

GETTING STARTED WITH
DIRECT TO JAVA CLIENT

Draft
12/21/99
© Apple Computer, Inc.

Apple and the publishers have tried to make the information contained in this manual
as accurate and reliable as possible, but assume no responsibility for errors or
omissions. They disclaim any warranty of any kind, whether express or implied, as to
any matter whatsoever relating to this manual, including without limitation the
merchantability or fitness for any particular purpose. In no event shall they be liable
for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. Apple will from
time to time revise the software described in this manual and reserves the right to
make such changes without obligation to notify the purchaser.

Copyright



 1999 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.
[7040.00]

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or
copyright owner. Printed in the United States of America. Published simultaneously
in Canada.

Enterprise Objects, Enterprise Objects Framework, and WEBOBJECTS are
trademarks of NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc.,
registered in the United States and othe countries. PostScript is a registered
trademark of Adobe Systems, Incorporated. Windows NT is a trademark of Microsoft
Corporation. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All other trademarks mentioned
belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 [or, if applicable,
similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes the Direct to Java Client feature of WebObjects 4.5.

12/21/99 Draft. © Apple Computer, Inc.

12/21/99 Draft. © Apple Computer, Inc.

Contents

Table of Contents
Creating a Direct to Java Client Project 13

What’s in the Template Project? 15

Building and Running the Application 15

If the Client Application Doesn’t Start 17

If the Application Has No Windows 17

Examining the Application 18

Main, Enumeration, and “Other” Entities 21

Main Entities 21

Enumeration Entities 21

“Other” Entities 22

Customizing the Application 22

The Assistant 23

If the Assistant Command Isn’t Available 23

Disabling the Assistant 24

Configuring Entities 25

Configuring Properties 26

Configuring Widgets 28

Typical Workflow 30

Examining the Panes of the Query Window 31

Configuring the Studio Pane of the Query Window 31

Configuring the Customer Pane of the Query Window 31

Configuring the Unit Pane of the Query Window 32

Configuring the Video Pane of the Query Window 33

Examining Form Windows 33

Configuring the Customer Form Window 34

Configuring the Unit Form Window 35

Configuring Windows 36

Changing the Title of the Query Window 36
12/21/99 Draft. © Apple Computer, Inc. 5

Other Assistant Settings 37

Advantages of Direct to Java Client 37

To Do 38

Architectural Overview 41

Controller Hierarchy 43

Controllers 44

Creating the Controller Hierarchy 44

Unarchiving XML 45

Server Side XML Generation 47

The Rule System 47

D2WComponents 48

Rule System Requests 49

Internal Rule System Requests 50

Generating the Select Studio Dialog 50

Customization Approaches 57

Other Approaches 59

Writing Custom Rules 59

Using the Rule Editor 60

When to Write Custom Rules 62

Trouble Shooting Custom Rules 63

Freezing XML 63

Creating a D2WComponent 64

Getting the Default XML 65

Modifying the XML 66

Writing a Custom Rule to Use Your Component 68

Freezing Nib Files 69

Adding Custom Actions 70

Adding an Additional Action 70

Creating a Corresponding Window 71

(Optional) Specifying Additional Available Specifications 72

XML Tags and Attributes for EOActions 73

Implementing Custom Controller Classes 74
6 12/21/99 Draft. © Apple Computer, Inc.

12/21/99 Draft. © Apple Computer, Inc.

Preface

Direct to Java Client is an addition to Enterprise Objects Framework and the
Java Client technology that dynamically generates user interfaces for Java Client
applications.

This book provides an overview of the applications you can create with Direct
to Java Client. It takes you step by step through the process of creating, building,
and running a Direct to Java Client application, as well as through the process of
customizing an application using the Direct to Java Client Assistant.

Before you begin doing this tutorial, you should be familiar with the Java Client
technology. If you’re not, work through the Java Client Tutorial to acquaint
yourself.

This book is organized into three chapters:

• “Getting Started with Direct to Java Client” (page 11), teaches you how to
create a Direct to Java Client project, how to build and run your application,
and how to use the Direct to Java Client Assistant to customize it.

• “Understanding Direct to Java Client Applications” (page 39), describes the
architecture of Direct to Java Client and its fundamental concepts.

• “Customizing Direct to Java Client Applications” (page 55), explains the
different approaches to customize Direct to Java Client applications beyond
using the Assistant.

After you have read this book, you should have a good working knowledge of
Direct to Java Client. For more in depth information on the Direct to Java Client
classes and interfaces, see the EOApplication Framework Reference and the
EOGeneration Framework Reference.
12/21/99 Draft. © Apple Computer, Inc. 9

Preface

10 12/21/99 Draft. © Apple Computer, Inc.

12/21/99 Draft. © Apple Computer, Inc.

Getting Started with Direct to Java
Client

Chapter 1

Creating a Direct to Java Client Project

This chapter takes you step by step through the process of creating, building,
and running a Direct to Java Client application, as well as through the process of
customizing an application using the Direct to Java Client Assistant.

Note: There are other methods of customizing a Direct to Java Client application
besides using the Assistant, but they are more advanced and are covered in later
chapters.

Before you begin doing this tutorial, you should be familiar with the Java Client
technology. If you’re not, work through the Java Client Tutorial to acquaint
yourself.

This tutorial uses a sample OpenBase Lite database, Movies, that contains
information about movies and a video rental store. OpenBase Lite and the
sample Movies database come with WebObjects and are used by the
WebObjects and Enterprise Objects Framework examples. Neither requires
any special installation or configuration.

Creating a Direct to Java Client Project

Direct to Java Client isn’t yet fully integrated into Project Builder like other
WebObjects technologies, so you don’t create Direct to Java Client projects the
same way you create other kinds of projects. Instead of creating a new project in
Project Builder, you copy a template project, make a few modifications, and
proceed from there as you normally would.

The following steps describe the process for the tutorial application.

1. Copy the DirectToJavaClientTemplate project directory to a working
directory.

The DirectToJavaClientTemplate project directory is located in /System/
Developer/Examples/WebObjects/JavaClient (Mac OS X Server) or
$NEXT_ROOT/Developer/Examples/WebObjects/JavaClient (Windows).
Make a copy of the project in your development directory. This tutorial
uses /tmp (MacOS X Server) or C:/tmp (Windows).

2. Open your copy of the project.
12/21/99 Draft. © Apple Computer, Inc. 13

Chapter 1

Getting Started with Direct to Java Client

Navigate to your copy of the project directory, and open the PB.project file.
This opens the project in Project Builder, starting Project Builder first if it
isn’t already running.

3. Change the name of your project to “D2JCTutorial”.

Open Project Builder’s Project Attributes inspector: Choose Tools
Inspector to open the inspector panel and choose Project Attributes in the
upper pull-down list to switch to the Project Attributes view.

Type D2JCTutorial in the Name field and press Return. Click Yes when
Project Builder asks whether to rename the project folder too.

4. Rename the main file to D2JCTutorial_main.m.

In the Other Sources bucket of your project, select the
DirectToJavaClientTemplate_main.m file. Choose File Rename, and
change the file’s name to D2JCTutorial_main.m. (The main file name should
be based on the project name: ProjectName_main.m.)

Direct to Java Client technology uses model files to generate applications. To
make models available to Direct to Java Client, you add them to your project.
You can either add models directly to your project by adding them to the
Resources suitcase, or you can add them indirectly by adding frameworks that
contain your models.

The models used by this tutorial application are the Movies and Rentals models
that describe the Movies database. These models are contained in the
BusinessLogicJava framework, which provides server side business logic
implemented in custom enterprise objects. The corresponding client side
objects are provided by the BusinessLogicClient framework, which this tutorial
application also uses.

5. Add BusinessLogicJava.framework and BusinessLogicClient.framework to
your project.

Double click the Frameworks suitcase of your project. In the Add
Frameworks panel, navigate to /Local/Library/Frameworks (Mac OS X
Server) or $(NEXT_ROOT)/Local/Library/Frameworks (Windows). Choose
BusinessLogicJava.framework, and click OK. Click Add when Project
Builder asks whether to add the Local/Library/Frameworks directory to your
Framework Search Order.
14 12/21/99 Draft. © Apple Computer, Inc.

Building and Running the Application

Repeat to add BusinessLogicClient.framework, which is in the same
directory.

What’s in the Template Project?
The DirectToJavaClientTemplate project is a normal Java Client project. It has
the typical Application, Session, and Main classes for the server side application.
The client side subproject, however, is empty. It has no interface controller or
nib files, because Direct to Java Client application’s generate their user
interfaces dynamically.

The project’s Main.wo contains a WOJavaClientApplet which is configured in a
special way. It’s width and height are set to 0, and the applicationClassName is set
to “com.apple.client.eogeneration.EODynamicApplication”. The application
class is important because it’s responsible for initiating the user interface
generation process.

The Resources suitcase of the project contains a user.d2wmodel file. The Direct
to Java Client Assistant uses this file to store user interface configuration
information.

Building and Running the Application

Building and running the application is just like building and running any other
Java Client application. Simply perform the following steps.

1. Build the application.

Choose Tools Project Build Build. This opens the Build Project panel
and builds the application.

2. Configure the application’s launch options.

Choose Tools Launcher Launcher. This opens the Launch panel.
Click the check mark button to open the Launch Options panel. In the
lower half of the window, ensure that the Arguments tab is selected. Click
Add. Type the following, substituting values appropriate for your
environment:

On MacOS X Server:
12/21/99 Draft. © Apple Computer, Inc. 15

Chapter 1

Getting Started with Direct to Java Client

-WOPort 8888 -WOAutoOpenInBrowser NO -NSProjectSearchPath '(/
tmp)'

On Windows:

-WOPort 8888 -WOAutoOpenInBrowser NO -NSProjectSearchPath '(C:/
tmp)'

The launch arguments are used as follows:

• WOPort. Specify any port you want. It is not necessary to specify a port,
but it is convenient. By specifying a port, the application URL (used to
start the client application) doesn’t change. If the application URL is
always the same, you can start the client application with the same
command each time you run it.

• WOAutoOpenInBrowser. Specify NO so the application is not
automatically launched in a browser. Java Client applications should be
run as Java applications (as described in the next step).

• NSProjectSearchPath. Specify the directory in which your project is
located. This enables Rapid Turnaround Mode. You must be in this
mode to dynamically configure a Direct to Java Client application with
the Assistant. This argument might not be necessary if your
NSProjectSearchPath user default is set correctly (which it is by
default). For more information, see “If the Assistant Command Isn’t
Available” (page 23).

3. Start the server application.

On the Launch panel, click the Launch button (the left most button).

4. Start the client application.

In a shell, start the client as an application.

On MacOS X Server:

java -classpath "/Local/Library/Frameworks/
BusinessLogicClient.framework/WebServerResources/Java:/System/
Library/Java/eojavaclient.jar:/System/Library/Frameworks/
JavaVM.framework/Classes/classes.jar:/System/Library/
Frameworks/JavaVM.framework/Classes/awt.jar:/System/Library/
Frameworks/JavaVM.framework/Classes/swingall.jar"
com.apple.client.eoapplication.EOApplication -applicationURL
http://localhost:8888/cgi-bin/WebObjects/D2JCTutorial

On Windows (substituting your $NEXT_ROOT if necessary):
16 12/21/99 Draft. © Apple Computer, Inc.

