorPosition has the same effect
as calling ATSUNextCursorPosition (page 136). For right-to-left text,
ATSURightwardCursorPosition has the same effect as calling
ATSUPreviousCursorPosition (page 138).

SPECIAL CONSIDERATIONS

ATSURightwardCursorPosition may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSULeftwardCursorPosition 2
Obtains the edge offset corresponding to the left of the high caret position based
on the type of cursor movement.

OSStatus ATSULeftwardCursorPosition (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iOldOffset,
ATSUCursorMovementType iMovementType,
UniCharArrayOffset *oNewOffset);
Functions 141
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iOldOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the initial cursor position. To indicate
the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If the edge offset is outside the text buffer,
ATSULeftwardCursorPosition returns the result code
kATSUInvalidTextRangeErr.

iMovementType A value of type ATSUCursorMovementType. Pass the unit distance
that the cursor was moved. See “Cursor Movement Constants”
(page 204) for a description of possible values. You must pass a
value between 2 bytes and a word in length.

oNewOffset A pointer to a value of type UniCharArrayOffset (page 193). On
return, the edge offset corresponding to the new cursor position.
This offset may be outside the text buffer.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in styled data from an invalid
cache. In this case, either the format of the cached data does not
match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSULeftwardCursorPosition function determines the edge offset in backing
store memory corresponding to the left of the high caret position based on the
type of cursor movement specified in the iMovementType parameter. You should
call ATSULeftwardCursorPosition and the function ATSURightwardCursorPosition
(page 140) when the initial edge offset is at a line boundary. At a line boundary,
the caret is split into a high and low caret. If the initial edge offset is not at a line
direction boundary, you should instead call the functions
ATSUNextCursorPosition (page 136) and ATSUPreviousCursorPosition (page 138)
to calculate the next and previous cursor positions.
142 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Note that you may not be able to move the cursor 2-bytes, since doing so might
place the cursor in the middle of a surrogate pair.

Except in the case of Indic text (and other cases where the font rearranges the
glyphs), for left-to-right text, ATSULeftwardCursorPosition has the same effect as
calling ATSUPreviousCursorPosition (page 138). For right-to-left text,
ATSULeftwardCursorPosition has the same effect as calling
ATSUNextCursorPosition (page 136).

SPECIAL CONSIDERATIONS

ATSULeftwardCursorPosition may allocate memory in your application heap,
unless you designate a different heap by calling the function
ATSUCreateMemorySetting (page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Handling Text Insertion and Deletion 2
ATSUI provides the following functions for handling text insertion and
deletion:

� ATSUTextDeleted (page 143) indicates the location in physical memory of
deleted text.

� ATSUTextInserted (page 145) indicates the location in physical memory of
inserted text.

ATSUTextDeleted 2
Indicates the location in physical memory of deleted text.

OSStatus ATSUTextDeleted (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iDeletedRangeStart,
UniCharCount iDeletedRangeLength);
Functions 143
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iDeletedRangeStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the beginning of the deleted text. You
may pass a value outside the range of text being operated on if
the deletion occurs outside the range. To indicate the beginning
of the text buffer, pass the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 231). To indicate the
entire text buffer, pass kATSUFromTextBeginning in this
parameter and the constant kATSUToTextEnd in the
iDeletedRangeLength parameter. If the offset is outside the text
buffer, ATSUTextDeleted returns the result code
kATSUInvalidTextRangeErr.

iDeletedRangeLength
A value of type UniCharCount (page 194). Pass the length of the
deleted text. To indicate the end of the text buffer, pass the
constant kATSUToTextEnd, described in “Text Length Constant”
(page 230). To indicate the entire text buffer, pass kATSUToTextEnd
in this parameter and the constant kATSUFromTextBeginning in
the iDeletedRangeStart parameter. If the range is outside the
text buffer, ATSUTextDeleted returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUTextDeleted function shortens or removes the style run containing the
deletion point and the total length of the text range by the amount of the text
deletion. If the deletion point is between two style runs, the first style run is
removed. It also removes any soft line breaks that fall within the deleted text.
ATSUTextDeleted then updates drawing caches.

ATSUTextDeleted does not change the memory location or the edge offset of the
text. It shifts the text after the deleted text by the appropriate offset
(iDeletedRangeStart +iDeletedRangeLength).

You are responsible for making sure that the corresponding text is deleted from
the text buffer. You are also responsible for disposing of the memory associated
144 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
with style runs that have been removed by calling the function
ATSUDisposeStyle (page 30).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUTextInserted 2
Indicates the location in physical memory of inserted text.

OSStatus ATSUTextInserted (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iInsertionLocation,
UniCharCount iInsertionLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iInsertionLocation
A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the beginning of the inserted text. You
may pass a value outside the range of text being operated on if
the insertion occurs outside the range. To indicate the beginning
of the text buffer, pass the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 231). If the offset is
outside the text buffer, ATSUTextInserted returns the result code
kATSUInvalidTextRangeErr.

iInsertionLength
A value of type UniCharCount (page 194). Pass the length of the
inserted text. To indicate the end of the text buffer, pass the
constant kATSUToTextEnd, described in “Text Length Constant”
(page 230). To indicate the entire text buffer, pass kATSUToTextEnd
in this parameter and the constant kATSUFromTextBeginning in
the iInsertionLocation parameter. If the range is outside the
text buffer, ATSUTextInserted returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 231).
Functions 145
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUTextInserted function extends the style run containing the insertion
point and the total length of the text range by the amount of the text insertion. If
the insertion point is between two style runs, the first style run is extended to
include the new text. ATSUTextInserted then updates drawing caches.

ATSUTextInserted does not insert style runs or line breaks; if you wish to do so,
call the functions ATSUSetRunStyle (page 118) and ATSUSetSoftLineBreak
(page 159), respectively.

ATSUTextInserted does not change the memory location or the edge offset of the
text. It shifts the text after the inserted text by the appropriate offset
(iInsertionLocation +iInsertionLength).

You are responsible for making sure that the corresponding text is inserted into
the text buffer.

VERSION NOTES

Available beginning with ATSUI 1.0.

Measuring Typographic and Image Bounds 2

� ATSUGetGlyphBounds (page 146) obtains the typographic glyph bounds of a
final laid-out line.

� ATSUMeasureText (page 150) obtains the typographic bounding rectangle of a
line of text prior to final line layout.

� ATSUMeasureTextImage (page 153) obtains the standard bounding rectangle of
a final laid-out line.

ATSUGetGlyphBounds 2
Obtains the typographic glyph bounds of a final laid-out line.

OSStatus ATSUGetGlyphBounds (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iBoundsCharStart,
146 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
UniCharCount iBoundsCharLength,
UInt16 iTypeOfBounds,
ItemCount iMaxNumberOfBounds,
ATSTrapezoid oGlyphBounds[],
ItemCount *oActualNumberOfBounds);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) whose typographic glyph bounds you want to calculate.
Pass 0 if you just want the dimensions of the bounds with
respect to one another, not their actual onscreen position. Pass
the constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want the dimensions of
the bounds relative to the current pen location in the current
graphics port.

iTextBasePointY
A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) whose typographic glyph bounds you want to calculate.
Pass 0 if you just want the dimensions of the bounds with
respect to one another, not their actual onscreen position. Pass
the constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want the dimensions of
the bounds relative to the current pen location in the current
graphics port.

iBoundsCharStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset corresponding to the beginning of the range of text whose
typographic glyph bounds you want to calculate. To indicate the
beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iBoundsCharLength parameter. If the
offset is outside the text buffer, ATSUGetGlyphBounds returns the
result code kATSUInvalidTextRangeErr.
Functions 147
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iBoundsCharLength
A value of type UniCharCount (page 194). Pass the length of the
range of text whose onscreen typographic glyph bounds you
want to obtain. To indicate the end of the text buffer, pass the
constant kATSUToTextEnd, described in “Text Length Constant”
(page 230). To indicate the entire text buffer, pass kATSUToTextEnd
in this parameter and the constant kATSUFromTextBeginning in
the iBoundsCharStart parameter. If the range of text is outside
the text buffer, ATSUGetGlyphBounds returns the result code
kATSUInvalidTextRangeErr.

iTypeOfBounds The type of origin used in calculating the dimensions of the
typographic bounds. See “Glyph Bound Constants” (page 206)
for a description of possible values.

iMaxNumberOfBounds
The maximum number of enclosing trapezoids you want passed
back. Typically, this is equivalent to the number of bounds in the
oGlyphBounds array. To determine this value, see the discussion
below.

oGlyphBounds An array of structures of type ATSTrapezoid (page 184). Before
calling ATSUGetGlyphBounds, pass a pointer to memory that you
have allocated for this array. If you are uncertain of how much
memory to allocate, see the discussion below. On return, the
array contains the enclosing trapezoid(s) representing the
typographic bounds of a range of text. If the specified range of
text encloses directional boundaries, ATSUGetGlyphBounds will
pass back multiple trapezoids defining these regions. In ATSUI
1.1, the maximum number of enclosing trapezoids that can be
returned in 31; in ATSUI 1.2, the maximum number is 127. You
cannot pass NULL for this parameter.

oActualNumberOfBounds
A pointer to a count. On return, the actual number of enclosing
trapezoids bounding the specified character(s). This may be
greater than the value passed in the iMaxNumberOfBounds
parameter. You cannot pass NULL for this parameter.

function result A result code. See “Result Codes” (page 231).
148 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

The ATSUGetGlyphBounds function returns the rotated final typographic bounds
in multiple trapezoids, if needed, taking into account line rotation, flushness,
and justification. It passes back the enclosing trapezoid(s) that represent the
typographic glyph bounds of a range of text.

To obtain the typographic bounding rectangle around a line of text prior to line
layout, call the function ATSUMeasureText (page 150). To calculate the standard
bounding rectangle around a final laid-out line, call the function
ATSUMeasureTextImage (page 153).

Before calculating the typographic glyph bounds of a range of text,
ATSUGetGlyphBounds examines the text layout object to make sure that the style
runs cover the entire range of text. If there are gaps between style runs,
ATSUGetGlyphBounds assigns the characters in the gap to the style run following
the gap. If there is no style run at the beginning of the range of text,
ATSUGetGlyphBounds assigns these characters to the first style run it can find. If
there no style run at the end of the range of text, ATSUGetGlyphBounds assigns
the remaining characters to the last style run it can find.

The coordinates of each trapezoid are offset by the amount specified in the
iTextBasePointX and iTextBasePointY parameters. If you want to draw the
typographic bounds on the screen, pass the position of the origin of the line in
the current graphics port in these parameters. This enables ATSUGetGlyphBounds
to match the trapezoids to their onscreen image.

The height of the trapezoid(s) is determined by the line ascent and descent
attribute values you previously set for the line. If you have not set these values
for the line, ATSUGetGlyphBounds will use the values set for the text layout object
containing the line. If neither have been set, ATSUGetGlyphBounds will use the
natural line ascent and descent calculated for the line. The width of the
trapezoid(s) is determined using the caret origin, glyph origin in device space,
or glyph origin in fractional absolute positions, depending upon the value you
pass in the iTypeOfBounds parameter.

You should call ATSUGetGlyphBounds to do your own text highlighting, using the
fractional origin (instead of the device origin) for the width of the highlight.

VERSION NOTES

Available beginning with ATSUI 1.1.
Functions 149
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUMeasureText 2
Obtains the typographic bounding rectangle of a line of text prior to final line
layout.

OSStatus ATSUMeasureText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
UniCharCount iLineLength,
ATSUTextMeasurement *oTextBefore,
ATSUTextMeasurement *oTextAfter,
ATSUTextMeasurement *oAscent,
ATSUTextMeasurement *oDescent);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text
whose typographic bounding rectangle you want to obtain. To
indicate the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iLineLength parameter. If the offset is
outside the text buffer, ATSUMeasureText returns the result code
kATSUInvalidTextRangeErr.

iLineLength A value of type UniCharCount (page 194). Pass the length of the
range of text whose typographic bounding rectangle you want
to obtain. To indicate the end of the text buffer, pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230).
To indicate the entire text buffer, pass kATSUToTextEnd in this
parameter and the constant kATSUFromTextBeginning in the
iLineStart parameter. If the range of text is outside the text
buffer, ATSUMeasureText returns the result code
kATSUInvalidTextRangeErr.
150 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oTextBefore A pointer to a value of type ATSUTextMeasurement (page 192). On
return, the startpoint of the typographic bounding rectangle
relative to the origin of the line in the current graphics port,
taking into account cross-stream shifting. Assuming horizontal
text, this corresponds to the left side of the bounding rectangle.

oTextAfter A pointer to a value of type ATSUTextMeasurement (page 192). On
return, the endpoint of the typographic bounding rectangle
relative to the origin of the line in the current graphics port,
taking into account cross-stream shifting. Assuming horizontal
text, this corresponds to the right side of the bounding rectangle.

oAscent A pointer to a value of type ATSUTextMeasurement (page 192). On
return, the ascent of the typographic bounding rectangle relative
to the origin of the line in the current graphics port, taking into
account cross-stream shifting. Assuming horizontal text, this
corresponds to the top side of the bounding rectangle.

oDescent A pointer to a value of type ATSUTextMeasurement (page 192). On
return, the descent of the typographic bounding rectangle
relative to the origin of the line in the current graphics port,
taking into account cross-stream shifting. Assuming horizontal
text, this corresponds to the bottom side of the bounding
rectangle.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUMeasureText function obtains the typographic bounding rectangle of a
line of text, ignoring any previously set line attributes like rotation, flushness,
justification, ascent, and descent. ATSUMeasureText obtains a single rectangle
representing the typographic bounds. The coordinates of the rectangle are
independent of the rendering device used to display the text.
Functions 151
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
To obtain the typographic bounds of a line after it is laid out, call the function
ATSUGetGlyphBounds (page 146). To calculate the standard bounding rectangle of
a laid-out line, call the function ATSUMeasureTextImage (page 153).

Before calculating the typographic bounding rectangle enclosing a range of text,
ATSUMeasureText examines the text layout object to make sure that the style runs
cover the entire range of text. If there are gaps between style runs,
ATSUMeasureText assigns the characters in the gap to the style run following the
gap. If there is no style run at the beginning of the range of text,
ATSUMeasureText assigns these characters to the first style run it can find. If
there no style run at the end of the range of text, ATSUMeasureText assigns the
remaining characters to the last style run it can find.

ATSUMeasureText will not change or invalidate existing laid-out lines. Its main
purpose is to give you feedback on the typographical extrema of a range of
characters so you can position lines determine line breaks.

If the range of text is less than a line, ATSUMeasureText treats it as a line and
ignores any previously set text layout attributes. If the range of text is exactly a
line in length, ATSUMeasureText performs post-compensation actions on it. If the
range of text extends beyond a line, ATSUMeasureText ignores soft line breaks
(that is, it treats the text as a line).

You should call ATSUMeasureText to determine line breaks and other text fitting
inquiry like the leading line spacing to impose on a line. It can also be used to
determine where the line origin should go. This is important for editing and
word processing applications, since it enables them to ascertain where to place
the origin of the lines and leading spaces between lines.

Figure 2-1 (page 153) illustrates the difference between the typographic
bounding rectangle passed back by ATSUMeasureText and the standard bounding
rectangle passed back by ATSUMeasureTextImage (page 153). The standard
typographic bounding rectangle is the smallest rectangle that encloses the full
span of the glyphs from the ascent line to the descent line, regardless of whether
any glyphs extend to those lines. The width of the rectangle extends from the
origin of the first glyph through the advance width of the last glyph, including
any hanging punctuation and accounting for shifts due to optical alignment.
152 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-1 Standard and typographic bounding rectangle

SPECIAL CONSIDERATIONS

ATSUMeasureText may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUMeasureTextImage 2
Obtains the standard bounding rectangle of a final laid-out line.

OSStatus ATSUMeasureTextImage (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineOffset,
UniCharCount iLineLength,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY,
Rect *oTextImageRect);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

Standard bounding rectangle

Typographic bounding rectangle
Functions 153
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iLineStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text
whose standard bounding rectangle you want to obtain. To
indicate the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iLineLength parameter. If the offset is
outside the text buffer, ATSUMeasureTextImage returns the result
code kATSUInvalidTextRangeErr.

iLineLength A value of type UniCharCount (page 194). Pass the length of the
range of text whose standard bounding rectangle you want to
obtain. To indicate the end of the text buffer, pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230).
To indicate the entire text buffer, pass kATSUToTextEnd in this
parameter and the constant kATSUFromTextBeginning in the
iLineStart parameter. If the range of text is outside the text
buffer, ATSUMeasureTextImage returns the result code
kATSUInvalidTextRangeErr.

iLocationX A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) whose image bounds you want to calculate. Pass 0 if you
just want the dimensions of the bounds with respect to one
another, not their actual onscreen position. Pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 203), if you want the dimensions of the bounds
relative to the current pen location in the current graphics port.

iLocationY A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) whose image bounds you want to calculate. Pass 0 if you
just want the dimensions of the bounds with respect to one
another, not their actual onscreen position. Pass the constant
kATSUUseGrafPortPenLoc, described in “Current Pen Location
Constant” (page 203), if you want the dimensions of the bounds
relative to the current pen location in the current graphics port.
154 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
oTextImageRectA pointer to a Rect. On return, the structure contains the
dimensions of the enclosing rectangle representing the image
bounds offset by the iLocationX and iLocationY parameters. If
the line is rotated, the rectangle’s sides are parallel to the
coordinate axis. You cannot pass NULL for this parameter.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache (that is, the format of the cached data does not match that
used by ATSUI or the cached data is corrupt). The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUMeasureTextImage function obtains the standard bounding rectangle, or
image bounds, of a line of text. ATSUMeasureTextImage takes into account line
rotation, alignment, and justification, as well as other characteristics that affect
layout like hanging punctuation. The rectangle passed back in oTextImageRect is
the same one used by the function ATSUDrawText (page 163) to draw a line of
text.

The standard bounding rectangle is the smallest rectangle that completely
encloses the filled or framed parts of the line. While the typographic bounding
rectangle takes into account the ascent and descent lines for the displayed
glyphs, the standard bounding rectangle just encloses the “inked parts” of the
displayed glyphs.

To obtain the typographic bounds of a line after it is laid out, call the function
ATSUGetGlyphBounds (page 146). To calculate the typographic bounds of a line
before it is laid out, call the function ATSUMeasureText (page 150).

If you want to instead obtain the typographic bounds of a final laid-out line, call
the function ATSUGetGlyphBounds (page 146). To calculate the standard bounding
rectangle around a final laid-out line, call the function ATSUMeasureTextImage
(page 153). For an illustration of the difference between a standard and
typographic bounding rectangle, see Figure 2-1 (page 153).

Before calculating the standard bounding rectangle enclosing a range of text,
ATSUMeasureTextImage examines the text layout object to make sure that the
style runs cover the entire range of text. If there are gaps between style runs,
Functions 155
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUMeasureTextImage assigns the characters in the gap to the style run
following the gap. If there is no style run at the beginning of the range of text,
ATSUMeasureTextImage assigns these characters to the first style run it can find. If
there no style run at the end of the range of text, ATSUMeasureTextImage assigns
the remaining characters to the last style run it can find.

The height of the standard bounding rectangle is determined by the natural line
ascent and descent calculated for the line. ATSUMeasureTextImage ignores the
previously set line ascent and descent values for the line it is measuring.
However, it uses other text layout attributes set for the line determine character
layout. If no attributes have been set for the line, ATSUMeasureTextImage uses
attributes set for the text layout object.

If the line is rotated, the sides of the passed back rectangle are parallel to the
coordinate axes and encompass the rotated line. You should pass the standard
bounding rectangle of a line of text to the function EraseRect to ensure erase all
the text. In contrast, the typographic bounding rectangle passed back by
ATSUMeasureText reflects an unrotated line.

The coordinates you specify in iLocationX and iLocationY are the same values
used by ATSUDrawText (page 163) for the line of text to be measured.

SPECIAL CONSIDERATIONS

ATSUMeasureTextImage may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Manipulating Line Breaks 2
ATSUI provides the following functions for manipulating line breaks:

� ATSUBreakLine (page 157) suggests and optionally sets a soft line break in a
line.

� ATSUSetSoftLineBreak (page 159) sets a soft line break.

� ATSUGetSoftLineBreaks (page 160) obtains all soft line breaks in a range of
text.
156 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUClearSoftLineBreaks (page 162) removes previously set soft line breaks
in a range of text.

ATSUBreakLine 2
Suggests and optionally sets a soft line break in a line.

OSStatus ATSUBreakLine (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineStart,
ATSUTextMeasurement iLineWidth,
Boolean iUseAsSoftLineBreak,
UniCharArrayOffset *oLineBreak);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iLineStart A value of type UniCharArrayOffset (page 193). The first time
you call ATSUBreakLine, pass the edge offset of the beginning of
the range of text whose soft line break(s) you wish to calculate.
On subsequent calls, pass the offset passed back in the previous
call to ATSUBreakLine. To indicate the beginning of the text
buffer, pass the constant kATSUFromTextBeginning, described in
“Text Offset Constant” (page 231). If the offset is outside the text
buffer, ATSUBreakLine returns the result code
kATSUInvalidTextRangeErr.

iLineWidth A value of type ATSUTextMeasurement (page 192). Pass a value
greater than 0 that represents the width of the line, beginning at
iLineStart. To indicate the line width previously set for the line,
pass the constant kATSUUseLineControlWidth, described in “Line
Layout Width Constant” (page 214).

iUseAsSoftLineBreak
A Boolean value. Pass true if you want ATSUBreakLine to set the
recommended soft line break; otherwise, false.

oLineBreak A pointer to a value of type UniCharArrayOffset (page 193). On
return, the recommended soft line break. If the line break occurs
in the middle of the word, ATSUBreakLine passes back the
location of the soft line break and returns the result code
Functions 157
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSULineBreakInWord. If ATSUBreakLine passes back the same
value as you passed in iLineStart, either iLineWidth is not big
enough for ATSUBreakLine to perform line breaking, or there is
another input error. You must check for this condition, because
ATSUBreakLine will not return an error in this case.

function result A result code. The result code kATSUQuickDrawTextErr indicates
that the QuickDraw function DrawText encounters an error
rendering or measuring a line of ATSUI text. For a list of other
ATSUI-specific result codes, see “Result Codes” (page 231).

DISCUSSION

The ATSUBreakLine function suggests and optionally sets a soft line break in a
line based on the line width specified in iLineWidth.

Before calculating soft line breaks, ATSUBreakLine turns off any previously set
line justification, rotation, width alignment, descent, and ascent values and
treats the text as a single line. It then examines the text layout object to make
sure that the style runs cover the entire range of text. If there are gaps between
style runs, ATSUBreakLine assigns the characters in the gap to the style run
following the gap. If there is no style run at the beginning of the range of text,
ATSUBreakLine assigns these characters to the first style run it can find. If there
no style run at the end of the range of text, ATSUBreakLine assigns the remaining
characters to the last style run it can find.

You should call ATSUBreakLine when the user inserts or deletes text or changes
text layout attributes that affect how glyphs are laid out. If the user changes
attributes that don’t affect glyph layout, it will pass back the previously set soft
line breaks. You should call ATSUBreakLine repeatedly until it does not find any
more soft line breaks.

If ATSUBreakLine does not encounter a hard line break, it uses the line width
you specify to determine how many characters can fit on a line. If you pass true
for iUseAsSoftLineBreak, it uses the soft line break it calculated to perform line
layout on the characters. ATSUBreakLine then determines whether the characters
still fit within the line. This is necessary due to end-of-line effects like swashes.
When ATSUBreakLine sets a soft line break, it clear previously set soft line breaks
in the line.

To implement word break hyphenation, pass false to the iUseAsSoftLineBreak
parameter and call the function ATSUSetSoftLineBreak (page 159).
158 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUBreakLine suggests a soft line break each time it encounters a hard line
break character like a carriage return, line feed, form feed, line separator, or
paragraph separator.

SPECIAL CONSIDERATIONS

ATSUBreakLine may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

ATSUSetSoftLineBreak 2
Sets a soft line break.

OSStatus ATSUSetSoftLineBreak (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineBreak);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iLineBreak A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the soft line break you want to set. To
indicate the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). If the offset is outside the text buffer,
ATSUSetSoftLineBreak returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUSetSoftLineBreak function enables you to use your own line-breaking
algorithm to set soft line break positions in a range of text. You should call
ATSUSetSoftLineBreak to implement word break hyphenation. If you do not
want to set line breaks, call the function ATSUBreakLine (page 157) and pass true
for the iUseAsSoftLineBreak parameter.
Functions 159
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Before calculating soft line breaks, ATSUSetSoftLineBreak turns off any
previously set line justification, rotation, width alignment, descent, and ascent
values and treats the text as a single line. It then examines the text layout object
to make sure that the style runs cover the entire range of text. If there are gaps
between style runs, ATSUSetSoftLineBreak assigns the characters in the gap to
the style run following the gap. If there is no style run at the beginning of the
range of text, ATSUSetSoftLineBreak assigns these characters to the first style
run it can find. If there no style run at the end of the range of text,
ATSUSetSoftLineBreak assigns the remaining characters to the last style run it
can find.

After calling ATSUSetSoftLineBreak, you should call the function
ATSUMeasureText (page 150) to measure the text.

SPECIAL CONSIDERATIONS

ATSUSetSoftLineBreak may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetSoftLineBreaks 2
Obtains all soft line breaks in a range of text.

OSStatus ATSUGetSoftLineBreaks (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iRangeStart,
UniCharCount iRangeLength,
ItemCount iMaximumBreaks,
UniCharArrayOffset oBreaks[],
ItemCount *oBreakCount);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.
160 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iRangeStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the range of text whose soft line break
positions you want to obtain. To indicate the beginning of the
text buffer, pass the constant kATSUFromTextBeginning, described
in “Text Offset Constant” (page 231). To indicate the entire text
buffer, pass kATSUFromTextBeginning in this parameter and the
constant kATSUToTextEnd in the iRangeLength parameter. If the
offset is outside the text buffer, ATSUGetSoftLineBreaks returns
the result code kATSUInvalidTextRangeErr.

iRangeLength A value of type UniCharCount (page 194). Pass the length of the
range of text whose soft line break positions you want to obtain.
To indicate the end of the text buffer, pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230).
To indicate the entire text buffer, pass kATSUToTextEnd in this
parameter and the constant kATSUFromTextBeginning in the
iRangeStart parameter. If the range of text is outside the text
buffer, ATSUGetSoftLineBreaks returns the result code
kATSUInvalidTextRangeErr.

iMaximumBreaksThe maximum number of soft line breaks you want to obtain.
Typically, this is equivalent to the number of elements in the
oBreaks array. To determine this value, see the discussion below.

oBreaks An array of values of type UniCharArrayOffset (page 193). Before
calling ATSUGetSoftLineBreaks, pass a pointer to memory that
you have allocated for this array. If you are uncertain of how
much memory to allocate, see the discussion below. On return,
the array contains all the soft line breaks in the range of text.

oBreakCount A pointer to a count. On return, the actual number of soft line
breaks in the range of text. This may be greater than the value
passed in the iMaximumBreaks parameter. You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUGetSoftLineBreaks function obtains all the soft line breaks that have
been set in a range of text.
Functions 161
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUClearSoftLineBreaks 2
Removes previously set soft line breaks in a range of text.

OSStatus ATSUClearSoftLineBreaks (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iRangeStart,
UniCharCount iRangeLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iRangeStart A value of type UniCharArrayOffset (page 193). Pass the edge
offset of the beginning of the range of text whose soft line break
positions you want to remove. To indicate the beginning of the
text buffer, pass the constant kATSUFromTextBeginning, described
in “Text Offset Constant” (page 231). To indicate the entire text
buffer, pass kATSUFromTextBeginning in this parameter and the
constant kATSUToTextEnd in the iRangeLength parameter. If the
offset is outside the text buffer, ATSUClearSoftLineBreaks returns
the result code kATSUInvalidTextRangeErr.

iRangeLength A value of type UniCharCount (page 194). Pass the length of the
range of text whose soft line break positions you want to
remove. To indicate the end of the text buffer, pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230).
To indicate the entire text buffer, pass kATSUToTextEnd in this
parameter and the constant kATSUFromTextBeginning in the
iRangeStart parameter. If the range of text is outside the text
buffer, ATSUClearSoftLineBreaks returns the result code
kATSUInvalidTextRangeErr.

function result A result code. See “Result Codes” (page 231).

VERSION NOTES

Available beginning with ATSUI 1.0.
162 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Drawing Text 2
ATSUI provides the following function for drawing text:

� ATSUDrawText (page 163) draws a range of text at a specified screen location.

ATSUDrawText 2
Draws a range of text at a specified screen location.

OSStatus ATSUDrawText (
ATSUTextLayout iTextLayout,
UniCharArrayOffset iLineOffset,
UniCharCount iLineLength,
ATSUTextMeasurement iLocationX,
ATSUTextMeasurement iLocationY);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iLineOffset A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text that
you want to render. If the range of text spans multiple lines, you
should call ATSUDrawText for each line and pass the offset of the
beginning of the new line to draw. To indicate the beginning of
the text buffer, pass the constant kATSUFromTextBeginning,
described in “Text Offset Constant” (page 231). To indicate the
entire text buffer, pass kATSUFromTextBeginning in this
parameter and the constant kATSUToTextEnd in the iLineLength
parameter. If the offset is outside the text buffer, ATSUDrawText
returns the result code kATSUInvalidTextRangeErr.

iLineLength A value of type UniCharCount (page 194). Pass the length of the
range of text that you want to render. To indicate the end of the
text buffer, pass the constant kATSUToTextEnd, described in “Text
Length Constant” (page 230). To indicate the entire text buffer,
pass kATSUToTextEnd in this parameter and the constant
kATSUFromTextBeginning in the iLineOffset parameter. If the
range of text is outside the text buffer, ATSUDrawText returns the
result code kATSUInvalidTextRangeErr.
Functions 163
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iLocationX A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) containing the range of text you want to draw. Pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want to draw relative to
the current pen location in the current graphics port.

iLocationY A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) containing the range of text you want to draw. Pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want to draw relative to
the current pen location in the current graphics port.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache. This may be because the format of the cached data does
not match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while rendering a line of
text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUDrawText function renders a range of text at a specified screen location.
It uses the same transfer mode and resolution as those set in the graphics port.
Text color is taken from the style object and the value in the graphics port is
ignored. If the text color was not previously set in the style object, you will get
black text, regardless of what was set in the graphics port.

Before drawing the line, ATSUDrawText turns off any previously set line
justification, rotation, width alignment, descent, and ascent values and treats
the text as a single line. It then examines the text layout object to make sure that
the style runs cover the entire range of text. If there are gaps between style runs,
ATSUDrawText assigns the characters in the gap to the style run following the
gap. If there is no style run at the beginning of the range of text, ATSUDrawText
assigns these characters to the first style run it can find. If there no style run at
the end of the range of text, ATSUDrawText assigns the remaining characters to
the last style run it can find.

If you want to draw a range of text that spans multiple lines, you should call
ATSUDrawText for each line of text that is being drawn, even if all the lines are in
164 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the same text layout object. You should adjust the iLineOffset parameter to
reflect the beginning of each line to be drawn.

SPECIAL CONSIDERATIONS

ATSUDrawText may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

Highlighting and Unhighlighting Text 2
ATSUI provides the following functions for highlighting and unhighlighting
text:

� ATSUHighlightText (page 165) highlights a range of text.

� ATSUUnhighlightText (page 168) removes highlighting from a range of text.

� ATSUGetTextHighlight (page 170) obtains the highlight region for a range of
text.

ATSUHighlightText 2
Highlights a range of text.

OSStatus ATSUHighlightText (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.
Functions 165
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextBasePointX
A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) containing the range of text you want to highlight. Pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want to highlight relative
to the current pen location in the current graphics port.

iTextBasePointY
A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) containing the range of text you want to highlight. Pass the
constant kATSUUseGrafPortPenLoc, described in “Current Pen
Location Constant” (page 203), if you want to highlight relative
to the current pen location in the current graphics port.

iHighlightStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text that
you want to highlight. If the range of text spans multiple lines,
you should call ATSUHighlightText for each line and pass the
offset of the beginning of the new line you want to highlight. To
indicate the beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iHighlightLength parameter. If the offset
is outside the text buffer, ATSUHighlightText returns the result
code kATSUInvalidTextRangeErr.

iHighlightLength
A value of type UniCharCount (page 194). Pass the length of the
range of text that you want to highlight. To indicate the end of
the text buffer, pass the constant kATSUToTextEnd, described in
“Text Length Constant” (page 230). To indicate the entire text
buffer, pass kATSUToTextEnd in this parameter and the constant
kATSUFromTextBeginning in the iHighlightStart parameter. If
the range of text is outside the text buffer, ATSUHighlightText
returns the result code kATSUInvalidTextRangeErr.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache. This may be because the format of the cached data does
166 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
not match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUHighlightText function highlights a range of text using the highlight
information in the graphics port.

Before calculating the highlighting dimensions, ATSUHighlightText turns off
any previously set line justification, rotation, width alignment, descent, and
ascent values and treats the text as a single line. It then examines the text layout
object to make sure that the style runs cover the entire range of text. If there are
gaps between style runs, ATSUHighlightText assigns the characters in the gap to
the style run following the gap. If there is no style run at the beginning of the
range of text, ATSUHighlightText assigns these characters to the first style run it
can find. If there no style run at the end of the range of text, ATSUHighlightText
assigns the remaining characters to the last style run it can find.

If you want to highlight a range of text that spans multiple lines, you should
call ATSUHighlightText for each line of text that is being highlighted, even if all
the lines are in the same text layout object. You should adjust the
iHighlightStart parameter to reflect the beginning of each line to be
highlighted.

