



April 30, 1999
Technical Publications
© 1999 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Adding Multitasking Capability to
Applications Using
Multiprocessing Services

For Multiprocessing Services 2.0

4/30/99



 Apple Computer, Inc.



Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 7

Chapter 1 Introduction 9

Chapter 2 About Multitasking on the Mac OS 11

Multitasking Basics 13
Multitasking and Multiprocessing 14
Tasks and Address Spaces 15
Task Scheduling 16
Shared Resources and Task Synchronization 18

Semaphores 19
Message Queues 19
Event Groups 20
Critical Regions 20

Tasking Architectures 21
Multiple Independent Tasks 22
Parallel Tasks With Parallel I/O Buffers 22
Parallel Tasks With a Single Set of I/O Buffers 23
Sequential Tasks 24

Chapter 3 Using Multiprocessing Services 27

Multiprocessing Services in Mac OS 8 and Mac OS X 30
Criteria for Creating Tasks 30
Checking for the Availability of Multiprocessing Services 31
Determining the Number of Processors 32
Creating Tasks 32
Terminating Tasks 38
Synchronizing and Notifying Tasks 39

Handling Periodic Actions 42
3
4/30/99  Apple Computer, Inc.

Notifying Tasks at Interrupt Time 44
Using Critical Regions 44

Allocating Memory in Tasks 45
Using Task-Specific Storage 45
Using Timers 46
Making Remote Procedure Calls 47
Handling Exceptions and Debugging 48

Chapter 4 Multiprocessing Services Reference 51

Functions 55
Determining Processor Availability 56
Creating and Scheduling Tasks 57
Creating and Handling Message Queues 64
Creating and Handling Semaphores 70
Handling Event Groups 74
Handling Critical Regions 78
Timer Services Functions 81
Time Utility Functions 87
Accessing Per-Task Storage Variables 90
Memory Allocation Functions 93
Exception Handling Functions 98
Debugger Support Functions 103
Remote Calling Function 105

Application-Defined Function 107
Data Types 108
Constants 115

Timer Duration Constants 116
Timer Option Masks 116
Memory Allocation Alignment Constants 117
Memory Allocation Option Constants 119
Task State Constants 120
Task Exception Disposal Constants 121
Remote Call Context Option Constants 122

Result Codes 122
4
4/30/99  Apple Computer, Inc.

Appendix A Calculating the Intertask Signaling Time 125

Appendix B Changes From Previous Versions of Multiprocessing
Services 133

Appendix C Document Version History 137

Glossary 141

Index 143
5
4/30/99  Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 2 About Multitasking on the Mac OS 11

Figure 2-1 Tasks within processes 16
Figure 2-2 The Mac OS task and other preemptive tasks 17
Figure 2-3 Parallel tasks with parallel I/O buffers 23
Figure 2-4 Parallel tasks with a single set of I/O buffers 24
Figure 2-5 Sequential tasks 26

Chapter 3 Using Multiprocessing Services 27

Listing 3-1 Creating tasks 33
Listing 3-2 A sample task 36
Listing 3-3 Terminating tasks 38
Listing 3-4 Assigning work to tasks 40
Listing 3-5 Using a semaphore to perform periodic actions 42
Listing 3-6 Performing actions periodically and on demand 43

Appendix A Calculating the Intertask Signaling Time 125

Listing A-1 Calculating the intertask signaling time 125

Appendix B Changes From Previous Versions of Multiprocessing Services 133

Table B-1 Older functions supported in version 2.0 133
Table B-2 New functions introduced with version 2.0 134
Table B-3 Unofficial functions still supported in version 2.0 136
Table B-4 Debugging functions unsupported in version 2.0 136

Appendix C Document Version History 137

Table C-1 Multiprocessing Services documentation revision history 137
7
4/30/99  Apple Computer, Inc.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction 1
Multiprocessing Services is a technology that allows your application to
create tasks that run independently on one or more microprocessors. For
example, you can have your application perform graphical calculations while
writing data to a hard drive. Unlike the cooperative model (such as used by the
Thread Manager or the Mac OS Process Manager), Multiprocessing Services
automatically divides processor time among available tasks so no particular
task can “hog” the system. On computers with multiple microprocessors, you
can actually perform multiple tasks simultaneously. This feature allows you to
divide up time-intensive calculations among several microprocessors.

This document is a complete guide to Multiprocessing Services 2.0. This
technology is available with Mac OS 8.6 and later, although some functions may
work with earlier system software versions.

You should read this document if you want to add multitasking capability to
Mac OS applications. This document assumes you are familiar with
programming Macintosh computers. For more information about how the
Mac OS handles applications in memory, see the documents Inside Macintosh:
Processes and Mac OS Runtime Architectures.

This document covers Multiprocessing Services in the following chapters:

■ “About Multitasking on the Mac OS” (page 13) describes the basics of
multitasking and multiprocessing, as well as information about how
Multiprocessing Services implements these capabilities on the Mac OS.

■ “Using Multiprocessing Services” (page 29) contains programming examples
and other detailed information about adding Multiprocessing Services to
your application.

■ “Multiprocessing Services Reference” (page 55) contains a complete
programming reference, documenting the functions, data types, and
constants available with Multiprocessing Services.
9
4/30/99  Apple Computer, Inc.

C H A P T E R 1

Introduction

■ Appendix A, “Calculating the Intertask Signaling Time,” contains sample
code you can use to determine the amount of time it takes to notify a task.

■ Appendix B, “Changes From Previous Versions of Multiprocessing
Services,”describes changes and additions to the Multiprocessing Services
API between version 1.4 and 2.0.

■ Appendix C, “Document Version History,” describes changes to this
document.

For additional information about Multiprocessing Services, you should check
the Apple Developer Web site:

<http://www.apple.com/developer/>
10
4/30/99  Apple Computer, Inc.

C H A P T E R 2

Contents

4/30/99



 Apple Computer, Inc.

Contents

Figure 2-0
Listing 2-0
Table 2-0
2 About Multitasking on the
Mac OS
Multitasking Basics 13
Multitasking and Multiprocessing 14
Tasks and Address Spaces 15
Task Scheduling 16
Shared Resources and Task Synchronization 18

Semaphores 19
Message Queues 19
Event Groups 20
Critical Regions 20

Tasking Architectures 21
Multiple Independent Tasks 22
Parallel Tasks With Parallel I/O Buffers 22
Parallel Tasks With a Single Set of I/O Buffers 23
Sequential Tasks 24
11

C H A P T E R 2

About Multitasking on the Mac OS 2

This chapter describes the basic concepts underlying multitasking and how
Multiprocessing Services uses them on Macintosh computers.

You should read this chapter if you are not familiar with multitasking or
multiprocessing concepts. Note that this chapter covers mostly concepts rather
than implementation or programming details. For information about actually
using the Multiprocessing Services API in your application, see “Using
Multiprocessing Services” (page 29)

The topics covered in this chapter include the following:

■ “Multitasking Basics” (page 13)

■ “Multitasking and Multiprocessing” (page 14)

■ “Tasks and Address Spaces” (page 15)

■ “Task Scheduling” (page 16)

■ “Shared Resources and Task Synchronization” (page 18)

■ “Tasking Architectures” (page 21)

Multitasking Basics 2

Multitasking is essentially the ability to do many things concurrently. For
example, you may be working on a project, eating lunch, and talking to a
colleague at the same time. Not everything may be happening simultaneously,
but you are jumping back and forth, devoting your attention to each task as
necessary.

In programming, a task is simply an independent execution path. On a
computer, the system software can handle multiple tasks, which may be
applications or even smaller units of execution. For example, the system may
execute multiple applications, and each application may have independently
executing tasks within it. Each such task has its own stack and register set.

Multitasking may be either cooperative or preemptive. Cooperative
multitasking requires that each task voluntarily give up control so that other
tasks can execute. An example of cooperative multitasking is an unsupervised
group of children wanting to look at a book. Each child can theoretically get a
chance to look at the book. However, if a child is greedy, he or she may spend
Multitasking Basics 13
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS

an inordinate amount of time looking at the book or refuse to give it up
altogether. In such cases, the other children are deprived.

Preemptive multitasking allows an external authority to delegate execution
time to the available tasks. Preemptive multitasking would be the case where a
teacher (or other supervisor) was in charge of letting the children look at the
book. He or she would assign the book to each child in turn, making sure that
each one got a chance to look at it. The teacher could vary the amount of time
each child got to look at the book depending on various circumstances (for
example, some children may read more slowly and therefore need more time).

The Mac OS 8 operating system implements cooperative multitasking between
applications. The Process Manager can keep track of the actions of several
applications. However, each application must voluntarily yield its processor
time in order for another application to gain it. An application does so by
calling WaitNextEvent, which cedes control of the processor until an event
occurs that requires the application’s attention.

Multiprocessing Services allows you to create preemptive tasks within an
application (or process). For example, you can create tasks within an application
to process information in the background (such as manipulating an image or
retrieving data over the network) while still allowing the user to interact with
the application using the user interface.

Note
The definition of task in this document is analogous to the
use of the term thread in some other operating systems such
as UNIX®. In older documentation, Apple has sometimes
referred to separate units of execution as threads. For
example, the Thread Manager allows you to create
cooperatively scheduled threads within a task. You should
not confuse these threads with the preemptively scheduled
tasks created by Multiprocessing Services. ◆

Multitasking and Multiprocessing 2

Multitasking and multiprocessing are related concepts, but it is important to
understand the distinctions between then. Multitasking is the ability to handle
several different tasks at once. Multiprocessing is the ability of a computer to
use more than one processor simultaneously. Typically, if multiple processors
14 Multitasking and Multiprocessing

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS

are available in a multitasking environment, then tasks can be divided among
the processors. In such cases, tasks can run simultaneously. For example, if you
have a large image that you need to manipulate with a filter, you can break up
the image into sections, and then assign a task to process each section. If the
user’s computer contains multiple processors, several tasks can be executed
simultaneously, reducing the overall execution time. If only one processor
exists, then the tasks are preempted in turn to give each access to the processor.

Note
Because multitasking allows an operating system to attend
to several different operations at the same time, these
operations may appear to occur simultaneously on even a
single-processor system, due to the speed of the processor.
◆

Multiple processor support is transparent in Multiprocessing Services. If
multiple processors exist, then Multiprocessing Services divides the tasks
among all the available processors to maximize efficiency (a technique often
called symmetric multiprocessing). If only one processor exists, then
Multiprocessing Services simply schedules the available tasks with the
processor to make sure that each task receives attention.

Tasks and Address Spaces 2

On the Mac OS, all applications are assigned a process or application context at
runtime. The process contains all the resources required by the application, such
as allocated memory, stack space, plug-ins, nonglobal data, and so on. Tasks
created with Multiprocessing Services are automatically associated with the
creating application’s process, as shown in Figure 2-1.
Tasks and Address Spaces 15
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS

Figure 2-1 Tasks within processes

All resources within a process occupy the same address space, so tasks created
by the same application are free to share memory. For example, if you want to
divide an image filtering operation among multiple identical tasks, you can
allocate space for the entire image in memory, and then assign each task the
address and length of the portion it should process.

IMPORTANT

Although all processes share the same address space in
Mac OS 8.6, you should not assume that this will remain
the case; your application or task should not attempt to
access data or code residing in another process. ▲

Task Scheduling 2

Multitasking environments require one or more task schedulers, which control
how processor time (for one or more processors) is divided among available
tasks. Each task you create is added to a task queue. The task scheduler then
assigns processor time to each task in turn.

As seen by the Mac OS 8.6 task scheduler, all cooperatively multitasked
programs (that is, all the applications that are scheduled by the Process
Manager) occupy a single preemptive task called the Mac OS task, as shown in
Figure 2-2.

Task

Task

Plug-in

Application 1

Process 1

Task

Application 2

Process 2
16 Task Scheduling

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS

Figure 2-2 The Mac OS task and other preemptive tasks

For example, if your cooperatively scheduled application creates a task, the task
is preemptively scheduled. The application task (containing the main event
loop) is not preemptively scheduled, but it resides within the Mac OS task,
which is preemptively scheduled. Within the Mac OS task, the application must
cooperatively share processor time with any other applications that are
currently running.

A task executes until it completes, is blocked, or is preempted. A task is
blocked when it is waiting for some event or data. For example, a task may
need output from a task that has not yet completed, or it may need certain
resources that are currently in use by another task.

A blocked task is removed from the task queue until it becomes eligible for
execution. The task becomes eligible if either the event that it was waiting for
occurs or the waiting period allowed for the event expires.

If the task does not complete or block within a certain amount of time
(determined by the scheduler), the task scheduler preempts the task, placing it

Application 1 Application 2

Mac OS task

void main (void)
 {
 ...
 WaitNextEvent();
 ...
 }

void main (void)
 {
 ...
 WaitNextEvent();
 ...
 }

Multiprocessing
Services
task 1

Preemptive
task

scheduler

Multiprocessing
Services
task 2
Task Scheduling 17
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS

at the end of the task queue, and gives processor time to the next task in the
queue.

Note that if the main application task is blocked while waiting for a
Multiprocessing Services event, the blocking application does not get back to its
event loop until the event finally occurs. This delay may be unacceptable for
long-running tasks. Therefore, in general your application should poll for
Multiprocessing Services events from its event loop, rather than block while
waiting for them. The task notification mechanisms described in “Shared
Resources and Task Synchronization” (page 18) are ideal for this purpose.

Note
In the future, application tasks will run as individual
preeemptive tasks, rather than within the Mac OS task.
However, calls to nonreentrant Mac OS system software
functions will cause the task to be blocked for the duration
of the call, in a manner similar to a remote procedure call.
See “Making Remote Procedure Calls” (page 47) for more
information. ◆

Shared Resources and Task Synchronization 2

Although each created task may execute separately, it may need to share
information or otherwise communicate with other tasks. For example, Task 1
may write information to memory that will be read by Task 2. In order for such
operations to occur successfully, some synchronization method must exist to
make sure that Task 2 does not attempt to read the memory until Task 1 has
completed writing the data and until Task 2 knows that valid data actually
exists in memory. The latter scenario can be an issue when using multiple
processors, because the PowerPC™ architecture allows for writes to memory to
be deferred. In addition, if multiple tasks are waiting for another task to
complete, synchronization is necessary to ensure that only one task can respond
at a time.

Multitasking environments offer several ways for tasks to coordinate and
synchronize with each other. The sections that follow describe three
notification mechanisms (or signaling mechanisms) that allow tasks to pass
information between them, and one task sharing method.
18 Shared Resources and Task Synchronization

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS

Note that the time required to perform the work in a given request should be
much more than the amount of time it takes to communicate the request and its
results. Otherwise, delegating work to tasks may actually reduce overall
performance. Typically the work performed should be greater than the intertask
signalling time (20-50 microseconds).

Note that you should avoid creating your own synchronization or sharing
methods, because they may work on some Mac OS implementations but not on
others.

Semaphores 2

A semaphore is a single variable that can be incremented or decremented
between zero and some specified maximum value. The value of the semaphore
can communicate state information. A mail box flag is an example of a
semaphore. You raise the flag to indicate that a letter is waiting in the mailbox.
When the mailman picks up the letter, he lowers the flag again. You can use
semaphores to keep track of how many occurrences of a particular thing are
available for use.

Binary semaphores, which have a maximum value of one, are especially
efficient mechanisms for indicating to some other task that something is ready.
When a task or application has finished preparing data at some previously
agreed to location, it raises the value of a binary semaphore that the target task
waits on. The target task lowers the value of the semaphore, performs any
necessary processing, and raises the value of a different binary semaphore to
indicate that it is through with the data.

Semaphores are quicker and less memory intensive than other notification
mechanisms, but due to their size they can convey only limited information.

Message Queues 2

A message queue is a collection of data (messages) that must be processed by
tasks in a first-in, first-out order. Several tasks can wait on a single queue, but
only one will obtain any particular message. Messages are useful for telling a
task what work to do and where to look for information relevant to the request
being made. They are also useful for indicating that a given request has been
processed and, if necessary, what the results are.

Typically a task has two message queues, one for input and one for output. You
can think of message queues as In boxes and Out boxes. For example, your In
Shared Resources and Task Synchronization 19
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS

box at work may contain a number of papers (messages) indicating work to do.
After completing a job, you would place another message in the Out box. Note
that if you have more than one person assigned to an In box/Out box pair, each
person can work independently, allowing data to be processed in parallel.

In Multiprocessing Services, a message is 96-bits of data that can convey any
desired information.

Message queues incur more overhead than the other two notification
mechanisms. If you must synchronize frequently, you should try to use
semaphores instead of message queues whenever possible.

Event Groups 2

An event group is essentially a group of binary semaphores. You can use event
groups to indicate a number of simple events. For example, a task running on a
server may need to be aware of multiple message queues. Instead of trying to
poll each one in turn, the server task can wait on an event group. Whenever a
message is posted on a queue, the poster can also set the bit corresponding to
that queue in the event group. Doing so notifies the task, and it then knows
which queue to access to extract the message. In Multiprocessing Services, an
event group consists of thirty-two 1-bit flags, each of which may be set
independently. When a task receives an event group, it receives all 32-bits at
once (that is, it cannot poll individual bits), and all the bits in the event group
are subsequently cleared.

Critical Regions 2

In addition to notification mechanisms, you can also specify critical regions in
a multitasking environment. A critical region is a section of code that can be
accessed by only one task at a time. For example, say part of a task’s job is to
search a data tree and modify it. If multiple tasks were allowed to search and
try to modify the tree at the same time, the tree would quickly become
corrupted. An easy way to avoid the problem is to form a critical region around
the tree searching and modification code. When a task tries to enter the critical
region it can do so only if no other task is currently in it, thus preserving the
integrity of the tree.

Critical regions differ from semaphores in that critical regions can handle
recursive entries and code that has multiple entry points. For example, if three
functions func1, func2, and func3 access some common resource (such as the
20 Shared Resources and Task Synchronization

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS
tree described above), but never call each other, then you can use a semaphore
to synchronize access. However, suppose func3 calls func1 internally. In that
case, func3 would obtain the semaphore, but when it calls func1, it will
deadlock. Synchronizing using a critical region instead allows the same task to
enter multiple times, so func1 can enter the region again when called from
func3.