Building and Running the Application

java -classpath "C:\Apple\Local\Library\Frameworks\
BusinessLogicClient.framework\WebServerResources\Java;C:\Apple\
Library\Java\eojavaclient.jar;C:\Apple\Library\JDK\lib\
classes.zip;C:\Apple\Library\JDK\lib\swingall.jar"
com.apple.client.eoapplication.EOApplication -applicationURL
http://localhost:8888/cgi-bin/WebObjects/D2JCTutorial

Warning: Do not put C:\Apple\Library\Frameworks\
JavaVM.framework\Classes\awt.jar in your classpath on Windows. It is
required on MacOS X Server, but you shouldn’t include it on other platforms.

Note: For the final deployment of the client application, you should build a jar
file (or a small number jar files) containing the classes used by the application
(classes in the Java Client packages, classes in swingall.jar, and your custom
classes). Then to start the client application, you list only those jar files in the
classpath.

If the Client Application Doesn’t Start
Verify that your classpath is set correctly. Remember to quote the classpath
argument. Be sure that you use the correct path separator; on MacOS X Server
it’s a colon (“:”), while on Windows it’s a semicolon (“;”).

Verify that your application URL is correct. Check the messages in the Launch
panel. At the bottom, you’ll see the following messages:

Sep 28 16:08:56 D2JCTutorial[679] Your application's URL is:

http://localhost:8888/cgi-bin/WebObjects/D2JCTutorial

Sep 28 16:08:56 D2JCTutorial[679] Waiting for requests...

Verify that the application URL you use to start the application is the same as
the one in the Launch panel message.

If the Application Has No Windows
Verify that you’ve added the BusinessLogicJava framework to your project.
Direct to Java Client dynamically generates an application based on model files.
In this application, the model files come from the BusinessLogicJava
framework.
12/21/99 Draft. © Apple Computer, Inc. 17

Chapter 1

Getting Started with Direct to Java Client

Examining the Application

This section illustrates the application’s functionality by guiding you through
the steps to search for records, modify records, and add new ones.

When the application starts, it opens a window with which you can search for
database records. Each of the tabs in the Query Window correspond to an entity
in one of the application’s models. Not all of the entities in the Movie and
Rentals models have tabs in the Query Window. The way Direct to Java Client
chooses which entities to represent in the Query Window is described in the
section “Main, Enumeration, and “Other” Entities” (page 21).

1. Focus the Query Window on the Movie entity.

In the Query Window, click the Movie tab. The Query Window switches
its contents to a user interface for searching for Movies.

Note that the default Direct to Java Client application allows you to search
on title and plotSummary. You can easily configure the application to search
on different attributes using the Direct to Java Client Assistant (Assistant
for short). You will change the search attributes later in this tutorial.

2. Search for Movies whose titles begin with the letter “A”.

Type “A” in the Title field, and click the Find button. The application lists
the Movies meeting the search criteria.

Note that the application lists title, category, dateReleased, posterName,
revenue, trailerName, plotSummary for the Movies in the result set. As with
the search attributes, you can easily configure the application to display
different attributes in the table, which you will do later.

3. Search for Movies whose titles begin with the letter “A” or “B”.

Click Clear. Although the “A” is cleared from the Name field, the Movies
in the results table remain. To add Movies that start with the letter “B” to
the results, type “B” in the Name field, and click Append. Now the results
table contains Movies that start with the letter “A” and the letter “B”.

The difference between Find and Append is this: Find replaces the
records in the results list with the results of the most recent search. Append
adds data from the most recent search to the records already in the results
18 12/21/99 Draft. © Apple Computer, Inc.

Examining the Application

table. So using Append is a way to OR results together (for example,
Movies whose titles start with “A” OR Movies whose titles start with “B”).

4. Open a Movie.

Select a Movie in the result list and click Open, or simply double-click the
Movie’s title. Either action opens the Movie in a separate window that
displays its attributes and relationships. The attributes—title, category,
dateReleased, posterName, revenue, and trailerName—are in the top part of
the window. You can edit any of the Movie’s attributes here. After making
changes, you can save them (click Save at the top of the Movie window) or
revert back to the original values (click Revert).

The Movie’s relationships are in the bottom part of the window. One
relationship—studios—is displayed by itself in the middle of the window
while the others are displayed below in a tab view. The reason for this is
explained later in the section “Main, Enumeration, and “Other” Entities”
(page 21).

In the Studio area of the Movie window, you can change the Movie’s
Studio (Select), open the Movie’s Studio (Open), or unassign the Movie’s
Studio (Deselect). Clicking the Open button simply opens the Movie’s
Studio in a Studio window which is similar to the Movie window in that it
displays Studio attributes and relationships. Clicking Deselect unsets the
Movie’s studio relationship so that the Movie has no Studio.

5. Select a new Studio.

In the Studio area of the Movie window, click Select. A dialog opens for
searching for Studios. Type search criteria (“A” in the Name field, for
example), and click Find. Choose a Studio from the result list and click
OK. The dialog closes, and the Movie’s Studio is changed from the original
to the one you selected.

Note that the Movie window now has an asterisk (“*”) in the title bar. The
asterisk indicates that the Movie has unsaved changes. If you wanted to
save the change, you would click Save. In this case, however, click Revert
to discard the change.

6. Examine the relationship tabs at the bottom of the window.
12/21/99 Draft. © Apple Computer, Inc. 19

Chapter 1

Getting Started with Direct to Java Client

The relationships for the Plot Summary and Voting tabs—plotSummary
and voting—are to-one relationships. Their respective panes allow you to
modify the destination objects directly. For example, if you change the
contents of the Summary field in the Plot Summary pane and click Save,
you change the PlotSummary object’s summary value and commit the
change to the database.

The other relationships—directors, reviews, and roles—are to-many
relationships. Their panes allow you to add destination objects to the
relationships and to delete objects from them. Additionally you can open
destination objects (in their own window) and edit them.

7. Create a new Movie.

In the Movie window, click New. Alternatively, if the Query Window’s
Movie tab is still selected, you can click New in the Query Window. Either
action creates a new Movie window into which you enter information about
the new Movie. Fields with blue titles are required; that is, you can’t save
the new Movie if the blue titled fields are empty.

Fill in the Movie’s attributes as follows:

• Title: Evil Dead 2
• Category: Horror
• Date Released: 4/1/1987

Click Save to save the new Movie.

8. Set the Movie’s Studio to Elite Entertainment.

In the Studio area of the window, click Select. In the Studio dialog, type
“E” in the Name field, and click Find. No results are returned, so you’ll
have to create the Elite Entertainment Studio.

Click New in the Studio dialog. The first dialog closes, and a new Studio
dialog opens for creating a new Studio. Name the Studio “Elite
Entertainment” and provide a budget. Click Save.

The new Studio is saved to the database and assigned as the Studio for the
“Evil Dead 2” Movie.

You can add directors and movie roles (and their actors) in a similar manner.
20 12/21/99 Draft. © Apple Computer, Inc.

Examining the Application
Main, Enumeration, and “Other” Entities
Direct to Java Client divides entities into three types: main, enumeration, and
other. Each of an applications entities is exactly one of these types.

Main Entities
A main entity is generally a top-level entity that users work with most frequently.
Consequently, Direct to Java Client creates a tab for each main entity in the
Query Window and provides form windows for editing each of the main entities.
For example, in this tutorial application, the main entities are Customer, Movie,
Studio, Talent, Unit, User, and Video.

Direct to Java Client defines a main entity as one that is not the destination of
any relationships that:

• Propagate primary key
• Own destination
• Use the cascade delete rule

Enumeration Entities
Direct to Java Client also defines the concept of an enumeration entity. An
enumeration entity is an entity that conforms to the conditions for main entities
and additionally conforms to the following conditions:

• The entity has fewer than five attributes.
• The entity has no relationships that are mandatory.
• All the entity’s relationships use the deny delete rule.

In practice, enumeration entities should define a collection of values that
represent a list of choices. For example, in this tutorial application, the
enumeration entities are FeeTypes and RentalTerms.

The values in enumeration entities are usually fairly static, and you usually don’t
want a complex user interface for changing them. Consequently, Direct to Java
Client applications provide a single window for editing enumeration values.

1. Open the Enumeration Window.

Choose the “Enumeration Window” command in the Tools menu. This
opens the Enumeration Window, which contains a tab for each of the
application’s enumeration entities. The tab for a particular entity shows the
12/21/99 Draft. © Apple Computer, Inc. 21

Chapter 1 Getting Started with Direct to Java Client
complete set of values in that entity (which should be a small number of
values). You can add a new value to the enumeration’s collection (Add),
delete a value from the collection (Remove), and modify a value (simply
make the changes and click Save).

By displaying enumeration values in this special window, an application doesn’t
clutter the Query Window with tabs for enumeration entities. This approach
simplifies the application’s user interface in other ways, as well. The application
doesn’t provide form windows for enumeration entities, and relationships to
enumeration entities can be represented simply with combo boxes (for to-one
relationships) and pick lists (for to-many relationships) instead of with a tables
(to-ones) and select dialogs (to-manys).

“Other” Entities
Entities that aren’t main or enumeration entities are simply “other” entities. For
example, in this tutorial application, the “other” entities are CreditCard,
Director, Fee, MovieRole, PlotSummary, Rental, Review, TalentPhoto, and
Voting.

“Other” entities can be manipulated through the master-detail user interfaces
of main entities. This explains why a Movie’s studio relationship is displayed by
itself in the middle of the window while the other relationships are displayed
below in a tab view. The destination entity of the studio relationship, Studio, is
a main entity. Main entities have their own form windows with which you edit
them. The destinations of the other relationships are “other” entities. Since
they don’t have their own form windows, they are edited in master-detail
interfaces inside a main entity’s form window.

Customizing the Application
As you can see, the default application is fairly complete. Direct to Java Client
uses a sophisticated set of rules to assemble the user interface. However, the
default user interface isn’t exactly what you want in every case.

In the next sections you’ll make changes to the application, including the
following:

• Modify the set of main entities.
22 12/21/99 Draft. © Apple Computer, Inc.

The Assistant
• Modify the search attributes in the Query Window, and specify the order in
which the attributes are displayed. Similarly, modify the attributes
displayed in the results table of the Query Window.

• Specify the order of the attributes and relationships that can be edited in a
form.

• Change the widget used to display and edit particular attributes.

The Assistant

The Direct to Java Client Assistant is an easy-to-use tool that performs the most
common customizations to Direct to Java Client applications. It runs inside the
client application so you can see and directly test changes while the application
is running.

1. Open the Assistant

In any window of your application, choose Tools Assistant, which opens
the Assistant window.

The Tools menu might not list the Assistant command. If the application
isn’t running in Rapid Turnaround Mode, the Assistant can’t be made
available: see the section “If the Assistant Command Isn’t Available” (page
23). Or the Assistant might be explicitly disabled: see “Disabling the
Assistant” (page 24).

The Assistant window has several tabs across the top: Entities, Properties,
Widgets, Windows, Miscellaneous, and XML. The tabs allow you to configure
the application in different ways. Each is discussed in later sections.

If the Assistant Command Isn’t Available
Verify that the Rapid Turnaround Mode is active. Check the messages in the
Launch panel. At the bottom, you’ll see the following messages:

Sep 28 16:08:56 D2JCTutorial[679] Your application's URL is:

http://localhost:8888/cgi-bin/WebObjects/D2JCTutorial

Sep 28 16:08:56 D2JCTutorial[679] Waiting for requests...

Look just above the “Your application’s URL is...” message. If you see a
message such as the following:
12/21/99 Draft. © Apple Computer, Inc. 23

Chapter 1 Getting Started with Direct to Java Client
Sep 28 15:54:29 D2JCTutorial[666] ***** PLEASE NOTE: Rapid turn-
around is not active for your application. The configuration
assistant will not be made available in the client application since
it will not be able to modify your project's user.d2wmodel rule file.
Your NSProjectSearchPath user default must be set to an array of
paths where your project can be found, for example you can launch
your application like this: MyApp -NSProjectSearchPath '(/some/path/
theDirectoryWhereMyProjectIs)'. To completely disable the assistant
use a -EOAssistantEnabled NO flag when you start the application.

then your NSProjectSearchPath is set incorrectly.

