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Abstract. We describe herein an implementation of arbitrary precision arithmetic using
the new PowerPC Velocity-Engine (G4) vector instructions. We first define essential digit
size of a multiprecision integer to be 128 bits, in view of the Velocity Engine architecture.
By designing a general purpose vector library comprised of multiplication, square, bit
shift and bitwise comparison, we have achieved significant speedups over PowerPC G3
scalar (base-216) implementation, or even hand-tuned assembly (base-232) packages. In
particular, vector multiplications enjoy performance improvements ranging from 3:1 to 10:1
over their scalar counterpart, depending on operand bit size. An application for general
purpose integer factoring was written and is able to factor large integers with speedups
factors roughly in the aforementioned range. A second, large convolution application was
written to settle a certain research problem; in this instance a length-215 convolution of
512-bit elements is performed. On a 300 MHz max!-based prototype Macintosh, one such
operation consumes 10 seconds, currently the fastest known time for integer convolution
relevant to the motivating problem.
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1. Multiprecision elements

The various motives for multiprecision implementation are well known. There are
cryptography and computational number theory, which two fields are closely related. In
such fields there is never enough speed, in the sense that practical limits for computa-
tion have cultural importance; for example factoring limits determine worldwide security
standards, and so on. But there is also a need for multiprecision floating point, and it is
usually the case that one builds this up from multiprecision integer routines. Moreover,
multiprecision implementations test very well a vector-architecture machine, and this mo-
tive is important in regard to the new G4 processor. These brief motivational remarks
having been made, we concentrate hereafter on theory and detail of our Velocity Engine
multiprecision integer implementation, reporting results of both low-level and high-level
(application) timing.

In the world of multiprecision arithmetic it is well known that the most common, and
therefore from a performance standpoint the most important, composite operation is of
the form:

(x ∗ y) mod N,

and furthermore the most common scenario has each of x, y the same bit-size as N . For
example, in cryptography and computational number theory in general, we are interested
in primality testing, integer factoring, and so on; and in such studies the above composite
operation is usually performed for a stable N , or for just a few distinct values of N .
This “mul-mod” operation appears to involve multiplication and division, but the so-
called Barrett method for modular reduction uses multiplications alone. Specifically, if
one defines a “steady-state reciprocal” r of N , via:

r = b4B(N−1)/Nc,

whereB(x) denotes the bit-length of any nonnegative x, withB(0) = 0, B(1) = 1, B(15) =
4 and so on, then modular reduction can be effected using this reciprocal and multiply/add
routines alone. It turns out that r itself can be evaluated via a Newton iteration—involving
itself no explicit division–with the result that modular reduction can be performed via:

z mod N = z −N ∗ b(z ∗ r) >> sc − εN,

where s = 2(B(r)−1), and ε is a very small error that is then removed via a small number
(if any) of subtractions of N . Thus z mod N can be effected without explicit division,
and if N is indeed “steady-state” we can recycle the reciprocal r ad infinitum. Casual
inspection of this method shows that a mod (or div) operation can be achieved via 3 size-
N multiplies in the steady state. But one can intervene into the multiplication process for
z ∗ r and ignore some bits, etc. to further reduce the work. It turns out that mod (or div)
can be brought down to about 1 multiply, with extra work in the detailed loop operations.
We did not go that distance, but partially reduced the work in favor of reasonably simple
code, so that our mod (or div) is roughly 2 multiplies. These machinations show that a
multiprecision Velocity Engine mod (or div) can be effected in 2 Velocity Engine multiplies,
and this is without any classical long division of any kind.

2



Being as so much work comes down to multiplication, we concentrated heavily—
although not exclusively—on Velocity Engine multiply routines. If one represents x in
digit form

x = {x0, ..., xD−1},

where each xi is an element of [0, ..., b− 1] where b is the base, then multiplication of x, y
having D digits each is the acyclic convolution

x ∗ y =
2D−1∑
m=0

(
∑

i+j=m

xiyj)bm.

