
Open Transport/PPP ClientOpen Transport/PPP Client
Developer NoteDeveloper Note

document version 1.0
11/5/96

Comments should be sent to the AppleLink address OPENTPT or Internet address
opentpt@applelink.apple.com .

January 22, 1997 1
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Table of Contents

Revision History...4

Related Documents ..4

Open Transport/PPP Overview ..5

Technical Specifications...7
Using the OT/PPP API ..7

Opening OT/PPP Endpoints ...7
Sample Code...8

Commands...8
I_OTConnect...8
I_OTDisconnect..8
I_OTScript...9

Options ...10
IPCP_OPT_TCPHDRCOMPRESSION ...12
LCP_OPT_ PPPCOMPRESSION...12
LCP_OPT_ MRU ..12
LCP_OPT_ RCACCMAP ..13
LCP_OPT_ TXACCMAP ..14
SEC_OPT_ OUTAUTHENTICATION..14
SEC_OPT_ ID..14
SEC_OPT_ PASSWORD ...15
CC_OPT_ REMINDERTIMER ...15
CC_OPT_ IPIDLETIMER..15
CC_OPT_ DTEADDRESSTYPE...15
CC_OPT_ DTEADDRESS...16
CC_OPT_ CALLINFO...16
CC_OPT_ GETMISCINFO..16
PPP_OPT_ GETCURRENTSTATE ..17
OPT_ ALERTENABLE ..17

Events..17
kPPPLowerLayerUpEvent..18
kPPPLowerLayerDownEvent ..18
kPPPDCEInitStartedEvent..18
kPPPDCEInitFinishedEvent...18
kPPPDCECallStartedEvent ..18
kPPPDCECallFinishedEvent..18
kPPPLCPUpEvent..19
kPPPLCPDownEvent ..19
kPPPAuthenticationStartedEvent..19
kPPPAuthenticationFinishedEvent...19
kPPPIPCPUpEvent ..19
kPPPIPCPDownEvent...19
kPPPConnectCompleteEvent...19
kPPPDisconnectCompleteEvent..20
kPPPDisconnectEvent...20
kPPPSetScriptCompleteEvent..20

Sample Code ...21
Opening OT/PPP Endpoints ..21

January 22, 1997 2
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Enabling OT/PPP Events ..22
Starting a Connection ...22
Monitoring Events ..22
Setting Option Values...24
Setting the Modem Script ..24
Retrieving Option Values ..25
Disconnecting OT/PPP ..26
Closing OT/PPP Endpoints ..26

Index...27

January 22, 1997 3
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Revision History
11/05/96 Added sections for new events, reworked sample

code and updated options information.
09/27/96 More review, new sample code section
08/12/96 Began post-implementation review
03/15/96 Documentation review, draft 3
02/28/96 Documentation review, draft 2
02/12/96 Documentation review, draft 1
01/30/96 Created

Related Documents

IETF (Internet Engineering Task Force) RFC (Request for Comments) 1662: PPP in HDLC-like
Framing, W. Simpson, July 1994.

IETF RFC 1661: The Point-to-Point Protocol (PPP), W. Simpson, July 1994.

IETF RFC 1332: The PPP Internet Protocol Control Protocol (IPCP), G. McGregor, May 1992.

IETF RFC 1334: PPP Authentication Protocols, B. Lloyd et al, October 1992.

IETF RFC 1471: The Definitions of Managed Objects for the Link Control Protocol of the Point-to-Point
Protocol, F. Kastenholz, June 1993.

IETF RFC 1472: The Definitions of Managed Objects for the Security Protocols of the Point-to-Point
Protocol, F. Kastenholz, June 1993.

IETF RFC 1473: The Definitions of Managed Objects for the IP Network Control Protocol of the Point-to-
Point Protocol, F. Kastenholz, June 1993.

IETF RFC 1144: Compressing TCP/IP Headers for Low-Speed Serial Links, V. Jacobson, February 1990.

Open Transport Client Developer Note , November 30, 1995.

X/Open CAE Specification: X/Open Transport Interface (XTI), X/Open Company Limited, 1992.

January 22, 1997 4
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Open Transport/PPP Overview
This document describes the applications programming interface (API) available for managing Open
Transport/PPP (OT/PPP) links. The OT/PPP client API is part of the overall Open Transport client API
and is based on Open Transport endpoints. This document should be used along with the Open Transport
Client Developer Note, which describes general information about Open Transport endpoint libraries. For
additional PPP-specific information, please refer to the relevant RFCs listed in the Related Documents
section.

Open Transport/PPP is a fully OT-native implementation of the Point-to-Point Protocol. It provides
standard PPP functionality along with many of the additional features common to the Apple Remote
Access product family.

The current release of Open Transport/PPP supports TCP/IP over PPP. It is a client-only release: it does
not answer incoming calls. Support for AppleTalk, additional network protocols, and server functionality
will be included in future releases.

Version 1.0 of OT/PPP supports asynchronous framing only. Synchronous framing may be supported in
a future release.

This release of OT/PPP does not support CCP (Compression Control Protocol), PPP datalink
compression, and reliable transmission (i.e., HDLC LAP B). These features may be supported in future
releases.

This release of OT/PPP supports a single active PPP "port" or link and one corresponding physical serial
port at any given time. Currently, there is no programmatic way to select a physical port and to make the
association between the PPP port and a selected physical port. The selection and association must be
made manually with the "Connect via:" menu in the Modem control panel.

This release of OT/PPP does not allow client applications to permanently modify a user's PPP or Modem
configurations on disk. This capability may be provided through a separate mechanism in a future
release of Open Transport.

January 22, 1997 5
Copyright © 1996 Apple Computer, Inc. All rights reserved.

January 22, 1997 6
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Technical Specifications
This document specifies the application programming interface (API) available for managing Open
Transport/PPP connections. The OT/PPP API is a part of the overall Open Transport API and is based
on Open Transport endpoints. To use this specification you will need some familiarity with endpoints
and OT application programming. The document titledOpen Transport Client Developer Note included
with the Open Transport SDK describes how to use the OT API.

The OT/PPP API provides a set of commands to initiate connections and disconnections. It also provides
definitions for XTI option management calls to customize the settings and PPP negotiable options used
for a connection. Option management calls are not required when using the API: your program can
connect and disconnect using the default configurations if custom settings are not required. The Options
section below details each of the available configuration options.

The OT/PPP API also provides a set of asynchronous endpoint notification events. Events signal the all
of the important activity on OT/PPP endpoints, such as DCE call completion, PPP negotiation completion
and connection establishment. The Events section below describes each event and its corresponding
notification parameters.

