

Deploying WebObjects Applications



 Apple Computer, Inc.

© 1999 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except to make
a backup copy of any documentation
provided on CD-ROM.

The Apple logo is a trademark of Apple
Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh, and
WebObjects are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.

Enterprise Objects is a trademark of
Apple Computer, Inc.

NeXT, the NeXT logo, OPENSTEP,
Enterprise Objects Framework,
Objective–C, and WEBSCRIPT are
trademarks of NeXT Software, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG and/or
its subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

ORACLE is a registered trademark of
Oracle Corporation, Inc.

SYBASE is a registered trademark of
Sybase, Inc.

UNIX is a registered trademark in the
United States and other countries,
licensed exclusively through X/Open
Company Limited.

Windows NT is a trademark of
Microsoft Corporation.

All other trademarks mentioned
belong to their respective owners.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal
rights, and you may also have other
rights which vary from state to state.

iii

Table of Contents

Introduction 5

Related Documentation 5

WebObjects HTTP Adaptors 7

CGI Adaptors 7

API-based Adaptors 8

Installable HTTP Adaptors 8

Configuration Files 9

Automatic Discovery of WebObjects App Servers 10

Web Server Adaptor 10

wotaskd 11

Web Server Adaptor Configuration File Format 11

XML Format in Full 11

Sections 13

Attributes 13

Sample Configuration File 15

Configuration File DTD 16

Installing Applications 19

Deploying With Monitor 21

Setting Up the Monitor Application 21

Starting Up Monitor 21

Setting Up Monitor 22

Deploying on Multiple Hosts 24

Adding a Host to Monitor 25

Adding and Configuring an Application 27

Creating Application Instances 29

Starting and Stopping an Application Instance 30

Setting Command-Line Arguments in Monitor 32

Starting Up Applications From the Command Line 37

Monitor Option Summary 40

Global Configuration 40

Host Configuration 42

Application Configuration Options 43

Instance Configuration Options 44

Table of Contents

iv

Administrative Tasks 47

Monitoring Application Activity 47

Obtaining Information From Monitor 47

Logging and Analyzing Application Activity 50

Logging and Analyzing Adaptor Activity 50

Accessing the Application Statistics Page 51

Performance Testing 54

Recording a Session 54

Playing Back a Session 55

Improving Performance 57

Automatic Scheduling 59

Load Balancing 62

Increasing the Listen Queue Depth 65

Making Monitor and wotaskd Fail-safe 67

Starting Monitor and wotaskd on Windows NT 67

Using woservice on Mac OS X Server 67

The WebObjects Application URL 69

Introduction

5

Introduction

To a large extent, WebObjects needs little attention once it is installed.
However, administrators of a WebObjects site still need to know how to
accomplish certain tasks, such as installing applications, creating and running
instances of them, and configuring HTTP adaptors. In addition, you’ll probably
be concerned about improving your site’s performance. The tools and
techniques described in this document help administrators complete the tasks
required to deploy and maintain WebObjects applications. Because each
deployment can be different, the document gives suggestions and options for
making your deployment successful.

This document begins by providing essential background information on
WebObjects HTTP adaptors and how they are used to distribute requests.
Then it describes how to use an application called Monitor to monitor and
administer your deployment. Finally, it describes the basic administrative tasks
are and tells you how to perform them.

Related Documentation

Other WebObjects documents might be of interest to system administrators:

•

Installation Guide

: Includes system requirements, compatibility information,
and location of the WebObjects Home Page. (The

Installation Guide

 is
printed and included with the WebObjects CD-ROM or can be
downloaded from NeXTanswers; it is not online).

•

Post-Installation Instructions

: Describes how to verify the installation and
troubleshoot if WebObjects applications do not run.

• Installation instructions for supported HTTP adaptors can be found in

InstallationInstructions.html

, which is located in

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/

. Instructions for
building HTTP adaptors from provided source code are located in

BuildingInstructions.html

 in the same directory.

WebObjects HTTP Adaptors

7

WebObjects HTTP Adaptors

A key part of WebObjects administration involves dealing with adaptors. This
section provides a little background material on what a WebObjects HTTP
adaptor is, how it works, and how you can configure it to suit your needs.

A WebObjects HTTP adaptor (called

WebObjects adaptor

 or sometimes

HTTP
adaptor

) routes client requests processed by an HTTP server to WebObjects
applications and returns the response to the server, which sends them back to
the client. WebObjects makes available several adaptors, of which only one can
be active with a particular server at a time. Every transaction with a WebObjects
application uses the currently active adaptor.

The relationships between adaptor and application are, potentially, many-to-
many. Multiple instances of the same WebObjects application can run on the
same machine or on a variety of machines and communicate with the same
adaptor. In addition, multiple HTTP servers can be running on the same
machine or on different machines; each server can have its own adaptor, each
with its own constellation of application instances. Although there can be only
one active HTTP adaptor per HTTP server, an application can concurrently
communicate with other types of adaptors, such as an adaptor that uses
Distributed Objects or a secure-socket adaptor.

There are two general types of HTTP adaptors, CGI adaptors and API-based
adaptors. When WebObjects is installed, the CGI adaptor is made active by
default. To use an API-based adaptor, you must specifically activate it.
Activating the API-based adaptor deactivates the CGI adaptor for a particular
server. To activate an API-based adaptor, build and install it using the
instructions found in

BuildingInstructions.html

 and

InstallationInstructions.html

(both are located in

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/

).

CGI Adaptors

The CGI adaptor is an executable file named

WebObjects

—

WebObjects.exe

 on
Windows NT—which resides in the host HTTP server’s

cgi-bin

 or

scripts

directory. This adaptor is available on all supported platforms. It is generic in
that it works with any HTTP server conforming to the Common Gateway
Interface (CGI).

WebObjects HTTP Adaptors

8

API-based Adaptors

API-based adaptors are WebObjects adaptors based on APIs specific to a
particular web server. The NSAPI adaptor, which is based on the Netscape
Server 3.5 API, is available on all supported platforms except the Mach-based
Mac OS X Server. A WebObjects adaptor based on Microsoft’s Internet
Information Server API (ISAPI) is also supported on Windows NT. WebObjects
supports an adaptor based on Apache’s module API on UNIX platforms
(including the Mac OS X Server). In addition, Netscape’s WAI API is provided
as an example project, although is not supported; the WAI adaptor is suitable for
all platforms except Mac OS X Server.

The API-based adaptors have a performance advantage over CGI adaptors in
that the associated server can dynamically load the adaptor; servers using CGI
adaptors, on the other hand, spawn a new adaptor process for each request and
kill the process after the response is provided.

Installable HTTP Adaptors

When WebObjects is installed, the adaptors listed in the table below, when
appropriate to the platform, are put in

NEXT_ROOT

/Library/WebObjects/Adaptors

;
source code for all adaptors is written to

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors

. Note that only the
CGI and Apache adaptors can be found on Mac OS X Server, since neither
Netscape’s nor Microsoft’s servers have been ported to this platform. Also, no
ISAPI binary file is written to Solaris or HP-UX platforms (only source code).

The following table summarizes the adaptors provided with WebObjects.

Adaptor Server /Library/WebObjects/
Location

Executable

CGI many Adaptors/CGI WebObjects[.exe]

NSAPI Netscape 3.51
FastTrack (httpd)
Enterprise (https)

Adaptors/NSAPI WebObjects-NSAPI.dll
or
WebObjects-NSAPI.so

ISAPI Microsoft Internet
Information Server

IIS 1.0
IIS 2.0 (NT Server 4.0)
IIS 3.0 (NT Server 4.0)
Peer Web (NT WS 4.0)

Adaptors/ISAPI WebObjects-ISAPI.dll

WebObjects HTTP Adaptors

9

You can find installation instructions for supported HTTP adaptors in

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/InstallationInstructio
ns.html

. To build HTTP adaptors from provided source code, refer to

NEXT_ROOT

/Developer/Examples/WebObjects/Source/Adaptors/BuildingInstructions.
html

.

Configuration Files

Web server adaptors obtain configuration information from

wotaskd

 via HTTP
requests. Web server adaptors default to

wotaskd

 on

localhost

, or, when

wotaskd

cannot be found, the adaptor gets its configuration information from

NEXT_ROOT

/Local/Library/WebObjects/Configuration/WebObjects.xml

(

NEXT_ROOT

 is
defined at system installation time on Windows NT systems; on Mac OS X
Server and similar systems, it is always

/System

.) This file tells the adaptor what
applications are (or should be) running and allows the adaptor to balance
transactions among different instances of the same application. This
configuration file isn’t present on your system by default; if you need it, you’ll
need to create this file by hand following the format outlined in “Web Server
Adaptor Configuration File Format” (page 11).

In general, you want one configuration file per site. That means if you have
multiple machines running WebObjects, you should access all WebObjects
applications through a single machine that is running the HTTP server and that
contains the configuration file.

If you have multiple HTTP servers running on a single machine, they all share
the configuration file. If you want each server to have its own configuration file,
you can install one

WebObjects.xml

 file in each server’s configuration directory if
you a using an API adaptor, or in each server’s

cgi-bin

 or

scripts

 directory if you
are using the CGI adaptor.

The Monitor application also maintains a configuration file for the purposes of
crash recovery; in the event that Monitor fails for any reason, when restarted it

Apache 1.3 Adaptors/Apache mod_WebObjects.o

WAI Netscape 3.5 servers Adaptors/WAI (must build example
project)

Adaptor Server /Library/WebObjects/
Location

Executable

WebObjects HTTP Adaptors

10

reads the file

NEXT_ROOT

/Local/Library/WebObjects/Configuration/SiteConfig.conf

 in
order to restore its state.

