TN1071: Working with Multiprocessing Services

Technote 1071

Working with Multiprocessing Services

CONTENTS T
Overview his Technote discusses some techniques for use with

Access to Multiprocessing Services Apple's Multiprocessing Services Library. Methods for
Preemptive Tasks sharing information between tasks are discussed and
Intertask Communications severa examples are provided that show how to implement
Queues the techniques discussed.
Event Groups
Interrupt-Level Communications This Technoteis primarily directed at developersinterested
Example: sending amessage to in using Appl€e's Multiprocessing Services routines.
an interrupt task
Resource Management
Semaphores
Critical regions

Tips& Tricks
Related Materids

Downloadables

Overview

Multiprocessing Services provides a set of routines that allow an application to creste separate threads of
execution called preemptive tasks. Preemptive tasks run simultaneously with the rest of the operating
system and are given processor time based on an interrupt-driven scheduling algorithm. Unlike thread
manager tasks, the execution of preemptive tasks does not rely on other tasks explicitly yielding
processor time by calling either the Event Manager routine Wai t Next Event or the Thread Manager
routineyi el dToAnyThr ead.

Tasks are preemptively scheduled using whatever processors are available to the system. It is not
necessary for a machine to be equipped with more than one processor for an application to take
advantage of the preemptive process scheduling facilities provided by Multiprocessing Services. Even if
amachineis only equipped with one processor, it is possible for an application to schedule and run
many simultaneous preemptive tasks.

Multiprocessing Services provides facilities for creating and scheduling tasks aong with routines for
communicating between tasks. Although access to operating system resourcesis limited from
preemptive tasks, at the time of thiswriting, it is possible for tasks to allocate memory, make
synchronous file manager calls, call deferred tasks, and make remote calls the operating system.

Back to top

Page: 1



TN1071: Working with Multiprocessing Services

Access to Multiprocessing Services

For your application to use Multiprocessing Services, your application must be linked with either
CarbonLib or the Multiprocessing Services shared library, "MPLibrary". For best results, when linking
with "MPLibrary", your application should use weak links to the Multiprocessing Services routines and
then usethe MPLi br ar yI sLoaded function call to determine if the library is available for your application
touse. If MPLi br aryl sLoaded returns true, then your application can use the Multiprocessing Services
routines and perform preemptive multitasking operations. Otherwise, when MPLi br ar yI sLoaded returns
false, your application should use single threaded processing techniques.

All applications using the Multiprocessing Services routines should call the MPLi br ar yI sLoaded routine
to determine if Multiprocessing Servicesis available. Thisisfor two reasons:

1. MPLi braryl sLoaded may perform some initiaization operations that must be done before other
Multiprocessing Services calls can be made.

2. Although CarbonLib exports the symbols required to link your application with Multiprocessing
Services, that does not necessarily imply that those routines are available in the context where
CarbonLib isrunning. The call to MPLi br ar yI sLoaded will tell your application if those routines
are available for your application to use.

NOTE: Developers linking with CarbonLib who would like to call the routine DTI nst al | from a
preemptive task, should make sure that CarbonLib 1.0.2 or later isinstalled at runtime.

Back to top

Preemptive Tasks

Preemptive tasks are single parameter routines that return aresult of type 0sst at us. Once atask has been
created it will run preemptively until it returns aresult or until it isexplicitly terminated. Tasks are freeto
perform any type of processing operations they require, however do not have access to the 680x0
emulator. Therefore, it isnot possible to place callsto operating system routines that may make use of the
680x0 emulator. A listing of specific Operating system routines that can be called by tasks can be found in
the document Adding Multitasking Capability to Applications Using Multiprocessing Services.

Listing 1 shows asimple task that creates a SimpleText file containing 1000 lines of text containing the
string "Hello World\n". In this task, a number of the "saf€" file manager calls are used to create afile,
open its data fork, and write a bunch of stringsto the file. When called, thistask will runin the
background (during mouse clicks, menu selections, et cetera) until it completes. During that time, the
application that created thistask (and all other applications) will be free to perform any other processing
operationsit desires.

