TN 1162: Introduction to MRJ Scripting with AppleScript for

Technote 1162

Java

Introduction to MRJ Scripting with AppleScript for Java

CONTENTS
How MRJ Scripting Works

Scripting the Applet Runner or Java
Application

Applet Runner ApplicationProperties

Java Objects as AppleScript Objects

Java Methods as A ppleScript
Commands

Scripting Java Applets

Creating a Scriptable Java Application

Generating an 'aete' resource for a Java
Application

Changesin MRJ 2.2

Summary
Downloadables

With therelease of MRJ 2.1, AppleScript support

in Java applets and applicationsis now aredlity. This
Technote covers the technical information you will need
to take full advantage of AppleScript in your Java
application.

Apple Applet Runner and the MRJIShellLib (inside of
MRJLib) support the Macintosh Open Scripting
Architecture. Asaresult, the Apple Applet Runner, the
appletsit runs, and applications created with JBindery
can be scripted by AppleScript or any other OSA
scripting language. The only additional work required
(for scripting of java-based applications) isthe
inclusion of the scripting resources' aete' and ' scsz'.
No other specific scripting support is required from the
Javaapplet or application. This enables MRJ usersto
download Java applets or applications from the Internet
and use them as scriptable components on the

M acintosh.

This document provides a brief overview of MRJ
Scripting. It assumes that you are familiar with
AppleScript and the OSA Architecture. As more
information about MRJ Scripting becomes available, it
will be posted on the MRJ Developer Page.

How MRJ Scripting Works

MRJ Scripting works by exporting public Java class, property, and method names as OSA scripting
terminology so that they are visible to scripters. When a script runs, MRJ scripting trand ates the Apple
Event data types and events into Java data types and method calls. A scripter can thus set and get datain
property fields of Java objects, and invoke Java methods on those objects.

The OSA scripting terminology is generated dynamically by the Applet Runner or Java application. When
you compile ascript that targets the Apple Applet Runner, the Script Editor (or any other OSA

devel opment environment) fetches its dynamic terminology. That terminology includes AWT Component
objectsfor each open applet. For example, the sample applet "Lightweight Gauge” has aformal applet
name of Exanpl eAppl et ; if you open the Applet Runner dictionary while Lightweight Gauge is running,
you will see that it includes suites that look like this:

Page: 1

TN 1162: Introduction to MRJ Scripting with AppleScript for
Java

Exanpl eAppl et :
init: public void

Exanpl eAppl et.init()

init reference
Cl ass Exanpl e Applet:
Properties:
<l nheritance> Applet [r/O0]

Gauge:
Gl ass Gauge:
Properti es:

<l nheritance> Conponent [r/O0]

total Anpunt integer [r/0] -- public int Gauge. getTotal Anount ()

preferred Size point [r/o] -- public java.aw .D nension
Gauge. get Pref erredSi ze()

m ni mum Si ze point [r/o] -- public java.awt.Di nmension
Gauge. get M ni nunsi ze()

current Anpbunt integer -- public int Gauge.get Current Anount ()
&

- public void
Gauge. set Current Amount (i nt)

Because the Exanpl eAppl et isrunning, the Applet Runner now exposes a Gauge class that inheritsits
properties from the Component class, aread-only property t ot al Anmount , and awritable property
current Amount .

Methods and properties of Java objects are exposed to the scripter in this manner. Occasionally some Java
object, method, or property names will conflict with AppleScript reserved word namespace, or beillega
in AppleScript (for example, an item that contains periods like user.name). When this happens, the Java
names will be published enclosed in AppleScript's literal quotation marks, the vertical bars (|). For
example, a Java Applet parameter named "columns' can be written as| col urms| and will not conflict
with the AppleScript terminology "columns'. Notice that identifiersinside vertical bars are case sensitive,
whereas normal AppleScript terminology is not.

In an applet that uses AWT, the entire AWT component hierarchy is exported for scripting, so every
function of the applet that can be driven by the user interface can also be driven by scripting. To script an
applet, you do not have to know about itsinternal methods; you can script its buttons, menus, and display
objectsdirectly. Thisis different from normal Macintosh application scripting, where you normally script
the semantic objects of the application. The principal advantage to the MRJ's scripting method isthat all
aspects of the applet's operation are scriptable, without any special assistance from the applet. The
principal disadvantage isthat internal or semantic information stored in the applet can only be accessed by
pulling the "puppet strings" of the user interface by scripting the AWT components. Thus, developers
should include semantic objects as properties of the top-level Component in their Java applets or
applications. Then you can script Java applets or applicationsin the preferred way of Macintosh scripting.