Automatic Discovery of WebObjects App Servers

This beta release includes support for the automatic discovery of systems
running WebObjects by web server adaptors. This should remove the necessity
to administer the web servers (beyond the initial adaptor installation).

When the web server adaptor starts up, and at intervals determined by the
configuration refresh interval setting, the adaptor sends out a multicast request
in an effort to discover which WebObjects app servers are available. Each app
server’s

wotaskd

 process replies with its URL

(http://me.myself.com:1085)

.
The adaptor constructs a list of these URLs and then polls each in turn to get
the full site configuration information.

If the configuration refresh interval is 10 seconds, the discovery broadcast
happens every 100 seconds (the discovery broadcast occurs a factor of 10 less
frequently).

To enable this automatic discovery mechanism, you need to make changes in
both the web server adaptor ‘s configuration file and on each machine running

wotaskd

.

Web Server Adaptor

The adaptor sends discovery requests out on a particular multicast “channel”
(IP address + port). The defaults are:

Default IP Address:

239.128.14.2

Default port:

1085

The default multicast address is within the “Adminstratively Scoped Domain.”
That is, it’s within the range of addresses intended for internal use inside
organizations.

For Apache, place the following in your

apache.conf

 (the final value—10 in this
instance—indicates the configuration refresh interval):

WebObjectsConfig webobjects://239.128.14.2:1085 10

WebObjects HTTP Adaptors

11

For CGI, either recompile, or set the

WO_CONFIG_URL

 environment variable as
above.

Note:

With Apache, youÕll need the

SetEnv

 command, which comes with the
ÒenvÓ module. Note that Mac OS X Server doesnÕt switch this module on by
default.

For NSAPI, place something like the following in your

obj.conf

:

Standard:

Init fn=”WebObjects_init” root=”/opt/ns-home/docs”
config=”http://localhost:1085”

Multicast:

Init fn=”WebObjects_init” root=”/opt/ns-home/docs”
config=”webobjects://239.128.14.2:1085”

For ISAPI, add the following to the registry:

\\SOFTWARE\\Apple\\WebObjects\\Configuration\\CONF_URL
webobjects://239.128.14.2:1085

wotaskd

By default

wotaskd

 listens for multicast discovery requests on IP address

239.128.14.2

. If you’ve configured the web server adaptor to send such
requests to a different IP address, you must also set the

WOConfigMulticastAddress

user default on machines running

wotaskd

. You
must to do this as root/administrator on the given machine (the user running

wotaskd

), or modify the startup script to provide it as a command-line option:

defaults write wotaskd WOConfigMulticastAddress 239.128.14.2

Web Server Adaptor Configuration File Format

This section details the new web server adaptor configuration file format. Prior
to this release, the configuration file was formatted as a property list. For this
release, is formatted using XML.

XML Format in Full

The following is a complete definition of the XML-format configuration file,
showing all possible attributes and values.

WebObjects HTTP Adaptors

12

<!DOCTYPE WebObjectsAdaptorConfiguration SYSTEM “woadaptor.dtd”>

<adaptor
retries=

NUMBER

scheduler=[“random”|”roundrobin”|”loadaverage”]
dormant=

NUMBER

protocol=”http”
transport=[“socket”|”fsocket”|”winsock”|”nssocket”]
redir=

URL

xyzzy=

STRING

confinterval=

NUMBER

timeout=

NUMBER
sendTimeout= NUMBER
recvTimeout= NUMBER
cnctTimeout= NUMBER
poolSize= NUMBER
sendBufSize= NUMBER
recvBufSize= NUMBER
urlVersion=[“3”|”3.5”|”4”]

>
</adaptor>
<application

name=STRING
retries= NUMBER
scheduler=[“random”|”roundrobin”|”loadaverage”]
dormant= NUMBER
protocol=”http”
transport=[“socket”|”fsocket”|”winsock”|”nssocket”]
redir= URL
timeout= NUMBER
sendTimeout= NUMBER
recvTimeout= NUMBER
cnctTimeout= NUMBER
poolSize= NUMBER
urlVersion=[“3”|”3.5”|”4”]

>
<instance

id= NUMBER
port= NUMBER
host= STRING
dormant= NUMBER
protocol=”http”
transport=[“socket”|”fsocket”|”winsock”|”nssocket”]
redir= URL
timeout= NUMBER
sendTimeout= NUMBER
recvTimeout= NUMBER
cnctTimeout= NUMBER
poolSize= NUMBER
urlVersion=[“3”|”3.5”|”4”]
refuseNewSessions=[“YES”|”NO”]

>
</instance>
</application>

WebObjects HTTP Adaptors

13

Sections
The configuration file is divided into three sections, as follows:

<adaptor>

In this optional section, specify global default values for applications and
instances. Attribute values defined here apply to global adaptor behavior
and apply to all applications.

The “error” attribute is used to redirect requests for which no application
can be found.

<application>

Required attribute: “name”.

Attribute values defined here specify load balancing behavior and default
values for instances of this application.

<instance>

Required attributes: id, port, host

Attribute values defined here specify communication options for this
instance and override anything specified at the application.

Attributes
The various attributes used throughout the configuration file are defined as
follows:

retries=NUMBER

Specifies the number of times to try a request against an application (trying
several instances) before returning an error.

scheduler=[“random”|”roundrobin”|”loadaverage”]

Specifies which load balancing algorithm to use to select an application
instance

dormant=NUMBER

WebObjects HTTP Adaptors

14

If an instance doesn't respond, do not try to contact it for this many
subsequent requests

protocol=”http”

The RPC protocol to use to the application. Currently only HTTP is
supported.

transport=[“socket”|”fsocket”|”winsock”|”nssocket”]

The socket API used to contact an instance. “socket” indicates simple,
cross platform, unbuffered sockets. “fsocket” specifies sockets buffered
using fopen(), fread(), fwrite() & such (valid on Unix only). “winsock”
specifies Win32 socket API (valid on NT only). “nssocket” indicates
Netscape's NSAPI socket API (NSAPI only).

redir=URL

If an error occurs during request processing, return a redirect (302) HTTP
response with URL as the location

xyzzy=STRING

Return a page reporting some adaptor details when a request for this
application arrives

confinterval=NUMBER

How often, in seconds, the adaptor should check to see if the configuration
has changed

timeout=NUMBER

Default for sendTimeout, recvTimeout and cnctTimeout

sendTimeout=NUMBER

Timeout, in seconds, before reporting a failed send() to an instance

recvTimeout=NUMBER

Timeout, in seconds, before reporting a failed recv() from an instance

WebObjects HTTP Adaptors

15

cnctTimeout=NUMBER

Timeout, in seconds, before reporting a failed connect() to an instance

poolSize=NUMBER

Number of persistent connections to maintain with an instance

sendBufSize=NUMBER

Size of the TCP/IP socket send buffer (in bytes) that’s used for adaptor-to-
web-app communication

recvBufSize=NUMBER

Size of the TCP/IP socket receive buffer (in bytes) that’s used for adaptor-
to-web-app communication

urlVersion=[“3”|”3.5”|”4”]

The WebObjects version to use for URL parsing and formatting

Sample Configuration File
<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE adaptor SYSTEM “woadaptor.dtd”>

<adaptor>

 <application name=”HelloWorld”

 retries=”5”

 loadbalance=”roundrobin”

 dormant=”300”

 protocol=”http”

 transport=”fsocket”

 redir=”http://www.apple.com”>

 <instance id=”1” host=”localhost” port=”2001”

 refuseNewSessions=”NO”

 sendTimeout=”3”

 recvTimeout=”10”>

 </instance>

 <instance id=”2” host=”localhost” port=”2002”

 refuseNewSessions=”YES”>

 </instance>

 </application>

WebObjects HTTP Adaptors

16

 <application name=”Movies”

 urlVersion=”3.5”

 retries=”1”

 loadbalance=”random”

 protocol=”http”

 transport=”socket”>

 <instance id=”3” host=”localhost” port=”1001”

 refuseNewSessions=”NO”>

 </instance>

 <instance id=”4” host=”localhost” port=”1003”