You can extend highlighting across tab stops by setting the bits specified by the
mask constants kATSLineFillOutToWidth and kATSLineImposeNoAngleForEnds,
described in “Line Layout Option Mask Constants” (page 212).

ATSUHighlightText uses the previously set line ascent and descent values to
calculate the height of the highlighted region. If these values have not been set
for the line, ATSUHighlightText uses the line ascent and descent values set for
the text layout object containing the line. If these are not set, it uses the default
values.

SPECIAL CONSIDERATIONS

ATSUHighlightText may allocate memory in your application heap, unless you
designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).
Functions 167
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUUnhighlightText 2
Removes highlighting from a range of text.

OSStatus ATSUUnhighlightText (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) containing the range of text that you want to unhighlight.
Pass the constant kATSUUseGrafPortPenLoc, described in “Current
Pen Location Constant” (page 203), if you want to remove
highlighting relative to the current pen location in the current
graphics port.

iTextBasePointY
A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) containing the range of text that you want to unhighlight.
Pass the constant kATSUUseGrafPortPenLoc, described in “Current
Pen Location Constant” (page 203), if you want to remove
highlighting relative to the current pen location in the current
graphics port.

iHighlightStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text that
you want to unhighlight. If the range of text spans multiple
lines, you should call ATSUUnhighlightText for each line and pass
168 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
the offset of the beginning of the new line you want to
unhighlight. To indicate the beginning of the text buffer, pass the
constant kATSUFromTextBeginning, described in “Text Offset
Constant” (page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iHighlightLength parameter. If the offset
is outside the text buffer, ATSUUnhighlightText returns the result
code kATSUInvalidTextRangeErr.

iHighlightLength
A value of type UniCharCount (page 194). Pass the length of the
range of text that you want to unhighlight. To indicate the end
of the text buffer, pass the constant kATSUToTextEnd, described in
“Text Length Constant” (page 230). To indicate the entire text
buffer, pass kATSUToTextEnd in this parameter and the constant
kATSUFromTextBeginning in the iHighlightStart parameter. If
the range of text is outside the text buffer, ATSUUnhighlightText
returns the result code kATSUInvalidTextRangeErr.

function result A result code. The result code kATSUInvalidCacheErr indicates
that an attempt was made to read in style data from an invalid
cache. This may be because the format of the cached data does
not match that used by ATSUI or the cached data is corrupt. The
result code kATSUQuickDrawTextErr indicates that the QuickDraw
function DrawText encountered an error while measuring a line
of text. For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUUnhighlightText function removes highlighting from a specified range
of text using the highlight information in the graphics port.

Before calculating the dimensions of the highlighting region to remove,
ATSUUnhighlightText turns off any previously set line justification, rotation,
width alignment, descent, and ascent values and treats the text as a single line.
It then examines the text layout object to make sure that the style runs cover the
entire range of text. If there are gaps between style runs, ATSUUnhighlightText
assigns the characters in the gap to the style run following the gap. If there is no
style run at the beginning of the range of text, ATSUUnhighlightText assigns
these characters to the first style run it can find. If there no style run at the end
Functions 169
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
of the range of text, ATSUUnhighlightText assigns the remaining characters to
the last style run it can find.

If you want to remove highlighting from a range of text that spans multiple
lines, you should call ATSUUnhighlightText for each line of text that is being
unhighlighted, even if all the lines are in the same text layout object. You should
adjust the iHighlightStart parameter to reflect the beginning of each line to be
unhighlighted.

You can remove highlighting across tab stops by setting the bits specified by the
mask constants kATSLineFillOutToWidth and kATSLineImposeNoAngleForEnds,
described in “Line Layout Option Mask Constants” (page 212).

ATSUUnhighlightText uses the previously set line ascent and descent values to
calculate the height of the highlight region to be removed. If these values have
not been set for the line, ATSUUnhighlightText uses the line ascent and descent
values set for the text layout object containing the line. If these are not set, it
uses the default values.

SPECIAL CONSIDERATIONS

ATSUUnhighlightText may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUGetTextHighlight 2
Obtains the highlight region for a range of text.

OSStatus ATSUGetTextHighlight (
ATSUTextLayout iTextLayout,
ATSUTextMeasurement iTextBasePointX,
ATSUTextMeasurement iTextBasePointY,
UniCharArrayOffset iHighlightStart,
UniCharCount iHighlightLength,
RgnHandle oHighlightRegion);
170 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

iTextBasePointX
A value of type ATSUTextMeasurement (page 192). Pass the
x-coordinate of the origin of the line (in the current graphics
port) containing the range of text whose highlight region you
want to obtain. Pass the constant kATSUUseGrafPortPenLoc,
described in “Current Pen Location Constant” (page 203), if you
want to obtain the highlighting region relative to the current pen
location in the current graphics port.

iTextBasePointY
A value of type ATSUTextMeasurement (page 192). Pass the
y-coordinate of the origin of the line (in the current graphics
port) containing the range of text whose highlight region you
want to obtain. Pass the constant kATSUUseGrafPortPenLoc,
described in “Current Pen Location Constant” (page 203), if you
want to obtain the highlighting region relative to the current pen
location in the current graphics port.

iHighlightStart
A value of type UniCharArrayOffset (page 193). Pass the edge
offset that corresponds to the beginning of the range of text
whose highlight region you want to determine. To indicate the
beginning of the text buffer, pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant”
(page 231). To indicate the entire text buffer, pass
kATSUFromTextBeginning in this parameter and the constant
kATSUToTextEnd in the iHighlightLength parameter. If the offset
is outside the text buffer, ATSUGetTextHighlight returns the
result code kATSUInvalidTextRangeErr.

iHighlightLength
A value of type UniCharCount (page 194). Pass the length of the
range of text whose highlight region you want to determine. To
indicate the end of the text buffer, pass the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230).
To indicate the entire text buffer, pass kATSUToTextEnd in this
parameter and the constant kATSUFromTextBeginning in the
Functions 171
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
iHighlightStart parameter. If the range of text is outside the
text buffer, ATSUGetTextHighlight returns the result code
kATSUInvalidTextRangeErr.

oHighlightRegion
A handle of type RgnHandle. Before calling
ATSUGetTextHighlight, create a region handle by calling the
NewRgn function. On return, RgnHandle points to a RgnPtr which
points to a Region structure. The structure has two fields,
rgnSize and rgnBBox, that represent the highlight region for the
text. In the case of discontiguous highlighting, the region
consists of multiple components, with the rgnBBox field
specifying the bounding box around the entire area of
discontiguous highlighting. You cannot pass NULL for this
parameter.

function result A result code. The result code kATSUCoordinateOverflowErr
indicate that the coordinates passed in the iTextBasePointX and
iTextBasePointY parameters caused a coordinate overflow. The
result code kATSUInvalidCacheErr indicates that an attempt was
made to read in style data from an invalid cache. This may be
because the format of the cached data does not match that used
by ATSUI or the cached data is corrupt. The result code
kATSUQuickDrawTextErr indicates that the QuickDraw function
DrawText encountered an error while measuring a line of text.
For a list of other ATSUI-specific result codes, see “Result
Codes” (page 231).

DISCUSSION

The ATSUGetTextHighlight function determines the highlight region for a range
of text. It does not highlight the text.

When there are discontiguous highlighting regions, the structure passed back in
the oHighlightRegion parameter is made up of multiple components. The
rgnBBox field of the structure represents the bounding box around the entire
area of discontiguous highlighting. In ATSUI 1.1, the maximum number of
components that can be passed back is 31; in version 1.2, the maximum is 127.

ATSUGetTextHighlight uses the previously set line ascent and descent values to
calculate the height of the highlight region. If these values have not been set for
the line, ATSUGetTextHighlight uses the line ascent and descent values set for the
172 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
text layout object containing the line. If these are not set, it uses the default
values.

SPECIAL CONSIDERATIONS

ATSUGetTextHighlight may allocate memory in your application heap, unless
you designate a different heap by calling the function ATSUCreateMemorySetting
(page 174).

VERSION NOTES

Available beginning with ATSUI 1.0. In ATSUI 1.2, the maximum number of
components that can be passed back is 127.

Performing Background Processing 2
ATSUI provides the following function for performing background processing:

� ATSUIdle (page 173) enables ATSUI to perform background processing.

ATSUIdle 2
Enables ATSUI to perform background processing.

OSStatus ATSUIdle (ATSUTextLayout iTextLayout);

iTextLayout A reference of type ATSUTextLayout (page 191). Pass a reference
to an initialized text layout object. You cannot pass NULL for this
parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Although versions 1.0 and 1.1 of ATSUI do not implement background
processing for text layout objects, you should call the ATSUIdle function at least
once in your main event loop to support the implementation of background
processing in future versions of ATSUI.
Functions 173
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

Controlling Memory Allocation 2
ATSUI provides the following functions for controlling memory allocation in
ATSUI:

� ATSUCreateMemorySetting (page 174) creates a memory allocation setting that
specifies either the specific heap or the application-defined callback functions
that ATSUI should use when allocating memory.

� ATSUSetCurrentMemorySetting (page 176) makes a memory allocation setting
current.

� ATSUGetCurrentMemorySetting (page 176) returns the current memory
allocation setting.

� ATSUDisposeMemorySetting (page 177) disposes of a memory allocation
setting.

ATSUCreateMemorySetting 2
Creates a memory setting.

OSStatus ATSUCreateMemorySetting (
ATSUHeapSpec iHeapSpec,
ATSUMemoryCallbacks *iMemoryCallbacks,
ATSUMemorySetting *oMemorySetting);

iHeapSpec A value of type ATSUHeapSpec. Pass a value that indicates you
want ATSUI or your own application to control memory
allocation in ATSUI. See “Heap Specification Constants”
(page 208) for a description of possible values. If you pass the
kATSUUseSpecificHeap constant, you must pass a pointer to a
union that contains the correctly-prepared heap in the heapToUse
field in the iMemoryCallbacks parameter. If you pass the
kATSUUseCallbacks constant, you must pass a pointer to a
ATSUMemoryCallbacks union that contains pointers to your
application-defined functions in the iMemoryCallbacks
parameter. If you pass the kATSUUseCurrentHeap or
174 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUUseAppHeap constant, you should pass a NULL pointer in the
iMemoryCallbacks parameter. You must pass a valid value for
this parameter.

iMemoryCallbacks
A pointer to a union of type ATSUMemoryCallbacks (page 189).
Pass a pointer to a union that contains either pointers to your
application-defined memory allocation functions or the heap
that you want ATSUI to use when allocating memory.

oMemorySetting
A pointer to a reference of type ATSUMemorySetting (page 190).
On return, the new memory allocation setting. To make this
setting current, you must pass it to the function
ATSUSetCurrentMemorySetting (page 176). You cannot pass NULL
for this parameter.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

The ATSUCreateMemorySetting function enables you to specify whether you wish
to perform memory allocations yourself or have ATSUI do so. If you want to
control memory allocation in ATSUI, pass kATSUUseCallbacks in the iHeapSpec
parameter and a pointer to a ATSUMemoryCallbacks union that contains pointers
to your callback functions in the iMemoryCallbacks parameter.

After creating a memory setting, you must pass it to the function
ATSUSetCurrentMemorySetting (page 176) to ensure that it will be used in
subsequent Memory Manager calls.

You might want to create different memory settings for different memory
allocation operations. For example, you might create two different settings
designating different heaps to use for allocating the memory associated with
style and text layout object creation. Before creating a style or text layout object,
you would then make the appropriate setting current by calling
ATSUSetCurrentMemorySetting.

VERSION NOTES

Available beginning with ATSUI 1.1.
Functions 175
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetCurrentMemorySetting 2
Makes a memory setting current.

OSStatus ATSUSetCurrentMemorySetting (ATSUMemorySetting iMemorySetting);

iMemorySetting
A reference of type ATSUMemorySetting (page 190). Pass a
reference to the memory setting that you want to make current.
Until another setting is made current, this setting will be used in
subsequent Memory Manager calls made within ATSUI.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

After you create a memory setting by calling the function
ATSUCreateMemorySetting (page 174), you must pass it to the
ATSUSetCurrentMemorySetting function to ensure that it will be used in
subsequent Memory Manager calls.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUGetCurrentMemorySetting 2
Returns the current memory allocation setting.

ATSUMemorySetting ATSUGetCurrentMemorySetting (
void);

function result A reference of type ATSUMemorySetting (page 190) that contains
the current memory setting. If there is no current memory
setting, ATSUGetCurrentMemorySetting returns NULL.

VERSION NOTES

Available beginning with ATSUI 1.1.
176 Functions

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUDisposeMemorySetting 2
Disposes of a memory setting.

OSStatus ATSUDisposeMemorySetting (
ATSUMemorySetting iMemorySetting);

iMemorySetting
A reference of type ATSUMemorySetting (page 190). Pass a
reference to the memory setting that you want to dispose of. If
you dispose of the current memory setting, ATSUI will use the
current heap and its own callback functions to perform memory
allocation operations.

function result A result code. See “Result Codes” (page 231).

DISCUSSION

Before you dispose of a memory setting, you should dispose of the memory
associated with style and text layout objects that were allocated using that
memory setting. For example, if you want to dispose of a memory setting that
uses your application-defined callback functions to allocate memory, you
should dispose of any memory that ATSUI allocated as a result of these
callbacks before disposing of the setting.

VERSION NOTES

Available beginning with ATSUI 1.1.

Callbacks 2

� ATSUCustomAllocFunc (page 178) defines a pointer to a memory allocation
callback function. Your callback function manages memory allocation
operations typically handled by ATSUI, including which heap to use and
how memory allocation should occur.

� ATSUCustomGrowFunc (page 179) defines a pointer to a memory reallocation
callback function. Your callback function manages memory reallocation
operations typically handled by ATSUI.
Callbacks 177
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUCustomFreeFunc (page 180) defines a pointer to a memory deallocation
callback function. Your callback function manages memory deallocation
operations typically handled by ATSUI.

ATSUCustomAllocFunc 2
Defines a pointer to a memory allocation callback function. Your callback
function manages memory allocation operations typically handled by ATSUI,
including which heap to use and how memory allocation should occur.

typedef void * (*ATSUCustomAllocFunc)(void *refCon, ByteCount howMuch);

You would declare your function like this if you were to name it
MyATSUCustomAllocFunc:

void * MyATSUCustomAllocFunc (
void *refCon,
ByteCount howMuch);

refCon A pointer to arbitrary data for use in your memory allocation
callback function. ATSUI passes a pointer to data that your
application previously supplied in the memoryRefCon field of the
ATSUMemoryCallbacks (page 189) union.

howMuch The amount of memory (in bytes) that you need to allocate.

function result An untyped pointer to the beginning of the block of memory
allocated by your callback function.

DISCUSSION

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the constant
kATSUUseCallbacks in iHeapSpec and a pointer to the ATSUMemoryCallbacks
(page 189) union in iMemoryCallbacks. You then supply a pointer of type
ATSUCustomAllocFunc in the Alloc field of the callbacks structure of the
ATSUMemoryCallbacks union.

Note that your MyATSUCustomAllocFunc function is expected to return a pointer
to the start of the allocated memory, unless it terminates in an application.
178 Callbacks

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUCustomGrowFunc 2
Defines a pointer to a memory reallocation callback function. Your callback
function manages memory reallocation operations typically handled by ATSUI.

typedef void * (*ATSUCustomGrowFunc)(void *refCon, void *oldBlock,
ByteCount oldSize, ByteCount newSize);

You would declare your function like this if you were to name it
MyATSUCustomGrowFunc:

void * MyATSUCustomGrowFunc (
void *refCon,
void *oldBlock,
ByteCount oldSize,
ByteCount newSize);

refCon A pointer to arbitrary data for use in your memory reallocation
callback function. ATSUI passes a pointer to data that your
application previously supplied in the memoryRefCon field of the
ATSUMemoryCallbacks (page 189) union.

oldBlock An untyped pointer to the beginning of the block of memory
you wish to reallocate. ATSUI passes this value to your
application.

oldSize The size (in bytes) of the memory you wish to reallocate. ATSUI
passes this value to your application to indicate the number of
bytes of memory you should copy if you need to allocate
memory for the grown block.

newSize The size (in bytes) of the new block of memory.

function result An untyped pointer to the beginning address of the block of
memory reallocated by your MyATSUCustomGrowFunc function.
Callbacks 179
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the constant
kATSUUseCallbacks in iHeapSpec and a pointer to the ATSUMemoryCallbacks
(page 189) union in iMemoryCallbacks. You then supply a pointer of type
ATSUCustomGrowFunc in the Grow field of the callbacks structure of the
ATSUMemoryCallbacks union.

Note that your MyATSUCustomGrowFunc function is expected to return a pointer to
the start of the allocated memory, unless it terminates in an application.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUCustomFreeFunc 2
Defines a pointer to your memory deallocation callback function. Your callback
function manages memory deallocation operations typically handled by ATSUI.

typedef void (*ATSUCustomFreeFunc)(void *refCon, void *doomedBlock);

You would declare your function like this if you were to name it
MyATSUCustomFreeFunc:

void MyATSUCustomFreeFunc (
void *refCon,
void *doomedBlock);

refCon A pointer to arbitrary data for use in your memory deallocation
callback function. ATSUI passes a pointer to data that your
application previously supplied in the memoryRefCon field of the
ATSUMemoryCallbacks (page 189) union.

doomedBlock A pointer to the beginning of the block of memory that your
callback function will deallocate.

function result The address of the block of memory freed by your
MyATSUCustomFreeFunc function.
180 Callbacks

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
DISCUSSION

You can register your callback function by calling the function
ATSUCreateMemorySetting (page 174) and passing the constant
kATSUUseCallbacks in iHeapSpec and a pointer to the ATSUMemoryCallbacks
(page 189) union in iMemoryCallbacks. You then supply a pointer of type
ATSUCustomFreeFunc in the Free field of the callbacks structure of the
ATSUMemoryCallbacks union.

VERSION NOTES

Available beginning with ATSUI 1.1.

Data Types 2

� ATSJustPriorityWidthDeltaOverrides (page 182)

� ATSTrapezoid (page 184)

� ATSUAttributeInfo (page 185)

� ATSUAttributeValuePtr (page 186)

� ATSUCaret (page 186)

� ATSUCustomAllocFunc (page 178)

� ATSUCustomGrowFunc (page 179)

� ATSUCustomFreeFunc (page 180)

� ATSUFontFeatureType (page 187)

� ATSUFontFeatureSelector (page 188)

� ATSUFontID (page 188)

� ATSUFontVariationAxis (page 188)

� ATSUFontVariationValue (page 189)

� ATSUMemoryCallbacks (page 189)

� ATSUMemorySetting (page 190)

� ATSUStyle (page 191)
Data Types 181
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� ATSUTextLayout (page 191)

� ATSUTextMeasurement (page 192)

� ConstUniCharArrayPtr (page 192)

� UniChar (page 192)

� UniCharArrayHandle (page 193)

� UniCharArrayOffset (page 193)

� UniCharArrayPtr (page 194)

� UniCharCount (page 194)

ATSJustPriorityWidthDeltaOverrides 2
The ATSJustPriorityWidthDeltaOverrides type is an array of four width delta
override structures of type ATSJustWidthDeltaEntryOverride, one for each of the
four justification priorities. Each structure contains, for both the grow and
shrink cases, limits to the amount of space that can be added or removed from
both the right and left sides of each of the glyphs of a given justification priority.

The ATSJustPriorityWidthDeltaOverrides type can be used to set and get
justification behavior and priority override weighting; see “Style Run Attribute
Tag Constants” (page 217).

struct ATSJustWidthDeltaEntryOverride {
Fixed beforeGrowLimit;
Fixed beforeShrinkLimit;
Fixed afterGrowLimit;
Fixed afterShrinkLimit;
JustificationFlags growFlags;
JustificationFlags shrinkFlags;

};
typedef struct ATSJustWidthDeltaEntryOverride
ATSJustWidthDeltaEntryOverride;
typedef ATSJustWidthDeltaEntryOverride
ATSJustPriorityWidthDeltaOverrides[4];

Field descriptions

beforeGrowLimit The number of points by which a 1-point glyph can expand
on the left side (top side for vertical text). For example, a
182 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
value of 0.2 means that a 24-point glyph can have by no
more than 4.8 points of extra space added on the left side
(top side for vertical text).

beforeShrinkLimit The number of points by which a 1-point glyph can shrink
on the left side (top side for vertical text). If specified, this
value should be negative.

afterGrowLimit The number of points by which a 1-point glyph can expand
on the right side (bottom side for vertical text).

afterShrinkLimit The number of points by which a 1-point glyph can shrink
on the right side (bottom side for vertical text). If specified,
this value should be negative.

growFlags Mask constants that indicate whether ATSUI should apply
the limits defined in the beforeGrowLimit and
afterGrowLimit fields. See “Justification Override Mask
Constants” (page 287) for a description of possible values.
These mask constants also control whether unlimited gap
absorption should be applied to the priority of glyphs
specified in the given width delta override structure. You
can use these mask constants to selectively override the
grow case only, while retaining default behavior for other
cases.

shrinkFlags Mask constants that indicate whether ATSUI should apply
the limits defined in the beforeShrinkLimit and
afterShrinkLimit fields. See “Justification Override Mask
Constants” (page 287) for a description of possible values.
These mask constants also control whether unlimited gap
absorption should be applied to the priority of glyphs
specified in the given width delta override structure. You
can use these mask constants to selectively override the
grow case only, while retaining default behavior for other
cases.

VERSION NOTES

Available beginning with ATSUI 1.0
Data Types 183
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSTrapezoid 2
The ATSTrapezoid type is a structure that contains the coordinates of
typographic bounding trapezoid(s) for a final laid-out line of text. The
dimensions of the resulting trapezoid are relative to the coordinates specified in
the iTextBasePointX and iTextBasePointY parameters. The width of the glyph
bounds will be determined based on the value passed in the iTypeOfBounds
parameter.

The function ATSUGetGlyphBounds (page 146) passes back an array of structures
of type ATSTrapezoid to specify the enclosing trapezoid(s) of a final laid-out line
of text. If the range of text spans directional boundaries, ATSUGetGlyphBounds
will pass back multiple trapezoids defining these regions.

struct ATSTrapezoid {
FixedPoint upperLeft;
FixedPoint upperRight;
FixedPoint lowerRight;
FixedPoint lowerLeft;

};

Field descriptions

upperLeft A structure of type FixedPoint that contains the upper left
coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

upperRight A structure of type FixedPoint that contains the upper right
coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

lowerRight A structure of type FixedPoint that identifies the lower
right coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

lowerLeft A structure of type FixedPoint that identifies the lower left
coordinates (assuming a horizontal line of text) of the
typographic glyph bounds.

VERSION NOTES

Available beginning with ATSUI 1.1. In ATSUI 1.1, ATSUGetGlyphBounds can pass
back a maximum of 31 bounding trapezoids; in ATSUI 1.2, ATSUGetGlyphBounds
can pass back as many as 127 bounding trapezoids.
184 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUAttributeInfo 2
The ATSUAttributeInfo type is a structure containing an attribute tag that
identifies a particular attribute value and the data size (in bytes) of that
attribute value.

Several ATSUI functions pass back an array of structures of this type. The
function ATSUGetAllAttributes (page 40) passes back an array of
ATSUAttributeInfo structures to represent the data sizes of all previously set
style run attribute values and the corresponding style run attribute tags that
identify those style run attribute values. The function ATSUGetAllLayoutControls
(page 99) passes back an array of ATSUAttributeInfo structures to represent the
data sizes of all previously set text layout attribute values for an entire text
layout object and the corresponding text layout attribute tags that identify those
text layout attribute values. The function ATSUGetAllLineControls (page 108)
passes back an array of ATSUAttributeInfo structures to represent the data sizes
of all previously set text layout attribute values for a single line in a text layout
object and the corresponding text layout attribute tags that identify those text
layout attribute values.

typedef struct {
ATSUAttributeTag fTag;
ByteCount fValueSize

}ATSUAttributeInfo;

Field descriptions

fTag Identifies a particular style run or text attribute value. For a
description of the Apple-defined style run and text layout
attribute tag constants, see “Style Run Attribute Tag
Constants” (page 217) and “Text Layout Attribute Tag
Constants” (page 226), respectively.

fValueSize The size (in bytes) of the style run or text layout attribute
value.

VERSION NOTES

Available beginning with ATSUI 1.0.
Data Types 185
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUAttributeValuePtr 2
The ATSUAttributeValuePtr type is a pointer to a style run or text layout
attribute value of unknown size. Each attribute value pointed to by
ATSUAttributeValuePtr is identified by an attribute tag and the size (in bytes) of
the attribute value.

You pass the ATSUAttributeValuePtr type to functions that set or clear attribute
values in style and text layout objects. The ATSUAttributeValuePtr type is
passed back by functions that query style and text layout objects for their
attribute values. You must dereference this pointer and cast it to the appropriate
data type to obtain the actual attribute value.

typedef void * ATSUAttributeValuePtr;

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUCaret 2
The ATSUCaret type is a structure containing the coordinates of the caret that
corresponds to an edge offset. The function ATSUOffsetToPosition (page 134)
passes back two structures of type ATSUCaret to represent the caret position(s),
relative to the origin of the line in the current graphics port, corresponding to a
specified edge offset. If the edge offset is at a line boundary, the structure passed
back in oMainCaret contains the starting and ending pen locations of the high
caret, while oSecondCaret contains the low caret. If the offset is not at a line
boundary, both parameters contain the same structure. This structure contains
the starting and ending pen locations of the main caret.

typedef struct {
Fixed fX;
Fixed fY;
Fixed fDeltaX;
Fixed fDeltaY;

}ATSUCaret;
186 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Field descriptions

fX Represents the x-coordinate of the caret’s starting pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred.

fY Represents the y-coordinate of the caret’s starting pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred.

fDeltaX Represents the x-coordinate of the caret’s ending pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred. This
position takes into account line rotation. You do not have to
rotate it yourself.

fDeltaX Represents the y-coordinate of the caret’s ending pen
position relative to the position of the origin of the line in
the current graphics port in which the hit occurred. This
position takes into account line rotation. You do not have to
rotate it yourself.

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFontFeatureType 2
The ATSUFontFeatureType type describes the attributes of a particular font
feature. For example, kLigaturesType represents the presence of ligatures in a
font. You pass the ATSUFontFeatureType type to functions that set or clear font
feature types in a style run. The ATSUFontFeatureType type is passed back by
functions that obtain font feature types in a style run.

typedef Uint16 ATSUFontFeatureType;

VERSION NOTES

Available beginning with ATSUI 1.0.
Data Types 187
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUFontFeatureSelector 2
The ATSUFontFeatureSelector type represents the state (on or off) of a particular
feature type. For example, kRequiredLigaturesOnSelector indicates that the
ligature feature type is on. You pass the ATSUFontFeatureSelector type to
functions that set or clear font feature selectors in a style run. The
ATSUFontFeatureSelector type is passed back by functions that obtain font
feature selectors in a style run.

typedef Uint16 ATSUFontFeatureSelector;

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFontID 2
The ATSUFontID type represents the unique identifier of a font to the font
management system in ATSUI. You pass the ATSUFontID type with functions
that set and obtain font information. The ATSUFontID type is passed back by
functions that count fonts installed on a users’s system. The ATSUFontID type
can be also used to set and get the font in a style run; see “Style Run Attribute
Tag Constants” (page 217).

typedef UInt32 ATSUFontID;

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFontVariationAxis 2
The ATSUFontVariationAxis type represents a stylistic attribute and the range of
values that the font can use to express this attribute. You pass the
ATSUFontVariationAxis type to functions that set or clear the font variations in a
style run. The ATSUFontVariationAxis type is passed back by functions that
query a style run for its font variations.

typedef FourCharCode ATSUFontVariationAxis;
188 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUFontVariationValue 2
The ATSUFontVariationValue type represents the range of values that the font
can use for a particular font variation. You pass the ATSUFontVariationValue
type to functions that set and clear font variations in a style run. The
ATSUFontVariationValue type is passed back by functions that query a style run
for font variations.

typedef Fixed ATSUFontVariationValue;

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUMemoryCallbacks 2
The ATSUMemoryCallbacks type is a union containing either pointers to your
application-defined memory allocation functions or the heap that you want
ATSUI to use when allocating memory. If you want to control memory
allocation in ATSUI, you should supply pointers to your application-defined
functions in the callbacks structure field of the union. If you want ATSUI to
control memory allocation, you should supply the memory heap for ATSUI to
use in the heapToUse field.

The ATSUMemoryCallbacks union is passed back by the function
ATSUCreateMemorySetting (page 174) to represent the newly-created memory
setting.

union ATSUMemoryCallbacks {
struct {

ATSUCustomAllocFunc Alloc;
ATSUCustomFreeFunc Free;
ATSUCustomGrowFunc Grow;
void * memoryRefCon;

} callbacks;
Data Types 189
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
THz heapToUse;
};
typedef union ATSUMemoryCallbacksATSUMemoryCallbacks;

Field descriptions

callbacks A structure containing the Alloc, Free, Grow, and
memoryRefCon fields. These fields contain pointers to your
memory allocation callback functions, if they exist, and
arbitrary data for use in your callback functions.
The Alloc field contains a pointer of type
ATSUCustomAllocFunc (page 178) to your memory allocation
callback function.
The Free field contains a pointer of type
ATSUCustomFreeFunc (page 180) to your memory
deallocation callback function.
The Grow field contains a pointer of type
ATSUCustomGrowFunc (page 179) to your memory reallocation
callback function.
The memoryRefCon field contains a pointer to arbitrary data
for use in your callback functions.

heapToUse A pointer of type THz. Pass a pointer to the Zone structure
that you want ATSUI to use for simple Memory Manager
calls.

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUMemorySetting 2
The ATSUMemorySetting type is a reference to a private structure containing
information about the current memory setting. You pass a reference of type
ATSUMemorySetting reference to the functions ATSUDisposeMemorySetting
(page 177) and ATSUSetCurrentMemorySetting (page 176) to either dispose of a
memory setting or make one current. The function
ATSUGetCurrentMemorySetting (page 176) passes back a reference of this type to
indicate the current memory setting.
190 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
typedef struct OpaqueATSUMemorySetting* ATSUMemorySetting;

VERSION NOTES

Available beginning with ATSUI 1.1.

ATSUStyle 2
The ATSUStyle type is a reference to a private structure containing information
about a style object. The structure contains the style run attributes, font features,
and font variations that have been set for a style run. You pass the ATSUStyle
type to functions that set or clear style run attributes, font features, or font
variations, as well as functions that copy style objects. The ATSUStyle type is
passed back by functions that query a style object for its style run attributes,
font features, or font variations, as well as by functions that create a style object.

typedef struct OpaqueATSUStyle* ATSUStyle;

VERSION NOTES

Available beginning with ATSUI 1.0.

ATSUTextLayout 2
The ATSUTextLayout type is a reference to a private structure containing
information about a text layout object. The structure contains the text layout
attributes, soft line breaks, and style runs that have been set for a block of
Unicode text. You pass the ATSUTextLayout type with functions that set or clear
text layout attributes, soft line breaks, and style runs, as well as functions that
copy text layout objects. The ATSUTextLayout type is passed back by functions
that query a text layout object for its text layout attributes, soft line breaks, and
style runs, as well as by functions that create a text layout object.

typedef struct OpaqueATSUTextLayout* ATSUTextLayout;

VERSION NOTES

Available beginning with ATSUI 1.0.
Data Types 191
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUTextMeasurement 2
The ATSUTextMeasurement type represents the glyph bounds (exact outline
metrics) of onscreen glyphs. You pass the ATSUTextMeasurement type to
functions that draw, measure, hit-test, and obtain the glyph bounds for text. The
ATSUTextMeasurement type can be also used to set and get imposed glyph width,
line width, line ascent, and line descent; see “Style Run Attribute Tag
Constants” (page 217) and “Text Layout Attribute Tag Constants” (page 226),
respectively.

typedef Fixed ATSUTextMeasurement;

VERSION NOTES

Available beginning with ATSUI 1.0.

ConstUniCharArrayPtr 2
The ConstUniCharArrayPtr type is a pointer to the beginning of a text buffer.
Note that ATSUI expects the buffer to contain Unicode text. Your application is
responsible for allocating the memory associated with this pointer. You use the
ConstUniCharArrayPtr type with the functions
ATSUCreateTextLayoutWithTextPtr (page 86), ATSUSetTextPointerLocation
(page 111), and ATSUTextMoved (page 117).

typedef const UniChar *ConstUniCharArrayPtr;

VERSION NOTES

Available beginning with ATSUI 1.0.

UniChar 2
The UniChar type represents a 2-byte Unicode-encoded character. You can use
the UniChar type with functions that operate on a text layout object’s range of
text.

typedef UInt16 UniChar;
192 Data Types

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

UniCharArrayHandle 2
The UniCharArrayHandle type is a handle that points to the beginning of a text
buffer. Note that ATSUI expects the buffer to contain Unicode text. Your
application is responsible for allocating the memory associated with this
handle. ATSUI functions that need to access text referenced by this handle will
return the handle to its original state (locked or unlocked) upon function
completion. You use the UniCharArrayHandle type with the functions
ATSUCreateTextLayoutWithTextHandle (page 88) and ATSUSetTextHandleLocation
(page 113).

typedef UniCharArrayPtr * UniCharArrayHandle;

VERSION NOTES

Available beginning with ATSUI 1.0.