Page: 2



TN1071: Working with Multiprocessing Services

0SSt at us Exanpl eTask( void *parameter ) {
FSSpec *theFil e;
short refnum
Bool ean creat ed;
long i;

/* the paranmeter is a FSSpec pointer */
theFile = (FSSpec *) paraneter;

/* set up locals */
ref num = 0;
created = fal se;

/* create a file */
err = FSpCreate(theFile, "ttxt', 'TEXT' , snBystenfScript);
if (err !'= noErr) goto bail;
created = true;

/* open the file for witing */
err = FSpOpenDF(theFile, fsRAW Perm &refnun;
if (err !'= noErr) goto bail;

/* wite out the string 1000 times*/
for (i=0; i<1000; i++) {
err = FSWite(
refnum (count = 12, &count), "Hello World\n");

if (err !'= noErr) goto bail;
}
/* close the file and | eave */
FSCO ose(r
ef num ;

return noErr;

bai l :
if (refnum!= 0) ESC ose(r

ef num ;
if (created) FSpDel ete(theFile);
return err;

}

Listing 1. A task that creates a SimpleText file containing the string "Hello World\n®.

The single parameter passed to atask is provided by the caller when the task is created using the

MPCr eat eTask routine. Asshown in listing 1 and 2, oftentimes the parameter passed to atask will bea
pointer to a structure containing information relevant to the operations the task has been designed to
perform. In Listing 1, the task assumes that the parameter is a pointer to aFSSpec record that refersto a
file the task should create. The code snippet shown in Listing 2 illustrates how to pass a pointer to a

FSSpec record to the task when calling the MPCr eat eTask routine.

Page: 3



TN1071: Working with Multiprocessing Services

CSStatus err;
FSSpec targetFile;
MPTaskl D t askl D,

/* make a file spec for the target file */

err = FSMakeFSSpec
(0, 0, "\pExanple File", &argetFile);

/* if the file does not exist, call the task to create it */
if (err == fnfErr) {

/* create the task */
err = MPCreat eTask( Exanpl eTask,
& argetFile, /* the paraneter passed to the task */
0, /* use the default stack size - 4K */
0, /* no notification queue */
NULL, NULL, /* result paraneters - unused */
0, /* no special task flags */
& askl D );
}

Listing 2. A smal sequence of statements that calls the ExampleTask from Listing 1.

Of course, callers will want to know the result codes returned by the tasks they create. To alow for this,
Multiprocessing Services provides a mechanism where the result code returned by the task can be passed
back to the caller. However, this cannot be done directly as often the time required for atask to execute
cannot be determined beforehand. So, to allow Multiprocessing Services to pass back the result returned
by thetask toitscdler, it is possible to designate a queue, by providing it as a parameter to the

MPCr eat eTask call, that will be used for communicating the task's result back to the caller. Figure 3
illustrates how one would set up such aqueue and provide it as a parameter to MPCr eat eTask.

CSSt atus err;

FSSpec targetFile;
MPTaskl D t askl D,
MPQueuel D t askQueue;

/* create a queue for the task to comunicate
results back to the caller */

err = MPCreat eQueue( &t askQueue );

if (err = noErr) goto your_error_handler;

/* make a file spec for the target file */

err = FSMakeFSSpec
(0, 0, "\pExanple File", &argetFile);

/* if the file does not exist, call the task to create it */
if (err == fnfErr) {

/* create the task */
err = MPCreat eTask( Exanpl eTask,
& argetFile, /* the paraneter passed to the task */
0, /* use the default stack size - 4K */
taskQueue, /* the task's notification queue */
NULL, NULL, /* first 64 bits of result */
0, /* no special task flags */
& asklD );

}

Listing 3. A sequence of statements that calls the Example task shown in Listing 1. Thislisting
illustrates how to provide atask notification queue when atask is created so the result code returned by
the task can be discovered after the task has completed.

If atask notification queue is provided as a parameter to the MPCr eat eTask routine, then this queue will
be used to communicate any result codes returned by the task to its caller. Asshown in Listing 4, the
task's result code is returned in the third MPVai t OnQueue result parameter.