 refuseNewSessions=”NO”>

 </instance>

 </application>

</adaptor>

Configuration File DTD
<!-- Can actually incorporate status info in here -->

<!ELEMENT adaptor (application)*>

<!ATTLIST adaptor

 xyzzy CDATA #IMPLIED

 confinterval CDATA #IMPLIED

 retries CDATA #IMPLIED

 loadbalance (“random”|”roundrobin”|”loadaverage”) #IMPLIED

 dormant CDATA #IMPLIED

 protocol CDATA “http” #IMPLIED

 transport (“socket”|”fsocket”|”winsock”|”nssocket”) #IMPLIED

 redir CDATA #IMPLIED

 timeout CDATA #IMPLIED

 sendTimeout CDATA #IMPLIED

 recvTimeout CDATA #IMPLIED

 cnctTimeout CDATA #IMPLIED
sendBufSize CDATA #IMPLIED
recvBufSize CDATA #IMPLIED

 poolsize CDATA #IMPLIED

 urlVersion (“3”| “3.5” | “4”) #IMPLIED>

<!ELEMENT application (instance)*>

<!ATTLIST application name STRING #REQUIRED

 retries CDATA #IMPLIED

 loadbalance (“random”|”roundrobin”|”loadaverage”) #IMPLIED

 dormant CDATA #IMPLIED

 protocol CDATA “http” #IMPLIED

 transport (“socket”|”fsocket”|”winsock”|”nssocket”) #IMPLIED

WebObjects HTTP Adaptors

17

 redir CDATA #IMPLIED

 timeout CDATA #IMPLIED

 sendTimeout CDATA #IMPLIED

 recvTimeout CDATA #IMPLIED

 cnctTimeout CDATA #IMPLIED
sendBufSize CDATA #IMPLIED
recvBufSize CDATA #IMPLIED

 poolsize CDATA #IMPLIED

 urlVersion (“3”| “3.5” | “4”) #IMPLIED>

<!ELEMENT instance>

<!ATTLIST instance id CDATA #REQUIRED port CDATA #REQUIRED host CDATA
#REQUIRED

 refuseNewSessions (“YES”|”NO”) #IMPLIED

 count CDATA “-1” #IMPLIED

 dormant CDATA #IMPLIED

 protocol CDATA “http” #IMPLIED

 transport (“socket”|”fsocket”|”winsock”|”nssocket”) #IMPLIED

 redir CDATA #IMPLIED

 timeout CDATA #IMPLIED

 sendTimeout CDATA #IMPLIED

 recvTimeout CDATA #IMPLIED

 cnctTimeout CDATA #IMPLIED
sendBufSize CDATA #IMPLIED
recvBufSize CDATA #IMPLIED

 poolsize CDATA #IMPLIED

 urlVersion (“3”| “3.5” | “4”) #IMPLIED>

Installing Applications

19

Installing Applications

You can use the developer application Project Builder to deploy WebObjects
applications. When an application is ready to be deployed, do the following in
Project Builder:

1. Click the inspector button to open the Build Attributes Inspector. In the
Install in field, type the path to the directory in which the application is to
be installed, such as $(LOCAL_LIBRARY_DIR)/WebObjects/Applications .

If you’re installing a framework, type
$(LOCAL_LIBRARY_DIR)/Library/Frameworks

Note: You’ll need write permission for the directory into which the application is
to be installed in order for the build to succeed.

2. If your project contains web server resources, go to the Makefile.preamble
file under Supporting Files. Uncomment the following macro:

INSTALLDIR_WEBSERVER

Note: You’ll need write permission for the WebServer’s doc root in order for such
a “split install” to succeed.

3. In the Project Build panel, click the check-mark button to bring up the
Build Options panel.

4. Choose install as the build target, and close the Build Options panel.

5. Click the Build button to start the build and installation process.

Assuming that your application is named MyApp.woa , and that you installed your
application in LOCAL_LIBRARY_DIR/WebObjects/Applications , the following
directories will be created:

LOCAL_LIBRARY_DIR/WebObjects/Applications/MyApp.woa

MyApp[.exe]

Resources/

WebServerResources/

DOC_ROOT/WebObjects/MyApp.woa

WebServerResources/

Installing Applications

20

When the client tries to contact an application, the adaptor first looks for a
configuration file that names the application, and then for an executable in
DOC_ROOT/WebObjects and NEXT_ROOT/Library/WebObjects/Applications . Thus, you
can install the entire directory under DOC_ROOT/WebObjects . However, doing so
presents a security problem if you have scripted components, since any client
can access any file under the document root. This means that if you install
scripted components under the document root, you’re exposing source code to
outside users.

Instead, it is recommended that you do a “split install”, installing most of the
application in NEXT_ROOT/Library/WebObjects/Applications and install only the web
server resources under the document root. It is also recommended that you
install the application directly in the DOC_ROOT/WebObjects directory rather than
in a subdirectory. If you install in a subdirectory, your application will still run
but won’t find image files unless you explicitly provide the application’s base
URL (WOApplicationBaseURL). For more information, see “Starting Up
Applications From the Command Line” (page 37).

Deploying With Monitor

21

Deploying With Monitor

Monitor is an application that facilitates the administration of local and remote
deployments of WebObjects applications. Itself a WebObjects application,
Monitor provides a simple graphical user interface for performing common
administrative tasks such as:

• Adding and removing instances of applications
• Starting and stopping the execution of application instances
• Automatically restarting an instance upon failure
• Sending electronic mail to administrators when an instance fails
• Scheduling instances to be automatically started and stopped at specified

intervals
• Configuring instances to be run on remote hosts

Monitor’s interface reflects three distinct configurable entities: applications,
instances, and hosts. An “application” represents a WebObjects application
abstractly. An “instance” represents a specific instance of an application on a
particular host; an instance is either running or stopped. A “host” represents a
server available to run instances of WebObjects applications.

Setting Up the Monitor Application
When WebObjects is installed, the Monitor application (Monitor.woa) is put in
NEXT_ROOT/Library/WebObjects/Applications/ . Monitor’s images are also installed in
your web server’s document root under DOC_ROOT/WebObjects/Monitor.woa . Verify
that both these paths exist if you have problems starting Monitor.

Depending on your platform and on other factors related to your deployment,
you might want to configure your server to launch Monitor automatically when
the server starts up. To do this on Windows NT, open the Control Panel and
click the Services icon. Look for a service named “Apple WebObjects Monitor.”
You can configure this service to start up automatically.

Starting Up Monitor
To start up Monitor, either double-click the Monitor executable
(NEXT_ROOT/Library/WebObjects/Applications/Monitor.woa/Monitor [.exe]) from the
Windows NT Explorer or the Mac OS X Server Workspace Manager, or execute
it from within a terminal window (use the Bourne Shell program on Windows

Deploying With Monitor

22

NT). You can run the Monitor application on any machine that is running
wotaskd .

When the Monitor application launches, it usually opens the default web
browser and displays the Applications Page by default:

Note that because Monitor is itself a WebObjects application, once Monitor is
running you can access it from any client browser. Also note that Monitor can be
configured to require a password before client access is granted; if Monitor has
been so configured, you’ll need to enter the proper password (and click the
Login button) before you’ll see the Applications Page.

Setting Up Monitor
Your first probable task as administrator is to verify and change the configuration
settings that Monitor chooses by default, particularly the URL used to locate the
adaptor. To do this, complete the following steps:

1. Click the Configure button. This brings up the Global Configuration page:

Deploying With Monitor

23

2. Click the “HTTP Server and WebObjects Adaptor” item. Doing so causes
the display of the following page:

3. Enter the adaptor’s URL in the URL To Adaptor field.

This URL should identify the WebObjects adaptor running on the web
server from which clients will access applications.

4. Click Update Adaptor URL.

Deploying With Monitor

24

Setting the adaptor URL is the minimal setup task required for administering
applications on the local machine. You might want to fine-tune your site’s
configuration and take advantage of other features such as e-mail notifications.

Deploying on Multiple Hosts
Creating a deployment environment sometimes involves more than one HTTP
server and many WebObjects application instances running on each server. To
make several hosts available to Monitor, a daemon (or, on NT, a service) called
wotaskd must be running on each host. With wotaskd running the Monitor
application can remotely administer a host machine. When WebObjects is
installed on a particular host, wotaskd is automatically configured to run
whenever that host machine is restarted.

Although there is no technical reason why you cannot have multiple copies of
Monitor running, because Monitor maintains some information locally it is
possible for multiple Monitors managing a common set of hosts to get out of
sync. Thus, there ought to be only one copy of Monitor running at a time
managing a given set of hosts.

The following diagram depicts one possible WebObjects deployment scenario:

Deploying With Monitor

25

Machine 1 acts as the web server and load balancer between all the application
servers running on Machines 2, 3, and 4. Monitor should be running on the same
host as the web server and the WebObjects adaptor, and is responsible for
maintaining the WebObjects.conf file.

Adding a Host to Monitor
Before you can configure WebObjects applications on a remote machine, you
should let the Monitor application know about the remote machine. To do this,
complete the following steps:

1. Click the Hosts button in the Monitor banner. The following page is
displayed:

Machine 2

WebObjects Application

WebObjects Application

wotaskd

WebObjects Application

Machine 1

HTTP Server

WebObjects Adaptor

Monitor

WebObjects.conf

wotaskd

Machine 3

WebObjects Application

WebObjects Application

wotaskd

WebObjects Application

Machine 4

WebObjects Application

WebObjects Application

wotaskd

WebObjects Application

Deploying With Monitor

26

2. Enter the name of a host in the “Add host” field. It must be a valid host
name assigned to an IP address (that is, it must have a DNS entry, and must
be running wotaskd).

3. Click Add Host.

After adding two hosts, Monitor will look something like this:

Deploying With Monitor

27

Adding and Configuring an Application
To add a new application to Monitor, click the Applications button in the
banner. This brings you to the Applications page, which lists all currently-
configured applications. In the Add Application text field, enter the name of a
new application; this should be the same name as the application project, which
is the wrapper name minus the .woa . For the ThinkMovies example application,
the entered string would be “ThinkMovies”.

When you enter the name of your application and click the Add Application
button, Monitor displays the Application Configuration page:

Deploying With Monitor

28

Enter the full path to the WebObjects application executable in the Path field,
or use the Path Wizard to select the application’s executable file (the Path
Wizard allows you to browse the filesystem of any configured host computer and
select the application’s executable). For ThinkMovies you might enter a string
similar to the following example:

/WebObjects/ThinkMovies/ThinkMovies.woa/ThinkMovies.exe

Be sure that the path specifies the built WebObjects application’s executable,
including the .exe extension if on Windows NT. You cannot start an instance of
an application when the wrong path is specified; Monitor will display “Launch

Deploying With Monitor

29

error - path invalid” if you attempt to start such an instance. Click the Update
for New Instances button on the bottom of the form to save your changes.

