

Getting Started
With WebObjects

Apple, NeXT, and the publishers have tried to make the information contained in
this manual as accurate and reliable as possible, but assume no responsibility for
errors or omissions. They disclaim any warranty of any kind, whether express or
implied, as to any matter whatsoever relating to this manual, including without
limitation the merchantability or fitness for any particular purpose. In no event shall
they be liable for any indirect, special, incidental, or consequential damages arising
out of purchase or use of this manual or the information contained herein. NeXT or
Apple will from time to time revise the software described in this manual and
reserves the right to make such changes without obligation to notify the purchaser.

Copyright



 1997–1999 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA
95014.
All rights reserved.
[7010.01]

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

Enterprise Objects, Enterprise Objects Framework, Objective-C, and WebScript
are trademarks of NeXT Software, Inc. Apple, Mac, and WebObjects are
trademarks of Apple Computer, Inc., registered in the United States and other
countries. PostScript is a registered trademark of Adobe Systems, Incorporated.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObjects 4.5.

Writing: Clif Liu, Ron Karr, and Kelly Toshach
Editing: Laurel Rezeau and Jeanne Woodward
With help from: Andy Belk, Craig Federighi, John Graziano, Ben Haller, Kenny
Leung, Charles Lloyd, Jean Ostrem, Becky Willrich, Greg Wilson
Graphic Design: Karin Stroud
Production: Gerri Gray

Contents

v

Table of Contents

Preface 9

About WebObjects 11

About This Book 11

Where to Go From Here 12

Creating a Simple WebObjects Application 13

Creating a WebObjects Application Project 16

Choosing the Programming Language 18

Examining Your Project 19

Launching WebObjects Builder 21

Creating the Page’s Content 23

Entering Static Text 23

Using the Inspector 24

Creating Form-Based Dynamic HTML Elements 25

Resizing the Form Elements 27

Binding Elements 28

Creating Variables 28

Binding the Input Elements 30

Implementing an Action Method 32

Creating the Application’s Output 33

Building and Running Your Application 36

Enhancing Your Application 39

Duplicating Your Project 41

Creating a Custom Guest Class 43

Binding the Class’s Instance Variables to the Form Elements 45

Creating a Table to Display the Output 45

Adding Dynamic Elements to Table Cells 48

Binding the Dynamic Elements in the Table 48

Creating the Guest Object 48

Table of Contents

vi

Keeping Track of Multiple Guests 50

Creating a Guest List 51

Adding Guests to the Guest List 52

Adding a Second Component 53

Using a Repetition 55

Adding the Finishing Touches 58

Clearing the Guest List 58

Adding a Dynamic Hyperlink 60

Creating a WebObjects Database Application 63

The Movies Application 66

Enterprise Objects and the Movies Database 67

Enterprise Objects and Relationships 68

Designing the Main Page 69

Starting the WebObjects Application Wizard 69

Specifying a Model File 70

Choosing an Adaptor 71

Choosing What to Include in Your Model 73

Choosing the Tables to Include 76

Specifying Primary Keys 76

Specifying Referential Integrity Rules 77

Choosing an Entity 79

Choosing a Layout 80

Choosing Attributes to Display 81

Choosing an Attribute to Display as a Hyperlink 82

Choosing Attributes to Query On 82

Running Movies 83

Examining Your Project 84

Examining the Variables 85

Examining the Bindings 86

Refining Main.wo 90

Specifying a Sort Order 91

Specifying Default Values for New Enterprise Objects 93

Setting a Date Format 94

Setting a Number Format 95

Optional Exercise 95

vii

Table of Contents

Adding the MovieDetails Page 97

Creating the MovieDetails Component 98

Storing the Selected Movie 98

Navigating from Main to MovieDetails 99

Designing MovieDetails’ User Interface 101

Adding Date and Number Formats 102

Navigating from MovieDetails to Main 102

Running Movies 102

Refining Your Model 103

Opening Your Model 103

Removing Foreign Keys as Class Properties 104

Adding Relationships to Your Model 105

Using the Advanced Relationship Inspector 108

Where Do Primary Keys Come From? 110

Setting Up a Master-Detail Configuration 111

Creating a Detail Display Group 111

Adding a Repetition 115

Configuring a Repetition 115

Running Movies 116

Updating Objects in the Detail Display Group 116

Managing a WODisplayGroup’s Selection 118

Adding a Form 119

Adding a Talent Display Group 119

Configuring the Browser 120

Adding Insert, Save, and Delete Buttons 122

Adding Behavior to Your Enterprise Objects 123

Specifying Custom Enterprise Object Classes 124

Generating Custom Enterprise Object Classes 124

Adding Custom Behavior to Talent 125

Providing Default Values in MovieRole 126

Running Movies 126

Table of Contents

viii

Preface

11

About WebObjects

WebObjects is an object-oriented environment for developing and deploying
World Wide Web applications. A WebObjects application runs on a server
machine and receives requests from a user’s web browser on a client machine. It
dynamically generates HTML pages in response to the user’s requests.
WebObjects provides a suite of tools for rapid application development, as well
as prebuilt application components and a web application server.

WebObjects is flexible enough to suit the needs of any web programmer. You
can write code using one of three programming languages: Java, Objective-C, or
WebScript. You can write simple WebObjects applications in a matter of
minutes. For more complex projects, WebObjects makes it easy by performing
common web application tasks automatically and by allowing you to reuse
objects you’ve written for other applications.

About This Book

This book contains three tutorials that help you learn what WebObjects is and
how to use it:

• Chapter 1, “Creating a Simple WebObjects Application” (page 13), teaches
you the basic concepts and steps involved in creating a WebObjects project,
using the Project Builder and WebObjects Builder tools. You’ll create a
simple application that takes input from a user and displays it.

• Chapter 2, “Enhancing Your Application” (page 39), extends the
capabilities of your application and shows you additional techniques you use
when working with WebObjects.

• Chapter 3, “Creating a WebObjects Database Application” (page 63),
teaches you how to create a more complex application, one that accesses a
database.

WebObjects can run on several platforms. Screen shots in this book are for
Windows NT systems; if you are running on a different platform, the look of
your windows may vary slightly.

Preface

12

Where to Go From Here

After you have worked through the tutorials in this book, you should have a good
working knowledge of WebObjects. For more in-depth information about how
WebObjects works, read the

WebObjects Developer’s Guide

.

Other valuable information about WebObject is available on the WebObjects
CD. You can access all online information through the WebObjects home page.
In particular, the WebObjects home page gives you access to some books that
are available only on the WebObjects CD:

•

WebObjects Tools and Techniques

 is a more comprehensive guide to using
Project Builder and WebObjects Builder to develop WebObjects
applications. It also discusses Direct to Web, a framework that instantly
creates a WebObjects database application.

•

Serving WebObjects

describes how to administer and deploy WebObjects
applications after you’ve written them.

• The

Dynamic Elements Reference

 documents the dynamic elements provided
with WebObjects and provides examples of how to use them.

• The

WebObjects Framework Reference

 provides a complete reference to the
classes in the WebObjects framework. Reference material is provided for
both the Java and Objective-C languages.

Additionally, for more information on Enterprise Objects Framework, read the

Enterprise Objects Framework Developer’s Guide

. This book provides in-depth
information about how Enterprise Objects Framework works and about
techniques for developing database applications with it.

Creating a Simple
WebObjects Application

Chapter 1

15

This chapter introduces you to the basic concepts and procedures of developing
WebObjects applications. You’ll develop, in stages, a simple application for the
World Wide Web. The application you’ll write is called GuestBook.

When you’ve finished the steps in this chapter, your application will have
a single web page containing a form that allows users to enter their names,
e-mail addresses, and comments. When the form is submitted, the application
redraws the page with the user’s information at the bottom.

In Chapter 2, “Enhancing Your Application” (page 39), you will add features to
the application, including a second page, a table that displays information from
multiple users, and hyperlinks.

Chapter 1

Creating a Simple WebObjects Application

16

This application illustrates the basic techniques you use to create a WebObjects
application. You’ll use two primary tools, Project Builder and WebObjects
Builder.

Project Builder is an integrated software-development application. It contains
a project browser, a code editor, build and debugging support, and many other
features needed to develop an application. In this tutorial, you’ll learn to use
Project Builder to:

• Create a new WebObjects application project.
• Write scripts or compiled code to provide behavior in your application.
• Build and launch your application.

WebObjects Builder is an application that provides graphical tools for creating
dynamic web pages (

components

). A web page consists of

elements

. WebObjects
Builder allows you to add most of the common HTML elements to a
component by using its graphical editing tools. In addition, WebObjects allows
you to create

dynamic elements

, whose look and behavior are determined at
runtime. You’ll learn to use WebObjects Builder to:

• Create static content for your pages.
• Add dynamic elements to your pages.
• Bind the dynamic elements to variables and methods in your code.

Creating a WebObjects Application Project

A WebObjects application project contains all the files needed to build and
maintain your application. You use Project Builder to create a new project.

1. Launch Project Builder.

On Mac OS X Server, choose Project Builder from the Apple menu under
WebObjects. On Windows NT, you can launch Project Builder from the
WebObjects program group in the Start menu.

2. Choose Project New.

Creating a WebObjects Application Project

17

3. In the New Project panel, select Webobjectsapplication from the Project
Type pop-up list.

4. Click Browse.

5. Navigate to the directory where you want to save the project.

6. Type the name of the project you want to create (

GuestBook

).

7. Click Save.

The New Project panel shows the path you specified.

8. Click OK.

Note:

On Mac OS X Server, the file browser and the Project Type pop-up list
both appear on the New Project panel.

The WebObjects Application Wizard starts.

Set project type here.

Click to choose directory in
which to create your project.

Choose a directory here.

Type project name here.

Click when finished.

Chapter 1

Creating a Simple WebObjects Application

18

9. For Available Assistance, choose None.

If you are developing an application that accesses a database, you may wish
to use one of the levels of assistance that WebObjects provides. For more
information on these options, see Chapter 3, “Creating a WebObjects
Database Application” (page 63).

Choosing the Programming Language

WebObjects supports three languages:

• Java
• Objective-C
• WebScript

Java and Objective-C are

compiled

 languages. They require you to build your
application before running it. WebScript, which is based on Objective-C, is a

scripted

 language. It allows you to make changes to your application while it is
running.

When you create a new project, Project Builder provides you with a

component

called Main. In WebObjects terminology, a component represents a page in your
application (or possibly part of a page).

In the wizard, you specify the language you’ll use to program your Main
component, as well as the

application

 and

session

 code files (which will be
described later).

Choose level of assistance.

Choose programming
language.

Click to proceed.

Examining Your Project

19

1. For the primary language, select Java.

Later, you’ll create an additional component for your application and write
its code in WebScript.

2. Click Finish.

Project Builder creates a new application directory called

GuestBook

. This
directory contains the files you work with in both Project Builder and
WebObjects Builder.

Examining Your Project

Project Builder displays a browser showing the contents of your project. The
first column lists several categories of files that your project may contain. This
section describes some of the most important files you’ll use.

1. Select Web Components.

The next column displays a list with one element,

Main.wo

, which is a
directory containing the first

component

 in your application. Every
application starts with a component called Main.

2. Select

Main.wo

.

The files you see displayed in the next column are some of the files you
work with when developing your component:

•

Main.html

 is the HTML template for your page. It can include tags for
dynamic WebObjects elements as well as regular HTML. Typically,

Your project's components.

Files in the selected component.

Categories ("suitcases") of
project resources.

Chapter 1

Creating a Simple WebObjects Application

20

you do not edit this file directly; you create your page’s elements
graphically using WebObjects Builder.

•

Main.wod

 is the declarations file that specifies bindings between the
dynamic elements and variables or methods in your scripts. Normally,
you don’t edit this file directly; you use WebObjects Builder to generate
the bindings for you.

3. Select Classes in the first column of the browser.

You’ll see these files listed in the second column:

•

Main.java

 is a file that allows you to specify behavior associated with the
component. You do this by writing code in Java (since you specified Java
as the language when you created the project). You use Project Builder
to edit this file.

•

Application.java

 and

Session.java

 are other Java files that you may want
to work with.

Application.java

 defines

application variables

 that live as
long as the application does.

Session.java

 defines

session variables

 that
exist for the lifetime of one user’s session. In Chapter 2, you’ll add code
to

Application.java

 and learn more about application and session
variables.

Your application's Java classes.

The Main component's code
goes here.

Launching WebObjects Builder

21

•

DirectAction.java

defines a subclass of WODirectAction that you use as
a container class for your action methods. You can rename this class or
create multiple subclasses of WODirectAction depending on your
application needs.

Launching WebObjects Builder

Now that you’ve created your project, you’ll edit the Main component with
WebObjects Builder.

1. Select Web Components in the first column of the browser.

2. Double-click

Main.wo

 in the second column.

The WebObjects Builder tool launches and displays a window titled

Main.wo

. This represents your application’s Main component.

You create your component graphically in the upper pane of the
component window. The browser at the bottom of the window (known as
the

object browser)

is used to display variables and methods your component
uses. Note that there are two variables already defined,

application

 and

session

. You’ll create others later.

Click one of these buttons to
create a specific element.

Pull-down list lets you add
variables, and methods to

This window displays your
component’s elements graphically.

Object browser shows
variables and methods in
your application’s code

Pop-up list switches editing modes.

Click to inspect selected element.

These buttons change properties of selected elements, or text.

Click here to select another
element in the hierarchy.

Chapter 1

Creating a Simple WebObjects Application

22

The

path view

 lies between the upper pane and the object browser and
shows the

element path

to the selected element. Any element can be
contained in a hierarchy of several levels of elements and can in turn
contain other elements. Here, the path view shows the page element,
which is the top level of the hierarchy. By clicking the tags in the path view,
you can easily choose different elements in the hierarchy.

The toolbar at the top of the window contains several buttons that allow
you to create the content of your component. WebObjects Builder also has
menu commands corresponding to these buttons.

3. From the pop-up list at the left of the toolbar, choose .

This pop-up list allows you to switch between graphical editing mode and
source editing mode. When you choose source editing mode, the text of
your HTML template (

Main.html

) appears. It is a skeleton at this point,
since the page is empty. As you add elements graphically, their
corresponding HTML tags appear in this file.

The bottom pane shows your declarations (

Main.wod

) file. Later, when you
bind variables to your dynamic elements, this file stores the information.
Normally, you do not type directly in this file. You can add elements using
the toolbar in either source or graphical editing mode.

4. Switch back to graphical editing mode. For the rest of the tutorial, you’ll
work in this mode.

The HTML source for
your component.