Page: 4



TN1071: Working with Multiprocessing Services

Bool ean conpl et e;
CSStatus err;

conpl ete = (MPWAI t OnQueue(t askQueue,
NULL, NULL, /* first 64 bits of result from MPCreateTask */
(void**) &err, /* the result code returned by the task */
kDur ati onl nmedi ate) == noErr);

if (conmplete) {
/* the task is conplete and has returned the error code
that has been copied into err... */

Listing 4. Using atask's notification queue to find the result code returned by the task.

Task notification queues are necessary in some cases. For instance, calling MPTer i nat eTask does not
immediately destroy atask, nor does it stop the task from executing. Instead, MPTer ni nat eTask will
schedule the task for termination. The actual operations involved in terminating the task will happen as
soon as the task scheduler is able to remove the task from the active task queue. As such, atask may
remain executing for some time after MPTer ni nat eTask has been called. But, once the task has been
stopped and disposed of, Multiprocessing Services will notify the caller of thisfact by placing aresult in
the task's notification queue. It will not be safe for the caller to assume the task is not running until this
result arrives.

In general, MPTer i nat eTask should be avoided and only used in exceptional circumstances.
Well-written tasks and Multiprocessing Services clients should never need to use this routine. However,
in unusual circumstances where it is necessary to terminate atask by calling MPTer ni nat eTask, you must
use atask notification queue to determine when the task has actually terminated.

Back to top

| ntertask Communications

Multiprocessing services provides anumber of facilities that can be used for communication between
tasks. These facilities and how they can be used are discussed in this section. Whenever possible,
applications should use these methods for communication between tasks. Other methods, such as polling
global variables, are inefficient and often lead to difficult-to-track-down bugs. The methods discussed in
this section are fast, efficient, and they provide awell-defined set of operations for passing messages or
communicating state information between tasks.

Queues

Queues are first-in-first-out message buffers designed for passing 96-bit messages between tasks. Each
message is formatted as a group of three 32-bit integers. The format of the data passed between tasksis
entirely up to the programmer. Here, the only requirement isthat all tasks accessing the same queue agree
on the format of the data being stored in the queue.

Inserting and extracting elementsis an atomic operation - many tasks can try to extract the next message
from a given queue, but only one will successfully obtainit.

Ligting 5 illustrates how a queue can be used to pass commands to a server task for background
processing. Here, the server task extracts messages from a queue and then it performs processing
operations based on a dispatching mechanism.

Page: 5



TN1071: Working with Multiprocessing Services Page: 6

enum {
kRunLongConpl exTask,
kQui ckTask,
kShut Down

b

OSSt at us Exanpl eServer Task( void *paraneter ) {
MPQueuel D comandQueue;
Bool ean processi ngConmmands;
| ong theCommand, paraml, paran®;

/* task paraneter is the conmmand queue ID */
conmandQueue = ( MPQueuel D) paraneter;

/* set up locals */
processi ngConmands = true;
err = noErr;

/* process commands */
whil e (processi ngConmands) {

/* get the next command fromthe queue */

err = MPWai t OnQueue( comrandQueue,
(void**) &t heCommand, /* the first paraneter is the command */
(void**) &paraml, /* the next two paranmeters are argunents.. */
(voi d**) &paran?,
kDur ati onFor ever) ;

if (err = noErr) break;

/* process the command */
switch (theCommand) ({

case kRunLongConpl exTask:
Per f or nSonmeConpl exActi on(paranml, paran?);
br eak;

case kQui ckTask:
Per f or nSoneSi npl eActi on( paraml, paran®);
br eak;

case kShut Down:
processi ngConmands = fal se;
br eak;

}

/* release the comand queue */
MPDel et eQueue( comandQueue) ;

/* any result codes will be returned in the task's

notification queue. See listing 4 for an exanple

showing how to retrieve this result code. */
return err;

}

Listing 5. A sample server task receiving commands by way of a queue.

