TN 1168: The Care And Feeding of Page: 1
Runtime.exec

Technote 1168
The Care And Feeding of Runtime.exec

CONTENTS R

The Platform-Dependent Perils of unti me. exec() isprobably the single least

Runt i me. exec cross-platform-compatible part of the Java APl set. It
assumes the existence of acommand-line interface to the OS

The Path To The App and the ability to launch arbitrary apps that can accept
arbitrary parameters. Nevertheless, there are times when you

But | Came Here For An need to useit -- for instance, to open aURL inaWeb

Argument! browser or to spawn a new Java process. Thistechnote
describes MRJ 2.x's implementation of Runt i me. exec, and

Launching Java how it differs from that of the JDK.

Pasteurized Processes

Example: Opening A URL In A
Browser

Downloadables

TN 1168: The Care And Feeding of
Runtime.exec

The Platform-Dependent Perilsof Runti ne. exec

The standard Java method Runt i me. exec launches new processes on the machine on which it's running.
You passit acommand line, either as a String of space-delimited arguments or as an array of argument
Strings. According to the documentation in The Java Class Libraries :

"This method executes the platfor m-dependent program specified ... The program
may be specified using aplatfor m-dependent absolute pathname or asa

platfor m-dependent command name found using the platfor m-dependent search
path. ...

"exec returnsaPrr ocess object, which has methods for obtaining the standard input,
standard output, and standard error [streams] of the newly created process.” [Emphasis

acded]

Y ou may notice that they are subtly trying to imply that much of the behavior of thismethod is, well,
platform-dependent. (And even the "standard” streamsthey refer to aren't at all standard on Mac OS.)

It istherefore quite easy, if you use this method, to end up with code that won't run or runs incorrectly on
some operating systems. The Mac OSis at a disadvantage here because, unlike Unix or Windows, it is
not athin GUI veneer over acommand-line-based OS. There is no such thing as a command line in the
Mac OS itsdlf, so it's been rather difficult for MRJ to support the kinds of uses to which imaginative
developers put Runt i me. exec.

Nevertheless, we do try, and the good news isthat MRJ 2.1 supports alot more of the typical uses of
Runt i me. exec than its predecessors did. This technote explainsin detail what we do and don't support.

JConfig

If you're willing to incorporate third-party code (which includes native libraries), you might consider
Samizdat Productions freeware JConfig library.

JConfig "isacross-platform library which supplements the core Java AP!. It letsyou
work with files, web browsers, processes, file types, and other system-level itemsin a
much more advanced manner than that provided by the standard Java classlibraries.”
(from the manual)

JConfig isalot more powerful than Runt i me. exec and lets you deal with alot of nasty higher-level
issues like locating the user's preferred web browser, or indeed the preferred helper app for any arbitrary
URL type. It runson Mac OS, Windows, and Unix, and alot of developers who work with MRJ swear
by it. (Apple, of course, has no officia connection with JConfig or Samizdat Productions and can't vouch
for therdiability of thelibrary. But we think it's cool.)

Back to top
The Path To The App

The Mac OS has no search path, so you must specify an application using areal file path. For example,
just referring to the application as "net scape™ isnot going to work. There are several waysto do this:

Relative path
If the application you're launching is at a known location relative to the application running (i.e., both are

part of the same installation) you can provide a path that's relative to the current application. Thisworks
reliably only if you're running an application built with JBindery, not if you run your code directly from

Page: 2

TN 1168: The Care And Feeding of
Runtime.exec

JBindery itself.
User preference

If the app to launch is not part of your installation (for instance, if it's something standard like SimpleText
or aweb browser), you'll need to provide an absolute path.

The most reasonabl e cross-platform way to do thisisto store the path in a preferencefile. If the
preference doesn't exist yet, or if you tried using the preferred path and it failed, you should put up a
dialog box and ask the user to select the application, then store the path into the preferencefile. See
Technote 1134, "The Preferences Problem,” for more discussion about setting the correct path using a
preferencefile.