Information about bindings
is displayed here.

Creating the Page’s Content

23

Creating the Page’s Content

A web page consists of

elements

. In addition to the standard static HTML
elements found in all web pages, WebObjects allows you to create

dynamic
elements

, whose look and behavior are determined at runtime.

To create elements, you use the toolbar buttons. There are three groups of
buttons:

•

Structures .

 Use these buttons to create
paragraphs, lists, images, and other static HTML elements.

•

Dynamic form elements .

 Use these buttons
to create form elements in which users enter information. WebObjects gives
your application access to the data entered by users by allowing you to
associate, or

bind

, these elements to variables in your application.

•

Other WebObjects .

 Use these buttons to
create other dynamic elements, which you can bind to variables and
methods in your program to control how they are displayed. Some of these
(such as hyperlinks) have direct HTML equivalents. Others are

abstract
dynamic elements

, such as repetitions and conditionals, which determine how
many times an element is displayed or whether it is displayed at all.

Entering Static Text

The simplest way to add text to a page is to type it directly into the component’s
window. To demonstrate this, add a title for the GuestBook’s page.

1. Type

My Guest Book

 and press Shift-Enter (on the keyboard).

The text is displayed at the insertion point, in this case at the beginning of
the page.

2. Select the text you just typed.

3. Click the button in the toolbar. This converts the selected text to a
heading element and displays it in a larger font.

4. From the pop-up list in the toolbar, choose center justification.

Chapter 1

Creating a Simple WebObjects Application

24

The toolbar also has buttons that allow you to apply text styles such as
bold, underline, and italics.

HTML provides several levels of headings. To change the level, you use the
Inspector panel. You’ll use this panel frequently throughout these tutorials.

Using the Inspector
You use the Inspector panel to set properties of the elements in your
component. The Inspector’s title and contents reflect the element you’ve
selected in the component window.

1. Click .

A panel titled Heading Inspector appears. It allows you to set the level of
the heading.

2. Click “2”.

The text is now part of an <H2> tag, and is displayed in a smaller font.

3. Click <BODY> in the path view.

Each element has its own Inspector that allows you to set properties
appropriate for the element. The Page Inspector allows you to set
properties such as the page’s title and its text color.

Click here to set the heading level.

Creating the Page’s Content

25

4. Type a title (such as “My Guest Book”, or something else of your choosing)
in the Title text field and press Enter. This is the title of the window that
appears in your web browser when you run the application.

Note: Be sure to press Enter after typing in the title; otherwise, it won’t
“stick.”

5. Choose File Save to save the Main component.

Although WebObjects Builder supports undo, it is always a good idea to
save your work frequently.

Creating Form-Based Dynamic HTML Elements
In this section, you’ll create a form with several elements to capture input from
a guest. The Submit and Reset buttons you add to the form will apply to all
other elements in the form. These elements look and act like HTML form
elements but are actually dynamic WebObjects elements, which enable your
code to receive and manipulate the data entered by the user. Refer to the screen
shot that follows these steps to see how the window should look.

1. Place the cursor on the second line after the “My Guest Book” text.

2. Click .

WebObjects Builder adds a form element to your component. The triangle
at the upper-left corner indicates that it is a dynamic form, as opposed to a
static form.The gray border indicates the extent of the form. You can
increase its size by adding elements inside it.

3. Type the text “Name: ” and press Shift-Enter.

This text replaces the word “Form” that was displayed by default.

Enter page’s title here.

Chapter 1 Creating a Simple WebObjects Application

26

4. Type “E-mail: ” and press Shift-Enter twice.

5. Type “Comments: ” followed by Shift-Enter.

You have just entered three lines (and a blank line) of static text inside the
form. Now you’ll enter some dynamic elements to receive input from the
user: two text fields and a multi-line text area.

6. Place the cursor to the right of the text “Name: ”.

7. Click to create a dynamic text field element (WOTextField).

8. Repeat steps 6 and 7 for “E-mail: ”.

9. Use the button to create a multi-line text area below the “Comments: ”
line.

10. Press Shift-Enter twice to create two blank lines.

11. Click to create a Submit button, which is used to send the data in the
form to the server.

12. Click to create a Reset button, which is used to clear the data in the form.

The window should now look like this:

Dynamic form
elements buttons.

Rectangle indicates
extent of form.

Dynamic text
field elements.

Dynamic text
area element.

Creating the Page’s Content

27

Resizing the Form Elements
The text fields and text area are a bit small, so you’ll resize them using the
Inspector panel.

To inspect an element, you must first select it. Some elements (such as text
fields and text areas) can be selected simply by clicking them; they appear
shaded.

You select text elements as you would in most text-editing applications (by
dragging, or by double-clicking words, or by triple-clicking lines); they appear
highlighted when selected.

1. Select the Name text field.

2. In the Textfield Inspector, change the setting of the pop-up list at the upper
left of the panel from Dynamic Inspector to Static Inspector.

All WebObjects elements have a dynamic inspector, that is, one that allows
you to set bindings (you’ll work with bindings in the next section). In
addition, many WebObjects elements (those with direct counterparts in
static HTML) also have a static inspector. This inspector allows you to set
the standard HTML attributes for that type of element.

In this panel, you can set various attributes of the static counterpart of a
WOTextField, which is an HTML <INPUT TYPE=TEXT> element.

3. In the Visible length field, enter 20 to set the width of the text field to 20
characters.

4. Repeat steps 1 through 3 for the E-mail field.

Choose Static Inspector
from this pop-up list.

Enter size here.

Chapter 1 Creating a Simple WebObjects Application

28

5. Select the multi-line text area.

In the Text Area Inspector, you can set various attributes corresponding to
those of a <TEXTAREA> element.

6. Increase the size of the element by specifying the number of columns and
number of rows to, say, 30 and 6.

7. Save the Main component.

Binding Elements

When a user enters information in form elements, your application needs a way
of accessing that information. This is done by binding the form elements to
variables in your application. When the user submits the form, WebObjects puts
the data into the variables you’ve specified.

Your application typically processes the data and returns a new page (or the same
page) displaying information that makes sense based on the user’s input. The
information displayed is usually represented by other dynamic elements that are
bound to variables and methods in your code.

This process of receiving a request (triggered by actions such as submitting a
form or clicking a hyperlink) and responding by returning a page is known as the
request-response loop. This loop is at the heart of WebObjects programming.

In this tutorial, you’ll have WebObjects return the same page, with the
information you received from the user displayed in a slightly different format
at the bottom.

Creating Variables
In this section, you’ll declare individual variables in your code file (Main.java) to
hold the name, e-mail address, and comments entered by a single guest. Later
on, you’ll structure this information differently in order to work with data from
multiple users.

WebObjects Builder allows you to declare variables without having to edit your
source file directly. At the bottom of the panel there is a pull-down menu titled
Edit Source. It has five items:

Binding Elements

29

• Add Key allows you to add a key to your source file. A key can be either an
instance variable or a method that returns a value.

• Add Action allows you to add the template for an action method, which is a
method that takes no parameters and returns a component (the next page
to be displayed).

• Delete Key allows you to delete a key from your source file by deleting the
instance variable or the method that returns a value.

• Rename Key allows you to rename a key in your source file by renaming the
instance variable or the method that returns a value.

• View Source File opens the source file in a Project Builder window.

1. Choose Add Key from the pull-down menu.

The Add Variable/Method panel opens.

2. Type guestName in the Name field.

3. To specify the variable’s type, select String from the combo box (or you can
type String directly in the box).

4. Click Add.

Type variable name here.

Choose variable’s type
from this combo box.

Chapter 1 Creating a Simple WebObjects Application

30

You have just created a variable called guestName of type String. It appears
in the first column of the object browser. A declaration for guestName also
appears in Main.java , which you’ll edit later.

5. Create the variables email and comments in the same way (they are also of
type String.)

Note: You may also add variables by editing the source file in Project Builder. You
will need to use Project Builder to remove or modify a variable. Remember to
save the file after editing in Project Builder to update WebObjects Builder.

Binding the Input Elements
Each dynamic element contains several attributes. These attributes determine
what happens when the element is displayed or when a form element is
submitted. When you bind an element, you actually bind one or more of its
attributes.

For example, a WOText element (which represents a multi-line text area) is
defined as having two attributes:

• value specifies the string the user enters in the text area.
• name specifies a unique identifier for the text area.

In this tutorial, the only attribute you are concerned with is value , which
represents the string entered by the user in the comments field. You’ll bind this
to the comments variable. You don’t need to bind the name attribute in this
application. In a later example, you’ll bind more than one attribute of an
element.

1. In the object browser, make a connection by pressing on the comments
variable and holding down the mouse button while dragging to the
Comments text area. Then release the mouse button.

Binding Elements

31

A menu appears, displaying the attributes for the text area.

2. Choose value.

In the Dynamic Inspector, comments appears in the Binding column next
to the value attribute of the text area, indicating that the binding has been
made. Also, the text comments appears in the text field to show that it has
been bound.

3. We’ll bind the guestName variable using another technique. Select the
Name WOTextField element. In the Inspector, select the Dynamic
Inspector.

The Inspector displays the value attribute in red, indicating that this
attribute must be bound; otherwise, WebObjects displays an error message
when you try to run your application.

4. In the Inspector, double-click in the Binding column next to value . Type g
and press Enter. The Inspector fills in the rest of the “guestName” key for
you.

Click here to
complete binding.

Press the mouse down on the variable name
and drag to element to begin binding.

Chapter 1 Creating a Simple WebObjects Application

32

5. Bind the email variable to the corresponding text field using one of the
methods above.

6. Save the Main component.

Implementing an Action Method
When the user clicks the Submit button, your application will respond by
redisplaying the page with the submitted information shown at the bottom. To
make this happen, you implement an action method and bind that method to the
action attribute of the WOSubmitButton.

1. From the Edit Source menu at the bottom of the object browser, choose
Add Action.

2. Enter submit as the name of your action method.

3. From the “Page returned” combo box, select null .

The value returned by an action method represents the next page
(component) to be displayed. When you return null (or nil if using
WebScript), the current page is redrawn. In a later task, you’ll see how
to return a new component.

4. Click Add.

The submit action appears below a horizontal line in the first column of the
object browser.

5. Make a connection from the submit action in the object browser to the
Submit button (press the mouse button down on the action, drag to the
button, and release the mouse button).

A menu appears with the Submit button’s attributes.

Enter action name here.

Select response page name
from pop-up menu (use null
to return same page).

Creating the Application’s Output

33

6. Choose action.

You just bound the submit method you created to the action attribute of the
WOSubmitButton. You don’t need to write any additional code, so your
application is now ready to run. However, you may want to look at your
source file.

7. From the pull-down list at the bottom of the window, choose View Source File.

Project Builder becomes active and displays the code for your component (in
Main.java). You’ll notice that this file contains declarations for the variables
you created earlier, as well as a declaration for the submit action method.

// Generated by the WebObjects Wizard ...

import com.apple.yellow.foundation.*;
import com.apple.yellow.webobjects.*;
import com.apple.yellow.eocontrol.*;
import com.apple.yellow.eoaccess.*;

public class Main extends WOComponent {
protected String guestName;
protected String email;
protected String comments;

public WOComponent submit() {
return null;

}
}

Creating the Application’s Output

So far, you have a way for the guest to enter information and a way for the
application to store that information. Now, the application needs to do
something with the information.

For now, you’ll have the application simply display the same information the
user entered, in a slightly different format. This allows you to verify that you
have correctly received the data. To do this, you’ll add dynamic string elements
(WOStrings) to the main page and bind them. In the next chapter, you’ll use
more complex forms of output.

1. In WebObjects Builder, place the cursor at the end of the document,
making sure that it is outside the gray rectangle that represents the form,
and press Shift-Enter.

Chapter 1 Creating a Simple WebObjects Application

34

2. Click to create a horizontal rule (an <HR> element).

3. Press Shift-Enter to add a blank line.

4. Add a WOString element by clicking .

A WOString is a dynamic element whose value is determined at runtime. It
is shown as a small rectangle surrounded by two icons.

5. In the object browser, make a connection from the guestName variable to
the center rectangle of the WOString.

Notice that the name guestName appears inside the WOString, and
the attribute pop-up menu doesn’t appear. The message “Connected
guestName to value” appears in the upper-right corner of the panel.

WebObjects provides this shortcut for binding to the value attribute of
WOStrings because it is the attribute you most often want to bind. The
value attribute signifies the string that will be displayed when the page is
drawn. If you want to bind a different attribute, you make a connection to
the left or right icon, and the attribute pop-up menu appears as usual.

6. Click to the right of the WOString and press Shift-Enter.

7. Create two more WOStrings and bind them to email and comments ,
respectively.

Note that it isn’t necessary to resize the WOStrings as you did with the text
fields. They expand at runtime to display the value of the variables to
which they are bound.

8. Save your component. It should now look like this:

Creating the Application’s Output

35

In summary, when the user clicks the Submit button, a new request-response
cycle begins. WebObjects stores the data entered in the dynamic form elements
in the variables they are bound to (guestName contains the value in the Name
field, email contains the value in the E-mail field, and comments contains the
value in the Comments field). It then triggers the action method bound to the
action attribute of the WOSubmitButton. The action method returns a page
(which, in this example, is the same page). When the page is redrawn, the
dynamic strings at the bottom show the values entered by the user.

Now you are ready to test your application.

Chapter 1 Creating a Simple WebObjects Application

36

Building and Running Your Application

1. Make Project Builder active. A quick way to do this from WebObjects
Builder is to choose View Source File from the pull-down list at the bottom
of the window.

To build and launch your application, you use buttons in Project Builder’s
toolbar.

2. Click in the toolbar to open the Project Build panel.

3. Click in the Project Build panel.

The Project Build panel displays the commands that are being executed to
build your project. If all goes well, it displays the status message “Build
succeeded.”

4. Close the panel.

5. Click in the toolbar to open the Launch panel.

Click here to open the Project Build panel.

Click here to open the Launch panel.

Click here to build
your application.

Building and Running Your Application

37

6. Click in the Launch panel to launch your application.

The Launch panel displays a series of messages. If all goes well, you
should see messages such as the following, which mean that your
application is running successfully.

Your web browser (such as Netscape Navigator or Internet Explorer)
should launch automatically and load the correct URL for your application.

7. Test your application by entering information and submitting the form.

If all goes well, your page should look like the one shown at the beginning
of this chapter (page 13).