The server task shown in listing 5 assumes that messages placed in the queue have a particular format.
Specifically, thefirst 32-hit integer is acommand selector and the next two 32-bit integers are additional
parameters that may or may not be used in command processing. As the server task assumes thiswill be
the format for all messages placed in the queue, it is useful to have a single routine that formats queue
entries according to this agreed upon format when sending messages to the server task. The routine
shown in Listing 6 provides this mechanism.



TN1071: Working with Multiprocessing Services

MPQueuel D gSer ver ConmandQueue;

0SSt at us SendCommandToSer ver Task(1 ong t heCommand, | ong paraml, |ong paranR) {
return MPNotifyQueue(gServer CommandQueue,
(void*) theCommand, /* the first paraneter is the command */
(void*) paranl, /* the next two paraneters are argunents... */
(voi d*) paran®);
}

Listing 6. A routine for sending commands to the server task shown in listing 5.

Often it is best to "wrap" the routine used to place commandsin a server task's command queue in this
manner rather than calling MPNot i f yQueue directly to send commands to the server task. Adding the
additional layer of abstraction reduces code maintenance requirements should the format of the messages
in the queue change.

Event Groups

Event groups are the fastest method avail able for communications between tasks. An event group isa
32-bit integer. Each bit in that integer is used to represent an individual event. Event groups can be used
as amechanism for sending simple boolean messages to tasks. When used in this way, each bit in the
event group represents a message.

Unlike queues, where messages are received one at atime, it is possible that several "event” messages
may be received simultaneoudly in one call to MPWai t For Event . In other words, several events may
accumulate in an event group between callsto MPWai t For Event . As aresult, code responsible for
decoding and responding to events returned by MPWai t For Event must be aware of the fact that more than
one event may be returned by any given call. The event handler shown in listing 7 illustrates an
appropriate way to handle event groups returned by MPWai t For Event .

Page: 7



TN1071: Working with Multiprocessing Services

/* each event is defined as a single bit in the event group. */
enum {

b

kDangl i ngPoi nt er Det ected = (1<<0),
kUnl ockedHandl eSi ghted = (1<<1),
kResEdi t Detected = (1<<2),
kSel f Destruct = (1<<3)

0SSt at us Exanpl eEvent Handl er Task( void *paraneter ) {

}

MPEvent | D event Gr oup;
Bool ean processi ngEvents;
MPEvent Fl ags t heFl ags;

/* task paranmeter is an event group */
event G oup = (MPEvent| D) paraneter;

/* set up locals */
processi ngEvents = true;
err = nokrr;

/* process events */
whil e (processingEvents) {

/* get the next event */
err = MPWiit For Event (event Group, &t heFl ags, kDurati onForever);
if (err !'= noErr) break;

/* more than one flag may be set in each
event we retrieve. As such, we do separate
processing for each flag, but we do not
assune that flags are nutually exclusive. */

if ((theFlags & kDanglingPointerDetected) != 0) {
Shi el dsUp() ;
}

if ((theFlags & kUnl ockedHandl eSi ghted) !'= 0) {
Phaser sOnSt un() ;
}

if ((theFlags & kResEditDetected) != 0) {
EngageHel net s();

if ((theFlags & kSelfDestruct) !'= 0) {
processi ngEvents = fal se;
}

}
/* release the event group */
MPDel et eEvent (event G oup) ;

/* any result codes will be returned in the task's

notification queue. See listing 4 for an exanple

showing how to retrieve this result code. */
return err;

Listing 7. A sample server task receiving commands by way of an event group.

As event groups are the fastest method for passing messages between tasks, their use should always be
considered. If the messages your task is designed to handle do not need to be processed in any particular
order, then event groups are probably the best method for sending commands to your task. On the other
hand, if the commands you are sending to your task must be processed in a definite order (or you must
send additional data aong with the command), then you should use a queue to send commands to your

task.

