Supercomputer-style FFT library for Apple G4

Richard Crandall and Jason Klivington
Advanced Computation Group, Apple Computer

Abstract. We describe herein a G4 Velocity Engine implementation of fast Fourier trans-
form (FFT) and associated convolution/correlation routines. Though arbitrary signal
lengths (i.e. all powers of 2) are handled, our design emphasis is on very long signals
(length N > 216 and on into the millions), for which cache considerations are paramount.
The core of the library is a particular variant of full-complex FFT that for signal length
N = 210 executes at 1.15 gigaflops (500 MHz G4). This cache-friendly, core FFT plays a
dominant role in the long-signal cases such as two-dimensional FFT and convolution. More
important perhaps than the core performance benchmark is the manner in which one can
sift through the myriad prevailing (and new) FFT frameworks, to arrive at a suitable such
framework for the Velocity Engine. Presumably these means of adapting algorithms to the
Velocity Engine architecture and features will carry over to other engineering problems.

6 Jan 2000
c. 1999, 2000 Apple Computer, Inc.
All Rights Reserved.

1. FFT library design

In conceiving of a “supercomputer-style” FF'T library, one considers at least two facets:
vectorization of FFT frameworks and allowance for arbitrary (especially very large) signal
lengths. Add to these considerations the machine issues of cache, memory access, and on
the scientific side issues of convolution and related signal-processing operations. As a basic
design we take the 10 fundamental ingredients of such an FFT library to be:

1) Complex FFT;
2) Real-signal FFT;
3) Inverse FFTs of the above;

4) Complex cyclic convolution;

6) 2-dimensional complex FFT;
7) 2-dimensional real-signal FF'T;

)
)
)
)
5) Real-signal cyclic convolution;
)
)
8) Inverse FFTs for these 2-dimensional cases;
)

9) 2-dimensional complex convolution;

10) 2-dimensional real-signal convolution.

Moreover we demand that for each of these ingredients, performance does not degrade too
harshly for out-of-cache signal lengths. The computational world of large-signal processing
is by now fairly involved, and many disparate applications abound these days [Crandall and
Fagin 1994][Crandall 1996][Crandall et al. 1999], such applications ranging from massive
image processing to computational number theory.

In our library design the signal length for each ingredient is taken as N = 2*, or for the
2-dimensional cases the two lengths are W = 2/, H = 2*. (Below we describe what can be
done for lengths not powers of 2; it is well known that any signal length whatsoever can be
handled via appropriate power-of-two lengths; e.g., via Rader or Bluestein convolution) The
reason we set separately the real-signl cases is, of course, that when the signal is pure-real,
or the inverse FFT creates a real signal, the operations can proceed nearly twice as quickly,
so the real cases are genuinely distinct. Of course there are many further features a library
may well possess, such as alternative signal lengths N (i.e. not restricted to powers of 2),
digital filter modules, and so on. But the above ingredients can be considered “essential,”
and on that notion we carefully adapted algorithms with a view to G4 Velocity Engine
architecture. If one desires other options, one may observe that:

e Non-power-of-2 signal lengths can be done via fast convolution, to maintain the standard
O(N log N) operation complexity, in particular prime-length FFTs can be effected in this
fashion;

e Likewise non-power-of-2 cyclic convolution can be performed via zero-padding to an
appropriate power of 2;

e Likewise 2-dimensional image convolution can be effected via appropriate zero-padding
of the two lengths;

e Either acyclic or negacyclic convolution can be effected via, respectively, zero-padding
and domain-twisting based always on the cyclic convolution implementation;

Because of these options, one sees that although the library ingredients do not completely
cover the long-signal processing world, said ingredients can at least be used as fundamental
routines to extend functionality.

We should admit right off that our conceptual bias in this library design is toward
“long-signal processing,” meaning that the we are not addressing the fine art of small-
length FFTs or small convolutions; expecting instead to handle signal lengths such as
N = 217 for the typical “SETI@home” FFT-intensive signal processing (the SETI-type
large-signal applications were in fact a primary motive for the current library design) or
N = 220 and on into yet more millions for computational number theory. Likewise we
are interested in relatively large 2-dimensional signals (images), and general convolutions
(cyclic, acyclic, negacyclic) for lengths into the millions.

Though there are many degrees of freedom in any library design, there are yet many
more degrees attendant on the question: “What style of FFT is best?” We speak here
of the complex-data FFT (ingredient (1) above), because one straightforward method for
the real-signal FF'T is to use a complex, half-length FFT, and likewise the convolution
functions merely depend in turn on the FFTs. We are aware that there exist direct, real-
signal FFTs such as split-radix variants which do not start with a complex FFT per se.
but it is not clear whether the subsequent slight reduction in computational complexity is
realizable within a vector-processing paradigm. Thus we have assumed power-of-2 signal
lengths, and arbitrary ones at that. It will turn out that FFTs for very long lengths can
use to good effect the specially-tuned, smaller-length FFTs. The next sections describe
the options for such recursion, and the manner in which we arrived at an acceptable option
for each library ingredient.

2. FFT and convolution/correlation nomenclature

We denote a 1-dimensional signal of length N by:
x={xo,...,xN_1}
and a 2-dimensional signal of width W and height H by:
x={zjp: j€[0,H—1]; ke [0,W —1]}.