Using the OT/PPP API
As mentioned above, the OT/PPP API is part of the overall Open Transport API. To use it, you need the
Open Transport Client SDK, Version 1.1.1 or later. You also need the OT/PPP SDK, which consists of a
single header file, OpenTptPPP.h. This file defines all the data constants and structures referenced in the
following specifications. There are no additional libraries in the OT/PPP SDK; to use it you simply link
with OT client SDK libraries, OpenTransport.o and OpenTransportApp.o.

The OT/PPP API is based on control endpoints. An OT/PPP control endpoint is a generic Open
Transport endpoint opened with an OT/PPP configuration. It is called a "control" endpoint because it
does not support data transfer: it is used only to initiate and monitor PPP links. Unlike conventional
data-transfer endpoints associated with networking protocols, the OT/PPP endpoint does not implement
the Transport Provider Interface and does not support the OTBind, OTConnect, OTSnd, OTRcv, and
OTDisconnect calls.

Opening OT/PPP Endpoints

To open an OT/PPP control endpoint, use the PPP control endpoint name:

#include <OpenTransport.h>
#include <OpenTptPPP.h>

ep = OTOpenEndpoint(OTCreateConfiguration(kPPPControlName), 0, NULL, &err));

OT/PPP endpoints may be opened synchronously or asynchronously. OT/PPP 1.0 supports only one
logical PPP port at a time, which is associated with a physical hardware port. The physical port is
specified by the user's "Connect via:" selection in the current Modem configuration. The number of
OT/PPP endpoints opened on the logical PPP port is limited only by the amount of available memory. A
PPP port can exist even if no OT/PPP endpoints are opened, as long as a previously initiated connection
remains connected.

January 22, 1997 7
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Sample Code

This document contains a Sample Code section. The code snippets provided in that section demonstrate
the use of OT/PPP endpoints to temporarily customize the active PPP and Modem configurations, to
start and stop connections, and to monitor the status of a connection. They do not present a complete
OT/PPP application or a complete reference for using Open Transport endpoints.

Commands
The two primary OT/PPP actions, connecting and disconnecting, are initiated by issuing IOCTL
commands on OT/PPP endpoints. Modem and connect script changes are also made with an IOCTL
command. This use of IOCTLs is different from conventional data-transfer endpoints which implement
the Transport Provider Interface and use OT calls such as OTConnect and OTDisconnect. There is no
data transfer protocol on OT/PPP endpoints--they are used only for control of the PPP links. The IOCTL
commands supported on OT/PPP endpoints are described in the sections below.

I_OTConnect

The Open Transport I_OTConnect IOCTL command causes an OT/PPP endpoint to initiate a connection.
The connection-establishment process takes place in the background and involves several protocol layers
in progressive phases, as well as end-to-end exchanges of control packets over the link. The process
includes lower-layer connection establishment (i.e., modem, DSU/CSU, ISDN, etc.) , Link Control
Protocol (LCP) connection establishment, authentication, and Network Control Protocol (NCP)
connection establishment. If PPP events are enabled on the endpoint, asynchronous notification events
will be issued to indicate significant link events during the connection-establishment process.

The I_OTConnect IOCTL call on OT/PPP endpoints usually completes immediately. IOCTL call
completion indicates that the connection attempt has been started successfully, or that an error occurred;
it does not mean that the PPP connection is fully established. Connection completion is signaled with the
kPPPConnectCompleteEvent. You must install an endpoint notifier and handle this event to correctly
detect OT/PPP connection completion. Refer to the Events section for the meaning of the various notifier
parameters for this event.

If a connection has already been opened when the I_OTConnect command is issued, the command will be
rejected, a kOTOutOfState error will be returned to the caller, and the existing connection will remain
intact. The caller must tear down the existing connection using the I_OTDisconnect command before
establishing a new connection using the I_OTConnect command.

//
// I_OTConnect is issued as a transparent IOCTL command
// with no data parameter.
//
err = OTIoctl(ep, I_OTConnect, NULL);

I_OTDisconnect

The Open Transport I_OTDisconnect IOCTL command causes an OT/PPP endpoint to initiate the
connection-termination process. This process takes place in the background and involves several protocol
layers in progressive phases, as well as end-to-end exchanges of control packets over the link. The
termination process includes NCP connection termination, LCP connection termination, and lower-layer

January 22, 1997 8
Copyright © 1996 Apple Computer, Inc. All rights reserved.

connection termination. If PPP events are enabled on the endpoint, asynchronous notification events will
be issued to indicate significant link events during the connection-establishment process.

The I_OTDisconnect IOCTL call on OT/PPP endpoints usually completes immediately. IOCTL call
completion indicates that the disconnection has been started successfully, or that an error occurred; it
does not mean that the PPP connection is fully terminated. Termination is signaled with the
kPPPDisconnectCompleteEvent. You must install an endpoint notifier and handle this event to correctly
detect OT/PPP disconnect completion. Refer to the Events section for the meaning of the various notifier
parameters for this event.

If a connection doesn't exist, the kRANotConnected error will be returned in the cookie parameter to the
caller's notifier along with kPPPDisconnectComplete event. It isn't necessary to use the same endpoint
that initiated a connection to terminate it. A different endpoint opened in the same or a different
application can be used.

//
// I_OTDisconnect is issued as a transparent IOCTL command
// with no data parameter.
//
err = OTIoctl(ep, I_OTDisconnect, NULL);

I_OTScript

The Open Transport I_OTScript IOCTL command causes an OT/PPP endpoint to update either the
current modem script or the current connect (terminal-server) script. Modem scripts automate DCE
dialing using the Connection Control Language (CCL) introduced in Apple Remote Access 1.0. Connect
scripts use the same CCL languages to automate terminal server log-in.

The I_OTScript command does not change the scripts chosen in the modem and PPP control panels; it
merely overrides them temporarily. The effect of the new scripts will last until either they are overridden
again (by the same or a different client application) or the last endpoint is closed and the connection is
inactive.

Note: it is not necessary to issue the I_OTScript command if you don't need to override the scripts
selected by the user in the PPP and Modem control panels. The selected scripts are used by default if no
I_OTScript command is issued on an OT/PPP endpoint. However, if the user has not configured the
Modem control panel, you must set a modem script with the I_OTScript command before issuing the
I_OTConnect script or the connection attempt will fail with a kModemPreferencesMissing (-14001) or a
kModemScriptMissing (-14002) error. This is because there is no default value for the modem script in
the absence of a user configuration for the Modem layer.

The OTScriptInfo structure is defined as follows in Open Transport.h to describe the script you wish to
set. You must read the script data into memory completely before issuing the I_OTScript call: OT/PPP
endpoints do not read script data from files or other sources. Constants for specifying the type of script to
set are defined in OpenTptPPP.h.

//
// From OpenTransport.h:
//
struct OTscriptInfo
{
 UInt32 fScriptType;
 void* fTheScript;
 UInt32 fScriptLength;
};

January 22, 1997 9
Copyright © 1996 Apple Computer, Inc. All rights reserved.