Back to top

Page: 8



TN1071: Working with Multiprocessing Services Page: 9

Interrupt-Level Communications

Often it is desirable to communicate between code running at different execution levels. For example, an
application may want to send information from its main thread to a task. This section discusses the issues
involved in communications between different types of tasks and it provides an example illustrating how a
preemptive task can send messages to an interrupt-level task. For the purposes of this discussion, we will
define the following three task types and discuss methods that can be used to communicate between them:

1. Interrupt Level. Thisdescribes any thread of execution that occurs as aresult of an interrupt,
including hardware interrupt handlers and Deferred tasks running in the classic cooperative

environment.

2. System-Task L evel. This describes the classic application's main thread of execution and
Thread Manager tasks.

3. Preemptive-Task Level. Thisrefersto athread of execution, a preemptive task, created by
Multiprocessing Services.

Table 1 lists the various methods that can be used for communicating between tasks running at different
execution levels. Perhaps the most complex of the types of communication that can be done hereis
sending a message from a preemptive task to a classic interrupt-level task. The other ones are straight
forward, but, as this one is complex, a sample of how it can be doneis provided in listing 8, listing 9,

and listing 10.

Table 1. Methods for communicating between different execution levelsfor Mac OS applications.

The Destination Task is operating at: |

The Source Task is .
operating at: Interrupt Level System-Task Level Preemptive-Task Level
Call MPNot i f yQueue to add
messages to the queue and
Usethe Enqueue cal MPWai t OnQueue to
routine to add messages||extract messages.

Interrupt Leve UsetheEnqueue |[t0@n O.S. queue, use ||MPSet QueueReser ve must
routine to add theDequeue routineto ||be called to ensurethereis
messages to an poll for messages. space in the queue before
0.S. queue, use adding messagestoiit at
the Dequeue interrupt time.
routine poll f%r Any queue mechanism
messagesinthe  ||will do. The nature of
interrupt routine.  (|system-task level

System-Task Level ensures mutual

exclusion between

threads operating at this

level. Cal MPNot i f yQueue to add
Call Enqueue from : messages to the queue and
adefenged task to gdsgmp&;yggue 10 {| call MPVai t OnQueue to
i essag extract messages.
:ngr;nm es queue, and use the

Preemptive-Task Level 0.S. queue, use '(\gve“‘g'hfy%gja%ue
Egﬁtﬁgﬁg ue I for |[immediate duration) to
messages il?mothe poll the queue for
interrupt routine. MESSAGES.

Example: sending a message to an interrupt task

In this example, message records are kept in two queues: the unused message buffers available are kept in
aMultiprocessing Services queue and the message buffers containing data to be read by the interrupt task
arestored in an O.S. Queue. Whenever the preemptive task needs to send a message to the interrupt
routine, it can extract an unused message buffer from the Multiprocessing Services queue, copy some
datato it, and then place the buffer in the O.S. Queue. The current implementation of Multiprocessing
Services does not alow preemptive tasksto call Enqueue directly so instead this sample calls Enqueue



TN1071: Working with Multiprocessing Services

from adeferred task that isinstalled by the preemptive task.

The interrupt routine extracts messages from the O.S. Queue and once it has finished with a message, it
places the message back into the Multiprocessing Services queue so it can be used again by the
preemptive task. Listing 8 contains the steps needed to set up the structures and variables used in this

example.

#defi ne kMaxMessages 20
#defi ne kMessageSi ze 256

/* the MessageRecord structure is defined as the

primary mechanismto storing nmessages. */
typedef struct MessageRecord MessageRecord;
typedef MessageRecord, *MessageRecPtr;
struct MessageRecord {

/* os queue elenent field at offset zero.

pl aced here so we can easily coerce a MessageRecPtr

to a QElenPtr and vice versa. */
QEl em gLi nkFi el d;

/* deferred task record we will used for
adding this record to the os queue.*/
Def erredTask el t Task;

/* the nmessage buffer */
unsi gned char nessageDat a[ kMessageSi ze] ;

b

/* pointer to the storage area we're using for
MessageRecPtr gMsgSt or age;

/* a queue of free buffers */
MPQueuel D gFr eeMessageQueue;

/* our nessage queue */
QHdr gMessageOSQueue;

/* deferred task upp */
Def erredTaskUPP gl nst al | MessageDT,;