The other fields on this form accept arguments to use when the application
instance is run. For descriptions of these fields and as well as the checkboxes and
the Update for New and Existing Instances button, see “Setting Command-
Line Arguments in Monitor” (page 32) and “Monitor Option Summary” (page
40).

Creating Application Instances
Each application instance you create initially adopts the defaults provided in the
Application Configuration page for the application; you can later customize
individual instances. To create an instance,

1. Click the button labeled “Detail View” in the upper right corner of the
Application Configuration page.

The application’s Detail View page is then displayed:

2. Click the Add Instance button to create a new instance of your application.

Deploying With Monitor

30

A new page appears that gives you a choice of hosts to add your instance to
along with the number of instances to add.

3. Select the host on which the application resides from the pop-up menu (if
the application doesn’t reside on the selected host, Monitor will display a
“Launch error - invalid path” message when you attempt to start the
instance).

Unless you previously configured hosts in Monitor, there should only be
one item in the pop-up menu.

4. Click the Add Instance button.

After clicking this button you are returned to the Detail View page, where you
can now see a new row in the table showing the status of the instance you just
created. From this page you can start the application instance.

Starting and Stopping an Application Instance
You start an instance from the Application Detail View page. To get to this page,
click Applications in the top banner, then click the Detail View button in the
row of the instance you wish to start. Or, from the Application Configuration
page for an application, you can get to the Application Detail View page by
clicking the Detail View button in the upper right corner of the page. In either
case, a page similar to the following should then appear:

Deploying With Monitor

31

The button that looks like a power switch in the Status column reports the
current state of your instance: ON or OFF. The rest of the table reports other
information about your instance. For more details, see “Obtaining Information
From Monitor” (page 47).

1. Click the power switch.

The Detail View page is refreshed and the power switch appears in an
animated toggle state, signifying that Monitor is trying to start your
instance.

2. After a few seconds, click the Refresh button.

Monitor will refresh the Detail View page and with success your instance
will be running and the power switch will be on.

If successful, this procedure starts an instance of the application (note that it isn’t
displayed in your web browser). When one or more instances are running, the
name of the application above the table of instances turns green, becoming a
hyperlink that, when clicked, access an instance of the application. In addition,
the host name and port number for each instance also become hyperlinks;
clicking one of these accesses a specific instance.

Deploying With Monitor

32

If after completing the startup procedure, the instance’s power switch is off, it
might be due to one of the following reasons:

• Your instance failed to start and exited; check the instance’s error messages
in the web server’s error log to find out why.

• Your instance is still starting up and Monitor has not yet received
notification of a successful start. Wait a few seconds and refresh the display.

• Monitor couldn’t start your instance because the path was wrong or the
executable did not exist. In this case, an error message will be displayed
above the instances table when the display is refreshed.

Monitor starts an instance of your application by creating a new task with the
executable; it passes along all the appropriate arguments from the Instance
Configuration page for that instance. Monitor starts instances of your application
by first locating a running wotaskd daemon or service on the appropriate host. If
it finds a wotaskd , it passes the application arguments to it. If it cannot contact a
wotaskd , it does not start the application.

Clicking the Status switch for an instance when it is ON stops the instance.
Clicking the Start All button causes Monitor to attempt to start all application
instances that are currently stopped; clicking the Stop All button causes Monitor
to stop all instances that are currently running.

Setting Command-Line Arguments in Monitor
When you use Monitor to start an instance of an application, it uses a set of
arguments to initialize that instance. Most of these arguments are the command-
line arguments described in “Starting Up Applications From the Command
Line” (page 37). You can change an applications arguments, even for all
instances that are currently configured and running, by doing one of the
following:

• New application : Display the Applications page by clicking the Applications
button in the Monitor banner, enter the name of the application in the Add
Application field, and then click the Add Application button.

• Existing application : Display the Application Configuration page for the
application by clicking the Config button next to the application in the
Application’s page (which you can get to by clicking the Applications button

Deploying With Monitor

33

in the Monitor banner). Click the arrow next to the New Instance Default
Arguments option of the Application Configuration page.

The following form is displayed:

Deploying With Monitor

34

3. Specify the command-line options you want your application’s instances to
have. The most common options, which can be changed by simply clicking
checkboxes or entering values in fields, are:

For command-line arguments not included in the above table, enter them
as “-key value” pairs, separated by spaces, in the Additional Command-line
Arguments field. See “Starting Up Applications From the Command Line”
(page 37) for a complete list of command-line arguments.

4. If you want the new settings “pushed” to existing instances, click the
checkbox in the gray area next to each option you want pushed, then click
the Update for New and Existing Instances button. The existing instances

Field Option

Name The name of the application, which is the WebObjects wrapper
name minus the “.woa” extension.

Path The full path to the WebObjects application’s executable (including
the “.exe” extension on Windows NT).

Auto Recover Specifies whether Monitor should try to restart the instance if the
instance fails.

Minimum Active
Sessions

Specifies the minimum number of active sessions allowed.

Caching enabled Command-line option -WOCachingEnabled. Requests that the
application cache component definitions (templates) instead of
reparsing HTML and declaration files upon each new HTTP request.

Adaptor Command-line option -WOAdaptor. The WOAdaptor class name.

Adaptor threads Command-line option -WOWorkerThreadCount. The maximum
number of worker threads for a multithreaded application. Setting
this count to 0 results in single-threaded request dispatch.

Listen Queue Size Command-line option -WOListenQueueSize. The depth of the listen
queue If the application is expected to experience “spikes” in its
processing load, consider increasing the listen queue depth (althou
increasing this setting does not necessarily improve performance or
allow the application to server more requests at sustained high
loads).

Debugging
Enabled

Command-line option -WODebuggingEnabled. Controls whether
the application prints debugging messages to standard error duing
startup.

Deploying With Monitor

35

will have to be restarted for new options to take effect. To make the changes
effective for new instances only, click the Update for New Instances button
instead.

Setting Command-Line Arguments for a Specific Instance
The above procedure affects all new or existing instances of a WebObjects
application. Monitor also allows you to set the command-arguments for specific
instances. To navigate to the form for doing this, go to the Detail View page for
an application and click the Config button next to an instance. A list of instance-
specific options is displayed; from the list choose “Application Start-
Up/Command-line arguments.” The following form is exposed:

Deploying With Monitor

36

Enter the new arguments and click Save Changes in App Starting. Unlike the
previous form, this one allows you to specify a specific port, but it doesn’t allow
you to set Monitor-specific options (such as auto-recover). Moreover, the
changes that you make here do not take effect until the instance is restarted.

Deploying With Monitor

37

Starting Up Applications From the Command Line
The syntax for starting a WebObjects application from a command shell window
is:

AppExecutable [-WODebuggingEnabled YES |NO]
[-WOAutoOpenInBrowser YES |NO]
[-WOMonitorEnabled YES|NO [-WOMonitorHost hostname|subnet]]
[-WOCachingEnabled YES |NO]
[[-WOAdaptor adaptorClass] [-WOPort portNumber]
[-WOListenQueueSize listenQueueSize]]
[-WOWorkerThreadCount int] [-WOOtherAdaptors plist]
[-WOCGIAdaptorURL path] [-WOApplicationBaseURL path]
[-WOFrameworksBaseURL path] [-NSProjectSearchPath plist]
[-WOIncludeCommentsInResponses YES |NO] [-WOSessionTimeout seconds]

The AppExecutable variable represents the name of the WebObjects application
executable to run. You should enter the command from the directory containing
the executable. Compiled applications should either be located in
NEXT_ROOT/Local/Library/WebObjects/Applications (recommended) or under
DOC_ROOT/WebObjects . For scripted applications, go to the application’s .woa
directory and execute WODefaultApp , which is located in
NEXT_ROOT/Library/WebObjects/Executables .

The following table describes each command-line option:

 Option Description

-WODebuggingEnabled
YES|NO

Sets whether the application prints messages to standard
error during startup. By default, this option is enabled.
WOApplication, WOComponent, and WOSession define a
debugWithFormat: method (debugString in Java). This method is
similar to logWithFormat: except that it only prints messages
if the WODebuggingEnabled option is on.

-WOAutoOpenInBrowser
YES|NO

Sets whether the application automatically opens a web
browser window to the application’s URL (starting up the
browser if necessary). By default, this option is enabled.

-WOMonitorEnabled
YES|NO

Enables or disables monitoring. By default, this option is
disabled. If this option is enabled and you manually start
an application, the application tries to find a running
WOMonitor.

Deploying With Monitor

38

-WOCachingEnabled
YES|NO

Requests that the application cache component
definitions (templates) instead of reparsing HTML and
declaration files upon each new HTTP request. By default,
this option is disabled.

-WOAdaptor adaptorClass The WOAdaptor class name. The default is
WOMultiThreadedAdaptor.

-WOPort portNumber The socket port used to connect to an application
instance. This option is independent of the adaptor option.
A portNumber of -1 means use an arbitrary high port
number; however, you cannot specify -1 as the value on
the command line; to set the value to -1, you must use the
defaults command.