//
// From OpenTptPPP.h:
//

#define kPPPScriptTypeModem 1
#define kPPPScriptTypeConnect 2

//
// Sample use of OTScriptInfo and I_OTScript.
//

OTScriptInfo info;
str.fScriptType = kModemScript;
str.fTheScript = scriptData;
str.fScriptLength = scriptDataLen;

err = OTIoctl(ep, I_OTScript, &info);

There is a 32K byte limit to size of any script set with I_OTScript on an OT/PPP endpoint. If
fScriptLength exceeds this limit, the data pointed to by fTheScript will be truncated to 32K when it is
copied by the endpoint. All script data is copied before it is used by OT/PPP; the caller's buffer is not
modified.

As with I_OTConnect and I_OTDisconnect, the I_OTScript IOCTL call on OT/PPP endpoints usually
completes immediately. IOCTL call completion indicates that the script update has been started
successfully, or that an error occurred; it does not mean that the script update is fully completed.
Completion is signaled with the kPPPSetScriptCompleteEvent. You must install an endpoint notifier and
handle this event to correctly detect OT/PPP script update completion. This is important if you plan to
update scripts then start a PPP connection: your application should not issue I_OTConnect until it has
received a kPPPSetScriptComplete event for every previous I_OTScript call. Refer to the Events section
for the meaning of the various notifier parameters for the kPPPSetScriptComplete event.

Options
Configuration settings such as the user name, password, and the phone number to dial (if using a DCE
that requires one) can all be set and examined onOT/PPP endpoints using the OTOptionManagement
call. For general information about option management and using he OTOptionManagement call, please
refer to theOpen Transport Client Developer Note and the X/Open Transport Interface (XTI) specification.

You can examine the default setting for an OT/PPP option by using the OTOptionManagement call with
the T_DEFAULT flag. You can examine the current setting for an OT/PPP option--which may be
different from the default setting--by using OTOptionManagement with the T_CURRENT flag. You can
temporarily override any or all of the default option settings specified below by using
OTOptionManagement calls with the T_NEGOTIATE option flag set.

Most OT/PPP option values are simple long integers. However, a number of them are compound values
containing more than one field. A sructure definition provides the format for each such option. These
structures are defined in OpenTptPPP.h and are described in the sections below.

January 22, 1997 10
Copyright © 1996 Apple Computer, Inc. All rights reserved.

When to Set Endpoint Options

By default, OT/PPP endpoints use the settings in the user's currently selected PPP and Modem
configurations, which are edited, respectively, with the PPP and Modem control panels. For this reason,
it is not necessary to set every OT/PPP option on an endpoint. In fact, if the user has created both a PPP
and a Modem configuration, it is not necessary to set any endpoint options before initiating a connection
unless your application needs to override the user's choices.

If the user has not created a PPP or a Modem configuration, you can still connect without setting options
with the following exceptions: the DTE address (phone number) and the modem script. All other
settings have pre-defined defaults that apply in the absence of a user configuration. If no PPP
configuration has been saved, you must set the CC_OPT_DTEADDRESS option (see below). If no
Modem configuration has been saved, you must set the modem script using the I_OTScript command
described in the Commands section of this document.

How OT/PPP Options are Applied

The options specified in the following sections are associated with the OT/PPP interface rather than with
particular client endpoints. When you set an option with your endpoint, it applies to all endpoints
opened on the same PPP port.

When you set an OT/PPP option the value remains in effect until one of the following happens: the
option is set again with another OTOptionManagement call on any open endpoint, the value is modified
during the connection negotiation (if it is a negotiable option), or the last OT/PPP endpoint is closed and
the connection is terminated for any reason.

Option settings do not permanently change the user's selected configurations or any system defined
default values. There is currently no facility for programmatically altering users' configurations.
Configurations must be edited manually using the PPP and Modem control panels.

If multiple client applications attempt to change the options associated with the same PPP port,
inconsistent results may occur. A client application may verify the result of a previously set option by
reading back the current option setting using OTOptionManagement with the T_CURRENT flag.
However, there is no guarantee that the option will not be changed again by a contending client
application after you check the option value but before you issue the connect command.

IPCP_OPT_GETREMOTEPROTOADDR
This is a read-only option, which returns the remote node's protocol (IP) address. A client application
may read this option after its endpoint notifier function receives the kPPPIPCPOpenedEvent event; the
address is 0 before the arrival of the kPPPIPCPOpenedEvent event. The format of the value of this option
is the InetAddress data structure, defined in the OpenTptInternet.h file:

struct InetAddress
{
 OTAddressType fAddressType; // always AF_INET
 InetPort fPort; // Port number; unused for this option
 InetHost fHost; // Host address in net byte order
 UInt8 fUnused[8]; // Don't use these bytes!!
};
typedef struct InetAddress InetAddress;

January 22, 1997 11
Copyright © 1996 Apple Computer, Inc. All rights reserved.

IPCP_OPT_GETLOCALPROTOADDR

This is a read-only option, which returns the local node's protocol (IP) address. Different local protocol
addresses may be returned before and after the arrival of the kPPPIPCPOpenedEvent event; if this occurs,
the address obtained after the arrival of the kPPPIPCPOpenedEvent event should override the address
obtained prior to the arrival of the event. If the local node's protocol address is not defined prior to the
arrival of the kPPPIPCPOpenedEvent event, a 0 address is returned if the option is read. The format of the
value of this option is the InetAddress data structure.

IPCP_OPT_TCPHDRCOMPRESSION

This option specifies whether the local host will attempt to negotiate the TCP/IP header-compression
option with the remote node. The option value is a 32-bit Boolean long word The acceptable option
values are: {kIPCPTCPHdrCompressionDisabled = TCP/IP header compression disabled,
kIPCPTCPHdrCompressionEnabled = TCP/IP header compression enabled}. The default value of this
option is kPPPTCPHdrCompressionEnabled - i.e., the local host will attempt to negotiate TCP/IP header
compression option. Enabling of this option does not guarantee that the compression will actually take
place. The local host and the remote node must agree on the setting. TCP/IP header compression can
reduce over 30 bytes of TCP/IP header overhead per frame and is essential for lower-speed links. It can
be used in conjunction with the PPP datalink header-compression option described below. The
recommended setting for this option for high-speed links is kIPCPTCPHdrCompressionDisabled.