The inner sum (over i+j) is manifest in sofware as a standard, “grammar-school” multiply
loop, and that is where Velocity Engine excels. For actual Velocity Engine implementation,
we chose digit size

b = 2128,

so that the basic quantization of large integers into digits is based on 128-bit segments,
and the detailed multiplication steps are based on vectors of that length (see Section 3).

For squaring per se the acyclic summation can be simplified due to redundancy; i.e.
the fact that x, y have identical digits cuts the multiplication work asymptotically in half.
This having been said about the fundamental operation (x ∗ y)mod N , we briefly overview
other algorithms on which Velocity Engine advantage was focused.

Outside of the domain of multiplication and squaring, there are yet more Velocity
Engine advantages. It is well know that for certain moduli N , in particular when

N = 2q ± k,

with k small, the mod operation can be effected via additions (subtractions) and shifts
alone. This is the basis for Apple Computer’s proprietary crypto system FEE, in which one
chooses fields over primes of the form 2q±k, yielding the fastest known elliptic curve system
at given bit-depth. Similarly, many modern factoring experiments use Mersenne numbers
N = 2q − 1 or Fermat numbers N = 2q + 1, and so enjoy Velocity Engine acceleration.
While the Velocity Engine is not best suited to the task of addition and subtraction per se
of multiprecision values, its vector-shift options provide significant speed enhancements.

2. Summary of Velocity Engine performance

Figures 1,2,3 show the performance of Velocity Engine vs. a scalar (base b = 216)
implementation. All timings (for both scalar and vector implementations) were performed
on a 300 MHz max!-based prototype Macintosh. Note the natural quantization of per-
formance on 128-bit boundaries. As for the performance itself, let us write the time for
multiplication in the general form:

Tn = an2 + bn+ c,

where a represents the difficulty of multiplication of digits, b is the difficulty of addition
per se, and c is overhead. The reason that Figure 2 is “less parabolic” than Figure 1 is
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that, for the Velocity Engine implementation, the constant a is so very small (i.e., the
vector multiplication is so very fast). Speedup factors in the range 3:1 to 10:1 are evident
in Figure 3.

We observed that for the Velocity Engine code, a more modern multiplication algo-
rithm — meaning a method more efficient asymptotically than grammar-school multiply —
should be used beyond the 3000-bit region. The Karatsuba algorithm breaks each operand
into two (roughly) equal-length bit strings, and uses the identity:

x ∗ y = (a+ bW ) ∗ (c+ dW ) =
t+ u

2
− v +

t− u
2

W + vW 2,

where
t = (a+ b) ∗ (c+ d), u = (a− b) ∗ (c− d), v = b ∗ d.

If W is a convenient power 2e ∼
√
x ∼ √y, these last three multiplies to get t, u, v, together

with some shifts by multiples of e bits, are all that is required to obtain x ∗ y. In this way
the work of 4 size-W multiplies is done in 3 of same, leading, upon recursive calling of this
Karatsuba scheme, to a complexity

T = O(N log 3/ log 2)

for multiplication of very large integers. This complexity reduection over grammar-school
multiply is substantial, especially when one gets to 10000 or 100000 bit operands, e.g. for
a 100000-bit multiply the Karatsuba scheme on the Velocity Engine gains a full factor of
4 over grammar-school Velocity Engine multiply. Figure 4 shows the result of our Velocity
Engine implementation of Karatsuba, which as we have said takes over at 3000-bit operands
threshold. The slope, being close to log 3/ log 2 ∼ 1.6 is in good agreement with theory.
Incidentally the Velocity Engine breakover at 3000 bits is relatively high; most systems
require a Karatsuba breakover much less than this. The reason is, of course, the fast
fundamental 128-bit multiplication which drives the threshold upward.

When the above multiplication routines, together with the other routines such as shift-
ing, are used in an actual application, the Velocity Engine speedups come down somewhat,
depending of course on the application overhead that is not relegated to Velocity Engine
code. See Section 5 for timing information on an actual factoring application,

3. Implementation details

Since the fundamental calculation for all general-case multiplications that we perform
is the aformentioned sum ∑

i+j=m

xiyj ,

with each x, y being a 128-bit digit, we shall first discuss the Velocity Engine implementa-
tion of this operation.

