
Vector implementation of color-image wavelet transform

Richard Crandall and Jason Klivington
Advanced Computation Group, Apple Computer

Abstract. There are various approaches to wavelet processing of color images, and ma-
chine architecture dictates in large measure which algorithm is optimal. We describe herein
a Velocity-Engine (G4) implementation in which pixels are processed as four-dimensional
(RGBA) vector entities. In this mode the vector machinery performs the (Daubechies D4)
wavelet algebra in only three vector operations per pixel. We also implemented a more
standard, channel-correlation scenario, with YUV-decomposed RGB images (with UV sub-
sampling) and a biorthogonal (Burt 5/7) wavelet transform applied thrice. A key to these
fast vector implementations is the adoption of certain rational approximations—we call
“shift-rational” forms—to the true wavelet coefficients, allowing for efficient Velocity En-
gine arithmetic. Other Velocity Engine enhancements include very fast subsampling for
the UV channels, via vector-average instructions. Timing experiments show a Velocity En-
gine speedup of 5x or more over corresponding scalar (G3) implementation in the RGBA
approach. For the YUV approach, the speedup is likewise impressive, with a complete
inverse-wavelet-YUV image reconstruction on a 320-by-240 full color image taking less
than 1

200 second on 300 MHz. G4.

25 October 1999
c. 1999 Apple Computer, Inc.
All Rights Reserved.

1



1. Wavelet choices

For the Velocity Engine timings we eventually report herein, the wavelets used were:

Daubechies compact wavelet (D4), in RGBA mode
Biorthogonal wavelet (Burt 5/7), in YUV mode

The former wavelet choice was effected on all four RGBA color channels at once (where
A is “alpha,” or opacity channel), while the latter wavelet was used in YUV-decomposition
mode whereby the three RGB channels were transformed as in Section 2. Thus YUV mode
is the more standard approach, and is likely to allow superior results in actual applications
(such as image compression) because, of course, we expect interchannel correlations which
are exploited by YUV transformation—a great deal of signal energy ends up in the Y
channel.

The D4 wavelet coefficients are taken to be:

{h0, h1, h2, h3} = {1 +
√

3
4

,
3 +
√

3
4

,
3−
√

3
4

,
1−
√

3
4
},

which are often manifest in software as floating-point values (they are all irrational), yet
we shall be able to give such coefficients a satisfactory rational form suitable for Velocity
Engine work. The D4 coefficients satisfy normalization:

h2
0 + h2

1 + h2
2 + h2

3 = 2,

and moment conditions
h0 − h1 + h2 − h3 = 0,

0h0 − 1h1 + 2h2 − 3h3 = 0,

which conditions admit of clear interpretation (e.g. the moment conditions tend to suppress
linear and parabolic signal behavior, respectively). The actual D4 wavelet transform is
built from matrix operators, each having an upper “scalar” half and a lower “difference”
half:

Wn =



h0 h1 h2 h3 0 · · ·
0 0 h0 h1 h2 h3 0 · · ·
...

...
h3 −h2 h1 −h0 0 · · ·
0 0 h3 −h2 h1 −h0 0 · · ·
...

...


where the matrix is n-by-n and one normally applies this matrix at successive resolutions,
to an original length-N signal column, so that an overall wavelet transform to “depth k”
can be symbolized:

W = Wn/2k ...WN/4WN/2WN .

It is understood that in this chain a matrix Wm applies only to the upper m entries of
the current signal column, and that the boundary conditions at the edges of the various

2



matrices need be further defined (one way to proceed is to effect wrap-around and super-
position, but there are other ways to handle the edges). The convenient property of the W
matrices is that they are unitary: the inverse transform—up to correct normalization—is
given simply by the matrix transpose.

The example we use of biorthogonal wavelets is the Burt 5/7 device, which involves
coefficients

{H0, H1, H2} = {3
5

√
2,

1
4

√
2,− 1

20

√
2},

{G0, G1, G2, G3} = {−170
280

√
2,

73
280

√
2,

15
280

√
2,− 3

280

√
2}.