L ookup by creator

If you're willing to use some Mac-specific code, it's friendlier to use the Mac OS facility to locate an
application automatically given itscreator code , which isaunique four-letter code assigned to that
application.

Y ou can find the creator of any application by using ResEdit'sGet Fi | e/ Fol der | nf o command. The
creators of some common applications are:

|Microsoft Internet Explorer||MAr E

|Netscape Navigator |[MosS|
liCab ||i cAB|
|SimpleText |[ttxt]
|Finder ||[FNDR)

The MRJToolkit library, provided as part of the MRJ SDK (including extensive documentation) includes
afindAppl i cati on method that takes a creator code and returns a File object that points to the app. For
example:

i nport com apple.nrj.*;

File sinpleTextApp = MRIFileUtils.findApplication(new MRIOCSType("ttxt"));

L et JConfig locateit for you

The third-party JConfig library from Samizdat Productions, described above, has features that can locate
the user's preferred helper app for any type of URL, which is one of the common uses of Runt i me. exec.

Let OpenURL do it all
In MRJ 2.2, thereisanew utility method MRIFi | eUti | s. openURL() inthe MRJToolkit. It works by

passing the URL to the user's preferred helper application as configured in the Internet control panel (e.g.,
Internet Config).

Page: 3

TN 1168: The Care And Feeding of
Runtime.exec

i mport comapple.nrj.MRIFilelUtils;

MRIFi | eUtils. openURL("http://ww. appl e. cont');

Note:

Versions of MRJ prior to 2.2 do not implement the openURL() method and will throw a

NoSuchMet hodEr r or if called. In addition, if you have installed MRJT ool kitStubs.zip from MRJ 2.2
and are running on anon-MRJVM (e.g., Windows or Solaris), acall to openURL() will silently do
nothing.

Back to top

But | Came Here For An Argument!

The Mac OS uses a mechanism known as A ppleEvents to send messages from one process to another.
AppleEvents are much higher level than command-line arguments, and include arich set of datatypes and
tags. However, this means that MRJ can't take a set of arbitrary argument strings and send them to an
application in any meaningful way. (Remember al the stuff about "platform-dependent” in the first
section?)

MRJtriesto detect certain common types of command-line arguments and convert them into
AppleEvents. In general, the two types of arguments MRJ knows about are file paths and URLs. Any
argument containing a":" character isinterpreted asa URL, and anything elseisinterpreted as afile path.
(These rules don't apply when you're launching another Java process, though. See the next section.)

Note:
Versions of MRJ prior to 2.1 do not support URL parameters and just assume everything is afile path.

(If you're AppleEvent savvy, you may wish to know that file paths are sentin asingle' odoc' event, while
URLsaresentinindividual ' GURL' events.)

There are a couple of thingsto keep in mind:

No multi-launching

The Mac OS does not alow the same app to be launched multiple times, so if you call Runt i ne. exec on
arunning app, or call it multiple times on the same app, the same instance of the app will receive each
request and open each item.

URL s usually don't open a new window

The convention in web browsers, at least, isthat they display most URLsin the active window, replacing
its previous contents, rather than opening a new window. (They do open filesin new windows.) That
meansthat if you send abrowser aURL argument it will effectively ignore any argument that came before
it. (For instance, if you passit two URLS, it will try to show the first one and then immediately the second
onein the same window. If you passafileand a URL, it will open anew window for thefile, but then
show the URL in that window.)

Back to top

Page: 4

TN 1168: The Care And Feeding of
Runtime.exec

L aunching Java

It turns out that one of the useful things you can do with Runt i ne. exec isto launch anew Java process.
Thisisuseful if you need to give the code you're launching complete independence of your current
process. For instance, some Javatoolslikej avac never reclaim memory or closefiles, and for practical
purposes must be run in a separate process that is cleaned up by the OS when it quits.