-WOListenQueueSize
listenQueueSize

The depth of the listen queue. The default is 5, meaning
that while the application process is handling a request, up
to five other requests can be in the socket buffer before the
socket starts refusing them. If the application is expected
to experience “spikes” in its processing load, it might be a
good idea to increase the listen queue depth. Increasing
this default does not necessarily improve performance or
allow the application to serve more requests at sustained
high loads. For more information, see “Increasing the
Listen Queue Depth” (page 65).

-WOWorkerThreadCount int Maximum number of worker threads for a multithreaded
application. The default worker thread count is 8. Setting
this count to 0 results in single-threaded (WebObjects 3.5-
style) request dispatch.

-WOOtherAdaptors plist Use this option to attach additional adaptors (other than
the one specified by -WOAdaptor) to the application. The plist
option is an array of dictionaries written in property-list
format.

-WOCGIAdaptorURL
path

The absolute URL that points to the WebObjects CGI
adaptor.

 Option Description

Deploying With Monitor

39

You can also set these options programmatically or by using the defaults utility.
Be careful when setting options programmatically. Most options require

-WOApplicationBaseURL
aURL

The URL where your application’s resources are located
under the web server’s document root. You may place your
application anywhere under the document root. This
option is required when you’re using a web server. If you
install the application in a subdirectory of
DOC_ROOT/WebObjects, you should set this to point to the
exact location of the application directory. If you don’t set
the application’s base URL, your application can still run
but it cannot find image files and other web server
resources.

-WOFrameworksBaseURL
aURL

The location of frameworks under your document root if
you’re using a web server. The default is
/WebObjects/Frameworks (as it was in release 3.5). All
frameworks that your application uses must be in this
directory.

-NSProjectSearchPath
pList

An array of paths in which your project directories are
located. (The array is written in property-list format.) The
default is a single item: “..”
If you specify this option, WebObjects looks in the
locations you specify for a project that has the same name
as the application or framework being loaded. If it finds a
project, it uses the images, scripted components, and
other resources from the project directory instead of from
the application or framework’s main bundle. This way, you
can modify images and scripted components in your
project and test them without having to rebuild the
application.

-WOIncludeComments
InResponses YES|NO

Sets whether the HTML parser includes comments from
the components’ HTML files in the responses. The default
is YES.

-WOSessionTimeout
timeout

Sets the timeout interval for sessions. By default, they now
time out after 3600 seconds.

-WORecordingPath path Enables session recording and sets the location where the
recording file is to be stored. Automatically creates a
directory, if one doesn’t exist. An extensions of “.rec” is
appended to the specified path. See “Recording a
Session” (page 54) for more information.

 Option Description

Deploying With Monitor

40

knowledge of the environment in which the application runs, and the
appropriate values change if you move the application to a different machine.
For example, you should never set the WOPort option programmatically.

Notes
The web server uses the DOC_ROOT and ApplicationName arguments to build
URLs, so you should use forward slashes as opposed to a backslashes when
specifying these arguments.

As a convenience, you could create a shell script that starts WebObjects
applications when the server machine is booted. You could also create another
shell script that you can run at the command line to start applications.

Monitor Option Summary
Many of Monitor’s options are listed on pages with triangles to the left of them.
Clicking the triangle causes a section (a form with fields, buttons, and so on) to
be displayed.

Global Configuration
The Global Configuration page allows you to configure aspects of Monitor and
your site that are not specific to an application. It lists the options described
below. Click the Configure button in the Monitor banner to display the Global
Configuration page.

Monitor Password
In this section specify a password that is required to access Monitor. Monitor
does not have a password set by default. After you set a password Monitor
prompts users for it each time they access the application.

HTTP Server and WebObjects Adaptor
You use this section primarily to specify the URL that points to the adaptor on
your deployment’s web server. Monitor uses this URL to construct more URLs
that direct the administrator to running instances, the WOStats page, and other
destinations.

Deploying With Monitor

41

Adaptor Settings
This section is where you specify global default values for applications and
instances (many of these settions can be overridden for individual applications
or instances). Attribute values defined here apply to global adaptor behavior and
apply to all applications.

Load balancing scheme : Specifies which load balancing algorithm to use to select
an application instance.

Transport : The socket API used to contact an instance. “socket” indicates
simple, cross platform, unbuffered sockets. “fsocket” specifies sockets buffered
using fopen(), fread(), fwrite() & such (valid on Unix only). “winsock” specifies
Win32 socket API (valid on NT only). “nssocket” indicates Netscape's NSAPI
socket API (NSAPI only).

Adaptor stats string : Return a page reporting some adaptor details when a
request for this application arrives.

Configuration read interval : How often, in seconds, the adaptor should check to
see if the configuration has changed.

Retries : Specifies the number of times to try a request against an application
(trying several instances) before returning an error.

Redirection URL : If an error occurs during request processing, return a redirect
(302) HTTP response with the specified URL as the location.

Timeout : Default for Send Timeout, Receive Timeout, and Connect Timeout.

Send timeout : Timeout, in seconds, before reporting a failed send() to an
instance.

Receive timeout : Timeout, in seconds, before reporting a failed recv() from an
instance.

Connect timeout : Timeout, in seconds, before reporting a failed connect() to an
instance.

Connection pool size : Number of persistent connections to maintain with an
instance.

Click Change Adaptor Settings to cause changes in the above settings to take
effect.

Deploying With Monitor

42

Auto-Recover Settings
This configuration option allows you to have an additional level of recovery
outside the per-instance Auto-Recover feature. This feature restarts application
instances after they fail. When wotaskd decides that an instance has crashed, it
checks the instance’s auto-recover setting to see if it should start a new instance.
With the global auto-recover option enabled, when wotaskd is started (perhaps
when a machine is booted) it will locate all instances configured to be auto-
recovered and start them if they are not running. This allows you to have a
machine that has failed to boot up, start wotaskd , and then have wotaskd start all
the appropriate applications.

When this setting is on, wotaskd perform this check on regular intervals. If
wotaskd fails or you change an instance’s Auto-Recover setting, wotaskd
launches the appropriate instances within 45 seconds.

E-Mail Notification
In this section you specify an SMTP server that Monitor uses to send e-mail to
a set of addresses when application instances fail unexpectedly. In order for
Monitor to send e-mail it requires the name or IP Address of an SMTP server.

Detail View
In this section you can set the interval at which the Detail View page is
automatically refreshed.

Host Configuration
This page displays the hosts that Monitor is currently aware of, the status of each
host, and whether that host currently can run instances of WebObjects
applications. It also displays the number of instances currently running on each
host. To access the Host Configuration screen, click the Hosts button in the
Monitor banner.

A host machine can run WebObjects applications if it has the WebObjects
Deployment packages installed and is running wotaskd . In order to run an
instance on a host remote from Monitor, you must add the host in this section
(see “Deploying on Multiple Hosts” on page 24). You should use alphanumeric
DNS names to refer to hosts. If you enter the name of a host that does not exist,
it can take Monitor up to 30 seconds to respond that it cannot contact that host.

Deploying With Monitor

43

Application Configuration Options
The Application Configuration page allows you to configure general aspects of
an application. It lists the options described below. To access the Application
Configuration page, click the Applications button on the Monitor banner, then
click the Config button next to any application.

New Instance Defaults
In this section you can specify a set of default arguments that Monitor uses when
it creates new instances of the application. Most of these arguments are the
normal command-line options used to configure an instance of a WebObjects
application (see “Starting Up Applications From the Command Line” (page 37)
for descriptions of these options). Two options, Auto Recover and Minimum
Active Sessions, are not command-line options but are deployment settings that
Monitor uses for determining starting and stopping policy.

“Setting Command-Line Arguments in Monitor” (page 32) discusses how to set
launch options using Monitor.

Scheduling
This section enables the administrator to configure an application’s pool of
instances (you must have more than one instance running) to conform to a
staggered schedule of starting, running for a period of time, begin refusing new
sessions, and shutting down when the minimum active session threshold is
reached.

See “Automatic Scheduling” (page 59) for instructions on setting the shutdown
and startup schedules for all instances of an application as well as specific
instances.

E-Mail Notifications
If the SMTP server has been set in Monitor’s Global Configuration page (see
“Global Configuration” on page 40) then an application can specify a list of
electronic-mail addresses to send an mail to when an instance fails
unexpectedly. This list should be comma delimited (for example,
“jdoe@somewhere.com, mpublic@else.com, foo@bar.com”).

The mail message contains the application name, host, port, and date and time
of the failure.

Deploying With Monitor

44

To turn off the email feature, delete all addresses from the text field and click
Update.

Load Balancing and Adaptor Settings
This section is where you specify default values for individual applications
(many of these settions can be overridden for individual instances). These
settings override the corresponding settings made for a given host.

Load balancing scheme : Specifies which load balancing algorithm to use to select
an application instance.

Failover mode : Allows you to specify what should happen when an error occurs:
report the error to the client, retry the same instance, or try another instance
(which one is determined by the load balancing scheme).

Transport : The socket API used to contact an instance. “socket” indicates
simple, cross platform, unbuffered sockets. “fsocket” specifies sockets buffered
using fopen(), fread(), fwrite() & such (valid on Unix only). “winsock” specifies
Win32 socket API (valid on NT only). “nssocket” indicates Netscape's NSAPI
socket API (NSAPI only).

Timeout : Default for Send Timeout, Receive Timeout, and Connect Timeout.

Send timeout : Timeout, in seconds, before reporting a failed send() to an
instance.

Receive timeout : Timeout, in seconds, before reporting a failed recv() from an
instance.