This wavelet is known to have improved distortion properties on images (for one thing it
is entirely symmetrical in filter form, unlike the D4 wavelet). The matrix forms for such
biorthogonal wavelets are reminiscent of the D4 form given above, in the sense that the
Burt 5/7 “scalar” half-matrix has within a typical row:

...H2,H1,H0, H1, H2...

while the“difference” half has rows such as:

...G3, G2, G1, G0, G1, G2, G3...

with, again, proper boundary conditions assumed for the (finite) matrices. For this kind of
biorthogonal transform the inverse is given—again, up to normalization—by the transpose
of a matrix having rows of the types:

...−H2,H1,−H0, H1,−H2...

...G3,−G2, G1,−G0, G1,−G2, G3...

with, as expected, some detailed boundary conditions in force at matrix edges. For com-
pleteness we give here the explicit forward and inverse biorthogonal-wavelet matrices re-
spectively, for length-8 signals (to be interpreted as 8-element column vectors):

H0 2H1 2H2 0 0 0 0 0
H2 H1 H0 H1 H2 0 0 0
0 0 H2 H1 H0 H1 H2 0
0 0 0 0 H2 H1 H0 +H2 H1

G1 G0 +G2 G1 +G3 G2 G3 0 0 0
G3 G2 G1 G0 G1 G2 G3 0
0 0 G3 G2 G1 G0 G1 +G3 G2

0 0 0 0 2G3 2G2 2G1 G0




−G0 −2G2 0 0 2H1 0 0 0
G1 G1 +G3 G3 0 −H0 −H2 −H2 0 0
−G2 −G0 −G2 0 H1 H1 0 0
G3 G1 G1 G3 −H2 −H0 −H2 0
0 −G2 −G0 −G2 0 H1 H1 0
0 G3 G1 G1 +G3 0 −H2 −H0 −H2

0 0 −G2 −G0 −G2 0 0 H1 H1

0 0 2G3 2G1 0 0 −2H2 −H0


3



For the exact H,G coefficients as given above (with the
√

2 factors) the product of these
two 8-by-8 matrices is precisely an identity matrix.

For either style of wavelet, the primary consideration for Velocity Engine machinery
is that for pixel values x0, x1, ..., or perhaps a simple reordering of same, one needs to
calculate components of the matrix-vector product, a typical such component being:

c0xk + c1xk+1 + c2xk+2 + ...,

for some wavelet coefficients ci. In the shift-rational paradigm, what we actually end up
calculating is:

c0xk + c1xk+1 + c2xk+2 + ...+ 2b−1

2b

with the offset of 2b−1 aiding on average the natural rounding error. As we shall see this
algebra can be parallelized in, perhaps surprisingly, more than one way.

2. Shift-rational coefficients

By “shift-rational” for a coefficient c we mean a form:

c ≈ n

2b
,

for integer n, so that the implied division is a convenient right-shift by b bits. Happily, we
were able to find adequate shift-rational forms for either wavelet style. For the D4 wavelet,
the approximate coefficients:

{h0, h1, h2, h3} = {11
16
,

19
16
,

5
16
,− 3

16
}

enjoy the properties:

h2
0 + h2

1 + h2
2 + h2

3 =
129
64
≈ 2.016,

and moment conditions
h0 − h1 + h2 − h3 = 0,

0h0 − 1h1 + 2h2 − 3h3 = 0,

of which, remarkably, the last two are exact. For the Burt 5/7 wavelet, we found coeffi-
cients:

{H0, H1, H2} = {216
256

,
92
256

,− 18
256
},

{G0, G1, G2, G3} = {−220
256

,
94
256

,
20
256

,− 4
256
},

for which we have the exact relation

G0 + 2G1 + 2G2 + 2G3 = 0.

4



The fortunate aspect of this particular shift-rational representation is that, for the forward
matrix Bn or length-n and the (formal, formed as above from ±H,±G terms) backward
matrix C it happens that BC is very close to the identity. In fact, we calculated the exact
error for n = 8 in the form:

B8C8 = I −



0 0 2δ 0 0 0 0 0
0 δ 0 δ 0 0 0 0
δ 0 0 δ 0 0 0 0
0 δ δ 0 0 0 0 0
0 0 0 0 0 δ δ 0
0 0 0 0 δ 0 0 δ
0 0 0 0 δ 0 δ 0
0 0 0 0 0 2δ 0 0


where

δ =
1

8192
,

and similarly impressive near-identity relations for longer lengths n.
Along similar lines we found an accurate shift-rational YUV transformation, in the

form of matrix operator:

L =
1

128

 43 42 43
−42 −43 85
85 −43 −42


acting on RGB columns. Technically of course this is not the standard YUV transforma-
tion, but as is well known this simpler kind of operator does well to exploit the channel
correlations. At any rate, our goal was to have a very fast inverse operation, as close as
possible to a matrix having only 0,−1,+1 values. Indeed, the particular matrix yuv above
has the fortunate property: 1 0 1

1 −1 −1
1 1 0

L =

 1 − 1
128

1
128

0 1 0
1

128 − 1
128 1

 ,

so that for example the recovered R channel will sustain some small G, B interference; the
G channel reconstructs perfectly, and so on.