We use W, H notation to remind ourselves that this could be an image signal for example
(but it need not be such). We define the general complex discrete Fourier transforms
(DFTs) for the above signals by:

N-1
X = E $j€_27”jk/N,
J=0

in the 1-dimensional case, with inverse transform

| N1
_ +2mijk/N.
T = g Xyet2miik/N,
k=0

whereas for 2-dimensional signals we use:

H-1W-1

X = Z Z l,jke—QTri(ja/H—&—kb/W),
j=0 k=0

with associated inverse transform:

1 H-1W-1
o= _+27wi(aj/H+bk/W)
xﬂk_WHZ ZXJke .
a=0 b=0
The FFT is then, of course, an algorithm for rapid evaluation of the DFT X, and the
inverse FFT recovers x from X. In what follows we shall sometimes write:

X =FFT(z); x=FFT7'(X),

thinking of F'F'T() as a function for the sake of clarity. In practice, all of our library FFTs
will be “in-place,” so that under the FFT a signal x is simply replaced with the DFT X.
In the case that the original x is pure-real, one can create a complex signal:

Yy= {370 + 121, X9 + 123, },

in which case one can perform the length-N/2 (complex) FFT of y, and use the result
to reconstruct the FFT of the original x. These machinations for real signals work out
because of the Hermitian symmetry:

X = XN_k» (2.1)

valid whenever the signal x is pure-real, which symmetry means that only half the signal
length need be involved during FFT. We are aware that the construction of a y signal as
above is not the only way to perform a real-signal FFT; for example, there are numerous
split-radix and Hartley transforms that can be used to infer the real-signal DFT. However
we find that the slight complexity gains of the modern alternatives for pure-real signals
are offset by the tremendous advantages of vector processing in regard to the y-signal
approach. Thus we have adopted the older paradigm of using the complex y signal’s DFT
directly to infer the DFT of the pure-real x. On the other hand, when a 2-dimensional,
W-byH signal (image) x is pure-real, we have the Hermitian symmetry

Xab = XI*{—a,W—b' (2.2)

4

Again, as one might expect, such real-signal cases allow the FFT to run nearly twice as
fast. The Hermitian algebra for this 2-dimensional setting is much more complicated than
for the above 1-dimensional real-signal scenario, but indeed said algebra can be effected
with some care, and we have done so.

As for convolution nomenclature, we specify a 1-dimensional cyclic convolution by its

n-th element:
(33' X y)n - Z xjyk'a
j+k=nmodN

where each of z,y has length N, as does the cyclic z x y. The acyclic convolution is the
same definition but with equality replacing the equivalence relation “=” (and no modular
reduction therefore), in which case the convolution length is 2/V — 1. The acyclic and other
forms of convolution such as negacyclic and right-angle varieties can be effected, as is well
known, via the cyclic itself. For this reason the cyclic convolution can be deemed funda-
mental, we concentrate upon it in the library design. The aforementioned supercomputing
notions (vectorization, cache, memory issues) are easy to apply in the convolution domain,
primarily because of the convolution theorem which states

xxy=FFT Y (FFT(x)*« FFT(y)),

where “x” here denotes dyadic (spectral, elementwise) multiplication. The two-dimensional
cyclic convolution is analogously defined:

(T X Y)mn = Z Z LpjYqk,

p+qg=mmodH j+k=nmodW

where each of z,y is a W-by-H signal (image). The convolution theorem also generalizes
in the obvious fashion. As for the closely-related notion of signal correlation, we note that
the correlation of two 1-dimensional signals can be written:

(weoryln = >z,

j—k=nmodN

or in spectral form:
xcory=FFT Y FFT(x)* FFT(y)*).

We deem the difference between convolution and correlation to be therefore essentially
trivial, in that only the indicated extra conjugations are required on y, FFT(y); and if y
is pure-real there is just the one conjugation.

It is well known that the 2-dimensional DFT above can be evaluated sinply by FFT’ing
all the rows, then all the columns of an image; furthermore all of these operations can pro-
ceed in-place, so that an entire image can be replaced by its DFT using O(W H log(W H))
operations in this fashion. Important for supercomputer-style vectorization is the notion of
using 2-dimensional concepts for 1-dimensional FFTs. Indeed, there are ways to “factor”
a 1-dimensional DF'T of factored length N = W H into a certain 2-dimensional form, using
the algebraic reduction:

N-1
X =DFT(z) ={) aje *™kNy L (2.3)
j=0

5

W-1 H—1
_ —27iMK/W\ —2miJK/N —2miJL/H\{N—1
—{E (E Tj+mMwe /)e MNe / }K+LH:0‘
M=0

J=0

The notation {}? is to be read as in standard summation; i.e. the contents of the braces is
unioned from condition a to condition b. Thus the condition counter K + LH in the final
expression above is essentially a lexicographic counter: we think of all N data as arranged
lexioographically in a W-by-H matrix, whence L is the row- and K the column-index
counter. Though rather unwieldy, this DFT factorization reveals that a 1-dimensional
DFT, namely X, can be obtained via a certain combination of 1-dimensional DFTs and a
specific “twist” operation, as we shall detail in a later section. Thus, while 2-dimensional
FFTs are not the same as lexicographic, 1 dimensional versions, they are very nearly
the same thing and merely differ by some operations of complexity O(N). This near-
equivalence of the two forms brings certain advantages with respect to cache and memory
issues, for the matrix format allows a preponderance of localized operations on the data.
This is why the factorization scheme has been so popular in the supercomputer sector per
se.

3. FFT framework options—1-dimensional core-routine scenario

Here we tour briefly some options for FFT framework, arriving eventually at an effi-
cient such framework for G4 Velocity Engine implementation.

For reference purposes, let us simply display without preamble the celebrated Cooley-
Tukey FFT, which is the grandparent of all divide-and-conquer algorithms. We display
here the decimation-in-time (DIT) variant of this standard FFT:

Algorithm 1: [Cooley-Tukey]| in-place, DIT FFT with scramble.