First we examine a typical product xiyj . If we break each 128-bit value down into
16-bit elements, then xiyj can in turn be represented more finely as

xi ∗ yj =
14∑
m=0

(
∑

k+l=m

akbl)16m.
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Representing this visually, we have the familiar parallelogram:

a7b0 · · · a1b0 a0b0
a7b1 · · · a1b1 a0b1

...
...

a7b7 · · · a1b7 a0b7

which we add vertically with carry, the result being—in general—nearly a 256-bit value.
To effect all of this, we establish eight 32-bit vectors S0...S7, each of which initialized to
zero. Next, using the Velocity Engine merge and shift operations, we create four vectors,
as follows:

A3 = {0, 0, 0, 0, 0, 0, 0, 0}

A2 = {0, 0, 0, 0, 0, 0, 0, a7}

A1 = {a7, a6, a6, a5, a5, a4, a4, a3}

A0 = {a3, a2, a2, a1, a1, a0, a0, 0}

As a third initialization step, we create a vector:

B = {b7, b6, b5, b4, b3, b2, b1, b0}

Now, using the Velocity Engine perm (permute) operation, we create two vectors of 8-bit
elements, from elements selected out of B:

C0 = {0, b1l, 0, b0l, 0, b1l, 0, b0l, 0, b1l, 0, b0l, 0, b1l, 0, b0l}

C1 = {0, b1h, 0, b0h, 0, b1h, 0, b0h, 0, b1h, 0, b0h, 0, b1h, 0, b0h}

with b#l, b#h being respectively the low/high 8 bits of a 16-bit value b#. At the core of our
multiply calculation is the Velocity Engine’s powerful msum operation. This operation takes
three inputs: two 16-bit-element vectors r, s, and a 32-bit-element vector t, and produces
a 32-bit-element vector u. The msum opcode takes the two vectors r, s, and multiplies
their corresponding 16-bit elements together to yield 32-bit results. Adjacent even and
odd 32-bit results are then summed to yield one 32-bit-element vector, whose elements
are then added to the corresponding 32-bit elements of vector t to produce the resulting
32-bit-element vector u (all of this accomplished in four clock cycles!).

Taking r = A0, s = C0, and t = S0, if we perform the operation

S0 = msum(A0, C0, S0)

we obtain the vector

SO = {a3b1l + a2b0l, a2b1l + a1b0l, a1b1l + a0b0l, a0b1l + 0}.
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Note that each 8-bit by 16-bit result produces a 24-bit result that is added with another
24-bit value. If we were to perform a full 16-bit by 16-bit multiply, we would have 32-bit
products, which when added together would possibly overflow our 32-bit vector elements.
By restricting ourselves to 24-bit results, we eliminate the need for keeping track of carries,
and can perform several msum operations before our result vectors are saturated. If we
perform a similar calculation for S1, namely

S1 = msum(A0, C1, S1)

then we get:

S1 = {a3b1h + a2b0h, a2b1h + a1b0h, a1b1h + a0b0h, a0b1h + 0}.

Note that if we take the vector S1 and shift all of its elements left by eight bits, then add
S0 and S1, the resulting four 32-bit elements correspond to the sums of the four rightmost
elements of the top two rows of the paralellogram. We continue by calculating S2...S7:

S2 = msum(A1, C0, S2)

S3 = msum(A1, C1, S3)

S4 = msum(A2, C0, S4)

S5 = msum(A2, C1, S5)

S6 = msum(A3, C0, S6)

S7 = msum(A3, C1, S7)

At this point, we have calculated all partial products for the first two rows of the parallel-
ogram. If we now use the Velocity Engine perm operator, we can shift all of A3...A0 left
by 4 elements, to obtain:

A3 = {0, 0, 0, 0, 0, 0, 0, 0}

A2 = {0, 0, 0, a7, a7, a6, a6, a5}

A1 = {a5, a4, a4, a3, a3, a2, a2, a1}

A0 = {a1, a0, a0, 0, 0, 0, 0, 0}

Next, we shift right the vector B by 2 elements, yielding:

B = {0, 0, b7, b6, b5, b4, b3, b2}.