Because of the high accuracy of these shift-rational approximations, the typical sce-
nario for either YUV-decomposed images or our direct RGBA transform was this: upon
inversion, the error due to the shift-rational coefficients is manifest as some small fraction
(typically less than 10 per cent) of all pixel values are off by ±1 or ±2 out of 255 max-
imum, and all the rest are exactly reconstructed. Because one expects eventually to use
such transforms together with deep quantization—for deep resulting compression—this
level of error is, being on the order of 50 db. or more, entirely acceptable—very nearly
lossless.

5



3. Vectorization details

Let us first consider the case of a two-dimensional Daubechies D4 wavelet transform
on a four channel (RGBA) image. Because of the interleaved nature of the data, and
to best take advantage of the Velocity Engine’s performance, we chose to implement a
separate algorithm for horizontal and vertical transforms of the image data. Since data is
interleaved, and the transform is performed on the separate channels (i.e. only red pixel
data is used to calculate the red channel transform), some manipulation is required to get
the data into the correct vector form for our calculations.

In the case of the horizontal forward transform, we loop through each row six source
pixels at a time. Since each pixel contains four 16-bit elements (padded from 8 bits to
accomodate expansion from the transform), this requires three 128-bit Velocity Engine
registers, so that each vector contains two complete four-channel pixels. So, starting with
the 0-th pixel in a row, we have three input vectors:

vIn1 = (a0, r0, g0, b0, a1, r1, g1, b1)

vIn2 = (a2, r2, g2, b2, a3, r3, g3, b3)

vIn3 = (a4, r4, g4, b4, a5, r5, g5, b5)

Where, for example, a2 is the alpha component of pixel 2. From the above shift-rational
matrix for the D4 transform, we have, for the alpha channel of the 0-th transform element:

a0 =
a0h0 + a1h1 + a2h2 + a3h3 + 2b−1

2b

In order to have the data in a form appropriate for the necessary Velocity Engine opera-
tions, we use the Velocity Engine’s permute operation on vIn1 and vIn2 to generate the
multiplicand vectors

vMul1 = (a0, a1, r0, r1, g0, g1, b0, b1)

vMul2 = (a2, a3, r2, r3, g2, g3, b2, b3).

Then, defining two coefficient multiplicand vectors

vCoeff1 = (h0, h1, h0, h1, h0, h1, h0, h1)

vCoeff2 = (h2, h3, h2, h3, h2, h3, h2, h3),

a “rounding corrector” vector

vCorrector = (2b−1, 2b−1, 2b−1, 2b−1, 2b−1, 2b−1, 2b−1, 2b−1),

and a final “shift-rational” vector of four 32-bit elements

vShift = (b, b, b, b),

6



we can, through the use of the msum operation, calculate the entire transform components
for all four channels RGBA in three instructions. Thus it can be said that the wavelet
algebra per se takes three vector operations per pixel, to which effort one must of course add
the permute, load/store, pack instructions described above. For those unfamiliar with the
Velocity Engine instruction set, the msum operation takes three input vectors vA, vB, vC,
and produces a single result vector vResult. Given

vA = (vA0, vA1, vA2, vA3, vA4, vA5, vA6, vA7) (16− bit elements)

vB = (vB0, vB1, vB2, vB3, vB4, vB5, vB6, vB7) (16− bit elements)

vC = (vC0, vC1, vC2, vC3) (32− bit elements)

the operation
vResult = msum(vA, vB, vC)

produces the vector
vResult = (vA0vB0 + vA1vB1 + vC0,

vA2vB2 + vA3vB3 + vC1,

vA4vB4 + vA5vB5 + vC2,

vA6vB6 + vA7vB7 + vC3).