Important:
Obfuscated java classes are unscriptable for al practical purposes.

Back to top

Page: 2

TN 1162: Introduction to MRJ Scripting with AppleScript for
Java

Scripting the Applet Runner or Java Application

The Applet Runner is a scriptable application that supports the Required and Standard suites of events,
aswell asasmall number of custom events. Java applications should also have a dictionary that
supports these events. The supported events are:

print - printsan AWT component.

exists - testsif aJava abject exists

check... belongs to - checksto seeif a Javaobject belongsto acertain class

apply to - calsamethod by name. This can be useful if the terminology is not present and asa

result, you cannot call it the normal way.

save object - serialize the Javaobject into a .jar file

load object - load an object from a .jar file

e start tool - thetool can be any jar file with visible bean inside. Sinceit isatool with Java
classes you can script it the usual manner. The developer can build up useful AppleScript tools
to do things such as display an AELi st asatree.

e type.. keystrokes - alow-level event to deliver keystrokes to Java windows

e click - alow-level event to simulate mouse clicks on AWT components. This can also be used

to do some Ul scripting such as clicking on amenu item by name

See the Applet Runner dictionary for the full parameters and results of these events.

Back to top

Applet Runner Application Properties

Like most scriptable applications, the Applet Runner application or Java applications support global
properties that control its operation. All system properties of the Java engine are exposed as application
properties of the Applet Runner or Java application. Remember that because most system properties are
illegal as AppleScript identifiers, they are enclosed in vertical bars and are case sensitive:

tell

application "Apple Applet Runner”
get its |user.nane|
end tell

There are two new system properties that control specific aspects of MRIJ Scripting:

tell
application "Apple Applet Runner”
set its | macos. scripting.debug| to true

set its | macos. nenu. contextual . di sable| to true
end tell

If amethod returns a Java object, it is normally returned as the opague class of the Java object. With
| macos. scri pting. debug| Settotrue, aJavaobject will be trandated into atext string using the Java

methodt oSt ri ng() . While this may not be useful from a scripting perspective, it can be very useful for
debugging purposes.

MRJ Scripting provides automatic contextual menu support for Java Text Conponent objects. You can

disable this capability by setting | macos. nmenu. cont ext ual . di sabl e| totrue or turning it off from the
help menu.

Back to top

Page: 3

TN 1162: Introduction to MRJ Scripting with AppleScript for Page: 4

Java

Java Objects as AppleScript Objects

When an applet is opened in the Applet Runner, it is available as an implicit top-level element of the
application (much like desktop files areimplicit top-level objectsin the Finder). To experiment with this,
open the "Lightweight Gauge" applet in the Applet Runner and execute the following script:

tell

application "Apple Applet Runner"
restart Exanpl eApplet 1

end tell

The Java objects that make up this applet are contained by the Exanpl eAppl et object.

I mportant:
In this version of the Applet Runner, the containment rel ationships of Java AWT components are

exposed through the components property of the Container object. This object returnsalist of Java
components enclosed by that container. Thereisno formal "dement” relationship between a container
and its contents, but the Applet Runner accepts element-style references and trand ates them to the correct
Java object references. This means that the normal AppleScript commands that act on elements (count ,
each, whose, €tc.) do not operate on items contained by a container object even though you can perform
some of those operations on the components property of that container.

(Note that in the applet runner, the window is a container of the Applet and is not the Applet object itself. The Applet
Runner's Window classis useful only for manipulating the windows the Applet Runner displays. Y ou can aso

address the applet directly.)

Discovering the correct name of acomponent through trial and error can be difficult. MRJ Scripting assistsyou in
determining object specifiers (whenthe | macos. scri pti ng. debug| property is set to true). If you turn on Balloon
Help, you may point to any object, and the balloon will give you a useful object specifier for that object. The object

specifier is also output to the Java console.

Following AppleScript conventions, the contents of containers are referred to using 1-based indices, even though the
standard for Javais zero-based indices. So the first component in a container is component 1, not component O.

Most properties of the Java object are available as properties of the AppleScript object, and the AppleScript get and
set commands can be used to examine and change the values. For example, using the Lightweight Gauge applet as
an example, the value for the second bar can be accessed with:

get current Anpunt of Gauge 2 of PrettyPanel 1 of Double Buffer Panel 1 of Exanple Applet 1

It can be set accordingly with the AppleScriptset command if the property is not marked as[r/o] (read only) in the
dictionary.