#define kIPCPTCPHdrCompressionDisabled 0
#define kIPCPTCPHdrCompressionEnabled 1

LCP_OPT_ PPPCOMPRESSION

This option specifies whether the local host will attempt to negotiate the PPP compression option with the
remote node. The option value is a 32-bit long word. The acceptable option values are:
kPPPCompressionDisabled = PPP datalink compression disabled, or any combination of
kPPPProtoCompression and kPPPAddrCompression. The default value of this option is
(kPPPProtoCompression | kPPPAddrCompression), i.e. the local host will attempt to negotiate
compression of the PPP packet protocol and address fields. Enabling this option does not guarantee that
the compression will actually take place. The local host and the remote node must agree on the settings.
PPP protocol and address field compression will reduce up to 3 bytes of header overhead per frame. PPP
datalink header compression is useful for lower-speed links and can be used in conjunction with the
TCP/IP header-compression option. The recommended setting for this option for high-speed links is
kPPPCompressionDisabled = 0.

#define kPPPCompressionDisabled 0x00000000
#define kPPPProtoCompression 0x00000001
#define kPPPAddrCompression 0x00000002

LCP_OPT_ MRU

This option specifies the desired MRU (Maximum Receive Unit) size and the upper and lower limits of
the MRU negotiation range. The local host will advertise the desired MRU size to the remote node and
will accept a proposed MRU size that falls within the range specified by the upper and lower MRU limits.
The MRU size is the maximum size (i.e., datalink protocol header, trailer, and padding are excluded) of

January 22, 1997 12
Copyright © 1996 Apple Computer, Inc. All rights reserved.

an OT/PPP frame that the local host is capable of receiving. The PPPMRULimits data structure specifies
the option value format for LCP_OPT_MRU. The acceptable values for the desired MRU size and the
upper and lower MRU limits are from 0 to 4500. The default value for the desired MRU size is 1500. The
local host will not advertise the MRU size and the default MRU size (i.e., 1500) will be assumed, if the
desired MRU size is set to 0. The default upper MRU Limit is 1500. The default lower MRU limit is 0; i.e.,
the local host will accept any proposed MRU size as long as it is smaller than the upper MRU limit.

To determine the optimal setting for this option, you should consider both response-time and throughput
requirements of the intended user applications. You should balance the desired responsiveness of
interactive applications such as Telnet and the desired throughput of bandwidth-intensive data-transfer
applications such as FTP. You should also consider the adverse interaction between interactive traffic
and bulk data-transfer traffic. The response time of interactive applications will be poor when small
interactive packets are queued after much larger data-transfer packets. Link speed must also be taken
into account when determining the MRU setting. Generally speaking, MRU may be further reduced to
counter the inherent sluggishness of slower-speed links. Conversely, MRU may be further increased to
boost the effective throughput of slower-speed links. Most ISPs (Internet Service Providers) recommend
a certain MRU setting based on various factors.

typedef
{
 UInt32 mruSize; // proposed or actual
 UInt32 upperMRULimit;
 UInt32 lowerMRULimit;
}
PPPMRULimits;

LCP_OPT_ RCACCMAP

This option applies only to asynchronous PPP framing. It sets up the local host's receive-side
Asynchronous-Control-Character-Map (ACC-Map). The option value (i.e., the ACC-Map) is a 32-bit
binary mask which specifies up to 32 control characters that may have a special meaning to the local DCE
(Data Circuit-terminating Equipment) for in-band control purposes. If used by the local DCE (i.e.,
modem, DSU/CSU, etc.), the in-band control characters must be mapped into the appropriate 2-character
escape sequences by the remote node in order to ensure successful reception of such characters by the
local host. Each bit position (i.e., 0 to 31) of the ACC-Map corresponds to an ASCII control character of
the same value; bits are set to inform the remote node to map the corresponding control characters before
transmitting them across the link to the local host. The default OT/PPP option value is
kPPPAsyncMapCharsNone, i.e. no control characters are mapped into the appropriate 2-character
sequences. This default setting differs from the RFC specification but agrees with most current PPP
server implementations.

Since it is often unnecessary to map any characters (if it is necessary, only a few selected characters are
mapped), the local host may use this negotiation option to keep the inbound traffic overhead (i.e., stuffed
characters) to the minimum. The local host must be able to handle unsolicited mapped characters since
the remote node may map certain control characters so that they will pass through the remote DCE. If X-
On and X-Off (i.e., instead of CTS/RTS hardware handshake) are used for DCE flow control, this option
value may be set to kPPPAsyncMapCharsXOnXOff. When running asynchronous PPP framing over a bit
synchronous link such as ISDN, the option value should be set to kPPPAsyncMapCharsNone.

#define kPPPAsyncMapCharsNone 0
#define kPPPAsyncMapCharsXOnXOff 0x000a0000
#define kPPPAsyncMapCharsAll 0xffffffff

January 22, 1997 13
Copyright © 1996 Apple Computer, Inc. All rights reserved.

LCP_OPT_ TXACCMAP

This option applies only to asynchronous PPP framing. It sets up the local host's transmit-side
Asynchronous-Control-Character-Map (ACC-Map). The option value (i.e., the ACC-Map) is a 32-bit
binary mask which specifies up to 32 control characters that may have a special meaning to the local DCE
for in-band control purposes. If used by the local DCE, the in-band control characters must be mapped
into the appropriate 2-character escape sequences by the local host in order to ensure successful
transmission of all characters through the local DCE. Each bit position (i.e., 0 to 31) of the ACC-Map
corresponds to an ASCII control character of the same value; bits are set to indicate which control
characters are to be mapped by the local host before transmitting them across the link to the remote host.
In addition to the local outbound character mapping requirement imposed by the local DCE, the local
host must also map control characters according to the remote node's receive-side ACC-Map before
transmitting them across the link to the remote node; the requirement imposed by the remote node is
handled dynamically by the protocol and is transparent to the user. The default OT/PPP option value is
kPPPAsyncMapCharsNone, i.e. no control characters are mapped into the appropriate 2-character
sequences. This default setting differs from the RFC specification but agrees with most current PPP
server implementations.

Since it is often unnecessary to map any characters (if it is necessary, only a few selected characters are
mapped), the local host may use this option to keep the outbound traffic overhead (i.e., stuffed characters)
to the minimum. If X-On and X-Off (i.e., instead of CTS/RTS hardware handshake) are used for DCE
flow control, the option value may be set to kPPPAsyncMapCharsXOnXOff. When running
asynchronous PPP framing over a bit synchronous link such as ISDN, the option value should be set to
kPPPAsyncMapCharsNone.

SEC_OPT_ OUTAUTHENTICATION

This option specifies the outbound (local-to-remote) authentication method to be used by the local PPP
interface. Two authentication protocols are supported: Password Authentication Protocol (PAP) and
Challenge-Handshake Authentication Protocol (CHAP). CHAP is preferred and more secured because it
uses the password to encrypt a challenge string before sending the resulting encrypted response packet
back to the remote node. Unlike CHAP, PAP sends a password string in a clear text format that makes
PAP vulnerable to security attacks.