// We assume a complex input signal x = {xq,...,xx_1}, with N = 2. The twist phase
is to be —27ij/(2m) for forward FFT, +2mij/(2m) for FFT 1.

FFT,FFT'(2){
scramble(x); // Call the bit-scramble function.
n = len(x);
for(m =1; m <n; m =2m) {
for(j = 0; j <m; j++) {
a = 62|227rij/(2m);
for(i = j; i <mn; i =14 2m)
{24, Tigm} = {Ti + QTigm, Ti — ATim };
}
}
}

return z, x/N; // Return z/N for FFT™1 case.
}
scramble(x){

n = len(x);

j=0;

for(i=0; i <n—1; i++) {
if(i < j) {zi, x5} = {5, 2}
k= n/2];
while(k < 7) {

Jj=7—k;
k= |k/2];
J=Jj+k;

}
}

We note the familiar, traditional features such as the eventual arrival of the DFT data
in-place, but only because of an initial bit-scramble via the scramble() procedure. It is
instructive also to note that the stride of the innermost loop is unsatisfactory for vector-
ization and contiguous-memory advantage. The stride, being 2m as written, is not only
not 1 but it is variable. This and other aspects of the Cooley-Tukey FFT will have to
be addressed before we arrive at a suitable vectorizable FFT. There is also a decimation-
in-frequency (DIF) variant of the above, but possessed of the same limitations such as a
scramble() procedure (in the DIF case appearing at the end of the FFT() function), and
the same basic stride variance that is so harmful during vectorization.

It is of course possible to carry out multiple Cooley-Tukey FFTs at once, for ex-
ample four FFTs at one time on a G4 engine, but that is a direction orthogonal to the
present treatment (and besides, we are trying here to arrive at single F'F'T() function not
a multiply-parallel one).

An incremental improvement is obtained via the Stockham FFT framework:

7

Algorithm 2: [Stockham] in-place FFT with buffer but no scramble.

// We assume a complex input signal = {zg, ..., zy_1}, with N = 2". The F twist phase
is as in Algorithm 1.

FFT, FFT~'(z){
for(¢ =1; ¢ <=n; q++) {
L=2% r=N/L; Ly =L/2; ro = N/Ls;
y = X; // Copy entire length-N signal.
for(j =0; j < La; j++) {
a = e:FQﬂ'ij/L;
for(k =0; k<r; k++) {
b= a*Yjrothtr;
Tjr4k = Yjro+k + 13
T(j+Lo)yr+k = Yjrotk — 1

}
}
return z, x/N; // Return z/N for FFT~1 case.
}

Now we see two major improvements: nonexistence of bit-scramble, and unit stride (in the
inner k-loop). Unfortunately the full-array copies must occur on the order of log N times,
which means that although there are no numerical operations involved, still there must be
in some sense O(N log N) memory motions. It turns out we can do better than this, and
still preserve unit stride and avoid bit-scramble.

Motivated by the improvements inherent in the Stockham framework, we turn to
an improved version which we shall call the “ping-pong” variant of Stockham’s idea, or
“PPFFT.” We observe that similar frameworks have appeared before, as in the vast and
clever collection of library options (including automatic, dynamic-coding routines, and
many variations including non-power-of-two signal lengths) known as “FFTW /FFTPACK”
[Frigo and Johnson 1999].

Algorithm 3: PPFFT, in-order, with buffer but no copy.

// We assume a complex input signal x = {zg, ..., zy_1}, with N = 2". The F twist phase
is as in Algorithm 1.

FFT,FFT~(z){

J=1;
X=uz Y =y // Assign ping-pong memory pointers.
for(k=mn; k>0; k——) {

m = 0;

while(m < N/2) {

a = e:F27rim/N;

for(j =J; j>0; j——) {
Yo = Xo + Xny2;
Yy = a(Xo — Xny2);
++X;
++Y;

}

Y=Y+J;

m=m+ J;

~

2% J;

= X — N/2;

Y - N;

{Y, X} // Ping-pong (swap) the pointers, not the datal

<xu*

X

—

7Y}

}

if(n even) return (complex data at X); // Return X/N for FFT™! case.
else return(complex data at Y'); /] Y/N for FFT!.
}

Now we have not only unit stride in the inner j-loop, but we have dispensed with the ex-
pensive array copying. There still exists an auxiliary buffer, but that one buffer eliminates,
as we have seen, several problems now.

Based on all the above observations, and repeated experiments on variants and sub-
variants, we chose the PPFFT Algorithm 3 for our actual core FFT of the library. One
reason why the buffer involved is not really expensive is that, as we shall see, very long
signal kengths can be reduced to the core length in a certain sense, so that if the core
buffer copy is 2!° data wide, even a signal length of N = 2'6 or more will use just that
length-1024 buffer during appropriate recursion.

Note the finale of Algorithm 3, in which the parity of the power n in N = 2™ determines
which of the two ping-pong buffers X, Y contains the actual FFT. Thus Algorithm 3 is not
in-place always (sometimes the required data is in the “other” buffer Y'). Yet, we discovered
during G4 implementation of Algorithm 3 that the parity decision at the algorithm’s end
can be avoided by clever intervention into the last stages of the inner loop. Furthermore
the loop allows some additional means of unrolling and convenient vectorization attendant
on such unrolling, as discussed in a later section.