Connect timeout : Timeout, in seconds, before reporting a failed connect() to an
instance.

Connection pool size : Number of persistent connections to maintain with an
instance.

Click Change Adaptor Settings to cause changes in any of these settings to take
affect.

Instance Configuration Options
With the options of the Instance Configuration page you can override global
application settings for particular instances. To display the Instance

Deploying With Monitor

45

Configuration page, go to the Detail View for the application and click the
Config button next to the desired instance.

Application Start-Up / Command Line Arguments
This section allows you to change the command-line arguments that are used
when the instance is started. See “Setting Command-Line Arguments in
Monitor” (page 32) for details.

For convenience, the entire set of command-line arguments passed to the
instance are displayed in the blue box at the bottom of this section.

Adaptor Settings
This section is where you specify default values for individual instances of an
applications. These settings override the corresponding settings made for the
application and for the host on which the application instance is running.

Transport : The socket API used to contact an instance. “socket” indicates
simple, cross platform, unbuffered sockets. “fsocket” specifies sockets buffered
using fopen(), fread(), fwrite() & such (valid on Unix only). “winsock” specifies
Win32 socket API (valid on NT only). “nssocket” indicates Netscape's NSAPI
socket API (NSAPI only).

Redirection URL : If an error occurs during request processing, return a redirect
(302) HTTP response with the specified URL as the location.

Timeout : Default for Send Timeout, Receive Timeout, and Connect Timeout.

Send timeout : Timeout, in seconds, before reporting a failed send() to an
instance.

Receive timeout : Timeout, in seconds, before reporting a failed recv() from an
instance.

Connect timeout : Timeout, in seconds, before reporting a failed connect() to an
instance.

Connection pool size : Number of persistent connections to maintain with an
instance.

Click Change Adaptor Settings to cause changes in any of these settings to take
affect.

Deploying With Monitor

46

Graceful Shutdown
This section allows you to change the minimum active session threshold for an
instance. This threshold is used when the instance begins refusing new sessions.
The default is zero. If your application is usually under heavy traffic, you might
not want to wait for all sessions to time-out before terminating the application.

Scheduling
This section allows you to configure the scheduling settings for a given instance.
Normally you should use the Application level scheduling to create a staggered
schedule of starting and stopping instances. Use the instance-specific section to
create your own schedule intervals. See “Automatic Scheduling” (page 59) for
the scheduling procedure.

Monitor computes a series of shutdown dates from the desired instance lifespan
or from the desired instance downtime. The scheduling algorithm causes the
instance to begin refusing new sessions on regular intervals based on these two
variables.

Administrative Tasks

47

Administrative Tasks

This section covers typical administrative tasks that you may need to perform:

• Monitoring Application Activity
• Performance Testing
• Improving Performance
• Automatic Scheduling
• Load Balancing
• Increasing the Listen Queue Depth
• Making Monitor and wotaskd Fail-safe

Monitoring Application Activity
There are several ways to obtain information about the applications running on
your server. You can use the Monitor application, analyze logs kept by the
application and the adaptor, and check the application’s statistics page.

Obtaining Information From Monitor
The Applications page gives an overall view of a deployment. It shows which
applications are configured, how many instances each application has, and which
of these is currently running. You get to the Applications page by clicking the
Applications button in Monitor’s banner. A screen similar to the following
example is displayed:

Administrative Tasks

48

Click a hyperlink in the Application column to start a session with an instance
of that application.

The Application Detail View page of the Monitor application provides you with
detailed information about all configured instances of a WebObjects application.
Click the Detail View button next to an application in the Applications page to
go to the detail page, which looks similar to the following example:

At the top of the page is the title of the application. When one or more instances
of an application are running, this title becomes a hyperlink. Clicking on the
hyperlink opens a new browser window and connects to the running application.

The tables of the Application Detail View contain various information and
controls:

Column Description

Host / Port The host name and the port that the instance runs on. If the
instance is running, this information is hyperlinked; clicking
starts a new session with the instance.

Administrative Tasks

49

Status Indicates whether the instance is running (ON) or is stopped
(OFF). Clicking this control starts and stops the instance.

Schedule Indicates whether scheduling is enabled. When ON is
displayed, the Status, Auto-Recover, and Refuse New
Sessions indicators are disabled; scheduling is responsible for
setting all of those states on a schedule basis. See ““Automatic
Scheduling” (page 59)” for information on scheduling.

Auto-Recover Displays the Auto-Recover setting for this instance. ON
indicates that Monitor should start a new instance upon failure
or shutdown of an instance. You can set this state when you
configure the instance; see “Setting Command-Line
Arguments in Monitor” (page 32).

Refuse New
Sessions

Displays whether the instance is refusing new sessions (YES).
If this is the case, all requests from new clients are redirected
to another instance that is not refusing.

Transactions Total number of requests this instance has serviced since it
was started.

Active Sessions Total number of sessions that are still active for the instance.

Average Transaction The average length, in seconds, of this instance’s transactions
.

Average Idle Period The average amount of time that the instance is idle between
requests.

Deaths The number of unexpected failures or deaths this instance has
had. These exclude “expected” deaths, which include
scheduled shutdowns or a manual shutdowns (using Monitor’s
interface).

Exceptions If your instance has an uncaught exception, Monitor may
record the number of these exceptions here. When there are
exceptions, a small blue triangle appears; click this to inspect
the messages describing the exceptions.

WOStats Click this button to open a new browser window and view
detailed statistics about this instance. See “Accessing the
Application Statistics Page” (page 51) for more information.

Config Click this button to link to the Instance Configuration page for
this instance.

Delete Click to remove this instance permanently. Deleting an
instance also terminates the instance immediately if it is
running.

Column Description

Administrative Tasks

50

In addition, the “Transaction Rate” table indicates the overall transaction rate
for the current application. This table reflects the number of transactions that
the application as a whole (all of its instances) is servicing per minute and per
second.

Logging and Analyzing Application Activity
WebObjects applications can record information in a log file that can be analyzed
by a Common Log File Format (CLFF) standard analysis tool. Applications do
not maintain this log file by default; log file recording must be enabled
programmatically. If enabled, the application records a list of components
accessed during each session. By default, only component names are recorded,
but programmers may add more information.

Run any CLFF standard analysis tool to analyze the information in the log.

Logging and Analyzing Adaptor Activity
If an adaptor sees that a file named logWebObjects exists in the temporary
directory, it will log its activity in WebObjects.log in that same directory. Logging
adaptor activity significantly decreases performance. Use this feature only if you
suspect something is wrong; do not use it during deployment.

The temporary directory depends on the platform:

• /tmp on Mac OS X Server, Solaris, and HPUX

• The directory indicated by the TEMP environment variable on Windows
NT

You can analyze the information in the log to find out such things as which
applications are being requested, which applications are being autostarted, and
what the HTTP headers of requests are. You can also use the log to verify if
adaptors are properly configured for load balancing.

The following excerpt includes an error message indicating that ThinkMovies
wasn’t running when a request for it came in:

Info: <CGI> new request: /cgi-bin/WebObjects/ThinkMovies

Info: V4 URL: /cgi-bin/WebObjects/ThinkMovies

Error: Request handling error: The requested application was not
found on this server

Administrative Tasks

51

After ThinkMovies was started, the same request produces the following log file
entries:

Info: <CGI> new request: /cgi-bin/WebObjects/ThinkMovies

Info: V4 URL: /cgi-bin/WebObjects/ThinkMovies

Info: Selecting new app instance

Debug: Composed URL to ‘/cgi-bin/WebObjects/ThinkMovies.woa/1’

Info: New request is GET /cgi-bin/WebObjects/ThinkMovies.woa/1
HTTP/1.0

Info: Trying to contact ThinkMovies:1 on (2001)

Info: attempting to connect to myhost.apple.com on port 2001

Info: Created new transient connection to myhost.apple.com:2001

Info: ThinkMovies:1 on (2001) connected [pooled: No]

Info: Request GET /cgi-bin/WebObjects/ThinkMovies.woa/1 HTTP/1.0
sent, awaiting response [1 pending]

Info: New response: HTTP/1.0 200 Apple WebObjects

Info: received ->200 Apple

Creating the Log File
To cause the log file to be generated, simply create the logWebObjects file in
your server’s temp directory. The following procedure shows you how to do this:

1. Start a command shell window (on NT use the Bourne Shell in the
WebObjects program group).

2. Change to the temporary directory (using the cd command).

3. Enter the following command to create the logWebObjects file:

touch logWebObjects

On UNIX-based systems, you must have root privileges.

Use the tail command to print the current activity in the adaptor to standard
output (the shell window):

tail -f WebObjects.log

Accessing the Application Statistics Page
Most WebObjects applications automatically include a WOStats page and
record statistics about themselves in that page while they run. To look at these

Administrative Tasks

52

statistics, access the WOStats page while the application is running. You can do
this through Monitor or through any browser that can access your application.

• In Monitor, go to the Detail View page for an application and click the
WOStats button next to an instance.

• From a browser, access the WOStats page with a URL like the following:

http://myhost/cgi-bin/WebObjects/MyWebApp.woa/wa/WOStats

If there are multiple instances, specify the instance number as well:

http://myhost/cgi-bin/WebObjects/MyWebApp.woa/1/wa/WOStats

The “1” just before “/wa” is the instance number.

The WOStats page looks similar to the following:

Administrative Tasks

53

Administrative Tasks

54

See the description of WOStats in the WOExtensions Reference for more
information about what the page displays.