Enhancing Your ApplicationChapter 2

Duplicating Your Project

41

In the previous tutorial, you learned how to create a web component that has
input and output elements and how to bind these elements to variables and
methods in your code.

Now you’ll add some additional features to your project that move it a bit more
in the direction of being a real-world web application. The application will:

• Use a custom Java class to represent the data for a guest, rather than using
three separate variables.

• Maintain a guest list, which keeps track of all guest data (whether entered
by you or multiple users of your application), rather than just the current
guest.

• Have a second component, so that the guest list is displayed in a new page
rather than the same page. You’ll use WebScript rather than Java to
implement this component’s behavior.

• Make use of additional interface elements (such as HTML tables).

Duplicating Your Project

Before proceeding, you’ll create a new project by copying the old one and
renaming it. This way, you can make changes and still retain your previous
version.

1. In WebObjects Builder, close the component window.

If there are any unsaved files, you are prompted to save them.

2. In Project Builder, close GuestBook’s project window.

If there are any unsaved files, you are prompted to save them.

3. In your computer’s file system, navigate to the directory where your project
is located.

Chapter 2 Enhancing Your Application

42

4. Duplicate the GuestBook folder.

On Rhapsody, select the folder and press Command-D. On Windows NT,
select the folder, choose Edit Copy, then Edit Paste.

On Mac OS X Server, you may get an alert panel regarding a symbolic link;
click Skip if it appears.

5. Open the new folder (Copy of GuestBook) and double-click the project file
PB.project .

Project Builder opens a new browser window for this project.
(Alternatively, you could have opened the project from within Project
Builder by choosing Project Open, then navigating to the project folder
and selecting PB.project .)

6. Click in the toolbar to bring up the Project Build panel.

7. Click in the Project Build panel.

Creating a Custom Guest Class

43

This command deletes all the files that were generated when you built the
project previously.

8. Click to open the Project Inspector.

9. Choose Project Attributes from the pop-up list at the top of the window.

10. In the Name field, enter GuestBookPlus and press Enter.

11. Respond Yes to the prompt that asks if you want to rename the folder.

You now have a new project called GuestBookPlus.

Creating a Custom Guest Class

In the first chapter, you created individual variables to store a guest’s name, e-
mail address, and comments. When keeping track of multiple guests, it’s more
useful to encapsulate all the data for a guest as a single entity. You’ll do this by
creating a Java class that contains the data for a single guest.

1. In Project Builder’s browser, select Classes in the first column.

2. Choose File New in Project.

3. Type Guest.java as the name of the file.

4. Click OK.

The newly created file contains a skeleton for a class called Guest.

Type name of class here.

Chapter 2 Enhancing Your Application

44

5. Modify the code so it looks like this:

// Generated by the WebObjects Wizard ...

import com.apple.yellow.foundation.*;
import com.apple.yellow.eocontrol.*;
import com.apple.yellow.webobjects.*;

public class Guest extends EOCustomObject {
protected String guestName;
protected String email;
protected String comments;

Guest() {
guestName = ““;
email = ““;
comments = ““;

}

}

A class stores information in its instance variables (also referred to as data
members). Here you’re declaring three instance variables for Guest:
guestName , email , and comments . Note that these declarations are the
same as those that appeared in the code for Main.java when you added the
three variables using WebObjects Builder. In WebObjects, a component is
also a class, specifically a subclass of the class WOComponent.

Java classes require a constructor to initialize an instance (or object) of a
particular class whenever one is created. A constructor has the same name
as the class and returns no value.

Whenever your application creates a new Guest class, its instance variables
are initialized with empty strings, which is the default value if the user
enters no data. (If you prefer, you can use different strings for these initial
values.)

6. Save Guest.java by choosing Save from the File menu.

Saving the file lets WebObjects Builder know about your newly created
Guest class.

Creating a Custom Guest Class

45

Binding the Class’s Instance Variables
to the Form Elements
In the first chapter, you bound the input elements to variables in Main’s code.
Now you’ll modify the bindings to use the class you just created.

1. Select Web Components in the first column of the browser.

2. Double-click Main.wo in the second column of the browser to open the
component in WebObjects Builder.

3. Using the Add Key panel, add a variable called currentGuest to your
component and specify its type as Guest. (Note that you can now choose
Guest from the Type combo box.)

An entry for currentGuest appears in the object browser. Notice the “>”
symbol to the right of its name. This means that there is additional data to
be displayed in the second column.

4. Select currentGuest in the object browser.

The second column displays the three fields of currentGuest , as
determined by the definition of its class, Guest.

5. Make a connection from guestName in the second column of the object
browser (next to currentGuest) to the Name text field (press the mouse
button down on the variable, drag to the element, and release the mouse
button), and click value in the pop-up menu.

This time, when the pop-up menu appears, there is a dot next to the value
attribute because you bound it in the first tutorial.

6. Bind the other two input elements to currentGuest.email and
currentGuest.comments .

Creating a Table to Display the Output
In the first chapter, you created three WOString elements to display the
information the guest entered. In this tutorial, you’ll create a different type of
element, an HTML table, to display the information. In later tasks, you’ll
display data for multiple users in the table.

Chapter 2 Enhancing Your Application

46

1. Delete the WOString elements below the horizontal line in the Main
component, because you’ll be replacing them with a table. Select the
WOString elements and choose Cut from the Edit menu to delete them.

2. Click the button.

The New Table panel appears. On the right is the Preview pane, which
displays what your table will look like.

3. In the Columns field, type 3 and press Enter. A third column appears in the
preview pane.

4. In the Border field, enter 1. A border appears around the table in the
preview pane.

5. Click “First row cells are header cells (<TH>)”. The top row text becomes
bold in the preview pane.

6. Click OK. The table appears in your page.

Enter the number of columns here.

Enter the border width here.

Preview paneClick here to turn the
 first row into header cells.

Click here to put the
table in your page.

Creating a Custom Guest Class

47

7. Select the upper-left cell of the table by clicking it.

8. Change the text in the cell to Name.

9. Open the Inspector if it is not already open.

The Inspector presents a number of modifiable settings that apply to the
table cell you’ve selected.

10. Select pixels from the Width pop-up list. Enter 150 in the Width field.

The width of the column is set to 150 pixels.

11. Click in the component window, then press Tab.

Pressing Tab when editing a table causes the contents of the next cell to
the right to be selected (or the first cell of the next row if in the rightmost
column). Pressing Shift-Tab moves in the opposite direction through the
table.

12. Repeat steps 8 through 11 for the second and third cells of the top row.
Label the middle column E-mail and set its width to 150 pixels. Label the
third column Comments and leave its width unset. (The comments field
takes up the remainder of the width of the table.)

Note: It isn’t necessary to adjust the height of the columns—if left unset,
they’ll expand at runtime to accommodate the size of the text being
displayed.

Select pixels here.

Enter table width here.

Chapter 2 Enhancing Your Application

48

Adding Dynamic Elements to Table Cells
Tables and cells are static HTML elements, so you can’t bind them to variables
or methods. To display dynamic information in cells, you add dynamic
elements, such as WOStrings, to the cells.

1. Click to add a WOString to the cell.

2. Press the Tab key.

The contents of the next cell to the right are selected.

3. Repeat steps 1 and 2 for the other two cells in the second row.

Binding the Dynamic Elements in the Table

1. Make a connection from currentGuest.guestName in the object browser
to the center of the WOString in the first column to bind its value attribute.

2. Similarly, bind currentGuest.email and currentGuest.comments to the
WOStrings in the second and third columns.

The table should now look like this:

3. Save the Main component.

Creating the Guest Object
Earlier in this chapter, you created a Java class of type Guest and wrote a
constructor for it. You also added a variable of that class, currentGuest , to the
Main component. However, adding a variable to the component doesn’t actually
create a new Guest object; you need to create one explicitly at some point in
your code.

You’ll create the Guest object in the constructor method for your component.
This method is called when the component is first created; that is, the first time
the user accesses the component.

Creating a Custom Guest Class

49

Note: In WebScript or Objective-C, you use a method called init for this
purpose.

1. Choose View Source File from the pull-down list at the bottom of the
window.

Project Builder becomes active and displays the code for Main.java .
Notice the following declaration that was added to your code when you
added the currentGuest variable:

protected Guest currentGuest;

2. Delete the declarations of guestName , email , and comments since you
aren’t using them anymore.

3. Add the constructor method inside the Main class definition:

public Main() {
super();
currentGuest = new Guest();

}

The first statement calls the constructor of Main’s superclass (which is
com.apple.yellow.webobjects.WOComponent). The second
statement allocates a new empty Guest object and calls Guest’s constructor
to initialize its instance variables.

4. Save Main.java .

5. Build and run your application.

The application should work similarly to that in the first chapter, except
that the guest’s data is displayed in a table at the bottom of the page
instead of as plain text.

Chapter 2 Enhancing Your Application

50

At this point, your application still handles information from a single guest only;
in the next section, you’ll modify the application so that it can keep track of
multiple guests.

Keeping Track of Multiple Guests

You’ve been using the variable currentGuest in the Main component to hold
the information entered by the user. You’ll need another variable (an array) to
store the list of all the guests who have registered.

Before doing this, it is important to understand the scope and life span of
variables in WebObjects:

• Component variables, such as currentGuest , exist for the lifetime of the
component. These variables are defined in the component (in this case,
Main.java) and are accessible only by its methods. Each user that uses a
component gets a separate instance of the variable.

Keeping Track of Multiple Guests

51

• Session variables exist for the lifetime of one user’s session and are accessible
by all code in the session. They are defined in Session.java . An instance
of each session variable is created for each user.

• Application variables live as long as the application does and are accessible by
all code in the application. They are defined in Application.java . A single
instance of an application variable is shared by all users of the application.

Creating a Guest List
To store the information from all guests that have accessed the application,
you’ll create an application variable called allGuests , which exists for the life of
the application.

1. In Project Builder, select Classes in the first column of the browser. Then
select Application.java from the second column.

The application’s code appears in the window. The following listing shows
the code generated by the Wizard, along with code you will add.

// Generated by the WebObjects Wizard ...

import com.apple.yellow.foundation.*;
import com.apple.yellow.webobjects.*;

public class Application extends WOApplication {

protected NSMutableArray allGuests;

public Application() {

super();

allGuests = new NSMutableArray();

System.out.println("Welcome to " + this.name() + " !");
/* ** put your initialization code in here ** */

}

public void addGuest(Guest aGuest){

allGuests.addObject(aGuest);

}

public void clearGuests(){

allGuests.removeAllObjects();

}

}

Chapter 2 Enhancing Your Application

52

Note that there is one method already defined: Application , which is
the constructor for the Application object. The first line calls the
constructor for Application’s superclass (which is the class WOApplication).
The second line prints a message, which you see in the Launch panel
when you launch your application.

2. After the call to super , enter this code:

allGuests = new NSMutableArray();

This statement initializes allGuests to be a new object of class
NSMutableArray. This class is the Java equivalent of the Objective-C class
NSMutableArray, which provides an interface that allows you to add,
change, and delete objects from an array.

3. At the top of the Application class definition, enter this declaration:

protected NSMutableArray allGuests;

This declares allGuests to be of type NSMutableArray. Declaring it
protected means that it is accessible only from this class or one of its
subclasses. It is standard object-oriented practice for a class to prevent
other classes from directly manipulating its instance variables. Instead,
you provide accessor methods that other objects use to read or modify the
instance variables.

4. Add the accessor methods addGuest and clearGuests , as shown in the
listing.

The addGuest method adds an object of class Guest to the end of the
allGuests array, using the NSMutableArray method addObject .

The clearGuests method removes all the objects from the array using the
NSMutableArray method removeAllObjects .

5. Save Application.java .

Adding Guests to the Guest List
Now, when the user submits the form, you’ll add the information to the
allGuests array rather than displaying it directly.

1. Switch to the code for Main.java .

Adding a Second Component

53

2. In the submit method, add the following code before the return
statement:

((Application)application()).addGuest(currentGuest);

currentGuest = new Guest();

This code calls the application’s addGuest method, which adds an object
(in this case, currentGuest) to the end of the array. Then it creates a new
Guest object to hold the next guest’s data.

Note: The addGuest method is defined in the class Application, which is
a subclass of WOApplication. The component’s application method
(called in the above statement) returns an object of type WOApplication,
so you must cast it to Application in order to access its addGuest method.

Your next step is to create a new component to display the list of guests that
allGuests stores.

Adding a Second Component

In this section, you’ll create a new component. Instead of Java, you’ll implement
its code using WebScript. This section demonstrates the quick turnaround
between development cycles when using WebScript.

1. In Project Builder’s browser, click Web Components in the first column.

2. Choose File New in Project.

Note that the Web Components suitcase is selected.

3. Type GuestList as the name of the new component, then click OK.

The WebObjects Component Wizard appears.

4. Choose None for Available Assistance and WebScript for Component
Language.

5. Click Finish.

6. In the second column of the browser, double-click GuestList.wo to bring
up the component window in WebObjects Builder.

Chapter 2 Enhancing Your Application

54

7. Create a heading for this page, as you did for the Main component. Call it
“Guest List” (or something else of your choosing), then press Enter twice.

8. Add a WOString below the heading. After the WOString, type the text “
guests have signed this guestbook .” Press Shift-Enter twice.

You’re going to bind this WOString so that it reflects the number of guests
who have submitted this form.

9. In the object browser, click application .

There is an entry in the second column for the allGuests application
variable you created. This entry appears in the Main component as well,
since application variables are accessible from anywhere in the code.

If you click allGuests , you’ll see in the third column an entry for count .
This is a standard method that returns the number of objects in the array.

10. Make a connection from count to the center rectangle to bind it to the
WOString’s value attribute.

11. Save the GuestList component.

You need to do one more thing so that the GuestList page now displays
when the user submits the form.

12. Go back to Project Builder and view the source code for Main.java . Replace
the return statement in the submit method with the following code:

return pageWithName("GuestList");

pageWithName is a standard WebObjects method (defined in the
WOApplication class) that allows you to specify a new page to display.

Using a Repetition

55

At this point, the code for Main.java looks like this:

// Generated by the WebObjects Wizard ...

import com.apple.yellow.foundation.*;

import com.apple.yellow.webobjects.*;

import com.apple.yellow.eocontrol.*;

import com.apple.yellow.eoaccess.*;

public class Main extends WOComponent {

protected Guest currentGuest;

public Main() {

super();

currentGuest = new Guest();

}

public WOComponent submit() {

((Application)application()).addGuest(currentGuest);

currentGuest = new Guest();

return pageWithName(“GuestList”);

}

}

13. Save Main.java .

14. Build and run your application.

Each time you submit the form, the number of guests displayed in the
WOString should increase.