9

The net result for our library was a core FFT routine based on Algorithm 3 and
performing at 1.15 gigaflop/s (500 MHz. G4) for length N = 1024 (see Figure 1). Moreover
this core FF'T (which works in fact at any length N = 2™) can be used for very large N as a
recursion bottom, so that the cache and locality advantages of this PPFFT can be exploited
even for long N. Because, as we have explained, real-signal DFTs can be extracted from
half-length complex-signal DFTs, the existence of a suitable core FFT gives rise not only
to the long-signal cases but all the real-signal cases as well. Next we turn to a description
of how the reduction of long-signal FFTs to the core FFT can be achieved.

4. Building 1-dimensional FFTs from core-complex FFT

We have mentioned that—via Hermiticity relation (2.1)—a real-signal DFT can be
calculated on the basis of a half-length complex FFT. One algorithm for this is as follows:

Algorithm 4: Real-signal (forward) FFT from complex FFT.

// We assume a pure-real input signal = = {zg,...,zy_1}, with N = 2™,

FFT(x){
y ={xo + iz, 20 +ix3,..., N2 +iTN_1};
Y = FFT(y); // Use complex FFT of length N/2.
S=3{Yi+ Y];kf/2—k}£]:/(2);

) N/2
T= %{Yk - YN/2fk;}k:/O;
U = {Sk + e~ /N 11173,
return X = {Re(Up), Re(Uny2), U, ..., Unja—1};
}

Note that the first two returned elements, Re(Up), Re(Uy/2) are just the theoretically
real-valued Uy, Uy 2; we are just specifying that only one float value per such element is
required. The rest of the returned data starting with Uy, which is generally a complex, or
two-float entity, has the Hermitian symmetry of relation (2.1).

As for a real-inverse FFT, meaning we know a priori the result of the inverse transform
to be real in theory, the complementry algorithm is:

10

Algorithm 5: Real-inverse FFT from complex FFT.

// We assume a Hermitian DFT X = {Xo, X/, X1,..., Xn/2—1} as an output from
Algorithm 4.

FFT-Y(X){
. N/2-1
S = 3{Xy +XN/2—k}k:/0 ;
T = L{(Xp — X} p_p)2 /NP1,
r=FFT7Y(S +iT); // Use complex inverse FFT of length N/2.
return x;

}

This real-inverse algorithm might look simpler than its complement, Algorithm 4, but in
reality they should take almost exactly the same effort. For example, it is a hidden but
important fact that because the real-signal transform (output of Algorithm 4) is stored in
Hermitian order {Xo, Xn/2, X1,...}, some extra data movement is required within Algo-
rithm 5, in construction of the S, T signals.

This having been said, and again we admit there are alternative FFT frameworks for
pure-real signals and real-inverse transforms, we hereby dispense with the real-signal issue
for our library design, assuming thus that the requirements (2), (3), (5) at the start of
Section 1—these required library components involving 1 dimension—are now satisfied via
a suitably fast, complex FFT. We shall take up the issue of 2-dimensional real-signal cases
in a later section.

The PPFFT will, of course, overflow any cache at some signal length. In fact, the
gigaflop-level for length N = 219 begins to degrade somewhat, immediately for lengths
211 212 The situation can be remedied to a significant extent, especially for signal
lengths N ~ 26 and beyond, by using a known supercomputer-motivated expedient:
the “four-step” FFT, which involves a matrix decomposition based on a factorization
N = WH. The basic method was foreshadowed in the work of [Gentleman and Sande
1966] and subsequently developed over the last few decades [Agarwal and Cooley 1986]
[Swarztrauber 1987] [Ashworth and Lyne 1988] [Bailey 1990] [Crandall et al. 1999] with,
as we have intimated, a special impetus coming during the supercomputing era of the
1980s. The essential idea is to use relation (2.3) to forge a “rows-only” FFT framework
in which a certain matrix consists of rows of data. For convenience in what follows, we
assume the input data and the eventual DFT are both in columnwise order; i.e. we choose
a factorization N = W H and assume prearranged data:

Zo T ce T(W—-1)H
I TH+1 ° T(W-1)H+1
xr =
TH-1 TL2H-1 -~ TN-1

which can be thought of simply as a lexicographic arrangement; i.e. the data in actual
memory are arranged:

o, THy T2H, .- -
and all of this arrangement is to hold also for the resulting X = FFT(z).

11

Algorithm 6: Four-step FFT based on matrix decomposition.

// We assume a signal = of length N = W H, thought of as a matrix arranged in columnwise
order. The F twist phase is as in Algorithm 1.

FFT, FFT(z){
for(r =0; r < H; r++) FFT,FFT Yz +rW); // FFT each row in-place.

{Zarow } = {ejFQmab/NberaH}; // Transpose and twist the data matrix.
for(r=0; r <W; r++) FFT,FFT Yz +rH); // FFT each row in-place.
return x;

}

The name “four-step” caught on because the transpose/twist operation can be thought of
as two steps in itself. Incidentally, it is interesting that a 2-dimensional FFT is actually
simpler than a 1-dimensional FF'T, because as we shall see the two-dimensional FFT
does not have the twist factor e~27e/N — Of course, the reputation of the 2-dimensional
cases being tougher has only, therefore, to do with the normally greater data size of a
2-dimensional data structure.

The primary feature of Algorithm 6 is that only row-FFTs are performed. Thus, if
the matrix be factored N = W H such that both dimensions are fairly near cache size,
performance enhancement will occur. The only obstacle, then, to very high performance
of Algorithm 6 is the costly transpose step. Not only that, to perform FFTs on data that
is mot arranged columnwise, rather in the conventional, lexicographic normal order, one
needs a “six-step” FFT, taking the overall form:

transpose x;
take F'FT(x) with Algorithm 6;
transpose z;

in this way forcing columnwise order at the beginning and unraveling same at the
end. But this involves three transposes total, which can be expensive. One way to avoid
all transposes is the following, which assumes normal, lexicographic order on input, but
leaves the data in columnwise order at the end.