Back to top

TN 1162: Introduction to MRJ Scripting with AppleScript for Page: 5
Java

Java Methods as AppleScript Commands

Most method calls on a Java abject are available as AppleScript commands. In the dictionary displayed by
the Script Editor, each Javaclassislisted in its own suite with an AppleScript class representing the Java
classand alist of commandsin that suite that correspond to the methods.

Important:
Note that AppleScript islax about associating commands with objects. A script that sends acommand to

an object that does not support that method will compile, although it will get aruntime error.

Thetarget or direct object of acommand must be the Java object that supports the corresponding method.
Y ou can use the syntax of any of the following AppleScript examples to send acommand to atarget
object:

restart Exanple

Applet 1
restart of Exanple Applet 1

tell Exanple Applet 1 to restart
tell Exanple Applet 1

restart
end tell

Because AppleScript supports named parameters but not ordered parameters, and Java supports ordered
parameters but typically not named parameter information via Javareflection, the parameters are usualy
passed in the parameter-named parameters. Thisis an ordered list containing the va ues that would appear
between the parenthesis in the Java method invocation. Remember, the parameters must be supplied in the
order they are expected by the Java method; for your convenience, thisislisted in the comment line of the
command's dictionary entry. For example, an invocation of ther epl aceRange command would look

like:

repl ace Range Text Area 1 of MRJ Test 1 parameters {"testing", 0, 20}

(Because parameter lists are passed directly to Java methods without interpretation, index parameters are
zero-based, not 1-based).

Java classes that implement the Beaninfo interface provides additional information for scripting. MRJ
scripting can then look for Java Parameter Descripter objects to provide named parametersin the
dictionary, and you can use these named parameters directly in AppleScript. As more JavaBeans are
created, thiswill become more common, but currently very little Java code provides this information.

Most methods take scalar parameters (discrete types such asi nt s, | ongs, Bool eans, €fc.) and return
scalar results. However, the Java objects St ri ng, Rect angl e, Poi nt, Di mensi on, and Col or are
considered to be scalar for this purpose; they are automatically trandated between Java and AppleScript
formats.

Back to top

TN 1162: Introduction to MRJ Scripting with AppleScript for Page: 6
Java

Scripting Java Applets

For applets, the applet tag is provided to AppleScript as a property of the Applet object, even though it is
not really afield of the Java Applet class. Furthermore, you can get and set the Appl et tag to change
runtime parameters. Setting the Applet tag will result in arelaunch of the Applet with the new Applet tag.
Hereis an example of changing the Bar Char t applet to the vertical orientation:

set applet tag of Applet 1 to {cl1:"10", cl _color:"blue", cl1_|abel:"Ql",
cl style:"striped", c2:"20", - c2_color:"green",

c2_label:"@", c2_style:"solid", ¢3:"5", c3_color:"mgenta",
c3_label:"@", - c3_style:"striped", c4:"30",

c4_color:"yellow', c4_label:"Q4", c4_style:"solid",

| colums]|:"4", - orientation:"vertical",

scale:"5", |title|:"Perfornmance"}

Back to top

Creating a Scriptable Java Application

To script aJava application, the Java application file needsto have' aet e’ and' scsz' resourcesinits
resource fork. A sample' aet e’ resource, "MRJ Scripting aete,” is provided in the MRJ 2.1 SDK in the
folder "MRJ Scripting." A similar' aet e’ resourceis aready included with the Applet Runner. The
"aet e’ resourceincludesabuilt-in suite and afirst cut at the AWT terminologies. Terminology for other
classesis generated dynamically using Java's reflection feature.

Automatically generated terminologies may not be very user friendly. Their comments are simply the
Java object's name, and they expose most properties and methods to the scripter. Y ou may want to use
the automatically generated terminology as a starting point, then change the comments and del ete the
properties and methods that are not useful to the scripter.

Sincethe' aete' can befairly large, it isagood ideato increase the memory partition of Script Editor,
HyperCard, or whatever OSA development environment you are using. Y ou may aso need to increase
the memory partition of the Java application or Applet Runner.

Back to top

Generating an 'aete' for a Java application

Scriptable applications must provide ater minology resour ce (stored in resource’ aete' 0inthe
resource fork) in order to be scriptable with AppleScript and other OSA scripting languages. This
terminology resource associates the four-character event and class codes used in the application's source
code with the English terminology used by the scripter. Normally, a devel oper compiles the terminology
resource from a.r file with the Rez tool or editsit using aresource editor with an' aet e’ template (such
as Resorcerer or ResEdit). For MRJ scripting, the four-character codes used for scripting are generated
automatically and may not be modified by the devel oper, but you may want to change the terminology to
improve readability.