/* InstallBufferDT is the deferred task we use
for installing messages. This routine assunes
that its paraneter is a pointer to the nmessage
record that is to be installed. */

static pascal void InstallBufferDT(long dtParam {
MessageRecPtr theElt;

/* get a pointer to the nessage */
theElt = (MessageRecPtr) dtParam

/* initialize its fields */
t heEl t - >gLi nkFi el d. gLi nk = NULL,;
t heEl t - >qLi nkFi el d. qType = O0;

/* add the message to the nmessage queue */
Enqueue((QEl enPtr) theElt, &MessageOSQueue);

/* in some cases, it may be useful to do

addi tional processing at this point. For

instance, you may wish to restart a send
operation that ran out of data, etc... */

messages */

Page: 10



TN1071: Working with Multiprocessing Services

/* SetUplnstal |lUPP is a renote procedure call used to

set up the universal procedure pointer for the

deferred task. This is done in a renpte procedure

call as the NewDeferredTaskUPP call is not |isted

as a macro/call that can be nade from preenptive tasks.*/
static void *SetUplnstall UPP(voi d *paranmeter) {

gl nstal | MessageDT = NewDef erredTaskUPP( | nstal | Buf f er DT) ;

return NULL;

/* I nitMessageQueue is called to set up the nessage queue
and related variables. The purpose of this routine is
to illustrate what steps need to be done to prepare
for sending nessages froma preenptive task to an interrupt
task using an O S. Queue. */
0SSt at us | nit MessageQueue(voi d) {
CSStatus err;
long i;
MessageRecPtr rover;

/* initialize our variables */
gFreeMessageQueue = O;
MPBl ockd ear ( &gMessageOSQueue, si zeof (gMessageOSQueue));

/* allocate our nessage storage */
gMsgSt orage = (MessageRecPtr) MPAI | ocat eAl i gned(
si zeof (MPSBuf f er El enent) * kMaxMessages,
kMPAI | ocat eDef aul t Al i gned,
kMPAI | ocat ed ear Mask) ;
if (gMsgStorage == NULL) { err = menful | Err; goto bail; }

/* allocate the free nessage queue */
err = MPCreat eQueue( &gFr eeMessageQueue) ;
if (err !'= noErr) goto bail;

/* pre-allocate kMaxMessages slots in the queue */
err = MPSet QueueReserve(gFreeMessageQueue, kMaxMessages);
if (err !'= noErr) goto bail;

/* add message records to the free nessage queue */

for (rover = gMsgStorage, i=0; i < kMaxMessages; i++, rover++) {
err = MPNotifyQueue(gFreeMessageQueue, (void*) rover, NULL, NULL);

if (err = noErr) goto bail;

/* set up the upp for the install deferred task */

MPRenot eCal | ( Set Upl nstal | UPP, NULL, kMPOwni ngProcessRenot eCont ext);

/* done */
return noErr;

bail:
i f (gFreeMessageQueue != 0) MPDel et eQueue( gFreeMessageQueue) ;
if (gMsgStorage != NULL) MPFree(gMsgStorage);
return err;

}

Listing 8. Setting up variables and storage for sending messages to an interrupt task using an O.S.

queue.

Once the necessary structures and variables have been set up, sending a message from a preemptive task
to aninterrupt task is Simply a matter of obtaining a message buffer from the free message buffer queue,
copying some datato it, and then calling the | nst al | Buf f er DT deferred task to install the message in the
0.S. Queue. Thismethod will not require any storage all ocations inside of the preemptive task or inside
of theinterrupt-level task (where that is not possible), but it provides a reasonably dynamic method for

Page: 11



TN1071: Working with Multiprocessing Services

passing information between the two routines. Also, if @l of the message buffers are currently in the O.S.
queue, the call to MPVai t OnQueue shown in listing 9 will wait until such atime aswhen the interrupt task
places a buffer into the free message buffer queue.