Because critical regions introduce forced linearity into task execution, improper
use can create bottlenecks that reduce performance. For example, if the tree
search described above constituted the bulk of a task’s work, then the tasks
would spend most of their time just trying to get permission to enter the critical
region, at great cost to overall performance. A better approach in this case might
be to use different critical regions to protect subtrees. You can then have one
task search one part of the tree while others were simultaneously working on
other parts of the tree.

Tasking Architectures 2

Determining how to divide work into tasks depends greatly on the type of
work you need to do and how the individual tasks rely on each other.

For a computer running multiple processors, you should optimize your
multitasking application to keep them as busy as possible. You can do so by
creating a number of tasks and letting the task scheduler assign them to
available processors, or you can query for the number of available processors
and then create enough tasks to keep them all busy.

A simple method is to determine the number of processors available and create
as many tasks as there are processors. The application can then split the work
into that many pieces and have each processor work on a piece. The application
can then poll the tasks from its event loop until all the work is completed.
Tasking Architectures 21
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS
IMPORTANT

Even if only one processor exists, you should create
preemptive tasks to handle faceless computations (filtering,
spellchecking, background updating, and so on). Doing so
gives the task scheduler more flexibility in assigning
processor time, and it will also scale transparently if
multiple processors are available. The application should
do all the work only if Multiprocessing Services is not
available. ▲

The sections that follow describe several common tasking architectures you can
use to divide work among multiple processors. You might want to combine
these approaches to solve specific problems or come up with your own if none
described here are appropriate.

Multiple Independent Tasks 2

In many cases, you can break down applications into different sections that do
not necessarily depend on each other but would ideally run concurrently. For
example, your application may have one code section to render images on the
screen, another to do graphical computations in the background, and a third to
download data from a server. Each such section is a natural candidate for
preemptive tasking. Even if only one processor is available, it is generally
advantageous to have such independent sections run as preemptive tasks. The
application can notify the tasks (using any of the three notification mechanisms)
and then poll for results within its event loop.

Parallel Tasks With Parallel I/O Buffers 2

If you can divide the computational work of your application into several
similar portions, each of which takes about the same amount of time to
complete, you can create as many tasks as the number of processors and divide
the work evenly among the tasks (“divide and conquer”). An example would be
a filtering task on a large image. You could divide the image into as many equal
sections as there are processors and have each do a fraction of the total work.

This method for using Multiprocessing Services involves creating two buffers
per task: one for receiving work requests and one for posting results. You can
create these buffers using either message queues or semaphores.
22 Tasking Architectures

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS
As shown in Figure 2-3, the application splits the data evenly among the tasks
and posts a work request, which defines the work a task is expected to perform,
to each task’s input buffer. Each task asks for a work request from its input
buffer, and blocks if none is available. When a request arrives, the task performs
the required work and then posts a message to its output buffer indicating that
it has finished and providing the application with the results.

Figure 2-3 Parallel tasks with parallel I/O buffers

Parallel Tasks With a Single Set of I/O Buffers 2

If you can divide the computational work of your application into portions that
can be performed by identical tasks but you can’t predict how long each
computation will take, you can use a single input buffer for all your tasks. The
application places each work request in the input buffer, and each free task asks
for a work request. When a task finishes processing the request, it posts the
result to a single output buffer shared by all the tasks and asks for a new
request from the input buffer. This method is analogous to handling a queue of
customers waiting in a bank line. There is no way to predict which task will
process which request, and there is no way to predict the order in which results
will be placed in the output buffer. For this reason, you might want to have the

Application

TasksInput buffer Output buffer
Tasking Architectures 23
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS
task include the original work request with the result so the application can
determine which result is which.

As in the “divide and conquer” architecture, the application can check events,
control data flow, and perform some of the calculations while the tasks are
running.

Figure 2-4 illustrates this “bank line” tasking architecture.

Figure 2-4 Parallel tasks with a single set of I/O buffers

Sequential Tasks 2

For some applications, you may want to create several different tasks, each of
which performs a different function. Some of these tasks might be able to
operate in parallel, in which case you can adapt the “divide and conquer”
model to perform the work. However, sometimes the output of one task is
needed as the input of another. For example a sound effects application may
need to process several different effects in sequence (reverb, limiting, flanging,
and so on). Each task can process a particular effect, and the output of one task
would feed into the input of the next. In this case, a sequential or “pipeline”
architecture is appropriate.

Note that a sequential task architecture benefits from multiple processors only if
several of the tasks can operate at the same time; that is, new data must be

Application

Tasks

Input buffer Output buffer
24 Tasking Architectures

4/30/99  Apple Computer, Inc.

C H A P T E R 2

About Multitasking on the Mac OS
entering the pipeline while other tasks are processing data further down the
line. It is harder with this architecture than with parallel task architectures to
ensure that all processors are being used at all times, so you should add parallel
tasks to individual stages of the pipeline whenever possible.

As shown in Figure 2-5, the sequential task architecture requires a single input
buffer and a single output buffer for the pipeline, and intermediate buffers
between sequential tasks.
Tasking Architectures 25
4/30/99  Apple Computer, Inc.

 C H A P T E R 2

About Multitasking on the Mac OS
Figure 2-5 Sequential tasks

Application

Task 1

Input buffer

Task 2

I/O buffer

I/O buffer

Task n

Output buffer
26 Tasking Architectures

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Contents

4/30/99  Apple Computer, Inc.

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Using Multiprocessing Services
Multiprocessing Services in Mac OS 8 and Mac OS X 30
Criteria for Creating Tasks 30
Checking for the Availability of Multiprocessing Services 31
Determining the Number of Processors 32
Creating Tasks 32
Terminating Tasks 38
Synchronizing and Notifying Tasks 39

Handling Periodic Actions 42
Notifying Tasks at Interrupt Time 44
Using Critical Regions 44

Allocating Memory in Tasks 45
Using Task-Specific Storage 45
Using Timers 46
Making Remote Procedure Calls 47
Handling Exceptions and Debugging 48
27

C H A P T E R 3
Using Multiprocessing Services 3

This chapter describes how to incorporate Multiprocessing Services into your
Mac OS application. You should read this chapter if you are interested in
adding preemptive tasks to your application.

The topics covered in this chapter include:

■ “Multiprocessing Services in Mac OS 8 and Mac OS X” (page 30)

■ “Criteria for Creating Tasks” (page 30)

■ “Checking for the Availability of Multiprocessing Services” (page 31)

■ “Determining the Number of Processors” (page 32)

■ “Creating Tasks” (page 32)

■ “Terminating Tasks” (page 38)

■ “Synchronizing and Notifying Tasks” (page 39)

■ “Allocating Memory in Tasks” (page 45)

■ “Using Timers” (page 46)

■ “Making Remote Procedure Calls” (page 47)

■ “Handling Exceptions and Debugging” (page 48)

Note
This document describes version 2.0 of Multiprocessing
Services. For a list of functions changed or added between
versions 1.4 and 2.0, see Appendix B. Applications built
using older versions of Multiprocessing Services can
execute without modification under version 2.0. ◆

IMPORTANT

Preemptive tasks cannot execute 68K code. If you must call
68K code in a task, you must do so through a remote
procedure call as described in “Making Remote Procedure
Calls” (page 47). ▲
29
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
Multiprocessing Services in Mac OS 8 and Mac OS X 3

Multiprocessing Services 2.0 runs on system software Mac OS 8.6 and later. All
PowerPC Macintosh computers are supported except for 6100/7100/8100 and
5200/6200 series computers.

Note
Multiprocessing Services 1.0 functions can run on System
7.5.2 and later if the Multiprocessing Services 1.x shared
library is available. Pre-2.0 versions of the library were
installed as part of system software for Mac OS 8 through
Mac OS 8.5 but must be explicitly installed for earlier
releases. The 1.x versions of the Multiprocessing Services
library can run on all PowerPC Macintosh computers. ◆

Unlike earlier versions of Multiprocessing Services, you can create and execute
preemptive tasks with virtual memory turned on.

Note that under Mac OS 8.6, Multiprocessing Services allows your application
to create preemptive tasks within your application’s process (or execution
context). However, the individual applications are still cooperatively scheduled
by the Process Manager. In Mac OS X, both applications and tasks created by
applications will be preemptively scheduled. Multiprocessing Services is
Carbon-compliant, so applications built following the Carbon specification can
run transparently on both Mac OS 8 and Mac OS X systems.

Criteria for Creating Tasks 3

Although you can in theory designate almost any type of code as a task, in
practice you should use the following guidelines to make best use of the
available processors and to avoid unnecessary bottlenecks.

■ Tasks should generally perform faceless, calculation-intensive processing.

■ The work performed by a task should be substantially more than the time
required to process the request and result notifications. If it takes much
longer to notify a task and retrieve results than to execute the task itself, an
30 Multiprocessing Services in Mac OS 8 and Mac OS X

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
application’s performance will be dramatically worse with multiprocessing.
Assuming a typical intertask signaling time is 20-50 microseconds, your tasks
should take at least 200-500 microseconds to execute. If you want to explicitly
calculate the intertask signaling time, you can use the sample code provided
in Appendix A.

■ If your task needs to allocate memory, you must allocate the memory prior to
signaling the task, or use the function MPAllocateAligned (page 94).

■ Tasks should not call 68K code. The 68K emulator runs only cooperatively
within the Mac OS task, and not within any preemptive task. If you must call
68K code, you can do so using a remote procedure call. See “Making Remote
Procedure Calls” (page 47) for more information.

■ Tasks should not call Mac OS system software functions except through
remote procedure calls. See “Making Remote Procedure Calls” (page 47) for
more information.

■ Tasks should not access low-memory global data. A task may be executing at
any time, including when applications that did not create them are running.

■ Tasks should not call into unknown code. If you allow third parties to specify
a callback function, you should never call that function from a task, since you
cannot control what the callback will do. Calling back into nonreentrant code
could easily corrupt data or cause a system crash.

■ Avoid global variables. The main cause of nonreentrancy is the manipulation
of global data. Tasks that manipulate global variables, global states, or
buffers pointed to by global variables must use synchronization techniques
to prevent other tasks from attempting to do so at the same time. Read-only
global data are allowed.

■ Do not call any Multiprocessing Services functions at interrupt time unless
you are signaling a notification mechanism. See “Notifying Tasks at Interrupt
Time” (page 44) for more information.

Checking for the Availability of Multiprocessing Services 3

You should always determine the availability of Multiprocessing Services
before attempting to call any of its functions. If you are programming in C, you
should do so by calling the Boolean macro MPLibraryIsLoaded. A return value of
true indicates that the Multiprocessing Services library is present and available
Checking for the Availability of Multiprocessing Services 31
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
for use. Listing 3-1 (page 33) in “Creating Tasks” shows an example of using the
MPLibraryIsLoaded macro.

Note
For historical reasons, the Multiprocessing Services shared
library may be prepared by the Code Fragment Manager
and yet still be unusable; checking for resolved imported
symbols is not enough to ensure that the functions are
available. Therefore, you must always check for the
presence of Multiprocessing Services by using the
MPLibraryIsLoaded macro. ◆

You probably want your application to run even if Multiprocessing Services is
not available, so you should specify a weak link to the Multiprocessing Services
shared library. Doing so allows your application to run even if the shared
library is not present.

Determining the Number of Processors 3

You may want to determine the number of processors available on the host
computer before creating any tasks. Typically, you would create one task per
processor; even if only one processor is present, it is generally more efficient to
assign faceless work to a task and have the cooperatively scheduled main
application handle only user interaction.

Multiprocessing Services uses two functions to determine the number of
processors. The function MPProcessors (page 56) returns the number of physical
processors available on the host computer. The function MPProcessorsScheduled
(page 57) returns the number of active processors available (that is, the number
that are currently available to execute tasks). The number of active processors
may vary over time (due to changing priorities, power consumption issues, and
so on).

Creating Tasks 3

After determining how many processors are available, you can go ahead and
create tasks for your application.
32 Determining the Number of Processors

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
Each task must be a function that takes one 32-bit parameter and returns a
32-bit result of type OSStatus when it finishes. The 32-bit input parameter can be
any information that the task needs to perform its function. Some examples of
input are

■ a message queue ID that indicates which queue the task should go to for
information

■ a pointer to a structure containing data to process

■ a pointer to a C++ object

■ a pointer to a task-specific block of memory through which the application
can communicate information for the life of the task

You create a task by calling the function MPCreateTask (page 58). The code in
Listing 3-1 shows how you can create a number of identical tasks. Identical
tasks can be useful when you want to divide up a large calculation (such as a
image filtering operation) among several processors to improve performance.

Listing 3-1 Creating tasks

#define kMPStackSize 0 // use default stack size
#define kMPTaskOptions 0 // use no options

typedef struct {
long firstThing;
long totalThings;
} sWorkParams, *sWorkParamsPtr;

typedef struct {
MPTaskID taskID;
MPQueueID requestQueue;
MPQueueID resultQueue;
sWorkParams params;
} sTaskData, *sTaskDataPtr;

sTaskDataPtr myTaskData;
UInt32 numProcessors;
MPQueueID notificationQueue;

void CreateMPTasks(void) {
Creating Tasks 33
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
OSErr theErr;
UInt32 i;

theErr = noErr;

/* Assume single processor mode */
numProcessors = 1;

/* Initialize remaining globals */
myTaskData = NULL;
notificationQueue = NULL;

/* If the library is present then create the tasks */
if(MPLibraryIsLoaded()) {

numProcessors = MPProcessorsScheduled();
myTaskData = (sTaskDataPtr)NewPtrClear

(numProcessors * sizeof(sTaskData));
theErr = MemError();
if(theErr == noErr)

theErr = MPCreateQueue(¬ificationQueue);
for(i = 0; i < numProcessors && theErr == noErr; i++) {

if(theErr == noErr)
theErr = MPCreateQueue(&myTaskData[i].requestQueue);

if(theErr == noErr)
theErr = MPCreateQueue(&myTaskData[i].resultQueue);

if(theErr == noErr)
theErr = MPCreateTask(MyTask, &myTaskData[i],

kMPStackSize, notificationQueue,
NULL, NULL, kMPTaskOptions,
&myTaskData[i].taskID);

}
}

/* If something went wrong, just go back to single processor mode */
if(theErr != noErr) {

StopMPTasks();
numProcessors = 1;
}

}

34 Creating Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
The sTaskData structure defines a number of values to be used with the task,
such as the task ID, the IDs of the message queues used with the task, and a
pointer to parameters to pass to the task. A pointer to a structure of this type is
passed in the function MPCreateTask (page 58).

The variable notificationQueueID holds the ID of the notification queue to
associate with the tasks. When a task terminates, it sends a message to this
queue. After sending a termination request, the application typically polls this
queue to determine when the task has actually terminated.

The CreateMPTasks function creates as many identical tasks as there are available
processors (as stored in numProcessors). If for some reason the tasks cannot be
created (for example, if Multiprocessing Services is not available), the variable
numProcessors is set to 1 and the application should do the work of the tasks
itself without making any Multiprocessing Services calls.

Before creating the tasks, CreateMPTasks calls the function MPCreateQueue
(page 65) to create a notification queue to be used by all the tasks. It then calls
the Memory Manager function NewPtrClear to allocate memory for all the
myTaskData structures required (in the case of this example, one per task).

Next, CreateMPTasks iterates over the number of requested tasks. For each
iteration, it does the following:

■ Makes two calls to MPCreateQueue (page 65) to create a request queue and a
result queue for each task. The IDs for these queues are stored in the task’s
myTaskData structure.

■ Fills out the myTaskData structure for that task as necessary.

■ Calls the function MPCreateTask (page 58). When calling this function, you
must specify the following values:

■ the entry point of the task and its input parameters
■ the size of the stack to associate with the task
■ the notification queue to associate with the task (by passing the ID of the

queue obtained in the function MPCreateQueue (page 65).)
Each task is assigned its own unique ID, which is passed back in the taskID
field of the myTaskData task structure.

Although not a requirement, you can assign a relative weight to each task by
calling the function MPSetTaskWeight (page 63). The task weight is a value that
indicates the amount of processor attention to give this task relative to all other
eligible tasks. If, as in this example, you create a number of identical tasks, each
would probably be given equal weight.
Creating Tasks 35
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
The sample task in Listing 3-2 calls one of two different functions depending on
the request is placed on its queue.

Listing 3-2 A sample task

#define kMyRequestOne 1
#define kMyRequestTwo 2

#define kMyResultException -1

OSStatus MyTask(void *parameter) {

OSErr theErr;
sTaskDataPtr p;
Boolean finished;
UInt32 message;

theErr = noErr;

/* Get a pointer to this task's unique data */
p = (sTaskDataPtr)parameter ;

/* Process each request handed to the task and return a result */
finished = false;
while(!finished) {

theErr = MPWaitOnQueue(p->requestQueue, (void **)&message,
NULL, NULL, kDurationForever);

if(theErr == noErr) {
/* Pick a function to call and pass in the parameters. */
/* The parameters should be set up prior to sending the */
/* message just received. Note that we could also just */
/* pass in a pointer to the desired function instead of */
/* using a selector.
*/

switch(message) {
case kMyRequestOne:

theErr = fMyTaskFunctionOne(&p->params);
break;

case kMyRequestTwo:
theErr = fMyTaskFunctionTwo(&p->params);
36 Creating Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
break;
default:

finished = true;
theErr = kMyResultException;

}
MPNotifyQueue(p->resultQueue, (void *)theErr, NULL, NULL);
}

else
finished = true;

}

/* Task is finished now */
return(theErr);
}

This task takes one parameter, a pointer to its task data structure. This structure
contains all the information that is needed for the life of the task, such as the
request and result queues created for it, and any input necessary when
processing a task request. The input parameters are passed along to the
requested function.

After some initialization, the task sets the finished flag to false and then
spends the rest of its time in a while loop processing message requests. The task
calls the function MPWaitOnQueue (page 68), which waits indefinitely until a
message appears on its request queue. In this case, the message indicates which
function the task is to call. When a message is received, MyTask checks the
request message to determine which function is desired and calls through to
that function. Upon return, it posts a message on the result queue by calling
MPNotifyQueue (page 66) and then calls MPWaitOnQueue again to wait for the next
message.