Quit the client and server applications. Change the launch arguments for your
application to include an argument for NSProjectSearchPath. (Refer to step 2 in
“Building and Running the Application” on page 15 for help setting launch
arguments.)

By default, NSProjectSearchPath is ../.., which is generally sufficient for
running “out of the box.” However, if you’ve customized your build
environment, you might need a different setting.When the argument is set
properly, you should see the following message:

Sep 28 16:14:30 D2JCTutorial[683] ***** PLEASE NOTE: The
configuration assistant will be made available in the client
application. To disable the assistant use a -EOAssistantEnabled NO
flag when you start the application.

Disabling the Assistant
You should not deploy an application with the Assistant enabled. To disable it
when you deploy, use the EOAssistantEnabled default, which enables and
disables the Assistant. For example, to start the server application D2JCTutorial
server application with the Assistant disabled, you could use the command:

On MacOS X Server:

D2JCTutorial -WOPort 8888 -WOAutoOpenInBrowser NO
-EOAssistantEnabled NO -NSProjectSearchPath '(/tmp)'

On Windows:

D2JCTutorial -WOPort 8888 -WOAutoOpenInBrowser NO
-EOAssistantEnabled NO -NSProjectSearchPath '(C:/tmp)'
24 12/21/99 Draft. © Apple Computer, Inc.

Configuring Entities
Configuring Entities

The default set of rules that Direct to Java Client uses to identify main,
enumeration, and “other” entities are a pretty good start. However, you might
need to make some changes to the way Direct to Java Client classifies your
application’s entities. For example, this tutorial application doesn’t use the User
entity, so you need to remove it from the list of main entities.

1. Specify the User entity as an “Other” entity.

In the Assistant window, ensure that the “Entity” tab is selected. In the
Main Entities list, select User. Click the arrow pointing to the left to move
the User entity from the Main Entities list to the Other Entities list.

2. Rearrange the entities.

By default, the entities are ordered alphabetically. For example, in the
Query Window, the Customer tab is first, then Movie, and so on. In this
application, it makes more sense to group Movie, Talent, and Studio
together and group Customer, Unit, and Video.

In the Main Entities list, select Movie. Click the arrow pointing up to
move the Movie entity to the top of the list. Move Talent so it’s next in the
list, then Studio. Customer, Unit, and Video, in that order, should be last in
the list.

3. Apply the changes.

Click Apply. This updates the Assistant’s in-memory set of rules. The new
rules don’t affect existing windows, but they are applied when Direct to
Java Client generates new user interfaces in the running client application.

To see that your changes have been recorded in the Assistant’s set of rules,
choose “New Query Window” in the Tools menu. The new Query
Window that opens doesn’t have a tab for User, and the window’s tabs are
ordered as you specified in step 2.

4. Restart the application.

Click Restart. This restarts the client application using the Assistant’s in-
memory set of rules. In the new instance of the application, the Query
Window immediately displays the changes you specified.
12/21/99 Draft. © Apple Computer, Inc. 25

Chapter 1 Getting Started with Direct to Java Client
Since you can’t update an application’s existing user interface by applying
changes, you can use Restart to reflect your changes throughout the entire
application. If you don’t like the changes, you can revert them by clicking
Revert.

5. Save your changes.

Click Save. This updates the set of rules saved in your project. Once you
have saved the changes, you can no longer revert.

Configuring Properties

The Assistant’s Properties tab allows you to configure the way an application
handles properties (attributes and relationships). For example, you can change
the attributes that users search on in the Query Window and specify the order in
which they appear.

1. Set the property keys for querying the Movie entity.

In the Assistant, select the Properties tab. The specification settings—the
Query, Task, and Entity pull-down lists—should be set to <All>, query, and
Movie, respectively. The settings are probably correct, but if any of the
settings are different, change them. A simple way to set the Task and
Entity pull-down lists is to select the Movie tab in the Query Window. The
Assistant automatically updates to set the Task pull-down list to query and
the Entity pull-down list to Movie.

Move plotSummary and voting to the Other Property Keys list. Move
category and studio to Property Keys. Using the up and down arrows, order
the properties as follows: title, category, studio.

Save the changes, and restart the application (from the Assistant). The
Movie pane of the Query Window is reconfigured.

Note that a Studio Name field is now available. This is because you
specified the studio relationship as a property key for the query task. When
a to-one relationship (such as studio) is specified as a property key, Direct
to Java Client uses identify property keys of the relationship’s destination
object to represent the relationship in the user interface.
26 12/21/99 Draft. © Apple Computer, Inc.

Configuring Properties
2. Examine the identify property keys for the Studio entity.

In the Assistant, set the Task pull-down list to identify and set the Entity
pull-down list to Studio. Observe that the Studio has one identify property
key—name. This attribute is used to “identify” a particular Studio when it
appears in the user interface as a destination of a to-one relationship.

One example of how the identify property keys are used is in the Movie
pane of the Query Window. Movie’s studio relationship is specified as a
query property key. To represent studio as a property key in the Query
Window, Direct to Java Client uses the identify property key (name) of the
relationship’s destination entity (Studio).

Another example is the Studio part of a Movie window, in which the
Movie’s Studio is identified by its name.

3. Modify the identify property keys for the Movie entity.

Set the Assistant’s Entity pull-down list to Movie, keeping the Task as
identify. Movie has one identify property key, title. Since it’s quite common
for movie remakes to use the same name as the original, a movie’s title isn’t
always enough to identify it. Add dateReleased to Movie’s list of identify
properties, and save the change.

4. Configure the property keys for listing Movies.

The property keys for the list task are used in result lists such as the ones in
the Query Window. When you search for Movies, for example, the Movies
in the result set are listed in the Query Window’s table. The result table has
a column for the list property keys, title, category, dateReleased,
posterName, revenue, trailerName, and plotSummary. The columns for these
properties are crowded into the table, and many aren’t particularly helpful
to users.

Note: In addition to the property keys listed above, voting is also a list property
key for the Movie entity. The voting relationship doesn’t have a column in the
results table. This is because Voting’s identify property key is it’s movie
relationship, which Direct to Java Client omits from the table view to avoid
recursion.

To pare down the set of columns, choose list in the Assistant’s Task pull-
down list, and choose Movie in the Entity pull-down list (if it isn’t selected
12/21/99 Draft. © Apple Computer, Inc. 27

Chapter 1 Getting Started with Direct to Java Client
already). Move posterName, revenue, trailerName, and plotSummary to the
Other Properties column.

So users can verify that all the search criteria they specify is applied
correctly, the list property keys should be a super set of the query
properties. Since users can search for Movies by Studio, the list property
keys should include studio, as well. Add studio to the list property keys.

Save the changes. To see them, open a new Query Window.

5. Configure the property keys for Movie form windows.

In the Query Window, click New to create a Movie form window. The
Assistant updates to set the Task pull-down list to form and the Entity pull-
down list to Movie.

Examine the form window. As is most commonly the case, the default
property keys for the form task are correct for this application. In general,
the form window should allow users to edit all of an entity’s client class
properties. However, you might want to reorder the properties so they
appear in different locations in the form window.

Using the up and down buttons, order the properties as follows: title,
category, dateReleased, revenue (move up), posterName, trailerName,
plotSummary, directors, roles, voting, reviews, studio. Save the changes, and
open a new Movie form window to see how they affect the form window
layout.

Configuring Widgets

The Assistant’s Widgets tab allows you to configure the widgets used to display
and manipulate properties (attributes and relationships). For example, you can
change the widget that’s used to display a particular attribute, and you can set
the widget’s resizing behavior.

1. Change the widget for the PlotSummary entity’s summary attribute to a text
area.

Select the Widget tab in the Assistant. Set the Task pull-down list to form,
the Entity pull-down list to PlotSummary, and the Property pull-down list
to summary.
28 12/21/99 Draft. © Apple Computer, Inc.

Configuring Widgets
Warning: Don’t use Movie as the Entity and plotSummary as the property key.
You’re configuring the widget used to display the summary property of the
PlotSummary entity, not the widget for displaying the plotSummary relationship
of the Movie entity. So be sure the Entity pull-down list is set to PlotSummary
and the Property pull-down list is set to summary.

Set the Widget Type to EOTextAreaController. Save the change, and open
a new Movie form window to see the change.

2. Remove the Summary label.

The summary Widget label is redundant with the PlotSummary tab label,
so you should remove it.

If you opened a new Movie form window to see the change you made in
step 1, you first need to restore the Assistant’s Widget tab settings. Set the
Task to form, the Entity to PlotSummary, and the Property to summary.

Now set the summary property’s “Show Label Component” setting to
False. Save the change, and open a new form to see it.

3. Set sizing information for the summary widget.

Resize the window so it’s much larger than the default size. Notice that the
summary widget doesn’t resize vertically. To prevent the waste of screen
real estate and to display more of the summary upon window resizing, you
need to set the widget to resize.

Restore the Assistant Task, Entity, and Property settings to form,
PlotSummary, and summary, respectively. Now set the summary property’s
“Vertically Resizable” setting to True. Save the change, and open a new
form to see it.

4. Change the widget for the Review entity’s review attribute to a text area.

In the Widget tab of the Assistant, set the Task to form, Entity to Review,
and Property to review. Set the Widget Type to EOTextAreaController.
Save the change.

5. Set sizing information for the review widget.
12/21/99 Draft. © Apple Computer, Inc. 29

Chapter 1 Getting Started with Direct to Java Client
In a new Movie form window, switch to the Review tab. Resize the
window so it’s much larger than the default size. Notice that the Review
widget doesn’t resize vertically. In this window, this behavior is appropriate
because the table view above the Review widget does resize to take up the
added area.

However, you might want a larger area in which to display movie reviews.
If you set the text area to resize vertically, the widget still won’t resize
because the table view above it does. So to provide a larger text area, you
can set a minimum height.

Restore the Assistant Task, Entity, and Property settings to form, Review,
and review, respectively. Now set the review property’s “Minimum Height”
setting to 200. Save the change, and open a new form to see it.

Typical Workflow

The most natural way to customize an application’s property keys and widgets
is to examine and modify one window at a time, as outlined by the steps below:

1. With the Assistant open, click the first tab in the Query Window.

2. Examine the search properties for the current entity. Remove any fields
necessary, add others, and then order the property keys as you want them to
appear in the Query Window.

3. Choose list in the Assistant’s Task pull-down list, and modify the list
property keys. Since the Query Window displays list properties as well as
query properties, you can see what changes you need to make.

4. Click the next tab in the Query Window. The Assistant automatically
updates to track your movements in the application. This saves you setting
the Entity pull-down list in the Assistant.

5. Repeat steps 2 through 4, until you’ve set the query and list property keys
for all the main entities.

6. Click the first tab in the Query Window.

7. Click New to open a form window for the current entity. Make necessary
changes to the entity’s form property keys.
30 12/21/99 Draft. © Apple Computer, Inc.

Typical Workflow
8. Make any necessary changes to property keys of any other entity that
appears in the current entity’s form window. To do so,
choose list or identify in the Assistant’s Task pull-down list, and set the
Entity pull-down list to the other entity.

9. Click the next tab in the Query Window.

10. Repeat steps 7 and 9.

The following sections demonstrate this approach. Before continuing, open the
Assistant if it isn’t open already, and select the Properties tab.