To return to the Main page, you’ll have to use your browser’s backtrack
button. Later in the tutorial, you’ll add a hyperlink to return to the Main
page.

Using a Repetition

Now you’ll create a table to display the entire list of guests in the GuestList
component. To do so, you’ll use a dynamic element called a repetition (an
instance of the WORepetition class). Repetitions are one of the most important
elements in WebObjects, since it is quite common for applications to display
repeated data (often from databases) when the amount of data to be displayed

Chapter 2 Enhancing Your Application

56

isn’t known until runtime. Typically, a repetition is used to generate items in a
list or a browser, multiple rows in a table, or multiple tables.

A repetition can contain any other elements—either static HTML or dynamic
WebObjects elements. In the GuestList component, you’ll create a repetition
that contains a table row.

You’ll bind the allGuests array to the WORepetition’s list attribute. This tells
WebObjects to generate the elements in the repetition once for each item in the
array. Each time WebObjects iterates through the array, it sets the repetition’s
item attribute to the current array object. You bind item to the variable
currentGuest and use currentGuest ’s fields to bind the elements inside the
repetition (such as WOStrings). At runtime, the table will consist of one row
(displaying name, e-mail address, and comments) for each guest.

1. In WebObjects Builder, make the Main component window active (double-
click Main.wo).

2. Select the table at the bottom of the page by pressing outside it and
dragging across it.

3. Choose Edit Copy.

4. Make the GuestList component active.

5. Place the cursor at the bottom of the page and choose Edit Paste.

You have just copied the table from Main into GuestList. It has all the
same properties, including the bindings. The WOStrings in the table are
still bound to instance variables of currentGuest . Since currentGuest is
a component variable defined in Main, it isn’t accessible from GuestList.
Therefore, you need to declare it here.

6. From the pull-down list at the bottom of the window, choose Add Key.
Enter currentGuest as the name of the variable and Guest as its type,
and click Add.

7. Click in one of the cells in the second row. Click <TR> in the path view to
select the entire row.

Using a Repetition

57

8. Click in the toolbar.

When you wrap a repetition around a table row in this way, the
WORepetition symbol doesn’t appear in the table. Instead, the row
appears in blue. For additional examples of using repetitions, see Chapter
3, “Creating a WebObjects Database Application” (page 63).

9. In the object browser, select application in the first column.

10. In the second column, make a connection from allGuests to the
<WORepetition> tag in the path view.

11. In the attribute menu that appears, click list . This binds
application.allGuests to the WORepetition’s list attribute.

Click in any cell
in this row...

... and click here to
select the entire row.

Select table row, then
click here to create
repetition around row.

Click here to bind
allGuests to the
repetition’s list attribute.

Drag allGuests here
to bind to repetition.

Blue border and
background means row
is in a repetition.

Chapter 2 Enhancing Your Application

58

12. Bind currentGuest to the repetition’s item attribute.

By using the name currentGuest for the item attribute, you are taking
advantage of the fact that the strings in your table are already bound to the
fields of currentGuest .

You now have finished implementing the repetition. When the table is
generated, it will have one row for each item in the allGuests array.

13. Save the GuestList component.

14. Delete the table from the Main component, since you no longer need it.

15. Test your application.

Note: In this case, you don’t have to rebuild or relaunch your application in
order to test it. Building is required only when you have made changes to
Java or Objective-C code. If you modify a component or WebScript code
only, the changes take effect even if the application is already running.

16. Try entering data for multiple guests and verifying that each guest appears
in the table.

Adding the Finishing Touches

There are a few additional things left to do to make your application a bit more
user friendly:

• Add a button that, when clicked, clears the guest list.
• Add a hyperlink to the GuestList page that allows users to return to the

Main page.

Clearing the Guest List
While developing your application, you may find it useful to be able to remove
all guests from the list. (Typically, you wouldn’t allow users to remove all guests
from the list.)

1. In WebObjects Builder, make the GuestList component window active.

Adding the Finishing Touches

59

2. Choose Add Action from the pull-down list at the bottom of the window. In
the panel, enter clearGuestList as the name of the action and set the
page returned to nil . Click Add.

3. Choose View Source File from the pull-down list.

Project Builder displays the code for GuestList.wos . GuestList.wos is
your script file, the WebScript equivalent of Main.java in the Main
component. You’ll notice that there is a skeleton of the clearGuestList
action method, using WebScript syntax, as well as the declaration for
currentGuest that you created previously.

4. Enter the following code before the return statement in clearGuestList :

[[self application] clearGuests];

This code calls the application’s clearGuests method, which removes all
the Guest objects from the array.

5. Save GuestList.wos by choosing Save from the File menu.

6. Go back to WebObjects Builder.

7. Place the cursor below the table and press shift-Enter.

8. Click to add a WOForm element to contain the button you’ll create in
the next step.

9. Click .

This creates a submit button that the user will click to clear the guest list.

10. Using the Inspector, double-click in the binding column next to the value
attribute and type “Clear Guest List” .

This changes the title of the button. Note that the quotes are necessary to
indicate that you’re binding a string, not a variable.

11. Bind the action attribute to clearGuestList .

When the user clicks the button, the clearGuestList action method is
called, which causes the guest list to be cleared and the page to be redrawn.

Chapter 2 Enhancing Your Application

60

Adding a Dynamic Hyperlink
Now you’ll create a hyperlink that returns the user to the Main page.

1. Place the cursor below the submit button (outside the rectangle of its
containing form).

2. Click .

3. Type Return to Sign-in Page , replacing the selected text.

4. Inspect the hyperlink.

5. Select the pageName attribute, then double-click in the Binding column
and type "Main" (including the quotes).

Note: You must specifically type the quotation marks in “Main ”, because
you are specifying a string representing the name of the page to be
returned. If you left off the quotes, you would be specifying a variable or
method called Main .

6. Save the GuestList component.

7. Test your application. Since you didn’t modify any Java or Objective-C
code, you don’t have to rebuild and relaunch your application.

Adding the Finishing Touches

61

The GuestList page should now look like this:

Creating a WebObjects
Database Application

Chapter 3

65

One of the most powerful features of WebObjects is its ability to provide access
to databases. To do so, it uses a framework called the Enterprise Objects
Framework. This chapter introduces you to the Enterprise Objects Framework
by showing you how to create a simple database application. The steps you take
in creating this application demonstrate the principles you’ll use in every other
application you develop with the WebObjects and Enterprise Objects
frameworks.

The application you’ll create in this tutorial is called Movies. It makes use of a
sample database, the Movies database, that contains information about movies.
In this tutorial we’ll use the OpenBase Lite database that comes with
WebObjects. If you wish to use another database, you need to set up the Movies
database as described in the Post-Installation Instructions. Also, if you aren’t
familiar with Project Builder and WebObjects Builder, read the first tutorials in
this book, “Creating a Simple WebObjects Application” (page 13) and
“Enhancing Your Application” (page 39), which introduce basic concepts and
procedures you should know before you go on.

In this tutorial, you will:

• Use the WebObjects Application Wizard to create a fully functional Main
component that reads and writes from the Movies database.

• Create and configure display groups for interacting with a database in terms
of objects.

• Create bindings between display groups and a user interface.

• Write code to manipulate display groups’ selected objects.

• Set up display groups in a master-detail configuration.

• Use EOModeler to maintain a model file.

• Create custom enterprise object classes.

Along the way, you’ll learn basic Enterprise Objects Framework concepts you
can use to design your own database applications.

Note: You can also develop database applications using Direct to Web, a high-
level framework based on WebObjects. Direct to Web instantly generates a
generic database application and allows you to modify its user interface, which

Chapter 3 Creating a WebObjects Database Application

66

makes it a useful starting point for simple projects without very specific user
interface requirements. See WebObjects Tools and Techniques and Developing
WebObjects Applications With Direct to Web for more information.

The Movies Application

The Movies application has two pages, each of which allows you to access
information from the database in different ways:

• MovieSearch (the main page) lets you search for movies that match user-
specified criteria. For example, you can search for all comedies starting with
the letter “A”. Once you find the movie you’re looking for, you can make
changes to its data or delete it. You can also use this page to insert new
movies into the database.

• MovieDetails displays the actors who star in a selected movie and the roles
those actors play. You can add new roles, change the name of a role, and
assign a different actor to a role.

Enterprise Objects and the Movies Database

67

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the database
and objects in the Movies application. Its primary responsibility is to fetch data
from relational databases into enterprise objects. An enterprise object, like any
other object, couples data with methods for operating on that data. In addition,
an enterprise object has properties that map to stored data. Enterprise object
classes typically correspond to database tables. An enterprise object instance
corresponds to a single row or record in a database table.

The Movies application centers around three kinds of enterprise objects:
Movies, MovieRoles, and Talents. A movie has many roles, and talents (or
actors) play those roles.

The Movie, MovieRole, and Talent enterprise objects in the Movies application
correspond to tables in a relational database. For example, the Talent enterprise
object corresponds to the TALENT table in the database, which has
LAST_NAME and FIRST_NAME columns. The Talent enterprise object
class in turn has lastName and firstName instance variables. In an application,
Talent objects are instantiated using the data from a corresponding database row,
as shown in the following figure:

Talent

1028 Federighi Craig

1132 Feldman Corey

TALENT_ID LAST_NAME FIRST_NAME
TALENT

lastName "Federighi"
firstName "Craig"

Chapter 3 Creating a WebObjects Database Application

68

Enterprise Objects and Relationships
Relational databases model not just individual entities, but entities’
relationships to one another. For example, a movie has zero, one, or more roles.
This is modeled in the database by both the MOVIE table and MOVIE_ROLE
table having a MOVIE_ID column. In the MOVIE table, MOVIE_ID is a
primary key, while in MOVIE_ROLE it’s a foreign key.

A primary key is a column or combination of columns whose values are
guaranteed to uniquely identify each row in that table. For example, each row
in the MOVIE table has a different value in the MOVIE_ID column, which
uniquely identifies that row. Two movies could have the same name but still be
distinguished from each other by their MOVIE_IDs.

A foreign key matches the value of a primary key in another table. The purpose
of a foreign key is to identify a relationship from a source table to a destination
table. In the following diagram, notice that the value in the MOVIE_ID column
for both MOVIE_ROLE rows is 501. This matches the value in the
MOVIE_ID column of the “Alien” MOVIE row. In other words, “Ripley”
and “Ash” are both roles in the movie “Alien.”

Suppose you fetch a Movie object. Enterprise Objects Framework takes the
value for the movie’s MOVIE_ID attribute and looks up movie roles with the
corresponding MOVIE_ID foreign key. The framework then assembles a
network of enterprise objects that connects a Movie object with its MovieRole
objects. As shown below, a Movie object has an array of its MovieRoles, and the
MovieRoles each have a Movie.

1028
Ripley 501 501 Alien

1132
Ash 501 703 Toy Story

TALENT_ID MOVIE_ROLE MOVIE_ID MOVIE_ID TITLE

MOVIE_ROLE MOVIE

Designing the Main Page

69

Designing the Main Page

Every WebObjects application has at least one component—usually named
Main—that represents the first page the application displays. In Movies, the
Main component represents the MovieSearch page.

To design the Main component, you’ll use the WebObjects Application Wizard.
The wizard performs all the setup that’s necessary to fetch database records and
display them in a web page. Specifying different wizard options yields different
pages: The MovieSearch page is an example of one of the many different
layouts you can generate with the wizard.

Starting the WebObjects Application Wizard

1. In Project Builder, choose Project New.

2. In the New Project panel, select Webobjectsapplication from the Project
Type pop-up list.

3. Click Browse.

4. Navigate to a directory where you want to create your new project.

movieRoles

movie

movie

NSMutableArray

MovieRole

MovieRoleMovie

Chapter 3 Creating a WebObjects Database Application

70

5. Type Movies in the “File name” field.

6. Click Save.

7. In the New Project panel, click OK.

This starts the WebObjects Application Wizard.

Note: On Mac OS X Server, the file browser and the Project Type pop-up list
both appear on the New Project panel.

8. Choose Wizard under Available Assistance.

With this option, the wizard guides you through the creation of a Main
component for your application. When you finish, you can immediately
build and run your application without performing any additional steps
and without adding any code.

9. Choose Java as the primary language.

10. Click Next.

Specifying a Model File
A model associates database columns with instance variables of objects. It also
specifies relationships between objects in terms of database join criteria. You
typically create model files using the EOModeler application, but the wizard
can create a first cut at a model as a starting point. Later on, you’ll use
EOModeler to modify the model created by the wizard.

Select this option.

Designing the Main Page

71

1. Choose “Create new model.”

2. Click Next.

Choosing an Adaptor
An adaptor is a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate adaptor.
WebObjects provides adaptors for OpenBase Lite, Informix, Oracle, and Sybase
servers. If you’re working on a Windows platform, WebObjects also provides an
ODBC adaptor for use with ODBC-compliant database sources.

1. In the wizard panel, choose the adaptor for your database.

2. Click Next.

A login panel for the selected adaptor opens. Different databases require
different login information, so each database’s login panel looks different.
Shown below are the login panels for the OpenBase Lite, Oracle, and
ODBC adaptors.

Chapter 3 Creating a WebObjects Database Application

72

3. Complete the login panel.

If you are using the preinstalled OpenBase Lite database, click “Browse”,
browse to the /Local/Library/Databases/Movies.db file

Designing the Main Page

73

(\Apple\Local\Library\Databases\Movies.db in Windows NT) and
click Open. The filename now appears in the Database field.

If you are not using OpenBase Lite, specify the connection information
you provided when you created and populated the Movies database. Post-
Installation Instructions provides more information.

4. Click OK.

When you use the wizard to create a model file, the wizard uses the adaptor you
specify to connect to your database. With the information you specified in
the adaptor’s login panel, the adaptor logs in, reads the database’s schema
information, and creates a model. The wizard uses your answers to the questions
in the next several pages to configure that model.

Choosing What to Include in Your Model
In this next wizard page, you can specify the degree to which the wizard
configures your model.

The basic model the wizard creates contains entities, attributes, and relationships.
An entity is the part of the database-to-object mapping that associates a database
table with an enterprise object class. For example, the Movie entity maps rows
from the MOVIE table to Movie objects. Similarly, an attribute associates a
database column with an instance variable. For example, the title attribute in

Chapter 3 Creating a WebObjects Database Application

74

the Movie entity maps the TITLE column of the MOVIE table to the title
instance variable of Movie objects.