Note that if you are creating tasks on-the-fly, you may want to have your task
dispose of its task record (pointed to by p) upon completion of the task. For
more information about allocating and disposing of memory in tasks, see
“Allocating Memory in Tasks” (page 45).
Creating Tasks 37
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
Terminating Tasks 3

When you want to terminate a task, you should call the function
MPTerminateTask (page 60). Doing so deletes the task, but you are still
responsible for disposing of any memory you may have allocated for the task.
In addition, because the tasks run asynchronously, the task may not actually
terminate until sometime after the MPTerminateTask function returns. Therefore,
you should not assume that the task has terminated until you have received a
termination message from the notification queue you specified in the function
MPCreateTask (page 58). Listing 3-3 shows how you might terminate the tasks
created in Listing 3-1 (page 33).

Listing 3-3 Terminating tasks

void StopMPTasks(void)
{

UInt32 i;

if (myTaskData != NULL)
{

for (i = 0; i < numProcessors; i++)
{

if (myTaskData[i].TaskID != NULL)
{

MPTerminateTask(myTaskData[i].TaskID, noErr);
MPWaitOnQueue(notificationQueue, NULL, NULL, NULL,

kDurationForever);
}

if (myTaskData[i].fRequestQueue != NULL)
MPDeleteQueue(myTaskData[i].RequestQueue);

if (myTaskData[i].fResultQueue != NULL)
MPDeleteQueue (myTaskData[i].ResultQueue);

}

if (notificationQueue != NULL)
{

38 Terminating Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
MPDeleteQueue (notificationQueue);
notificationQueue = NULL;

}

DisposePtr((Ptr)myTaskData);
myTaskData = NULL;

}
}

The StopMPTasks function iterates through all the task data structures that were
created in CreateMPTasks and checks for those with valid task IDs. It then calls
the function MPTerminateTask (page 60) for each valid task ID.

After making the termination call, StopMPTasks then waits for a message to
appear on the notification queue indicating that the task has in fact been
terminated. It does so by waiting continuously on the notification queue until
the termination message arrives. It then clears the task ID and disposes of the
queues allocated for the task.

Note
If you call MPWaitOnQueue (page 68) from a cooperative task,
you should specify only the kDurationImmediate wait time.
You must use a while loop that continuously calls
MPWaitOnQueue (page 68) until the termination message
appears in the notification queue. Doing so also allows you
to process events that may occur between calls. For
additional information, see “Synchronizing and Notifying
Tasks” (page 39). ◆

After terminating all the existing tasks, StopMPTasks then deletes the notification
queue and disposes of the task data structures.

Synchronizing and Notifying Tasks 3

As described in “About Multitasking on the Mac OS” (page 13) tasks often need
to coordinate with the main application or with other tasks to avoid data
corruption or synchronization problems. To coordinate tasks, Multiprocessing
Services provides three notification mechanisms (semaphores, event groups,
and message queues) as well as critical regions.
Synchronizing and Notifying Tasks 39
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
Of the three notification mechanisms, message queues are the easiest to use, but
they are the slowest. Typically a task has two message queues associated with
it. It takes messages off an input queue, processes the information accordingly,
and, when done, posts a message to an output queue.

IMPORTANT

You should never use only one instance of a notification
mechanism to convey both input and output information,
because doing so can easily cause confusion. For example,
after posting a request, an application will at some point
start waiting for results. If it waits on the same mechanism
where the request was posted, the request itself may
appear to be the result. The application may then clear the
request in the mistaken belief that it was a result and no
actual work gets done. ▲

Before notifying a task, your application should make sure that everything the
task needs is in memory. That is, you should have created any necessary queues
and allocated space for any data the task may require. For each task, your
application establishes the parameters of the work that it wants the task to
perform and then it must signal the task through either a queue or a semaphore
to begin performing that work. The specific work that the task is to perform can
be completely defined within a message, or possibly within a block of memory
reserved for that task. You can also pass in a pointer to the function that the task
should call to perform the work. Doing so allows one task to perform many
different types of chores.

Listing 3-4 shows a function that divides up a large amount of data among
multiple tasks, placing requests on each task’s request queue and waiting for
the results.

Listing 3-4 Assigning work to tasks

OSErr NotifyTasks(UInt32 realFirstThing, UInt32 realTotalThings) {

UInt32 i;
OSErr theErr;
UInt32 thingsPerTask;
UInt32 message;
sWorkParams appData;
40 Synchronizing and Notifying Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
theErr = noErr;

thingsPerTask = realTotalThings / numProcessors;

/* Start each task working on a unique piece of the total data */
for(i = 0; i < numProcessors; i++) {

myTaskData[i].params.firstThing =
realFirstThing + thingsPerTask * i;

myTaskData[i].params.totalThings = thingsPerTask;
message = kMyRequestOne;
MPNotifyQueue(myTaskData[i].requestQueue, (void *)message,

NULL, NULL);
}

/* Now wait for the tasks to finish */
for(i = 0; i < numProcessors; i++)

MPWaitOnQueue(myTaskData[i].resultQueue, (void **)&message,
NULL, NULL, kDurationForever);

return(theErr);
}

For each task, it calls MPNotifyQueue (page 66) to place the pointer to the task’s
portion of the data on the task’s request queue. It then calls MPWaitOnQueue
(page 68) to wait for confirmation that the task has completed.

Note
A message queue message is passed to the queue as three
32-bit parameters. Because the message in Listing 3-4 is
only 32-bits long, the remaining two parameters are set to
NULL. ◆

If you want to use semaphores or event groups instead of message queues, you
would call the following functions to set up, notify, and wait on them, in a
manner similar to that shown in Listing 3-4:

■ MPCreateSemaphore (page 71), MPSignalSemaphore (page 72),
MPWaitOnSemaphore (page 73), and MPDeleteSemaphore (page 72) for
semaphores

■ MPCreateEvent (page 74), MPSetEvent (page 76), MPWaitForEvent (page 77),
and MPDeleteEvent (page 75) for event groups
Synchronizing and Notifying Tasks 41
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
However, if you use the simpler notification mechanisms, you have to find
another way to pass the function pointer to the task. One possibility is to assign
the pointer to a field in the task’s task data structure.

Note that the example in Listing 3-4 will wait forever (kDurationForever) for a
message to appear on its result queue. While this method is fine if called from a
preemptive task, it can cause problems if called from a cooperative task. If the
task takes a significant amount of time to execute, the calling task “hangs” for
that time, since it can’t call WaitNextEvent to give other applications processor
time. If you want to wait on a task from a cooperative task, your application
should post the message and then return to its event loop. From within the
event loop it can then poll the result queue using kDurationImmediate waits
until a message appears.

If you specify kDurationImmediate for the waiting time for either MPWaitOnQueue
(page 68), MPWaitOnSemaphore (page 73), MPWaitForEvent (page 77), or
MPEnterCriticalRegion (page 79), the function always returns immediately. If
the return value is kMPTimeoutErr, then the task generated no new results since
the last time the application checked. That is, no message was available, the
semaphore was zero, or the critical region was being executed by another
processor. If the value is noErr, a result was present and obtained by the call.

Handling Periodic Actions 3

You can use notification mechanisms to do more than simply signal tasks. For
example, Listing 3-5 shows a task that uses a semaphore to do periodic actions.

Listing 3-5 Using a semaphore to perform periodic actions

void MyTask(void) {

MPSemaphoreID delay;

MPCreateSemaphore(1, 0, &delay); // a binary semaphore
while(true)

{
DoIt(); // do something interesting
(void) MPWaitOnSemaphore(delay, 10 * kDurationMillisecond);
}

}

42 Synchronizing and Notifying Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
This example uses a semaphore solely to create a delay. After each call to the
DoIt function, MyTask waits for a notification that never arrives and times out
after 10ms.

You can combine the delaying and notification aspects of a semaphore to add
more flexibility as shown in Listing 3-6.

Listing 3-6 Performing actions periodically and on demand

main(void) {

MPSemaphoreID delay;
…
MPCreateSemaphore(2, 0, &delay);
MPCreateTask(…);

while(true) {
// Event loop.

if (/* something important happened */)
{

MPSignalSempahore(delay);
}

}
}

void MyTask(void) {

while(true) {
DoIt(); // Do interesting things.
(void) MPWaitOnSemaphore(work, 100 * kDurationMillisecond);
}

}

In this example, the MyTask task runs essentially as before, except that the main
application creates the semaphore. If no signal is sent to the semaphore, the
DoIt function in MyTask executes every 100ms. However, in this example the
application can signal the semaphore, which unblocks the task and allows the
Synchronizing and Notifying Tasks 43
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
DoIt function to execute. That is, the DoIt function executes whenever the
application signals the semaphore, or every 100ms otherwise.

Notifying Tasks at Interrupt Time 3

If you want to send a notification to a task from a 68K-style interrupt handler,
you can do so using the functions MPSignalSemaphore (page 72), MPSetEvent
(page 76), or MPNotifyQueue (page 66). The MPSignalSemaphore and MPSetEvent
functions are always interrupt-safe, while the MPNotifyQueue (page 66) function
becomes interrupt-safe if you reserve notifications on the message queue. See
the MPSetQueueReserve (page 69) function description for more information
about reserving notifications.

▲ W AR N I N G

Aside from these three notification functions, only
MPCurrentTaskID (page 62) and MPYield (page 62) are
interrupt-safe; attempting to call other Multiprocessing
Services functions at interrupt time, or at a deferred-task
time, may cause a system crash. ▲

Using Critical Regions 3

If your tasks need access to code that is nonreentrant, (that is, only one task can
be executing the code at any particular time), you must designate that code as
being a critical region. You do so by calling the function MPCreateCriticalRegion
(page 78). Doing so returns a critical region ID that you use to identify the
region when you want to enter or exit it later. To enter a critical region, the task
must call MPEnterCriticalRegion (page 79) and specify the ID of the region to
enter. This function acts much like the functions that wait on message queues
and semaphores; if the critical region is not currently available, the task can
wait for a specified time for it to become available (after which it will time out).

After the task has completed using the critical region, you must call
MPExitCriticalRegion (page 81). Doing so “frees” the critical region so that
another task that is waiting on it can enter. Note that a task can call
MPEnterCriticalRegion multiple times during execution (as in a recursive call)
as long as it balances each such call with MPExitCriticalRegion when it leaves
the critical region.

Note that the area of code designated as a critical region is not “tagged” as such
in any way. You must make sure that your code is synchronized to properly
44 Synchronizing and Notifying Tasks

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
isolate the critical region. For example, if you have a critical region that will be
shared by two different tasks, you must create the critical region outside the
tasks that will require it and pass the critical region ID to the tasks. This method
ensures that, even if multiple instances of a task were created and running, only
one could access a particular critical region at a time.

If a task contains more than one critical region, each critical region must have its
own unique ID; otherwise, a task entering a critical region may block another
task from entering a different critical region.

Allocating Memory in Tasks 3

If you need to allocate a block of memory for a task, you must call the function
MPAllocateAligned (page 94). Doing so returns a pointer to allocated memory
with the alignment you specify. You should always use the Multiprocessing
Services memory allocation functions if your task needs to allocate, deallocate,
or otherwise manipulate memory. For example, if your task deallocates its task
data structure after it has finished processing, it must call MPFree (page 95).
Note however, that since the memory is being deallocated by a preemptive task,
you must have initially allocated the task record by calling MPAllocateAligned,
even if this allocation didn’t occur in a preemptive task.

Using Task-Specific Storage 3

Task-specific storage is useful for storing small pieces of data, such as pointers
to task-specific information. For example, if you create several identical tasks,
each of which requires some unique data, you can store that data as
task-specific storage. Task-specific storage locations are cross-referenced by an
index value and the task ID, so the same code can easily refer to “per-instance”
variables. Each such storage location holds a 32-bit value.

Task-specific storage is automatically allocated when a task is created; the
amount is fixed and cannot change for the life of the task. To access the
task-specific storage, you call the function MPAllocateTaskStorageIndex
(page 90). Doing so returns an index number which references a storage
location in each available task in the process. Subsequent calls to
MPAllocateTaskStorageIndex return new task index values to access more of the
Allocating Memory in Tasks 45
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
task-specific storage. Note that, aside from the fact that each index value is
unique, you should not assume anything about the actual values of the index.
For example, you cannot assume that successive calls to
MPAllocateTaskStorageIndex will monotonically increase the index value.

Since the amount of task-specific storage is fixed, you may use up the available
storage (and corresponding index values) if you make many
MPAllocateTaskStorageIndex calls. In such cases, further calls to
MPAllocateTaskStorageIndex return an error indicating insufficient resources.

You call MPSetTaskStorageValue (page 91) and MPGetTaskStorageValue (page 92)
to set and retrieve the storage data. After you are finished using the storage
locations, you must call MPDeallocateTaskStorageIndex (page 91) to free the
index.

Using Timers 3

On occasion you may want to use timers in your preemptive tasks. For
example, say you want a task to send a message to a given queue every 20
milliseconds. To do so, you can set a timer to block your task for 20ms after
sending the notification by calling the function MPDelayUntil (page 82).

Note
Note that in some cases you may want to use notification
mechanisms to accomplish periodic actions, as described in
“Handling Periodic Actions” (page 42). ◆

In addition, you can create timers that will signal a specified notification
mechanism after the timer expires. For example, say you have a task that is
prompting the user to enter a name and password. Once you bring up the input
dialog box, you may have another task (or the application) create a timer object
to expire after five minutes. If the user has not entered a password during those
five minutes, the timer expires and sends a message to the task, signaling that it
should terminate.

You create a timer using the function MPCreateTimer (page 82) and arm it by
calling the function MPArmTimer (page 86). To specify the notification
mechanisms to signal when the timer expires, you call the function
MPSetTimerNotify (page 84). Note that you can signal one notification
46 Using Timers

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
mechanism of each type if desired. For example, the timer can send a message
to a queue and also set a bit in an event group when it expires.

The timers in Multiprocessing Services use time units of type AbsoluteTime,
which increases monotonically since the host computer was started up. You can
obtain the time since startup by calling the function UpTime (page 88).
Multiprocessing Services also provides the functions DurationToAbsolute
(page 88) and AbsoluteToDuration (page 89)which let you convert time between
units of AbsoluteTime and units of type Duration. Note that you should not
make any assumptions about what the AbsoluteTime units are based upon.

Making Remote Procedure Calls 3

At times a preemptive task may need to call a system software function, and
doing so may cause problems. For example, many calls to Mac OS system
software manipulate global variables, so data could easily be corrupted if more
than one task attempts to make similar calls. To work around this problem,
Multiprocessing Services allows you to make remote procedure calls if you
need to call system software from a preemptive task. A remote procedure call
also allows your task to call 68K code.

IMPORTANT

With the exception of functions in Multiprocessing
Services, you cannot safely call Mac OS system software
functions directly from a preemptive task. Even if some
system software function appears to work today when
called from a preemptive task, unless explicitly stated
otherwise there is no guarantee that subsequent versions of
the same routine will continue to work in future versions of
system software. In Mac OS 8 implementations of
Multiprocessing Services, the only exceptions to this rule
are the atomic memory operations (such as AddAtomic)
exported in the InterfaceLib shared library. Even these
functions may switch to 68K mode if the operands to them
are not properly aligned. If you need to access system
software from a preemptive task, you must do so using the
MPRemoteCall (page 106) function. ▲
Making Remote Procedure Calls 47
4/30/99  Apple Computer, Inc.

 C H A P T E R 3

Using Multiprocessing Services
To make a remote procedure call, you must designate an application-defined
function that will make the actual calls to system software. You then pass a
pointer to this function as well as any required parameters in the MPRemoteCall
(page 106) function.

Note
Since your application-defined function must be written in
PowerPC code, you do not need to build a universal
procedure pointer to pass to the MPRemoteCall function. ◆

When you call the function MPRemoteCall from a task, that task is blocked, and
the application-defined function you designated then executes as a
cooperatively scheduled task, which can make system software calls with no
danger.

Note that when you call MPRemoteCall, you can designate which context (or
process) you want your application-defined function to execute in. If you
specify that the function should execute in the same context that owns the task,
the function has access to data available to the main application (just as if the
application had called the function). However, the function cannot execute until
the owning context becomes active (and then not until the application calls
WaitNextEvent). Alternatively, you can designate that the function execute in
any available context. Doing so minimizes possible lag time, but the function
cannot access any resources specific to the task’s context.

IMPORTANT

In the future, individual application processes may not
always share the same address space, so in general you
should never attempt to access code or data in another
process. ▲

After your application-defined function returns, the task is unblocked and
execution proceeds normally.

Handling Exceptions and Debugging 3

Multiprocessing Services provides a number of functions you can use to handle
exceptions and to aid in debugging.
48 Handling Exceptions and Debugging

4/30/99  Apple Computer, Inc.

C H A P T E R 3

Using Multiprocessing Services
By default, if you do not register an exception handler, and no debuggers are
registered, a task terminates when it takes an exception. If debuggers or
exception handlers exist, then the task is suspended when an exception occurs
and a message is sent to the appropriate debugger or handler.

If desired, you can install an exception handler for a task by calling the function
MPSetExceptionHandler (page 98). When an exception occurs, a message is sent
to a designated queue, which your exception handler can wait upon.

In addition, you can register one or more debuggers with Multiprocessing
Services by calling the function MPRegisterDebugger (page 103). When calling
MPRegisterDebugger, you must specify the queue to which you want the
exception message to be sent as well as a debugger level. The debugger level is
simply an integer that indicates where to place this debugger in the hierarchy of
registered debuggers. In addition, When an exception occurs, the order of
notification for handlers is as follows:

■ The debugger with the highest debugger level (for example, a debugger
registered at level 3 will have precedence over one registered as level 2).

■ The debugger with the next highest level (and so on, for all the registered
debuggers).

■ The task’s exception handler.

■ The task’s termination function.

At each level, the handler can choose to do either of the following:

■ Set or retrieve the task’s register or stack information using MPSetTaskState
(page 102) or MPExtractTaskState (page 101).

■ Call MPDisposeTaskException (page 100), which allows you to do any of the
following:

■ Resume the task.
■ Resume the task and enable single-stepping or branch-stepping.
■ Propagate the exception to the next lower level. For example, instead of

handling the exception itself, a debugger can pass the exception message
to the next debugger (or exception handler) in the hierarchy.