The option value is an unsigned 32-bit long word. The acceptable option values are:
kPPPNoOutAuthentication= none, kPPPCHAPOrPAPOutAuthentication = either CHAP or PAP. The
default option value is kPPPCHAPOrPAPOutAuthentication. Authentication is negotiated across the
link and the ID and password values set by the SEC_OPT_ID option and the SEC_OPT_PASSWORD
option are used. If these have not been set, the values from the current PPP configuration are used.

The SEC_OPT_ OUTAUTHENTICATION option should be set to kPPPNoOutAuthentication if the
remote node does not require any PPP authentication methods (e.g., guest login).

#define kPPPNoOutAuthentication 0
#define kPPPCHAPOrPAPOutAuthentication 1

SEC_OPT_ ID

This option specifies the name used for outbound authentication. The ID value is a variable-length byte
array containing up to 256 bytes. The option value must be passed as ASCII characters with no preceding
length byte or trailing NULL character. The character array must begin immediately after the last field of

January 22, 1997 14
Copyright © 1996 Apple Computer, Inc. All rights reserved.

the TOptionHeader structure, which is the first byte of the "value" field in the TOption structure. The
user name length is determined by the length field of the TOptionHeader structure.

SEC_OPT_ PASSWORD

This option specifies the password to be used for outbound authentication. The password value is a
variable-length byte array containing up to 256 bytes. The option value must be passed as ASCII
characters with no preceding length byte or trailing NULL character. The character array must begin
immediately after the last field of the TOptionHeader structure, which is the first byte of the "value" field
in the TOption structure. The password length is determined by the length field of the TOptionHeader
structure.

CC_OPT_ REMINDERTIMER

This option sets the connection reminder timer. Refer to the OPT_ALERTENABLE section for
information on how to enable connection reminders. If the connection reminder dialog is enabled, it will
appear when the connection reminder timer expires. If the connection reminder dialog remains
unacknowledged by a user, the connection will be disconnected. The option value is an unsigned 32-bit
long word. The acceptable option values are: kCCReminderTimerDisabled = connection reminder timer
disabled; T_INFINITE (0xffffffff) = unlimited time; non-zero = enabled (timer value in milliseconds). The
default option value is kCCReminderTimerDisabled.

#define kCCReminderTimerDisabled 0

CC_OPT_ IPIDLETIMER

This option sets the IP connection idle timer . If TCP/IP remains idle longer than the time specified by
this option, the PPP connection will be torn down. The option value is an unsigned 32-bit long word.
The acceptable option values are: kCCIPIdleTimerDisabled = IP connection idle timer disabled;
T_INFINITE (0xffffffff) = unlimited time; non-zero = enabled (idle timer value in milliseconds). The
default option value is 600,000 milliseconds (10 minutes).

#define kCCIPIdleTimerDisabled 0

CC_OPT_ DTEADDRESSTYPE

This option specifies the format of the remote Data Terminal Equipment (DTE) address to be set by the
CC_OPT_DTEADDRESS option. The remote DTE address format is specific to the physical media used.
It uses E.164 telephone number string format if the physical-media type is modem, DSU/CSU, or ISDN;
it uses X.121 address format if the physical media type is X.25. The default option value is
kPhoneAddress. The option value format is a 32-bit unsigned integer. The option setting must be
consistent with the DTE address set by the CC_OPT_DTEADDRESS option.

#define kE164Address 1
#define kPhoneAddress 1
#define kCompoundPhoneAddress 2
#define kX121Address 3

January 22, 1997 15
Copyright © 1996 Apple Computer, Inc. All rights reserved.

CC_OPT_ DTEADDRESS

This option specifies the remote DTE address to be used when making a call. The DTE Address value is a
variable-length character array containing up to 128 characters. The option value must be passed as
ASCII characters with no preceding length byte or trailing NULL character. The character array must
begin immediately after the last field of the TOptionHeader structure, which is the first byte of the "value"
field in the TOption structure. The address length is determined by the length field of the
TOptionHeader structure.

Before issuing an I_OTConnect command, a DTE address must be specified either programmatically by
executing a CC_OPT_DTEADDRESS OTOptionManagement call or manually by using the PPP control
panel.

CC_OPT_ CALLINFO

This option specifies the call info to be used when making a call. This optional call info may be required
when an intermediate access network (i.e., X.25 PAD, X.25 packet switching, ISDN circuit/packet
switching, etc.) is used to reach the remote peer. The call info value is a variable-length byte array
containing up to 256 characters. CC_OPT_CALLINFO is not used in OT/PPP Version1.0.

CC_OPT_ GETMISCINFO

This is a read-only option which returns miscellaneous connection information, including connection
status, elapsed connection time, remaining connection time, number of data bytes transmitted, and
number of data bytes received. A client application may read this option after its endpoint notifier
function receives the kPPPConnectionCompleteEvent notification; the option values are zeroed before the
arrival of this event. The option value format is given by the CCMiscInfo structure. All times are
expressed in milliseconds.

#define kPPPConnectionStatusIdle 1
#define kPPPConnectionStatusConnecting 2
#define kPPPConnectionStatusConnected 3
#define kPPPConnectionStatusDisconnecting 4

typedef struct
{
 UInt32 connectionStatus;
 UInt32 connectionTimeElapsed;
 UInt32 connectionTimeRemaining;
 UInt32 bytesTransmitted;
 UInt32 bytesReceived;
 UInt32 reserved;
}
CCMiscInfo;

January 22, 1997 16
Copyright © 1996 Apple Computer, Inc. All rights reserved.

PPP_OPT_ GETCURRENTSTATE

This is a read-only option which returns the current state of the PPP protocol. The option value is a 32-bit
unsigned long word. A client application may read this option anytime after the endpoint is opened. The
acceptable option values are listed below. Refer to RFC 1661 for details on what each state means.

#define kPPPStateInitial 1
#define kPPPStateClosed 2
#define kPPPStateClosing 3
#define kPPPStateOpening 4
#define kPPPStateOpened 5

OPT_ ALERTENABLE

OPT_ALERTENABLE is a generic Open Transport option which can be used to enables and disable
OT/PPP connection reminders and dialogs. The option value is specified as a 32-bit binary field. If a bit
is set or cleared, its corresponding dialog or reminder is enabled or disabled. The acceptable option
values are listed below. The default option value is (kPPPConnectionFlashingIconFlag |
kPPPOutPasswordDialogsFlag).

#define kPPPConnectionStatusDialogsFlag 0x00000001
#define kPPPConnectionRemindersFlag 0x00000002
#define kPPPConnectionFlashingIconFlag 0x00000004
#define kPPPOutPasswordDialogsFlag 0x00000008
#define kPPPAllAlertsDisabledFlag 0x00000000
#define kPPPAllAlertsEnabledFlag 0x0f

If the kPPPConnectionStatusDialogsFlag bit is set, OT/PPP will present a modal status window during
the connect and disconnect phases. If the kPPPConnectionRemindersFlag bit is set, connection reminder
dialogs will appear when the connection timer expires. If the kPPPConnectionFlashingIconFlag bit is set,
the OT/PPP icon will flash continuously over the Apple menu while the connection is up. If the
kPPPOutPasswordDialogsFlag bit is set, password and CCL ASK dialogs may be presented automatically
by OT/PPP if user input is required. If this bit is not set and password or ASK dialog input is required to
complete a connection, the connection may fail.