The automatically generated terminology is a combination of a static basic terminology and dynamic
terminology created by your scriptable Java application. Thefile "MRJ Scripting aete” includes the basic
terminologies and the AWT component terminologies. MRJ scripting automatically generates additional
terminologies for all components in open windows of Java applications; in thisway MRJ generates all
basic terminology needed to make an MRJ application scriptable. To include the basic resourcesin a Java
application, use JBindery or ResEdit.

Oncethebasic' aet e’ resourceisin your Javaapplication, you must run it and touch every part of the
application you want to be scriptablein order for it to generate the dynamic terminology. Open al the
windows with components that you are interested in, so that AppleScript classes for those components
will be included in the terminology.

If itisnot practical to open all the windows manually, or if there are scriptable classes that are not AWT

TN 1162: Introduction to MRJ Scripting with AppleScript for
Java

components, you can use scripting itself to ensure terminologies will be generated for those classes. In
the basic dictionary there isa suite called the "Devel oper Suite," which contains commands and classes
that designed to assist the devel oper, not the end user. In this suite, theadd t er mi nol ogi es for cl ass
event lets you specify that a particular Java class should be included in the dynamic terminology.

Once you have touched (manually or by scripting) all the classes you wish to expose, the next step isto
retrieve the dynamic terminologies. Y ou do thiswith the same' gdt e’ event that the Script Editor usesto
fetch the dynamic terminology from an application. Normally this event is hidden from the scripter so
there is no terminology for it; in the Developer Suite we give it the event nameget t er ni nol ogi es SO
you can write a script that sends it to your application.

In our terminology we also enhancetheget t er mi nol ogi es event with an optional boolean parameter
obj ect par anet ers. Normally, the terminology generated excludes all events that have Java objects as
parameters; if you want to include such events, you may add "with object parameters' when you call the
get termninol ogi es event.

Theresult of theget termi nol ogi es event isalarge data object containing both the static and dynamic
terminologies. If you want to edit this dynamic terminology to make it more usable, you need to save it to
afile. There are anumber of shareware scripting additions that will do the job. In the following example
we usetheadd resour ce command from the GTQ Scripting Library (see
http://www.scriptweb.com/osaxen/gtq_scripting_library.html):

tell
application "test.app"
add term nol ogy for class "com acne.test. Speci al Button"
add term nol ogy for class "comacne.test. Speci al d ass"
set aeteRes to get terminologies --set aeteRes to get
term nol ogi es with object parameters
- NOTE: There is currently an issue with using "get term nol ogies
- with object paraneters”
- Use "get term nologies with <<class objt>>"
- instead

add resource aeteRes to file "HD: Test Res" of
type "aete" id 0 -
with replacing all owed
end tell

Important:
In the above AppleScript, << and >> must be replaced with their single-character equivalents - the
Option-\ and Option-Shift-\ charactersin order for the script to function correctly.

When ingtalling the " Add Resource" scripting addition, increase the partition size of the Script Editor to
about 1500K, and enter and run this script. Then you can find the resource in the resulting "HD: TestRes'
file and edit it with your favorite' aet e’ editor: either derez it and edit the .r file, or use Resorcerer or
ResEdit with the' aet e’ template.

When cleaning up the terminology for the scripter, you should delete all the events and propertiesthat are
not relevant. Y ou may want to delete non-relevant classes well; however, if dynamic terminology ison,
then the terminologies of classes you have removed will show up again dynamically. Currently, to get
around the problem, you can delete all events and properties of those classes but leave the classes around.
Since the dynamic terminology generation does not try to override the classes already inthe* aet e' , these
classes would remain empty.

Y ou should never change the four-character codes in the aete. However, you are encouraged to change
the names of events, parameters, classes, and propertiesif they are generated from programming names
and not the display names. Y ou should also add comments to inform the scripter what the individua
classes are and how they are used.

After you have edited the' aet e' resource into itsfina form, you should probably delete the Developer
Suite since it is not intended for the scripter.

Dynamic terminology is controlled by the' scsz' resource. You may edit the' scsz' resourceto disable
dynamic terminology and thus freeze the terminology to be what you declarein the modified' aet e’ . (If

Page: 7

TN 1162: Introduction to MRJ Scripting with AppleScript for Page: 8
Java
you do this, you don't need to worry about automatic generation of unwanted terminology.) But this too
has drawbacks. If your Java application is extensible (for example, throughthest art tool event), new
classes can be introduced at run time; the only way to make these classes scriptable isto enable dynamic
terminology inthe' scsz' resource.