If you want to throw an exception to a task, you can use the MPThrowException
(page 99) function.
Handling Exceptions and Debugging 49
4/30/99  Apple Computer, Inc.

C H A P T E R 4

Contents

4/30/99  Apple Computer, Inc.

Contents
Figure 4-0w
Listing 4-0
Table 4-0
4 Multiprocessing Services
Reference
Functions 55
Determining Processor Availability 56

MPProcessors 56
MPProcessorsScheduled 57

Creating and Scheduling Tasks 57
MPCreateTask 58
MPTerminateTask 60
MPExit 61
MPCurrentTaskID 62
MPYield 62
MPSetTaskWeight 63
MPTaskIsPreemptive 64

Creating and Handling Message Queues 64
MPCreateQueue 65
MPDeleteQueue 66
MPNotifyQueue 66
MPWaitOnQueue 68
MPSetQueueReserve 69

Creating and Handling Semaphores 70
MPCreateSemaphore 71
MPDeleteSemaphore 72
MPSignalSemaphore 72
MPWaitOnSemaphore 73

Handling Event Groups 74
MPCreateEvent 74
MPDeleteEvent 75
MPSetEvent 76
51

C H A P T E R 4
MPWaitForEvent 77
Handling Critical Regions 78

MPCreateCriticalRegion 78
MPDeleteCriticalRegion 79
MPEnterCriticalRegion 79
MPExitCriticalRegion 81

Timer Services Functions 81
MPDelayUntil 82
MPCreateTimer 82
MPDeleteTimer 83
MPSetTimerNotify 84
MPArmTimer 86
MPCancelTimer 87

Time Utility Functions 87
UpTime 88
DurationToAbsolute 88
AbsoluteToDuration 89

Accessing Per-Task Storage Variables 90
MPAllocateTaskStorageIndex 90
MPDeallocateTaskStorageIndex 91
MPSetTaskStorageValue 91
MPGetTaskStorageValue 92

Memory Allocation Functions 93
MPAllocateAligned 94
MPFree 95
MPGetAllocatedBlockSize 95
MPBlockCopy 96
MPBlockClear 97
MPDataToCode 97

Exception Handling Functions 98
MPSetExceptionHandler 98
MPThrowException 99
MPDisposeTaskException 100
MPExtractTaskState 101
MPSetTaskState 102

Debugger Support Functions 103
MPRegisterDebugger 103
MPUnregisterDebugger 105
52 Contents

4/30/99  Apple Computer, Inc.

C H A P T E R 4
Remote Calling Function 105
MPRemoteCall 106

Application-Defined Function 107
MyRemoteProcedure 107

Data Types 108
MPProcessID 109
MPTaskID 109
TaskProc 109
MPTaskOptions 110
MPTaskWeight 110
MPQueueID 110
MPSemaphoreID 111
MPEventID 111
MPCriticalRegionID 112
MPTimerID 112
MPOpaqueID 112
TaskStorageIndex 113
TaskStorageValue 113
MPSemaphoreCount 113
MPEventFlags 114
MPExceptionKind 114
MPDebuggerLevel 114
MPRemoteProcedure 115

Constants 115
Timer Duration Constants 116
Timer Option Masks 116
Memory Allocation Alignment Constants 117
Memory Allocation Option Constants 119
Task State Constants 120
Task Exception Disposal Constants 121
Remote Call Context Option Constants 122

Result Codes 122
Contents 53
4/30/99  Apple Computer, Inc.

C H A P T E R 4
Multiprocessing Services Reference 4

This chapter describes the Multiprocessing Services application programming
interface (API) introduced with Mac OS 8.6. This chapter contains the following
sections:

■ “Functions” (page 55)

■ “Application-Defined Function” (page 107)

■ “Data Types” (page 108)

■ “Constants” (page 115)

■ “Result Codes” (page 122)

Note
This document describes version 2.0 of Multiprocessing
Services. For a list of functions changed or added between
versions 1.4 and 2.0, see Appendix B. ◆

Functions 4

This section describes Multiprocessing Services functions in the following
categories:

■ “Determining Processor Availability” (page 56)

■ “Creating and Scheduling Tasks” (page 57)

■ “Creating and Handling Message Queues” (page 64)

■ “Creating and Handling Semaphores” (page 70)

■ “Handling Event Groups” (page 74)

■ “Handling Critical Regions” (page 78)

■ “Timer Services Functions” (page 81)

■ “Time Utility Functions” (page 87)

■ “Accessing Per-Task Storage Variables” (page 90)

■ “Memory Allocation Functions” (page 93)

■ “Exception Handling Functions” (page 98)
Functions 55
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
■ “Debugger Support Functions” (page 103)

■ “Remote Calling Function” (page 105)

Determining Processor Availability 4

Multiprocessing Services provides the following functions for determining the
number of processors available on the host computer:

■ MPProcessors (page 56) returns the number of processors on the host
computer.

■ MPProcessorsScheduled (page 57) returns the number of active processors
available on the host computer.

MPProcessors 4

Returns the number of processors on the host computer.

ItemCount MPProcessors (void);

function result A value of type ItemCount that indicates the number of physical
processors on the host computer.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPProcessorsScheduled (page 57).
56 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPProcessorsScheduled 4

Returns the number of active processors available on the host computer.

ItemCount MPProcessorsScheduled (void);

function result A value of type ItemCount that indicates the number of active
processors available on the host computer.

DISCUSSION

The number of active processors is defined as the number of processors
scheduled to run tasks. This number varies while the system is running.
Advanced power management facilities may stop or start scheduling processors
in the system to control power consumption or to maintain a proper operating
temperature.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPProcessors (page 56).

Creating and Scheduling Tasks 4

Multiprocessing Services provides the following functions for creating and
manipulating preemptive tasks:

■ MPCreateTask (page 58) creates a preemptive task.

■ MPTerminateTask (page 60) terminates an existing task.

■ MPExit (page 61) allows a task to terminate itself.

■ MPCurrentTaskID (page 62) obtains the task ID of the current preemptive task.

■ MPYield (page 62) allows a task to yield the processor to another task.

■ MPSetTaskWeight (page 63) assigns a relative weight to a task, indicating how
much processor time it should receive compared to other available tasks.
Functions 57
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
■ MPTaskIsPreemptive (page 64) determines whether a task is preemptively
scheduled.

MPCreateTask 4

Creates a preemptive task.

OSStatus MPCreateTask (
TaskProc entryPoint,
void *parameter,
ByteCount stackSize,
MPQueueID notifyQueue,
void *terminationParameter1,
void *terminationParameter2,
MPTaskOptions options,
MPTaskID *task);

entryPoint A pointer of type TaskProc (page 109) that references the task
function. The task function should take a single 32-bit parameter
and return a value of type OSStatus.

parameter The parameter to pass to the task function.

stackSize A value of type ByteCount that specifies the size of the stack
assigned to the task. Note that you should be careful not to
exceed the bounds of the stack, since stack overflows may not be
detected. Specifying zero for the size will result in a default
stack size of 4KB.

notifyQueue A value of type MPQueueID (page 110) that specifies the ID of the
message queue to which the system will send a message when
the task terminates. You specify the first 64-bits of the message
in the parameters terminationParameter1 and
terminationParameter2 respectively. The last 32-bits contain the
result code of the task function.

terminationParameter1
A 32-bit value that is sent to the message queue specified by the
parameter notifyQueue when the task terminates.
58 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
terminationParameter2
A 32-bit value that is sent to the message queue specified by the
parameter notifyQueue when the task terminates.

options A value of type MPTaskOptions (page 110) that specifies optional
attributes of the preemptive task. No options are currently
defined; this value must be zero.

task A pointer to a variable of type MPTaskID (page 109). On return,
the variable contains the ID of the newly created task.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If MPCreateTask could not create the task because some
critical resource was not available, the function returns
kMPInsufficientResourcesErr. Usually this is due to lack of
memory to allocate the internal data structures associated with
the task or the stack. The function also returns
kMPInsufficientResourcesErr if any reserved option bits are set.

DISCUSSION

Tasks are created in the unblocked state, ready for execution. A task can
terminate in the following ways:

■ By returning from its entry point

■ By calling MPExit (page 61)

■ When specified as the target of an MPTerminateTask (page 60) call

■ If a hardware-detected exception or programming exception occurs and no
exception handler is installed

■ If the application calls ExitToShell

Task resources (its stack, active timers, internal structures related to the task,
and so on) are reclaimed by the system when the task terminates. The task's
address space is inherited from the process address space. All existing tasks are
terminated when the owning process terminates.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.
Functions 59
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
SEE ALSO

The function MPTerminateTask (page 60).

The function MPSetTaskWeight (page 63).

MPTerminateTask 4

Terminates an existing task.

OSStatus MPTerminateTask (
MPTaskID task,
OSStatus terminationStatus);

task A value of type MPTaskID (page 109) that specifies the ID of the
task you wish to terminate.

terminationStatus
A 32-bit value of type OSStatus indicating termination status.
This value is sent to the termination status message queue you
specified in MPCreateTask (page 58) in place of the task
function’s result code.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the task to be terminated is already in the process of
termination, MPTerminateTask returns
kMPInsufficientResourcesErr. You do not need to take any
additional action if this occurs.

DISCUSSION

You should not assume that the task has completed termination when this call
returns; the proper way to synchronize with task termination is to wait on the
termination queue (specified in MPCreateTask (page 58)) until a message
appears. Because task termination is a multistage activity, it is possible for a
preemptive task to attempt to terminate a task that is already undergoing
termination. In such cases, MPTerminateTask returns
kMPInsufficientResourcesErr.

Note that Multiprocessing Services resources (event groups, queues,
semaphores, and critical regions) owned by a preemptive task are not released
60 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
when that task terminates. If a task has a critical region locked when it
terminates, the critical region remains in the locked state. Multiprocessing
Services resources no longer needed should be explicitly deleted by the task
that handles the termination message. All Multiprocessing Services resources
created by tasks are released when their owning process (that is, the host
application) terminates.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPExit 4

Allows a task to terminate itself

void MPExit (OSStatus status);

status An application-defined value of type OSStatus that indicates
termination status. This value is sent to the termination message
queue in place of the task’s result code.

DISCUSSION

When called from within a preemptive task, the task terminates, and the value
indicated by the parameter status is sent to the termination message queue you
specified in MPCreateTask (page 58). Note that you cannot call MPExit from
outside a preemptive task.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.
Functions 61
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPCurrentTaskID 4

Obtains the task ID of the currently-executing preemptive task

MPTaskID MPCurrentTaskID (void);

function result A value of type MPTaskID (page 109) that specifies the task ID of
the current preemptive task.

DISCUSSION

Returns the ID of the current preemptive task. If called from a cooperative task,
this function returns an ID which is different than the ID of any preemptive
task. Nonpreemptive processes may or may not have different task IDs for each
application; future implementations of this API may behave differently in this
regard.

Note that you can call this function from an interrupt handler.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPYield 4

Allows a task to yield the processor to another task.

void MPYield (void);

DISCUSSION

This function indicates to the scheduler that another task can run. Other than
possibly yielding the processor to another task or application, the call has no
effect. Note that since tasks are preemptively scheduled, an implicit yield may
occur at any point, whether or not this function is called.

In most cases you should not need to call this function. The most common use
of MPYield is to release the processor when a task is in a loop in which further
62 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
progress is dependent on other tasks, and the task cannot be blocked by waiting
on a Multiprocessing Services resource. You should avoid such busy waiting
whenever possible.

Note that you can call this function from an interrupt handler.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPSetTaskWeight 4

Assigns a relative weight to a task, indicating how much processor time it
should receive compared to other available tasks.

OSStatus MPSetTaskWeight (
MPTaskID task,
MPTaskWeight weight);

task A value of type MPTaskID (page 109) that specifies the ID of the
task to which you want to assign a weighting.

weight A value of type MPTaskWeight (page 110) indicating the relative
weight to assign. This value can range from 1 to 10,000, with the
default value being 100.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

The approximate processor share is defined as

weight of the task/ total weight of available tasks

For a set of ready tasks, the amount of CPU time dedicated to the tasks will be
determined by the dynamically computed share. Note that the processor share
devoted to tasks may deviate from the suggested weighting if critical tasks
require attention. For example, a real-time task (such as a QuickTime movie)
may require more than its relative weight of processor time, and the scheduler
will adjust proportions accordingly.
Functions 63
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPTaskIsPreemptive 4

Determines whether a task is preemptively scheduled.

Boolean MPTaskIsPreemptive (MPTaskID taskID);

taskID A value of type MPTaskID (page 109) that specifies the task you
want to check. Pass kInvalidID if you want to specify the current
task.

function result A value of type Boolean. If true, the task is preemptively
scheduled. If false, the task is cooperatively scheduled.

DISCUSSION

If you have code that may be called from either cooperative or preemptive
tasks, that code can call MPTaskIsPreemptive if its actions should differ
depending on its execution environment.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Creating and Handling Message Queues 4

Multiprocessing Services provides the following functions for creating and
handling message queues:

■ MPCreateQueue (page 65) creates a message queue.

■ MPDeleteQueue (page 66) deletes a message queue.

■ MPNotifyQueue (page 66) sends a message to the specified message queue.

■ MPWaitOnQueue (page 68) obtains a message from a specified message queue.
64 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
■ MPSetQueueReserve (page 69) reserves space for messages on a specified
message queue.

MPCreateQueue 4

Creates a message queue.

OSStatus MPCreateQueue (MPQueueID *queue);

queue A pointer to a variable of type MPQueueID (page 110). On return,
the variable contains the ID of the newly created message
queue.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If a queue could not be created, MPCreateQueue returns
kMPInsufficientResourcesErr.

DISCUSSION

This call creates a message queue, which can be used to notify (that is, send)
and wait for (that is, receive) messages consisting of three 32-bit words in a
preemptively safe manner.

Message queues are created from dynamically allocated internal resources.
Other tasks may be competing for these resources so it is possible this function
may not be able to create a queue.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPDeleteQueue (page 66).

The function MPSetQueueReserve (page 69).
Functions 65
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPDeleteQueue 4

Deletes a message queue.

OSStatus MPDeleteQueue (MPQueueID queue);

queue A value of type MPQueueID (page 110) that specifies the ID of the
message queue you want to delete.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

After calling MPDeleteQueue, the specified queue ID becomes invalid, and all
internal resources associated with the queue (including queued messages) are
reclaimed. Any tasks waiting on the queue are unblocked and their respective
MPWaitOnQueue (page 68) calls will return with the result code kMPDeletedErr.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPCreateQueue (page 65).

MPNotifyQueue 4

Sends a message to the specified message queue.

OSStatus MPNotifyQueue (
MPQueueID queue,
void *param1,
void *param2,
void *param3);
66 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
queue A value of type MPQueueID (page 110) that specifies the queue ID
of the message queue you want to notify.

param1 The first 32-bits of the message to send.

param2 The second 32-bits of the message to send.

param3 The third 32-bits of the message to send.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

This function sends a message to the specified queue, which consist of the three
parameters, param1, param2, and param3. The system does not interpret the three
32-bit words which comprise the text of the message. If tasks are waiting on the
specified queue, the first waiting task is unblocked and the task’s MPWaitOnQueue
(page 68) function completes.

Depending on the queue mode, the system either allocates messages
dynamically or assigns them to memory reserved for the queue. In either case,
if no more memory is available for messages MPNotifyQueue returns
kMPInsufficientResourcesErr.

You can call this function from an interrupt handler if messages are reserved on
the queue. For more information about queueing modes and reserving
messages, see MPSetQueueReserve (page 69).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPWaitOnQueue (page 68).
Functions 67
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPWaitOnQueue 4

Obtains a message from a specified message queue.

OSStatus MPWaitOnQueue (
MPQueueID queue,
void **param1,
void **param2,
void **param3,
Duration timeout);

queue A value of type MPQueueID (page 110) that specifies the ID of the
message queue from which to receive the notification.

param1 A pointer to a 32-bit variable. On return, this variable contains
the first 32-bits of the notification message. Pass NULL if you do
not need this portion of the message.

param2 A pointer to a 32-bit variable. On return, the variable contains
the second 32-bits of the notification message. Pass NULL if you
do not need this portion of the message.

param3 A pointer to a 32-bit variable. On return, the variable contains
the third 32-bits of the notification message. Pass NULL if you do
not need this portion of the message.

timeout A value of type Duration specifying how long to wait for a
notification before timing out. See “Timer Duration Constants”
(page 116) for a list of constants you can use to specify the wait
interval.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

This function receives a message from the specified message queue. If no
messages are currently available, the timeout specifies how long the function
should wait for one. Tasks waiting on the queue are handled in a first in, first
out manner; that is, the first task to wait on the queue receives the message from
the MPNotifyQueue (page 66) call.
68 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
After calling this function, when a message appears, it is removed from the
queue and the three fields, param1, param2, and param3 are set to the values
specified by the message text. Note these parameters are pointers to variables to
be set with the message text.

If you call this function from a cooperative task, you should specify only
kDurationImmediate for the timeout length; other waits will cause the task to
block.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPNotifyQueue (page 66).

MPSetQueueReserve 4

Reserves space for messages on a specified message queue.

OSStatus MPSetQueueReserve (
MPQueueID queue,
ItemCount count);

queue A value of type MPQueueID (page 110) that specifies the ID of the
queue whose messages you want to reserve.

count A value of type ItemCount that specifies the number of messages
to reserve.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

MPNotifyQueue (page 66) allocates spaces for messages dynamically; that is,
memory to hold the message is allocated for the queue at the time of the call. In
most cases this method is both speed and storage efficient. However, it is
Functions 69
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
possible that, due to lack of memory resources, space for the message may not
be available at the time of the call; in such cases, MPNotifyQueue (page 66) will
return kInsufficientResourcesErr.

If you must have guaranteed message delivery, or if you need to call
MPNotifyQueue (page 66) from an interrupt handler, you should reserve space on
the specified queue by calling MPSetQueueReserve. Because such allocated space
is reserved for duration of the queue’s existence, you should avoid straining
internal system resources by reserving messages only when absolutely
necessary. Note that if you have reserved messages on a queue, additional space
cannot be added dynamically if the number of messages exceeds the number
reserved for that queue.