Events
By default, all events specified below are disabled. To receive these events, client applications must
activate them by issuing the I_OTGetMiscellaneousEvent IOCTL command. The
I_OTGetMiscellaneousEvent command tells the OT/PPP endpoint and stacks that the client is interested
in receiving PPP events. Here is the syntax of the I_OTGetMiscellaneousEvent call:

OTResult result = OTIoctl(ep, I_OTGetMiscellaneousEvents, 1);

January 22, 1997 17
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Passing 1 in the data argument enables PPP events; passing 0 disables them. Unless stated otherwise,
the cookie and result parameters to OT/PPP notifier functions have no meaning for the following
asynchronous notification events.

kPPPLowerLayerUpEvent

This event indicates that the lower-layer interface has gone up. The lower-layer interface refers to the
serial interface hardware (i.e., RS232, RS422/449, V.35, X.21, etc.) that sits below the PPP link layer. The
interface is up when the required hardware signals are present and the required handshakes are
successful.

kPPPLowerLayerDownEvent

This event indicates that the lower-layer interface has gone down. The lower-layer interface refers to the
serial interface hardware (i.e., RS232, RS422/449, V.35, X.21, etc.) that sits below the PPP link layer. The
interface is down if the required hardware signals are not present, the required handshakes are not
successful, or the local host has disabled the interface.

kPPPDCEInitStartedEvent

This event indicates that the local DCE (i.e., modem, DSU/CSU, ISDN, etc.) is being initialized. If the
local DCE is a modem, kPPPDCEInitStartedEvent indicates that the modem initialization command has
been sent to the local modem.

kPPPDCEInitFinishedEvent

This event indicates that the local DCE (i.e., modem, DSU/CSU, ISDN, etc.) initialization has completed.
The cookie parameter passed to the endpoint's notifier contains the result code for this operation. The
result parameter always contains kOTNoError.

kPPPDCECallStartedEvent

This event indicates that the local DCE (i.e., modem, DSU/CSU, ISDN, etc.) is initiating a call. If the local
DCE is a modem, this indicates that the modem dialing is in progress.

kPPPDCECallFinishedEvent

This event indicates the completion of a call attempt by the local DCE. The cookie parameter passed to
the endpoint's notifier function contains the result code for the call attempt. The result parameter
always contains kOTNoError.

January 22, 1997 18
Copyright © 1996 Apple Computer, Inc. All rights reserved.

kPPPLCPUpEvent

This event indicates that the Link Control Protocol (LCP) has gone into the Opened state. This happens
when LCP has successfully negotiated its options with its connection peer.

kPPPLCPDownEvent

This event indicates that LCP has gone out of the Opened state. This event may be caused by an
administrative action (i.e., an intentional disconnect) or by catastrophic or temporary link-error
conditions. In the case of temporary link-error conditions, automatic recovery may be performed; i.e. the
LCP will transition back to the Opened state when the error conditions are removed.

kPPPAuthenticationStartedEvent

This event indicates that the authentication exchange has been started.

kPPPAuthenticationFinishedEvent

This event indicates that an authentication exchange has completed. The cookie parameter passed to the
endpoint's notifier contains the result code for the authentication exchange. The result parameter
always contains kOTNoError.

kPPPIPCPUpEvent

This event indicates that the IPCP has gone into the Opened state and is fully operational. This happens
when IPCP successfully negotiates its options with its connection peer. TCP/IP data traffic is enabled
over the OT/PPP link when this event is generated.

kPPPIPCPDownEvent

This event indicates that the IPCP has gone out of the Opened state. This event may be caused by an
administrative action (i.e., an intentional disconnect) or by catastrophic or temporary link-error
conditions. In the case of temporary link-error conditions, automatic recovery may be performed; i.e. the
IPCP will transition back to the Opened state when the error conditions are removed.

kPPPConnectCompleteEvent

This event indicates the completion of the OT/PPP connection process. When
kPPPConnectCompleteEvent is received, the endpoint is either fully connected, or ready for another
connection attempt because the previous one did not succeed. The endpoint notifier must examine the
result code in the cookie parameter to determine whether a connection attempt succeeded or failed.

January 22, 1997 19
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Note: the I_OTConnect command always executes asynchronously on OT/PPP endpoints, even if the
IOCTL is sent while the endpoint is in synchronous mode. The completion of the IOCTL call simply
means the command was started successfully (or could not be started if there was error). The endpoint
user must handle kPPPConnectCompleteEvent in the notifier to know when the command is complete.

kPPPDisconnectCompleteEvent

This event indicates the completion of the OT/PPP disconnect process. When
kPPPDisconnectCompleteEvent is received, the endpoint is either fully disconnected, or is ready for
another disconnect attempt because the previous one did not succeed. The endpoint notifier must
examine the result code in the cookie parameter to determine whether a disconnection attempt succeeded
or failed.

Note: the I_OTDisconnect command always executes asynchronously on OT/PPP endpoints, even if the
IOCTL is sent while the endpoint is in synchronous mode. The completion of the IOCTL call simply
means the command was started successfully (or could not be started if there was error). The endpoint
user must handle kPPPDisconnectCompleteEvent in the notifier to know when the command is complete.

kPPPDisconnectEvent

This event indicates that an unrequested disconnection occurred on the OT/PPP endpoint. This can
happen for a number of reasons, including the expiration of a login account time limit, a forced
disconnection by the server administrator, or loss of contact with the server. The endpoint notifier may
examine the result code in the cookie parameter to determine the cause of the disconnect (if it is known).

kPPPSetScriptCompleteEvent

This event indicates that a previous attempt to set an endpoint's modem or connect script has completed.
The endpoint notifier may examine the result code in the cookie parameter to determine whether the
script change succeeded or not. Like I_OTConnect and I_OTDisconnect, I_OTScript always executes
asynchronously, even if the IOCTL command is sent while the endpoint is in synchronous mode. The
completion of the IOCTL call simply means the command was started successfully (or could not be
started if there was an error). The endpoint user must handle kPPPSetScriptCompleteEvent in the notifier
to know when the command is complete.

January 22, 1997 20
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Sample Code
The sections below present samples of how to open and use OT/PPP control endpoints. They do not
demonstrate the use of all the available options and are not meant to be a complete OT/PPP application
reference.