If we take vTransform to be our transform result (with four 32-bit elements), then the
instructions

vTransform = msum(mul1, coeff1, corrector);

vTransform = msum(mul2, coeff2, vTransform);

vTransform = sra(vTransform, vShift);

will give us the result vector:

vTransform = (
a0h0 + a1h1 + a2h2 + a3h3 + 2b−1

2b
,

r0h0 + r1h1 + r2h2 + r3h3 + 2b−1

2b
,

g0h0 + g1h1 + g2h2 + g3h3 + 2b−1

2b
,

b0h0 + b1h1 + b2h2 + b3h3 + 2b−1

2b
).

Note, however, that this is a vector of 32-bit elements, which is required capacity for the
pre-shift sum of 16-bit products, although the final sra (shift right arithmetic) instruction
produces elements that will fit within 16 bits. If we perform the same sequence of above

7



operations, and substitute vIn2 and vIn3 for vIn1 and vIn2, respectively, then we can create
a second transform result vector, vTransform2, with

vTransform2 = (
a2h2 + a3h3 + a4h4 + a5h5 + 2b−1

2b
,

r2h2 + r3h3 + r4h4 + r5h5 + 2b−1

2b
,

g2h2 + g3h3 + g4h4 + g5h5 + 2b−1

2b
,

b2h2 + b3h3 + b4h4 + b5h5 + 2b−1

2b
).

Using the Velocity Engine pack instruction, we can then generate a single 8-element vector
that contains the truncated 16-bit elements of vTransform and vTransform2, which are in
actuality the first two pixels of the transform data, and can be stored with a single store
instruction (which is the motivation for the step size of three input vectors).

If the above steps are repeated with the same input vectors, but with the differencing
coefficients of the wavelet:

vCoeff1 = (h3,−h2, h3,−h2, h3,−h2, h3,−h2)

vCoeff2 = (h1,−h0, h1,−h0, h1,−h0, h1,−h0),

we end up with vTransform and vTransform2, which, given a data stream of length n
four-channel elements, correspond to element n

2 and n
2 + 1 of the four-channel transform,

respectively.
In the case of the forward, vertical transform, the strategy is similar, but the required

permutations on the input data are different. For example, given input rows 0-3, we have
input vectors:

vIn1 = (A00, R00, G00, B00, A10, R10, G10, B10)

vIn2 = (A01, R01, G01, B01, A11, R11, G11, B11)

vIn3 = (A02, R02, G02, B02, A12, R12, G12, B12)

vIn4 = (A03, R03, G03, B03, A13, R13, G13, B13)

we perform a permute on these vectors to get the multiplicand vectors

vMul1 = (A00, A01, R00, R01, G00, G01, B00, B01)

vMul2 = (A02, A03, R02, R03, G02, G03, B02, B03)

which, if we employ the same msum, msum, sra sequence given above, allows us to cal-
culate the transform for the 0-th pixel of column zero of the transform image. Employing

8



different permute vectors, we can generate a similar set of multiplicand vectors for calcu-
lating the 0-th pixel of column one of the transform. In this way, we proceed to calculate
the transform on two image columns per loop.

Let us next examine the problem of a YUV transform of an RGB image, with U and
V channels subsampled 4 to 1. We begin with an interleaved RGB image (with no alpha
channel). Since we will be subsampling, we loop across rows, but read two rows per loop
to allow for averaging for the U and V channels. Beginning with rows 0 and 1, we start
with six input vectors

vRGB00 = (r00, g00, b00, r10, g10, b10, ..., r50)

vRGB10 = (g50, b50, r60, g60, b60, ..., r10,0, g10,0)

vRGB20 = (b10,0, r11,0, g11,0, b11,0, ..., r15,0, g15,0, b15,0)

vRGB01 = (r01, g01, b01, r11, g11, b11, ..., r51)

vRGB11 = (g51, b51, r61, g61, b61, ..., r10,1, g10,1)

vRGB21 = (b10,1, r11,0, g11,0, b11,0, ..., r15,1, g15,1, b15,1)

The matrix L for conversion from RGB to YUV is given in shift-rational form in the
previous section, and the goal is to calculate a matrix-vector product:Y

U
V

 = L

R
G
B


To facilitate this computation, we form eight“quad expanded” RGB vectors of the form

vRGB0 = (r0, g0, b0, 0, r1, g1, b1, 0, r2, g2, b2, 0, r3, g3, b3, 0)

so that the calculation of the Y channel for four pixels can be obtained by the operations:

vY0 = msum(vRGB0, vYTransform, vCorrector)

vY0 = sra(vY0, vShiftRational)

with
vYTransform = (43, 42, 43, 0, 43, 42, 43, 0, 43, 42, 43, 0, 43, 42, 43, 0)

vCorrector = (64, 64, 64, ...)

vShiftRational = (7, 7, 7, ...)