A relationship is a link between two entities that’s based on attributes of the
entities. For example, the Movie entity has a relationship to the MovieRole
entity based on the entities’ movieId attributes (although the attributes in this
example have the same name in both entities, they don’t have to). This
relationship makes it possible to find all of a Movie’s MovieRoles.

How complete the basic model is depends on how completely the schema
information is inside your database server. For example, the wizard includes
relationships in your model only if the server’s schema information specifies
foreign key definitions.

Using the options in this page, you can supplement the basic model with
additional information. (Note that the wizard doesn’t modify the underlying
database.)

1. Check the “Assign primary keys to all entities” box.

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row.
Therefore, you must assign a primary key to each entity you use in your
application. The wizard automatically assigns primary keys to the model if
it finds primary key information in the database’s schema information.

Checking this box causes the wizard to prompt you to choose primary keys
that aren’t defined in the database’s schema information. If your database
doesn’t define them, the wizard later prompts you to choose primary keys.

2. Check the “Ask about relationships” box.

Designing the Main Page

75

If there are foreign key definitions in the database’s schema information,
the wizard includes the corresponding relationships in the basic model.
However, a definition in the schema information doesn’t provide enough
information for the wizard to set all of a relationship’s options. Checking
this box causes the wizard to prompt you to provide the additional
information it needs to complete the relationship configurations.

3. Uncheck the “Ask about stored procedures” box.

Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose
which to include in your model. Because the Movies application doesn’t
require the use of any stored procedures, don’t check this box.

4. Uncheck the “Use custom enterprise objects” box.

An entity maps a table to enterprise objects by storing the name of a
database table (MOVIE, for example) and the name of the corresponding
enterprise object class (a Java class, Movie, for example). When deciding
what class to map a table to, you have two choices: EOGenericRecord or a
custom class. EOGenericRecord is a class whose instances store key-value
pairs that correspond to an entity’s properties and the data associated with
each property.

If you don’t check the “Use custom enterprise objects” box, the wizard
maps all your database tables to EOGenericRecord. If you do check this
box, the wizard maps all your database tables to custom classes. The wizard
assumes that each entity is to be represented by a custom class with the
same name. For example, a table named MOVIE has an entity named
Movie, whose corresponding custom class is also named Movie.

Chapter 3 Creating a WebObjects Database Application

76

Use a custom enterprise object class only when you need to add business logic;
otherwise use EOGenericRecord. The Movies application uses
EOGenericRecord for the Movie entity and custom classes for the Talent
and MovieRole entities. Later on, you’ll use EOModeler to specify the
custom classes.

5. Click Next.

Choosing the Tables to Include

1. In the wizard panel, select MOVIE, MOVIE_ROLE, and TALENT in the
Tables browser.

The wizard creates entities only for the tables you select. Since the Movies
application doesn’t interact with any of the other tables (for example,
DIRECTOR, PLOT_SUMMARY, STUDIO, and TALENT_PHOTO),
you don’t need to include them in the model.

2. Click Next.

Specifying Primary Keys
If you are using a database that stores primary key information in its database
server’s schema information, the wizard skips this step. The wizard has already
successfully read primary key information from the schema information and
assigned primary keys to your model.

Command-click (Control-click
in Windows NT) to select more
than one table.

Click to select all the tables.

Click to deselect all the tables.

Designing the Main Page

77

However, if primary key information isn’t specified in your database server’s
schema information (as with Microsoft Access), the wizard now asks you to
specify a primary key for each entity.

1. Select movieId as the primary key for the Movie entity.

2. Click Next.

3. Select both movieId and talentId as the primary key for the MovieRole
entity.

MovieRole’s primary key is compound; that is, it’s composed of more than
one attribute. Use a compound primary key when any single attribute isn’t
sufficient to uniquely identify a row. For MovieRole, the combination of
the movieId and talentId attributes is guaranteed to uniquely identify a
row.

4. Click Next.

5. Select talentId as the primary key for the Talent entity.

6. Click Next.

Specifying Referential Integrity Rules
If you’re using a database that stores foreign key definitions in its database
server’s schema information, the wizard reads them and creates corresponding
relationships in your model. For example, Movie has a to-many relationship to
MovieRole (that is, a Movie has an array of MovieRoles), and Talent has a to-

Command-click (Control-click
in Windows NT) to select more
than one attribute.

Chapter 3 Creating a WebObjects Database Application

78

many relationship to MovieRole. The wizard now asks you to provide additional
information about the relationships so it can further configure them.

If foreign key definitions aren’t specified in your database server’s schema
information (as with Microsoft Access), the wizard hasn’t created any
relationships at all, and it skips this step. You’ll add relationships to your model
using EOModeler later in this tutorial.

In the first relationship configuration page, the wizard asks you about Movie’s
relationship to MovieRole. The name of the relationship is dependent on the
adaptor you’re using.

1. Check the “Movie owns its MovieRole objects” box.

This option specifies that a MovieRole can’t exist without its Movie.
Consequently, when a MovieRole is removed from its Movie’s array of
MovieRoles, the MovieRole is deleted—deleted in memory and deleted in
the database.

2. Choose Cascade.

In this example, the
relationship name is
movieRoleArray, but the
name is dependent on
the adaptor you’re using.

Designing the Main Page

79

This option specifies what to do when the source object (the Movie) is
deleted. The cascade delete rule specifies that when a source object
is deleted, the source’s destination objects should also be deleted—again,
deleted in memory and correspondingly in the database.

3. Click Next.

Now the wizard asks you about Talent’s relationship to MovieRole.

4. Check the “Talent owns its MovieRole objects” box.

5. Choose Deny.

The deny delete rule specifies that if the relationship source (a Talent) has
any destination objects (MovieRoles), then the source object can’t be
deleted.

6. Click Next.

You’re done with the model configuration part of the wizard. The rest of the
wizard pages are to help you configure your application’s user interface.

Choosing an Entity
In this page, the wizard asks you to choose the entity around which the
Main component will be centered. Your Main component centers around
the Movie entity.

1. Select the Movie entity.

2. Click Next.

Chapter 3 Creating a WebObjects Database Application

80

Choosing a Layout
The wizard provides several page layout options for formatting objects fetched
from the database.

1. Choose Selected Record.

2. Choose Matching Records.

Based on your specifications, the wizard shows you a preview of the page it
will generate. To see how the wizard’s preview corresponds with the actual
page the wizard will create, the finished page is shown below.

The wizard generates a title
based on your chosen entity.

Specifies that the page will
have a way to select a
record from a list and a way
to edit that selected record.

Specifies that the page
will have a way to specify
search criteria.

A preview of the page is an approximation of what the finished page
will look like given your choices. (The number of fields and items
isn’t necessarily the exact number that will be in the finished page.)

Designing the Main Page

81

There are three parts to this page: the query part (at the top of the page),
which contains fields in which users provide search criteria; the repetition
part (in the middle of the page), which contains a list of matching records
fetched from the database; and the editing part (at the bottom of the page),
which allows you to make changes to the selected record.

3. In the wizard panel, click Next.

Choosing Attributes to Display
The next step is to choose which of the Movie entity’s attributes to display in
the editing part at the bottom of the page.

1. Move attributes from the Don’t Include list to the Include list.

This is the query part, where
users type search criteria. Clicking
Match fetches movies that meet
the criteria and displays their
titles in the repetition part in the
middle of the page.

This is the repetition part. Clicking
a movie title selects the movie
and displays it in the editing part
at the bottom of the page.

This is the editing part, which
displays information about the
selected movie. You can use this
part to edit or delete the selected
movie, to create a new movie,
and to save your work.

Chapter 3 Creating a WebObjects Database Application

82

The order in which you add the attributes determines the order in which
they appear on the page, so add them in the following order: title ,
category , dateReleased , and revenue .

Don’t add any of the remaining attributes (for example, trailerName ,
studioId , posterName , and language)—they aren’t used in this tutorial.

2. Click Next.

Choosing an Attribute to Display as a Hyperlink
You now need to specify the attribute used in the repetition part of the page to
identify each record. This attribute will be displayed as a hyperlink. Clicking
the hyperlink displays the corresponding record in the detail part of the page.

1. Add the title attribute to the Include browser.

2. Click Next.

Choosing Attributes to Query On
Specify the attributes to display in the query part of the page. The wizard
creates search criteria fields for each of the attributes you choose.

1. Add the title and category attributes to the Include browser.

2. Click Finish.

Double-click an attribute to
move it to the Include list.
OR
Select an attribute...

...and click here to move it.

Designing the Main Page

83

When the wizard finishes, your new project is displayed in Project Builder. The
wizard has produced all the files and resources for a fully functional, one-page
application. All you need to do before running your Movies application is
build it.

Running Movies
Build and run the application as you did in the previous tutorials.

Experiment with the application by entering different search criteria and
inserting, updating, and deleting movies. For example:

1. Search for all movies beginning with the letter “A”.

Type A in the title field, and click Match.

2. Change the attributes of one of the movies and click “Save to database.”

Type matching criteria. A
database string matches if it
begins with the string in the
text field. For example,
strings match “The” if they
start with the string “The”.

Click a movie to select it and
display its information below.

Click here to delete the
selected movie.

Click here to fetch and
return matching movies.

Use these text fields to edit
the information about a movie.
Click here to create a
new, empty movie.
Click here to save your
work in the database (add
the new movies you
inserted, remove the movies
you deleted, and save
changes you made to
existing movies).

Chapter 3 Creating a WebObjects Database Application

84

When you’re done, perform another search to verify that your change was
saved.

3. Try entering dates with different formats.

In the same movie, try changing the date released using different formats
(for example, “6/7/97,” “June 7, 1997,” and “today”). Save each time after
changing the date.

4. Create a new movie.

Click Insert/New to create a new, empty movie. Fill out all the fields, and
click “Save to database.” Search for your movie to verify that it was saved
successfully.

5. Delete your movie.

With your movie selected, click Delete and then click “Save to database.”
When you’re done, search for the movie again to verify that it’s been
deleted.

Examining Your Project

Whenever you create a new project, Project Builder populates the project with
ready-made files and directories. What it includes depends on the choices you
make in the wizard, so this project has a set of files different from those of the
GuestBook project.

Like GuestBook, the Movies project contains a Main component (Main.wo). It
also includes some files that the GuestBook doesn’t have: classes
(Application.java , Session.java , DirectAction.java , and Main.java), a
model file, and images used by the Main component.

In Project Builder, navigate to the Movie project’s Resources category. This is
where the model, named Movies.eomodeld , is located. Later in this tutorial
you’ll use EOModeler to open the model and enhance it.

Examining Your Project

85

Navigate to the Web Server Resources category. This is where your project’s
images are located: DBWizardUpdate.gif , DBWizardDelete.gif , and
DBWizardInsert.gif , for the “Save to database,” “Delete”, and “Insert/New”
buttons, respectively.

The biggest difference between the GuestBook and Movies projects is their
Main components. Whereas the Main component you created for the
GuestBook project was empty, the Main component for the Movies project
contains a fully functional user interface. Also, the Main.java class already
contains code that supplies the component with behavior. In the next sections,
you’ll examine the Movies project’s Main.wo component and its Main.java class.

Examining the Variables

1. Double-click Main.wo in Project Builder’s Web Components category to
open the Main component in WebObjects Builder.

There are four variables in the object browser: the application and
session variables that are available in all components and two others,
movie and movieDisplayGroup .

The movie variable is an enterprise object that represents a row fetched
from the MOVIE table. movieDisplayGroup is a display group—an object
that interacts with a database, indirectly through classes in the Enterprise
Objects Framework. Display groups are used to fetch, insert, update, and
delete enterprise objects that are associated with a single entity. The entity
of movieDisplayGroup is Movie, which you specified in the wizard’s
“Choose an entity” page.

Chapter 3 Creating a WebObjects Database Application

86

2. In Project Builder, look at the class file Main.java to see how movie is
declared.

The movie declaration (shown below) declares movie to be an
EOEnterpriseObject—a Java interface that describes the general behavior
that all enterprise objects must have.

/** @TypeInfo Movie */

protected EOEnterpriseObject movie;

At runtime, movie is a EOGenericRecord object. Recall that
EOGenericRecord is used to represent enterprise objects unless you
specify a custom class. Since you didn’t check the “Use custom enterprise
objects” box in the wizard’s “Choose what to include in your model” page,
your application uses EOGenericRecord for all its entities.

The comment (/** @TypeInfo Movie */) is used by WebObjects Builder
to identify movie ’s entity (Movie). Knowing the entity allows WebObjects
Builder to display movie ’s attributes (category , dateReleased , and
so on). You can see movie ’s attributes if you select the movie variable in
the WebObjects Builder’s object browser.

3. In Project Builder, examine the movieDisplayGroup declaration in Main.java .

The declaration (shown below) declares movieDisplayGroup to be a
WODisplayGroup.

protected WODisplayGroup movieDisplayGroup;

Also note the comment explaining how movieDisplayGroup is initialized.
The Main.java class doesn’t have any code to create and initialize the
display group. Instead, it’s instantiated from an archive file, Main.woo ,
that’s stored in the Main.wo component. You shouldn’t edit woo files by
hand; they’re maintained by WebObjects Builder. The woo file archiving
mechanism is described in more detail later in “Specifying a Sort Order”
(page 91).

Examining the Bindings
Now examine the bindings of your Main component in WebObjects Builder.

Examining Your Project

87

Remember that you can use WebObjects Builder’s Inspector to see the bindings
for an element’s attributes. Simply select the element to inspect, and click the

 button to open the Inspector.

Bindings in the Query Part
In the query part of the component, movieDisplayGroup.queryMatch.title is
bound to the title text field. There are similar bindings to the category text
fields. The queryMatch bindings allow users to specify search criteria to use
when movieDisplayGroup next fetches movies. The Match button is bound to
movieDisplayGroup.qualifyDataSource , which actually performs the fetch.

For example, to display all comedies, a user types “Comedy” in the Category
text field, and clicks the Match button. movieDisplayGroup then refetches,
selecting only movies whose category values are set to Comedy.

Everything within this gray
box is in a form.

This is a repetition.

This gray box identifies
another form.

This text field appears shaded
because it's selected.

This text field is in a table cell.

This is a WOImageButton.

This is a table with four rows
and two columns.

Chapter 3 Creating a WebObjects Database Application

88

Bindings in the Repetition Part
In the repetition part of the component where matching movies are listed,
movieDisplayGroup.displayedObjects is bound to a repetition. More
specifically, displayedObjects is bound to the repetition’s list attribute,
providing an array of movies for the repetition to iterate over.