The basic sequence of events when to follow when using OT/PPP endpoints is:

• open an the endpoint

• install a notifier function

• set the endpoint operation mode (i.e., asynchronous or synchronous)

• activate PPP-specific notification events with I_OTGetMiscellaneousEvents

• set any required XTI options, modem scripts or connect scripts

• issue the I_OTConnect command

After the I_OTConnect command is issued, your notifier will begin receiving connection events. At any
time during or after the connection establishment phase, you can issue the I_OTDisconnect command to
terminate the connection. After your notifier receives the kPPPConnectCompleteEvent event, you can
use OTOptionManagement calls to retrieve the current value of any of the PPP options that can change
during negotiation or are updated periodically while a connection is active (e.g.
CC_OPT_GETMISCINFO).

Opening OT/PPP Endpoints
The code snippet below shows how to use OTOpenEndpoint to open an OT/PPP control endpoint.
Asynchronous opens can also be done with the OTAsyncOpenEndpoint call.

#include <OpenTransport.h>
#include <OpenTptPPP.h>

TendpointInfo epInfo;
OSStatus err;
EndpointRef ep;

//
// Open a synchronous OT/PPP control endpoint
//
ep = OTOpenEndpoint(OTCreateConfiguration(kPPPControlName), 0, &epInfo, &err));

OT/PPP clients must install a notifier function in order to monitor endpoint events. Because the
connection and disconnection processes continue after the synchronous completion of I_OTConnect and
I_OTDisconnect commands, you must monitor events to know when these processes are complete.

err = OTInstallNotifier(ep, MyNotifierFunc, &MyOptionalContext);

An endpoint client can remove a notifier function using the OTRemoveNotifier call and re-install a new
one using the OTInstallNotifier call.

January 22, 1997 21
Copyright © 1996 Apple Computer, Inc. All rights reserved.

A client application may change the operation mode of an OT/PPP control endpoint by using the
SetSynchronous or SetAsynchronous call as follows:

SetAsynchronous(ep);
SetSynchronous(ep);

Enabling OT/PPP Events
By default, Open Transport endpoint notifiers support a standard set of events. The additional events
defined by Open Transport/PPP are not automatically sent to endpoints. You can enable these events
with the follow IOCTL command:

err = OTIoctl(ep, I_OTGetMiscellaneousEvent, 1);

OT/PPP events can be disabled with the same command: pass 0 instead of 1 as the IOCTL data.

Starting a Connection
If you don't need to override the current PPP configuration (selected in the PPP control panel), your
endpoint now ready to make a connection as soon as the open call completes.

err = OTIoctl(ep, I_OTConnect, NULL);

The data parameter for the I_OTConnect command must be NULL. If the result value indicates success
(kOTNoError), the connection attempt has been started. The I_OTConnect command always completes
immediately, whether the OT/PPP endpoint is in synchronous or asynchronous mode. However, the
connection process (setting up the modem, dialing the phone number, negotiating PPP options, etc.)
always completes asynchronously. Completion is signaled with the kPPPConnectCompleteEvent event.
You must have a notifier installed to get all the PPP events that happen during the connect. You also have
to issue the I_OTGetMiscellaneousEvents IOCTL to enable the flow of PPP-specific events on the
endpoint.

Monitoring Events
You use the same kind of notifier function for OT/PPP control endpoints as for other types of Open
Transport endpoints. The code fragment below shows a notifier which handles a generic endpoint event
(T_OPTMGMTCOMPLETE) and one of the OT/PPP event (kPPPConnectCompleteEvent). For a
complete list and description of all OT/PPP events, refer to the Events section of this document.
Remember that PPP-specific events are not enabled by default when you open an OT/PPP endpoint. You
must enable them with I_OTGetMiscellaneousEvents IOCTL command. See the "Enabling Events"
section for details on how to use this command.

pascal void
MyPPPEndpointNotifier (void *context, OTEventCode code, OTResult result, void *cookie)
{
 switch (code)
 {
 case T_OPTMGMTCOMPLETE:
 TOptMgmt* temp = (TOptMgmt *) cookie;
 TOption* option = (TOption *) temp->opt.buf;

January 22, 1997 22
Copyright © 1996 Apple Computer, Inc. All rights reserved.

 //
 // Note: the cookie may contain a TOptMgmt with more than
 // one trailing TOption, depending on the original request.
 // Use the "len" field of TOptMgmt and the OT macros for
 // for handling options to parse the TOptMgmt buffer. This
 // snippet just checks the first option in the list.
 //
 if (option->status != T_SUCCESS)
 AlertOptionFailed(option);
 break;

 case kPPPConnectCompleteEvent:
 //
 // Note: result code for PPP-specific events is in the
 // "cookie" field, not the "result" field!
 //

 OTResult connectResult = (OTResult) cookie;

 if (connectResult != kOTNoError)
 {
 DebugStr("\p kPPPConnectCompleteEvent with error!");
 gPPPConnected = false;
 // Handle connection failure...
 }
 else
 {
 gPPPConnected = true;
 // Handle connection success...
 }
 break;

 default:
 DebugStr("\p Unknown event code!");
 break;
 }
}

Note that most OT/PPP events do not return a result code in the result parameter of the notifier: this
parameter normally contains the kOTNoError value. Result codes for OT/PPP-specific events are passed
in the cookie parameter.

If you open your OT/PPP synchronously using OTOpenEndpoint, you can install your notifier at any
time after the open call completes. The following snippet installs the MyPPPEndpointNotifier function
with a NULL context parameter:

err = OTInstallNotifier(ep, MyPPPEndpointNotifier, (void *) NULL);

It is not necessary to include mixed-mode glue for Open Transport notifier functions.

January 22, 1997 23
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Setting Option Values
Your application can temporarily override OT/PPP configuration settings by making
OTOptionManagement calls with the T_NEGOTIATE option flag. The effect of the new settings will last
until either the options are overridden again or the last endpoint of the connection is closed and the
connection becomes inactive (i.e. disconnected). The code fragment below demonstrates setting a single
option value, the Maximum-Receive-Unit for LCP.

UInt8 buf[sizeof(TOptionHeader) + sizeof(PPPMRULimits)];
TOption* option;
PPPMRULimits* pppMRU;

cmd.opt.buf = buf;
cmd.opt.len = sizeof(TOptionHeader) + sizeof(PPPMRULimits);
cmd.opt.maxlen = sizeof(buf);
cmd.flags = T_NEGOTIATE;

option = (TOption *) buf;
option->len = sizeof(TOptionHeader) + sizeof(PPPMRULimits);
option->level = COM_PPP;
option->name = LCP_OPT_MRU;
option->status = 0;

pppMRU = (PPPMRULimits *) &option->value[0];
pppMRU->desiredMruSize = 500;
pppMRU->upperMruLimit = 1500;
pppMRU->lowerMruLimit = 250;

err = OTOptionManagement(ep, &cmd, &cmd);

Note that the TOptionHeader "status" field must be set to 0 before making the T_NEGOTIATE call. Note
also that the value for this option contains the PPPMRULimits structure. The value data always begins
immediately after the "status" field of TOptionHeader. A common mistake when using Open Transport
option management is to place the value data after a TOption structure: TOption includes the first
sizeof(UInt32) bytes of the value.