InMRJ2.1 and 2.2, we vaiantly added some special cases (some say "hacks') to facilitate this. If the
application/command named in the first argument does not point to an existing file, and it does include the
substring "j ava" (independent of case), then we assume you are trying to launch a Java process, just asif
you were invoking the JDK from a command line. MRJ builds an java application on the fly and launches
it.

Note:
Versions of MRJ prior to 2.1 do not support this feature.

For example, you can invoke the Java compiler thudly:

String args = {"java", "sun.tools.javac. Main", ...javac argunment list...};
Runti ne. get Runti me(). exec(args);
Since we know the thing on the other end is a Java process, we allow a bit more general functionality:
e You can pass any arguments you like; they don't have to be URLs or files. They get passed
directly to the mai n() method of the app's main class, as Strings.

e You can usetheProcess object [see below] to access the Java process's standard input / output /
error streams.

Special flagsfor 'j ava'

The JDK 'j ava' command takes a number of flag parameters. MRJ supports a subset of these:

Page: 5

TN 1168: The Care And Feeding of

Runtime.exec

Flag Purpose g/llR g)]r 2.2 M(?/IJRZjZA\é)V[I)tSuiIder
|- hel p ||Prints help message & exits |{Supported||Supported
|- cl asspat h || Sets class search path* |{Supported||Supported
|-D || Sets system property |{Supported||Supported

|- Xveri fy: r enot e||Enable bytecode verification on remote classes|| Suppor ted||Suppor ted

|

|

|

|
-xverify:all	[Enablebytecodeverificationonall classes		Supported		Supported	
-xverify: none		Disable bytecode verification	{Supported		Supported	
- Xnoasyncgc		Disable asynchronous garbage collection		Ignored	[Supported	
- Xnocl assgc	[Disable class GC	{tgnored		Supported		
- Xrrs		Set initial Javaheap size	{tgnored		Supported	
- Xmx		Set max Java heap size	{tgnored		Supported	
- Xss		Set max native stack size	[tgnored		Warning	
- Xoss		Set max Java stack size	[tgnored		Warning	
-Xver bose: gc		Report on garbage collection	{tgnored		Supported	
-Xver bose: j ni		Reports Java Native Interface activity	[tgnored		Warning	
- Xver bose: cl ass		Reports class loading information	[lgnored		Supported	
- ver bose		Reports class loading information	[lgnored		Supported	
- X		Prints help on nonstandard options & exits ~		Ignored	[Warning	
- Xdebug		Enable debugging	{tgnored		Warning	
- Xpr of		Enable method profiling	[lgnored		Supported	
- Xi prof		Enable instruction profiling	{tgnored		Warning	
- Xhpr of		Enable heap profiling	{tgnored		Warning	
- versi on	[Prints version & exits	[Error [[Warning				
-cp		Sets classpath	[Error	[Warning		
-jar		Sets classpath and main	[Error [[Warning			
- XMRIAppBui	der		Run via MRJAppBuUilder app	[lgnored		Required

Future versions of MRJ may support more of these flags.

Note:

In MRJ 2.2, the- XMRIAppBui | der option which tells MRJ to build an MRJA ppBUuilder application

on-the-fly instead of a JBindery application. If you do not use - XMRJAppBui | der , you will get the same

functionality asMRJ 2.1.

Page: 6

TN 1168: The Care And Feeding of Page: 7
Runtime.exec

* A noteon-cl asspat h: Asin JDK 1.2, you only need to specify additions to the regular system
classpath -- you do not need to add cl asses. zi p Oor JDKO asses. zip orrt . j ar, and you'll get errors
if you do. Classpath entries can be absol ute paths, or can be relative to the current working directory,
which by default isthe directory containing the current application.

When using -XMRJAppBuilder under MRJ 2.2, you may use the magic classpath entry
$BOOTCLASSPATH at the end of the classpath to denote that the classpath additions should be before the
regular system classpath. See MRJAppBuilder documentation for more details.

Back to top

Pasteurized Processes

TheRunti ne. exec method, if it succeeds, returnsapPr ocess object. Y ou can use this object to check the
status of the process, force it to quit, and access itsinput / output / error streams.