Performance Testing
WebObjects comes with a set of tools that allows you to record a session and then
play it back. Using these tools, you can test your application setup to determine
whether you have the appropriate number of instances running, the appropriate
amount of memory allocated, and so on. The performance tools include:

• The default application adaptor that, when the –WORecordingPath flag is set
to YES, enables the recording of sessions

• A command-line Java tool that plays back recorded sessions

• A Playback Manager application that can play back sets of sessions
(NEXT_ROOT/Library/WebObjects/Applications/PlaybackManager.woa)

These tools are not designed to handle automated functional testing, only
performance testing. They simply save requests and play them back after
substituting the appropriate session and context identifiers. This means that the
playback tools expect the application to return the same page and content as
when it was recorded.

This section focuses on recording and playing back sessions from the command
line. For information on the Playback Manager application, consult the
application’s online help.

Recording a Session
When a WebObjects application is launched in recording mode, it saves each
request and response made to a recording file (which has an extension of .rec).
You specify the path designating this file with the -WORecordingPath flag, which
also serves as a switch to turn on recording. The application automatically
appends the .rec extension to the given filename and creates a directory, if one
doesn’t exist, with the given path.

To run an application in recording mode:

1. Start the application on a command line similar to the following:

myApplication -WOAutoOpenInBrowser NO -WORecordingPath
/tmp/TestMyApp/tape1

Administrative Tasks

55

This command creates the file /tmp/TestMyApp/tape1.rec .

2. Using a web browser, run a session of your WebObjects application.

You might want to record what you believe to be a typical session, or you
might want to record a session that puts a maximum load on your
application. For example, you may want to record a session that performs as
many database fetches as possible. As you run the application, the
WebObjects recording adaptor writes each request and response to the
recording file.

Keep in mind that all request and responses are saved to disk, so it’s
recommended that only one user (that is, one session) access the
application while recording is underway. You can later play back a recorded
session multiple times to simulate more users.

3. Stop the application to stop recording

Playing Back a Session
Once you have recorded a session with your application, you can use the
Playback command-line tool to simulate users accessing the application. This
Java tool is part of the PlaybackManager project, which must be compiled for the
tool to exist.

To play back a recorded session:

1. Add the following directory to your CLASSPATH environment variable:

NEXT_ROOT/Library/WebObjects/Applications/PlaybackManager.woa/W
ebServerResources/Java

2. In a separate shell, start the application as you normally would (do not use
the -WORecordingPath flag here). When you start the application you can
use adaptors or direct connect.

3. Start the Playback java tool by entering a command similar to the following:

java com.apple.client.playback.Playback -r /tmp/tape1.rec

The Playback class must be found in the Java classpath. When the
PlayBack Manager project has been compiled, the Playback tool bytecode
is in the subdirectory Playback Manager.woa/WebServerResources/Java.

Administrative Tasks

56

Alternatively, you can explictly give the class path on the command line, as
in this example:

java -classpath
“.:$NEXT_ROOT/Library/WebObjects/Applications/PlaybackManager.w
oa/WebServerResources/Java:‘javaconfig DefaultClasspath‘”
com.apple.client.playback.Playback -r /tmp/tape1.rec

The Playback tool plays the recorded session repeatedly until you explicitly stop
it (for example, by pressing Control-C in a command shell window). You can run
several instances of the tool at the same time to put more load on the server. To
manage multiple instances it’s better to use the Playback Manager application.

If you want, you can specify other options of the Playback tool. The following
list describes these options:

-h hostname
Sets the host to send the requests to (the default is localhost).

 -p adaptorPath
Sends requests using the specified adaptor path instead of the recorded
URL. For example, suppose you recorded a session using a Netscape
server whose cgi-bin directory is named cgi-bin and you want to play it
back using the Microsoft Internet Information Server, whose cgi-bin
directory is named Scripts and whose adaptor is named WebObjects.dll .
Your adaptor path is /Scripts/WebObjects.dll.

 -port portNumber
Sets the port the requests are sent to (the default is 80).

 -c limit
Limits the number of times to repeat the session playback (there is no
limit by default).

-s sleepTime
Sets the interval between requests in seconds (the default is zero).

 -diff percents
Sets the percentage difference between received and recorded response
sizes (the default is 5%).

 -d
Turns debugging on.

Administrative Tasks

57

 -r recordingDir
Sets the recording directory.

-help
Prints a summary of options

Here is an example of a command beginning a playback session using direct
connect:

java -classpath com.apple.client.playback.Playback -d -h mymachine -
r /tmp/tape1.rec -port 3456 -diff 20

Additional information on the Playback Manager can be found in
NEXT_ROOT/Library/WebObjects/Applications/PlaybackManager.woa/Resources/Rea
dMe.html .

Improving Performance
Performance is a major concern of web site administrators. This section provides
a list of areas to check to achieve the maximum possible performance.

• Configure your operating system so that it delivers the best performance
possible for your needs. Check your operating system’s documentation and
your web server’s documentation for performance tuning information.

• When possible, use an API-based adaptor in place of the default CGI
adaptor.

The API-based adaptors have a performance advantage over CGI adaptors
in that the associated server can dynamically load the adaptor; servers using
CGI adaptors, on the other hand, spawn a new adaptor process for each
request and kill the process after the response is provided.

• Make sure that the applications are written to perform optimally.

The WebObjects Developer’s Guide offers some suggested coding practices
to improve performance.

• Enable component-definition caching for all applications.

Component-definition caching is off by default as a convenience for
programmers debugging applications. When the application is deployed,
component-definition caching should be enabled so that each component’s
HTML and declarations files are parsed only once per session.

Administrative Tasks

58

Component-definition caching can be enabled programmatically by
sending setCachingEnabled: to the WOApplication object (in Java,
WebApplication). You can also use the Monitor to enable caching by doing
the following:

a. Click “Applications” in the Monitor banner.

b. Click the Config button in the row corresponding to the application for
which you want to enable component-definition caching.

c. Click New Instance Defaults.

d. Ensure that Caching Enabled is checked.

e. Click Update for New Instances, or ensure that the left-hand checkbox
is also checked and click Update for New and Existing Instances.

• Shut down and restart application instances periodically.

Because no program is ever perfect, WebObjects applications may leak a
certain amount of memory per transaction. For this reason, you should
periodically shut down and start up each application instance as described
in ““Automatic Scheduling” (page 59)” in this guide.

• Perform load balancing or increase the listen queue depth to improve
response time for a specific application.

– If the response time is consistently slow, add more application instances
so that the load is balanced among those instances. For more informa-
tion, see the section ““Load Balancing” (page 62)” in this guide.

– If the response time is sometimes acceptable and sometimes slow, con-
sider increasing the size of the listen queue, which holds requests await-
ing processing. For more information, see the section ““Increasing the
Listen Queue Depth” (page 65)” in this guide.

• Consider changing the physical configuration of your system.

Determine the size of a single application instance (you can look this up on
the application’s WOStats page) and multiply that number by the number
of instances you intend to run on a given machine. The result is the
amount of physical memory that should be installed on that machine.

Administrative Tasks

59

If you can’t add that much physical memory, increase the amount of virtual
memory to cover the difference between the physical memory needed and
the physical memory you have.

• Try to reduce the size of the application instance by limiting the amount of
state that it stores. Set the session time-out value to ensure that sessions
expire after a reasonable length of time. Shut down and restart the
application more often to reduce its size.

If you use WebObjects mainly for applications that access a database, you’ll
achieve the best performance with a dedicated database server and a separate
server for WebObjects applications.

Automatic Scheduling
You can use Monitor to start and stop instances automatically at regular intervals.
Typically, WebObjects applications can run for long periods of time, even
months. If your application caches data or has memory leaks, you can schedule
it to recycle its instances without interrupting service to your customers.

Use the Scheduling form of the Application Configuration page to configure a
pool of instances. This form allows you establish a staggered schedule for
stopping and restarting the instances. Here is an example of the Scheduling
Instances form:

Administrative Tasks

60

Either specify the instance lifespan or the frequency of shutdown (both in
minutes) and then click the appropriate Use Option button. Each instance runs
for a specified period before it begins refusing new sessions, and then it shuts
down when the minimum active session threshold is reached. The diagram
below displays an example schedule for four instances.

Administrative Tasks

61

Do not set the frequency of shutdowns too low. If the session time-out for your
application is 30 minutes, then the frequency of application shutdowns should
not be less than 30 minutes. It should probably be several times higher than that.
These settings are configurable because each application may have different
needs.

You can also schedule instances individually with the Scheduling option of the
Instance Configuration page (to go to this page, click Config next to an instance
on the Detail View page):

Sessions timeout,
active session count reaches 0,
instance terminates

Instance
begins refusing

new sessions

Instance 1

Instance 2

Instance 3

Instance 4

Instance re-started

time

Administrative Tasks

62

Specify the start date (in the recommended format) and the lifespan of the
instance in minutes, then click Save Changes

If you have set up scheduling for an application and then add a new instance,
the new instance does not have a schedule that is synchronized with the other
instances. To insert this new instance into the schedule you need to go to the
Application Configuration page and reset the schedule, or you must manually
create the schedule in the Instance’s Configuration page.

You can programmatically set up an application to shut down in addition to
scheduling shutdowns using the Monitor. If you want to use internal scheduling
algorithms in your instance, it is not recommended that you also use Monitor’s
scheduling features. Instead, just use Monitor to recover failures of your
instances and to access statistics.