9



yielding

vY0 = (
43r0 + 42g0 + 43b0 + 64

128
,

43r1 + 42g1 + 43b1 + 64
128

,

43r2 + 42g2 + 43b2 + 64
128

,

43r3 + 42g3 + 43b3 + 64
128

).

Note that this vector has four 32-bit elements. By calculating the Y transform vector for
the adjacent four pixels, and then packing these two vectors into a single 8-element vector
of 16-bit elements, we end up with a single vector that can be used to store eight 16-bit
pixels in one instruction. This method is used to generate a Y channel transform for pixels
in both input rows.

The U and V conversions are more involved, since we must subsample. Since the trans-
form is a linear one, we can average the RGB pixels before the transform, thus reducing the
number of required multiplies for the transform, which are relatively expensive operations.
We begin by averaging (using the Velocity Engine avg operation) quad expanded vectors
from our two input rows, for example:

vRGB00 = avg(vRGB00, vRGB01)

Then, the permute operation is employed to generate vectors of even and odd entries of
these averaged pixels:

vRGBeven = (r0, g0, b0, 0, r2, g2, b2, 0, r4, g4, b4, 0, r6, g6, b6, 0)

vRGBodd = (r1, g1, b1, 0, r3, g3, b3, 0, r5, g5, b5, 0, r7, g7, b7, 0),

and then the avg operation is applied again to yield a row of four pixels that have been
averaged (2 by 2) from the sixteen original input pixels. From here, the process for cal-
culating U and V is the same as for Y, but with a different transform vector to match
the appropriate row in the YUV transform matrix. It is fortunate that we can average in
this way 16 pixels’ worth of RGB information down to 4 pseudopixels, in only four vector
instructions to effect the UV subsampling procedure.

The Burt 5/7 wavelet is somewhat more complex than the D4 discussed above, but the
general strategy with respect to Velocity Engine implementation is essentially the same.
For the Burt 5/7 wavelet, with a data stream (x0, ..., xn−1), and transform elements t0
through tn

2
− 1 the equation for each element is

tk = x2k−2H2 + x2k−1H1 + x2kH0 + x2k+1H1 + x2k+2H2.

whereas, for elements tn/2 through tn−1, the equation for each element is

tk+n/2 = x2k−3G3 + x2k−2G2 + x2k−1G1 + x2kG0 + x2k+1G1 + x2k+2G2 + x2k+3G3

10



We take the example of the latter in analyzing the steps necessary for the Velocity Engine
implementation of the transform. In order to use the msum operation for this calculation,
and to minimize the number of multiplies required, we need to generate the following
vectors:

vMul1 = (x2k−3 + x2k+3, x2k−2 + x2k+2,

x2k−1 + x2k+5, x2k + x2k+4,

x2k+1 + x2k+7, x2k+2 + x2k+6,

x2k+3 + x2k+9, x2k+4 + x2k+8)

vMul2 = (x2k−1 + x2k+1, x2k,

x2k+1 + x2k+3, x2k+2,

x2k+3 + x2k+5, x2k+4,

x2k+5 + x2k+7, x2k+6)

Given the input vectors
vIn1 = (x2k−3, x2k−2, ..., x2k4)

vIn2 = (x2k+5, x2k+6, ..., x2k+12)

we can generate vMul1 and vMul2 with six instructions (one permute, two shifts, one
select, and two adds). Given our familiar form of coefficient vectors:

vGCoefficient1 = (G3, G2, G3, G2, G3, G2, G3, G2)

vGCoefficient2 = (G1, G0, G1, G0, G1, G0, G1, G0)

and the “rounding corrector” and “shift-rational” vectors appropriate to our coefficients,
we can then calculate the result vector vResult with the sequence of operations:

vResult = msum(vMul1, vGCoefficient1, corrector);

vResult = msum(vMul2, vGCoefficient2, vResult);

vResult = sra(vResult, vShift);

so that
vResult = (tk, tk+1, tk+2, tk+3).