Examining the Panes of the Query Window
You’ve already configured the Movie pane of the Query Window, so examine the
next pane, Talent. The window allows you to search on a talent’s first and last
names, and it shows the first and last names in the results table. This is fine, so
move on to the next pane, Studio.

Configuring the Studio Pane of the Query Window
The Studio pane allows you to search for studios by their name and budget. It
seems unlikely that users want to search on budget.

1. Remove budget from the query property keys list.

The results table shows the studio name and budget. This seems fine, so move
on to the next pane.

Configuring the Customer Pane of the Query Window
The Customer pane allows you to search for customers by their city, first name,
last name, credit card number, and credit card authorization. Users should not
look up customers by credit card information, so you should remove it.

1. Remove creditCard from the query property keys.

The creditCard property is a to-one relationship that Direct to Java Client
expands to the identify property keys (cardNumber and authorizationNum)
of the relationship’s destination entity (a CreditCard). By removing
creditCard from the property keys, you remove the cardNumber and
authorizationNum fields from the query interface.
12/21/99 Draft. © Apple Computer, Inc. 31

Chapter 1 Getting Started with Direct to Java Client
2. Add memberSince and phone to the property keys.

Two other Customer properties, memberSince and phone, seem like
reasonable attributes to query on, so add them.

3. Order the keys as follows: firstName, lastName, city, phone, memberSince.

4. Modify the list property keys.

The results table is far too crowded with properties to be useful, so pare
down the set of list property keys. Remove state, streetAddress, zip, and
creditCard from the list property keys. Order the remaining keys as follows:
firstName, lastName, city, phone, memberSince.

Move on to the next pane.

Configuring the Unit Pane of the Query Window
The Unit pane allows you to search for units by unit ID, date acquired, movie
name, and movie release date. It seems unlikely that users will want to search
for particular units by movie release date, so you’ll remove it.

Note that the query property keys for Unit are unitID, dateAcquired, and video.
Through the video key, Direct to Java Client gets both a movie name and movie
release date (which correspond to the Movie identify property keys). You want
to keep the movie name in the interface, but not the movie release date.

1. Remove video from the property keys.

Using the video key, you can’t get one identify Movie property without the
other one, so remove it. You’ll add the Movie name property to the query
interface another way.

2. Add video.movie.title to the property keys.

At the bottom of the Assistant Properties pane, there’s a field labeled
“Additional Property Key Path”. In this field, type video.movie.title,
and click Add.

3. Save and restart to observe these changes.

Adding key paths to an entity’s property keys flattens attributes into the
entity for display purposes: the attribute identified by the key path is
32 12/21/99 Draft. © Apple Computer, Inc.

Typical Workflow
treated in the user interface as if it’s one of the entity’s own attributes
rather than an attribute of a related entity.

4. Change the label for video.movie.title.

The label for video.movie.title, “Video Movie Title”, seems unnecessarily
wordy. “Movie Title” would be better.

Select the Widgets tab in the Assistant. Set the Task pull-down list to
<ALL> if it isn’t already, then select video.movie.title in the Property Key
pull-down list. In the Label field, delete the word “Video” so the label is
simply “Movie Title”.

5. Save and restart to observe this change.

Notice that the movie title label is now “Movie Title” for both the search
field and for the column in the results table. To set one, but not the other,
you would simply set the Task pull-down list to the appropriate task before
making the change.

6. Examine Unit’s list properties.

The notes property contains free-form text, and doesn’t display well in a
list, so remove notes from Unit’s list property keys.

Move on to the next pane.

Configuring the Video Pane of the Query Window
Video’s query interface has the same problem as Unit’s. It seems unlikely that
users will want to search for videos by movie release date. Remove it from the
query interface the same way you did for Unit. That is, remove the movie
relationship from the property keys and add movie.title.

Examining Form Windows
Now that you’ve configured the panes of the Query Window, move on to the
form windows. You’ve already configured Movie’s form window, so start with
Talent.

Open a Talent form. It looks fine, so move on to Studio. It, too, looks fine, so
move on to Customer.
12/21/99 Draft. © Apple Computer, Inc. 33

Chapter 1 Getting Started with Direct to Java Client
Configuring the Customer Form Window
All the Customer properties are property keys. This is fine; users need to be able
to edit all of a customer’s data. However, the properties are ordered poorly. A
customer’s name should come first, and the components of a customer’s address
should be grouped together and ordered so they appear as a proper address.

1. Order the Customer form property keys as follows: firstName, lastName,
memberSince, phone, streetAddress, city, state, zip, creditCard, rentals.

2. Examine the Credit Card pane at the bottom of the Customer window.

The property keys are poorly ordered, and the “Num” in the
“Authorization Num” label should be spelled out.

3. Using the Properties Assistant, order CreditCard’s form property keys as:
cardNumber, expirationDate, limit, authorizationNum, authorizationDate,
customer.

Note that customer is a to-one relationship from CreditCard to Customer.
Ordinarily, a to-one relationship is represented in a form, but customer isn’t
represented here. That’s because Direct to Java Client filters the customer
property key out of the user interface rather than display it recursively.
Since the CreditCard form is contained within a Customer form, Customer
information is already displayed. This feature is called entity hierarchy
filtering.
34 12/21/99 Draft. © Apple Computer, Inc.

Typical Workflow
Warning: Be careful about removing relationships from the set of property keys.
Even though a relationship isn’t necessary for a window you’re looking at, it
might be needed by another window.

As an example, consider the MovieRole entity, which has to-one relationships to
Movie and Talent. Similarly, Movie and Talent have to-many relationships back
to their MovieRoles. Since MovieRole is an “other” entity, MovieRole records
are manipulated in a master-detail user interface in Movie and Talent form
windows. In a Movie form window, the interface for displaying and setting a
MovieRole’s value uses only the roleName attribute and the talent relationship.
Entity hierarchy filtering prevents the interface from using the movie
relationship.

When you’re looking at the Movie form window, you might consider removing
MovieRole’s movie relationship from the form task’s property keys. It’s filtered
out, but you might think of removing it anyway for clarity. However, if you
remove it, the movie relationship won’t be displayed in the Talent form window
either. In the Talent window a MovieRole’s movie relationship is important
information.

4. In the Widgets pane of the Assistant, change the authorizationNum label to
“Authorization Number.”

5. Examine the Rentals pane.

The Rentals pane looks OK, so move on to the next form window.

Configuring the Unit Form Window
The form property keys for Unit are correct, and their order is fine, too.
However, the notes property should be in a text area instead of a field.

1. Change the notes widget to a text area.

Select the Widgets tab in the Assistant. Set the Task pull-down list to form,
and select notes in the Property Key pull-down list. Set the Widget Type to
EOTextAreaController. Save the change, and open a new Movie form
window to see the change.

2. Examine the Rental area of the window.
12/21/99 Draft. © Apple Computer, Inc. 35

Chapter 1 Getting Started with Direct to Java Client
You need to resize the windows to read the Rental table columns. Each
Rental line displays Customer identify properties: city, firstName, and
lastName. The city attribute isn’t really necessary, and it would be more
helpful if a customer’s last name were to appear first.

3. Modify Customer’s identify property keys.

Remove city from Customer’s identify property keys. Order lastName first.
Save your changes.

Move on to the next form window, Video. It’s fine.

Configuring Windows

After configuring properties and widgets, the bulk of your Assistant
customizations are done. The final change you’ll make to your application in this
tutorial is to change the title of a window. To do this, you use the Windows tab
of the Assistant.

The Windows tab allows you to do things such as the following:

• Set the title of windows.
• Change the default position and size of a window.
• Specify whether to save window position and size in user defaults.
• Specify disposal and reuse behavior to tune performance.

Changing the Title of the Query Window
To change the title of the Query Window to “Find”, perform the following
steps.

1. Select the Windows tab in the Assistant.

2. Click the Query Window.

This focuses the Assistant on the Query Window, setting the Question to
window, setting Task to queryWindow, and disabling Entity (because the
Query Window displays multiple entities).

3. In the Label field, type “Find”.

4. Save your changes and restart the application.
36 12/21/99 Draft. © Apple Computer, Inc.

Other Assistant Settings
The Query Window’s title is now “Find.”

Other Assistant Settings

In addition to Entities, Properties, Widgets, and Windows tabs, the Assistant
also provides Miscellaneous and XML tabs. The Miscellaneous tab allows you
to specify application wide settings for alignment and label placement (for all
widgets in all windows for all entities).

The XML tab is more advanced. It allows you to view the output of the rules
system. The output, which is the resolution of rules, is represented as XML. As
you become more familiar with the Direct to Java Client technology, you can
read the XML to verify user interface configurations instead of restarting the
application to see the actual effects of your changes.

You can also use the XML tab to save the XML to a file. You typically do this
when you want to customize an application by freezing it’s XML. Freezing allows
you to explicitly state the result of a rule system request. The freezing
technique is beyond the scope of this tutorial.

Advantages of Direct to Java Client

Direct to Java Client dynamically generates the user interfaces for Java Client
applications or for parts of them. The advantage of this technology is that it’s not
necessary to write source code for controlling the user interface. As a
consequence, Direct to Java Client:

• Flattens the learning curve for developing applications
• Reduces the time required to develop applications
• Reduces the number of causes of errors
• Increases the maintainability and adaptability of applications
• Increases prototyping capabilities
• Allows you to focus on business logic instead of on the user interface

Also, Direct to Java Client applications are constructed using well-tested Apple
technology, which increases the stability of applications and reduces the time
required to test applications before deploying them.
12/21/99 Draft. © Apple Computer, Inc. 37

Chapter 1 Getting Started with Direct to Java Client
38 12/21/99 Draft. © Apple Computer, Inc.

12/21/99 Draft. © Apple Computer, Inc.

Understanding
Direct to Java Client

Applications

Chapter 2

Architectural Overview
Direct to Java Client applications are very simple to create because so much of
your application simply works out of the box. You don’t write the code, but the
functionality is nevertheless in the application. It’s provided by numerous Java
packages that are part of WebObjects.

Even though you don’t write the code, you can customize it’s behavior. This
chapter explains how Direct to Java Client applications work, so you can
understand the many different ways you can tailor them to your needs.

Architectural Overview

Direct to Java Client applications are three tier, comprising a database server, a
server application, and a client application. Figure 1 shows the three tiers and
the Java packages used in them.

Figure 1. The Components of a Direct to Java Client Application

All of the packages except eoapplication, eogeneration, and directtoweb are
used in exactly the same way in a Direct to Java Client application as they are in
a Java Client application (an application for which you provide the user
interface):
12/21/99 Draft. © Apple Computer, Inc. 41

Chapter 2 Understanding Direct to Java Client Applications
• The webobjects package. Used in the server application to provide application
and session management.

• The eocontrol package. Used in both the server and client applications to
manage a graph of enterprise objects (object representations of database
records). It translates operations performed on enterprise objects into
database operations, thereby keeping the object graph and the database in
sync.

• The eoaccess package. Used in the server application to handle interactions
with the database, using a model file to map database records to enterprise
objects.

• The eodistribution package. Used in both the server and client applications to
handle communication between the server and application processes.

• The swing and awt packages. Used in the client application to implement the
user interface.

• The eointerface package. Used in the client application to synchronize the user
interface with enterprise objects. The eointerface package populates user
interface widgets with data from enterprise objects. When a user makes
changes to the data in the user interface, eointerface notices the changes
and make the corresponding changes to the appropriate enterprise objects.

The remaining packages distinguish a regular Java Client application from a
Direct to Java Client application.

• The eoapplication and eogeneration packages. Used in the client application to
dynamically generate the user interface. Controller classes in these
packages define application-level functionality. A hierarchy of these
controllers generates and manages an application’s user interface. Note that
eoapplication contains classes that can be used outside of a Direct to Java
Client application. For example, eoapplication’s EOApplication object is
generally used in regular Java Client applications, as well.