Load Balancing
You can improve the performance of a WebObjects application by distributing
the processing load among multiple instances of the application. These
application processes can be running on the same machine as the server or on
remote machines. The task that accomplishes this distribution is called load
balancing.

Administrative Tasks

63

As an example of how load balancing works, suppose you have an application
called MyApp and you have configured WebObjects to run two instances of
MyApp on the host toga and two instances on the host tutu . When a user types
this URL:

http://toga.acme.com/cgi-bin/WebObjects/MyApp

the WebObjects adaptor looks for an instance of MyApp on the host toga . If it
finds an instance and the instance is ready to receive requests, the adaptor sends
the request to that instance. If both of the instances of MyApp on toga are busy,
it accesses an instance on the host tutu .

Use the Monitor application to create multiple new instances of an application
for load balancing. See “Creating Application Instances” (page 29) for details.

When you create multiple application instances, you are creating the
configuration file NEXT_ROOT/Library/WebObjects/Configuration/WebObjects.conf .
When the adaptor receives an HTTP request for an application, it first (in its
initial mode) checks WebObjects.conf for an application instance that is
accepting connections and forwards the request to it.

Monitor always assigns a unique number to each application instance, even if it
is running on a different host. It does this so that it can recover a crashed instance
for you. If an instance dies, Monitor can try to recover it by launching it on
another host. Because of this, instance numbers must be unique across hosts.

Even though instance numbers are unique across hosts, the web server adaptor’s
configuration file only requires an instance number to be unique on a given host.
Consider the example given previously, where two instances of MyApp run on
host toga and two instances run on host tutu . If you were to set up a web server
adaptor’s configuration file by hand, you could assign instance numbers 1 and 2
to the two instances on toga and instance numbers 1 and 2 to the instances on
tutu (see “Web Server Adaptor Configuration File Format” (page 11)). This is
legal, but it’s not supported by Monitor, and if you do this you won’t be able to
use Monitor for the instances you’ve created.

Administrative Tasks

64

To determine how many instances of an application you should run, do the
following:

1. Test the application using the recording and playback performance tools as
described in the section ““Performance Testing” (page 54).”

2. Check the application’s response times using the Instance Detail View page
in the Monitor application.

3. If the response time is slow, use Monitor to add another instance of the
application.

4. Continue to add instances and check their response times. When all
instances have reasonable response times, you have the number of instances
you need.

Host "toga"

HTTP Server

WebObjects Adaptor

Monitor

WebObjects.conf

MyApp 1

MyApp 2

wotaskd

Host "tutu"

MyApp 1

MyApp 2

wotaskd

Wrong — not supported by Monitor

Host "toga"

Host "tutu"

HTTP Server

WebObjects Adaptor

Monitor

WebObjects.conf

MyApp 1

MyApp 2

MyApp 3

MyApp 4

wotaskd

Right — instance numbers unique across hosts

wotaskd

Administrative Tasks

65

Increasing the Listen Queue Depth
The listen queue depth indicates the number of transactions that can be in the
socket buffer (the listen queue) awaiting processing. If the number of
transactions in the buffer reach the limit set by the listen queue depth, the
socket refuses new requests. The default depth is five.

When an application’s request load varies by period (that is, it experiences
“spikes”), you can increase the listen queue depth to improve performance. For
example, suppose an application can process one transaction per second and it
typically receives transactions at the rate of one transaction every two seconds.
The application’s listen queue remains empty because it can handle the load.
Suppose that at certain times of the day this same application receives a much
heavier load of two requests per second. At these times, the listen queue fills up
because the application cannot process as many requests as it receives. If you
know that the request rate will eventually return to the normal load of one
request every two seconds, increasing the listen queue depth will help improve
performance during the heavy load time.

On the other hand, suppose that two requests per second becomes the normal
request load for this application. In this case, no matter how big the listen queue,
the application can never catch up because it only processes one request per
second. In this situation, when the average load is higher than the application
can handle, load balancing is the proper solution.

To set the listen queue depth for all instances of an application, do the following
in Monitor:

1. Click Applications in the Monitor banner to go to the Applications page.

2. Click the Config button in any row containing a configured application.

3. In the Application Configuration page, click the New Instance Defaults
option. This displays the following form:

Administrative Tasks

66

4. Type the new listen queue depth in the Listen Queue Size field and check
the box to the left of this field.

5. Click the Update for New and Existing Instances button.

6. Restart any existing instance to have it assume the new listen queue depth.

If you want to change the listen queue depth for specific instances, enter the
new depth in the List Queue Size field of the Application Start-Up/Command-
line Arguments form in the Instance Configuration page for an instance.

Administrative Tasks

67

Making Monitor and wotaskd Fail-safe
Because Monitor is a critical piece of any deployment, measures should be taken
to make sure that it does not fail. As part of installation on both Windows NT
and Mac OS X Server, wotaskd is configured to start automatically upon boot up.
As well, it is started using woservice , which ensures that if wotaskd crashes for
any reason it is automatically restarted.

Starting Monitor and wotaskd on Windows NT
During installation on Windows NT, wotaskd is configured to start automatically
at boot time (in the Services control panel, it’s listed as “Apple WebObjects Task
Daemon”). If it doesn’t appear to be starting correctly, check the Services
control panel and ensure that wotaskd ’s Startup mode is set to Automatic. As was
previously noted, wotaskd is started under the control of woservice .

Monitor is also installed as a service (listed as “Apple WebObjects Monitor” in
the Services control panel) and you can configure it to start automatically upon
boot by changing its Startup mode to Automatic. Note that although this will
cause Monitor to be started automatically, you’ll have to manually start your web
browser and connect to Monitor manually (or by putting a shortcut to your web
browser in your Startup program group). The URL for Monitor is can be verified
by checking the Windows NT Event Viewer (Start > Programs > Administrative
Tools > Event Viewer) and is similar to:

http://localhost:1027/cgi-bin/WebObjects.exe/Monitor

Using woservice on Mac OS X Server
On Mac OS X Server wotaskd is started automatically upon boot time under the
control of woservice , which will restart wotaskd in the event that it is killed or
crashes for any reason. This is done in 3100_WebObjects , which is a script within
/etc/startup .

You can use woservice to control Monitor in a similar fashion, thus ensuring that
it is always running. You can enter the woservice tool on a shell command line
(such as provided by Terminal.app), start it from a shell script, or configure it to
launch Monitor automatically at boot time.

When invoking woservice from the command-line, pass as arguments the path
to the application you want to be launched followed by any arguments you want
to launch it with. So to start woservice for Monitor, you might give the following
command:

Administrative Tasks

68

woservice
/System/Library/WebObjects/Applications/Monitor.woa/Monitor

To have Monitor launched at system boot time, you must add a startup script to
/etc/startup . The scripts in /etc/startup follow a naming convention whereby the
first four characters of the script filename are numbers. These numbers signify
the order in which the system runs the scripts in /etc/startup . You should start
Monitor near the end of the boot cycle.

You could add the following script, named 3200_Monitor , to /etc/startup to start
woservice when the system boots and have it keep Monitor running:

#!/bin/sh

Start Monitor using woservice for WebObjects Deployment

#

. /etc/rc.common

the following is one line:

/System/Library/WebObjects/Applications/Monitor.woa/woservice
/System/Library/WebObjects/Applications/Monitor.woa/Monitor &

The WebObjects Application URL

69

The WebObjects Application URL

The typical WebObjects application URL has the following format:

http:// host [: port]/ cgi-bin / WebObjects / App[[.woa][/ instance]/ key /...

where the variables are defined as follows:

Variable Description

host The host name of your computer or localhost.

port The port number. This is included if you want to direct connect.

cgi-bin The cgi-bin directory of your server, usually cgi-bin or Scripts.

WebObjects The name of the CGI adaptor, usually WebObjects or WebObjects.exe.

App The application name. The WOApplicationBaseURL option provides the
path to the application.

instance The application instance number.

key The request handler key. This key specifies which WORequestHandler
object should be used to process the request., and is typically either “wo”
(the component request handler) or “wa” the direct action request
handler).

... Information specific to the request handler. Each WORequestHandler
uses a different format for the rest of the URL.
The two main request handlers are WOComponentRequestHandler and
WODirectActionRequestHandler. The WOComponentRequestHandler’s
format for the rest of the URL is:
componentName/sessionID/elementID
WODirectActionRequestHandler handles direct actions. Its URLs have
this format:
[actionClass | actionName |
actionClass/actionName][?key=value&key=value.....]
For more detailed information, see the WebObjects Developer’s Guide.

	Deploying WebObjects Applications
	Table of Contents
	Introduction
	Related Documentation

	WebObjects HTTP Adaptors
	CGI Adaptors
	API-based Adaptors
	Installable HTTP Adaptors
	Configuration Files
	Automatic Discovery of WebObjects App Servers
	Web Server Adaptor Configuration File Format

	Installing Applications
	Deploying With Monitor
	Setting Up the Monitor Application
	Starting Up Monitor
	Setting Up Monitor
	Deploying on Multiple Hosts
	Adding and Configuring an Application
	Creating Application Instances
	Starting and Stopping an Application Instance
	Monitor Option Summary

	Administrative Tasks
	Monitoring Application Activity
	Performance Testing
	Improving Performance
	Automatic Scheduling
	Load Balancing
	Increasing the Listen Queue Depth
	Making Monitor and wotaskd Fail-safe

	The WebObjects Application URL