The number of reserved messages is set to count, lowering or increasing the
current number of reserved messages as required. If count is set to zero, no
messages are reserved for the queue, and space for messages is allocated
dynamically.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Creating and Handling Semaphores 4

Multiprocessing Services provides the following functions for creating and
handling semaphores:

■ MPCreateSemaphore (page 71) creates a semaphore.

■ MPDeleteSemaphore (page 72) removes a semaphore.

■ MPSignalSemaphore (page 72) signals a semaphore.

■ MPWaitOnSemaphore (page 73) waits on a semaphore.
70 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPCreateSemaphore 4

Creates a semaphore.

OSStatus MPCreateSemaphore (
MPSemaphoreCount maximumValue,
MPSemaphoreCount initialValue,
MPSemaphoreID *semaphore);

maximumValue A value of type MPSemaphoreCount (page 113) that specifies the
maximum allowed value of the semaphore.

initialValue A value of type MPSemaphoreCount (page 113) that specifies the
initial value of the semaphore.

semaphore A pointer to a variable of type MPSemaphoreID (page 111). On
return, the variable contains the ID of the newly–created
semaphore.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

If you want to create a binary semaphore, you can call the macro
MPCreateBinarySemaphore (MPSemaphoreID *semaphore) instead, which simply
calls MPCreateSemaphore with both maximumValue and initialValue set to 1.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPDeleteSemaphore (page 72).
Functions 71
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPDeleteSemaphore 4

Removes a semaphore.

OSStatus MPDeleteSemaphore (MPSemaphoreID semaphore);

semaphore A value of type MPSemaphoreID (page 111) that specifies the ID of
the semaphore you want to remove.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

Calling this function unblocks all tasks waiting on the semaphore and the tasks’
respective MPWaitOnSemaphore (page 73) calls will return with the result code
kMPDeletedErr.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPCreateSemaphore (page 71).

MPSignalSemaphore 4

Signals a semaphore.

OSStatus MPSignalSemaphore (MPSemaphoreID semaphore);

semaphore A value of type MPSemaphoreID (page 111) that specifies the ID of
the semaphore you want to signal.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the value of the semaphore was already at the
maximum, MPSignalSemaphore returns
kInsufficientResourcesErr.
72 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

If tasks are waiting on the semaphore, the oldest (first queued) task is
unblocked so that the corresponding MPWaitOnSemaphore (page 73) call for that
task completes. Otherwise, if the value of the semaphore is not already equal to
its maximum value, it is incremented by one.

Note that you can call this function from an interrupt handler.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPWaitOnSemaphore (page 73).

MPWaitOnSemaphore 4

Waits on a semaphore

OSStatus MPWaitOnSemaphore (
MPSemaphoreID semaphore,
Duration timeout);

semaphore A value of type MPSemaphoreID (page 111) that specifies the ID of
the semaphore you want to wait on.

timeout A value of type Duration that specifies the maximum time the
function should wait before timing out. See “Timer Duration
Constants” (page 116) for a list of constants you can use to
specify the wait interval.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.
Functions 73
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

If the value of the semaphore is greater than zero, the value is decremented and
the function returns with noErr. Otherwise, the task is blocked awaiting a signal
until the specified timeout is exceeded.

If you call this function from a cooperative task, you should specify only
kDurationImmediate for the timeout length; other waits will cause the task to
block.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPSignalSemaphore (page 72).

Handling Event Groups 4

Multiprocessing Services provides the following functions for creating and
handling event groups:

■ MPCreateEvent (page 74) creates an event group.

■ MPDeleteEvent (page 75) removes an event group.

■ MPSetEvent (page 76) merges event flags into a specified event group.

■ MPWaitForEvent (page 77) retrieves event flags from a specified event group.

MPCreateEvent 4

Creates an event group.

OSStatus MPCreateEvent (MPEventID *event);

event A pointer to a variable of type MPEventID (page 111). On return,
the variable contains the ID of the newly created event group.
74 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

Event groups are created from dynamically allocated internal resources. Other
tasks may be competing for these resources so it is possible that this function
will not be able to create an event group.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPDeleteEvent (page 75).

MPDeleteEvent 4

Removes an event group.

OSStatus MPDeleteEvent (MPEventID event);

event A value of type MPEventID (page 111) that specifies the ID of the
event group you want to remove.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

After deletion, the event ID becomes invalid, and all internal resources
associated with the event group are reclaimed. Calling this function unblocks
all tasks waiting on the event group and their respective MPWaitForEvent
(page 77) calls will return with the result code kMPDeletedErr.
Functions 75
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPCreateEvent (page 74).

MPSetEvent 4

Merges event flags into a specified event group.

OSStatus MPSetEvent (
MPEventID event,
MPEventFlags flags);

event A value of type MPEventID (page 111) that specifies the ID of the
event group you want to set.

flags A 32-bit value of type MPEventFlags (page 114) that contains the
flags you want to merge into the event group.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

The flags are logically ORed with the current flags in the event group. This
procedure is an atomic operation to ensure that multiple updates do not get
lost. If tasks are waiting on this event group, the first waiting task is unblocked.

Note that you can call this function from an interrupt handler.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPWaitForEvent (page 77).
76 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPWaitForEvent 4

Retrieves event flags from a specified event group.

OSStatus MPWaitForEvent (
MPEventID event,
MPEventFlags *flags,
Duration timeout);

event A value of type MPEventID (page 111) that specifies the event
group whose flags you want to retrieve.

flags A pointer to a 32-bit variable of type MPEventFlags (page 114).
On return, the variable contains the flags of the specified event
group. Pass NULL if you do not need any flag information.

timeout A value of type Duration that specifies the maximum time to
wait for events before timing out. See “Timer Duration
Constants” (page 116) for a list of constants you can use to
specify the wait interval.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

This function obtains event flags from the specified event group. The timeout
specifies how long to wait for events if none are present when the call is made.
If any flags are set when this function is called, all the flags in the event group
are moved to the flag field and the event group is cleared. This obtaining and
clearing action is an atomic operation to ensure that no updates are lost. If
multiple tasks are waiting on an event group, only one can obtain any
particular set of flags.

If you call this function from a cooperative task, you should specify only
kDurationImmediate for the timeout length; other waits will cause the task to
block.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.
Functions 77
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
SEE ALSO

The function MPSetEvent (page 76).

Handling Critical Regions 4

Multiprocessing Services provides the following functions for creating and
handling critical regions:

■ MPCreateCriticalRegion (page 78) creates a critical region object.

■ MPDeleteCriticalRegion (page 79) removes the specified critical region
object.

■ MPEnterCriticalRegion (page 79) attempts to enter a critical region.

■ MPExitCriticalRegion (page 81) exits a critical region.

MPCreateCriticalRegion 4

Creates a critical region object.

OSStatus MPCreateCriticalRegion (MPCriticalRegionID *criticalRegion);

criticalRegion
A pointer to a variable of type MPCriticalRegionID (page 112).
On return, the variable contains the ID of the newly created
critical region object.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPDeleteCriticalRegion (page 79).
78 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPDeleteCriticalRegion 4

Removes the specified critical region object.

OSStatus MPDeleteCriticalRegion (MPCriticalRegionID criticalRegion);

criticalRegion
A value of type MPCriticalRegionID (page 112) that specifies the
critical region object you want to remove.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

Calling this function unblocks all tasks waiting to enter the critical region and
their respective MPEnterCriticalRegion (page 79) calls will return with the
result code kMPDeletedErr.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPCreateCriticalRegion (page 78).

MPEnterCriticalRegion 4

Attempts to enter a critical region.

OSStatus MPEnterCriticalRegion (
MPCriticalRegionID criticalRegion,
Duration timeout);

criticalRegion
A value of type MPCriticalRegionID (page 112) that specifies the
ID of the critical region you want to enter.
Functions 79
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
timeout A value of type Duration that specifies the maximum time to
wait for entry before timing out. See “Timer Duration
Constants” (page 116) for a list of constants you can use to
specify the wait interval.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

If another task currently occupies the critical region, the current task is blocked
until the critical region is released or until the designated timeout expires.
Otherwise the task enters the critical region and MPEnterCriticalRegion
increments the region’s use count.

Once a task enters a critical region it can make further calls to
MPEnterCriticalRegion without blocking (its use count increments for each call).
However, each call to MPEnterCriticalRegion must be balanced by a call to
MPExitCriticalRegion (page 81); otherwise the region is not released for use by
other tasks.

Note that you can enter a critical region from a cooperative task. Each
cooperative task is treated as unique and different from any preemptive task. If
you call this function from a cooperative task, you should specify only
kDurationImmediate for the timeout length; other waits will cause the task to
block.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPExitCriticalRegion (page 81).
80 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPExitCriticalRegion 4

Exits a critical region.

OSStatus MPExitCriticalRegion (MPCriticalRegionID criticalRegion);

criticalRegion
A value of type MPCriticalRegionID that specifies the ID of the
critical region you want to exit.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the task does not own the critical region specified by
criticalRegion, MPExitCriticalRegion returns
kMPInsufficientResourcesErr.

DISCUSSION

This function decrements the use count of the critical region object. When the
use count reaches zero, ownership of the critical region object is released (which
allows another task to use the critical region).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPEnterCriticalRegion (page 79).

Timer Services Functions 4

Multiprocessing Services provides the following timer services functions:

■ MPDelayUntil (page 82) blocks the calling task until a specified time.

■ MPCreateTimer (page 82) creates a timer.

■ MPDeleteTimer (page 83) removes a timer.

■ MPSetTimerNotify (page 84) sets the notification information associated with
a timer.
Functions 81
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
■ MPArmTimer (page 86) arms the timer to expire at a given time.

■ MPCancelTimer (page 87) cancels an armed timer.

MPDelayUntil 4

Blocks the calling task until a specified time.

OSStatus MPDelayUntil (AbsoluteTime *expirationTime);

expirationTime
A value of type AbsoluteTime specifying when to unblock the
task.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

You cannot call this function from a cooperative task.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPCreateTimer 4

Creates a timer.

OSStatus MPCreateTimer (MPTimerID *timerID);

timerID A pointer to a variable of type MPTimerID (page 112). On return,
the variable contains the ID of the newly created timer.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.
82 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

You can use a timer to notify an event, queue, or semaphore after a specified
amount of time has elapsed.

Timer objects are created from dynamically-allocated internal resources. Other
tasks may be competing for these resources so it is possible this function may
not be able to create one.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPDeleteTimer (page 83).

The function MPArmTimer (page 86).

The function MPSetTimerNotify (page 84).

MPDeleteTimer 4

Removes a timer.

OSStatus MPDeleteTimer (MPTimerID timerID);

timerID A value of type MPTimerID (page 112) that specifies the ID of the
timer you want to remove.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

After deletion, the timer ID becomes invalid, and all internal resources
associated with the timer are reclaimed.
Functions 83
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPCreateTimer (page 82).

MPSetTimerNotify 4

Sets the notification information associated with a timer.

OSStatus MPSetTimerNotify (
MPTimerID timerID,
MPOpaqueID notificationID,
void *notifyParam1,
void *notifyParam2,
void *notifyParam3);

timerID A value of type MPTimerID (page 112) that specifies the ID of the
timer whose notification information you want to set.

notificationID
A value specifying the ID of the notification mechanism to
associate with the timer. This value should be the ID of an event
group, a message queue, or a semaphore.

notifyParam1 If notificationID specifies an event group, this parameter
should contain the flags to set in the event group when the timer
expires. If notificationID specifies a message queue, this
parameter should contain the first 32-bits of the message to be
sent to the message queue when the timer expires.

notifyParam2 If notificationID specifies a message queue, this parameter
should contain the second 32-bits of the message to be sent to
the message queue when the timer expires. Pass NULL if you
don’t need this parameter.
84 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
notifyParam3 If notificationID specifies a message queue, this parameter
should contain the third 32-bits of the message sent to the
message queue when the timer expires. Pass NULL if you don’t
need this parameter.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

When the timer expires, Multiprocessing Services checks the notification ID,
and if it is valid, notifies the related notification mechanisms (that is, event
groups, queues, or semaphores) you had specified in your MPSetTimerNotify
(page 84) calls.

You can specify multiple notification mechanisms by calling this function
several times. For example, you can call MPSetTimerNotify to specify a message
queue and then call it again to specify a semaphore. When the timer expires, a
message is sent to the message queue and the appropriate semaphore is
signaled. You cannot, however, specify more than one notification per
notification mechanism (for example, if you call MPSetTimerNotify twice,
specifying different messages or message queues in each call, the second call
will overwrite the first). Note that if a call to MPSetTimerNotify returns an error,
any previous calls specifying the same timer are still valid; previously set
notifications will still be notified when the timer expires.

You can set the notification information at any time. If the timer is armed, it will
modify the notification parameters dynamically. If the timer is disarmed, it will
modify the notification parameters to be used for the next MPArmTimer (page 86)
call.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.
Functions 85
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPArmTimer 4

Arms the timer to expire at a given time.

OSStatus MPArmTimer (
MPTimerID timerID,
AbsoluteTime *expirationTime,
OptionBits options);

timerID A value of type MPTimerID (page 112) that specifies the ID of the
timer you want to arm.

expirationTime
A pointer to a value of type AbsoluteTime that specifies when
you want the timer to expire. Note that if you arm the timer
with a time that has already passed, the timer expires
immediately.

options A value of type OptionBits specifying any optional action. See
“Timer Option Masks” (page 116) for a list of possible values.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the timer has already expired, the reset does not take
place and the function returns kMPInsufficientResourcesErr.

DISCUSSION

The expiration time is an absolute time, which you can generate by calling the
UpTime (page 88) function. When the timer expires, a notification is sent to the
notification mechanism specified in the last MPSetTimerNotify (page 84) call. If
the specified notification ID has become invalid, no action is taken when the
timer expires. The timer itself is deleted when it expires unless you specified the
kMPPreserveTimerID option in the options parameter.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPCancelTimer (page 87).
86 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
The function MPSetTimerNotify (page 84).

MPCancelTimer 4

Cancels an armed timer.

OSStatus MPCancelTimer (
MPTimerID timerID,
AbsoluteTime *timeRemaining);

timerID A value of type MPTimerID that specifies the ID of the armed
timer you want to cancel.

timeRemaining
A pointer to a variable of type AbsoluteTime. On return, the
variable contains the time remaining before the timer would
have expired.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the timer has already expired, this function returns
kMPInsufficientResourcesErr.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPArmTimer (page 86).

Time Utility Functions 4

Multiprocessing Services provides the following time utility functions:

■ UpTime (page 88) obtains the time elapsed since system startup.

■ DurationToAbsolute (page 88) converts time from units of type Duration to
units of type AbsoluteTime.
Functions 87
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
■ AbsoluteToDuration (page 89) converts time from units of type AbsoluteTime
to units of type Duration.

UpTime 4

Obtains the time elapsed since machine startup.

AbsoluteTime UpTime (void);

function result A value of type AbsoluteTime that indicates the time elapsed
since the host computer was started up. Absolute time is a 64-bit
monotonically increasing value. You should not make any
assumptions about what units absolute time is based upon.

DISCUSSION

You can call this function from the task level, software interrupt level, or
hardware interrupt level.

This function is identical to the UpTime function found in the Driver Services
Library.

VERSION NOTES

Available in the Multiprocessing Services library with version 2.0.

DurationToAbsolute 4

Converts time from units of type Duration to units of type AbsoluteTime.

AbsoluteTime DurationToAbsolute (Duration duration);

duration A value of type Duration that you want to convert to type
AbsoluteTime.

function result A value of type AbsoluteTime which is the converted time.
88 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

This function is identical to the DurationToAbsolute function found in the Driver
Services Library.

VERSION NOTES

Available in the Multiprocessing Services library with version 2.0.

SEE ALSO

The function AbsoluteToDuration (page 89).

AbsoluteToDuration 4

Converts time from units of type AbsoluteTime to units of type Duration.

Duration AbsoluteToDuration (AbsoluteTime time);

time A value of type AbsoluteTime that you want to convert to type
Duration.

function result A value of type Duration which is the converted time.

DISCUSSION

This function is identical to the AbsoluteToDuration function found in the Driver
Services Library.

VERSION NOTES

Available in the Multiprocessing Services library with version 2.0.

SEE ALSO

The function DurationToAbsolute (page 88).
Functions 89
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
Accessing Per-Task Storage Variables 4

Multiprocessing Services provides the following functions for creating and
manipulating per-task storage variables:

■ MPAllocateTaskStorageIndex (page 90) returns an index number to access
per-task storage.

■ MPDeallocateTaskStorageIndex (page 91) frees an index number used to
access per-task storage.

■ MPSetTaskStorageValue (page 91) sets the storage value for a given index
number.

■ MPGetTaskStorageValue (page 92) gets the storage value stored at a specified
index number.

MPAllocateTaskStorageIndex 4

Returns an index number to access per-task storage.

OSStatus MPAllocateTaskStorageIndex (TaskStorageIndex *index);

index A pointer to a variable of type TaskStorageIndex (page 113). On
return, the variable contains an index number you can use to
store task data.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

A call to the function MPAllocateTaskStorageIndex returns an index number that
is common across all tasks in the current process. You can use this index
number in calls to MPSetTaskStorageValue (page 91) and MPGetTaskStorageValue
(page 92) to set a different value for each task using the same index.

You can think of the task storage area as a two dimensional array
cross-referenced by the task storage index number and the task ID. Note that
since the amount of per-task storage is determined when the task is created, the
number of possible index values associated with a task is limited.
90 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPDeallocateTaskStorageIndex (page 91).

MPDeallocateTaskStorageIndex 4

Frees an index number used to access per-task storage

OSStatus MPDeallocateTaskStorageIndex (TaskStorageIndex index);

index A value of type TaskStorageIndex (page 113) that specifies the
index number you want to deallocate.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPAllocateTaskStorageIndex (page 90).

MPSetTaskStorageValue 4

Sets the storage value for a given index number.

OSStatus MPSetTaskStorageValue (
TaskStorageIndex index,
TaskStorageValue value);
Functions 91
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
index A 32-bit value of type TaskStorageIndex (page 113) specifying
the index number whose storage value you want to set.

value A value of type TaskStorageValue (page 113) that specifies the
value you want to set.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

DISCUSSION

Typically you use MPSetTaskStorageValue to store pointers to task-specific
structures or data.