The movie variable is bound to the repetition’s item attribute to hold each
movie in turn, and movie.title is bound to the string element inside the
repetition. These bindings produce a list of movie titles.

The repetition’s string element is enclosed in a hyperlink. By clicking a movie
title, the user selects the corresponding movie.

1. Inspect the hyperlink.

Its action attribute is bound to the action method selectObject .

2. Look in the Main.java class to see how the selectObject method is
implemented.

The method (shown below) simply sets the selected object of
movieDisplayGroup to the movie the user clicked.

public void selectObject() {
movieDisplayGroup.selectObject(movie);
}

Displays the binding for
the repetition’s list attribute.

Displays the binding for
the repetition’s item attribute.

Displays the binding for
the string’s value attribute.

Examining Your Project

89

Bindings in the Editing Part
The text fields in the editing part are all bound to attributes of the
movieDisplayGroup object’s selectedObject —the movie on which the user
clicked. Typing new values into these fields updates the Movie enterprise
object. To actually save the updated values to the database, the user must click
the “Save to database” button.

1. Inspect the middle image button.

Its action attribute is bound to the action method saveChanges .

2. Look in the Main.java class to see how saveChanges is implemented.

The method (shown below with comments omitted) simply saves any
changes that have been made to movieDisplayGroup ’s objects to the
database.

public void saveChanges() throws Exception {

try {

this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {

System.err.println("Cannot save changes ");

throw exception;

}

}

this.session() returns a Session object that represents a connection to the
application by a single user. A Session object provides access to an
EOEditingContext object. The expression

this.session().defaultEditingContext().saveChanges();

Chapter 3 Creating a WebObjects Database Application

90

sends a saveChanges message to the Session’s defaultEditingContext .
This default EOEditingContext object manages graphs of objects fetched
from the database, and all changes to the database are saved through it. For
more information, see the EOEditingContext class specification in the
Enterprise Objects Framework Reference.

An EOEditingContext’s saveChanges method uses other Enterprise
Objects Framework objects to analyze its network of enterprise objects
(Movie objects referenced by the application) for changes and then to
perform a set of corresponding operations in the database. If an error occurs
during this process, saveChanges throws an exception. The Main.java
saveChanges method simply raises the exception, having the effect of
returning a diagnostic page. You could return an error page that explains
the reason for the save failure instead, but the application in this tutorial
uses the default behavior.

3. Inspect the first and third image buttons to see what their action attributes
are bound to.

They are bound to the movieDisplayGroup.insert and
movieDisplayGroup.delete methods respectively. The WODisplayGroup
insert method creates a new enterprise object, then inserts it into the
display group’s list of objects just past the current selection. The
WODisplayGroup delete method deletes the display group’s selected
object. These changes happen only in memory—not in the database. To
actually insert a new row in the database (or delete a row), the user must
click the “Save to database” button, invoking saveChanges on the session’s
EOEditingContext. The editing context analyzes the enterprise objects in
memory; determines if any objects have been added, updated, or deleted;
and then executes database operations to sync the database with the
application.

Refining Main.wo

You may have noticed that your application doesn’t list fetched movies in any
particular order. Also, when you insert a new movie, it appears in the list of
movies as a blank line.

Refining Main.wo

91

In this section you’ll tidy up the user interface to fix these things and a few
others. Specifically, you’ll:

• Configure movieDisplayGroup to sort the movies it displays.
• Assign default values to new Movie objects.
• Change the way that dates and numbers are displayed.

You can also put the query part of the page in a table and capitalize
Main.wo ’s text field labels—for example, use “Title” instead of “title”
and “Date Released” instead of “dateReleased.”

Specifying a Sort Order
You can change your application to sort movies alphabetically without writing
any code. Display groups manage sorting behavior, and WebObjects Builder
provides a Display Group Options panel for configuring this and other
characteristics of display groups.

1. Double-click the movieDisplayGroup variable in the object browser.

A newly inserted movie doesn’t
have a title set, so it appears in
the list of movies as a blank line.

Chapter 3 Creating a WebObjects Database Application

92

The Display Group Options panel opens for configuring
movieDisplayGroup .

2. Select the title attribute in the Sorting pop-up list.

3. Select Ascending.

4. Click OK.

WebObjects Builder stores your settings in an archive that specifies how to
create and configure movieDisplayGroup at runtime. The archive is stored inside
your Main component in a file named Main.woo . You can’t see the file from
Project Builder because you’re not meant to edit it directly, but WebObjects
Builder’s object browser shows you which of your component’s variables are
initialized from the archive (or woo file) so you don’t have to view its contents
directly.

Choose an attribute to sort on.

Select this option to sort from ‘A’ to ‘Z’.

Refining Main.wo

93

Specifying Default Values for New Enterprise Objects
When new enterprise objects are created in your application, it’s common to
assign default values to some of their properties. For example, in your Movies
application it makes sense to assign a default value for the title attribute so a
new movie won’t be displayed in the list of movies as a blank line.

You could write an action method for the Insert/New button instead of binding
it directly to the display group insert action method. In the custom action, you
would create a new Movie object, assign default values to it, and then insert the
new object into the display group. However, there are two additional ways to
specify default values for new enterprise objects, without making explicit
assignments:

• Assign default values in the enterprise object class.
• Specify default values using a display group.

For a particular situation, one of the approaches is usually better than the other.
If the default values are intrinsic to the enterprise object, assign them in the
enterprise object class. For example, consider a Member class with a
memberSince property. It’s likely that you would automatically assign the
current date to memberSince instead of forcing a user to supply a value. You’ll
see how to use this technique in “Adding Behavior to Your Enterprise Objects”
(page 123).

On the other hand, if the default values are specific to an application or to a
particular user interface, explicitly initialize the object in code or specify the
default values using a display group. In the Movies application, the need for
default values is motivated by Main’s user interface: you need to provide a
default value so users can tell when a newly inserted record is selected. In

An image in this column means that
the variable can be initialized from the
component’s archive.

A means that initialization parameters are
already set. The variable is created and
initialized from the archive as a part of the
component’s initialization.

A means that no initialization parameters
have been set, and so the variable isn’t
automatically created. Double-click the
variable to configure it and add it to the archive.

Chapter 3 Creating a WebObjects Database Application

94

another situation, you might not want a new movie to have a default title; you
might instead want a new movie’s title to be blank.

The Movies application specifies default values for newly created Movie objects
using the display group, movieDisplayGroup .

1. Open Main.java in Project Builder.

2. Add the following constructor:

public Main() {

super();

NSMutableDictionary defaultValues = new NSMutableDictionary();

defaultValues.setObjectForKey("New Movie Title", "title");

movieDisplayGroup.setInsertedObjectDefaultValues(defaultValues);

}

This method assigns the value “New Movie Title” as the default value for
a new movie’s title attribute. When movieDisplayGroup inserts a new
movie (as it does when a user clicks the Insert/New button), it creates a
new movie and assigns this default value to that movie.

Setting a Date Format
To change the way that dates are displayed, you assign a date format to the
element that displays the dates.

1. Using WebObjects Builder, inspect the dateReleased text field, which is
near the bottom of the Main component window.

Notice that the text field has a dateformat attribute that is bound to the
string “%m/%d/%y”. This binding tells the text field that it’s displaying
dates and describes how to format them. The %m conversion specifier
stands for month as a decimal number, %d stands for day of the month, and
%y stands for year without century.

2. Click the combo box on the right side of the binding column. Choose ”%d

%B %Y”.

This date format displays dates as 14 Jan 2005. The %b conversion
specifier stands for abbreviated month name, and %Y stands for year with
century. You can create your own date formats with any of the conversion
specifiers defined for dates. For more information, see the

Refining Main.wo

95

NSGregorianDate class specification in the Foundation Framework
Reference.

Setting a Number Format
In addition to a dateformat attribute, text field elements also have a
numberformat attribute.

1. Inspect the revenue text field.

The revenue text field’s numberformat attribute has no binding.

2. Using the combo box, change the text field’s numberformat binding value to
"$###,##0" .

Using this number format, the Movies application formats the number
1750000 as $1,750,000. For more information on creating number formats,
see the NSNumberFormatter class specification in the Foundation
Framework Reference.

Optional Exercise
You can tidy up the user interface even further by putting the query part of the
page in a table to match the editing part of the page. Also, you should consider
capitalizing Main.wo ’s text field labels.

To put the query part of the page in a table, follow these steps:

1. Put the cursor inside the form element before the “title” text field (in the
Query By Example segment).

2. Click the button in the toolbar to add a table.

Click here to choose date format

Chapter 3 Creating a WebObjects Database Application

96

The table panel appears.

3. Enter 2 in the Rows field and 2 in the Columns field.

4. Enter 0 for in the Border field to remove the appearance of a border.

5. Uncheck “First row cells are header cells.” The first row text will not appear
in bold.

6. Click OK. The table appears in your page.

7. Type the labels Title: and Category: in the cells in the first column.

The table doesn’t resize to accommodate new cell content until you’re
done typing; that is, until you move the cursor out of the edited cell.

8. Cut and paste the query text fields into their corresponding table cells.

Just click a text field to select it. When a text field is selected, it appears
shaded with a box around it. Choose Cut from the Edit menu, double-click
the cell to select its text, and choose Paste from the Edit menu.

9. Delete the old query field labels.

When you’re done, the query part should look like this:

Enter the number
of rows here.

Enter hte number
of columns here.

Enter the border
width here.

Uncheck this
checkbox.

Adding the MovieDetails Page

97

Now edit the text labels in the editing part of the page and put any other
finishing touches on the page that you want. The finished component might
look something like this:

Adding the MovieDetails Page

The MovieDetails page shows you the detailed information about a movie
you select in the Main page. For this to work, the Main page has to tell the
MovieDetails page which movie the user selected. The MovieDetails page
keeps track of the selected movie in its own instance variable. In this section,
you’ll:

• Create a new component whose interface you’ll create yourself.
• Assign Main’s selected movie to a variable in the MovieDetails page.
• Create a way to navigate from Main to MovieDetails and back.

Chapter 3 Creating a WebObjects Database Application

98

In the sections following this one, you’ll extend the MovieDetails page to
display movie roles and the starring actors.

Creating the MovieDetails Component

1. In Project Builder, choose File New in Project.

2. In the New File panel, click the Web Components suitcase.

3. Type MovieDetails in the Name field.

4. Click OK.

5. In the wizard panel, choose None for available assistance.

6. Choose Java as the component language.

7. Click Finish.

8. Open the new component, MovieDetails.wo , in WebObjects Builder.

Storing the Selected Movie
Now, in the MovieDetails component, create a variable that holds the
application’s selected movie. Later on, you’ll add code to the Main.java class
that assigns Main’s selected movie to this variable.

1. Choose Add Key from the pull-down list.

Adding the MovieDetails Page

99

2. Name the variable selectedMovie .

3. Set the variable’s type to Movie.

Movie isn’t actually a class; it’s an entity. It’s listed in the combo box as a
type along with entries for all the entities in your model. When you choose
an entity as the type for your variable, WebObjects Builder recognizes that
the variable is an enterprise object. Using information in the model,
WebObjects Builder can determine the entity’s corresponding enterprise
object class and the properties of that class.

4. Check the “An instance variable” box.

5. Check the “A method returning the value” box.

6. Check the “A method setting the value” box.

7. Click Add.

Navigating from Main to MovieDetails
To get to the MovieDetails page from the Main page, users use a hyperlink.
Clicking the hyperlink should set MovieDetail’s selectedMovie variable and
then open the MovieDetails page.

1. Add a hyperlink at the bottom of the Main component.

Type the variable name here.

Choose Movie.

Select this.

Check each of these boxes.

Click here when you’re done.

Chapter 3 Creating a WebObjects Database Application

100

2. Replace the text “Hyperlink” with “Movie Details.”

3. Choose Add Action from the pull-down list.

4. In the Add Action panel, type showDetails in the Name field.

5. Select MovieDetails from the “Page returned” combo box.

6. Click Add.

7. Bind the showDetails action to the hyperlink’s action attribute.

8. In Project Builder, modify the showDetails action in Main.java to look like
the following:

public MovieDetails showDetails() {

MovieDetails nextPage =

(MovieDetails)pageWithName("MovieDetails");

// Initialize your component here

EOEnterpriseObject selection =

(EOEnterpriseObject)movieDisplayGroup.selectedObject();

nextPage.setSelectedMovie(selection);

return nextPage;

}

This method creates the MovieDetails page and then invokes its
setSelectedMovie method with the movie that’s selected in the Main
page. The display group method selectedObject returns its selected
object, which, in the Main component, is set when a user clicks a movie
title hyperlink.

Add the hyperlink below
the horizontal rule.

Adding the MovieDetails Page

101

Designing MovieDetails’ User Interface
Now lay out the user interface for MovieDetails. When you’re done, your
component should look like the following:

1. Create a top-level heading with the text Movie Details .

Recall that to create a top-level heading, you type the text of the heading,
select the text, click the button to add a heading element around the
text, and then use the Inspector to set the heading’s level, as you did in
“Using the Inspector” (page 24).

2. Below the heading, add a string element.

3. With the string element selected, add a heading.

This adds a new level-1 heading element around the string. The
MovieDetails page will show the title of the selected movie in this
heading.

4. Click <H1> in the path view. The Inspector now displays the Heading Level.

5. Click 3 in the Heading Inspector.

6. Add labels and string elements to display the selected movie’s category, date
released, and revenue.

7. Bold the labels.

8. Bind selectedMovie .title to the value attribute of the first string element
(the one in the heading).

9. Similarly, create bindings for the Category, Date Released, and Revenue
strings.

10. At the bottom of the page, add a horizontal rule.

Chapter 3 Creating a WebObjects Database Application

102

Adding Date and Number Formats
String elements have dateformat and numberformat attributes just like text
field elements. Create bindings for the Date Released and Revenue strings so
that dateReleased and revenue values are displayed the way they are in the
Main page.

1. Add the date format "%d %b %Y" to the Date Released string. You can select
the format from the combo box in the Inspector’s binding column.

2. Add the number format "$###,##0" to the Revenue string. You can select
the format from the combo box in the Inspector’s binding column.

Navigating from MovieDetails to Main
Now add a hyperlink to the MovieDetails page so users can navigate back to the
Main page from MovieDetails.

1. Add a hyperlink to the bottom of the page.

2. Label it Movie Search .

3. Bind the hyperlink’s pageName attribute to the text (including the quotes)
"Main" . You can select “Main” from the combo box in the inspector’s
binding column.