12

Algorithm 7: Column-ferrying, transpose-free (forward) matrix FFT.

// We assume a signal z of length N = W H, thought of as a matrix arranged lexicograph-
ically. The F twist phase is as in Algorithm 1.

FFT(x){
for(c=0; ¢ < W; c++) {
{yi} ={zcrjw f:_olg // Ferry a column out to a singleton row y.
FFT(y); // FET the singleton row.
{Teyjw} = {e2m/ Ny // Twist-and-ferry the column back.
for(r=0; r < H; r4++4) FFT(x +rW); // FFT each row in-place.
return x; //The DFT is returned in columnwise order.

}

Note this is a forward FFT only. For the inverse FFT, we can accept columnwise order,
start on the rows, then twist-ferry (with conjugate phase factor) to do the columns; essen-
tially just run Algorithm 7 in reverse. The best aspect of Algorithm 7 is that, for Velocity
Engine implementation, we can use the following ideas:

e The column ferrying can be done with wvectors, such as two complex numbers (four
components) at a time; i.e. we can ferry two columns at once to two auxiliary rows and
perform two rapid FFTs on said rows;

e The Velocity Engine is well-suited for the rapid twist-factor complex multiplication at
algorithm center;

e If one insist upon a lexicographic-lexicographic transform, the final columnwise order does
need an extra transpose after the whole forward Algorithm 7; however during convolution
for example we can leave the columnwise order and start an FFT () function assuming
columnwise input, as intimated in the comments right after the Algorithm 7 display;

In our implementation, we did not explore the notion of asymmetrical W >> H or H <<
W, but we did work out a one-step recursion so that every length N = 2" can eventually
involve an exactly square matrix. Clearly if n is an even power, then N = (2”/ 2)2 50
each of W, H is simply v/N. When the power n is odd, however, we were able to use the
following;:

13

Algorithm 8: Reduction of FFT to square-length FFT.

// We assume a signal = of length N = 2", with n odd.

FFT(x){
z(F) = {xj}évz/g_l; // Left half-signal.
B = {z; ?:7&/2; // Right half-signal.
{x§-R)} = {xg.R)quZ”j/N}; // Twist operation.
X = FPT (x); // FET of square length.
X)) = FFT(2(R); // FFT of square length.

return X = {XéL),XéR),Xl(L),XiR), B
}

Of course, Algorithm 8 is the classical DIF recursion for FFTs, and can also be thought
of as an N/2-by-2 matrix FFT, but in any case we explicitly display Algorithm 8 in this
treatment for completeness. Indeed, we now have what is—if not an optimal picture—
a comp;lete picture for arbitrary-length 1-dimensional FFTs. The overall strategy we
adopted then is:

Algorithm X: General strategy for large-signal FFT.

// Next, complex-signal case.

If signal length N is less than a fixed breakover value, invoke Algorithm 3;
Else if columnwise order acceptable, perform Algorithm 7;
Else if N = 2™ with n even, perform Algorithm 7 with final transpose;
Else (n is odd here) perform Algorithm §8;

// Next, real-signal case.
Use Algorithms 4,5 which call in turn the complex case.
G4-specific implementation details are discussed in Section 6, with some performance data
shown in Figure 1.
5. FFT framework options—2-dimensional scenario

The handling of 2-dimensional DFTs is quite straightforward in the complex-signal
case; muich more intricate in the real-signal case. For complex signals we have:

14

Algorithm 9: 2-dimensional FFT.

// We assume a signal z of length N = W H, thought of as a matrix arranged lexicograph-
ically.

FFT(x){
for(c=0; ¢ < W; c++) {
{yi} ={zcrjw f:_olg // Ferry a column out to a singleton row y.
FFT(y); // FET the singleton row.
{zersw} ={y;}; // Ferry the column back.
for(r=0; r < H; r4++4) FFT(x +rW); // FFT each row in-place.
return x; // 2-dimensional DFT in normal order.

}

Of course, this is very much like Algorithm 7, for as we have said the 2-dimensional case is
essentially the matrix FFT without twist factors (and in fact, without any problems with
columnwise ordering at algorithm end).

Next, we give the hard, Hermitian case for 2-dimensional pure-real signals. The
Hermitian relation (2.2) is in force, and this means one ought to be able to perform the
2-dimensional FFT twice as fast, and this is indeed so. The following algorithm shows
precisely what can be done to halve the work in this real-signal case:

15

Algorithm 10: 2-dimensional FFT for pure-real signal (image).

// We assume a real signal x of length N = WH, thought of as a matrix arranged
lexicographically.

FFT(x){

for(r=0; r < H; r++) FFT(z +rW); // Algorithm 4 on each row.

for(c=0; ¢ <2; c++) { // ¢ indexes real columns
{y;} = {$c+jW}jH:_01; // Ferry a real column out.
FFT(y); // Real-signal FFT for ¢ =0, 1.
{Zerjw} =1{y;}; // Ferry the column back.

}

for(c=1; ¢ < W/2; c++) { // note ¢ now indexes complex columns
{yi} ={zcrjw ;?1:—01; // Ferry a complex column out.
FFT(y); // Complex FFT for these ¢ > 2 cases.
{zeriw} ={y;}; // Ferry the column back.

return x; // Returning an equivalent Hermitian form X of the DFT.