Calling this function from within a task effectively assigns a value in a
two-dimensional array cross-referenced by task storage index value and the
task ID.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPGetTaskStorageValue (page 92).

MPGetTaskStorageValue 4

Gets the storage value stored at a specified index number.

TaskStorageValue MPGetTaskStorageValue (TaskStorageIndex index);

index A 32-bit value of type TaskStorageIndex (page 113) specifying
the index number of the storage value you want to obtain.

function result A value of type TaskStorageValue (page 113) that is the value
stored at the specified index number.
92 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

Calling this function from within a task effectively reads a value in a
two-dimensional array cross-referenced by task storage index value and the
task ID.

Note that since this function does not return any status information, it may not
be immediately obvious whether the returned storage value is valid.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPSetTaskStorageValue (page 91).

Memory Allocation Functions 4

Multiprocessing Services provides the following functions for allocating and
manipulating blocks of memory from within preemptive tasks:

■ MPAllocateAligned (page 94) allocates a nonrelocatable memory block.

■ MPFree (page 95) frees memory allocated by MPAllocateAligned (page 94).

■ MPGetAllocatedBlockSize (page 95) returns the size of a memory block.

■ MPBlockCopy (page 96) copies a block of memory.

■ MPBlockClear (page 97) clears a block of memory.

■ MPDataToCode (page 97) designates the specified block of memory as
executable code.
Functions 93
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPAllocateAligned 4

Allocates a nonrelocatable memory block.

LogicalAddress MPAllocateAligned (
ByteCount size,
UInt8 alignment,
OptionBits options);

size A value of type ByteCount specifying the size, in bytes, of the
memory block to allocate.

alignment An integer specifying the desired alignment of the allocated
memory block. See “Memory Allocation Alignment Constants”
(page 117) for a list of possible values to pass. Note that there
will be a minimum alignment regardless of the requested
alignment. If the requested memory block is 4 bytes or smaller,
the block will be at least 4-byte aligned. If the requested block is
greater than 4 bytes, the block will be at least 8-byte aligned.

options A value of type OptionBits that specifies any optional
information to use with this call. See “Memory Allocation
Option Constants” (page 119) for a list of possible values to
pass.

function result A pointer to the allocated memory. If the function cannot
allocate the requested memory or the requested alignment, the
returned address is NULL.

DISCUSSION

The memory referenced by the returned address is guaranteed to be accessible
by the application's cooperative task and any preemptive tasks that it creates,
but not by other applications or their preemptive tasks. Any existing nonglobal
heap blocks are freed when the application terminates. As with all shared
memory, you must explicitly synchronize access to allocated heap blocks using
a notification mechanism.

You can replicate the effect of the older MPAllocate function by calling
MPAllocateAligned with 32-byte alignment and no options.
94 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPFree (page 95).

MPFree 4

Frees memory allocated by MPAllocateAligned (page 94).

void MPFree (LogicalAddress object);

object A pointer of type LogicalAddress to the memory you want to
release.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

SEE ALSO

The function MPAllocateAligned (page 94).

MPGetAllocatedBlockSize 4

Returns the size of a memory block.

ByteCount MPGetAllocatedBlockSize (LogicalAddress object);

object A value of type LogicalAddress that specifies the address of the
memory block whose size you want to determine.

function result A value of type ByteCount that is the size of the allocated
memory block, in bytes.
Functions 95
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPBlockCopy 4

Copies a block of memory.

void MPBlockCopy (
LogicalAddress source,
LogicalAddress destination,
ByteCount size);

source A pointer of type LogicalAddress that specifies the starting
address of the memory block you want to copy.

destination A pointer of type LogicalAddress that specifies the location to
which you want to copy the memory block.

size A value of type ByteCount that specifies the number of bytes to
copy.

DISCUSSION

As with all shared memory, your application must synchronize access to the
memory blocks to avoid data corruption. MPBlockCopy ensures the copying stays
within the bounds of the area specified by size, but the calling task can be
preempted during the copying process.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.
96 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPBlockClear 4

Clears a block of memory.

void MPBlockClear (
LogicalAddress address,
ByteCount size);

address A pointer of type LogicalAddress that specifies the starting
address of the memory block you want to clear.

size A value of type ByteCount that specifies the number of bytes you
want to clear.

DISCUSSION

As with all shared memory, your application must synchronize access to the
memory blocks to avoid data corruption. MPBlockClear ensures the clearing
stays within the bounds of the area specified by size, but the calling task can be
preempted during the copying process.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPDataToCode 4

Designates the specified block of memory as executable code.

void MPDataToCode (
LogicalAddress address,
ByteCount size);

address A pointer of type LogicalAddress that specifies the starting
address of the memory block you want to designate as code.

size A value of type ByteCount that specifies the size of the memory
block.
Functions 97
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

Since PowerPC processors need to differentiate between code and data in
memory, you should call this function to tag any executable code that your
tasks may generate.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Exception Handling Functions 4

Multiprocessing Services provides the following functions for handling
exceptions and examining the state of a suspended task:

■ MPSetExceptionHandler (page 98) sets an exception handler for a task.

■ MPThrowException (page 99) throws an exception to a specified task.

■ MPDisposeTaskException (page 100) removes a task exception.

■ MPExtractTaskState (page 101) extracts state information from a suspended
task.

■ MPSetTaskState (page 102) sets state information for a suspended task.

MPSetExceptionHandler 4

Sets an exception handler for a task.

OSStatus MPSetExceptionHandler (
MPTaskID task,
MPQueueID exceptionQ);

task A value of type MPTaskID (page 109) that specifies the task to
associate with the exception handler.

exceptionQ A value of type MPQueueID (page 110) that specifies the message
queue to which an exception message will be sent.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.
98 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

When an exception handler is set and an exception occurs, the task is
suspended and a message is sent to the message queue specified by exceptionQ.
The message contains the following information:

■ The first 32-bits contain the ID of the task in which the exception occurred.

■ The second 32-bits contain the type of exception that occurred. See the
header file MachineExceptions.h for a listing of exception types.

■ The last 32-bits are set to NULL (reserved for future use).

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPThrowException 4

Throws an exception to a specified task.

OSStatus MPThrowException (
MPTaskID task,
MPExceptionKind kind);

task A value of type MPTaskID (page 109) that specifies the task to
which the exception should be thrown.

kind A value of type ExceptionKind that specifies the type of
exception to give to the task.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the task is already suspended or if the task is not
defined to take thrown exceptions, the function returns
kMPInsufficientResourcesErr.

DISCUSSION

The exception is treated in the same manner as any other exception taken by a
task. However, since it is asynchronous, it may not be presented immediately.
Functions 99
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
By convention, you should set the exception kind to kMPTaskStoppedErr if you
want to suspend a task. In general, you should do so only if you are debugging
and wish to examine the state of the task. Otherwise you should block the task
using one of the traditional notification mechanisms (such as a message queue).

An exception can be thrown at any time, whether that task is running, eligible
to be run (that is, ready), or blocked. The task is suspended and an exception
message may be generated the next time the task is about to run. Note that this
may never occur— for example, if the task is deadlocked or the resource it is
waiting on is never released. If the task is currently blocked when this function
is executed, kMPTaskBlockedErr is returned. If the task was suspended
immediately at the conclusion of this function call the return value is
kMPTaskStoppedErr.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPDisposeTaskException 4

Removes a task exception.

OSStatus MPDisposeTaskException (
MPTaskID task,
OptionBits action);

task A value of type MPTaskID (page 109) that specifies the task
whose exception you want to remove.

action A value of type OptionBits that specifies actions to perform on
the task. For example, you can enable single-stepping when the
task resumes, or you can pass the exception on to another
handler. See “Task Exception Disposal Constants” (page 121) for
a listing of possible values.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the specified action is invalid or unsupported, or if the
specified task is not suspended, this function returns
kMPInsufficientResourcesErr.
100 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

This function removes the task exception and allows the task to resume
operation. If desired, you can enable single-stepping or branch-stepping, or
propagate the exception instead.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPExtractTaskState 4

Extracts state information from a suspended task.

OSStatus MPExtractTaskState (
MPTaskID task,
MPTaskStateKind kind,
void *info);

task A value of type MPTaskID that specifies the task whose state
information you want to obtain.

kind A value of type MPTaskStateKind that specifies the kind of state
information you want to obtain. See “Task State Constants”
(page 120) for a listing of possible values.

info A pointer to a data structure to hold the state information. On
return, the data structure holds the desired state information.
The format of the data structure varies depending on the state
information you want to retrieve. See the header file
MachineExceptions.h for the formats of the various state
information structures.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If you attempt to extract state information for a running
task, this function returns kMPInsufficientResourcesErr.
Functions 101
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
DISCUSSION

You can use this function to obtain register contents or exception information
about a particular task.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPSetTaskState (page 102).

MPSetTaskState 4

Sets state information for a suspended task.

OSStatus MPSetTaskState (
MPTaskID task,
MPTaskStateKind kind,
void *info);

task A value of type MPTaskID (page 109) that specifies the task
whose state information you want to set.

kind A value of type MPTaskStateKind that specifies the kind of state
information you want to set. See “Task State Constants”
(page 120) for a listing of possible values. Note that some state
information is read-only and cannot be changed using this
function.

info A pointer to a data structure holding the state information you
want to set. The format of the data structure varies depending
on the state information you want to set. See the header file
MachineExceptions.h for the formats of the various state
information structures.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If you specify kMPTaskState32BitMemoryException for the
state information, this function returns
102 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
kMPInsufficientResourcesErr, since the exception state
information is read-only. Attempting to set state information for
a running task will also return kMPInsufficientResourcesErr.

DISCUSSION

You can use this function to set register contents or exception information for a
particular task. However, some state information, such as the exception
information (as specified by kMPTaskState32BitMemoryException) as well as the
MSR, ExceptKind, DSISR, and DAR machine registers (specified under
kMPTaskStateMachine) are read-only. Attempting to set the read-only machine
registers will do nothing, while attempting to set the exception information will
return an error.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPExtractTaskState (page 101).

Debugger Support Functions 4

Multiprocessing Services supplies two functions for use with third-party
debuggers:

■ MPRegisterDebugger (page 103) registers a debugger.

■ MPUnregisterDebugger (page 105) unregisters a debugger.

MPRegisterDebugger 4

Registers a debugger.

OSStatus MPRegisterDebugger (
MPQueueID queue,
MPDebuggerLevel level);
Functions 103
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
queue A value of type MPQueueID (page 110) that specifies the ID of the
queue to which you want exception messages and other
information to be sent.

level A value of type MPDebuggerLevel (page 114) that specifies the
level of this debugger with respect to other debuggers.
Exceptions and informational messages are sent first to the
debugger with the highest level. If more than one debugger
attempts to register at a particular level, only the first debugger
is registered. Other attempts return an error.

function result A result code. See “Result Codes” (page 122) for a list of possible
values. If the number of registered debuggers exceeds the
system limit, the function returns kMPInsufficientResourcesErr.

DISCUSSION

Exception messages are sent when tasks are suspended. When a task exception
occurs, Multiprocessing Services notifies registered debuggers and other
handlers in the following order:

■ the registered debugger queue of the highest level

■ lower level registered debugger queues according to level

■ the local exception handler

■ task termination

The notification moves to the next lower level when a debugger (or eventually
the task's local exception handler) calls the MPDisposeTaskException (page 100)
function with the indication that the exception be propagated. The exception
messages sent to the debugger's queue are in the same format as those
described in MPSetExceptionHandler (page 98).

The system may implement a limited number of debugger slots. It is possible
no debugger support is provided.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.
104 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
SEE ALSO

The function MPUnregisterDebugger (page 105).

MPUnregisterDebugger 4

Unregisters a debugger.

OSStatus MPUnregisterDebugger (MPQueueID queue);

queue A value of type MPQueueID (page 110) that specifies the ID of the
queue whose debugger you want to unregister.

function result A result code. See “Result Codes” (page 122) for a list of possible
values.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

SEE ALSO

The function MPRegisterDebugger (page 103).

Remote Calling Function 4

If you want to call a nonreentrant function (such as a system software function)
from a preemptive task, you must call it remotely using the MPRemoteCall
(page 106) function.
Functions 105
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPRemoteCall 4

Calls a nonreentrant function and blocks the current task.

void *MPRemoteCall (
MPRemoteProcedure remoteProc,
void *parameter,
MPRemoteContext context);

remoteProc A pointer of type MPRemoteProcedure (page 115) that references
the application-defined function you want to call. See
MyRemoteProcedure (page 107) for more information about the
form of this function.

parameter A pointer to a parameter to pass to the application-defined
function. For example, this value could point to a data structure
or a memory location.

context A value of type MPRemoteContext that specifies which contexts
(that is processes) are allowed to execute the function. See
“Remote Call Context Option Constants” (page 122) for a list of
possible values.

DISCUSSION

You use this function primarily to indirectly execute Mac OS system software
functions. The task making the remote call is blocked until the call completes.
The amount of time taken to schedule the remote procedure depends on the
choice of the designated operating context. Specifying kMPAnyRemoteContext
offers the lowest latency, but the called procedure may not have access to
process-specific resources such as some low-memory values. Specifying
kMPOwningProcessRemoteContext has higher latency because the remote
procedure is deferred until the owning process becomes active. However, the
remote procedure is guaranteed to execute within the owning process.

Note that with the exception of functions in Multiprocessing Services, you
cannot safely call any system software functions directly from a preemptive
task. Even if some system software function appears to work today when called
from a preemptive task, unless explicitly stated otherwise there is no guarantee
that subsequent versions of the same function will continue to work in future
versions of system software. In Mac OS 8 implementations of Multiprocessing
Services, the only exceptions to this rule are the atomic memory operations
106 Functions

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
(such as AddAtomic) exported in the InterfaceLib shared library. Even these
functions may switch to 68K mode if the operands to them are not aligned. If
you need to access system software functions from a preemptive task, you must
do so using the MPRemoteCall function.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Application-Defined Function 4

Multiprocessing Services allows you to create an application-defined function
such as MyRemoteProcedure (page 107) to call nonreentrant functions from your
preemptive task.

MyRemoteProcedure 4

When calling MPRemoteCall (page 106), you must designate an
application-defined function to handle any calls to nonreentrant functions (such
as Mac OS system software calls). For example, this is how you would declare
the application-defined function if you were to name the function
MyRemoteProcedure:

void* MyRemoteProcedure (void *parameter);

parameter A pointer to any information you want to pass to
MyRemoteProcedure. For example, parameter might point to a
parameter list that MyRemoteProcedure could then pass to a
Mac OS system software function.

DISCUSSION

Note that your application-defined function must be PowerPC native code,
since Multiprocessing Services tasks cannot call 68K code.
Application-Defined Function 107
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Data Types 4

This section describes the data types used with Multiprocessing Services:

■ MPProcessID (page 109)

■ MPTaskID (page 109)

■ TaskProc (page 109)

■ MPTaskOptions (page 110)

■ MPTaskWeight (page 110)

■ MPQueueID (page 110)

■ MPSemaphoreID (page 111)

■ MPEventID (page 111)

■ MPCriticalRegionID (page 112)

■ MPTimerID (page 112)

■ TaskStorageIndex (page 113)

■ TaskStorageValue (page 113)

■ MPSemaphoreCount (page 113)

■ MPEventFlags (page 114)

■ MPExceptionKind (page 114)

■ MPDebuggerLevel (page 114)

■ MPRemoteProcedure (page 115)
108 Data Types

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
MPProcessID 4

Multiprocessing Services manipulates processes by passing a process ID, which
is defined by the MPProcessID type:

typedef struct OpaqueMPProcessID* MPProcessID;

Note that this process ID is identical to the process ID (or context ID) handled
by the Code Fragment Manager.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPTaskID 4

Multiprocessing Services manipulates tasks by passing a task ID, which is
defined by the MPTaskID type:

typedef struct OpaqueMPTaskID* MPTaskID;

You obtain a task ID by calling the function MPCreateTask (page 58).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

TaskProc 4

When calling the MPCreateTask (page 58) function, you specify the task to create
by passing a pointer of type TaskProc which references the code to be executed
as the task:

typedef OSStatus (*TaskProc) (void *parameter);
Data Types 109
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPTaskOptions 4

When calling the MPCreateTask (page 58) function, you can specify any optional
attributes for the task created by passing a value of type MPTaskOptions, which
has the following type definition:

typedef OptionBits MPTaskOptions;

No options are currently defined.

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPTaskWeight 4

The Multiprocessing Services function MPSetTaskWeight (page 63) handles the
weight of a task using the MPTaskWeight type, which has the following
definition.

typedef UInt32 MPTaskWeight;

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPQueueID 4

Multiprocessing Services manipulates message queues by passing a queue ID,
which is defined by the MPQueueID type:
110 Data Types

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
typedef struct OpaqueMPQueueID* MPQueueID;

You obtain a queue ID by calling the function MPCreateQueue (page 65).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPSemaphoreID 4

Multiprocessing Services manipulates semaphores by passing a semaphore ID,
which is defined by the MPSemaphoreID type:

typedef struct OpaqueMPSemaphoreID* MPSemaphoreID;

You obtain a semaphore ID by calling the function MPCreateSemaphore (page 71).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPEventID 4

Multiprocessing Services manipulates event groups by passing an event group
ID, which is defined by the MPEventID type:

typedef struct OpaqueMPEventID* MPEventID;

You obtain an event group ID by calling the function MPCreateEvent (page 74).

VERSION NOTES

Introduced with Multiprocessing Services 2.0.
Data Types 111
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
MPCriticalRegionID 4

Multiprocessing Services manipulates critical region objects by passing a critical
region ID, which is defined by the MPCriticalRegionID type:

typedef struct OpaqueMPCriticalRegionID* MPCriticalRegionID;

You obtain a critical region ID by calling the function MPCreateCriticalRegion
(page 78).

VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPTimerID 4

Multiprocessing Services manipulates timers by passing a timer ID, which is
defined by the MPTimerID type:

typedef struct OpaqueMPTimerID* MPTimerID;

You obtain a timer ID by calling the function MPCreateTimer (page 82).