Setting the Modem Script
The modem script selection set by the user in the Modem control panel can be temporarily overridden on
OT/PPP endpoints using the I_OTScript command. Refer to the "Commands" section of this document
for more details on the I_OTScript command. The following code snippet shows how to issue the
command. Note that the data parameter to the IOCTL call must point to an OTScriptInfo structure. The
fTheScript member of OTScriptInfo must point to the script contents, not to an FSSpec structure or other
type of file descriptor. You must read the contents into a buffer from the file or other source yourself
before issuing the I_OTScript call.

SInt32 scriptLen = 0;
OTScriptInfo info;
UInt8* data;

//
// Open file here, read in contents, set scriptLen to length
// of data read from script file...
//

January 22, 1997 24
Copyright © 1996 Apple Computer, Inc. All rights reserved.

info.fScriptLength = fileLen;
info.fScriptType = kPPPScriptTypeModem;
info.fTheScript = (void *) data;

OTSetAsynchronous(ep);
err = OTIoctl(ep, I_OTScript, &info);

The completion of the I_OTScript command is signaled by the kPPPSetScriptCompleteEvent. You must
handle this event in your endpoint notifier to detect whether setting a script succeeded or failed.

Retrieving Option Values
You can retrieve current and default option values with the OTOptionManagement call and the
T_CURRENT and T_DEFAULT flags. Default options represent the values used by an OT/PPP endpoint
if no overriding value has been set with the T_NEGOTIATE flag by any endpoint on the given OT/PPP
port. Default values correspond to settings in the user's current PPP configuration, which is selected and
edited in the PPP control panel, or the current Modem configuration from the Modem control panel. In
some cases (e.g. LCP MRU), a setting can not be directly edited with either the PPP or the Modem control
panel. In such cases, option management is the only way, at this time, to override the default value.

The following snippet demonstrates how to retrieve the current value of the CC_OPT_MISCINFO option.
Note that the value is actually a structure containing a number of informative fields, and that this option
has no "default" value per se. It is only useful when a connection is in progress.

TOptMgmt cmd;
TOption* option;
UInt8 buf[kBigEnough];

cmd.opt.buf = buf;
cmd.opt.len = sizeof(TOptionHeader);
cmd.opt.maxlen = sizeof buf;
cmd.flags = T_CURRENT;

option = (TOption *) buf;
option->level = COM_PPP;
option->name = CC_OPT_GETMISCINFO;
option->status = 0;
option->len = sizeof(TOptionHeader);

OTSetSynchronous(ep);
err = OTOptionManagement(ep, &cmd, &cmd);

option = (TOption *) cmd.opt.buf;

if (option->status == T_SUCCESS)
{
 CCMiscInfo *info = (CCMiscInfo *) &option->value[0];
 //
 // Are we connected?
 //
 if (info->connectionStatus == kPPPConnectionStatusConnected)
 {
 // Update time-elapsed display, for example...
 }
}

January 22, 1997 25
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Disconnecting OT/PPP
The I_OTDisconnect command can be issued at any time on an OT/PPP endpoint to disconnect an
established connection or to cancel a connection attempt that is in progress. I_OTDisconnect does not
require a data parameter, and it always executes asynchronously. You must handle the
kPPPDisconnectComplete event in your notifier to detect completion of the command.

err = OTIoctl(ep, I_OTDisconnect, NULL);

Closing OT/PPP Endpoints
After setting up an OT/PPP connection, your application can keep its endpoint open to monitor the link
status or issue an I_OTDisconnect. It can also close the endpoint. Closing the endpoint does not
automatically disconnect OT/PPP, even if your endpoint is the last one opened for the given OT/PPP
port. The I_OTDisconnect command must be issued on an open endpoint, or a disconnect event must
occur, for the connection to be torn down. OT/PPP endpoints are closed with the same OT call used for
other types of endpoints:

err = OTCloseProvider(ep);

After closing your OT/PPP endpoint, you can open another one at a later time to issue more commands
or examine the endpoint's options.

January 22, 1997 26
Copyright © 1996 Apple Computer, Inc. All rights reserved.

Index
CC_OPT_ CALLINFO, 16 kPPPDisconnectEvent, 20
CC_OPT_ DTEADDRESS, 16 kPPPIPCPDownEvent, 19
CC_OPT_ DTEADDRESSTYPE, 15 kPPPIPCPUpEvent, 19
CC_OPT_ GETMISCINFO, 16 kPPPLCPDownEvent, 19
CC_OPT_ IPIDLETIMER, 15 kPPPLCPUpEvent, 19
CC_OPT_ REMINDERTIMER, 15 kPPPLowerLayerDownEvent, 18
Closing OT/PPP Endpoints, 26 kPPPLowerLayerUpEvent, 18
Commands, 8 kPPPSetScriptCompleteEvent, 20
Disconnecting OT/PPP, 26 LCP_OPT_ MRU, 12
Enabling OT/PPP Events, 22 LCP_OPT_ PPPCOMPRESSION, 12
Events, 17 LCP_OPT_ RCACCMAP, 13
How OT/PPP Options are Applied, 11 LCP_OPT_ TXACCMAP, 14
IPCP_OPT_GETLOCALPROTOADDR, 12 Monitoring Events, 22
IPCP_OPT_GETREMOTEPROTOADDR, 11 Opening OT/PPP Endpoints, 21
IPCP_OPT_TCPHDRCOMPRESSION, 12 Options, 10
I_OTConnect, 8 OPT_ ALERTENABLE, 17
I_OTDisconnect, 8 PPP_OPT_ GETCURRENTSTATE, 17
I_OTScript, 9 Retrieving Option Values, 25
kPPPAuthenticationFinishedEvent, 19 Sample Code, 21
kPPPAuthenticationStartedEvent, 19 SEC_OPT_ ID, 14
kPPPConnectCompleteEvent, 19 SEC_OPT_ OUTAUTHENTICATION, 14
kPPPDCECallFinishedEvent, 18 SEC_OPT_ PASSWORD, 15
kPPPDCECallStartedEvent, 18 Setting Option Values, 24
kPPPDCEInitFinishedEvent, 18 Setting the Modem Script, 24
kPPPDCEInitStartedEvent, 18 Starting a Connection, 22
kPPPDisconnectCompleteEvent, 20 When to Set Endpoint Options, 11

January 22, 1997 27
Copyright © 1996 Apple Computer, Inc. All rights reserved.