}

This 2-dimensional FFT has half the complexity of the full complex-signal case, the only
drawback being the peculiar order of the final elements. Said ordering upon output of
Algorithm 10 turns out to be:

x(h) —

[Xoo Xo,w/2 ReXo1 ImXoy -+ ImXowp—1 |
XH/2,0 XH/2,w/2 ReXy 1 ImXy: - ImXy w1
R€X1,0 Relew/g R6X2,1 ImXQ,l s ImX27w/2_1
Ile,O ImXLw/Q R€X371 ImX371 cee ImX37w/2_1

ReXppo10 ReXpgpqwye ReXgo1 ImXg o1 - ImXpg_owio
| ImXgp_10 ImXgp_awpe ReXg11 ImXg 11 - ImXg_i w1

It is evident upon inspection that the above tableau, together with Hermitian symmetry
(2.2), completely specifies the standard, 2-dimensional DFT.

We shall not display an explicit real-inverse, 2-dimensional FF'T because it is simply
the logical reversal of Algorithm 10; namely, do the columns (using Algorithm 5 for real-
inverse and Algorithm 3 for complex-inverse) then do the rows, using Algorithm 5.

When it comes to 2-dimensional cyclic convolution, the full-complex case is easy: one
just performs the usual three FF'Ts described in Section 1. For real convolution, the theory
is the same but now we have to perform the dyadic product in the correct Hermitian form.
The manner, then, of cyclically convolving two pure-real 2-dimensional signals z, y is thus:
apply Algorithm 10 twice, to obtain the Hermitian-equivalent transforms X Y (") then
multiply dyadically then do the inverse algorithm (backtracking of Algorithm 10). The
dyadic multiplication can be gleaned directly from the above output tableau for X (®: one

16

simply uses the tableau of a real-signal DFT X, say, and one of Y, and replaces say Y
with the dyadic elements, as in the usual complex arithmetic for a pair of components:

(ReXab, ImXab) * (ReYab, ImYab) —

(ReXabRBYab - ImXabImYab, R@XabImYab + ImXabRGYab),

but with care taken to handle the real cases (upper left quad of DFT values in the X (h)
tableau) more simply.

Because matrix operations figure so strongly into the large-signal FFTs described
herein, it is important to summarize the issues attendant on matrix transpose. The four-
and six-step FFTs (with 1-dimensional DFT being the goal) and their variants all involve
a matrix transpose, unless of course one uses the columnwise form Algorithm 7, which
form is relevant to 1-dimensional convolution schemes in which the internal columnwise
order wrapping around the dyadic multiply is admissible. The bottom line is: if, for
matrix-based, 1-dimensional FFT, one desires normal (lexicographic) ordering of both
input signal z and output transform X, then a matrix transpose is necessary somewhere
in the procedure. (For 2-dimensional (image) FFTs we have already seen that transposes
can be entirely removed via the column-ferrying expedient.) Intuitively speaking, the
transpose is the price to pay for the holographic property of the DFT; that is, to achieve
the cache-friendly matrix factorization, the penalty is some kind of matrix re-ordering, i.e.
transposition. In this regard, we have already mentioned how we always achieve a square
matrix for any initial signal length N = 2", in that odd exponents n involve the one-step
recursion of Algorithm 8. What does one do for non-square matrices? One answer is
simply to write a general matrix transpose. There are block-oriented transpose algorithms
[van Loan 1992, and references therein], some of which are partially cache-friendly (we say
it that way because whenever the matrix is not square, there is always some kind of extra
cache hitting).

6. Velocity Engine implementation details

As was mentioned in Section 3, the ping-pong FFT (PPFFT) was chosen as our
fundamental framework for complex FFT implementation. A primary motivating factor
for this choice is the unit stride for both input and output data in the PPFFT. The unit
stride is important because of the load-store properties of the G4 vector engine, namely,
that vectors must be loaded four floats at a time, and from a 16-byte aligned address. A
unit stride for input and output data allows us to easily implement a vector-based algorithm
which operates on adjacent input elements and generates adjacent output elements. Vector
implementation of a Cooley-Tukey style FFT, which requires storing of isolated (i.e. non-
adjacent) data elements, would require (at least) one load and one masking instruction
to only store one complex value (two floats) using the vector load/store operations. One
could have chosen to execute several Cooley-Tukey procedures in parallel, and that is of
course an interesting option. We chose instead to conecntrate on the vectorization of a
single, complex PPFFT.

While the PPFFT proved to be the most favorable implementation, we investigated
several other possibilities which showed some promise. And while the PPFFT has the

17

significant benefit of requiring no bit-scramble step, it is worth mentioning that the Veloc-
ity Engine instruction set provides an opportunity for a clever bit-scramble optimization.
Other than the obvious load/store operations, the majority of the time spent in the scram-
ble routine goes towards calculating the bit-reversal of the element indices. For example,
given a length 2% signal, the element at position 25 (00011001 in binary) must be swapped
with the element at position 152 (10011000 binary), and these bit-reversed indices must
be calculated, typically using some kind of shift /mask/bit-set loop, which, for longer sig-
nal lengths, can involve many loop iterations, typically log, IV steps. Since this must be
performed for all entries, this implies that the bit-reversal algorithm is an O(N log N)
operation when executed on an entire signal of length N.

This same index bit-reversal can be accomplished using precisely six AltiVec instruc-
tions, regardless of signal length (and therefore index bit-length). More interesting is the
fact that, since it is a vector implementation, as many as sixteen of these bit reversals can
be calculated simultaneously, since this bit reversal can be invoked on sixteen one-byte
vector elements at a time. (Obviously, for longer signal lengths, the number of indices
calculated will decrease, depending on whether the index representation is bounded by a
16-bit or 32-bit limit.) And, while the scramble operation is of secondary interest in opti-
mization of the FFT, this serves as an excellent example of the algorithmic enhancements
that are available with the Velocity Engine.

