
TN 1193: How to structure your
handleCheckUpdate callback

Page: 1

Technote 1193
How to structure your handleCheckUpdate callback

CONTENTS

What's the problem?

How do we fix it?

Why This Hasn't Been a Problem
Before

A JManager host application should call JMFrameUpdate

from its window-drawing code, and should also implement a
checkUpdate callback that will call JMFrameUpdate if the
window's update region is non-empty. (CheckUpdate is called
by the AWT to fix up the display immediately if part of the
window may have been invalidated by some AWT action.)

What's the problem?
Both of these routines typically do something like this:

BeginUpdate(window);
...
JMFrameUpdate(frame,window->visRgn);
...
EndUpdate(window);

This results in AWT being called while the window is in a funny state -- the BeginUpdate call has
clipped its visRgn down to just the area needing updating, so any drawing calls can only draw in that
area.

The problem comes in if another thread gets control before the JManager call completes. This might be
any other thread, and it may perform other AWT operations like graphics-based drawing, moving
components, or updating controls. Since whatever it draws will be clipped down to the window's
updateRgn, some parts of the window may not be updated, which looks ugly.

Back to top

How do we fix it?
The only workable fix turns out to involve a slight change in the way the host app calls JManager -- and
the purpose of this Technote is to tell you to make this change. It's simple to describe:

Never call JManager while within a BeginUpdate...EndUpdate operation.

To do this, you'll need to restructure your drawing and checkUpdate code to be something like the
following, which was taken nearly verbatim from MRJShellLib, the library that runs JBound apps:

TN 1193: How to structure your
handleCheckUpdate callback

Page: 2

BeginUpdate(window);
...
/** Called in response to a JManager checkUpdate request */
void RequestedWindow::checkUpdate() {
 RgnHandle update = WindowPeek(itsWindow)->updateRgn;
 if (! EmptyRgn(update)) { /*1*/
 // Determine the local/global offset:
 SetPort(itsWindow);
 Point globalPos = {0,0};
 LocalToGlobal(&globalPos);

 // Compute the global rgn used for the Java Frame's content:
 Rect content = itsWindow->portRect; /*2*/
 if(resizeable && !theGrowboxIntrudes)
 content.bottom -= 15;
 OffsetRect(&content, globalPos.h,globalPos.v);
 RgnHandle contentUpdate = NewRgn();
 RectRgn(contentUpdate,&content);

 // Clip the update region against the Java content region:
 SectRgn(contentUpdate,update, contentUpdate); /*3*/
 OffsetRgn(contentUpdate,-globalPos.h,-globalPos.v);
 // move back to local coords

 // Call JMFrameUpdate *without* calling BeginUpdate,
 // which mucks up the visRgn:
 if(!EmptyRgn(contentUpdate)) { /*4*/
 ValidRgn(contentUpdate); /*5*/
 JMFrameUpdate(frameRef, contentUpdate); /*6*/
 }

 DisposeRgn(contentUpdate);
 }
}

/** Main method called to handle incoming updateEvents. */
void RequestedWindow::handleUpdate() {
 checkUpdate(); // first redraw Java content
 BeginUpdate(itsWindow);
 ... // draw native content here
 EndUpdate(itsWindow);
}

In essence the checkUpdate method does the following:

1. Checks whether the window's updateRgn is non-empty; otherwise it returns.
2. Computes the region of the window allocated to the Java Frame and converts it to global

coordinates.
3. Intersects the region against the window's updateRgn.
4. If the resulting region is empty, it returns.
5. Otherwise it calls ValidRgn with that region, to remove it from the updateRgn.
6. Then finally it calls JMFrameUpdate, passing in the clipped region.

Note that in the checkUpdate method we've avoided using Begin/EndUpdate at all. The main
handleUpdate method still needs to use them, to correctly clip the drawing of the native content, but it
calls checkUpdate first , before calling BeginUpdate. (Alternatively, you might need to draw the Java
content after the native content; if so, you'll have to save a copy of the updateRgn before calling

TN 1193: How to structure your
handleCheckUpdate callback

Page: 3

BeginUpdate, since otherwise it'll be lost.)

Back to top

Why This Hasn't Been a Problem Before
This never showed up before MRJ 2.2 because the main thread, which handles JManager calls, runs at
the highest possible priority, and with the older thread scheduler it used to be impossible for any other
thread to get control while this thread was active. But with MRJ 2.2's new "fair share" scheduler, other
threads sometimes get time to run.

Back to top

Further References

Programming with JManager for MRJ 2.1
MRJ 2.1 SDK

Back to top

Downloadables

Acrobat version of this Note (12K)

Back to top

To contact us, please use the Contact Us page.
Updated: 02-February-2000

Technotes | Contents
Previous Technote