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPOpaqueID 4

The Multiprocessing Services function handles a generic notification ID (that is,
an ID that could be a queue ID, event ID, or semaphore ID) by passing an
opaque ID, which is defined by the MPOpaqueID type:

typedef struct OpaqueMPOpaqueID* MPOpaqueID;
112 Data Types

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

TaskStorageIndex 4

The Multiprocessing Services functions described in “Accessing Per-Task
Storage Variables” (page 90) manipulate task storage index values using the
TaskStorageIndex type, which has the following definition:

typedef UInt32 TaskStorageIndex;

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

TaskStorageValue 4

The Multiprocessing Services functions described in “Accessing Per-Task
Storage Variables” (page 90) manipulate task storage values using the
TaskStorageValue type, which has the following definition:

typedef UInt32 TaskStorageValue;

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPSemaphoreCount 4

The Multiprocessing Services function MPCreateSemaphore (page 71) handles the
minimum and maximum semaphore values using the MPSemaphoreCount type,
which has the following definition.

typedef ItemCount MPSemaphoreCount;
Data Types 113
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 1.0.

MPEventFlags 4

The Multiprocessing Services functions described in “Handling Event Groups”
(page 74) handle event information using the MPEventFlags type, which has the
following definition:

typedef UInt32 MPEventFlags;

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPExceptionKind 4

The Multiprocessing Services function MPThrowException (page 99) indicates the
kind of exception thrown using the MPExceptionKind type, which has the
following definition:

typedef UInt32 MPExceptionKind;

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPDebuggerLevel 4

The Multiprocessing Services function MPRegisterDebugger (page 103) indicates
the debugger level using the MPDebuggerLevel type, which has the following
definition:

typedef UInt32 MPDebuggerLevel;
114 Data Types

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

MPRemoteProcedure 4

When calling the MPRemoteCall (page 106) function the remote procedure call
(that is, the application-defined function) you want to designate must have the
following type definition:

typedef void* (*MPRemoteProcedure)(void *parameter);

See MyRemoteProcedure (page 107) for more information about how to
implement the application-defined function.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Constants 4

This section describes the constants available with Multiprocessing Services.

■ “Timer Duration Constants” (page 116)

■ “Timer Option Masks” (page 116)

■ “Memory Allocation Alignment Constants” (page 117)

■ “Memory Allocation Option Constants” (page 119)

■ “Task State Constants” (page 120)

■ “Task Exception Disposal Constants” (page 121)

■ “Remote Call Context Option Constants” (page 122)
Constants 115
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
Timer Duration Constants 4

Several Multiprocessing Services functions take a parameter of type Duration,
which specifies the maximum time a task should wait for an event to occur.
Multiprocessing Services recognizes four constants which you can use when
specifying a duration. Note that you can use these constants in conjunction with
other values to indicate specific wait intervals. For example, to wait 1 second,
you can pass kDurationMillisecond * 1000.

enum {
kDurationImmediate = 0L,
kDurationForever = 0x7FFFFFFF,
kDurationMillisecond = 1,
kDurationMicrosecond = -1
};

Constant Descriptions

kDurationImmediate
The task times out immediately, whether or not the event
has occurred. If the event occurred, the return status is
noErr. If the event did not occur, the return status is
kMPTimeoutErr (assuming no other errors occurred).

kDurationForever The task waits forever. The blocking call waits until either
the event occurs, or until the object being waited upon
(such as a message queue) is deleted.

kDurationMillisecond
The task waits one millisecond before timing out.

kDurationMicrosecond
The task waits one microsecond before timing out.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Timer Option Masks 4

When calling MPArmTimer (page 86), you can pass values of type OptionBits to
specify any optional actions.
116 Constants

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
enum {
kMPPreserveTimerIDMask = 1L << 0,
kMPTimeIsDeltaMask = 1L << 1,
kMPTimeIsDurationMask = 1L << 2
};

Constant Descriptions

kMPPreserveTimerID
Specifying this mask prevents the timer from being deleted
when it expires.

kMPTimeIsDeltaMask
Specifying this mask indicates that the specified time
should be added to the previous expiration time to form
the new expiration time. You can use this mask to
compensate for timing drift caused by the finite amount of
time required to arm the timer, receive the notification, and
so on.

kMPTimeIsDurationMask
Specifying this mask indicates that the specified expiration
time is of type Duration. You can use this mask to avoid
having to call time conversion routines when specifying an
expiration time.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Memory Allocation Alignment Constants 4

When calling the MPAllocateAligned (page 94) function, you must specify the
alignment of the desired memory block by passing a constant of type UInt8 in
the alignment parameter.

enum {
/* Values for the alignment parameter to MPAllocateAligned.*/
kMPAllocateDefaultAligned = 0,
kMPAllocate8ByteAligned = 3,
kMPAllocate16ByteAligned = 4,
kMPAllocate32ByteAligned = 5,
Constants 117
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
kMPAllocate1024ByteAligned = 10,
kMPAllocate4096ByteAligned = 12,
kMPAllocateMaxAlignment = 16,
kMPAllocateAltiVecAligned = kMPAllocate16ByteAligned,
kMPAllocateVMXAligned = kMPAllocateAltiVecAligned
kMPAllocateVMPageAligned = 254,
kMPAllocateInterlockAligned = 255
};

Constant Descriptions

kMPAllocateDefaultAligned
Use the default alignment.

kMPAllocate8ByteAligned
Use 8-byte alignment.

kMPAllocate16ByteAligned
Use 16-byte alignment.

kMPAllocate32ByteAligned
Use 32-byte alignment.

kMPAllocate1024ByteAligned
Use 1024-byte alignment.

kMPAllocate4096ByteAligned
Use 4096-byte alignment.

kMPAllocateMaxAlignment
Use the maximum alignment (65536 byte).

kMPAllocateAltiVecAligned
Use AltiVec alignment.

kMPAllocateVMXAligned
Use VMX (now called AltiVec) alignment.

kMPAllocateVMPageAligned
Use virtual memory page alignment. This alignment is set
at runtime.

kMPAllocateInterlockAligned
Use interlock alignment, which is the alignment needed to
allow the use of CPU interlock instructions (that is, lwarx
and stwcx.) on the returned memory address. This
alignment is set at runtime. In most cases you would never
need to use this alignment.
118 Constants

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Memory Allocation Option Constants 4

When calling the MPAllocateAligned (page 94) function, you can specify
optional actions by passing a constant of type OptionBits in the options
parameter.

enum {
/* Values for the options parameter to MPAllocateAligned.*/
kMPAllocateClearMask = 0x0001,
kMPAllocateGloballyMask = 0x0002,
kMPAllocateResidentMask = 0x0004,
kMPAllocateNoGrowthMask = 0x0010
};

Constant Descriptions

kMPAllocateClearMask
Zero out the allocated memory block.

kMPAllocateGloballyMask
Allocate memory from in memory space that is visible to all
processes. Note that such globally-allocated space is not
automatically reclaimed when the allocating process
terminates. By default, MPAllocateAligned (page 94)
allocates memory from process-specific (that is, not global)
memory.

kMPAllocateResidentMask
Allocate memory from resident memory only (that is, the
allocated memory is not pageable).

kMPAllocateNoGrowthMask
Do not attempt to grow the pool of available memory.
Specifying this option is useful, as attempting to grow
memory may cause your task to block until such memory
becomes available.
Constants 119
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Task State Constants 4

When calling the MPExtractTaskState (page 101) or MPSetTaskState (page 102)
functions you must specify what states you want to obtain or set by passing a
constant of type TaskStateKind in the kind parameter.

enum {
kMPTaskStateRegisters = 0,
kMPTaskStateFPU = 1,
kMPTaskStateVectors = 2,
kMPTaskStateMachine = 3,
kMPTaskState32BitMemoryException= 4
};

typedef UInt32 MPTaskStateKind;

Constant Descriptions

kMPTaskStateRegisters
The task’s general-purpose (GP) registers. The
RegisterInformationPowerPC structure in
MachineExceptions.h defines the format of this information.

kMPTaskStateFPU The task’s floating point registers. The
FPUInformationPowerPC structure in MachineExceptions.h
defines the format of this information.

kMPTaskStateVectors
The task’s vector registers. The VectorInformationPowerPC
structure in MachineExceptions.h defines the format of this
information.

kMPTaskStateMachine
The task’s machine registers. The
MachineInformationPowerPC structure in
MachineExceptions.h defines the format of this information.
Note that the MSR, ExceptKind, DSISR, and DAR registers
are read-only.

kMPTaskState32BitMemoryException
The task’s exception information for older 32-bit memory
120 Constants

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
exceptions (that is, memory exceptions on 32-bit CPUs).
The MemoryExceptionInformation structure in
MachineExceptions.h defines the format of this information.
This exception information is read-only.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Task Exception Disposal Constants 4

When calling the MPDisposeTaskException (page 100) function, you must pass a
constant of type OptionBits in the action parameter specifying what actions to
take.

enum {
/* Option bits for MPDisposeTaskException.*/
kMPTaskResumeMask = 0x0000,
kMPTaskPropagateMask = 1 << kMPTaskPropagate,
kMPTaskResumeStepMask = 1 << kMPTaskResumeStep,
kMPTaskResumeBranchMask = 1 << kMPTaskResumeBranch
};

Constant Descriptions

kMPTaskResumeMask Resume the task.
kMPTaskPropagateMask

Propagate the exception to the next debugger level.
kMPTaskResumeStepMask

Resume the task and enable single stepping.
kMPTaskResumeBranchMask

Resume the task and enable branch stepping.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.
Constants 121
4/30/99  Apple Computer, Inc.

 C H A P T E R 4

Multiprocessing Services Reference
Remote Call Context Option Constants 4

When making a remote call to an application-defined function using
MPRemoteCall (page 106), you must pass a constant of type MPRemoteContext in
the context parameter specifying which contexts are allowed to execute the
function.

enum {
kMPAnyRemoteContext = 0,
kMPOwningProcessRemoteContext = 1

};
typedef UInt8 MPRemoteContext;

Constant Descriptions

kMPAnyRemoteContext
Any cooperative context can execute the function. Note that the
called function may not have access to any of the owning
context’s process-specific low-memory values.

kMPOwningProcessRemoteContext
Only the context that owns the task can execute the function.

VERSION NOTES

Introduced with Multiprocessing Services 2.0.

Result Codes 4

Many Multiprocessing Services functions return result codes. In addition,
Multiprocessing Services functions may also return File Manager, Code
Fragment Manager, and Process Manager result codes, which are described in
Inside Macintosh.
122 Result Codes

4/30/99  Apple Computer, Inc.

C H A P T E R 4

Multiprocessing Services Reference
The most common result codes returned by Multiprocessing Services are
listed below

noErr No error
paramErr Invalid parameter in function call
memFullErr Out of memory
kMPDeletedErr The desired notification the function

was waiting upon was deleted.
kMPInsufficientResourcesErr Could not complete task due to

unavailable Multiprocessing Services
resources.

Note that many functions return this
value as a general error when the
desired action could not be performed.

kMPInvalidID Invalid ID value (for example, an
invalid message queue ID was passed
to MPNotifyQueue (page 66).

kMPTaskBlockedErr The desired task is blocked.
kMPTaskStoppedErr The desired task is stopped.
kMPTimeoutErr The designated timeout interval

passed before the function could take
action.
Result Codes 123
4/30/99  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Calculating the Intertask Signaling
Time A

When using Multiprocessing Services tasks, the amount of time used by the
task should be much greater than the time taken to pass notifications to the
task. This intertask signaling time is generally between 20 and 50 microseconds.
If you want to explicitly calculate the signaling time, you can use the code in
Listing A-1 to do so.

Listing A-1 Calculating the intertask signaling time

#include <Multiprocessing.h>

#include <Types.h>
#include <stdio.h>
#include <stdlib.h>
#include <sioux.h>
#include <math64.h>
#include <DriverServices.h>

enum {
aQueue = 0,
aSemaphore,
anEvent

} reflectOP;

MPOpaqueID waiterID, postID;

static OSStatus Reflector ()
{

void*p1,*p2,*p3;
MPEventFlags events;
125
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
while (true)
{

switch (reflectOP)
{

case aQueue:
MPWaitOnQueue((MPQueueID) waiterID, &p1, &p2, &p3, kDurationForever);
break;

case aSemaphore:
MPWaitOnSemaphore((MPSemaphoreID) waiterID, kDurationForever);
break;

case anEvent:
MPWaitForEvent((MPEventID) waiterID, &events, kDurationForever);
break;

default:
return -123;

}

switch (reflectOP)
{

case aQueue:
MPNotifyQueue((MPQueueID) postID, &p1, &p2, &p3);
break;

case aSemaphore:
MPSignalSemaphore((MPSemaphoreID) postID);
break;

case anEvent:
MPSetEvent((MPEventID) postID, 0x01010101);
break;

default:
return -123;

}
}

return -123;
}

126
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
static float HowLong(
AbsoluteTime endTime,
AbsoluteTime bgnTime
)

{
AbsoluteTime absTime;
Nanoseconds nanosec;

absTime = SubAbsoluteFromAbsolute(endTime, bgnTime);
nanosec = AbsoluteToNanoseconds(absTime);
return (float) UnsignedWideToUInt64(nanosec) / 1000.0;

}

void main (void)
{

OSStatus err;
MPTaskID task;
UInt32 i, count;
void *p1,*p2,*p3;
MPEventFlags events;
AbsoluteTime nowTime, bgnTime;
float uSec;
char buff[10];

/* Set the console window defaults */
/* (this is a Metrowerks CodeWarrior thing). */
SIOUXSettings.autocloseonquit = true;
SIOUXSettings.asktosaveonclose = false;
SIOUXSettings.showstatusline = false;
SIOUXSettings.columns = 100;
SIOUXSettings.rows = 20;
SIOUXSettings.fontsize = 10;

// SIOUXSettings.fontid = monaco;
SIOUXSettings.standalone = true;

// DebugStr ("\pStarting");
127
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
/* Can't get very far without this one. */
if (!MPLibraryIsLoaded())
{

printf("The MP library did not load.\n");
return;

}

/* Find the overhead up UpTime. Perform a bunch of calls to average out */
/* cache effects. */
printf("\n");

bgnTime = UpTime();
for (i=0; i<16; i++)
{

nowTime = UpTime();
}

uSec = HowLong(nowTime, bgnTime);
uSec /= 16.0;
printf(" UpTime overhead: %.3f usec \n", uSec);

/* Time intertask communication. */
printf("\n Queues\n");

reflectOP = aQueue;
MPCreateQueue((MPQueueID*) &waiterID);
MPCreateQueue((MPQueueID*) &postID);

bgnTime = UpTime();
err = MPCreateTask(Reflector,

 NULL,
 0,
 NULL,
 0,
 0,
 kNilOptions,
 &task);

nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
128
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
printf(" MPCreateTask overhead: %.3f usec (may vary significantly) \n", uSec);
if (err != noErr)
{

printf(" Task not created!\n");
return;

}

count = 100000;
bgnTime = UpTime();
for (i=0; i<count; i++)
{

MPNotifyQueue((MPQueueID) waiterID, 0, 0, 0);
while (true)
{

err = MPWaitOnQueue((MPQueueID) postID, &p1, &p2, &p3, kDurationImmediate);
if (err != kMPTimeoutErr) break;

}
}
nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
uSec /= ((float) count / 2.0); // Two trips.
printf(" Intertask signalling using queues overhead: %.3f usec \n", uSec);

/* Time intertask communication.
*/
MPTerminateTask(task, 123);
printf("\n Semaphores\n");

reflectOP = aSemaphore;

MPCreateSemaphore(1, 0, (MPSemaphoreID*) &waiterID);
MPCreateSemaphore(1, 0, (MPSemaphoreID*) &postID);

bgnTime = UpTime();
err = MPCreateTask(Reflector,

 NULL,
 0,
 NULL,
 0,
 0,
 kNilOptions,
129
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
 &task);
nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
printf(" MPCreateTask overhead: %.3f usec (may vary significantly) \n", uSec);
if (err != noErr)
{

printf(" Task not created!\n");
return;

}

count = 100000;
bgnTime = UpTime();
for (i=0; i<count; i++)
{

MPSignalSemaphore((MPSemaphoreID) waiterID);
while (true)
{

err = MPWaitOnSemaphore((MPSemaphoreID) postID, kDurationImmediate);
if (err != kMPTimeoutErr) break;

}
}
nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
uSec /= ((float) count / 2.0);// Two trips.
printf(" Intertask signalling using sempahores overhead: %.3f usec \n", uSec);

/* Time intertask communication. */
MPTerminateTask(task, 123);
printf("\n Event Groups\n");

reflectOP = anEvent;
MPCreateEvent((MPEventID*) &waiterID);
MPCreateEvent((MPEventID*) &postID);

bgnTime = UpTime();
err = MPCreateTask(Reflector,

 NULL,
 0,
 NULL,
 0,
130
4/30/99  Apple Computer, Inc.

A P P E N D I X

Calculating the Intertask Signaling Time
 0,
 kNilOptions,
 &task);

nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
printf(" MPCreateTask overhead: %.3f usec (may vary significantly) \n", uSec);
if (err != noErr)
{

printf(" Task not created!\n");
return;

}

count = 100000;
bgnTime = UpTime();
for (i=0; i<count; i++)
{

MPSetEvent((MPEventID) waiterID, 0x01);
while (true)
{

err = MPWaitForEvent((MPEventID) postID, &events, kDurationImmediate);
if (err != kMPTimeoutErr) break;

}
}
nowTime = UpTime();
uSec = HowLong(nowTime, bgnTime);
uSec /= ((float) count / 2.0);// Two trips.
printf(" Intertask signalling using events overhead: %.3f usec \n", uSec);

gets(buff);

}

131
4/30/99  Apple Computer, Inc.

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Changes From Previous Versions of
Multiprocessing Services B

Multiprocessing Services 2.0 supports some, but not all, functions available in
earlier releases. Table B-1 lists the functions that were introduced in version 1.0
that are still supported in version 2.0.

Table B-1 Older functions supported in version 2.0

Name Comments

MPProcessors (page 56)

MPCreateTask (page 58)

MPTerminateTask (page 60)

MPCurrentTaskID (page 62)

MPYield (page 62)

MPExit (page 61)

MPCreateQueue (page 65)

MPDeleteQueue (page 66)

MPNotifyQueue (page 66)

MPWaitOnQueue (page 68)

MPCreateSemaphore (page 71)

MPCreateBinarySemaphore In C, a macro that calls
MPCreateSemaphore (page 71).