UniCharArrayOffset 2
The UniCharArrayOffset type is the edge offset in backing store memory that
corresponds to the beginning of the range of text within a text layout object to
be operated on. Functions that perform layout operations on text do so within
this range of text, not the entire text buffer. If you want the range of text to start
at the beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning, described in “Text Offset Constant” (page 231).

typedef UInt32 UniCharArrayOffset;

VERSION NOTES

Available beginning with ATSUI 1.0.
Data Types 193
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
UniCharArrayPtr 2
The UniCharArrayPtr type is a pointer to the beginning of a text buffer. Note
that ATSUI expects the buffer to contain Unicode text. You can use the
UniCharArrayPtr type with functions that operate on a range of text in a text
layout object.

typedef UniChar * UniCharArrayPtr;

VERSION NOTES

Available beginning with ATSUI 1.0.

UniCharCount 2
The UniCharCount type is the number of characters in backing store memory
that correspond to the length of the range of text within a text layout object to
be operated on. Functions that perform layout operations on text do so within
this range of text, not the entire text buffer. If you want the range of text to span
the end of the text buffer, you should pass the constant kATSUToTextEnd,
described in “Text Length Constant” (page 230).

typedef UInt32 UniCharCount;

VERSION NOTES

Available beginning with ATSUI 1.0.

Resource 2

� ustl (page 194)

ustl 2
The 'ustl' type is a clipboard data block format for copying and pasting
Unicode-encoded styled text. You can use a data block format of this type to
copy and paste Unicode-encoded styled text between applications or within
194 Resource

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
your application. Note that you can store styled text information in any data
format of type 'ustl'. For the purposes of this document, the 'ustl' type will
be described as a resource.

As shown in Figure 2-2, version 1 of the 'ustl' resource is composed of four
basic elements:

� a header component

� flattened text layout data

� flattened style run data

� flattened style list data

Figure 2-2 Overview of a 'ustl' resource

Figure 2-3 shows the header component of a 'ustl' resource. The header
contains the version and size of the 'ustl' resource as well as offsets to
flattened text layout, style run, and style list data, which you can specify in any
order after the header section.

Overview of a ’ustl’ resource

Flattened style run data

Flattened style list data

Resource header

Flattened text layout data
Resource 195
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-3 Header section of a 'ustl' resource

Figure 2-4 shows the format of flattened text layout data.

4

4

Header section of a ’ustl’ resource Bytes

Offset to flattened text layout data

Offset to flattened style run data

Offset to flattened style list data

Resource data version

Size of resource data

4

4

4

196 Resource

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-4 Flattened text layout data

As shown in Figure 2-4, the flattened text layout data is composed of the
following elements:

For each text
layout object

For each
previously set
text layout attribute

Flattened text layout data Bytes

4Number of text layout objects

Size of line and text layout attribute data 4

Number of characters covered by
text layout object 4

Offset to text layout attribute data 4

Offset to line attribute data 4

Number of previously set text layout attributes 4

Attribute value

4Attribute tag

Size of attribute value 4

Variable

Number of lines 4

Line length 4

Number of previously set line attributes 4

For each line

For each
previously set
line attribute

Attribute tag 4

Size of attribute value 4

Attribute value Variable
Resource 197
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� the number of text layout objects covering the characters that you wish to
display on the clipboard

� an array of text layout data

Each element of the text layout data array should contain the following
information:

� the size of the line and text layout attribute data

� the number of characters covered by the text layout object

� an offset to text layout attribute data

� an offset to line attribute data

� an array of text layout attribute data

� an array of line attribute data

Each element of the text layout attribute data array should contain the
following information:

� the number of previously set text layout attributes

(for each previously set text layout attribute, including line direction whether or
not it has been set):

� the attribute tag

� the size of the attribute value

� the actual attribute value (variable in length)

Each element of the line attribute data array should contain the following
information:

� the number of lines in the text layout object

(for each line):

� the line length

� the number of previously set line attributes

(for each previously set line attribute):

� the attribute tag

� the size of the attribute value

� the actual attribute value (variable in length)
198 Resource

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-5 shows the format of flattened text layout data.

Figure 2-5 Flattened style run data

As shown in Figure 2-5, flattened style run data is composed of the following
elements:

� the number of style runs

� an array of style run data

Each element of the style run data array should contain the following
information:

� the style run length

� the index of the corresponding style object in the style list

Figure 2-6 shows the format of flattened style list data.

Flattened style run data Bytes

Number of style runs

Style run length

4

4

For each style run
Index of style object

corresponding to this style run 4
Resource 199
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Figure 2-6 Flattened style list data

As shown in Figure 2-6, flattened style list data is composed of the following
elements:

Flattened style list data Bytes

Number of style objects

Version of flattened style format

4

4

Size of attribute data 4

Number of previously set style run attributes 4

Number of previously set font features 4

Number of previously set font variations 4

Unique name of font 4

4Length of font name string

Actual font name Variable For each
style object

For each
previously set
style run attribute

Size of attribute value

Attribute tag 4

4

Attribute value Variable

Feature type 4

Feature selector 4

For each
previously set
font feature

For each
previously set
font variation

Variation axis 4

Variation value 4
200 Resource

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
� the number of style object

� an array of style run attribute, font feature, and font variation data

Each element of the style run attribute, font feature, and font variation data
array should contain:

� the version of the data in this flattened style list

� the size of the style run attribute, font feature, and font variation data

� the number of previously set style run attributes

� the number of previously set font features

� the number of previously set font variations

� the unique name of font

� the length of font name string

� the font name (variable in length)

(for each previously set style run attribute, and font, text size, and language,
even if unset):

� the attribute tag

� the size of the attribute value

� the actual attribute value (variable in length)

(for each previously set font feature):

� the feature type

� the feature selector

(for each previously set font variation):

� the variation axis

� the variation value

VERSION NOTES

Version 1 of this resource, described above, is available with ATSUI 1.1. Version
0, described in Apple Type Services for Unicode Imaging Reference dated May 7,
1999, is available with ATSUI 1.0. You should use version 1 of the clipboard data
format.
Resource 201
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constants 2

� “ATSUI Attribute Constants” (page 21)

� “ATSUI Version Constants” (page 20)

� “Clear All Constant” (page 203)

� “Current Pen Location Constant” (page 203)

� “Cursor Movement Constants” (page 204)

� “Font Fallback Constants” (page 205)

� “Gestalt Selectors for ATSUI” (page 19)

� “Glyph Bound Constants” (page 206)

� “Glyph Direction Constants” (page 207)

� “Glyph Orientation Constants” (page 207)

� “Heap Specification Constants” (page 208)

� “Invalid Font ID Constant” (page 209)

� “Line Alignment Constants” (page 210)

� “Line Justification Constants” (page 211)

� “Line Layout Option Mask Constants” (page 212)

� “Line Layout Width Constant” (page 214)

� “Miscellaneous Constants” (page 215)

� “Style Comparison Constants” (page 216)

� “Style Run Attribute Tag Constants” (page 217)

� “Text Layout Attribute Tag Constants” (page 226)

� “Text Length Constant” (page 230)

� “Text Offset Constant” (page 231)
202 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Clear All Constant 2
You can pass this constant to the following functions to remove previously set
values from a style object: to ATSUClearAttributes (page 42) to remove style run
attributes, to ATSUClearFontFeatures (page 49) to remove font features, and to
ATSUClearFontVariations (page 54) to remove font variations.

You can also use this constant to remove previously set text layout attributes: to
ATSUClearLineControls (page 109), to remove text layout attributes from a single
line of a text layout object, and to ATSUClearLayoutControls (page 101) to
remove text layout attributes from every line in a text layout object.

enum {
kATSUClearAll = (long)0xFFFFFFFF

};

Constant description

kATSUClearAll Removes all previously set values from a style object, a
single line, or a text layout object.

VERSION NOTES

Available beginning with ATSUI 1.0.

Current Pen Location Constant 2
You can pass this constant to functions that operate on text layout objects to
indicate that drawing, measuring, or hit-testing should be done relative to the
current pen location in the current graphics port.

enum {
kATSUUseGrafPortPenLoc = (long)0xFFFFFFFF,

};

Constant description

kATSUUseGrafPortPenLoc
Indicates that drawing, measuring, or hit-testing should be
done relative to the current pen location in the current
graphics port. ATSUI looks at the current graphics port
Constants 203
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
location (it knows the last draw location from moves and
lineto calls) and uses that.

VERSION NOTES

Available beginning with ATSUI 1.0.

Cursor Movement Constants 2
You can pass a constant of type ATSUCursorMovementType to the functions
ATSUNextCursorPosition (page 136), ATSUPreviousCursorPosition (page 138),
ATSURightwardCursorPosition (page 140), and ATSULeftwardCursorPosition
(page 141) to represent the unit distance that the cursor has moved. These
functions use this information to calculate the edge offset in backing store
memory that corresponds to the resulting cursor position.

enum {
kATSUByCharacter = 0,
kATSUByCluster = 1,
kATSUByWord = 2

};
typedef int ATSUCursorMovementType;

Constant descriptions

kATSUByCharacter Indicates that the cursor has been moved 2 bytes (a
Unicode character).

kATSUByCluster Indicates that the cursor has been moved by a cluster, as
defined by Unicode. A group of characters is a cluster
based both on the static properties of the characters
involved (defined by the Unicode consortium) and the
behavior of the specific font you are using with those
characters.

kATSUByWord Indicates that the cursor has been moved by a word, as
defined by Unicode. A word does not include trailing
punctuation or white space.

VERSION NOTES

Available beginning with ATSUI 1.0.
204 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Font Fallback Constants 2
You can pass a constant of type ATSUFontFallbackMethod to the function
ATSUSetFontFallbacks (page 123) to specify the search options when a
character(s) cannot be drawn with the assigned font. The function
ATSUGetFontFallbacks (page 124) passes back one of these constants to indicate
the search options you have previously specified.

enum {
kATSUDefaultFontFallbacks = 0,
kATSULastResortOnlyFallback = 1,
kATSUSequentialFallbacksPreferred = 2,
kATSUSequentialFallbacksExclusive = 3

};
typedef UInt16 ATSUFontFallbackMethod;

Constant descriptions

kATSUDefaultFontFallbacks
When a character cannot be drawn with the existing font,
specifies that a replacement font should be identified using
the following search order: (1) sequentially scanning the
font list, and if no valid font is found (2) searching all valid
fonts in the user’s system. This is the default search order
used by the functions ATSUMatchFontsToText (page 125) and
ATSUSetTransientFontMatching (page 128).

kATSULastResortOnlyFallback
When a character cannot be drawn with the existing font,
specifies that the replacement font should be the last resort
font.

kATSUSequentialFallbacksPreferred
When a character cannot be drawn with the existing font,
specifies that a replacement font should be identified using
the following search order: (1) sequentially scanning the
font list, and if no valid font is found (2) searching all valid
fonts in the user’s system, and if no valid font is found (3)
using the last resort font.

kATSUSequentialFallbacksExclusive
When a character cannot be drawn with the existing font,
specifies that a replacement font should be identified using
the following search order: (1) sequentially scanning the
Constants 205
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
font list, and if no valid font is found (2) using the last
resort font.

VERSION NOTES

Available beginning with ATSUI 1.0.

Glyph Bound Constants 2
Your application passes a glyph bounds constant in the iTypeOfBounds
parameter of the functionATSUGetGlyphBounds (page 146) to indicate whether the
width of the resulting typographic glyph bounds will be determined using the
caret origin, glyph origin in device space, or glyph origin in fractional absolute
positions.

enum {
kATSUseCaretOrigins = 0,
kATSUseDeviceOrigins = 1,
kATSUseFractionalOrigins = 2

};

Constant descriptions

kATSUseCaretOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the caret origin. The caret origin
is halfway between two characters.

kATSUseDeviceOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the glyph origin in device space.
This is useful for adjusting text on the screen.

kATSUseFractionalOrigins
Specifies that the width of the typographic glyph bounds
will be determined using the glyph origin in fractional
absolute positions, which are uncorrected for device
display. This provides the ideal position of laid-out text and
is useful for scaling text on the screen. This origin is also
used to get the width of the typographic bounding
rectangle when you call ATSUMeasureText (page 150).
206 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.1.

Glyph Direction Constants 2
You can use one of these constants to set or obtain glyph direction in a line of
text or an entire text layout object, regardless of their font-specified direction;
see the functions ATSUSetLayoutControls (page 96), ATSUSetLineControls
(page 104), ATSUGetLayoutControl (page 98), and ATSUGetLineControl (page 106).

enum {
kATSULeftToRightBaseDirection = 0,
kATSURightToLeftBaseDirection = 1

};

Constant descriptions

kATSULeftToRightBaseDirection
Imposes left-to-right direction on glyphs in a line of
horizontal text; for vertical text, imposes top-to-bottom
direction.

kATSURightToLeftBaseDirection
Imposes right-to-left direction on glyphs in a line of
horizontal text; for vertical text, imposes bottom-to-top
direction.

VERSION NOTES

Available beginning with ATSUI 1.0.

Glyph Orientation Constants 2
You can pass a constant of type ATSUVerticalCharacterType to the functions
ATSUCountFontTracking (page 68) and ATSUGetIndFontTracking (page 69) to
specify the glyph orientation of font tracking settings, since font tracking
settings differ depending upon glyph orientations.

You can also use one of these constants to set or obtain the glyph orientation of
a style run; see the functions ATSUSetAttributes (page 37) and ATSUGetAttribute
(page 38), respectively.
Constants 207
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
enum {
kATSUStronglyHorizontal = 0,
kATSUStronglyVertical = 1

};
typdef UInt16 ATSUVerticalCharacterType

Constant descriptions

kATSUStronglyHorizontal
Specifies nonrotated glyphs that are drawn with horizontal
metrics.

kATSUStronglyVertical
Specifies that glyphs are rotated 90 degrees and are drawn
with vertical metrics.

VERSION NOTES

Available beginning with ATSUI 1.0.

Heap Specification Constants 2
You can pass a constant of type ATSUHeapSpec to the function
ATSUCreateMemorySetting (page 174) to specify whether you want ATSUI or
your application to control memory allocation in ATSUI.

If you want ATSUI to perform memory allocation operations, pass the constant
kATSUUseSpecificHeap. In this case, you must supply the correctly-prepared
heap in the heapToUse field of the union ATSUMemoryCallbacks (page 189). If you
want your own application-defined functions to control memory allocation, you
must supply pointers to your application in the callback structure of the
ATSUMemoryCallbacks union.

enum {
kATSUUseCurrentHeap = 0,
kATSUUseAppHeap = 1,
kATSUUseSpecificHeap = 2,
kATSUUseCallbacks = 3

};
typedef UInt32 ATSUHeapSpec;
208 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constant descriptions

kATSUUseCurrentHeap
Indicates to ATSUI to perform memory allocation
operations on the heap that is current at the time you call
ATSUCreateMemorySetting. This is the default value if you do
not call ATSUCreateMemorySetting.

kATSUUseAppHeap Indicates to ATSUI to perform memory allocation
operations only on the application heap, whether or not it
is the current heap.

kATSUUseSpecificHeap
Indicates to ATSUI to perform memory allocation
operations on the heap identified in the heapToUse field of
the ATSUMemoryCallbacks (page 189) union.

kATSUUseCallbacks Indicates to use your application-defined functions to
control memory allocation.

VERSION NOTES

Available beginning with ATSUI 1.1.

Invalid Font ID Constant 2
The functions ATSUFONDtoFontID (page 66), ATSUFindFontFromName (page 57), and
ATSUMatchFontsToText (page 125) pass back this constant to indicate an invalid
font ID. This constant is available with ATSUI 1.0.

enum {
kATSUInvalidFontID = 0

};

Constant description

kATSUInvalidFontID Indicates that the font ID is invalid.

VERSION NOTES

Available beginning with ATSUI 1.0.
Constants 209
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Line Alignment Constants 2
You can use one of these constants to set or obtain the alignment of text relative
to the margins in a line of text or in an entire text layout object; see the functions
ATSUSetLayoutControls (page 96), ATSUSetLineControls (page 104),
ATSUGetLayoutControl (page 98), and ATSUGetLineControl (page 106),
respectively.

enum {
kATSUStartAlignment = 0,
kATSUEndAlignment = fract1,
kATSUCenterAlignment = fract1 / 2

};

Constant descriptions

kATSUStartAlignment
Specifies that horizontal text should be drawn to the right
of the left margin (that is, its left edge coincides with the
text layout object’s position plus text width). Vertical text
should be drawn below the top margin.

kATSUEndAlignment Specifies that horizontal text should be drawn to the left of
the right margin. Vertical text should be drawn above the
bottom margin.

kATSUCenterAlignment
Specifies that horizontal text should be drawn between the
left and right margins with an equal amount of space on
either side. Vertical text should be drawn between the top
and bottom margins with an equal amount of space on
either side.

VERSION NOTES

Available beginning with ATSUI 1.0.

Line Height Constant 2
You use this constant to specify that ATSUI use the natural line ascent and
descent values dictated by the font and pixel size to determine line ascent and
descent. You can set the line ascent text layout attribute for a line or an entire
text layout object by passing the kATSULineAscentTag tag to the functions
210 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUSetLineControls (page 104) and ATSUSetLayoutControls (page 96),
respectively. You can set the line descent text layout attribute for a line or an
entire text layout object by passing the kATSULineDescentTag tag to the
functions ATSUSetLineControls (page 104) and ATSUSetLayoutControls (page 96),
respectively.

enum {
kATSUseLineHeight= 0x7FFFFFFF,

};

Constant description

kATSUseLineHeight Specifies that ATSUI use the natural line ascent and descent
values dictated by the font and pixel size to determine line
ascent and descent in a line or entire text layout object.

VERSION NOTES

Available beginning with ATSUI 1.0.

Line Justification Constants 2
You use these constants to specify the degree of line justification for a single line
or an entire text layout object. You can set the line justification text layout
attribute for a line or an entire text layout object by passing the
kATSULineJustificationFactorTag tag the functions ATSUSetLineControls
(page 104) and ATSUSetLayoutControls (page 96), respectively.

enum {
kATSUNoJustification = 0x00000000L,
kATSUFullJustification = 0x40000000L

};

Constant descriptions

kATSUNoJustification
Indicates no justification.

kATSUFullJustification
Full justification between the text margins. White space is
“stretched” to make the line extend to both text margins.
Constants 211
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

Line Layout Option Mask Constants 2
You can use a mask constant of type ATSLineLayoutOptions to set or obtain the
line layout options in a line of text or an entire text layout object; see the
functions ATSUSetLineControls (page 104) and ATSUSetLayoutControls (page 96),
respectively.

enum {
kATSLineNoLayoutOptions = 0x00000000,
kATSLineIsDisplayOnly = 0x00000001,
kATSLineHasNoHangers = 0x00000002,
kATSLineHasNoOpticalAlignment = 0x00000004,
kATSLineKeepSpacesOutOfMargin = 0x00000008,
kATSLineNoSpecialJustification = 0x00000010,
kATSLineLastNoJustification = 0x00000020,
kATSLineFractDisable = 0x00000040,
kATSLineImposeNoAngleForEnds = 0x00000080,
kATSLineFillOutToWidth = 0x00000100,
kATSLineTabAdjustEnabled = 0x00000200,
kATSLineAppleReserved = (long)0xFFFFFC00

};
typedef UInt32 ATSLineLayoutOptions

Constant descriptions

kATSLineNoLayoutOptions
Indicates that no bits are set. Available with ATSUI 1.0.

kATSLineIsDisplayOnly
If the bit specified by this mask is set, ATSUI creates the
text layout object without the internal information needed
for editing the text layout; it is for display purposes only.
This allows ATSUI to display the text layout faster and
make the text layout object smaller. When the user edits the
text layout object, you must clear this flag. Available with
ATSUI 1.0.

kATSLineHasNoHangers
If the bit specified by this mask is set, the automatic
212 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
hanging punctuation in the text layout object is overridden.
The value in this bit overrides any adjustment to hanging
punctuation set for a style run inside the text layout object
using the style run attribute tags kATSUForceHangingTag or
kATSUHangingInhibitFactorTag. Available with ATSUI 1.0.

kATSLineHasNoOpticalAlignment
If the bit specified by this mask is set, the optical alignment
of characters at the text margin of the text layout object will
not occur. Optical alignment adjusts characters at the text
margin so that they appear to be properly aligned; strict
alignment can often cause the illusion of a ragged edge.
The value in this bit overrides any adjustment to optical
alignment set for a style run inside the text layout object
using the style run attribute tag
kATSUNoOpticalAlignmentTag. Available with ATSUI 1.0.

kATSLineKeepSpacesOutOfMargin
If the bit specified by this mask is set, the trailing white
spaces at the end of a line of justified text are placed
outside the margin. Available with ATSUI 1.0.

kATSLineNoSpecialJustification
If the bit specified by this mask is set, postcompensation
actions will not be taken, even if necessary. This flag cannot
be set for a single line of a text layout object. The value in
this bit overrides any adjustment to the postcompensation
actions set for a style run using the style run attribute tag
kATSUNoSpecialJustificationTag. Available with ATSUI 1.0.

kATSLineLastNoJustification
If the bit specified by this mask is set, the last line of a
justified text layout object will not be justified. This flag is
meaningless when setting a line’s text layout attributes.
Available with ATSUI 1.0.

kATSLineFractDisable
If the bit specified by this mask is set, the position of the
text in the line or text layout object will be relative to
fractional absolute positions, which are uncorrected for
device display. This provides the ideal position of laid-out
text and is useful for scaling text on the screen. This origin
is also used to get the width of the typographic bounding
rectangle when you call ATSUMeasureText (page 150).
Available with ATSUI 1.1.
Constants 213
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSLineImposeNoAngleForEnds
If the bit specified by this mask is set, carets on the far right
and left sides of an unrotated line will always be vertical,
no matter what the angle of text. Available with ATSUI 1.1.

kATSLineFillOutToWidth
If the bit specified by this mask is set, highlighting extends
to both ends of a line, regardless of caret locations. It does
not change caret locations. This is provided for your
convenience to extend your highlighting to the full width
of the line. Available with ATSUI 1.1.

kATSLineTabAdjustEnabled
If the bit specified by this mask is set, the tab character
width will be automatically adjusted to fit the specified line
width. You must set this bit to ensure that highlighting is
done correctly across tab stops. To ensure this, you should
also set the bit specified by the
kATSLineImposeNoAngleForEnds mask constant. Available
with ATSUI 1.2.

kATSLineAppleReserved
If the bit specified by this mask is set, line layout mask
values (and the bits they specify) between
kATSLineNoLayoutOptions and kATSLineAppleReserved are
reserved. ATSUI will return the
kATSUInvalidAttributeValueErr result code if you set a
reserved bit. Available with ATSUI 1.1.

VERSION NOTES

This enumeration is available beginning with ATSUI 1.0. Additional constants
added with ATSUI 1.1 and 1.2.

Line Layout Width Constant 2
You can pass this constant to the function ATSUBreakLine (page 157) to indicate
that ATSUBreakLine should use the line width previously set for that line to
calculate the soft line break. If no line width has been set for the line,
ATSUBreakLine will use the line width set for the text layout object.
214 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
enum {
kATSUUseLineControlWidth = 0x7FFFFFFFL

};

Constant description

kATSUUseLineControlWidth
Indicates that ATSUBreakLine should use the previously set
line width attribute for the current line to determine how
many characters can fit on the line. If no line width has
been set for the line, ATSUBreakLine will use the line width
set for the text layout object; if not set, ATSUBreakLine uses
the default line width value.

VERSION NOTES

Available beginning with ATSUI 1.0.

Miscellaneous Constants 2
The following constants are provided for convenience.

enum {
kATSItalicQDSkew = (1 << 16) / 4,
kATSRadiansFactor = 1144.
kATSUseLineHeight = 0x7FFFFFFF,
kATSNoTracking = (long)0x80000000,

};

Constant descriptions

kATSItalicQDSkew A Fixed value of 0.25.
kATSRadiansFactor A Fixed value of approximately pi/180 (0.0174560546875).
kATSUseLineHeight A value that represents the natural ascent or descent of a

line.
kATSNoTracking A value of type negativeInfinity that indicates that font

tracking should be off.
Constants 215
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

Style Comparison Constants 2
The function ATSUCompareStyles (page 26) passes back a constant of type
ATSUStyleComparison to indicate whether two style objects are the same,
different, or a subset of one another.

enum {
kATUStyleUnequal = 0,
ATSUStyleContains = 1,
kATSUStyleEquals = 2,
kATSUStyleContainedBy = 3

};
typedef Uint16 ATSUStyleComparison;

Constant descriptions

kATUStyleUnequal Indicates that the contents of the second style object are not
equivalent to, contained by, or containing those of the first.

ATSUStyleContains Indicates that the contents of the second style object are
contained by those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

kATSUStyleEquals Indicates that the contents of the second style object are
equivalent to those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

kATSUStyleContainedBy
Indicates that the contents of the second style object are
contained by those of the first (excluding pointers and
handles to reference constants and custom style run
attribute tags).

VERSION NOTES

Available beginning with ATSUI 1.0.
216 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Style Run Attribute Tag Constants 2
You can pass a style run attribute tag constant of type ATSUAttributeTag to the
functions ATSUSetAttributes (page 37), ATSUGetAttribute (page 38),
ATSUGetAllAttributes (page 40), and ATSUClearAttributes (page 42) to identify
the style run attribute value you wish to set, obtain, or remove from a style
object. If you do not set a style run attribute, it will be set to its default value.
Table C-1 (page 241) lists the Apple-defined style run attribute tags and their
corresponding data type, size, and default values.

IMPORTANT

The ATSUAttributeTag type also defines text layout attribute
tag constants; see “Text Layout Attribute Tag Constants”
(page 226) for a description of these tags. Note that if you
pass text layout attribute tags to functions that get, set, or
remove style run attribute values, the function will return
the result code kATSUInvalidAttributeTagErr. �

The following constant descriptions assume horizontal text. If you are setting or
getting the style run attribute of vertical text, you should interpret these values
accordingly.

enum {
kATSUQDBoldfaceTag = 256L,
kATSUQDItalicTag = 257L,
kATSUQDUnderlineTag = 258L,
kATSUQDCondensedTag = 259L,
kATSUQDExtendedTag = 260L,
kATSUFontTag = 261L,
kATSUSizeTag = 262L,
kATSUColorTag = 263L,
kATSULanguageTag = 264L,
kATSUVerticalCharacterTag = 265L,
kATSUImposeWidthTag = 266L,
kATSUBeforeWithStreamShiftTag = 267L,
kATSUAfterWithStreamShiftTag = 268L,
kATSUCrossStreamShiftTag = 269L,
kATSUTrackingTag = 270L,
kATSUHangingInhibitFactorTag = 271L,
kATSUKerningInhibitFactorTag = 272L,
kATSUDecompositionInhibitFactorTag = 273L,
kATSUBaselineClassTag = 274L,
Constants 217
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUPriorityJustOverrideTag = 275L,
kATSUNoLigatureSplitTag = 276L,
kATSUNoCaretAngleTag = 277L,
kATSUSuppressCrossKerningTag = 278L,
kATSUNoOpticalAlignmentTag = 279L,
kATSUForceHangingTag = 280L,
kATSUNoSpecialJustificationTag = 281L,
kATSUStyleTextLocatorTag = 282L,
kATSUMaxStyleTag = 283L,
kATSUMaxATSUITagValue = 65535L

};
typedef UInt32 ATSUAttributeTag;

Constant descriptions

kATSUQDBoldfaceTag Identifies the boldfaced text style attribute. You use this tag
to set or get a value of type Boolean that indicates whether
the text style is boldfaced (causes each glyph to be
repeatedly drawn one bit to the right for extra thickness). A
value of true indicates that text is boldfaced. If you do not
set the attribute value corresponding to this tag, the default
value is false, and the text style is plain. Available with
ATSUI 1.0.

kATSUQDItalicTag Identifies the italicized text style attribute. You use this tag
to set or get a value of type Boolean that indicates whether
the text style is italicized (skews glyph bits above the
baseline to the right, bits below the baseline to the left). A
value of true indicates that text is italicized. If you do not
set the attribute value corresponding to this tag, the default
value is false, and the text style is plain. Available with
ATSUI 1.0.

kATSUQDUnderlineTag
Identifies the underlined text style attribute. You use this
tag to set or get a value of type Boolean that indicates
whether the text style is underlined (draws the underline
through the entire text line, from the pen starting position
through the ending position, plus any offsets from the font
or italic kerning). If part of a glyph descends below the
base line, generally, the underline isn’t drawn through the
pixel on either side of the descending par. A value of true
indicates that text is underlined. If you do not set the
218 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
attribute value corresponding to this tag, the default value
is false, and the text style is plain. Available with ATSUI
1.0.

kATSUQDCondensedTag
Identifies the condensed text style attribute. You use this
tag to set or get a value of type Boolean that indicates
whether the text style is condensed (decreases the
horizontal distance between all glyphs, including spaces,
by the amount that the Font Manager determines is
appropriate). A value of true indicates that text is
condensed. If you do not set the attribute value
corresponding to this tag, the default value is false, and
the text style is plain. Available with ATSUI 1.0.

kATSUQDExtendedTag Identifies the extended text style attribute. You use this tag
to set or get a value of type Boolean that indicates whether
the text style is extended (increases the horizontal distance
between all glyphs, including spaces, by the amount that
the Font Manager determines is appropriate). A value of
true indicates that text is extended. If you do not set the
attribute value corresponding to this tag, the default value
is false, and the text style is plain. Available with ATSUI
1.0.

kATSUFontTag Identifies the font ID attribute. You use this tag to set or
obtain a value of type ATSUFontID (page 188) that uniquely
identifies the font to the font management system in
ATSUI. If you do not set the attribute value corresponding
to this tag, the default value is the ID corresponding to the
font family number of the application font for the current
script system. To determine this value, evaluate the result
of the call GetScriptVariable
(smSystemScript,smScriptAppFond). If the application font
does not have a corresponding ID, the default value is
Helvetica. Available with ATSUI 1.0.

kATSUSizeTag Identifies the text size attribute. You use this tag to set or
obtain a value of type Fixed that represents text size (in
typographic points, 72 per inch). If you do not set the
attribute value corresponding to this tag, the default value
is the application font size for the current script system. To
determine this value, evaluate the low word result of the
call
Constants 219
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
GetScriptVariable(smSystemScript,smScriptAppFondSize).
Available with ATSUI 1.0.

kATSUColorTag Identifies the text color attribute. You use this tag to set or
obtain a value of type RGBColor that represents text color. If
you do not set the attribute value corresponding to this tag,
the default value is (0,0,0), and the text color will be black.
Available with ATSUI 1.0.

kATSULanguageTag Identifies the language attribute. You use this tag to set or
obtain a value of type RegionCode that represents the
regional language and other region-dependent
characteristics for glyphs. See “Region Code Constants”
(page 249) for a description of possible values. If you do not
set the attribute value corresponding to this tag, the default
value is the region code of the system script. To determine
this value, evaluate the result of GetScriptVariable
(smSystemScript,smScriptLang). Available with ATSUI 1.0.

kATSUVerticalCharacterTag

Identifies the glyph orientation attribute. You use this tag to
set or obtain a value of type ATSUVerticalCharacterType
that represents glyph orientation; see “Glyph Orientation
Constants” (page 207) for a description of possible values.
Values can range from 0 to 2. To produce vertical text, you
must set the corresponding value to the
kATSUStronglyVertical constant and the text layout
attribute value corresponding to the kATSULineRotationTag
tag to -90 degrees. If you do not set the attribute value
corresponding to this tag, the default value is
kATSUStronglyHorizontal, and glyph orientation will be
horizontal. Available with ATSUI 1.0.

kATSUImposeWidthTag

Identifies the imposed width weighting attribute. You use
this tag to set or obtain a value of type ATSUTextMeasurement
(page 192) that represents the amount to increase glyph
width. Values can range from -1.0 to 1.0. A value of 0
(kATSUNoImposedWidth) indicates that you want to use
font-defined imposed width. ATSUI ignores negative
values. Positive values increase the font-defined imposed
width. If you do not set the attribute value corresponding
to this tag, the default value is kATSUNoImposedWidth, and
220 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
ATSUI uses the font-defined imposed width. Available with
ATSUI 1.0.

kATSUBeforeWithStreamShiftTag

Identifies the with-stream shift (applied before each glyph)
weighting attribute. You use this tag to set or obtain a value
of type Fixed that represents the amount to increase or
decrease space before glyphs in a style run. Values can
range from -1.0 to 1.0. A value of 0 indicates that you want
to use font-defined tracking. Negative values decrease
space before glyphs, while positive values increase space
before glyphs. If you do not set the attribute value
corresponding to this tag, the bias is 0, and ATSUI uses the
font-defined with-stream shift (applied before each glyph).
Available with ATSUI 1.0.

kATSUAfterWithStreamShiftTag
Identifies the with-stream shift (applied after each glyph)
weighting attribute. You use this tag to set or obtain a value
of type Fixed that represents the amount to increase or
decrease space after glyphs in a style run. Values can range
from -1.0 to 1.0. A value of 0 indicates that you want to use
font-defined tracking. Negative values decrease space after
glyphs, while positive values increase space after glyphs. If
you do not set the attribute value corresponding to this tag,
the bias is 0, and ATSUI uses the font-defined with-stream
shift (applied after each glyph). Available with ATSUI 1.0.

kATSUCrossStreamShiftTag
Identifies the cross-stream shift weighting attribute. You
use this tag to set or obtain a value of type Fixed that
represents the amount to raise or lower glyphs in a style
run. Values can range from -1.0 to 1.0. A value of 0 indicates
that you want to use font-defined tracking. Negative values
shift glyphs downwards from the font-defined cross-stream
shift, while positive values shift glyphs upwards from the
font-defined cross-stream shift. If you do not set the
attribute value corresponding to this tag, the bias is 0, and
ATSUI uses the font-defined cross-stream shift. Available
with ATSUI 1.0.