0SSt at us SendMessageTol nt err upt Task(unsi gned char *nessage) {
MessageRecPtr theMessage;
OSSt atus err;

/* get a nessage fromthe free queue */
err = MPWai t OnQueue( gFr eeMessageQueue,
(void **) & heMessage,
NULL, NULL, kDurationForever);
if (err !'= noErr) return err;

/* copy the data to the nessage record */
MPBl ockCopy(nmessage, theMessage->nessageData, kMessageSi ze);

/* call the deferred task to install it */
t heMessage- >el t Task. gLi nk = NULL;
t heMessage- >el t Task. qType = dt QType;
t heMessage- >el t Task. dt Fl ags = O;
t heMessage- >el t Task. dt Addr = gl nstal | MessageDT,;
t heMessage- >el t Task. dt Param = (| ong) theMessage;
t heMessage- >el t Task. dt Reserved = O0;
err = DTln
stal | (& heMessage- >el t Task) ;

/* done */
return err;

}

Listing 9. Sending a message from a preemptive task to an interrupt task using an O.S. Queue.

Inside of the interrupt routine, messages can be extracted from the queue using the Dequeue routine. Once
the message has been processed, the interrupt task can call MPNot i f yQueue to add the message back into
the free message buffer queue so it will be available to the preemptive task. Listing 10 illustrates one way
an interrupt routine would extract messages from the O.S. Queue and return them to the free message
buffer queue once they are no longer needed.

MessageRecPtr theMessage;
theMessage = (MessageRecPtr) gMessageOSQueue. qHead;
if (theMessage != NULL) {
if
Dequeue( (QEl enPtr) theMessage, &gMessageOSQueue) == noErr) {
/* perform sone operations using the nessage... */

/* add the message back into the free queue */
MPNot i f yQueue( gFr eeMessageQueue, (void*) theMessage, NULL, NULL);

}

Listing 10. Receiving amessage from a preemptive task inside of an interrupt task.

Back to top

Page: 12



TN1071: Working with Multiprocessing Services

Resour ce M anagement

Oftentimes when many preemptive tasks are engaged in a complex task, there must be amechanismin
place to ensure the number of tasks attempting to utilize alimited number of resources does not
outnumber the actual number of resources available. For example, if we have ten tasks and two printers,
and each one of those tasks must print from time to time, then a mechanism must bein place to ensure
that no more than two tasks will be using the printers at any given time.

Semaphores

Semaphores alow you to restrict access to resourcesin away that ensures that only a certain number of
tasks may access a particular resource at any given time.

Critical regions

Critical regions are a special type of semaphore that alow you to restrict accessto a particular resource
(section of code) to a single execution thread.

Back to top

Tips& Tricks

e If thereisaneed to call atoolbox routine from an preemptive task, first check to seeif the
toolbox routine isinterrupt safe. If it is, then call it using a deferred task rather than using a
remote procedure call. Deferred tasks have alower latency time than remote procedure calls. As
aresult, your code will run quicker and will not be subject to any of the unpredictable delays
associated with using remote procedure calls.

o With the abovetip in mind, it is worth mentioning that most of Open Transport can be called
from deferred tasks.

e Avoid using globa variables for sharing information between tasks. Doing so can lead to bugs
that are difficult to track down. Use the routines provided by Multiprocessing services to share
data between tasks.

e With Multiprocessing Services 2.1 and later, it is safeto call MPSi gnal Semaphor e and
MPSet Event at interrupt time. It is also possibleto call MPNot i f yQueue at interrupt time if
MPSet QueueReser ve has been called to reserve sufficient space in the queue.

e Event groups are the fastest way to send information between tasks. Always consider the
possibility of using them instead of queues.

e Task implementation and desigh should assume that other tasks are running simultaneously.

When there are resources that are shared between tasks, access to them should be controlled
using the resource management facilities.

Back to top

Related M aterials

Multiprocessing SDK.
Multiprocessing Services Online Documentation.

Back to top

Downloadables

Page: 13



TN1071: Working with Multiprocessing Services Page: 14

Acrobat version of this Note ()

Back to top

To contact us, please use the Contact Us page.
Updated: 20-March-2000

Technotes | Contents
Previous Technote | Next Technote