MPDeleteSemaphore (page 72)

MPSignalSemaphore (page 72)

MPWaitOnSemaphore (page 73)

MPCreateCriticalRegion (page 78)
133
4/30/99  Apple Computer, Inc.

A P P E N D I X

Changes From Previous Versions of Multiprocessing Services
Table B-2 lists Multiprocessing Services functions that are new in version 2.0.

MPDeleteCriticalRegion (page 79)

MPEnterCriticalRegion (page 79)

MPExitCriticalRegion (page 81)

MPAllocate Deprecated. Use MPAllocateAligned
instead.

MPFree (page 95)

MPBlockCopy (page 96)

MPLibraryIsLoaded In C, a macro that checks to see if the
MPProcessors symbol is resolved.

Table B-2 New functions introduced with version 2.0

Name Comments

MPProcessorsScheduled (page 57)

MPSetTaskWeight (page 63)

MPTaskIsPreemptive (page 64)

MPAllocateTaskStorageIndex (page 90)

MPDeallocateTaskStorageIndex (page 91)

MPSetTaskStorageValue (page 91)

MPGetTaskStorageValue (page 92)

MPSetQueueReserve (page 69)

MPCreateEvent (page 74)

MPDeleteEvent (page 75)

MPSetEvent (page 76)

Table B-1 Older functions supported in version 2.0 (continued)

Name Comments
134
4/30/99  Apple Computer, Inc.

A P P E N D I X

Changes From Previous Versions of Multiprocessing Services
MPWaitForEvent (page 77)

UpTime (page 88)

DurationToAbsolute (page 88)

AbsoluteToDuration (page 89)

MPDelayUntil (page 82)

MPCreateTimer (page 82)

MPDeleteTimer (page 83)

MPSetTimerNotify (page 84)

MPArmTimer (page 86)

MPCancelTimer (page 87)

MPSetExceptionHandler (page 98)

MPThrowException (page 99)

MPDisposeTaskException (page 100)

MPExtractTaskState (page 101)

MPSetTaskState (page 102)

MPRegisterDebugger (page 103)

MPRegisterDebugger (page 103)

MPAllocateAligned (page 94) Preferred over MPAllocate.

MPGetAllocatedBlockSize (page 95)

MPBlockClear (page 97)

MPDataToCode (page 97)

MPRemoteCall (page 106) Preferred over _MPRPC

Table B-2 New functions introduced with version 2.0 (continued)

Name Comments
135
4/30/99  Apple Computer, Inc.

A P P E N D I X

Changes From Previous Versions of Multiprocessing Services
Table B-3 shows unofficial functions included in earlier header files that remain
supported in version 2.0. Note, however, that future versions may not support
these functions.

Table B-4 shows functions used for debugging that are no longer supported in
version 2.0. You can access these functions for older builds if you #define
MPIncludeDefunctServices to be nonzero.

Table B-3 Unofficial functions still supported in version 2.0

Name Comments

_MPRPC Deprecated. Use MPRemoteCall (page 106)
instead.

_MPAllocateSys Deprecated. Use MPAllocateAligned
(page 94) instead.

_MPTaskIsToolboxSafe

_MPLibraryVersion

_MPLibraryIsCompatible

Table B-4 Debugging functions unsupported in version 2.0

Name Comments

_MPInitializePrintf

_MPPrintf

_MPDebugStr

_MPStatusPString

_MPStatusCString
136
4/30/99  Apple Computer, Inc.

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
Document Version History C

This document has had the following releases:

Table C-1 Multiprocessing Services documentation revision history

Version Notes

April 30, 1999 Initial public release. The following changes were made from the previous
(seed draft) version:

Added Chapter 1, “Introduction,” Chapter 2, “About Multitasking on the
Mac OS,” and Chapter 3, “Using Multiprocessing Services,” which include
introductory information, conceptual information, programming
discussions, and sample code.

Added versioning information to functions, data types, and constants in
Chapter 4, “Multiprocessing Services Reference.”

Added discussion and parameter information to MPTaskIsPreemptive
(page 64) indicating how and why you can specify kInvalidID to determine
the preemptiveness of the current task. Also added Version Notes section.

Correction in MPWaitOnQueue (page 68), MPWaitOnSemaphore (page 73),
MPWaitForEvent (page 77), and MPEnterCriticalRegion (page 79): When
calling from a cooperative task, you should specify only
kDurationImmediate waits; others are allowable, but they will cause the task
to block.

Added information stating that setting event bits in MPSetEvent (page 76)
and obtaining and clearing and event group in MPWaitForEvent (page 77)
are atomic operations. For example, bits cannot be set between when a task
obtains an event group and when the event group is cleared, so no data can
be lost.

Changed wording in MPDelayUntil (page 82) to clarify that you must
indicate a specific time to unblock the task, not a duration.

Changed wording for MPAllocateTaskStorageIndex (page 90) and
MPDeallocateTaskStorageIndex (page 91) to indicate that these functions do
not actually allocate or deallocate memory.
137
4/30/99  Apple Computer, Inc.

A P P E N D I X

Document Version History
Added disclaimer to MPThrowException (page 99) indicating that you
should throw an exception to a task to stop it only if you are debugging
and plan to examine the state of the task. Otherwise, you should block the
task using a traditional notification method (such as a message queue).

Modified discussion of MPSetExceptionHandler (page 98) to indicate the
format of the message sent to the exception handler.

Discussion of informative messages in MPRegisterDebugger (page 103)
removed to reflect status as of version 2.0.

Added information to MPExtractTaskState (page 101) and MPSetTaskState
(page 102) indicating that attempting to set or read state information for a
nonsuspended task returns the error kMPInsufficientResourcesErr.

Added information to MPSetTaskState (page 102) and “Task State
Constants” (page 120): the exception state information and some machine
registers (MRS, ExceptKind, DSISR, and DAR) are read-only. Attempting to
set the exception state information will return an error. Attempts to change
the MRS, ExceptKind, DSISR, and DAR registers will simply have no effect.

Discussion in MPRemoteCall (page 106) modifed to reflect this clarification:
If you specify that the function should execute in the same context that
owns the task, the function has access to data available to the main
application (just as if the application had called the function). However, the
function cannot execute until the owning context becomes active (and then
not until the application calls WaitNextEvent).

Atomic memory operations mentioned in MPRemoteCall (page 106) and
“Making Remote Procedure Calls” (page 47) are now located in
InterfaceLib, not the Driver Services Library.

Data types MPAddressSpaceID and MPCpuID removed to reflect status as of
version 2.0.

Clarified that you can use the constants in “Timer Duration Constants”
(page 116) to specify any number of waiting times by adding multipliers.

Correction in “Memory Allocation Alignment Constants” (page 117): CPU
interlock instruction swarx should be stwcx.

Table C-1 Multiprocessing Services documentation revision history (continued)

Version Notes
138
4/30/99  Apple Computer, Inc.

A P P E N D I X

Document Version History
Specified the MachineExceptions.h structures that correspond to the state
information constants in “Task State Constants” (page 120)

Removed nonbitmask values (kMPTaskPropagate, kMPTaskResumeStep, and
kMPTaskResumeBranch) and descriptions from “Task Exception Disposal
Constants” (page 121).

Feb. 26, 1999 First seed draft release

Table C-1 Multiprocessing Services documentation revision history (continued)

Version Notes
139
4/30/99  Apple Computer, Inc.

Glossary
atomic operation A n action that executes
as one indivisible sequence. For example,
obtaining and clearing an event group
occurs as an atomic operation. It is not
possible for another task to set an event bit
after the event group is obtained but before it
is cleared.

cooperative multitasking A multitasking
model that requires a task to voluntarily
suspend its execution in order to give
processor time to other tasks.

blocked The state where a task is not
executing because it is waiting for data or a
resource to become available. Blocked tasks
are not assigned processor time by the
scheduler.

context The execution environment for an
application. Each running application has its
own context which is scheduled
(cooperatively or preemptively) by system
software. For example, in Mac OS 8, contexts
are cooperatively-scheduled by the Process
Manager. Also called a process or an execution
context.

critical region A section of executable
code that can only be accessed by one task at
a time.

event group A set of flags which you can
use to signal events for a task.

latency A significant time delay between
when your code requests an action and
when the action actually occurs. For

example, there is typically a latency between
when you request that a preemptive task be
terminated and when it actually terminates.

Mac OS task The preemptive task that
contains all the cooperatively scheduled
programs handled by the Process Manager.

message A 96-bit block of data that passes
information to a task. Messages are passed
to message queues which then can be read
by a task. See also message queue.

message queue A storage location for
messages. Tasks can place or retrieve
messages from a queue. See also message.

multiprocessing The ability of a
computer and operating system to use more
than one microprocessor at a time.

Multiprocessing Services Apple
Computer’s preemptive multitasking
technology for Macintosh computers.

multitasking The ability to handle several
tasks at a time.

notification mechanism An indicator
that passes information to a task. Some
notification mcchanisms include messages,
semaphores, and event groups.

nonreentrant function A function that
cannot be called simultaneously or
sequentially by different preemptive tasks.
Typically functions that manipulate global
data are nonreentrant.
141
4/30/99  Apple Computer, Inc.

G L O S S A R Y
preemptive multitasking The ability of
an operatiing system to divide processor
time among many tasks, allowing them to
execute in a simultaneous or
near-simultaneous manner.

preemptive scheduling A multitasking
model that allows a scheduler to determine
the amount of processor time to assign to
tasks. The scheduler uses well-defined rules
to determine when to stop execution of one
task and resume another.

process See context.

remote procedure call A call by a
preemptive task that must execute in a
nonpreemptive environment. Typically you
use remote procedure calls to call
nonreentrant functions.

scheduler An authority that assigns
processor time to individual tasks. Also
called a task scheduler.

semaphore A counter that can be
incremented or decremented to signal an
event to a task.

task An individual unit of program
execution. Each task has its own stack and
register set.

symmetric multiprocessing A
multiprocessing technique where tasks are
divided equally among all available
processsors. This method is more efficient
than asymmetric multiprocessing where one
master processor assigns work to a number
of slave processors.

thread As defined for the Mac OS
operating system, a task that is
cooperatively-scheduled by the Thread
Manager. Compare task.
142
4/30/99  Apple Computer, Inc.

Index
Numerals

68K code in preemptive tasks 29

A

absolute time, defined 47
AbsoluteToDuration function 89
address spaces 16, 48
allocating memory in tasks 45

B

"bank line" tasking architecture 23
binary semaphores 19
blocked task, defined 17

C

calling 68K code 47
calling nonreentrant functions 47
changes from previous versions of

Multiprocessing Services 133
checking for the availability of Multiprocessing

Services 31
critical regions

creating 44
defined 20

D

debuggers 48

determining the number of processors 32
"divide and conquer" tasking architecture 22
DurationToAbsolute function 88

E

event groups, defined 20
exception handlers 48

H

hardware requirements 30

I

interrupt handlers 44
intertask signaling time, calculating 125

K

kDurationForever constant 116
kDurationImmediate constant 116
kDurationMicrosecond constant 116
kDurationMillisecond constant 116
kMPAllocate1024ByteAligned constant 118
kMPAllocate16ByteAligned constant 118
kMPAllocate32ByteAligned constant 118
kMPAllocate4096ByteAligned constant 118
kMPAllocate8ByteAligned constant 118
kMPAllocateAltiVecAligned constant 118
kMPAllocateClearMask constant 119
kMPAllocateDefaultAligned constant 118
143
4/30/99  Apple Computer, Inc.

I N D E X
kMPAllocateGloballyMask constant 119
kMPAllocateInterlockAligned constant 118
kMPAllocateMaxAlignment constant 118
kMPAllocateNoGrowthMask constant 119
kMPAllocateResidentMask constant 119
kMPAllocateVMPageAligned constant 118
kMPAllocateVMXAligned constant 118
kMPAnyRemoteContext constant 122
kMPOwningProcessRemoteContext constant 122
kMPPreserveTimerID constant 117
kMPTaskPropagateMask constant 121
kMPTaskResumeBranchMask constant 121
kMPTaskResumeMask constant 121
kMPTaskResumeStepMask constant 121
kMPTaskState32BitMemoryException constant

120
kMPTaskStateFPU constant 120
kMPTaskStateMachine constant 120
kMPTaskStateRegisters constant 120
kMPTaskStateVectors constant 120
kMPTimeIsDeltaMask constant 117
kMPTimeIsDurationMask constant 117

M

Mac OS task, defined 16
message queues

defined 19
used when creating tasks 35

microprocessors See processors
multiprocessing, defined 14
Multiprocessing Services on Mac OS 8 versus

Mac OS X 30
multitasking

cooperative versus preemptive 13
defined 13

MPAllocateAligned function 94
MPAllocateTaskStorageIndex function 90
MPArmTimer function 86
MPBlockClear function 97
MPBlockCopy function 96
MPCancelTimer function 87
MPCreateCriticalRegion function 78

MPCreateEvent function 74
MPCreateQueue function 65
MPCreateSemaphore function 71
MPCreateTask function 58
MPCreateTimer function 82
MPCriticalRegionID type 112
MPCurrentTaskID function 62
MPDataToCode function 97
MPDeallocateTaskStorageIndex function 91
MPDebuggerLevel type 114
MPDelayUntil function 82
MPDeleteCriticalRegion function 79
MPDeleteEvent function 75
MPDeleteQueue function 66
MPDeleteSemaphore function 72
MPDeleteTimer function 83
MPDisposeTaskException function 100
MPEnterCriticalRegion function 79
MPEventFlags type 114
MPEventID type 111
MPExceptionKind type 114
MPExit function 61
MPExitCriticalRegion function 81
MPExtractTaskState function 101
MPFree function 95
MPGetAllocatedBlockSize function 95
MPGetTaskStorageValue function 92
MPNotifyQueue function 66
MPOpaqueID type 112
MPProcessID type 109
MPProcessors function 56
MPProcessorsScheduled function 57
MPQueueID type 110
MPRegisterDebugger function 103
MPRemoteCall function 106
MPSemaphoreCount type 113
MPSemaphoreID type 111
MPSetEvent function 76
MPSetExceptionHandler function 98
MPSetQueueReserve function 69
MPSetTaskState function 102
MPSetTaskStorageValue function 91
MPSetTaskWeight function 63
MPSetTimerNotify function 84
MPSignalSemaphore function 72
144
4/30/99  Apple Computer, Inc.

I N D E X
MPTaskID type 109
MPTaskIsPreemptive function 64
MPTaskOptions type 110
MPTaskWeight type 110
MPTerminateTask function 60
MPThrowException function 99
MPTimerID type 112
MPUnregisterDebugger function 105
MPWaitForEvent function 77
MPWaitOnQueue function 68
MPWaitOnSemaphore function 73
MPYield function 62

N

new functions added with version 2.0 134
notification methods 18
notification queue 35

P

"pipeline" tasking architecture 24
preemptive tasks See tasks
processors

determining the number of 32
versus number of tasks 21

Q

queues See message queues

R

recursion in critical regions 20
remote procedure calls 47

S

schedulers 16
semaphores

defined 19
used for periodic actions 42

shared resources 18
synchronization of tasks 18, 39
system requirements 30

T

tasking architectures
multiple independent tasks 22
parallel tasks with a single set of I/O

buffers 23
parallel tasks with parallel I/O buffers 22
sequential tasks 24

tasks
blocked 17
compared to threads 14
creating 32
defined 13
intertask signaling time 125
notifying at interrupt time 44
setting weight of 35
synchronization of 18, 39
terminating 38
versus number of processors 21

task schedulers 16
task-specific storage 45
TaskStorageIndex type 113
TaskStorageValue type 113
task weight 35
terminating tasks 38
termination queue 35
Thread Manager, compared to Multiprocessing

Services 14
timers 46
145
4/30/99  Apple Computer, Inc.

I N D E X
U

UpTime function 88

V

version 2.0, new functions added for 134
virtual memory 30

W

waiting on a queue 37, 42
146
4/30/99  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

4/30/99  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

ILLUSTRATOR
Ruth Anderson

DEVELOPMENTAL EDITOR
Laurel Rezeau

PRODUCTION EDITOR
Gerri Gray

Special thanks to René Vega, Alan Lillich,
Jim Murphy, Roger Pantos, and George
Warner.

	Adding Multitasking Capability to Applications Using Multiprocessing Services
	Contents
	Figures, Tables, and Listings
	Introduction
	About Multitasking on the Mac OS
	Multitasking Basics
	Multitasking and Multiprocessing
	Tasks and Address Spaces
	Task Scheduling
	Shared Resources and Task Synchronization
	Semaphores
	Message Queues
	Event Groups
	Critical Regions

	Tasking Architectures
	Multiple Independent Tasks
	Parallel Tasks With Parallel I/O Buffers
	Parallel Tasks With a Single Set of I/O Buffers
	Sequential Tasks

	Using Multiprocessing Services
	Multiprocessing Services in Mac OS 8 and Mac OS X
	Criteria for Creating Tasks
	Checking for the Availability of Multiprocessing Services
	Determining the Number of Processors
	Creating Tasks
	Terminating Tasks
	Synchronizing and Notifying Tasks
	Handling Periodic Actions
	Notifying Tasks at Interrupt Time
	Using Critical Regions

	Allocating Memory in Tasks
	Using Task-Specific Storage
	Using Timers
	Making Remote Procedure Calls
	Handling Exceptions and Debugging

	Multiprocessing Services Reference
	Functions
	Determining Processor Availability
	Creating and Scheduling Tasks
	Creating and Handling Message Queues
	Creating and Handling Semaphores
	Handling Event Groups
	Handling Critical Regions
	Timer Services Functions
	Time Utility Functions
	Accessing Per-Task Storage Variables
	Memory Allocation Functions
	Exception Handling Functions
	Debugger Support Functions
	Remote Calling Function

	Application-Defined Function
	Data Types
	Constants
	Timer Duration Constants
	Timer Option Masks
	Memory Allocation Alignment Constants
	Memory Allocation Option Constants
	Task State Constants
	Task Exception Disposal Constants
	Remote Call Context Option Constants

	Result Codes

	Calculating the Intertask Signaling Time
	Changes From Previous Versions of Multiprocessing Services
	Document Version History
	Glossary
	Index