kATSUTrackingTag Identifies the tracking weighting attribute. You use this tag
to set or obtain a value of type Fixed that represents the
amount to bias font-defined tracking (that is, kerning
Constants 221
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
between all glyphs in the style run, not just the kerning
pairs already defined by the font). Values can range from
-1.0 to 1.0. A value of 0 indicates that you want to use
font-defined tracking. Negative values loosen font-defined
tracking, while positive values tighten font-defined
tracking. If you do not set the attribute value
corresponding to this tag, the default value is
kATSUNoTracking, and ATSUI uses the font-defined tracking.
Available with ATSUI 1.0.

kATSUHangingInhibitFactorTag

Identifies the hanging glyph weighting attribute. You use
this tag to set or obtain a value of type Fract that
represents the amount to bias font-defined hanging glyph
adjustments (that is, adjustments to glyphs that typically
extend beyond the text margins and are not counted when
line length is measured). Values can range from 0 to 1.0. A
value of 0 indicates that you want to use font-defined
hanging glyph adjustments; 1 indicates that you want to
override font-defined hanging glyph adjustments. If you do
not set the attribute value corresponding to this tag, the
bias is 0, and ATSUI uses the font-defined hanging glyph
adjustments. Available with ATSUI 1.0.

kATSUKerningInhibitFactorTag
Identifies the kerning weighting attribute. You use this tag
to set or obtain a value of type Fract that represents the
amount to bias font-defined kerning (that is, an adjustment
to the normal spacing that occurs between two or more
specifically-named glyphs, also called a kerning pair).
Values can range from 0 to 1.0. A value of 0 indicates that
you want to use font-defined kerning; 1 indicates that you
want to override font-defined kerning. If you do not set the
attribute value corresponding to this tag, the bias is 0, and
ATSUI uses the font-defined kerning. Available with ATSUI
1.0.

kATSUDecompositionInhibitFactorTag
Identifies the ligature decomposition weighting attribute.
You use this tag to set or obtain a value of type Fixed that
represents the amount to bias the font-defined ligature
decomposition threshold (that is, the threshold beyond
which a glyph is broken into its component characters
222 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
during justification). Values can range from -1.0 to 1.0. For
example, a value of 0.5 adds 50 percent to the font-specified
threshold, while a value of -0.25 subtracts 25 percent from
that threshold. If you do not set the attribute value
corresponding to this tag, the bias is 0, and ATSUI uses the
font-defined threshold. Available with ATSUI 1.0.

kATSUBaselineClassTag
Identifies the baseline type attribute. You use this tag to set
or obtain a value of type BslnBaselineClass that represents
the type of baseline you want ATSUCalculateBaselineDeltas
(page 43) to use in calculating optimal baseline positions.
Values can range from 0 to 31. See “Baseline Type
Constants” (page 260) for a description of possible values.
Typically, values of 0 through 4 are used; the remaining
represent application-defined baselines. To specify the
standard baseline value from the current font, pass the
constant kBSLNNoBaselineOverride. If you do not set the
attribute value corresponding to this tag, default value is
kBSLNRomanBaseline, and ATSUI uses the Roman baseline.
Available with ATSUI 1.0.

kATSUPriorityJustOverrideTag
Identifies the justification behavior and priority override
weighting attribute. You use this tag to set or obtain an
array of type ATSJustPriorityWidthDeltaOverrides
(page 182) that represents the amount to bias font-defined
justification behavior and priority. There are four width
delta override structures in the array, one for each
justification priority. If you do not set the attribute value
corresponding to this tag, the default value is an empty
array, and ATSUI uses the font-defined justification
behavior and priority. Available with ATSUI 1.0.

kATSUNoLigatureSplitTag

Identifies the indivisible ligature attribute. You use this tag
to set or obtain a value of type Boolean that indicates
whether ligatures should be treated as their component
glyphs or as an indivisible unit for the purpose of caret
positioning. A value of true indicates that ligatures will not
be split into their component glyphs. In this case, when the
caret position is adjacent to one, ATSUI considers the next
valid caret position to be across the entire ligature rather
Constants 223
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
than at any point within it. If you do not set the attribute
value corresponding to this tag, the default value is false,
and ATSUI treats the ligature as divisible (unless the
characters are a surrogate pair or a pre-coded Unicode
ligature). Available with ATSUI 1.0.

kATSUNoCaretAngleTag
Identifies the straight caret attribute. You use this tag to set
or obtain a value of type Boolean that indicates whether the
angle of the caret and the highlight region should be
parallel to the inherent angle of the text or perpendicular to
the baseline. A value of true indicates that the caret and
highlight angles will be perpendicular to the baseline. If
you do not set the attribute value corresponding to this tag,
the default value is false, and the caret and highlight
angles will reflect the inherent angle of the text. Available
with ATSUI 1.0.

kATSUSuppressCrossKerningTag

Identifies the cross-kerning inhibition attribute. You use
this tag to set or obtain a value of type Boolean that
indicates whether to inhibit font-defined cross-stream
kerning. Setting this value has no impact on manual
cross-stream kerning. A value of true inhibits font-defined
cross-stream kerning. If you do not set the attribute value
corresponding to this tag, the default value is false, and
ATSUI uses font-defined cross-stream kerning. Available
with ATSUI 1.0.

kATSUNoOpticalAlignmentTag
Identifies the optical alignment inhibition attribute. You use
this tag to set or obtain a value of type Boolean that
indicates whether to inhibit font-specified optical
alignment (the automatic adjustment of glyph position at
the ends of lines to give a more even visual appearance to
margins). A value of true inhibits font-defined optical
alignment. If you do not set the attribute value
corresponding to this tag, the default value is false, and
ATSUI uses font-defined optical alignment. Available with
ATSUI 1.0.

kATSUForceHangingTag
Identifies the force hanging glyphs attribute. You use this
tag to set or obtain a value of type Boolean that indicates
224 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
whether hanging glyphs should extend into the margins. A
value of false indicates that hanging glyphs will not
extend into the text margins, even if they would normally
do so as defined by the font or you (if you set the attribute
identified by the kATSUHangingInhibitFactorTag). If you do
not set the attribute value corresponding to this tag, the
default value is false, and hanging glyphs will not extend
into the text margins. Available with ATSUI 1.0.

kATSUNoSpecialJustificationTag
Identifies the inhibit postcompensation actions attribute.
You use this tag to set or obtain a value of type Boolean
that indicates whether postcompensation actions should
occur after glyph positions have been calculated. A value of
true indicates that postcompensation actions will not be
occur, even if they are needed. If you do not set the
attribute value corresponding to this tag, the default value
is false, and postcompensation actions will occur if they
are needed. Available with ATSUI 1.0.

kATSUStyleTextLocatorTag
Identifies the text locator attribute. You use this tag to set or
obtain a value of type TextBreakLocatorRef (page 247) that
contains data needed by ATSUI to form various kind of text
breaks. If you do not set the attribute value corresponding
to this tag, the default value is NULL, and ATSUI uses the
region-derived locator or the default Text Utilities locator.
Available with ATSUI 1.2.

kATSUMaxStyleTag Identifies the maximum value for Apple-defined style run
attribute tags. Available with ATSUI 1.1.

kATSUMaxATSUITagValue

Identifies the maximum value for all Apple-defined tags.
Values between kATSUMaxStyleTag and
kATSUMaxATSUITagValue are reserved. You must select a
value greater than kATSUMaxATSUITagValue if you create
your own application-defined style run attribute tag.
Available with ATSUI 1.1.

VERSION NOTES

This enumeration is available beginning with ATSUI 1.0. Additional constants
added with ATSUI 1.1 and 1.2.
Constants 225
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Text Layout Attribute Tag Constants 2
You can pass a text layout attribute tag constant of type ATSUAttributeTag to the
functions ATSUSetLayoutControls (page 96), ATSUGetLayoutControl (page 98),
ATSUGetAllLayoutControls (page 99), and ATSUClearLayoutControls (page 101) to
identify the text layout attribute value you wish to set, obtain, or remove from a
text layout object. If you do not set a text layout attribute, it will be set to its
default value. Table C-2 (page 245) lists the Apple-defined text layout attribute
tags and their corresponding data type, size, and default values.

You can also pass these tag constants to the ATSUI functions
ATSUSetLineControls (page 104), ATSUGetLineControl (page 106),
ATSUGetAllLineControls (page 108), and ATSUClearLineControls (page 109) to
identify the text layout attribute value you wish to set, obtain, or remove from a
single line in a text layout object. Note that when you set a text layout attribute
value for a line, this value will override the value of the text layout attribute set
for the text layout object containing the line. This is true even if the attributes
for the line are set before those of the entire text layout object containing the
line.

IMPORTANT

The ATSUAttributeTag type also defines style run attribute
tag constants; see “Style Run Attribute Tag Constants”
(page 217) for a description of these tags. Note that if you
pass style run attribute tags to functions that get, set, or
remove text layout attribute values, the function will return
the result code kATSUInvalidAttributeTagErr. �

The following constant descriptions assume horizontal text. If you are setting or
getting the text layout attribute of vertical text, you should interpret these
values accordingly.

enum {
kATSULineWidthTag = 1L,
kATSULineRotationTag = 2L,
kATSULineDirectionTag = 3L,
kATSULineJustificationFactorTag = 4L,
kATSULineFlushFactorTag = 5L,
kATSULineBaselineValuesTag = 6L,
kATSULineLayoutOptionsTag = 7L,
kATSULineAscentTag = 8L,
kATSULineDescentTag = 9L,
kATSULineLanguageTag = 10L,
226 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSULineTextLocatorTag = 11L,
kATSUMaxLineTag = 12L

};
typedef UInt32 ATSUAttributeTag;

Constant descriptions

kATSULineWidthTag Identifies the line width attribute. You use this tag to set or
obtain a value of type ATSUTextMeasurement (page 192) that
represents the line width to impose on a line of a text
layout object. If you set this value to 0, ATSUI will act as if
you have not set the line width. If you do not set the
attribute value corresponding to this tag, the default value
is 0, and ATSUI does not impose a line width. Available
with ATSUI 1.0.

kATSULineRotationTag
Identifies the line rotation attribute. You use this tag to set
or obtain a value of type Fixed that represents the angle of
line rotation (in units of degrees) to impose on a line of a
text layout object. Values can range from -1.0 to 1.0. A value
of 0 indicates no line rotation. Negative values rotate the
line clockwise, while positive values rotate the line
counterclockwise. If you do not set the attribute value
corresponding to this tag, the default value is 0, and ATSUI
does not impose line rotation. Available with ATSUI 1.0.

kATSULineDirectionTag
Identifies the line direction attribute. You use this tag to set
or obtain a value of type Boolean that represents the line
direction to impose on every line of a text layout object.
You cannot set line direction for a single line. See “Glyph
Direction Constants” (page 207) for a description of
possible values. If you do not set the attribute value
corresponding to this tag, the default value is false, and
text direction is derived from the system script, which you
can determine by calling the GetSysDirection function.
Available with ATSUI 1.0.

kATSULineJustificationFactorTag
Identifies the line justification attribute. You use this tag to
set or obtain a value of type Fract that represents the
justification to impose on a line of a text layout object.
Values can range from 0 to 1. See “Line Justification
Constants 227
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
Constants” (page 211) for a description of possible values.
A value of 0 indicates no justification; a value of 1 indicates
full justification. If you do not set the attribute value
corresponding to this tag, the default value is
kATSUNoJustification, and ATSUI does not impose line
rotation. Available with ATSUI 1.0.

kATSULineFlushFactorTag
Identifies the line alignment attribute. You use this tag to
set or obtain a value of type Fract that represents the
alignment to impose on a line of a text layout object. If you
set the line alignment attribute, you must also set line
justification attribute for the corresponding line(s). Values
can range from 0 to 1. See “Line Alignment Constants”
(page 210) for a description of possible values. A value of 0
indicates no alignment; a value of 1 indicates full
alignment. If you specify the constants kATSUEndAlignment
or kATSUCenterAlignment, you must also set the line width
of the corresponding line(s). If you do not set the attribute
value corresponding to this tag, the default value is
kATSUStartAlignment, and ATSUI aligns text to the right of
the left margin. Available with ATSUI 1.0.

kATSULineBaselineValuesTag
Identifies the baseline positions attribute. You use this tag
to set or obtain an array of type BslnBaselineRecord
(page 257) that represents the optimal baseline positions to
use in controlling glyph placement in a line of a text layout
object. To determine this value, call the function
ATSUCalculateBaselineDeltas (page 43) and pass the style
object corresponding to the dominant style run in the line.
If you do not set the attribute value corresponding to this
tag, the default value is an empty array, and ATSUI uses the
font-defined cross-stream shift for each glyph in the line.
Available with ATSUI 1.0.

kATSULineLayoutOptionsTag
Identifies the line layout options attribute. You use this tag
to set or obtain a 32-bit mask value of type
ATSLineLayoutOptions that controls line layout options for
a single line or each line of a text layout object. See “Line
Layout Option Mask Constants” (page 212) for a
description of possible values. If you do not set the
228 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
attribute value corresponding to this tag, the default value
is kATSUNoLayoutOptions, and ATSUI does not set any line
layout options. Available with ATSUI 1.0.

kATSULineAscentTag Identifies the line ascent attribute. You use this tag to set or
obtain a value of type ATSUTextMeasurement (page 192) that
represents line ascent for a line of a text layout object. This
attribute is only taken into account by the functions
ATSUHighlightText (page 165) and ATSUUnhighlightText
(page 168) to calculate the ascent of the highlight region.
Values range from -1.0 to 1.0, though ATSUI ignores
negative values. Nonnegative value reflect an incremental
distance above the line’s baseline. If you do not set the
attribute value corresponding to this tag, the default value
is kATSUseLineHeight, and ATSUI uses the calculated line
ascent from the maximum ascent along the line of all the
style runs. Available with ATSUI 1.1.

kATSULineDescentTag
Identifies the line descent attribute. You use this tag to set
or obtain a value of type ATSUTextMeasurement (page 192)
that represents the line descent for a single line or each line
of a text layout object. This attribute is only taken into
account by the functions ATSUHighlightText (page 165) and
ATSUUnhighlightText (page 168) to calculate the descent of
the highlight region. Values range from -1.0 to 1.0, though
ATSUI ignores negative values. Nonnegative value reflect
an incremental distance below the line’s baseline. If you do
not set the attribute value corresponding to this tag, the
default value is kATSUseLineHeight, and ATSUI uses the
calculated line descent from the maximum descent along
the line of all the style runs. Available with ATSUI 1.1.

kATSULineLanguageTag
Identifies the language attribute for a line. You use this tag
to set or obtain a value of type RegionCode that represents
the regional language and other region-dependent
characteristics for glyphs in a line of a text layout object.
See “Region Code Constants” (page 249) for a description
of possible values. If you do not set the attribute value
corresponding to this tag, the default value is
kTextRegionDontCare, and ATSUI uses the region code of
the system script. To determine this value, evaluate the
Constants 229
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
result of GetScriptVariable
(smSystemScript,smScriptLang). Available with ATSUI 1.2.

kATSULineTextLocatorTag
Identifies the text locator attribute. You use this tag to set or
obtain a value of type TextBreakLocatorRef (page 247) that
contains data needed by ATSUI to form various kind of text
breaks. If you do not set the attribute value corresponding
to this tag, the default value is NULL, and ATSUI uses the
region-derived locator or the default Text Utilities locator.
Available with ATSUI 1.2.

kATSUMaxLineTag Identifies the maximum value for Apple-defined text
layout attribute tags. Available with ATSUI 1.2.

VERSION NOTES

This enumeration is available beginning with ATSUI 1.0. Additional constants
added with ATSUI 1.1 and 1.2.

Text Length Constant 2
ATSUI functions that draw, highlight, measure, or otherwise operate on text do
so to a range of text, not the entire text buffer (unless you specify the entire
buffer - see next paragraph). You specify the beginning of this range with an
edge offset of type UniCharArrayOffset (page 193), and demarcate the end of the
range by indicating a length of type UniCharCount (page 194).

If you want the range to span the end of the text buffer, you should pass the
constant kATSUToTextEnd. If you want the range to span the entire text buffer
(from the beginning), pass kATSUToTextEnd in conjunction with the constant
kATSUFromTextBeginning, described in “Text Offset Constant” (page 231).

enum {
kATSUToTextEnd = (long)0xFFFFFFFF

};

Constant descriptions

kATSUToTextEnd Indicates that the range of text to be operated on should
span to the end of the text layout object’s text buffer.
230 Constants

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

Available beginning with ATSUI 1.0.

Text Offset Constant 2
ATSUI functions that draw, highlight, measure, or otherwise operate on text do
so to a range of text, not the entire text buffer (unless you specify the entire
buffer - see next paragraph). You specify the beginning of this range with an
edge offset of type UniCharArrayOffset (page 193), and demarcate the end of the
range by indicating a length of type UniCharCount (page 194).

If you want the range to start at the beginning of the text buffer, you should
pass the constant kATSUFromTextBeginning. If you want the range to span the
entire text buffer, pass kATSUFromTextBeginning in conjunction with the constant
kATSUToTextEnd, described in “Text Length Constant” (page 230). This constant
is available with ATSUI 1.0 and later.

enum {
kATSUFromTextBeginning = (long)0xFFFFFFFF,

};

Constant descriptions

kATSUFromTextBeginning
Indicates that the range of text to be operated on should
start at the beginning of the text layout object’s text buffer.

VERSION NOTES

Available beginning with ATSUI 1.0.

Result Codes 2

All ATSUI functions return result codes of type OSStatus. This includes general
result codes such as noErr, indicating that the function completed successfully,
and paramErr, indicating that you either passed the function an invalid input
parameter value or passed NULL for all output parameters. ATSUI functions that
Result Codes 231
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
allocate memory may return memFullErr if there is not enough memory in the
designated heap.

The result codes specific to ATSUI are listed in Table 2-1 (page 232). In some
cases, the function result section for a particular function provides more detail
about the meaning of the result code specific to that function.

Table 2-1 ATSUI-specific result codes

Result code constant Value Description
kATSUInvalidTextLayoutErr -8790 Text layout object not previously

initialized or in an otherwise
invalid state. Available
beginning with ATSUI 1.0.

kATSUInvalidStyleErr -8791 Style object not previously
initialized or in an otherwise
invalid state. Available
beginning with ATSUI 1.0.

kATSUInvalidTextRangeErr -8792 Text range extends beyond the
limits of the text layout object’s
text range. Available beginning
with ATSUI 1.0.

kATSUFontsMatched -8793 Character could not be rendered
with its assigned font. Available
beginning with ATSUI 1.0.

kATSUFontsNotMatched -8794 Character could not be rendered
with its assigned font or any
currently active font. Available
beginning with ATSUI 1.0.

kATSUNoCorrespondingFontErr -8795 Font ID corresponds to an
existing font that isn’t available
to ATSUI. Available beginning
with ATSUI 1.0.

kATSUInvalidFontErr -8796 Font ID does not correspond to
any installed font. Available
beginning with ATSUI 1.0.

kATSUInvalidAttributeValueErr -8797 Invalid or undefined attribute
value. Available beginning with
ATSIU 1.0.

kATSUInvalidAttributeSizeErr -8798 Allocated attribute value size is
less than required. Available
beginning with ATSUI 1.0.
232 Result Codes

1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
kATSUInvalidAttributeTagErr -8799 ATSUI-reserved tag value or
wrong type of attribute tag (that
is, style run attribute tag instead
of text layout attribute tag and
vice versa). Available beginning
with ATSUI 1.0.

kATSUInvalidCacheErr -8800 Attempt to read in style data
from an invalid cache (that is,
the format of the cached data
does not match that used by
ATSUI or the cached data is
corrupt). Available beginning
with ATSUI 1.0.

kATSUNotSetErr -8801 Style object’s attribute, font
feature, font variation not set;
text layout object or single line’s
attribute not set; or font name
not set. Available beginning with
ATSUI 1.0.

kATSUNoStyleRunsAssignedErr -8802 No style runs assigned to text
layout object. Available
beginning with ATSUI 1.1.

kATSUQuickDrawTextErr -8803 QuickDraw function DrawText
encountered an error rendering
or measuring a line of text.
Available beginning with ATSUI
1.1.

kATSULowLevelErr -8804 Error encountered in Apple Type
Solution (ATS) while performing
an operation requested by
ATSUI. Available beginning with
ATSUI 1.1.

kATSUNoFontCmapAvailableErr -8805 'CMAP' table cannot be accessed
or synthesized for a font set by
the function ATSUSetAttributes
(page 37). Available beginning
with ATSUI 1.1.

kATSUNoFontScalerAvailableErr -8806 No font scaler available for a
font set by the function
ATSUSetAttributes (page 37).
Available beginning with ATSUI
1.1.

Table 2-1 ATSUI-specific result codes
Result Codes 233
1/11/00  Apple Computer, Inc.

C H A P T E R 2

ATSUI Reference
VERSION NOTES

This enumeration is available beginning with ATSUI 1.0. Additional constants
added with ATSUI 1.1 and 1.2.

kATSUCoordinateOverflowErr -8807 Passed in coordinate values
caused coordinate overflow
(greater than 32K). Available
beginning with ATSUI 1.1.

kATSULineBreakInWord -8808 Not an error code. Returned by
ATSUBreakLine (page 157) to
indicate that ATSUBreakLine
performed a line break within a
word. Available beginning with
ATSUI 1.2.

kATSULastErr -8809 No ATSUI-related result codes
may exceed this value. Result
code values between
kATSUInvalidTextLayoutErr and
kATSULastErr are reserved.
Available beginning with ATSUI
1.0.

Table 2-1 ATSUI-specific result codes
234 Result Codes

1/11/00  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Document Revision History A

This document has had the following releases:

Table A-1 Apple Type Services for Unicode Imaging Reference revision history

Version Notes

Jan. 11, 2000 This release covers ATSUI features through version 1.2. For a list of those
functions introduced with ATSUI 1.2 or whose implementation have
changed since 1.0 or 1.1, see “History of API Additions and Changes in
ATSUI” (page 237).

Aug. 20, 1999 This release is an update to the previous document and includes corrected
descriptions.

May 7, 1999 This release covers ATSUI features through version 1.1. For a list of those
functions introduced with ATSUI 1.1 or whose implementation have
changed since 1.0, see “History of API Additions and Changes in ATSUI”
(page 237).

Mar. 12, 1999 Initial public release of Apple Type Services for Unicode Imaging Reference
covering ATSUI 1.0.

Sep. 23, 1998 First seed draft release of ATSUI 1.0 API documentation. Document title:
Rendering Unicode Text Using Apple Type Services for Unicode Imaging (ATSUI).
235
1/11/00  Apple Computer, Inc.

A P P E N D I X

Document Revision History
236
1/11/00  Apple Computer, Inc.

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
History of API Additions and Changes
in ATSUI B

Table B-1 alphabetically lists the functions whose implementation have changed
with ATSUI 1.2.

The following constants were introduced with ATSUI 1.2: gestaltATSUUpdate2,
gestaltATSUTextLocatorUsageFeature, kATSLineTabAdjustEnabled,
kATSUStyleTextLocatorTag, kATSULineLanguageTag, kATSULineTextLocatorTag, and
kATSUMaxLineTag.

Table B-1 Functions whose implementation has changed in ATSUI 1.2

Function name Description of change in ATSUI 1.2

ATSUGetGlyphBounds (page 146) Now the maximum number of enclosing
trapezoids returned is 127 rather than 31,
as was true for the implementation of this
function with ATSUI 1.0 and 1.1.

ATSUGetTextHighlight (page 170) The maximum number of components
that can be passed back is 127 rather than
31.

ATSUSetFontFeatures (page 44) If you try to set mutually exclusive font
features, whether in one or multiple calls,
ATSUI 1.2 removes the existing feature
and replaces it with your newly set
feature. Earlier versions of ATSUI will not
remove a feature when you set its
contradictory feature.
237
1/11/00  Apple Computer, Inc.

A P P E N D I X B

History of API Additions and Changes in ATSUI
Table B-2 alphabetically lists the functions that were introduced with ATSUI 1.1.

Table B-2 Functions new to ATSUI 1.1

Function name

ATSUClearLayoutCache (page 93)

ATSUClearLineControls (page 109)

ATSUCopyLineControls (page 103)

ATSUCountFontTracking (page 68)

ATSUCreateAndCopyTextLayout (page 91)

ATSUCreateMemorySetting (page 174)

ATSUDisposeMemorySetting (page 177)

ATSUGetAllLineControls (page 108)

ATSUGetCurrentMemorySetting (page 176)

ATSUGetFontFallbacks (page 124)

ATSUGetIndFontTracking (page 69)

ATSUGetLineControl (page 106)

ATSUSetCurrentMemorySetting (page 176)

ATSUSetFontFallbacks (page 123)

ATSUSetLineControls (page 104)

ATSUCustomAllocFunc (page 178)

ATSUCustomGrowFunc (page 179)

ATSUCustomFreeFunc (page 180)
238
1/11/00  Apple Computer, Inc.

A P P E N D I X B

History of API Additions and Changes in ATSUI
Table B-3 alphabetically lists the ATSUI 1.0 functions whose implementation
changed with ATSUI 1.1.

Table B-3 Functions whose implementation has changed with ATSUI 1.1

Function name Description of change in 1.0

ATSUBreakLine (page 157) Now returns the result code
kATSULineBreakInWord to indicate that
ATSUBreakLine performed a line break
within a word. Note that this is a status
message, not an error code.

ATSUCopyToHandle (page 35) No longer used. Instead, use the 'ustl'
resource to format styled text in the
clipboard.

ATSUHighlightText (page 165) Now can extend highlighting across tab
stops using the mask constants
kATSLineFillOutToWidth and
kATSLineImposeNoAngleForEnds.

ATSUPasteFromHandle (page 36) No longer used. Instead, use the 'ustl'
resource to format styled text in the
clipboard.

ATSUSetAttributes (page 37) New style run attribute tag constants
now available.

ATSUSetLayoutControls (page 96) New text layout and line attribute tag
constants now available.

ATSUUnhighlightText (page 168) Now can erase highlighting across tab
stops using the mask constants
kATSLineFillOutToWidth and
kATSLineImposeNoAngleForEnds.
239
1/11/00  Apple Computer, Inc.

A P P E N D I X B

History of API Additions and Changes in ATSUI
240
1/11/00  Apple Computer, Inc.

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
Summary of Style Run and Text
Layout Attribute Tag Information C

This appendix provides tabular summaries of the Apple-defined style run and
text layout attribute tags and the data type, size, and default values of the
attributes they identify. Table C-1 summarizes this information for style run
attribute tags.

Table C-1 Style run attribute tags and the data type, size, and default values of the
style run attributes they identify

Style run attribute tag
Corresponding data type and
size (in bytes)

Corresponding default
value

kATSUQDBoldfaceTag Boolean 1 false; plain text

kATSUQDItalicTag Boolean 1 false; plain text

 kATSUQDUnderlineTag Boolean 1 false; plain text

 kATSUQDCondensedTag Boolean 1 false; plain text

kATSUQDExtendedTag Boolean 1 false; plain text

kATSUFontTag ATSUFontID (page 188) 4 the application font
for the current script
system; you can
determine this value
by calling
GetScriptVariable(sm
SystemScript,smScrip
tAppFond). If the
application font
cannot be rendered
with ATSUI, the
default font is
Helvetica.
241
1/11/00  Apple Computer, Inc.

A P P E N D I X

Summary of Style Run and Text Layout Attribute Tag Information
kATSUSizeTag Fixed 4 the size of the
application font for
the current script
system; you can
determine this value
by calling
GetScriptVariable(sm
SystemScript,smScrip
tAppFondSize) and
examining the low
word of the return
value

kATSUColorTag RGBColor 6 (0, 0, 0); black text

kATSULanguageTag RegionCode 2 the RegionCode of the
system script; you
can determine this
value by calling
GetScriptVariable(sm
SystemScript,smScrip
tLang)

kATSUVerticalCharacterTag ATSUVerticalCharacterTy
pe

2 kATSUStronglyHorizon
tal;
horizontally-oriented
glyphs

kATSUImposeWidthTag ATSUTextMeasurement
(page 192)

4 kATSUNoImposedWidth;
use font-defined
character width
default value

kATSUBeforeWithStreamShiftTag Fixed 4 0; use the
font-defined
with-stream shift
default value before
glyphs

Table C-1 Style run attribute tags and the data type, size, and default values of the
style run attributes they identify

Style run attribute tag
Corresponding data type and
size (in bytes)

Corresponding default
value
242
1/11/00  Apple Computer, Inc.

A P P E N D I X C

Summary of Style Run and Text Layout Attribute Tag Information
kATSUAfterWithStreamShiftTag Fixed 4 0; use the
font-defined
with-stream shift
default value after
glyphs

kATSUCrossStreamShiftTag Fixed 4 0; use the
font-defined
cross-stream shift
default value

kATSUTrackingTag Fixed 4 0; use the
font-defined tracking
default value

kATSUHangingInhibitFactorTag Fract 4 0; use the
font-defined hanging
glyph default value

kATSUKerningInhibitFactorTag Fract 4 0; use the
font-defined default
kerning value

kATSUDecompositionFactorTag Fixed 4 0; use the
font-defined ligature
decomposition
default value

kATSUBaselineClassTag ATSUFontID (page 188) 4 kBSLNRomanBaseline;
Roman baseline

kATSUPriorityJustOverrideTag ATSJustWidthDeltaEntryO
verride structure

20 0’s in all fields; apply
the font-defined
justification priority
behavior default
values

kATSUNoLigatureSplitTag Boolean 1 false; treat ligatures
as divisible

Table C-1 Style run attribute tags and the data type, size, and default values of the
style run attributes they identify

Style run attribute tag
Corresponding data type and
size (in bytes)

Corresponding default
value
243
1/11/00  Apple Computer, Inc.

A P P E N D I X

Summary of Style Run and Text Layout Attribute Tag Information
kATSUNoCaretAngleTag Boolean 1 false; use inherent
angle of text to draw
caret and
highlighting

kATSUSuppressCrossKerningTag Boolean 1 false; use the
font-defined cross
kerning default value

kATSUNoOpticalAlignmentTag Boolean 1 false; use the
font-defined optical
alignment default
value

kATSUForceHangingTag Boolean 1 false; glyphs will not
extend into the
margin, even if they
would normally do
so

kATSUNoSpecialJustificationTag Boolean 1 false; post
compensation actions
will occur if they are
needed

kATSUMaxStyleTag the maximum
Apple-defined style
run attribute tag
value

kATSUMaxATSUITagValue No Apple-defined
tags may exceed this
value. Apple-defined
values between
kATSUMaxStyleTag and
kATSUMaxATSUITagValu
e are reserved. You
can create you own
attribute tags with
any greater value.

Table C-1 Style run attribute tags and the data type, size, and default values of the
style run attributes they identify

Style run attribute tag
Corresponding data type and
size (in bytes)

Corresponding default
value
244
1/11/00  Apple Computer, Inc.

A P P E N D I X C

Summary of Style Run and Text Layout Attribute Tag Information
Table C-2 summarizes the Apple-defined text layout attribute tags and their
corresponding data type, size, and default values.

Table C-2 Text layout attribute tags and the data type, size, and default value of the
attributes they identify

Text layout attribute tag
Corresponding data type and size (in
bytes)

Corresponding
default value

kATSULineWidthTag ATSUTextMeasurement (page 192) 4 0; no imposed
line width

kATSULineRotationTag Fixed 4 0; no line
rotation

 kATSULineDirectionTag Boolean 1 derived from
the system
script; you can
determine this
value by
calling the
function
GetSysDirectio
n

kATSULineJustificationFactorTag Fract 4 kATSUNoJustifi
cation; no line
justification

kATSULineFlushFactorTag Fract 4 kATSUStartAlig
nment; text is
drawn to the
right of the left
margin

kATSULineBaselineValuesTag BslnBaselineRecord (page 257) 4 all 0’s; no
baseline deltas
are applied to
the
cross-stream
shifting of
glyphs
245
1/11/00  Apple Computer, Inc.

A P P E N D I X

Summary of Style Run and Text Layout Attribute Tag Information
kATSULineLayoutOptionsTag UInt32 4 kATSUNoLayoutO
ptions; no
special line
layout options
are set

kATSULineAscentTag ATSUTextMeasurement (page 192) 4 kATSUseLineHei
ght; use the
maximum line
ascent of all
the style runs
in a line <<is
this right?>>

kATSULineDescentTag ATSUTextMeasurement (page 192) 4 kATSUseLineHei
ght; use the
maximum line
descent of all
the style runs
in a line

kATSULineLanguageTag RegionCode 2 0; no language
variation
specified

kATSULineTextLocatorTag TextBreakLocatorRef (page 247) 4 NULL; language
specified
locator or the
default Text
Utilities locator

Table C-2 Text layout attribute tags and the data type, size, and default value of the
attributes they identify (continued)

Text layout attribute tag
Corresponding data type and size (in
bytes)

Corresponding
default value
246
1/11/00  Apple Computer, Inc.

A P P E N D I X D

Figure D-0
Listing D-0
Table D-0
New Constants and Data Types Used
by ATSUI D

This appendix describes new constants and data types used by ATSUI from
Unicode Utilities, the Script Manager, and Apple Advanced Typography.

About Unicode Utilities D

Version 1.0 of Unicode Utilities provided support for Unicode input methods
and was documented in the seed note Inside Macintosh: Supporting Unicode
Input. This section describes the TextBreakLocatorRef data type, which was
added since online publication of the seed note.