Again, a similar technique is employed for the vertical transform (with four columns be-
ing calculated at a time) but with modified permutations as necessary to generate the
appropriate multiplicand vectors.

11



Finally, we consider the subsampled YUV to RGB conversion. As with the forward
RGB to YUV transform, we operate on two rows at a time to accomodate the subsampled
U and V channels. The matrix for our transform is:R

G
B

 ≈
 1 0 1

1 −1 −1
1 1 0

Y
U
V


which as we have explained is an accurate approximation in that the matrix here is a
simple yet close approximation to the true L−1. Starting with Y input vectors (the second
index is the “row”):

vY11 = (Y00, Y10, Y20, ..., Y70)

vY21 = (Y80, Y90, Y10,0, ..., Y15,0)

vY12 = (Y01, Y11, Y21, ..., Y71)

vY22 = (Y81, Y91, Y10,1, ..., Y15,1)

and U and V input vectors
vU = (U00, U10, ...U70)

vV = (V00, V10, ...V70)

We use the Velocity Engine mergeh and mergel operations to form the vectors

vUExpanded1 = (U00, U00, U10, U10, ..., U30, U30)

vUExpanded2 = (U40, U40, U50, U50, ..., U70, U70)

and similarly form vVExpanded1 and vVExpanded2 for our V data, to expand the sub-
sampled data to be the correct width. From this point, reconstructing R, G, and B from
the YUV data is simply a matter of summing the appropriate vectors according to the
transform matrix. So, for example, we have

vRed = (R00, R10, ..., R70) = vY11 + vVExpanded1.

To compensate for the vertical component of the subsampling, the expanded U and V
vectors are used to generate two rows of RGB data.

Our resulting separate R, G, and B vectors have signed 16-bit elements, which we must
convert to unsigned 8-bit elements. To do this, we must first ensure that our recovered data
fits withing the range [0, 255]. This is accomplished using the Velocity Engine min and max
operations to constrain the data. Then, Velocity Engine permute and shift instructions
are used to recombine the RGB channels back into their original interleaved 8-bit form.

12



4. Performance results

Here we present timing and accuracy data for the various modes and image dimensions.
In what follows “vector” means G4 300 MHz., while “scalar” means G3 engine at equivalent
clock. By “RMSY” we mean the root-mean-square error:

RMSY =

√√√√ 1
N

N−1∑
i=0

(Y ′i − Yi)2,

where the sum is taken over all N pixels, is for the Y channel only, with Y ′ being the
reconstructed Y after a full cycle of YUV conversion, subsampling of UV, 3 transforms, 3
inverse transforms, YUV deconversion. For full-color errors, we adopted the error measure:

RMSE =

√
1

3N

∑
((R′ −R)2 + (G′ −G)2 + (B′ −B)2).

Perhaps the most impressive data is the full-cycle timing for YUV mode with Burt 5/7
wavelet, below, in which we report a 320-by-240 image takes about 1/100 second, so the
reconstruction (inverse half) component of the operation on the entire image takes about
1/200 second. (For 640-by-480 image the inversion half-cycle takes about 1/30 second.)

13



Performance data: Velocity Engine wavelet implemen-
tations

Daubechies D4 (RGBA interleaved) wavelet timing:

640x480 320x240

vector forward 0.111 sec. 0.018 sec.
vector inverse 0.106 sec. 0.018 sec.
scalar forward 0.558 sec. 0.089 sec.
scalar inverse 0.559 sec. 0.093 sec.

Root-mean-square error (RMSE) for D4/RGBA:

640x480 320x240

abe 0.758 0.773
fruit 1.010 1.060
rainbow 0.239 0.338
mallorca 0.881 1.030

YUV mode with Burt 5/7 wavelet:

640x480 320x240

full forward-inverse cycle 0.057 sec. 0.009 sec.

RMSE for YUV mode (UV subsampled):

640x480 320x240
Abe:
RMSY 0.571 0.573
RMSE 1.450 3.370

Fruit:
RMSY 0.546 0.545
RMSE 3.040 4.340

Rainbow:
RMSY 0.533 0.513
RMSE 1.300 1.510

Mallorca:
RMSY 0.564 0.563
RMSE 2.420 3.800

14



Acknowledgments

The authors are indebted to G. Miranker, J. Lu, H-J Wu, K. Chu, and A. Sazegari
for insight and support relevant to this research.

15


