
   

DTSCPlus LIBRARY USE   
Kent Sandvik/DTS

INTRODUCTION
This kit contains a set of utility classes that could be used with any C++ related projects (MacApp, 
Bedrock, private libraries).  Feel free to copy these, modify them, rewrite them, tune them, reimplement 
them, or do anything interesting with the code.

The core idea was that programmers want to tweak classes, and that’s fine. There’s no big framework, just 
loose classes that could be used wherever. More like components than classes tied to a huge architecture. 
This is the reason I created those collection classes as well, to be independent of any framework.

STATE OF THE CODE
Well, it’s sort of alpha-beta, many of the classes have been tested inside-out, however the classes have not 
been fully tested with various projects, so be careful.

HOW TO USE THESE CLASSES
Look at the test source files, eg. UserTerminationTest.cp, for insight into how to use the classes.

PERFORMANCE ISSUES
These classes were originally designed for Shared Library Manager use. This is the reason all member 
functions are virtual. It is also easier to make something for SLM, and if something is overhead, feel free 
to tweak it.

You might want to change any of the light-weight member functions into inline code, copy the code from 
the .cp file into the .h file.

SYNTACTICAL ISSUES
The code conforms to MPW C++ coding (Miss Manners) standards. It is formatted using CDent 
(available on the developer CD).

Other interesting issues, why the use of goto:s, man? Well, the new style of class design is to have a 
defined entry and exit point -- for the sake of later debugging. So 



sometimes it makes sense to jump to a common exit point. Maybe goto:s will have a come-back?

The iterator should all look the same, and behave the same way. That’s an important aspect when 
designing classes. All destructors are virtual. If you won’t use SLM, and you want to avoid vtables, get rid 
of the virtual statements.

DEBUGGING
The classes use assertion macros quite a lot in order to catch sudden toolbox bugs, you might revise the 
way this is handled. In general each member function should return a Boolean if the execution went OK 
or not. In future exception handling will be perfect for this situation.

WHAT’s THAT MINI-FRAMEWORK?
It’s an embryo to make a small simple C++ shell for quick prototyping.  This shell might evolve in future 
to contain full AppleScripting support.

ANY OTHER QUESTIONS
Well, the question is the answer. Long term plans might be to wire together such SLM  C++ components 
using AppleScripting as the glue.

Kent Sandvik