Unicode Utilities Reference D

� “Unicode Utilities Data Type” (page 247)

Unicode Utilities Data Type D

� “TextBreakLocatorRef” (page 247)

TextBreakLocatorRef D

The TextBreakLocatorRef type is reference to a private structure that contains
data needed by ATSUI and the Unicode Utilities function UCFindTextBreak to
form various kind of text breaks. ATSUI developers must create a text break
locator reference to set the style run and text layout attributes identified by the
About Unicode Utilities 247
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
tag constants kATSUStyleTextLocatorTag and kATSULineTextLocatorTag. For a
description of these tag constants, see “Style Run Attribute Tag Constants”
(page 217) and “Text Layout Attribute Tag Constants” (page 226), respectively.
You create a text break locator reference by calling the Unicode Utilities function
UCCreateTextBreakLocator. The Unicode Utilities functions UCFindTextBreak and
UCCreateTextBreakLocator are documented in Unicode Utilities Preliminary
Documentation at the Mac OS 8 and 9 Developer Documentation web site:

<http://developer.apple.com/techpubs/macos8/pdf/UnicodeUtilities.pdf>.

typedef struct OpaqueTextBreakLocatorRef* TextBreakLocatorRef

VERSION NOTES

Available in the header file UnicodeUtilities.h beginning with Mac OS 9.

About Script Manager D

The Script Manager enables developers to modify the features of an individual
script system, as well as to parse source code and convert text among
subscripts. The Script Manager was previously documented in Inside Macintosh:
Text. This section describes the region code constants that have been added
since that publication was released.

Script Manager Reference D

� “Script Manager Constants” (page 248)

Script Manager Constants D

� “Region Code Constants” (page 249)
248 About Script Manager

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Region Code Constants D

These constants specify a combination of a language code and a particular
region. Some of these numeric values are reserved just for extra resource IDs
associated with certain regions; these are not actual region codes, and are noted
in the comments. Not all of the region codes are currently supported by Apple
software.

ATSUI uses region code information to direct line breaking and cursor
movement functions like ATSUBreakLine (page 157), ATSUNextCursorPosition
(page 136), ATSUPreviousCursorPosition (page 138),
ATSURightwardCursorPosition (page 140), and ATSULeftwardCursorPosition
(page 141). You can use region code constants to set the style run and text layout
attributes identified by the tag constants kATSULanguageTag and
kATSULineLanguageTag. For more information, see “Style Run Attribute Tag
Constants” (page 217) and “Text Layout Attribute Tag Constants” (page 226),
respectively.

Note that in the comments for the following enumeration, many of the region
codes have an associated P/N, ISO code, and comments. P/N stands for the
Apple part number code for software localized for the specified region; the ISO
code is made up of the two-letter ISO language and country codes from ISO 639
and ISO 3166. The ISO code is described by the lowercase language code,
followed by “_”, then the uppercase country code.

enum { /* P/N ISO codes comments*/
verUS = 0, /* en_US*
verFrance = 1, /* F fr_FR*/
verBritain = 2, /* B en_GB*/
verGermany = 3, /* D de_DE*/
verItaly = 4, /* T it_IT*/
verNetherlands = 5, /* N nl_NL*/
verFlemish = 6, /* FN nl_BE Flemish (Dutch) for

Belgium*/
verSweden = 7, /* S sv_SE*/
verSpain = 8, /* E es_ES Spanish for Spain*/
verDenmark = 9, /* DK da_DK*/
verPortugal = 10, /* PO pt_PT Portuguese for Portugal*/
verFrCanada = 11, /* C fr_CA French for Canada*/
verNorway = 12, /* H no_NO Bokmål*
verIsrael = 13, /* HB iw_IL Hebrew*/
verJapan = 14, /* J ja_JP*/
Script Manager Reference 249
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verAustralia = 15, /* X en_AU English for Australia*/
verArabic = 16, /* AB ar Arabic for N Africa,

Arabian peninsula,
Levant*/

verFinland = 17, /* K fi_FI*/
verFrSwiss = 18, /* SF fr_CH French Swiss*/
verGrSwiss = 19, /* SD de_CH German Swiss*/
verGreece = 20, /* GR el_GR Monotonic Greek(modern)*/
verIceland = 21, /* IS is_IS*/
verMalta = 22, /* MA mt_MT*/
verCyprus = 23, /* CY _CY Greek or Turkish lang?*/
verTurkey = 24, /* TU tr_TR*/
verYugoCroatian = 25 /* YU Croatian for Yugoslavia;

now use verCroatia (68)*/
verNetherlandsComma = 26, /* ID for KCHR resource -

Dutch*/
verBelgiumLuxPoint = 27, /* ID for KCHR resource -

Belgium*/
verCanadaComma = 28, /* ID for KCHR resource -

Canadian ISO*/
verCanadaPoint = 29, /* ID for KCHR resource -

Canadian, now unused*/
vervariantPortugal = 30, /* ID for resource; now

unused*/
vervariantNorway = 31, /* ID for resource; now

unused*/
vervariantDenmark = 32 /* ID for KCHR resource -

Danish Mac Plus*/
verIndiaHindi = 33, /* hi_IN Hindi for India*/
verPakistanUrdu = 34, /* UR ur_PK Urdu for Pakistan */
verTurkishModified = 35,
verItalianSwiss = 36, /* ST it_CH Italian Swiss*/
verInternational = 37, /* Z en English for international

use */
/* 38 is unassigned*/

verRomania = 39, /* RO ro_RO*/
verGreecePoly = 40, /* Polytonic Greek

(classical) */
verLithuania = 41, /* LT lt_LT*/
verPoland = 42, /* PL pl_PL*/
verHungary = 43, /* MG hu_HU*/
250 Script Manager Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verEstonia = 44, /* EE et_EE*/
verLatvia = 45, /* LV lv_LV*/
verSami = 46, /* se */
verFaroeIsl = 47, /* FA fo_FO */
verIran = 48, /* PS fa_IR Persian/Farsi*/
verRussia = 49, /* RSr u_RU Russian*/
verIreland = 50, /* GA ga_IE Irish Gaelic for Ireland

(without dot above)*/
verKorea = 51, /* KH ko_KR*/
verChina = 52, /* CH zh_CN Simplified Chinese*/
verTaiwan = 53, /* TA zh_TW Traditional Chinese*/
verThailand = 54, /* TH th_TH*/
verScriptGeneric = 55, /* SS Generic script system (no

language or script)*/
verCzech = 56, /* CZ cs_CZ*/
verSlovak = 57, /* SL sk_SK*/
verFarEastGeneric = 58, /* FE Generic Far East system

(no language or script)*/
verMagyar = 59, /* Unused; see verHungary*/
verBengali = 60, /* bn Bangladesh or India*/
verByeloRussian = 61 /* BY be_BY*/
verUkraine = 62, /* UA uk_UA*/

/* 63 is unassigned*/
verGreeceAlt = 64, /* unused */
verSerbian = 65, /* SR sr_YU, sh_YU */
verSlovenian = 66, /* SV sl_SI */
verMacedonian = 67, /* MD mk_MK */
verCroatia = 68, /* CR hr_HR, sh_HR*/

/* 69 is unassigned*/
/* 70 is unassigned*/

verBrazil = 71, /* BR pt_BR Portuguese for Brazil*/
verBulgaria = 72, /* BG bg_BG*/
verCatalonia = 73, /* CA ca_ES Catalan for Spain*/
verMultilingual = 74, /* ZM (no language or script)*/
verScottishGaelic = 75, /* GD gd*/
verManxGaelic = 76, /* GV gv Isle of Man*/
verBreton = 77, /* BZ br*/
verNunavut = 78, /* IU iu_CA Inuktitut for Canada*/
verWelsh = 79, /* CU cy*/

/* 80 is ID for KCHR resource - Canadian
CSA*/
Script Manager Reference 251
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verIrishGaelicScript= 81, /* GS ga_IE Irish Gaelic for Ireland
(using dot above)*/

verEngCanada = 82, /* V en_CA English for Canada*/
verBhutan = 83, /* BH dz_BT Dzongkha for Bhutan*/
verArmenian = 84, /* HY hy_AM*/
verGeorgian = 85, /* KR ka_GE*/
verSpLatinAmerica = 86, /* LA es Spanish for Latin

America*/
/* 87 is ID for KCHR

resource - Spanish ISO*/
verTonga = 88, /* TS to_TO*/

/* 89 is ID for KCHR
resource - Polish
Modified*/

/* 90 is ID for KCHR
resource - Catalan ISO*/

verFrenchUniversal = 91, /* fr French generic*/
verAustria = 92, /* AU de_AT German for Austria*/

/* Y 93 is unused alternate
for verSpLatinAmerica*/

verGujarati = 94, /* gu_IN*/
verPunjabi = 95, /* pa Pakistan or India*/
verIndiaUrdu = 96, /* ur_IN Urdu for India*/
verVietnam = 97 /* vi_VN*/}
verFrBelgium = 98, /* BF fr_BE French for Belgium */
verUzbek = 99, /* BD uz_UZ */
verSingapore = 100, /* SG */
verNynorsk = 101, /* NY _NO Norwegian Nynorsk */
verAfrikaans = 102, /* AK af_ZA */
verEsperanto = 103, /* eo */
verMarathi = 104, /* mr_IN */
verTibetan = 105, /* bo */
verNepal = 106, /* ne_NP */
verGreenland = 107 /* kl */

};

Constant descriptions

verUS Identifies English spoken in the United States.

verFrance Identifies French spoken in France.

verBritain Identifies English spoken in Britain.
252 Script Manager Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verGermany Identifies German spoken in Germany.

verItaly Identifies Italian spoken in Italy.

verNetherlands Identifies Dutch spoken in the Netherlands.

verFlemish Identifies Flemish (Dutch) spoken in Belgium.

verSweden Identifies Swedish spoken in Sweden.

verSpain Identifies Spanish spoken in Spain.

verDenmark Identifies Danish spoken in Denmark.

verPortugal Identifies Portugal Portuguese.

verFrCanada Identifies French spoken in Canada.

verNorway Identifies Bokmal.

verIsrael Identifies Hebrew.

verJapan Identifies Japanese.

verAustralia Identifies English spoken in Australia.

verArabic Identifies Arabic spoken in North Africa, Arabian
peninsula, and Levant.

verFinland Identifies Finnish spoken in Finland.

verFrSwiss Identifies French Swiss.

verGrSwiss Identifies German Swiss.

verGreece Identifies monotonic (that is, modern) Greek.

verIceland Identifies Icelandic.

verMalta Identifies Maltese.

verCyprus Identifies Greek or Turkish spoken in Cyprus.

verTurkey Identifies Turkish spoken in Turkey.

verYugoCroatian Identifies Croatian spoken in Yugoslavia. No longer used.
You should instead use VerCroatia.

verNetherlandsCommaIdentifies the Dutch 'KCHR' resource.

verBelgiumLuxPoint Identifies the Belgium 'KCHR' resource.

verCanadaComma Identifies the Canadian ISO 'KCHR' resource.
Script Manager Reference 253
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verCanadaPoint Identifies the Canadian 'KCHR' resource. No longer used.

vervariantPortugal Identifies the Portuguese 'KCHR' resource. No longer used.

vervariantNorway Identifies the Norwegian 'KCHR' resource. No longer used.

vervariantDenmark Identifies the Danish Mac Plus 'KCHR' resource.

verIndiaHindi Identifies Hindi spoken in India.

verPakistanUrdu Identifies Urdu spoken in Pakistan.

verTurkishModified Identifies Turkish.

verItalianSwiss Identifies Italian Swiss.

verInternational Identifies English for international use.

verRomania Identifies Romanian.

verGreecePoly Identifies polytonic (that is, classical) Greek.

verLithuania Identifies Lithuanian.

verPoland Identifies Polish.

verHungary Identifies Hungarian.

verEstonia Identifies Estonian.

verLatvia Identifies Latvian.

verSami Identifies Saamisk.

verFaroeIsl Identifies the north Germanic language spoken on Faeroe
Island.

verIran Identifies Persian (that is, Farsi).

verRussia Identifies Russian.

verIreland Identifies Irish Gaelic spoken in Ireland (that is, without a
dot above).

verKorea Identifies Korean.

verChina Identifies simplified Chinese.

verTaiwan Identifies traditional Chinese.

verThailand Identifies Thai.
254 Script Manager Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verScriptGeneric Identifies the generic script system (that is, no language or
script).

verCzech Identifies Czech.

verSlovak Identifies Slovak.

verFarEastGeneric Identifies generic script system for far east system.

verMagyar Unused. See verHungary.

verBengali Identifies Bengali spoken in Bangladesh or India.

verByeloRussian Identifies Russian.

verUkraine Identifies Ukrainian.

verGreeceAlt Identifies Greek alternative. Not used.

verSerbian Identifies Serbian.

verSlovenian Identifies Slovenian.

verMacedonian Identifies Macedonian.

verCroatia Identifies Croatian.

verBrazil Identifies Brazilian Portuguese.

verBulgaria Identifies Bulgarian.

verCatalonia Identifies Catalan spoken in Spain.

verMultilingual Identifies no language or script.

verScottishGaelic Identifies Scottish Gaelic.

verManxGaelic Identifies Gaelic spoken in the Isle of Man.

verBreton Identifies Breton.

verNunavut Identifies Nunavut spoken by the Inuktitut in Canada.

verWelsh Identifies Welsh.

verIrishGaelicScript
Identifies Irish Gaelic for Ireland (with the dot above).

verEngCanada Identifies English spoken in Canada.

verBhutan Identifies Dzongkha spoken in Bhutan.

verArmenian Identifies Armenian.
Script Manager Reference 255
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
verGeorgian Identifies Georgia spoken in Georgia, Russia.

verSpLatinAmerica Identifies Spanish spoken in Latin America.

verFrenchUniversal Identifies generic French.

verAustria Identifies German spoken in Austria.

verGujarati Identifies Gujarti.

verPunjabi Identifies Punjabi spoken in Pakistan and India.

verIndiaUrdu Identifies Urdu spoken in India.

verVietnam Identifies Vietnamese.

verFrBelgium Identifies French spoken in Belgium.

verUzbek Identifies Uzbek.

verSingapore Identifies Chinese spoken in Singapore.

verNynorsk Identifies Norwegian Nynorsk.

verAfrikaans Identifies Afrikaans.

verEsperanto Identifies Esperanto.

verMarathi Identifies Marathi.

verTibetan Identifies Tibetan.

verNepal Identifies Nepalese.

verGreenland Identifies Greenlandic.

About Apple Advanced Typography D

While ATSUI enables advanced high-quality typography and expanded
Unicode-based multilingual line layout, Apple Advanced Typography (AAT)
provides advanced layout support. There are two header files associated with
Apple Advanced Typography: SFNTTypes.h and SFNTLayoutTypes.h. Both files
define constants and data types necessary to access the font tables of an 'SFNT'
font. These tables pertain to text rendering as well as layout. This information
can be useful for font designers, as well as for developers wishing to access font
table information. You can pass some of these constants and types to ATSUI
functions that search a font name table for information. In addition, there are
256 About Apple Advanced Typography

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
several ATSUI functions that pass back a subset of the font feature type and
selector constants described in this section.

Apple Advanced Typography Reference D

� “Apple Advanced Typography Data Type” (page 257)

� “Apple Advanced Typography Constants” (page 257)

Apple Advanced Typography Data Type D

� BslnBaselineRecord (page 257)

BslnBaselineRecord D

The BslnBaselineRecord type is an array of 32 Fixed values, each of which
represents a baseline type in a style run. Examples of baseline types include
mathematical, ideographic, and Roman. An array of type BslnBaselineRecord is
passed back by the function ATSUCalculateBaselineDeltas (page 43) to represent
the distance from the dominant baseline to each baseline type in a style run. The
ATSUTextMeasurement type can be also used to set and get optimum baseline
positions; see “Text Layout Attribute Tag Constants” (page 226).

typedef Fixed BslnBaselineRecord[32];

Apple Advanced Typography Constants D

� “Annotation Feature Selector Constants” (page 259)

� “Baseline Type Constants” (page 260)

� “CJK Roman Width Feature Selector Constants” (page 262)

� “Character Alternates Feature Selector Constants” (page 262)
Apple Advanced Typography Reference 257
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
� “Character Shape Feature Selector Constants” (page 263)

� “Cursive Connection Font Feature Selector Constants” (page 264)

� “Design Complexity Feature Selector Constants” (page 265)

� “Diacritical Mark Font Feature Selector Constants” (page 266)

� “Font Feature Type Constants” (page 267)

� “Font Feature Type Selector Constants” (page 270)

� “Font Name Code Constants” (page 271)

� “Font Name Language Constants” (page 274)

� “Font Name Platform Constants” (page 284)

� “Fraction Font Feature Selector Constants” (page 286)

� “Ideographic Spacing Feature Selector Constants” (page 287)

� “Justification Override Mask Constants” (page 287)

� “Justification Priority Constants” (page 289)

� “Kana Spacing Feature Selector Constants” (page 290)

� “Letter Case Font Feature Selector Constants” (page 291)

� “Ligature Font Feature Selector Constants” (page 292)

� “Linguistic Rearrangement Font Feature Selector Constants” (page 294)

� “Macintosh Platform Script Code Constants” (page 295)

� “Mathematical Extras Feature Selector Constants” (page 300)

� “Microsoft Platform Script Code Constants” (page 301)

� “Number Case Feature Selector Constants” (page 301)

� “Number Width Feature Selector Constants” (page 302)

� “Ornament Sets Feature Selector Constants” (page 303)

� “Prevention of Glyph Overlap Font Feature Selector Constants” (page 305)

� “Style Options Feature Selector Constants” (page 306)

� “Swash Font Feature Selector Constants” (page 306)

� “Text Width Feature Selector Constants” (page 308)
258 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
� “Transliteration Feature Selector Constants” (page 309)

� “Typographic Extras Feature Selector Constants” (page 310)

� “Unicode Decomposition Feature Selector Constants” (page 311)

� “Unicode Platform Script Code Constants” (page 311)

� “Vertical Position Font Feature Selector Constants” (page 313)

� “Vertical Substitution Font Feature Selector Constants” (page 313)

Annotation Feature Selector Constants D

The annotation feature type specifies annotations (or adornments) to basic letter
shapes. For instance, most Japanese fonts include versions of numbers that are
circled, parenthesized, have periods after them, and so on. This is an exclusive
feature type. Table D-1 lists the selectors for this feature.

Table D-1 Feature selectors for the kAnnotationType feature type

Constant Explanation

kNoAnnotationSelector Indicates that characters should appear
without annotation.

kBoxAnnotationSelector Use the forms of characters surrounded
by a box cartouche.

kRoundedBoxAnnotationSelector Use the forms of characters surrounded
by a box cartouche with rounded
corners.

kCircleAnnotationSelector Use the forms of characters surrounded
by a circle. For instance, see Unicode
characters U+3260 through U+326F.

kInvertedCircleAnnotationSelector Same as circle annotation, but with
white and black reversed. For instance,
see Unicode characters U+2776 through
U+277F.
Apple Advanced Typography Reference 259
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Baseline Type Constants D

You can pass a constant of type kATSUBaselineClassTag to the function
ATSUCalculateBaselineDeltas (page 43) to specify the type of baseline you want
used in calculating optimal baseline positions. To specify the standard baseline
value from the current font, pass the constant kBSLNNoBaselineOverride.

You can also use a constant of this type to set or obtain the primary baseline in a
style run; see the functions ATSUSetAttributes (page 37) and ATSUGetAttribute
(page 38) respectively.

enum {
kBSLNRomanBaseline = 0,
kBSLNIdeographicCenterBaseline = 1,
kBSLNIdeographicLowBaseline = 2,
kBSLNHangingBaseline = 3,
kBSLNMathBaseline = 4,
kBSLNLastBaseline = 31,
kBSLNNumBaselineClasses = kBSLNLastBaseline + 1,
kBSLNNoBaselineOverride = 255

};
typedef UInt32 BslnBaselineClass;

kParenthesisAnnotationSelector Use the forms of characters surrounded
by parentheses. For instance, see
Unicode characters U+2474 through
U+2487.

kPeriodAnnotationSelector Use the forms of characters followed by
a period. For instance, see Unicode
characters U+2488 through U+249B.

kRomanNumeralAnnotationSelector Display characters in their Roman
numeral form.

kDiamondAnnotationSelector Display the text surrounded by a
diamond.

Table D-1 Feature selectors for the kAnnotationType feature type (continued)

Constant Explanation
260 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Constant description

kBSLNRomanBaseline Represents the baseline used by most Roman script
languages, and in Arabic and Hebrew. This is the default
value.

kBSLNIdeographicCenterBaseline
Represents the baseline used by Chinese, Japanese, and
Korean ideographic scripts, in which ideographs are
centered halfway on the line height.

kBSLNIdeographicLowBaseline
Represents the baseline used by Chinese, Japanese, and
Korean scripts. Similar to kBSLNIdeographicCenterBaseline,
but with the glyphs lowered. This baseline is most
commonly used to align Roman glyphs within ideographic
fonts to Roman glyphs in Roman fonts.

kBSLNHangingBaseline
Represents the baseline used by Devanagari and related
scripts, in which the bulk of most glyphs is below the
baseline. This baseline type is also used for drop capitals in
Roman scripts.

kBSLNMathBaseline Represents the baseline used for setting mathematics. It is
centered on symbols such as the minus sign (at half the
x-height).

kBSLNLastBaseline No baseline type may exceed this value.
Application-defined baseline values between
kBSLNMathBaseline and kBSLNLastBaseline are reserved.

kBSLNNumBaselineClasses
Represents the total number of baseline types
(kBSLNLastBaseline + 1).

kBSLNNoBaselineOverride
Instructs ATSUI to use the standard baseline value from the
current font.
Apple Advanced Typography Reference 261
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
CJK Roman Width Feature Selector Constants D

The CJK Roman spacing feature type is used to select between the proportional
and half-width forms of Roman characters in a CJK (that is, Chinese, Japanese,
Korean) font. Table D-2 lists the selectors for this feature.

Character Alternates Feature Selector Constants D

This feature type gives a font a very general way to provide different sets of
glyphs. Sets are numbered sequentially. For a font that supports the character
alternates feature type, you can select by number any of the sets it provides.

For example, a font with 20 ampersands could place them in 20 selectors under
this feature type. In general, however, named glyph sets provided through the
kCharacterAlternativesType feature type are preferable. Table D-3 lists the only
defined selector for this feature.

Table D-2 Feature selectors for the kCJKRomanSpacingType feature type

Constant Explanation

kHalfWidthCJKRomanSelector Selects the half-width forms of letters.

kProportionalCJKRomanSelector Selects the proportional forms of letters.

kDefaultCJKRomanSelector Selects the default Roman forms of
letters.

kFullWidthCJKRomanSelector Selects the full-width Roman forms of
letters.

Table D-3 Feature selectors for the kCharacterAlternativesType feature type

Constant Explanation

kNoAlternatesSelector Specifies the use of no character alternatives. This is
the first (default) setting for this feature type; others
are specified by number only.
262 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Character Shape Feature Selector Constants D

The Chinese language can be represented with both a traditional and a
simplified character set, as shown in Figure D-1. Chinese fonts that support the
character shape feature type allow you to select either set.

Figure D-1 Traditional and simplified versions of a Chinese character

Note
Historically on the Macintosh, the difference has been
handled by having separate script systems for traditional
Chinese and simplified Chinese; while that is still the case,
this font feature makes it possible to have both glyph
repertoires present in a single font. �

Table D-4 lists the selectors for this feature.

Table D-4 Feature selectors for the kCharacterShapeType feature type

Constant Explanation

kTraditionalCharactersSelector Specifies the use of traditional characters.

kSimplifiedCharactersSelector Specifies the use of simplified characters.

kJIS1978CharactersSelector Use character shapes for Japanese
characters as defined by the JIS (Japanese
Industrial Standard) C 6226-1978
document.

kJIS1983CharactersSelector Use character shapes for Japanese
characters as defined by the JIS X
0208-1983 document.
Apple Advanced Typography Reference 263
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Cursive Connection Font Feature Selector Constants D

All Arabic fonts use cursive connection, and some Roman fonts may also
support cursive connection. If a font supports the cursive connection feature
type, you may be able to select features that either disable cursive connection
completely, enable letter forms that connect in a non contextual manner, or
enable completely contextual, cursively connected letter forms (as in Arabic).
Table D-5 lists the feature selectors for cursive connection.

Figure D-2 shows an example of non contextual cursive connection in a Roman
font.

kJIS1990CharactersSelector Use character shapes for Japanese
characters as defined by the JIS X
0208-1990 document.

kTraditionalAltOneSelector Use alternate set 1 of traditional forms for
characters.

kTraditionalAltTwoSelector Use alternate set 2 of traditional forms for
characters.

kTraditionalAltThreeSelector Use alternate set 3 of traditional forms for
characters.

kTraditionalAltFourSelector Use alternate set 4 of traditional forms for
characters.

kTraditionalAltFiveSelector Use alternate set 5 of traditional forms for
characters.

kExpertCharactersSelector Use "expert" forms of ideographs, such as
are defined in the Fujitsu FMR character
set.

Table D-4 Feature selectors for the kCharacterShapeType feature type (continued)

Constant Explanation
264 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-2 Non contextual cursive connection in a Roman font

Design Complexity Feature Selector Constants D

Some fonts may have several glyph sets that represent different designs from
the same font-family, such as “plain” or “fancy.” For a font that supports the
design complexity feature type, design levels are numbered, and you can select
any available level by number or by selectors such as those shown in Table D-6.

Table D-5 Feature selectors for the kCursiveConnectionType feature type

Constant Explanation

kUnconnectedSelector Disables cursive connection.

kPartiallyConnectedSelector Specifies noncontextual cursive connection.

kCursiveSelector Specifies fully contextual cursive connection.
For Arabic fonts, this selector is set by
default.

Table D-6 Feature selectors for the kDesignComplexityType feature type

Constant Explanation

kDesignLevel1Selector Specifies the basic glyph set.

kDesignLevel2Selector Specifies an alternate glyph set.

kDesignLevel3Selector Specifies an alternate glyph set.

kDesignLevel4Selector Specifies an alternate glyph set.

kDesignLevel5Selector Specifies an alternate glyph set.
Apple Advanced Typography Reference 265
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Diacritical Mark Font Feature Selector Constants D

A glyph with a diacritical mark is a form of ligature. For fonts whose glyphs can
take diacritical marks, ATSUI allows you several display options. If the font
supports the diacritical marks feature type, you can specify that ATSUI should
show, hide, or decompose diacritical marks, as shown in Table D-7.

For Roman fonts the default setting is to show diacritical marks. In text for
scripts in which vowel marks are not normally shown, you can specify that
marks be visible in certain instances, such as for children’s text, or for
pronunciation guides on rare words. Figure D-3 shows an example of Hebrew
text drawn with and without its diacritical marks.

Figure D-3 Hebrew text with diacritical marks shown (upper) and hidden (lower)

Table D-7 Feature selectors for the kDiacriticsType feature type

Constant Explanation

kShowDiacriticsSelector Specifies that ATSUI is to form accent
ligatures on the glyphs they apply to.

kHideDiacriticsSelector Specifies that ATSUI is not to form any
accent ligatures.

kDecomposeDiacriticsSelector Specifies that ATSUI is to display marked
glyphs as unmarked, followed by the accent
ligatures as stand-alone glyphs.
266 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-4 shows an example of text drawn with and without its accents.

Figure D-4 Accented forms

Font Feature Type Constants D

Font features are grouped into categories called feature types, within which
feature selectors are used to define particular feature settings or selections. The
set of feature types described in this section may not be complete. For a
description of the most up-to-date set of registered typographic and layout
features available to applications using Apple Advanced Typography (AAT),
see the Font Feature Registry at the Apple Font Feature Registry web site:

<http://fonts.apple.com/Registry/index.html/>.

Table D-8 (page 268) contains descriptions of some of the feature types might be
available in a font. You should query a font to determine which of these font
features are available, then build your own list of font features.

a .+

a `+

a.
à

.+a `+ .à

ˆ+a `+ à̂
`+a ˆ+
Apple Advanced Typography Reference 267
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Note that unless the feature is defaulted differently in different fonts, the zero
value for the selectors represents the default value.

Table D-8 Examples of feature types

Constant Explanation

kAllTypographicFeaturesType Specifies whether or not any font features are to be applied
at all. Table D-9 (page 271) lists the feature selectors related
to this feature type.

kLigaturesType Specifies the use of required ligatures and other categories
of optional ligatures. Table D-14 (page 292) lists the feature
selectors related to this feature type.

kCursiveConnectionType Specifies whether or not cursive connections are to be used
between glyphs. Table D-5 (page 265) lists the feature
selectors related to this feature type.

kLetterCaseType Specifies case changes, such as all uppercase, all lowercase,
and small caps, for scripts in which case has meaning. Table
D-13 (page 291) lists the feature selectors related to this
feature type.

kVerticalSubstitutionType Allows substitution of vertical forms of particular glyphs
(such as parentheses) in vertical runs of text. Table D-28
(page 313) lists the feature selectors related to this feature
type.

kLinguisticRearrangementType Either permits or inhibits linguistic (Indic-style)
rearrangement of glyphs. Table D-15 (page 294) lists the
feature selectors related to this feature type.

kNumberSpacingType Specifies whether to use fixed-width or proportional-width
glyphs for numerals. Table D-18 (page 303) lists the feature
selectors related to this feature type.

kSmartSwashType Controls whether swash variants of glyphs are to be
substituted in specific places in the text, such as at the
beginnings or ends of words or lines. Table D-22 (page 307)
lists the feature selectors related to this feature type.

kDiacriticsType Controls whether diacritical marks are shown or hidden.
Table D-7 (page 266) lists the feature selectors related to this
feature type.
268 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kVerticalPositionType Controls the selection of superscript and subscript glyph
sets. Table D-27 (page 313) lists the feature selectors related
to this feature type.

kFractionsType Controls automatic substitution or formation of fractions.
Table D-10 (page 286) lists the feature selectors related to
this feature type.

kOverlappingCharactersType Controls whether long tails on glyphs are permitted to
collide with other glyphs. Table D-20 (page 305) lists the
feature selectors related to this feature type.

kTypographicExtrasType Controls several effects, such as substitution of en dashes
for hyphens, that are associated with sophisticated
typography. Table D-25 (page 310) lists the feature selectors
related to this feature type.

kMathematicalExtrasType Controls several features, such as changing asterisks to
multiplication symbols, used for typesetting mathematical
expressions. Table D-16 (page 300) lists the feature selectors
related to this feature type.

kOrnamentSetsType Specifies certain sets of non-alphanumeric glyphs, such as
decorative borders or musical symbols. Table D-19
(page 304) lists the feature selectors related to this feature
type.

kCharacterAlternativesType Specifies, by number, any font-specific set of alternate
glyph forms. Table D-3 (page 262) lists the feature selector
related to this feature type.

kDesignComplexityType Specifies an overall complexity of appearance, as defined
by the font. Table D-6 (page 265) lists the feature selectors
related to this feature type.

kStyleOptionsType Specifies any of several named alternative forms that may
be available in the font, such as engraved or cursive. Table
D-21 (page 306) lists the feature selectors related to this
feature type.

kCharacterShapeType Specifies for languages such as Chinese that have both sets
whether traditional or simplified characters are to be used.
Table D-4 (page 263) lists the feature selectors related to this
feature type.

Table D-8 Examples of feature types (continued)

Constant Explanation
Apple Advanced Typography Reference 269
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Font Feature Type Selector Constants D

This is the feature selector indicating whether font features are on or off. Table
D-9 lists the feature selectors for the kAllTypographicFeaturesType feature type;

kNumberCaseType Specifies whether to use numerals that do, or do not,
extend below the baseline. Table D-17 (page 302) lists the
feature selectors related to this feature type.

kTextSpacingType Specifies whether to use proportional, monospaced and
half-width forms of characters in a font. Table D-23
(page 309) lists the feature selectors related to this feature
type.

kTransliterationType Allows text in one format to be displayed using another
format. Table D-24 (page 309) lists the feature selectors
related to this feature type.

kAnnotationType Specifies annotations (or adornments) to basic letter shapes.
For instance, most Japanese fonts include versions of
numbers that are circled, parenthesized, have periods after
them, and so on. Table D-1 (page 259) lists the feature
selectors related to this feature type.

kKanaSpacingType Specifies widths for Japanese Hiragana and Katakana
characters. Table D-12 (page 290) lists the feature selectors
related to this feature type.

kIdeographicSpacingType Specifies whether to use proportional or full-width forms of
ideographs (that is, Han-derived characters). Table D-11
(page 287) lists the feature selectors related to this feature
type.

kCJKRomanSpacingType Specifies whether to use proportional or half-width forms
of Roman characters in a CJK (that is, Chinese, Japanese,
and Korean) font. Table D-2 (page 262) lists the feature
selectors related to this feature type.

kUnicodeDecompositionType Table D-26 (page 311) lists the feature selectors related to
this feature type.

kLastFeatureType Represents the last Apple-reserved font feature type value.

Table D-8 Examples of feature types (continued)

Constant Explanation
270 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
by specifying the selector kAllTypeFeaturesOnSelector or
kAllTypeFeaturesOffSelector for that feature type, you can turn the entire set of
features on or off. Note that if you turn all font features off this way, you turn
off all font features, including all the font-specified defaults. (That may result in
linguistically incorrect display.) If you turn font features on, you turn on the
font-specified defaults, modified by whatever feature settings you have
specified in the run-features array.

Font Name Code Constants D

ATSUI identifies the type of a particular font name string by a constant of type
FontNameCode. You can use one of these constants as part of your search criteria
in the functions ATSUFindFontFromName (page 57) and ATSUFindFontName
(page 63). The function ATSUGetIndFontName (page 61) passes back a constant of
this type to represent the type of font name string.