Most of these work as advertised, but the latter usage is problematic -- the Mac OS has no notion of text
streams attached to applications, so it's meaningless to try to access them. MRJjust returnsnul | if you
ask Process for a stream associated with a normal app.

The exception is Java processes, as described above. Since these are special processes that just run Java
code, they do have console I/0 streams, and the Pr ocess APl alows you to accessthem. Thisis
implemented by using Sockets. Therefore, you must have TCP/IP configured on the machine, or you will
get an exception thrown when trying to exec the java process.

Note:

On MRJ 2.2 when using - XMRIAPPBUI | der , console I/O streamsto the child process are not supported.
If you are not using the Pr ocess object, then thisis afeature that improves launch time and removesthe
requirement for the machine be configured for IP. But, if you want to use the Pr ocess object to
communicate with the child process, you should not use - XVRIAPPBuUI | der .

Future versions of MRJ may add an explicit command line option to independently control whether or
not thePr ocess object sets up socketsto the child process.

Back to top

Example: Opening A URL In A Browser

Here's some sample code by Levi Brown that demonstrates a cross-platform-savvy way to open aURL in
aWeb browser. It will attempt to use MRJs openURL function, and upon failure will revert to presenting
afile dialog to choose the browser to use, then launch the browser and open the specified URL :

i mport java.aw.Franeg;

i mport java.aw.FileD al og;
i mport java.io.File;

[

i mport java.io.lCOException;
i mport comapple.nrj.MIFilelils;

public class ExecTest extends Frane

{

TN 1168: The Care And Feeding of Page: 8
Runtime.exec

public static void main(String[] args)

{
new ExecTest();
System exit(0);
}
publ i c ExecTest ()
{
String url = "http://devel oper. appl e.com javal/";
try
{

/I Attenpt to let MRJ do all the work for us.
MRIFi | eUtils. openURL(url);

[11f this was successful, then we need not go on.
return;

}
catch (1 CException exc)

/1 This can occur if problens arise while attenpting
//to open the URL.

}

cat ch (NoSuchMet hodError err)

{
/1 This can occur when earlier versions of MRJ are used which
/1 do not support the openURL net hod.

}
cat ch (NoC assDef FoundError err)

/1 This can occur under runtine environnents other than MRJ].

}

[11f we make it here, MRJ was unsuccessful in opening the URL, and
//we need to do it the hard way, using Runtine.exec.

String browser Naneg;

/1Set up a FileDialog for the user to locate the browser to use.
FileDialog fileDialog = new java.aw . Fil eDi al og(t hi s);

fileD al og. set Mode(Fil eDi al og. LOAD) ;

fileDi al og.setTitl e("Choose the browser to use:");

fileD al og.setVisible(true);

/I Retrieve the path information fromthe dialog and verify it.

String resultPath = fileDi al og.getDirectory();

String resultFile = fileDi alog.getFile();

i f(resultPath !'= null && resultPath.length()!= 0 &%
resultFile '= null & & resultFile.length() !'= 0)

{

File file = new File(resultPath + resultFile);
if(file != null)

{
browserNanme = file.getPath();

try
{

/I Launch the browser and pass it the desired URL
Runti ne. get Runti me().exec(new String[]
{browser Name, url});

catch (1 CException exc)
{

TN 1168: The Care And Feeding of Page: 9
Runtime.exec

exc. printStackTrace();

This example should be refined, if used in areal setting, to store the location of the browser
(or owser Nane) in apreferencefile, and only ask the user if the cached browser could not be located. It
should also make the prompt string localizable.

Alternatively, as described above, you could locate a browser by its application signature, or use JConfig or
BrowserL auncher to handle the whole open-the-URL process for you.

Further References

o Technote 1134: The Preferences Problem

Back to top

Downloadables

E Acrobat version of this Note (49K).

Back to top

To contact us, please use the Contact Us page.
Updated: 14-February-2000

Technotes | Contents
Previous Technote | Next Technote