• The directtoweb package. Provides a server side rule system that the client side
eoapplication and eogeneration packages use to generate the user interface.
The rules specify how to configure the objects in the eoapplication and
eogeneration controller hierarchy for a particular Direct to Java Client
application.
42 12/21/99 Draft. © Apple Computer, Inc.

Controller Hierarchy
The way these packages provide their functionality is discussed in more detail
in the following sections.

Controller Hierarchy

The most interesting part of the client side portion of a Direct to Java Client
application is the controller hierarchy. The controller objects in the hierarchy are
responsible for generating and managing the client application’s user interface.
The hierarchy as a whole describes the complete functionality of an application.

The controller hierarchy mirrors the hierarchy of windows and widgets that
make up the client application’s user interface. The root of the hierarchy is an
EOApplication object. The EOApplication’s subcontrollers are usually window
or applet controllers, which themselves have subcontrollers.

For example, consider the select Studio dialog from the Tutorial application
(Figure 2).

Figure 2. Select Studio Dialog

The branch of the controller hierarchy for this dialog looks like this:

EOModalDialogController

EOActionButtonsController

EOQueryController

EOTextFieldController

EOListController

EOTableController

EOTableColumnController

EOTableColumnController
12/21/99 Draft. © Apple Computer, Inc. 43

Chapter 2 Understanding Direct to Java Client Applications
The EOModalDialogController manages the select Studio dialog itself, the
EOActionButtonsController manages the row of buttons at the top of the dialog,
and so on.

Controllers
The objects in the controller hierarchy are instances of EOController subclasses.
The EOController class defines basic controller behavior. The most significant
functionality is managing the controller hierarchy (building, connecting, and
traversing the hierarchy) and handling actions. Controllers define actions that
users can perform (such as clicking a Find button) and they know how to
respond to those actions when they’re performed.

The EOController subclasses fall into the following categories:

• Application level controllers define application-level functionality. They
define actions such as Quit and Save. Additionally they provide document
management support such as tracking documents with unsaved changes. An
application level controller (usually an EODynamicApplication object) is
the root of an application’s controller hierarchy.

• User interface level controllers manage portions of an application’s user
interfaces, such as windows and tab views. They determine the layout of
their subcontrollers, resizing behavior, and so on. In the controller hierarchy
for the select Studio dialog, the EOModalDialogController and the
EOActionButtonsController are user interface level controllers.

• Entity level controllers specify the user interface for performing a particular
task on an entity. Entity level controllers determine the functionality for
querying, listing, and editing objects. The entity level controllers in the
select Studio dialog hierarchy are the EOQueryController and the
EOListController.

• Property level controllers manage widgets for displaying properties. In the
select Studio dialog hierarchy, the EOTextFieldController and the
EOTableColumnControllers are property level controllers. Their function
in this dialog is to provide the widgets for entering
(EOTextFieldController) and displaying (EOTableColumnControllers)
Studio properties.

Creating the Controller Hierarchy
The process for creating the controller hierarchy involves an
EOControllerFactory object, a rule system, and D2WComponents.
44 12/21/99 Draft. © Apple Computer, Inc.

Controller Hierarchy
An EOControllerFactory in the client application is created during a client
application’s initialization, and the controller factory in turn creates the
controller hierarchy. To do so, it uses a server side rule system, which provides
XML descriptions of controller hierarchies. The controller factory, using an
EOXMLUnarchiver object, parses the XML and generates the specified
controllers.

Unarchiving XML
To see how an EOXMLUnarchiver processes the XML returned from the
server, consider the following XML:

<MODALDIALOGCONTROLLER reuseMode="ReuseIfInvisible"
disposeIfDeactivated="false" typeName="question = modalDialog,
task = select, entity = Studio">

<ACTIONBUTTONSCONTROLLER widgetPosition="Top">

<QUERYCONTROLLER entity="Studio" minimumWidth="256"
alignsComponents="true">

<TEXTFIELDCONTROLLER valueKey="name"
isQueryWidget="true"/>

<LISTCONTROLLER minimumWidth="256" editability="Never"
alignsComponents="true" entity="Studio">

<TABLECONTROLLER>

<TABLECOLUMNCONTROLLER editability="Never"
valueKey="name"/>

<TABLECOLUMNCONTROLLER valueKey="budget"
formatPattern="#,##0.00;-#,##0.00"
editability="Never"
formatClass=
"com.apple.client.foundation.NSNumberFormatter"/>

</TABLECONTROLLER>

</LISTCONTROLLER>

</QUERYCONTROLLER>

</ACTIONBUTTONSCONTROLLER>

</MODALDIALOGCONTROLLER>

This XML describes the controller hierarchy for the Tutorial application’s select
Studio dialog. The XML tags—MODALDIALOGCONTROLLER,
ACTIONBUTTONSCONTROLLER, and so on— specify a controller class. The
XML attributes—reuseMode, disposeIfDeactivated, and so on—specify how to
configure the corresponding controller.
12/21/99 Draft. © Apple Computer, Inc. 45

Chapter 2 Understanding Direct to Java Client Applications
The EOXMLUnarchiver maps XML tags to particular EOController classes.
For example, the following table describes the mappings for the tags in the
select Studio dialog XML.

Note: You can change the controller class with which a particular XML tag
corresponds by writing a custom rule or by freezing XML. Writing custom rules
and freezing XML are discussed in the chapter “Customizing Direct to Java
Client Applications” (page 55).

As an XML unarchiver creates the controller hierarchy, it configures the
controllers according to the specified XML attribute values. For example, the
XML attributes for the EOTextField are valueKey and isQueryWidget:

<TEXTFIELDCONTROLLER valueKey="name" isQueryWidget="true"/>

These attributes correspond to the EOTextField methods setValueKey and
setIsQueryWidget. The valueKey="name" specifies that the text field controller
corresponds to a property named “name” (in this case, the name attribute of a
Studio object). The isQueryWidget="true" specifies that the text field is used
to get search criteria from the user and not to display and edit a property’s value

For information on the XML tags and attributes for the EOController classes,
see the EOApplication Framework Reference and the EOGeneration Framework
Reference.

XML Tag Controller Class

MODALDIALOGCONTROLLER EOModalDialogController

ACTIONBUTTONSCONTROLLER EOActionButtonsController

QUERYCONTROLLER EOQueryController

TEXTFIELDCONTROLLER EOTextFieldController

LISTCONTROLLER EOListController

TABLECONTROLLER EOTableController

TABLECOLUMNCONTROLLER EOTableColumnController
46 12/21/99 Draft. © Apple Computer, Inc.

Server Side XML Generation
Server Side XML Generation

When the controller factory sends a request to the server application, how does
the XML get generated on the server side? The work is split between the rule
system and a set of D2WComponent classes.

The rule system receives the controller factory’s requests. It evaluates rules to
see what D2WComponent subclass should generate the XML for the current
request, and then that component does the actual generation.

The Rule System
The rule system is a private system that’s provided by the
com.apple.yellow.directtoweb package (it’s the same rule system as the one used
by Direct to Web). You never need to access it directly; the
EOControllerFactory takes care of all interactions with the rule system.
Nevertheless, it’s important to understand the basics of the rule system and of
how the controller factory interacts with it.

All the information about how to configure a Direct to Java Client application is
stored in the form of rules. A rule has a key, a condition that must be true for the
rule to “fire”, a value, and a priority. The rule system evaluates requests as
follows:

1. The controller factory makes a request to the rule system by specifying a
key.

2. The rule system identifies the rules whose key is the same as the request
key.

3. It then evaluates the conditions of the matching rules to see which can fire.

4. Of the rules that can fire, the rule system fires the one with the highest
priority, returning the value for the rule’s key.

To evaluate requests, the rule system needs information about the state of the
client application. In addition to specifying a key, the controller factory also
provides key-value pairs of state information that the rule system can use to
evaluate rules’ conditions. For example, the rule system might need to know
what task the client application is attempting to perform (query, list, or form) and
the entity on which the client application is operating.
12/21/99 Draft. © Apple Computer, Inc. 47

Chapter 2 Understanding Direct to Java Client Applications
The controller factory packages all rule system input—the request key and the
key-value pairs of state information—into a dictionary known as a specification.
The following are examples of specifications:

• question = window, task = queryWindow
• entity = Movie, question = window, task = form
• entity = Studio, question = modalDialog, task = select

A specification always contains a “question” entry, which contains the request
key. The request keys in the above specifications are “window”, “window”, and
“modalDialog”, respectively.

The rule system stores the key-value pairs of state information in a
D2WContext object. The D2WContext’s whole purpose is to keep track of state
as a page is generated. Initially the D2WContext is filled with state information
provided by the controller factory. As the rule system processes the request,
however, the system adds more and more state.

D2WComponents
There’s a one-to-one correspondence between the Direct to Java Client
D2WComponent subclasses and the client side EOControllers. For example, on
the client side, there’s an EOTextFieldController. The corresponding server
side D2WComponent class is also named EOTextFieldController. The client
side class creates and manages user interface widgets, while the server side class
generates XML to describe how to configure the client side controller.

The Direct to Java Client D2WComponents have .wos with .html and .wod files,
which you can see in the DirectToJavaClient framework.

1. Navigate to the DirectToJavaClient framework (in
/System/Library/Frameworks on Mac OS X Server or in
$NEXT_ROOT/Library/Frameworks on Windows).

2. Navigate to the Resources folder.

In the Resources folder you can see the .wo files for all the Direct to Java
Client D2WComponents.

3. Double-click the EOBoxController.wo to open it in WebObjects Builder.
48 12/21/99 Draft. © Apple Computer, Inc.

Rule System Requests
The EOBoxController.html contains XML instead of the typical HTML, so
WebObjects Builder must open the component in source view mode.

Rule System Requests

The user interface of a Direct to Java Client application isn’t generated all at
once. Instead it’s generated piecemeal as each new window is activated.
Correspondingly, the controller factory makes rule system requests as each new
window is activated.

When an application starts up, the controller factory makes requests for the
following keys:

• availableSpecifications which tells the controller factory all the specifications
(dictionaries of request keys and state information) that are valid for the
application. A Direct to Java Client application caches this information to
avoid unnecessary round trips to the server later on as it generates windows.

• defaultSpecifications which tells the controller factory which windows to
open automatically once the application has finished initializing.

• actions which tells the controller factory what actions to add to the main
menu along with standard menu items such as Quit and Edit. For example,
you could add an action to open a form or query window.

Then, to generate the controller hierarchy for a window or dialog, the controller
factory makes requests for the following keys:

• window which returns the controller hierarchy XML for the window the
application will open next. In the request’s specification, the controller
factory must also provide state information (typically a task and optionally
an entity) so the rule system can determine what window is being
generated.

• modalDialog which returns the controller hierarchy XML for the dialog the
application will open next. In the request’s specification, the controller
factory provides a task and optionally an entity.

As the rule system generates the controller hierarchy XML, it can make
additional rule system requests. For example, to generate the XML for a select
12/21/99 Draft. © Apple Computer, Inc. 49

Chapter 2 Understanding Direct to Java Client Applications
Studio dialog, the rule system must know what the Studio entity’s query and list
properties are. This information is also stored in the form of rules.

Internal Rule System Requests
When the rule system evaluates a request from the controller factory, the actual
returned value is a D2WComponent, not the controller hierarchy XML. The
D2WComponent identified by the fired rule is responsible for generating the
controller hierarchy XML that the controller factory receives.