The font name code identifies the type of name string that provides various
kinds of information about the font, including its unique name, font family
name, style, version number, and Postscript-legible name. The actual font name
string varies based on the platform, script, and language of the font name. For
example, the name code constant kFontCopyrightName might identify three
different strings of the font manufacturer’s copyright notice name, one in
Unicode French, one in Macintosh English, and one in Microsoft German.

enum {
kFontCopyrightName = 0,
kFontFamilyName = 1,
kFontStyleName = 2,

Table D-9 Feature selectors for the kAllTypographicFeaturesType font feature
type

Constant Explanation

kAllTypeFeaturesOnSelector Tells ATSUI to use the font features specified
in this style run’s run-features array and the
defaults specified by the font.

kAllTypeFeaturesOffSelector Tells ATSUI to ignore all font features
specified either by the font or in this style
run’s run-features array.
Apple Advanced Typography Reference 271
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontUniqueName = 3,
kFontFullName = 4,
kFontVersionName = 5,
kFontPostscriptName = 6,
kFontTrademarkName = 7,
kFontManufacturerName = 8,
kFontDesignerName = 9,
kFontDescriptionName = 10,
kFontVendorURLName = 11,
kFontDesignerURLName = 12,
kFontLicenseDescriptionName = 13,
kFontLicenseInfoURLName = 14,
kFontLastReservedName = 255

};
typedef UInt32 FontNameCode;

Constant descriptions

kFontCopyrightName Identifies the font manufacturer’s copyright notice name.
An example of a font name string with this font name code
and a platform and script of Mac Roman English is “©
Apple Computer, Inc. 1993”.

kFontFamilyName Identifies the font family name, which is shared by all
styles in a font family.An example of a font name string
with this font name code and a platform and script of Mac
Roman English is “Times”.

kFontStyleName Identifies the font style. An example of a font name string
with this font name code and a platform and script of Mac
Roman English is “© Apple Computer, Inc. 1993”. Mac
Roman English is “Regular”, “Italic”, “Bold”, or “Black”.

kFontUniqueName Identifies the manufacturer’s name for the font. Because the
name identified by this constant can be used to uniquely
identify the font, you should use it in stored documents
and in program interchange to identify fonts. The unique
name is used in the standard clipboard format. An example
of a font name string with this font name code and a
platform and script of Mac Roman English is “Apple
Computer Times Black 3.0 8/10/92”.

kFontFullName Identifies the full font name. An example of a font name
string with this font name code and a platform and script
of Mac Roman English is “Times Black”.
272 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontVersionName Identifies the font manufacturer’s version number for the
font. An example of a font name string with this font name
code and a platform and script of Mac Roman English is
“3.0.” (The name does not need to include the word
“version”).

kFontPostscriptName
Identifies the PostScript-legible name of the font. This type
of font name can be used to uniquely identify the font. An
example of a font name string with this font name code and
a platform and script of Mac Roman English is
“Times-Black”.

kFontTrademarkName
Identifies the font trademark name. An example of a font
name string with this font name code and a platform and
script of Mac Roman English is “Palatino is a registered
trademark of Linotype AG”.

kFontManufacturerName
Identifies the font manufacturer’s name. An example of a
font name string with this font name code and a platform
and script of Mac Roman English is “Apple Computer,
Inc.”

kFontDesignerName Identifies the font family designer’s name.
kFontDescriptionName

Identifies the description of the font family.
kFontVendorURLName Identifies the uniform resource locator of the font vendor. If

a unique serial number is embedded in the URL, it can be
used to register the font.

kFontDesignerURLName
Identifies the uniform resource locator of the font family
designer.

kFontLicenseDescriptionName
Identifies the uniform resource locator of the font vendor. If
a unique serial number is embedded in the URL, it can be
used to register the font.

kFontLicenseInfoURLName
Identifies the uniform resource locator of the font vendor. If
a unique serial number is embedded in the URL, it can be
used to register the font.
Apple Advanced Typography Reference 273
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontLastReservedName
Identifies the maximum value for Apple-defined font name
codes. You can pass values between
kFontLicenseInfoURLName and kFontLastReservedName to
find the name of a font variation axis, font feature, font
tracking setting, or font instance.

Font Name Language Constants D

ATSUI identifies the language of a particular font name string by a constant of
type FontLanguageCode. You can use one of these constants as part of your search
criteria in the functions ATSUFindFontFromName (page 57) and ATSUFindFontName
(page 63). The function ATSUGetIndFontName (page 61) passes back a constant of
this type to represent the font name string language.

The font name language code identifies the language of the name string. You
can pass the kFontNoLanguage constant if you do not care about the language of
a font name string. In this case, ATSUFindFontName and ATSUFindFontFromName will
pass back the first font in the name table that matches the other font name
parameters that you specified.

enum {
kFontNoLanguage = -1
kFontEnglishLanguage = 0,
kFontFrenchLanguage = 1,
kFontGermanLanguage = 2,
kFontItalianLanguage = 3,
kFontDutchLanguage = 4,
kFontSwedishLanguage = 5,
kFontSpanishLanguage = 6,
kFontDanishLanguage = 7,
kFontPortugueseLanguage = 8,
kFontNorwegianLanguage = 9,
kFontHebrewLanguage = 10,
kFontJapaneseLanguage = 11,
kFontArabicLanguage = 12,
kFontFinnishLanguage = 13,
kFontGreekLanguage = 14,
kFontIcelandicLanguage = 15,
kFontMalteseLanguage = 16,
kFontTurkishLanguage = 17,
274 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontCroatianLanguage = 18,
kFontTradChineseLanguage = 19,
kFontUrduLanguage = 20,
kFontHindiLanguage = 21,
kFontThaiLanguage = 22,
kFontKoreanLanguage = 23,
kFontLithuanianLanguage = 24,
kFontPolishLanguage = 25,
kFontHungarianLanguage = 26,
kFontEstonianLanguage = 27,
kFontLettishLanguage = 28,
kFontLatvianLanguage = kFontLettishLanguage,
kFontSaamiskLanguage = 29,
kFontLappishLanguage = kFontSaamiskLanguage,
kFontFaeroeseLanguage = 30,
kFontFarsiLanguage = 31,
kFontPersianLanguage = kFontFarsiLanguage,
kFontRussianLanguage = 32,
kFontSimpChineseLanguage = 33,
kFontFlemishLanguage = 34,
kFontIrishLanguage = 35,
kFontAlbanianLanguage = 36,
kFontRomanianLanguage = 37,
kFontCzechLanguage = 38,
kFontSlovakLanguage = 39,
kFontSlovenianLanguage = 40,
kFontYiddishLanguage = 41,
kFontSerbianLanguage = 42,
kFontMacedonianLanguage = 43,
kFontBulgarianLanguage = 44,
kFontUkrainianLanguage = 45,
kFontByelorussianLanguage = 46,
kFontUzbekLanguage = 47,
kFontKazakhLanguage = 48,
kFontAzerbaijaniLanguage = 49,
kFontAzerbaijanArLanguage = 50,
kFontArmenianLanguage = 51,
kFontGeorgianLanguage = 52,
kFontMoldavianLanguage = 53,
kFontKirghizLanguage = 54,
kFontTajikiLanguage = 55,
Apple Advanced Typography Reference 275
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontTurkmenLanguage = 56,
kFontMongolianLanguage = 57,
kFontMongolianCyrLanguage = 58,
kFontPashtoLanguage = 59,
kFontKurdishLanguage = 60,
kFontKashmiriLanguage = 61,
kFontSindhiLanguage = 62,
kFontTibetanLanguage = 63,
kFontNepaliLanguage = 64,
kFontSanskritLanguage = 65,
kFontMarathiLanguage = 66,
kFontBengaliLanguage = 67,
kFontAssameseLanguage = 68,
kFontGujaratiLanguage = 69,
kFontPunjabiLanguage = 70,
kFontOriyaLanguage = 71,
kFontMalayalamLanguage = 72,
kFontKannadaLanguage = 73,
kFontTamilLanguage = 74,
kFontTeluguLanguage = 75,
kFontSinhaleseLanguage = 76,
kFontBurmeseLanguage = 77,
kFontKhmerLanguage = 78,
kFontLaoLanguage = 79,
kFontVietnameseLanguage = 80,
kFontIndonesianLanguage = 81,
kFontTagalogLanguage = 82,
kFontMalayRomanLanguage = 83,
kFontMalayArabicLanguage = 84,
kFontAmharicLanguage = 85,
kFontTigrinyaLanguage = 86,
kFontGallaLanguage = 87,
kFontOromoLanguage = kFontGallaLanguage,
kFontSomaliLanguage = 88,
kFontSwahiliLanguage = 89,
kFontRuandaLanguage = 90,
kFontRundiLanguage = 91,
kFontChewaLanguage = 92,
kFontMalagasyLanguage = 93,
kFontEsperantoLanguage = 94,
kFontWelshLanguage = 128,
276 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontBasqueLanguage = 129,
kFontCatalanLanguage = 130,
kFontLatinLanguage = 131,
kFontQuechuaLanguage = 132,
kFontGuaraniLanguage = 133,
kFontAymaraLanguage = 134,
kFontTatarLanguage = 135,
kFontUighurLanguage = 136,
kFontDzongkhaLanguage = 137,
kFontJavaneseRomLanguage = 138,
kFontSundaneseRomLanguage = 139

};
typedef UInt32 FontLanguageCode;

Constant descriptions

kFontNoLanguage Identifies no language for the font name string.

kFontEnglishLanguage
Identifies English as the language of the font name string.

kFontFrenchLanguage
Identifies French as the language of the font name string.

kFontGermanLanguage Identifies German as the language of the font name string.

kFontItalianLanguage
Identifies German as the language of the font name string.

kFontDutchLanguage Identifies Dutch as the language of the font name string.

kFontSwedishLanguage
Identifies Swedith as the language of the font name string.

kFontSpanishLanguage
Identifies Spanish as the language of the font name string.

kFontDanishLanguage
Identifies Danish as the language of the font name string.

kFontPortugueseLanguage
Identifies Portuguese as the language of the font name
string.

kFontNorwegianLanguage
Identifies Norwegian as the language of the font name
string.
Apple Advanced Typography Reference 277
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontHebrewLanguage
Identifies Hebrew as the language of the font name string.

kFontJapaneseLanguage
Identifies Japanese as the language of the font name string.

kFontArabicLanguage
Identifies Arabic as the language of the font name string.

kFontFinnishLanguage
Identifies Finnish as the language of the font name string.

kFontGreekLanguage Identifies Greek as the language of the font name string.

kFontIcelandicLanguage
Identifies Icelandic as the language of the font name string.

kFontMalteseLanguage
Identifies Maltese as the language of the font name string.

kFontTurkishLanguage
Identifies Turkish as the language of the font name string.

kFontCroatianLanguage
Identifies Croatian as the language of the font name string.

kFontTradChineseLanguage
Identifies traditional Chinese as the language of the font
name string.

kFontUrduLanguage Identifies Urdu as the language of the font name string.

kFontHindiLanguage Identifies Hindi as the language of the font name string.

kFontThaiLanguage Identifies Thai as the language of the font name string.

kFontKoreanLanguageIdentifies Korean as the language of the font name string.

kFontLithuanianLanguage
Identifies Lithuanian as the language of the font name
string.

kFontPolishLanguage
Identifies Polish as the language of the font name string.

kFontHungarianLanguage
Identifies Hungarian as the language of the font name
string.
278 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontEstonianLanguage
Identifies Estonian as the language of the font name string.

kFontLettishLanguage
Identifies Lettish as the language of the font name string.

kFontLatvianLanguage
Identifies Latvian as the language of the font name string.

kFontSaamiskLanguage
Identifies Saamisk as the language of the font name string.

kFontLappishLanguage
Identifies Lappish as the language of the font name string.

kFontFaeroeseLanguage
Identifies the north Germanic language spoken on Faeroe
Island as the language of the font name string.

kFontFarsiLanguage Identifies Persian Farsi as the language of the font name
string.

kFontPersianLanguage
Identifies Persian as the language of the font name string.

kFontRussianLanguage
Identifies Russian as the language of the font name string.

kFontSimpChineseLanguage
Identifies simple Chinese as the language of the font name
string.

kFontFlemishLanguage
Identifies Flemish (Dutch) as the language of the font name
string.

kFontIrishLanguage Identifies Irish as the language of the font name string.

kFontAlbanianLanguage
Identifies Albanian as the language of the font name string.

kFontRomanianLanguage
Identifies Romanian as the language of the font name
string.

kFontCzechLanguage Identifies Czech as the language of the font name string.
Apple Advanced Typography Reference 279
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontSlovakLanguage
Identifies Slovak as the language of the font name string.

kFontSlovenianLanguage
Identifies Slovanian as the language of the font name
string.

kFontYiddishLanguage
Identifies Yiddish as the language of the font name string.

kFontSerbianLanguage
Identifies Serbian as the language of the font name string.

kFontMacedonianLanguage
Identifies Macedonian as the language of the font name
string.

kFontBulgarianLanguage
Identifies Bulgarian as the language of the font name
string.

kFontUkrainianLanguage
Identifies Ukrainian as the language of the font name
string.

kFontByelorussianLanguage
Identifies Russian as the language of the font name string.

kFontUzbekLanguage Identifies Uzbek as the language of the font name string.

kFontKazakhLanguage
Identifies Kazakh as the language of the font name string.

kFontAzerbaijaniLanguage
Identifies Azerbaiajani as the language of the font name
string.

kFontAzerbaijanArLanguage
Identifies Arabic Azerbaijani as the language of the font
name string.

kFontArmenianLanguage
Identifies Armenian as the language of the font name
string.

kFontGeorgianLanguage
Identifies Georgian as the language of the font name string.
280 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontMoldavianLanguage
Identifies Moldavian as the language of the font name
string.

kFontKirghizLanguage
Identifies Kirghiz as the language of the font name string.

kFontTajikiLanguage
Identifies Tajiki as the language of the font name string.

kFontTurkmenLanguage
Identifies Turkmen as the language of the font name string.

kFontMongolianLanguage
Identifies Mongolian as the language of the font name
string.

kFontMongolianCyrLanguage
Identifies Mongolian Cyrillic as the language of the font
name string.

kFontPashtoLanguageIdentifies Pashto as the language of the font name string.

kFontKurdishLanguage
Identifies Kurdish as the language of the font name string.

kFontKashmiriLanguage
Identifies Kashmiri as the language of the font name string.

kFontSindhiLanguageIdentifies Sindhi as the language of the font name string.

kFontTibetanLanguage
Identifies Tibetan as the language of the font name string.

kFontNepaliLanguage
Identifies Nepali as the language of the font name string.

kFontSanskritLanguage
Identifies Sanskrit as the language of the font name string.

kFontMarathiLanguage
Identifies Marathi as the language of the font name string.

kFontBengaliLanguage
Identifies Bengali as the language of the font name string.
Apple Advanced Typography Reference 281
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontAssameseLanguage
Identifies Assamese as the language of the font name
string.

kFontGujaratiLanguage
Identifies Gujarati as the language of the font name string.

kFontPunjabiLanguage
Identifies Punjabi as the language of the font name string.

kFontOriyaLanguage Identifies Oriya as the language of the font name string.

kFontMalayalamLanguage
Identifies Malayalam as the language of the font name
string.

kFontKannadaLanguage
Identifies Kannada as the language of the font name string.

kFontTamilLanguage Identifies Tami as the language of the font name string.

kFontTeluguLanguagE
Identifies Teluga as the language of the font name string.

kFontSinhaleseLanguage
Identifies Sinhalese as the language of the font name string.

kFontBurmeseLanguage
Identifies Burmese as the language of the font name string.

kFontKhmerLanguage Identifies Khmer as the language of the font name string.

kFontLaoLanguage Identifies Lao as the language of the font name string.

kFontVietnameseLanguage
Identifies Vietnamese as the language of the font name
string.

kFontIndonesianLanguage
Identifies Indonesian as the language of the font name
string.

kFontTagalogLanguage
Identifies Tagalog as the language of the font name string.

kFontMalayRomanLanguage
Identifies Roman Malay as the language of the font name
string.
282 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontMalayArabicLanguage
Identifies Arabic Malay as the language of the font name
string.

kFontAmharicLanguage?
Identifies Amharic as the language of the font name string.

kFontTigrinyaLanguage
Identifies Tigrinya as the language of the font name string.

kFontGallaLanguage Identifies Galla as the language of the font name string.

kFontOromoLanguage Identifies Oromo as the language of the font name string.

kFontSomaliLanguage
Identifies Somali as the language of the font name string.

kFontSwahiliLanguage
Identifies Swahili as the language of the font name string.

kFontRuandaLanguage
Identifies Ruanda as the language of the font name string.

kFontRundiLanguage Identifies Rundi as the language of the font name string.

kFontChewaLanguage
Identifies Chewa as the language of the font name string.

kFontMalagasyLanguage
Identifies Malagasy as the language of the font name string.

kFontEsperantoLanguage
Identifies Esperanto as the language of the font name
string.

kFontWelshLanguage Identifies Welsh as the language of the font name string.

kFontBasqueLanguage
Identifies Basque as the language of the font name string.

kFontCatalanLanguage
Identifies Catalan as the language of the font name string.

kFontLatinLanguage Identifies Latin as the language of the font name string.

kFontQuechuaLanguage
Identifies Quechua as the language of the font name string.
Apple Advanced Typography Reference 283
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontGuaraniLanguage
Identifies Guarani as the language of the font name string.

kFontAymaraLanguage
Identifies Aymara as the language of the font name string.

kFontTatarLanguage Identifies Tatar as the language of the font name string.

kFontUighurLanguage
Identifies Uighur as the language of the font name string.

kFontDzongkhaLanguage
Identifies Dzongkha as the language of the font name
string.

kFontJavaneseRomLanguage
Identifies Javanese as the language of the font name string.

kFontSundaneseRomLanguage
Identifies Sundanese as the language of the font name
string.

Font Name Platform Constants D

ATSUI identifies the encoding of a particular font name string by a constant of
type FontPlatformCode. You can use one of these constants as part of your search
criteria in the functions ATSUFindFontFromName (page 57) and ATSUFindFontName
(page 63). The function ATSUGetIndFontName (page 61) passes back a constant of
this type to represent the font name string encoding.

The font name platform code identifies the encoding of the name string, which
ATSUI uses to determine whether or not it can render the string. A font can
support multiple encodings.

IMPORTANT

Unicode-encoded font name entries have 8-bit instead of
the expected 16-bit names. As a result, to locate a
Unicode-encoded font name string, you must use the
constant kFontMacintoshPlatform with the Unicode script
code constant representing the script ID of Unicode
encoding you want to find. �

You can pass the kFontNoPlatform constant if you do not care about the
encoding of a font name string. In this case, ATSUFindFontName and
284 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
ATSUFindFontFromName will pass back the first font in the name table that
matches the other font name parameters that you specified.

enum {
kFontNoPlatform = -1,
kFontUnicodePlatform = 0,
kFontMacintoshPlatform = 1,
kFontReservedPlatform = 2,
kFontMicrosoftPlatform = 3,
kFontCustomPlatform = 4

};
typedef UInt32 FontPlatformCode;

Constant descriptions

kFontNoPlatform Indicates that you do not care about the platform of the
font name. In this case, you will get the first font name in
the name table that matches the other parameters you
specified. If you specify this constant, you should pass the
constant kFontNoScript for the font name’s script code.

kFontUnicodePlatform
Identifies the Unicode character code specification as the
platform of the font name string.

kFontMacintoshPlatform
Identifies one of the Macintosh character code sets as the
platform of the font name string.

kFontReservedPlatform
Reserved for future use.

kFontMicrosoftPlatform
Identifies one of the Microsoft character code sets as the
platform of the font name string.

kFontCustomPlatform
Identifies the default platform as defined by the font for the
platform of the font name string. If you specify this
constant, the character encoding of a font does not
correspond to a specific standard.
Apple Advanced Typography Reference 285
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Fraction Font Feature Selector Constants D

There are several ways to generate fractions with ATSUI. For a font that
supports the fractions feature type, you may be able to select between two
different types of automatic fraction generation, as shown in Table D-10.

Figure D-5 shows the same fraction, drawn first with kNoFractionsSelector and
then with kDiagonalFractionsSelector.

Figure D-5 Fractions

Table D-10 Feature selectors for the kFractionsType feature type

Constant Explanation

kNoFractionsSelector Specifies no substitution or construction of
fractions.

kVerticalFractionsSelector Specifies replacement of slash-separated
numeric sequences with pre-drawn fraction
glyphs, if present in the font.

kDiagonalFractionsSelector Specifies replacement of slash-separated
numeric sequences with pre-drawn fraction
glyphs, or else construction of fractions with
numerators and denominators, or superiors
and inferiors.

Unformed fraction Diagonal fraction
variant
286 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Note
To use the automatic fraction-generation capability, make
sure that the slash separating the numerator and
denominator is the fraction slash (character code 0xDA in
the Standard Roman character set), not the normal slash
character (0x2F). Automatic fraction generation does not
occur unless the slash is a fraction slash. �

Ideographic Spacing Feature Selector Constants D

The ideographic spacing feature type is used to select between full-width and
proportional forms of ideographs (that is, Han-derived characters). Table D-11
lists the selectors for this feature.

Justification Override Mask Constants D

You can use a mask constant of type JustificationFlags in the growFlags and
shrinkFlags fields of a width delta override structure of a particular justification
priority. There are four width delta override structures, one for each justification
priority, in an array of structures of type ATSJustPriorityWidthDeltaOverrides
(page 182).

In the growFlags field of the width delta override structure, these masks
indicate whether ATSUI should apply the limits defined in the beforeGrowLimit
and afterGrowLimit fields, as well as whether unlimited gap absorption should
be applied to the priority of glyphs specified in the given width delta override
structure.

In the shrinkFlags field, these masks indicate whether ATSUI should apply the
limits defined in the beforeShrinkLimit and afterShrinkLimit fields, as well as

Table D-11 Feature selectors for the kIdeographicSpacingType feature type

Constant Explanation

kFullWidthIdeographsSelector Selects the full width forms of
ideographs.

kProportionalIdeographsSelector Selects the proportional forms of
ideographs.
Apple Advanced Typography Reference 287
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
whether unlimited gap absorption should be applied to the priority of glyphs
specified in the given width delta override structure.

Note that these mask constants are a specialized override. You should not use
them unless you know the details of what is occurring in the font.

enum {
kJUSTOverridePriority = 0x8000,
kJUSTOverrideLimits = 0x4000,
kJUSTOverrideUnlimited = 0x2000,
kJUSTUnlimited = 0x1000,
kJUSTPriorityMask = 0x0003

};
typedef UInt16 JustificationFlags;

Constant descriptions

kJUSTOverridePriority
If the bit specified by this mask is set, ATSUI uses the
justification priority set in the kJUSTPriorityMask mask. If
this flag is cleared, ATSUI uses the default justification
priority for those glyphs. In this case, the
kJUSTPriorityMask mask bits must also be set to 0.

kJUSTOverrideLimits
If the bit specified by this mask is set, ATSUI uses the grow
and shrink limit values set in the array of
ATSJustPriorityWidthDeltaOverrides (page 182) structures.
If this bit is cleared, ATSUI uses the default grow and
shrink limits for those glyphs. In this case, the limits values
in the width delta structure must also be set to 0.

kJUSTOverrideUnlimited
If the bit specified by this mask is set, ATSUI takes into
account the state of the kJUSTUnlimited mask constant. If
this bit is cleared, the bit specified by the kJUSTUnlimited
mask constant must also be set to 0.

kJUSTUnlimited If the bit specified by this mask is set, ATSUI distributes all
remaining justification gap, even if it violates the grow or
shrink limits specified in the width delta override structure
specified in the array of
ATSJustPriorityWidthDeltaOverrides (page 182) structures.
288 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
If this bit is set, you must also set the bit specified by the
kJUSTOverrideUnlimited mask constant.

kJUSTPriorityMask If the bit specified by this mask is set, ATSUI identifies the
new justification priority for the glyphs this width delta
structure applies to. See “Justification Priority Constants”
(page 289) for a description of possible values. Only a
single valid justification priority value is permitted. If this
bit is set, the bit specified by the mask constant
kJUSTOverrideLimit must also be set.

Justification Priority Constants D

Glyphs can be assigned justification priorities by the font designer. In general,
ATSUI applies justification to glyphs on a line in order of glyph priority, from
highest to lowest. If you set the bit specified by the mask constant
kJUSTPriorityMask, described in “Justification Override Mask Constants”
(page 287), you can supply one of these constants of type JustPCActionType to
set a new justification priority for the glyphs within the particular width delta
override structure.

The types of justification priorities have names that describe the types of glyphs
that typically have those priorities, but you can assign any priority to any
glyph. The actual kind of justification that ATSUI applies—for example, kashida
or white space—is defined for each glyph by the font. The priority specifies
only the order in which glyphs participate in justification.

enum {
kJUSTKashidaPriority = 0,
kJUSTSpacePriority = 1,
kJUSTLetterPriority = 2,
kJUSTNullPriority = 3,
kJUSTPriorityCount = 4

};
typedef UInt16 JustPCActionType;

Constant descriptions

kJUSTKashidaPriority
The highest priority. Typically used for kashidas (extension
bars) in Arabic. Glyphs with this priority are extended or
compressed before all other glyphs in the line.
Apple Advanced Typography Reference 289
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kJUSTSpacePriority Typically assigned to whitespace (interword) glyphs.
Glyphs with this priority are extended or compressed,
usually by the addition or removal of white space, after all
glyphs on the line with priority kJUSTKashidaPriority have
been extended or compressed to the maximum amount
permitted.

kJUSTLetterPriorityAssigned to all glyphs that do not have
kJUSTKashidaPriority or kJUSTSpacePriority. Glyphs with
this priority are extended or compressed, typically by the
addition or removal of white space, after all glyphs on the
line with priority kJUSTSpacePriority have been extended
or compressed to the maximum amount permitted.

kJUSTNullPriority Available as a priority for glyphs that you want to
participate in justification last of all.

kJUSTPriorityCount The number of defined justification priorities. You can use
this value for range-checking, size allocation, or loop
control.

Kana Spacing Feature Selector Constants D

For vertical substitution to happen, the vertically rotated forms must exist in the
font and must be indicated as such in the font’s tables; otherwise, no characters
are substituted. If the font supports the vertical substitution feature type, its
default behavior is to perform such substitutions; you may either prevent the
substitution or allow it to occur.

The Kana Spacing feature type is used to select widths specifically for Japanese
Hiragana and Katakana characters. Table D-12 lists the selectors for this feature.

Table D-12 Feature selectors for the kKanaSpacingType feature type

Constant Explanation

kFullWidthKanaSelector Selects the full width forms of kana.

kProportionalKanaSelector Selects the proportional forms of kana.
290 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Letter Case Font Feature Selector Constants D

In fonts for languages in which case is significant, ATSUI allows you to specify
certain automatic case changes. If the font supports the letter case feature type,
you can select features that specify case changes such as those shown in Table
D-13.

Note
Contrary to common perception, the small caps style is not
simply the use of capital letters in a smaller point size. If
the font contains true small caps glyphs, you can specify
them with a letter case feature selector, and ATSUI will use
them. �

Table D-13 Feature selectors for the kLetterCaseType feature type

Constant Explanation

kUpperAndLowerCaseSelector Specifies no case conversion.

kAllCapsSelector Specifies conversion of all letters to uppercase. (This
feature is noncontextual.)

kAllLowerCaseSelector Specifies conversion of all letters to lowercase. (This
feature is noncontextual.)

kSmallCapsSelector Specifies conversion of all lowercase letters to small
caps. (This feature is noncontextual.)

kInitialCapsSelector Specifies conversion of all lowercase letters at the
beginnings of words to uppercase. (This feature is
contextual.)

kInitialCapsAndSmallCapsSelector Specifies conversion of all lowercase letters at the
beginnings of words to uppercase, and all other
lowercase letters to small caps. (This feature is
contextual.)
Apple Advanced Typography Reference 291
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Ligature Font Feature Selector Constants D

If the font supports the ligatures feature type, you can select features related to
ligature formation, such as those shown in Table D-14.

Table D-14 Feature selectors for the kLigaturesType feature type

Constant Explanation

kRequiredLigaturesOnSelector
kRequiredLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as required by
the language (such as certain Arabic
ligatures).

kCommonLigaturesOnSelector
kCommonLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as “common,”
or normally used (such as the “fi”
ligature in Roman text).

kRareLigaturesOnSelector
kRareLigaturesOffSelector

Allows or prevents the use of ligatures
that the font designates as “rare” (such
as “ct” or “ss” ligatures).

kLogosOnSelector
kLogosOffSelector

Allows or prevents the use of ligatures
that the font designates as logotypes
(typically used for trademarks or
other special display text).

kRebusPicturesOnSelector
kRebusPicturesOffSelector

Allows or prevents the use of rebuses
(pictures that represent words or
syllables).
292 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-6 shows several levels of ligature formation specified through ligature
feature selectors.

Figure D-6 Levels of ligature formation controlled with ligature feature selectors

kDiphthongLigaturesOnSelector
kDiphthongLigaturesOffSelector

Specifies whether or not to replace
diphthong sequences, such as “AE”
and “oe”, with their equivalent
ligatures (“Æ” and “œ” in this case).

kSquaredLigaturesOnSelector
kSquaredLigaturesOffSelector

Allows or prevents the use of ligatures
where the component letters are
arranged in a lattice, such that the
ligature fits into the space of a single
letter. For examples, see Unicode
characters U+3300 through U+3357 and
U+337B through U+337F.

kAbbrevSquaredLigaturesOnSelector
kAbbrevSquaredLigaturesOffSelector

Allows or prevents the use of ligatures
similar to the previously described
ligatures, but in abbreviated form.

Table D-14 Feature selectors for the kLigaturesType feature type

Constant Explanation
Apple Advanced Typography Reference 293
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-7 shows the results of selection (upper) and deselection (lower) of
diphthong ligatures.

Figure D-7 Use of diphthong ligatures

Linguistic Rearrangement Font Feature Selector Constants D

Linguistic (Indic-style) rearrangement is a standard feature of Devanagari and
other South Asian scripts. However, users may not always want it to occur,
preferring instead to enter characters in an “already reversed” order. If a font
supports the rearrangement feature type, you can either allow the default
behavior (which is to perform rearrangement) or you can prevent it. Table D-15
shows the feature selectors for rearrangement.

Figure D-8 shows two examples of the display of the word “hindi”, first with
linguistic rearrangement on and then with it off. Note that when rearrangement
is off, the storage order of the character codes in the source text must reflect
display order, rather than normal input order.

Table D-15 Feature selectors for the kLinguisticRearrangementType feature type

Constant Explanation

kLinguisticRearrangementOnSelector
kLinguisticRearrangementOffSelector

Allows or prevents the automatic
rearrangement of certain glyphs as
required by language rules.
294 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-8 The word “hindi” drawn with rearrangement tuned on (upper) and off
(lower)

Macintosh Platform Script Code Constants D

ATSUI identifies the script ID of a particular font name string by a constant of
type FontScriptCode. You can use one of these constants as part of your search
criteria in the functions ATSUFindFontFromName (page 57) and ATSUFindFontName
(page 63). The function ATSUGetIndFontName (page 61) passes back a constant of
this type to represent the script ID of a font name string. Note that is the
encoding of the font name string is not specified, you do not need to specify a
script code.