You are strongly encouraged to edit and trim down your ' aet e' resource, otherwise the scripter will
likely be overwhelmed by the number of entriesin the dictionary. Y ou should & so give the user some
suggestions on where they should direct their scripting efforts. Then the scripter will have a better chance
of fully utilizing your application. It is recommended that you ship sample scripts with your application to
help the scripter with terminology idiosyncrasies and to demonstrate how to make use of scripting support
effectively.

Back to top
Changesin MRJ 2.2

MRJ 2.2 has made some significant changes to the scripting model used by the MRJ. These changeslie
in two main areas. changesto the terminology, and improved support for aternative containment
hierarchies. These changes are documented in About MRJ Scripting which is part of the MRJ SDK
2.2.

Terminology Changes
There are some changesin the terminology to avoid conflicts with built-in AppleScript key words:

e "file" has been changed to "Javafile'
e "get" has been changed to "get dictionary item"

Javaarray support has been improved. In previous MRJ versions, it was possible to get scripting errors
when referring to the index of an array item. In MRJ 2.2, these type of references are now possible:

set testobject of frame 1 to {1, 2,3}
set item2 of testobject of frame 1 to 4
get testobject of frame 1

This operation is now possible and will return the value {1, 4, 3} where previoudy, it would have
caused an error.

Additiondly, it is how possible to manipulate Java Vector objectsjust like an AppleScript Array. For
example, you can now do the following:

get item2 of testvector of frane 1
set item2 of testvector of frame 1 to "ganmm"
get item2 of testvector of frane 1

This operation will return the result "gamma". In previous versions of the MRJ, the only way to
manipulate V ector objects was viathe class methods.

The "make" event of the core suite is now supported. It is analogous to calling the constructor of aclass
directly. For example:

make new cl ass "java.awt. Frane"

Correspondsto calling "new Frame()" from Java. Y ou can even do more complex operations such as.

TN 1162: Introduction to MRJ Scripting with AppleScript for
Java

make new class "java.awt.Frane" with properties {title: "hello",
| visible|:true}
nmake new class "java.awt.Button" with data "Cick nme" at w ndow 1

Thisis equivalent to the following:

Frame f = new Frame();
f.setTitle("hello");
f.setVisible(true);

f.add(new Button("dick me"));

Finally, MRJ 2.2 adds support for object references. For example, if you want to store an object
reference for later use, you can storeit in the "object collection™ property of the Java application. For
example:

make new cl ass "xyz"
set al pha of its object collection to its result object

This saves areference to the new xyz object under the variable name "apha’, If you need to retrieve that
reference later, you may refer to it as:

al pha of its object collection

Note that if AppleScript isholding areference to aparticular object, the garbage collector cannot free that
memory even if the object isno longer in use. Y ou must explicitly remove the reference from the object
collection asfollows:

remove its object collection paranmeter "al pha"

Support for Alternative Containment Hierarchies

In the MRJ, typically objects must be referenced from AppleScript in terms of the visual contai nment
hierarchy. Thus, if abuttonisin apanel in awindow, you must access the button as follows:

get button 1 of panel 1 of frane 1

This can be anuisance if you have a deep containment hierarchy such asin the case of swing. InMRJ
2.2, adeveloper may specify an adternate hierarchy by implementing the
com.apple.scripting.AlternateHierarchy interface. This bypasses the traditional visual containment
hierarchy.

For example:

public class test extends Franme inplenments AlternateH erarchy
public Button getButton(int i)

/1 get the ith button in the frane

This alows the devel oper to write the following script:

Page: 9

TN 1162: Introduction to MRJ Scripting with AppleScript for
Java

get button 2 of w ndow 1

regardless of how many layers deep button 2 is. However, it is the responsibility of the developer to
keep track of itemsin the custom hierarchy and writing the retrieval method.

Back to top

Summary

Incorporating AppleScript into your Java application allows increased automation support. Adding basic
scriptability isvery simple. Y ou nheed only to add apre-generated ' aete' and a' scsz' resource;
however, more advanced scripting may require careful editing of these resource types for finer control of
which objects and methods are exposed in the dictionary.

Further References

e AppleScript Language Guide: English Diaect
e MRJSDK 2.2 (About MRJ Scripting)
e AppleScript Home Page

Back to top

Downloadables

E Acrobat version of this Note (49K).

Mention of third-party sites and third-party productsisfor informational purposes only and constitutes neither an
endorsement nor a recommendation. Apple assumes no responsibility with regard to the selection, performance, or use of
these vendors or products.

To contact us, please use the Contact Us page.
Updated: 02-February-2000

Technotes | Contents
Previous Technote | Next Technote

Page: 10