In the process of generating the XML, the D2WController object might require
the rule system to evaluate additional requests. The most significant of which
are:

• controller which identifies an entity level controller for a task and entity
identified in the request’s specification.The entity level controller defines a
part of a window or dialog’s user interface for performing the specified task
on the specified entity. For example, there’s an EOListController that uses
a table view to display a list of a particular entity’s objects.

• propertyKeys which identifies the property keys for a task and entity
identified in the request’s specification. The property keys are needed to
identify the additional controllers needed to display and manipulate an
object’s attributes and relationships.

Generating the Select Studio Dialog

As an example of how the Direct to Java Client D2WComponent classes work,
consider the select Studio dialog. Suppose a user clicks the Select button on a
Movie form window to select a new Studio for the Movie. The controller factory
then makes a request to the rule system with the following specification:

entity = Studio, question = modalDialog, task = select

The default rule fired to satisfy this request is:

• Condition (Lhs): true (No condition is specified, so condition is always true.)
• Key (Rhs key): modalDialog
• Value (Rhs value): EOModalDialog
• Priority: 0
50 12/21/99 Draft. © Apple Computer, Inc.

Generating the Select Studio Dialog
Thus, the D2WComponent that generates the XML for the select Studio dialog
is EOModalDialog. The EOModalDialog’s .wo contains:

EOModalDialog.html (XML)

<WEBOBJECT name=modalDialogController>

<WEBOBJECT name=actionWidgetController>

<WEBOBJECT name=taskController/>

</WEBOBJECT>

<WEBOBJECT name=content/>

</WEBOBJECT>

EOModalDialog.wod

modalDialogController: EOSwitchComponent {

componentNameKey = "modalDialogController";

d2wContext = localContext;

controllerType = "modalDialogController";

}

actionWidgetController: EOSwitchComponent {

componentNameKey = "actionWidgetController";

d2wContext = localContext;

controllerType = "actionWidgetController";

forceHorizontallyNotResizable = noValue;

forceVerticallyNotResizable = noValue;

isRootController = "false";

}

taskController: EOSwitchComponent {

componentNameKey = "controller";

d2wContext = localContext;

controllerType = noValue;

forceHorizontallyNotResizable = noValue;

forceVerticallyNotResizable = noValue;

isRootController = "false";

}

content: WOComponentContent {

}

The EOSwitchComponent you see in the .wod file is a private dynamic element
that makes a new rule system request using the componentNameKey as the
request key. So for example, consider the modalDialogController. The switch
component makes a new rule system request with the key
“modalDialogController” (the value of the componentNameKey binding).

Before making the request, however, the switch component updates the rule
system’s state information. Generally it creates a new D2WContext based on the
12/21/99 Draft. © Apple Computer, Inc. 51

Chapter 2 Understanding Direct to Java Client Applications
state information in the old D2WContext. That’s what the d2wContext binding
specifies. The remaining bindings (any binding other than componentNameKey
and d2wContext) identify additional state that the switch component adds to the
new D2WContext. For the modalDialogController, the additional state is simply
that the controllerType is “modalDialogController”.

In this manner, the XML hierarchy is built recursively using switch
components. One of the leaf nodes in the select Studio dialog is for an
EOTextFieldController who’s .wod file looks like this:

controller: WOXMLNode {

elementName = "TEXTFIELDCONTROLLER";

alignment = d2wContext.alignment;

alignmentWidth = d2wContext.alignmentWidth;

alignsComponents = d2wContext.alignsComponents;

className = d2wContext.className;

displayGroupProviderMethodName =
d2wContext.displayGroupProviderMethodName;

editability = d2wContext.editability;

enabledDisplayGroupProviderMethodName =
d2wContext.enabledDisplayGroupProviderMethodName;

enabledKey = d2wContext.enabledKey;

formatAllowed = d2wContext.formatAllowed;

formatClass = d2wContext.formatClass;

formatPattern = d2wContext.formatPattern;

highlight = d2wContext.highlight;

horizontallyResizable = d2wContext.horizontallyResizable;

iconName = d2wContext.iconName;

iconURL = d2wContext.iconURL;

isQueryWidget = d2wContext.isQueryWidget;

label = d2wContext.label;

labelAlignment = d2wContext.labelAlignment;

labelComponentPosition = d2wContext.labelComponentPosition;

minimumHeight = d2wContext.minimumHeight;

minimumWidth = d2wContext.minimumWidth;

prefersIconOnly = d2wContext.prefersIconOnly;

usesHorizontalLayout = d2wContext.usesHorizontalLayout;

usesLabelComponent = d2wContext.usesLabelComponent;

valueKey = d2wContext.propertyKey;

verticallyResizable = d2wContext.verticallyResizable;

}

content: WOComponentContent {

}

52 12/21/99 Draft. © Apple Computer, Inc.

Generating the Select Studio Dialog
A WOXMLNode is a component that generates XML for a node in the
controller hierarchy. It’s bindings tell the server side D2WComponent how to
configure it’s client side counterpart. For example, the binding names in the
EOTextFieldController .wod file correspond to XML attributes understood by
the client side EOTextFieldController. Correspondingly, the binding values are
the values assigned to those XML attributes. Most of the bindings are set to a
key path starting with “d2wContext”. These key paths refer to the state
information stored in the D2WContext.

For example, the client side EOTextFieldController uses the XML attribute
usesLabelComponent to specify whether it should generate a label for its text
field widget. The server side EOTextFieldController assigns a value to the
usesLabelComponent XML attribute based on state stored in the rule system’s
D2WContext.
12/21/99 Draft. © Apple Computer, Inc. 53

Chapter 2 Understanding Direct to Java Client Applications
54 12/21/99 Draft. © Apple Computer, Inc.

12/21/99 Draft. © Apple Computer, Inc.

Customizing
Direct to Java Client

Applications

Chapter 3

Customization Approaches
The default application generated by Direct to Java Client doesn't usually meet
all of an application’s requirements, so you generally need to customize an
application.

There are many approaches to customizing a Direct to Java Client application.
This chapter discusses each, describing how to use them, what they’re good for,
their maintenance costs, and their other advantages and disadvantages.

Customization Approaches

The following list describes the most common approaches you can take to
customize a Direct to Java Client application (from easiest and most
maintainable to most advanced and least flexible):

• Using the Assistant

This is the easiest way to customize a Direct to Java Client application.
The Direct to Web Assistant is an easy-to-use tool that is integrated into a
running client application. It allows you to perform the most common
customizations, directly test them while the application is running, and
save them in your project. To see the kind of customizations you can do
with the Assistant, work through “Getting Started with Direct to Java
Client” (page 11).

Use this technique to categorize entities as main, enumeration, or other; to
customize the query, list, form, and identify properties; to customize
windows, dialogs, and other widgets.

• Writing custom rules

All the information about how to configure a Direct to Java Client
application is stored in the form of rules. The default rules generate the
default Direct to Java Client application. Adding new rules that override or
supplement the default rules is an easy to maintain approach that doesn’t
interfere with your use of the Assistant.

This technique is useful to configure many different controllers with a
single simple rule. For more information on when and how to write custom
rules, see “Writing Custom Rules” (page 59).
12/21/99 Draft. © Apple Computer, Inc. 57

Chapter 3 Customizing Direct to Java Client Applications
• Freezing XML

Freezing XML allows you to explicitly state the result of a rule system
request. In other words, instead of using the rule system to provide XML,
the controller factory uses XML that you supply to generate the controller
hierarchy.

This approach is less flexible than the previous techniques. Changes to the
set of rules and to an application’s models don’t have an effect on the
controller hierarchy for the frozen XML. You have to edit the XML by
hand to keep it up to date with other project changes.

Nevertheless, it’s sometimes useful to freeze XML. For example, it can be
difficult to express a particular aspect of a controller hierarchy using rules.
Also, it’s sometimes easier to understand how to modify frozen XML than
it is to write new rules or source code.

You can also consider freezing XML for problematic windows whose XML
generation takes too long. If you do this, be sure to wait until the end of the
development process so you postpone the maintenance issues as long as
possible.

For more information on this technique, see “Freezing XML” (page 63).

• Freezing nib files

Freezing nib files allows you to completely specify user interface layout by
providing a nib file. This approach has many disadvantages: maintenance is
more difficult, platform specific layout is harder to achieve, EOModel
changes can't be picked up as easily, and so on. Consequently, freezing nib
files should be used very carefully.

Nevertheless, it’s sometimes useful to specify portions of the user interface
with frozen nib files. For example, non-engineers such as graphic and user
interface designers can modify nib files directly to get fine grained control
over the interface.

For more information on this approach, see “Freezing Nib Files” (page
68).
58 12/21/99 Draft. © Apple Computer, Inc.

Writing Custom Rules
Other Approaches
There are also more specialized ways to change the way Direct to Java Client
works. You use the following techniques to accomplish specific tasks:

• Adding custom actions

Direct to Java Client provides hooks you can use to introduce custom
commands into an application’s main menu. For more information, see
“Adding Custom Actions” (page 69).

• Implementing custom controller classes

This approach allows you to change the way an application performs a
particular task or to add new functionality to the default set. For more
information, see “Implementing Custom Controller Classes” (page 73).

• Implementing controller factory delegate methods

The EOControllerFactory allows you to modify many aspects of the
default behavior by providing a delegate. For example, you can use this
technique to alter the specifications the controller factory supplies to the
rule system, substitute a controller for the one returned by the rule system,
change the property keys used for a particular entity and task, and so on.

If you create a controller factory delegate, be careful to avoid implementing
unsecure functionality in the controller factory. Information that isn't
usually visible on the client should not be sent to the client only to use it in
the factory's delegate.

Writing Custom Rules

There are two components of Direct to Java Client that determine the user
interface of an application: controllers and rules. Controllers determine user
interfaces for performing specific operations, and rules determine how to
configure the controllers.

The influence rules have on an application range from very significant to very
subtle. For example, a rule can specify what controller to use, substituting a
custom controller that introduces a completely new user interface for a task. Or
a rule can merely specify parameters that control a controller’s behavior in small
ways, such as setting a minimum size for a widget.
12/21/99 Draft. © Apple Computer, Inc. 59

Chapter 3 Customizing Direct to Java Client Applications
The easiest way to customize a Direct to Java Client application is to add new
rules. This is how the Assistant works. As you configure an application with the
Assistant, it’s creating rules to achieve the effects you want. The priority of the
rules created by the Assistant is higher than the priority of the default rules. So
when you configure an application with the Assistant, the corresponding
Assistant-created rules fire instead of the default rules.

If the Assistant can’t perform the customizations you want, you can create rules
by hand with an application called the Rule Editor. When you create your own
rules, you specify the priority. Therefore, you determine whether your custom
rules take precedence over other rules.

Using the Rule Editor
Suppose you want to right align all text fields that contain numeric data. The
Assistant isn’t sophisticated enough to allow you to do this. However, you can
configure your application to have this alignment behavior by writing a custom
rule. The procedure is as follows:

1. Start the Rule Editor.

On Mac OS X Server, choose WebObjects Rule Editor in the Apple
menu.

On Windows, choose Rule Editor in the WebObjects program group.

When the Rule Editor starts, it opens a new, untitled rule file.

2. Click New to create a new rule.

3. Set the rule’s condition, key, and value.

Note that the Rule Editor uses formal rule terminology to refer to parts of a
rule. Formally, a rule is expressed as follows:

(condition) => key = value

The condition of a rule is known as the left hand side of the rule (lhs), the
key is known as the right hand side key (rhs key), and the value is known
as the right hand side value (rhs value). For example, a rule that right aligns
numeric text fields can be expressed as follows:
60 12/21/99 Draft. © Apple Computer, Inc.