Display text

n

d

i

h

i Rearrangement on

n

d

i

i

h Rearrangement off

Character
code

Source text
Apple Advanced Typography Reference 295
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
The font name script code identifies the platform version, or in the case of the
Macintosh platform, the script ID of the font name. The script ID identifies the
writing system being used (for example, MacRoman). A font can support
multiple encodings.

enum {
kFontRomanScript = 0,
kFontJapaneseScript = 1,
kFontTraditionalChineseScript = 2,
kFontChineseScript = kFontTraditionalChineseScript,
kFontKoreanScript = 3,
kFontArabicScript = 4,
kFontHebrewScript = 5,
kFontGreekScript = 6,
kFontCyrillicScript = 7,
kFontRussian = kFontCyrillicScript,
kFontRSymbolScript = 8,
kFontDevanagariScript = 9,
kFontGurmukhiScript = 10,
kFontGujaratiScript = 11,
kFontOriyaScript = 12,
kFontBengaliScript = 13,
kFontTamilScript = 14,
kFontTeluguScript = 15,
kFontKannadaScript = 16,
kFontMalayalamScript = 17,
kFontSinhaleseScript = 18,
kFontBurmeseScript = 19,
kFontKhmerScript = 20,
kFontThaiScript = 21,
kFontLaotianScript = 22,
kFontGeorgianScript = 23,
kFontArmenianScript = 24,
kFontSimpleChineseScript = 25,
kFontTibetanScript = 26,
kFontMongolianScript = 27,
kFontGeezScript = 28,
kFontEthiopicScript = kFontGeezScript,
kFontAmharicScript = kFontGeezScript,
kFontSlavicScript = 29,
kFontEastEuropeanRomanScript = kFontSlavicScript,
296 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontVietnameseScript = 30,
kFontExtendedArabicScript = 31,
kFontSindhiScript = kFontExtendedArabicScript,
kFontUninterpretedScript = 32

};

Constant descriptions

kFontRomanScript Identifies the Roman script on the Macintosh platform as
the script ID of the font name string.

kFontJapaneseScriptIdentifies the Japanese script on the Macintosh platform as
the script ID of the font name string.

kFontTraditionalChineseScript
Identifies the traditional Chinese script on the Macintosh
platform as the script ID of the font name string.

kFontChineseScript Identifies the Chinese script on the Macintosh platform as
the script ID of the font name string.

kFontKoreanScript Identifies the Korean script on the Macintosh platform as
the script ID of the font name string.

kFontArabicScript Identifies the Arabic script on the Macintosh platform as
the script ID of the font name string.

kFontHebrewScript Identifies the Hebrew script on the Macintosh platform as
the script ID of the font name string.

kFontGreekScript Identifies the Greek script on the Macintosh platform as the
script ID of the font name string.

kFontCyrillicScriptIdentifies the Cyrillic script on the Macintosh platform as
the script ID of the font name string.

kFontRussian Identifies the Russian script on the Macintosh platform as
the script ID of the font name string.

kFontRSymbolScript Identifies the right-to-left symbol script on the Macintosh
platform as the script ID of the font name string.

kFontDevanagariScript
Identifies the Devanagari script on the Macintosh platform
as the script ID of the font name string.

kFontGurmukhiScriptIdentifies the Gurmukhi script on the Macintosh platform
as the script ID of the font name string.

kFontGujaratiScriptIdentifies the Gujarati script on the Macintosh platform as
the script ID of the font name string.
Apple Advanced Typography Reference 297
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontOriyaScript Identifies the Oriya font script on the Macintosh platform
as the script ID of the font name string.

kFontBengaliScript Identifies the Benagli script on the Macintosh platform as
the script ID of the font name string.

kFontTamilScript Identifies the Tamil script on the Macintosh platform as the
script ID of the font name string.

kFontTeluguScript Identifies the Telugu script on the Macintosh platform as
the script ID of the font name string.

kFontKannadaScript Identifies the Kannada script on the Macintosh platform as
the script ID of the font name string.

kFontMalayalamScript
Identifies the Malayalam script on the Macintosh platform
as the script ID of the font name string.

kFontSinhaleseScript
Identifies the Sinhalese script on the Macintosh platform as
the script ID of the font name string.

kFontBurmeseScript Identifies the Burmese script on the Macintosh platform as
the script ID of the font name string.

kFontKhmerScript Identifies the Khmer script on the Macintosh platform as
the script ID of the font name string.

kFontThaiScript Identifies the Thai script on the Macintosh platform as the
script ID of the font name string.

kFontLaotianScript Identifies the Laotian script on the Macintosh platform as
the script ID of the font name string.

kFontGeorgianScript
Identifies the Georgian script on the Macintosh platform as
the script ID of the font name string.

kFontArmenianScript
Identifies the Armenian script on the Macintosh platform
as the script ID of the font name string.

kFontSimpleChineseScript
Identifies the simplified Chinese script on the Macintosh
platform as the script ID of the font name string.

kFontTibetanScript
Identifies the Tibetan script on the Macintosh platform as
the script ID of the font name string.
298 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
kFontMongolianScript
Identifies the Mongolian script on the Macintosh platform
as the script ID of the font name string.

kFontGeezScript Identifies the Ge’ez script on the Macintosh platform as the
script ID of the font name string.

kFontEthiopicScript
Identifies the Ethiopic script on the Macintosh platform as
the script ID of the font name string.

kFontAmharicScript Identifies the Amharic script on the Macintosh platform as
the script ID of the font name string.

kFontSlavicScript Identifies the Slavic script on the Macintosh platform as the
script ID of the font name string.

kFontEastEuropeanRomanScript
Identifies the East European script on the Macintosh
platform as the script ID of the font name string.

kFontVietnameseScript
Identifies the Vietnamese script on the Macintosh platform
as the script ID of the font name string.

kFontExtendedArabicScript
Identifies the extended Arabic script on the Macintosh
platform as the script ID of the font name string.

kFontSindhiScript Identifies the Sindhi script on the Macintosh platform as
the script ID of the font name string.

kFontUninterpretedScript
Identifies an uninterpreted script on the Macintosh
platform as the script ID of the font name string.
Apple Advanced Typography Reference 299
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Mathematical Extras Feature Selector Constants D

Fonts that support the mathematical extras feature type allow you to specify
certain math-formatting conventions, using selectors such as those shown in
Table D-16.

Table D-16 Feature selectors for the kMathematicalExtrasType feature type

Constant Explanation

kHyphenToMinusOnSelector
kHyphenToMinusOffSelector

Allows or prevents the automatic
replacement of the sequence
space-hyphen-space (or the hyphen in
the sequence numeral-hyphen-numeral)
with a minus sign glyph (–).

kAsteriskToMultiplyOnSelector
kAsteriskToMultiplyOffSelector

Allows or prevents the automatic
replacement of the sequence
space-asterisk-space (or the asterisk in
the sequence numeral-asterisk-numeral)
with a multiplication sign glyph (×).

kSlashToDivideOnSelector
kSlashToDivideOffSelector

Allows or prevents the automatic
replacement of the sequence
space-slash-space (or the slash in the
sequence numeral-slash- numeral) with
a division sign glyph (÷).

kInequalityLigaturesOnSelector
kInequalityLigaturesOffSelector

Allows or prevents the automatic
replacement of sequences such as “>=”
and “<=” with equivalent ligatures “≥”
and “≤”.

kExponentsOnSelector
kExponentsOffSelector

Allows or prevents the automatic
replacement of the sequence
exponentiation glyph—numerals with the
superior forms of the numerals. An
example of an exponentiation glyph is
“^”.
300 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Note
By convention, specifying the kHyphenToMinusOnSelector in
the mathematical extras feature type overrides specifying
the kHyphenToEnDashOnSelector in the typographic extras
feature type. �

Microsoft Platform Script Code Constants D

enum {
kFontMicrosoftSymbolScript = 0,
kFontMicrosoftStandardScript = 1

};

Constant descriptions

kFontMicrosoftSymbolScript
Represents the symbol version of the Microsoft platform.

kFontMicrosoftStandardScript
Represents the standard version of the Microsoft platform.

enum {
kFontCustom8BitScript = 0,
kFontCustom816BitScript = 1,
kFontCustom16BitScript = 2

};

Constant descriptions

kFontCustom8BitScript
Represents custom 8-bit encoding.

kFontCustom816BitScript
Represents custom mixed 8-/16-bit encoding.

kFontCustom16BitScript
Represents custom 16-bit encoding.

Number Case Feature Selector Constants D

Some fonts support both lowercase (also called traditional or old-style)
numerals, in which some glyphs extend below the baseline, and uppercase (also
Apple Advanced Typography Reference 301
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
called lining) numerals, in which no glyphs extend below the baseline. For
fonts that support the number case feature type, you can select either kind of
numeral. Table D-17 lists the selectors for this feature.

 Figure D-9 shows both kinds of numerals.

Figure D-9 Uppercase and lowercase numerals

Number Width Feature Selector Constants D

Many fonts support both proportional-width and fixed-width numerals, as
shown in Figure D-10. In proportional-width numerals the “1” is narrower than
the “0”, whereas in fixed-width numerals they (and all the other numerals)
have identical widths. Fixed-width numerals are also called columnating
because they align well in text that consists of columns of numerical data. For
fonts that support the number spacing feature type, you can select either

Table D-17 Feature selectors for the kNumberCaseType feature type

Constant Explanation

kLowerCaseNumbersSelector Specifies the use of lowercase (old-style)
numerals.

kUpperCaseNumbersSelector Specifies the use of uppercase (lining)
numerals.
302 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
fixed-width or proportional-width numerals. Table D-18 lists the selectors for
this feature.

Figure D-10 shows both kinds of numerals.

Figure D-10 Fixed-width and proportional-width numerals

Ornament Sets Feature Selector Constants D

Fonts may include ornamental, non alphabetic glyph sets used for various
purposes. With a font that supports the ornament set feature type, you may be

Table D-18 Feature selectors for the kNumberSpacingType feature type

Constant Explanation

kMonospacedNumbersSelector Specifies the use of fixed-width
(columnating) numerals.

kProportionalNumbersSelector Specifies the use of proportional-width
numerals.
Apple Advanced Typography Reference 303
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
able to select among those glyph sets, using selectors such as those shown in
Table D-19.

Figure D-11 shows an example of glyphs from an ornamental set.

Figure D-11 Ornamental glyphs

Table D-19 Feature selectors for the kOrnamentSetsType feature type

Constant Explanation

kNoOrnamentsSelector Specifies the use of no ornamental glyph
sets.

kDingbatsSelector Specifies the use of dingbats: arrows, stars,
bullets, and so on.

kPiCharactersSelector Specifies the use of pi characters: related
nonalphabetic symbols, such as musical
notation glyphs.

kFleuronsSelector Specifies the use of fleurons: ornaments
such as flowers, vines, and leaves.

kDecorativeBordersSelector Specifies the use of decorative borders:
glyphs used in interlocking patterns to
form text borders.

kInternationalSymbolsSelector Specifies the use of international symbols,
such as the barred circle representing “no”.

kMathSymbolsSelector Specifies the use of mathematical symbols.
304 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Prevention of Glyph Overlap Font Feature Selector Constants D

Some glyphs, especially certain initial swashes, have parts that extend well
beyond their advance widths. An initial “Q”, for example, may have a tail that
extends underneath the following “u”.

For fonts that support the glyph overlap feature type, you can specify that no
glyph may overlap the outline of the following glyph. If it does, a
non-overlapping form of the glyph is substituted. Table D-20 lists the selectors
for this feature.

In the case of Figure D-12, for example, preventing glyph overlap means that
the script “Q” can remain because the following “u” has no descenders to
collide with it, whereas the script “L” is replaced with a simpler form to avoid
collision with the “y”.

Figure D-12 Allowing and preventing glyph overlap

Table D-20 Feature selectors for the kOverlappingCharactersType feature type

Constant Explanation

kPreventOverlapOnSelector
kPreventOverlapOffSelector

Prevents or allows the collision of an extended
part of one glyph with an adjacent glyph.
Apple Advanced Typography Reference 305
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Style Options Feature Selector Constants D

An ATSUI-compatible font may offer named sets of non contextual glyph
substitutions that give the text a specific style or appearance. You can select
among sets, using selectors such as those listed in Table D-21.

You may be able to select more than one feature at a time from the list of
alternate forms. For example, a font may offer display, engraved, and
engraved-display style options.

Swash Font Feature Selector Constants D

A swash is a variation, often ornamental, of an existing glyph. Using font
tables, ATSUI can identify and automatically substitute swashes for existing
glyphs. Alternatively, your application can allow the user to choose swash
forms at the time the text layout object is created.

Collections of swash forms called smart swashes can be designated by the font
designer and put in swash tables. Smart swashes are contextual and swashes

Table D-21 Feature selectors for the kStyleOptionsType feature type

Constant Explanation

kNoStyleOptionsSelector Specifies the use of the standard glyph set.

kDisplayTextSelector Specifies the use of a glyph set that is designed
for best display at large sizes (over 24 point).

kEngravedTextSelector Specifies the use of a glyph set that has
contrasting strokes parallel to the main stroke,
giving an engraved effect.

kIlluminatedCapsSelector Specifies the use of a glyph set with complex
decoration surrounding the glyphs of capital
letters.

kTitlingCapsSelector Specifies the use of a glyph set in which capital
letters have a special form for display in titles.

kTallCapsSelector Specifies the use of a glyph set in which capital
letters have a taller form than is typical.
306 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
are not. If the font supports the smart swashes feature type, you can select
features that allow you to specify sets of swashes, such as shown in Table D-22.

Figure D-13 shows the same phrase written four times: first without swash
variants, then with line initials, then with line finals, and finally with both line
initials and line finals.

Table D-22 Feature selectors for the kSmartSwashType feature type

Constant Explanation

kWordInitialSwashesOnSelector
kWordInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin words.

kWordFinalSwashesOnSelector
kWordFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end words.

kLineInitialSwashesOnSelector
kLineInitialSwashesOffSelector

Allows or prevents the substitution of
swash variants that begin lines.

kLineFinalSwashesOnSelector
kLineFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that end lines.

kNonFinalSwashesOnSelector
kNonFinalSwashesOffSelector

Allows or prevents the substitution of
swash variants that can occur at the
beginnings or interiors of words
Apple Advanced Typography Reference 307
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-13 Specifying different swashes with feature selectors

Note
If you want your application to define its own set of
swashes, it can use glyph substitutions to replace the
ATSUI glyph choices with its own. �

Text Width Feature Selector Constants D

The text spacing feature type is used to select between the proportional,
monospaced and half-width forms of characters in a font. Use of this feature
type is optional; for more precise control see “Kana Spacing Feature Selector
308 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Constants” (page 290). This is an exclusive feature type. Table D-23 lists the
selectors for this feature.

Transliteration Feature Selector Constants D

The transliteration feature types allows text in one format to be displayed using
another format. An example is taking a Hiragana string and displaying it as
Katakana. Table D-24 lists the selectors for this feature.

Table D-23 Feature selectors for the kTextSpacingType feature type

Constant Explanation

kProportionalTextSelector Selects the proportional forms of letters.

kMonospacedTextSelector Selects the monospace forms of letters.

kHalfWidthTextSelector Selects the half-width forms of letters.

kNormallySpacedTextSelector Selects the default forms of letters.

Table D-24 Feature selectors for the kTransliterationType feature type

Constant Explanation

kNoTransliterationSelector Allows no transliteration.

kHanjaToHangulSelector Allows text in Hanja to be displayed
using Hangul.

kHiraganaToKatakanaSelector Allows text in Hiragana to be displayed
using Katakana.

kKatakanaToHiraganaSelector Allows text in Katakana to be displayed
using Hiragana.

kKanaToRomanizationSelector Allows text in Kana to be displayed using
Romanization.

kRomanizationToHiraganaSelector Allows text in Romanization to be
displayed using Hiragana.
Apple Advanced Typography Reference 309
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Typographic Extras Feature Selector Constants D

Fonts that support the typographic extras feature type allow you to specify
certain small-scale typographic conventions, using selectors such as those
shown in Table D-25.

kHanjaToHangulAltOneSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 1.

kHanjaToHangulAltTwoSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 2.

kHanjaToHangulAltThreeSelector Allows text in Hanja to be displayed
using Hangul, Alternative Set 3.

Table D-25 Feature selectors for the kTypographicExtrasType feature type

Constant Explanation

kHyphensToEmDashOnSelector
kHyphensToEmDashOffSelector

Allows or prevents the automatic
replacement of two adjacent hyphens with
an em dash.

kHyphenToEnDashOnSelector
kHyphenToEnDashOffSelector

Allows or prevents the automatic
replacement of the sequence
space-hyphen-space (or the hyphen in the
sequence numeral-hyphen- numeral) with
an en-dash.

kSlashedZeroOnSelector
kSlashedZeroOffSelector

Allows or prevents the forced use of the
un-slashed zero glyph, regardless of
whether the font specifies the slashed zero
as the default.

kFormInterrobangOnSelector
kFormInterrobangOffSelector

Allows or prevents the automatic
replacement of the sequence “?!” or “!?”
with the font’s interrobang glyph.

Table D-24 Feature selectors for the kTransliterationType feature type
(continued)

Constant Explanation
310 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Unicode Decomposition Feature Selector Constants D

For a font that supports the unicode decomposition type, you can select any
available level by number or by selectors such as those shown in Table D-26.

Unicode Platform Script Code Constants D

ATSUI identifies the script ID of a particular font name string by a constant of
type FontScriptCode. You can use one of these constants as part of your search
criteria in the functions ATSUFindFontFromName (page 57) and ATSUFindFontName
(page 63). The function ATSUGetIndFontName (page 61) passes back a constant of
this type to represent the script ID of a font name string. Note that is the
encoding of the font name string is not specified, you do not need to specify a
script code.

kSmartQuotesOnSelector
kSmartQuotesOffSelector

Allows or prevents the automatic
contextual replacement of straight
quotation marks with curly ones.

kPeriodsToEllipsisOnSelector
kPeriodsToEllipsisOffSelector

Allows or prevents the automatic
replacement of two adjacent periods with
an ellipsis.

Table D-26 Feature selectors for the kUnicodeDecompositionType feature type

Constant

kCanonicalDecompositionOnSelector

kCanonicalDecompositionOffSelector

kCompatibilityDecompositionOnSelector

kCompatibilityDecompositionOffSelector

kTranscodingDecompositionOnSelector

kTranscodingDecompositionOffSelector

Table D-25 Feature selectors for the kTypographicExtrasType feature type
(continued)

Constant Explanation
Apple Advanced Typography Reference 311
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
The font name script code identifies the platform version, or in the case of the
Macintosh platform, the script ID of the font name. The script ID identifies the
writing system being used (for example, MacRoman). A font can support
multiple encodings.

You can pass the kFontNoScript constant if you do not care about the script ID
of a font name string. In this case, ATSUFindFontName and ATSUFindFontFromName
will pass back the first font in the name table that matches the other font name
parameters that you specified. These constants are available with ATSUI 1.0.

enum {
kFontNoScript = -1,
kFontUnicodeDefaultSemantics = 0,
kFontUnicodeV1_1Semantics = 1,
kFontISO10646_1993Semantics = 2,
kFontUnicodeV2BasedSemantics = 3

Constant descriptions

kFontNoScript Indicates that you do not care about the script ID of the font
name. In this case, you will get the first font name in the
name table that matches the other parameters you
specified.

kFontUnicodeDefaultSemantics
Identifies the default Unicode character code specification
as the platform version of the font name string.

kFontUnicodeV1_1Semantics
Identifies version 1.1 of the Unicode character code
specification as the platform version of the font name
string.

kFontISO10646_1993Semantics
Identifies the ISO/IEC 10646-1993 specification as the
platform version of the font name string.

kFontUnicodeV2BasedSemantics
Identifies version 2.0 or later of the Unicode character code
specification as the platform version of the font name
string.
312 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Vertical Position Font Feature Selector Constants D

For fonts that support the vertical position feature type, you can select features
that allow you to specify glyph variants related to vertical position, as shown in
Table D-27.

Vertical Substitution Font Feature Selector Constants D

Vertical substitution is a glyph substitution in which the glyph for a given glyph
code is replaced by an alternate form in a vertical line. (This is not the same as
rotating the glyph.) Table D-28 shows the feature selectors for vertical
substitution.

Table D-27 Feature selectors for the kVerticalPositionType feature type

Constant Explanation

kNormalPositionSelector Specifies use of normally positioned glyph set.

kSuperiorsSelector Specifies use of superiors: glyph variants that are
positioned above the baseline, used typically for
superscripts.

kInferiorsSelector Specifies use of inferiors: glyph variants that are
positioned below the baseline, used typically for
subscripts.

kOrdinalsSelector Specifies contextual substitution of glyphs that
replace ordinal designations attached to numerals
(such as “1st” substituting for “1st”).

Table D-28 Feature selectors for the kVerticalSubstitutionType feature type

Constant Explanation

kSubstituteVerticalFormsOnSelector
kSubstituteVerticalFormsOffSelector

Allows or prevents the substitution
of alternate glyph forms in vertical
lines.
Apple Advanced Typography Reference 313
1/11/00  Apple Computer, Inc.

A P P E N D I X D

New Constants and Data Types Used by ATSUI
Figure D-14 illustrates how vertical substitution works.

Figure D-14 Vertical substitution forms in a font

(
H
e
l
l
o
)

H
e
l
l
o

(

(

Vertical text with the
appropriate vertical
substitution glyph
forms in the font

Vertical text
with no vertical

substitution glyph
forms in the font

(Hello)
Horizontal text
314 Apple Advanced Typography Reference

1/11/00  Apple Computer, Inc.

Glossary
advance height The distance from the
top of a glyph to the bottom of the glyph,
including the top-side bearing and
bottom-side bearing.

advance width The full horizontal width
of a glyph as measured from its origin to the
origin of the next glyph on the line,
including the side bearings on both sides.

alignment The process of placing text in
relation to one or both margins.

alphabetic writing system The glyphs
that symbolize discrete phonemic elements
in a language. Compare syllabic writing
system and ideographic writing system.

angled caret A caret whose angle in
relation to the baseline of the display text is
equivalent to the slant of the glyphs making
up the text. Compare straight caret.

ascent line An imaginary horizontal line
that corresponds approximately to the tops
of the uppercase letters in the font.
Uppercase letters are chosen because,
among the regularly used glyphs in a font,
these are generally the tallest.

automatic form substitution The process
of automatically substituting one or more
glyphs for one or more other glyphs.

baseline An imaginary line used to align
glyphs in a line of text.

baseline delta An offset (in points)
between the various baseline types and y =
0. See baseline type.

baseline type The classification of
baseline used with a particular kind of text.
See, for example, Roman baseline.

bidirectional script system A script
system where text is generally right-aligned
with most characters written from right to
left, but with some left-to-right text as well.
Arabic and Hebrew are bidirectional script
systems.

bottom-side bearing The white space
between the bottom of the glyph and the
visible ending of the glyph.

bounding box The smallest rectangle
that entirely encloses the pixels or outline of
a glyph.

caret A vertical or slanted blinking bar,
appearing at a caret position in the display
text, that marks the point at which text is to
be inserted or deleted. Compare split caret.

caret angle The angle of a caret or the
edges of a highlight. The caret angle can be
perpendicular to the baseline or parallel to
the angle of the style run’s text.

caret position A location on screen,
typically between glyphs, that relates
directly to the offset (in memory) of the
current text insertion point in the source
text. At the boundary between a right-to-left
and left-to-right direction run on a line, one
315
1/11/00  Apple Computer, Inc.

G L O S S A R Y
character offset may correspond to two caret
positions, and one caret position may
correspond to two offsets.

caret type A designation of the behavior
of the caret at direction boundaries in text.
See split caret.

character A symbol standing for a sound,
syllable, or notion used in writing; one of
the simple elements of a written language,
for example, the lowercase letter “a” or the
number “1”. Compare character code,
glyph.

character cluster A collection of
characters treated as individual components
of a whole, including a principal character
plus attachments in memory. For example,
in Hebrew, a cluster may be composed of a
consonant, a vowel, a dot to soften the
pronunciation of the consonant, and a
cantillation mark.

character code In ATSUI, a 16-bit value
representing a Unicode text character. Text is
stored in memory as character codes. Each
script system’s keyboard-layout ('KCHR')
resource converts the virtual key codes
generated by the keyboard or keypad into
character codes; each script system’s fonts
convert the character codes into glyphs for
display or printing.

character encoding An internal
conversion table for interpreting a specific
character set.

character offset The indexed position of a
2-byte Unicode character in a text buffer,
starting at zero for the first character.
Sequential values for character offset
correspond to the storage order of the
characters. (2) The horizontal separation

between a character rectangle and a font
rectangle—that is, the position of a given
character within the font’s bit image.

contextual form An alternate form of a
glyph whose use depends on the glyph’s
placement in a word.

counter The oval in glyphs such as “p” or
“d”.

cross-stream kerning The automatic
movement of glyphs perpendicular to the
line orientation of the text. Compare
with-stream kerning.

cross-stream shift A type of positional
shift that applies equally to all glyphs in a
style run by raising or lowering the entire
style run (or shifts it sideways if it’s vertical
text). Compare with-stream shift.

cursor A small icon, often an arrow or an
I-beam shape, that moves with the mouse or
other pointing device. Compare caret.

descent line An imaginary horizontal line
that usually corresponds with the bottoms
of the descenders in a font. The descent line
is the same distance from the baseline for all
glyphs in the font, whether or not they have
descenders.

direction See dominant direction, glyph
direction, line direction, text direction.

direction boundary A point between
offsets in memory or glyphs in a display, at
which the direction of stored or displayed
text changes.

direction level A hierarchical ranking of
dominant direction in a line. Direction levels
can be nested so that complex
mixed-direction formatting is preserved.
316
1/11/00  Apple Computer, Inc.

G L O S S A R Y
direction-level run A sequence of
contiguous glyphs that share the same text
direction.

direction override A means of overriding
the directional behavior of glyphs, on a
style-run basis, for special effects.

discontiguous
highlighting Highlighting that exactly
matches the selection range it corresponds
to. It may consist of discontiguous areas
when the selection range crosses direction
boundaries. Compare contiguous
highlighting.

display order The left-to-right order in
which ATSUI displays glyphs. Display order
determines the glyph index of each glyph in
a line and may differ from the input order of
the text. See glyph index; compare input
order and source text.

display text The visual representation of
the text of a text layout object. Display text
consists of a sequence of glyphs, arranged in
display order. Compare source text.

dominant direction The direction in
which successive groups of glyphs are read.
Dominant direction is independent of glyph
direction. See also glyph direction, line
direction.

drop capital A large uppercase letter that
drops below the main line of text for
aesthetic reasons.

dual caret See split caret.

dynamic highlighting The process of
continually drawing and redrawing the
highlighted area as the user moves the
cursor through the text while holding down
the mouse button.

edge offset A byte offset into the source
text of a layout shape that specifies a
position between byte values. Edge offsets
in source text are related to caret positions in
display text. Compare caret position and
byte offset.

feature selectors A means of defining
particular font features in a feature type. See
also feature type.

feature type A group of font features in a
style object that are applied to each style run
based on font defaults. See also feature
selectors.

font A collection of glyphs that usually
have some element of design consistency
such as the shapes of the counters, the
design of the stem, stroke thickness, or the
use of serifs.

font attributes A group of flags that
modify the behavior or identity of a font.

font embedding The technique of storing
a font object’s binary data in a document so
that the text in the document always
displays the correct font.

font family A group of fonts that share
certain characteristics and a common family
name.

font features The set of typographic and
layout capabilities that create a specific
appearance for a layout shape.

font instance A setting identified by the
font’s designer that matches specific values
along the available variation axes and gives
those values a name.
317
1/11/00  Apple Computer, Inc.

G L O S S A R Y
font name A set of specific information in
a font object about a font, such as its family
name, style, copyright date, version, and
manufacturer. Some font names are used to
build menus in an application, whereas
other names are used to identify the font
uniquely.

font object An object type that hides the
complexity of font data from your
application.

font variation An algorithmic way to
produce a range of typestyles along a
particular variation axis.

font variation suite A complete listing of
every axis supported in a font in the order
specified by the font. Each axis is given a
value in the listing.

glyph The distinct visual representation of
a character in a form that a screen or printer
can display. A glyph may represent one
character (the lowercase a), more than one
character (the fi ligature), part of a character
(the dot over an i), or a nonprinting
character (the space character). See also
character.

glyph code A number that specifies a
particular glyph in a font. Fonts map
character codes to glyph codes using
Unicode 'cmap' tables, which in turn
specify individual glyphs. If a font does not
have a Unicode 'cmap' table, it is generated
automatically.

glyph direction The direction in which
successive glyphs are read. Compare
dominant direction.

glyph ductility The ability to stretch the
actual form of a glyph during justification.

glyph index The order of a glyph in a line
of display text. The leftmost glyph in a line
of text has a glyph index of 1; each
succeeding glyph to the right has an index
one greater than the previous glyph.
Compare glyph code, edge offset.

glyph origin The point that ATSUI uses to
position a glyph when drawing.

grow limit The maximum amount by
which glyphs of a given priority can be
extended during justification, before
processing passes to glyphs of lower
priority. Compare shrink limit.

hanging baseline The baseline used by
Devanagari and similar scripts, where most
of the glyph is below the baseline.

hanging glyphs A set of glyphs, usually
punctuation, that typically extend beyond
the left and right margins of the text area
and whose widths are not counted when
line length is measured.

highlighting The display of text in
inverse video or with a colored background.
Highlighting in display text corresponds to
a selection range in source text.

highlight type The angular character of
carets and edges of highlighting areas.
Highlighting and carets are either straight or
angled; see angled caret, straight caret.

hit-testing The process of converting a
location within a line of display text into a
caret offset in the source text of that line.

ideographic centered baseline The
baseline used by Chinese, Japanese, and
Korean ideographic scripts, in which glyphs
are centered halfway on the line height.
318
1/11/00  Apple Computer, Inc.

G L O S S A R Y
ideographic writing system The glyphs
that symbolize component meanings of
words in a language. Compare syllabic
writing system and alphabetic writing
system.

imposed width A run control feature that
forces a specific width onto the glyphs of a
style run, regardless of its text content or
other style properties.

index See glyph index.

input order The order in which characters
are written or entered from a keyboard. The
input order of a line of text can differ from
its display order. Compare display order.

insertion point The point in the source
text at which text is to be inserted or deleted.
An insertion point is specified by a single
caret position. Compare caret; see also caret
position.

justification The process of
typographically expanding or compressing a
line of text to fit a text width.

justification gap The difference in the
length of a line before and after justification.

justification priority The priority order
in which classes of glyphs are processed
during justification.

kashida An extension-bar glyph that is
added to certain Arabic glyphs during
justification.

kerning An adjustment to the normal
spacing that occurs between two or more
specifically named glyphs, known as the
kerning pair.

kerning adjustments array An array in
the style object that overrides the normal
kerning for individual pairs of glyphs by
specifying a point-size factor and scaling
factor.

kerning pair Two specifically named
glyphs that are kerned together by a set
amount. See also kerning.

language The written and spoken
methods of combining words to create
meaning used by a particular group of
people.

leading edge The edge of a glyph that is
encountered first when reading text of that
glyph’s language. For glyphs of left-to-right
text, the leading edge is the left edge; for
glyphs of right-to-left text, the leading edge
is the right edge.

left-side bearing The white space
between
the glyph origin and the visible beginning
of the glyph.

ligature Two or more glyphs connected to
form a single new glyph.

ligature decomposition The replacement
of ligatures with the glyphs for their
component characters during justification.

ligature splitting The process of
separating a ligature into its component
glyphs.

line breaking The process of determining
the proper location at which to truncate a
line of text so that it fits within a given text
width.
319
1/11/00  Apple Computer, Inc.

G L O S S A R Y
line direction The overall direction in
which a line of text is read. Line direction is
the lowest nested level of dominant
direction on a line.

line length The distance, in points, from
the origin of the first glyph on a line through
the advance width of the last glyph.

line span The distance, in points, from the
lowest descender on a line to the highest
ascender.

margins The left, right, top, and bottom
sides of the text area.

math baseline The baseline used for
setting mathematical expressions; it is
centered on operators such as the minus
sign.

mixed-direction text The combination of
text with both left-to-right and right-to-left
directions within a single line of text.

neutral type A glyph directionality in
which the glyph direction is always that of
the surrounding glyphs. Compare strong
type, weak type.

point size The size of a font’s glyphs as
measured from the baseline of one line of
text to the baseline of the next line of
single-spaced text. In the United States,
point size is measured in typographic
points.

postcompensation action The extra
processing, such as addition of kashidas and
ligature decomposition, that occurs after
glyphs have been repositioned during
justification.

priority justification override array An
array that alters the standard justification
behavior for all glyphs of a given
justification priority.

right-side bearing The white space on
the right side of the glyph; this value may or
may not be equal to the value of the left-side
bearing.

Roman baseline The baseline used in
most Roman scripts and in Arabic and
Hebrew.

run A sequence of glyphs that are
contiguous in memory and share a set of
common attributes.

script A method for depicting words
visually.

selection range The contiguous sequence
of characters in the source text that mark
where the next editing operation is to occur.
The glyphs corresponding to those
characters are commonly highlighted on
screen.

serif The fine lines stemming from and at
an angle to the upper and lower ends of the
main strokes of a letter—for example, the
little “feet” on the bottom of the vertical
strokes in the upper-case letter “M” in Times
Roman typeface.

style run text attributes The set of flags
that allow you to specify how ATSUI alters
glyph outlines or chooses the proper metrics
for horizontal or vertical text.

shrink limit The maximum amount by
which glyphs of a given priority may be
compressed during justification, before
processing passes to glyphs of lower
priority. Compare grow limit.
320
1/11/00  Apple Computer, Inc.

G L O S S A R Y
smart swash A variation of an existing
glyph (often ornamental) that is contextual.
Compare swash.

soft line break Line breaks within a text
layout object.

source text A stored sequence of character
codes that represents a line of text.
Characters in source text are stored in input
order. Compare display order, display
text; see also input order.

split caret A type of caret that, at the
boundary between text of opposite
directions, divides into two parts: a high
caret and a low caret, each measuring half
the line’s height. The two separate
half-carets merge into one in unidirectional
text.

storage order See input order, display
order, source text.

straight caret A caret that is
perpendicular to the baseline of the display
text, regardless of the angle of the glyphs
making up the text. Compare angled caret.

strong type A glyph directionality that is
always left to right or right to left. Compare
weak type, neutral type.

style run A sequence of memory backing
store contiguous glyphs that share the same
style.

swash A variation of an existing glyph
(often ornamental) that is noncontextual.
Compare smart swash.

syllabic writing system The glyphs that
symbolize syllables in a language. Compare
alphabetic writing system and
ideographic writing system.

text A set of specific symbols that, when
displayed in a meaningful order, conveys
information.

text area The space on the display device
within which the text should fit.

text direction The direction in which
reading proceeds. Roman text has a
left-to-right direction; Hebrew and Arabic
have a (predominantly) right-to-left
direction; Chinese and Japanese can have a
vertical direction.

text run A complete unit of text, made up
of character codes or glyph codes.

text width The area between the margins;
it is the length available for displaying a line
of text.

tiled highlighting A highlighting
mechanism whereby the highlighted area
corresponding to every character in a line of
text is unique, without gaps or overlaps.

top-side bearing The white space
between the top of the glyph and the visible
beginning of the glyph.

tracking Kerning between all glyphs in
the shape, not just the kerning pairs already
defined by the font. You can increase or
decrease interglyph spacing by using a track
number. See kerning.

track setting A value that specifies the
relative tightness or looseness of interglyph
spacing.

trailing edge The edge of a glyph that is
encountered last when reading text of that
glyph’s language. For glyphs of left-to-right
321
1/11/00  Apple Computer, Inc.

