
ASSERT USE
PAGE 1

Assert Use

INTRODUCTION
The core idea behind using asserts is to specify a condition, and trigger an event based on the case where
the condition is false. In other words we assume that everything is OK, but if this is not the case, we want
to signal the problem.

This simple concept is very powerful concerning debugging and testing. The more asserts we place into
our code, the more sure we are about states, and what is going on inside the application.

The core problem with asserts is usually either laziness to implement these, or the worry that the
application will slow down too much due to assert functions1, or then there’s no coherent way of defining
asserts.

Now, ANSI C libraries has a function called assert() that will take a statement and error. However
we want to have a much better control of what is happening when an assert is triggered. For instance, we
would like to drop to a high level or a low level debugger, log it into a file, maybe present a power-user
Alert with low level information that could be sent back to the developer during an alpha/beta test, or
maybe even forward the information to another process or machine using Apple Events.

ASSERT Macros
A set of assert macros in the DTSC++Library.h is addressing this need. The use of these macros are very
straight forward:

fError = ::AESend(&fAE, &fReply, fSendMode, fPriority, fTimeout,
nil, nil);
ASSERT(fError == noErr, ("\pProblems with AESend = %d");

or
fError = ::AESend(&fAE, &fReply, fSendMode, fPriority, fTimeout,
nil, nil);
VASSERT(fError == noErr, ("Problems with AESend = %d", fError));

1This was one of the major reasons the early Eiffel compilers got a bad reputation, because asserts were
turned on by default for the final builds :-)

ASSERT USE
PAGE 2
The ASSERT takes two arguments, a statement that should evaluate to true, if false it will print out a
message (Str255) defined in the second parameter.

VASSERT has also a condition in the first parameter, and accepts printf style variable arguments in the
second parameter. Note that we are using C style, or actually printf style definitions instead of
Str255s2 . Note also that we need to place this statement inside parenthesis because VASSERT will
expand to a macro, and unless we clearly mark that this whole block is one single part, we will end up in
trouble.

Labels
We have the following labels defined inside the header file:

// GLOBAL DEFINITIONS

// TESTING, used for flagging that we use test code inside the classes and
frameworks
// TESTLEVEL0 - user friendly alerts as part of the application
// TESTLEVEL1 - minor test level (detailed error message in alert //

 box)
// TESTLEVEL2 - semi-major test level (high level debuggers)
// TESTLEVEL3 - major test level (low level debuggers)
// TESTLOG1 - trigger a file log of information
// TESTLOG2 - trigger a file log of information from a low level //

 debugger

#define TESTLEVEL3

The core idea is that a developer will specify how asserts will be printed. If none of these labels are
defined, then both macros will expand to ((void 0), in other words no code.

TESTLEVEL0 could be defined as a user friendly alert that either terminates the program with a friendly
message, or otherwise does something that is part of the friendly look and feel of a Macintosh.

TESTLEVEL1 will trigger an alert box with the message stated in the ASSERT part. This level could be
used to create alpha/beta level applications that could be sent to end user testers, and they could dutifully
report the messages back to the developer.

TESTLEVEL2 will trigger a break into a high level debugger (SADE, SourceBug). In other words we are
using SysBreakStr. Note that the Think debugger hates this trap (crashes), as well as the machine
usually crashes if not high level debugger is running., so be careful. In the case of Think, use:

2We would have used C strings in ASSERT as well, but Think C does not have debugstr implemented,
sigh…

ASSERT USE
PAGE 3
TESTLEVEL3 will trigger a break into a low level debugger, we are using DebugStr. In the case of
ASSERT we will drop directly into the next executable line. In the case of VASSERT we are not that
lucky, because due to va_arg use for variable argument parsing VASSERT is calling various libraries, and
we end up further down the chain of functions.

TESTLOG1 will define that we will print an entry into a file placed on the top level of the boot volume,
with a time/date stamp.

TESTLOG2 will additionally do a low level debugger dump of the current register use, calling chain of
functions and the currently executed instructions.

Other Flags
The FILEINFO flag defines if we want to add file/line information to the message. This information is
taken from the __FILE__ and __LINE__ ANSI definitions. By default this flag is enabled.

Source Code
The macros are defined in the DTSC++Library.h file.

Future Enhancements
We are open for suggestions, one direction is to create a feature flagged with TESTAELOG that will send
out Apple Events with the string attached to. This would make it possible to log the information into
another process residing either inside the same Mac, or over the network to another system.