Writing Custom Rules
(not (attribute = nil)) and ((attribute.valueClassName =
'NSNumber') or (attribute.valueClassName = 'NSDecimalNumber'))
=> alignment = “Right”

In this rule, the condition or lhs is:

((not (attribute = nil)) and ((attribute.valueClassName =
'NSNumber') or (attribute.valueClassName = 'NSDecimalNumber')))

The key or rhs key is “alignment”, and the value or rhs value is “Right.”

4. Set the rule’s priority to 50.

The priority of the Assistant’s rules is 100. Use a lower priority than 100 if
you want the Assistant’s rules to be preferred to your own rules, or a higher
priority otherwise. Don’t create rules that have the same priority as the
Assistant’s rules, because this can confuse the Assistant.

The priority of the default rules is 0, so both the Assistant’s and your
custom rules are preferred to the default rules.

5. Set the rule’s assignment class to Assignment.

In the Class pop-up list on the right side of the window, select Assignment.
This class is selected by default, so you shouldn’t actually have to change
it. Other assignment classes allow you to programmatically determine rule
results. For more information, see Developing WebObjects Applications with
Direct to Web.

6. Name the rule file d2w.d2wmodel and save it in the Resources folder of your
application’s project.

Rules are stored in files with the extension .d2wmodel.

In addition to your custom rule file, there are two other rule files that are
used by an application: a file containing the default rules and a file
containing the Assistant’s rules. The default rules are also in a file named
d2w.d2wmodel, but the default rule file is located in the Resources folder of
the DirectToJavaClient framework. The other rule file is the Assistant’s
rule file. It is located in the Resources folder of an application’s project
along with the custom rules file, but it has the name user.d2wmodel.

You can look at the Assistant rules by opening the user.d2wmodel; simply
double-click the file, which opens it in the Rule Editor. However, don't
12/21/99 Draft. © Apple Computer, Inc. 61

Chapter 3 Customizing Direct to Java Client Applications
edit the Assistant’s file because the Assistant writes out the file whenever it
saves, removing rules it doesn’t create itself. By storing your custom rules
in the d2w.d2wmodel file, you can write custom rules and still use the
Assistant.

When to Write Custom Rules
Custom rules are used for a variety of tasks, including the following:

• Freezing XML (see “Freezing XML” on page 63)
• Freezing nibs (see “Freezing Nib Files” on page 68)
• Introducing custom controllers (see “Implementing Custom Controller

Classes” on page 73)

However, the most common reason to write custom rules is to configure many
different controllers with one simple rule. Right justifying numeric text fields as
described earlier in this section is a good example. It’s possible to use the
Assistant to accomplish the same thing as the custom rule, but using the
Assistant has a drawback in this scenario: Each text field has to be configured
individually, which is time consuming and error prone. Not only is it easy to
overlook a text field; but if the model changes in the future, you have to
remember to configure any newly added numeric text fields.

As another example, suppose you want to set the minimum width of all an
application’s windows. Again this is something you can do in the Assistant, but
you have to do it individually for each window. The following single rule can
accomplish the same thing:

• Condition (Lhs): controllerType = 'windowController'
• Request key (Rhs key): minimumWidth
• Value (Rhs value): 512
• Priority: 50

In this rule, it’s necessary to specify what kind of controller the rule system is
working on. Many different controllers have the attribute minimumWidth, so to
limit this rule’s scope to setting the minimum width of only windows, you must
restrict the rule to firing only when the rule system is working on window
controllers.

The rule system’s D2WContext stores the type of controller it’s working on and
makes the type available with the key controllerType. The possible values for
controllerType are:
62 12/21/99 Draft. © Apple Computer, Inc.

Freezing XML
• windowController
• modalDialogController
• entityController
• widgetController
• tableController
• groupingController
• dividingController
• actionWidgetController

Note: You can use any state information stored in the D2WContext in the
condition (lhs) of a rule. For more information on the entries in a D2WContext,
see the section “Server Side XML Generation” (page 47).

Trouble Shooting Custom Rules

• If your custom rules don’t seem to be firing...

Restart the server application and try again. The rule system caches the
results of its rules, so you have to restart the server application before
changes to a rule file are in effect.

• If rule results aren’t consistent...

Ensure that the significant keys of the rule model are complete. For more
information, see Developing WebObjects Applications with Direct to Web.

Freezing XML

Recall that the client side controller factory generates the user interface for a
window at a time. To create a window, the controller factory makes a rule system
request, specifying the window’s task (form, query, or select), the window type
(window or modal dialog), and the entity (if required by the task). The rule
system fires a rule that outputs a D2WComponent, which in turn provides XML
that describes the controller hierarchy for the current window.

By default, the rule system returns a D2WComponent that generates the XML
dynamically. However, you can create a custom D2WComponent that returns
static or frozen XML. This is called “freezing XML”.

The basic steps for freezing XML for a particular window are:
12/21/99 Draft. © Apple Computer, Inc. 63

Chapter 3 Customizing Direct to Java Client Applications
1. Create a D2WComponent to supply the frozen XML.

2. Use the Assistant to dynamically generate the XML and then save it to a
file.

3. Copy the frozen XML and paste it into your D2WComponent’s .html file.

4. Modify the XML file to specify the customizations you want.

5. Write a rule that uses your D2WComponent to supply the frozen XML.

The most common reason to freeze XML is to specify a custom user interface
layout that is difficult or impossible to express with rules. For example, suppose
that you want to modify the select Studio dialog to put the name query text field
in a box. This is very easy to specify using frozen XML. The procedure is
described in the following sections.

Creating a D2WComponent
You create a D2WComponent the way you’d create any other component for a
regular WebObjects application.

1. In your project, select the WebComponents suitcase.

2. Choose File New in Project.

The New File panel opens. Ensure that the Web Components suitcase is
open.

3. Type StudioSelect for the name of the component.

A good naming convention for D2WComponents that provide frozen XML
is to use the entity name concatenated with the task name. By doing so,
components are grouped in Project Builder by entity name.

4. Click OK.

The WebObjects Component Wizard window opens.

5. Choose None for “Available Assistance” and Java for the Language, and
click Finish.

6. Change the component’s superclass to D2WComponent.
64 12/21/99 Draft. © Apple Computer, Inc.

Freezing XML
Edit the StudioSelect.java file. First change the component’s superclass
from WOComponent to D2WComponent. Since D2WComponent is
provided by the directtoweb package, you also need to add an import line:

import com.apple.yellow.directtoweb.*;

Getting the Default XML
After creating your D2WComponent, you need to replace the contents of its
.html file with the XML it should return to the controller factory. You don’t have
to create all the XML by hand. Usually you start with the XML that’s generated
by default and modify that to suit your needs. To get the default XML, you use
the Assistant.

1. Start the server and client sides of your application and open the Assistant.

2. Select the XML tab.

In the form of specifications, the Assistant lists all the requests it can send
to the rule system and displays the XML for the selected specification.

Recall that a specification is a dictionary that specifies all the input to the
rule system for it to satisfy a request. A specification includes the request
key (under the key “question”) and other state information such as task
and entity.

When you select a specification in the XML pane, the Assistant makes the
corresponding request to the rule system and then displays the resulting
XML.

3. Select the specification for the select Studio dialog.

The Assistant orders the specifications by entity name, question, and task;
so you can easily locate the select Studio dialog specification by scanning
the list for the Studio specifications. The specification for the select Studio
dialog looks like this:

entity = Studio, question = modalDialog, task = select

When you select the specification, the Assistant updates the text area to
contain the corresponding XML.

4. Save the XML to a file.
12/21/99 Draft. © Apple Computer, Inc. 65

Chapter 3 Customizing Direct to Java Client Applications
Click the “Save To XML” button on the XML pane. A “Save XML”
window opens. You only need to copy the XML from this file, so you can
save it to any directory with any file name. After copying the XML, you can
delete the file.

5. Copy the frozen XML and paste it into your D2WComponent’s .html file.

Modifying the XML
Once you have the default XML as a starting point, you modify it in two ways:

• First delete the parts of the XML that you don’t need to freeze.

The default XML describes the controller hierarchy for an entire window.
You can freeze the XML for the entire window, but you shouldn’t if you
don’t need to. If you let Direct to Java Client generate as much of the
window as possible, you can still use the Assistant to configure those parts,
which is an advantage.

• Edit the parts of the XML to describe the user interface you want.

Suppose the default XML for the select Studio dialog is the following:

<MODALDIALOGCONTROLLER reuseMode="ReuseIfInvisible"
disposeIfDeactivated="false" typeName="question = modalDialog,
task = select, entity = Studio">

<ACTIONBUTTONSCONTROLLER widgetPosition="Top">

<QUERYCONTROLLER entity="Studio" minimumWidth="256"
alignsComponents="true">

<TEXTFIELDCONTROLLER valueKey="name"
isQueryWidget="true"/>

<LISTCONTROLLER minimumWidth="256" editability="Never"
alignsComponents="true" entity="Studio">

<TABLECONTROLLER>

<TABLECOLUMNCONTROLLER editability="Never"
valueKey="name"/>

<TABLECOLUMNCONTROLLER valueKey="budget"
formatPattern="#,##0.00;-#,##0.00"
editability="Never"
formatClass=
"com.apple.client.foundation.NSNumberFormatter"/>

</TABLECONTROLLER>

</LISTCONTROLLER>

</QUERYCONTROLLER>

</ACTIONBUTTONSCONTROLLER>

</MODALDIALOGCONTROLLER>
66 12/21/99 Draft. © Apple Computer, Inc.

Freezing XML
To modify the XML, perform the following:

1. Delete the XML for the modal dialog and for the button row.

To put a box around the name query fields, you don’t need to freeze the
XML for the modal dialog controller (the MODALDIALOGCONTROLLER tag) or
for the row of buttons (the ACTIONBUTTONSCONTROLLER tag). So first delete
the first two and the last two lines of the XML.

2. Add a box controller around the text field.

The following lines add a box controller:

<BOXCONTROLLER verticallyResizable="false"
usesTitledBorder="true" color="255,0,0" font="+0,Italic">

</BOXCONTROLLER>

Put the opening BOXCONTROLLER tag above the lines for the text
field controller and the closing BOXCONTROLLER tag below it. This
inserts an EOBoxController in the controller hierarchy as a subcontroller of
the EOQueryController and the supercontroller of the
EOTextFieldController.

The XML attributes of the BOXCONTROLLER tag specify that the box
should not be vertically resizable, the box should have a title, and that the
title’s color is red and its font is Italic. The EOBoxController derives its
title from its subcontroller, the text field controller. In this case, the box
uses the text field controller’s property, name. For more information on how
the box controller works, see the EOBoxController class specification in
the EOGeneration Framework Reference.

3. Remove the label from the text field.

Because you configured the box to have a title, the text field doesn’t need a
label. To remove the label, change the TEXTFIELDCONTROLLER
line to the following:

<TEXTFIELDCONTROLLER isQueryWidget="true" valueKey="name"
usesLabelComponent="false"/>

When you’re done with the changes, the resulting XML should be:

<QUERYCONTROLLER entity="Studio" minimumWidth="256"
alignsComponents="true">
12/21/99 Draft. © Apple Computer, Inc. 67

Chapter 3 Customizing Direct to Java Client Applications
<BOXCONTROLLER usesTitledBorder="true"
verticallyResizable="false" color="255,0,0" font="+0,Italic">

<TEXTFIELDCONTROLLER isQueryWidget="true" valueKey="name"
usesLabelComponent="false"/>

</BOXCONTROLLER>

<LISTCONTROLLER minimumWidth="256" editability="Never"
alignsComponents="true" entity="Studio">

<TABLECONTROLLER>

<TABLECOLUMNCONTROLLER editability="Never"
valueKey="name"/>

<TABLECOLUMNCONTROLLER valueKey="budget"
formatPattern="#,##0.00;-#,##0.00"
editability="Never"
formatClass=
"com.apple.client.foundation.NSNumberFormatter"/>

</TABLECONTROLLER>

</LISTCONTROLLER>

</QUERYCONTROLLER>

Writing a Custom Rule to Use Your Component
Once you’ve got a component that provides your customized XML, you need a
custom rule that tells the rule system to use your component. The rule looks like
this:

• Condition (Lhs): ((task = 'select') and (entity.name = 'Studio'))
• Key (Rhs key): controller
• Value (Rhs value): StudioSelect (the name of the D2WComponent subclass

that provides the custom XML)
• Priority: 50

This rule is fired when the controller factory tries to generate the
EOQueryController for the select Studio dialog. By default, the rule system
would use numerous D2WComponents to generate the XML for the query
controller. But with this custom rule, the rule system uses your custom
StudioSelect D2WComponent to provide the frozen XML.