G L O S S A R Y
text, the trailing edge is the right edge; for
glyphs of right-to-left text, the trailing edge
is the left edge.

typestyle A variant version of glyphs in
the same font family. Typical typestyles
available on the Macintosh computer
include bold, italic, underline, outline,
shadow, condensed, and extended.

typographic bounding rectangle The
smallest rectangle that encloses the full span
of the glyphs from the ascent line to the
descent line.

typographic point A unit of
measurement describing the size of glyphs
in a font. There are 72.27 typographic points
per inch, as opposed to 72 points per inch in
ATSUI.

unidirectional text A sequence of text
that has a single direction. Compare
mixed-direction text.

unlimited gap absorption The
assignment of all justification gap to an
individual glyph or priority of glyphs,
regardless of the specified grow or shrink
limits for that glyph or glyphs.

variation axis A range included in a font
by the font designer that allows a font to
produce different typestyles.

weak type A glyph directionality that
depends on context to determine whether it
is left to right or right to left. Compare
strong type, neutral type.

with-stream kerning The automatic
movement of glyphs parallel to the line
orientation of the text. Compare
cross-stream kerning.

with-stream shift A positional shift that
applies equally to all glyphs in a style run
by adding or removing space before or after
each glyph in the run. Compare
cross-stream shift.

WorldScript A group of Macintosh
system software managers, extensions, and
resources that facilitate multilanguage text
processing.

x-height The position where the top of the
lowercase “x” in the font lies; this
measurement usually marks the height of
the body of all lowercase glyphs, excluding
ascenders and descenders, in the font.
322
1/11/00  Apple Computer, Inc.

Index
A

ATSJustPriorityWidthDeltaOverrides
type 182

ATSJustWidthDeltaEntryOverride type 182
ATSLineLayoutOptions type 212
ATSTrapezoid type 184
ATSUAttributeInfo type 185
ATSUAttributeTag type 218, 227
ATSUAttributeValuePtr type 186
ATSUBreakLine function 157
ATSUCalculateBaselineDeltas function 43
ATSUCaret type 186
ATSUClearAttributes function 42
ATSUClearFontFeatures function 49
ATSUClearFontVariations function 54
ATSUClearLayoutCache function 93
ATSUClearLayoutControls function 101
ATSUClearLineControls function 109
ATSUClearSoftLineBreaks function 162
ATSUClearStyle function 29
ATSUCompareStyles function 26
ATSUCopyAttributes function 31
ATSUCopyLayoutControls function 95
ATSUCopyLineControls function 103
ATSUCountFontFeatureSelectors function 73
ATSUCountFontFeatureTypes function 71
ATSUCountFontInstances function 81
ATSUCountFontNames function 60
ATSUCountFontTracking function 68
ATSUCountFontVariations function 77
ATSUCreateAndCopyStyle function 25
ATSUCreateAndCopyTextLayout function 91
ATSUCreateMemorySetting function 174
ATSUCreateStyle function 24
ATSUCreateTextLayout function 85
ATSUCreateTextLayoutWithTextHandle

function 88

ATSUCreateTextLayoutWithTextPtr
function 86

ATSUCursorMovementType type 204
ATSUCustomAllocFunc type 178
ATSUCustomFreeFunc type 180
ATSUCustomGrowFunc type 179
ATSUDisposeMemorySetting function 177
ATSUDisposeStyle function 30
ATSUDisposeTextLayout function 94
ATSUDrawText function 163
ATSUFindFontFromName function 57
ATSUFindFontName function 63
ATSUFONDtoFontID function 66
ATSUFontCount function 55
ATSUFontFallbackMethod type 205
ATSUFontFeatureSelector type 188
ATSUFontFeatureType type 187
ATSUFontIDtoFOND function 67
ATSUFontID type 188
ATSUFontVariationAxis type 188
ATSUFontVariationValue type 189
ATSUGetAllAttributes function 40
ATSUGetAllFontFeatures function 47
ATSUGetAllFontVariations function 52
ATSUGetAllLayoutControls function 99
ATSUGetAllLineControls function 108
ATSUGetAttribute function 38
ATSUGetContinuousAttributes function 121
ATSUGetCurrentMemorySetting function 176
ATSUGetFontFallbacks function 124
ATSUGetFontFeature function 46
ATSUGetFontFeatureNameCode function 76
ATSUGetFontFeatureSelectors function 74
ATSUGetFontFeatureTypes function 72
ATSUGetFontIDs function 56
ATSUGetFontInstance function 82
ATSUGetFontInstanceNameCode function 83
ATSUGetFontVariationNameCode function 80
ATSUGetFontVariationValue function 51
323
1/11/00  Apple Computer, Inc.

I N D E X
ATSUGetGlyphBounds function 146
ATSUGetIndFontName function 61
ATSUGetIndFontTracking function 69
ATSUGetIndFontVariation function 78
ATSUGetLayoutControl function 98
ATSUGetLineControl function 106
ATSUGetRunStyle function 119
ATSUGetSoftLineBreaks function 160
ATSUGetStyleRefCon function 28
ATSUGetTextHighlight function 170
ATSUGetTextLayoutRefCon function 92
ATSUGetTextLocation function 115
ATSUGetTransientFontMatching function 129
ATSUHeapSpec type 208
ATSUHighlightText function 165
ATSUIdle function 173
ATSULeftwardCursorPosition function 141
ATSUMatchFontsToText function 125
ATSUMeasureText function 150
ATSUMeasureTextImage function 153
ATSUMemoryCallbacks type 190
ATSUNextCursorPosition function 136
ATSUOffsetToPosition function 134
ATSUOverwriteAttributes function 32
ATSUPositionToOffset function 130
ATSUPreviousCursorPosition function 138
ATSURightwardCursorPosition function 140
ATSUSetAttributes function 37
ATSUSetCurrentMemorySetting function 176
ATSUSetFontFallbacks function 123
ATSUSetFontFeatures function 44
ATSUSetLayoutControls function 96
ATSUSetLineControls function 104
ATSUSetRunStyle function 118
ATSUSetSoftLineBreak function 159
ATSUSetStyleRefCon function 27
ATSUSetTextHandleLocation function 113
ATSUSetTextLayoutRefCon function 92
ATSUSetTextPointerLocation type 111
ATSUSetTransientFontMatching function 128
ATSUSetVariations function 50
ATSUStyleComparison type 216
ATSUStyleContains constant 216
ATSUStyleIsEmpty function 29
ATSUStyle type 191

ATSUTextDeleted function 143
ATSUTextInserted function 145
ATSUTextLayout type 191
ATSUTextMeasurement type 192
ATSUTextMoved function 117
ATSUUnderwriteAttributes function 34
ATSUUnhighlightText function 168
ATSUVerticalCharacterType type 208

B

BslnBaselineClass type 260
BslnBaselineRecord type 257

C

ConstUniCharArrayPtr type 192

D, E

diphthong ligatures 294

F

FontNameCode type 272, 277, 285

G, H, I

gestaltATSUFallbacksFeature constant 22
gestaltATSUFeatures constant 20
gestaltATSUGlyphBoundsFeature constant 22
gestaltATSULayoutCacheClearFeature

constant 22
gestaltATSULineControlFeature constant 22
gestaltATSUMemoryFeature constant 21
gestaltATSUTextLocatorUsageFeature

constant 22
324
1/11/00  Apple Computer, Inc.

I N D E X
gestaltATSUTrackingFeature constant 21
gestaltATSUUpdate1 constant 20
gestaltATSUUpdate2 constant 20
gestaltATSUVersion constant 19
gestaltOriginalATSUVersion constant 20

J

JustificationFlags type 288
JustPCActionType type 289

K, L

kAbbrevSquaredLigaturesOffSelector
constant 293

kAbbrevSquaredLigaturesOnSelector
constant 293

kAllCapsSelector constant 291
kAllLowerCaseSelector constant 291
kAllTypeFeaturesOffSelector constant 271
kAllTypeFeaturesOnSelector constant 271
kAllTypographicFeaturesType constant 268
kAnnotationType constant 270
kAsteriskToMultiplyOffSelector constant 300
kAsteriskToMultiplyOnSelector constant 300
kATSItalicQDSkew constant 215
kATSLineAppleReserved constant 214
kATSLineFillOutToWidth constant 214
kATSLineFractDisable constant 213
kATSLineHasNoHangers constant 212
kATSLineHasNoOpticalAlignment constant 213
kATSLineImposeNoAngleForEnds constant 214
kATSLineIsDisplayOnly constant 212
kATSLineKeepSpacesOutOfMargin constant 213
kATSLineLastNoJustification constant 213
kATSLineNoLayoutOptions constant 212
kATSLineNoSpecialJustification constant 213
kATSLineTabAdjustEnabled constant 214
kATSNoTracking constant 215
kATSRadiansFactor constant 215
kATSUAfterWithStreamShiftTag constant 221

kATSUBaselineClassTag constant 223
kATSUBeforeWithStreamShiftTag constant 221
kATSUByCharacter constant 204
kATSUByCluster constant 204
kATSUByWord constant 204
kATSUCenterAlignment constant 210
kATSUClearAll constant 203
kATSUColorTag constant 220
kATSUCoordinateOverflowErr result code 234
kATSUCrossStreamShiftTag constant 221
kATSUDecompositionInhibitFactorTag

constant 222
kATSUDefaultFontFallbacks constant 205
kATSUEndAlignment constant 210
kATSUFontsMatched result code 232
kATSUFontsNotMatched result code 232
kATSUFontTag constant 219
kATSUForceHangingTag constant 224
kATSUFromTextBeginning constant 231
kATSUFullJustification constant 211
kATSUHangingInhibitFactorTag constant 222
kATSUImposeWidthTag constant 220
kATSUInvalidAttributeSizeErr result

code 232
kATSUInvalidAttributeTagErr result code 233
kATSUInvalidAttributeValueErr result

code 232
kATSUInvalidCacheErr result code 233
kATSUInvalidFontErr result code 232
kATSUInvalidFontID constant 209
kATSUInvalidStyleErr result code 232
kATSUInvalidTextLayoutErr result code 232
kATSUInvalidTextRangeErr result code 232
kATSUKerningInhibitFactorTag constant 222
kATSULanguageTag constant 220
kATSULastErr result code 234
kATSULastResortOnlyFallback constant 205
kATSULeftToRightBaseDirection constant 207
kATSULineAscentTag constant 229
kATSULineBaselineValuesTag constant 228
kATSULineBreakInWord result code 234
kATSULineDescentTag constant 229
kATSULineDirectionTag constant 227
kATSULineFlushFactorTag constant 228
325
1/11/00  Apple Computer, Inc.

I N D E X
kATSULineJustificationFactorTag
constant 227

kATSULineLanguageTag constant 229
kATSULineLayoutOptionsTag constant 228
kATSULineRotationTag constant 227
kATSULineTextLocatorTag constant 230
kATSULineWidthTag constant 227
kATSULowLevelErr result code 233
kATSUMaxATSUITagValue constant 225
kATSUMaxLineTag constant 230
kATSUMaxStyleTag constant 225
kATSUNoCaretAngleTag constant 224
kATSUNoCorrespondingFontErr result code 232
kATSUNoFontCmapAvailableErr result code 233
kATSUNoFontScalerAvailableErr result

code 233
kATSUNoJustification constant 211
kATSUNoLigatureSplitTag constant 223
kATSUNoOpticalAlignmentTag constant 224
kATSUNoSpecialJustificationTag constant 225
kATSUNoStyleRunsAssignedErr result code 233
kATSUNotSetErr result code 233
kATSUPriorityJustOverrideTag constant 223
kATSUQDBoldfaceTag constant 218
kATSUQDCondensedTag constant 219
kATSUQDExtendedTag constant 219
kATSUQDItalicTag constant 218
kATSUQDUnderlineTag constant 218
kATSUQuickDrawTextErr result code 233
kATSURightToLeftBaseDirection constant 207
kATSUseCaretOrigins constant 206
kATSUseDeviceOrigins constant 206
kATSUseFractionalOrigins constant 206
kATSUseLineHeight constant 211, 215
kATSUSequentialFallbacksExclusive

constant 205
kATSUSequentialFallbacksPreferred

constant 205
kATSUSizeTag constant 219
kATSUStartAlignment constant 210
kATSUStronglyHorizontal constant 208
kATSUStronglyVertical constant 208
kATSUStyleContainedBy constant 216
kATSUStyleEquals constant 216
kATSUStyleTextLocatorTag constant 225

kATSUSuppressCrossKerningTag constant 224
kATSUToTextEnd constant 230
kATSUTrackingTag constant 221
kATSUUseAppHeap constant 209
kATSUUseCallbacks constant 209
kATSUUseCurrentHeap constant 209
kATSUUseGrafPortPenLoc constant 203
kATSUUseLineControlWidth constant 215
kATSUUseSpecificHeap constant 209
kATSUVerticalCharacterTag constant 220
kATUStyleUnequal constant 216
kBoxAnnotationSelector constant 259
kBSLNHangingBaseline constant 261
kBSLNIdeographicCenterBaseline constant 261
kBSLNIdeographicLowBaseline constant 261
kBSLNLastBaseline constant 261
kBSLNMathBaseline constant 261
kBSLNNoBaselineOverride constant 261
kBSLNNumBaselineClasses constant 261
kBSLNRomanBaseline constant 261
kCharacterAlternativesType constant 269
kCharacterShapeType constant 269
kCircleAnnotationSelector constant 259
kCJKRomanSpacingType constant 270
kCommonLigaturesOffSelector constant 292
kCommonLigaturesOnSelector constant 292
kCursiveConnectionType constant 268
kCursiveSelector constant 265
kDecomposeDiacriticsSelector constant 266
kDecorativeBordersSelector constant 304
kDesignComplexityType constant 269
kDesignLevel1Selector constant 265
kDesignLevel2Selector constant 265
kDesignLevel3Selector constant 265
kDesignLevel4Selector constant 265
kDesignLevel5Selector constant 265
kDiacriticsType constant 268
kDiagonalFractionsSelector constant 286
kDiamondAnnotationSelector constant 260
kDingbatsSelector constant 304
kDiphthongLigaturesOffSelector constant 293
kDiphthongLigaturesOnSelector constant 293
kDisplayTextSelector constant 306
kEngravedTextSelector constant 306
kExpertCharactersSelector constant 264
326
1/11/00  Apple Computer, Inc.

I N D E X
kExponentsOffSelector constant 300
kExponentsOnSelector constant 300
kFleuronsSelector constant 304
kFontAlbanianLanguage constant 279
kFontAmharicLanguage constant 283
kFontAmharicScript constant 299
kFontArabicLanguage constant 278
kFontArabicScript constant 297
kFontArmenianLanguage constant 280
kFontArmenianScript constant 298
kFontAssameseLanguage constant 282
kFontAymaraLanguage constant 284
kFontAzerbaijanArLanguage constant 280
kFontAzerbaijaniLanguage constant 280
kFontBasqueLanguage constant 283
kFontBengaliLanguage constant 281
kFontBengaliScript constant 298
kFontBulgarianLanguage constant 280
kFontBurmeseLanguage constant 282
kFontBurmeseScript constant 298
kFontByelorussianLanguage constant 280
kFontCatalanLanguage constant 283
kFontChewaLanguage constant 283
kFontChineseScript constant 297
kFontCopyrightName constant 272
kFontCroatianLanguage constant 278
kFontCustom16BitScript constant 301
kFontCustom816BitScript constant 301
kFontCustom8BitScript constant 301
kFontCustomPlatform constant 285
kFontCyrillicScript constant 297
kFontCzechLanguage constant 279
kFontDanishLanguage constant 277
kFontDescriptionName constant 273
kFontDesignerName constant 273
kFontDesignerURLName constant 273
kFontDevanagariScript constant 297
kFontDutchLanguage constant 277
kFontDzongkhaLanguage constant 284
kFontEastEuropeanRomanScript constant 299
kFontEnglishLanguage constant 277
kFontEsperantoLanguage constant 283
kFontEstonianLanguage constant 279
kFontEthiopicScript constant 299
kFontExtendedArabicScript constant 299

kFontFaeroeseLanguage constant 279
kFontFamilyName constant 272
kFontFarsiLanguage constant 279
kFontFinnishLanguage constant 278
kFontFlemishLanguage constant 279
kFontFrenchLanguage constant 277
kFontFullName constant 272
kFontGallaLanguage constant 283
kFontGeezScript constant 299
kFontGeorgianLanguage constant 280
kFontGeorgianScript constant 298
kFontGermanLanguage constant 277
kFontGreekLanguage constant 278
kFontGreekScript constant 297
kFontGuaraniLanguage constant 284
kFontGujaratiLanguage constant 282
kFontGujaratiScript constant 297
kFontGurmukhiScript constant 297
kFontHebrewLanguage constant 278
kFontHebrewScript constant 297
kFontHindiLanguage constant 278
kFontHungarianLanguage constant 278
kFontIcelandicLanguage constant 278
kFontIndonesianLanguage constant 282
kFontIrishLanguage constant 279
kFontISO10646_1993Semantics constant 312
kFontItalianLanguage constant 277
kFontJapaneseLanguage constant 278
kFontJapaneseScript constant 297
kFontJavaneseRomLanguage constant 284
kFontKannadaLanguage constant 282
kFontKannadaScript constant 298
kFontKashmiriLanguage constant 281
kFontKazakhLanguage constant 280
kFontKhmerLanguage constant 282
kFontKhmerScript constant 298
kFontKirghizLanguage constant 281
kFontKoreanLanguage constant 278
kFontKoreanScript constant 297
kFontKurdishLanguage constant 281
kFontLaoLanguage constant 282
kFontLaotianScript constant 298
kFontLappishLanguage constant 279
kFontLastReservedName constant 274
kFontLatinLanguage constant 283
327
1/11/00  Apple Computer, Inc.

I N D E X
kFontLatvianLanguage constant 279
kFontLettishLanguage constant 279
kFontLicenseDescriptionName constant 273
kFontLicenseInfoURLName constant 273
kFontLithuanianLanguage constant 278
kFontMacedonianLanguage constant 280
kFontMacintoshPlatform constant 285
kFontMalagasyLanguage constant 283
kFontMalayalamLanguage constant 282
kFontMalayalamScript constant 298
kFontMalayArabicLanguage constant 283
kFontMalayRomanLanguage constant 282
kFontMalteseLanguage constant 278
kFontManufacturerName constant 273
kFontMarathiLanguage constant 281
kFontMicrosoftPlatform constant 285
kFontMicrosoftStandardScript constant 301
kFontMicrosoftSymbolScript constant 301
kFontMoldavianLanguage constant 281
kFontMongolianCyrLanguage constant 281
kFontMongolianLanguage constant 281
kFontMongolianScript constant 299
kFontNepaliLanguage constant 281
kFontNoLanguage constant 277
kFontNoPlatform constant 285
kFontNorwegianLanguage constant 277
kFontNoScript constant 312
kFontOriyaLanguage constant 282
kFontOriyaScript constant 298
kFontOromoLanguage constant 283
kFontPashtoLanguage constant 281
kFontPersianLanguage constant 279
kFontPolishLanguage constant 278
kFontPortugueseLanguage constant 277
kFontPostscriptName constant 273
kFontPunjabiLanguage constant 282
kFontQuechuaLanguage constant 283
kFontReservedPlatform constant 285
kFontRomanianLanguage constant 279
kFontRomanScript constant 297
kFontRSymbolScript constant 297
kFontRuandaLanguage constant 283
kFontRundiLanguage constant 283
kFontRussian constant 297
kFontRussianLanguage constant 279

kFontSaamiskLanguage constant 279
kFontSanskritLanguage constant 281
kFontSerbianLanguage constant 280
kFontSimpChineseLanguage constant 279
kFontSimpleChineseScript constant 298
kFontSindhiLanguage constant 281
kFontSindhiScript constant 299
kFontSinhaleseLanguage constant 282
kFontSinhaleseScript constant 298
kFontSlavicScript constant 299
kFontSlovakLanguage constant 280
kFontSlovenianLanguage constant 280
kFontSomaliLanguage constant 283
kFontSpanishLanguage constant 277
kFontStyleName constant 272
kFontSundaneseRomLanguage constant 284
kFontSwahiliLanguage constant 283
kFontSwedishLanguage constant 277
kFontTagalogLanguage constant 282
kFontTajikiLanguage constant 281
kFontTamilLanguage constant 282
kFontTamilScript constant 298
kFontTatarLanguage constant 284
kFontTeluguLanguage constant 282
kFontTeluguScript constant 298
kFontThaiLanguage constant 278
kFontThaiScript constant 298
kFontTibetanLanguage constant 281
kFontTibetanScript constant 298
kFontTigrinyaLanguage constant 283
kFontTradChineseLanguage constant 278
kFontTrademarkName constant 273
kFontTraditionalChineseScript constant 297
kFontTurkishLanguage constant 278
kFontTurkmenLanguage constant 281
kFontUighurLanguage constant 284
kFontUkrainianLanguage constant 280
kFontUnicodeDefaultSemantics constant 312
kFontUnicodePlatform constant 285
kFontUnicodeV1_1Semantics constant 312
kFontUnicodeV2BasedSemantics constant 312
kFontUninterpretedScript constant 299
kFontUniqueName constant 272
kFontUrduLanguage constant 278
kFontUzbekLanguage constant 280
328
1/11/00  Apple Computer, Inc.

I N D E X
kFontVendorURLName constant 273
kFontVersionName constant 273
kFontVietnameseLanguage constant 282
kFontVietnameseScript constant 299
kFontWelshLanguage constant 283
kFontYiddishLanguage constant 280
kFormInterrobangOffSelector constant 310
kFormInterrobangOnSelector constant 310
kFractionsType constant 269
kFullWidthIdeographsSelector constant 287
kFullWidthKanaSelector constant 290
kHalfWidthTextSelector constant 309
kHanjaToHangulAltOneSelector constant 310
kHanjaToHangulAltThreeSelector constant 310
kHanjaToHangulAltTwoSelector constant 310
kHanjaToHangulSelector constant 309
kHideDiacriticsSelector constant 266
kHiraganaToKatakanaSelector constant 309
kHyphensToEmDashOffSelector constant 310
kHyphensToEmDashOnSelector constant 310
kHyphenToEnDashOffSelector constant 310
kHyphenToEnDashOnSelector constant 310
kHyphenToMinusOffSelector constant 300
kHyphenToMinusOnSelector constant 300
kIdeographicSpacingType constant 270
kIlluminatedCapsSelector constant 306
kInequalityLigaturesOffSelector

constant 300
kInequalityLigaturesOnSelector constant 300
kInferiorsSelector constant 313
kInitialCapsAndSmallCapsSelector

constant 291
kInitialCapsSelector constant 291
kInternationalSymbolsSelector constant 304
kInvertedCircleAnnotationSelector

constant 259
kJIS1978CharactersSelector constant 263
kJIS1983CharactersSelector constant 263
kJIS1990CharactersSelector constant 264
kJUSTKashidaPriority constant 289
kJUSTLetterPriority constant 290
kJUSTNullPriority constant 290
kJUSTOverrideLimits constant 288
kJUSTOverridePriority constant 288
kJUSTOverrideUnlimited constant 288

kJUSTPriorityCount constant 290
kJUSTPriorityMask constant 289
kJUSTSpacePriority constant 290
kJUSTUnlimited constant 288
kKanaSpacingType constant 270
kKanaToRomanizationSelector constant 309
kKatakanaToHiraganaSelector constant 309
kLastFeatureType constant 270
kLetterCaseType constant 268
kLigaturesType constant 268
kLineFinalSwashesOffSelector constant 307
kLineFinalSwashesOnSelector constant 307
kLineInitialSwashesOffSelector constant 307
kLineInitialSwashesOnSelector constant 307
kLinguisticRearrangementOffSelector

constant 294
kLinguisticRearrangementOnSelector

constant 294
kLinguisticRearrangementType constant 268
kLogosOffSelector constant 292
kLogosOnSelector constant 292
kLowerCaseNumbersSelector constant 302
kMathematicalExtrasType constant 269
kMathSymbolsSelector constant 304
kMonospacedNumbersSelector constant 303
kMonospacedTextSelector constant 309
kNoAlternatesSelector constant 262
kNoAnnotationSelector constant 259
kNoFractionsSelector constant 286
kNonFinalSwashesOffSelector constant 307
kNonFinalSwashesOnSelector constant 307
kNoOrnamentsSelector constant 304
kNormallySpacedTextSelector constant 309
kNormalPositionSelector constant 313
kNoStyleOptionsSelector constant 306
kNoTransliterationSelector constant 309
kNumberCaseType constant 270
kNumberSpacingType constant 268
kOrdinalsSelector constant 313
kOrnamentSetsType constant 269
kOverlappingCharactersType constant 269
kParenthesisAnnotationSelector constant 260
kPartiallyConnectedSelector constant 265
kPeriodAnnotationSelector constant 260
kPeriodsToEllipsisOffSelector constant 311
329
1/11/00  Apple Computer, Inc.

I N D E X
kPeriodsToEllipsisOnSelector constant 311
kPiCharactersSelector constant 304
kPreventOverlapOffSelector constant 305
kPreventOverlapOnSelector constant 305
kProportionalIdeographsSelector

constant 287
kProportionalKanaSelector constant 290
kProportionalNumbersSelector constant 303
kProportionalTextSelector constant 309
kRareLigaturesOffSelector constant 292
kRareLigaturesOnSelector constant 292
kRebusPicturesOffSelector constant 292
kRebusPicturesOnSelector constant 292
kRequiredLigaturesOffSelector constant 292
kRequiredLigaturesOnSelector constant 292
kRomanizationToHiraganaSelector

constant 309
kRomanNumeralAnnotationSelector

constant 260
kRoundedBoxAnnotationSelector constant 259
kShowDiacriticsSelector constant 266
kSimplifiedCharactersSelector constant 263
kSlashedZeroOffSelector constant 310
kSlashedZeroOnSelector constant 310
kSlashToDivideOffSelector constant 300
kSlashToDivideOnSelector constant 300
kSmallCapsSelector constant 291
kSmartQuotesOffSelector constant 311
kSmartQuotesOnSelector constant 311
kSmartSwashType constant 268
kSquaredLigaturesOffSelector constant 293
kSquaredLigaturesOnSelector constant 293
kStyleOptionsType constant 269
kSubstituteVerticalFormsOffSelector

constant 313
kSubstituteVerticalFormsOnSelector

constant 313
kSuperiorsSelector constant 313
kTallCapsSelector constant 306
kTextSpacingType constant 270
kTitlingCapsSelector constant 306
kTraditionalAltFiveSelector constant 264
kTraditionalAltFourSelector constant 264
kTraditionalAltOneSelector constant 264
kTraditionalAltThreeSelector constant 264

kTraditionalAltTwoSelector constant 264
kTraditionalCharactersSelector constant 263
kTransliterationType constant 270
kTypographicExtrasType constant 269
kUnconnectedSelector constant 265
kUnicodeDecompositionType type 270
kUpperAndLowerCaseSelector constant 291
kUpperCaseNumbersSelector constant 302
kVerticalFractionsSelector constant 286
kVerticalPositionType constant 269
kVerticalSubstitutionType constant 268
kWordFinalSwashesOffSelector constant 307
kWordFinalSwashesOnSelector constant 307
kWordInitialSwashesOffSelector constant 307
kWordInitialSwashesOnSelector constant 307

M–T

MyATSUCustomAllocFunc function 178
MyATSUCustomFreeFunc function 180
MyATSUCustomGrowFunc function 179

U

UniCharArrayHandle type 193
UniCharArrayOffset type 193
UniCharArrayPtr type 194
UniCharCount type 194
UniChar type 192

V–Z

verAfrikaans constant 256
verArabic constant 253
verArmenian constant 255
verAustralia constant 253
verAustria constant 256
verBelgiumLuxPoint constant 253
verBengali constant 255
verBhutan constant 255
330
1/11/00  Apple Computer, Inc.

I N D E X
verBrazil constant 255
verBreton constant 255
verBritain constant 252
verBulgaria constant 255
verByeloRussian constant 255
verCanadaComma constant 253
verCanadaPoint constant 254
verCatalonia constant 255
verChina constant 254
verCroatia constant 255
verCyprus constant 253
verCzech constant 255
verDenmark constant 253
verEngCanada constant 255
verEsperanto constant 256
verEstonia constant 254
verFarEastGeneric constant 255
verFaroeIsl constant 254
verFinland constant 253
verFlemish constant 253
verFrance constant 252
verFrBelgium constant 256
verFrCanada constant 253
verFrenchUniversal constant 256
verFrSwiss constant 253
verGeorgian constant 256
verGermany constant 253
verGreeceAlt constant 255
verGreece constant 253
verGreecePoly constant 254
verGreenland constant 256
verGrSwiss constant 253
verGujarati constant 256
verHungary constant 254
verIceland constant 253
verIndiaHindi constant 254
verIndiaUrdu constant 256
verInternational constant 254
verIran constant 254
verIreland constant 254
verIrishGaelicScript constant 255
verIsrael constant 253
verItalianSwiss constant 254
verItaly constant 253
verJapan constant 253

verKorea constant 254
verLatvia constant 254
verLithuania constant 254
verMacedonian constant 255
verMagyar constant 255
verMalta constant 253
verManxGaelic constant 255
verMarathi constant 256
verMultilingual constant 255
verNepal constant 256
verNetherlandsComma constant 253
verNetherlands constant 253
verNorway constant 253
verNunavut constant 255
verNynorsk constant 256
verPakistanUrdu constant 254
verPoland constant 254
verPortugal constant 253
verPunjabi constant 256
verRomania constant 254
verRussia constant 254
verSami constant 254
verScottishGaelic constant 255
verScriptGeneric constant 255
verSerbian constant 255
verSingapore constant 256
verSlovak constant 255
verSlovenian constant 255
verSpain constant 253
verSpLatinAmerica constant 256
verSweden constant 253
verTaiwan constant 254
verThailand constant 254
verTibetan constant 256
verTurkey constant 253
verTurkishModified constant 254
verUkraine constant 255
verUS constant 252
verUzbek constant 256
vervariantDenmark constant 254
vervariantNorway constant 254
vervariantPortugal constant 254
verVietnam constant 256
verWelsh constant 255
verYugoCroatian constant 253
331
1/11/00  Apple Computer, Inc.

I N D E X
332
1/11/00  Apple Computer, Inc.

	Apple Type Services for Unicode Imaging Reference
	Contents
	Figures and Tables
	Introduction
	ATSUI Reference
	Gestalt Constants
	Gestalt Selectors for ATSUI
	ATSUI Version Constants
	ATSUI Attribute Constants

	Functions
	Creating, Manipulating, and Disposing of Style Objects
	Copying Style Contents
	Flattening and Unflattening Style Objects
	Manipulating Style Run Attributes
	Manipulating Font Features
	Manipulating Font Variations
	Finding Compatible Fonts
	Searching a Font Name Table
	Converting Font IDs and Font Family Numbers
	Obtaining Font Tracking Information
	Obtaining Font Feature Information
	Obtaining Font Variation Data
	Obtaining Font Instance Data
	Creating and Disposing of Text Layout Objects
	Manipulating Text Layout Attributes
	Manipulating Text Layout Attributes in a Line
	Assigning and Updating Text
	Obtaining and Updating Text Memory Location
	Assigning and Updating Style Runs
	Obtaining Style Run Information
	Mapping Font Fallbacks
	Hit-Testing
	Determining Cursor Offsets
	Handling Text Insertion and Deletion
	Measuring Typographic and Image Bounds
	Manipulating Line Breaks
	Drawing Text
	Highlighting and Unhighlighting Text
	Performing Background Processing
	Controlling Memory Allocation

	Callbacks
	Data Types
	Resource
	Constants
	Clear All Constant
	Current Pen Location Constant
	Cursor Movement Constants
	Font Fallback Constants
	Glyph Bound Constants
	Glyph Direction Constants
	Glyph Orientation Constants
	Heap Specification Constants
	Invalid Font ID Constant
	Line Alignment Constants
	Line Height Constant
	Line Justification Constants
	Line Layout Option Mask Constants
	Line Layout Width Constant
	Miscellaneous Constants
	Style Comparison Constants
	Style Run Attribute Tag Constants
	Text Layout Attribute Tag Constants
	Text Length Constant
	Text Offset Constant

	Result Codes

	Document Revision History
	History of API Additions and Changes in ATSUI
	Summary of Style Run and Text Layout Attribute Tag Information
	New Constants and Data Types Used by ATSUI
	About Unicode Utilities
	Unicode Utilities Reference
	Unicode Utilities Data Type

	About Script Manager
	Script Manager Reference
	Script Manager Constants
	Region Code Constants

	About Apple Advanced Typography
	Apple Advanced Typography Reference
	Apple Advanced Typography Data Type
	Apple Advanced Typography Constants
	Annotation Feature Selector Constants
	Baseline Type Constants
	CJK Roman Width Feature Selector Constants
	Character Alternates Feature Selector Constants
	Character Shape Feature Selector Constants
	Cursive Connection Font Feature Selector Constants
	Design Complexity Feature Selector Constants
	Diacritical Mark Font Feature Selector Constants
	Font Feature Type Constants
	Font Feature Type Selector Constants
	Font Name Code Constants
	Font Name Language Constants
	Font Name Platform Constants
	Fraction Font Feature Selector Constants
	Ideographic Spacing Feature Selector Constants
	Justification Override Mask Constants
	Justification Priority Constants
	Kana Spacing Feature Selector Constants
	Letter Case Font Feature Selector Constants
	Ligature Font Feature Selector Constants
	Linguistic Rearrangement Font Feature Selector Constants
	Macintosh Platform Script Code Constants
	Mathematical Extras Feature Selector Constants
	Microsoft Platform Script Code Constants
	Number Case Feature Selector Constants
	Number Width Feature Selector Constants
	Ornament Sets Feature Selector Constants
	Prevention of Glyph Overlap Font Feature Selector Constants
	Style Options Feature Selector Constants
	Swash Font Feature Selector Constants
	Text Width Feature Selector Constants
	Transliteration Feature Selector Constants
	Typographic Extras Feature Selector Constants
	Unicode Decomposition Feature Selector Constants
	Unicode Platform Script Code Constants
	Vertical Position Font Feature Selector Constants
	Vertical Substitution Font Feature Selector Constants

	Glossary
	Index