This bit-reversal is accomplished in the following steps, assuming a signal length of
218 The vector vNormallndex is assumed to be a vector of four unsigned long (32-bit)
indices to be bit-reversed. We also assume the following vector definitions:

vReverseBytesPermuter = (3,2,1,0,7,6,5,4,11,10,9,8, 15, 14,13, 12);

vReverseNybblePermHi = (0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15);
vReverseNybblePermLo —
(0,128,64, 192,32, 160, 96, 64, 16, 144, 80, 208, 48, 176, 112, 240);
vSignalBitLengthAdjuster = (vector unsigned long)(14);

Given these vector definitions, the following AltiVec instructions will result in a bit reversal
of the elements in the vector vNormalIndex.

vReversedBytes =
vec_perm(vNormalIndex, vNormalIndex, vReverseBytesPermuter);
vHiNybbles =
vec_sra(vReversedBytes, (vector unsigned char)(4));
vHiNybblesSwapped =

vec_perm(vReverseNybblePermHi, vReverseNybblePermHi, vHiNybbles);

18

vLoNybblesSwapped =
vec_perm(vReverseNybblePermLo, vReverseNybblePermLo, vReversedBytes);
vReversedIndices =
vec_or(vHiNybblesSwapped, vLoNybblesSwapped);
vReversedIndices =
vec_sra(vReversedIndices, vSignalBitLengthAdjuster);

The first permute instruction reverses the order of bytes in each index. Next, each byte is
shifted right by four bits, to yield a vector of high nybbles of each byte. The reversed bytes
vector is used as a permute vector to generate a vector of reversed low nybbles. Similarly,
the high-nybble vector is used as a permute vector to generate a vector that contains the
bit-reversed high nybbles. These two reversed-bit nybble vectors are merged with a bitwise
or instruction. Finally, the indices are shifted right to adjust for the bit length of the signal
length.

At the core of the FFT algorithm is a set of operations commonly referred to as a
butterfly. Given two complex input elements a and b, we generate two complex output
elements from, say, a DIF butterfly:

c\ _ a+b
d) — \(a—b)e?
Expanding the equation for the complex value d = {d,, d;}, we have
d, = (ar — by) cos ¢ + (a; — b;)sin ¢

d; = (a, — b;)sin¢ — (a; — b;) cos ¢

Velocity Engine implementation of these butterfly operations is straightforward. First, it
is assumed, since each vector contains four floats, that two butterflies are being calculated
simultaneously. The calculation of the sum c is simply accomplished with a vector add
operation. The calculation of d is somewhat more involved. Given the input vectors

vA = (amra Amis A(m4-1)rs a(m—l—l)i)

vB = (bmr, bmis Oim+1)r> Om+1)i)

and the cos and sin vectors
vSin = (sin¢g, —sing@, sin¢g, —sin @)

vCos = (cos ¢, cos P, cosp, cosd)

We can calculate the output vector vD as follows. First, we calculate a difference vector:
UDfo = (amr - bmra Ami — bmi7 A(m+1)r — b(m+l)r7 A(m+1)i — b(m+1)z)

19

Next, we create a swapped difference vector:

vSwappedDif f = (ami — bmis Gmr — bmrs Qmt1)i — Omt1)i> Gm+1)r — Omt1)r)

Finally, we perform a multiply and a mul-add (actually, two mul-adds, since there is no
simple multiply implemented in the floating point domain for the AltiVec instruction set).

vButter fly = vecmadd(vDif f,vCos,vZero)

vButter fly = vec_madd(vSwappedDif f,vSin,vButter fly)

For the basic PPFFT, we chose to use a lookup table for loading sin and cos values
to create the vSin and vCos vectors. While there is a potential cache miss associated
with loading these cos and sin values (along with the cost of building the initial table),
our focus was on optimization of longer signal lengths for which a recursive square matrix
FFT would be used. In this scenario, the low-level FFT would be called repeatedly for the
same short signal length, and so for all but the first iteration, the cos and sin lookup table
can be assumed to be in cache, and so the cost of loading is very small.

There are other areas of our library, however, where we have instead chosen to use an
incremental calculation method for generating sin and cos vectors. Assuming a base angle
f, and an incremental angle §, we take advantage of the following relationships. Given
a = 2sin(§/2)? and b = sin(§) we can iterate a certain, convenient recursion formula:

cos(f +9) =cosf —a cosf —b siné

and
sin(f + 6) = sinf — a sinf + b cosb.

This is useful for a twist operation that requires a constant angle increment for the cos and
sin multipliers. For example, to have cos and sin vectors with elements that range from 0
to 2w in N steps, we start with

vCos = (cos(0), cos(0), cos(2m/N), cos(2m/N))
vSin = (sin(0), —sin(0), sin(27/N), —sin(27/N))
vInerementA = (2sin(r/2N)?, 2sin(r/2N)?, 2sin(r/2N)?, 2sin(7/2N)?)
vInerementB = (sin(w/N), — sin(n/N), sin(w/N), — sin(w/N))

Then, to calculate the vectors vCos’ and vSin’ for the next iteration, we use the following
AltiVec instructions

vCos’ = vec_nmsub(vCos, vincrementA, vCos);

vCos’ = vec_nmsub(vSin, vincrementB,vCos');

vSin' = vec_nmsub(vSin, vIincrementA,vSin);

20

vSin’ = vec madd(vCos,vIncrement B,vSin’);

which will yield
vCos’ = (cos(4w/N), cos(4n /N), cos(67/N), cos(6m/N))

vSin’ = (sin(4r/N), —sin(47/N), sin(67 /N), — sin(67/N)).