This allows the same permute operation used before to regenerate the vectors C0, C1, with

C0 = {0, b3l, 0, b2l, 0, b3l, 0, b2l, 0, b3l, 0, b2l, 0, b3l, 0, b2l}

C1 = {0, b3h, 0, b2h, 0, b3h, 0, b2h, 0, b3h, 0, b2h, 0, b3h, 0, b2h}

6



Using these the new A and C vectors, we again calculate S0...S7 with the same msum
operations. In doing so we have now calculated all partial products for the first four rows
of the parallelogram. It is clear that, in repeating this shift, permute, and msum cycle two
more times, we will have calculated all partial products for the convolution of the two
128-bit multiplicands.

What remains is for us to take our eight result vectors S0...S7 and manipulate them
to yield a single 256-bit result. To do this, we need to extract the sums of partial products
from these vectors and add them in the appropriate bit position of the result. Beginning
with the lower (least significant) half of the result, we have four result vectors S0...S3 that
contain our sums. For example, the vector S0 contains sums of partial products for four
columns, but the vector elements are 32 bits wide, and need to overlap by 16 bits, since
each element is the sum of partial products of 16-bit elements.

To accomplish this, we permute the elements of these result vectors so that they can
be added in the correct bit positions. We begin by generating the vectors T0...T3 as unions
of the Sij (defined as the j-th component of vector Si), as follows:

T0 = S21S23S01S03

T1 = S20S22S00S02

T2 = S31S33S11S13

T3 = S30S32S10S12

We then add these to our result vector R0 like so:

R0 = T0 + (T1 << 8) + (T2 << 16) + (T3 << 24).

The portions of the vectors that are shifted past the vector boundary are added to R1, the
upper 128 bits of our result. We again generate T0...T3, this time using S4...S7 in place of
S0...S3, and add them to R1:

R1 = R1 + T0 + (T1 << 8) + (T2 << 16) + (T3 << 24).

Having done this, we obtain two 128-bit vectors, R0 and R1, which together contain our
256-bit result.

4. Software routines—Release 1.0

After writing a library of Velocity Engine-specific functions, we modified an established
(public domain) large-integer library to call those Velocity Engine-based functions. (The
public domain code actually orginated in the 1980s at NeXT Software, Inc.). In this way we
were able to port to Velocity Engine some pre-existing code for factoring and convolution.

Release 1.0 of this library includes the following source and header files:

factor.c
giantsdebug.h
giantsstack.c
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giantsstack.h
vecarith.c
vecarith.h
vecarith.s
vgiants.c
vgiants.h

Also included is a Metrowerks project for building the factoring application (vfac-
tor.mcp), and a document containing the required commands to build and execute the
application using MPW and the MrC compiler (build.mpw). The Metrowerks project
was built using a prerelease version of the CodeWarrior IDE (3.3.1b1) and C++ compiler
(2.2.5b1). Minor project modifications may be necessary to build the project on subsequent
CodeWarrior releases.

To build the MPW project, open the buildvfactor.mpw file, and execute the commands
listed therein. (This process will require the source files specified above, as well as the
libraries and object files in the MPW libs folder.) This will produce an MPW tool called
“vfactor”. Note that building with MrC requires a version that is Velocity Engine-aware.
(This project was built with MrC compiler version 4.1a4c1.)