Freezing Nib Files

Freezing nib files provides even more control over an application’s user interface
than freezing XML does. Using this technique, you create your own nib files in
Interface Builder and instruct Direct to Java Client to use your nibs to create the
user interface instead of dynamically generating it.
68 12/21/99 Draft. © Apple Computer, Inc.

Adding Custom Actions
To create the nib, use Project Builder’s “New in Project” command to add a new
nib file to the ClientSideJava subproject. In the WebObjects Java Client
Interface Wizard, choose EOF Application Skeleton. In your new nib, set the
file’s owner class to the name of the controller class that loads the nib. Also, be
sure that the nib file’s editing context and display group are connected.

EOEntityController introduces the ability to create a user interface from a nib
file, so you can use frozen nib files only with EOEntityController subclasses
(typically EOFormController, EOListController, EOQueryController, and
sometimes custom subclasses). To tell an entity controller to use a nib file
instead of dynamic generation, you use the entity controller’s XML attribute
archiveName.

When you use a frozen nib file, the application doesn’t need the same controllers
as it does when it dynamically generates the user interface. Since the nib file
describes all of the widgets in the user interface, the application doesn’t need
any controllers whose sole purpose is to create and configure widgets. For
example, EOTextFieldControllers aren’t necessary because they do nothing
more than create and configure a text field widget. Since the nib file takes over
this responsibility, the controller hierarchy corresponding to a frozen nib
shouldn’t have any EOTextFieldControllers. It is, however, possible to use
subcontrollers to generate portions of a user interface. Their components are
added to the component of the controller in the usual way.

Remember that freezing interface files has many disadvantages: maintenance is
more difficult, platform specific layout is harder to achieve, model changes aren’t
automatically incorporated, and so on. Therefore, carefully weigh the cost of
freezing nib files against the benefits before using this approach.

Adding Custom Actions

Direct to Java Client provides an easy way to add new actions to an application’s
main menu. As an example of how to do this, this section describes adding an
“About WebObjects” window that is activated by a command in the Tools
menu.

Adding an Additional Action
Direct to Java Client uses EOAction objects to describe the actions associated
with menu commands and buttons.
12/21/99 Draft. © Apple Computer, Inc. 69

Chapter 3 Customizing Direct to Java Client Applications
The default Direct to Java Client rules provide hooks for adding to an
application’s actions—the commands available in the application’s main menu.
Recall that when an application starts up, it makes a rule system request with
the request key availableActions. By default, the system populates an
application’s menu with commands to Quit, open the Query Window, and so on.

To add custom commands to the menu, you create a rule with the key
additionalActions. The value should be a D2WComponent that generates XML
to describe an EOAction. When the availableActions rule is fired, any rule with
the request key additionalActions is also fired, and the resulting EOAction is
added to the set of default actions.

To add the “About WebObjects” command to the Tools menu, do the following:

1. Write a custom rule that specifies the following:

• Condition (Lhs): empty (the rule should always fire)
• Request key (Rhs key): additionalActions
• Value (Rhs value): AboutWebObjectsActions
• Priority: 50

The value, AboutWebObjectsActions is a D2WComponent that generates
the XML for the custom action.

2. Write the AboutWebObjectsActions D2WComponent

AboutWebObjectsActions.html

<WEBOBJECT name=aboutWebObjectsAction/>

AboutWebObjectsActions.wod

aboutWebObjectsAction: EOSwitchComponent {

componentName = "EOHelpWindowAction";

d2wContext = localContext;

task = "aboutWebObjects";

multipleWindowsAvailable = "false";

}

Creating a Corresponding Window
The AboutWebObjectsActions.wod file defines a new task, aboutWebObjects.
When the switch component for the aboutWebObjectsAction makes its rule
system request, it adds an entry to the rule system’s D2WContext specifying the
70 12/21/99 Draft. © Apple Computer, Inc.

Adding Custom Actions
task as aboutWebObjects. In other words, when a user clicks the “About
WebObjects” command, the rule system knows that the current task is
aboutWebObjects. So, to open the corresponding window, you simply write a
custom rule whose condition specifies the task as aboutWebObjects:

1. Write a custom rule that specifies the following:

• Condition (Lhs): task = ‘aboutWebObjects’
• Request key (Rhs key): window
• Value (Rhs value): AboutWebObjects
• Priority: 50

The value, AboutWebObjects, is a D2WComponent that generates the
XML for the custom window.

2. Write the AboutWebObjects D2WComponent

AboutWebObjects.html

<DIALOGCONTROLLER disposeIfDeactivated="true"
label="About WebObjects" reuseMode="AlwaysReuse"
typeName="aboutWebObjects">

<STATICICONCONTROLLER canResizeHorizontally="false"
canResizeVertically="false" iconName="PoweredByWebObjects"/>

</DIALOGCONTROLLER>

For this simple example, the corresponding AboutWebObjectsActions.wod
is empty.

(Optional) Specifying Additional Available Specifications
Recall that when an application starts up, it makes a rule system request with
the request key availableSpecifications. The result is a list of all the rule system
requests the client can make. The requests are expressed as EOSpecification
objects, which identify a request key and state information. For more
information on specifications, see the section “Server Side XML Generation”
(page 47).

The default Direct to Java Client rules provide hooks for adding to an
application’s available specifications. The process is similar to that for adding to
an application’s available actions. You create a rule with the key
additionalAvailableSpecifications. The value should be a D2WComponent that
generates XML to describe an EOSpecification. When the
12/21/99 Draft. © Apple Computer, Inc. 71

Chapter 3 Customizing Direct to Java Client Applications
availableSpecifications rule is fired, any rule with the request key
additionalAvailableSpecifications is also fired, and the resulting EOSpecification
is added to the set of default specifications.

1. Write a custom rule that specifies the following:

• Condition (Lhs): empty (the rule should always fire)
• Request key (Rhs key): additionalAvailableSpecifications
• Value (Rhs value): AboutWebObjectsSpecifications
• Priority: 50

The value, AboutWebObjectsSpecifications is a D2WComponent that
generates the XML for the custom action.

2. Write the AboutWebObjectsSpecifications D2WComponent

AboutWebObjectsSpecifications.html

<WEBOBJECT name=aboutWebObjectsSpecification/>

AboutWebObjectsSpecifications.wod

aboutWebObjectsSpecification: EOSwitchComponent {

componentName = "EOSpecification";

question = "window";

task = "aboutWebObjects";

}

This task is optional, but it usually improves performance. It delays the rule
system request for the XML description of the window until the window is
really needed (the “About WebObjects” command has been clicked). If you
don’t specify an additional available specification, the client application makes a
rule-system request when the command for the action is created. It requests the
XML simply to verify that the window is actually present. However, since all
windows described in the available specifications are assumed to be accessible,
the rule system request is delayed until the window is opened by the end user.

XML Tags and Attributes for EOActions
Most of the action classes used by Direct to Java Client are private. However,
you can still use them to add custom actions. The following table describes the
72 12/21/99 Draft. © Apple Computer, Inc.

Implementing Custom Controller Classes
types of actions provided by Direct to Java Client and the corresponding XML
tags.

Implementing Custom Controller Classes

You can implement your own subclasses of EOController to use on the client
side. To make your class known to Direct to Java Client, use the XML attribute
className. You can specify your class with custom rules or by changing frozen
XML. For example, the following frozen XML substitutes the
CustomTextFieldController class for EOTextFieldController:

<TEXTFIELDCONTROLLER valueKey="name"
className="customapplication.client.CustomTextFieldController"/>

Action XML Tag Description

Insert INSERTACTION Opens a window for inserting an object
of a particular entity. The
corresponding command is added to
the Document menu.

Open OPENACTION Opens a window for an object of a
particular entity. The corresponding
command is added to the Document
menu.

Query QUERYACTION Opens a query window for searching
for objects of a particular entity. The
corresponding command is added to
the Document menu.

Help
Window

HELPWINDOWACTION Activates a window for a particular
task. The corresponding command is
added to the Help menu.

Tool
Window

TOOLWINDOWACTION Activates a window for a particular
task. The corresponding command is
added to the Tools menu.

Window WINDOWACTION Activates a window for a particular
task.

Application APPLICATIONACTION An action that is sent to the application
object.

Controller
Hierarchy

CONTROLLERHIERARCHYACTION An action that is dispatched to
controller hierarchy.
12/21/99 Draft. © Apple Computer, Inc. 73

Chapter 3 Customizing Direct to Java Client Applications
The EOXMLUnarchiver maps the XML tag TEXTFIELDCONTROLLER
to the EOTExtFieldController by default. Specifying your custom text field
controller in the className attribute tells the EOXMLUnarchiver to use your
text field instead.
74 12/21/99 Draft. © Apple Computer, Inc.

	GETTING STARTED WITH DIRECT TO JAVA CLIENT
	Contents
	Preface
	Getting Started with Direct to Java Client
	Creating a Direct to Java Client Project
	What’s in the Template Project?

	Building and Running the Application
	If the Client Application Doesn’t Start
	If the Application Has No Windows

	Examining the Application
	Main, Enumeration, and “Other” Entities
	Main Entities
	Enumeration Entities
	“Other” Entities

	Customizing the Application

	The Assistant
	If the Assistant Command Isn’t Available
	Disabling the Assistant

	Configuring Entities
	Configuring Properties
	Configuring Widgets
	Typical Workflow
	Examining the Panes of the Query Window
	Configuring the Studio Pane of the Query Window
	Configuring the Customer Pane of the Query Window
	Configuring the Unit Pane of the Query Window
	Configuring the Video Pane of the Query Window

	Examining Form Windows
	Configuring the Customer Form Window
	Configuring the Unit Form Window

	Configuring Windows
	Changing the Title of the Query Window

	Other Assistant Settings
	Advantages of Direct to Java Client

	Understanding Direct to Java Client Applications
	Architectural Overview
	Controller Hierarchy
	Controllers
	Creating the Controller Hierarchy
	Unarchiving XML

	Server Side XML Generation
	The Rule System
	D2WComponents

	Rule System Requests
	Internal Rule System Requests

	Generating the Select Studio Dialog

	Customizing Direct to Java Client Applications
	Customization Approaches
	Other Approaches

	Writing Custom Rules
	Using the Rule Editor
	When to Write Custom Rules
	Trouble Shooting Custom Rules

	Freezing XML
	Creating a D2WComponent
	Getting the Default XML
	Modifying the XML
	Writing a Custom Rule to Use Your Component

	Freezing Nib Files
	Adding Custom Actions
	Adding an Additional Action
	Creating a Corresponding Window
	(Optional) Specifying Additional Available Specifications
	XML Tags and Attributes for EOActions

	Implementing Custom Controller Classes