While this is a convenient way to efficiently calculate incremental cos and sin vectors, it
degenerates for long run lengths, especially for N > 2'6. In these cases, the same incre-
mental calculation technique is used, but in the scalar domain, and using double-precision
floats, which provide sufficient precision to support longer run lengths. The updated scalar
values are then transferred to the vector domain for use in the twist multiplication.

One enhancement to the basic PPFFT which has shown significant benefits has been
the adoption of a “double-butterfly” strategy—essentially a radix-4 optimization. The
standard PPFFT framework requires log, /N passes through the data, which means a total
of Nlog, N loads and stores of complex elements. We observed, however, that a care-
ful choice of input and output indices would allow us to perform two steps of the ping
pong operation simultaneously, thus allowing us to reduce by half the number of required
load /store operations. This is of particular importance for longer run lengths, where cache
misses contribute to substantial performance degradation.

7. Performance results

Figure 1 shows various options for length-(N = 2") complex FFT. The combination
of PPFFT (Algorithm 3) breaking over at N = 2% (Algorithm 7) is currently the optimal
manifestation of the overall Algorithm X. As for the real-signal cases, summary timing for
optimal deployment of Algorithm X (with lexicographic, not columnwise branch) is:

N usec (500 MHz clock)
012 17.8

1024 35.6

2048 73.7

4096 177

8192 482

16384 1086

32768 2250

65536 5103

131072 10545
262144 31764
524288 99250
1048576 255072
2097152 459408

As expected, these microsecond timings are fairly close to 1/2 their complex-signal coun-
terparts inferred from Figure 1.

21

8. The future

During this research on supercomputer-style FF'T library design, we observed several
optimization paths, any one of which might bring the long-signal performance up yet
further. We list such possible future research paths as follows:

e Experiments to determine optimal matrix factorization; i.e., for N = WH we have
described means for forcing W = H via one-level recursive FF'T, but perhaps a much more
asymmetrical factorization is called for. Certainly when one dimension of a matrix at least
fits within cache, that is an interesting situation.

e Split-radix techniques will cause all of the timings to drop, ideally by a factor of 4/5.
That is because Cooley-Tukey and Stockham operation counts are 5N log, N whereas
alternative-radix counts can be as low as 4N log, N. Note that gigaflop ratings might
not increase for alternative radices, even though timings should drop; the reason for this
discrepancy being, of course, the lower operation count for non-power-of-two radix.

e Perhaps the notion of double-precision cos/sin function updating can be exploited further;
i.e., allowing the G4 scalar engine to aid more than we have indicated on side calculations.

e There are various alternative FFT frameworks [van Loan 1992] that should be investi-
gated, along the lines of supercomputer-style array indexing. There is also the very fast
indexing scheme of E. Mayer for transpose-less, FFT-based convolution, as reported in
[Crandall et al. 1999].

On the basis of such future research directions, it should be possible to “bring up” the
performance tail of Figure 1 for very long signal lengths, as we have doen to some extent
using the ideas herein.

Acknowledgments

The authors are indebted to G. Miranker, G. Fisher, J. Papadopoulos, E. Mayer and
especially A. Sazegari for insight and support relevant to this research. M. Frigo and S.
Johnson of the FFTW project (MIT) were quite helpful on various technical issues.

22

References

Agarwal R C and Cooley J W 1986, “Fourier Transform and Convolution Subroutines for
the IBM 3090 Vector Facility”, IBM Journal of Research and Development, vol. 30, p.
145 - 162.

Ashworth M and Lyne A G 1988, “A Segmented FFT Algorithm for Vector Computers”,
Parallel Computing, vol. 6 (1988), p. 217 -224.

Bailey D 1990, “FFTs in External or Hierarchical Memory,” J. Supercomp. 4 23-35.

Crandall R and Pomerance C 2000, Prime numbers: a computational perspective, Springer-
Verlag, New York (to appear).

Crandall R 1994b, Projects in Scientific Computation, TELOS /Springer-Verlag, New York,
Berlin, Heidelberg.

Crandall R and Fagin B 1994, “Discrete Weighted Transforms and Large-Integer Arith-
metic,” Math. Comp. 62, 205, 305-324.

Crandall R, Doenias J, Norrie C, and Young J 1995, “The Twenty-second Fermat Number
is Composite,” Math. Comp., 64, 210, 863-868.

Crandall R 1996, Topics in Advanced Scientific Computation, TELOS/Springer-Verlag,
New York, Berlin, Heidelberg.

Crandall R, Mayer E, and Papadopoulos J 1999,” The twenty-fourth Fermat number is
composite,” manuscript: http://www.perfsci.com.

Frigo M and Johnson S 1999, FFT-oriented website: http://www.fftw.org

Gentleman W M and Sande G 1966, “Fast Fourier Transforms — For Fun and Profit”,
AFIPS Proceedings, vol. 29, p. 563 - 578.

Swarztrauber P N 1987, “Multiprocessor FFTs”, Parallel Computing, vol. 5, p. 197 - 210.
van Loan C 1992, Computational Frameworks for the Fast Fourier Transform, STAM.

23

1200 -

Scalar PPFFT (Alg. 3)
—l— G4 Vector PPFFT (Alg. 3)

1000
e —a&— Alg. X, lexicographic

—>X— Alg. X, columnwise

800

Mflops

AN

7 8 9 10 11 12 13 14 15 16 17 18 19 20
log,N

Figure 1: FFT performance vs. signal length N . The plots reveal how one may incrementally
improve algorithms in regard to cache issues, to achieve a 300+ megaflop asymptote for very
large N into the millions. (500 MHz G4 clock assumed.)

21