To run the factor program, either run the “factor app” application (produced by the
CodeWarrior project) or type “vfactor” within MPW. Typing in a number and hitting
enter will start the factoring application. Here is a sample transcript:

vfactor
3429349342942393249342932493429342921332112312
Sieving...
2 * 2 * 2 * 7 * 59 * 263 * 6863 *
Commencing Pollard rho...
....................................................................
....................................................................
..............
Commencing Pollard (p-1)..............
37837124287441
*
Commencing ECM...
Choosing curve 1, with s = 1438858426, B = 1000, C = 50000:
..
Commencing second stage, curve 1...
....
Choosing curve 2, with s = 1438858427, B = 1000, C = 50000:
..
Commencing second stage, curve 2...
....
Choosing curve 3, with s = 1438858428, B = 1000, C = 50000:
..
Commencing second stage, curve 3...
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....
20432578927
* 743807641141

This result shows a factoring of the number

3429349342942393249342932493429342921332112312

into the factors

2 ∗ 2 ∗ 2 ∗ 7 ∗ 59 ∗ 263 ∗ 6863 ∗ 37837124287441 ∗ 20432578927 ∗ 743807641141.

5. Test applications: factoring and large convolution

When we forged a factoring application, it was found that the overall performance
fell roughly into this aforementioned range 3:1 to 10:1, more precisely 2:1 to 7:1. This
slightly reduced range for the application is because, of course, a factoring implementation
is only “mostly multiply-mod:, not 100 per cent so. Still, the performance enhancement
was excellent. Here is one typical example, the factorization of the 620-bit number

N = 43510824374024565135892238815054921115868750178981260167535653031

9170993682406266446801182638575430178651403673435935614284070

3369198146803010624767480282430207391490153528383201278158417

(into the factor 281474976726667 and a (500+)-bit prime), using an elliptic curve method
(ECM) factoring program linked to our Velocity Engine multiprecision library. The entire
run consumed 200 seconds on using the Velocity Engine, which in itself has no real meaning
because ECM is statistical in nature. However a deterministically identical run on scalar
(base-216) implementation of the same program consumed 1140 seconds, for a speedup of
about 6. Incidentally, though a G3 hand-tuned assembly version of the factoring program
was not available, it would be expected to yield a gain of perhaps 1.5 to 2, because again
not all of the work is in multiply-mod. This means for the factoring application the Velocity
Engine-over-assembler gain would still be about 3 or 4.

A second application program was written to exploit the fast Velocity Engine multiply
in a (very) large convolution problem. Namely, the problem of determining the character
(prime or composite) of the twenty-fourth Fermat number F24 requires convolutions of
staggering length. We chose 512-bit convolution elements, so that the required convolution
length was therefore D = 215 = 32768. This length-32768 convolution (technically, what
is called a negacyclic convolution because of the nature of Fermat arithmetic) of 512-bit
elements was effected via the so-called Nussbaumer method. We were able to bring the
convolution work down to a total time of about 10 seconds, making this the fastest known
integer convolution (mod F24). A research effort is currently underway, using Velocity
Engine machinery to settle the F24 problem in rigorous fashion.
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Figure 1: Standard multiply timings. The time Tn for base-216 generic multiply (on Apple
G3, 300MHz) is plotted against n , the bit size of each operand. So, for example, T 256 = 8.4 
µsec, T 1024 = 108µsec. The timing is parabolic (i.e. as n 2).

0

20

40

60

80

100

120

16 112 208 304 400 496 592 688 784 880 976

n , bits/operand

T n ,  µsec

Figure 2: Altivec multiply timings. The time T n is plotted against n , the operand bit size.
Nartural, 128-bit boundaries are evident. Note the timing is not purely parabolic, rather has 
some linearity over this range of n , as explained in text.
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Figure 4: Altivec timings beyond the 3000-bit region. The log-log plot for Karatsuba
multiply shows the theoretically expected growth of T ~ n 1.6. The plot shows, for example, 
that for 50000-bit operands the Altivec multiply time is about 10 millisec.
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Figure 3: Comparison of generic base-216 (upper curve) vs. Altivec (lower curve) multiply
timings. Note the speedup factor is about 10:1 for the higher bit sizes n . Experiments showed 
that the factor 10:1 is essentially the asymptotic speedup.
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