Recall that the pageName attribute is a mechanism for navigating to
another page without writing code. By setting the attribute to “Main”,
you’re telling the application to open the MovieSearch page when the
hyperlink is clicked.

Running Movies
Be sure that all your project’s files are saved (including the components in
WebObjects Builder), and build and run your application. In the Main page,
select a movie and click the Movie Details link. The MovieDetails page should
display all the movie’s information.

Add the hyperlink here.

Refining Your Model

103

Refining Your Model

The model created for you by the wizard is just a starting point. For most
applications, you need to do some additional work to your model to make it
useful in your application. To refine your model so that it can be used in the
Movies application, you’ll ultimately need to do all of the following:

• Remove primary and foreign keys as class properties.

• Add relationships to your model if the wizard didn’t have enough
information to add them for you.

• Configure your model’s relationships in the Advanced Relationship
Inspector.

• Generate source files for the Talent class.

These steps are described in more detail throughout the rest of this tutorial.

Opening Your Model

1. In Project Builder, click the Resources category.

2. Select Movies.eomodeld .

3. Double-click the model icon.

Project Builder opens your model file in EOModeler, launching EOModeler
first if it isn’t already running. EOModeler displays your model in the Model
Editor. It lists the entities for the tables you specified in the wizard—Movie,
MovieRole, and Talent.

Double-click to
open the model.

Chapter 3 Creating a WebObjects Database Application

104

Removing Foreign Keys as Class Properties
By default, the wizard makes all of an entity’s attributes, except primary keys,
class properties. When an attribute is a class property, it means that the property
is a part of your enterprise object, usually as an instance variable.

You should mark as class properties only those attributes whose values are
meaningful in the objects that are created when you fetch from the database.
Attributes that are essentially database artifacts, such as primary and foreign
keys, shouldn’t be marked as class properties unless the key has meaning to the
user and must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse effect on
how Enterprise Objects Framework manages enterprise objects in your
application.

1. In the left frame (or tree view), click the Movie entity.

The right frame switches from a view of the entities in the model to a view
of Movie’s attributes.

A symbol in the first column means that the attribute is a primary key
for the selected entity. A symbol in the second column means that the
attribute is a class property.

2. Click in the Class Property column to remove the symbol for the
studioId attribute, which is a foreign key. The wizard didn’t make movieId a
class property because it is a primary key.

Refining Your Model

105

Adding Relationships to Your Model
The Movies application uses two pairs of inverse relationships. The first pair
defines the relationship between the Movie and MovieRole entities, while the
second pair defines the relationship between the MovieRole and Talent
entities. An Enterprise Objects Framework relationship is directed; that is, a
relationship has a source and a destination. Generally models define a
relationship for each direction.

1. Select the Movie entity.

The right frame of the Model Editor shows the Movie’s relationships as
well as its attributes.

Your model’s Movie entity might have a different name than the
toMovieRole relationship shown above. That’s because the wizard created
your relationship, and the relationship’s name is dependent on the adaptor
the wizard used. Adaptors don’t all have the same naming convention for
to-many relationships. For example, the Oracle adaptor names Movie’s
relationship movieRoleArray instead of toMovieRole .

Click an entity in this
frame to select the entity.

Click in an attribute’s
Class Property column
to remove it as a
class property.

The selected entity’s
relationships are
displayed here.

Chapter 3 Creating a WebObjects Database Application

106

If your Movie entity doesn’t have a toMovieRole relationship, it means
that the database server’s schema information for your database didn’t have
enough information for the wizard to create them. You need to create them
by hand now. The next several steps explain how.

2. Choose Property Add Relationship.

A new relationship named “Relationship” is added in the table view at the
bottom of the Model Editor. The new relationship is already selected.

3. With the relationship selected in the right frame of the Model Editor, click
the button (in the toolbar) to inspect the relationship.

4. In the Inspector, select the To Many option.

5. Select MovieRole as the destination entity.

6. Select movieId in the Source Attributes list.

7. Select movieId in the Destination Attributes list.

8. Click Connect.

Don’t change the relationship’s name,
because EOModeler updates the name for
you automatically when you connect the
Destination and Join properties.

First select whether the relationship
is to-one or to-many.

Then select a destination entity.

Select a source attribute...

...and a matching destination attribute.

When you’re done, click here.

Refining Your Model

107

EOModeler automatically renames the relationship based on the name of
the destination entity. For example, after connecting a to-many
relationship from Movie to MovieRole, EOModeler names the relationship
“toMovieRole.” To-one relationships are named with the singular form of
the destination entity’s name. For example, EOModeler names the inverse
to-one relationship (from MovieRole to Movie) “toMovie.”

If the wizard created your relationship and used a name other than
“toMovieRole,” consider renaming the relationship. The rest of this
tutorial assumes that your relationships are named using EOModeler’s
naming convention.

9. Repeat the steps above to create the following relationships (if they do not
already exist):

A to-one relationship named “toMovie” in the MovieRole entity where:

• The destination entity is Movie.
• The source attribute is movieId .
• The destination attribute is movieId .

A to-one relationship named “toTalent” in the MovieRole entity where:

• The destination entity is Talent.
• The source attribute is talentId .
• The destination attribute is talentId .

A to-many relationship named “toMovieRole” in the Talent entity where:

• The destination entity is MovieRole.
• The source attribute is talentId .
• The destination attribute is talentId .

10. Choose in the toolbar pop-up list to switch the Model Editor to Diagram
View.

Chapter 3 Creating a WebObjects Database Application

108

At this point your model has all the relationships it needs. The Diagram View
gives you an overview of the entities in the model and their relationships to
other entities.

You can also use the Diagram View to edit your model. Double-click an attribute
or relationship to change its name. To create a relationship and its inverse,
Control-drag from the relationship’s source attribute to its destination attribute.

Using the Advanced Relationship Inspector
There are several additional settings you use to configure a relationship’s
referential integrity rules. For these, use the Advanced Relationship Inspector.

1. Inspect Movie’s toMovieRole relationship.

2. In the Inspector, click the Advanced Relationship button.

Use this pop-up list to
switch to a different view.

Switches to Table View.

Switches to Diagram View.

Switches to Browser View.

Refining Your Model

109

3. Ensure that the delete rule is set to Cascade.

If the wizard created relationships for you, the relationship’s delete rule
should already be set to Cascade. You specified this in the wizard. If you
created your relationships by hand, you’ll have to set the delete rule
yourself.

4. Ensure that the Owns Destination box is checked.

As with the delete rule, if the wizard created relationships for you, the
relationship’s Owns Destination box should already be checked. If you
created your relationships by hand, you’ll have to check this box yourself.

5. Check the Propagate Primary Key box.

A relationship that propagates its primary key propagates its key value to
newly inserted objects in the destination of the relationship. In this case,
checking the Propagate Primary Key box means that if you create a new

Advanced Relationship button.

This should be selected.

This box should be checked.

Chapter 3 Creating a WebObjects Database Application

110

MovieRole and add it to a Movie’s list of MovieRoles, the Movie object
automatically assigns its movieId value as the value for the new
MovieRole’s movieId property.

This option is usually used with relationships that own their destination.
For more information on propagating primary keys, see “Where Do
Primary Keys Come From?” (page 110).

6. Ensure that Talent’s toMovieRole relationship has its delete rule set to Deny.

7. Ensure that Talent’s toMovieRole relationship owns its destination.

8. Set Talent’s toMovieRole relationship to propagate its primary key.

9. Choose Model Save (File on Windows NT) to save your model.

Where Do Primary Keys Come From?
Enterprise Objects Framework uses primary keys to identify enterprise objects
in memory, and it works best if you never change an enterprise object’s primary
key from its initial value. Consequently, applications usually generate and assign
primary key values automatically instead of having users provide them. For
example, the Movies application assigns a movieId value to a new movie when
it’s created, and the value never changes afterward. The Movies interface
doesn’t even display movieId values because they aren’t meaningful to users of
the application.

Enterprise Objects Framework provides several mechanisms for generating and
assigning unique values to primary key attributes. By default, Enterprise
Objects Framework uses a native database mechanism to assign primary key
values. See the chapter “Answers to Common Design Questions” in the
Enterprise Objects Framework Developer’s Guide for more information.

The Movies application generates primary key values for Movie and Talent
objects using the default mechanism, but MovieRole is a special case because:

• MovieRole’s primary key is compound. The default behavior of generating
a primary key value using a native database mechanism works only on
simple (not compound) primary keys.

Setting Up a Master-Detail Configuration

111

• A MovieRole’s primary key attributes, movieId and talentId , must match
the corresponding attributes in the MovieRole’s Movie and Talent objects.
The default mechanism generates new, unique values.

Instead of the default mechanism, Enterprise Objects Framework uses primary
key propagation to assign primary keys to MovieRole objects. By configuring
the Movie’s toMovieRole relationship to propagate primary key, the
Framework knows to assign a new MovieRole’s movieId to the same value as
the movieId of the MovieRole’s Movie. Similarly, a new MovieRole’s talentId
is set to the same value as the talentId of the MovieRole’s Talent.

Setting Up a Master-Detail Configuration

So far your Movies application fetches, inserts, updates, and deletes only Movie
objects. Considered alone, a Movie object isn’t as interesting as it is when it’s
related to actors and roles. In this section, you’ll add MovieRole and Talent
objects to the Movies application.

The relationships defined in your model now come into play. Using Movie’s
toMovieRole relationship, you can display the MovieRoles for the selected
Movie. In this type of configuration, called master-detail, a master display group
holds enterprise objects for the source of a relationship, while a detail display
group holds records for the destination. As individual records are selected in the
master display group, the detail display group gets a new set of enterprise
objects to correspond to the selection in the master.

In the Movies application, the master-detail configuration is built around
Movie’s toMovieRole relationship. The configuration is split across two pages
in the application. The master, movieDisplayGroup , is in the Main
component, while the detail is in MovieDetails.

In this section, you’ll:

• Create and configure the detail display group.
• Extend the MovieDetails user interface to hold MovieRole and Talent

information.

Creating a Detail Display Group
You can create a detail display group several different ways. You can write a
declaration for it in Project Builder, or you can use WebObjects Builder’s Add

Chapter 3 Creating a WebObjects Database Application

112

Variable/Method command. But the easiest way to create a detail display group
is by dragging a relationship from EOModeler into your component, as
described below.

1. In EOModeler’s tree view, expand the Movie entity.

2. Drag the Movie’s toMovieRole relationship from the tree view into the
MovieDetails component’s object browser.

Click here to expand or
contract an entity.

 means that the entity
is already expanded.
Click the dash to contract
the entity.

 means that the entity
can be expanded to
display its relationships.
Click the plus to expand
the entity.

If an entity has neither
a dash nor a plus, the
entity has no relationships,
and therefore can’t be
expanded.

Setting Up a Master-Detail Configuration

113

An Add Display Group panel opens.

3. In the Add Display Group panel, change the name to
movieRoleDisplayGroup .

4. Click Add and Configure.

The Display Group Options panel opens so you can immediately configure
the newly created display group.

Ensure that the “Has detail data source” box is checked. This means that
movieRoleDisplayGroup gets its objects from a EODetailDataSource
object.

WebObjects Builder assigns
a default name based on the
relationship name.

Identifies this display group as
a detail display group.

You can’t set the entity of a detail
display group. The entity is computed
from the Master/Detail settings.

Sort MovieRole objects by roleName...

...from ‘A’ to ‘Z’.

Check this box so the display group
automatically fetches its objects.

Chapter 3 Creating a WebObjects Database Application

114

All display groups use some kind of data source to fetch their objects. A data
source is an object that exists primarily as a simple means for a
WODisplayGroup to access a store of objects. It’s through a data source
that a display group fetches, inserts, updates, and deletes database records.

An EODetailDataSource is a subclass of EODataSource that’s intended for
use in master-detail configurations. A detail data source keeps track of a
master object and a detail key. The master object is typically the selected
object in a master display group, but a master display group isn’t strictly
required. The detail key is the name of the relationship on which the
master-detail configuration is based. When a detail display group asks its
data source to fetch, the EODetailDataSource simply gets the destination
objects from the master object as follows:

detailObjects = masterObject.valueForKey(detailKey);

In your master-detail configuration, the master object is the selected
Movie, and the detail key is toMovieRole . When movieRoleDisplayGroup
asks its data source for its MovieRole objects, the detail WODisplayGroup
returns the objects in the selected Movie’s toMovieRole array of
MovieRoles. Similarly, when MovieRole objects are inserted or deleted in
movieRoleDisplayGroup , they are added and removed from the master
object’s toMovieRole array.

5. Set the display group to sort alphabetically by roleName .

6. Check the “Fetches on load” box.

When “Fetches on load” is selected, the display group fetches its objects as
soon as the component is loaded into the application. You want this feature
in the MovieDetails page so that users are immediately presented with the
selected movie’s roles. In contrast, the Main page does not fetch on load; it
shouldn’t present a list of movies until the user has entered search criteria
and clicked Match.

7. Click OK.

8. In Project Builder, modify MovieDetail’s setSelectedMovie method to look
like the following:

public void setSelectedMovie(EOEnterpriseObject newSelectedMovie) {

selectedMovie = newSelectedMovie;

movieRoleDisplayGroup.setMasterObject(newSelectedMovie);

}

Setting Up a Master-Detail Configuration

115

With this addition, whenever a user navigates to the MovieDetails page,
setSelectedMovie updates the master object of the movieRoleDisplayGroup
so it displays the corresponding MovieRole objects.

Adding a Repetition
Now you’ll extend the user interface of the MovieDetails component to display
the actors in the selected movie. Because different movies have different
numbers of roles, you need the dynamism of a repetition element. When you’re
done adding the repetition, your component should look like this:

1. In the MovieDetails component window, add the bolded text Starring:
beneath the Revenue line.

2. Below the Starring label, add a repetition.

3. Replace the “Repetition” text with three string elements.

The strings should all be on the same line, so don’t type carriage returns
between them.

4. Type a space between the first two strings and the word “ as ” (with a space
before and after) between the last two.

5. Add a carriage return after the last string.

Configuring a Repetition
Now configure MovieDetails’ repetition in a way similar to the way Main’s
repetition is configured. First you need to create a new variable to bind to the
repetition’s item attribute.

1. Use the Add Key command to add a new variable, movieRole, whose type
is set to the MovieRole entity.

Chapter 3 Creating a WebObjects Database Application

116

Don’t create set and get methods for movieRole . You won’t need accessor
methods because the variable is used only within the MovieDetails
component and shouldn’t be visible to any other classes.

2. Bind movieRoleDisplayGroup .displayedObjects to the repetition’s list
attribute.

3. Bind movieRole to the repetition’s item attribute.

4. Bind movieRole .toTalent .firstName to the value attribute of the first
string in the repetition.

5. Bind movieRole .toTalent .lastName to the value attribute of the second
string.

6. Bind movieRole .roleName to the value attribute of the last string.

When you’re done, the repetition bindings should look like the following:

Running Movies
Be sure that all your project’s files are saved (including the components in
WebObjects Builder and the model in EOModeler), and build and run your
application. In the Main page, select a movie and click the Movie Details link.
Now, in addition to displaying all the movie’s information, the Movie Details
page should also display the movie’s roles and actors.

Updating Objects in the Detail Display Group

In this section, you’ll add the ability to insert, update, and delete movie roles.
The MovieDetails page will then look something like this:

Updating Objects in the Detail Display Group

117

Many of the features in this page are similar to features in the Main page, but in
this section you perform by hand the tasks the wizard performed for you to
create Main. Already you’ve learned how to create a WODisplayGroup variable
and how to bind it to dynamic elements. In this section you’ll:

• Write code to update a display group’s selected object.
• Create and configure a browser.
• Create a custom enterprise object class.
• Use display group actions to configure image buttons to insert, update, and

delete.

Click a role to select it and display its
information in the editing part below.

Use the browser to choose
an actor for the selected role.

Edit the name of the selected role.

Click here to create a new, empty role.

Click here to delete the selected role.

Click here to save your work in the
database (add the new roles you inserted,
remove the roles you deleted, and save
changes you made to existing roles).

Chapter 3 Creating a WebObjects Database Application

118

Managing a WODisplayGroup’s Selection
Remember how clicking a movie title in the Main page selects the
corresponding Movie object in movieDisplayGroup . MovieDetails has a
similar behavior for selecting a MovieRole object in movieRoleDisplayGroup .

First you need to add a hyperlink element around the repetition’s role name
string so that users can select a particular MovieRole. When a user clicks one of
the movie role hyperlinks, the application should select the corresponding
MovieRole object in the movieRoleDisplayGroup .

1. Select the repetition’s role name string element.

2. Click the Add WOHyperlink button in the toolbar to add a hyperlink
element around the string.

Now you need to create an action method to invoke when the hyperlink is
clicked.

3. Use the Add Action command in the pull-down list to add an action named
selectObject , returning null .

4. Bind the selectObject method to the hyperlink’s action attribute.

5. Now write the code for selectObject in MovieDetail.java . Modify the
selectObject action to look like the following:

public WOComponent selectObject() {

movieRoleDisplayGroup.selectObject(movieRole);

return null;

}

Updating Objects in the Detail Display Group

119

Adding a Form
Now lay out the user interface used to view and edit the selected MovieRole.
When you’re done, it should look like the following:

1. Add another horizontal rule after the repetition.

2. Use the button to add a WOForm element between the two horizontal
rules.

3. While the Form text is highlighted, click the button to replace the text
with a WOBrowser element.

4. Beneath the browser (within the bounds of the new form), type the bolded
text Role Name: .

5. Add a text field.

6. Bind the text field’s value attribute to
movieRoleDisplayGroup.selectedObject.roleName .

Adding a Talent Display Group
The browser you just created is going to display a list of Talent objects. Like a
repetition element, a browser has list and item attributes. As the browser moves
through its list , the browser sets item to the object at the current index. The
Movies application uses a display group to provide the browser with a list of
Talent objects, so now you need to create the new display group and a variable
to bind to the browser’s item attribute.

1. Use the Add Key command to create two new instance variables:

• talentDisplayGroup , whose type is WODisplayGroup
• talent , whose type is Talent

Chapter 3 Creating a WebObjects Database Application

120

You don’t need to add set and get methods for the variables.

2. Using the Display Group Options panel, assign the talentDisplayGroup
object’s entity to Talent.

Remember that to open the Display Group Options panel, simply
double-click the talentDisplayGroup variable in the object browser. The

 icon initially displayed next to the variable indicates that initialization
parameters have not yet been set.

3. Configure talentDisplayGroup to sort its objects alphabetically
(ascending) by lastName .

4. Configure it to fetch on load and click OK.

After you configure talentDisplayGroup , the object browser shows a
icon next to the variable.

The Movies application uses a display group to provide Talent objects, but you
could fetch the Talent objects from the database without one. Display groups
provide a simple way to fetch, insert, update, and delete enterprise objects
without writing much, if any, code. To get finer-grained control over these
operations, you can work directly with an EOEditingContext object. An editing
context can do everything a display group does and much more, but you have to
write more code to use one. For more information, see the EOEditingContext
class specification in the Enterprise Objects Framework Reference.

Configuring the Browser
Create your browser’s bindings. The steps are similar to those for creating
bindings for a repetition.

1. Bind talentDisplayGroup.displayedObjects to the browser’s list
attribute.

2. Bind talent to the browser’s item attribute.

3. Bind talent.lastName to the browser’s value attribute.

The value attribute tells the browser what string to display. For each item
in its list , the browser evaluates the item ’s value .

Updating Objects in the Detail Display Group

121

The browser in the MovieDetails page should display the actors’ full
names, but there isn’t an attribute for full name. In the next section, you’ll
create a custom Talent class that implements a fullName method, but for
now just use talent.lastName as the value attribute.

A browser also has a selections attribute that should be bound to an array
of objects. A browser’s selection can be zero, one, or many objects; but in
the Talent browser, the selection should refer to a single object.
Consequently, you need to add two methods to manage the browser’s
selection: one to return an array containing the selected Talent and one to
set the selected Talent from an array object.

4. Add the method talentSelection to the MovieDetails.java class as
follows:

public NSArray talentSelection() {

EOEnterpriseObject aTalent;

EOEnterpriseObject aMovieRole =

(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

if (aMovieRole == null){

return null;

}

aTalent = (EOEnterpriseObject)aMovieRole.valueForKey("toTalent");

if (aTalent == null){

return null;

} else {

return new NSArray(aTalent);

}

}

Because the browser expects an array for its selections attribute, this
method packages the selected MovieRole’s talent object in an array. If the
selected MovieRole object is null , talentSelection simply returns null to
indicate that the browser shouldn’t set a selection.

Chapter 3 Creating a WebObjects Database Application

122

5. Add the method setTalentSelection as follows:

public void setTalentSelection(NSArray talentArray){

if (talentArray.count() > 0){

EOEnterpriseObject aMovieRole =

(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

EOEnterpriseObject selectedTalent =

(EOEnterpriseObject)talentArray.objectAtIndex(0);

aMovieRole.addObjectToBothSidesOfRelationshipWithKey(

selectedTalent, "toTalent");

}

}

Again because the browser uses an array for its selections attribute, the
setTalentSelection method must take an array as its argument. If the size of
talentArray is nonzero, then this method sets the selected MovieRole’s
talent to the first object in the array. Note that by default, a user can’t select
more than one actor in a browser.

With the addition of these methods, WebObjects Builder now displays
talentSelection in MovieDetail’s object browser.

6. Bind talentSelection to the browser’s selections attribute.

Adding Insert, Save, and Delete Buttons
Now add the buttons that let users insert, save, and delete MovieRoles. When
you’re done, it should look like the following:

1. Inside the form, add three image buttons below the Role Name text field.

2. Inspect the first active image element.

Add the image buttons
inside the form element,
which is bounded by
a light gray box.

Adding Behavior to Your Enterprise Objects

123

3. Bind the filename attribute to the text (including the quotes)
"DBWizardInsert.gif" .

4. Follow the same procedure to set the second image’s filename attribute to
the text (including the quotes) "DBWizardUpdate.gif" .

5. Set the last image’s filename attribute to the text (including the quotes)
"DBWizardDelete.gif" .

The WODisplayGroup class defines the actions insert and delete . You’ll
bind to the Insert/New and Delete buttons. It doesn’t, however, provide a
save method. You’ll have to provide that yourself.

6. Copy the saveChanges method from the Main.java class and paste it into
the MovieDetails.java class:

public void saveChanges() throws Exception {

try {

this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {

System.err.println("Cannot save changes ");

throw exception;

}

}

7. Bind movieRoleDisplayGroup.insert to the Insert/New image’s action
attribute.

8. Bind the saveChanges method to the “Save to database” image’s action
attribute.

9. Bind movieRoleDisplayGroup.delete to the Delete image’s action
attribute.

Adding Behavior to Your Enterprise Objects

Right now, the Movies application maps all its entities to the EOGenericRecord
class. As the preceding sections illustrate, you can go quite far in an application
using just this default enterprise object class, but now you need to add some
custom classes to the Movies application.

Chapter 3 Creating a WebObjects Database Application

124

In this section, you’ll learn how to:

• Generate source code for a custom enterprise object class.
• Provide default values in a custom enterprise object class.

You’ll create custom classes for the Talent and MovieRole entities. In the Talent
class, you’ll write a fullName method that concatenates a Talent’s first and last
names. You’ll use the method to populate MovieDetail’s browser element. In
the MovieRole class, you’ll provide default values for newly inserted
MovieRoles so they don’t show up in the list of movie roles as a blank line.

Specifying Custom Enterprise Object Classes
Unless you specify otherwise, EOModeler maps entities to the
EOGenericRecord class. When you want to use a custom class instead, you need
to specify that custom class in the model.

1. In EOModeler, inspect the Talent entity.

2. In the Entity Inspector for Talent, type Talent in the Class field.

3. Set the MovieRole entity’s class to MovieRole.

Now you can generate the source files for your Talent and MovieRole classes.

Generating Custom Enterprise Object Classes
You can easily create a custom class to hold your business logic: EOModeler
provides a command to generate enterprise object classes.

Type the name of your custom class here.

Adding Behavior to Your Enterprise Objects

125

1. In EOModeler, select the Talent entity.

2. Choose Property Generate Java Files.

A Choose Class Name panel opens. If you opened the model file from
Project Builder, the Choose Class Name panel displays the project as the
destination directory and Talent.java as the default filename.

3. Ensure that the Movies project directory is selected.

4. Click Save.

A panel opens, asking if you want to insert the file in your project.

5. Click Yes.

EOModeler creates the source file Talent.java and adds it to your project.

6. Follow the same procedure for MovieRole.

Adding Custom Behavior to Talent
Now add the fullName method to Talent and bind it to the browser.

1. Open Talent.java in Project Builder.

The class file declares instance variables for all of Talent’s class properties
(firstName and lastName) and implements set and get methods for those
instance variables.

2. Add the method, fullName , as follows.

public String fullName(){

return firstName() + " " + lastName();

}

After you save, fullName appears in the object browser of WebObjects
Builder as a property of Talent.

3. Bind talent.fullName to the browser’s value attribute.

Chapter 3 Creating a WebObjects Database Application

126

Providing Default Values in MovieRole
As discussed in “Specifying Default Values for New Enterprise Objects” (page
93), there are two main ways to specify default values for new enterprise objects
without making explicit assignments:

• Assign default values in the enterprise object class.
• Specify default values using a display group.

For the Movie class, you specified default values using a display group. This
approach is also the more appropriate choice for the MovieRole class, but you’ll
use the other approach for MovieRole just to see how its done.

1. Open MovieRole.java in Project Builder.

2. Add the method, awakeFromInsertion , as follows

public void awakeFromInsertion(EOEditingContext context){

super.awakeFromInsertion(context);

roleName = "New Role";

}

This method is automatically invoked right after your enterprise object
class creates a new MovieRole and inserts it into an editing context, which
happens when you use a display group to insert.

Running Movies
Be sure that all your project’s files are saved (including your model file), and
build and run your application. Now when a user clicks the Insert/New button
on the MovieDetails page, a new MovieRole is inserted, with “New Role”
already displayed as the role name.

	Getting Started With WebObjects
	Contents
	Preface
	About WebObjects
	About This Book
	Where to Go From Here

	Creating a Simple WebObjects Application
	Creating a WebObjects Application Project
	Choosing the Programming Language
	Examining Your Project
	Launching WebObjects Builder
	Creating the Page’s Content
	Entering Static Text
	Using the Inspector
	Creating Form-Based Dynamic HTML Elements
	Resizing the Form Elements

	Binding Elements
	Creating Variables
	Binding the Input Elements
	Implementing an Action Method

	Creating the Application’s Output
	Building and Running Your Application

	Enhancing Your Application
	Duplicating Your Project
	Creating a Custom Guest Class
	Binding the Class’s Instance Variables to the Form Elements
	Creating a Table to Display the Output
	Adding Dynamic Elements to Table Cells
	Binding the Dynamic Elements in the Table
	Creating the Guest Object

	Keeping Track of Multiple Guests
	Creating a Guest List
	Adding Guests to the Guest List

	Adding a Second Component
	Using a Repetition
	Adding the Finishing Touches
	Clearing the Guest List
	Adding a Dynamic Hyperlink

	Creating a WebObjects Database Application
	The Movies Application
	Enterprise Objects and the Movies Database
	Enterprise Objects and Relationships

	Designing the Main Page
	Starting the WebObjects Application Wizard
	Specifying a Model File
	Choosing an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing an Entity
	Choosing a Layout
	Choosing Attributes to Display
	Choosing an Attribute to Display as a Hyperlink
	Choosing Attributes to Query On
	Running Movies

	Examining Your Project
	Examining the Variables
	Examining the Bindings

	Refining Main.wo
	Specifying a Sort Order
	Specifying Default Values for New Enterprise Objects
	Setting a Date Format
	Setting a Number Format
	Optional Exercise

	Adding the MovieDetails Page
	Creating the MovieDetails Component
	Storing the Selected Movie
	Navigating from Main to MovieDetails
	Designing MovieDetails’ User Interface
	Adding Date and Number Formats
	Navigating from MovieDetails to Main
	Running Movies

	Refining Your Model
	Opening Your Model
	Removing Foreign Keys as Class Properties
	Adding Relationships to Your Model
	Using the Advanced Relationship Inspector
	Where Do Primary Keys Come From?

	Setting Up a Master-Detail Configuration
	Creating a Detail Display Group
	Adding a Repetition
	Configuring a Repetition
	Running Movies

	Updating Objects in the Detail Display Group
	Managing a WODisplayGroup’s Selection
	Adding a Form
	Adding a Talent Display Group
	Configuring the Browser
	Adding Insert, Save, and Delete Buttons

	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Generating Custom Enterprise Object Classes
	Adding Custom Behavior to Talent
	Providing Default Values in MovieRole
	Running Movies

